WorldWideScience

Sample records for diffusion rate model

  1. Gaussian and Affine Approximation of Stochastic Diffusion Models for Interest and Mortality Rates

    Directory of Open Access Journals (Sweden)

    Marcus C. Christiansen

    2013-10-01

    Full Text Available In the actuarial literature, it has become common practice to model future capital returns and mortality rates stochastically in order to capture market risk and forecasting risk. Although interest rates often should and mortality rates always have to be non-negative, many authors use stochastic diffusion models with an affine drift term and additive noise. As a result, the diffusion process is Gaussian and, thus, analytically tractable, but negative values occur with positive probability. The argument is that the class of Gaussian diffusions would be a good approximation of the real future development. We challenge that reasoning and study the asymptotics of diffusion processes with affine drift and a general noise term with corresponding diffusion processes with an affine drift term and an affine noise term or additive noise. Our study helps to quantify the error that is made by approximating diffusive interest and mortality rate models with Gaussian diffusions and affine diffusions. In particular, we discuss forward interest and forward mortality rates and the error that approximations cause on the valuation of life insurance claims.

  2. On diffusion processes with variable drift rates as models for decision making during learning

    International Nuclear Information System (INIS)

    Eckhoff, P; Holmes, P; Law, C; Connolly, P M; Gold, J I

    2008-01-01

    We investigate Ornstein-Uhlenbeck and diffusion processes with variable drift rates as models of evidence accumulation in a visual discrimination task. We derive power-law and exponential drift-rate models and characterize how parameters of these models affect the psychometric function describing performance accuracy as a function of stimulus strength and viewing time. We fit the models to psychophysical data from monkeys learning the task to identify parameters that best capture performance as it improves with training. The most informative parameter was the overall drift rate describing the signal-to-noise ratio of the sensory evidence used to form the decision, which increased steadily with training. In contrast, secondary parameters describing the time course of the drift during motion viewing did not exhibit steady trends. The results indicate that relatively simple versions of the diffusion model can fit behavior over the course of training, thereby giving a quantitative account of learning effects on the underlying decision process

  3. The rate of diffusion into advanced gas cooled reactor moderator bricks: an equivalent cylinder model

    International Nuclear Information System (INIS)

    Kyte, W.S.

    1980-01-01

    The graphite moderator bricks which make up the moderator of an advanced gas-cooled nuclear reactor (AGR) are of many different and complex shapes. Many physico-chemical processes that occur within these porous bricks include a diffusional step and thus to model these processes it is necessary to solve the diffusion equation (with chemical reaction) in a porous medium of complex shape. A finite element technique is applied to calculating the rate at which nitrogen diffuses into and out of the porous moderator graphite during operation of a shutdown procedure for an AGR. However, the finite element method suffers from several disadvantages that undermine its general usefulness for calculating rates of diffusion in AGR moderator cores. A model which overcomes some of these disadvantages is presented (the equivalent cylinder model) and it is shown that this gives good results for a variety of different boundary and initial conditions

  4. Diffusion rates for elevated releases

    International Nuclear Information System (INIS)

    Ramsdell, J.V.

    1983-11-01

    A search of the literature related to diffusion from elevated sources has determined that an adequate data base exists for use in developing parameterizations for estimating diffusion rates for material released from free standing stacks at nuclear power plants. A review of published data analyses indicates that a new parameterization of horizontal diffusion rates specifically for elevated releases is not likely to significantly change the magnitudes of horizontal diffusion coefficients on the average. However, the uncertainties associated with horizontal diffusion coefficient estimates under any given set of atmospheric conditions could be reduced by a new parameterization. Similarly, a new parameterization of vertical diffusion rates would be unlikely to significantly alter the magnitudes of diffusion coefficients for unstable atmospheric conditons. However, for neutral and stable atmospheric conditions, a new parameterization of vertical diffusion rates might increase vertical diffusion coefficients significantly. The increase would move ground-level time-integrated concentration maxima closer to the plant and would increase the maxima. 55 references, 2 figures, 4 tables

  5. Diffusion equations and the time evolution of foreign exchange rates

    Energy Technology Data Exchange (ETDEWEB)

    Figueiredo, Annibal; Castro, Marcio T. de [Institute of Physics, Universidade de Brasília, Brasília DF 70910-900 (Brazil); Fonseca, Regina C.B. da [Department of Mathematics, Instituto Federal de Goiás, Goiânia GO 74055-110 (Brazil); Gleria, Iram, E-mail: iram@fis.ufal.br [Institute of Physics, Federal University of Alagoas, Brazil, Maceió AL 57072-900 (Brazil)

    2013-10-01

    We investigate which type of diffusion equation is most appropriate to describe the time evolution of foreign exchange rates. We modify the geometric diffusion model assuming a non-exponential time evolution and the stochastic term is the sum of a Wiener noise and a jump process. We find the resulting diffusion equation to obey the Kramers–Moyal equation. Analytical solutions are obtained using the characteristic function formalism and compared with empirical data. The analysis focus on the first four central moments considering the returns of foreign exchange rate. It is shown that the proposed model offers a good improvement over the classical geometric diffusion model.

  6. Diffusion equations and the time evolution of foreign exchange rates

    Science.gov (United States)

    Figueiredo, Annibal; de Castro, Marcio T.; da Fonseca, Regina C. B.; Gleria, Iram

    2013-10-01

    We investigate which type of diffusion equation is most appropriate to describe the time evolution of foreign exchange rates. We modify the geometric diffusion model assuming a non-exponential time evolution and the stochastic term is the sum of a Wiener noise and a jump process. We find the resulting diffusion equation to obey the Kramers-Moyal equation. Analytical solutions are obtained using the characteristic function formalism and compared with empirical data. The analysis focus on the first four central moments considering the returns of foreign exchange rate. It is shown that the proposed model offers a good improvement over the classical geometric diffusion model.

  7. Diffusion equations and the time evolution of foreign exchange rates

    International Nuclear Information System (INIS)

    Figueiredo, Annibal; Castro, Marcio T. de; Fonseca, Regina C.B. da; Gleria, Iram

    2013-01-01

    We investigate which type of diffusion equation is most appropriate to describe the time evolution of foreign exchange rates. We modify the geometric diffusion model assuming a non-exponential time evolution and the stochastic term is the sum of a Wiener noise and a jump process. We find the resulting diffusion equation to obey the Kramers–Moyal equation. Analytical solutions are obtained using the characteristic function formalism and compared with empirical data. The analysis focus on the first four central moments considering the returns of foreign exchange rate. It is shown that the proposed model offers a good improvement over the classical geometric diffusion model.

  8. Mathematical modelling of the influenced of diffusion rate on macro nutrient availability in paddy field

    Science.gov (United States)

    Renny; Supriyanto

    2018-04-01

    Nutrition is the chemical compounds that needed by the organism for the growth process. In plants, nutrients are organic or inorganic compounds that are absorbed from the roots of the soil. It consist of macro and micro nutrient. Macro nutrients are nutrition that needed by plants in large quantities, such as, nitrogen, calcium, pottacium, magnesium, and sulfur. The total soil nutrient is the difference between the input nutrient and the output nutrients. Input nutrients are nutrient that derived from the decomposition of organic substances. Meanwhile, the output nutrient consists of the nutrients that absorbed by plant roots (uptake), the evaporated nutrients (volatilized) and leached nutrients. The nutrient transport can be done through diffusion process. The diffusion process is essential in removing the nutrient from one place to the root surface. It will cause the rate of absorption of nutrient by the roots will be greater. Nutrient concept in paddy filed can be represented into a mathematical modelling, by making compartment models. The rate of concentration change in the compartment model forms a system of homogeneous linear differential equations. In this research, we will use Laplaces transformation to solve the compartment model and determined the dynamics of macro nutrition due to diffusion process.

  9. Jump rates for surface diffusion of large molecules from first principles

    Energy Technology Data Exchange (ETDEWEB)

    Shea, Patrick, E-mail: patrick.shea@dal.ca; Kreuzer, Hans Jürgen [Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia B3H 3J5 (Canada)

    2015-04-21

    We apply a recently developed stochastic model for the surface diffusion of large molecules to calculate jump rates for 9,10-dithioanthracene on a Cu(111) surface. The necessary input parameters for the stochastic model are calculated from first principles using density functional theory (DFT). We find that the inclusion of van der Waals corrections to the DFT energies is critical to obtain good agreement with experimental results for the adsorption geometry and energy barrier for diffusion. The predictions for jump rates in our model are in excellent agreement with measured values and show a marked improvement over transition state theory (TST). We find that the jump rate prefactor is reduced by an order of magnitude from the TST estimate due to frictional damping resulting from energy exchange with surface phonons, as well as a rotational mode of the diffusing molecule.

  10. Effect of macromolecular crowding on the rate of diffusion-limited ...

    Indian Academy of Sciences (India)

    The enzymatic reaction rate has been shown to be affected by the presence of such macromolecules. A simple numerical model is proposed here based on percolation and diffusion in disordered systems to study the effect of macromolecular crowding on the enzymatic reaction rates. The model qualitatively explains some ...

  11. Absence of saturation of void growth in rate theory with anisotropic diffusion

    CERN Document Server

    Hudson, T S; Sutton, A P

    2002-01-01

    We present a first attempt at solution the problem of the growth of a single void in the presence of anisotropically diffusing radiation induced self-interstitial atom (SIA) clusters. In order to treat a distribution of voids we perform ensemble averaging over the positions of centres of voids using a mean-field approximation. In this way we are able to model physical situations in between the Standard Rate Theory (SRT) treatment of swelling (isotropic diffusion), and the purely 1-dimensional diffusion of clusters in the Production Bias Model. The background absorption by dislocations is however treated isotropically, with a bias for interstitial cluster absorption assumed similar to that of individual SIAs. We find that for moderate anisotropy, unsaturated void growth is characteristic of this anisotropic diffusion of clusters. In addition we obtain a higher initial void swelling rate than predicted by SRT whenever the diffusion is anisotropic.

  12. Are US utility standby rates inhibiting diffusion of customer-owned generating systems?

    International Nuclear Information System (INIS)

    Jackson, Jerry

    2007-01-01

    New, small-scale electric generation technologies permit utility customers to generate some of their own electric power and to utilize waste heat for space heating and other applications at the building site. This combined heat and power (CHP) characteristic can provide significant energy-cost savings. However, most current US utility regulations leave CHP standby rate specification largely to utility discretion resulting in claims by CHP advocates that excessive standby rates are significantly reducing CHP-related savings and inhibiting CHP diffusion. The impacts of standby rates on the adoption of CHP are difficult to determine; however, because of the characteristically slow nature of new technology diffusion. This study develops an agent-based microsimulation model of CHP technology choice using cellular automata to represent new technology information dispersion and knowledge acquisition. Applying the model as an n-factorial experiment quantifies the impacts of standby rates on CHP technologies under alternative diffusion paths. Analysis of a sample utility indicates that, regardless of the likely diffusion process, reducing standby rates to reflect the cost of serving a large number of small, spatially clustered CHP systems significantly increases the adoption of these technologies

  13. Modeling the Influence of Diffusion-Controlled Reactions and Residual Termination and Deactivation on the Rate and Control of Bulk ATRP at High Conversions

    Directory of Open Access Journals (Sweden)

    Ali Mohammad Rabea

    2015-04-01

    Full Text Available In high-conversion atom transfer radical polymerization (ATRP, all the reactions, such as radical termination, radical deactivation, dormant chain activation, monomer propagation, etc. could become diffusion controlled sooner or later, depending on relative diffusivities of the involved reacting species. These diffusion-controlled reactions directly affect the rate of polymerization and the control of polymer molecular weight. A model is developed to investigate the influence of diffusion-controlled reactions on the high conversion ATRP kinetics. Model simulation reveals that diffusion-controlled termination slightly increases the rate, but it is the diffusion-controlled deactivation that causes auto-acceleration in the rate (“gel effect” and loss of control. At high conversions, radical chains are “trapped” because of high molecular weight. However, radical centers can still migrate through (1 radical deactivation–activation cycles and (2 monomer propagation, which introduce “residual termination” reactions. It is found that the “residual termination” does not have much influence on the polymerization kinetics. The migration of radical centers through propagation can however facilitate catalytic deactivation of radicals, which improves the control of polymer molecular weight to some extent. Dormant chain activation and monomer propagation also become diffusion controlled and finally stop the polymerization when the system approaches its glass state.

  14. Modelling of a 400 kW natural gas diffusion flame using finite-rate chemistry schemes

    International Nuclear Information System (INIS)

    Mueller, Christian; Kremer, Hans; Brink, Anders; Kilpinen, Pia; Hupa, Mikko

    1999-01-01

    The Eddy-Dissipation Combustion Model combined with three different reaction mechanisms is applied to simulate a fuel-rich 400 kW natural gas diffusion flame. The chemical schemes include a global 2-step and a global 4-step approach as well as a reduced 4-step mechanism systematically derived from an elementary scheme. The species and temperature distributions resulting from the different schemes are studied in detail and compared to each other and to experiments. Furthermore the method of implementing finite-rate chemistry to the Eddy-Dissipation Combustion Model is discussed. (author)

  15. Application of the multi-rate diffusion approach in tracer test studies at Aespoe HRL. Final report

    International Nuclear Information System (INIS)

    Haggerty, R.

    1999-11-01

    This report summarizes an investigation into heterogeneous diffusivity and associated parameters within granitic rocks at the Aespoe Hard Rock Laboratory (HRL). Our tasks for this investigation were: (1) to assess the potential for either anomalous or multi-rate diffusion within Aespoe rocks; (2) to evaluate existing data relating to anomalous and multi-rate diffusion within Aespoe rocks; (3) to perform scoping calculations in support of a Long Term Diffusion Experiment (LTDE) design; and (4) to begin developing a mathematical and computer model for solute advection in the presence of anomalous matrix diffusion. In addition to carrying out these tasks, we also report on (5) the late-time behavior of breakthrough curves. First, in regard to the potential for anomalous and multi-rate diffusion and analyses of existing data, we find that (1) in a literature review of 100 column experiments in various types of rock and sediment, rate coefficients decrease with experimental observation time. This is precisely what would be expected of both multi-rate and anomalous diffusion. (2) Three sets of through-diffusion experiments in Fenno-Scandian granitic rock found decreasing effective diffusivity, D e , with sample length, while one set did not. (3) Based on diffusivity and sorption data, and speculation on matrix block size variability, the total variability of D a /a 2 may reasonably be expected to exceed 4 orders of magnitude. (4) Analyses of two-well tracer data completed to date are ambiguous with respect to multi-rate diffusion. Analyses of TRUE data are currently underway and may support multi-rate diffusion. Second, in regard to the potential consequences of multi-rate and anomalous diffusion on nuclear waste disposal, we found the following key points: (1) No single value of diffusivity can represent the diffusion process at all time- or length-scales if diffusion is truly anomalous, while a single value of diffusivity will represent diffusion adequately for some

  16. Application of the multi-rate diffusion approach in tracer test studies at Aespoe HRL. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Haggerty, R. [Oregon State Univ., Corvallis, OR (United States). Dept. of Geosciences

    1999-11-01

    This report summarizes an investigation into heterogeneous diffusivity and associated parameters within granitic rocks at the Aespoe Hard Rock Laboratory (HRL). Our tasks for this investigation were: (1) to assess the potential for either anomalous or multi-rate diffusion within Aespoe rocks; (2) to evaluate existing data relating to anomalous and multi-rate diffusion within Aespoe rocks; (3) to perform scoping calculations in support of a Long Term Diffusion Experiment (LTDE) design; and (4) to begin developing a mathematical and computer model for solute advection in the presence of anomalous matrix diffusion. In addition to carrying out these tasks, we also report on (5) the late-time behavior of breakthrough curves. First, in regard to the potential for anomalous and multi-rate diffusion and analyses of existing data, we find that (1) in a literature review of 100 column experiments in various types of rock and sediment, rate coefficients decrease with experimental observation time. This is precisely what would be expected of both multi-rate and anomalous diffusion. (2) Three sets of through-diffusion experiments in Fenno-Scandian granitic rock found decreasing effective diffusivity, D{sub e}, with sample length, while one set did not. (3) Based on diffusivity and sorption data, and speculation on matrix block size variability, the total variability of D{sub a}/a{sup 2} may reasonably be expected to exceed 4 orders of magnitude. (4) Analyses of two-well tracer data completed to date are ambiguous with respect to multi-rate diffusion. Analyses of TRUE data are currently underway and may support multi-rate diffusion. Second, in regard to the potential consequences of multi-rate and anomalous diffusion on nuclear waste disposal, we found the following key points: (1) No single value of diffusivity can represent the diffusion process at all time- or length-scales if diffusion is truly anomalous, while a single value of diffusivity will represent diffusion

  17. Determinants of Inter-Country Internet Diffusion Rates

    OpenAIRE

    Wunnava, Phanindra V.; Leiter, Daniel B.

    2008-01-01

    This paper employs cross-sectional data from 100 countries to analyze the main determinants of inter-country Internet diffusion rates. We set up an empirical model based on strong theoretical foundations, in which we regress Internet usage on variables that capture social, economic and political differences between these countries. Our results support past findings that economic strength, infrastructure and knowledge of the English language positively affect Internet connectivity. In addition...

  18. Universal Rate Model Selector: A Method to Quickly Find the Best-Fit Kinetic Rate Model for an Experimental Rate Profile

    Science.gov (United States)

    2017-08-01

    k2 – k1) 3.3 Universal Kinetic Rate Platform Development Kinetic rate models range from pure chemical reactions to mass transfer...14 8. The rate model that best fits the experimental data is a first-order or homogeneous catalytic reaction ...Avrami (7), and intraparticle diffusion (6) rate equations to name a few. A single fitting algorithm (kinetic rate model ) for a reaction does not

  19. Diffusion-controlled reaction. V. Effect of concentration-dependent diffusion coefficient on reaction rate in graft polymerization

    International Nuclear Information System (INIS)

    Imre, K.; Odian, G.

    1979-01-01

    The effect of diffusion on radiation-initiated graft polymerization has been studied with emphasis on the single- and two-penetrant cases. When the physical properties of the penetrants are similar, the two-penetrant problems can be reduced to the single-penetrant problem by redefining the characteristic parameters of the system. The diffusion-free graft polymerization rate is assumed to be proportional to the upsilon power of the monomer concentration respectively, and, in which the proportionality constant a = k/sub p/R/sub i//sup w//k/sub t//sup z/, where k/sub p/ and k/sub t/ are the propagation and termination rate constants, respectively, and R/sub i/ is the initiation rate. The values of upsilon, w, and z depend on the particular reaction system. The results of earlier work were generalized by allowing a non-Fickian diffusion rate which predicts an essentially exponential dependence on the monomer concentration of the diffusion coefficient, D = D 0 [exp(deltaC/M)], where M is the saturation concentration. A reaction system is characterized by the three dimensionless parameters, upsilon, delta, and A = (L/2)[aM/sup (upsilon--1)//D 0 ]/sup 1/2/, where L is the polymer film thickness. Graft polymerization tends to become diffusion controlled as A increases. Larger values of delta and ν cause a reaction system to behave closer to the diffusion-free regime. Transition from diffusion-free to diffusion-controlled reaction involves changes in the dependence of the reaction rate on film thickness, initiation rate, and monomer concentration. Although the diffusion-free rate is w order in initiation rate, upsilon order in monomer, and independent of film thickness, the diffusion-controlled rate is w/2 order in initiator rate and inverse first-order in film thickness. Dependence of the diffusion-controlled rate on monomer is dependent in a complex manner on the diffusional characteristics of the reaction system. 11 figures, 4 tables

  20. Modelling of Innovation Diffusion

    Directory of Open Access Journals (Sweden)

    Arkadiusz Kijek

    2010-01-01

    Full Text Available Since the publication of the Bass model in 1969, research on the modelling of the diffusion of innovation resulted in a vast body of scientific literature consisting of articles, books, and studies of real-world applications of this model. The main objective of the diffusion model is to describe a pattern of spread of innovation among potential adopters in terms of a mathematical function of time. This paper assesses the state-of-the-art in mathematical models of innovation diffusion and procedures for estimating their parameters. Moreover, theoretical issues related to the models presented are supplemented with empirical research. The purpose of the research is to explore the extent to which the diffusion of broadband Internet users in 29 OECD countries can be adequately described by three diffusion models, i.e. the Bass model, logistic model and dynamic model. The results of this research are ambiguous and do not indicate which model best describes the diffusion pattern of broadband Internet users but in terms of the results presented, in most cases the dynamic model is inappropriate for describing the diffusion pattern. Issues related to the further development of innovation diffusion models are discussed and some recommendations are given. (original abstract

  1. Statistical validation of the model of diffusion-convection (MDC) of 137Cs for the assessment of recent sedimentation rates in coastal systems

    International Nuclear Information System (INIS)

    Paulo Alves de Lima Ferreira; Eduardo Siegle; Michel Michaelovitch de Mahiques; Rubens Cesar Lopes Figueira; Carlos Augusto Franca Schettini

    2015-01-01

    This study aimed the validation of the model of diffusion-convection (MDC) of 137 Cs for the calculation of recent sedimentation rates in 13 sedimentary cores of two Brazilian coastal systems, the Cananeia-Iguape and Santos-Sao Vicente estuarine systems. The MDC covers key factors responsible for 137 Cs vertical migration in sediments: its diffusion to the interstitial water and the vertical convection of this water through the sediments. This study successfully validated the MDC use to determine sedimentation rates, which was statistically validated not only with 210 Pb xs (unsupported 210 Pb) models, widely used in oceanographic studies, but also by literature values for those regions. (author)

  2. Computing Rates of Small Molecule Diffusion Through Protein Channels Using Markovian Milestoning

    Science.gov (United States)

    Abrams, Cameron

    2014-03-01

    Measuring diffusion rates of ligands plays a key role in understanding the kinetic processes inside proteins. For example, although many molecular simulation studies have reported free energy barriers to infer rates for CO diffusion in myoglobin (Mb), they typically do not include direct calculation of diffusion rates because of the long simulation times needed to infer these rates with statistical accuracy. We show in this talk how to apply Markovian milestoning along minimum free-energy pathways to calculate diffusion rates of CO inside Mb. In Markovian milestoning, one partitions a suitable reaction coordinate space into regions and performs restrained molecular dynamics in each region to accumulate kinetic statistics that, when assembled across regions, provides an estimate of the mean first-passage time between states. The mean escape time for CO directly from the so-called distal pocket (DP) through the histidine gate (HG) is estimated at about 24 ns, confirming the importance of this portal for CO. But Mb is known to contain several internal cavities, and cavity-to-cavity diffusion rates are also computed and used to build a complete kinetic network as a Markov state model. Within this framework, the effective mean time of escape to the solvent through HG increases to 30 ns. Our results suggest that carrier protein structure may have evolved under pressure to modulate dissolved gas release rates using a network of ligand-accessible cavities. Support: NIH R01GM100472.

  3. Asymptotic solutions of diffusion models for risk reserves

    Directory of Open Access Journals (Sweden)

    S. Shao

    2003-01-01

    Full Text Available We study a family of diffusion models for risk reserves which account for the investment income earned and for the inflation experienced on claim amounts. After we defined the process of the conditional probability of ruin over finite time and imposed the appropriate boundary conditions, classical results from the theory of diffusion processes turn the stochastic differential equation to a special class of initial and boundary value problems defined by a linear diffusion equation. Armed with asymptotic analysis and perturbation theory, we obtain the asymptotic solutions of the diffusion models (possibly degenerate governing the conditional probability of ruin over a finite time in terms of interest rate.

  4. Effective reaction rates in diffusion-limited phosphorylation-dephosphorylation cycles

    Science.gov (United States)

    Szymańska, Paulina; Kochańczyk, Marek; Miekisz, Jacek; Lipniacki, Tomasz

    2015-02-01

    We investigate the kinetics of the ubiquitous phosphorylation-dephosphorylation cycle on biological membranes by means of kinetic Monte Carlo simulations on the triangular lattice. We establish the dependence of effective macroscopic reaction rate coefficients as well as the steady-state phosphorylated substrate fraction on the diffusion coefficient and concentrations of opposing enzymes: kinases and phosphatases. In the limits of zero and infinite diffusion, the numerical results agree with analytical predictions; these two limits give the lower and the upper bound for the macroscopic rate coefficients, respectively. In the zero-diffusion limit, which is important in the analysis of dense systems, phosphorylation and dephosphorylation reactions can convert only these substrates which remain in contact with opposing enzymes. In the most studied regime of nonzero but small diffusion, a contribution linearly proportional to the diffusion coefficient appears in the reaction rate. In this regime, the presence of opposing enzymes creates inhomogeneities in the (de)phosphorylated substrate distributions: The spatial correlation function shows that enzymes are surrounded by clouds of converted substrates. This effect becomes important at low enzyme concentrations, substantially lowering effective reaction rates. Effective reaction rates decrease with decreasing diffusion and this dependence is more pronounced for the less-abundant enzyme. Consequently, the steady-state fraction of phosphorylated substrates can increase or decrease with diffusion, depending on relative concentrations of both enzymes. Additionally, steady states are controlled by molecular crowders which, mostly by lowering the effective diffusion of reactants, favor the more abundant enzyme.

  5. Backtracking and Mixing Rate of Diffusion on Uncorrelated Temporal Networks

    Directory of Open Access Journals (Sweden)

    Martin Gueuning

    2017-10-01

    Full Text Available We consider the problem of diffusion on temporal networks, where the dynamics of each edge is modelled by an independent renewal process. Despite the apparent simplicity of the model, the trajectories of a random walker exhibit non-trivial properties. Here, we quantify the walker’s tendency to backtrack at each step (return where he/she comes from, as well as the resulting effect on the mixing rate of the process. As we show through empirical data, non-Poisson dynamics may significantly slow down diffusion due to backtracking, by a mechanism intrinsically different from the standard bus paradox and related temporal mechanisms. We conclude by discussing the implications of our work for the interpretation of results generated by null models of temporal networks.

  6. Modeling Simple Driving Tasks with a One-Boundary Diffusion Model

    Science.gov (United States)

    Ratcliff, Roger; Strayer, David

    2014-01-01

    A one-boundary diffusion model was applied to the data from two experiments in which subjects were performing a simple simulated driving task. In the first experiment, the same subjects were tested on two driving tasks using a PC-based driving simulator and the psychomotor vigilance test (PVT). The diffusion model fit the response time (RT) distributions for each task and individual subject well. Model parameters were found to correlate across tasks which suggests common component processes were being tapped in the three tasks. The model was also fit to a distracted driving experiment of Cooper and Strayer (2008). Results showed that distraction altered performance by affecting the rate of evidence accumulation (drift rate) and/or increasing the boundary settings. This provides an interpretation of cognitive distraction whereby conversing on a cell phone diverts attention from the normal accumulation of information in the driving environment. PMID:24297620

  7. Sooting Characteristics and Modeling in Counterflow Diffusion Flames

    KAUST Repository

    Wang, Yu

    2013-11-01

    Soot formation is one of the most complex phenomena in combustion science and an understanding of the underlying physico-chemical mechanisms is important. This work adopted both experimental and numerical approaches to study soot formation in laminar counterfl ow diffusion flames. As polycyclic aromatic hydrocarbons (PAHs) are the precursors of soot particles, a detailed gas-phase chemical mechanism describing PAH growth upto coronene for fuels with 1 to 4 carbon atoms was validated against laminar premixed and counter- flow diffusion fl ames. Built upon this gas-phase mechanism, a soot model was then developed to describe soot inception and surface growth. This soot model was sub- sequently used to study fuel mixing effect on soot formation in counterfl ow diffusion flames. Simulation results showed that compared to the baseline case of the ethylene flame, the doping of 5% (by volume) propane or ethane in ethylene tends to increase the soot volume fraction and number density while keeping the average soot size almost unchanged. These results are in agreement with experimental observations. Laser light extinction/scattering as well as laser induced fluorescence techniques were used to study the effect of strain rate on soot and PAH formation in counterfl ow diffusion ames. The results showed that as strain rate increased both soot volume fraction and PAH concentrations decreased. The concentrations of larger PAH were more sensitive to strain rate compared to smaller ones. The effect of CO2 addition on soot formation was also studied using similar experimental techniques. Soot loading was reduced with CO2 dilution. Subsequent numerical modeling studies were able to reproduce the experimental trend. In addition, the chemical effect of CO2 addition was analyzed using numerical data. Critical conditions for the onset of soot were systematically studied in counterfl ow diffusion ames for various gaseous hydrocarbon fuels and at different strain rates. A sooting

  8. The American Foreign Exchange Option in Time-Dependent One-Dimensional Diffusion Model for Exchange Rate

    International Nuclear Information System (INIS)

    Rehman, Nasir; Shashiashvili, Malkhaz

    2009-01-01

    The classical Garman-Kohlhagen model for the currency exchange assumes that the domestic and foreign currency risk-free interest rates are constant and the exchange rate follows a log-normal diffusion process.In this paper we consider the general case, when exchange rate evolves according to arbitrary one-dimensional diffusion process with local volatility that is the function of time and the current exchange rate and where the domestic and foreign currency risk-free interest rates may be arbitrary continuous functions of time. First non-trivial problem we encounter in time-dependent case is the continuity in time argument of the value function of the American put option and the regularity properties of the optimal exercise boundary. We establish these properties based on systematic use of the monotonicity in volatility for the value functions of the American as well as European options with convex payoffs together with the Dynamic Programming Principle and we obtain certain type of comparison result for the value functions and corresponding exercise boundaries for the American puts with different strikes, maturities and volatilities.Starting from the latter fact that the optimal exercise boundary curve is left continuous with right-hand limits we give a mathematically rigorous and transparent derivation of the significant early exercise premium representation for the value function of the American foreign exchange put option as the sum of the European put option value function and the early exercise premium.The proof essentially relies on the particular property of the stochastic integral with respect to arbitrary continuous semimartingale over the predictable subsets of its zeros. We derive from the latter the nonlinear integral equation for the optimal exercise boundary which can be studied by numerical methods

  9. A consistent transported PDF model for treating differential molecular diffusion

    Science.gov (United States)

    Wang, Haifeng; Zhang, Pei

    2016-11-01

    Differential molecular diffusion is a fundamentally significant phenomenon in all multi-component turbulent reacting or non-reacting flows caused by the different rates of molecular diffusion of energy and species concentrations. In the transported probability density function (PDF) method, the differential molecular diffusion can be treated by using a mean drift model developed by McDermott and Pope. This model correctly accounts for the differential molecular diffusion in the scalar mean transport and yields a correct DNS limit of the scalar variance production. The model, however, misses the molecular diffusion term in the scalar variance transport equation, which yields an inconsistent prediction of the scalar variance in the transported PDF method. In this work, a new model is introduced to remedy this problem that can yield a consistent scalar variance prediction. The model formulation along with its numerical implementation is discussed, and the model validation is conducted in a turbulent mixing layer problem.

  10. Rate of riboflavin diffusion from intrastromal channels before corneal crosslinking.

    Science.gov (United States)

    McQuaid, Rebecca; Mrochen, Michael; Vohnsen, Brian

    2016-03-01

    To determine the diffusion of riboflavin from intrastromal channels through the effective diffusion coefficients compared with traditional axial diffusion with epithelium on or off. Advanced Optical Imaging Laboratory, University College Dublin, and Wellington Eye Clinic, Sandyford, Dublin, Ireland. Experimental study. The rate of diffusion in whole-mounted porcine eyes was monitored for a 30 minutes using an optical setup with a charge-coupled device camera and a bandpass filter (central wavelength 550 nm and 40 nm bandpass) to image the fluorescence under ultraviolet illumination (365 nm wavelength). For comparison, an isotropic corneal stroma with an annular channel was modeled numerically for different diffusion constants and boundary conditions. Numerical and experimental results were compared, allowing determination of the effective diffusion coefficient for each case. Experimental results for 6 different riboflavin solutions were in all cases found to be higher than for the common crosslinking (CXL) riboflavin protocol, where the diffusion constant is D0 = 6.5 × 10(-5) mm(2)/sec. For the intrastromal channel, 2 isotonic solutions containing riboflavin 0.1% correlated with a diffusion constant of 5D0 = 32.5 × 10(-5) mm(2)/sec. Hypotonic solutions and transepithelium had a higher diffusion coefficient approaching 10D0 = 65.0 × 10(-5) mm(2)/sec, which is an order-of-magnitude increase compared with the typical diffusion coefficient found in standard CXL. In this study, riboflavin had a faster stromal diffusion when injected into a corneal channel than when applied as drops to the anterior corneal surface. Further numerical modeling might allow optimization of the channel structure for any specific choice of riboflavin. Copyright © 2016 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  11. Microstructural changes in ischemic cortical gray matter predicted by a model of diffusion-weighted MRI.

    Science.gov (United States)

    Vestergaard-Poulsen, Peter; Hansen, Brian; Ostergaard, Leif; Jakobsen, Rikke

    2007-09-01

    To understand the diffusion attenuated MR signal from normal and ischemic brain tissue in order to extract structural and physiological information using mathematical modeling, taking into account the transverse relaxation rates in gray matter. We fit our diffusion model to the diffusion-weighted MR signal obtained from cortical gray matter in healthy subjects. Our model includes variable volume fractions, intracellular restriction effects, and exchange between compartments in addition to individual diffusion coefficients and transverse relaxation rates for each compartment. A global optimum was found from a wide range of parameter permutations using cluster computing. We also present simulations of cell swelling and changes of exchange rate and intracellular diffusion as possible cellular mechanisms in ischemia. Our model estimates an extracellular volume fraction of 0.19 in accordance with the accepted value from histology. The absolute apparent diffusion coefficient obtained from the model was similar to that of experiments. The model and the experimental results indicate significant differences in diffusion and transverse relaxation between the tissue compartments and slow water exchange. Our model reproduces the signal changes observed in ischemia via physiologically credible mechanisms. Our modeling suggests that transverse relaxation has a profound influence on the diffusion attenuated MR signal. Our simulations indicate cell swelling as the primary cause of the diffusion changes seen in the acute phase of brain ischemia. (c) 2007 Wiley-Liss, Inc.

  12. The Chern-Simons diffusion rate in improved holographic QCD

    NARCIS (Netherlands)

    Gürsoy, U.; Iatrakis, I.; Kiritsis, E.; Nitti, F.; O’Bannon, A.

    2013-01-01

    In (3 + 1)-dimensional SU(N c) Yang-Mills (YM) theory, the Chern-Simons diffusion rate, ΓCS, is determined by the zero-momentum, zero-frequency limit of the retarded two-point function of the CP-odd operator tr [F ∧ F ], with F the YM field strength. The Chern-Simons diffusion rate is a crucial

  13. Accelerated diffusion controlled creep of polycrystalline materials. Communication 1. Model of diffusion controlled creep acceleration

    International Nuclear Information System (INIS)

    Smirnova, E.S.; Chuvil'deev, V.N.

    1998-01-01

    The model is suggested which describes the influence of large-angle grain boundary migration on a diffusion controlled creep rate in polycrystalline materials (Coble creep). The model is based on the concept about changing the value of migrating boundary free volume when introducing dislocations distributed over the grain bulk into this boundary. Expressions are obtained to calculate the grain boundary diffusion coefficient under conditions of boundary migration and the parameter, which characterized the value of Coble creep acceleration. A comparison is made between calculated and experimental data for Cd, Co and Fe

  14. Wind Power in Europe. A Simultaneous Innovation-Diffusion Model

    International Nuclear Information System (INIS)

    Soederholm, P.; Klaassen, G.

    2007-01-01

    The purpose of this paper is to provide a quantitative analysis of innovation and diffusion in the European wind power sector. We derive a simultaneous model of wind power innovation and diffusion, which combines a rational choice model of technological diffusion and a learning curve model of dynamic cost reductions. These models are estimated using pooled annual time series data for four European countries (Denmark, Germany, Spain and the United Kingdom) over the time period 1986-2000. The empirical results indicate that reductions in investment costs have been important determinants of increased diffusion of wind power, and these cost reductions can in turn be explained by learning activities and public R and D support. Feed-in tariffs also play an important role in the innovation and diffusion processes. The higher the feed-in price the higher, ceteris paribus, the rate of diffusion, and we present some preliminary empirical support for the notion that the impact on diffusion of a marginal increase in the feed-in tariff will differ depending on the support system used. High feed-in tariffs, though, also have a negative effect on cost reductions as they induce wind generators to choose high-cost sites and provide fewer incentives for cost cuts. This illustrates the importance of designing an efficient wind energy support system, which not only promotes diffusion but also provides continuous incentives for cost-reducing innovations

  15. Modeling information diffusion in time-varying community networks

    Science.gov (United States)

    Cui, Xuelian; Zhao, Narisa

    2017-12-01

    Social networks are rarely static, and they typically have time-varying network topologies. A great number of studies have modeled temporal networks and explored social contagion processes within these models; however, few of these studies have considered community structure variations. In this paper, we present a study of how the time-varying property of a modular structure influences the information dissemination. First, we propose a continuous-time Markov model of information diffusion where two parameters, mobility rate and community attractiveness, are introduced to address the time-varying nature of the community structure. The basic reproduction number is derived, and the accuracy of this model is evaluated by comparing the simulation and theoretical results. Furthermore, numerical results illustrate that generally both the mobility rate and community attractiveness significantly promote the information diffusion process, especially in the initial outbreak stage. Moreover, the strength of this promotion effect is much stronger when the modularity is higher. Counterintuitively, it is found that when all communities have the same attractiveness, social mobility no longer accelerates the diffusion process. In addition, we show that the local spreading in the advantage group has been greatly enhanced due to the agglomeration effect caused by the social mobility and community attractiveness difference, which thus increases the global spreading.

  16. Shrinkage Simulation of Holographic Grating Using Diffusion Model in PQ-PMMA Photopolymer

    Directory of Open Access Journals (Sweden)

    Wei Zepeng

    2015-01-01

    Full Text Available An extended model based on nonlocal polymerization-driven diffusion model is derived by introducing shrinkage process for describing photopolymerized dynamics in PQ-PMMA photopolymer. The kinetic parameters, polymerization rate and diffusion rate are experimentally determined to provide quantitative simulation. The numerical results show that the fringes at edge of grating are firstly shifted and consequently, it leads to a contrast reduction of holograms. Finally, theoretical results are experimentally checked by temporal evolution of diffraction efficiency, and the shrinkage coefficient 0.5% is approximately achieved under incident intensity 25.3mw/cm2. This work can enhance the applicability of diffusion model and contribute to the reasonable description of the grating formation in the photopolymer.

  17. Jump locations of jump-diffusion processes with state-dependent rates

    International Nuclear Information System (INIS)

    Miles, Christopher E; Keener, James P

    2017-01-01

    We propose a general framework for studying statistics of jump-diffusion systems driven by both Brownian noise (diffusion) and a jump process with state-dependent intensity. Of particular natural interest in many physical systems are the jump locations: the system evaluated at the jump times. As an example, this could be the voltage at which a neuron fires, or the so-called ‘threshold voltage’. However, the state-dependence of the jump rate provides direct coupling between the diffusion and jump components, making it difficult to disentangle the two to study individually. In this work, we provide an iterative map formulation of the sequence of distributions of jump locations. The distributions computed by this map can be used to elucidate other interesting quantities about the process, including statistics of the interjump times. Ultimately, the limit of the map reveals that knowledge of the stationary distribution of the full process is sufficient to recover (but not necessarily equal to) the distribution of jump locations. We propose two biophysical examples to illustrate the use of this framework to provide insight about a system. We find that a sharp threshold voltage emerges robustly in a simple stochastic integrate-and-fire neuronal model. The interplay between the two sources of noise is also investigated in a stepping model of molecular motor in intracellular transport pulling a diffusive cargo. (paper)

  18. Theoretical model estimation of guest diffusion in Metal-Organic Frameworks (MOFs)

    KAUST Repository

    Zheng, Bin

    2015-08-11

    Characterizing molecule diffusion in nanoporous matrices is critical to understanding the novel chemical and physical properties of metal-organic frameworks (MOFs). In this paper, we developed a theoretical model to fastly and accurately compute the diffusion rate of guest molecules in a zeolitic imidazolate framework-8 (ZIF-8). The ideal gas or equilibrium solution diffusion model was modified to contain the effect of periodical media via introducing the possibility of guests passing through the framework gate. The only input in our model is the energy barrier of guests passing through the MOF’s gate. Molecular dynamics (MD) methods were employed to gather the guest density profile, which then was used to deduce the energy barrier values. This produced reliable results that require a simulation time of 5 picoseconds, which is much shorter when using pure MD methods (in the billisecond scale) . Also, we used density functional theory (DFT) methods to obtain the energy profile of guests passing through gates, as this does not require specification of a force field for the MOF degrees of freedom. In the DFT calculation, we only considered one gate of MOFs each time; as this greatly reduced the computational cost. Based on the obtained energy barrier values we computed the diffusion rate of alkane and alcohol in ZIF-8 using our model, which was in good agreement with experimental test results and the calculation values from standard MD model. Our model shows the advantage of obtaining accurate diffusion rates for guests in MOFs for a lower computational cost and shorter calculation time. Thus, our analytic model calculation is especially attractive for high-throughput computational screening of the dynamic performance of guests in a framework.

  19. SC lipid model membranes designed for studying impact of ceramide species on drug diffusion and permeation--part II: diffusion and permeation of model drugs.

    Science.gov (United States)

    Ochalek, M; Podhaisky, H; Ruettinger, H-H; Wohlrab, J; Neubert, R H H

    2012-10-01

    The barrier function of two quaternary stratum corneum (SC) lipid model membranes, which were previously characterized with regard to the lipid organization, was investigated based on diffusion studies of model drugs with varying lipophilicities. Diffusion experiments of a hydrophilic drug, urea, and more lipophilic drugs than urea (i.e. caffeine, diclofenac sodium) were conducted using Franz-type diffusion cells. The amount of permeated drug was analyzed using either HPLC or CE technique. The subjects of interest in the present study were the investigation of the influence of physicochemical properties of model drugs on their diffusion and permeation through SC lipid model membranes, as well as the study of the impact of the constituents of these artificial systems (particularly ceramide species) on their barrier properties. The diffusion through both SC lipid model membranes and the human SC of the most hydrophilic model drug, urea, was faster than the permeation of the more lipophilic drugs. The slowest rate of permeation through SC lipid systems occurred in the case of caffeine. The composition of SC lipid model membranes has a significant impact on their barrier function. Model drugs diffused and permeated faster through Membrane II (presence of Cer [EOS]). In terms of the barrier properties, Membrane II is much more similar to the human SC than Membrane I. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Convergence of surface diffusion parameters with model crystal size

    Science.gov (United States)

    Cohen, Jennifer M.; Voter, Arthur F.

    1994-07-01

    A study of the variation in the calculated quantities for adatom diffusion with respect to the size of the model crystal is presented. The reported quantities include surface diffusion barrier heights, pre-exponential factors, and dynamical correction factors. Embedded atom method (EAM) potentials were used throughout this effort. Both the layer size and the depth of the crystal were found to influence the values of the Arrhenius factors significantly. In particular, exchange type mechanisms required a significantly larger model than standard hopping mechanisms to determine adatom diffusion barriers of equivalent accuracy. The dynamical events that govern the corrections to transition state theory (TST) did not appear to be as sensitive to crystal depth. Suitable criteria for the convergence of the diffusion parameters with regard to the rate properties are illustrated.

  1. A diffusive ink transport model for lipid dip-pen nanolithography

    Science.gov (United States)

    Urtizberea, A.; Hirtz, M.

    2015-09-01

    Despite diverse applications, phospholipid membrane stacks generated by dip-pen nanolithography (DPN) still lack a thorough and systematic characterization that elucidates the whole ink transport process from writing to surface spreading, with the aim of better controlling the resulting feature size and resolution. We report a quantitative analysis and modeling of the dependence of lipid DPN features (area, height and volume) on dwell time and relative humidity. The ink flow rate increases with humidity in agreement with meniscus size growth, determining the overall feature size. The observed time dependence indicates the existence of a balance between surface spreading and the ink flow rate that promotes differences in concentration at the meniscus/substrate interface. Feature shape is controlled by the substrate surface energy. The results are analyzed within a modified model for the ink transport of diffusive inks. At any humidity the dependence of the area spread on the dwell time shows two diffusion regimes: at short dwell times growth is controlled by meniscus diffusion while at long dwell times surface diffusion governs the process. The critical point for the switch of regime depends on the humidity.Despite diverse applications, phospholipid membrane stacks generated by dip-pen nanolithography (DPN) still lack a thorough and systematic characterization that elucidates the whole ink transport process from writing to surface spreading, with the aim of better controlling the resulting feature size and resolution. We report a quantitative analysis and modeling of the dependence of lipid DPN features (area, height and volume) on dwell time and relative humidity. The ink flow rate increases with humidity in agreement with meniscus size growth, determining the overall feature size. The observed time dependence indicates the existence of a balance between surface spreading and the ink flow rate that promotes differences in concentration at the meniscus

  2. A critical discussion of the vacancy diffusion model of ion beam induced epitaxial crystallization

    International Nuclear Information System (INIS)

    Heera, V.

    1989-01-01

    A simple vacancy diffusion model of ion beam induced epitaxial crystallization of silicon including divacancy formation is developed. The model reproduces some of the experimental findings, as e.g. the dose rate dependence of the crystallization rate. However, the measured activation energy of the ion beam induced epitaxial crystallization cannot be accounted for by vacancy diffusion alone. (author)

  3. A photo-tunable membrane based on inter-particle crosslinking for decreasing diffusion rates

    KAUST Repository

    Li, Song; Moosa, Basem; Chen, Ye; Li, Wengang; Khashab, Niveen M.

    2015-01-01

    %. To prove the applicability of the designed system, the composite membrane was coated on a model drug reservoir tablet. Upon irradiating the tablet with UV light, the original permeability decreased by 57%, and consequently the diffusion rate of the cargo

  4. Microstructural changes in ischemic cortical gray matter predicted by a model of diffusion-weighted MRI

    DEFF Research Database (Denmark)

    Vestergaard-Poulsen, Peter; Hansen, Brian; Østergaard, Leif

    2007-01-01

    compartment. A global optimum was found from a wide range of parameter permutations using cluster computing. We also present simulations of cell swelling and changes of exchange rate and intracellular diffusion as possible cellular mechanisms in ischemia. RESULTS: Our model estimates an extracellular volume...... compartments and slow water exchange. Our model reproduces the signal changes observed in ischemia via physiologically credible mechanisms. CONCLUSION: Our modeling suggests that transverse relaxation has a profound influence on the diffusion attenuated MR signal. Our simulations indicate cell swelling...... model to the diffusion-weighted MR signal obtained from cortical gray matter in healthy subjects. Our model includes variable volume fractions, intracellular restriction effects, and exchange between compartments in addition to individual diffusion coefficients and transverse relaxation rates for each...

  5. A Diffusion Model for Two-sided Service Systems

    Science.gov (United States)

    Homma, Koichi; Yano, Koujin; Funabashi, Motohisa

    A diffusion model is proposed for two-sided service systems. ‘Two-sided’ refers to the existence of an economic network effect between two different and interrelated groups, e.g., card holders and merchants in an electronic money service. The service benefit for a member of one side depends on the number and quality of the members on the other side. A mathematical model by J. H. Rohlfs explains the network (or bandwagon) effect of communications services. In Rohlfs' model, only the users' group exists and the model is one-sided. This paper extends Rohlfs' model to a two-sided model. We propose, first, a micro model that explains individual behavior in regard to service subscription of both sides and a computational method that drives the proposed model. Second, we develop macro models with two diffusion-rate variables by simplifying the micro model. As a case study, we apply the models to an electronic money service and discuss the simulation results and actual statistics.

  6. A dissolution-diffusion sliding model for soft rock grains with hydro-mechanical effect

    Directory of Open Access Journals (Sweden)

    Z. Liu

    2018-06-01

    Full Text Available The deformation and failure of soft rock affected by hydro-mechanical (HM effect are one of the most concerns in geotechnical engineering, which are basically attributed to the grain sliding of soft rock. This study tried to develop a dissolution-diffusion sliding model for the typical red bed soft rock in South China. Based on hydration film, mineral dissolution and diffusion theory, and geochemical thermodynamics, a dissolution-diffusion sliding model with the HM effect was established to account for the sliding rate. Combined with the digital image processing technology, the relationship between the grain size of soft rock and the amplitude of sliding surface was presented. An equation for the strain rate of soft rocks under steady state was also derived. The reliability of the dissolution-diffusion sliding model was verified by triaxial creep tests on the soft rock with the HM coupling effect and by the relationship between the inversion average disjoining pressure and the average thickness of the hydration film. The results showed that the sliding rate of the soft rock grains was affected significantly by the waviness of sliding surface, the shear stress, and the average thickness of hydration film. The average grain size is essential for controlling the steady-state creep rate of soft rock. This study provides a new idea for investigating the deformation and failure of soft rock with the HM effect. Keywords: Soft rock, Hydro-mechanical (HM effect, Mineral dissolution-diffusion, Grain sliding model

  7. Predicting the weathering of fuel and oil spills: A diffusion-limited evaporation model.

    Science.gov (United States)

    Kotzakoulakis, Konstantinos; George, Simon C

    2018-01-01

    The majority of the evaporation models currently available in the literature for the prediction of oil spill weathering do not take into account diffusion-limited mass transport and the formation of a concentration gradient in the oil phase. The altered surface concentration of the spill caused by diffusion-limited transport leads to a slower evaporation rate compared to the predictions of diffusion-agnostic evaporation models. The model presented in this study incorporates a diffusive layer in the oil phase and predicts the diffusion-limited evaporation rate. The information required is the composition of the fluid from gas chromatography or alternatively the distillation data. If the density or a single viscosity measurement is available the accuracy of the predictions is higher. Environmental conditions such as water temperature, air pressure and wind velocity are taken into account. The model was tested with synthetic mixtures, petroleum fuels and crude oils with initial viscosities ranging from 2 to 13,000 cSt. The tested temperatures varied from 0 °C to 23.4 °C and wind velocities from 0.3 to 3.8 m/s. The average absolute deviation (AAD) of the diffusion-limited model ranged between 1.62% and 24.87%. In comparison, the AAD of a diffusion-agnostic model ranged between 2.34% and 136.62% against the same tested fluids. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. A Reaction-Diffusion-Based Coding Rate Control Mechanism for Camera Sensor Networks

    Directory of Open Access Journals (Sweden)

    Naoki Wakamiya

    2010-08-01

    Full Text Available A wireless camera sensor network is useful for surveillance and monitoring for its visibility and easy deployment. However, it suffers from the limited capacity of wireless communication and a network is easily overflown with a considerable amount of video traffic. In this paper, we propose an autonomous video coding rate control mechanism where each camera sensor node can autonomously determine its coding rate in accordance with the location and velocity of target objects. For this purpose, we adopted a biological model, i.e., reaction-diffusion model, inspired by the similarity of biological spatial patterns and the spatial distribution of video coding rate. Through simulation and practical experiments, we verify the effectiveness of our proposal.

  9. A reaction-diffusion-based coding rate control mechanism for camera sensor networks.

    Science.gov (United States)

    Yamamoto, Hiroshi; Hyodo, Katsuya; Wakamiya, Naoki; Murata, Masayuki

    2010-01-01

    A wireless camera sensor network is useful for surveillance and monitoring for its visibility and easy deployment. However, it suffers from the limited capacity of wireless communication and a network is easily overflown with a considerable amount of video traffic. In this paper, we propose an autonomous video coding rate control mechanism where each camera sensor node can autonomously determine its coding rate in accordance with the location and velocity of target objects. For this purpose, we adopted a biological model, i.e., reaction-diffusion model, inspired by the similarity of biological spatial patterns and the spatial distribution of video coding rate. Through simulation and practical experiments, we verify the effectiveness of our proposal.

  10. Models of diffuse solar radiation

    Energy Technology Data Exchange (ETDEWEB)

    Boland, John; Ridley, Barbara [Centre for Industrial and Applied Mathematics, University of South Australia, Mawson Lakes Boulevard, Mawson Lakes, SA 5095 (Australia); Brown, Bruce [Department of Statistics and Applied Probability, National University of Singapore, Singapore 117546 (Singapore)

    2008-04-15

    For some locations both global and diffuse solar radiation are measured. However, for many locations, only global is measured, or inferred from satellite data. For modelling solar energy applications, the amount of radiation on a tilted surface is needed. Since only the direct component on a tilted surface can be calculated from trigonometry, we need to have diffuse on the horizontal available. There are regression relationships for estimating the diffuse on a tilted surface from diffuse on the horizontal. Models for estimating the diffuse radiation on the horizontal from horizontal global that have been developed in Europe or North America have proved to be inadequate for Australia [Spencer JW. A comparison of methods for estimating hourly diffuse solar radiation from global solar radiation. Sol Energy 1982; 29(1): 19-32]. Boland et al. [Modelling the diffuse fraction of global solar radiation on a horizontal surface. Environmetrics 2001; 12: 103-16] developed a validated model for Australian conditions. We detail our recent advances in developing the theoretical framework for the approach reported therein, particularly the use of the logistic function instead of piecewise linear or simple nonlinear functions. Additionally, we have also constructed a method, using quadratic programming, for identifying values that are likely to be erroneous. This allows us to eliminate outliers in diffuse radiation values, the data most prone to errors in measurement. (author)

  11. MODELING OF SUPERCRITICAL FLUID EXTRACTION KINETIC OF FLAXSEED OIL BY DIFFUSION CONTROL METHOD

    Directory of Open Access Journals (Sweden)

    Emir Zafer HOŞGÜN

    2013-06-01

    Full Text Available In this study, Flaxseed oil was extracted by Supercritical Carbondioxide Extraction, and extractionkinetics was modelled using diffusion controlled method.The effect of process parameters, such as pressure (20, 35, 55 MPa, temperature (323 and 343 K, and CO2 flow rate (1 and 3 L CO2 /min on the extraction yield and effective diffusivity (De was investigated. The effective diffusion coefficient varied between 2.4 x10-12 and 10.8 x10-12 m2s-1 for the entire range of experiments and increased with the pressure and flow rate. The model fitted well theexperimental data (ADD varied between 2.35 and 7.48%.

  12. MODEL OF THE TOKAMAK EDGE DENSITY PEDESTAL INCLUDING DIFFUSIVE NEUTRALS

    International Nuclear Information System (INIS)

    BURRELL, K.H.

    2003-01-01

    OAK-B135 Several previous analytic models of the tokamak edge density pedestal have been based on diffusive transport of plasma plus free-streaming of neutrals. This latter neutral model includes only the effect of ionization and neglects charge exchange. The present work models the edge density pedestal using diffusive transport for both the plasma and the neutrals. In contrast to the free-streaming model, a diffusion model for the neutrals includes the effect of both charge exchange and ionization and is valid when charge exchange is the dominant interaction. Surprisingly, the functional forms for the electron and neutral density profiles from the present calculation are identical to the results of the previous analytic models. There are some differences in the detailed definition of various parameters in the solution. For experimentally relevant cases where ionization and charge exchange rate are comparable, both models predict approximately the same width for the edge density pedestal

  13. Liquid Film Diffusion on Reaction Rate in Submerged Biofilters

    DEFF Research Database (Denmark)

    Christiansen, Pia; Hollesen, Line; Harremoës, Poul

    1995-01-01

    Experiments were carried out in order to investigate the influence of liquid film diffusion on reaction rate in a submerged biofilter with denitrification and in order to compare with a theoretical study of the mass transfer coefficient. The experiments were carried out with varied flow, identified...... by the empty bed velocity of inflow and recirculation, respectively 1.3, 2.8, 5.6 and 10.9 m/h. The filter material consisted of 3 mm biostyren spheres. The results indicate that the influence of liquid film diffusion on reaction rate can be ignored....

  14. A diffusive ink transport model for lipid dip-pen nanolithography.

    Science.gov (United States)

    Urtizberea, A; Hirtz, M

    2015-10-14

    Despite diverse applications, phospholipid membrane stacks generated by dip-pen nanolithography (DPN) still lack a thorough and systematic characterization that elucidates the whole ink transport process from writing to surface spreading, with the aim of better controlling the resulting feature size and resolution. We report a quantitative analysis and modeling of the dependence of lipid DPN features (area, height and volume) on dwell time and relative humidity. The ink flow rate increases with humidity in agreement with meniscus size growth, determining the overall feature size. The observed time dependence indicates the existence of a balance between surface spreading and the ink flow rate that promotes differences in concentration at the meniscus/substrate interface. Feature shape is controlled by the substrate surface energy. The results are analyzed within a modified model for the ink transport of diffusive inks. At any humidity the dependence of the area spread on the dwell time shows two diffusion regimes: at short dwell times growth is controlled by meniscus diffusion while at long dwell times surface diffusion governs the process. The critical point for the switch of regime depends on the humidity.

  15. A grain-boundary diffusion model of dynamic grain growth during superplastic deformation

    International Nuclear Information System (INIS)

    Kim, Byung-Nam; Hiraga, Keijiro; Sakka, Yoshio; Ahn, Byung-Wook

    1999-01-01

    Dynamic grain growth during superplastic deformation is modelled on the basis of a grain-boundary diffusion mechanism. On the grain boundary where a static and a dynamic potential difference coexist, matter transport along the boundary is assumed to contribute to dynamic grain growth through depositing the matter on the grain surface located opposite to the direction of grain-boundary migration. The amount of the diffusive matter during deformation is calculated for an aggregate of spherical grains and is converted to the increment of mean boundary migration velocity. The obtained relationship between the strain rate and the dynamic grain growth rate is shown to be independent of deformation mechanisms, provided that the grain growth is controlled by grain-boundary diffusion. The strain dependence, strain-rate dependence and temperature dependence of grain growth predicted from this model are consistent with those observed in superplastic ZrO 2 -dispersed Al 2 O 3

  16. A simplified model exploration research of new anisotropic diffuse radiation model

    International Nuclear Information System (INIS)

    Yao, Wanxiang; Li, Zhengrong; Wang, Xiao; Zhao, Qun; Zhang, Zhigang; Lin, Lin

    2016-01-01

    Graphical abstract: The specific process of measured diffuse radiation data. - Highlights: • Simplified diffuse radiation model is extremely important for solar radiation simulation and energy simulation. • A new simplified anisotropic diffuse radiation model (NSADR model) is proposed. • The accuracy of existing models and NSADR model is compared based on the measured values. • The accuracy of the NSADR model is higher than that of the existing models, and suitable for calculating diffuse radiation. - Abstract: More accurate new anisotropic diffuse radiation model (NADR model) has been proposed, but the parameters and calculation process of NADR model used in the process are complex. So it is difficult to widely used in the simulation software and engineering calculation. Based on analysis of the diffuse radiation model and measured diffuse radiation data, this paper put forward three hypotheses: (1) diffuse radiation from sky horizontal region is concentrated in a very thin layer which is close to the line source; (2) diffuse radiation from circumsolar region is concentrated in the point of the sun; (3) diffuse radiation from orthogonal region is concentrated in the point located at 90 degree angles with the Sun. Based on these hypotheses, NADR model is simplified to a new simplified anisotropic diffuse radiation model (NSADR model). Then the accuracy of NADR model and its simplified model (NSADR model) are compared with existing models based on the measured values, and the result shows that Perez model and its simplified model are relatively accurate among existing models. However, the accuracy of these two models is lower than the NADR model and NSADR model due to neglect the influence of the orthogonal diffuse radiation. The accuracy of the NSADR model is higher than that of the existing models, meanwhile, another advantage is that the NSADR model simplifies the process of solution parameters and calculation. Therefore it is more suitable for

  17. Hopf bifurcation in a delayed reaction-diffusion-advection population model

    Science.gov (United States)

    Chen, Shanshan; Lou, Yuan; Wei, Junjie

    2018-04-01

    In this paper, we investigate a reaction-diffusion-advection model with time delay effect. The stability/instability of the spatially nonhomogeneous positive steady state and the associated Hopf bifurcation are investigated when the given parameter of the model is near the principle eigenvalue of an elliptic operator. Our results imply that time delay can make the spatially nonhomogeneous positive steady state unstable for a reaction-diffusion-advection model, and the model can exhibit oscillatory pattern through Hopf bifurcation. The effect of advection on Hopf bifurcation values is also considered, and our results suggest that Hopf bifurcation is more likely to occur when the advection rate increases.

  18. Double diffusivity model under stochastic forcing

    Science.gov (United States)

    Chattopadhyay, Amit K.; Aifantis, Elias C.

    2017-05-01

    The "double diffusivity" model was proposed in the late 1970s, and reworked in the early 1980s, as a continuum counterpart to existing discrete models of diffusion corresponding to high diffusivity paths, such as grain boundaries and dislocation lines. It was later rejuvenated in the 1990s to interpret experimental results on diffusion in polycrystalline and nanocrystalline specimens where grain boundaries and triple grain boundary junctions act as high diffusivity paths. Technically, the model pans out as a system of coupled Fick-type diffusion equations to represent "regular" and "high" diffusivity paths with "source terms" accounting for the mass exchange between the two paths. The model remit was extended by analogy to describe flow in porous media with double porosity, as well as to model heat conduction in media with two nonequilibrium local temperature baths, e.g., ion and electron baths. Uncoupling of the two partial differential equations leads to a higher-ordered diffusion equation, solutions of which could be obtained in terms of classical diffusion equation solutions. Similar equations could also be derived within an "internal length" gradient (ILG) mechanics formulation applied to diffusion problems, i.e., by introducing nonlocal effects, together with inertia and viscosity, in a mechanics based formulation of diffusion theory. While being remarkably successful in studies related to various aspects of transport in inhomogeneous media with deterministic microstructures and nanostructures, its implications in the presence of stochasticity have not yet been considered. This issue becomes particularly important in the case of diffusion in nanopolycrystals whose deterministic ILG-based theoretical calculations predict a relaxation time that is only about one-tenth of the actual experimentally verified time scale. This article provides the "missing link" in this estimation by adding a vital element in the ILG structure, that of stochasticity, that takes into

  19. Fractal diffusion equations: Microscopic models with anomalous diffusion and its generalizations

    International Nuclear Information System (INIS)

    Arkhincheev, V.E.

    2001-04-01

    To describe the ''anomalous'' diffusion the generalized diffusion equations of fractal order are deduced from microscopic models with anomalous diffusion as Comb model and Levy flights. It is shown that two types of equations are possible: with fractional temporal and fractional spatial derivatives. The solutions of these equations are obtained and the physical sense of these fractional equations is discussed. The relation between diffusion and conductivity is studied and the well-known Einstein relation is generalized for the anomalous diffusion case. It is shown that for Levy flight diffusion the Ohm's law is not applied and the current depends on electric field in a nonlinear way due to the anomalous character of Levy flights. The results of numerical simulations, which confirmed this conclusion, are also presented. (author)

  20. Increasing inhibitory input increases neuronal firing rate: why and when? Diffusion process cases

    Energy Technology Data Exchange (ETDEWEB)

    Feng Jianfeng [COGS, Sussex University (United Kingdom)]. E-mail: jf218@cam.ac.uk; Wei Gang [Department of Mathematics, Hong Kong Baptist University, Hong Kong (China)]. E-mail gwei@math.hkbu.edu.hk

    2001-09-21

    Increasing inhibitory input to single neuronal models, such as the FitzHugh-Nagumo model and the Hodgkin-Huxley model, can sometimes increase their firing rates, a phenomenon which we term inhibition-boosted firing (IBF). Here we consider neuronal models with diffusion approximation inputs, i.e. they share the identical first- and second-order statistics of the corresponding Poisson process inputs. Using the integrate-and-fire model and the IF-FHN model, we explore theoretically how and when IBF can happen. For both models, it is shown that there is a critical input frequency at which the efferent firing rate is identical when the neuron receives purely excitatory inputs or exactly balanced inhibitory and excitatory inputs. When the input frequency is lower than the critical frequency, IBF occurs. (author)

  1. Model of diffusers / permeators for hydrogen processing

    International Nuclear Information System (INIS)

    Jacobs, W. D.; Hang, T.

    2008-01-01

    Palladium-silver (Pd-Ag) diffusers are mainstays of hydrogen processing. Diffusers separate hydrogen from inert species such as nitrogen, argon or helium. The tubing becomes permeable to hydrogen when heated to more than 250 C and a differential pressure is created across the membrane. The hydrogen diffuses better at higher temperatures. Experimental or experiential results have been the basis for determining or predicting a diffuser's performance. However, the process can be mathematically modeled, and comparison to experimental or other operating data can be utilized to improve the fit of the model. A reliable model-based diffuser system design is the goal which will have impacts on tritium and hydrogen processing. A computer model has been developed to solve the differential equations for diffusion given the operating boundary conditions. The model was compared to operating data for a low pressure diffuser system. The modeling approach and the results are presented in this paper. (authors)

  2. Modeling the diffusion of scientific publications

    NARCIS (Netherlands)

    D. Fok (Dennis); Ph.H.B.F. Franses (Philip Hans)

    2005-01-01

    textabstractThis paper illustrates that salient features of a panel of time series of annual citations can be captured by a Bass type diffusion model. We put forward an extended version of this diffusion model, where we consider the relation between key characteristics of the diffusion process and

  3. An approximate stationary solution for multi-allele neutral diffusion with low mutation rates.

    Science.gov (United States)

    Burden, Conrad J; Tang, Yurong

    2016-12-01

    We address the problem of determining the stationary distribution of the multi-allelic, neutral-evolution Wright-Fisher model in the diffusion limit. A full solution to this problem for an arbitrary K×K mutation rate matrix involves solving for the stationary solution of a forward Kolmogorov equation over a (K-1)-dimensional simplex, and remains intractable. In most practical situations mutations rates are slow on the scale of the diffusion limit and the solution is heavily concentrated on the corners and edges of the simplex. In this paper we present a practical approximate solution for slow mutation rates in the form of a set of line densities along the edges of the simplex. The method of solution relies on parameterising the general non-reversible rate matrix as the sum of a reversible part and a set of (K-1)(K-2)/2 independent terms corresponding to fluxes of probability along closed paths around faces of the simplex. The solution is potentially a first step in estimating non-reversible evolutionary rate matrices from observed allele frequency spectra. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. A mechanistic model for long-term nuclear waste glass dissolution integrating chemical affinity and interfacial diffusion barrier

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Teqi [Northwest Institute of Nuclear Technology, No.28 Pingyu Road, Baqiao District, Xi' an,Shaanxi, 710024 (China); Mechanics and Physics of Solids Research Group, Modelling and Simulation Centre, The University of Manchester, Oxford Road, Manchester, M13 9PL (United Kingdom); Jivkov, Andrey P., E-mail: andrey.jivkov@manchester.ac.uk [Mechanics and Physics of Solids Research Group, Modelling and Simulation Centre, The University of Manchester, Oxford Road, Manchester, M13 9PL (United Kingdom); Li, Weiping; Liang, Wei; Wang, Yu; Xu, Hui [Northwest Institute of Nuclear Technology, No.28 Pingyu Road, Baqiao District, Xi' an,Shaanxi, 710024 (China); Han, Xiaoyuan, E-mail: xyhan_nint@sina.cn [Northwest Institute of Nuclear Technology, No.28 Pingyu Road, Baqiao District, Xi' an,Shaanxi, 710024 (China)

    2017-04-01

    Understanding the alteration of nuclear waste glass in geological repository conditions is critical element of the analysis of repository retention function. Experimental observations of glass alterations provide a general agreement on the following regimes: inter-diffusion, hydrolysis process, rate drop, residual rate and, under very particular conditions, resumption of alteration. Of these, the mechanisms controlling the rate drop and the residual rate remain a subject of dispute. This paper offers a critical review of the two most competitive models related to these regimes: affinity–limited dissolution and diffusion barrier. The limitations of these models are highlighted by comparison of their predictions with available experimental evidence. Based on the comprehensive discussion of the existing models, a new mechanistic model is proposed as a combination of the chemical affinity and diffusion barrier concepts. It is demonstrated how the model can explain experimental phenomena and data, for which the existing models are shown to be not fully adequate.

  5. Spin-diffusions and diffusive molecular dynamics

    Science.gov (United States)

    Farmer, Brittan; Luskin, Mitchell; Plecháč, Petr; Simpson, Gideon

    2017-12-01

    Metastable configurations in condensed matter typically fluctuate about local energy minima at the femtosecond time scale before transitioning between local minima after nanoseconds or microseconds. This vast scale separation limits the applicability of classical molecular dynamics (MD) methods and has spurned the development of a host of approximate algorithms. One recently proposed method is diffusive MD which aims at integrating a system of ordinary differential equations describing the likelihood of occupancy by one of two species, in the case of a binary alloy, while quasistatically evolving the locations of the atoms. While diffusive MD has shown itself to be efficient and provide agreement with observations, it is fundamentally a model, with unclear connections to classical MD. In this work, we formulate a spin-diffusion stochastic process and show how it can be connected to diffusive MD. The spin-diffusion model couples a classical overdamped Langevin equation to a kinetic Monte Carlo model for exchange amongst the species of a binary alloy. Under suitable assumptions and approximations, spin-diffusion can be shown to lead to diffusive MD type models. The key assumptions and approximations include a well-defined time scale separation, a choice of spin-exchange rates, a low temperature approximation, and a mean field type approximation. We derive several models from different assumptions and show their relationship to diffusive MD. Differences and similarities amongst the models are explored in a simple test problem.

  6. Diffusion model of delayed hydride cracking in zirconium alloys

    NARCIS (Netherlands)

    Shmakov, AA; Kalin, BA; Matvienko, YG; Singh, RN; De, PK

    2004-01-01

    We develop a method for the evaluation of the rate of delayed hydride cracking in zirconium alloys. The model is based on the stationary solution of the phenomenological diffusion equation and the detailed analysis of the distribution of hydrostatic stresses in the plane of a sharp tensile crack.

  7. Parameter estimation in fractional diffusion models

    CERN Document Server

    Kubilius, Kęstutis; Ralchenko, Kostiantyn

    2017-01-01

    This book is devoted to parameter estimation in diffusion models involving fractional Brownian motion and related processes. For many years now, standard Brownian motion has been (and still remains) a popular model of randomness used to investigate processes in the natural sciences, financial markets, and the economy. The substantial limitation in the use of stochastic diffusion models with Brownian motion is due to the fact that the motion has independent increments, and, therefore, the random noise it generates is “white,” i.e., uncorrelated. However, many processes in the natural sciences, computer networks and financial markets have long-term or short-term dependences, i.e., the correlations of random noise in these processes are non-zero, and slowly or rapidly decrease with time. In particular, models of financial markets demonstrate various kinds of memory and usually this memory is modeled by fractional Brownian diffusion. Therefore, the book constructs diffusion models with memory and provides s...

  8. Modeling dendrite density from magnetic resonance diffusion measurements

    DEFF Research Database (Denmark)

    Jespersen, Sune Nørhøj; Kroenke, CD; Østergaard, Leif

    2007-01-01

    in this model: (i) the dendrites and axons, which are modeled as long cylinders with two diffusion coefficients, parallel (DL) and perpendicular (DT) to the cylindrical axis, and (ii) an isotropic monoexponential diffusion component describing water diffusion within and across all other structures, i.......e., in extracellular space and glia cells. The model parameters are estimated from 153 diffusion-weighted images acquired from a formalin-fixed baboon brain. A close correspondence between the data and the signal model is found, with the model parameters consistent with literature values. The model provides......Diffusion-weighted imaging (DWI) provides a noninvasive tool to probe tissue microstructure. We propose a simplified model of neural cytoarchitecture intended to capture the essential features important for water diffusion as measured by NMR. Two components contribute to the NMR signal...

  9. Extracting surface diffusion coefficients from batch adsorption measurement data: application of the classic Langmuir kinetics model.

    Science.gov (United States)

    Chu, Khim Hoong

    2017-11-09

    Surface diffusion coefficients may be estimated by fitting solutions of a diffusion model to batch kinetic data. For non-linear systems, a numerical solution of the diffusion model's governing equations is generally required. We report here the application of the classic Langmuir kinetics model to extract surface diffusion coefficients from batch kinetic data. The use of the Langmuir kinetics model in lieu of the conventional surface diffusion model allows derivation of an analytical expression. The parameter estimation procedure requires determining the Langmuir rate coefficient from which the pertinent surface diffusion coefficient is calculated. Surface diffusion coefficients within the 10 -9 to 10 -6  cm 2 /s range obtained by fitting the Langmuir kinetics model to experimental kinetic data taken from the literature are found to be consistent with the corresponding values obtained from the traditional surface diffusion model. The virtue of this simplified parameter estimation method is that it reduces the computational complexity as the analytical expression involves only an algebraic equation in closed form which is easily evaluated by spreadsheet computation.

  10. Two dimensional finite element modelling for dynamic water diffusion through stratum corneum.

    Science.gov (United States)

    Xiao, Perry; Imhof, Robert E

    2012-10-01

    Solvents penetration through in vivo human stratum corneum (SC) has always been an interesting research area for trans-dermal drug delivery studies, and the importance of intercellular routes (diffuse in between corneocytes) and transcellular routes (diffuse through corneocytes) during diffusion is often debatable. In this paper, we have developed a two dimensional finite element model to simulate the dynamic water diffusion through the SC. It is based on the brick-and-mortar model, with brick represents corneocytes and mortar represents lipids, respectively. It simulates the dynamic water diffusion process through the SC from pre-defined initial conditions and boundary conditions. Although the simulation is based on water diffusions, the principles can also be applied to the diffusions of other topical applied substances. The simulation results show that both intercellular routes and transcellular routes are important for water diffusion. Although intercellular routes have higher flux rates, most of the water still diffuse through transcellular routes because of the high cross area ratio of corneocytes and lipids. The diffusion water flux, or trans-epidermal water loss (TEWL), is reversely proportional to corneocyte size, i.e. the larger the corneocyte size, the lower the TEWL, and vice versa. There is also an effect of the SC thickness, external air conditions and diffusion coefficients on the water diffusion through SC on the resulting TEWL. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. A tracer diffusion model derived from microstructure

    International Nuclear Information System (INIS)

    Lehikoinen, Jarmo; Muurinen, Arto; Olin, Markus

    2012-01-01

    Document available in extended abstract form only. Full text of publication follows: Numerous attempts have been made to explain the tracer diffusion of various solutes in compacted clays. These attempts have commonly suffered from an inability to describe the diffusion of uncharged and charged solutes with a single unified model. Here, an internally consistent approach to describing the diffusion of solutes in a heterogeneous porous medium, such as compacted bentonite, in terms of its microstructure is presented. The microstructure is taken to be represented by a succession of unit cells, which consist of two consecutive regions (Do, 1996). In the first region, the diffusion is viewed to occur in two parallel paths: one through microcrystalline units (micropores) and the other through meso-pores between the microcrystalline units. Solutes exiting these two paths are then joined together to continue diffusing through the second, disordered, region, connecting the two adjacent microcrystalline units. Adsorption (incl. co-ion exclusion) is thought to occur in the micropores, whereas meso-pores and the disordered region accommodate free species alone. Co-ions are also assumed to experience transfer resistance into and out of the micropores, which is characterized in the model by a transmission coefficient. Although the model is not new per se, its application to compacted clays has never been attempted before. It is shown that in the limit of strong adsorption, the effective diffusivity is limited from above only by the microstructural parameters of the model porous medium. As intuitive and logical as this result may appear, it has not been proven before. In the limit of vanishing disordered region, the effective diffusivity is no longer explicitly constrained by any of the model parameters. The tortuosity of the diffusion path, i.e. the quotient of the actual diffusion path length in the porous-medium coordinates and the characteristic length of the laboratory frame

  12. Model analysis of the influence of gas diffusivity in soil on CO and H2 uptake

    International Nuclear Information System (INIS)

    Yonemura, S.; Yokozawa, M.; Kawashima, S.; Tsuruta, H.

    2000-01-01

    CO and H 2 uptake by soil was studied as a diffusion process. A diffusion model was used to determine how the surface fluxes (net deposition velocities) were controlled by in-situ microbial uptake rates and soil gas diffusivity calculated from the 3-phase system (solid, liquid, gas) in the soil. Analytical solutions of the diffusion model assuming vertical uniformity of soil properties showed that physical properties such as air-filled porosity and soil gas diffusivity were more important in the uptake process than in the emission process. To incorporate the distribution of in-situ microbial uptake, we used a 2-layer model incorporating 'a microbiologically inactive layer and an active layer' as suggested from experimental results. By numerical simulation using the 2-layer model, we estimated the effect of several factors on deposition velocities. The variations in soil gas diffusivity due to physical properties, i.e., soil moisture and air-filled porosity, as well as to the depth of the inactive layer and in-situ microbial uptake, were found to be important in controlling deposition velocities. This result shows that the diffusion process in soil is critically important for CO and H 2 uptake by soil, at least in soils with higher in-situ uptake rates and/or with large variation in soil moisture. Similar uptake rates and the difference in deposition velocity between CO and H 2 may be attributable to differences in CO and H 2 molecular diffusivity. The inactive layer is resistant to diffusion and creates uptake limits in CO and H 2 by soil. The coupling of high temperature and a thick inactive layer, common in arid soils, markedly lowers net CO deposition velocity. The temperature for maximum uptake of CO changes with depth of the inactive layer

  13. Diffusion of PAH in potato and carrot slices and application for a potato model

    DEFF Research Database (Denmark)

    Trapp, Stefan; Cammarano, A.; Capri, E.

    2007-01-01

    of water, potato tissue, and carrot tissue. Naphthalene, phenanthrene, anthracene, and fluoranthene served as model substances. Their transfer from source to sink disk was measured by HPLC to determine a velocity rate constant proportional to the diffusive conductivity. The diffusive flux through the plant...... of the chemical. The findings of this study provide a convenient method to estimate the diffusion of nonvolatile organic chemicals through various plant materials. The application to a radial diffusion model suggests that "growth dilution" renders the concentration of highly hydrophobic chemicals in potatoes...... below their equilibrium partitioning level. This is in agreement with field results for the bioconcentration of PAHs in potatoes....

  14. Modeling the reemergence of information diffusion in social network

    Science.gov (United States)

    Yang, Dingda; Liao, Xiangwen; Shen, Huawei; Cheng, Xueqi; Chen, Guolong

    2018-01-01

    Information diffusion in networks is an important research topic in various fields. Existing studies either focus on modeling the process of information diffusion, e.g., independent cascade model and linear threshold model, or investigate information diffusion in networks with certain structural characteristics such as scale-free networks and small world networks. However, there are still several phenomena that have not been captured by existing information diffusion models. One of the prominent phenomena is the reemergence of information diffusion, i.e., a piece of information reemerges after the completion of its initial diffusion process. In this paper, we propose an optimized information diffusion model by introducing a new informed state into traditional susceptible-infected-removed model. We verify the proposed model via simulations in real-world social networks, and the results indicate that the model can reproduce the reemergence of information during the diffusion process.

  15. Dynamics and profiles of a diffusive host-pathogen system with distinct dispersal rates

    Science.gov (United States)

    Wu, Yixiang; Zou, Xingfu

    2018-04-01

    In this paper, we investigate a diffusive host-pathogen model with heterogeneous parameters and distinct dispersal rates for the susceptible and infected hosts. We first prove that the solution of the model exists globally and the model system possesses a global attractor. We then identify the basic reproduction number R0 for the model and prove its threshold role: if R0 ≤ 1, the disease free equilibrium is globally asymptotically stable; if R0 > 1, the solution of the model is uniformly persistent and there exists a positive (pathogen persistent) steady state. Finally, we study the asymptotic profiles of the positive steady state as the dispersal rate of the susceptible or infected hosts approaches zero. Our result suggests that the infected hosts concentrate at certain points which can be characterized as the pathogen's most favoured sites when the mobility of the infected host is limited.

  16. Variation in diffusion-induced solidification rate of liquated Ni-Cr-B insert during TLP bonding of Waspaloy superalloy

    International Nuclear Information System (INIS)

    Tokoro, K.; Wikstrom, N.P.; Ojo, O.A.; Chaturvedi, M.C.

    2008-01-01

    A microstructural study was performed on transient liquid phase (TLP) bonded Waspaloy superalloy with a Ni-Cr-B filler. The applicability of a diffusion model based on Fick's second law of diffusion to determine the time required for complete isothermal solidification (t f ) was investigated. Over the temperature range of 1065-1110 deg. C, experimental observations of t f were in reasonable agreement with t f values predicted by the diffusion model. However, a notable deviation was observed in joints prepared between 1175 and 1225 deg. C in that the rate of isothermal solidification was reduced at these temperatures resulting in the formation of a centerline eutectic-type microconstituent, which in contrast, was prevented from forming after holding the brazing assembly for an equivalent bonding time at a lower temperature of 1145 deg. C. Boride particles were observed as part of the eutectic product, which suggested that diffusion of boron out of the liquated insert was also reduced at these higher temperatures. A decrease in solubility of the melting point depressing solute, boron, with increase in temperature is suggested to be an important factor contributing to the reduction in isothermal solidification rate observed at the higher bonding temperatures

  17. Diffusion coefficient adaptive correction in Lagrangian puff model

    International Nuclear Information System (INIS)

    Tan Wenji; Wang Dezhong; Ma Yuanwei; Ji Zhilong

    2014-01-01

    Lagrangian puff model is widely used in the decision support system for nuclear emergency management. The diffusion coefficient is one of the key parameters impacting puff model. An adaptive method was proposed in this paper, which could correct the diffusion coefficient in Lagrangian puff model, and it aimed to improve the accuracy of calculating the nuclide concentration distribution. This method used detected concentration data, meteorological data and source release data to estimate the actual diffusion coefficient with least square method. The diffusion coefficient adaptive correction method was evaluated by Kincaid data in MVK, and was compared with traditional Pasquill-Gifford (P-G) diffusion scheme method. The results indicate that this diffusion coefficient adaptive correction method can improve the accuracy of Lagrangian puff model. (authors)

  18. Individual differences in emotion processing: how similar are diffusion model parameters across tasks?

    Science.gov (United States)

    Mueller, Christina J; White, Corey N; Kuchinke, Lars

    2017-11-27

    The goal of this study was to replicate findings of diffusion model parameters capturing emotion effects in a lexical decision task and investigating whether these findings extend to other tasks of implicit emotion processing. Additionally, we were interested in the stability of diffusion model parameters across emotional stimuli and tasks for individual subjects. Responses to words in a lexical decision task were compared with responses to faces in a gender categorization task for stimuli of the emotion categories: happy, neutral and fear. Main effects of emotion as well as stability of emerging response style patterns as evident in diffusion model parameters across these tasks were analyzed. Based on earlier findings, drift rates were assumed to be more similar in response to stimuli of the same emotion category compared to stimuli of a different emotion category. Results showed that emotion effects of the tasks differed with a processing advantage for happy followed by neutral and fear-related words in the lexical decision task and a processing advantage for neutral followed by happy and fearful faces in the gender categorization task. Both emotion effects were captured in estimated drift rate parameters-and in case of the lexical decision task also in the non-decision time parameters. A principal component analysis showed that contrary to our hypothesis drift rates were more similar within a specific task context than within a specific emotion category. Individual response patterns of subjects across tasks were evident in significant correlations regarding diffusion model parameters including response styles, non-decision times and information accumulation.

  19. A spatial structural derivative model for ultraslow diffusion

    Directory of Open Access Journals (Sweden)

    Xu Wei

    2017-01-01

    Full Text Available This study investigates the ultraslow diffusion by a spatial structural derivative, in which the exponential function ex is selected as the structural function to construct the local structural derivative diffusion equation model. The analytical solution of the diffusion equation is a form of Biexponential distribution. Its corresponding mean squared displacement is numerically calculated, and increases more slowly than the logarithmic function of time. The local structural derivative diffusion equation with the structural function ex in space is an alternative physical and mathematical modeling model to characterize a kind of ultraslow diffusion.

  20. Cooling Rates of Mantle Peridotites Estimated from Lithophile Trace Element Diffusion in Orthopyroxene

    Science.gov (United States)

    von der Handt, A.; Hellebrand, E.; Snow, J. E.

    2007-12-01

    Cooling rates of ocean floor mantle rocks from mid-ocean ridges can potentially provide important information about ridge dynamics, emplacement mechanisms and mantle uplift. There are a growing number of geospeedometric methods to retrieve such cooling rates in various settings. However, few exist for typical four- phase mantle peridotites and they only cover temperatures below 800° C. The down-temperature lithophile trace element exchange between clinopyroxene (cpx) and orthopyroxene (opx) can provide such a high- temperature spinel peridotite geospeedometer. Orthopyroxenes studied by SIMS from two fresh Gakkel Ridge peridotites are zoned in all trace elements while clinopyroxenes are homogeneous. This allows the calculation of equilibrium temperatures [1]. Several profiles in opx cover a range of 1250° C (opx core) to 800° C (opx rim) and are in agreement with straightforward diffusion and closure temperature models. The systematics of REE diffusion in opx deviate from the results of a recent experimental study [2]. The data allow us to estimate diffusion systematics of 16 elements (REE and TE) and their cation distributions in orthopyroxene. The data set is internally coherent as all elements were subjected to the same extrinsic parameters. 1. Decreasing ionic radius increases REE diffusion in opx (as it does in cpx). 2. M2-site diffusion is controlled more by ionic radius than by cationic charge. 3. M1-site diffusion is controlled by both ionic radius and cationic charge. 4. M1-site diffusion is generally slower than M2-site diffusion for isovalent cations, most likely because of higher M1- site energies compared to M2-site. The advantages of this geospeedometer should be its relatively good precision, use of standard analytical methods and its coverage of the important range between solidus temperatures and 800° C. In combination with other geospeedometers it will be possible to retrieve the continuous cooling history of a mantle rock from its solidus down

  1. Homotopy perturbation transform method for pricing under pure diffusion models with affine coefficients

    Directory of Open Access Journals (Sweden)

    Claude Rodrigue Bambe Moutsinga

    2018-01-01

    Full Text Available Most existing multivariate models in finance are based on diffusion models. These models typically lead to the need of solving systems of Riccati differential equations. In this paper, we introduce an efficient method for solving systems of stiff Riccati differential equations. In this technique, a combination of Laplace transform and homotopy perturbation methods is considered as an algorithm to the exact solution of the nonlinear Riccati equations. The resulting technique is applied to solving stiff diffusion model problems that include interest rates models as well as two and three-factor stochastic volatility models. We show that the present approach is relatively easy, efficient and highly accurate.

  2. An Econometric Diffusion Model of Exchange Rate Movements within a Band - Implications for Interest Rate Differential and Credibility of Exchange Rate Policy

    OpenAIRE

    Rantala, Olavi

    1992-01-01

    The paper presents a model ofexchange rate movements within a specified exchange rate band enforced by central bank interventions. The model is based on the empirical observation that the exchange rate has usually been strictly inside the band, at least in Finland. In this model the distribution of the exchange rate is truncated lognormal from the edges towards the center of the band and hence quite different from the bimodal distribution of the standard target zone model. The model is estima...

  3. Strain rate effect on sooting characteristics in laminar counterflow diffusion flames

    KAUST Repository

    Wang, Yu

    2016-01-20

    The effects of strain rate, oxygen enrichment and fuel type on the sooting characteristics of counterflow diffusion flames were studied. The sooting structures and relative PAH concentrations were measured with laser diagnostics. Detailed soot modeling using recently developed PAH chemistry and surface reaction mechanism was performed and the results were compared with experimental data for ethylene flames, focusing on the effects of strain rates. The results showed that increase in strain rate reduced soot volume fraction, average size and peak number density. Increase in oxygen mole fraction increased soot loading and decreased its sensitivity on strain rate. The soot volume fractions of ethane, propene and propane flames were also measured as a function of global strain rate. The sensitivity of soot volume fraction to strain rate was observed to be fuel dependent at a fixed oxygen mole fraction, with the sensitivity being higher for more sooting fuels. However, when the soot loadings were matched at a reference strain rate for different fuels by adjusting oxygen mole fraction, the dependence of soot loading on strain rate became comparable among the tested fuels. PAH concentrations were shown to decrease with increase in strain rate and the dependence on strain rate is more pronounced for larger PAHs. Soot modeling was performed using detailed PAH growth chemistry with molecular growth up to coronene. A qualitative agreement was obtained between experimental and simulation results, which was then used to explain the experimentally observed strain rate effect on soot growth. However, quantitatively, the simulation result exhibits higher sensitivity to strain rate, especially for large PAHs and soot volume fractions.

  4. Modeling of immision from power plants using stream-diffusion model

    International Nuclear Information System (INIS)

    Kanevce, Lj.; Kanevce, G.; Markoski, A.

    1996-01-01

    Analyses of simple empirical and integral immision models, comparing with complex three dimensional differential models is given. Complex differential models needs huge computer power, so they can't be useful for practical engineering calculations. In this paper immision modeling, using stream-diffusion approach is presented. Process of dispersion is divided into two parts. First part is called stream part, it's near the source of the pollutants, and it's presented with defected turbulent jet in wind field. This part finished when the velocity of stream (jet) becomes equal with wind speed. Boundary conditions in the end of the first part, are initial for the second, called diffusion part, which is modeling with tri dimensional diffusion equation. Gradient of temperature, wind speed profile and coefficient of diffusion in this model must not be constants, they can change with the height. Presented model is much simpler than the complete meteorological differential models which calculates whole fields of meteorological parameters. Also, it is more complex and gives more valuable results for dispersion of pollutants from widely used integral and empirical models

  5. Visualization and quantification of heterogeneous diffusion rates in granodiorite samples by X-ray absorption imaging. Diffusion within gouge materials, altered rim and intact rock matrix

    Energy Technology Data Exchange (ETDEWEB)

    Altman, S.J.; Tidwell, V.C. [Sandia National Laboratories, Albuquerque, NM (United States); Uchida, M. [Japan Nuclear Cycle Development Inst., Ibaraki (Japan)

    2001-08-01

    Matrix diffusion is one of the most important contaminant migration retardation processes in crystalline rocks. Performance assessment calculations in various countries assume that only the area of the fracture surface where advection is active provides access to the rock matrix. However, accessibility to the matrix could be significantly enhanced with diffusion into stagnant zones, fracture fillings, and through an alteration rim in the matrix. Laboratory visualization experiments were conducted on granodiorite samples to investigate and quantify diffusion rates within different zones of a Cretaceous granodiorite. Samples were collected from the Kamaishi experimental site in the northern part of the main island of Japan. Diffusion of iodine out of the sample is visualized and rates are measured using x-ray absorption imaging. X-ray images allow for measurements of relative iodine concentration and relative iodine mass as a function of time and two-dimensional space at a sub-millimeter spatial resolution. In addition, two-dimensional heterogeneous porosity fields (at the same resolution as the relative concentration fields) are measured. This imaging technique allows for a greater understanding of the spatial variability of diffusion rates than can be accomplished with standard bulk measurements. It was found that diffusion rates were fastest in partially gouge-filled fractures. Diffusion rates in the recrystallized calcite-based fracture-filling material were up to an order of magnitude lower than in gouge-filled fractures. Diffusion in altered matrix around the fractures was over an order of magnitude lower than that in the gouge-filled fractures. Healed fractures did not appear to have different diffusion rates than the unaltered matrix.

  6. Visualization and quantification of heterogeneous diffusion rates in granodiorite samples by X-ray absorption imaging. Diffusion within gouge materials, altered rim and intact rock matrix

    International Nuclear Information System (INIS)

    Altman, S.J.; Tidwell, V.C.; Uchida, M.

    2001-01-01

    Matrix diffusion is one of the most important contaminant migration retardation processes in crystalline rocks. Performance assessment calculations in various countries assume that only the area of the fracture surface where advection is active provides access to the rock matrix. However, accessibility to the matrix could be significantly enhanced with diffusion into stagnant zones, fracture fillings, and through an alteration rim in the matrix. Laboratory visualization experiments were conducted on granodiorite samples to investigate and quantify diffusion rates within different zones of a Cretaceous granodiorite. Samples were collected from the Kamaishi experimental site in the northern part of the main island of Japan. Diffusion of iodine out of the sample is visualized and rates are measured using x-ray absorption imaging. X-ray images allow for measurements of relative iodine concentration and relative iodine mass as a function of time and two-dimensional space at a sub-millimeter spatial resolution. In addition, two-dimensional heterogeneous porosity fields (at the same resolution as the relative concentration fields) are measured. This imaging technique allows for a greater understanding of the spatial variability of diffusion rates than can be accomplished with standard bulk measurements. It was found that diffusion rates were fastest in partially gouge-filled fractures. Diffusion rates in the recrystallized calcite-based fracture-filling material were up to an order of magnitude lower than in gouge-filled fractures. Diffusion in altered matrix around the fractures was over an order of magnitude lower than that in the gouge-filled fractures. Healed fractures did not appear to have different diffusion rates than the unaltered matrix

  7. External field effects on diffusion and solidification derived from the free-volume model

    Science.gov (United States)

    Miller, R. I.; Ruff, R. C.

    1975-01-01

    Expressions for the diffusion coefficient and the solidification rate from the free-volume model of liquids developed by Turnbull and Cohen have been used to estimate the effects which microgravity and magnetic fields will have on these quantities. The mathematical formalism describing changes of the diffusion coefficient and the solidification rate is the same for both the microgravity and magnetic field cases, but the difference between the magnitudes of the two effects is quite large. The change in the two parameters is found to be less than .0001% for the microgravity case and on the order of 0.1 to 1.1% for the magnetic field case for four representative materials. The diffusion coefficient and the solidification rate are found to increase under the influence of an applied magnetic field, and this is in agreement with experimental observations.

  8. Bioheat model evaluations of laser effects on tissues: role of water evaporation and diffusion

    Science.gov (United States)

    Nagulapally, Deepthi; Joshi, Ravi P.; Thomas, Robert J.

    2011-03-01

    A two-dimensional, time-dependent bioheat model is applied to evaluate changes in temperature and water content in tissues subjected to laser irradiation. Our approach takes account of liquid-to-vapor phase changes and a simple diffusive flow of water within the biotissue. An energy balance equation considers blood perfusion, metabolic heat generation, laser absorption, and water evaporation. The model also accounts for the water dependence of tissue properties (both thermal and optical), and variations in blood perfusion rates based on local tissue injury. Our calculations show that water diffusion would reduce the local temperature increases and hot spots in comparison to simple models that ignore the role of water in the overall thermal and mass transport. Also, the reduced suppression of perfusion rates due to tissue heating and damage with water diffusion affect the necrotic depth. Two-dimensional results for the dynamic temperature, water content, and damage distributions will be presented for skin simulations. It is argued that reduction in temperature gradients due to water diffusion would mitigate local refractive index variations, and hence influence the phenomenon of thermal lensing. Finally, simple quantitative evaluations of pressure increases within the tissue due to laser absorption are presented.

  9. Lagrangian-similarity diffusion-deposition model

    International Nuclear Information System (INIS)

    Horst, T.W.

    1979-01-01

    A Lagrangian-similarity diffusion model has been incorporated into the surface-depletion deposition model. This model predicts vertical concentration profiles far downwind of the source that agree with those of a one-dimensional gradient-transfer model

  10. CROSS DIFFUSION AND NONLINEAR DIFFUSION PREVENTING BLOW UP IN THE KELLER–SEGEL MODEL

    KAUST Repository

    CARRILLO, JOSÉ ANTONIO; HITTMEIR, SABINE; JÜ NGEL, ANSGAR

    2012-01-01

    A parabolic-parabolic (Patlak-)Keller-Segel model in up to three space dimensions with nonlinear cell diffusion and an additional nonlinear cross-diffusion term is analyzed. The main feature of this model is that there exists a new entropy

  11. Analysis of tracer tests with multirate diffusion models: recent results and future directions within the WIPP project

    International Nuclear Information System (INIS)

    McKenna, S.A.; Meigs, L.C.; Altman, S.J.; Haggerty, R.

    1998-01-01

    A series of single-well injection-withdrawal (SWIW) and two-well convergent-flow (TWCF) tracer tests were conducted in the Culebra dolomite at the WIPP site in late 1995 and early 1996. Modeling analyses over the past year have focused on reproducing the observed mass-recovery curves and understanding the basis physical processes controlling tracer transport in SWIW and TWCF tests. To date, specific modeling efforts have focused on five SWIW tests and one TWCF pathway at each of two different locations. An inverse parameter-estimation procedure was implemented to model the SWIW and TWCF tests with both traditional and multirate double-porosity formulations. The traditional model assumes a single diffusion rate while the multirate model uses a first-order approximation to model a continuous distribution of diffusion coefficients. Conceptually, the multirate model represents variable matrix block sizes within the Culebra as observed in geologic investigations and also variability in diffusion rates within the matrix blocks as observed with X-ray imaging in the laboratory. Single-rate double-porosity models cannot provide an adequate match to the SWIW data. Multirate double-porosity models provide excellent fits to all five SWIW mass-recovery curves. Models of the TWCF tests show that, at one location, the tracer test can be modeled with both single-rate and multirate double-porosity models. At the other location, only the multi-rate double-porosity model is capable of explaining the test results

  12. Analysis of Tracer Tests with Multirate Diffusion Models: Recent Results and Future Directions within the WIPP Project

    International Nuclear Information System (INIS)

    ALTMAN, SUSAN J.; HAGGERTY, ROY; MCKENNA, SEAN A.; MEIGS, LUCY C.

    1999-01-01

    A series of single-well injection-withdrawal (SWIW) and two-well convergent-flow (TWCF) tracer tests were conducted in the Culebra dolomite at the WIPP site in late 1995 and early 1996. Modeling analyses over the past year have focused on reproducing the observed mass-recovery curves and understanding the basic physical processes controlling tracer transport in SWIW and TWCF tests. To date, specific modeling efforts have focused on five SWIW tests and one TWCF pathway at each of two different locations (H-11 and H-19 hydropads). An inverse parameter-estimation procedure was implemented to model the SWIW and TWCF tests with both traditional and multirate double-porosity formulations. The traditional model assumes a single diffusion rate while the multirate model uses a first-order approximation to model a continuous distribution of diffusion coefficients. Conceptually, the multirate model represents variable matrix block sizes within the Culebra as observed in geologic investigations and also variability in diffusion rates within the matrix blocks as observed with X-ray imaging in the laboratory. Single-rate double-porosity models cannot provide an adequate match to the SWIW data. Multirate double-porosity models provide excellent fits to all five SWIW mass-recovery curves. Models of the TWCF tests show that, at one location, the tracer test can be modeled with both single-rate and multirate double-porosity models. At the other location, only the multi-rate double-porosity model is capable of explaining the test results

  13. Quantitation of chemical exchange rates using pulsed-field-gradient diffusion measurements

    International Nuclear Information System (INIS)

    Andrec, Michael; Prestegard, James H.

    1997-01-01

    A new approach to the quantitation of chemical exchange rates is presented, and its utility is illustrated with application to the exchange of protein amide protons with bulk water. The approach consists of a selective-inversion exchange HMQC experiment in which a short spin echo diffusion filter has been inserted into the exchange period. In this way, the kinetics of exchange are encoded directly in an apparent diffusion coefficient which is a function of the position of the diffusion filter in the pulse sequence. A detailed theoretical analysis of this experiment indicates that, in addition to the measurement of simple exchange rates, the experiment is capable of measuring the effect of mediated exchange, e.g. the transfer of magnetization from bulk water to an amide site mediated by an internal bound water molecule or a labile protein side-chain proton in fast exchange with bulk water. Experimental results for rapid water/amide exchange in acyl carrier protein are shown to be quantitatively consistent with the exchange rates measured using a selective-inversion exchange experiment

  14. a metabolic wastage model for the rate-yield trade off

    Indian Academy of Sciences (India)

    A METABOLIC WASTAGE MODEL FOR THE RATE-YIELD TRADE OFF. There is a growth limiting step in which an intermediate metabolite (m) has to hit a target molecule (t). ... D= rate of diffusing out. S= the rate of formation of the metabolite. The equilibrium loss decides the yield. The no. of activated targets decide the rate ...

  15. Diffusion models for corona formation in metagabbros from the Western Grenville Province, Canada

    Science.gov (United States)

    Grant, Shona M.

    1988-01-01

    Metagabbro bodies in SW Grenville Province display a variety of disequilibrium corona textures between spinel-clouded plagioclase and primary olivine or opaque oxide. Textural evidence favours a single-stage, subsolidus origin for the olivine coronas and diffusive mass transfer is believed to have been the rate-controlling process. Irreversible thermodynamics have been used to model two different garnet symplectite-bearing corona sequences in terms of steady state diffusion. In the models the flux of each component is related to the chemical potential gradients of all diffusing species by the Onsager or L-coefficients for diffusion. These coefficients are analogous to experimentally determined diffusion coefficients ( d), but relate the flux of components to chemical potential rather than concentration gradients. The major constraint on the relative values of Onsager coefficients comes from the observed mole fraction, X, of garnet in the symplectites; in (amph-gt) symplectites X {Gt/Sym}˜0.80, compared with ˜0.75 in (cpx-gt) symplectites. Several models using simple oxide components, and two different modifications of the reactant plagioclase composition, give the following qualitative results: the very low mobility of aluminium appears to control the rate of corona formation. Mg and Fe have similar mobility, and Mg can be up to 6 8 times more mobile than sodium. Determination of calcium mobility is problematical because of a proposed interaction with cross-coefficient terms reflecting “uphill” Ca-diffusion, i.e., calcium diffusing up its own chemical potential gradient. If these terms are not introduced, it is difficult to generate the required proportions of garnet in the symplectite. However, at moderate values of the cross-coefficient ratios, Mg can be up to 4 6 times more mobile than calcium ( L MgMg/LCaCaCaCa/LAlAl>3).

  16. Symmetries and modelling functions for diffusion processes

    International Nuclear Information System (INIS)

    Nikitin, A G; Spichak, S V; Vedula, Yu S; Naumovets, A G

    2009-01-01

    A constructive approach to the theory of diffusion processes is proposed, which is based on application of both symmetry analysis and the method of modelling functions. An algorithm for construction of the modelling functions is suggested. This algorithm is based on the error function expansion (ERFEX) of experimental concentration profiles. The high-accuracy analytical description of the profiles provided by ERFEX approximation allows a convenient extraction of the concentration dependence of diffusivity from experimental data and prediction of the diffusion process. Our analysis is exemplified by its employment in experimental results obtained for surface diffusion of lithium on the molybdenum (1 1 2) surface precovered with dysprosium. The ERFEX approximation can be directly extended to many other diffusion systems.

  17. A nonlocal and periodic reaction-diffusion-advection model of a single phytoplankton species.

    Science.gov (United States)

    Peng, Rui; Zhao, Xiao-Qiang

    2016-02-01

    In this article, we are concerned with a nonlocal reaction-diffusion-advection model which describes the evolution of a single phytoplankton species in a eutrophic vertical water column where the species relies solely on light for its metabolism. The new feature of our modeling equation lies in that the incident light intensity and the death rate are assumed to be time periodic with a common period. We first establish a threshold type result on the global dynamics of this model in terms of the basic reproduction number R0. Then we derive various characterizations of R0 with respect to the vertical turbulent diffusion rate, the sinking or buoyant rate and the water column depth, respectively, which in turn give rather precise conditions to determine whether the phytoplankton persist or become extinct. Our theoretical results not only extend the existing ones for the time-independent case, but also reveal new interesting effects of the modeling parameters and the time-periodic heterogeneous environment on persistence and extinction of the phytoplankton species, and thereby suggest important implications for phytoplankton growth control.

  18. The determination of volatile chlorinated hydrocarbons in air. Sampling rate and efficiency of diffuse samplers

    Energy Technology Data Exchange (ETDEWEB)

    Giese, U.; Stenner, H.; Kettrup, A.

    1989-05-01

    When applicating diffusive sampling-systems to workplace air-monitoring it is necessary to know the behaviour of the diffusive-rate and the efficiency in dependence of concentration, exposition time and the type of pollutant. Especially concerning mixtures of pollutants there are negative influences by competition and mutual displacement possible. Diffusive-rate and discovery for CH/sub 2/Cl/sub 2/ and CHCl/sub 3/ were investigated using two different types of diffuse samplers. For this it was necessary to develop suitable defices for standard gas generation and for the exposition of diffusive-samplers to a standard gas mixture. (orig.).

  19. Mechanobiology of LDL mass transport in the arterial wall under the effect of magnetic field, part I: Diffusion rate

    Energy Technology Data Exchange (ETDEWEB)

    Aminfar, Habib, E-mail: hh_aminfar@tabrizu.ac.ir [Faculty of Mechanical Engineering, University of Tabriz, Tabriz (Iran, Islamic Republic of); Mohammadpourfard, Mousa, E-mail: Mohammadpour@tabrizu.ac.ir [Faculty of Chemical and Petroleum Engineering, University of Tabriz, Tabriz 5166616471 (Iran, Islamic Republic of); Khajeh, Kosar, E-mail: k.khajeh.2005@tabrizu.ac.ir [Faculty of Mechanical Engineering, University of Tabriz, Tabriz (Iran, Islamic Republic of)

    2017-03-15

    It is well-known that the Low Density Lipoprotein (LDL) can accumulate and penetrate into the arterial wall. Here, we have investigated the diffusion rate of macromolecules across the porous layer of blood vessel under the effects of magnetic force. By using a finite volume technique, it was found that magnetic field makes alterations in diffusion rate of LDLs, also surface concentration of macromolecules on the walls. As well, the influence of different value of Re and Sc number in the presence of a magnetic field have shown as nondimensional concentration profiles. Magnetic field considered as a body force, porous layer simulated by using Darcy's law and the blood regarded as nano fluid which was examined as a single phase model. - Highlights: • LDLs mass transfer across the arterial wall under magnetic field has simulated numerically. • Arterial wall assumed as a homogeneous porous layer by using Darcy's law. • Blood containing 4% Vol. Fe{sub 3}O{sub 4} regarded as nanofluid and has examined by single phase model. • Magnetic field significantly affects the diffusion rate of LDLs through porous arterial wall.

  20. Diffusion as a Ruler: Modeling Kinesin Diffusion as a Length Sensor for Intraflagellar Transport.

    Science.gov (United States)

    Hendel, Nathan L; Thomson, Matthew; Marshall, Wallace F

    2018-02-06

    An important question in cell biology is whether cells are able to measure size, either whole cell size or organelle size. Perhaps cells have an internal chemical representation of size that can be used to precisely regulate growth, or perhaps size is just an accident that emerges due to constraint of nutrients. The eukaryotic flagellum is an ideal model for studying size sensing and control because its linear geometry makes it essentially one-dimensional, greatly simplifying mathematical modeling. The assembly of flagella is regulated by intraflagellar transport (IFT), in which kinesin motors carry cargo adaptors for flagellar proteins along the flagellum and then deposit them at the tip, lengthening the flagellum. The rate at which IFT motors are recruited to begin transport into the flagellum is anticorrelated with the flagellar length, implying some kind of communication between the base and the tip and possibly indicating that cells contain some mechanism for measuring flagellar length. Although it is possible to imagine many complex scenarios in which additional signaling molecules sense length and carry feedback signals to the cell body to control IFT, might the already-known components of the IFT system be sufficient to allow length dependence of IFT? Here we investigate a model in which the anterograde kinesin motors unbind after cargo delivery, diffuse back to the base, and are subsequently reused to power entry of new IFT trains into the flagellum. By mathematically modeling and simulating such a system, we are able to show that the diffusion time of the motors can in principle be sufficient to serve as a proxy for length measurement. We found that the diffusion model can not only achieve a stable steady-state length without the addition of any other signaling molecules or pathways, but also is able to produce the anticorrelation between length and IFT recruitment rate that has been observed in quantitative imaging studies. Copyright © 2017 Biophysical

  1. Using genetic data to estimate diffusion rates in heterogeneous landscapes.

    Science.gov (United States)

    Roques, L; Walker, E; Franck, P; Soubeyrand, S; Klein, E K

    2016-08-01

    Having a precise knowledge of the dispersal ability of a population in a heterogeneous environment is of critical importance in agroecology and conservation biology as it can provide management tools to limit the effects of pests or to increase the survival of endangered species. In this paper, we propose a mechanistic-statistical method to estimate space-dependent diffusion parameters of spatially-explicit models based on stochastic differential equations, using genetic data. Dividing the total population into subpopulations corresponding to different habitat patches with known allele frequencies, the expected proportions of individuals from each subpopulation at each position is computed by solving a system of reaction-diffusion equations. Modelling the capture and genotyping of the individuals with a statistical approach, we derive a numerically tractable formula for the likelihood function associated with the diffusion parameters. In a simulated environment made of three types of regions, each associated with a different diffusion coefficient, we successfully estimate the diffusion parameters with a maximum-likelihood approach. Although higher genetic differentiation among subpopulations leads to more accurate estimations, once a certain level of differentiation has been reached, the finite size of the genotyped population becomes the limiting factor for accurate estimation.

  2. Stochastic Modelling of the Diffusion Coefficient for Concrete

    DEFF Research Database (Denmark)

    Thoft-Christensen, Palle

    In the paper, a new stochastic modelling of the diffusion coefficient D is presented. The modelling is based on physical understanding of the diffusion process and on some recent experimental results. The diffusion coefficients D is strongly dependent on the w/c ratio and the temperature....

  3. Subgrid models for mass and thermal diffusion in turbulent mixing

    International Nuclear Information System (INIS)

    Lim, H; Yu, Y; Glimm, J; Li, X-L; Sharp, D H

    2010-01-01

    We propose a new method for the large eddy simulation (LES) of turbulent mixing flows. The method yields convergent probability distribution functions (PDFs) for temperature and concentration and a chemical reaction rate when applied to reshocked Richtmyer-Meshkov (RM) unstable flows. Because such a mesh convergence is an unusual and perhaps original capability for LES of RM flows, we review previous validation studies of the principal components of the algorithm. The components are (i) a front tracking code, FronTier, to control numerical mass diffusion and (ii) dynamic subgrid scale (SGS) models to compensate for unresolved scales in the LES. We also review the relevant code comparison studies. We compare our results to a simple model based on 1D diffusion, taking place in the geometry defined statistically by the interface (the 50% isoconcentration surface between the two fluids). Several conclusions important to physics could be drawn from our study. We model chemical reactions with no closure approximations beyond those in the LES of the fluid variables itself, and as with dynamic SGS models, these closures contain no adjustable parameters. The chemical reaction rate is specified by the joint PDF for temperature and concentration. We observe a bimodal distribution for the PDF and we observe significant dependence on fluid transport parameters.

  4. A diffusivity model for predicting VOC diffusion in porous building materials based on fractal theory

    International Nuclear Information System (INIS)

    Liu, Yanfeng; Zhou, Xiaojun; Wang, Dengjia; Song, Cong; Liu, Jiaping

    2015-01-01

    Highlights: • Fractal theory is introduced into the prediction of VOC diffusion coefficient. • MSFC model of the diffusion coefficient is developed for porous building materials. • The MSFC model contains detailed pore structure parameters. • The accuracy of the MSFC model is verified by independent experiments. - Abstract: Most building materials are porous media, and the internal diffusion coefficients of such materials have an important influences on the emission characteristics of volatile organic compounds (VOCs). The pore structure of porous building materials has a significant impact on the diffusion coefficient. However, the complex structural characteristics bring great difficulties to the model development. The existing prediction models of the diffusion coefficient are flawed and need to be improved. Using scanning electron microscope (SEM) observations and mercury intrusion porosimetry (MIP) tests of typical porous building materials, this study developed a new diffusivity model: the multistage series-connection fractal capillary-bundle (MSFC) model. The model considers the variable-diameter capillaries formed by macropores connected in series as the main mass transfer paths, and the diameter distribution of the capillary bundles obeys a fractal power law in the cross section. In addition, the tortuosity of the macrocapillary segments with different diameters is obtained by the fractal theory. Mesopores serve as the connections between the macrocapillary segments rather than as the main mass transfer paths. The theoretical results obtained using the MSFC model yielded a highly accurate prediction of the diffusion coefficients and were in a good agreement with the VOC concentration measurements in the environmental test chamber.

  5. Diffusion layer modeling for condensation with multi-component noncondensable gases

    International Nuclear Information System (INIS)

    Peterson, P.F.

    1999-01-01

    Many condensation problems involving noncondensable gases have multiple noncondensable species, for example air (with nitrogen, oxygen, and other gases); and other problems where light gases like hydrogen may mix with heavier gases like nitrogen. Particularly when the binary mass diffusion coefficients of the noncondensable species are substantially different, the noncondensable species tend to segregate in the condensation boundary layer. This paper presents a fundamental analysis of the mass transport with multiple noncondensable species, identifying a simple method to calculate an effective mass diffusion coefficient that can be used with the simple diffusion layer model, and discusses in detail the effects of using mass and mole based quantities, and various simplifying approximations, on predicted condensation rates. The results are illustrated with quantitative examples to demonstrate the potential importance of multi-component noncondensable gas effects

  6. CROSS DIFFUSION AND NONLINEAR DIFFUSION PREVENTING BLOW UP IN THE KELLER–SEGEL MODEL

    KAUST Repository

    CARRILLO, JOSÉ ANTONIO

    2012-12-01

    A parabolic-parabolic (Patlak-)Keller-Segel model in up to three space dimensions with nonlinear cell diffusion and an additional nonlinear cross-diffusion term is analyzed. The main feature of this model is that there exists a new entropy functional, yielding gradient estimates for the cell density and chemical concentration. For arbitrarily small cross-diffusion coefficients and for suitable exponents of the nonlinear diffusion terms, the global-in-time existence of weak solutions is proved, thus preventing finite-time blow up of the cell density. The global existence result also holds for linear and fast diffusion of the cell density in a certain parameter range in three dimensions. Furthermore, we show L∞ bounds for the solutions to the parabolic-elliptic system. Sufficient conditions leading to the asymptotic stability of the constant steady state are given for a particular choice of the nonlinear diffusion exponents. Numerical experiments in two and three space dimensions illustrate the theoretical results. © 2012 World Scientific Publishing Company.

  7. A non-local structural derivative model for characterization of ultraslow diffusion in dense colloids

    Science.gov (United States)

    Liang, Yingjie; Chen, Wen

    2018-03-01

    Ultraslow diffusion has been observed in numerous complicated systems. Its mean squared displacement (MSD) is not a power law function of time, but instead a logarithmic function, and in some cases grows even more slowly than the logarithmic rate. The distributed-order fractional diffusion equation model simply does not work for the general ultraslow diffusion. Recent study has used the local structural derivative to describe ultraslow diffusion dynamics by using the inverse Mittag-Leffler function as the structural function, in which the MSD is a function of inverse Mittag-Leffler function. In this study, a new stretched logarithmic diffusion law and its underlying non-local structural derivative diffusion model are proposed to characterize the ultraslow diffusion in aging dense colloidal glass at both the short and long waiting times. It is observed that the aging dynamics of dense colloids is a class of the stretched logarithmic ultraslow diffusion processes. Compared with the power, the logarithmic, and the inverse Mittag-Leffler diffusion laws, the stretched logarithmic diffusion law has better precision in fitting the MSD of the colloidal particles at high densities. The corresponding non-local structural derivative diffusion equation manifests clear physical mechanism, and its structural function is equivalent to the first-order derivative of the MSD.

  8. Fractional diffusion models of nonlocal transport

    International Nuclear Information System (INIS)

    Castillo-Negrete, D. del

    2006-01-01

    A class of nonlocal models based on the use of fractional derivatives (FDs) is proposed to describe nondiffusive transport in magnetically confined plasmas. FDs are integro-differential operators that incorporate in a unified framework asymmetric non-Fickian transport, non-Markovian ('memory') effects, and nondiffusive scaling. To overcome the limitations of fractional models in unbounded domains, we use regularized FDs that allow the incorporation of finite-size domain effects, boundary conditions, and variable diffusivities. We present an α-weighted explicit/implicit numerical integration scheme based on the Grunwald-Letnikov representation of the regularized fractional diffusion operator in flux conserving form. In sharp contrast with the standard diffusive model, the strong nonlocality of fractional diffusion leads to a linear in time response for a decaying pulse at short times. In addition, an anomalous fractional pinch is observed, accompanied by the development of an uphill transport region where the 'effective' diffusivity becomes negative. The fractional flux is in general asymmetric and, for steady states, it has a negative (toward the core) component that enhances confinement and a positive component that increases toward the edge and leads to poor confinement. The model exhibits the characteristic anomalous scaling of the confinement time, τ, with the system's size, L, τ∼L α , of low-confinement mode plasma where 1<α<2 is the order of the FD operator. Numerical solutions of the model with an off-axis source show that the fractional inward transport gives rise to profile peaking reminiscent of what is observed in tokamak discharges with auxiliary off-axis heating. Also, cold-pulse perturbations to steady sates in the model exhibit fast, nondiffusive propagation phenomena that resemble perturbative experiments

  9. MO-G-BRF-07: Anomalously Fast Diffusion of Carbon Nanotubes Carriers in 3D Tissue Model

    International Nuclear Information System (INIS)

    Wang, Y; Bahng, J; Kotov, N

    2014-01-01

    Purpose: We aim to investigate and understand diffusion process of carbon nanotubes (CNTs) and other nanoscale particles in tissue and organs. Methods: In this research, we utilized a 3D model tissue of hepatocellular carcinoma (HCC)cultured in inverted colloidal crystal (ICC) scaffolds to compare the diffusivity of CNTs with small molecules such as Rhodamine and FITC in vitro, and further investigated the transportation of CNTs with and without targeting ligand, TGFβ1. The real-time permeation profiles of CNTs in HCC tissue model with high temporal and spatial resolution was demonstrated by using standard confocal microscopy. Quantitative analysis of the diffusion process in 3D was carried out using luminescence intensity in a series of Z-stack images obtained for different time points of the diffusion process after initial addition of CNTs or small molecules to the cell culture and the image data was analyzed by software ImageJ and Mathematica. Results: CNTs display diffusion rate in model tissues substantially faster than small molecules of the similar charge such as FITC, and the diffusion rate of CNTs are significantly enhanced with targeting ligand, TGFβ1. Conclusion: In terms of the advantages of in-vitro model, we were able to have access to measuring the rate of CNT penetration at designed conditions with variable parameters. And the findings by using this model, changed our understanding about advantages of CNTs as nanoscale drug carriers and provides design principles for making new drug carriers for both treatment and diagnostics. Additionally the fast diffusion opens the discussion of the best possible drug carriers to reach deep parts of cancerous tissues, which is often a prerequisite for successful cancer treatment. This work was supported by the Center for Photonic and Multiscale Nanomaterials funded by National Science Foundation Materials Research Science and Engineering Center program DMR 1120923. The work was also partially supported by NSF

  10. MO-G-BRF-07: Anomalously Fast Diffusion of Carbon Nanotubes Carriers in 3D Tissue Model

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Y; Bahng, J; Kotov, N [University of Michigan, Ann Arbor, MI (United States)

    2014-06-15

    Purpose: We aim to investigate and understand diffusion process of carbon nanotubes (CNTs) and other nanoscale particles in tissue and organs. Methods: In this research, we utilized a 3D model tissue of hepatocellular carcinoma (HCC)cultured in inverted colloidal crystal (ICC) scaffolds to compare the diffusivity of CNTs with small molecules such as Rhodamine and FITC in vitro, and further investigated the transportation of CNTs with and without targeting ligand, TGFβ1. The real-time permeation profiles of CNTs in HCC tissue model with high temporal and spatial resolution was demonstrated by using standard confocal microscopy. Quantitative analysis of the diffusion process in 3D was carried out using luminescence intensity in a series of Z-stack images obtained for different time points of the diffusion process after initial addition of CNTs or small molecules to the cell culture and the image data was analyzed by software ImageJ and Mathematica. Results: CNTs display diffusion rate in model tissues substantially faster than small molecules of the similar charge such as FITC, and the diffusion rate of CNTs are significantly enhanced with targeting ligand, TGFβ1. Conclusion: In terms of the advantages of in-vitro model, we were able to have access to measuring the rate of CNT penetration at designed conditions with variable parameters. And the findings by using this model, changed our understanding about advantages of CNTs as nanoscale drug carriers and provides design principles for making new drug carriers for both treatment and diagnostics. Additionally the fast diffusion opens the discussion of the best possible drug carriers to reach deep parts of cancerous tissues, which is often a prerequisite for successful cancer treatment. This work was supported by the Center for Photonic and Multiscale Nanomaterials funded by National Science Foundation Materials Research Science and Engineering Center program DMR 1120923. The work was also partially supported by NSF

  11. Surface diffusion of sorbed radionuclides

    International Nuclear Information System (INIS)

    Berry, J.A.; Bond, K.A.

    1991-01-01

    Surface diffusion has in the past been invoked to explain rates of radionuclide migration which were greater than those predicted. Results were generally open to interpretation but the possible existence of surface diffusion, whereby sorbed radionuclides could potentially migrate at much enhanced rates, necessitated investigation. In this work through-diffusion experiments have shown that although surface diffusion does exist for some nuclides, the magnitude of the phenomenon is not sufficient to affect repository safety assessment modelling. (author)

  12. Multiphase Microfluidics The Diffuse Interface Model

    CERN Document Server

    2012-01-01

    Multiphase flows are typically described assuming that the different phases are separated by a sharp interface, with appropriate boundary conditions. This approach breaks down whenever the lengthscale of the phenomenon that is being studied is comparable with the real interface thickness, as it happens, for example, in the coalescence and breakup of bubbles and drops, the wetting and dewetting of solid surfaces and, in general, im micro-devices. The diffuse interface model resolves these probems by assuming that all quantities can vary continuously, so that interfaces have a non-zero thickness, i.e. they are "diffuse". The contributions in this book review the theory and describe some relevant applications of the diffuse interface model for one-component, two-phase fluids and for liquid binary mixtures, to model multiphase flows in confined geometries.

  13. Modelling of diffuse solar fraction with multiple predictors

    Energy Technology Data Exchange (ETDEWEB)

    Ridley, Barbara; Boland, John [Centre for Industrial and Applied Mathematics, University of South Australia, Mawson Lakes Boulevard, Mawson Lakes, SA 5095 (Australia); Lauret, Philippe [Laboratoire de Physique du Batiment et des Systemes, University of La Reunion, Reunion (France)

    2010-02-15

    For some locations both global and diffuse solar radiation are measured. However, for many locations, only global radiation is measured, or inferred from satellite data. For modelling solar energy applications, the amount of radiation on a tilted surface is needed. Since only the direct component on a tilted surface can be calculated from direct on some other plane using trigonometry, we need to have diffuse radiation on the horizontal plane available. There are regression relationships for estimating the diffuse on a tilted surface from diffuse on the horizontal. Models for estimating the diffuse on the horizontal from horizontal global that have been developed in Europe or North America have proved to be inadequate for Australia. Boland et al. developed a validated model for Australian conditions. Boland et al. detailed our recent advances in developing the theoretical framework for the use of the logistic function instead of piecewise linear or simple nonlinear functions and was the first step in identifying the means for developing a generic model for estimating diffuse from global and other predictors. We have developed a multiple predictor model, which is much simpler than previous models, and uses hourly clearness index, daily clearness index, solar altitude, apparent solar time and a measure of persistence of global radiation level as predictors. This model performs marginally better than currently used models for locations in the Northern Hemisphere and substantially better for Southern Hemisphere locations. We suggest it can be used as a universal model. (author)

  14. Fractional diffusion models of transport in magnetically confined plasmas

    International Nuclear Information System (INIS)

    Castillo-Negrete, D. del; Carreras, B. A.; Lynch, V. E.

    2005-01-01

    Experimental and theoretical evidence suggests that transport in magnetically confined fusion plasmas deviates from the standard diffusion paradigm. Some examples include the confinement time scaling in L-mode plasmas, rapid pulse propagation phenomena, and inward transport in off-axis fueling experiments. The limitations of the diffusion paradigm can be traced back to the restrictive assumptions in which it is based. In particular, Fick's law, one of the cornerstones of diffusive transport, assumes that the fluxes only depend on local quantities, i. e. the spatial gradient of the field (s). another key issue is the Markovian assumption that neglects memory effects. Also, at a microscopic level, standard diffusion assumes and underlying Gaussian, uncorrelated stochastic process (i. e. a Brownian random walk) with well defined characteristic spatio-temporal scales. Motivated by the need to develop models of non-diffusive transport, we discuss here a class of transport models base on the use of fractional derivative operators. The models incorporates in a unified way non-Fickian transport, non-Markovian processes or memory effects, and non-diffusive scaling. At a microscopic level, the models describe an underlying stochastic process without characteristic spatio-temporal scales that generalizes the Brownian random walk. As a concrete case study to motivate and test the model, we consider transport of tracers in three-dimensional, pressure-gradient-driven turbulence. We show that in this system transport is non-diffusive and cannot be described in the context of the standard diffusion parading. In particular, the probability density function (pdf) of the radial displacements of tracers is strongly non-Gaussian with algebraic decaying tails, and the moments of the tracer displacements exhibit super-diffusive scaling. there is quantitative agreement between the turbulence transport calculations and the proposed fractional diffusion model. In particular, the model

  15. Lévy flight with absorption: A model for diffusing diffusivity with long tails

    Science.gov (United States)

    Jain, Rohit; Sebastian, K. L.

    2017-03-01

    We consider diffusion of a particle in rearranging environment, so that the diffusivity of the particle is a stochastic function of time. In our previous model of "diffusing diffusivity" [Jain and Sebastian, J. Phys. Chem. B 120, 3988 (2016), 10.1021/acs.jpcb.6b01527], it was shown that the mean square displacement of particle remains Fickian, i.e., ∝T at all times, but the probability distribution of particle displacement is not Gaussian at all times. It is exponential at short times and crosses over to become Gaussian only in a large time limit in the case where the distribution of D in that model has a steady state limit which is exponential, i.e., πe(D ) ˜e-D /D0 . In the present study, we model the diffusivity of a particle as a Lévy flight process so that D has a power-law tailed distribution, viz., πe(D ) ˜D-1 -α with 0 <α <1 . We find that in the short time limit, the width of displacement distribution is proportional to √{T }, implying that the diffusion is Fickian. But for long times, the width is proportional to T1 /2 α which is a characteristic of anomalous diffusion. The distribution function for the displacement of the particle is found to be a symmetric stable distribution with a stability index 2 α which preserves its shape at all times.

  16. Poisson-Nernst-Planck Equations for Simulating Biomolecular Diffusion-Reaction Processes II: Size Effects on Ionic Distributions and Diffusion-Reaction Rates

    Science.gov (United States)

    Lu, Benzhuo; Zhou, Y.C.

    2011-01-01

    The effects of finite particle size on electrostatics, density profiles, and diffusion have been a long existing topic in the study of ionic solution. The previous size-modified Poisson-Boltzmann and Poisson-Nernst-Planck models are revisited in this article. In contrast to many previous works that can only treat particle species with a single uniform size or two sizes, we generalize the Borukhov model to obtain a size-modified Poisson-Nernst-Planck (SMPNP) model that is able to treat nonuniform particle sizes. The numerical tractability of the model is demonstrated as well. The main contributions of this study are as follows. 1), We show that an (arbitrarily) size-modified PB model is indeed implied by the SMPNP equations under certain boundary/interface conditions, and can be reproduced through numerical solutions of the SMPNP. 2), The size effects in the SMPNP effectively reduce the densities of highly concentrated counterions around the biomolecule. 3), The SMPNP is applied to the diffusion-reaction process for the first time, to our knowledge. In the case of low substrate density near the enzyme reactive site, it is observed that the rate coefficients predicted by SMPNP model are considerably larger than those by the PNP model, suggesting both ions and substrates are subject to finite size effects. 4), An accurate finite element method and a convergent Gummel iteration are developed for the numerical solution of the completely coupled nonlinear system of SMPNP equations. PMID:21575582

  17. A variable-order fractal derivative model for anomalous diffusion

    Directory of Open Access Journals (Sweden)

    Liu Xiaoting

    2017-01-01

    Full Text Available This paper pays attention to develop a variable-order fractal derivative model for anomalous diffusion. Previous investigations have indicated that the medium structure, fractal dimension or porosity may change with time or space during solute transport processes, results in time or spatial dependent anomalous diffusion phenomena. Hereby, this study makes an attempt to introduce a variable-order fractal derivative diffusion model, in which the index of fractal derivative depends on temporal moment or spatial position, to characterize the above mentioned anomalous diffusion (or transport processes. Compared with other models, the main advantages in description and the physical explanation of new model are explored by numerical simulation. Further discussions on the dissimilitude such as computational efficiency, diffusion behavior and heavy tail phenomena of the new model and variable-order fractional derivative model are also offered.

  18. Verification of atmospheric diffusion models using data of long term atmospheric diffusion experiments

    International Nuclear Information System (INIS)

    Tamura, Junji; Kido, Hiroko; Hato, Shinji; Homma, Toshimitsu

    2009-03-01

    Straight-line or segmented plume models as atmospheric diffusion models are commonly used in probabilistic accident consequence assessment (PCA) codes due to cost and time savings. The PCA code, OSCAAR developed by Japan Atomic Energy Research Institute (Present; Japan Atomic Energy Agency) uses the variable puff trajectory model to calculate atmospheric transport and dispersion of released radionuclides. In order to investigate uncertainties involved with the structure of the atmospheric dispersion/deposition model in OSCAAR, we have introduced the more sophisticated computer codes that included regional meteorological models RAMS and atmospheric transport model HYPACT, which were developed by Colorado State University, and comparative analyses between OSCAAR and RAMS/HYPACT have been performed. In this study, model verification of OSCAAR and RAMS/HYPACT was conducted using data of long term atmospheric diffusion experiments, which were carried out in Tokai-mura, Ibaraki-ken. The predictions by models and the results of the atmospheric diffusion experiments indicated relatively good agreements. And it was shown that model performance of OSCAAR was the same degree as it of RAMS/HYPACT. (author)

  19. Flow, diffusion, and rate processes

    International Nuclear Information System (INIS)

    Sieniutycz, S.; Salamon, P.

    1992-01-01

    This volume contains recent results obtained for the nonequilibrium thermodynamics of transport and rate processes are reviewed. Kinetic equations, conservation laws, and transport coefficients are obtained for multicomponent mixtures. Thermodynamic principles are used in the design of experiments predicting heat and mass transport coefficients. Highly nonstationary conditions are analyzed in the context of transient heat transfer, nonlocal diffusion in stress fields and thermohydrodynamic oscillatory instabilities. Unification of the dynamics of chemical systems with other sorts of processes (e.g. mechanical) is given. Thermodynamics of reacting surfaces is developed. Admissible reaction paths are studied and a consistency of chemical kinetics with thermodynamics is shown. Oscillatory reactions are analyzed in a unifying approach showing explosive, conservation or damped behavior. A comprehensive review of transport processes in electrolytes and membranes is given. Applications of thermodynamics to thermoelectric systems and ionized gas (plasma) systems are reviewed

  20. Effect of diffusion from a lateral surface on the rate of GaN nanowire growth

    International Nuclear Information System (INIS)

    Sibirev, N. V.; Tchernycheva, M.; Cirlin, G. E.; Patriarche, G.; Harmand, J. C.; Dubrovskii, V. G.

    2012-01-01

    The kinetics of the growth of GaN crystalline nanowires on a Si (111) surface with no catalyst is studied experimentally and theoretically. Noncatalytic GaN nanowires were grown by molecular-beam epitaxy with AlN inserts, which makes it possible to determine the rate of the vertical growth of nanowires. A model for the formation of GaN nanowires is developed, and an expression for their rate of growth is derived. It is shown that, in the general case, the dependence of the rate of growth on the nanowire diameter has a minimum. The diameter corresponding to the experimentally observed minimum of the rate of growth steadily increases with increasing diffusion flux from the lateral surface.

  1. Diffusive epidemic process: theory and simulation

    International Nuclear Information System (INIS)

    Maia, Daniel Souza; Dickman, Ronald

    2007-01-01

    We study the continuous absorbing-state phase transition in the one-dimensional diffusive epidemic process via mean-field theory and Monte Carlo simulation. In this model, particles of two species (A and B) hop on a lattice and undergo reactions B → A and A+B → 2B; the total particle number is conserved. We formulate the model as a continuous-time Markov process described by a master equation. A phase transition between the (absorbing) B-free state and an active state is observed as the parameters (reaction and diffusion rates, and total particle density) are varied. Mean-field theory reveals a surprising, nonmonotonic dependence of the critical recovery rate on the diffusion rate of B particles. A computational realization of the process that is faithful to the transition rates defining the model is devised, allowing for direct comparison with theory. Using the quasi-stationary simulation method we determine the order parameter and the survival time in systems of up to 4000 sites. Due to strong finite-size effects, the results converge only for large system sizes. We find no evidence for a discontinuous transition. Our results are consistent with the existence of three distinct universality classes, depending on whether A particles diffusive more rapidly, less rapidly or at the same rate as B particles. We also perform quasi-stationary simulations of the triplet creation model, which yield results consistent with a discontinuous transition at high diffusion rates

  2. Standard test method for accelerated leach test for diffusive releases from solidified waste and a computer program to model diffusive, fractional leaching from cylindrical waste forms

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2008-01-01

    1.1 This test method provides procedures for measuring the leach rates of elements from a solidified matrix material, determining if the releases are controlled by mass diffusion, computing values of diffusion constants based on models, and verifying projected long-term diffusive releases. This test method is applicable to any material that does not degrade or deform during the test. 1.1.1 If mass diffusion is the dominant step in the leaching mechanism, then the results of this test can be used to calculate diffusion coefficients using mathematical diffusion models. A computer program developed for that purpose is available as a companion to this test method (Note 1). 1.1.2 It should be verified that leaching is controlled by diffusion by a means other than analysis of the leach test solution data. Analysis of concentration profiles of species of interest near the surface of the solid waste form after the test is recommended for this purpose. 1.1.3 Potential effects of partitioning on the test results can...

  3. Diffuse radiation models and monthly-average, daily, diffuse data for a wide latitude range

    International Nuclear Information System (INIS)

    Gopinathan, K.K.; Soler, A.

    1995-01-01

    Several years of measured data on global and diffuse radiation and sunshine duration for 40 widely spread locations in the latitude range 36° S to 60° N are used to develop and test models for estimating monthly-mean, daily, diffuse radiation on horizontal surfaces. Applicability of the clearness-index (K) and sunshine fraction (SSO) models for diffuse estimation and the effect of combining several variables into a single multilinear equation are tested. Correlations connecting the diffuse to global fraction (HdH) with K and SSO predict Hd values more accurately than their separate use. Among clearness-index and sunshine-fraction models, SSO models are found to have better accuracy if correlations are developed for wide latitude ranges. By including a term for declinations in the correlation, the accuracy of the estimated data can be marginally improved. The addition of latitude to the equation does not help to improve the accuracy further. (author)

  4. Study of a diffusion flamelet model, with preferential diffusion effects included

    NARCIS (Netherlands)

    Delhaye, S.; Somers, L.M.T.; Bongers, H.; Oijen, van J.A.; Goey, de L.P.H.; Dias, V.

    2005-01-01

    The non-premixed flamelet model of Peters [1] (model1), which does not include preferential diffusion effects is investigated. Two similar models are presented, but without the assumption of unity Lewis numbers. One of these models was derived by Peters & Pitsch [2] (model2), while the other one was

  5. One-dimensional isothermal multicomponent diffusion-reaction model and its application to methanol synthesis over commercial Cu-based catalyst

    Directory of Open Access Journals (Sweden)

    Lei Kun

    2015-03-01

    Full Text Available The present work was a study on global reaction rate of methanol synthesis. We measured experimentally the global reaction rate in the internal recycle gradientless reactor over catalyst SC309. The diffusion-reaction model of methanol synthesis was suggested. For model we chose the hydrogenation of CO and CO2 as key reaction. CO and CO2 were key components in our model. The internal diffusion effectiveness factors of CO and CO2 in the catalyst were calculated by the numerical integration. A comparison with the experiment showed that all the absolute values of the relative error were less than 10%. The simulation results showed that decreasing reaction temperature and catalyst diameter were conducive to reduce the influence of the internal diffusion on the methanol synthesis.

  6. Characterization and modeling of thermal diffusion and aggregation in nanofluids.

    Energy Technology Data Exchange (ETDEWEB)

    Gharagozloo, Patricia E.; Goodson, Kenneth E. (Stanford University, Stanford, CA)

    2010-05-01

    Fluids with higher thermal conductivities are sought for fluidic cooling systems in applications including microprocessors and high-power lasers. By adding high thermal conductivity nanoscale metal and metal oxide particles to a fluid the thermal conductivity of the fluid is enhanced. While particle aggregates play a central role in recent models for the thermal conductivity of nanofluids, the effect of particle diffusion in a temperature field on the aggregation and transport has yet to be studied in depth. The present work separates the effects of particle aggregation and diffusion using parallel plate experiments, infrared microscopy, light scattering, Monte Carlo simulations, and rate equations for particle and heat transport in a well dispersed nanofluid. Experimental data show non-uniform temporal increases in thermal conductivity above effective medium theory and can be well described through simulation of the combination of particle aggregation and diffusion. The simulation shows large concentration distributions due to thermal diffusion causing variations in aggregation, thermal conductivity and viscosity. Static light scattering shows aggregates form more quickly at higher concentrations and temperatures, which explains the increased enhancement with temperature reported by other research groups. The permanent aggregates in the nanofluid are found to have a fractal dimension of 2.4 and the aggregate formations that grow over time are found to have a fractal dimension of 1.8, which is consistent with diffusion limited aggregation. Calculations show as aggregates grow the viscosity increases at a faster rate than thermal conductivity making the highly aggregated nanofluids unfavorable, especially at the low fractal dimension of 1.8. An optimum nanoparticle diameter for these particular fluid properties is calculated to be 130 nm to optimize the fluid stability by reducing settling, thermal diffusion and aggregation.

  7. A new model of anomalous phosphorus diffusion in silicon

    International Nuclear Information System (INIS)

    Budil, M.; Poetzl, H.; Stingeder, G.; Grasserbauer, M.

    1989-01-01

    A model is presented to describe the 'kink and tail' diffusion of phosphorus. The diffusion behaviour of phosphorus is expplained by the motion of phosphorus-interstitial and phosphorus-vacancy pairs in different charge states. The model yields the enhancement of diffusion in the tail region depending on surface concentration. Furthermore it yields the same selfdiffusion coefficient for interstitials as the gold diffusion experiments. A transformation of the diffusion equation was found to reduce the number of simulation equations. (author) 7 refs., 5 figs

  8. A Network Diffusion Model of Food Safety Scare Behavior considering Information Transparency

    Directory of Open Access Journals (Sweden)

    Tingqiang Chen

    2017-01-01

    Full Text Available This study constructs the network diffusion model of food safety scare behavior under the effect of information transparency and examines the network topology and evolution characteristics of food safety scare behavior in a numerical simulation. The main conclusions of this study are as follows. (1 Under the effect of information transparency, the network degree distribution of food safety scare behavior diffusion demonstrates the decreasing characteristics of diminishing margins. (2 Food safety scare behavior diffusion increases with the information dissemination rate and consumer concern about food safety incidents and shows the characteristics of monotone increasing. And with the increasing of the government food safety supervision information transparency and media food safety supervision information transparency, the whole is declining characteristic of diminishing marginal. In addition, the extinction of food safety scare behavior cannot be achieved gradually given a single regulation of government food safety supervision information transparency and media food safety supervision information transparency. (3 The interaction effects between improving government food safety supervision information transparency or media food safety supervision information transparency and declining consumer concerns about food safety incidents or information transmission rate can engender the suppression of food safety scare behavior diffusion.

  9. Interpretation of the quasi-elastic neutron scattering on PAA by rotational diffusion models

    International Nuclear Information System (INIS)

    Bata, L.; Vizi, J.; Kugler, S.

    1974-10-01

    First the most important data determined by other methods for para azoxy anisolon (PAA) are collected. This molecule makes a rotational oscillational motion around the mean molecular direction. The details of this motion can be determined by inelastic neutron scattering. Quasielastic neutron scattering measurements were carried out without orienting magnetic field on a time-of-flight facility with neutron beam of 4.26 meV. For the interpretation of the results two models, the spherical rotation diffusion model and the circular random walk model are investigated. The comparison shows that the circular random walk model (with N=8 sites, d=4A diameter and K=10 10 s -1 rate constant) fits very well with the quasi-elastic neutron scattering, while the spherical rotational diffusion model seems to be incorrect. (Sz.N.Z.)

  10. Diffusion-controlled interface kinetics-inclusive system-theoretic propagation models for molecular communication systems

    Science.gov (United States)

    Chude-Okonkwo, Uche A. K.; Malekian, Reza; Maharaj, B. T.

    2015-12-01

    Inspired by biological systems, molecular communication has been proposed as a new communication paradigm that uses biochemical signals to transfer information from one nano device to another over a short distance. The biochemical nature of the information transfer process implies that for molecular communication purposes, the development of molecular channel models should take into consideration diffusion phenomenon as well as the physical/biochemical kinetic possibilities of the process. The physical and biochemical kinetics arise at the interfaces between the diffusion channel and the transmitter/receiver units. These interfaces are herein termed molecular antennas. In this paper, we present the deterministic propagation model of the molecular communication between an immobilized nanotransmitter and nanoreceiver, where the emission and reception kinetics are taken into consideration. Specifically, we derived closed-form system-theoretic models and expressions for configurations that represent different communication systems based on the type of molecular antennas used. The antennas considered are the nanopores at the transmitter and the surface receptor proteins/enzymes at the receiver. The developed models are simulated to show the influence of parameters such as the receiver radius, surface receptor protein/enzyme concentration, and various reaction rate constants. Results show that the effective receiver surface area and the rate constants are important to the system's output performance. Assuming high rate of catalysis, the analysis of the frequency behavior of the developed propagation channels in the form of transfer functions shows significant difference introduce by the inclusion of the molecular antennas into the diffusion-only model. It is also shown that for t > > 0 and with the information molecules' concentration greater than the Michaelis-Menten kinetic constant of the systems, the inclusion of surface receptors proteins and enzymes in the models

  11. A diffusivity model for predicting VOC diffusion in porous building materials based on fractal theory.

    Science.gov (United States)

    Liu, Yanfeng; Zhou, Xiaojun; Wang, Dengjia; Song, Cong; Liu, Jiaping

    2015-12-15

    Most building materials are porous media, and the internal diffusion coefficients of such materials have an important influences on the emission characteristics of volatile organic compounds (VOCs). The pore structure of porous building materials has a significant impact on the diffusion coefficient. However, the complex structural characteristics bring great difficulties to the model development. The existing prediction models of the diffusion coefficient are flawed and need to be improved. Using scanning electron microscope (SEM) observations and mercury intrusion porosimetry (MIP) tests of typical porous building materials, this study developed a new diffusivity model: the multistage series-connection fractal capillary-bundle (MSFC) model. The model considers the variable-diameter capillaries formed by macropores connected in series as the main mass transfer paths, and the diameter distribution of the capillary bundles obeys a fractal power law in the cross section. In addition, the tortuosity of the macrocapillary segments with different diameters is obtained by the fractal theory. Mesopores serve as the connections between the macrocapillary segments rather than as the main mass transfer paths. The theoretical results obtained using the MSFC model yielded a highly accurate prediction of the diffusion coefficients and were in a good agreement with the VOC concentration measurements in the environmental test chamber. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Verification of atmospheric diffusion models with data of atmospheric diffusion experiments

    International Nuclear Information System (INIS)

    Hato, Shinji; Homma, Toshimitsu

    2009-02-01

    The atmospheric diffusion experiments were implemented by Japan Atomic Energy Research Institute (JAERI) around Mount Tsukuba in 1989 and 1990, and the tracer gas concentration were monitored. In this study, the Gauss Plume Model and RAMS/HYPACT that are meteorological forecast code and atmospheric diffusion code with detailed physical law are made a comparison between monitored concentration. In conclusion, the Gauss Plume Model is better than RAM/HYPACT even complex topography if the estimation is around tens of kilometer form release point and the change in weather is constant for short time. This reason is difference of wind between RAMS and observation. (author)

  13. Diffuse-interface model for rapid phase transformations in nonequilibrium systems.

    Science.gov (United States)

    Galenko, Peter; Jou, David

    2005-04-01

    A thermodynamic approach to rapid phase transformations within a diffuse interface in a binary system is developed. Assuming an extended set of independent thermodynamic variables formed by the union of the classic set of slow variables and the space of fast variables, we introduce finiteness of the heat and solute diffusive propagation at the finite speed of the interface advancing. To describe transformations within the diffuse interface, we use the phase-field model which allows us to follow steep but smooth changes of phase within the width of the diffuse interface. Governing equations of the phase-field model are derived for the hyperbolic model, a model with memory, and a model of nonlinear evolution of transformation within the diffuse interface. The consistency of the model is proved by the verification of the validity of the condition of positive entropy production and by outcomes of the fluctuation-dissipation theorem. A comparison with existing sharp-interface and diffuse-interface versions of the model is given.

  14. Matrix diffusion model. In situ tests using natural analogues

    International Nuclear Information System (INIS)

    Rasilainen, K.

    1997-11-01

    Matrix diffusion is an important retarding and dispersing mechanism for substances carried by groundwater in fractured bedrock. Natural analogues provide, unlike laboratory or field experiments, a possibility to test the model of matrix diffusion in situ over long periods of time. This thesis documents quantitative model tests against in situ observations, done to support modelling of matrix diffusion in performance assessments of nuclear waste repositories

  15. Quantitative Model of Price Diffusion and Market Friction Based on Trading as a Mechanistic Random Process

    Science.gov (United States)

    Daniels, Marcus G.; Farmer, J. Doyne; Gillemot, László; Iori, Giulia; Smith, Eric

    2003-03-01

    We model trading and price formation in a market under the assumption that order arrival and cancellations are Poisson random processes. This model makes testable predictions for the most basic properties of markets, such as the diffusion rate of prices (which is the standard measure of financial risk) and the spread and price impact functions (which are the main determinants of transaction cost). Guided by dimensional analysis, simulation, and mean-field theory, we find scaling relations in terms of order flow rates. We show that even under completely random order flow the need to store supply and demand to facilitate trading induces anomalous diffusion and temporal structure in prices.

  16. Diffuse solar radiation estimation models for Turkey's big cities

    International Nuclear Information System (INIS)

    Ulgen, Koray; Hepbasli, Arif

    2009-01-01

    A reasonably accurate knowledge of the availability of the solar resource at any place is required by solar engineers, architects, agriculturists, and hydrologists in many applications of solar energy such as solar furnaces, concentrating collectors, and interior illumination of buildings. For this purpose, in the past, various empirical models (or correlations) have been developed in order to estimate the solar radiation around the world. This study deals with diffuse solar radiation estimation models along with statistical test methods used to statistically evaluate their performance. Models used to predict monthly average daily values of diffuse solar radiation are classified in four groups as follows: (i) From the diffuse fraction or cloudness index, function of the clearness index, (ii) From the diffuse fraction or cloudness index, function of the relative sunshine duration or sunshine fraction, (iii) From the diffuse coefficient, function of the clearness index, and (iv) From the diffuse coefficient, function of the relative sunshine duration or sunshine fraction. Empirical correlations are also developed to establish a relationship between the monthly average daily diffuse fraction or cloudness index (K d ) and monthly average daily diffuse coefficient (K dd ) with the monthly average daily clearness index (K T ) and monthly average daily sunshine fraction (S/S o ) for the three big cities by population in Turkey (Istanbul, Ankara and Izmir). Although the global solar radiation on a horizontal surface and sunshine duration has been measured by the Turkish State Meteorological Service (STMS) over all country since 1964, the diffuse solar radiation has not been measured. The eight new models for estimating the monthly average daily diffuse solar radiation on a horizontal surface in three big cites are validated, and thus, the most accurate model is selected for guiding future projects. The new models are then compared with the 32 models available in the

  17. Asymmetric diffusion model for oblique-incidence reflectometry

    Institute of Scientific and Technical Information of China (English)

    Yaqin Chen; Liji Cao; Liqun Sun

    2011-01-01

    A diffusion theory model induced by a line source distribution is presented for oblique-incidence reflectom-etry. By fitting to this asymmetric diffusion model, the absorption and reduced scattering coefficients μa and μ's of the turbid medium can both be determined with accuracy of 10% from the absolute profile of the diffuse reflectance in the incident plane at the negative position -1.5 transport mean free path (mfp') away from the incident point; particularly, μ's can be estimated from the data at positive positions within 0-1.0 mfp' with 10% accuracy. The method is verified by Monte Carlo simulations and experimentally tested on a phantom.%A diffusion theory model induced by a line source distribution is presented for oblique-incidence reflectometry.By fitting to this asymmetric diffusion model,the absorption and reduced scattering coefficients μa and μ's of the turbid medium can both be determined with accuracy of 10% from the absolute profile of the diffuse reflectance in the incident plane at the negative position -1.5 transport mean free path (mfp')away from the incident point;particularly,μ's can be estimated from the data at positive positions within 0-1.0 mfp' with 10% accuracy.The method is verified by Monte Carlo simulations and experimentally tested on a phantom.Knowledge about the optical properties,including the absorption coefficient (μa) and the reduced scattering coefficient (μ's =μs(1-g)),where μs is the scattering coefficient and g is the anisotropy factor of scattering,of biological tissues plays an important role for optical therapeutic and diagnostic techniques in medicine.

  18. Modeling 2D and 3D diffusion.

    Science.gov (United States)

    Saxton, Michael J

    2007-01-01

    Modeling obstructed diffusion is essential to the understanding of diffusion-mediated processes in the crowded cellular environment. Simple Monte Carlo techniques for modeling obstructed random walks are explained and related to Brownian dynamics and more complicated Monte Carlo methods. Random number generation is reviewed in the context of random walk simulations. Programming techniques and event-driven algorithms are discussed as ways to speed simulations.

  19. A combined kinetic and diffusion model for pyrite oxidation in tailings - a change in controls with time

    International Nuclear Information System (INIS)

    Elberling, B.; Nicholson, R.V.; Scharer, J.M.

    1994-01-01

    Acidic drainage from the oxidation of mine tailing wastes is an important environmental problem. The purpose of this paper is to develop a model (1) to simulate the rate of oxidation of pyrite over time, (2) to verify the importance of chemical kinetic control and diffusion control on the oxidation rate with time and, (3) to evaluate the sensitivity of the model to critical parameters of the tailings, such as grain size, pyrite content and the effective diffusion coefficient. The source code comprises four main modules including parameter allocation (kinetics, transport), sulphide oxidation (shrinking particle), oxygen transport and pyrite mass balance. The results show that high oxidation rates are observed in the initial time after tailings deposition. During this initial period of high rates, an apparent shift occurs from kinetic to diffusional control over a period of time that depends on the composition and properties of the tailings. Based on the simulation results, it is evident that the overall rate of oxidation after a few years will be controlled dominantly by the diffusion of oxygen rather than by biological or non-biological kinetics in the tailings

  20. Strain rate effect on sooting characteristics in laminar counterflow diffusion flames

    KAUST Repository

    Wang, Yu; Chung, Suk-Ho

    2016-01-01

    The effects of strain rate, oxygen enrichment and fuel type on the sooting characteristics of counterflow diffusion flames were studied. The sooting structures and relative PAH concentrations were measured with laser diagnostics. Detailed soot

  1. A novel rumor diffusion model considering the effect of truth in online social media

    Science.gov (United States)

    Sun, Ling; Liu, Yun; Zeng, Qing-An; Xiong, Fei

    2015-12-01

    In this paper, we propose a model to investigate how truth affects rumor diffusion in online social media. Our model reveals a relation between rumor and truth — namely, when a rumor is diffusing, the truth about the rumor also diffuses with it. Two patterns of the agents used to identify rumor, self-identification and passive learning are taken into account. Combining theoretical proof and simulation analysis, we find that the threshold value of rumor diffusion is negatively correlated to the connectivity between nodes in the network and the probability β of agents knowing truth. Increasing β can reduce the maximum density of the rumor spreaders and slow down the generation speed of new rumor spreaders. On the other hand, we conclude that the best rumor diffusion strategy must balance the probability of forwarding rumor and the probability of agents losing interest in the rumor. High spread rate λ of rumor would lead to a surge in truth dissemination which will greatly limit the diffusion of rumor. Furthermore, in the case of unknown λ, increasing β can effectively reduce the maximum proportion of agents who do not know the truth, but cannot narrow the rumor diffusion range in a certain interval of β.

  2. Reflector modelization for neutronic diffusion and parameters identification

    International Nuclear Information System (INIS)

    Argaud, J.P.

    1993-04-01

    Physical parameters of neutronic diffusion equations can be adjusted to decrease calculations-measurements errors. The reflector being always difficult to modelize, we choose to elaborate a new reflector model and to use the parameters of this model as adjustment coefficients in the identification procedure. Using theoretical results, and also the physical behaviour of neutronic flux solutions, the reflector model consists then in its replacement by boundary conditions for the diffusion equations on the core only. This theoretical result of non-local operator relations leads then to some discrete approximations by taking into account the multiscaled behaviour, on the core-reflector interface, of neutronic diffusion solutions. The resulting model of this approach is then compared with previous reflector modelizations, and first results indicate that this new model gives the same representation of reflector for the core than previous. (author). 12 refs

  3. Random-walk diffusion and drying of porous materials

    Science.gov (United States)

    Mehrafarin, M.; Faghihi, M.

    2001-12-01

    Based on random-walk diffusion, a microscopic model for drying is proposed to explain the characteristic features of the drying-rate curve of porous materials. The constant drying-rate period is considered as a normal diffusion process. The transition to the falling-rate regime is attributed to the fractal nature of porous materials which results in crossover to anomalous diffusion.

  4. Leveraging tagging and rating for recommendation: RMF meets weighted diffusion on tripartite graphs

    Science.gov (United States)

    Li, Jianguo; Tang, Yong; Chen, Jiemin

    2017-10-01

    Recommender systems (RSs) have been a widely exploited approach to solving the information overload problem. However, the performance is still limited due to the extreme sparsity of the rating data. With the popularity of Web 2.0, the social tagging system provides more external information to improve recommendation accuracy. Although some existing approaches combine the matrix factorization models with the tag co-occurrence and context of tags, they neglect the issue of tag sparsity that would also result in inaccurate recommendations. Consequently, in this paper, we propose a novel hybrid collaborative filtering model named WUDiff_RMF, which improves regularized matrix factorization (RMF) model by integrating Weighted User-Diffusion-based CF algorithm(WUDiff) that obtains the information of similar users from the weighted tripartite user-item-tag graph. This model aims to capture the degree correlation of the user-item-tag tripartite network to enhance the performance of recommendation. Experiments conducted on four real-world datasets demonstrate that our approach significantly performs better than already widely used methods in the accuracy of recommendation. Moreover, results show that WUDiff_RMF can alleviate the data sparsity, especially in the circumstance that users have made few ratings and few tags.

  5. Diffusion of hydrous species in model basaltic melt

    Science.gov (United States)

    Zhang, Li; Guo, Xuan; Wang, Qinxia; Ding, Jiale; Ni, Huaiwei

    2017-10-01

    Water diffusion in Fe-free model basaltic melt with up to 2 wt% H2O was investigated at 1658-1846 K and 1 GPa in piston-cylinder apparatus using both hydration and diffusion couple techniques. Diffusion profiles measured by FTIR are consistent with a model in which both molecular H2O (H2Om) and hydroxyl (OH) contribute to water diffusion. OH diffusivity is roughly 13% of H2Om diffusivity, showing little dependence on temperature or water concentration. Water diffusion is dominated by the motion of OH until total H2O (H2Ot) concentration reaches 1 wt%. The dependence of apparent H2Ot diffusivity on H2Ot concentration appears to be overestimated by a previous study on MORB melt, but H2Ot diffusivity at 1 wt% H2Ot in basaltic melt is still greater than those in rhyolitic to andesitic melts. The appreciable contribution of OH to water diffusion in basaltic melt can be explained by enhanced mobility of OH, probably associated with the development of free hydroxyl bonded with network-modifying cations, as well as higher OH concentration. Calculation based on the Nernst-Einstein equation demonstrates that OH may serve as an effective charge carrier in hydrous basaltic melt, which could partly account for the previously observed strong influence of water on electrical conductivity of basaltic melt.

  6. Mathematical models for diffusive mass transfer from waste package container with multiple perforations

    International Nuclear Information System (INIS)

    Lee, J.H.; Andrews, R.W.; Chambre, P.L.

    1996-01-01

    A robust engineered barrier system (EBS) is employed in the current design concept for the potential high-level nuclear waste repository at Yucca Mountain, Nevada, US. The primary component of the EBS is a multi-barrier waste package container. Simplifying the geometry of the cylindrical waste package container and the underlying invert into the equivalent spherical configuration, mathematical models are developed for steady-state and transient diffusive releases from the failed waste container with multiple perforations (or pit penetrations) at the boundary of the invert. Using the models the steady-state and transient diffusive release behaviors form the failed waste container are studied. The analyses show that the number of perforations, the size of perforation, the container wall thickness, the geometry of the waste container and invert, and the adsorption of radionuclide in the invert are the important parameters that control the diffusive release rate. It is emphasized that the failed (or perforated) waste package container can still perform as a potentially important barrier (or diffusion barrier) to radionuclide release

  7. Diffusion Modeling of Cooling Rates of Relict Olivine in Semarkona Chondrules

    Science.gov (United States)

    Hewins, R. H.; Ganguly, J.; Mariani, E.

    2009-03-01

    Diffusive exchange profiles between relict olivine and melt-grown olivine in Semarkona Type IIA chondrules were oriented by EBSD to correct D. Results for Fe-Mg (D from Dohmen) and Cr (Ito and Ganguly) are concordant at 300°-400°C/hr.

  8. Modelling thermal radiation and soot formation in buoyant diffusion flames

    International Nuclear Information System (INIS)

    Demarco Bull, R.A.

    2012-01-01

    The radiative heat transfer plays an important role in fire problems since it is the dominant mode of heat transfer between flames and surroundings. It controls the pyrolysis, and therefore the heat release rate, and the growth rate of the fire. In the present work a numerical study of buoyant diffusion flames is carried out, with the main objective of modelling the thermal radiative transfer and the soot formation/destruction processes. In a first step, different radiative property models were tested in benchmark configurations. It was found that the FSCK coupled with the Modest and Riazzi mixing scheme was the best compromise in terms of accuracy and computational requirements, and was a good candidate to be implemented in CFD codes dealing with fire problems. In a second step, a semi-empirical soot model, considering acetylene and benzene as precursor species for soot nucleation, was validated in laminar co flow diffusion flames over a wide range of hydrocarbons (C1-C3) and conditions. In addition, the optically-thin approximation was found to produce large discrepancies in the upper part of these small laminar flames. Reliable predictions of soot volume fractions require the use of an advanced radiation model. Then the FSCK and the semi-empirical soot model were applied to simulate laboratory-scale and intermediate-scale pool fires of methane and propane. Predicted flame structures as well as the radiant heat flux transferred to the surroundings were found to be in good agreement with the available experimental data. Finally, the interaction between radiation and turbulence was quantified. (author)

  9. Efficient kinetic Monte Carlo method for reaction-diffusion problems with spatially varying annihilation rates

    Science.gov (United States)

    Schwarz, Karsten; Rieger, Heiko

    2013-03-01

    We present an efficient Monte Carlo method to simulate reaction-diffusion processes with spatially varying particle annihilation or transformation rates as it occurs for instance in the context of motor-driven intracellular transport. Like Green's function reaction dynamics and first-passage time methods, our algorithm avoids small diffusive hops by propagating sufficiently distant particles in large hops to the boundaries of protective domains. Since for spatially varying annihilation or transformation rates the single particle diffusion propagator is not known analytically, we present an algorithm that generates efficiently either particle displacements or annihilations with the correct statistics, as we prove rigorously. The numerical efficiency of the algorithm is demonstrated with an illustrative example.

  10. Comparison of non-Gaussian and Gaussian diffusion models of diffusion weighted imaging of rectal cancer at 3.0 T MRI.

    Science.gov (United States)

    Zhang, Guangwen; Wang, Shuangshuang; Wen, Didi; Zhang, Jing; Wei, Xiaocheng; Ma, Wanling; Zhao, Weiwei; Wang, Mian; Wu, Guosheng; Zhang, Jinsong

    2016-12-09

    Water molecular diffusion in vivo tissue is much more complicated. We aimed to compare non-Gaussian diffusion models of diffusion-weighted imaging (DWI) including intra-voxel incoherent motion (IVIM), stretched-exponential model (SEM) and Gaussian diffusion model at 3.0 T MRI in patients with rectal cancer, and to determine the optimal model for investigating the water diffusion properties and characterization of rectal carcinoma. Fifty-nine consecutive patients with pathologically confirmed rectal adenocarcinoma underwent DWI with 16 b-values at a 3.0 T MRI system. DWI signals were fitted to the mono-exponential and non-Gaussian diffusion models (IVIM-mono, IVIM-bi and SEM) on primary tumor and adjacent normal rectal tissue. Parameters of standard apparent diffusion coefficient (ADC), slow- and fast-ADC, fraction of fast ADC (f), α value and distributed diffusion coefficient (DDC) were generated and compared between the tumor and normal tissues. The SEM exhibited the best fitting results of actual DWI signal in rectal cancer and the normal rectal wall (R 2  = 0.998, 0.999 respectively). The DDC achieved relatively high area under the curve (AUC = 0.980) in differentiating tumor from normal rectal wall. Non-Gaussian diffusion models could assess tissue properties more accurately than the ADC derived Gaussian diffusion model. SEM may be used as a potential optimal model for characterization of rectal cancer.

  11. Matrix diffusion model. In situ tests using natural analogues

    Energy Technology Data Exchange (ETDEWEB)

    Rasilainen, K. [VTT Energy, Espoo (Finland)

    1997-11-01

    Matrix diffusion is an important retarding and dispersing mechanism for substances carried by groundwater in fractured bedrock. Natural analogues provide, unlike laboratory or field experiments, a possibility to test the model of matrix diffusion in situ over long periods of time. This thesis documents quantitative model tests against in situ observations, done to support modelling of matrix diffusion in performance assessments of nuclear waste repositories. 98 refs. The thesis includes also eight previous publications by author.

  12. Catchment Models and Management Tools for diffuse Contaminants (Sediment, Phosphorus and Pesticides): DIFFUSE Project

    Science.gov (United States)

    Mockler, Eva; Reaney, Simeon; Mellander, Per-Erik; Wade, Andrew; Collins, Adrian; Arheimer, Berit; Bruen, Michael

    2017-04-01

    The agricultural sector is the most common suspected source of nutrient pollution in Irish rivers. However, it is also often the most difficult source to characterise due to its predominantly diffuse nature. Particulate phosphorus in surface water and dissolved phosphorus in groundwater are of particular concern in Irish water bodies. Hence the further development of models and indices to assess diffuse sources of contaminants are required for use by the Irish Environmental Protection Agency (EPA) to provide support for river basin planning. Understanding connectivity in the landscape is a vital component of characterising the source-pathway-receptor relationships for water-borne contaminants, and hence is a priority in this research. The DIFFUSE Project will focus on connectivity modelling and incorporation of connectivity into sediment, nutrient and pesticide risk mapping. The Irish approach to understanding and managing natural water bodies has developed substantially in recent years assisted by outputs from multiple research projects, including modelling and analysis tools developed during the Pathways and CatchmentTools projects. These include the Pollution Impact Potential (PIP) maps, which are an example of research output that is used by the EPA to support catchment management. The PIP maps integrate an understanding of the pollution pressures and mobilisation pathways and, using the source-pathways-receptor model, provide a scientific basis for evaluation of mitigation measures. These maps indicate the potential risk posed by nitrate and phosphate from diffuse agricultural sources to surface and groundwater receptors and delineate critical source areas (CSAs) as a means of facilitating the targeting of mitigation measures. Building on this previous research, the DIFFUSE Project will develop revised and new catchment managements tools focused on connectivity, sediment, phosphorus and pesticides. The DIFFUSE project will strive to identify the state

  13. Review of enhanced vapor diffusion in porous media

    International Nuclear Information System (INIS)

    Webb, S.W.; Ho, C.K.

    1998-01-01

    Vapor diffusion in porous media in the presence of its own liquid has often been treated similar to gas diffusion. The gas diffusion rate in porous media is much lower than in free space due to the presence of the porous medium and any liquid present. However, enhanced vapor diffusion has also been postulated such that the diffusion rate may approach free-space values. Existing data and models for enhanced vapor diffusion, including those in TOUGH2, are reviewed in this paper

  14. Simulating radial diffusion of energetic (MeV electrons through a model of fluctuating electric and magnetic fields

    Directory of Open Access Journals (Sweden)

    T. Sarris

    2006-10-01

    Full Text Available In the present work, a test particle simulation is performed in a model of analytic Ultra Low Frequency, ULF, perturbations in the electric and magnetic fields of the Earth's magnetosphere. The goal of this work is to examine if the radial transport of energetic particles in quiet-time ULF magnetospheric perturbations of various azimuthal mode numbers can be described as a diffusive process and be approximated by theoretically derived radial diffusion coefficients. In the model realistic compressional electromagnetic field perturbations are constructed by a superposition of a large number of propagating electric and consistent magnetic pulses. The diffusion rates of the electrons under the effect of the fluctuating fields are calculated numerically through the test-particle simulation as a function of the radial coordinate L in a dipolar magnetosphere; these calculations are then compared to the symmetric, electromagnetic radial diffusion coefficients for compressional, poloidal perturbations in the Earth's magnetosphere. In the model the amplitude of the perturbation fields can be adjusted to represent realistic states of magnetospheric activity. Similarly, the azimuthal modulation of the fields can be adjusted to represent different azimuthal modes of fluctuations and the contribution to radial diffusion from each mode can be quantified. Two simulations of quiet-time magnetospheric variability are performed: in the first simulation, diffusion due to poloidal perturbations of mode number m=1 is calculated; in the second, the diffusion rates from multiple-mode (m=0 to m=8 perturbations are calculated. The numerical calculations of the diffusion coefficients derived from the particle orbits are found to agree with the corresponding theoretical estimates of the diffusion coefficient within a factor of two.

  15. Modeling cytoskeletal traffic: an interplay between passive diffusion and active transport.

    Science.gov (United States)

    Neri, Izaak; Kern, Norbert; Parmeggiani, Andrea

    2013-03-01

    We introduce the totally asymmetric simple exclusion process with Langmuir kinetics on a network as a microscopic model for active motor protein transport on the cytoskeleton, immersed in the diffusive cytoplasm. We discuss how the interplay between active transport along a network and infinite diffusion in a bulk reservoir leads to a heterogeneous matter distribution on various scales: we find three regimes for steady state transport, corresponding to the scale of the network, of individual segments, or local to sites. At low exchange rates strong density heterogeneities develop between different segments in the network. In this regime one has to consider the topological complexity of the whole network to describe transport. In contrast, at moderate exchange rates the transport through the network decouples, and the physics is determined by single segments and the local topology. At last, for very high exchange rates the homogeneous Langmuir process dominates the stationary state. We introduce effective rate diagrams for the network to identify these different regimes. Based on this method we develop an intuitive but generic picture of how the stationary state of excluded volume processes on complex networks can be understood in terms of the single-segment phase diagram.

  16. Understanding diffusion of intrinsically disordered proteins in polymer solutions: A disorder plus collapse model

    Directory of Open Access Journals (Sweden)

    Juan Wang

    2017-11-01

    Full Text Available Understanding diffusion of intrinsically disordered proteins (IDPs under crowded environments is of ubiquitous importance to modelling related dynamics in biological systems. In the present work, we proposed a theoretical framework to study the diffusion behavior of IDPs in polymer solutions. IDP is modeled as an ensemble of particles with a wide range of gyration radius subject to Flory-Fisk distribution, where the collapse effect which leads to the shrink of IDP due to polymer crowding is included. The diffusion coefficient of IDP is calculated as the average, denoted by 〈D〉, over the values of the particle samples. By properly incorporating the scaling relations for diffusion coefficient of nanoparticle (NP in polymer solutions, we are able to evaluate 〈D〉 straightforwardly and reveal the disorder and collapse effects on IDP’s diffusion in an explicit manner. Particular attentions are paid on comparison between the diffusion coefficient of an IDP and that of a NP. Results demonstrate that both disorder and collapse can enhance IDP diffusion rate. Our analysis shows that the crossover behavior reported by experiments can be actually a general phenomenon, namely, while a NP with smaller size than that of an IDP diffuses faster in simple solutions, the IDP may become the faster one under crowded conditions. We apply our theory to analyze the diffusion of several types of IDP in a few different polymer solutions. Good agreements between the theoretical results and the experimental data are obtained.

  17. Numerical vs. turbulent diffusion in geophysical flow modelling

    International Nuclear Information System (INIS)

    D'Isidoro, M.; Maurizi, A.; Tampieri, F.

    2008-01-01

    Numerical advection schemes induce the spreading of passive tracers from localized sources. The effects of changing resolution and Courant number are investigated using the WAF advection scheme, which leads to a sub-diffusive process. The spreading rate from an instantaneous source is compared with the physical diffusion necessary to simulate unresolved turbulent motions. The time at which the physical diffusion process overpowers the numerical spreading is estimated, and is shown to reduce as the resolution increases, and to increase as the wind velocity increases.

  18. Modelling effects of tree population dynamics, tree throw and pit-mound formation/diffusion on microtopography over time in different forest settings

    Science.gov (United States)

    Martin, Y. E.; Johnson, E. A.; Gallaway, J.; Chaikina, O.

    2011-12-01

    Herein we conduct a followup investigation to an earlier research project in which we developed a numerical model of tree population dynamics, tree throw, and sediment transport associated with the formation of pit-mound features for Hawk Creek watershed, Canadian Rockies (Gallaway et al., 2009). We extend this earlier work by exploring the most appropriate transport relations to simulate the diffusion over time of newly-formed pit-pound features due to tree throw. We combine our earlier model with a landscape development model that can incorporate these diffusive transport relations. Using these combined models, changes in hillslope microtopography over time associated with the formation of pit-mound features and their decay will be investigated. The following ideas have motivated this particular study: (i) Rates of pit-mound degradation remain a source of almost complete speculation, as there is almost no long-term information on process rates. Therefore, we will attempt to tackle the issue of pit-mound degradation in a methodical way that can guide future field studies; (ii) The degree of visible pit-mound topography at any point in time on the landscape is a joint function of the rate of formation of new pit-mound features due to tree death/topple and their magnitude vs. the rate of decay of pit-mound features. An example of one interesting observation that arises is the following: it appears that pit-mound topography is often more pronounced in some eastern North American forests vs. field sites along the eastern slopes of the Canadian Rockies. Why is this the case? Our investigation begins by considering whether pit-mound decay might occur by linear or nonlinear diffusion. What differences might arise depending on which diffusive approach is adopted? What is the magnitude of transport rates associated with these possible forms of transport relations? We explore linear and nonlinear diffusion at varying rates and for different sizes of pit-mound pairs using a

  19. Radial diffusion in the Uranian radiatian belts - Inferences from satellite absorption loss models

    Science.gov (United States)

    Hood, L. L.

    1989-01-01

    Low-energy charged particle (LECP) phase space density profiles available from the Voyager/1986 Uranus encounter are analyzed, using solutions of the time-averaged radial diffusion equation for charged particle transport in a dipolar planetary magnetic field. Profiles for lower-energy protons and electrons are first analyzed to infer radial diffusion rate as a function of L, assuming that satellite absorption is the dominant loss process and local sources for these particles are negligible. Satellite macrosignatures present in the experimentally derived profiles are approximately reproduced in several cases, lending credence to the loss model and indicating that magnetospheric distributed losses are not as rapid as satellite absorption near the minimum satellite L shells for the particles. Diffusion rates and L dependences are found to be similar to those previously inferred in the inner Jovian magnetosphere (Thomsen et al., 1977) and for the inner Saturnian magnetosphere (Hood, 1985). Profiles for higher energy electrons and protons are also analyzed using solutions that allow for the existence of significant particle sources as well as sinks. Possible implications for radial diffusion mechanisms in the Uranian radiation belts are discussed.

  20. Experimental and numerical modeling of chloride diffusivity in hardened cement concrete considering the aggregate shapes and exposure-duration effects

    Directory of Open Access Journals (Sweden)

    Wu Jie

    Full Text Available This paper presents an experimental and numerical model describing the effects of the aggregate shapes and exposure duration of chloride diffusion into cement-based materials. A simple chloride diffusion test was performed on a concrete specimen composed of a mixture of cement mortar with crushed granites and round gravels. A simulation was done and the numerical model developed was applied to the matrix at the meso-scale level and the chloride diffusivity was investigated at 30, 60, and 90 days. The experimental and simulation results showed that the aggregate shape and the exposure duration of chloride diffusing into concrete are of high significance. It was indicated that the model with crushed granite presents a good resistance against chloride ingress, while the model with rounded gravels shows some sensitivity to the chloride penetration. It was also found out that when the time dependence of the diffusion coefficient is not taken into account, the diffusion rate will be overestimated. The meso-scale model developed in this study also provides a new method applied in the analysis of the chloride and water transport that causes damage to concrete considering the particle inclusion and the diffusion duration. Keywords: Meso-scale modeling, Chloride diffusivity, Concrete, Effects of aggregates shape and exposure duration, FEM

  1. Experimental and theoretical investigations on diffusion process for rare earth ores

    Energy Technology Data Exchange (ETDEWEB)

    He, Ye; Li, Wenzhi Z. [Changchun Univ. (China)

    2013-06-01

    The diffusion reaction kinetics of weathered crust elution-deposited rare earth with mixed ammonium salts was studied. The influence of concentration of reagents and particle size of ore on diffusion rate was investigated. The results showed that the diffusion process and diffusion rate could be improved by increasing reagents concentration and decreasing diffusion flowing rate and particle size. The diffusion process could be explained with the shrinking core Model, which could be controlled by the diffusion rate of reacting reagents in porous solid layer.

  2. A first-passage scheme for determination of overall rate constants for non-diffusion-limited suspensions

    Science.gov (United States)

    Lu, Shih-Yuan; Yen, Yi-Ming

    2002-02-01

    A first-passage scheme is devised to determine the overall rate constant of suspensions under the non-diffusion-limited condition. The original first-passage scheme developed for diffusion-limited processes is modified to account for the finite incorporation rate at the inclusion surface by using a concept of the nonzero survival probability of the diffusing entity at entity-inclusion encounters. This nonzero survival probability is obtained from solving a relevant boundary value problem. The new first-passage scheme is validated by an excellent agreement between overall rate constant results from the present development and from an accurate boundary collocation calculation for the three common spherical arrays [J. Chem. Phys. 109, 4985 (1998)], namely simple cubic, body-centered cubic, and face-centered cubic arrays, for a wide range of P and f. Here, P is a dimensionless quantity characterizing the relative rate of diffusion versus surface incorporation, and f is the volume fraction of the inclusion. The scheme is further applied to random spherical suspensions and to investigate the effect of inclusion coagulation on overall rate constants. It is found that randomness in inclusion arrangement tends to lower the overall rate constant for f up to the near close-packing value of the regular arrays because of the inclusion screening effect. This screening effect turns stronger for regular arrays when f is near and above the close-packing value of the regular arrays, and consequently the overall rate constant of the random array exceeds that of the regular array. Inclusion coagulation too induces the inclusion screening effect, and leads to lower overall rate constants.

  3. Modeling and estimating the jump risk of exchange rates: Applications to RMB

    Science.gov (United States)

    Wang, Yiming; Tong, Hanfei

    2008-11-01

    In this paper we propose a new type of continuous-time stochastic volatility model, SVDJ, for the spot exchange rate of RMB, and other foreign currencies. In the model, we assume that the change of exchange rate can be decomposed into two components. One is the normally small-cope innovation driven by the diffusion motion; the other is a large drop or rise engendered by the Poisson counting process. Furthermore, we develop a MCMC method to estimate our model. Empirical results indicate the significant existence of jumps in the exchange rate. Jump components explain a large proportion of the exchange rate change.

  4. The EZ diffusion model provides a powerful test of simple empirical effects.

    Science.gov (United States)

    van Ravenzwaaij, Don; Donkin, Chris; Vandekerckhove, Joachim

    2017-04-01

    Over the last four decades, sequential accumulation models for choice response times have spread through cognitive psychology like wildfire. The most popular style of accumulator model is the diffusion model (Ratcliff Psychological Review, 85, 59-108, 1978), which has been shown to account for data from a wide range of paradigms, including perceptual discrimination, letter identification, lexical decision, recognition memory, and signal detection. Since its original inception, the model has become increasingly complex in order to account for subtle, but reliable, data patterns. The additional complexity of the diffusion model renders it a tool that is only for experts. In response, Wagenmakers et al. (Psychonomic Bulletin & Review, 14, 3-22, 2007) proposed that researchers could use a more basic version of the diffusion model, the EZ diffusion. Here, we simulate experimental effects on data generated from the full diffusion model and compare the power of the full diffusion model and EZ diffusion to detect those effects. We show that the EZ diffusion model, by virtue of its relative simplicity, will be sometimes better able to detect experimental effects than the data-generating full diffusion model.

  5. Turbulent eddy diffusion models in exposure assessment - Determination of the eddy diffusion coefficient.

    Science.gov (United States)

    Shao, Yuan; Ramachandran, Sandhya; Arnold, Susan; Ramachandran, Gurumurthy

    2017-03-01

    The use of the turbulent eddy diffusion model and its variants in exposure assessment is limited due to the lack of knowledge regarding the isotropic eddy diffusion coefficient, D T . But some studies have suggested a possible relationship between D T and the air changes per hour (ACH) through a room. The main goal of this study was to accurately estimate D T for a range of ACH values by minimizing the difference between the concentrations measured and predicted by eddy diffusion model. We constructed an experimental chamber with a spatial concentration gradient away from the contaminant source, and conducted 27 3-hr long experiments using toluene and acetone under different air flow conditions (0.43-2.89 ACHs). An eddy diffusion model accounting for chamber boundary, general ventilation, and advection was developed. A mathematical expression for the slope based on the geometrical parameters of the ventilation system was also derived. There is a strong linear relationship between D T and ACH, providing a surrogate parameter for estimating D T in real-life settings. For the first time, a mathematical expression for the relationship between D T and ACH has been derived that also corrects for non-ideal conditions, and the calculated value of the slope between these two parameters is very close to the experimentally determined value. The values of D T obtained from the experiments are generally consistent with values reported in the literature. They are also independent of averaging time of measurements, allowing for comparison of values obtained from different measurement settings. These findings make the use of turbulent eddy diffusion models for exposure assessment in workplace/indoor environments more practical.

  6. Weak diffusion limits of dynamic conditional correlation models

    DEFF Research Database (Denmark)

    Hafner, Christian M.; Laurent, Sebastien; Violante, Francesco

    The properties of dynamic conditional correlation (DCC) models are still not entirely understood. This paper fills one of the gaps by deriving weak diffusion limits of a modified version of the classical DCC model. The limiting system of stochastic differential equations is characterized...... by a diffusion matrix of reduced rank. The degeneracy is due to perfect collinearity between the innovations of the volatility and correlation dynamics. For the special case of constant conditional correlations, a non-degenerate diffusion limit can be obtained. Alternative sets of conditions are considered...

  7. How attention influences perceptual decision making: Single-trial EEG correlates of drift-diffusion model parameters

    Science.gov (United States)

    Nunez, Michael D.; Vandekerckhove, Joachim; Srinivasan, Ramesh

    2016-01-01

    Perceptual decision making can be accounted for by drift-diffusion models, a class of decision-making models that assume a stochastic accumulation of evidence on each trial. Fitting response time and accuracy to a drift-diffusion model produces evidence accumulation rate and non-decision time parameter estimates that reflect cognitive processes. Our goal is to elucidate the effect of attention on visual decision making. In this study, we show that measures of attention obtained from simultaneous EEG recordings can explain per-trial evidence accumulation rates and perceptual preprocessing times during a visual decision making task. Models assuming linear relationships between diffusion model parameters and EEG measures as external inputs were fit in a single step in a hierarchical Bayesian framework. The EEG measures were features of the evoked potential (EP) to the onset of a masking noise and the onset of a task-relevant signal stimulus. Single-trial evoked EEG responses, P200s to the onsets of visual noise and N200s to the onsets of visual signal, explain single-trial evidence accumulation and preprocessing times. Within-trial evidence accumulation variance was not found to be influenced by attention to the signal or noise. Single-trial measures of attention lead to better out-of-sample predictions of accuracy and correct reaction time distributions for individual subjects. PMID:28435173

  8. How attention influences perceptual decision making: Single-trial EEG correlates of drift-diffusion model parameters.

    Science.gov (United States)

    Nunez, Michael D; Vandekerckhove, Joachim; Srinivasan, Ramesh

    2017-02-01

    Perceptual decision making can be accounted for by drift-diffusion models, a class of decision-making models that assume a stochastic accumulation of evidence on each trial. Fitting response time and accuracy to a drift-diffusion model produces evidence accumulation rate and non-decision time parameter estimates that reflect cognitive processes. Our goal is to elucidate the effect of attention on visual decision making. In this study, we show that measures of attention obtained from simultaneous EEG recordings can explain per-trial evidence accumulation rates and perceptual preprocessing times during a visual decision making task. Models assuming linear relationships between diffusion model parameters and EEG measures as external inputs were fit in a single step in a hierarchical Bayesian framework. The EEG measures were features of the evoked potential (EP) to the onset of a masking noise and the onset of a task-relevant signal stimulus. Single-trial evoked EEG responses, P200s to the onsets of visual noise and N200s to the onsets of visual signal, explain single-trial evidence accumulation and preprocessing times. Within-trial evidence accumulation variance was not found to be influenced by attention to the signal or noise. Single-trial measures of attention lead to better out-of-sample predictions of accuracy and correct reaction time distributions for individual subjects.

  9. Stochastic models for surface diffusion of molecules

    Energy Technology Data Exchange (ETDEWEB)

    Shea, Patrick, E-mail: patrick.shea@dal.ca; Kreuzer, Hans Jürgen [Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia B3H 3J5 (Canada)

    2014-07-28

    We derive a stochastic model for the surface diffusion of molecules, starting from the classical equations of motion for an N-atom molecule on a surface. The equation of motion becomes a generalized Langevin equation for the center of mass of the molecule, with a non-Markovian friction kernel. In the Markov approximation, a standard Langevin equation is recovered, and the effect of the molecular vibrations on the diffusion is seen to lead to an increase in the friction for center of mass motion. This effective friction has a simple form that depends on the curvature of the lowest energy diffusion path in the 3N-dimensional coordinate space. We also find that so long as the intramolecular forces are sufficiently strong, memory effects are usually not significant and the Markov approximation can be employed, resulting in a simple one-dimensional model that can account for the effect of the dynamics of the molecular vibrations on the diffusive motion.

  10. Nonlinear variational models for reaction and diffusion systems

    International Nuclear Information System (INIS)

    Tanyi, G.E.

    1983-08-01

    There exists a natural metric w.r.t. which the density dependent diffusion operator is harmonic in the sense of Eells and Sampson. A physical corollary of this statement is the property that any two regular points on the orbit of a reaction or diffusion operator can be connected by a path along which the reaction rate is constant. (author)

  11. Diffusion in condensed matter methods, materials, models

    CERN Document Server

    Kärger, Jörg

    2005-01-01

    Diffusion as the process of particle transport due to stochastic movement is a phenomenon of crucial relevance for a large variety of processes and materials. This comprehensive, handbook- style survey of diffusion in condensed matter gives detailed insight into diffusion as the process of particle transport due to stochastic movement. Leading experts in the field describe in 23 chapters the different aspects of diffusion, covering microscopic and macroscopic experimental techniques and exemplary results for various classes of solids, liquids and interfaces as well as several theoretical concepts and models. Students and scientists in physics, chemistry, materials science, and biology will benefit from this detailed compilation.

  12. Anomalous diffusion in a lattice-gas wind-tree model

    International Nuclear Information System (INIS)

    Kong, X.P.; Cohen, E.G.D.

    1989-01-01

    Two new strictly deterministic lattice-gas automata derived from Ehrenfest's wind-tree model are studied. While in one model normal diffusion occurs, the other model exhibits abnormal diffusion in that the distribution function of the displacements of the wind particle is non-Gaussian, but its second moment, the mean-square displacement, is proportional to the time, so that a diffusion coefficient can be defined. A connection with the percolation problem and a self-avoiding random walk for the case in which the lattice is completely covered with trees is discussed

  13. Diffusion and sorption on hardened cement pastes - experiments and modelling results

    Energy Technology Data Exchange (ETDEWEB)

    Jakob, A.; Sarott, F.-A.; Spieler, P.

    1999-08-01

    Large parts of repositories for low and intermediate level radioactive waste consist of cementitious materials. Radionuclides are transported by diffusion in the cement matrix or, in case of fractured or highly permeable cement, by advection and dispersion. In this work we aim at a mechanistic understanding of diffusion processes of some reactive tracers. On the laboratory scale, ten through-diffusion experiments were performed to study these processes for Cl{sup -}, I{sup -}, Cs{sup +} and Ni{sup 2+} ions in a Sulphate Resisting Portland Cement (SRPC) equilibrated with an artificial pore water. Some of the experiments continued up to nearly three years with daily measurements. In all the experiments, a cement disk initially saturated with an artificial pore water was exposed on one side to a highly diluted solution containing the species of interest. On the second side, a near-zero concentration boundary was maintained to drive through-diffusion of the tracer. The changes of concentrations on both sides of the samples were monitored, allowing careful mass balances. From these data, values of the diffusive flux and the mass of tracer taken up by the cementitious material were determined as a function of time. In the subsequent modelling, the time histories of these tracer breakthroughs were fitted using five different models. The simplest model neglects all retarding mechanisms except pure diffusion. More complex models either account for instantaneous equilibrium sorption in form of linear or non-linear (Freundlich) sorption or for first-order sorption kinetics where the forward reaction may be linear or non-linear according to the Freundlich isotherm, while the back-reaction is linear. Hence, the analysis allows the extraction of the diffusion coefficient and parameter values for the sorption isotherm or rate-constants for sorption and desorption. The fits to the experimental data were carried out by an automated Marquardt-Levenberg procedure yielding error

  14. Identification of biomolecule mass transport and binding rate parameters in living cells by inverse modeling

    Directory of Open Access Journals (Sweden)

    Shirmohammadi Adel

    2006-10-01

    Full Text Available Abstract Background Quantification of in-vivo biomolecule mass transport and reaction rate parameters from experimental data obtained by Fluorescence Recovery after Photobleaching (FRAP is becoming more important. Methods and results The Osborne-Moré extended version of the Levenberg-Marquardt optimization algorithm was coupled with the experimental data obtained by the Fluorescence Recovery after Photobleaching (FRAP protocol, and the numerical solution of a set of two partial differential equations governing macromolecule mass transport and reaction in living cells, to inversely estimate optimized values of the molecular diffusion coefficient and binding rate parameters of GFP-tagged glucocorticoid receptor. The results indicate that the FRAP protocol provides enough information to estimate one parameter uniquely using a nonlinear optimization technique. Coupling FRAP experimental data with the inverse modeling strategy, one can also uniquely estimate the individual values of the binding rate coefficients if the molecular diffusion coefficient is known. One can also simultaneously estimate the dissociation rate parameter and molecular diffusion coefficient given the pseudo-association rate parameter is known. However, the protocol provides insufficient information for unique simultaneous estimation of three parameters (diffusion coefficient and binding rate parameters owing to the high intercorrelation between the molecular diffusion coefficient and pseudo-association rate parameter. Attempts to estimate macromolecule mass transport and binding rate parameters simultaneously from FRAP data result in misleading conclusions regarding concentrations of free macromolecule and bound complex inside the cell, average binding time per vacant site, average time for diffusion of macromolecules from one site to the next, and slow or rapid mobility of biomolecules in cells. Conclusion To obtain unique values for molecular diffusion coefficient and

  15. Modeling bioluminescent photon transport in tissue based on Radiosity-diffusion model

    Science.gov (United States)

    Sun, Li; Wang, Pu; Tian, Jie; Zhang, Bo; Han, Dong; Yang, Xin

    2010-03-01

    Bioluminescence tomography (BLT) is one of the most important non-invasive optical molecular imaging modalities. The model for the bioluminescent photon propagation plays a significant role in the bioluminescence tomography study. Due to the high computational efficiency, diffusion approximation (DA) is generally applied in the bioluminescence tomography. But the diffusion equation is valid only in highly scattering and weakly absorbing regions and fails in non-scattering or low-scattering tissues, such as a cyst in the breast, the cerebrospinal fluid (CSF) layer of the brain and synovial fluid layer in the joints. A hybrid Radiosity-diffusion model is proposed for dealing with the non-scattering regions within diffusing domains in this paper. This hybrid method incorporates a priori information of the geometry of non-scattering regions, which can be acquired by magnetic resonance imaging (MRI) or x-ray computed tomography (CT). Then the model is implemented using a finite element method (FEM) to ensure the high computational efficiency. Finally, we demonstrate that the method is comparable with Mont Carlo (MC) method which is regarded as a 'gold standard' for photon transportation simulation.

  16. SEE rate estimation based on diffusion approximation of charge collection

    Science.gov (United States)

    Sogoyan, Armen V.; Chumakov, Alexander I.; Smolin, Anatoly A.

    2018-03-01

    The integral rectangular parallelepiped (IRPP) method remains the main approach to single event rate (SER) prediction for aerospace systems, despite the growing number of issues impairing method's validity when applied to scaled technology nodes. One of such issues is uncertainty in parameters extraction in the IRPP method, which can lead to a spread of several orders of magnitude in the subsequently calculated SER. The paper presents an alternative approach to SER estimation based on diffusion approximation of the charge collection by an IC element and geometrical interpretation of SEE cross-section. In contrast to the IRPP method, the proposed model includes only two parameters which are uniquely determined from the experimental data for normal incidence irradiation at an ion accelerator. This approach eliminates the necessity of arbitrary decisions during parameter extraction and, thus, greatly simplifies calculation procedure and increases the robustness of the forecast.

  17. Effects of degeneracy and response function in a diffusion predator-prey model

    Science.gov (United States)

    Li, Shanbing; Wu, Jianhua; Dong, Yaying

    2018-04-01

    In this paper, we consider positive solutions of a diffusion predator-prey model with a degeneracy under the Dirichlet boundary conditions. We first obtain sufficient conditions of the existence of positive solutions by the Leray-Schauder degree theory, and then analyze the limiting behavior of positive solutions as the growth rate of the predator goes to infinity and the conversion rates of the predator goes to zero, respectively. It is shown that these results for Holling II response function (i.e. m  >  0) reveal interesting contrast with that for the classical Lotka-Volterra predator-prey model (i.e. m  =  0).

  18. Drug diffusion across skin with diffusivity spatially modulated

    Science.gov (United States)

    Montoya Arroyave, Isabel

    2014-05-01

    A diffusion and delivery model of a drug across the skin with diffusivity spatially modulated is formulated and solved analytically using computer algebra. The model is developed using one-dimensional diffusion equation with a diffusivity which is a function of position in the skin; with an initial condition which is describing that the drug is initially contained inside a therapeutic patch; with a boundary condition according to which the change in concentration in the patch is minimal, such that assumption of zero flux at the patch-skin interface is valid; and with other boundary condition according to which the microcirculation in the capillaries just below the dermis carries the drug molecules away from the site at a very fast rate, maintaining the inner concentration at 0. The model is solved analytically by the method of the Laplace transform, with Bromwich integral and residue theorem. The concentration profile of the drug in the skin is expressed as an infinite series of Bessel functions. The corresponding total amount of delivered drug is expressed as an infinite series of decreasing exponentials. Also, the corresponding effective time for the therapeutic patch is determined. All computations were performed using computer algebra software, specifically Maple. The analytical results obtained are important for understanding and improving currentapplications of therapeutic patches. For future research it is interesting to consider more general models of spatial modulation of the diffusivity and the possible application of other computer algebra software such as Mathematica and Maxima.

  19. THE IMPLICATIONS OF A HIGH COSMIC-RAY IONIZATION RATE IN DIFFUSE INTERSTELLAR CLOUDS

    International Nuclear Information System (INIS)

    Indriolo, Nick; Fields, Brian D.; McCall, Benjamin J.

    2009-01-01

    Diffuse interstellar clouds show large abundances of H + 3 which can only be maintained by a high ionization rate of H 2 . Cosmic rays are the dominant ionization mechanism in this environment, so the large ionization rate implies a high cosmic-ray flux, and a large amount of energy residing in cosmic rays. In this paper, we find that the standard propagated cosmic-ray spectrum predicts an ionization rate much lower than that inferred from H + 3 . Low-energy (∼10 MeV) cosmic rays are the most efficient at ionizing hydrogen, but cannot be directly detected; consequently, an otherwise unobservable enhancement of the low-energy cosmic-ray flux offers a plausible explanation for the H + 3 results. Beyond ionization, cosmic rays also interact with the interstellar medium by spalling atomic nuclei and exciting atomic nuclear states. These processes produce the light elements Li, Be, and B, as well as gamma-ray lines. To test the consequences of an enhanced low-energy cosmic-ray flux, we adopt two physically motivated cosmic-ray spectra which by construction reproduce the ionization rate inferred in diffuse clouds, and investigate the implications of these spectra on dense cloud ionization rates, light-element abundances, gamma-ray fluxes, and energetics. One spectrum proposed here provides an explanation for the high ionization rate seen in diffuse clouds while still appearing to be broadly consistent with other observables, but the shape of this spectrum suggests that supernovae remnants may not be the predominant accelerators of low-energy cosmic rays.

  20. Computation of the Likelihood in Biallelic Diffusion Models Using Orthogonal Polynomials

    Directory of Open Access Journals (Sweden)

    Claus Vogl

    2014-11-01

    Full Text Available In population genetics, parameters describing forces such as mutation, migration and drift are generally inferred from molecular data. Lately, approximate methods based on simulations and summary statistics have been widely applied for such inference, even though these methods waste information. In contrast, probabilistic methods of inference can be shown to be optimal, if their assumptions are met. In genomic regions where recombination rates are high relative to mutation rates, polymorphic nucleotide sites can be assumed to evolve independently from each other. The distribution of allele frequencies at a large number of such sites has been called “allele-frequency spectrum” or “site-frequency spectrum” (SFS. Conditional on the allelic proportions, the likelihoods of such data can be modeled as binomial. A simple model representing the evolution of allelic proportions is the biallelic mutation-drift or mutation-directional selection-drift diffusion model. With series of orthogonal polynomials, specifically Jacobi and Gegenbauer polynomials, or the related spheroidal wave function, the diffusion equations can be solved efficiently. In the neutral case, the product of the binomial likelihoods with the sum of such polynomials leads to finite series of polynomials, i.e., relatively simple equations, from which the exact likelihoods can be calculated. In this article, the use of orthogonal polynomials for inferring population genetic parameters is investigated.

  1. Rate Theory for Correlated Processes: Double Jumps in Adatom Diffusion

    DEFF Research Database (Denmark)

    Jacobsen, J.; Jacobsen, Karsten Wedel; Sethna, J.

    1997-01-01

    We study the rate of activated motion over multiple barriers, in particular the correlated double jump of an adatom diffusing on a missing-row reconstructed platinum (110) surface. We develop a transition path theory, showing that the activation energy is given by the minimum-energy trajectory...... which succeeds in the double jump. We explicitly calculate this trajectory within an effective-medium molecular dynamics simulation. A cusp in the acceptance region leads to a root T prefactor for the activated rate of double jumps. Theory and numerical results agree....

  2. Assessing Quasi-Steady State in Evaporation of Sessile Drops by Diffusion Models

    Science.gov (United States)

    Martin, Cameron; Nguyen, Hoa; Kelly-Zion, Peter; Pursell, Chris

    2017-11-01

    The vapor distributions surrounding sessile drops of methanol are modeled as the solutions of the steady-state and transient diffusion equations using Matlab's PDE Toolbox. The goal is to determine how quickly the transient diffusive transport reaches its quasi-steady state as the droplet geometry is varied between a Weber's disc, a real droplet shape, and a spherical cap with matching thickness or contact angle. We assume that the only transport mechanism at work is diffusion. Quasi-steady state is defined using several metrics, such as differences between the transient and steady-state solutions, and change in the transient solution over time. Knowing the vapor distribution, the gradient is computed to evaluate the diffusive flux. The flux is integrated along the surface of a control volume surrounding the drop to obtain the net rate of diffusion out of the volume. Based on the differences between the transient and steady-state diffusive fluxes at the discrete points along the control-volume surface, the time to reach quasi-steady state evaporation is determined and is consistent with other proposed measurements. By varying the dimensions of the control volume, we can also assess what regimes have equivalent or different quasi-steady states for different droplet geometries. Petroleum Research Fund.

  3. Radon diffusion through multilayer earthen covers: models and simulations

    International Nuclear Information System (INIS)

    Mayer, D.W.; Oster, C.A.; Nelson, R.W.; Gee, G.W.

    1981-09-01

    A capability to model and analyze the fundamental interactions that influence the diffusion of radon gas through uranium mill tailings and cover systems has been investigated. The purpose of this study is to develop the theoretical basis for modeling radon diffusion and to develop an understanding of the fundamental interactions that influence radon diffusion. This study develops the theoretical basis for modeling radon diffusion in one, two and three dimensions. The theory has been incorporated into three computer models that are used to analyze several tailings and cover configurations. This report contains a discussion of the theoretical basis for modeling radon diffusion, a discussion of the computer models used to analyze uranium mill tailings and multilayered cover systems, and presents the results that have been obtained. The study has been conducted using a four-phase approach. The first phase develops the solution to the steady-state radon-diffusion equation in one-dimensieered barriers; disposal charge analysis; analysis of spent fuel policy implementation; spent f water. Field measurements and observations are reported for each site. Analytical data and field measurements are presented in tables and maps. Uranium concentrations in the sediments which were above detection limits ranged from 0.10 t 51.2 ppM. The mean of the logarithms of the uranium concentrations was 0.53. A group of high uranium concentrations occurs near the junctions of quadrangles AB, AC, BB, a 200 mK. In case 2), x-ray studies of isotopic phase separation in 3 He-- 4 He bcc solids were carried out by B. A. Fraass

  4. Macromolecular diffusion in crowded media beyond the hard-sphere model.

    Science.gov (United States)

    Blanco, Pablo M; Garcés, Josep Lluís; Madurga, Sergio; Mas, Francesc

    2018-04-25

    The effect of macromolecular crowding on diffusion beyond the hard-core sphere model is studied. A new coarse-grained model is presented, the Chain Entanglement Softened Potential (CESP) model, which takes into account the macromolecular flexibility and chain entanglement. The CESP model uses a shoulder-shaped interaction potential that is implemented in the Brownian Dynamics (BD) computations. The interaction potential contains only one parameter associated with the chain entanglement energetic cost (Ur). The hydrodynamic interactions are included in the BD computations via Tokuyama mean-field equations. The model is used to analyze the diffusion of a streptavidin protein among different sized dextran obstacles. For this system, Ur is obtained by fitting the streptavidin experimental long-time diffusion coefficient Dlongversus the macromolecular concentration for D50 (indicating their molecular weight in kg mol-1) dextran obstacles. The obtained Dlong values show better quantitative agreement with experiments than those obtained with hard-core spheres. Moreover, once parametrized, the CESP model is also able to quantitatively predict Dlong and the anomalous exponent (α) for streptavidin diffusion among D10, D400 and D700 dextran obstacles. Dlong, the short-time diffusion coefficient (Dshort) and α are obtained from the BD simulations by using a new empirical expression, able to describe the full temporal evolution of the diffusion coefficient.

  5. Diffusion models in metamorphic thermo chronology: philosophy and methods

    International Nuclear Information System (INIS)

    Munha, Jose Manuel; Tassinari, Colombo Celso Gaeta

    1999-01-01

    Understanding kinetics of diffusion is of major importance to the interpretation of isotopic ages in metamorphic rocks. This paper provides a review of concepts and methodologies involved on the various diffusion models that can be applied to radiogenic systems in cooling rocks. The central concept of closure temperature is critically discussed and quantitative estimates for the various diffusion models are evaluated, in order to illustrate the controlling factors and the limits of their practical application. (author)

  6. Preisach hysteresis model for non-linear 2D heat diffusion

    International Nuclear Information System (INIS)

    Jancskar, Ildiko; Ivanyi, Amalia

    2006-01-01

    This paper analyzes a non-linear heat diffusion process when the thermal diffusivity behaviour is a hysteretic function of the temperature. Modelling this temperature dependence, the discrete Preisach algorithm as general hysteresis model has been integrated into a non-linear multigrid solver. The hysteretic diffusion shows a heating-cooling asymmetry in character. The presented type of hysteresis speeds up the thermal processes in the modelled systems by a very interesting non-linear way

  7. Pricing Participating Products under a Generalized Jump-Diffusion Model

    Directory of Open Access Journals (Sweden)

    Tak Kuen Siu

    2008-01-01

    Full Text Available We propose a model for valuing participating life insurance products under a generalized jump-diffusion model with a Markov-switching compensator. It also nests a number of important and popular models in finance, including the classes of jump-diffusion models and Markovian regime-switching models. The Esscher transform is employed to determine an equivalent martingale measure. Simulation experiments are conducted to illustrate the practical implementation of the model and to highlight some features that can be obtained from our model.

  8. Diffusion and reaction within porous packing media: a phenomenological model.

    Science.gov (United States)

    Jones, W L; Dockery, J D; Vogel, C R; Sturman, P J

    1993-04-25

    A phenomenological model has been developed to describe biomass distribution and substrate depletion in porous diatomaceous earth (DE) pellets colonized by Pseudomonas aeruginosa. The essential features of the model are diffusion, attachment and detachment to/from pore walls of the biomass, diffusion of substrate within the pellet, and external mass transfer of both substrate and biomass in the bulk fluid of a packed bed containing the pellets. A bench-scale reactor filled with DE pellets was inoculated with P. aeruginosa and operated in plug flow without recycle using a feed containing glucose as the limiting nutrient. Steady-state effluent glucose concentrations were measured at various residence times, and biomass distribution within the pellet was measured at the lowest residence time. In the model, microorganism/substrate kinetics and mass transfer characteristics were predicted from the literature. Only the attachment and detachment parameters were treated as unknowns, and were determined by fitting biomass distribution data within the pellets to the mathematical model. The rate-limiting step in substrate conversion was determined to be internal mass transfer resistance; external mass transfer resistance and microbial kinetic limitations were found to be nearly negligible. Only the outer 5% of the pellets contributed to substrate conversion.

  9. Quantum-corrected drift-diffusion models for transport in semiconductor devices

    International Nuclear Information System (INIS)

    De Falco, Carlo; Gatti, Emilio; Lacaita, Andrea L.; Sacco, Riccardo

    2005-01-01

    In this paper, we propose a unified framework for Quantum-corrected drift-diffusion (QCDD) models in nanoscale semiconductor device simulation. QCDD models are presented as a suitable generalization of the classical drift-diffusion (DD) system, each particular model being identified by the constitutive relation for the quantum-correction to the electric potential. We examine two special, and relevant, examples of QCDD models; the first one is the modified DD model named Schroedinger-Poisson-drift-diffusion, and the second one is the quantum-drift-diffusion (QDD) model. For the decoupled solution of the two models, we introduce a functional iteration technique that extends the classical Gummel algorithm widely used in the iterative solution of the DD system. We discuss the finite element discretization of the various differential subsystems, with special emphasis on their stability properties, and illustrate the performance of the proposed algorithms and models on the numerical simulation of nanoscale devices in two spatial dimensions

  10. Competing quantum effects in the free energy profiles and diffusion rates of hydrogen and deuterium molecules through clathrate hydrates.

    Science.gov (United States)

    Cendagorta, Joseph R; Powers, Anna; Hele, Timothy J H; Marsalek, Ondrej; Bačić, Zlatko; Tuckerman, Mark E

    2016-11-30

    Clathrate hydrates hold considerable promise as safe and economical materials for hydrogen storage. Here we present a quantum mechanical study of H 2 and D 2 diffusion through a hexagonal face shared by two large cages of clathrate hydrates over a wide range of temperatures. Path integral molecular dynamics simulations are used to compute the free-energy profiles for the diffusion of H 2 and D 2 as a function of temperature. Ring polymer molecular dynamics rate theory, incorporating both exact quantum statistics and approximate quantum dynamical effects, is utilized in the calculations of the H 2 and D 2 diffusion rates in a broad temperature interval. We find that the shape of the quantum free-energy profiles and their height relative to the classical free energy barriers at a given temperature, as well as the rate of diffusion, are strongly affected by competing quantum effects: above 25 K, zero-point energy (ZPE) perpendicular to the reaction path for diffusion between cavities decreases the quantum rate compared to the classical rate, whereas at lower temperatures tunneling outcompetes the ZPE and as a result the quantum rate is greater than the classical rate.

  11. Agent-based modelling of cholera diffusion

    NARCIS (Netherlands)

    Augustijn-Beckers, Petronella; Doldersum, Tom; Useya, Juliana; Augustijn, Dionysius C.M.

    2016-01-01

    This paper introduces a spatially explicit agent-based simulation model for micro-scale cholera diffusion. The model simulates both an environmental reservoir of naturally occurring V.cholerae bacteria and hyperinfectious V. cholerae. Objective of the research is to test if runoff from open refuse

  12. Flux-limited diffusion models in radiation hydrodynamics

    International Nuclear Information System (INIS)

    Pomraning, G.C.; Szilard, R.H.

    1993-01-01

    The authors discuss certain flux-limited diffusion theories which approximately describe radiative transfer in the presence of steep spatial gradients. A new formulation is presented which generalizes a flux-limited description currently in widespread use for large radiation hydrodynamic calculations. This new formation allows more than one Case discrete mode to be described by a flux-limited diffusion equation. Such behavior is not extant in existing formulations. Numerical results predicted by these flux-limited diffusion models are presented for radiation penetration into an initially cold halfspace. 37 refs., 5 figs

  13. Reaction-diffusion modeling of hydrogen in beryllium

    Energy Technology Data Exchange (ETDEWEB)

    Wensing, Mirko; Matveev, Dmitry; Linsmeier, Christian [Forschungszentrum Juelich GmbH, Institut fuer Energie- und Klimaforschung - Plasmaphysik (Germany)

    2016-07-01

    Beryllium will be used as first-wall material for the future fusion reactor ITER as well as in the breeding blanket of DEMO. In both cases it is important to understand the mechanisms of hydrogen retention in beryllium. In earlier experiments with beryllium low-energy binding states of hydrogen were observed by thermal desorption spectroscopy (TDS) which are not yet well understood. Two candidates for these states are considered: beryllium-hydride phases within the bulk and surface effects. The retention of deuterium in beryllium is studied by a reaction rate approach using a coupled reaction diffusion system (CRDS)-model relying on ab initio data from density functional theory calculations (DFT). In this contribution we try to assess the influence of surface recombination.

  14. Exploiting the time-dynamics of news diffusion on the Internet through a generalized Susceptible-Infected model

    Science.gov (United States)

    De Martino, Giuseppe; Spina, Serena

    2015-11-01

    We construct a news spreading model with a time dependent contact rate which generalizes the classical Susceptible-Infected model of epidemiology. In particular, we are interested on the time-dynamics of the sharing and diffusion process of news on the Internet. We focus on the counting process describing the number of connections to a given website, characterizing the cumulative density function of its inter-arrival times. Moreover, starting from the general form of the finite dimensional distribution of the process, we determine a formula for the time-variable rate of the connections and establish its relationship with the probability density function of the interarrival times. We finally show the effectiveness of our theoretical framework analyzing a real-world dataset, the Memetracker dataset, whose parameters characterizing the diffusion process are determined.

  15. Nitritation performance and biofilm development of co- and counter-diffusion biofilm reactors: Modeling and experimental comparison

    DEFF Research Database (Denmark)

    Wang, Rongchang; Terada, Akihiko; Lackner, Susanne

    2009-01-01

    A comparative study was conducted on the start-up performance and biofilm development in two different biofilm reactors with aim of obtaining partial nitritation. The reactors were both operated under oxygen limited conditions, but differed in geometry. While substrates (O-2, NH3) co......-diffused in one geometry, they counter-diffused in the other. Mathematical simulations of these two geometries were implemented in two 1-D multispecies biofilm models using the AQUASIM software. Sensitivity analysis results showed that the oxygen mass transfer coefficient (K-i) and maximum specific growth rate...... results showed that the counter-diffusion biofilms developed faster and attained a larger maximum biofilm thickness than the co-diffusion biofilms. Under oxygen limited condition (DO

  16. Modeling and Analysis of Epidemic Diffusion within Small-World Network

    Directory of Open Access Journals (Sweden)

    Ming Liu

    2012-01-01

    Full Text Available To depict the rule of epidemic diffusion, two different models, the Susceptible-Exposure-Infected-Recovered-Susceptible (SEIRS model and the Susceptible-Exposure-Infected-Quarantine-Recovered-Susceptible (SEIQRS model, are proposed and analyzed within small-world network in this paper. Firstly, the epidemic diffusion models are constructed with mean-filed theory, and condition for the occurrence of disease diffusion is explored. Then, the existence and global stability of the disease-free equilibrium and the endemic equilibrium for these two complex epidemic systems are proved by differential equations knowledge and Routh-Hurwiz theory. At last, a numerical example which includes key parameters analysis and critical topic discussion is presented to test how well the proposed two models may be applied in practice. These works may provide some guidelines for decision makers when coping with epidemic diffusion controlling problems.

  17. A diffuse radar scattering model from Martian surface rocks

    Science.gov (United States)

    Calvin, W. M.; Jakosky, B. M.; Christensen, P. R.

    1987-01-01

    Remote sensing of Mars has been done with a variety of instrumentation at various wavelengths. Many of these data sets can be reconciled with a surface model of bonded fines (or duricrust) which varies widely across the surface and a surface rock distribution which varies less so. A surface rock distribution map from -60 to +60 deg latitude has been generated by Christensen. Our objective is to model the diffuse component of radar reflection based on this surface distribution of rocks. The diffuse, rather than specular, scattering is modeled because the diffuse component arises due to scattering from rocks with sizes on the order of the wavelength of the radar beam. Scattering for radio waves of 12.5 cm is then indicative of the meter scale and smaller structure of the surface. The specular term is indicative of large scale surface undulations and should not be causally related to other surface physical properties. A simplified model of diffuse scattering is described along with two rock distribution models. The results of applying the models to a planet of uniform fractional rock coverage with values ranging from 5 to 20% are discussed.

  18. Molecular Dynamics and Monte Carlo simulations resolve apparent diffusion rate differences for proteins confined in nanochannels

    Energy Technology Data Exchange (ETDEWEB)

    Tringe, J.W., E-mail: tringe2@llnl.gov [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA (United States); Ileri, N. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA (United States); Department of Chemical Engineering & Materials Science, University of California, Davis, CA (United States); Levie, H.W. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA (United States); Stroeve, P.; Ustach, V.; Faller, R. [Department of Chemical Engineering & Materials Science, University of California, Davis, CA (United States); Renaud, P. [Swiss Federal Institute of Technology, Lausanne, (EPFL) (Switzerland)

    2015-08-18

    Highlights: • WGA proteins in nanochannels modeled by Molecular Dynamics and Monte Carlo. • Protein surface coverage characterized by atomic force microscopy. • Models indicate transport characteristics depend strongly on surface coverage. • Results resolve of a four orders of magnitude difference in diffusion coefficient values. - Abstract: We use Molecular Dynamics and Monte Carlo simulations to examine molecular transport phenomena in nanochannels, explaining four orders of magnitude difference in wheat germ agglutinin (WGA) protein diffusion rates observed by fluorescence correlation spectroscopy (FCS) and by direct imaging of fluorescently-labeled proteins. We first use the ESPResSo Molecular Dynamics code to estimate the surface transport distance for neutral and charged proteins. We then employ a Monte Carlo model to calculate the paths of protein molecules on surfaces and in the bulk liquid transport medium. Our results show that the transport characteristics depend strongly on the degree of molecular surface coverage. Atomic force microscope characterization of surfaces exposed to WGA proteins for 1000 s show large protein aggregates consistent with the predicted coverage. These calculations and experiments provide useful insight into the details of molecular motion in confined geometries.

  19. Rate turnover in mechano-catalytic coupling: A model and its microscopic origin

    Energy Technology Data Exchange (ETDEWEB)

    Roy, Mahua; Grazioli, Gianmarc; Andricioaei, Ioan, E-mail: andricio@uci.edu [Department of Chemistry, University of California, Irvine, California 92697 (United States)

    2015-07-28

    A novel aspect in the area of mechano-chemistry concerns the effect of external forces on enzyme activity, i.e., the existence of mechano-catalytic coupling. Recent experiments on enzyme-catalyzed disulphide bond reduction in proteins under the effect of a force applied on the termini of the protein substrate reveal an unexpected biphasic force dependence for the bond cleavage rate. Here, using atomistic molecular dynamics simulations combined with Smoluchowski theory, we propose a model for this behavior. For a broad range of forces and systems, the model reproduces the experimentally observed rates by solving a reaction-diffusion equation for a “protein coordinate” diffusing in a force-dependent effective potential. The atomistic simulations are used to compute, from first principles, the parameters of the model via a quasiharmonic analysis. Additionally, the simulations are also used to provide details about the microscopic degrees of freedom that are important for the underlying mechano-catalysis.

  20. Rate turnover in mechano-catalytic coupling: A model and its microscopic origin

    International Nuclear Information System (INIS)

    Roy, Mahua; Grazioli, Gianmarc; Andricioaei, Ioan

    2015-01-01

    A novel aspect in the area of mechano-chemistry concerns the effect of external forces on enzyme activity, i.e., the existence of mechano-catalytic coupling. Recent experiments on enzyme-catalyzed disulphide bond reduction in proteins under the effect of a force applied on the termini of the protein substrate reveal an unexpected biphasic force dependence for the bond cleavage rate. Here, using atomistic molecular dynamics simulations combined with Smoluchowski theory, we propose a model for this behavior. For a broad range of forces and systems, the model reproduces the experimentally observed rates by solving a reaction-diffusion equation for a “protein coordinate” diffusing in a force-dependent effective potential. The atomistic simulations are used to compute, from first principles, the parameters of the model via a quasiharmonic analysis. Additionally, the simulations are also used to provide details about the microscopic degrees of freedom that are important for the underlying mechano-catalysis

  1. Effect of noise on defect chaos in a reaction-diffusion model.

    Science.gov (United States)

    Wang, Hongli; Ouyang, Qi

    2005-06-01

    The influence of noise on defect chaos due to breakup of spiral waves through Doppler and Eckhaus instabilities is investigated numerically with a modified Fitzhugh-Nagumo model. By numerical simulations we show that the noise can drastically enhance the creation and annihilation rates of topological defects. The noise-free probability distribution function for defects in this model is found not to fit with the previously reported squared-Poisson distribution. Under the influence of noise, the distributions are flattened, and can fit with the squared-Poisson or the modified-Poisson distribution. The defect lifetime and diffusive property of defects under the influence of noise are also checked in this model.

  2. Time-Dependent Diffusion MRI in Cancer: Tissue Modeling and Applications

    Directory of Open Access Journals (Sweden)

    Olivier Reynaud

    2017-11-01

    Full Text Available In diffusion weighted imaging (DWI, the apparent diffusion coefficient (ADC has been recognized as a useful and sensitive surrogate for cell density, paving the way for non-invasive tumor staging, and characterization of treatment efficacy in cancer. However, microstructural parameters, such as cell size, density and/or compartmental diffusivities affect diffusion in various fashions, making of conventional DWI a sensitive but non-specific probe into changes happening at cellular level. Alternatively, tissue complexity can be probed and quantified using the time dependence of diffusion metrics, sometimes also referred to as temporal diffusion spectroscopy when only using oscillating diffusion gradients. Time-dependent diffusion (TDD is emerging as a strong candidate for specific and non-invasive tumor characterization. Despite the lack of a general analytical solution for all diffusion times/frequencies, TDD can be probed in various regimes where systems simplify in order to extract relevant information about tissue microstructure. The fundamentals of TDD are first reviewed (a in the short time regime, disentangling structural and diffusive tissue properties, and (b near the tortuosity limit, assuming weakly heterogeneous media near infinitely long diffusion times. Focusing on cell bodies (as opposed to neuronal tracts, a simple but realistic model for intracellular diffusion can offer precious insight on diffusion inside biological systems, at all times. Based on this approach, the main three geometrical models implemented so far (IMPULSED, POMACE, VERDICT are reviewed. Their suitability to quantify cell size, intra- and extracellular spaces (ICS and ECS and diffusivities are assessed. The proper modeling of tissue membrane permeability—hardly a newcomer in the field, but lacking applications—and its impact on microstructural estimates are also considered. After discussing general issues with tissue modeling and microstructural parameter

  3. Time-dependent diffusion MRI in cancer: tissue modeling and applications

    Science.gov (United States)

    Reynaud, Olivier

    2017-11-01

    In diffusion weighted imaging (DWI), the apparent diffusion coefficient has been recognized as a useful and sensitive surrogate for cell density, paving the way for non-invasive tumor staging, and characterization of treatment efficacy in cancer. However, microstructural parameters, such as cell size, density and/or compartmental diffusivities affect diffusion in various fashions, making of conventional DWI a sensitive but non-specific probe into changes happening at cellular level. Alternatively, tissue complexity can be probed and quantified using the time dependence of diffusion metrics, sometimes also referred to as temporal diffusion spectroscopy when only using oscillating diffusion gradients. Time-dependent diffusion (TDD) is emerging as a strong candidate for specific and non-invasive tumor characterization. Despite the lack of a general analytical solution for all diffusion times / frequencies, TDD can be probed in various regimes where systems simplify in order to extract relevant information about tissue microstructure. The fundamentals of TDD are first reviewed (a) in the short time regime, disentangling structural and diffusive tissue properties, and (b) near the tortuosity limit, assuming weakly heterogeneous media near infinitely long diffusion times. Focusing on cell bodies (as opposed to neuronal tracts), a simple but realistic model for intracellular diffusion can offer precious insight on diffusion inside biological systems, at all times. Based on this approach, the main three geometrical models implemented so far (IMPULSED, POMACE, VERDICT) are reviewed. Their suitability to quantify cell size, intra- and extracellular spaces (ICS and ECS) and diffusivities are assessed. The proper modeling of tissue membrane permeability – hardly a newcomer in the field, but lacking applications - and its impact on microstructural estimates are also considered. After discussing general issues with tissue modeling and microstructural parameter estimation (i

  4. Determination of H2 Diffusion Rates through Various Closures on TRU Waste Bag-Out Bags

    International Nuclear Information System (INIS)

    Noll, Phillip D. Jr.; Callis, E. Larry; Norman, Kirsten M.

    1999-01-01

    The amount of H 2 diffusion through twist and tape (horse-tail), wire tie, plastic tie, and heat sealed closures on transuranic (TRU) waste bag-out bags has been determined. H 2 diffusion through wire and plastic tie closures on TRU waste bag-out bags has not been previously characterized and, as such, TRU waste drums containing bags with these closures cannot be certified and/or shipped to the Waste Isolation Pilot Plant (WIPP). Since wire ties have been used at Los Alamos National Laboratory (LANL) from 1980 to 1991 and the plastic ties from 1991 to the present, there are currently thousands of waste drums that cannot be shipped to the WIPP site. Repackaging the waste would be prohibitively expensive. Diffusion experiments performed on the above mentioned closures show that the diffusion rates of plastic tie and horse-tail closures are greater than the accepted value presented in the TRU-PACT 11 Safety Analysis Report (SAR). Diffusion rates for wire tie closures are not statistically different from the SAR value. Thus, drums containing bags with these closures can now potentially be certified which would allow for their consequent shipment to WIPP

  5. Inverse method for determining radon diffusion coefficient and free radon production rate of fragmented uranium ore

    International Nuclear Information System (INIS)

    Ye, Yong-jun; Wang, Li-heng; Ding, De-xin; Zhao, Ya-li; Fan, Nan-bin

    2014-01-01

    The radon diffusion coefficient and the free radon production rate are important parameters for describing radon migration in the fragmented uranium ore. In order to determine the two parameters, the pure diffusion migration equation for radon was firstly established and its analytic solution with the two parameters to be determined was derived. Then, a self manufactured experimental column was used to simulate the pure diffusion of the radon, the improved scintillation cell method was used to measure the pore radon concentrations at different depths of the column loaded with the fragmented uranium ore, and the nonlinear least square algorithm was used to inversely determine the radon diffusion coefficient and the free radon production rate. Finally, the solution with the two inversely determined parameters was used to predict the pore radon concentrations at some depths of the column, and the predicted results were compared with the measured results. The results show that the predicted results are in good agreement with the measured results and the numerical inverse method is applicable to the determination of the radon diffusion coefficient and the free radon production rate for the fragmented uranium ore. - Highlights: • Inverse method for determining two transport parameters of radon is proposed. • A self-made experimental apparatus is used to simulate radon diffusion process. • Sampling volume and position for measuring radon concentration are optimized. • The inverse results of an experimental sample are verified

  6. What Can the Diffusion Model Tell Us About Prospective Memory?

    Science.gov (United States)

    Horn, Sebastian S.; Bayen, Ute J.; Smith, Rebekah E.

    2011-01-01

    Cognitive process models, such as Ratcliff’s (1978) diffusion model, are useful tools for examining cost- or interference effects in event-based prospective memory (PM). The diffusion model includes several parameters that provide insight into how and why ongoing-task performance may be affected by a PM task and is ideally suited to analyze performance because both reaction time and accuracy are taken into account. Separate analyses of these measures can easily yield misleading interpretations in cases of speed-accuracy tradeoffs. The diffusion model allows us to measure possible criterion shifts and is thus an important methodological improvement over standard analyses. Performance in an ongoing lexical decision task (Smith, 2003) was analyzed with the diffusion model. The results suggest that criterion shifts play an important role when a PM task is added, but do not fully explain the cost effect on RT. PMID:21443332

  7. Discrete random walk models for space-time fractional diffusion

    International Nuclear Information System (INIS)

    Gorenflo, Rudolf; Mainardi, Francesco; Moretti, Daniele; Pagnini, Gianni; Paradisi, Paolo

    2002-01-01

    A physical-mathematical approach to anomalous diffusion may be based on generalized diffusion equations (containing derivatives of fractional order in space or/and time) and related random walk models. By space-time fractional diffusion equation we mean an evolution equation obtained from the standard linear diffusion equation by replacing the second-order space derivative with a Riesz-Feller derivative of order α is part of (0,2] and skewness θ (moduleθ≤{α,2-α}), and the first-order time derivative with a Caputo derivative of order β is part of (0,1]. Such evolution equation implies for the flux a fractional Fick's law which accounts for spatial and temporal non-locality. The fundamental solution (for the Cauchy problem) of the fractional diffusion equation can be interpreted as a probability density evolving in time of a peculiar self-similar stochastic process that we view as a generalized diffusion process. By adopting appropriate finite-difference schemes of solution, we generate models of random walk discrete in space and time suitable for simulating random variables whose spatial probability density evolves in time according to this fractional diffusion equation

  8. Rigorous Multicomponent Reactive Separations Modelling: Complete Consideration of Reaction-Diffusion Phenomena

    International Nuclear Information System (INIS)

    Ahmadi, A.; Meyer, M.; Rouzineau, D.; Prevost, M.; Alix, P.; Laloue, N.

    2010-01-01

    This paper gives the first step of the development of a rigorous multicomponent reactive separation model. Such a model is highly essential to further the optimization of acid gases removal plants (CO 2 capture, gas treating, etc.) in terms of size and energy consumption, since chemical solvents are conventionally used. Firstly, two main modelling approaches are presented: the equilibrium-based and the rate-based approaches. Secondly, an extended rate-based model with rigorous modelling methodology for diffusion-reaction phenomena is proposed. The film theory and the generalized Maxwell-Stefan equations are used in order to characterize multicomponent interactions. The complete chain of chemical reactions is taken into account. The reactions can be kinetically controlled or at chemical equilibrium, and they are considered for both liquid film and liquid bulk. Thirdly, the method of numerical resolution is described. Coupling the generalized Maxwell-Stefan equations with chemical equilibrium equations leads to a highly non-linear Differential-Algebraic Equations system known as DAE index 3. The set of equations is discretized with finite-differences as its integration by Gear method is complex. The resulting algebraic system is resolved by the Newton- Raphson method. Finally, the present model and the associated methods of numerical resolution are validated for the example of esterification of methanol. This archetype non-electrolytic system permits an interesting analysis of reaction impact on mass transfer, especially near the phase interface. The numerical resolution of the model by Newton-Raphson method gives good results in terms of calculation time and convergence. The simulations show that the impact of reactions at chemical equilibrium and that of kinetically controlled reactions with high kinetics on mass transfer is relatively similar. Moreover, the Fick's law is less adapted for multicomponent mixtures where some abnormalities such as counter-diffusion

  9. Individual differences in emotion word processing: A diffusion model analysis.

    Science.gov (United States)

    Mueller, Christina J; Kuchinke, Lars

    2016-06-01

    The exploratory study investigated individual differences in implicit processing of emotional words in a lexical decision task. A processing advantage for positive words was observed, and differences between happy and fear-related words in response times were predicted by individual differences in specific variables of emotion processing: Whereas more pronounced goal-directed behavior was related to a specific slowdown in processing of fear-related words, the rate of spontaneous eye blinks (indexing brain dopamine levels) was associated with a processing advantage of happy words. Estimating diffusion model parameters revealed that the drift rate (rate of information accumulation) captures unique variance of processing differences between happy and fear-related words, with highest drift rates observed for happy words. Overall emotion recognition ability predicted individual differences in drift rates between happy and fear-related words. The findings emphasize that a significant amount of variance in emotion processing is explained by individual differences in behavioral data.

  10. Estimation and prediction under local volatility jump-diffusion model

    Science.gov (United States)

    Kim, Namhyoung; Lee, Younhee

    2018-02-01

    Volatility is an important factor in operating a company and managing risk. In the portfolio optimization and risk hedging using the option, the value of the option is evaluated using the volatility model. Various attempts have been made to predict option value. Recent studies have shown that stochastic volatility models and jump-diffusion models reflect stock price movements accurately. However, these models have practical limitations. Combining them with the local volatility model, which is widely used among practitioners, may lead to better performance. In this study, we propose a more effective and efficient method of estimating option prices by combining the local volatility model with the jump-diffusion model and apply it using both artificial and actual market data to evaluate its performance. The calibration process for estimating the jump parameters and local volatility surfaces is divided into three stages. We apply the local volatility model, stochastic volatility model, and local volatility jump-diffusion model estimated by the proposed method to KOSPI 200 index option pricing. The proposed method displays good estimation and prediction performance.

  11. Differences in Gaussian diffusion tensor imaging and non-Gaussian diffusion kurtosis imaging model-based estimates of diffusion tensor invariants in the human brain.

    Science.gov (United States)

    Lanzafame, S; Giannelli, M; Garaci, F; Floris, R; Duggento, A; Guerrisi, M; Toschi, N

    2016-05-01

    An increasing number of studies have aimed to compare diffusion tensor imaging (DTI)-related parameters [e.g., mean diffusivity (MD), fractional anisotropy (FA), radial diffusivity (RD), and axial diffusivity (AD)] to complementary new indexes [e.g., mean kurtosis (MK)/radial kurtosis (RK)/axial kurtosis (AK)] derived through diffusion kurtosis imaging (DKI) in terms of their discriminative potential about tissue disease-related microstructural alterations. Given that the DTI and DKI models provide conceptually and quantitatively different estimates of the diffusion tensor, which can also depend on fitting routine, the aim of this study was to investigate model- and algorithm-dependent differences in MD/FA/RD/AD and anisotropy mode (MO) estimates in diffusion-weighted imaging of human brain white matter. The authors employed (a) data collected from 33 healthy subjects (20-59 yr, F: 15, M: 18) within the Human Connectome Project (HCP) on a customized 3 T scanner, and (b) data from 34 healthy subjects (26-61 yr, F: 5, M: 29) acquired on a clinical 3 T scanner. The DTI model was fitted to b-value =0 and b-value =1000 s/mm(2) data while the DKI model was fitted to data comprising b-value =0, 1000 and 3000/2500 s/mm(2) [for dataset (a)/(b), respectively] through nonlinear and weighted linear least squares algorithms. In addition to MK/RK/AK maps, MD/FA/MO/RD/AD maps were estimated from both models and both algorithms. Using tract-based spatial statistics, the authors tested the null hypothesis of zero difference between the two MD/FA/MO/RD/AD estimates in brain white matter for both datasets and both algorithms. DKI-derived MD/FA/RD/AD and MO estimates were significantly higher and lower, respectively, than corresponding DTI-derived estimates. All voxelwise differences extended over most of the white matter skeleton. Fractional differences between the two estimates [(DKI - DTI)/DTI] of most invariants were seen to vary with the invariant value itself as well as with MK

  12. Size dependent diffusive parameters and tensorial diffusion equations in neutronic models for optically small nuclear systems

    International Nuclear Information System (INIS)

    Premuda, F.

    1983-01-01

    Two lines in improved neutron diffusion theory extending the efficiency of finite-difference diffusion codes to the field of optically small systems, are here reviewed. The firs involves the nodal solution for tensorial diffusion equation in slab geometry and tensorial formulation in parallelepiped and cylindrical gemometry; the dependence of critical eigenvalue from small slab thicknesses is also analitically investigated and finally a regularized tensorial diffusion equation is derived for slab. The other line refer to diffusion models formally unchanged with respect to the classical one, but where new size-dependent RTGB definitions for diffusion parameters are adopted, requiring that they allow to reproduce, in diffusion approach, the terms of neutron transport global balance; the trascendental equation for the buckling, arising in slab, sphere and parallelepiped geometry from the above requirement, are reported and the sizedependence of the new diffusion coefficient and extrapolated end point is investigated

  13. Atomistic Modeling of Cation Diffusion in Transition Metal Perovskites La1-xSrxMnO3+/-δfor Solid Oxide Fuel Cell Cathodes Applications

    Science.gov (United States)

    Lee, Yueh-Lin; Duan, Yuhua; Morgan, Dane; Sorescu, Dan; Abernathy, Harry

    Cation diffusion in La1-xSrxMnO3+/-δ (LSM) and in related perovskite materials play an important role in controlling long term performance and stability of solid oxide fuel cell (SOFCs) cathodes. Due to sluggish rates of cation diffusion and complex coupling between defect chemistry and cation diffusion pathways, currently there is still lack of quantitative theoretical model predictions on cation diffusivity vs. T and P(O2) to describe experimental cation tracer diffusivities. In this work, based on ab initio modeling of LSM defect chemistry and migration barriers of the possible cation diffusion pathways, we assess the rates of A-site and B-site cation diffusion in a wide range of T and P(O2) at x =0.0 and 0.2 for SOFC applications. We demonstrate the active cation diffusion pathways in LSM involve cation defect clusters as cation transport carriers, where reduction in the cation migration barriers, which are governed by the steric effect associated with the metal-oxygen cage in the perovskite lattice, is much greater than the penalty of repulsive interaction in the A-site and B-site cation vacancy clusters, leading to higher cation diffusion rates as compared to those of single cation vacancy hopping mechanisms. The predicted Mn and La/Sr cation self-diffusion coefficients of LSM at at x =0.0 and 0.2 along with their 1/T and P(O2) dependences, are in good agreement with the experimental tracer diffusion coefficients.

  14. Anomalous Transport of Cosmic Rays in a Nonlinear Diffusion Model

    Energy Technology Data Exchange (ETDEWEB)

    Litvinenko, Yuri E. [Department of Mathematics, University of Waikato, P. B. 3105, Hamilton 3240 (New Zealand); Fichtner, Horst; Walter, Dominik [Institut für Theoretische Physik IV, Ruhr-Universität Bochum, Universitätsstrasse 150, D-44780 Bochum (Germany)

    2017-05-20

    We investigate analytically and numerically the transport of cosmic rays following their escape from a shock or another localized acceleration site. Observed cosmic-ray distributions in the vicinity of heliospheric and astrophysical shocks imply that anomalous, superdiffusive transport plays a role in the evolution of the energetic particles. Several authors have quantitatively described the anomalous diffusion scalings, implied by the data, by solutions of a formal transport equation with fractional derivatives. Yet the physical basis of the fractional diffusion model remains uncertain. We explore an alternative model of the cosmic-ray transport: a nonlinear diffusion equation that follows from a self-consistent treatment of the resonantly interacting cosmic-ray particles and their self-generated turbulence. The nonlinear model naturally leads to superdiffusive scalings. In the presence of convection, the model yields a power-law dependence of the particle density on the distance upstream of the shock. Although the results do not refute the use of a fractional advection–diffusion equation, they indicate a viable alternative to explain the anomalous diffusion scalings of cosmic-ray particles.

  15. A fractional motion diffusion model for grading pediatric brain tumors.

    Science.gov (United States)

    Karaman, M Muge; Wang, He; Sui, Yi; Engelhard, Herbert H; Li, Yuhua; Zhou, Xiaohong Joe

    2016-01-01

    To demonstrate the feasibility of a novel fractional motion (FM) diffusion model for distinguishing low- versus high-grade pediatric brain tumors; and to investigate its possible advantage over apparent diffusion coefficient (ADC) and/or a previously reported continuous-time random-walk (CTRW) diffusion model. With approval from the institutional review board and written informed consents from the legal guardians of all participating patients, this study involved 70 children with histopathologically-proven brain tumors (30 low-grade and 40 high-grade). Multi- b -value diffusion images were acquired and analyzed using the FM, CTRW, and mono-exponential diffusion models. The FM parameters, D fm , φ , ψ (non-Gaussian diffusion statistical measures), and the CTRW parameters, D m , α , β (non-Gaussian temporal and spatial diffusion heterogeneity measures) were compared between the low- and high-grade tumor groups by using a Mann-Whitney-Wilcoxon U test. The performance of the FM model for differentiating between low- and high-grade tumors was evaluated and compared with that of the CTRW and the mono-exponential models using a receiver operating characteristic (ROC) analysis. The FM parameters were significantly lower ( p  < 0.0001) in the high-grade ( D fm : 0.81 ± 0.26, φ : 1.40 ± 0.10, ψ : 0.42 ± 0.11) than in the low-grade ( D fm : 1.52 ± 0.52, φ : 1.64 ± 0.13, ψ : 0.67 ± 0.13) tumor groups. The ROC analysis showed that the FM parameters offered better specificity (88% versus 73%), sensitivity (90% versus 82%), accuracy (88% versus 78%), and area under the curve (AUC, 93% versus 80%) in discriminating tumor malignancy compared to the conventional ADC. The performance of the FM model was similar to that of the CTRW model. Similar to the CTRW model, the FM model can improve differentiation between low- and high-grade pediatric brain tumors over ADC.

  16. Modeling of Reaction Processes Controlled by Diffusion

    International Nuclear Information System (INIS)

    Revelli, Jorge

    2003-01-01

    Stochastic modeling is quite powerful in science and technology.The technics derived from this process have been used with great success in laser theory, biological systems and chemical reactions.Besides, they provide a theoretical framework for the analysis of experimental results on the field of particle's diffusion in ordered and disordered materials.In this work we analyze transport processes in one-dimensional fluctuating media, which are media that change their state in time.This fact induces changes in the movements of the particles giving rise to different phenomena and dynamics that will be described and analyzed in this work.We present some random walk models to describe these fluctuating media.These models include state transitions governed by different dynamical processes.We also analyze the trapping problem in a lattice by means of a simple model which predicts a resonance-like phenomenon.Also we study effective diffusion processes over surfaces due to random walks in the bulk.We consider different boundary conditions and transitions movements.We derive expressions that describe diffusion behaviors constrained to bulk restrictions and the dynamic of the particles.Finally it is important to mention that the theoretical results obtained from the models proposed in this work are compared with Monte Carlo simulations.We find, in general, excellent agreements between the theory and the simulations

  17. Moisture diffusivity in structure of random fractal fiber bed

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Fanglong, E-mail: zhufanglong_168@163.com [College of Textile, Zhongyuan University of Technology, Zhengzhou City (China); The Chinese People' s Armed Police Forces Academy, Langfan City (China); Zhou, Yu; Feng, Qianqian [College of Textile, Zhongyuan University of Technology, Zhengzhou City (China); Xia, Dehong [School of Mechanical Engineering, University of Science and Technology, Beijing (China)

    2013-11-08

    A theoretical expression related to effective moisture diffusivity to random fiber bed is derived by using fractal theory and considering both parallel and perpendicular channels to diffusion flow direction. In this Letter, macroporous structure of hydrophobic nonwoven material is investigated, and Knudsen diffusion and surface diffusion are neglected. The effective moisture diffusivity predicted by the present fractal model are compared with water vapor transfer rate (WVTR) experiment data and calculated values obtained from other theoretical models. This verifies the validity of the present fractal diffusivity of fibrous structural beds.

  18. A diffusion-limited reaction model for self-propagating Al/Pt multilayers with quench limits

    Science.gov (United States)

    Kittell, D. E.; Yarrington, C. D.; Hobbs, M. L.; Abere, M. J.; Adams, D. P.

    2018-04-01

    A diffusion-limited reaction model was calibrated for Al/Pt multilayers ignited on oxidized silicon, sapphire, and tungsten substrates, as well as for some Al/Pt multilayers ignited as free-standing foils. The model was implemented in a finite element analysis code and used to match experimental burn front velocity data collected from several years of testing at Sandia National Laboratories. Moreover, both the simulations and experiments reveal well-defined quench limits in the total Al + Pt layer (i.e., bilayer) thickness. At these limits, the heat generated from atomic diffusion is insufficient to support a self-propagating wave front on top of the substrates. Quench limits for reactive multilayers are seldom reported and are found to depend on the thermal properties of the individual layers. Here, the diffusion-limited reaction model is generalized to allow for temperature- and composition-dependent material properties, phase change, and anisotropic thermal conductivity. Utilizing this increase in model fidelity, excellent overall agreement is shown between the simulations and experimental results with a single calibrated parameter set. However, the burn front velocities of Al/Pt multilayers ignited on tungsten substrates are over-predicted. Possible sources of error are discussed and a higher activation energy (from 41.9 kJ/mol.at. to 47.5 kJ/mol.at.) is shown to bring the simulations into agreement with the velocity data observed on tungsten substrates. This higher activation energy suggests an inhibited diffusion mechanism present at lower heating rates.

  19. Model of diffusion-convection of 137Cs in marine sediments: a mathematical approach for the assessment of recent sedimentation rates

    International Nuclear Information System (INIS)

    Ferreira, Paulo A.L.; Figueira, Rubens C.L.

    2013-01-01

    Under the perspective of knowing the results of the processes which moves the sedimentary dynamics in coastal environments and assisting works related to the historic of impacts generated in these systems by human occupation, this study shows a practical application of the mathematic-chemical model of diffusion-convection (MDC) of the radionuclide 137 Cs in sedimentary columns for the evaluation of recent sedimentation rates in a Brazilian coastal system. 137 Cs is an artificial radionuclide characterized by its high fission yield and half-life of about 30 years. It is already widely used in this kind of study by reason of its 1963's global peak. The MDC will improve the generated results as the levels of radioactivity of this nuclide are low in the Southern Hemisphere, where this element's main source is the atmospheric fallout from past nuclear explosions, and due to the fact that it is an element with non-negligible vertical mobility. (author)

  20. Observational Constraints for Modeling Diffuse Molecular Clouds

    Science.gov (United States)

    Federman, S. R.

    2014-02-01

    Ground-based and space-borne observations of diffuse molecular clouds suggest a number of areas where further improvements to modeling efforts is warranted. I will highlight those that have the widest applicability. The range in CO fractionation caused by selective isotope photodissociation, in particular the large 12C16O/13C16O ratios observed toward stars in Ophiuchus, is not reproduced well by current models. Our ongoing laboratory measurements of oscillator strengths and predissociation rates for Rydberg transitions in CO isotopologues may help clarify the situtation. The CH+ abundance continues to draw attention. Small scale structure seen toward ζ Per may provide additional constraints on the possible synthesis routes. The connection between results from optical transitions and those from radio and sub-millimeter wave transitions requires further effort. A study of OH+ and OH toward background stars reveals that these species favor different environments. This brings to focus the need to model each cloud along the line of sight separately, and to allow the physical conditions to vary within an individual cloud, in order to gain further insight into the chemistry. Now that an extensive set of data on molecular excitation is available, the models should seek to reproduce these data to place further constraints on the modeling results.

  1. Modeling Periodic Impulsive Effects on Online TV Series Diffusion.

    Science.gov (United States)

    Fu, Peihua; Zhu, Anding; Fang, Qiwen; Wang, Xi

    Online broadcasting substantially affects the production, distribution, and profit of TV series. In addition, online word-of-mouth significantly affects the diffusion of TV series. Because on-demand streaming rates are the most important factor that influences the earnings of online video suppliers, streaming statistics and forecasting trends are valuable. In this paper, we investigate the effects of periodic impulsive stimulation and pre-launch promotion on on-demand streaming dynamics. We consider imbalanced audience feverish distribution using an impulsive susceptible-infected-removed(SIR)-like model. In addition, we perform a correlation analysis of online buzz volume based on Baidu Index data. We propose a PI-SIR model to evolve audience dynamics and translate them into on-demand streaming fluctuations, which can be observed and comprehended by online video suppliers. Six South Korean TV series datasets are used to test the model. We develop a coarse-to-fine two-step fitting scheme to estimate the model parameters, first by fitting inter-period accumulation and then by fitting inner-period feverish distribution. We find that audience members display similar viewing habits. That is, they seek new episodes every update day but fade away. This outcome means that impulsive intensity plays a crucial role in on-demand streaming diffusion. In addition, the initial audience size and online buzz are significant factors. On-demand streaming fluctuation is highly correlated with online buzz fluctuation. To stimulate audience attention and interpersonal diffusion, it is worthwhile to invest in promotion near update days. Strong pre-launch promotion is also a good marketing tool to improve overall performance. It is not advisable for online video providers to promote several popular TV series on the same update day. Inter-period accumulation is a feasible forecasting tool to predict the future trend of the on-demand streaming amount. The buzz in public social communities

  2. Modeling Periodic Impulsive Effects on Online TV Series Diffusion.

    Directory of Open Access Journals (Sweden)

    Peihua Fu

    Full Text Available Online broadcasting substantially affects the production, distribution, and profit of TV series. In addition, online word-of-mouth significantly affects the diffusion of TV series. Because on-demand streaming rates are the most important factor that influences the earnings of online video suppliers, streaming statistics and forecasting trends are valuable. In this paper, we investigate the effects of periodic impulsive stimulation and pre-launch promotion on on-demand streaming dynamics. We consider imbalanced audience feverish distribution using an impulsive susceptible-infected-removed(SIR-like model. In addition, we perform a correlation analysis of online buzz volume based on Baidu Index data.We propose a PI-SIR model to evolve audience dynamics and translate them into on-demand streaming fluctuations, which can be observed and comprehended by online video suppliers. Six South Korean TV series datasets are used to test the model. We develop a coarse-to-fine two-step fitting scheme to estimate the model parameters, first by fitting inter-period accumulation and then by fitting inner-period feverish distribution.We find that audience members display similar viewing habits. That is, they seek new episodes every update day but fade away. This outcome means that impulsive intensity plays a crucial role in on-demand streaming diffusion. In addition, the initial audience size and online buzz are significant factors. On-demand streaming fluctuation is highly correlated with online buzz fluctuation.To stimulate audience attention and interpersonal diffusion, it is worthwhile to invest in promotion near update days. Strong pre-launch promotion is also a good marketing tool to improve overall performance. It is not advisable for online video providers to promote several popular TV series on the same update day. Inter-period accumulation is a feasible forecasting tool to predict the future trend of the on-demand streaming amount. The buzz in public

  3. Modeling Periodic Impulsive Effects on Online TV Series Diffusion

    Science.gov (United States)

    Fang, Qiwen; Wang, Xi

    2016-01-01

    Background Online broadcasting substantially affects the production, distribution, and profit of TV series. In addition, online word-of-mouth significantly affects the diffusion of TV series. Because on-demand streaming rates are the most important factor that influences the earnings of online video suppliers, streaming statistics and forecasting trends are valuable. In this paper, we investigate the effects of periodic impulsive stimulation and pre-launch promotion on on-demand streaming dynamics. We consider imbalanced audience feverish distribution using an impulsive susceptible-infected-removed(SIR)-like model. In addition, we perform a correlation analysis of online buzz volume based on Baidu Index data. Methods We propose a PI-SIR model to evolve audience dynamics and translate them into on-demand streaming fluctuations, which can be observed and comprehended by online video suppliers. Six South Korean TV series datasets are used to test the model. We develop a coarse-to-fine two-step fitting scheme to estimate the model parameters, first by fitting inter-period accumulation and then by fitting inner-period feverish distribution. Results We find that audience members display similar viewing habits. That is, they seek new episodes every update day but fade away. This outcome means that impulsive intensity plays a crucial role in on-demand streaming diffusion. In addition, the initial audience size and online buzz are significant factors. On-demand streaming fluctuation is highly correlated with online buzz fluctuation. Conclusion To stimulate audience attention and interpersonal diffusion, it is worthwhile to invest in promotion near update days. Strong pre-launch promotion is also a good marketing tool to improve overall performance. It is not advisable for online video providers to promote several popular TV series on the same update day. Inter-period accumulation is a feasible forecasting tool to predict the future trend of the on-demand streaming amount

  4. Modeling intragranular diffusion in low-connectivity granular media

    Science.gov (United States)

    Ewing, Robert P.; Liu, Chongxuan; Hu, Qinhong

    2012-03-01

    Characterizing the diffusive exchange of solutes between bulk water in an aquifer and water in the intragranular pores of the solid phase is still challenging despite decades of study. Many disparities between observation and theory could be attributed to low connectivity of the intragranular pores. The presence of low connectivity indicates that a useful conceptual framework is percolation theory. The present study was initiated to develop a percolation-based finite difference (FD) model, and to test it rigorously against both random walk (RW) simulations of diffusion starting from nonequilibrium, and data on Borden sand published by Ball and Roberts (1991a,b) and subsequently reanalyzed by Haggerty and Gorelick (1995) using a multirate mass transfer (MRMT) approach. The percolation-theoretical model is simple and readily incorporated into existing FD models. The FD model closely matches the RW results using only a single fitting parameter, across a wide range of pore connectivities. Simulation of the Borden sand experiment without pore connectivity effects reproduced the MRMT analysis, but including low pore connectivity effects improved the fit. Overall, the theory and simulation results show that low intragranular pore connectivity can produce diffusive behavior that appears as if the solute had undergone slow sorption, despite the absence of any sorption process, thereby explaining some hitherto confusing aspects of intragranular diffusion.

  5. Experimental validation of a model for diffusion-controlled absorption of organic compounds in the trachea

    Energy Technology Data Exchange (ETDEWEB)

    Gerde, P. [National Inst. for Working Life, Solna (Sweden); Muggenburg, B.A.; Thornton-Manning, J.R. [and others

    1995-12-01

    Most chemically induced lung cancer originates in the epithelial cells in the airways. Common conceptions are that chemicals deposited on the airway surface are rapidly absorbed through mucous membranes, limited primarily by the rate of blood perfusion in the mucosa. It is also commonly thought that for chemicals to induce toxicity at the site of entry, they must be either rapidly reactive, readily metabolizable, or especially toxic to the tissues at the site of entry. For highly lipophilic toxicants, there is a third option. Our mathematical model predicts that as lipophilicity increases, chemicals partition more readily into the cellular lipid membranes and diffuse more slowly through the tissues. Therefore, absorption of very lipophilic compounds will be almost entirely limited by the rate of diffusion through the epithelium rather than by perfusion of the capillary bed in the subepithelium. We have reported on a preliminary model for absorption through mucous membranes of any substance with a lipid/aqueous partition coefficient larger than one. The purpose of this work was to experimentally validate the model in Beagle dogs. This validated model on toxicant absorption in the airway mucosa will improve risk assessment of inhaled

  6. Recent advances in modelling diffuse radiation

    Energy Technology Data Exchange (ETDEWEB)

    Boland, John; Ridley, Barbara [Centre for Industrial and Applied Mathematics, Univ. of South Australia, Mawson Lakes, SA (Australia)

    2008-07-01

    Boland et al (2001) developed a validated model for Australian conditions, using a logistic function instead of piecewise linear or simple nonlinear functions. Recently, Jacovides et al (2006) have verified that this model performs well for locations in Cyprus. Their analysis includes using moving average techniques to demonstrate the form of the relationship, which corresponds well to a logistic relationship. We have made significant advances in both the intuitive and theoretical justification of the use of the logistic function. In the theoretical development of the model utilising advanced non-parametric statistical methods. We have also constructed a method of identifying values that are likely to be erroneous. Using quadratic programming, we can eliminate outliers in diffuse radiation values, the data most prone to errors in measurement. Additionally, this is a first step in identifying the means for developing a generic model for estimating diffuse from global and other predictors (see Boland and Ridley 2007). Our more recent investigations focus on examining the effects of adding additional explanatory variables to enhance the predictability of the model. Examples for Australian and other locations will be presented. (orig.)

  7. Modelling Cr depletion under a growing Cr2O3 layer on austenitic stainless steel: the influence of grain boundary diffusion

    DEFF Research Database (Denmark)

    Hansson, Anette Nørgaard; Hattel, Jesper Henri; Dahl, Kristian Vinter

    2009-01-01

    according to a parabolic rate law as a consequence of rate limiting diffusion of Cr cations through the oxide layer; the retraction of the oxide/alloy interface associated with the removal of Cr atoms from the substrate is included in the calculations. Numerically, the movement of the oxide/alloy interface......The oxidation behaviour of austenitic stainless steels in the temperature range 723–1173K is strongly influenced by the grain size of the oxidizing alloy. In this work the evolution of the concentration profiles of Cr, Ni and Fe in the substrate below a growing Cr2O3 layer is simulated...... with a Fisher-type numerical model, which takes both volume and grain boundary diffusion into consideration. The model is based on a two-dimensional control volume-based solution of Fick’s 2nd law for multicomponent diffusion and includes crossterm diffusion coefficients. The oxide layer is assumed to grow...

  8. Stochastic diffusion models for substitutable technological innovations

    NARCIS (Netherlands)

    Wang, L.; Hu, B.; Yu, X.

    2004-01-01

    Based on the analysis of firms' stochastic adoption behaviour, this paper first points out the necessity to build more practical stochastic models. And then, stochastic evolutionary models are built for substitutable innovation diffusion system. Finally, through the computer simulation of the

  9. A strongly nonlinear reaction-diffusion model for a deterministic diffusive epidemic

    International Nuclear Information System (INIS)

    Kirane, M.; Kouachi, S.

    1992-10-01

    In the present paper the mathematical validity of a model on the spread of an infectious disease is proved. This model was proposed by Bailey. The mathematical validity is proved by means of a positivity, uniqueness and existence theorem. In spite of the apparent simplicity of the problem, the solution requires a delicate set of techniques. It seems very difficult to extend these techniques to a model in more than one dimension without imposing conditions on the diffusivities. (author). 7 refs

  10. A reaction-diffusion model of ROS-induced ROS release in a mitochondrial network.

    Directory of Open Access Journals (Sweden)

    Lufang Zhou

    2010-01-01

    Full Text Available Loss of mitochondrial function is a fundamental determinant of cell injury and death. In heart cells under metabolic stress, we have previously described how the abrupt collapse or oscillation of the mitochondrial energy state is synchronized across the mitochondrial network by local interactions dependent upon reactive oxygen species (ROS. Here, we develop a mathematical model of ROS-induced ROS release (RIRR based on reaction-diffusion (RD-RIRR in one- and two-dimensional mitochondrial networks. The nodes of the RD-RIRR network are comprised of models of individual mitochondria that include a mechanism of ROS-dependent oscillation based on the interplay between ROS production, transport, and scavenging; and incorporating the tricarboxylic acid (TCA cycle, oxidative phosphorylation, and Ca(2+ handling. Local mitochondrial interaction is mediated by superoxide (O2.- diffusion and the O2.(--dependent activation of an inner membrane anion channel (IMAC. In a 2D network composed of 500 mitochondria, model simulations reveal DeltaPsi(m depolarization waves similar to those observed when isolated guinea pig cardiomyocytes are subjected to a localized laser-flash or antioxidant depletion. The sensitivity of the propagation rate of the depolarization wave to O(2.- diffusion, production, and scavenging in the reaction-diffusion model is similar to that observed experimentally. In addition, we present novel experimental evidence, obtained in permeabilized cardiomyocytes, confirming that DeltaPsi(m depolarization is mediated specifically by O2.-. The present work demonstrates that the observed emergent macroscopic properties of the mitochondrial network can be reproduced in a reaction-diffusion model of RIRR. Moreover, the findings have uncovered a novel aspect of the synchronization mechanism, which is that clusters of mitochondria that are oscillating can entrain mitochondria that would otherwise display stable dynamics. The work identifies the

  11. Models for the estimation of diffuse solar radiation for typical cities in Turkey

    International Nuclear Information System (INIS)

    Bakirci, Kadir

    2015-01-01

    In solar energy applications, diffuse solar radiation component is required. Solar radiation data particularly in terms of diffuse component are not readily affordable, because of high price of measurements as well as difficulties in their maintenance and calibration. In this study, new empirical models for predicting the monthly mean diffuse solar radiation on a horizontal surface for typical cities in Turkey are established. Therefore, fifteen empirical models from studies in the literature are used. Also, eighteen diffuse solar radiation models are developed using long term sunshine duration and global solar radiation data. The accuracy of the developed models is evaluated in terms of different statistical indicators. It is found that the best performance is achieved for the third-order polynomial model based on sunshine duration and clearness index. - Highlights: • Diffuse radiation is given as a function of clearness index and sunshine fraction. • The diffuse radiation is an important parameter in solar energy applications. • The diffuse radiation measurement is for limited periods and it is very rare. • The new models can be used to estimate monthly average diffuse solar radiation. • The accuracy of the models is evaluated on the basis of statistical indicators

  12. An information diffusion model based on retweeting mechanism for online social media

    International Nuclear Information System (INIS)

    Xiong, Fei; Liu, Yun; Zhang, Zhen-jiang; Zhu, Jiang; Zhang, Ying

    2012-01-01

    To characterize information propagation on online microblogs, we propose a diffusion model (SCIR) which contains four possible states: Susceptible, contacted, infected and refractory. Agents that read the information but have not decided to spread it, stay in the contacted state. They may become infected or refractory, and both the infected and refractory state are stable. Results show during the evolution process, more contacted agents appear in scale-free networks than in regular lattices. The degree based density of infected agents increases with the degree monotonously, but larger average network degree doesn't always mean less relaxation time. -- Highlights: ► We study information diffusion on microblogs based on retweeting mechanism. ► We present a propagation model that contains four states, two of which are absorbing. ► The threshold value of spreading rate, almost approaches zero. ► The degree based density of infected agents increases with the degree monotonously. ► Influences between topics occur only when topics originate in the same neighborhood.

  13. Modelling of multicomponent diffusion in a two-phase oxide-metal corium pool by a diffuse interface method

    International Nuclear Information System (INIS)

    Cardon, Clement

    2016-01-01

    This Ph.D. topic is focused on the modelling of stratification kinetics for an oxide-metal corium pool (U-O-Zr-steel system) in terms of multicomponent and multiphase diffusion. This work is part of a larger research effort for the development of a detailed corium pool modelling based on a CFD approach for thermal hydraulics. The overall goal is to improve the understanding of the involved phenomena and obtain closure laws for integral macroscopic models. The phase-field method coupled with an energy functional using the CALPHAD method appears to be relevant for this purpose. In a first part, we have developed a diffuse interface model in order to describe the diffusion process in the U-O system. This model has been coupled with a CALPHAD thermodynamic database and its parameterization has been developed with, in particular, an up-scaling procedure related to the interface thickness. Then, within the framework of a modelling for the U-O-Zr ternary system, we have proposed a generalization of the diffuse interface model through an assumption of local equilibrium for redox mechanisms. A particular attention was paid to the model analysis by 1D numerical simulations with a special focus on the steady state composition profiles. Finally we have applied this model to the U-O-Zr-Fe system. For that purpose, we have considered a configuration close to small-scale experimental tests of oxide-metal corium pool stratification. (author) [fr

  14. Diffusion

    International Nuclear Information System (INIS)

    Kubaschewski, O.

    1983-01-01

    The diffusion rate values of titanium, its compounds and alloys are summarized and tabulated. The individual chemical diffusion coefficients and self-diffusion coefficients of certain isotopes are given. Experimental methods are listed which were used for the determination of diffusion coefficients. Some values have been taken over from other studies. Also given are graphs showing the temperature dependences of diffusion and changes in the diffusion coefficient with concentration changes

  15. Computing diffuse fraction of global horizontal solar radiation: A model comparison.

    Science.gov (United States)

    Dervishi, Sokol; Mahdavi, Ardeshir

    2012-06-01

    For simulation-based prediction of buildings' energy use or expected gains from building-integrated solar energy systems, information on both direct and diffuse component of solar radiation is necessary. Available measured data are, however, typically restricted to global horizontal irradiance. There have been thus many efforts in the past to develop algorithms for the derivation of the diffuse fraction of solar irradiance. In this context, the present paper compares eight models for estimating diffuse fraction of irradiance based on a database of measured irradiance from Vienna, Austria. These models generally involve mathematical formulations with multiple coefficients whose values are typically valid for a specific location. Subsequent to a first comparison of these eight models, three better performing models were selected for a more detailed analysis. Thereby, the coefficients of the models were modified to account for Vienna data. The results suggest that some models can provide relatively reliable estimations of the diffuse fractions of the global irradiance. The calibration procedure could only slightly improve the models' performance.

  16. A diffusion model for two parallel queues with processor sharing: transient behavior and asymptotics

    Directory of Open Access Journals (Sweden)

    Charles Knessl

    1999-01-01

    Full Text Available We consider two identical, parallel M/M/1 queues. Both queues are fed by a Poisson arrival stream of rate λ and have service rates equal to μ. When both queues are non-empty, the two systems behave independently of each other. However, when one of the queues becomes empty, the corresponding server helps in the other queue. This is called head-of-the-line processor sharing. We study this model in the heavy traffic limit, where ρ=λ/μ→1. We formulate the heavy traffic diffusion approximation and explicitly compute the time-dependent probability of the diffusion approximation to the joint queue length process. We then evaluate the solution asymptotically for large values of space and/or time. This leads to simple expressions that show how the process achieves its stead state and other transient aspects.

  17. Modelling and simulation of diffusive processes methods and applications

    CERN Document Server

    Basu, SK

    2014-01-01

    This book addresses the key issues in the modeling and simulation of diffusive processes from a wide spectrum of different applications across a broad range of disciplines. Features: discusses diffusion and molecular transport in living cells and suspended sediment in open channels; examines the modeling of peristaltic transport of nanofluids, and isotachophoretic separation of ionic samples in microfluidics; reviews thermal characterization of non-homogeneous media and scale-dependent porous dispersion resulting from velocity fluctuations; describes the modeling of nitrogen fate and transport

  18. Integrating Models of Diffusion and Behavior to Predict Innovation Adoption, Maintenance, and Social Diffusion.

    Science.gov (United States)

    Smith, Rachel A; Kim, Youllee; Zhu, Xun; Doudou, Dimi Théodore; Sternberg, Eleanore D; Thomas, Matthew B

    2018-01-01

    This study documents an investigation into the adoption and diffusion of eave tubes, a novel mosquito vector control, during a large-scale scientific field trial in West Africa. The diffusion of innovations (DOI) and the integrated model of behavior (IMB) were integrated (i.e., innovation attributes with attitudes and social pressures with norms) to predict participants' (N = 329) diffusion intentions. The findings showed that positive attitudes about the innovation's attributes were a consistent positive predictor of diffusion intentions: adopting it, maintaining it, and talking with others about it. As expected by the DOI and the IMB, the social pressure created by a descriptive norm positively predicted intentions to adopt and maintain the innovation. Drawing upon sharing research, we argued that the descriptive norm may dampen future talk about the innovation, because it may no longer be seen as a novel, useful topic to discuss. As predicted, the results showed that as the descriptive norm increased, the intention to talk about the innovation decreased. These results provide broad support for integrating the DOI and the IMB to predict diffusion and for efforts to draw on other research to understand motivations for social diffusion.

  19. Restrictive liquid-phase diffusion and reaction in bidispersed catalysts

    International Nuclear Information System (INIS)

    Lee, S.Y.; Seader, J.D.; Tsai, C.H.; Massoth, F.E.

    1991-01-01

    In this paper, the effect of bidispersed pore-size distribution on liquid-phase diffusion and reaction in NiMo/Al 2 O 3 catalysts is investigated by applying two bidispersed-pore-structure models, the random-pore model and a globular-structure model, to extensive experimental data, which were obtained from sorptive diffusion measurements at ambient conditions and catalytic reaction rate measurements on nitrogen-containing compounds. Transport of the molecules in the catalysts was found to be controlled by micropore diffusion, in accordance with the random-pore model, rather than macropore diffusion as predicted by the globular-structure model. A qualitative criterion for micropore-diffusion control is proposed: relatively small macroporosity and high catalyst pellet density. Since most hydrotreating catalysts have high density, diffusion in these types of catalysts may be controlled by micropore diffusion. Accordingly, it is believed in this case that increasing the size of micropores may be more effective to reduce intraparticle diffusion resistance than incorporating macropores alone

  20. Rates of convergence and asymptotic normality of curve estimators for ergodic diffusion processes

    NARCIS (Netherlands)

    J.H. van Zanten (Harry)

    2000-01-01

    textabstractFor ergodic diffusion processes, we study kernel-type estimators for the invariant density, its derivatives and the drift function. We determine rates of convergence and find the joint asymptotic distribution of the estimators at different points.

  1. A generalized diffusion model for growth of nanoparticles synthesized by colloidal methods.

    Science.gov (United States)

    Wen, Tianlong; Brush, Lucien N; Krishnan, Kannan M

    2014-04-01

    A nanoparticle growth model is developed to predict and guide the syntheses of monodisperse colloidal nanoparticles in the liquid phase. The model, without any a priori assumptions, is based on the Fick's law of diffusion, conservation of mass and the Gibbs-Thomson equation for crystal growth. In the limiting case, this model reduces to the same expression as the currently accepted model that requires the assumption of a diffusion layer around each nanoparticle. The present growth model bridges the two limiting cases of the previous model i.e. complete diffusion controlled and adsorption controlled growth of nanoparticles. Specifically, the results show that a monodispersion of nanoparticles can be obtained both with fast monomer diffusion and with surface reaction under conditions of small diffusivity to surface reaction constant ratio that results is growth 'focusing'. This comprehensive description of nanoparticle growth provides new insights and establishes the required conditions for fabricating monodisperse nanoparticles critical for a wide range of applications. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Random variability in mesoscale wind observations and implications for diffusion models

    Energy Technology Data Exchange (ETDEWEB)

    Hanna, S.R. [Sigma Research Corp., Concord, MA (United States)

    1994-12-31

    The investigation reported in this paper grew out of a preliminary analysis of methods by which regional air quality models such as the Regional Oxidant Model account for horizontal transport and diffusion. It was discovered that there is a variety of often inconsistent methods used to parameterize horizontal diffusion at meso- and regional scales, and the time seemed ripe to review and compare and contrast these schemes. This paper provides a brief overview of the major issues that were uncovered and lists a few specific examples of the technical approaches that are used. Subsequent sections cover the basic physics of horizontal diffusion, the characteristics of observed wind fields, and methods of parameterizing horizontal diffusion in air quality models.

  3. Dense-gas dispersion advection-diffusion model

    International Nuclear Information System (INIS)

    Ermak, D.L.

    1992-07-01

    A dense-gas version of the ADPIC particle-in-cell, advection- diffusion model was developed to simulate the atmospheric dispersion of denser-than-air releases. In developing the model, it was assumed that the dense-gas effects could be described in terms of the vertically-averaged thermodynamic properties and the local height of the cloud. The dense-gas effects were treated as a perturbation to the ambient thermodynamic properties (density and temperature), ground level heat flux, turbulence level (diffusivity), and windfield (gravity flow) within the local region of the dense-gas cloud. These perturbations were calculated from conservation of energy and conservation of momentum principles along with the ideal gas law equation of state for a mixture of gases. ADPIC, which is generally run in conjunction with a mass-conserving wind flow model to provide the advection field, contains all the dense-gas modifications within it. This feature provides the versatility of coupling the new dense-gas ADPIC with alternative wind flow models. The new dense-gas ADPIC has been used to simulate the atmospheric dispersion of ground-level, colder-than-ambient, denser-than-air releases and has compared favorably with the results of field-scale experiments

  4. Optimizing the Diffusion Welding Process for Alloy 800H: Thermodynamic, Diffusion Modeling, and Experimental Work

    International Nuclear Information System (INIS)

    Mizia, R.E.; Clark, D.E.; Glazoff, M.V.; Lister, Tedd E.; Trowbridge, T.L.

    2011-01-01

    A research effort was made to evaluate the usefulness of modern thermodynamic and diffusion computational tools, Thermo-Calc(copyright) and Dictra(copyright), in optimizing the parameters for diffusion welding of Alloy 800H. This would achieve a substantial reduction in the overall number of experiments required to achieve optimal welding and post-weld heat treatment conditions. This problem is important because diffusion welded components of Alloy 800H are being evaluated for use in assembling compact, micro-channel heat exchangers that are being proposed in the design of a high temperature gas-cooled reactor by the US Department of Energy. The modeling was done in close contact with experimental work. The latter included using the Gleeble 3500 System(reg sign) for welding simulation, mechanical property measurement, and light optical and Scanning Electron Microscopy. The modeling efforts suggested a temperature of 1150 C for 1 hour with an applied pressure of 5 MPa using a 15 μm Ni foil as a joint filler to reduce chromium oxidation on the welded surfaces. Good agreement between modeled and experimentally determined concentration gradients was achieved, and model refinements to account for the complexity of actual alloy materials are suggested.

  5. Validation of a mixture-averaged thermal diffusion model for premixed lean hydrogen flames

    Science.gov (United States)

    Schlup, Jason; Blanquart, Guillaume

    2018-03-01

    The mixture-averaged thermal diffusion model originally proposed by Chapman and Cowling is validated using multiple flame configurations. Simulations using detailed hydrogen chemistry are done on one-, two-, and three-dimensional flames. The analysis spans flat and stretched, steady and unsteady, and laminar and turbulent flames. Quantitative and qualitative results using the thermal diffusion model compare very well with the more complex multicomponent diffusion model. Comparisons are made using flame speeds, surface areas, species profiles, and chemical source terms. Once validated, this model is applied to three-dimensional laminar and turbulent flames. For these cases, thermal diffusion causes an increase in the propagation speed of the flames as well as increased product chemical source terms in regions of high positive curvature. The results illustrate the necessity for including thermal diffusion, and the accuracy and computational efficiency of the mixture-averaged thermal diffusion model.

  6. An innovation diffusion model for new mobile technologies acceptance

    Directory of Open Access Journals (Sweden)

    Barkoczia Nadi

    2017-01-01

    Full Text Available This paper aims to approach the diffusion model developed in 1960 by Frank Bass has been utilized to study the distribution of different types of new products and services. The Bass Model helps by describing the process in which new products are adopted in a market. This model is a useful tool for predicting the first purchase of an innovative product for which there are competing alternatives on the market. It also provides the innovator with information regarding the size of customers and the adoption time for the product. The second part of the paper is dedicated to a monographic study of specific conceptual correlations between the diffusion of technology and marketing management that emphasizes technological uncertainty and market uncertainty as major risks to innovative projects. In the final section, the results of empirical research conducted in Baia-Mare, Romania will be presented in a way that uses diffusion Bass model to estimate the adoption period for new mobile technologies.

  7. Impact of the solution ionic strength on strontium diffusion through the Callovo-Oxfordian clayrocks: An experimental and modeling study

    International Nuclear Information System (INIS)

    Savoye, S.; Beaucaire, C.; Grenut, B.; Fayette, A.

    2015-01-01

    Highlights: • HTO and 85 Sr diffusion is studied in clayrocks under increasing ionic strengths. • Sr diffusive flux is 5 times higher than HTO under standard porewater ionic strength. • Sr diffusive flux is reduced when the porewater ionic strength increases. • The Sr diffusive evolution is qualitatively reproduced by a surface diffusion model. - Abstract: Diffusion of cations in clayrocks is widely investigated, because deep clay-rich formations are currently considered as one of the potential host rocks for radioactive waste repositories. However, several authors have already reported that sorbing cations seem to diffuse at rates larger than those predicted by a simple pore diffusion model from their sorption coefficients and from the diffusive flux of non-sorbing water tracers. This process has been attributed to the migration of cations within the electrical double layer, next to the mineral surfaces, called the surface diffusion phenomenon. The aim of this work was to verify whether this “enhanced” cation diffusion compared to neutral species was observed for strontium and, if so, to what extent this effect might vary with the salinity of the synthetic solutions. These questions were addressed by performing batch sorption, through-diffusion and out-diffusion experiments on rock samples from the Callovo-Oxfordian claystone formation (France). The results showed that there was a good agreement of the distribution ratios (R D ) determined on crushed and intact rocks by batch and through-diffusion methods with a R D decrease related to the increase of the sodium concentration, a sorption competitor. Such a trend was also well reproduced by means of a geochemical modeling based on the multi-site ion exchange (MSIE) theory. Moreover, the “enhanced” diffusion for strontium was clearly observed in this study: the Sr diffusive flux was almost five times higher than that for HTO in the cell with the lowest ionic strength, and diminished to less than 1

  8. Diffusion-driven and excitation-dependent recombination rate in blue InGaN/GaN quantum well structures

    International Nuclear Information System (INIS)

    Aleksiejūnas, R.; Gelžinytė, K.; Nargelas, S.; Jarašiūnas, K.; Vengris, M.; Armour, E. A.; Byrnes, D. P.; Arif, R. A.; Lee, S. M.; Papasouliotis, G. D.

    2014-01-01

    We report on diffusion-driven and excitation-dependent carrier recombination rate in multiple InGaN/GaN quantum wells by using photoluminescence, light-induced absorption, and diffraction techniques. We demonstrate gradually increasing with excitation carrier diffusivity and its correlation with the recombination rate. At low carrier densities, an increase in radiative emission and carrier lifetime was observed due to partial saturation of non-radiative recombination centers. However, at carrier densities above ∼5 × 10 18  cm −3 , a typical value of photoluminescence efficiency droop, a further increase of diffusivity forces the delocalized carriers to face higher number of fast non-radiative recombination centers leading to an increase of non-radiative losses

  9. Diffusion-driven and excitation-dependent recombination rate in blue InGaN/GaN quantum well structures

    Energy Technology Data Exchange (ETDEWEB)

    Aleksiejūnas, R.; Gelžinytė, K.; Nargelas, S., E-mail: saulius.nargelas@ff.vu.lt; Jarašiūnas, K. [Department of Semiconductor Optoelectronics, Institute of Applied Research, Vilnius University, Saulėtekio 9–III, 10222 Vilnius (Lithuania); Vengris, M. [Laser Research Center, Vilnius University, Saulėtekio 10, 10223 Vilnius (Lithuania); Armour, E. A.; Byrnes, D. P.; Arif, R. A.; Lee, S. M.; Papasouliotis, G. D. [Veeco Instruments, Turbodisc Operations, 394 Elizabeth Avenue, Somerset, New Jersey 08873 (United States)

    2014-01-13

    We report on diffusion-driven and excitation-dependent carrier recombination rate in multiple InGaN/GaN quantum wells by using photoluminescence, light-induced absorption, and diffraction techniques. We demonstrate gradually increasing with excitation carrier diffusivity and its correlation with the recombination rate. At low carrier densities, an increase in radiative emission and carrier lifetime was observed due to partial saturation of non-radiative recombination centers. However, at carrier densities above ∼5 × 10{sup 18} cm{sup −3}, a typical value of photoluminescence efficiency droop, a further increase of diffusivity forces the delocalized carriers to face higher number of fast non-radiative recombination centers leading to an increase of non-radiative losses.

  10. Fractional Heat Conduction Models and Thermal Diffusivity Determination

    Directory of Open Access Journals (Sweden)

    Monika Žecová

    2015-01-01

    Full Text Available The contribution deals with the fractional heat conduction models and their use for determining thermal diffusivity. A brief historical overview of the authors who have dealt with the heat conduction equation is described in the introduction of the paper. The one-dimensional heat conduction models with using integer- and fractional-order derivatives are listed. Analytical and numerical methods of solution of the heat conduction models with using integer- and fractional-order derivatives are described. Individual methods have been implemented in MATLAB and the examples of simulations are listed. The proposal and experimental verification of the methods for determining thermal diffusivity using half-order derivative of temperature by time are listed at the conclusion of the paper.

  11. Liver fibrosis: stretched exponential model outperforms mono-exponential and bi-exponential models of diffusion-weighted MRI.

    Science.gov (United States)

    Seo, Nieun; Chung, Yong Eun; Park, Yung Nyun; Kim, Eunju; Hwang, Jinwoo; Kim, Myeong-Jin

    2018-07-01

    To compare the ability of diffusion-weighted imaging (DWI) parameters acquired from three different models for the diagnosis of hepatic fibrosis (HF). Ninety-five patients underwent DWI using nine b values at 3 T magnetic resonance. The hepatic apparent diffusion coefficient (ADC) from a mono-exponential model, the true diffusion coefficient (D t ), pseudo-diffusion coefficient (D p ) and perfusion fraction (f) from a biexponential model, and the distributed diffusion coefficient (DDC) and intravoxel heterogeneity index (α) from a stretched exponential model were compared with the pathological HF stage. For the stretched exponential model, parameters were also obtained using a dataset of six b values (DDC # , α # ). The diagnostic performances of the parameters for HF staging were evaluated with Obuchowski measures and receiver operating characteristics (ROC) analysis. The measurement variability of DWI parameters was evaluated using the coefficient of variation (CoV). Diagnostic accuracy for HF staging was highest for DDC # (Obuchowski measures, 0.770 ± 0.03), and it was significantly higher than that of ADC (0.597 ± 0.05, p bi-exponential DWI model • Acquisition of six b values is sufficient to obtain accurate DDC and α.

  12. A comprehensive model of ion diffusion and charge exchange in the cold Io torus

    Science.gov (United States)

    Barbosa, D. D.; Moreno, M. A.

    1988-01-01

    A comprehensive analytic model of radial diffusion in the cold Io torus is developed. The model involves a generalized molecular cloud theory of SO2 and its dissociation fragments SO, O2, S, and O, which are formed at a relatively large rate by solar UV photodissociation of SO2. The key component of the new theory is SO, which can react with S(+) through a near-resonant charge exchange process that is exothermic. This provides a mechanism for the rapid depletion of singly ionized sulfur in the cold torus and can account for the large decrease in the total flux tube content inward of Io's orbit. The model is used to demonstrate quantitatively the effects of radial diffusion in a charge exchange environment that acts as a combined source and sink for ions in various charge states. A detailed quantitative explanation for the O(2+) component of the cold torus is given, and insight is derived into the workings of the so-called plasma 'ribbon'.

  13. Technological diffusion in the Ramsey model

    Czech Academy of Sciences Publication Activity Database

    Duczynski, Petr

    2002-01-01

    Roč. 1, č. 3 (2002), s. 243-250 ISSN 1607-0704 Institutional research plan: CEZ:AV0Z7085904 Keywords : neoclassical growth model * technological diffusion Subject RIV: AH - Economics http://www.ijbe.org/table%20of%20content/pdf/vol1-3/06.pdf

  14. Mechanism and kinetics of hydrated electron diffusion

    International Nuclear Information System (INIS)

    Tay, Kafui A.; Coudert, Francois-Xavier; Boutin, Anne

    2008-01-01

    Molecular dynamics simulations are used to study the mechanism and kinetics of hydrated electron diffusion. The electron center of mass is found to exhibit Brownian-type behavior with a diffusion coefficient considerably greater than that of the solvent. As previously postulated by both experimental and theoretical works, the instantaneous response of the electron to the librational motions of surrounding water molecules constitutes the principal mode of motion. The diffusive mechanism can be understood within the traditional framework of transfer diffusion processes, where the diffusive step is akin to the exchange of an extramolecular electron between neighboring water molecules. This is a second-order process with a computed rate constant of 5.0 ps -1 at 298 K. In agreement with experiment the electron diffusion exhibits Arrhenius behavior over the temperature range of 298-400 K. We compute an activation energy of 8.9 kJ mol -1 . Through analysis of Arrhenius plots and the application of a simple random walk model it is demonstrated that the computed rate constant for exchange of an excess electron is indeed the phenomenological rate constant associated with the diffusive process

  15. CFD analysis of flow fields for shrouded wind turbine’s diffuser model with different flange angles

    Directory of Open Access Journals (Sweden)

    Aly M. El-Zahaby

    2017-03-01

    Present model verification indicates a good agreement between present numerical work and previous published experimental work. The numerical simulation shows the created vortices behind flange that cause pressure drop which increases mass flow rate through the diffuser. The results indicate also that the right flange angle at 15° is the optimum angle that accelerates flow at diffuser entrance. The increase of velocity at this optimum flange angles is higher than the case of normal angle, where the expected increase in the generated power by wind turbine can reach 5% more compared with normal flange.

  16. A mathematical model in charactering chloride diffusivity in unsaturated cementitious material

    NARCIS (Netherlands)

    Zhang, Y.; Ye, G.; Pecur, I.B.; Baricevic, A.; Stirmer, N; Bjegovic, D.

    2017-01-01

    In this paper, a new analytic model for predicting chloride diffusivity in unsaturated cementitious materials is developed based on conductivity theory and Nernst-Einstein equation. The model specifies that chloride diffusivity in unsaturated cementitious materials can be mathematically described as

  17. Information diffusion, Facebook clusters, and the simplicial model of social aggregation: a computational simulation of simplicial diffusers for community health interventions.

    Science.gov (United States)

    Kee, Kerk F; Sparks, Lisa; Struppa, Daniele C; Mannucci, Mirco A; Damiano, Alberto

    2016-01-01

    By integrating the simplicial model of social aggregation with existing research on opinion leadership and diffusion networks, this article introduces the constructs of simplicial diffusers (mathematically defined as nodes embedded in simplexes; a simplex is a socially bonded cluster) and simplicial diffusing sets (mathematically defined as minimal covers of a simplicial complex; a simplicial complex is a social aggregation in which socially bonded clusters are embedded) to propose a strategic approach for information diffusion of cancer screenings as a health intervention on Facebook for community cancer prevention and control. This approach is novel in its incorporation of interpersonally bonded clusters, culturally distinct subgroups, and different united social entities that coexist within a larger community into a computational simulation to select sets of simplicial diffusers with the highest degree of information diffusion for health intervention dissemination. The unique contributions of the article also include seven propositions and five algorithmic steps for computationally modeling the simplicial model with Facebook data.

  18. ANALYSIS OF MAGNETOROTATIONAL INSTABILITY WITH THE EFFECT OF COSMIC-RAY DIFFUSION

    Energy Technology Data Exchange (ETDEWEB)

    Kuwabara, Takuhito [Computational Science and Engineering Division I, AdvanceSoft Corporation, 4-3, Kanda Surugadai, Chiyoda-ku, Tokyo 101-0062 (Japan); Ko, Chung-Ming, E-mail: kuwabrtk@gmail.com, E-mail: cmko@astro.ncu.edu.tw [Department of Physics, Institute of Astronomy and Center for Complex Systems, National Central University, Jhongli, Taiwan 320 (China)

    2015-01-10

    We present the results obtained from the linear stability analysis and 2.5 dimensional magnetohydrodynamic (MHD) simulations of magnetorotational instability (MRI), including the effects of cosmic rays (CRs). We took into account the CR diffusion along the magnetic field but neglected the cross-field-line diffusion. Two models are considered in this paper: the shearing box model and differentially rotating cylinder model. We studied how MRI is affected by the initial CR pressure (i.e., energy) distribution. In the shearing box model, the initial state is uniform distribution. Linear analysis shows that the growth rate of MRI does not depend on the value of the CR diffusion coefficient. In the differentially rotating cylinder model, the initial state is a constant angular momentum polytropic disk threaded by a weak uniform vertical magnetic field. Linear analysis shows that the growth rate of MRI becomes larger if the CR diffusion coefficient is larger. Both results are confirmed by MHD simulations. The MHD simulation results show that the outward movement of matter by the growth of MRI is not impeded by the CR pressure gradient, and the centrifugal force that acts on the concentrated matter becomes larger. Consequently, the growth rate of MRI is increased. On the other hand, if the initial CR pressure is uniform, then the growth rate of the MRI barely depends on the value of the CR diffusion coefficient.

  19. Sorption kinetics of polycyclic aromatic hydrocarbons removal using granular activated carbon: Intraparticle diffusion coefficients

    International Nuclear Information System (INIS)

    Valderrama, C.; Gamisans, X.; Heras, X. de las; Farran, A.; Cortina, J.L.

    2008-01-01

    Granular activated carbon (GAC) was evaluated as a suitable sorbent for polycyclic aromatic hydrocarbons (PAHs) removal from aqueous solutions. For this purpose, kinetic measurements on the extraction of a family of six PAHs were taken. A morphology study was performed by means of a scanning electron microscopy (SEM) analysis of GAC samples. Analyses of the batch rate data for each PAH were carried out using two kinetic models: the homogenous particle diffusion model (HPDM) and the shell progressive model (SPM). The process was controlled by diffusion rate the solutes (PAHs) that penetrated the reacted layer at PAH concentrations in the range of 0.2-10 mg L -1 . The effective particle diffusion coefficients (D eff ) derived from the two models were determined from the batch rate data. The Weber and Morris intraparticle diffusion model made a double contribution to the surface and pore diffusivities in the sorption process. The D eff values derived from both the HPMD and SPM equations varied from 1.1 x 10 -13 to 6.0 x 10 -14 m 2 s -1 . The simplest model, the pore diffusion model, was applied first for data analysis. The model of the next level of complexity, the surface diffusion model, was applied in order to gain a deeper understanding of the diffusion process. This model is able to explain the data, and the apparent surface diffusivities are in the same order of magnitude as the values for the sorption of functionalized aromatic hydrocarbons (phenols and sulphonates) that are described in the literature

  20. Flowing afterglow: construction of an apparatus, measurement of rate constants, and consideration of the diffusive behavior of charges

    International Nuclear Information System (INIS)

    Matsuoka, Shingo; Nakamura, Hirone; Tamura, Takaaki; Fujii, Toshihiro.

    1984-01-01

    A flowing afterglow apparatus was constructed and the operation of the afterglow system including data analysis was tested by measuring the rate constants for the reactions N + + NO, N 2 + + NO, He + + N 2 , and SF 6 + e; the results were 5.8 x 10 -10 , 3.9 x 10 -10 , 1.20 x 10 -9 , and 2.1 x 10 -7 cm 3 s -1 respectively. In the measurements an extraction voltage for ion sampling was not applied to the nose cone in order not to introduce an electric field into the reaction region. A ''non-ambipolar'' model developed by us was used for the data analysis of the ion/molecule reactions. For the data analysis of the electron attachment, a typical curve fit mehtod to the product ion signal was used. However, no theoretical curves fit the experimental points. This disagreement is attributed to a change of the ion-sampling efficiency through the nose-cone aperture arising from a change of the electron-dominated plasma to a negative-ion-dominated plasma with an increasing flow rate of SF 6 . Nevertheless, the attachment rate could be determined by fitting the theoretical and experimantal curves in the limited region of the SF 6 flow rate where the negative-ion-dominated plasma is established at the sampling aperture. All the rate constants obtained here agree reasonably well with literature values. Next, errors in the positive ion/molecule reaction rate constants, which would occur if the diffusion coefficients of the ions and neutrals each have a + 10 % error were calculated for the flow model to be -0.4 and +1.2 % respectively, demonstrating that these parameters are not important in the analysis of data. This insensitivity explains why the nose-cone voltage applied in a typical flowing afterglow operation has not caused a significant error in the published rate constants although it disturbs the ion diffusive behavior. (author)

  1. On Diffusive Climatological Models.

    Science.gov (United States)

    Griffel, D. H.; Drazin, P. G.

    1981-11-01

    A simple, zonally and annually averaged, energy-balance climatological model with diffusive heat transport and nonlinear albedo feedback is solved numerically. Some parameters of the model are varied, one by one, to find the resultant effects on the steady solution representing the climate. In particular, the outward radiation flux, the insulation distribution and the albedo parameterization are varied. We have found an accurate yet simple analytic expression for the mean annual insolation as a function of latitude and the obliquity of the Earth's rotation axis; this has enabled us to consider the effects of the oscillation of the obliquity. We have used a continuous albedo function which fits the observed values; it considerably reduces the sensitivity of the model. Climatic cycles, calculated by solving the time-dependent equation when parameters change slowly and periodically, are compared qualitatively with paleoclimatic records.

  2. Modeling the oxygen diffusion of nanocomposite-based food packaging films.

    Science.gov (United States)

    Bhunia, Kanishka; Dhawan, Sumeet; Sablani, Shyam S

    2012-07-01

    Polymer-layered silicate nanocomposites have been shown to improve the gas barrier properties of food packaging polymers. This study developed a computer simulation model using the commercial software, COMSOL Multiphysics to analyze changes in oxygen barrier properties in terms of relative diffusivity, as influenced by configuration and structural parameters that include volume fraction (φ), aspect ratio (α), intercalation width (W), and orientation angle (θ) of nanoparticles. The simulation was performed at different φ (1%, 3%, 5%, and 7%), α (50, 100, 500, and 1000), and W (1, 3, 5, and 7 nm). The θ value was varied from 0° to 85°. Results show that diffusivity decreases with increasing volume fraction, but beyond φ = 5% and α = 500, diffusivity remained almost constant at W values of 1 and 3 nm. Higher relative diffusivity coincided with increasing W and decreasing α value for the same volume fraction of nanoparticles. Diffusivity increased as the rotational angle increased, gradually diminishing the influence of nanoparticles. Diffusivity increased drastically as θ changed from 15° to 30° (relative increment in relative diffusivity was almost 3.5 times). Nanoparticles with exfoliation configuration exhibited better oxygen barrier properties compared to intercalation. The finite element model developed in this study provides insight into oxygen barrier properties for nanocomposite with a wide range of structural parameters. This model can be used to design and manufacture an ideal nanocomposite-based food packaging film with improved gas barrier properties for industrial applications. The model will assist in designing nanocomposite polymeric structures of desired gas barrier properties for food packaging applications. In addition, this study will be helpful in formulating a combination of nanoparticle structural parameters for designing nanocomposite membranes with selective permeability for the industrial applications including membrane

  3. When mechanism matters: Bayesian forecasting using models of ecological diffusion

    Science.gov (United States)

    Hefley, Trevor J.; Hooten, Mevin B.; Russell, Robin E.; Walsh, Daniel P.; Powell, James A.

    2017-01-01

    Ecological diffusion is a theory that can be used to understand and forecast spatio-temporal processes such as dispersal, invasion, and the spread of disease. Hierarchical Bayesian modelling provides a framework to make statistical inference and probabilistic forecasts, using mechanistic ecological models. To illustrate, we show how hierarchical Bayesian models of ecological diffusion can be implemented for large data sets that are distributed densely across space and time. The hierarchical Bayesian approach is used to understand and forecast the growth and geographic spread in the prevalence of chronic wasting disease in white-tailed deer (Odocoileus virginianus). We compare statistical inference and forecasts from our hierarchical Bayesian model to phenomenological regression-based methods that are commonly used to analyse spatial occurrence data. The mechanistic statistical model based on ecological diffusion led to important ecological insights, obviated a commonly ignored type of collinearity, and was the most accurate method for forecasting.

  4. Affinity functions for modeling glass dissolution rates

    Energy Technology Data Exchange (ETDEWEB)

    Bourcier, W.L. [Lawrence Livermore National Lab., CA (United States)

    1997-07-01

    Glass dissolution rates decrease dramatically as glass approach ''saturation'' with respect to the leachate solution. Most repository sites are chosen where water fluxes are minimal, and therefore the waste glass is most likely to dissolve under conditions close to ''saturation''. The key term in the rate expression used to predict glass dissolution rates close to ''saturation'' is the affinity term, which accounts for saturation effects on dissolution rates. Interpretations of recent experimental data on the dissolution behaviour of silicate glasses and silicate minerals indicate the following: 1) simple affinity control does not explain the observed dissolution rate for silicate minerals or glasses; 2) dissolution rates can be significantly modified by dissolved cations even under conditions far from saturation where the affinity term is near unity; 3) the effects of dissolved species such as Al and Si on the dissolution rate vary with pH, temperature, and saturation state; and 4) as temperature is increased, the effect of both pH and temperature on glass and mineral dissolution rates decrease, which strongly suggests a switch in rate control from surface reaction-based to diffusion control. Borosilicate glass dissolution models need to be upgraded to account for these recent experimental observations. (A.C.)

  5. Diffusion of gases in solids: rare gas diffusion in solids; tritium diffusion in fission and fusion reactor metals. Final report

    International Nuclear Information System (INIS)

    Abraham, P.M.; Chandra, D.; Mintz, J.M.; Elleman, T.S.; Verghese, K.

    1976-01-01

    Major results of tritium and rare gas diffusion research conducted under the contract are summarized. The materials studied were austenitic stainless steels, Zircaloy, and niobium. In all three of the metal systems investigated, tritium release rates were found to be inhibited by surface oxide films. The effective diffusion coefficients that control tritium release from surface films on Zircaloy and niobium were determined to be eight to ten orders of magnitude lower than the bulk diffusion coefficients. A rapid component of diffusion due to grain boundaries was identified in stainless steels. The grain boundary diffusion coefficient was determined to be about six orders of magnitude greater than the bulk diffusion coefficient for tritium in stainless steel. In Zircaloy clad fuel pins, the permeation rate of tritium through the cladding is rate-limited by the extremely slow diffusion rate in the surface films. Tritium diffusion rates through surface oxide films on niobium appear to be controlled by cracks in the surface films at temperatures up to 600 0 C. Beyond 600 0 C, the cracks appear to heal, thereby increasing the activation energy for diffusion through the oxide film. The steady-state diffusion of tritium in a fusion reactor blanket has been evaluated in order to calculate the equilibrium tritium transport rate, approximate time to equilibrium, and tritium inventory in various regions of the reactor blanket as a function of selected blanket parameters. Values for these quantities have been tabulated

  6. An extended diffusive model for calculating thermal diffusivity from single monopole tokamak heat pulse propagation

    International Nuclear Information System (INIS)

    Marinak, M.

    1990-02-01

    The problem of deducing χ e from measurements of the propagation of a monopole heatpulse is considered. An extended diffusive model, which takes into account perturbed sources and sinks is extended to the case of a monopole heat input. χ e is expressed as a function of two observables, the heat pulse velocity and the radial damping rate. Two simple expressions valid for two different ranges of the radius of the poloidal waist of the beam power profile are given. The expressions are valid in the heat pulse measurement region, extending radially 0.05a beyond the beam power waist to near 0.6a. The inferred χ e is a local value, not an average value of the radial χ e profile. 7 refs., 6 figs., 1 tab

  7. Hydrogen Diffusion and H{sub 2}S Corrosion in Steel

    Energy Technology Data Exchange (ETDEWEB)

    Haugstveit, Bjarte Erlend

    2001-01-01

    The electrochemical permeation technique introduced by Devanathan and Stachurski has been used to measure the effective diffusivity of hydrogen in steel in a H{sub 2}S-saturated aqueous environment. The linear polarization resistance (LPR) method has been used to measure the corrosion rate. The effective diffusion coefficient of hydrogen has been found to be in the range of 1*10-12 to 7*10-11, depending on the environmental conditions. The corrosion film was identified as mackinawite, and it affected the permeation process of hydrogen. The results supported the assumption that the diffusion process can be described by a three layer model and indicated that the model could be reduced to a two layer model in the cases of iron and steel. A model aimed to describe the reaction pathway of hydrogen through the surface film and into the steel is proposed. The corrosion film influenced the corrosion rate, and it was least protective against corrosion at pH 6.5. Corrosion rates were in the range of 0.2-1 mm/year. The corrosion rate was increased significantly at pH 3.5, but the effect of the surface film was stronger and overshadowed the pH effect at the higher pH values. Increased flow velocity also lead to increased corrosion rate, but this effect was less significant compared to the effect of pH and the surface film. DEG decreased the corrosion rate. The uncertainty in the diffusion measurements was mainly due to the assumption of a constant sub-surface concentration of atomic hydrogen, which was not fulfilled. A method less dependent on constant surface conditions would probably yield better estimates of the effective diffusivity. The uncertainty in the corrosion measurements was mainly due to the uncertainty in the value of the Stern-Geary constant. The qualitative assumptions based on the results in this thesis are assumed to be valid. A test section designed for this thesis was tested and was found successful in corrosion rate measurements, but proved to be

  8. Diffusion theory model for optimization calculations of cold neutron sources

    International Nuclear Information System (INIS)

    Azmy, Y.Y.

    1987-01-01

    Cold neutron sources are becoming increasingly important and common experimental facilities made available at many research reactors around the world due to the high utility of cold neutrons in scattering experiments. The authors describe a simple two-group diffusion model of an infinite slab LD 2 cold source. The simplicity of the model permits to obtain an analytical solution from which one can deduce the reason for the optimum thickness based solely on diffusion-type phenomena. Also, a second more sophisticated model is described and the results compared to a deterministic transport calculation. The good (particularly qualitative) agreement between the results suggests that diffusion theory methods can be used in parametric and optimization studies to avoid the generally more expensive transport calculations

  9. MHD diffuser model test program

    Energy Technology Data Exchange (ETDEWEB)

    Idzorek, J J

    1976-07-01

    Experimental results of the aerodynamic performance of seven candidate diffusers are presented to assist in determining their suitability for joining an MHD channel to a steam generator at minimum spacing. The three dimensional diffusers varied in area ratio from 2 to 3.8 and wall half angle from 2 to 5 degrees. The program consisted of five phases: (1) tailoring a diffuser inlet nozzle to a 15 percent blockage; (2) comparison of isolated diffusers at enthalpy ratios 0.5 to 1.0 with respect to separation characteristics and pressure recovery coefficients; (3) recording the optimum diffuser exit flow distribution; (4) recording the internal flow distribution within the steam generator when attached to the diffuser; and (5) observing isolated diffuser exhaust dynamic characteristics. The 2 and 2-1/3 degree half angle rectangular diffusers showed recovery coefficients equal to 0.48 with no evidence of flow separation or instability. Diffusion at angles greater than these produced flow instabilities and with angles greater than 3 degrees random flow separation and reattachment.

  10. MHD diffuser model test program

    International Nuclear Information System (INIS)

    Idzorek, J.J.

    1976-07-01

    Experimental results of the aerodynamic performance of seven candidate diffusers are presented to assist in determining their suitability for joining an MHD channel to a steam generator at minimum spacing. The three dimensional diffusers varied in area ratio from 2 to 3.8 and wall half angle from 2 to 5 degrees. The program consisted of five phases: (1) tailoring a diffuser inlet nozzle to a 15 percent blockage; (2) comparison of isolated diffusers at enthalpy ratios 0.5 to 1.0 with respect to separation characteristics and pressure recovery coefficients; (3) recording the optimum diffuser exit flow distribution; (4) recording the internal flow distribution within the steam generator when attached to the diffuser; and (5) observing isolated diffuser exhaust dynamic characteristics. The 2 and 2-1/3 degree half angle rectangular diffusers showed recovery coefficients equal to 0.48 with no evidence of flow separation or instability. Diffusion at angles greater than these produced flow instabilities and with angles greater than 3 degrees random flow separation and reattachment

  11. Modeling tumor growth in the presence of a therapy with an effect on rate growth and variability by means of a modified Gompertz diffusion process.

    Science.gov (United States)

    Román-Román, Patricia; Román-Román, Sergio; Serrano-Pérez, Juan José; Torres-Ruiz, Francisco

    2016-10-21

    In experimental studies on tumor growth, whenever the time evolution of the relative volume of a tumor in an untreated (control) group can be fitted by a Gompertz diffusion process there is a possibility that an antiproliferative therapy, which modifies the growth rate of the process that fits the treated group, may also affect its variability. The present paper proposes several procedures for the estimation of the time function included in the infinitesimal variance of the new process, as well as the time function affecting the growth rate (which is included in the infinitesimal mean). Also, a hypothesis testing is designed to confirm or refute the need for including such a time-dependent function in the infinitesimal variance. In order to validate and compare the proposed procedures a simulation study has been carried out. In addition, a proposal is made for a strategy aimed at finding the optimal combination of procedures for each case. A real data application concerning the effects of cisplatin on a patient-derived xenograft (PDX) tumor model showcases the advantages of this model over others that have been used in the past. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Ion-exchange equilibria and diffusion in engineered backfill

    International Nuclear Information System (INIS)

    Soudek, A.; Jahnke, F.M.; Radke, C.J.

    1984-01-01

    Engineered backfill can add confidence to confinement times of high-level nuclear waste stored in geologic media. This paper discusses the design and operation of a unique radial-flow diffusion cell to determine ion migration rates in backfill material under realistic repository conditions. New experimental results were reported for diffusion of CsCl in a background of NaCl into compacted bentonite and bentonite/quartz mixtures. Representation of the measured diffusion rates by the traditional, homogeneous porous-medium model significantly underestimates cesium penetration distances into the backfill. Surface diffusion is suggested as an additional mechanism by which cations transport in swollen montmorillonite; the surface diffusion coefficients for cesium is determined to be approximately 10 -7 cm 2 /s. An electrostatic site-binding model is developed for ion-exchange equilibria on montmorillonite clay. The effect of pH, ionic strength, and specific adsorption are evaluated and compared favorably to new, experimental exchange isotherms measured on disaggregated clay. The electrostatic site-binding model permits a prediction of the influence of backfill compaction on K/sub d/ values. We find that for strongly adsorbing cations, compactions has little effect. However, anions exhibit significant Donnan exclusion with clay compaction. 40 references, 12 figures

  13. Functional evaluation of hydronephrosis by diffusion-weighted MR imaging: Relationship between apparent diffusion coefficient and split glomerular filtration rate

    International Nuclear Information System (INIS)

    Toyoshima, S.; Noguchi, K.; Seto, H.; Shimizu, M.; Watanabe, N.

    2000-01-01

    To determine the relationship between apparent diffusion coefficient (ADC) values measured by diffusion-weighted MR imaging and split renal function determined by renal scintigraphy in patients with hydronephrosis. Material and Methods: Diffusion-weighted imaging on a 1.5 T MR unit and renal scintigraphy were performed in 36 patients with hydronephrosis (45 hydronephrotic kidneys, 21 non-hydronephrotic kidneys). ADC values of the individual kidneys were measured by diffusion-weighted MR imaging. Split renal function (glomerular filtration rate (GFR)) was determined by renal scintigraphy using 99m Tc-DTPA. The relationship between ADC values and split GFR was examined in 66 kidneys. The hydronephrotic kidneys were further classified into three groups (severe renal dysfunction, GFR 25 ml/min, n=28), and mean values for ADCs were calculated. Results: In hydronephrotic kidneys, there was a moderate positive correlation between ADC values and split GFR (R2=0.56). On the other hand, in non-hydronephrotic kidneys, poor correlation between ADC values and split GFR was observed (R2=0.08). The mean values for ADCs of the dysfunctioning hydronephrotic kidneys (severe renal dysfunction, 1.32x10 -3 ±0.18x10 -3 mm 2 /s; moderate renal dysfunction, 1.38x10 -3 ±0.10x10 -3 mm2/s) were significantly lower than that of the normal functioning hydronephrotic kidneys (1.63x10 -3 ±0.12±10 -3 mm 2 /s). Conclusion: These results indicated that measurement of ADC values by diffusion-weighted MR imaging has a potential value in the evaluation of the functional status of hydronephrotic kidneys

  14. Innovative model-based flow rate optimization for vanadium redox flow batteries

    Science.gov (United States)

    König, S.; Suriyah, M. R.; Leibfried, T.

    2016-11-01

    In this paper, an innovative approach is presented to optimize the flow rate of a 6-kW vanadium redox flow battery with realistic stack dimensions. Efficiency is derived using a multi-physics battery model and a newly proposed instantaneous efficiency determination technique. An optimization algorithm is applied to identify optimal flow rates for operation points defined by state-of-charge (SoC) and current. The proposed method is evaluated against the conventional approach of applying Faraday's first law of electrolysis, scaled to the so-called flow factor. To make a fair comparison, the flow factor is also optimized by simulating cycles with different charging/discharging currents. It is shown through the obtained results that the efficiency is increased by up to 1.2% points; in addition, discharge capacity is also increased by up to 1.0 kWh or 5.4%. Detailed loss analysis is carried out for the cycles with maximum and minimum charging/discharging currents. It is shown that the proposed method minimizes the sum of losses caused by concentration over-potential, pumping and diffusion. Furthermore, for the deployed Nafion 115 membrane, it is observed that diffusion losses increase with stack SoC. Therefore, to decrease stack SoC and lower diffusion losses, a higher flow rate during charging than during discharging is reasonable.

  15. The nature and role of advection in advection-diffusion equations used for modelling bed load transport

    Science.gov (United States)

    Ancey, Christophe; Bohorquez, Patricio; Heyman, Joris

    2016-04-01

    The advection-diffusion equation arises quite often in the context of sediment transport, e.g., for describing time and space variations in the particle activity (the solid volume of particles in motion per unit streambed area). Stochastic models can also be used to derive this equation, with the significant advantage that they provide information on the statistical properties of particle activity. Stochastic models are quite useful when sediment transport exhibits large fluctuations (typically at low transport rates), making the measurement of mean values difficult. We develop an approach based on birth-death Markov processes, which involves monitoring the evolution of the number of particles moving within an array of cells of finite length. While the topic has been explored in detail for diffusion-reaction systems, the treatment of advection has received little attention. We show that particle advection produces nonlocal effects, which are more or less significant depending on the cell size and particle velocity. Albeit nonlocal, these effects look like (local) diffusion and add to the intrinsic particle diffusion (dispersal due to velocity fluctuations), with the important consequence that local measurements depend on both the intrinsic properties of particle displacement and the dimensions of the measurement system.

  16. Diffusion of multiple species with excluded-volume effects

    KAUST Repository

    Bruna, Maria; Chapman, S. Jonathan

    2012-01-01

    Stochastic models of diffusion with excluded-volume effects are used to model many biological and physical systems at a discrete level. The average properties of the population may be described by a continuum model based on partial differential equations. In this paper we consider multiple interacting subpopulations/species and study how the inter-species competition emerges at the population level. Each individual is described as a finite-size hard core interacting particle undergoing Brownian motion. The link between the discrete stochastic equations of motion and the continuum model is considered systematically using the method of matched asymptotic expansions. The system for two species leads to a nonlinear cross-diffusion system for each subpopulation, which captures the enhancement of the effective diffusion rate due to excluded-volume interactions between particles of the same species, and the diminishment due to particles of the other species. This model can explain two alternative notions of the diffusion coefficient that are often confounded, namely collective diffusion and self-diffusion. Simulations of the discrete system show good agreement with the analytic results. © 2012 American Institute of Physics.

  17. Agent-based Modeling Automated: Data-driven Generation of Innovation Diffusion Models

    NARCIS (Netherlands)

    Jensen, T.; Chappin, E.J.L.

    2016-01-01

    Simulation modeling is useful to gain insights into driving mechanisms of diffusion of innovations. This study aims to introduce automation to make identification of such mechanisms with agent-based simulation modeling less costly in time and labor. We present a novel automation procedure in which

  18. Free surface modelling with two-fluid model and reduced numerical diffusion of the interface

    International Nuclear Information System (INIS)

    Strubelj, Luka; Tiselj, Izrok

    2008-01-01

    Full text of publication follows: The free surface flows are successfully modelled with one of existing free surface models, such as: level set method, volume of fluid method (with/without surface reconstruction), front tracking, two-fluid model (two momentum equations) with modified interphase force and others. The main disadvantage of two-fluid model used for simulations of free surface flows is numerical diffusion of the interface, which can be significantly reduced using the method presented in this paper. Several techniques for reduction of numerical diffusion of the interface have been implemented in the volume of fluid model and are based on modified numerical schemes for advection of volume fraction near the interface. The same approach could be used also for two-fluid method, but according to our experience more successful reduction of numerical diffusion of the interface can be achieved with conservative level set method. Within the conservative level set method, continuity equation for volume fraction is solved and after that the numerical diffusion of the interface is reduced in such a way that the thickness of the interface is kept constant during the simulation. Reduction of the interface diffusion can be also called interface sharpening. In present paper the two-fluid model with interface sharpening is validated on Rayleigh-Taylor instability. Under assumptions of isothermal and incompressible flow of two immiscible fluids, we simulated a system with the fluid of higher density located above the fluid of smaller density in two dimensions. Due to gravity in the system, fluid with higher density moves below the fluid with smaller density. Initial condition is not a flat interface between the fluids, but a sine wave with small amplitude, which develops into a mushroom-like structure. Mushroom-like structure in simulation of Rayleigh-Taylor instability later develops to small droplets as result of numerical dispersion of interface (interface sharpening

  19. A model for self-diffusion of guanidinium-based ionic liquids: a molecular simulation study.

    Science.gov (United States)

    Klähn, Marco; Seduraman, Abirami; Wu, Ping

    2008-11-06

    We propose a novel self-diffusion model for ionic liquids on an atomic level of detail. The model is derived from molecular dynamics simulations of guanidinium-based ionic liquids (GILs) as a model case. The simulations are based on an empirical molecular mechanical force field, which has been developed in our preceding work, and it relies on the charge distribution in the actual liquid. The simulated GILs consist of acyclic and cyclic cations that were paired with nitrate and perchlorate anions. Self-diffusion coefficients are calculated at different temperatures from which diffusive activation energies between 32-40 kJ/mol are derived. Vaporization enthalpies between 174-212 kJ/mol are calculated, and their strong connection with diffusive activation energies is demonstrated. An observed formation of cavities in GILs of up to 6.5% of the total volume does not facilitate self-diffusion. Instead, the diffusion of ions is found to be determined primarily by interactions with their immediate environment via electrostatic attraction between cation hydrogen and anion oxygen atoms. The calculated average time between single diffusive transitions varies between 58-107 ps and determines the speed of diffusion, in contrast to diffusive displacement distances, which were found to be similar in all simulated GILs. All simulations indicate that ions diffuse by using a brachiation type of movement: a diffusive transition is initiated by cleaving close contacts to a coordinated counterion, after which the ion diffuses only about 2 A until new close contacts are formed with another counterion in its vicinity. The proposed diffusion model links all calculated energetic and dynamic properties of GILs consistently and explains their molecular origin. The validity of the model is confirmed by providing an explanation for the variation of measured ratios of self-diffusion coefficients of cations and paired anions over a wide range of values, encompassing various ionic liquid classes

  20. Modeling and experiments for the time-dependent diffusion coefficient during methane desorption from coal

    Science.gov (United States)

    Cheng-Wu, Li; Hong-Lai, Xue; Cheng, Guan; Wen-biao, Liu

    2018-04-01

    Statistical analysis shows that in the coal matrix, the diffusion coefficient for methane is time-varying, and its integral satisfies the formula μt κ /(1 + β κ ). Therefore, a so-called dynamic diffusion coefficient model (DDC model) is developed. To verify the suitability and accuracy of the DDC model, a series of gas diffusion experiments were conducted using coal particles of different sizes. The results show that the experimental data can be accurately described by the DDC and bidisperse models, but the fit to the DDC model is slightly better. For all coal samples, as time increases, the effective diffusion coefficient first shows a sudden drop, followed by a gradual decrease before stabilizing at longer times. The effective diffusion coefficient has a negative relationship with the size of the coal particle. Finally, the relationship between the constants of the DDC model and the effective diffusion coefficient is discussed. The constant α (μ/R 2 ) denotes the effective coefficient at the initial time, and the constants κ and β control the attenuation characteristic of the effective diffusion coefficient.

  1. Knowledge diffusion in complex networks by considering time-varying information channels

    Science.gov (United States)

    Zhu, He; Ma, Jing

    2018-03-01

    In this article, based on a model of epidemic spreading, we explore the knowledge diffusion process with an innovative mechanism for complex networks by considering time-varying information channels. To cover the knowledge diffusion process in homogeneous and heterogeneous networks, two types of networks (the BA network and the ER network) are investigated. The mean-field theory is used to theoretically draw the knowledge diffusion threshold. Numerical simulation demonstrates that the knowledge diffusion threshold is almost linearly correlated with the mean of the activity rate. In addition, under the influence of the activity rate and distinct from the classic Susceptible-Infected-Susceptible (SIS) model, the density of knowers almost linearly grows with the spreading rate. Finally, in consideration of the ubiquitous mechanism of innovation, we further study the evolution of knowledge in our proposed model. The results suggest that compared with the effect of the spreading rate, the average knowledge version of the population is affected more by the innovation parameter and the mean of the activity rate. Furthermore, in the BA network, the average knowledge version of individuals with higher degree is always newer than those with lower degree.

  2. Estimation of biomedical optical properties by simultaneous use of diffuse reflectometry and photothermal radiometry: investigation of light propagation models

    Science.gov (United States)

    Fonseca, E. S. R.; de Jesus, M. E. P.

    2007-07-01

    The estimation of optical properties of highly turbid and opaque biological tissue is a difficult task since conventional purely optical methods rapidly loose sensitivity as the mean photon path length decreases. Photothermal methods, such as pulsed or frequency domain photothermal radiometry (FD-PTR), on the other hand, show remarkable sensitivity in experimental conditions that produce very feeble optical signals. Photothermal Radiometry is primarily sensitive to absorption coefficient yielding considerably higher estimation errors on scattering coefficients. Conversely, purely optical methods such as Local Diffuse Reflectance (LDR) depend mainly on the scattering coefficient and yield much better estimates of this parameter. Therefore, at moderate transport albedos, the combination of photothermal and reflectance methods can improve considerably the sensitivity of detection of tissue optical properties. The authors have recently proposed a novel method that combines FD-PTR with LDR, aimed at improving sensitivity on the determination of both optical properties. Signal analysis was performed by global fitting the experimental data to forward models based on Monte-Carlo simulations. Although this approach is accurate, the associated computational burden often limits its use as a forward model. Therefore, the application of analytical models based on the diffusion approximation offers a faster alternative. In this work, we propose the calculation of the diffuse reflectance and the fluence rate profiles under the δ-P I approximation. This approach is known to approximate fluence rate expressions better close to collimated sources and boundaries than the standard diffusion approximation (SDA). We extend this study to the calculation of the diffuse reflectance profiles. The ability of the δ-P I based model to provide good estimates of the absorption, scattering and anisotropy coefficients is tested against Monte-Carlo simulations over a wide range of scattering to

  3. Fractional Diffusion Equations and Anomalous Diffusion

    Science.gov (United States)

    Evangelista, Luiz Roberto; Kaminski Lenzi, Ervin

    2018-01-01

    Preface; 1. Mathematical preliminaries; 2. A survey of the fractional calculus; 3. From normal to anomalous diffusion; 4. Fractional diffusion equations: elementary applications; 5. Fractional diffusion equations: surface effects; 6. Fractional nonlinear diffusion equation; 7. Anomalous diffusion: anisotropic case; 8. Fractional Schrödinger equations; 9. Anomalous diffusion and impedance spectroscopy; 10. The Poisson–Nernst–Planck anomalous (PNPA) models; References; Index.

  4. Global stability and pattern formation in a nonlocal diffusive Lotka-Volterra competition model

    Science.gov (United States)

    Ni, Wenjie; Shi, Junping; Wang, Mingxin

    2018-06-01

    A diffusive Lotka-Volterra competition model with nonlocal intraspecific and interspecific competition between species is formulated and analyzed. The nonlocal competition strength is assumed to be determined by a diffusion kernel function to model the movement pattern of the biological species. It is shown that when there is no nonlocal intraspecific competition, the dynamics properties of nonlocal diffusive competition problem are similar to those of classical diffusive Lotka-Volterra competition model regardless of the strength of nonlocal interspecific competition. Global stability of nonnegative constant equilibria are proved using Lyapunov or upper-lower solution methods. On the other hand, strong nonlocal intraspecific competition increases the system spatiotemporal dynamic complexity. For the weak competition case, the nonlocal diffusive competition model may possess nonconstant positive equilibria for some suitably large nonlocal intraspecific competition coefficients.

  5. Edge flame instability in low-strain-rate counterflow diffusion flames

    Energy Technology Data Exchange (ETDEWEB)

    Park, June Sung; Hwang, Dong Jin; Park, Jeong; Kim, Jeong Soo; Kim, Sungcho [School of Mechanical and Aerospace Engineering, Sunchon National University, 315 Maegok-dong, Suncheon, Jeonnam 540-742 (Korea, Republic of); Keel, Sang In [Environment & amp; Energy Research Division, Korea Institute of Machinery and Materials, P.O. Box 101, Yusung-gu, Taejon 305-343 (Korea, Republic of); Kim, Tae Kwon [School of Mechanical & amp; Automotive Engineering, Keimyung University, 1000 Sindang-dong, Dalseo-gu, Daegu 704-701 (Korea, Republic of); Noh, Dong Soon [Energy System Research Department, Korea Institute of Energy Research, 71-2 Jang-dong, Yusung-gu, Taejon 305-343 (Korea, Republic of)

    2006-09-15

    Experiments in low-strain-rate methane-air counterflow diffusion flames diluted with nitrogen have been conducted to study flame extinction behavior and edge flame oscillation in which flame length is less than the burner diameter and thus lateral conductive heat loss, in addition to radiative loss, could be high at low global strain rates. The critical mole fraction at flame extinction is examined in terms of velocity ratio and global strain rate. Onset conditions of the edge flame oscillation and the relevant modes are also provided with global strain rate and nitrogen mole fraction in the fuel stream or in terms of fuel Lewis number. It is observed that flame length is intimately relevant to lateral heat loss, and this affects flame extinction and edge flame oscillation considerably. Lateral heat loss causes flame oscillation even at fuel Lewis number less than unity. Edge flame oscillations, which result from the advancing and retreating edge flame motion of the outer flame edge of low-strain-rate flames, are categorized into three modes: a growing, a decaying, and a harmonic-oscillation mode. A flame stability map based on the flame oscillation modes is also provided for low-strain-rate flames. The important contribution of lateral heat loss even to edge flame oscillation is clarified finally. (author)

  6. Analytic treatment of nuclear spin-lattice relaxation for diffusion in a cone model

    Science.gov (United States)

    Sitnitsky, A. E.

    2011-12-01

    We consider nuclear spin-lattice relaxation rate resulted from a diffusion equation for rotational wobbling in a cone. We show that the widespread point of view that there are no analytical expressions for correlation functions for wobbling in a cone model is invalid and prove that nuclear spin-lattice relaxation in this model is exactly tractable and amenable to full analytical description. The mechanism of relaxation is assumed to be due to dipole-dipole interaction of nuclear spins and is treated within the framework of the standard Bloemberger, Purcell, Pound-Solomon scheme. We consider the general case of arbitrary orientation of the cone axis relative the magnetic field. The BPP-Solomon scheme is shown to remain valid for systems with the distribution of the cone axes depending only on the tilt relative the magnetic field but otherwise being isotropic. We consider the case of random isotropic orientation of cone axes relative the magnetic field taking place in powders. Also we consider the cases of their predominant orientation along or opposite the magnetic field and that of their predominant orientation transverse to the magnetic field which may be relevant for, e.g., liquid crystals. Besides we treat in details the model case of the cone axis directed along the magnetic field. The latter provides direct comparison of the limiting case of our formulas with the textbook formulas for free isotropic rotational diffusion. The dependence of the spin-lattice relaxation rate on the cone half-width yields results similar to those predicted by the model-free approach.

  7. Pattern Formation in Predator-Prey Model with Delay and Cross Diffusion

    Directory of Open Access Journals (Sweden)

    Xinze Lian

    2013-01-01

    Full Text Available We consider the effect of time delay and cross diffusion on the dynamics of a modified Leslie-Gower predator-prey model incorporating a prey refuge. Based on the stability analysis, we demonstrate that delayed feedback may generate Hopf and Turing instability under some conditions, resulting in spatial patterns. One of the most interesting findings is that the model exhibits complex pattern replication: the model dynamics exhibits a delay and diffusion controlled formation growth not only to spots, stripes, and holes, but also to spiral pattern self-replication. The results indicate that time delay and cross diffusion play important roles in pattern formation.

  8. A Nonlinear Diffusion Equation-Based Model for Ultrasound Speckle Noise Removal

    Science.gov (United States)

    Zhou, Zhenyu; Guo, Zhichang; Zhang, Dazhi; Wu, Boying

    2018-04-01

    Ultrasound images are contaminated by speckle noise, which brings difficulties in further image analysis and clinical diagnosis. In this paper, we address this problem in the view of nonlinear diffusion equation theories. We develop a nonlinear diffusion equation-based model by taking into account not only the gradient information of the image, but also the information of the gray levels of the image. By utilizing the region indicator as the variable exponent, we can adaptively control the diffusion type which alternates between the Perona-Malik diffusion and the Charbonnier diffusion according to the image gray levels. Furthermore, we analyze the proposed model with respect to the theoretical and numerical properties. Experiments show that the proposed method achieves much better speckle suppression and edge preservation when compared with the traditional despeckling methods, especially in the low gray level and low-contrast regions.

  9. Multi-species counter-current diffusion model for etching depleted uranium oxide in NF3, RF glow discharge

    International Nuclear Information System (INIS)

    Saber, H.H.; El-Genk, M.S.

    1999-01-01

    Results of recent experiments investigating the decontamination of depleted UO 2 using NF 3 gas, RF gloss discharge, showed that etching rate decreased monotonically with immersion time to the end point. In addition to the formation of non-volatile reaction products on UO 2 surface, the accumulation of UF 6 in the sheath contributed to the decrease in etch rate with immersion time. To investigate the latter, a transient, multi-species, counter-current diffusion model for UO 2 etching is developed. Model results indicated that, depending on gas pressure and absorbed power, the diffusion coefficient of F in the sheath decreased at the end point by ∼15%. At 17.0 Pa and 200 W, the mole fraction of F at UO 2 surface decreased rapidly with immersion time to 61% and 86% of its initial value, after one and two characteristic etch time, respectively, it became almost zero at the end point, reached after 4--5 characteristic etch times

  10. Diffusion trajectory of self-propagating innovations interacting with institutions-incorporation of multi-factors learning function to model PV diffusion in Japan

    International Nuclear Information System (INIS)

    Nagamatsu, Akira; Watanabe, Chihiro; Shum, Kwok L.

    2006-01-01

    This paper first proposes a modeling framework to study diffusion of innovations which exhibit strong interaction with the institution systems across which they diffuse. A unique character of such generic innovation is that specific applications are continually developed during its diffusion. This self-propagation in continual applications generation, which is dependent upon the cumulative installed base of the technological innovation, can be modeled to lead to a dynamic changing carrying capacity in an otherwise simple logistic diffusion curve. The cumulative installed base is dependent upon the price of technology and the cost learning dynamics. This paper utilizes a multi-factors learning function to represent such learning dynamics. Empirical estimates from our model are compared with those from other logistics curve formulations and are shown to better fit the annual PV production data during the past quarter century in the case of Japan. The very fact that the potential of this class of innovation can be leveraged only if it interacts closely with the institution highlights the importance of institutional determinants of adoption and diffusion of such innovations like PV. We therefore attempt to put forward an institutional framework, based on viewing PV as a technology platform, to consider PV diffusion beyond mathematical and empirical modeling. Some future research directions are also proposed. (author)

  11. A photo-tunable membrane based on inter-particle crosslinking for decreasing diffusion rates

    KAUST Repository

    Li, Song

    2015-01-01

    Functional polymeric membranes are widely used to adjust and control the diffusion of molecules. Herein, photosensitive poly(hydroxycinnamic acid) (PHCA) microspheres, which were fabricated by an emulsification solvent-evaporation method, were embedded into an ethyl cellulose matrix to fabricate composite membranes with a photo-tunable property. The photoreaction of PHCA is based on the [2 + 2] cycloaddition of cinnamic moieties upon irradiation with 365 nm light. Intra-particle crosslinking in PHCA microspheres was confirmed in the solution phase, while inter-particle crosslinking between adjacent PHCA microspheres dominated the solid membrane phase. The inter-particle crosslinking turned down the permeability of the composite membranes by 74%. To prove the applicability of the designed system, the composite membrane was coated on a model drug reservoir tablet. Upon irradiating the tablet with UV light, the original permeability decreased by 57%, and consequently the diffusion rate of the cargo (Rhodamine B) from the tablet slowed down. Most importantly, the tablet showed sustained release for over 10 days. This controllability can be further tuned by adjusting the membrane thickness. Composite membranes showed excellent processing reproducibility together with consistent mechanical properties. These results demonstrate that the incorporation of photosensitive PHCA microspheres in polymeric membranes provides a promising photo-tunable material for different applications including coating and separation. This journal is © The Royal Society of Chemistry 2015.

  12. An axisymmetric non-hydrostatic model for double-diffusive water systems

    Science.gov (United States)

    Hilgersom, Koen; Zijlema, Marcel; van de Giesen, Nick

    2018-02-01

    The three-dimensional (3-D) modelling of water systems involving double-diffusive processes is challenging due to the large computation times required to solve the flow and transport of constituents. In 3-D systems that approach axisymmetry around a central location, computation times can be reduced by applying a 2-D axisymmetric model set-up. This article applies the Reynolds-averaged Navier-Stokes equations described in cylindrical coordinates and integrates them to guarantee mass and momentum conservation. The discretized equations are presented in a way that a Cartesian finite-volume model can be easily extended to the developed framework, which is demonstrated by the implementation into a non-hydrostatic free-surface flow model. This model employs temperature- and salinity-dependent densities, molecular diffusivities, and kinematic viscosity. One quantitative case study, based on an analytical solution derived for the radial expansion of a dense water layer, and two qualitative case studies demonstrate a good behaviour of the model for seepage inflows with contrasting salinities and temperatures. Four case studies with respect to double-diffusive processes in a stratified water body demonstrate that turbulent flows are not yet correctly modelled near the interfaces and that an advanced turbulence model is required.

  13. Anomalous diffusion in a symbolic model

    International Nuclear Information System (INIS)

    Ribeiro, H V; Lenzi, E K; Mendes, R S; Santoro, P A

    2011-01-01

    In this work, we investigate some statistical properties of symbolic sequences generated by a numerical procedure in which the symbols are repeated following the power-law probability density. In this analysis, we consider that the sum of n symbols represents the position of a particle in erratic movement. This approach reveals a rich diffusive scenario characterized by non-Gaussian distribution and, depending on the power-law exponent or the procedure used to build the walker, we may have superdiffusion, subdiffusion or usual diffusion. Additionally, we use the continuous-time random walk framework to compare the analytic results with the numerical data, thereby finding good agreement. Because of its simplicity and flexibility, this model can be a candidate for describing real systems governed by power-law probability densities.

  14. Mathematical modeling and effective diffusion of Schinus terebinthifolius leaves during drying

    Directory of Open Access Journals (Sweden)

    André Luís Duarte Goneli

    2014-03-01

    Full Text Available The drying process of agricultural products is extensively used worldwide for controlling and maintaining their quality. For medicinal and aromatic plants, this importance increases even more. Thus, this study aimed at evaluating the drying kinetics of Schinus terebinthifolius Raddi leaves, as well as adjusting different mathematical models to the experimental values of moisture ratio. The leaves were harvested with initial moisture content of approximately 65% (w.b. and submitted to the drying process under controlled conditions of temperature (40ºC, 50ºC, 60ºC and 70ºC, up to the approximate moisture content of 10% (w.b.. Six mathematical models were adjusted to the experimental data cited at the specific literature and used to predict the drying process of agricultural products. According to the results obtained, it was concluded that the modified Henderson & Pabis and Midilli models were the ones that best represented the drying kinetics of S. terebinthifolius leaves. The temperature increase of the drying air promoted a higher rate of water removal from the product. The effective diffusion coefficient increased with the temperature elevation, and its relation to the drying temperature fitted the Arrhenius equation, which presented activation energy for the liquid diffusion, during the drying process, of 74.96 kJ mol-1, for S. terebinthifolius leaves.

  15. Turing instability for a competitor-competitor-mutualist model with nonlinear cross-diffusion effects

    International Nuclear Information System (INIS)

    Wen, Zijuan; Fu, Shengmao

    2016-01-01

    This paper deals with a strongly coupled reaction-diffusion system modeling a competitor-competitor-mutualist three-species model with diffusion, self-diffusion and nonlinear cross-diffusion and subject to Neumann boundary conditions. First, we establish the persistence of a corresponding reaction-diffusion system without self- and cross-diffusion. Second, the global asymptotic stability of the unique positive equilibrium for weakly coupled PDE system is established by using a comparison method. Moreover, under certain conditions about the intra- and inter-species effects, we prove that the uniform positive steady state is linearly unstable for the cross-diffusion system when one of the cross-diffusions is large enough. The results indicate that Turing instability can be driven solely from strong diffusion effect of the first species (or the second species or the third species) due to the pressure of the second species (or the first species).

  16. The brush model - a new approach to numerical modeling of matrix diffusion in fractured clay stone

    International Nuclear Information System (INIS)

    Lege, T.; Shao, H.

    1998-01-01

    A special approach for numerical modeling of contaminant transport in fractured clay stone is presented. The rock matrix and the fractures are simulated with individual formulations for FE grids and transport, coupled into a single model. The capacity of the rock matrix to take up contaminants is taken into consideration with a discrete simulation of matrix diffusion. Thus, the natural process of retardation due to matrix diffusion can be better simulated than by a standard introduction of an empirical parameter into the transport equation. Transport in groundwater in fractured clay stone can be simulated using a model called a 'brush model'. The 'brush handle' is discretized by 2-D finite elements. Advective-dispersive transport in groundwater in the fractures is assumed. The contaminant diffuses into 1D finite elements perpendicular to the fractures, i.e., the 'bristles of the brush'. The conclusion is drawn that matrix diffusion is an important property of fractured clay stone for contaminant retardation. (author)

  17. Use of x-ray absorption imaging to evaluate the effects of heterogeneity on matrix diffusion

    International Nuclear Information System (INIS)

    Altman, S.J.; Tidwell, V.C.; McKenna, S.A.; Meigs, L.C.

    1998-01-01

    An understanding of matrix diffusion is important in assessing potential nuclear waste repositories in geologic media, as it is a potentially significant process in retarding the transport of contaminant species. Recent work done in evaluating the Waste Isolation Pilot Plant (WIPP) in southeastern New Mexico has brought up two issues that complicate the incorporation of diffusion in Performance Assessment calculations. First, interpretations of single-well tracer test data suggest that the tracer was diffusing at multiple rates. Second, the estimated relevant rate(s) of diffusion are dependent on the time and length scales of the problem. To match the observed tracer test data, a model with a distribution of diffusion coefficients was required. This has led to the proposal of applying a model with multiple rates of diffusion, the multirate model, to Performance Assessment calculations for the WIPP. A series of laboratory- scale experiments have been designed for the purpose of evaluating heterogeneity and scaling properties of diffusion rates and to test the multirate model. X-ray absorption imaging was used to visualize and quantify the effects of matrix heterogeneity on the diffusion characteristics for four different centimeter-scale samples of dolomite. The samples were obtained from the Culebra dolomite at the WIPP site. Significant variations in diffusion rates were observed over relatively small length and time (months) scales for the preliminary laboratory experiments. A strong correlation between diffusion rate and porosity was also observed in each of the samples. Two sets of experiments are planned for 1998. The first set of experiments is similar to those described above. For these experiments, fourteen samples exhibiting a broader range of physical characteristics are being tested. The second set of experiments will visualize the combined effect of advection in a fracture and diffusion into adjacent matrix materials. Tracer solution will flow through

  18. Diffusion properties of a guiding center plasma in a model electrostatic turbulence

    International Nuclear Information System (INIS)

    Pettini, M.; Vulpiani, A.; Misguich, J.H.; Balescu, R.; De Leener, M.; Orban, J.

    1986-01-01

    Numerical simulations have been performed to calculate the diffusion coefficient of several hundreds of charged particles across a strong magnetic field B, due to a known spectrum of electrostatic fluctuations. The results have been compared with the turbulent diffusion theory proposed by Misguich et al. The equation of motion is solved with a model electrostatic potential. This potential is also the Hamiltonian of this chaotic non-autonomous system: positive Lyapunov exponents are found in qualitative agreement with theoretical predictions. The absolute diffusion coefficients found in two different models exhibit a transition between two scaling regions: a classical scaling at low amplitudes (D ∼ E 2 /B 2 ), and a Bohm scaling at higher amplitudes (D ∼ E/B), in agreement with the predictions for these models. The value of the diffusion coefficient obtained in the isotropic model shows a satisfactory agreement with the theory. The study of the relative diffusion of initially close particles yields a clear quantitative confirmation of the clump effect and of the validity of the theoretical treatment of such nonlinearities. (26 fig, 20 refs)

  19. Desorption modeling of hydrophobic organic chemicals from plastic sheets using experimentally determined diffusion coefficients in plastics.

    Science.gov (United States)

    Lee, Hwang; Byun, Da-Eun; Kim, Ju Min; Kwon, Jung-Hwan

    2018-01-01

    To evaluate rate of migration from plastic debris, desorption of model hydrophobic organic chemicals (HOCs) from polyethylene (PE)/polypropylene (PP) films to water was measured using PE/PP films homogeneously loaded with the HOCs. The HOCs fractions remaining in the PE/PP films were compared with those predicted using a model characterized by the mass transfer Biot number. The experimental data agreed with the model simulation, indicating that HOCs desorption from plastic particles can generally be described by the model. For hexachlorocyclohexanes with lower plastic-water partition coefficients, desorption was dominated by diffusion in the plastic film, whereas desorption of chlorinated benzenes with higher partition coefficients was determined by diffusion in the aqueous boundary layer. Evaluation of the fraction of HOCs remaining in plastic films with respect to film thickness and desorption time showed that the partition coefficient between plastic and water is the most important parameter influencing the desorption half-life. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Correlation between information diffusion and opinion evolution on social media

    Science.gov (United States)

    Xiong, Fei; Liu, Yun; Zhang, Zhenjiang

    2014-12-01

    Information diffusion and opinion evolution are often treated as two independent processes. Opinion models assume the topic reaches each agent and agents initially have their own ideas. In fact, the processes of information diffusion and opinion evolution often intertwine with each other. Whether the influence between these two processes plays a role in the system state is unclear. In this paper, we collected more than one million real data from a well-known social platform, and analysed large-scale user diffusion behaviour and opinion formation. We found that user inter-event time follows a two-scaling power-law distribution with two different power exponents. Public opinion stabilizes quickly and evolves toward the direction of convergence, but the consensus state is prevented by a few opponents. We propose a three-state opinion model accompanied by information diffusion. Agents form and exchange their opinions during information diffusion. Conversely, agents' opinions also influence their diffusion actions. Simulations show that the model with a correlation of the two processes produces similar statistical characteristics as empirical results. A fast epidemic process drives individual opinions to converge more obviously. Unlike previous epidemic models, the number of infected agents does not always increase with the update rate, but has a peak with an intermediate value of the rate.

  1. Correlation between information diffusion and opinion evolution on social media

    International Nuclear Information System (INIS)

    Xiong, Fei; Liu, Yun; Zhang, Zhenjiang

    2014-01-01

    Information diffusion and opinion evolution are often treated as two independent processes. Opinion models assume the topic reaches each agent and agents initially have their own ideas. In fact, the processes of information diffusion and opinion evolution often intertwine with each other. Whether the influence between these two processes plays a role in the system state is unclear. In this paper, we collected more than one million real data from a well-known social platform, and analysed large-scale user diffusion behaviour and opinion formation. We found that user inter-event time follows a two-scaling power-law distribution with two different power exponents. Public opinion stabilizes quickly and evolves toward the direction of convergence, but the consensus state is prevented by a few opponents. We propose a three-state opinion model accompanied by information diffusion. Agents form and exchange their opinions during information diffusion. Conversely, agents' opinions also influence their diffusion actions. Simulations show that the model with a correlation of the two processes produces similar statistical characteristics as empirical results. A fast epidemic process drives individual opinions to converge more obviously. Unlike previous epidemic models, the number of infected agents does not always increase with the update rate, but has a peak with an intermediate value of the rate. (paper)

  2. Preliminary Hybrid Modeling of the Panama Canal: Operations and Salinity Diffusion

    Directory of Open Access Journals (Sweden)

    Luis Rabelo

    2012-01-01

    Full Text Available This paper deals with the initial modeling of water salinity and its diffusion into the lakes during lock operation on the Panama Canal. A hybrid operational model was implemented using the AnyLogic software simulation environment. This was accomplished by generating an operational discrete-event simulation model and a continuous simulation model based on differential equations, which modeled the salinity diffusion in the lakes. This paper presents that unique application and includes the effective integration of lock operations and its impact on the environment.

  3. Soft tissue deformation modelling through neural dynamics-based reaction-diffusion mechanics.

    Science.gov (United States)

    Zhang, Jinao; Zhong, Yongmin; Gu, Chengfan

    2018-05-30

    Soft tissue deformation modelling forms the basis of development of surgical simulation, surgical planning and robotic-assisted minimally invasive surgery. This paper presents a new methodology for modelling of soft tissue deformation based on reaction-diffusion mechanics via neural dynamics. The potential energy stored in soft tissues due to a mechanical load to deform tissues away from their rest state is treated as the equivalent transmembrane potential energy, and it is distributed in the tissue masses in the manner of reaction-diffusion propagation of nonlinear electrical waves. The reaction-diffusion propagation of mechanical potential energy and nonrigid mechanics of motion are combined to model soft tissue deformation and its dynamics, both of which are further formulated as the dynamics of cellular neural networks to achieve real-time computational performance. The proposed methodology is implemented with a haptic device for interactive soft tissue deformation with force feedback. Experimental results demonstrate that the proposed methodology exhibits nonlinear force-displacement relationship for nonlinear soft tissue deformation. Homogeneous, anisotropic and heterogeneous soft tissue material properties can be modelled through the inherent physical properties of mass points. Graphical abstract Soft tissue deformation modelling with haptic feedback via neural dynamics-based reaction-diffusion mechanics.

  4. Radiosity diffusion model in 3D

    Science.gov (United States)

    Riley, Jason D.; Arridge, Simon R.; Chrysanthou, Yiorgos; Dehghani, Hamid; Hillman, Elizabeth M. C.; Schweiger, Martin

    2001-11-01

    We present the Radiosity-Diffusion model in three dimensions(3D), as an extension to previous work in 2D. It is a method for handling non-scattering spaces in optically participating media. We present the extension of the model to 3D including an extension to the model to cope with increased complexity of the 3D domain. We show that in 3D more careful consideration must be given to the issues of meshing and visibility to model the transport of light within reasonable computational bounds. We demonstrate the model to be comparable to Monte-Carlo simulations for selected geometries, and show preliminary results of comparisons to measured time-resolved data acquired on resin phantoms.

  5. Two-state random walk model of lattice diffusion - 1. Self-correlation function

    International Nuclear Information System (INIS)

    Balakrishnan, V.; Venkataraman, G.

    1981-01-01

    Diffusion with interruptions (arising from localized oscillations, or traps, or mixing between jump diffusion and fluid-like diffusion, etc.) is a very general phenomenon. Its manifestations range from superionic conductance to the behaviour of hydrogen in metals. Based on a continuous-time random walk approach, we present a comprehensive two-state random walk model for the diffusion of a particle on a lattice, incorporating arbitrary holding-time distributions for both localized residence at the sites and inter-site flights, and also the correct first-waiting-time distributions. A synthesis is thus achieved of the two extremes of jump diffusion (zero flight time) and fluid-like diffusion (zero residence time). Various earlier models emerge as special cases of our theory. Among the noteworthy results obtained are: closed-form solutions (in d dimensions, and with arbitrary directional bias) for temporarily uncorrelated jump diffusion and for the fluid diffusion counterpart; a compact, general formula for the mean square displacement; the effects of a continuous spectrum of time scales in the holding-time distributions, etc. The dynamic mobility and the structure factor for 'oscillatory diffusion' are taken up in part 2. (author)

  6. Diffusion archeology for diffusion progression history reconstruction.

    Science.gov (United States)

    Sefer, Emre; Kingsford, Carl

    2016-11-01

    Diffusion through graphs can be used to model many real-world processes, such as the spread of diseases, social network memes, computer viruses, or water contaminants. Often, a real-world diffusion cannot be directly observed while it is occurring - perhaps it is not noticed until some time has passed, continuous monitoring is too costly, or privacy concerns limit data access. This leads to the need to reconstruct how the present state of the diffusion came to be from partial diffusion data. Here, we tackle the problem of reconstructing a diffusion history from one or more snapshots of the diffusion state. This ability can be invaluable to learn when certain computer nodes are infected or which people are the initial disease spreaders to control future diffusions. We formulate this problem over discrete-time SEIRS-type diffusion models in terms of maximum likelihood. We design methods that are based on submodularity and a novel prize-collecting dominating-set vertex cover (PCDSVC) relaxation that can identify likely diffusion steps with some provable performance guarantees. Our methods are the first to be able to reconstruct complete diffusion histories accurately in real and simulated situations. As a special case, they can also identify the initial spreaders better than the existing methods for that problem. Our results for both meme and contaminant diffusion show that the partial diffusion data problem can be overcome with proper modeling and methods, and that hidden temporal characteristics of diffusion can be predicted from limited data.

  7. Exact Markov chain and approximate diffusion solution for haploid genetic drift with one-way mutation.

    Science.gov (United States)

    Hössjer, Ola; Tyvand, Peder A; Miloh, Touvia

    2016-02-01

    The classical Kimura solution of the diffusion equation is investigated for a haploid random mating (Wright-Fisher) model, with one-way mutations and initial-value specified by the founder population. The validity of the transient diffusion solution is checked by exact Markov chain computations, using a Jordan decomposition of the transition matrix. The conclusion is that the one-way diffusion model mostly works well, although the rate of convergence depends on the initial allele frequency and the mutation rate. The diffusion approximation is poor for mutation rates so low that the non-fixation boundary is regular. When this happens we perturb the diffusion solution around the non-fixation boundary and obtain a more accurate approximation that takes quasi-fixation of the mutant allele into account. The main application is to quantify how fast a specific genetic variant of the infinite alleles model is lost. We also discuss extensions of the quasi-fixation approach to other models with small mutation rates. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Modeling experimental stable isotope results from CO2 adsorption and diffusion experiments

    Science.gov (United States)

    Larson, T. E.

    2012-12-01

    steadily increased and became constant after two pore volumes of CO2 flushed through the column. Carbon and oxygen isotope values of the front of the peak (first pore volume) are 2‰ and 5‰ lower than the injected CO2 values, respectively. These results are fit very well using a mass transfer model that only includes binary diffusion between CO2 and helium that account for isotope substitution in the reduced mass coefficient. In contrast to these diffusion-dominated systems, CO2 break through curves from the illite packed column show strong adsorption effects that include a +180‰ increase in the carbon isotope ratio at the front of the peak followed by a 20‰ decrease. Up to 20 pore volumes of CO2 were flushed through the column before the carbon and oxygen isotope values stabilized to their starting values. These adsorption effects cannot be modeled using mass isotope effects alone, and instead must include additional parameters such as volume effects. These results demonstrate the importance of understanding the isotopic effects of CO2 in different substrates, and potentially offers a tracer tool that can be used to quantify surface area, transport distance, and surface reactivity of CO2. Additional applications may include more affectively determining transfer rates of CO2 across low permeability zones.

  9. Putting atomic diffusion theory of magnetic ApBp stars to the test: evaluation of the predictions of time-dependent diffusion models

    Science.gov (United States)

    Kochukhov, O.; Ryabchikova, T. A.

    2018-02-01

    A series of recent theoretical atomic diffusion studies has address the challenging problem of predicting inhomogeneous vertical and horizontal chemical element distributions in the atmospheres of magnetic ApBp stars. Here we critically assess the most sophisticated of such diffusion models - based on a time-dependent treatment of the atomic diffusion in a magnetized stellar atmosphere - by direct comparison with observations as well by testing the widely used surface mapping tools with the spectral line profiles predicted by this theory. We show that the mean abundances of Fe and Cr are grossly underestimated by the time-dependent theoretical diffusion model, with discrepancies reaching a factor of 1000 for Cr. We also demonstrate that Doppler imaging inversion codes, based either on modelling of individual metal lines or line-averaged profiles simulated according to theoretical three-dimensional abundance distribution, are able to reconstruct correct horizontal chemical spot maps despite ignoring the vertical abundance variation. These numerical experiments justify a direct comparison of the empirical two-dimensional Doppler maps with theoretical diffusion calculations. This comparison is generally unfavourable for the current diffusion theory, as very few chemical elements are observed to form overabundance rings in the horizontal field regions as predicted by the theory and there are numerous examples of element accumulations in the vicinity of radial field zones, which cannot be explained by diffusion calculations.

  10. Diffusing diffusivity: Rotational diffusion in two and three dimensions

    Science.gov (United States)

    Jain, Rohit; Sebastian, K. L.

    2017-06-01

    We consider the problem of calculating the probability distribution function (pdf) of angular displacement for rotational diffusion in a crowded, rearranging medium. We use the diffusing diffusivity model and following our previous work on translational diffusion [R. Jain and K. L. Sebastian, J. Phys. Chem. B 120, 3988 (2016)], we show that the problem can be reduced to that of calculating the survival probability of a particle undergoing Brownian motion, in the presence of a sink. We use the approach to calculate the pdf for the rotational motion in two and three dimensions. We also propose new dimensionless, time dependent parameters, αr o t ,2 D and αr o t ,3 D, which can be used to analyze the experimental/simulation data to find the extent of deviation from the normal behavior, i.e., constant diffusivity, and obtain explicit analytical expressions for them, within our model.

  11. Diffusion in energy materials: Governing dynamics from atomistic modelling

    Science.gov (United States)

    Parfitt, D.; Kordatos, A.; Filippatos, P. P.; Chroneos, A.

    2017-09-01

    Understanding diffusion in energy materials is critical to optimising the performance of solid oxide fuel cells (SOFCs) and batteries both of which are of great technological interest as they offer high efficiency for cleaner energy conversion and storage. In the present review, we highlight the insights offered by atomistic modelling of the ionic diffusion mechanisms in SOFCs and batteries and how the growing predictive capability of high-throughput modelling, together with our new ability to control compositions and microstructures, will produce advanced materials that are designed rather than chosen for a given application. The first part of the review focuses on the oxygen diffusion mechanisms in cathode and electrolyte materials for SOFCs and in particular, doped ceria and perovskite-related phases with anisotropic structures. The second part focuses on disordered oxides and two-dimensional materials as these are very promising systems for battery applications.

  12. Analysing model fit of psychometric process models: An overview, a new test and an application to the diffusion model.

    Science.gov (United States)

    Ranger, Jochen; Kuhn, Jörg-Tobias; Szardenings, Carsten

    2017-05-01

    Cognitive psychometric models embed cognitive process models into a latent trait framework in order to allow for individual differences. Due to their close relationship to the response process the models allow for profound conclusions about the test takers. However, before such a model can be used its fit has to be checked carefully. In this manuscript we give an overview over existing tests of model fit and show their relation to the generalized moment test of Newey (Econometrica, 53, 1985, 1047) and Tauchen (J. Econometrics, 30, 1985, 415). We also present a new test, the Hausman test of misspecification (Hausman, Econometrica, 46, 1978, 1251). The Hausman test consists of a comparison of two estimates of the same item parameters which should be similar if the model holds. The performance of the Hausman test is evaluated in a simulation study. In this study we illustrate its application to two popular models in cognitive psychometrics, the Q-diffusion model and the D-diffusion model (van der Maas, Molenaar, Maris, Kievit, & Boorsboom, Psychol Rev., 118, 2011, 339; Molenaar, Tuerlinckx, & van der Maas, J. Stat. Softw., 66, 2015, 1). We also compare the performance of the test to four alternative tests of model fit, namely the M 2 test (Molenaar et al., J. Stat. Softw., 66, 2015, 1), the moment test (Ranger et al., Br. J. Math. Stat. Psychol., 2016) and the test for binned time (Ranger & Kuhn, Psychol. Test. Asess. , 56, 2014b, 370). The simulation study indicates that the Hausman test is superior to the latter tests. The test closely adheres to the nominal Type I error rate and has higher power in most simulation conditions. © 2017 The British Psychological Society.

  13. Evaluation of the Thermodynamic Models for the Thermal Diffusion Factor

    DEFF Research Database (Denmark)

    Gonzalez-Bagnoli, Mariana G.; Shapiro, Alexander; Stenby, Erling Halfdan

    2003-01-01

    Over the years, several thermodynamic models for the thermal diffusion factors for binary mixtures have been proposed. The goal of this paper is to test some of these models in combination with different equations of state. We tested the following models: those proposed by Rutherford and Drickamer...... we applied different thermodynamic models, such as the Soave-Redlich-Kwong and the Peng-Robinson equations of state. The necessity to try different thermo-dynamic models is caused by the high sensitivity of the thermal diffusion factors to the values of the partial molar properties. Two different...... corrections for the determination of the partial molar volumes have been implemented; the Peneloux correction and the correction based on the principle of corresponding states....

  14. Can molecular diffusion explain Space Shuttle plume spreading?

    Science.gov (United States)

    Meier, R. R.; Plane, John M. C.; Stevens, Michael H.; Paxton, L. J.; Christensen, A. B.; Crowley, G.

    2010-04-01

    The satellite-borne Global Ultraviolet Imager (GUVI) has produced more than 20 images of NASA Space Shuttle main engine plumes in the lower thermosphere. These reveal atomic hydrogen and, by inference, water vapor transport over hemispherical-scale distances with speeds much faster than expected from models of thermospheric wind motions. Furthermore, the hydrogen plumes expand rapidly. We find rates that exceed the horizontal diffusion speed at nominal plume altitudes of 104-112 km. Kelley et al. (2009) have proposed a 2-D turbulence mechanism to explain the observed spreading rates (and rapid advection) of the plumes. But upon further investigation, we conclude that H atom diffusion can indeed account for the observed expansion rates by recognizing that vertical diffusion quickly conveys atoms to higher altitudes where horizontal diffusion is much more rapid. We also find evidence for H atom production directly during the Shuttle's main engine burn.

  15. From conservative to reactive transport under diffusion-controlled conditions

    Science.gov (United States)

    Babey, Tristan; de Dreuzy, Jean-Raynald; Ginn, Timothy R.

    2016-05-01

    We assess the possibility to use conservative transport information, such as that contained in transit time distributions, breakthrough curves and tracer tests, to predict nonlinear fluid-rock interactions in fracture/matrix or mobile/immobile conditions. Reference simulated data are given by conservative and reactive transport simulations in several diffusive porosity structures differing by their topological organization. Reactions includes nonlinear kinetically controlled dissolution and desorption. Effective Multi-Rate Mass Transfer models (MRMT) are calibrated solely on conservative transport information without pore topology information and provide concentration distributions on which effective reaction rates are estimated. Reference simulated reaction rates and effective reaction rates evaluated by MRMT are compared, as well as characteristic desorption and dissolution times. Although not exactly equal, these indicators remain very close whatever the porous structure, differing at most by 0.6% and 10% for desorption and dissolution. At early times, this close agreement arises from the fine characterization of the diffusive porosity close to the mobile zone that controls fast mobile-diffusive exchanges. At intermediate to late times, concentration gradients are strongly reduced by diffusion, and reactivity can be captured by a very limited number of rates. We conclude that effective models calibrated solely on conservative transport information like MRMT can accurately estimate monocomponent kinetically controlled nonlinear fluid-rock interactions. Their relevance might extend to more advanced biogeochemical reactions because of the good characterization of conservative concentration distributions, even by parsimonious models (e.g., MRMT with 3-5 rates). We propose a methodology to estimate reactive transport from conservative transport in mobile-immobile conditions.

  16. Turbulent diffusion modelling for windflow and dispersion analysis

    International Nuclear Information System (INIS)

    Bartzis, J.G.

    1988-01-01

    The need for simple but reliable models for turbulent diffusion for windflow and atmospheric dispersion analysis is a necessity today if one takes into consideration the relatively high demand in computer time and costs for such an analysis, arising mainly from the often large solution domains needed, the terrain complexity and the transient nature of the phenomena. In the accident consequence assessment often there is a need for a relatively large number of cases to be analysed increasing further the computer time and costs. Within the framework of searching for relatively simple and universal eddy viscosity/diffusivity models, a new three dimensional non isotropic model is proposed applicable to any domain complexity and any atmospheric stability conditions. The model utilizes the transport equation for turbulent kinetic energy but introduces a new approach in effective length scale estimation based on the flow global characteristics and local atmospheric stability. The model is discussed in detail and predictions are given for flow field and boundary layer thickness. The results are compared with experimental data with satisfactory results

  17. Spreading Speed, Traveling Waves, and Minimal Domain Size in Impulsive Reaction–Diffusion Models

    KAUST Repository

    Lewis, Mark A.

    2012-08-15

    How growth, mortality, and dispersal in a species affect the species\\' spread and persistence constitutes a central problem in spatial ecology. We propose impulsive reaction-diffusion equation models for species with distinct reproductive and dispersal stages. These models can describe a seasonal birth pulse plus nonlinear mortality and dispersal throughout the year. Alternatively, they can describe seasonal harvesting, plus nonlinear birth and mortality as well as dispersal throughout the year. The population dynamics in the seasonal pulse is described by a discrete map that gives the density of the population at the end of a pulse as a possibly nonmonotone function of the density of the population at the beginning of the pulse. The dynamics in the dispersal stage is governed by a nonlinear reaction-diffusion equation in a bounded or unbounded domain. We develop a spatially explicit theoretical framework that links species vital rates (mortality or fecundity) and dispersal characteristics with species\\' spreading speeds, traveling wave speeds, as well as minimal domain size for species persistence. We provide an explicit formula for the spreading speed in terms of model parameters, and show that the spreading speed can be characterized as the slowest speed of a class of traveling wave solutions. We also give an explicit formula for the minimal domain size using model parameters. Our results show how the diffusion coefficient, and the combination of discrete- and continuous-time growth and mortality determine the spread and persistence dynamics of the population in a wide variety of ecological scenarios. Numerical simulations are presented to demonstrate the theoretical results. © 2012 Society for Mathematical Biology.

  18. Nuclear interaction potential in a folded-Yukawa model with diffuse densities

    International Nuclear Information System (INIS)

    Randrup, J.

    1975-09-01

    The folded-Yukawa model for the nuclear interaction potential is generalized to diffuse density distributions which are generated by folding a Yukawa function into sharp generating distributions. The effect of a finite density diffuseness or of a finite interaction range is studied. The Proximity Formula corresponding to the generalized model is derived and numerical comparison is made with the exact results. (8 figures)

  19. Modeling Diffusion and Buoyancy-Driven Convection with Application to Geological CO2 Storage

    KAUST Repository

    Allen, Rebecca

    2015-04-01

    ABSTRACT Modeling Diffusion and Buoyancy-Driven Convection with Application to Geological CO2 Storage Rebecca Allen Geological CO2 storage is an engineering feat that has been undertaken around the world for more than two decades, thus accurate modeling of flow and transport behavior is of practical importance. Diffusive and convective transport are relevant processes for buoyancy-driven convection of CO2 into underlying fluid, a scenario that has received the attention of numerous modeling studies. While most studies focus on Darcy-scale modeling of this scenario, relatively little work exists at the pore-scale. In this work, properties evaluated at the pore-scale are used to investigate the transport behavior modeled at the Darcy-scale. We compute permeability and two different forms of tortuosity, namely hydraulic and diffusive. By generating various pore ge- ometries, we find hydraulic and diffusive tortuosity can be quantitatively different in the same pore geometry by up to a factor of ten. As such, we emphasize that these tortuosities should not be used interchangeably. We find pore geometries that are characterized by anisotropic permeability can also exhibit anisotropic diffusive tortuosity. This finding has important implications for buoyancy-driven convection modeling; when representing the geological formation with an anisotropic permeabil- ity, it is more realistic to also account for an anisotropic diffusivity. By implementing a non-dimensional model that includes both a vertically and horizontally orientated 5 Rayleigh number, we interpret our findings according to the combined effect of the anisotropy from permeability and diffusive tortuosity. In particular, we observe the Rayleigh ratio may either dampen or enhance the diffusing front, and our simulation data is used to express the time of convective onset as a function of the Rayleigh ratio. Also, we implement a lattice Boltzmann model for thermal convective flows, which we treat as an analog for

  20. Durability predictions from rate of diffusion testing of normal portland cement, fly ash, and slag concrete

    International Nuclear Information System (INIS)

    Philipose, K.E.

    1991-09-01

    A waste repository for the belowground disposal of low-level radioactive waste, labelled IRUS (Intrusion Resistant Underground Structure), is planned at the Chalk River Laboratories. It relies greatly on the durability of concrete for a minimum of 500 years of service life. A research program based on laboratory testing to design a durable concrete and predict its useful engineered service life is in progress. The durability of concrete depends on its resistance to deterioration from both internal and external causes. Since the rate of degradation depends to a major extent on the rate of ingress of aggressive ions into concrete, laboratory testing is in progress to establish the diffusion rates of chlorides and sulphate ions. A total of 1000 concrete specimens and 500 paste specimens are being exposed at 22 degrees and 45 degrees C to twenty-five different combinations of corrosive agents, including CO 2 . Procedures to measure the ionic penetration profile and to determine the factors controlling diffusion of ions in the various concretes have been developed. The paper presents the initial results from the research program and the longevity predictions to qualify concretes for the IRUS waste repository, based on 16 months of diffusion testing on laboratory specimens

  1. Hybrid diffusion-P3 equation in N-layered turbid media: steady-state domain.

    Science.gov (United States)

    Shi, Zhenzhi; Zhao, Huijuan; Xu, Kexin

    2011-10-01

    This paper discusses light propagation in N-layered turbid media. The hybrid diffusion-P3 equation is solved for an N-layered finite or infinite turbid medium in the steady-state domain for one point source using the extrapolated boundary condition. The Fourier transform formalism is applied to derive the analytical solutions of the fluence rate in Fourier space. Two inverse Fourier transform methods are developed to calculate the fluence rate in real space. In addition, the solutions of the hybrid diffusion-P3 equation are compared to the solutions of the diffusion equation and the Monte Carlo simulation. For the case of small absorption coefficients, the solutions of the N-layered diffusion equation and hybrid diffusion-P3 equation are almost equivalent and are in agreement with the Monte Carlo simulation. For the case of large absorption coefficients, the model of the hybrid diffusion-P3 equation is more precise than that of the diffusion equation. In conclusion, the model of the hybrid diffusion-P3 equation can replace the diffusion equation for modeling light propagation in the N-layered turbid media for a wide range of absorption coefficients.

  2. Simple Brownian diffusion an introduction to the standard theoretical models

    CERN Document Server

    Gillespie, Daniel T

    2013-01-01

    Brownian diffusion, the motion of large molecules in a sea of very many much smaller molecules, is topical because it is one of the ways in which biologically important molecules move about inside living cells. This book presents the mathematical physics that underlies the four simplest models of Brownian diffusion.

  3. Simulation of diffusion in concentrated lattice gases

    International Nuclear Information System (INIS)

    Kehr, K.W.

    1986-01-01

    Recently the diffusion of particles in lattice gases was studied extensively by theoretical methods and numerical simulations. This paper reviews work on collective and, in particular, on tracer diffusion. The diffusion of tagged particles is characterized by a correlation factor whose behavior as a function of concentration is now well understood. Also the detailed kinetics of the tracer transitions was investigated. A special case is the one-dimensional lattice gas where the tracer diffusion coefficient vanishes. An interesting extension is the case of tagged atoms with a different transition rate. This model allows to study various physical situations, including impurity diffusion, percolation, and diffusion in partially blocked lattices. Finally some recent work on diffusion in lattice gases under the influence of a drift field will be reported. (author)

  4. Incorporating Embedded Microporous Layers into Topologically Equivalent Pore Network Models for Oxygen Diffusivity Calculations in Polymer Electrolyte Membrane Fuel Cell Gas Diffusion Layers

    International Nuclear Information System (INIS)

    Fazeli, Mohammadreza; Hinebaugh, James; Bazylak, Aimy

    2016-01-01

    Highlights: • Pore network model for modeling PEMFC MPL-coated GDL effective diffusivity. • Bilayered GDL (substrate and MPL) is modeled with a hybrid network of block MPL elements combined with discrete substrate pores. • Diffusivities of MPL-coated GDLs agree with analytical solutions. - Abstract: In this work, a voxel-based methodology is introduced for the hybridization of a pore network with interspersed nano-porous material elements allowing pore network based oxygen diffusivity calculations in a 3D image of a polymer electrolyte membrane (PEM) fuel cell gas diffusion layer (GDL) with an embedded microporous layer (MPL). The composite GDL is modeled by combining a hybrid network of block MPL elements with prescribed bulk material properties and a topologically equivalent network of larger discrete pores and throats that are directly derived from the 3D image of the GDL substrate. This hybrid network was incorporated into a pore network model, and effective diffusivity predictions of GDL materials with MPL coatings were obtained. Stochastically generated numerical models of carbon paper substrates with and without MPLs were used, and the pore space was directly extracted from this realistic geometry as the input for the pore network model. The effective diffusion coefficient of MPL-coated GDL materials was predicted from 3D images in a pore network modeling environment without resolving the nano-scale structure of the MPL. This method is particularly useful due to the disparate length scales that are involved when attempting to capture pore-scale transport in the GDL. Validation was performed by comparing our predicted diffusivity values to analytical predictions, and excellent agreement was observed. Upon conducting a mesh sensitivity study, it was determined that an MPL element size of 7 μm provided sufficiently high resolution for accurately describing the MPL nano-structure.

  5. Continuum modelling of silicon diffusion in indium gallium arsenide

    Science.gov (United States)

    Aldridge, Henry Lee, Jr.

    A possible method to overcome the physical limitations experienced by continued transistor scaling and continue improvements in performance and power consumption is integration of III-V semiconductors as alternative channel materials for logic devices. Indium Gallium Arsenide (InGaAs) is such a material from the III-V semiconductor family, which exhibit superior electron mobilities and injection velocities than that of silicon. In order for InGaAs integration to be realized, contact resistances must be minimized through maximizing activation of dopants in this material. Additionally, redistribution of dopants during processing must be clearly understood and ultimately controlled at the nanometer-scale. In this work, the activation and diffusion behavior of silicon, a prominent n-type dopant in InGaAs, has been characterized and subsequently modelled using the Florida Object Oriented Process and Device Simulator (FLOOPS). In contrast to previous reports, silicon exhibits non-negligible diffusion in InGaAs, even for smaller thermal budget rapid thermal anneals (RTAs). Its diffusion is heavily concentration-dependent, with broadening "shoulder-like" profiles when doping levels exceed 1-3x1019cm -3, for both ion-implanted and Molecular Beam Epitaxy (MBE)-grown cases. Likewise a max net-activation value of ˜1.7x1019cm -3 is consistently reached with enough thermal processing, regardless of doping method. In line with experimental results and several ab-initio calculation results, rapid concentration-dependent diffusion of Si in InGaAs and the upper limits of its activation is believed to be governed by cation vacancies that serve as compensating defects in heavily n-type regions of InGaAs. These results are ultimately in line with an amphoteric defect model, where the activation limits of dopants are an intrinsic limitation of the material, rather than governed by individual dopant species or their methods of incorporation. As a result a Fermi level dependent point

  6. Diffusion in higher dimensional SYK model with complex fermions

    Science.gov (United States)

    Cai, Wenhe; Ge, Xian-Hui; Yang, Guo-Hong

    2018-01-01

    We construct a new higher dimensional SYK model with complex fermions on bipartite lattices. As an extension of the original zero-dimensional SYK model, we focus on the one-dimension case, and similar Hamiltonian can be obtained in higher dimensions. This model has a conserved U(1) fermion number Q and a conjugate chemical potential μ. We evaluate the thermal and charge diffusion constants via large q expansion at low temperature limit. The results show that the diffusivity depends on the ratio of free Majorana fermions to Majorana fermions with SYK interactions. The transport properties and the butterfly velocity are accordingly calculated at low temperature. The specific heat and the thermal conductivity are proportional to the temperature. The electrical resistivity also has a linear temperature dependence term.

  7. Technology diffusion in energy-economy models: The case of Danish vintage models

    DEFF Research Database (Denmark)

    Klinge Jacobsen, Henrik

    2000-01-01

    the costs of greenhouse gas mitigation. This paper examines the effect on aggregate energy efficiency of using technological vintage models to describe technology diffusion. The focus is on short- to medium-term issues. Three different models of Danish energy supply and demand are used to illustrate...

  8. Modeling of electromagnetic and thermal diffusion in a large pure aluminum stabilized superconductor under quench

    CERN Document Server

    Gavrilin, A V

    2001-01-01

    Low temperature composite superconductors stabilized with extra large cross-section pure aluminum are currently in use for the Large Helical Device in Japan, modern big detectors such as ATLAS at CERN, and other large magnets. In these types of magnet systems, the rated average current density is not high and the peak field in a region of interest is about 2-4 T. Aluminum stabilized superconductors result in high stability margins and relatively long quench times. Appropriate quench analyses, both for longitudinal and transverse propagation, have to take into account a rather slow diffusion of current from the superconductor into the thick aluminum stabilizer. An exact approach to modeling of the current diffusion would be based on directly solving the Maxwell's equations in parallel with thermal diffusion and conduction relations. However, from a practical point of view, such an approach should be extremely time consuming due to obvious restrictions of computation capacity. At the same time, there exist cert...

  9. Anisotropic diffusion of volatile pollutants at air-water interface

    Directory of Open Access Journals (Sweden)

    Li-ping Chen

    2013-04-01

    Full Text Available The volatile pollutants that spill into natural waters cause water pollution. Air pollution arises from the water pollution because of volatilization. Mass exchange caused by turbulent fluctuation is stronger in the direction normal to the air-water interface than in other directions due to the large density difference between water and air. In order to explore the characteristics of anisotropic diffusion of the volatile pollutants at the air-water interface, the relationship between velocity gradient and mass transfer rate was established to calculate the turbulent mass diffusivity. A second-order accurate smooth transition differencing scheme (STDS was proposed to guarantee the boundedness for the flow and mass transfer at the air-water interface. Simulations and experiments were performed to study the trichloroethylene (C2HCl3 release. By comparing the anisotropic coupling diffusion model, isotropic coupling diffusion model, and non-coupling diffusion model, the features of the transport of volatile pollutants at the air-water interface were determined. The results show that the anisotropic coupling diffusion model is more accurate than the isotropic coupling diffusion model and non-coupling diffusion model. Mass transfer significantly increases with the increase of the air-water relative velocity at a low relative velocity. However, at a higher relative velocity, an increase in the relative velocity has no effect on mass transfer.

  10. Remodelling of cellular excitation (reaction) and intercellular coupling (diffusion) by chronic atrial fibrillation represented by a reaction-diffusion system

    Science.gov (United States)

    Zhang, Henggui; Garratt, Clifford J.; Kharche, Sanjay; Holden, Arun V.

    2009-06-01

    Human atrial tissue is an excitable system, in which myocytes are excitable elements, and cell-to-cell electrotonic interactions are via diffusive interactions of cell membrane potentials. We developed a family of excitable system models for human atrium at cellular, tissue and anatomical levels for both normal and chronic atrial fibrillation (AF) conditions. The effects of AF-induced remodelling of cell membrane ionic channels (reaction kinetics) and intercellular gap junctional coupling (diffusion) on atrial excitability, conduction of excitation waves and dynamics of re-entrant excitation waves are quantified. Both ionic channel and gap junctional coupling remodelling have rate dependent effects on atrial propagation. Membrane channel conductance remodelling allows the propagation of activity at higher rates than those sustained in normal tissue or in tissue with gap junctional remodelling alone. Membrane channel conductance remodelling is essential for the propagation of activity at rates higher than 300/min as seen in AF. Spatially heterogeneous gap junction coupling remodelling increased the risk of conduction block, an essential factor for the genesis of re-entry. In 2D and 3D anatomical models, the dynamical behaviours of re-entrant excitation waves are also altered by membrane channel modelling. This study provides insights to understand the pro-arrhythmic effects of AF-induced reaction and diffusion remodelling in atrial tissue.

  11. Computation of diffusion coefficients for waters of Gauthami Godavari estuary using one-dimensional advection-diffusion model

    Digital Repository Service at National Institute of Oceanography (India)

    Jyothi, D.; Murty, T.V.R.; Sarma, V.V.; Rao, D.P.

    conditions. As the pollutant load on the estuary increases, the. water quality may deteriorate rapidly and therefore the scientific interests are centered on the analysis of water quality. The pollutants will be subjected to a number of physical, chemical... study we have applied one-dimensional advection-diffusion model for the waters of Gauthami Godavari estuary to determine the axial diffusion coefficients and thereby to predict the impact assessment. The study area (Fig. 1) is the lower most 32 km...

  12. An Empirical Rate Constant Based Model to Study Capacity Fading in Lithium Ion Batteries

    Directory of Open Access Journals (Sweden)

    Srivatsan Ramesh

    2015-01-01

    Full Text Available A one-dimensional model based on solvent diffusion and kinetics to study the formation of the SEI (solid electrolyte interphase layer and its impact on the capacity of a lithium ion battery is developed. The model uses the earlier work on silicon oxidation but studies the kinetic limitations of the SEI growth process. The rate constant of the SEI formation reaction at the anode is seen to play a major role in film formation. The kinetics of the reactions for capacity fading for various battery systems are studied and the rate constants are evaluated. The model is used to fit the capacity fade in different battery systems.

  13. Stalled-Flow and Head-Loss Model for Diffuser Pumps

    Science.gov (United States)

    Meng, S. Y.

    1984-01-01

    Modeling procedure approximates inlet transition zone (blade leading edge to blade throat) of diffuser pump as two-dimensional cascade, properties of which are well known. Model applied to stators as well as rotors. Procedure much faster than previous methods.

  14. Molecular Dynamics Simulations of Grain Boundary and Bulk Diffusion in Metals.

    Science.gov (United States)

    Plimpton, Steven James

    Diffusion is a microscopic mass transport mechanism that underlies many important macroscopic phenomena affecting the structural, electrical, and mechanical properties of metals. This thesis presents results from atomistic simulation studies of diffusion both in bulk and in the fast diffusion paths known as grain boundaries. Using the principles of molecular dynamics single boundaries are studied and their structure and dynamic properties characterized. In particular, tilt boundary bicrystal and bulk models of fcc Al and bcc alpha-Fe are simulated. Diffusion coefficients and activation energies for atomic motion are calculated for both models and compared to experimental data. The influence of the interatomic pair potential on the diffusion is studied in detail. A universal relation between the melting temperature that a pair potential induces in a simulated bulk model and the potential energy barrier height for atomic hopping is derived and used to correlate results for a wide variety of pair potentials. Using these techniques grain boundary and bulk diffusion coefficients for any fcc material can be estimated from simple static calculations without the need to perform more time-consuming dynamic simulations. The influences of two other factors on grain boundary diffusion are also studied because of the interest of the microelectronics industry in the diffusion related reliability problem known as electromigration. The first factor, known to affect the self diffusion rate of Al, is the presence of Cu impurity atoms in Al tilt boundaries. The bicrystal model for Al is seeded randomly with Cu atoms and a simple hybrid Morse potential used to model the Al-Cu interaction. While some effect due to the Cu is noted, it is concluded that pair potentials are likely an inadequate approximation for the alloy system. The second factor studied is the effect of the boundary orientation angle on the diffusion rate. Symmetric bcc Fe boundaries are relaxed to find optimal

  15. Epidemic model for information diffusion in web forums: experiments in marketing exchange and political dialog.

    Science.gov (United States)

    Woo, Jiyoung; Chen, Hsinchun

    2016-01-01

    As social media has become more prevalent, its influence on business, politics, and society has become significant. Due to easy access and interaction between large numbers of users, information diffuses in an epidemic style on the web. Understanding the mechanisms of information diffusion through these new publication methods is important for political and marketing purposes. Among social media, web forums, where people in online communities disseminate and receive information, provide a good environment for examining information diffusion. In this paper, we model topic diffusion in web forums using the epidemiology model, the susceptible-infected-recovered (SIR) model, frequently used in previous research to analyze both disease outbreaks and knowledge diffusion. The model was evaluated on a large longitudinal dataset from the web forum of a major retail company and from a general political discussion forum. The fitting results showed that the SIR model is a plausible model to describe the diffusion process of a topic. This research shows that epidemic models can expand their application areas to topic discussion on the web, particularly social media such as web forums.

  16. A current induced diffusion model of gas sputtering

    International Nuclear Information System (INIS)

    Hotston, E.S.

    1980-01-01

    A model is proposed to explain the experimental results on deuteron trapping in stainless steel targets at low temperatures carried out at Garching and Culham. The model proposes that the ions are trapped in two kinds of sites: Deep sites with high activation energy and shallow sites of low activation energy. Trapped deuterons reach the surface of the target by being expelled from shallow sites by the action of the ion beam and migrate to nearby sites in a random way, thus moving by a bombardment induced diffusion. Ions diffusing to the target surface and being released are said to be sputtered from the target. It has been necessary to assume numerical values for sizes of some of the processes which occur. With a suitable choice of values the model successfully predicts the numbers of deuterons trapped per unit area of the target, the obserbed density profile of the trapped ions and the threshold at which sputtering starts. The model also successfully describes the replacement of the trapped deuterons by protons, when the deuteron beam is replaced by a proton beam. The collision cross-section for beam ions and ions trapped in shallow sites is too large, 4 x 10 -13 cm 2 , for a binary collision and it is tentatively suggested that the ions in the shallow sites may be in small voids in the target which may be connected with blister formation. Comparison of the present model with one being developed to describe the trapping of deuterons in carbon suggests that it may be possible to describe all gas sputtering experiments in terms of diffusion processes. (orig.)

  17. Inclusion of the diffuseness in the schematic model of heavy ion collisions

    International Nuclear Information System (INIS)

    Marta, H.D.

    1989-01-01

    The schematic model of central heavy ion collisions developed by Swiatecki includes the Coulomb and surface contributions to the potential energy of the system and one-body dissipation. This model is extended by considering the diffuseness of the nuclear surface; this has the implication that we must consider the proximity forces in the dynamics of the collisions. For the sake of simplicity we work with symmetrical systems. The results of the model studied are compared with experimental data and with other theoretical calculations. We conclude that the detailed consideration of the diffuseness of the nuclear surfaces does not substantially change the results of the schematic model for sharp surfaces in which the diffuseness is considered only through the parameters. (author) [pt

  18. Analytically solvable models of reaction-diffusion systems

    Energy Technology Data Exchange (ETDEWEB)

    Zemskov, E P; Kassner, K [Institut fuer Theoretische Physik, Otto-von-Guericke-Universitaet, Universitaetsplatz 2, 39106 Magdeburg (Germany)

    2004-05-01

    We consider a class of analytically solvable models of reaction-diffusion systems. An analytical treatment is possible because the nonlinear reaction term is approximated by a piecewise linear function. As particular examples we choose front and pulse solutions to illustrate the matching procedure in the one-dimensional case.

  19. Determination of Matrix Diffusion Properties of Granite

    International Nuclear Information System (INIS)

    Holtta, Pirkko; Siitari-Kauppi, Marja; Huittinen, Nina; Poteri, Antti

    2007-01-01

    Rock-core column experiments were introduced to estimate the diffusion and sorption properties of Kuru Grey granite used in block-scale experiments. The objective was to examine the processes causing retention in solute transport through rock fractures, especially matrix diffusion. The objective was also to estimate the importance of retention processes during transport in different scales and flow conditions. Rock-core columns were constructed from cores drilled into the fracture and were placed inside tubes to form flow channels in the 0.5 mm gap between the cores and the tube walls. Tracer experiments were performed using uranin, HTO, 36 Cl, 131 I, 22 Na and 85 Sr at flow rates of 1-50 μL.min -1 . Rock matrix was characterized using 14 C-PMMA method, scanning electron microscopy (SEM), energy dispersive X-ray micro analysis (EDX) and the B.E.T. method. Solute mass flux through a column was modelled by applying the assumption of a linear velocity profile and molecular diffusion. Coupling of the advection and diffusion processes was based on the model of generalised Taylor dispersion in the linear velocity profile. Experiments could be modelled applying a consistent parameterization and transport processes. The results provide evidence that it is possible to investigate matrix diffusion at the laboratory scale. The effects of matrix diffusion were demonstrated on the slightly-sorbing tracer breakthrough curves. Based on scoping calculations matrix diffusion begins to be clearly observable for non-sorbing tracer when the flow rate is 0.1 μL.min -1 . The experimental results presented here cannot be transferred directly to the spatial and temporal scales that prevail in an underground repository. However, the knowledge and understanding of transport and retention processes gained from this study is transferable to different scales from laboratory to in-situ conditions. (authors)

  20. Advanced diffusion model in compacted bentonite based on modified Poisson-Boltzmann equations

    International Nuclear Information System (INIS)

    Yotsuji, K.; Tachi, Y.; Nishimaki, Y.

    2012-01-01

    Document available in extended abstract form only. Diffusion and sorption of radionuclides in compacted bentonite are the key processes in the safe geological disposal of radioactive waste. JAEA has developed the integrated sorption and diffusion (ISD) model for compacted bentonite by coupling the pore water chemistry, sorption and diffusion processes in consistent way. The diffusion model accounts consistently for cation excess and anion exclusion in narrow pores in compacted bentonite by the electric double layer (EDL) theory. The firstly developed ISD model could predict the diffusivity of the monovalent cation/anion in compacted bentonite as a function of dry density. This ISD model was modified by considering the visco-electric effect, and applied for diffusion data for various radionuclides measured under wide range of conditions (salinity, density, etc.). This modified ISD model can give better quantitative agreement with diffusion data for monovalent cation/anion, however, the model predictions still disagree with experimental data for multivalent cation and complex species. In this study we extract the additional key factors influencing diffusion model in narrow charged pores, and the effects of these factors were investigated to reach a better understanding of diffusion processes in compacted bentonite. We investigated here the dielectric saturation effect and the excluded volume effect into the present ISD model and numerically solved these modified Poisson-Boltzmann equations. In the vicinity of the negatively charged clay surfaces, it is necessary to evaluate concentration distribution of electrolytes considering the dielectric saturation effects. The Poisson-Boltzmann (P-B) equation coupled with the dielectric saturation effects was solved numerically by using Runge-Kutta and Shooting methods. Figure 1(a) shows the concentration distributions of Na + as numerical solutions of the modified and original P-B equations for 0.01 M pore water, 800 kg m -3

  1. Ponzi scheme diffusion in complex networks

    Science.gov (United States)

    Zhu, Anding; Fu, Peihua; Zhang, Qinghe; Chen, Zhenyue

    2017-08-01

    Ponzi schemes taking the form of Internet-based financial schemes have been negatively affecting China's economy for the last two years. Because there is currently a lack of modeling research on Ponzi scheme diffusion within social networks yet, we develop a potential-investor-divestor (PID) model to investigate the diffusion dynamics of Ponzi scheme in both homogeneous and inhomogeneous networks. Our simulation study of artificial and real Facebook social networks shows that the structure of investor networks does indeed affect the characteristics of dynamics. Both the average degree of distribution and the power-law degree of distribution will reduce the spreading critical threshold and will speed up the rate of diffusion. A high speed of diffusion is the key to alleviating the interest burden and improving the financial outcomes for the Ponzi scheme operator. The zero-crossing point of fund flux function we introduce proves to be a feasible index for reflecting the fast-worsening situation of fiscal instability and predicting the forthcoming collapse. The faster the scheme diffuses, the higher a peak it will reach and the sooner it will collapse. We should keep a vigilant eye on the harm of Ponzi scheme diffusion through modern social networks.

  2. Application of Fokker-Planck equation in positron diffusion trapping model

    International Nuclear Information System (INIS)

    Bartosova, I.; Ballo, P.

    2015-01-01

    This paper is a theoretical prelude to future work involving positron diffusion in solids for the purpose of positron annihilation lifetime spectroscopy (PALS). PALS is a powerful tool used to study defects present in materials. However, the behavior of positrons in solids is a process hard to describe. Various models have been established to undertake this task. Our preliminary model is based on the Diffusion Trapping Model (DTM) described by partial differential Fokker-Planck equation and is solved via time discretization. Fokker-Planck equation describes the time evolution of the probability density function of velocity of a particle under the influence of various forces. (authors)

  3. A discrete model to study reaction-diffusion-mechanics systems.

    Science.gov (United States)

    Weise, Louis D; Nash, Martyn P; Panfilov, Alexander V

    2011-01-01

    This article introduces a discrete reaction-diffusion-mechanics (dRDM) model to study the effects of deformation on reaction-diffusion (RD) processes. The dRDM framework employs a FitzHugh-Nagumo type RD model coupled to a mass-lattice model, that undergoes finite deformations. The dRDM model describes a material whose elastic properties are described by a generalized Hooke's law for finite deformations (Seth material). Numerically, the dRDM approach combines a finite difference approach for the RD equations with a Verlet integration scheme for the equations of the mass-lattice system. Using this framework results were reproduced on self-organized pacemaking activity that have been previously found with a continuous RD mechanics model. Mechanisms that determine the period of pacemakers and its dependency on the medium size are identified. Finally it is shown how the drift direction of pacemakers in RDM systems is related to the spatial distribution of deformation and curvature effects.

  4. A discrete model to study reaction-diffusion-mechanics systems.

    Directory of Open Access Journals (Sweden)

    Louis D Weise

    Full Text Available This article introduces a discrete reaction-diffusion-mechanics (dRDM model to study the effects of deformation on reaction-diffusion (RD processes. The dRDM framework employs a FitzHugh-Nagumo type RD model coupled to a mass-lattice model, that undergoes finite deformations. The dRDM model describes a material whose elastic properties are described by a generalized Hooke's law for finite deformations (Seth material. Numerically, the dRDM approach combines a finite difference approach for the RD equations with a Verlet integration scheme for the equations of the mass-lattice system. Using this framework results were reproduced on self-organized pacemaking activity that have been previously found with a continuous RD mechanics model. Mechanisms that determine the period of pacemakers and its dependency on the medium size are identified. Finally it is shown how the drift direction of pacemakers in RDM systems is related to the spatial distribution of deformation and curvature effects.

  5. Impact of Social Network and Business Model on Innovation Diffusion of Electric Vehicles in China

    Directory of Open Access Journals (Sweden)

    D. Y. Kong

    2014-01-01

    Full Text Available The diffusion of electric vehicles (EVs involves not only the technological development but also the construction of complex social networks. This paper uses the theory of network control to analyze the influence of network forms on EV diffusion in China, especially focusing on the building of EV business models (BMs and the resulting effects and control on the diffusion of EVs. The Bass model is adopted to forecast the diffusion process of EVs and genetic algorithm is used to estimate the parameters based on the diffusion data of Hybrid Electric Vehicle (HEV in the United States and Japan. Two different social network forms and BMs are selected, that is, battery leasing model and vehicle purchasing model, to analyze how different network forms may influence the innovation coefficient and imitation coefficient in the Bass model, which will in turn result in different diffusion results. Thereby, we can find the appropriate network forms and BMs for EVs which is suitable to the local market conditions.

  6. Effects of radial diffuser hydraulic design on a double-suction centrifugal pump

    Science.gov (United States)

    Hou, H. C.; Zhang, Y. X.; Xu, C.; Zhang, J. Y.; Li, Z. L.

    2016-05-01

    In order to study effects of radial diffuser on hydraulic performance of crude oil pump, the steady CFD numerical method is applied and one large double-suction oil pump running in long-distance pipeline is considered. The research focuses on analysing the influence of its diffuser vane profile on hydraulic performance of oil pump. The four different types of cylindrical vane have been designed by in-house codes mainly including double arcs (DA), triple arcs (TA), equiangular spiral line (ES) and linear variable angle spiral line (LVS). During design process diffuser vane angles at inlet and outlet are tentatively given within a certain range and then the wrapping angle of the four types of diffuser vanes can be calculated automatically. Under the given inlet and outlet angles, the linear variable angle spiral line profile has the biggest wrapping angle and profile length which is good to delay channel diffusion but bring more friction hydraulic loss. Finally the vane camber line is thickened at the certain uniform thickness distribution and the 3D diffuser models are generated. The whole flow passage of oil pump with different types of diffusers under various flow rate conditions are numerically simulated based on RNG k-ɛ turbulent model and SIMPLEC algorithm. The numerical results show that different types of diffusers can bring about great difference on the hydraulic performance of oil pump, of which the ES profile diffuser with its proper setting angle shows the best hydraulic performance and its inner flow field is improved obviously. Compared with the head data from model sample, all designed diffusers can make a certain improvement on head characteristic. At the large flow rate conditions the hydraulic efficiency increases obviously and the best efficiency point shift to the large flow rate range. The ES profile diffuser embodies the better advantages on pump performance which can be explained theoretically that the diffuser actually acts as a diffusion

  7. Diffusion Modeling: A Study of the Diffusion of “Jatropha Curcas ...

    African Journals Online (AJOL)

    Consequently, the study recommended the use of diffusion networks which integrate interpersonal networks, and multimedia strategies for the effective diffusion of innovation such as Jacodiesel in Adamawa State and other parts of the country. Keywords: Sustainability, Diffusion, Innovation, Communicative Influence, ...

  8. Modelling Bourdieu: An extension of the Axelrod cultural diffusion model

    OpenAIRE

    Trigg, Andrew B.; Bertie, Andrew J.; Himmelweit, Susan F.

    2008-01-01

    The contribution to the social theory of consumption of the late Pierre Bourdieu has been widely recognized, but not fully absorbed by the economics discipline. To address this lacuna, an agent-based model of Bourdieu's social theory is developed by extending Axelrod's cultural diffusion model. Bourdieu's theory is decomposed into two components: a capital effect on social interaction and an innovation effect. Whereas simulations of the capital effect are found to have a key role in the repro...

  9. Dynamic Stability of the Rate, State, Temperature, and Pore Pressure Friction Model at a Rock Interface

    Science.gov (United States)

    Sinha, Nitish; Singh, Arun K.; Singh, Trilok N.

    2018-05-01

    In this article, we study numerically the dynamic stability of the rate, state, temperature, and pore pressure friction (RSTPF) model at a rock interface using standard spring-mass sliding system. This particular friction model is a basically modified form of the previously studied friction model namely the rate, state, and temperature friction (RSTF). The RSTPF takes into account the role of thermal pressurization including dilatancy and permeability of the pore fluid due to shear heating at the slip interface. The linear stability analysis shows that the critical stiffness, at which the sliding becomes stable to unstable or vice versa, increases with the coefficient of thermal pressurization. Critical stiffness, on the other hand, remains constant for small values of either dilatancy factor or hydraulic diffusivity, but the same decreases as their values are increased further from dilatancy factor (˜ 10^{ - 4} ) and hydraulic diffusivity (˜ 10^{ - 9} {m}2 {s}^{ - 1} ) . Moreover, steady-state friction is independent of the coefficient of thermal pressurization, hydraulic diffusivity, and dilatancy factor. The proposed model is also used for predicting time of failure of a creeping interface of a rock slope under the constant gravitational force. It is observed that time of failure decreases with increase in coefficient of thermal pressurization and hydraulic diffusivity, but the dilatancy factor delays the failure of the rock fault under the condition of heat accumulation at the creeping interface. Moreover, stiffness of the rock-mass also stabilizes the failure process of the interface as the strain energy due to the gravitational force accumulates in the rock-mass before it transfers to the sliding interface. Practical implications of the present study are also discussed.

  10. A model of non-Gaussian diffusion in heterogeneous media

    Science.gov (United States)

    Lanoiselée, Yann; Grebenkov, Denis S.

    2018-04-01

    Recent progress in single-particle tracking has shown evidence of the non-Gaussian distribution of displacements in living cells, both near the cellular membrane and inside the cytoskeleton. Similar behavior has also been observed in granular materials, turbulent flows, gels and colloidal suspensions, suggesting that this is a general feature of diffusion in complex media. A possible interpretation of this phenomenon is that a tracer explores a medium with spatio-temporal fluctuations which result in local changes of diffusivity. We propose and investigate an ergodic, easily interpretable model, which implements the concept of diffusing diffusivity. Depending on the parameters, the distribution of displacements can be either flat or peaked at small displacements with an exponential tail at large displacements. We show that the distribution converges slowly to a Gaussian one. We calculate statistical properties, derive the asymptotic behavior and discuss some implications and extensions.

  11. The Influence of Feedback on Task-Switching Performance: A Drift Diffusion Modeling Account.

    Science.gov (United States)

    Cohen Hoffing, Russell; Karvelis, Povilas; Rupprechter, Samuel; Seriès, Peggy; Seitz, Aaron R

    2018-01-01

    Task-switching is an important cognitive skill that facilitates our ability to choose appropriate behavior in a varied and changing environment. Task-switching training studies have sought to improve this ability by practicing switching between multiple tasks. However, an efficacious training paradigm has been difficult to develop in part due to findings that small differences in task parameters influence switching behavior in a non-trivial manner. Here, for the first time we employ the Drift Diffusion Model (DDM) to understand the influence of feedback on task-switching and investigate how drift diffusion parameters change over the course of task switch training. We trained 316 participants on a simple task where they alternated sorting stimuli by color or by shape. Feedback differed in six different ways between subjects groups, ranging from No Feedback (NFB) to a variety of manipulations addressing trial-wise vs. Block Feedback (BFB), rewards vs. punishments, payment bonuses and different payouts depending upon the trial type (switch/non-switch). While overall performance was found to be affected by feedback, no effect of feedback was found on task-switching learning. Drift Diffusion Modeling revealed that the reductions in reaction time (RT) switch cost over the course of training were driven by a continually decreasing decision boundary. Furthermore, feedback effects on RT switch cost were also driven by differences in decision boundary, but not in drift rate. These results reveal that participants systematically modified their task-switching performance without yielding an overall gain in performance.

  12. Robust and fast nonlinear optimization of diffusion MRI microstructure models.

    Science.gov (United States)

    Harms, R L; Fritz, F J; Tobisch, A; Goebel, R; Roebroeck, A

    2017-07-15

    Advances in biophysical multi-compartment modeling for diffusion MRI (dMRI) have gained popularity because of greater specificity than DTI in relating the dMRI signal to underlying cellular microstructure. A large range of these diffusion microstructure models have been developed and each of the popular models comes with its own, often different, optimization algorithm, noise model and initialization strategy to estimate its parameter maps. Since data fit, accuracy and precision is hard to verify, this creates additional challenges to comparability and generalization of results from diffusion microstructure models. In addition, non-linear optimization is computationally expensive leading to very long run times, which can be prohibitive in large group or population studies. In this technical note we investigate the performance of several optimization algorithms and initialization strategies over a few of the most popular diffusion microstructure models, including NODDI and CHARMED. We evaluate whether a single well performing optimization approach exists that could be applied to many models and would equate both run time and fit aspects. All models, algorithms and strategies were implemented on the Graphics Processing Unit (GPU) to remove run time constraints, with which we achieve whole brain dataset fits in seconds to minutes. We then evaluated fit, accuracy, precision and run time for different models of differing complexity against three common optimization algorithms and three parameter initialization strategies. Variability of the achieved quality of fit in actual data was evaluated on ten subjects of each of two population studies with a different acquisition protocol. We find that optimization algorithms and multi-step optimization approaches have a considerable influence on performance and stability over subjects and over acquisition protocols. The gradient-free Powell conjugate-direction algorithm was found to outperform other common algorithms in terms of

  13. A mathematical study of the influence of pore geometry on diffusion

    International Nuclear Information System (INIS)

    Melnyk, T.W.; Skeet, A.M.M.

    1987-01-01

    Diffusion into the pore space of plutonic rock matrices is an important phenomenon that can affect the migration of radionuclides and other contaminants in groundwater systems. The effects of irregular pore geometry on rates of diffusive transport are examined in this report. Approximate equations describing steady-state diffusive transport in pores of variable geometry are presented and indicate a strong dependence of the diffusion rates on the geometry of the pore space. Finite-element diffusion calculations were carried out for a series of pores containing storage spaces with rectangular cross-sections. The calculations showed the time taken to reach steady-state is affected by the pore geometry. The results of these calculations were used to simulate typical laboratory diffusion experiments and to evaluate the interpretation of effective diffusion parameters obtained from analysis of the simulated experiments using both capillary and dead-end pore models of the pore space. A capillary model of the pore space requires two independent parameters to characterize the pore space, and is shown, in general, to be inadequate to describe the pre-steady-state regime. The diffusion of radionuclides in groundwater systems lies in this non-steady-state regime. More complex mathematical descriptions of the pore space, using more variables and parameters, can accurately describe the non-steady-state transport. The capillary model, with effective parameter values, gives reasonable results when the size of the dead-end pore space is small relative to the overall diffusion distance under consideration

  14. STEPS: efficient simulation of stochastic reaction–diffusion models in realistic morphologies

    Directory of Open Access Journals (Sweden)

    Hepburn Iain

    2012-05-01

    Full Text Available Abstract Background Models of cellular molecular systems are built from components such as biochemical reactions (including interactions between ligands and membrane-bound proteins, conformational changes and active and passive transport. A discrete, stochastic description of the kinetics is often essential to capture the behavior of the system accurately. Where spatial effects play a prominent role the complex morphology of cells may have to be represented, along with aspects such as chemical localization and diffusion. This high level of detail makes efficiency a particularly important consideration for software that is designed to simulate such systems. Results We describe STEPS, a stochastic reaction–diffusion simulator developed with an emphasis on simulating biochemical signaling pathways accurately and efficiently. STEPS supports all the above-mentioned features, and well-validated support for SBML allows many existing biochemical models to be imported reliably. Complex boundaries can be represented accurately in externally generated 3D tetrahedral meshes imported by STEPS. The powerful Python interface facilitates model construction and simulation control. STEPS implements the composition and rejection method, a variation of the Gillespie SSA, supporting diffusion between tetrahedral elements within an efficient search and update engine. Additional support for well-mixed conditions and for deterministic model solution is implemented. Solver accuracy is confirmed with an original and extensive validation set consisting of isolated reaction, diffusion and reaction–diffusion systems. Accuracy imposes upper and lower limits on tetrahedron sizes, which are described in detail. By comparing to Smoldyn, we show how the voxel-based approach in STEPS is often faster than particle-based methods, with increasing advantage in larger systems, and by comparing to MesoRD we show the efficiency of the STEPS implementation. Conclusion STEPS simulates

  15. Prediction Of Abrasive And Diffusive Tool Wear Mechanisms In Machining

    Science.gov (United States)

    Rizzuti, S.; Umbrello, D.

    2011-01-01

    Tool wear prediction is regarded as very important task in order to maximize tool performance, minimize cutting costs and improve the quality of workpiece in cutting. In this research work, an experimental campaign was carried out at the varying of cutting conditions with the aim to measure both crater and flank tool wear, during machining of an AISI 1045 with an uncoated carbide tool P40. Parallel a FEM-based analysis was developed in order to study the tool wear mechanisms, taking also into account the influence of the cutting conditions and the temperature reached on the tool surfaces. The results show that, when the temperature of the tool rake surface is lower than the activation temperature of the diffusive phenomenon, the wear rate can be estimated applying an abrasive model. In contrast, in the tool area where the temperature is higher than the diffusive activation temperature, the wear rate can be evaluated applying a diffusive model. Finally, for a temperature ranges within the above cited values an adopted abrasive-diffusive wear model furnished the possibility to correctly evaluate the tool wear phenomena.

  16. Thick tissue diffusion model with binding to optimize topical staining in fluorescence breast cancer margin imaging

    Science.gov (United States)

    Xu, Xiaochun; Kang, Soyoung; Navarro-Comes, Eric; Wang, Yu; Liu, Jonathan T. C.; Tichauer, Kenneth M.

    2018-03-01

    Intraoperative tumor/surgical margin assessment is required to achieve higher tumor resection rate in breast-conserving surgery. Though current histology provides incomparable accuracy in margin assessment, thin tissue sectioning and the limited field of view of microscopy makes histology too time-consuming for intraoperative applications. If thick tissue, wide-field imaging can provide an acceptable assessment of tumor cells at the surface of resected tissues, an intraoperative protocol can be developed to guide the surgery and provide immediate feedback for surgeons. Topical staining of margins with cancer-targeted molecular imaging agents has the potential to provide the sensitivity needed to see microscopic cancer on a wide-field image; however, diffusion and nonspecific retention of imaging agents in thick tissue can significantly diminish tumor contrast with conventional methods. Here, we present a mathematical model to accurately simulate nonspecific retention, binding, and diffusion of imaging agents in thick tissue topical staining to guide and optimize future thick tissue staining and imaging protocol. In order to verify the accuracy and applicability of the model, diffusion profiles of cancer targeted and untargeted (control) nanoparticles at different staining times in A431 tumor xenografts were acquired for model comparison and tuning. The initial findings suggest the existence of nonspecific retention in the tissue, especially at the tissue surface. The simulator can be used to compare the effect of nonspecific retention, receptor binding and diffusion under various conditions (tissue type, imaging agent) and provides optimal staining and imaging protocols for targeted and control imaging agent.

  17. Self-diffusion in dense granular shear flows.

    Science.gov (United States)

    Utter, Brian; Behringer, R P

    2004-03-01

    Diffusivity is a key quantity in describing velocity fluctuations in granular materials. These fluctuations are the basis of many thermodynamic and hydrodynamic models which aim to provide a statistical description of granular systems. We present experimental results on diffusivity in dense, granular shear flows in a two-dimensional Couette geometry. We find that self-diffusivities D are proportional to the local shear rate gamma; with diffusivities along the direction of the mean flow approximately twice as large as those in the perpendicular direction. The magnitude of the diffusivity is D approximately gamma;a(2), where a is the particle radius. However, the gradient in shear rate, coupling to the mean flow, and strong drag at the moving boundary lead to particle displacements that can appear subdiffusive or superdiffusive. In particular, diffusion appears to be superdiffusive along the mean flow direction due to Taylor dispersion effects and subdiffusive along the perpendicular direction due to the gradient in shear rate. The anisotropic force network leads to an additional anisotropy in the diffusivity that is a property of dense systems and has no obvious analog in rapid flows. Specifically, the diffusivity is suppressed along the direction of the strong force network. A simple random walk simulation reproduces the key features of the data, such as the apparent superdiffusive and subdiffusive behavior arising from the mean velocity field, confirming the underlying diffusive motion. The additional anisotropy is not observed in the simulation since the strong force network is not included. Examples of correlated motion, such as transient vortices, and Lévy flights are also observed. Although correlated motion creates velocity fields which are qualitatively different from collisional Brownian motion and can introduce nondiffusive effects, on average the system appears simply diffusive.

  18. A fractal derivative model for the characterization of anomalous diffusion in magnetic resonance imaging

    Science.gov (United States)

    Liang, Yingjie; Ye, Allen Q.; Chen, Wen; Gatto, Rodolfo G.; Colon-Perez, Luis; Mareci, Thomas H.; Magin, Richard L.

    2016-10-01

    Non-Gaussian (anomalous) diffusion is wide spread in biological tissues where its effects modulate chemical reactions and membrane transport. When viewed using magnetic resonance imaging (MRI), anomalous diffusion is characterized by a persistent or 'long tail' behavior in the decay of the diffusion signal. Recent MRI studies have used the fractional derivative to describe diffusion dynamics in normal and post-mortem tissue by connecting the order of the derivative with changes in tissue composition, structure and complexity. In this study we consider an alternative approach by introducing fractal time and space derivatives into Fick's second law of diffusion. This provides a more natural way to link sub-voxel tissue composition with the observed MRI diffusion signal decay following the application of a diffusion-sensitive pulse sequence. Unlike previous studies using fractional order derivatives, here the fractal derivative order is directly connected to the Hausdorff fractal dimension of the diffusion trajectory. The result is a simpler, computationally faster, and more direct way to incorporate tissue complexity and microstructure into the diffusional dynamics. Furthermore, the results are readily expressed in terms of spectral entropy, which provides a quantitative measure of the overall complexity of the heterogeneous and multi-scale structure of biological tissues. As an example, we apply this new model for the characterization of diffusion in fixed samples of the mouse brain. These results are compared with those obtained using the mono-exponential, the stretched exponential, the fractional derivative, and the diffusion kurtosis models. Overall, we find that the order of the fractal time derivative, the diffusion coefficient, and the spectral entropy are potential biomarkers to differentiate between the microstructure of white and gray matter. In addition, we note that the fractal derivative model has practical advantages over the existing models from the

  19. Modelling non-homogeneous stochastic reaction-diffusion systems: the case study of gemcitabine-treated non-small cell lung cancer growth.

    Science.gov (United States)

    Lecca, Paola; Morpurgo, Daniele

    2012-01-01

    Reaction-diffusion based models have been widely used in the literature for modeling the growth of solid tumors. Many of the current models treat both diffusion/consumption of nutrients and cell proliferation. The majority of these models use classical transport/mass conservation equations for describing the distribution of molecular species in tumor spheroids, and the Fick's law for describing the flux of uncharged molecules (i.e oxygen, glucose). Commonly, the equations for the cell movement and proliferation are first order differential equations describing the rate of change of the velocity of the cells with respect to the spatial coordinates as a function of the nutrient's gradient. Several modifications of these equations have been developed in the last decade to explicitly indicate that the tumor includes cells, interstitial fluids and extracellular matrix: these variants provided a model of tumor as a multiphase material with these as the different phases. Most of the current reaction-diffusion tumor models are deterministic and do not model the diffusion as a local state-dependent process in a non-homogeneous medium at the micro- and meso-scale of the intra- and inter-cellular processes, respectively. Furthermore, a stochastic reaction-diffusion model in which diffusive transport of the molecular species of nutrients and chemotherapy drugs as well as the interactions of the tumor cells with these species is a novel approach. The application of this approach to he scase of non-small cell lung cancer treated with gemcitabine is also novel. We present a stochastic reaction-diffusion model of non-small cell lung cancer growth in the specification formalism of the tool Redi, we recently developed for simulating reaction-diffusion systems. We also describe how a spatial gradient of nutrients and oncological drugs affects the tumor progression. Our model is based on a generalization of the Fick's first diffusion law that allows to model diffusive transport in non

  20. Modelling Of Eco-innovation Diffusion: The EU Eco-label

    Directory of Open Access Journals (Sweden)

    KIJEK TOMASZ

    2015-03-01

    Full Text Available The aim of this article is to carry out a theoretical and empirical analysis of the process of eco-label diffusion. Eco-labels allow consumers to identify products and services that have a reduced environmental impact during their life cycle. Thus, they are aimed at diminishing the information gap between sellers and buyers. The results of the estimation using the Bass model indicate that the diffusion of the EU eco-label has been most dynamic in countries such as Hungary, Poland, Denmark, Germany and France. In turn, the scope of diffusion (absolute saturation level reached the highest value for companies in France and Italy. In addition, the results of the study confirm the stimulating impact of the scope of eco-label diffusion on consumer awareness of environmental issues. This finding points to the need for environmental education among consumers, which could in turn encourage firms to undertake pro-environmental actions.

  1. Diffusion of condenser water discharge

    International Nuclear Information System (INIS)

    Iwakiri, Toshio

    1977-01-01

    Thermal and nuclear power stations in Japan are mostly located in coastal area, and the cooling water is discharged into sea as warm water. Recently, large interest is taken in this matter, and it is desirable to predict the diffusion of warm discharge accurately and to take effective measures for lowering the temperature. As for the methods of predicting the diffusion of warm discharge, simplified estimation, mathematical analysis and hydrographical model experiment are used corresponding to objects and conditions. As for the measures to lower temperature, the method of discharging warm water into deep sea bottom was confirmed to be very effective. In this paper, the phenomena of diffusion of warm discharge in sea, the methods of predicting the diffusion of warm discharge, and the deep sea discharge as the measure for lowering temperature are outlined. The factors concerning the diffusion of warm discharge in sea are the conditions of discharge, topography and sea state, and the diffusion is roughly divided into mixing diffusion in the vicinity of warm water outlet and eddy diffusion in distant region. It is difficult to change artificially the conditions of diffusion in distant region, and the measures of raising the rate of dilution in near region are effective, therefore the deep sea discharge is adopted. (Kako, I.)

  2. A combinatorial model of malware diffusion via bluetooth connections.

    Science.gov (United States)

    Merler, Stefano; Jurman, Giuseppe

    2013-01-01

    We outline here the mathematical expression of a diffusion model for cellphones malware transmitted through Bluetooth channels. In particular, we provide the deterministic formula underlying the proposed infection model, in its equivalent recursive (simple but computationally heavy) and closed form (more complex but efficiently computable) expression.

  3. Diffusion of Botulinum Toxins

    Directory of Open Access Journals (Sweden)

    Matthew A. Brodsky

    2012-08-01

    Full Text Available Background: It is generally agreed that diffusion of botulinum toxin occurs, but the extent of the spread and its clinical importance are disputed. Many factors have been suggested to play a role but which have the most clinical relevance is a subject of much discussion.Methods: This review discusses the variables affecting diffusion, including protein composition and molecular size as well as injection factors (e.g., volume, dose, injection method. It also discusses data on diffusion from comparative studies in animal models and human clinical trials that illustrate differences between the available botulinum toxin products (onabotulinumtoxinA, abobotulinumtoxinA, incobotulinumtoxinA, and rimabotulinumtoxinB.Results: Neither molecular weight nor the presence of complexing proteins appears to affect diffusion; however, injection volume, concentration, and dose all play roles and are modifiable. Both animal and human studies show that botulinum toxin products are not interchangeable, and that some products are associated with greater diffusion and higher rates of diffusion-related adverse events than others.Discussion: Each of the botulinum toxins is a unique pharmacologic entity. A working knowledge of the different serotypes is essential to avoid unwanted diffusion-related adverse events. In addition, clinicians should be aware that the factors influencing diffusion may range from properties intrinsic to the drug to accurate muscle selection as well as dilution, volume, and dose injected.

  4. Diffusion of epicenters of earthquake aftershocks, Omori's law, and generalized continuous-time random walk models

    International Nuclear Information System (INIS)

    Helmstetter, A.; Sornette, D.

    2002-01-01

    The epidemic-type aftershock sequence (ETAS) model is a simple stochastic process modeling seismicity, based on the two best-established empirical laws, the Omori law (power-law decay ∼1/t 1+θ of seismicity after an earthquake) and Gutenberg-Richter law (power-law distribution of earthquake energies). In order to describe also the space distribution of seismicity, we use in addition a power-law distribution ∼1/r 1+μ of distances between triggered and triggering earthquakes. The ETAS model has been studied for the last two decades to model real seismicity catalogs and to obtain short-term probabilistic forecasts. Here, we present a mapping between the ETAS model and a class of CTRW (continuous time random walk) models, based on the identification of their corresponding master equations. This mapping allows us to use the wealth of results previously obtained on anomalous diffusion of CTRW. After translating into the relevant variable for the ETAS model, we provide a classification of the different regimes of diffusion of seismic activity triggered by a mainshock. Specifically, we derive the relation between the average distance between aftershocks and the mainshock as a function of the time from the mainshock and of the joint probability distribution of the times and locations of the aftershocks. The different regimes are fully characterized by the two exponents θ and μ. Our predictions are checked by careful numerical simulations. We stress the distinction between the 'bare' Omori law describing the seismic rate activated directly by a mainshock and the 'renormalized' Omori law taking into account all possible cascades from mainshocks to aftershocks of aftershock of aftershock, and so on. In particular, we predict that seismic diffusion or subdiffusion occurs and should be observable only when the observed Omori exponent is less than 1, because this signals the operation of the renormalization of the bare Omori law, also at the origin of seismic diffusion in

  5. Integrated sorption and diffusion model for bentonite. Part 1. Clay-water interaction and sorption modeling in dispersed systems

    International Nuclear Information System (INIS)

    Tachi, Yukio; Suyama, Tadahiro; Ochs, Michael

    2014-01-01

    To predict the long-term migration of radionuclides (RNs) under variable conditions within the framework of safety analyses for geological disposal, thermodynamic sorption models are very powerful tools. The integrated sorption and diffusion (ISD) model for compacted bentonite was developed to achieve a consistent combination of clay–water interaction, sorption, and diffusion models. The basic premise considered in the ISD model was to consistently use the same simple surface model design and parameters for describing RNs sorption/diffusion as well as clay surface and porewater chemistry. A simple 1-site non-electrostatic surface complexation model in combination with a 1-site ion exchange model was selected to keep sorption model characteristics relatively robust for compacted systems. Fundamental parameters for the proposed model were evaluated from surface titration data for purified montmorillonite. The resulting basic model was then parameterized on the basis of selected published sorption data-sets for Np(V), Am(III), and U(VI) in dispersed systems, which cover a range of key geochemical conditions such as pH, ionic strength, and carbonate concentration. The sorption trends for these RNs can be quantitatively described by the model considering a full suite of surface species including hydrolytic and carbonate species. The application of these models to the description of diffusive-sorptive transport in compacted bentonites is presented in Part 2. (author)

  6. Modeling inflation rates and exchange rates in Ghana: application of multivariate GARCH models.

    Science.gov (United States)

    Nortey, Ezekiel Nn; Ngoh, Delali D; Doku-Amponsah, Kwabena; Ofori-Boateng, Kenneth

    2015-01-01

    This paper was aimed at investigating the volatility and conditional relationship among inflation rates, exchange rates and interest rates as well as to construct a model using multivariate GARCH DCC and BEKK models using Ghana data from January 1990 to December 2013. The study revealed that the cumulative depreciation of the cedi to the US dollar from 1990 to 2013 is 7,010.2% and the yearly weighted depreciation of the cedi to the US dollar for the period is 20.4%. There was evidence that, the fact that inflation rate was stable, does not mean that exchange rates and interest rates are expected to be stable. Rather, when the cedi performs well on the forex, inflation rates and interest rates react positively and become stable in the long run. The BEKK model is robust to modelling and forecasting volatility of inflation rates, exchange rates and interest rates. The DCC model is robust to model the conditional and unconditional correlation among inflation rates, exchange rates and interest rates. The BEKK model, which forecasted high exchange rate volatility for the year 2014, is very robust for modelling the exchange rates in Ghana. The mean equation of the DCC model is also robust to forecast inflation rates in Ghana.

  7. An extended five-stream model for diffusion of ion-implanted dopants in monocrystalline silicon

    International Nuclear Information System (INIS)

    Khina, B.B.

    2007-01-01

    Low-energy high-dose ion implantation of different dopants (P, Sb, As, B and others) into monocrystalline silicon with subsequent thermal annealing is used for the formation of ultra-shallow p-n junctions in modern VLSI circuit technology. During annealing, dopant activation and diffusion in silicon takes place. The experimentally observed phenomenon of transient enhanced diffusion (TED), which is typically ascribed to the interaction of diffusing species with non-equilibrium point defects accumulated in silicon due to ion damage, and formation of small clusters and extended defects, hinders further down scaling of p-n junctions in VLSI circuits. TED is currently a subject of extensive experimental and theoretical investigation in many binary and multicomponent systems. However, the state-of-the-art mathematical models of dopant diffusion, which are based on the so-called 'five-stream' approach, and modern TCAD software packages such as SUPREM-4 (by Silvaco Data Systems, Ltd.) that implement these models encounter severe difficulties in describing TED. Solving the intricate problem of TED suppression and development of novel regimes of ion implantation and rapid thermal annealing is impossible without elaboration of new mathematical models and computer simulation of this complex phenomenon. In this work, an extended five-stream model for diffusion in silicon is developed which takes into account all possible charge states of point defects (vacancies and silicon self-interstitials) and diffusing pairs 'dopant atom-vacancy' and 'dopant atom-silicon self-interstitial'. The model includes the drift terms for differently charged point defects and pairs in the internal electric field and the kinetics of interaction between unlike 'species' (generation and annihilation of pairs and annihilation of point defects). Expressions for diffusion coefficients and numerous sink/source terms that appear in the non-linear, non-steady-state reaction-diffusion equations are derived

  8. Business models for maximising the diffusion of technological innovations for climate-smart agriculture

    NARCIS (Netherlands)

    Long, T.B.; Blok, V.; Poldner, Kim

    2017-01-01

    r, CSA technological innovation diffusion is subject to socio-economic barriers. The success of innovations is partly dependent on the business models that are used to diffuse them. Within the context of innovations for CSA, the role that innovation providers’ business models play in the successful

  9. Multi-component fiber track modelling of diffusion-weighted magnetic resonance imaging data

    Directory of Open Access Journals (Sweden)

    Yasser M. Kadah

    2010-01-01

    Full Text Available In conventional diffusion tensor imaging (DTI based on magnetic resonance data, each voxel is assumed to contain a single component having diffusion properties that can be fully represented by a single tensor. Even though this assumption can be valid in some cases, the general case involves the mixing of components, resulting in significant deviation from the single tensor model. Hence, a strategy that allows the decomposition of data based on a mixture model has the potential of enhancing the diagnostic value of DTI. This project aims to work towards the development and experimental verification of a robust method for solving the problem of multi-component modelling of diffusion tensor imaging data. The new method demonstrates significant error reduction from the single-component model while maintaining practicality for clinical applications, obtaining more accurate Fiber tracking results.

  10. The arbitrary order mimetic finite difference method for a diffusion equation with a non-symmetric diffusion tensor

    Science.gov (United States)

    Gyrya, V.; Lipnikov, K.

    2017-11-01

    We present the arbitrary order mimetic finite difference (MFD) discretization for the diffusion equation with non-symmetric tensorial diffusion coefficient in a mixed formulation on general polygonal meshes. The diffusion tensor is assumed to be positive definite. The asymmetry of the diffusion tensor requires changes to the standard MFD construction. We present new approach for the construction that guarantees positive definiteness of the non-symmetric mass matrix in the space of discrete velocities. The numerically observed convergence rate for the scalar quantity matches the predicted one in the case of the lowest order mimetic scheme. For higher orders schemes, we observed super-convergence by one order for the scalar variable which is consistent with the previously published result for a symmetric diffusion tensor. The new scheme was also tested on a time-dependent problem modeling the Hall effect in the resistive magnetohydrodynamics.

  11. Atomistic models of Cu diffusion in CuInSe2 under variations in composition

    Science.gov (United States)

    Sommer, David E.; Dunham, Scott T.

    2018-03-01

    We construct an analytic model for the composition dependence of the vacancy-mediated Cu diffusion coefficient in undoped CuInSe2 using parameters from density functional theory. The applicability of this model is supported numerically with kinetic lattice Monte Carlo and Onsager transport tensors. We discuss how this model relates to experimental measurements of Cu diffusion, arguing that our results can account for significant contributions to the bulk diffusion of Cu tracers in non-stoichiometric CuInSe2.

  12. Phototransformation rate constants of PAHs associated with soot particles

    International Nuclear Information System (INIS)

    Kim, Daekyun; Young, Thomas M.; Anastasio, Cort

    2013-01-01

    Photodegradation is a key process governing the residence time and fate of polycyclic aromatic hydrocarbons (PAHs) in particles, both in the atmosphere and after deposition. We have measured photodegradation rate constants of PAHs in bulk deposits of soot particles illuminated with simulated sunlight. The photodegradation rate constants at the surface (k p 0 ), the effective diffusion coefficients (D eff ), and the light penetration depths (z 0.5 ) for PAHs on soot layers of variable thickness were determined by fitting experimental data with a model of coupled photolysis and diffusion. The overall disappearance rates of irradiated low molecular weight PAHs (with 2–3 rings) on soot particles were influenced by fast photodegradation and fast diffusion kinetics, while those of high molecular weight PAHs (with 4 or more rings) were apparently controlled by either the combination of slow photodegradation and slow diffusion kinetics or by very slow diffusion kinetics alone. The value of z 0.5 is more sensitive to the soot layer thickness than the k p 0 value. As the thickness of the soot layer increases, the z 0.5 values increase, but the k p 0 values are almost constant. The effective diffusion coefficients calculated from dark experiments are generally higher than those from the model fitting method for illumination experiments. Due to the correlation between k p 0 and z 0.5 in thinner layers, D eff should be estimated by an independent method for better accuracy. Despite some limitations of the model used in this study, the fitted parameters were useful for describing empirical results of photodegradation of soot-associated PAHs. - Highlights: ► PAHs on soot were evaluated by a model of coupled photolysis and diffusion. ► Photodegradation rate at the surface, diffusion coefficient, and light penetration path were determined. ► Low MW PAHs were influenced by fast photodegradation and fast diffusion. ► High MW PAHs were controlled either by slow

  13. A diffusive model for halo width growth during vertical displacement events

    International Nuclear Information System (INIS)

    Eidietis, N.W.; Humphreys, D.A.

    2011-01-01

    The electromagnetic loads produced by halo currents during vertical displacement events (VDEs) impose stringent requirements on the strength of ITER in-vessel components. A predictive understanding of halo current evolution is essential for ensuring the robust design of these components. A significant factor determining that evolution is the plasma resistance, which is a function of three quantities: the resistivities of the core and halo regions, and the halo region width. A diffusive model of halo width growth during VDEs has been developed, which provides one part of a physics basis for predictive halo current simulations. The diffusive model was motivated by DIII-D observations that VDEs with cold post-thermal quench plasma and a current decay time much faster than the vertical motion (type I VDE) possess much wider halo region widths than warmer plasma VDEs, where the current decay is much slower than the vertical motion (type II). A 2D finite element code is used to model the diffusion of toroidal halo current during selected type I and type II DIII-D VDEs. The model assumes a core plasma region within the last closed flux surface (LCFS) diffusing current into a halo plasma filling the vessel outside the LCFS. LCFS motion and plasma temperature are prescribed from experimental observations. The halo width evolution produced by this model compares favourably with experimental measurements of type I and type II toroidal halo current width evolution.

  14. Diffusion modelling of low-energy ion-implanted BF{sub 2} in crystalline silicon: Study of fluorine vacancy effect on boron diffusion

    Energy Technology Data Exchange (ETDEWEB)

    Marcon, J. [Laboratoire Electronique Microtechnologie et Instrumentation (LEMI), University of Rouen, 76821 Mont Saint Aignan (France)], E-mail: Jerome.Marcon@univ-rouen.fr; Merabet, A. [Laboratoire de Physique et Mecanique des Materiaux Metalliques, Departement d' O.M.P., Faculte des Sciences de l' Ingenieur, Universite de Setif, 19000 Setif (Algeria)

    2008-12-05

    We have investigated and modelled the diffusion of boron implanted into crystalline silicon in the form of boron difluoride BF{sub 2}{sup +}. We have used published data for BF{sub 2}{sup +} implanted with an energy of 2.2 keV in crystalline silicon. Fluorine effects are considered by using vacancy-fluorine pairs which are responsible for the suppression of boron diffusion in crystalline silicon. Following Uematsu's works, the simulations satisfactory reproduce the SIMS experimental profiles in the 800-1000 deg. C temperature range. The boron diffusion model in silicon of Uematsu has been improved taking into account the last experimental data.

  15. Synchronization criteria for generalized reaction-diffusion neural networks via periodically intermittent control.

    Science.gov (United States)

    Gan, Qintao; Lv, Tianshi; Fu, Zhenhua

    2016-04-01

    In this paper, the synchronization problem for a class of generalized neural networks with time-varying delays and reaction-diffusion terms is investigated concerning Neumann boundary conditions in terms of p-norm. The proposed generalized neural networks model includes reaction-diffusion local field neural networks and reaction-diffusion static neural networks as its special cases. By establishing a new inequality, some simple and useful conditions are obtained analytically to guarantee the global exponential synchronization of the addressed neural networks under the periodically intermittent control. According to the theoretical results, the influences of diffusion coefficients, diffusion space, and control rate on synchronization are analyzed. Finally, the feasibility and effectiveness of the proposed methods are shown by simulation examples, and by choosing different diffusion coefficients, diffusion spaces, and control rates, different controlled synchronization states can be obtained.

  16. Water diffusion to assess meat microstructure.

    Science.gov (United States)

    Laghi, Luca; Venturi, Luca; Dellarosa, Nicolò; Petracci, Massimiliano

    2017-12-01

    In the quest for setting up rapid methods to evaluate water retention ability of meat microstructures, time domain nuclear magnetic resonance (TD-NMR) has gained a prominent role, due to the possibility to observe water located outside the myofibrils, easily lost upon storage or cooking. Diffusion weighted signals could be used to monitor the shape and dimension of the pores in which water is confined, thus boosting the information offered by TD-NMR. The work outlines a parsimonious model to describe relative abundance and diffusion coefficient of intra and extra myofibrillar water populations, exchange rate between them, diameter of the myofibrillar cells. To test our model, we registered diffusion and T 2 weighted NMR signals at 20MHz on fresh meat from pectoralis major muscle of 100days old female turkey. We then purposely altered water distribution and myofibrils shape by means of freezing. The model predicted nicely the consequences of the imposed modifications. Copyright © 2016. Published by Elsevier Ltd.

  17. Recommendation based on trust diffusion model.

    Science.gov (United States)

    Yuan, Jinfeng; Li, Li

    2014-01-01

    Recommender system is emerging as a powerful and popular tool for online information relevant to a given user. The traditional recommendation system suffers from the cold start problem and the data sparsity problem. Many methods have been proposed to solve these problems, but few can achieve satisfactory efficiency. In this paper, we present a method which combines the trust diffusion (DiffTrust) algorithm and the probabilistic matrix factorization (PMF). DiffTrust is first used to study the possible diffusions of trust between various users. It is able to make use of the implicit relationship of the trust network, thus alleviating the data sparsity problem. The probabilistic matrix factorization (PMF) is then employed to combine the users' tastes with their trusted friends' interests. We evaluate the algorithm on Flixster, Moviedata, and Epinions datasets, respectively. The experimental results show that the recommendation based on our proposed DiffTrust + PMF model achieves high performance in terms of the root mean square error (RMSE), Recall, and F Measure.

  18. Predictive Finite Rate Model for Oxygen-Carbon Interactions at High Temperature

    Science.gov (United States)

    Poovathingal, Savio

    An oxidation model for carbon surfaces is developed to predict ablation rates for carbon heat shields used in hypersonic vehicles. Unlike existing empirical models, the approach used here was to probe gas-surface interactions individually and then based on an understanding of the relevant fundamental processes, build a predictive model that would be accurate over a wide range of pressures and temperatures, and even microstructures. Initially, molecular dynamics was used to understand the oxidation processes on the surface. The molecular dynamics simulations were compared to molecular beam experiments and good qualitative agreement was observed. The simulations reproduced cylindrical pitting observed in the experiments where oxidation was rapid and primarily occurred around a defect. However, the studies were limited to small systems at low temperatures and could simulate time scales only of the order of nanoseconds. Molecular beam experiments at high surface temperature indicated that a majority of surface reaction products were produced through thermal mechanisms. Since the reactions were thermal, they occurred over long time scales which were computationally prohibitive for molecular dynamics to simulate. The experiments provided detailed dynamical data on the scattering of O, O2, CO, and CO2 and it was found that the data from molecular beam experiments could be used directly to build a model. The data was initially used to deduce surface reaction probabilities at 800 K. The reaction probabilities were then incorporated into the direct simulation Monte Carlo (DSMC) method. Simulations were performed where the microstructure was resolved and dissociated oxygen convected and diffused towards it. For a gas-surface temperature of 800 K, it was found that despite CO being the dominant surface reaction product, a gas-phase reaction forms significant CO2 within the microstructure region. It was also found that surface area did not play any role in concentration of

  19. HDDM: Hierarchical Bayesian estimation of the Drift-Diffusion Model in Python.

    Science.gov (United States)

    Wiecki, Thomas V; Sofer, Imri; Frank, Michael J

    2013-01-01

    The diffusion model is a commonly used tool to infer latent psychological processes underlying decision-making, and to link them to neural mechanisms based on response times. Although efficient open source software has been made available to quantitatively fit the model to data, current estimation methods require an abundance of response time measurements to recover meaningful parameters, and only provide point estimates of each parameter. In contrast, hierarchical Bayesian parameter estimation methods are useful for enhancing statistical power, allowing for simultaneous estimation of individual subject parameters and the group distribution that they are drawn from, while also providing measures of uncertainty in these parameters in the posterior distribution. Here, we present a novel Python-based toolbox called HDDM (hierarchical drift diffusion model), which allows fast and flexible estimation of the the drift-diffusion model and the related linear ballistic accumulator model. HDDM requires fewer data per subject/condition than non-hierarchical methods, allows for full Bayesian data analysis, and can handle outliers in the data. Finally, HDDM supports the estimation of how trial-by-trial measurements (e.g., fMRI) influence decision-making parameters. This paper will first describe the theoretical background of the drift diffusion model and Bayesian inference. We then illustrate usage of the toolbox on a real-world data set from our lab. Finally, parameter recovery studies show that HDDM beats alternative fitting methods like the χ(2)-quantile method as well as maximum likelihood estimation. The software and documentation can be downloaded at: http://ski.clps.brown.edu/hddm_docs/

  20. HDDM: Hierarchical Bayesian estimation of the Drift-Diffusion Model in Python

    Directory of Open Access Journals (Sweden)

    Thomas V Wiecki

    2013-08-01

    Full Text Available The diffusion model is a commonly used tool to infer latent psychological processes underlying decision making, and to link them to neural mechanisms based on reaction times. Although efficient open source software has been made available to quantitatively fit the model to data, current estimation methods require an abundance of reaction time measurements to recover meaningful parameters, and only provide point estimates of each parameter. In contrast, hierarchical Bayesian parameter estimation methods are useful for enhancing statistical power, allowing for simultaneous estimation of individual subject parameters and the group distribution that they are drawn from, while also providing measures of uncertainty in these parameters in the posterior distribution. Here, we present a novel Python-based toolbox called HDDM (hierarchical drift diffusion model, which allows fast and flexible estimation of the the drift-diffusion model and the related linear ballistic accumulator model. HDDM requires fewer data per subject / condition than non-hierarchical method, allows for full Bayesian data analysis, and can handle outliers in the data. Finally, HDDM supports the estimation of how trial-by-trial measurements (e.g. fMRI influence decision making parameters. This paper will first describe the theoretical background of drift-diffusion model and Bayesian inference. We then illustrate usage of the toolbox on a real-world data set from our lab. Finally, parameter recovery studies show that HDDM beats alternative fitting methods like the chi-quantile method as well as maximum likelihood estimation. The software and documentation can be downloaded at: http://ski.clps.brown.edu/hddm_docs

  1. How "Hot Precursors" Modify Island Nucleation: A Rate-Equation Model

    Science.gov (United States)

    Morales-Cifuentes, Josue R.; Einstein, T. L.; Pimpinelli, A.

    2014-12-01

    We propose a novel island nucleation and growth model explicitly including transient (ballistic) mobility of the monomers deposited at rate F , assumed to be in a hot precursor state before thermalizing. In limiting regimes, corresponding to fast (diffusive) and slow (ballistic) thermalization, the island density N obeys scaling N ∝Fα . In between is found a rich, complex behavior, with various distinctive scaling regimes, characterized by effective exponents αeff and activation energies that we compute exactly. Application to N (F ,T ) of recent organic-molecule deposition experiments yields an excellent fit.

  2. A combinatorial model of malware diffusion via bluetooth connections.

    Directory of Open Access Journals (Sweden)

    Stefano Merler

    Full Text Available We outline here the mathematical expression of a diffusion model for cellphones malware transmitted through Bluetooth channels. In particular, we provide the deterministic formula underlying the proposed infection model, in its equivalent recursive (simple but computationally heavy and closed form (more complex but efficiently computable expression.

  3. Intraparticle diffusion of rare earths in porous ion exchanger rounding by EDTA solution

    International Nuclear Information System (INIS)

    Ling Daren; Xie Weije

    1991-01-01

    The self-diffusion of rate earth (RE) isotopes in porous cation exchangers with various radii or different pore structures rounding by EDTA solution was studied. The intraparticle effective diffusivity De was calculated by Boyd's method and Kataoka's bi-disperse pore model, and through further calculation the solid phase diffusivity Dg and macropore diffusivity Dp were also obtained. (author)

  4. Multicomponent Diffusion in Experimentally Cooled Melt Inclusions

    Science.gov (United States)

    Saper, L.; Stolper, E.

    2017-12-01

    Glassy olivine-hosted melt inclusions are compositionally zoned, characterized by a boundary layer depleted in olivine-compatible components that extends into the melt inclusion from its wall. The boundary layer forms in response to crystallization of olivine and relaxes with time due to diffusive exchange with the interior of the inclusion. At magmatic temperatures, the time scale for homogenization of inclusions is minutes to hours. Preservation of compositional gradients in natural inclusions results from rapid cooling upon eruption. A model of MgO concentration profiles that couples crystal growth and diffusive relaxation of a boundary layer can be used to solve for eruptive cooling rates [1]. Controlled cooling-rate experiments were conducted to test the accuracy of the model. Mauna Loa olivine containing >80 µm melt inclusions were equilibrated at 1225°C in a 1-atm furnace for 24 hours, followed by linear cooling at rates of 102 - 105 °C/hr. High-resolution concentration profiles of 40 inclusions were obtained using an electron microprobe. The model of [1] fits the experimental data with low residuals and the best-fit cooling rates are within 30% of experimental values. The initial temperature of 1225 °C is underestimated by 65°C. The model was modified using (i) MELTS to calculate the interface melt composition as a function of temperature, and (ii) a concentration-dependent MgO diffusion coefficient using the functional form of [2]. With this calibration the best-fit starting temperatures are within 5°C of the experimental values and the best-fit cooling rates are within 20% of experimental rates. The evolution of the CaO profile during cooling is evidence for strong diffusive coupling between melt components. Because CaO is incompatible in olivine, CaO concentrations are expected to be elevated in the boundary layer adjacent to the growing olivine. Although this is observed at short time scales, as the profile evolves the CaO concentration near the

  5. Diffusion of innovations in Axelrod’s model

    Science.gov (United States)

    Tilles, Paulo F. C.; Fontanari, José F.

    2015-11-01

    Axelrod's model for the dissemination of culture contains two key factors required to model the process of diffusion of innovations, namely, social influence (i.e., individuals become more similar when they interact) and homophily (i.e., individuals interact preferentially with similar others). The strength of these social influences are controlled by two parameters: $F$, the number of features that characterizes the cultures and $q$, the common number of states each feature can assume. Here we assume that the innovation is a new state of a cultural feature of a single individual -- the innovator -- and study how the innovation spreads through the networks among the individuals. For infinite regular lattices in one (1D) and two dimensions (2D), we find that initially the successful innovation spreads linearly with the time $t$, but in the long-time limit it spreads diffusively ($\\sim t^{1/2}$) in 1D and sub-diffusively ($\\sim t/\\ln t$) in 2D. For finite lattices, the growth curves for the number of adopters are typically concave functions of $t$. For random graphs with a finite number of nodes $N$, we argue that the classical S-shaped growth curves result from a trade-off between the average connectivity $K$ of the graph and the per feature diversity $q$. A large $q$ is needed to reduce the pace of the initial spreading of the innovation and thus delimit the early-adopters stage, whereas a large $K$ is necessary to ensure the onset of the take-off stage at which the number of adopters grows superlinearly with $t$. In an infinite random graph we find that the number of adopters of a successful innovation scales with $t^\\gamma$ with $\\gamma =1$ for $K> 2$ and $1/2 < \\gamma < 1$ for $K=2$. We suggest that the exponent $\\gamma$ may be a useful index to characterize the process of diffusion of successful innovations in diverse scenarios.

  6. Modelling thermal radiation in buoyant turbulent diffusion flames

    Science.gov (United States)

    Consalvi, J. L.; Demarco, R.; Fuentes, A.

    2012-10-01

    This work focuses on the numerical modelling of radiative heat transfer in laboratory-scale buoyant turbulent diffusion flames. Spectral gas and soot radiation is modelled by using the Full-Spectrum Correlated-k (FSCK) method. Turbulence-Radiation Interactions (TRI) are taken into account by considering the Optically-Thin Fluctuation Approximation (OTFA), the resulting time-averaged Radiative Transfer Equation (RTE) being solved by the Finite Volume Method (FVM). Emission TRIs and the mean absorption coefficient are then closed by using a presumed probability density function (pdf) of the mixture fraction. The mean gas flow field is modelled by the Favre-averaged Navier-Stokes (FANS) equation set closed by a buoyancy-modified k-ɛ model with algebraic stress/flux models (ASM/AFM), the Steady Laminar Flamelet (SLF) model coupled with a presumed pdf approach to account for Turbulence-Chemistry Interactions, and an acetylene-based semi-empirical two-equation soot model. Two sets of experimental pool fire data are used for validation: propane pool fires 0.3 m in diameter with Heat Release Rates (HRR) of 15, 22 and 37 kW and methane pool fires 0.38 m in diameter with HRRs of 34 and 176 kW. Predicted flame structures, radiant fractions, and radiative heat fluxes on surrounding surfaces are found in satisfactory agreement with available experimental data across all the flames. In addition further computations indicate that, for the present flames, the gray approximation can be applied for soot with a minor influence on the results, resulting in a substantial gain in Computer Processing Unit (CPU) time when the FSCK is used to treat gas radiation.

  7. Experimental and Modeling Study of Solvent Diffusion in PDMS for Nanoparticle-Polymer Cosuspension Imprint Lithography.

    Science.gov (United States)

    Gervasio, Michelle; Lu, Kathy; Davis, Richey

    2015-09-15

    This study is the first that focuses on solvent migration in a polydimethylsiloxane (PDMS) stamp during the imprint lithography of ZnO-poly(methyl methacrylate) (PMMA) hybrid suspensions. Using suspensions with varying solids loading levels and ZnO/PMMA ratios, the uptake of the anisole solvent in the stamp is evaluated as a function of time. Laser confocal microscopy is employed as a unique technique to measure the penetration depth of the solvent into the stamp. The suspension solids loading affects the anisole saturation depth in the PDMS stamp. For the suspensions with low solids loading, the experimental data agree with the model for non-Fickian diffusion through a rubbery-elastic polymer. For the suspensions with high solids loading, the data agree more with a sigmoidal diffusion curve, reflecting the rubbery-viscous behavior of a swelling polymer. This difference is due to the degree of swelling in the PDMS. Higher solids loadings induce more swelling because the rate of anisole diffusing into the stamp is increased, likely due to the less dense buildup of the solids as the suspension dries.

  8. Self-diffusion in the non-Newtonian regime of shearing liquid crystal model systems based on the Gay-Berne potential

    Energy Technology Data Exchange (ETDEWEB)

    Sarman, Sten, E-mail: sarman@ownit.nu; Wang, Yong-Lei; Laaksonen, Aatto [Arrhenius Laboratory, Department of Materials and Environmental Chemistry, Stockholm University, 106 91 Stockholm (Sweden)

    2016-02-07

    The self-diffusion coefficients of nematic phases of various model systems consisting of regular convex calamitic and discotic ellipsoids and non-convex bodies such as bent-core molecules and soft ellipsoid strings have been obtained as functions of the shear rate in a shear flow. Then the self-diffusion coefficient is a second rank tensor with three different diagonal components and two off-diagonal components. These coefficients were found to be determined by a combination of two mechanisms, which previously have been found to govern the self-diffusion of shearing isotropic liquids, namely, (i) shear alignment enhancing the diffusion in the direction parallel to the streamlines and hindering the diffusion in the perpendicular directions and (ii) the distortion of the shell structure in the liquid whereby a molecule more readily can escape from a surrounding shell of nearest neighbors, so that the mobility increases in every direction. Thus, the diffusion parallel to the streamlines always increases with the shear rate since these mechanisms cooperate in this direction. In the perpendicular directions, these mechanisms counteract each other so that the behaviour becomes less regular. In the case of the nematic phases of the calamitic and discotic ellipsoids and of the bent core molecules, mechanism (ii) prevails so that the diffusion coefficients increase. However, the diffusion coefficients of the soft ellipsoid strings decrease in the direction of the velocity gradient because the broadsides of these molecules are oriented perpendicularly to this direction due the shear alignment (i). The cross coupling coefficient relating a gradient of tracer particles in the direction of the velocity gradient and their flow in the direction of the streamlines is negative and rather large, whereas the other coupling coefficient relating a gradient in the direction of the streamlines and a flow in the direction of the velocity gradient is very small.

  9. Self-diffusion in the non-Newtonian regime of shearing liquid crystal model systems based on the Gay-Berne potential

    Science.gov (United States)

    Sarman, Sten; Wang, Yong-Lei; Laaksonen, Aatto

    2016-02-01

    The self-diffusion coefficients of nematic phases of various model systems consisting of regular convex calamitic and discotic ellipsoids and non-convex bodies such as bent-core molecules and soft ellipsoid strings have been obtained as functions of the shear rate in a shear flow. Then the self-diffusion coefficient is a second rank tensor with three different diagonal components and two off-diagonal components. These coefficients were found to be determined by a combination of two mechanisms, which previously have been found to govern the self-diffusion of shearing isotropic liquids, namely, (i) shear alignment enhancing the diffusion in the direction parallel to the streamlines and hindering the diffusion in the perpendicular directions and (ii) the distortion of the shell structure in the liquid whereby a molecule more readily can escape from a surrounding shell of nearest neighbors, so that the mobility increases in every direction. Thus, the diffusion parallel to the streamlines always increases with the shear rate since these mechanisms cooperate in this direction. In the perpendicular directions, these mechanisms counteract each other so that the behaviour becomes less regular. In the case of the nematic phases of the calamitic and discotic ellipsoids and of the bent core molecules, mechanism (ii) prevails so that the diffusion coefficients increase. However, the diffusion coefficients of the soft ellipsoid strings decrease in the direction of the velocity gradient because the broadsides of these molecules are oriented perpendicularly to this direction due the shear alignment (i). The cross coupling coefficient relating a gradient of tracer particles in the direction of the velocity gradient and their flow in the direction of the streamlines is negative and rather large, whereas the other coupling coefficient relating a gradient in the direction of the streamlines and a flow in the direction of the velocity gradient is very small.

  10. Hybrid approaches for multiple-species stochastic reaction–diffusion models

    International Nuclear Information System (INIS)

    Spill, Fabian; Guerrero, Pilar; Alarcon, Tomas; Maini, Philip K.; Byrne, Helen

    2015-01-01

    Reaction–diffusion models are used to describe systems in fields as diverse as physics, chemistry, ecology and biology. The fundamental quantities in such models are individual entities such as atoms and molecules, bacteria, cells or animals, which move and/or react in a stochastic manner. If the number of entities is large, accounting for each individual is inefficient, and often partial differential equation (PDE) models are used in which the stochastic behaviour of individuals is replaced by a description of the averaged, or mean behaviour of the system. In some situations the number of individuals is large in certain regions and small in others. In such cases, a stochastic model may be inefficient in one region, and a PDE model inaccurate in another. To overcome this problem, we develop a scheme which couples a stochastic reaction–diffusion system in one part of the domain with its mean field analogue, i.e. a discretised PDE model, in the other part of the domain. The interface in between the two domains occupies exactly one lattice site and is chosen such that the mean field description is still accurate there. In this way errors due to the flux between the domains are small. Our scheme can account for multiple dynamic interfaces separating multiple stochastic and deterministic domains, and the coupling between the domains conserves the total number of particles. The method preserves stochastic features such as extinction not observable in the mean field description, and is significantly faster to simulate on a computer than the pure stochastic model. - Highlights: • A novel hybrid stochastic/deterministic reaction–diffusion simulation method is given. • Can massively speed up stochastic simulations while preserving stochastic effects. • Can handle multiple reacting species. • Can handle moving boundaries

  11. Hybrid approaches for multiple-species stochastic reaction–diffusion models

    Energy Technology Data Exchange (ETDEWEB)

    Spill, Fabian, E-mail: fspill@bu.edu [Department of Biomedical Engineering, Boston University, 44 Cummington Street, Boston, MA 02215 (United States); Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States); Guerrero, Pilar [Department of Mathematics, University College London, Gower Street, London WC1E 6BT (United Kingdom); Alarcon, Tomas [Centre de Recerca Matematica, Campus de Bellaterra, Edifici C, 08193 Bellaterra (Barcelona) (Spain); Departament de Matemàtiques, Universitat Atonòma de Barcelona, 08193 Bellaterra (Barcelona) (Spain); Maini, Philip K. [Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Oxford OX2 6GG (United Kingdom); Byrne, Helen [Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Oxford OX2 6GG (United Kingdom); Computational Biology Group, Department of Computer Science, University of Oxford, Oxford OX1 3QD (United Kingdom)

    2015-10-15

    Reaction–diffusion models are used to describe systems in fields as diverse as physics, chemistry, ecology and biology. The fundamental quantities in such models are individual entities such as atoms and molecules, bacteria, cells or animals, which move and/or react in a stochastic manner. If the number of entities is large, accounting for each individual is inefficient, and often partial differential equation (PDE) models are used in which the stochastic behaviour of individuals is replaced by a description of the averaged, or mean behaviour of the system. In some situations the number of individuals is large in certain regions and small in others. In such cases, a stochastic model may be inefficient in one region, and a PDE model inaccurate in another. To overcome this problem, we develop a scheme which couples a stochastic reaction–diffusion system in one part of the domain with its mean field analogue, i.e. a discretised PDE model, in the other part of the domain. The interface in between the two domains occupies exactly one lattice site and is chosen such that the mean field description is still accurate there. In this way errors due to the flux between the domains are small. Our scheme can account for multiple dynamic interfaces separating multiple stochastic and deterministic domains, and the coupling between the domains conserves the total number of particles. The method preserves stochastic features such as extinction not observable in the mean field description, and is significantly faster to simulate on a computer than the pure stochastic model. - Highlights: • A novel hybrid stochastic/deterministic reaction–diffusion simulation method is given. • Can massively speed up stochastic simulations while preserving stochastic effects. • Can handle multiple reacting species. • Can handle moving boundaries.

  12. Green's function method and its application to verification of diffusion models of GASFLOW code

    International Nuclear Information System (INIS)

    Xu, Z.; Travis, J.R.; Breitung, W.

    2007-07-01

    To validate the diffusion model and the aerosol particle model of the GASFLOW computer code, theoretical solutions of advection diffusion problems are developed by using the Green's function method. The work consists of a theory part and an application part. In the first part, the Green's functions of one-dimensional advection diffusion problems are solved in infinite, semi-infinite and finite domains with the Dirichlet, the Neumann and/or the Robin boundary conditions. Novel and effective image systems especially for the advection diffusion problems are made to find the Green's functions in a semi-infinite domain. Eigenfunction method is utilized to find the Green's functions in a bounded domain. In the case, key steps of a coordinate transform based on a concept of reversed time scale, a Laplace transform and an exponential transform are proposed to solve the Green's functions. Then the product rule of the multi-dimensional Green's functions is discussed in a Cartesian coordinate system. Based on the building blocks of one-dimensional Green's functions, the multi-dimensional Green's function solution can be constructed by applying the product rule. Green's function tables are summarized to facilitate the application of the Green's function. In the second part, the obtained Green's function solutions benchmark a series of validations to the diffusion model of gas species in continuous phase and the diffusion model of discrete aerosol particles in the GASFLOW code. Perfect agreements are obtained between the GASFLOW simulations and the Green's function solutions in case of the gas diffusion. Very good consistencies are found between the theoretical solutions of the advection diffusion equations and the numerical particle distributions in advective flows, when the drag force between the micron-sized particles and the conveying gas flow meets the Stokes' law about resistance. This situation is corresponding to a very small Reynolds number based on the particle

  13. The Diffusion Effect of MSW Recycling

    Directory of Open Access Journals (Sweden)

    Yi-Tui Chen

    2017-12-01

    Full Text Available The purpose of this paper is to compare the recycling performance for some waste fractions selected including food waste, bulk waste, paper, metal products, plastics/rubber and glass products and then to develop some directions for the future improvements. The priority of each waste fraction for recycling is also analyzed by using an importance-performance analysis. Traditionally, the recycling rate that is calculated by the ratio of waste recycled to waste collected is used as an indicator to measure recycling performance. Due to a large variation among waste fractions in municipal solid waste (MSW, the recycling rate cannot reflect the actual recycling performance. The ceiling of recycling rate for each waste fraction estimated from the diffusion models is incorporated into a model to calculate recycling performance. The results show that (1 the diffusion effect exists significantly for the recycling of most recyclables but no evidence is found to support the diffusion effect for the recycling of food waste and bulk waste; (2 the recycling performance of waste metal products ranks the top, compared to waste paper, waste glass and other waste fractions; (3 furthermore, an importance-performance analysis (IPA is employed to analyze the priority of recycling programs and thus this paper suggests that the recycling of food waste should be seen as the most priority item to recycle.

  14. Mathematical and Simulation Modelling of Moisture Diffusion Mechanism during Plastic IC Packages Disassembly

    Directory of Open Access Journals (Sweden)

    Peng Mou

    2013-01-01

    Full Text Available Reuse of plastic IC packages disassembled from printed circuit boards (PCBs has significant environmental benefits and economic value. The interface delamination caused by moisture diffusion is the main failure mode of IC packages during the disassembling process, which greatly reduces the reusability and reliability of disassembled IC packages. Exploring moisture diffusion mechanism is a prerequisite to optimize prebaking processes before disassembling that is an effective way to avoid the interface delamination. To this end, a computational model with variable boundary conditions is developed based on the different combination state of water in IC packages. The distribution characteristics and mechanism of moisture diffusion behavior are analyzed including the humidity distribution field and the relation among baking temperature, water loss rate, and baking time during baking process, and then the results are validated by FEA simulation based on the improved definition of relative moisture concentration. Baking under variable temperature is proposed and compared with the baking process and baking efficiency under constant temperature to find out the optimized baking parameters. Finally, a set of curves which indicate the relation between baking energy consumption and temperature are determined under actual industrial baking experiments, which could be used as references to develop industrial standards for PCB disassembling process.

  15. Modelling on optimal portfolio with exchange rate based on discontinuous stochastic process

    Science.gov (United States)

    Yan, Wei; Chang, Yuwen

    2016-12-01

    Considering the stochastic exchange rate, this paper is concerned with the dynamic portfolio selection in financial market. The optimal investment problem is formulated as a continuous-time mathematical model under mean-variance criterion. These processes follow jump-diffusion processes (Weiner process and Poisson process). Then the corresponding Hamilton-Jacobi-Bellman(HJB) equation of the problem is presented and its efferent frontier is obtained. Moreover, the optimal strategy is also derived under safety-first criterion.

  16. A new model of tail diffusion of phosphorus and boron in silicon

    International Nuclear Information System (INIS)

    Morehead, F.F.; Lever, R.F.

    1986-01-01

    It is well known that high surface concentration phosphorus diffusion leads to deeply penetrating tails in its concentration profile. At 700 0 C the tail diffusivity exceeds that of low concentration phosphorus by a factor of a thousand. Less spectacular, but very significant tailing also affects boron, making the conventional models contained in commonly available process simulation programs quite inaccurate for boron diffusions with high surface concentrations. The authors show that the observed tailing can be accounted for by a model whose central assumption is the local equality of dopant and oppositely directed defect fluxes. As predicted by the model, the effect is greatest for normal processing at low temperatures for high surface concentrations. It is minimal for the high temperatures of rapid thermal annealing and unrelated to transient effects

  17. Kalman Filtering and Smoothing of the Van Allen Probes Observations to Estimate the Radial, Energy and Pitch Angle Diffusion Rates

    Science.gov (United States)

    Podladchikova, T.; Shprits, Y.; Kellerman, A. C.

    2015-12-01

    The Kalman filter technique combines the strengths of new physical models of the Earth's radiation belts with long-term spacecraft observations of electron fluxes and therefore provide an extremely useful method for the analysis of the state and evolution of the electron radiation belts. However, to get the reliable data assimilation output, the Kalman filter application is confronted with a set of fundamental problems. E.g., satellite measurements are usually limited to a single location in space, which confines the reconstruction of the global evolution of the radiation environment. The uncertainties arise from the imperfect description of the process dynamics and the presence of observation errors, which may cause the failure of data assimilation solution. The development of adaptive Kalman filter that combines the Van Allen Probes data and 3-D VERB code, its accurate customizations in the reconstruction of model describing the phase space density (PSD) evolution, extension of the possibilities to use measurement information, and the model adjustment by developing the identification techniques of model and measurement errors allowed us to reveal hidden and implicit regularities of the PSD dynamics and obtain quantitative and qualitative estimates of radial, energy and pitch angle diffusion characteristics from satellite observations. In this study we propose an approach to estimate radial, energy and pitch angle diffusion rates, as well as the direction of their propagation.

  18. The Influence of Feedback on Task-Switching Performance: A Drift Diffusion Modeling Account

    Directory of Open Access Journals (Sweden)

    Russell Cohen Hoffing

    2018-02-01

    Full Text Available Task-switching is an important cognitive skill that facilitates our ability to choose appropriate behavior in a varied and changing environment. Task-switching training studies have sought to improve this ability by practicing switching between multiple tasks. However, an efficacious training paradigm has been difficult to develop in part due to findings that small differences in task parameters influence switching behavior in a non-trivial manner. Here, for the first time we employ the Drift Diffusion Model (DDM to understand the influence of feedback on task-switching and investigate how drift diffusion parameters change over the course of task switch training. We trained 316 participants on a simple task where they alternated sorting stimuli by color or by shape. Feedback differed in six different ways between subjects groups, ranging from No Feedback (NFB to a variety of manipulations addressing trial-wise vs. Block Feedback (BFB, rewards vs. punishments, payment bonuses and different payouts depending upon the trial type (switch/non-switch. While overall performance was found to be affected by feedback, no effect of feedback was found on task-switching learning. Drift Diffusion Modeling revealed that the reductions in reaction time (RT switch cost over the course of training were driven by a continually decreasing decision boundary. Furthermore, feedback effects on RT switch cost were also driven by differences in decision boundary, but not in drift rate. These results reveal that participants systematically modified their task-switching performance without yielding an overall gain in performance.

  19. Statistical model of a gas diffusion electrode. III. Photomicrograph study

    Energy Technology Data Exchange (ETDEWEB)

    Winsel, A W

    1965-12-01

    A linear section through a gas diffusion electrode produces a certain distribution function of sinews with the pores. From this distribution function some qualities of the pore structure are derived, and an automatic device to determine the distribution function is described. With a statistical model of a gas diffusion electrode the behavior of a DSK electrode is discussed and compared with earlier measurements of the flow resistance of this material.

  20. Diffusion approximation for modeling of 3-D radiation distributions

    International Nuclear Information System (INIS)

    Zardecki, A.; Gerstl, S.A.W.; De Kinder, R.E. Jr.

    1985-01-01

    A three-dimensional transport code DIF3D, based on the diffusion approximation, is used to model the spatial distribution of radiation energy arising from volumetric isotropic sources. Future work will be concerned with the determination of irradiances and modeling of realistic scenarios, relevant to the battlefield conditions. 8 refs., 4 figs

  1. Localization of (photorespiration and CO2 re-assimilation in tomato leaves investigated with a reaction-diffusion model.

    Directory of Open Access Journals (Sweden)

    Herman N C Berghuijs

    Full Text Available The rate of photosynthesis depends on the CO2 partial pressure near Rubisco, Cc, which is commonly calculated by models using the overall mesophyll resistance. Such models do not explain the difference between the CO2 level in the intercellular air space and Cc mechanistically. This problem can be overcome by reaction-diffusion models for CO2 transport, production and fixation in leaves. However, most reaction-diffusion models are complex and unattractive for procedures that require a large number of runs, like parameter optimisation. This study provides a simpler reaction-diffusion model. It is parameterized by both leaf physiological and leaf anatomical data. The anatomical data consisted of the thickness of the cell wall, cytosol and stroma, and the area ratios of mesophyll exposed to the intercellular air space to leaf surfaces and exposed chloroplast to exposed mesophyll surfaces. The model was used directly to estimate photosynthetic parameters from a subset of the measured light and CO2 response curves; the remaining data were used for validation. The model predicted light and CO2 response curves reasonably well for 15 days old tomato (cv. Admiro leaves, if (photorespiratory CO2 release was assumed to take place in the inner cytosol or in the gaps between the chloroplasts. The model was also used to calculate the fraction of CO2 produced by (photorespiration that is re-assimilated in the stroma, and this fraction ranged from 56 to 76%. In future research, the model should be further validated to better understand how the re-assimilation of (photorespired CO2 is affected by environmental conditions and physiological parameters.

  2. Quasi-two-layer morphodynamic model for bedload-dominated problems: bed slope-induced morphological diffusion.

    Science.gov (United States)

    Maldonado, Sergio; Borthwick, Alistair G L

    2018-02-01

    We derive a two-layer depth-averaged model of sediment transport and morphological evolution for application to bedload-dominated problems. The near-bed transport region is represented by the lower (bedload) layer which has an arbitrarily constant, vanishing thickness (of approx. 10 times the sediment particle diameter), and whose average sediment concentration is free to vary. Sediment is allowed to enter the upper layer, and hence the total load may also be simulated, provided that concentrations of suspended sediment remain low. The model conforms with established theories of bedload, and is validated satisfactorily against empirical expressions for sediment transport rates and the morphodynamic experiment of a migrating mining pit by Lee et al. (1993 J. Hydraul. Eng. 119 , 64-80 (doi:10.1061/(ASCE)0733-9429(1993)119:1(64))). Investigation into the effect of a local bed gradient on bedload leads to derivation of an analytical, physically meaningful expression for morphological diffusion induced by a non-zero local bed slope. Incorporation of the proposed morphological diffusion into a conventional morphodynamic model (defined as a coupling between the shallow water equations, Exner equation and an empirical formula for bedload) improves model predictions when applied to the evolution of a mining pit, without the need either to resort to special numerical treatment of the equations or to use additional tuning parameters.

  3. Quasi-two-layer morphodynamic model for bedload-dominated problems: bed slope-induced morphological diffusion

    Science.gov (United States)

    Maldonado, Sergio; Borthwick, Alistair G. L.

    2018-02-01

    We derive a two-layer depth-averaged model of sediment transport and morphological evolution for application to bedload-dominated problems. The near-bed transport region is represented by the lower (bedload) layer which has an arbitrarily constant, vanishing thickness (of approx. 10 times the sediment particle diameter), and whose average sediment concentration is free to vary. Sediment is allowed to enter the upper layer, and hence the total load may also be simulated, provided that concentrations of suspended sediment remain low. The model conforms with established theories of bedload, and is validated satisfactorily against empirical expressions for sediment transport rates and the morphodynamic experiment of a migrating mining pit by Lee et al. (1993 J. Hydraul. Eng. 119, 64-80 (doi:10.1061/(ASCE)0733-9429(1993)119:1(64))). Investigation into the effect of a local bed gradient on bedload leads to derivation of an analytical, physically meaningful expression for morphological diffusion induced by a non-zero local bed slope. Incorporation of the proposed morphological diffusion into a conventional morphodynamic model (defined as a coupling between the shallow water equations, Exner equation and an empirical formula for bedload) improves model predictions when applied to the evolution of a mining pit, without the need either to resort to special numerical treatment of the equations or to use additional tuning parameters.

  4. Incorporation of diffusion-weighted magnetic resonance imaging data into a simple mathematical model of tumor growth

    International Nuclear Information System (INIS)

    Atuegwu, N C; Colvin, D C; Loveless, M E; Gore, J C; Yankeelov, T E; Xu, L

    2012-01-01

    We build on previous work to show how serial diffusion-weighted MRI (DW-MRI) data can be used to estimate proliferation rates in a rat model of brain cancer. Thirteen rats were inoculated intracranially with 9L tumor cells; eight rats were treated with the chemotherapeutic drug 1,3-bis(2-chloroethyl)-1-nitrosourea and five rats were untreated controls. All animals underwent DW-MRI immediately before, one day and three days after treatment. Values of the apparent diffusion coefficient (ADC) were calculated from the DW-MRI data and then used to estimate the number of cells in each voxel and also for whole tumor regions of interest. The data from the first two imaging time points were then used to estimate the proliferation rate of each tumor. The proliferation rates were used to predict the number of tumor cells at day three, and this was correlated with the corresponding experimental data. The voxel-by-voxel analysis yielded Pearson's correlation coefficients ranging from −0.06 to 0.65, whereas the region of interest analysis provided Pearson's and concordance correlation coefficients of 0.88 and 0.80, respectively. Additionally, the ratio of positive to negative proliferation values was used to separate the treated and control animals (p <0.05) at an earlier point than the mean ADC values. These results further illustrate how quantitative measurements of tumor state obtained non-invasively by imaging can be incorporated into mathematical models that predict tumor growth. (paper)

  5. Diffusive flux in a model of stochastically gated oxygen transport in insect respiration

    Energy Technology Data Exchange (ETDEWEB)

    Berezhkovskii, Alexander M. [Mathematical and Statistical Computing Laboratory, Division of Computational Bioscience, Center for Information Technology, National Institutes of Health, Bethesda, Maryland 20892 (United States); Shvartsman, Stanislav Y. [Department of Chemical and Biological Engineering and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08544 (United States)

    2016-05-28

    Oxygen delivery to insect tissues is controlled by transport through a branched tubular network that is connected to the atmosphere by valve-like gates, known as spiracles. In certain physiological regimes, the spiracles appear to be randomly switching between open and closed states. Quantitative analysis of this regime leads a reaction-diffusion problem with stochastically switching boundary condition. We derive an expression for the diffusive flux at long times in this problem. Our approach starts with the derivation of the passage probability for a single particle that diffuses between a stochastically gated boundary, which models the opening and closing spiracle, and the perfectly absorbing boundary, which models oxygen absorption by the tissue. This passage probability is then used to derive an expression giving the diffusive flux as a function of the geometric parameters of the tube and characteristic time scales of diffusion and gate dynamics.

  6. Continuous-time random-walk model for anomalous diffusion in expanding media

    Science.gov (United States)

    Le Vot, F.; Abad, E.; Yuste, S. B.

    2017-09-01

    Expanding media are typical in many different fields, e.g., in biology and cosmology. In general, a medium expansion (contraction) brings about dramatic changes in the behavior of diffusive transport properties such as the set of positional moments and the Green's function. Here, we focus on the characterization of such effects when the diffusion process is described by the continuous-time random-walk (CTRW) model. As is well known, when the medium is static this model yields anomalous diffusion for a proper choice of the probability density function (pdf) for the jump length and the waiting time, but the behavior may change drastically if a medium expansion is superimposed on the intrinsic random motion of the diffusing particle. For the case where the jump length and the waiting time pdfs are long-tailed, we derive a general bifractional diffusion equation which reduces to a normal diffusion equation in the appropriate limit. We then study some particular cases of interest, including Lévy flights and subdiffusive CTRWs. In the former case, we find an analytical exact solution for the Green's function (propagator). When the expansion is sufficiently fast, the contribution of the diffusive transport becomes irrelevant at long times and the propagator tends to a stationary profile in the comoving reference frame. In contrast, for a contracting medium a competition between the spreading effect of diffusion and the concentrating effect of contraction arises. In the specific case of a subdiffusive CTRW in an exponentially contracting medium, the latter effect prevails for sufficiently long times, and all the particles are eventually localized at a single point in physical space. This "big crunch" effect, totally absent in the case of normal diffusion, stems from inefficient particle spreading due to subdiffusion. We also derive a hierarchy of differential equations for the moments of the transport process described by the subdiffusive CTRW model in an expanding medium

  7. Continuous-time random-walk model for anomalous diffusion in expanding media.

    Science.gov (United States)

    Le Vot, F; Abad, E; Yuste, S B

    2017-09-01

    Expanding media are typical in many different fields, e.g., in biology and cosmology. In general, a medium expansion (contraction) brings about dramatic changes in the behavior of diffusive transport properties such as the set of positional moments and the Green's function. Here, we focus on the characterization of such effects when the diffusion process is described by the continuous-time random-walk (CTRW) model. As is well known, when the medium is static this model yields anomalous diffusion for a proper choice of the probability density function (pdf) for the jump length and the waiting time, but the behavior may change drastically if a medium expansion is superimposed on the intrinsic random motion of the diffusing particle. For the case where the jump length and the waiting time pdfs are long-tailed, we derive a general bifractional diffusion equation which reduces to a normal diffusion equation in the appropriate limit. We then study some particular cases of interest, including Lévy flights and subdiffusive CTRWs. In the former case, we find an analytical exact solution for the Green's function (propagator). When the expansion is sufficiently fast, the contribution of the diffusive transport becomes irrelevant at long times and the propagator tends to a stationary profile in the comoving reference frame. In contrast, for a contracting medium a competition between the spreading effect of diffusion and the concentrating effect of contraction arises. In the specific case of a subdiffusive CTRW in an exponentially contracting medium, the latter effect prevails for sufficiently long times, and all the particles are eventually localized at a single point in physical space. This "big crunch" effect, totally absent in the case of normal diffusion, stems from inefficient particle spreading due to subdiffusion. We also derive a hierarchy of differential equations for the moments of the transport process described by the subdiffusive CTRW model in an expanding medium

  8. Diffusion of a collaborative care model in primary care: a longitudinal qualitative study

    Directory of Open Access Journals (Sweden)

    Vedel Isabelle

    2013-01-01

    Full Text Available Background Although collaborative team models (CTM improve care processes and health outcomes, their diffusion poses challenges related to difficulties in securing their adoption by primary care clinicians (PCPs. The objectives of this study are to understand: (1 how the perceived characteristics of a CTM influenced clinicians' decision to adopt -or not- the model; and (2 the model's diffusion process. Methods We conducted a longitudinal case study based on the Diffusion of Innovations Theory. First, diffusion curves were developed for all 175 PCPs and 59 nurses practicing in one borough of Paris. Second, semi-structured interviews were conducted with a representative sample of 40 PCPs and 15 nurses to better understand the implementation dynamics. Results Diffusion curves showed that 3.5 years after the start of the implementation, 100% of nurses and over 80% of PCPs had adopted the CTM. The dynamics of the CTM's diffusion were different between the PCPs and the nurses. The slopes of the two curves are also distinctly different. Among the nurses, the critical mass of adopters was attained faster, since they adopted the CTM earlier and more quickly than the PCPs. Results of the semi-structured interviews showed that these differences in diffusion dynamics were mostly founded in differences between the PCPs' and the nurses' perceptions of the CTM's compatibility with norms, values and practices and its relative advantage (impact on patient management and work practices. Opinion leaders played a key role in the diffusion of the CTM among PCPs. Conclusion CTM diffusion is a social phenomenon that requires a major commitment by clinicians and a willingness to take risks; the role of opinion leaders is key. Paying attention to the notion of a critical mass of adopters is essential to developing implementation strategies that will accelerate the adoption process by clinicians.

  9. Density-dependent electron scattering in photoexcited GaAs in strongly diffusive regime

    DEFF Research Database (Denmark)

    Mics, Zoltán; D’Angio, Andrea; Jensen, Søren A.

    2013-01-01

    In a series of systematic optical pump–terahertz probe experiments, we study the density-dependent electron scattering rate in photoexcited GaAs in the regime of strong carrier diffusion. The terahertz frequency-resolved transient sheet conductivity spectra are perfectly described by the Drude...... model, directly yielding the electron scattering rates. A diffusion model is applied to determine the spatial extent of the photoexcited electron-hole gas at each moment after photoexcitation, yielding the time-dependent electron density, and hence the density-dependent electron scattering time. We find...

  10. Analytical Model for Diffusive Evaporation of Sessile Droplets Coupled with Interfacial Cooling Effect.

    Science.gov (United States)

    Nguyen, Tuan A H; Biggs, Simon R; Nguyen, Anh V

    2018-05-30

    Current analytical models for sessile droplet evaporation do not consider the nonuniform temperature field within the droplet and can overpredict the evaporation by 20%. This deviation can be attributed to a significant temperature drop due to the release of the latent heat of evaporation along the air-liquid interface. We report, for the first time, an analytical solution of the sessile droplet evaporation coupled with this interfacial cooling effect. The two-way coupling model of the quasi-steady thermal diffusion within the droplet and the quasi-steady diffusion-controlled droplet evaporation is conveniently solved in the toroidal coordinate system by applying the method of separation of variables. Our new analytical model for the coupled vapor concentration and temperature fields is in the closed form and is applicable for a full range of spherical-cap shape droplets of different contact angles and types of fluids. Our analytical results are uniquely quantified by a dimensionless evaporative cooling number E o whose magnitude is determined only by the thermophysical properties of the liquid and the atmosphere. Accordingly, the larger the magnitude of E o , the more significant the effect of the evaporative cooling, which results in stronger suppression on the evaporation rate. The classical isothermal model is recovered if the temperature gradient along the air-liquid interface is negligible ( E o = 0). For substrates with very high thermal conductivities (isothermal substrates), our analytical model predicts a reversal of temperature gradient along the droplet-free surface at a contact angle of 119°. Our findings pose interesting challenges but also guidance for experimental investigations.

  11. Comparison of Multi-Tensor Diffusion Models' Performance for White Matter Integrity Estimation in Chronic Stroke

    Directory of Open Access Journals (Sweden)

    Olena G. Filatova

    2018-04-01

    Full Text Available Better insight into white matter (WM alterations after stroke onset could help to understand the underlying recovery mechanisms and improve future interventions. MR diffusion imaging enables to assess such changes. Our goal was to investigate the relation of WM diffusion characteristics derived from diffusion models of increasing complexity with the motor function of the upper limb. Moreover, we aimed to evaluate the variation of such characteristics across different WM structures of chronic stroke patients in comparison to healthy subjects. Subjects were scanned with a two b-value diffusion-weighted MRI protocol to exploit multiple diffusion models: single tensor, single tensor with isotropic compartment, bi-tensor model, bi-tensor with isotropic compartment. From each model we derived the mean tract fractional anisotropy (FA, mean (MD, radial (RD and axial (AD diffusivities outside the lesion site based on a WM tracts atlas. Asymmetry of these measures was correlated with the Fugl-Meyer upper extremity assessment (FMA score and compared between patient and control groups. Eighteen chronic stroke patients and eight age-matched healthy individuals participated in the study. Significant correlation of the outcome measures with the clinical scores of stroke recovery was found. The lowest correlation of the corticospinal tract FAasymmetry and FMA was with the single tensor model (r = −0.3, p = 0.2 whereas the other models reported results in the range of r = −0.79 ÷ −0.81 and p = 4E-5 ÷ 8E-5. The corticospinal tract and superior longitudinal fasciculus showed most alterations in our patient group relative to controls. Multiple compartment models yielded superior correlation of the diffusion measures and FMA compared to the single tensor model.

  12. Self-diffusion in MgO--a density functional study.

    Science.gov (United States)

    Runevall, Odd; Sandberg, Nils

    2011-08-31

    Density functional theory calculations have been performed to study self-diffusion in magnesium oxide, a model material for a wide range of ionic compounds. Formation energies and entropies of Schottky defects and divacancies were obtained by means of total energy and phonon calculations in supercell configurations. Transition state theory was used to estimate defect migration rates, with migration energies taken from static calculations, and the corresponding frequency factors estimated from the phonon spectrum. In all static calculations we corrected for image effects using either a multipole expansion or an extrapolation to the low concentration limit. It is shown that both methods give similar results. The results for self-diffusion of Mg and O confirm the previously established picture, namely that in materials of nominal purity, Mg diffuses extrinsically by a single vacancy mechanism, while O diffuses intrinsically by a divacancy mechanism. Quantitatively, the current results are in very good agreement with experiments concerning O diffusion, while for Mg the absolute diffusion rate is generally underestimated by a factor of 5-10. The reason for this discrepancy is discussed.

  13. Intravoxel water diffusion heterogeneity MR imaging of nasopharyngeal carcinoma using stretched exponential diffusion model

    International Nuclear Information System (INIS)

    Lai, Vincent; Khong, Pek Lan; Lee, Victor Ho Fun; Lam, Ka On; Sze, Henry Chun Kin; Chan, Queenie

    2015-01-01

    To determine the utility of stretched exponential diffusion model in characterisation of the water diffusion heterogeneity in different tumour stages of nasopharyngeal carcinoma (NPC). Fifty patients with newly diagnosed NPC were prospectively recruited. Diffusion-weighted MR imaging was performed using five b values (0-2,500 s/mm 2 ). Respective stretched exponential parameters (DDC, distributed diffusion coefficient; and alpha (α), water heterogeneity) were calculated. Patients were stratified into low and high tumour stage groups based on the American Joint Committee on Cancer (AJCC) staging for determination of the predictive powers of DDC and α using t test and ROC curve analyses. The mean ± standard deviation values were DDC = 0.692 ± 0.199 (x 10 -3 mm 2 /s) for low stage group vs 0.794 ± 0.253 (x 10 -3 mm 2 /s) for high stage group; α = 0.792 ± 0.145 for low stage group vs 0.698 ± 0.155 for high stage group. α was significantly lower in the high stage group while DDC was negatively correlated. DDC and α were both reliable independent predictors (p < 0.001), with α being more powerful. Optimal cut-off values were (sensitivity, specificity, positive likelihood ratio, negative likelihood ratio) DDC = 0.692 x 10 -3 mm 2 /s (94.4 %, 64.3 %, 2.64, 0.09), α = 0.720 (72.2 %, 100 %, -, 0.28). The heterogeneity index α is robust and can potentially help in staging and grading prediction in NPC. (orig.)

  14. Radon exhalation rates corrected for leakage and back diffusion – Evaluation of radon chambers and radon sources with application to ceramic tile

    Directory of Open Access Journals (Sweden)

    M. Abo-Elmagd

    2014-10-01

    Full Text Available The natural radon decay, leakage and back diffusion are the main removal processes of radon from its container. Ignoring these processes leads to underestimate the measured value of radon related parameters like exhalation rate and radium content. This work is aimed to evaluate two different radon chambers through determining their leakage rate λv and evaluation of radon source by determine its back diffusion rate λb inside the evaluated radon chambers as well as a small sealed cup. Two different methods are adapted for measuring both the leakage rate and the back diffusion rate. The leakage rate can be determined from the initial slope of the radon decay curve or from the exponential fitting of the whole decay curve. This can be achieved if a continuous monitoring of radon concentration inside the chamber is available. Also, the back diffusion rate is measured by sealing the radon source in the chamber and used the initial slope of the buildup curve to determine λb and therefore the exhalation rate of the source. This method was compared with simple equation for λb based on the ratio of the source to the chamber volume. The obtained results are applied to ceramic tile as an important radon source in homes. The measurement is targeted the ceramic glaze before and after firing as well as the obtained tile after adhere the glaze on the tile main body. Also, six different tile brands from Egyptian market are subjected to the study for comparison.

  15. Thermally activated reaction–diffusion-controlled chemical bulk reactions of gases and solids

    Directory of Open Access Journals (Sweden)

    S. Möller

    2015-01-01

    Full Text Available The chemical kinetics of the reaction of thin films with reactive gases is investigated. The removal of thin films using thermally activated solid–gas to gas reactions is a method to in-situ control deposition inventory in vacuum and plasma vessels. Significant scatter of experimental deposit removal rates at apparently similar conditions was observed in the past, highlighting the need for understanding the underlying processes. A model based on the presence of reactive gas in the films bulk and chemical kinetics is presented. The model describes the diffusion of reactive gas into the film and its chemical interaction with film constituents in the bulk using a stationary reaction–diffusion equation. This yields the reactive gas concentration and reaction rates. Diffusion and reaction rate limitations are depicted in parameter studies. Comparison with literature data on tokamak co-deposit removal results in good agreement of removal rates as a function of pressure, film thickness and temperature.

  16. A minimally-resolved immersed boundary model for reaction-diffusion problems

    OpenAIRE

    Pal Singh Bhalla, A; Griffith, BE; Patankar, NA; Donev, A

    2013-01-01

    We develop an immersed boundary approach to modeling reaction-diffusion processes in dispersions of reactive spherical particles, from the diffusion-limited to the reaction-limited setting. We represent each reactive particle with a minimally-resolved "blob" using many fewer degrees of freedom per particle than standard discretization approaches. More complicated or more highly resolved particle shapes can be built out of a collection of reactive blobs. We demonstrate numerically that the blo...

  17. A chaotic model for advertising diffusion problem with competition

    Science.gov (United States)

    Ip, W. H.; Yung, K. L.; Wang, Dingwei

    2012-08-01

    In this article, the author extends Dawid and Feichtinger's chaotic advertising diffusion model into the duopoly case. A computer simulation system is used to test this enhanced model. Based on the analysis of simulation results, it is found that the best advertising strategy in duopoly is to increase the advertising investment to reach the best Win-Win situation where the oscillation of market portion will not occur. In order to effectively arrive at the best situation, we define a synthetic index and two thresholds. An estimation method for the parameters of the index and thresholds is proposed in this research. We can reach the Win-Win situation by simply selecting the control parameters to make the synthetic index close to the threshold of min-oscillation state. The numerical example and computational results indicated that the proposed chaotic model is useful to describe and analyse advertising diffusion process in duopoly, it is an efficient tool for the selection and optimisation of advertising strategy.

  18. Grey Box Modelling of Flow in Sewer Systems with State Dependent Diffusion

    DEFF Research Database (Denmark)

    Breinholt, Anders; Thordarson, Fannar Örn; Møller, Jan Kloppenborg

    2011-01-01

    . It is shown that an additive diffusion noise term description leads to a violation of the physical constraints of the system, whereas a state dependent diffusion noise avoids this problem and should be favoured. It is also shown that a logarithmic transformation of the flow measurements secures positive lower...... flow prediction limits, because the observation noise is proportionally scaled with the modelled output. Finally it is concluded that a state proportional diffusion term best and adequately describes the one-step flow prediction uncertainty, and a proper description of the system noise is important......Generating flow forecasts with uncertainty limits from rain gauge inputs in sewer systems require simple models with identifiable parameters that can adequately describe the stochastic phenomena of the system. In this paper, a simple grey-box model is proposed that is attractive for both...

  19. Characteristics and Diffusion Model of the Individual Knowledge in the WeChat Mode

    Directory of Open Access Journals (Sweden)

    Zhang Lingzhi

    2017-12-01

    Full Text Available [Purpose/significance] According to the model of the individual knowledge diffusion, we conduct a behavior research and analyze the characteristics of that based on WeChat which is the most popular communication platform in China.[Method/process] By analyzing the methods of the diffusion on WeChat, we analyzed the characteristics of the individual knowledge diffusion. [Result/conclusion]The characteristics of the individual knowledge diffusion include real-time, short-term, speciality, friendship and transmission.

  20. Fitting the CDO correlation skew: a tractable structural jump-diffusion model

    DEFF Research Database (Denmark)

    Willemann, Søren

    2007-01-01

    We extend a well-known structural jump-diffusion model for credit risk to handle both correlations through diffusion of asset values and common jumps in asset value. Through a simplifying assumption on the default timing and efficient numerical techniques, we develop a semi-analytic framework...... allowing for instantaneous calibration to heterogeneous CDS curves and fast computation of CDO tranche spreads. We calibrate the model to CDX and iTraxx data from February 2007 and achieve a satisfactory fit. To price the senior tranches for both indices, we require a risk-neutral probability of a market...

  1. The combined use of MODFLOW and precipitation-runoff modeling to simulate groundwater flow in a diffuse-pollution prone watershed.

    Science.gov (United States)

    Elçi, A; Karadaş, D; Fistikoğlu, O

    2010-01-01

    A numerical modeling case study of groundwater flow in a diffuse pollution prone area is presented. The study area is located within the metropolitan borders of the city of Izmir, Turkey. This groundwater flow model was unconventional in the application since the groundwater recharge parameter in the model was estimated using a lumped, transient water-budget based precipitation-runoff model that was executed independent of the groundwater flow model. The recharge rate obtained from the calibrated precipitation-runoff model was used as input to the groundwater flow model, which was eventually calibrated to measured water table elevations. Overall, the flow model results were consistent with field observations and model statistics were satisfactory. Water budget results of the model revealed that groundwater recharge comprised about 20% of the total water input for the entire study area. Recharge was the second largest component in the budget after leakage from streams into the subsurface. It was concluded that the modeling results can be further used as input for contaminant transport modeling studies in order to evaluate the vulnerability of water resources of the study area to diffuse pollution.

  2. Order of current variance and diffusivity in the rate one totally asymmetric zero range process

    NARCIS (Netherlands)

    Balázs, M.; Komjáthy, J.

    2008-01-01

    We prove that the variance of the current across a characteristic is of order t 2/3 in a stationary constant rate totally asymmetric zero range process, and that the diffusivity has order t 1/3. This is a step towards proving universality of this scaling behavior in the class of one-dimensional

  3. Extended diffusion weighted magnetic resonance imaging with two-compartment and anomalous diffusion models for differentiation of low-grade and high-grade brain tumors in pediatric patients

    Energy Technology Data Exchange (ETDEWEB)

    Burrowes, Delilah; Deng, Jie [Ann and Robert H. Lurie Children' s Hospital of Chicago, Department of Medical Imaging, Chicago, IL (United States); Northwestern University, Feinberg School of Medicine, Department of Radiology, Chicago, IL (United States); Fangusaro, Jason R. [Ann and Robert H. Lurie Children' s Hospital of Chicago, Department of Hematology/Oncology, Chicago, IL (United States); Northwestern University, Feinberg School of Medicine, Department of Pediatrics-Hematology, Oncology, and Stem Cell Transplantation, Chicago, IL (United States); Nelson, Paige C.; Rozenfeld, Michael J. [Ann and Robert H. Lurie Children' s Hospital of Chicago, Department of Medical Imaging, Chicago, IL (United States); Zhang, Bin [Cincinnati Children' s Hospital Medical Center, Department of Biostatistics and Epidemiology, Cincinnati, OH (United States); Wadhwani, Nitin R. [Ann and Robert H. Lurie Children' s Hospital of Chicago, Department of Pathology and Laboratory Medicine, Chicago, IL (United States); Northwestern University, Feinberg School of Medicine, Department of Pathology, Chicago, IL (United States)

    2017-08-15

    The purpose of this study was to examine advanced diffusion-weighted magnetic resonance imaging (DW-MRI) models for differentiation of low- and high-grade tumors in the diagnosis of pediatric brain neoplasms. Sixty-two pediatric patients with various types and grades of brain tumors were evaluated in a retrospective study. Tumor type and grade were classified using the World Health Organization classification (WHO I-IV) and confirmed by pathological analysis. Patients underwent DW-MRI before treatment. Diffusion-weighted images with 16 b-values (0-3500 s/mm{sup 2}) were acquired. Averaged signal intensity decay within solid tumor regions was fitted using two-compartment and anomalous diffusion models. Intracellular and extracellular diffusion coefficients (D{sub slow} and D{sub fast}), fractional volumes (V{sub slow} and V{sub fast}), generalized diffusion coefficient (D), spatial constant (μ), heterogeneity index (β), and a diffusion index (index{sub d}iff = μ x V{sub slow}/β) were calculated. Multivariate logistic regression models with stepwise model selection algorithm and receiver operating characteristic (ROC) analyses were performed to evaluate the ability of each diffusion parameter to distinguish tumor grade. Among all parameter combinations, D and index{sub d}iff jointly provided the best predictor for tumor grades, where lower D (p = 0.03) and higher index{sub d}iff (p = 0.009) were significantly associated with higher tumor grades. In ROC analyses of differentiating low-grade (I-II) and high-grade (III-IV) tumors, index{sub d}iff provided the highest specificity of 0.97 and D provided the highest sensitivity of 0.96. Multi-parametric diffusion measurements using two-compartment and anomalous diffusion models were found to be significant discriminants of tumor grading in pediatric brain neoplasms. (orig.)

  4. Diffusion dynamics and concentration of toxic materials from quantum dots-based nanotechnologies: an agent-based modeling simulation framework

    Energy Technology Data Exchange (ETDEWEB)

    Agusdinata, Datu Buyung, E-mail: bagusdinata@niu.edu; Amouie, Mahbod [Northern Illinois University, Department of Industrial & Systems Engineering and Environment, Sustainability, & Energy Institute (United States); Xu, Tao [Northern Illinois University, Department of Chemistry and Biochemistry (United States)

    2015-01-15

    Due to their favorable electrical and optical properties, quantum dots (QDs) nanostructures have found numerous applications including nanomedicine and photovoltaic cells. However, increased future production, use, and disposal of engineered QD products also raise concerns about their potential environmental impacts. The objective of this work is to establish a modeling framework for predicting the diffusion dynamics and concentration of toxic materials released from Trioctylphosphine oxide-capped CdSe. To this end, an agent-based model simulation with reaction kinetics and Brownian motion dynamics was developed. Reaction kinetics is used to model the stability of surface capping agent particularly due to oxidation process. The diffusion of toxic Cd{sup 2+} ions in aquatic environment was simulated using an adapted Brownian motion algorithm. A calibrated parameter to reflect sensitivity to reaction rate is proposed. The model output demonstrates the stochastic spatial distribution of toxic Cd{sup 2+} ions under different values of proxy environmental factor parameters. With the only chemistry considered was oxidation, the simulation was able to replicate Cd{sup 2+} ion release from Thiol-capped QDs in aerated water. The agent-based method is the first to be developed in the QDs application domain. It adds both simplicity of the solubility and rate of release of Cd{sup 2+} ions and complexity of tracking of individual atoms of Cd at the same time.

  5. Diffusion dynamics and concentration of toxic materials from quantum dots-based nanotechnologies: an agent-based modeling simulation framework

    International Nuclear Information System (INIS)

    Agusdinata, Datu Buyung; Amouie, Mahbod; Xu, Tao

    2015-01-01

    Due to their favorable electrical and optical properties, quantum dots (QDs) nanostructures have found numerous applications including nanomedicine and photovoltaic cells. However, increased future production, use, and disposal of engineered QD products also raise concerns about their potential environmental impacts. The objective of this work is to establish a modeling framework for predicting the diffusion dynamics and concentration of toxic materials released from Trioctylphosphine oxide-capped CdSe. To this end, an agent-based model simulation with reaction kinetics and Brownian motion dynamics was developed. Reaction kinetics is used to model the stability of surface capping agent particularly due to oxidation process. The diffusion of toxic Cd 2+ ions in aquatic environment was simulated using an adapted Brownian motion algorithm. A calibrated parameter to reflect sensitivity to reaction rate is proposed. The model output demonstrates the stochastic spatial distribution of toxic Cd 2+ ions under different values of proxy environmental factor parameters. With the only chemistry considered was oxidation, the simulation was able to replicate Cd 2+ ion release from Thiol-capped QDs in aerated water. The agent-based method is the first to be developed in the QDs application domain. It adds both simplicity of the solubility and rate of release of Cd 2+ ions and complexity of tracking of individual atoms of Cd at the same time

  6. Modelling of monovacancy diffusion in W over wide temperature range

    International Nuclear Information System (INIS)

    Bukonte, L.; Ahlgren, T.; Heinola, K.

    2014-01-01

    The diffusion of monovacancies in tungsten is studied computationally over a wide temperature range from 1300 K until the melting point of the material. Our modelling is based on Molecular Dynamics technique and Density Functional Theory. The monovacancy migration barriers are calculated using nudged elastic band method for nearest and next-nearest neighbour monovacancy jumps. The diffusion pre-exponential factor for monovacancy diffusion is found to be two to three orders of magnitude higher than commonly used in computational studies, resulting in attempt frequency of the order 10 15 Hz. Multiple nearest neighbour jumps of monovacancy are found to play an important role in the contribution to the total diffusion coefficient, especially at temperatures above 2/3 of T m , resulting in an upward curvature of the Arrhenius diagram. The probabilities for different nearest neighbour jumps for monovacancy in W are calculated at different temperatures

  7. Leaky-box approximation to the fractional diffusion model

    International Nuclear Information System (INIS)

    Uchaikin, V V; Sibatov, R T; Saenko, V V

    2013-01-01

    Two models based on fractional differential equations for galactic cosmic ray diffusion are applied to the leaky-box approximation. One of them (Lagutin-Uchaikin, 2000) assumes a finite mean free path of cosmic ray particles, another one (Lagutin-Tyumentsev, 2004) uses distribution with infinite mean distance between collision with magnetic clouds, when the trajectories have form close to ballistic. Calculations demonstrate that involving boundary conditions is incompatible with spatial distributions given by the second model.

  8. Determination of oxygen effective diffusivity in porous gas diffusion layer using a three-dimensional pore network model

    International Nuclear Information System (INIS)

    Wu Rui; Zhu Xun; Liao Qiang; Wang Hong; Ding Yudong; Li Jun; Ye Dingding

    2010-01-01

    In proton exchange membrane fuel cell (PEMFC) models, oxygen effective diffusivity is the most important parameter to characterize the oxygen transport in the gas diffusion layer (GDL). However, its determination is a challenge due to its complex dependency on GDL structure. In the present study, a three-dimensional network consisting of spherical pores and cylindrical throats is developed and used to investigate the effects of GDL structural parameters on oxygen effective diffusivity under the condition with/without water invasion process. Oxygen transport in the throat is described by Fick's law and water invasion process in the network is simulated using the invasion percolation with trapping algorithm. The simulation results reveal that oxygen effective diffusivity is slightly affected by network size but increases with decreasing the network heterogeneity and with increasing the pore connectivity. Impacts of network anisotropy on oxygen transport are also investigated in this paper. The anisotropic network is constructed by constricting the throats in the through-plane direction with a constriction factor. It is found that water invasion has a more severe negative influence on oxygen transport in an anisotropic network. Finally, two new correlations are introduced to determine the oxygen effective diffusivity for the Toray carbon paper GDLs.

  9. Turing Patterns in a Reaction-Diffusion System

    International Nuclear Information System (INIS)

    Wu Yanning; Wang Pingjian; Hou Chunju; Liu Changsong; Zhu Zhengang

    2006-01-01

    We have further investigated Turing patterns in a reaction-diffusion system by theoretical analysis and numerical simulations. Simple Turing patterns and complex superlattice structures are observed. We find that the shape and type of Turing patterns depend on dynamical parameters and external periodic forcing, and is independent of effective diffusivity rate σ in the Lengyel-Epstein model. Our numerical results provide additional insight into understanding the mechanism of development of Turing patterns and predicting new pattern formations.

  10. The Green’s functions for peridynamic non-local diffusion

    Science.gov (United States)

    Wang, L. J.; Xu, J. F.

    2016-01-01

    In this work, we develop the Green’s function method for the solution of the peridynamic non-local diffusion model in which the spatial gradient of the generalized potential in the classical theory is replaced by an integral of a generalized response function in a horizon. We first show that the general solutions of the peridynamic non-local diffusion model can be expressed as functionals of the corresponding Green’s functions for point sources, along with volume constraints for non-local diffusion. Then, we obtain the Green’s functions by the Fourier transform method for unsteady and steady diffusions in infinite domains. We also demonstrate that the peridynamic non-local solutions converge to the classical differential solutions when the non-local length approaches zero. Finally, the peridynamic analytical solutions are applied to an infinite plate heated by a Gauss source, and the predicted variations of temperature are compared with the classical local solutions. The peridynamic non-local diffusion model predicts a lower rate of variation of the field quantities than that of the classical theory, which is consistent with experimental observations. The developed method is applicable to general diffusion-type problems. PMID:27713658

  11. Bounds for perpetual American option prices in a jump diffusion model

    OpenAIRE

    Ekström, Erik

    2006-01-01

    We provide bounds for perpetual American option prices in a jump diffusion model in terms of American option prices in the standard Black-Scholes model. We also investigate the dependence of the bounds on different parameters of the model.

  12. Macroscopic diffusion models for precipitation in crystalline gallium arsenide

    Energy Technology Data Exchange (ETDEWEB)

    Kimmerle, Sven-Joachim Wolfgang

    2009-09-21

    Based on a thermodynamically consistent model for precipitation in gallium arsenide crystals including surface tension and bulk stresses by Dreyer and Duderstadt, we propose two different mathematical models to describe the size evolution of liquid droplets in a crystalline solid. The first model treats the diffusion-controlled regime of interface motion, while the second model is concerned with the interface-controlled regime of interface motion. Our models take care of conservation of mass and substance. These models generalise the well-known Mullins- Sekerka model for Ostwald ripening. We concentrate on arsenic-rich liquid spherical droplets in a gallium arsenide crystal. Droplets can shrink or grow with time but the centres of droplets remain fixed. The liquid is assumed to be homogeneous in space. Due to different scales for typical distances between droplets and typical radii of liquid droplets we can derive formally so-called mean field models. For a model in the diffusion-controlled regime we prove this limit by homogenisation techniques under plausible assumptions. These mean field models generalise the Lifshitz-Slyozov-Wagner model, which can be derived from the Mullins-Sekerka model rigorously, and is well understood. Mean field models capture the main properties of our system and are well adapted for numerics and further analysis. We determine possible equilibria and discuss their stability. Numerical evidence suggests in which case which one of the two regimes might be appropriate to the experimental situation. (orig.)

  13. Modeling Unidirectional Pedestrian Movement: An Investigation of Diffusion Behavior in the Built Environment

    Directory of Open Access Journals (Sweden)

    Ying Liu

    2015-01-01

    Full Text Available Unidirectional pedestrian movement is a special phenomenon in the evacuation process of large public buildings and urban environments at pedestrian scale. Several macroscopic models for collective behaviors have been built to predict pedestrian flow. However, current models do not explain the diffusion behavior in pedestrian crowd movement, which can be important in representing spatial-temporal crowd density differentiation in the movement process. This study builds a macroscopic model for describing crowd diffusion behavior and evaluating unidirectional pedestrian flow. The proposed model employs discretization of time and walking speed in geometric distribution to calculate downstream pedestrian crowd flow and analyze movement process based on upstream number of pedestrians and average walking speed. The simulated results are calibrated with video observation data in a baseball stadium to verify the model precision. Statistical results have verified that the proposed pedestrian diffusion model could accurately describe pedestrian macromovement behavior within the margin of error.

  14. Determination of diffusion coefficients and diffusion characteristics for chlorferon and diethylthiophosphate in Ca-alginate gel beads.

    Science.gov (United States)

    Ha, Jiyeon; Engler, Cady R; Lee, Seung Jae

    2008-07-01

    Diffusion characteristics of chlorferon and diethylthiophosphate (DETP) in Ca-alginate gel beads were studied to assist in designing and operating bioreactor systems. Diffusion coefficients for chlorferon and DETP in Ca-alginate gel beads determined at conditions suitable for biodegradation studies were 2.70 x 10(-11) m(2)/s and 4.28 x 10(-11) m(2)/s, respectively. Diffusivities of chlorferon and DETP were influenced by several factors, including viscosity of the bulk solution, agitation speed, and the concentrations of diffusing substrate and immobilized cells. Diffusion coefficients increased with increasing agitation speed, probably due to poor mixing at low speed and some attrition of beads at high speeds. Diffusion coefficients also increased with decreasing substrate concentration. Increased cell concentration in the gel beads caused lower diffusivity. Theoretical models to predict diffusivities as a function of cell weight fraction overestimated the effective diffusivities for both chlorferon and DETP, but linear relations between effective diffusivity and cell weight fraction were derived from experimental data. Calcium-alginate gel beads with radii of 1.65-1.70 mm used in this study were not subject to diffusional limitations: external mass transfer resistances were negligible based on Biot number calculations and effectiveness factors indicated that internal mass transfer resistance was negligible. Therefore, the degradation rates of chlorferon and DETP inside Ca-alginate gel beads were reaction-limited. (c) 2007 Wiley Periodicals, Inc.

  15. γ-irradiation effect on gas diffusion in polymer films. Part I : Hydrogen diffusion through mylar film

    International Nuclear Information System (INIS)

    Rao, K.A.; Pushpa, K.K.; Iyer, R.M.

    1980-01-01

    γ-irradiation of polymers results in further crosslinking in the polymer or breakdown of the polymer or a combination of both these phenomena depending on the type of polymer, the dose as well as the environment in which irradiation is carried out. The gas diffusion through polymer films is expected to vary depending on these changes. With a view to A evaluate the feasibility of effecting selective diffusion of specific gases and also to correlate the change in diffusion rates with the polymer characteristics these studies have been initiated. Hydrogen diffusion through mylar film γ-irradiated under varying conditions upto a dose of approximately 50 Mrads is reported in this paper. The results indicate negligible change in hydrogen diffusion rates on γ-irradiation. However, γ-irradiation induced crosslinking of acrylic acid on Mylar reduced the hydrogen diffusion rate. The hydrogen diffusion studies may also be useful in finding the glass transition temperature of polymer films as is apparent from the gas diffusion curves. (author)

  16. Improved Modeling of Finite-Rate Turbulent Combustion Processes in Research Combustors

    Science.gov (United States)

    VanOverbeke, Thomas J.

    1998-01-01

    The objective of this thesis is to further develop and test a stochastic model of turbulent combustion in recirculating flows. There is a requirement to increase the accuracy of multi-dimensional combustion predictions. As turbulence affects reaction rates, this interaction must be more accurately evaluated. In this work a more physically correct way of handling the interaction of turbulence on combustion is further developed and tested. As turbulence involves randomness, stochastic modeling is used. Averaged values such as temperature and species concentration are found by integrating the probability density function (pdf) over the range of the scalar. The model in this work does not assume the pdf type, but solves for the evolution of the pdf using the Monte Carlo solution technique. The model is further developed by including a more robust reaction solver, by using accurate thermodynamics and by more accurate transport elements. The stochastic method is used with Semi-Implicit Method for Pressure-Linked Equations. The SIMPLE method is used to solve for velocity, pressure, turbulent kinetic energy and dissipation. The pdf solver solves for temperature and species concentration. Thus, the method is partially familiar to combustor engineers. The method is compared to benchmark experimental data and baseline calculations. The baseline method was tested on isothermal flows, evaporating sprays and combusting sprays. Pdf and baseline predictions were performed for three diffusion flames and one premixed flame. The pdf method predicted lower combustion rates than the baseline method in agreement with the data, except for the premixed flame. The baseline and stochastic predictions bounded the experimental data for the premixed flame. The use of a continuous mixing model or relax to mean mixing model had little effect on the prediction of average temperature. Two grids were used in a hydrogen diffusion flame simulation. Grid density did not effect the predictions except

  17. Kinetic and diffusion evaporation of substances on sublimation in vacuum

    International Nuclear Information System (INIS)

    Martinson, I.G.

    2006-01-01

    Diffusion-kinetic model of sublimation of substances in vacuum determining fields of the evaporation according to temperature - kinetic and diffusion is performed. The model is experimentally confirmed in the tests with benzoic acid and naphthalene, by calculation of the rate of Zn, Co, V, W sublimation and the value of coefficient of evaporation α. The model provides an explanation for derivation of low values of evaporation coefficient α, to 10 -10 , for easy to fusible substances, and α=1 for substances with high temperature of fusion [ru

  18. Characterization and diffusion model for the titanium boride layers formed on the Ti6Al4V alloy by plasma paste boriding

    Energy Technology Data Exchange (ETDEWEB)

    Keddam, Mourad, E-mail: keddam@yahoo.fr [Laboratoire de Technologie des Matériaux, Faculté de Génie Mécanique et Génie des Procédés, USTHB, B.P. No. 32, 16111 El-Alia, Bab-Ezzouar, Algiers (Algeria); Taktak, Sukru [Metallurgical and Materials Engineering, Faculty of Technology, Afyon Kocatepe University, ANS Campus, 03200, Afyonkarahisar (Turkey)

    2017-03-31

    Highlights: • Titanium boride layers were produced by plasma paste boriding on Ti6Al4V at 973–1073 K. • Formation rates of the Ti boride layers have parabolic character at all temperatures. • Boron diffusivities were estimated using a diffusion model including incubation times. • Activation energies of boron in TiB{sub 2} and TiB were 136 and 63 kJ/mol respectively. - Abstract: The present study is focused on the estimation of activation energy of boron in the plasma paste borided Ti6Al4V alloy, which is extensively used in technological applications, using an analytical diffusion model. Titanium boride layers were successfully produced by plasma paste boriding method on the Ti6Al4V alloy in the temperature range of 973–1073 K for a treatment time ranging from 3 to 7 h. The presence of both TiB{sub 2} top-layer and TiB whiskers sub-layer was confirmed by the XRD analysis and SEM observations. The surface hardness of the borided alloy was evaluated using Micro-Knoop indenter. The formation rates of the TiB{sub 2} and TiB layers were found to have a parabolic character at all applied process temperatures. A diffusion model was suggested to estimate the boron diffusivities in TiB{sub 2} and TiB layers under certain assumptions, by considering the effect of boride incubation times. Basing on own experimental data on boriding kinetics, the activation energies of boron in TiB{sub 2} and TiB phases were estimated as 136.24 ± 0.5 and 63.76 ± 0.5 kJ mol{sup −1}, respectively. Finally, the obtained values of boron activation energies for Ti6Al4V alloy were compared with the data available in the literature.

  19. Analysis of effective diffusivity of cement based materials by multi-scale modelling

    International Nuclear Information System (INIS)

    Dridi, Wissem

    2013-01-01

    This paper presents a simplified composite model, which considers the contribution of each phase participating to the transport within OPC pastes and concretes. At the micrometer scale, the phases considered hereafter are capillary porosity (macro-porosity) and the Low Density and the High Density C-S-H both containing gel pores (nano-porosity). Predicted values of tritiated water (HTO) diffusivity in OPC pastes with various (w/c) ratios are confronted to experimental results with a good agreement. The approach is then extended to mortars and concretes scale where microstructure is described by a three phase composite sphere assemblage. Here, elementary phase distribution is assumed to change as a function of distance from aggregate surface. Model results about HTO diffusivities of mortars and concretes are presented with some experimental values. The competition between the more diffusing ITZ zone and the less diffusing bulk matrix is investigated from a sensitive analysis. The dominance of the ITZ control is confirmed. (authors)

  20. The fractional diffusion limit of a kinetic model with biochemical pathway

    Science.gov (United States)

    Perthame, Benoît; Sun, Weiran; Tang, Min

    2018-06-01

    Kinetic-transport equations that take into account the intracellular pathways are now considered as the correct description of bacterial chemotaxis by run and tumble. Recent mathematical studies have shown their interest and their relations to more standard models. Macroscopic equations of Keller-Segel type have been derived using parabolic scaling. Due to the randomness of receptor methylation or intracellular chemical reactions, noise occurs in the signaling pathways and affects the tumbling rate. Then comes the question to understand the role of an internal noise on the behavior of the full population. In this paper we consider a kinetic model for chemotaxis which includes biochemical pathway with noises. We show that under proper scaling and conditions on the tumbling frequency as well as the form of noise, fractional diffusion can arise in the macroscopic limits of the kinetic equation. This gives a new mathematical theory about how long jumps can be due to the internal noise of the bacteria.

  1. Improved Modeling and Understanding of Diffusion-Media Wettability on Polymer-Electrolyte-Fuel-Cell Performance

    Energy Technology Data Exchange (ETDEWEB)

    Weber, Adam

    2010-03-05

    A macroscopic-modeling methodology to account for the chemical and structural properties of fuel-cell diffusion media is developed. A previous model is updated to include for the first time the use of experimentally measured capillary pressure -- saturation relationships through the introduction of a Gaussian contact-angle distribution into the property equations. The updated model is used to simulate various limiting-case scenarios of water and gas transport in fuel-cell diffusion media. Analysis of these results demonstrate that interfacial conditions are more important than bulk transport in these layers, where the associated mass-transfer resistance is the result of higher capillary pressures at the boundaries and the steepness of the capillary pressure -- saturation relationship. The model is also used to examine the impact of a microporous layer, showing that it dominates the response of the overall diffusion medium. In addition, its primary mass-transfer-related effect is suggested to be limiting the water-injection sites into the more porous gas-diffusion layer.

  2. Influence of radon diffusion on the 210Pb distribution in sediments

    International Nuclear Information System (INIS)

    Imboden, D.M.; Stiller, M.

    1982-01-01

    A mathematical model is presented which describes the distribution of radon 222 in sediments having a constant or variable depth distribution of radium 226. The model is extended to the distribution of lead 210, taking into account the mobility of radon (the precursor of 210 Pb) within the sediment column. The 210 Pb model is compared, at constant radium activity, with the conventional approach which disregards the radon diffusion when estimating sedimentation rates by the 210 Pb method. The ratio between apparent and real sedimentation rate, s'/s, expressed as a function of three dimensionless parameters, demonstrates the importance of the radon diffusion effect. This effect is particularly important for sediments with small initial excess 210 Pb activity, small sedimentation rate, large radon diffusivity, or a combination of these factors. Applied to Lake Geneva, the sedimentation is estimated to be larger by 30--50% than the original value by Krishnaswami et al, (1971). In sediments which are mixed at the surface (physical mixing or bioturbation), the 210 PB activity in the mixed layer is diminished compared to that in the settling sediment material (Robbins et al., 1977), and radon diffusion makes the activity difference even larger, especially for low initial excess 210 Pb activity, small sedimentation rate, and large mixing intensity. This result may be of importance for the balance of 210 Pb in an aquatic system if the calculations are based on activities measured in the sediment

  3. Modeling and Analysis of New Products Diffusion on Heterogeneous Networks

    Directory of Open Access Journals (Sweden)

    Shuping Li

    2014-01-01

    Full Text Available We present a heterogeneous networks model with the awareness stage and the decision-making stage to explain the process of new products diffusion. If mass media is neglected in the decision-making stage, there is a threshold whether the innovation diffusion is successful or not, or else it is proved that the network model has at least one positive equilibrium. For networks with the power-law degree distribution, numerical simulations confirm analytical results, and also at the same time, by numerical analysis of the influence of the network structure and persuasive advertisements on the density of adopters, we give two different products propagation strategies for two classes of nodes in scale-free networks.

  4. Modelling the effect of diffusion into the rock matrix on radionuclide migration

    International Nuclear Information System (INIS)

    Lever, D.A.; Bradbury, M.H.; Hemingway, S.J.

    1983-01-01

    Diffusion into the rock matrix is potentially an important retardation mechanism for nuclides leached from an underground radioactive waste repository in a fractured hard rock. Models of this diffusion process are discussed and incorporated into three-dimensional radionuclide migration models. Simple solutions to these models are derived for two regions: the region near to the repository where the nuclide is diffusing into effectively infinite rock, and that much further downstream where the concentrations in the rock and fractures are almost in equilibrium. These solutions are used to evaluate the possible impact on migration. It is shown that retardation factors in excess of 100 and reductions in the peak concentration at a given point on the flow path by three or four orders of magnitude are possibe for non-sorbed ions, which would otherwise be carried by the flow and not retarded at all. (author)

  5. A comparison of molecular dynamics and diffuse interface model predictions of Lennard-Jones fluid evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Barbante, Paolo [Dipartimento di Matematica, Politecnico di Milano - Piazza Leonardo da Vinci 32 - 20133 Milano (Italy); Frezzotti, Aldo; Gibelli, Livio [Dipartimento di Scienze e Tecnologie Aerospaziali, Politecnico di Milano - Via La Masa 34 - 20156 Milano (Italy)

    2014-12-09

    The unsteady evaporation of a thin planar liquid film is studied by molecular dynamics simulations of Lennard-Jones fluid. The obtained results are compared with the predictions of a diffuse interface model in which capillary Korteweg contributions are added to hydrodynamic equations, in order to obtain a unified description of the liquid bulk, liquid-vapor interface and vapor region. Particular care has been taken in constructing a diffuse interface model matching the thermodynamic and transport properties of the Lennard-Jones fluid. The comparison of diffuse interface model and molecular dynamics results shows that, although good agreement is obtained in equilibrium conditions, remarkable deviations of diffuse interface model predictions from the reference molecular dynamics results are observed in the simulation of liquid film evaporation. It is also observed that molecular dynamics results are in good agreement with preliminary results obtained from a composite model which describes the liquid film by a standard hydrodynamic model and the vapor by the Boltzmann equation. The two mathematical model models are connected by kinetic boundary conditions assuming unit evaporation coefficient.

  6. Modified chloride diffusion model for concrete under the coupling effect of mechanical load and chloride salt environment

    Science.gov (United States)

    Lei, Mingfeng; Lin, Dayong; Liu, Jianwen; Shi, Chenghua; Ma, Jianjun; Yang, Weichao; Yu, Xiaoniu

    2018-03-01

    For the purpose of investigating lining concrete durability, this study derives a modified chloride diffusion model for concrete based on the odd continuation of boundary conditions and Fourier transform. In order to achieve this, the linear stress distribution on a sectional structure is considered, detailed procedures and methods are presented for model verification and parametric analysis. Simulation results show that the chloride diffusion model can reflect the effects of linear stress distribution of the sectional structure on the chloride diffusivity with reliable accuracy. Along with the natural environmental characteristics of practical engineering structures, reference value ranges of model parameters are provided. Furthermore, a chloride diffusion model is extended for the consideration of multi-factor coupling of linear stress distribution, chloride concentration and diffusion time. Comparison between model simulation and typical current research results shows that the presented model can produce better considerations with a greater universality.

  7. Turing and Non-Turing patterns in diffusive plankton model

    Directory of Open Access Journals (Sweden)

    N. K. Thakur

    2015-03-01

    Full Text Available In this paper, we investigate a Rosenzweig-McAurthur model and its variant for phytoplankton, zooplankton and fish population dynamics with Holling type II and III functional responses. We present the theoretical analysis of processes of pattern formation that involves organism distribution and their interaction of spatially distributed population with local diffusion. The choice of parameter values is important to study the effect of diffusion, also it depends more on the nonlinearity of the system. With the help of numerical simulations, we observe the formation of spatiotemporal patterns both inside and outside the Turing space.

  8. A Phenomenological Model for Prediction Auto-Ignition and Soot Formation of Turbulent Diffusion Combustion in a High Pressure Common Rail Diesel Engine

    Directory of Open Access Journals (Sweden)

    Qinghui Zhou

    2011-06-01

    Full Text Available A new phenomenological model, the TP (Temperature Phase model, is presented to carry out optimization calculations for turbulent diffusion combustion in a high-pressure common rail diesel engine. Temperature is the most important parameter in the TP model, which includes two parts: an auto-ignition and a soot model. In the auto-ignition phase, different reaction mechanisms are built for different zones. For the soot model, different methods are used for different temperatures. The TP model is then implemented in KIVA code instead of original model to carry out optimization. The results of cylinder pressures, the corresponding heat release rates, and soot with variation of injection time, variation of rail pressure and variation of speed among TP model, KIVA standard model and experimental data are analyzed. The results indicate that the TP model can carry out optimization and CFD (computational fluid dynamics and can be a useful tool to study turbulent diffusion combustion.

  9. Molecules in motion: influences of diffusion on metabolic structure and function in skeletal muscle.

    Science.gov (United States)

    Kinsey, Stephen T; Locke, Bruce R; Dillaman, Richard M

    2011-01-15

    Metabolic processes are often represented as a group of metabolites that interact through enzymatic reactions, thus forming a network of linked biochemical pathways. Implicit in this view is that diffusion of metabolites to and from enzymes is very fast compared with reaction rates, and metabolic fluxes are therefore almost exclusively dictated by catalytic properties. However, diffusion may exert greater control over the rates of reactions through: (1) an increase in reaction rates; (2) an increase in diffusion distances; or (3) a decrease in the relevant diffusion coefficients. It is therefore not surprising that skeletal muscle fibers have long been the focus of reaction-diffusion analyses because they have high and variable rates of ATP turnover, long diffusion distances, and hindered metabolite diffusion due to an abundance of intracellular barriers. Examination of the diversity of skeletal muscle fiber designs found in animals provides insights into the role that diffusion plays in governing both rates of metabolic fluxes and cellular organization. Experimental measurements of metabolic fluxes, diffusion distances and diffusion coefficients, coupled with reaction-diffusion mathematical models in a range of muscle types has started to reveal some general principles guiding muscle structure and metabolic function. Foremost among these is that metabolic processes in muscles do, in fact, appear to be largely reaction controlled and are not greatly limited by diffusion. However, the influence of diffusion is apparent in patterns of fiber growth and metabolic organization that appear to result from selective pressure to maintain reaction control of metabolism in muscle.

  10. Three dimensional simulated modelling of diffusion capacitance of ...

    African Journals Online (AJOL)

    A three dimensional (3-D) simulated modelling was developed to analyse the excess minority carrier density in the base of a polycrystalline bifacial silicon solar cell. The concept of junction recombination velocity was ado-pted to quantify carrier flow through the junction, and to examine the solar cell diffusion capacitance for ...

  11. Modeling of the interplay between single-file diffusion and conversion reaction in mesoporous systems

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jing [Iowa State Univ., Ames, IA (United States)

    2013-01-11

    We analyze the spatiotemporal behavior of species concentrations in a diffusion-mediated conversion reaction which occurs at catalytic sites within linear pores of nanometer diameter. A strict single-file (no passing) constraint occurs in the diffusion within such narrow pores. Both transient and steady-state behavior is precisely characterized by kinetic Monte Carlo simulations of a spatially discrete lattice–gas model for this reaction–diffusion process considering various distributions of catalytic sites. Exact hierarchical master equations can also be developed for this model. Their analysis, after application of mean-field type truncation approximations, produces discrete reaction–diffusion type equations (mf-RDE). For slowly varying concentrations, we further develop coarse-grained continuum hydrodynamic reaction–diffusion equations (h-RDE) incorporating a precise treatment of single-file diffusion (SFD) in this multispecies system. Noting the shortcomings of mf-RDE and h-RDE, we then develop a generalized hydrodynamic (GH) formulation of appropriate gh-RDE which incorporates an unconventional description of chemical diffusion in mixed-component quasi-single-file systems based on a refined picture of tracer diffusion for finite-length pores. The gh-RDE elucidate the non-exponential decay of the steady-state reactant concentration into the pore and the non-mean-field scaling of the reactant penetration depth. Then an extended model of a catalytic conversion reaction within a functionalized nanoporous material is developed to assess the effect of varying the reaction product – pore interior interaction from attractive to repulsive. The analysis is performed utilizing the generalized hydrodynamic formulation of the reaction-diffusion equations which can reliably capture the complex interplay between reaction and restricted transport for both irreversible and reversible reactions.

  12. Beam diffusion measurements using collimator scans in the LHC

    CERN Document Server

    Valentino, Gianluca; Bruce, Roderik; Burkart, Florian; Previtali, Valentina; Redaelli, Stefano; Salvachua, Belen; Stancari, Giuliov; Valishev, Alexander

    2013-01-01

    The time evolution of beam losses during a collimator scan provides information on halo diffusion and population. This is an essential input for machine performance characterization and for the design of collimation systems. Beam halo measurements in the CERN Large Hadron Collider were conducted through collimator scrapings in a dedicated beam study for the first time at 4 TeV. Four scans were performed with two collimators, in the vertical plane for beam 1 and horizontally for beam 2, before and after bringing the beams into collisions. Inward and outward steps were performed. A diffusion model was used to interpret the observed loss rate evolution in response to the collimator steps. With this technique, diffusion coefficients were estimated as a function of betatron oscillation amplitude from approximately 3 to 7 standard deviations of the transverse beam distribution. A comparison of halo diffusion and core emittance growth rates is also presented.

  13. Modeling of 1D Anomalous Diffusion in Fractured Nanoporous Media

    Directory of Open Access Journals (Sweden)

    Albinali Ali

    2016-07-01

    Full Text Available Fractured nanoporous reservoirs include multi-scale and discontinuous fractures coupled with a complex nanoporous matrix. Such systems cannot be described by the conventional dual-porosity (or multi-porosity idealizations due to the presence of different flow mechanisms at multiple scales. More detailed modeling approaches, such as Discrete Fracture Network (DFN models, similarly suffer from the extensive data requirements dictated by the intricacy of the flow scales, which eventually deter the utility of these models. This paper discusses the utility and construction of 1D analytical and numerical anomalous diffusion models for heterogeneous, nanoporous media, which is commonly encountered in oil and gas production from tight, unconventional reservoirs with fractured horizontal wells. A fractional form of Darcy’s law, which incorporates the non-local and hereditary nature of flow, is coupled with the classical mass conservation equation to derive a fractional diffusion equation in space and time. Results show excellent agreement with established solutions under asymptotic conditions and are consistent with the physical intuitions.

  14. Electrolyte diffusion in compacted montmorillonite engineered barriers

    International Nuclear Information System (INIS)

    Jahnke, F.M.; Radke, C.J.

    1985-09-01

    The bentonite-based engineered barrier or packing is a proposed component of several designs conceived to dispose of high-level nuclear waste in geologic repositories. Once radionuclides escape the waste package, they must first diffuse through the highly impermeable clay-rich barrier before they reach the host repository. To determine the effectiveness of the packing as a sorption barrier in the transient release period and as a mass-transfer barrier in the steady release period over the geologic time scales involved in nuclear waste disposal, a fundamental understanding of the diffusion of electrolytes in compacted clays is required. We present, and compare with laboratory data, a model quantifying the diffusion rates of cationic cesium and uncharged tritium in compacted montmorillonite clay. Neutral tritium characterizes the geometry (i.e., tortuosity) of the particulate gel. After accounting for cation exchange, we find that surface diffusion is the dominant mechanism of cation transport, with an approximate surface diffusion coefficient of 2 x 10 -6 cm 2 /s for cesium. This value increases slightly with increasing background ionic strength. The implications of this work for the packing as a migration barrier are twofold. During the transient release period, K/sub d/ values are of little importance in retarding ion migration. This is because sorption also gives rise to a surface diffusion path, and it is surface diffusion which controls the diffusion rate of highly sorbing cations in compacted montmorillonite. During the steady release period, the presence of surface diffusion leads to a flux through the packing which is greatly enhanced. In either case, if surface diffusion is neglected, the appropriate diffusion coefficient of ions in compacted packing will be in considerable error relative to current design recommendations. 11 refs., 4 figs., 1 tab

  15. Intravoxel water diffusion heterogeneity MR imaging of nasopharyngeal carcinoma using stretched exponential diffusion model

    Energy Technology Data Exchange (ETDEWEB)

    Lai, Vincent; Khong, Pek Lan [University of Hong Kong, Department of Diagnostic Radiology, Li Ka Shing Faculty of Medicine, Queen Mary Hospital, Pok Fu Lam (China); Lee, Victor Ho Fun; Lam, Ka On; Sze, Henry Chun Kin [University of Hong Kong, Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, Queen Mary Hospital, Pok Fu Lam (China); Chan, Queenie [Philips Healthcare, Hong Kong, Shatin, New Territories (China)

    2015-06-01

    To determine the utility of stretched exponential diffusion model in characterisation of the water diffusion heterogeneity in different tumour stages of nasopharyngeal carcinoma (NPC). Fifty patients with newly diagnosed NPC were prospectively recruited. Diffusion-weighted MR imaging was performed using five b values (0-2,500 s/mm{sup 2}). Respective stretched exponential parameters (DDC, distributed diffusion coefficient; and alpha (α), water heterogeneity) were calculated. Patients were stratified into low and high tumour stage groups based on the American Joint Committee on Cancer (AJCC) staging for determination of the predictive powers of DDC and α using t test and ROC curve analyses. The mean ± standard deviation values were DDC = 0.692 ± 0.199 (x 10{sup -3} mm{sup 2}/s) for low stage group vs 0.794 ± 0.253 (x 10{sup -3} mm{sup 2}/s) for high stage group; α = 0.792 ± 0.145 for low stage group vs 0.698 ± 0.155 for high stage group. α was significantly lower in the high stage group while DDC was negatively correlated. DDC and α were both reliable independent predictors (p < 0.001), with α being more powerful. Optimal cut-off values were (sensitivity, specificity, positive likelihood ratio, negative likelihood ratio) DDC = 0.692 x 10{sup -3} mm{sup 2}/s (94.4 %, 64.3 %, 2.64, 0.09), α = 0.720 (72.2 %, 100 %, -, 0.28). The heterogeneity index α is robust and can potentially help in staging and grading prediction in NPC. (orig.)

  16. Kinetics of CO2 diffusion in human carbonic anhydrase: a study using molecular dynamics simulations and the Markov-state model.

    Science.gov (United States)

    Chen, Gong; Kong, Xian; Lu, Diannan; Wu, Jianzhong; Liu, Zheng

    2017-05-10

    Molecular dynamics (MD) simulations, in combination with the Markov-state model (MSM), were applied to probe CO 2 diffusion from an aqueous solution into the active site of human carbonic anhydrase II (hCA-II), an enzyme useful for enhanced CO 2 capture and utilization. The diffusion process in the hydrophobic pocket of hCA-II was illustrated in terms of a two-dimensional free-energy landscape. We found that CO 2 diffusion in hCA-II is a rate-limiting step in the CO 2 diffusion-binding-reaction process. The equilibrium distribution of CO 2 shows its preferential accumulation within a hydrophobic domain in the protein core region. An analysis of the committors and reactive fluxes indicates that the main pathway for CO 2 diffusion into the active site of hCA-II is through a binding pocket where residue Gln 136 contributes to the maximal flux. The simulation results offer a new perspective on the CO 2 hydration kinetics and useful insights toward the development of novel biochemical processes for more efficient CO 2 sequestration and utilization.

  17. Maxwell's Law Based Models for Liquid and Gas Phase Diffusivities in Variably-Saturated Soil

    DEFF Research Database (Denmark)

    Mamamoto, Shoichiro; Møldrup, Per; Kawamoto, Ken

    2012-01-01

    -s,D-l). Different percolation threshold terms adopted from recent studies for gas (D-s,D-g) and solute (D-s,D-l) diffusion were applied. For gas diffusion, epsilon(th) was a function of bulk density (total porosity), while for solute diffusion theta(th) was best described by volumetric content of finer soil...... particles (clay and organic matter), FINESvol. The resulting LIquid and GAs diffusivity and tortuosity (LIGA) models were tested against D-s,D-g and D-s,D-l data for differently-textured soils and performed well against the measured data across soil types. A sensitivity analysis using the new Maxwell's Law...... based LIGA models implied that the liquid phase but not the gaseous-phase tortuosity was controlled by soil type. The analyses also suggested very different pathways and fluid-phase connectivity for gas and solute diffusion in unsaturated soil...

  18. Thermodynamic modelling of fast dopant diffusion in Si

    Science.gov (United States)

    Saltas, V.; Chroneos, A.; Vallianatos, F.

    2018-04-01

    In the present study, nickel and copper fast diffusion in silicon is investigated in the framework of the cBΩ thermodynamic model, which connects point defect parameters with the bulk elastic and expansion properties. All the calculated point defect thermodynamic properties (activation Gibbs free energy, activation enthalpy, activation entropy, and activation volume) exhibit temperature dependence due to the non-linear anharmonic behavior of the isothermal bulk modulus of Si. Calculated activation enthalpies (0.15-0.16 eV for Ni and 0.17-0.19 eV for Cu) are in agreement with the reported experimental results. Small values of calculated activation volumes for both dopants (˜4% of the mean atomic volume) are consistent with the interstitial diffusion of Ni and Cu in Si.

  19. Computing diffusivities from particle models out of equilibrium

    Science.gov (United States)

    Embacher, Peter; Dirr, Nicolas; Zimmer, Johannes; Reina, Celia

    2018-04-01

    A new method is proposed to numerically extract the diffusivity of a (typically nonlinear) diffusion equation from underlying stochastic particle systems. The proposed strategy requires the system to be in local equilibrium and have Gaussian fluctuations but it is otherwise allowed to undergo arbitrary out-of-equilibrium evolutions. This could be potentially relevant for particle data obtained from experimental applications. The key idea underlying the method is that finite, yet large, particle systems formally obey stochastic partial differential equations of gradient flow type satisfying a fluctuation-dissipation relation. The strategy is here applied to three classic particle models, namely independent random walkers, a zero-range process and a symmetric simple exclusion process in one space dimension, to allow the comparison with analytic solutions.

  20. Social Content Recommendation Based on Spatial-Temporal Aware Diffusion Modeling in Social Networks

    Directory of Open Access Journals (Sweden)

    Farman Ullah

    2016-09-01

    Full Text Available User interactions in online social networks (OSNs enable the spread of information and enhance the information dissemination process, but at the same time they exacerbate the information overload problem. In this paper, we propose a social content recommendation method based on spatial-temporal aware controlled information diffusion modeling in OSNs. Users interact more frequently when they are close to each other geographically, have similar behaviors, and fall into similar demographic categories. Considering these facts, we propose multicriteria-based social ties relationship and temporal-aware probabilistic information diffusion modeling for controlled information spread maximization in OSNs. The proposed social ties relationship modeling takes into account user spatial information, content trust, opinion similarity, and demographics. We suggest a ranking algorithm that considers the user ties strength with friends and friends-of-friends to rank users in OSNs and select highly influential injection nodes. These nodes are able to improve social content recommendations, minimize information diffusion time, and maximize information spread. Furthermore, the proposed temporal-aware probabilistic diffusion process categorizes the nodes and diffuses the recommended content to only those users who are highly influential and can enhance information dissemination. The experimental results show the effectiveness of the proposed scheme.

  1. Anisotropy in "isotropic diffusion" measurements due to nongaussian diffusion

    DEFF Research Database (Denmark)

    Jespersen, Sune Nørhøj; Olesen, Jonas Lynge; Ianuş, Andrada

    2017-01-01

    Designing novel diffusion-weighted NMR and MRI pulse sequences aiming to probe tissue microstructure with techniques extending beyond the conventional Stejskal-Tanner family is currently of broad interest. One such technique, multidimensional diffusion MRI, has been recently proposed to afford...... model-free decomposition of diffusion signal kurtosis into terms originating from either ensemble variance of isotropic diffusivity or microscopic diffusion anisotropy. This ability rests on the assumption that diffusion can be described as a sum of multiple Gaussian compartments, but this is often...

  2. Experimental study of the inverse diffusion flame using high repetition rate OH/acetone PLIF and PIV

    KAUST Repository

    Elbaz, Ayman M.; Roberts, William L.

    2015-01-01

    Most previous work on inverse diffusion flames (IDFs) has focused on laminar IDF emissions and the soot formation characteristics. Here, we investigate the characteristics and structure of methane IDFs using high speed planar laser-induced fluorescence (PLIF) images of OH, particle image velocimetry (PIV), and acetone PLIF imaging for non-reacting cases. First, the flame appearance was investigated with fixed methane loading (mass flux) but with varying airflow rates, yielding a central air jet Reynolds number (Re) of 1,000 to 6,000 (when blow-off occurs). Next, it was investigated a fixed central air jet Re of 4500, but with varied methane mass flux such that the global equivalence ratio spanned 0.5 to 4. It was observed that at Re smaller than 2000, the inner air jet promotes the establishment of an inverse diffusion flame surrounded by a normal diffusion flame. However, when the Re was increased to 2500, two distinct zones became apparent in the flame, a lower entrainment zone and an upper mixing and combustion zone. 10 kHz OH-PLIF images, and 2D PIV allow the identification of the fate and spatial flame structure. Many flame features were identified and further analyzed using simple but effective image processing methods, where three types of structure in all the flames investigated here: flame holes or breaks; closures; and growing kernels. Insights about the rate of evolution of these features, the dynamics of local extinction, and the sequence of events that lead to re-ignition are reported here. In the lower entrainment zone, the occurrence of the flame break events is counterbalanced by closure events, and the edge propagation appears to control the rate at which the flame holes and closures propagate. The rate of propagation of holes was found to be statistically faster than the rate of closure. As the flames approach blow-off, flame kernels become the main mechanism for flame re-ignition further downstream. The simultaneous OH-PLIF/Stereo PIV

  3. Experimental study of the inverse diffusion flame using high repetition rate OH/acetone PLIF and PIV

    KAUST Repository

    Elbaz, Ayman M.

    2015-10-29

    Most previous work on inverse diffusion flames (IDFs) has focused on laminar IDF emissions and the soot formation characteristics. Here, we investigate the characteristics and structure of methane IDFs using high speed planar laser-induced fluorescence (PLIF) images of OH, particle image velocimetry (PIV), and acetone PLIF imaging for non-reacting cases. First, the flame appearance was investigated with fixed methane loading (mass flux) but with varying airflow rates, yielding a central air jet Reynolds number (Re) of 1,000 to 6,000 (when blow-off occurs). Next, it was investigated a fixed central air jet Re of 4500, but with varied methane mass flux such that the global equivalence ratio spanned 0.5 to 4. It was observed that at Re smaller than 2000, the inner air jet promotes the establishment of an inverse diffusion flame surrounded by a normal diffusion flame. However, when the Re was increased to 2500, two distinct zones became apparent in the flame, a lower entrainment zone and an upper mixing and combustion zone. 10 kHz OH-PLIF images, and 2D PIV allow the identification of the fate and spatial flame structure. Many flame features were identified and further analyzed using simple but effective image processing methods, where three types of structure in all the flames investigated here: flame holes or breaks; closures; and growing kernels. Insights about the rate of evolution of these features, the dynamics of local extinction, and the sequence of events that lead to re-ignition are reported here. In the lower entrainment zone, the occurrence of the flame break events is counterbalanced by closure events, and the edge propagation appears to control the rate at which the flame holes and closures propagate. The rate of propagation of holes was found to be statistically faster than the rate of closure. As the flames approach blow-off, flame kernels become the main mechanism for flame re-ignition further downstream. The simultaneous OH-PLIF/Stereo PIV

  4. Reaction-diffusion pulses: a combustion model

    International Nuclear Information System (INIS)

    Campos, Daniel; Llebot, Josep Enric; Fort, Joaquim

    2004-01-01

    We focus on a reaction-diffusion approach proposed recently for experiments on combustion processes, where the heat released by combustion follows first-order reaction kinetics. This case allows us to perform an exhaustive analytical study. Specifically, we obtain the exact expressions for the speed of the thermal pulses, their maximum temperature and the condition of self-sustenance. Finally, we propose two generalizations of the model, namely, the case of several reactants burning together, and that of time-delayed heat conduction. We find an excellent agreement between our analytical results and simulations

  5. Reaction-diffusion pulses: a combustion model

    Energy Technology Data Exchange (ETDEWEB)

    Campos, Daniel [Grup de FIsica EstadIstica, Dept. de FIsica, Universitat Autonoma de Barcelona, E-08193 Bellaterrra (Spain); Llebot, Josep Enric [Grup de FIsica EstadIstica, Dept. de FIsica, Universitat Autonoma de Barcelona, E-08193 Bellaterrra (Spain); Fort, Joaquim [Dept. de FIsica, Univ. de Girona, Campus de Montilivi, 17071 Girona, Catalonia (Spain)

    2004-07-02

    We focus on a reaction-diffusion approach proposed recently for experiments on combustion processes, where the heat released by combustion follows first-order reaction kinetics. This case allows us to perform an exhaustive analytical study. Specifically, we obtain the exact expressions for the speed of the thermal pulses, their maximum temperature and the condition of self-sustenance. Finally, we propose two generalizations of the model, namely, the case of several reactants burning together, and that of time-delayed heat conduction. We find an excellent agreement between our analytical results and simulations.

  6. Calculation of hydrogen outgassing rate of LHD by recombination limited model

    International Nuclear Information System (INIS)

    Akaishi, K.; Nakasuga, M.

    2002-04-01

    To simulate hydrogen outgassing in the plasma vacuum vessel of LHD, the recombination limited model is presented, where the time evolution of hydrogen concentration in the wall of the plasma vacuum vessel is described by a one-dimensional diffusion equation. The hydrogen outgassing rates when the plasma vacuum vessel is pumped down at room temperature and baked at 100 degC are calculated as a function of pumping time. The calculation shows that the hydrogen outgassing rate of the plasma vacuum vessel can be reduced at least by one order of magnitude due to pumping and baking. This prediction is consistent with the recent result of outgassing reduction observed in the pumping-down and baking of the plasma vacuum vessel in LHD. (author)

  7. Development of a 3D-Multigroup program to simulate anomalous diffusion phenomena in the nuclear reactors

    International Nuclear Information System (INIS)

    Maleki Moghaddam, Nader; Afarideh, Hossein; Espinosa-Paredes, Gilberto

    2015-01-01

    Highlights: • The new version of neutron diffusion equation for simulating anomalous diffusion is presented. • Application of fractional calculus in the nuclear reactor is revealed. • A 3D-Multigroup program is developed based on the fractional operators. • The super-diffusion and sub-diffusion phenomena are modeled in the nuclear reactors core. - Abstract: The diffusion process is categorized in three parts, normal diffusion, super-diffusion and sub-diffusion. The classical neutron diffusion equation is used to model normal diffusion. A new scheme of derivatives is required to model anomalous diffusion phenomena. The fractional space derivatives are employed to model anomalous diffusion processes where a plume of particles spreads at an inconsistent rate with the classical Brownian motion model. In the fractional diffusion equation, the fractional Laplacians are used; therefore the statistical jump length of neutrons is unrestricted. It is clear that the fractional Laplacians are capable to model the anomalous phenomena in nuclear reactors. We have developed a NFDE-3D (neutron fractional diffusion equation) as a core calculation code to model normal and anomalous diffusion phenomena. The NFDE-3D is validated against the LMW-LWR reactor. The results demonstrate that reactors exhibit complex behavior versus order of the fractional derivatives which depends on the competition between neutron absorption and super-diffusion phenomenon

  8. Yearly, seasonal and monthly daily average diffuse sky radiation models

    International Nuclear Information System (INIS)

    Kassem, A.S.; Mujahid, A.M.; Turner, D.W.

    1993-01-01

    A daily average diffuse sky radiation regression model based on daily global radiation was developed utilizing two year data taken near Blytheville, Arkansas (Lat. =35.9 0 N, Long. = 89.9 0 W), U.S.A. The model has a determination coefficient of 0.91 and 0.092 standard error of estimate. The data were also analyzed for a seasonal dependence and four seasonal average daily models were developed for the spring, summer, fall and winter seasons. The coefficient of determination is 0.93, 0.81, 0.94 and 0.93, whereas the standard error of estimate is 0.08, 0.102, 0.042 and 0.075 for spring, summer, fall and winter, respectively. A monthly average daily diffuse sky radiation model was also developed. The coefficient of determination is 0.92 and the standard error of estimate is 0.083. A seasonal monthly average model was also developed which has 0.91 coefficient of determination and 0.085 standard error of estimate. The developed monthly daily average and daily models compare well with a selected number of previously developed models. (author). 11 ref., figs., tabs

  9. Rigorous Derivation of a Nonlinear Diffusion Equation as Fast-Reaction Limit of a Continuous Coagulation-Fragmentation Model with Diffusion

    KAUST Repository

    Carrillo, J. A.; Desvillettes, L.; Fellner, K.

    2009-01-01

    Weak solutions of the spatially inhomogeneous (diffusive) Aizenmann-Bak model of coagulation-breakup within a bounded domain with homogeneous Neumann boundary conditions are shown to converge, in the fast reaction limit, towards local equilibria determined by their mass. Moreover, this mass is the solution of a nonlinear diffusion equation whose nonlinearity depends on the (size-dependent) diffusion coefficient. Initial data are assumed to have integrable zero order moment and square integrable first order moment in size, and finite entropy. In contrast to our previous result [5], we are able to show the convergence without assuming uniform bounds from above and below on the number density of clusters. © Taylor & Francis Group, LLC.

  10. Rigorous Derivation of a Nonlinear Diffusion Equation as Fast-Reaction Limit of a Continuous Coagulation-Fragmentation Model with Diffusion

    KAUST Repository

    Carrillo, J. A.

    2009-10-30

    Weak solutions of the spatially inhomogeneous (diffusive) Aizenmann-Bak model of coagulation-breakup within a bounded domain with homogeneous Neumann boundary conditions are shown to converge, in the fast reaction limit, towards local equilibria determined by their mass. Moreover, this mass is the solution of a nonlinear diffusion equation whose nonlinearity depends on the (size-dependent) diffusion coefficient. Initial data are assumed to have integrable zero order moment and square integrable first order moment in size, and finite entropy. In contrast to our previous result [5], we are able to show the convergence without assuming uniform bounds from above and below on the number density of clusters. © Taylor & Francis Group, LLC.

  11. An emergency computation model for the wind field and diffusion during accidental nuclear pollutants releases

    International Nuclear Information System (INIS)

    Yoshikawa, T.; Kimura, F.; Koide, T.; Kurita, S.

    1990-01-01

    Since 1986, a simple computation model for a nuclear accident has been operating in the emergency information center of Japan Agency for Science and Technology. It was developed by introducing the variation method for wind and a random walk particle model for diffusion in 50-100 km scale. Furthermore, we developed a new model with dynamic equations and a diffusion equation to predict more accurately the wind and diffusion, including local thermal convection. The momentum equation and the continuity equation are solved numerically in nonhydrostatic and incompressible conditions, using a finite difference technique. Then, the equation of thermal energy preservation is solved for potential temperature in the predicted wind field of every time step. The diffusion of nuclear pollutants is computed numerically in the predicted wind field, using diffusion coefficients obtained from the predictive dynamic equations. These computations were verified with meteorological surveys and gas tracer diffusion experiments over flat land, along a sea shore and over a mountainous area. Horizontal circulations and vertical convections can be computed in any mesh size from several tens of meters to several kilometers, while small vertical convections less than 1 km or so cannot be represented with the former hydrostatic circulation models. (author)

  12. Asymptotic Behaviour and Extinction of Delay Lotka-Volterra Model with Jump-Diffusion

    Directory of Open Access Journals (Sweden)

    Dan Li

    2014-01-01

    Full Text Available This paper studies the effect of jump-diffusion random environmental perturbations on the asymptotic behaviour and extinction of Lotka-Volterra population dynamics with delays. The contributions of this paper lie in the following: (a to consider delay stochastic differential equation with jumps, we introduce a proper initial data space, in which the initial data may be discontinuous function with downward jumps; (b we show that the delay stochastic differential equation with jumps associated with our model has a unique global positive solution and give sufficient conditions that ensure stochastically ultimate boundedness, moment average boundedness in time, and asymptotic polynomial growth of our model; (c the sufficient conditions for the extinction of the system are obtained, which generalized the former results and showed that the sufficiently large random jump magnitudes and intensity (average rate of jump events arrival may lead to extinction of the population.

  13. Measurement of pore diffusion in catalytic materials. Report 1997-07-01--1997-12-31

    Energy Technology Data Exchange (ETDEWEB)

    Papadias, Dennis; Barbesta, Fabio; Foresti, Laura; Thevenin, Philippe; Bjoernbom, Pehr; Jaeraas, Sven [Royal Inst. of Tech., Stockholm (Sweden). Dept. of Chemical Technology

    2000-05-01

    This report covers the work during the period (97-07-01--97-12-31) of NUTEK project P10313-1 'Measurement of pore diffusion in catalytic materials'. The project was carried out at the Department of Chemical Engineering and Technology - Chemical Technology at Kungliga Tekniska Hoegskolan. The performance of heterogeneous catalysts is strongly dependent of the combined rate of pore diffusion and chemical reaction. In order to describe correctly the interactions between physical and chemical phenomena in porous media, it is necessary to know the effective values of the diffusion coefficients in the catalyst. Existing mathematical correlations of the diffusivity coefficients may give misleading results so there is a need to determine those values experimentally. Literature studies and previous work in this laboratory have shown that pulse chromatography is to prefer as a fast and reliable method to measure effective diffusivities. In this study, the pulse chromatographic technique was used to determine the effective diffusivity in commercial cylindrical ring-shaped catalysts in order to validate and further develop this technique. The pellets, approximately 5-mm long, were mounted axially side by side and a dense polymer was shrunk at the outer wall, fastening the catalyst particles in a column of arbitrary length and with a rigid structure. The value of the diffusivity coefficient was determined by matching the experimental response curve by the theoretical one, solved numerically in the time domain using the finite difference method. Two types of model equations relating the transport processes occurring in the column were derived. In both models the stationary phase was treated as homogeneous and the axial diffusion in it was neglected. The more rigorous, or two dimensional model, accounted for radial diffusion in the gas phase, while in the simpler, or one dimensional model, the solute in the gas phase was averaged in terms of a local mean concentration

  14. Homogenization of neutronic diffusion models; Homogeneisation des modeles de diffusion en neutronique

    Energy Technology Data Exchange (ETDEWEB)

    Capdebosq, Y

    1999-09-01

    In order to study and simulate nuclear reactor cores, one needs to access the neutron distribution in the core. In practice, the description of this density of neutrons is given by a system of diffusion equations, coupled by non differential exchange terms. The strong heterogeneity of the medium constitutes a major obstacle to the numerical computation of this models at reasonable cost. Homogenization appears as compulsory. Heuristic methods have been developed since the origin by nuclear physicists, under a periodicity assumption on the coefficients. They consist in doing a fine computation one a single periodicity cell, to solve the system on the whole domain with homogeneous coefficients, and to reconstruct the neutron density by multiplying the solutions of the two computations. The objectives of this work are to provide mathematically rigorous basis to this factorization method, to obtain the exact formulas of the homogenized coefficients, and to start on geometries where two periodical medium are placed side by side. The first result of this thesis concerns eigenvalue problem models which are used to characterize the state of criticality of the reactor, under a symmetry assumption on the coefficients. The convergence of the homogenization process is proved, and formulas of the homogenized coefficients are given. We then show that without symmetry assumptions, a drift phenomenon appears. It is characterized by the mean of a real Bloch wave method, which gives the homogenized limit in the general case. These results for the critical problem are then adapted to the evolution model. Finally, the homogenization of the critical problem in the case of two side by side periodic medium is studied on a one dimensional on equation model. (authors)

  15. A multiscale MD-FE model of diffusion in composite media with internal surface interaction based on numerical homogenization procedure.

    Science.gov (United States)

    Kojic, M; Milosevic, M; Kojic, N; Kim, K; Ferrari, M; Ziemys, A

    2014-02-01

    Mass transport by diffusion within composite materials may depend not only on internal microstructural geometry, but also on the chemical interactions between the transported substance and the material of the microstructure. Retrospectively, there is a gap in methods and theory to connect material microstructure properties with macroscale continuum diffusion characteristics. Here we present a new hierarchical multiscale model for diffusion within composite materials that couples material microstructural geometry and interactions between diffusing particles and the material matrix. This model, which bridges molecular dynamics (MD) and the finite element (FE) method, is employed to construct a continuum diffusion model based on a novel numerical homogenization procedure. The procedure is general and robust for evaluating constitutive material parameters of the continuum model. These parameters include the traditional bulk diffusion coefficients and, additionally, the distances from the solid surface accounting for surface interaction effects. We implemented our models to glucose diffusion through the following two geometrical/material configurations: tightly packed silica nanospheres, and a complex fibrous structure surrounding nanospheres. Then, rhodamine 6G diffusion analysis through an aga-rose gel network was performed, followed by a model validation using our experimental results. The microstructural model, numerical homogenization and continuum model offer a new platform for modeling and predicting mass diffusion through complex biological environment and within composite materials that are used in a wide range of applications, like drug delivery and nanoporous catalysts.

  16. THE LOS ALAMOS NATIONAL LABORATORY ATMOSPHERIC TRANSPORT AND DIFFUSION MODELS

    Energy Technology Data Exchange (ETDEWEB)

    M. WILLIAMS [and others

    1999-08-01

    The LANL atmospheric transport and diffusion models are composed of two state-of-the-art computer codes. The first is an atmospheric wind model called HOThlAC, Higher Order Turbulence Model for Atmospheric circulations. HOTMAC generates wind and turbulence fields by solving a set of atmospheric dynamic equations. The second is an atmospheric diffusion model called RAPTAD, Random Particle Transport And Diffusion. RAPTAD uses the wind and turbulence output from HOTMAC to compute particle trajectories and concentration at any location downwind from a source. Both of these models, originally developed as research codes on supercomputers, have been modified to run on microcomputers. Because the capability of microcomputers is advancing so rapidly, the expectation is that they will eventually become as good as today's supercomputers. Now both models are run on desktop or deskside computers, such as an IBM PC/AT with an Opus Pm 350-32 bit coprocessor board and a SUN workstation. Codes have also been modified so that high level graphics, NCAR Graphics, of the output from both models are displayed on the desktop computer monitors and plotted on a laser printer. Two programs, HOTPLT and RAPLOT, produce wind vector plots of the output from HOTMAC and particle trajectory plots of the output from RAPTAD, respectively. A third CONPLT provides concentration contour plots. Section II describes step-by-step operational procedures, specifically for a SUN-4 desk side computer, on how to run main programs HOTMAC and RAPTAD, and graphics programs to display the results. Governing equations, boundary conditions and initial values of HOTMAC and RAPTAD are discussed in Section III. Finite-difference representations of the governing equations, numerical solution procedures, and a grid system are given in Section IV.

  17. Mesoscopic dynamics of diffusion-influenced enzyme kinetics.

    Science.gov (United States)

    Chen, Jiang-Xing; Kapral, Raymond

    2011-01-28

    A particle-based mesoscopic model for enzyme kinetics is constructed and used to investigate the influence of diffusion on the reactive dynamics. Enzymes and enzyme-substrate complexes are modeled as finite-size soft spherical particles, while substrate, product, and solvent molecules are point particles. The system is evolved using a hybrid molecular dynamics-multiparticle collision dynamics scheme. Both the nonreactive and reactive dynamics are constructed to satisfy mass, momentum, and energy conservation laws, and reversible reaction steps satisfy detailed balance. Hydrodynamic interactions among the enzymes and complexes are automatically accounted for in the dynamics. Diffusion manifests itself in various ways, notably in power-law behavior in the evolution of the species concentrations. In accord with earlier investigations, regimes where the product production rate exhibits either monotonic or nonmonotonic behavior as a function of time are found. In addition, the species concentrations display both t(-1/2) and t(-3/2) power-law behavior, depending on the dynamical regime under investigation. For high enzyme volume fractions, cooperative effects influence the enzyme kinetics. The time dependent rate coefficient determined from the mass action rate law is computed and shown to depend on the enzyme concentration. Lifetime distributions of substrate molecules newly released in complex dissociation events are determined and shown to have either a power-law form for rebinding to the same enzyme from which they were released or an exponential form for rebinding to different enzymes. The model can be used and extended to explore a variety of issues related concentration effects and diffusion on enzyme kinetics.

  18. Mesoscopic dynamics of diffusion-influenced enzyme kinetics

    Science.gov (United States)

    Chen, Jiang-Xing; Kapral, Raymond

    2011-01-01

    A particle-based mesoscopic model for enzyme kinetics is constructed and used to investigate the influence of diffusion on the reactive dynamics. Enzymes and enzyme-substrate complexes are modeled as finite-size soft spherical particles, while substrate, product, and solvent molecules are point particles. The system is evolved using a hybrid molecular dynamics-multiparticle collision dynamics scheme. Both the nonreactive and reactive dynamics are constructed to satisfy mass, momentum, and energy conservation laws, and reversible reaction steps satisfy detailed balance. Hydrodynamic interactions among the enzymes and complexes are automatically accounted for in the dynamics. Diffusion manifests itself in various ways, notably in power-law behavior in the evolution of the species concentrations. In accord with earlier investigations, regimes where the product production rate exhibits either monotonic or nonmonotonic behavior as a function of time are found. In addition, the species concentrations display both t^{-1/2} and t^{-3/2} power-law behavior, depending on the dynamical regime under investigation. For high enzyme volume fractions, cooperative effects influence the enzyme kinetics. The time dependent rate coefficient determined from the mass action rate law is computed and shown to depend on the enzyme concentration. Lifetime distributions of substrate molecules newly released in complex dissociation events are determined and shown to have either a power-law form for rebinding to the same enzyme from which they were released or an exponential form for rebinding to different enzymes. The model can be used and extended to explore a variety of issues related concentration effects and diffusion on enzyme kinetics.

  19. The memory formalism in the diffusion of drugs through skin membrane

    Energy Technology Data Exchange (ETDEWEB)

    Caputo, Michele; Cametti, Cesare, E-mail: cesare.cametti@roma1.infn.i [Dipartimento di Fisica, Universita di Roma ' La Sapienza' , Piazzale A. Moro 2, I-00185 Rome (Italy) and CNR-INFM-SOFT, Unita di Roma1 Rome (Italy)

    2009-06-21

    The diffusion of drugs across a composite structure such as a biological membrane is a rather complex phenomenon, where the assumptions on which the Fick equations are based are not always true, because of the inhomogeneous nature of the lipid membrane, the diffusion rate and the solubility of the drug being strongly dependent on the local position across the membrane. These problems are particularly strengthened in composite structures of a considerable thickness such as the human skin, where the high heterogeneity provokes the transport through different simultaneous pathways. In this note, we generalize the diffusion model based on Fick's second equation by the introduction of a space-dependent diffusion constant within the memory formalism (diffusion with memory) approach. The model predictions have been compared with experimental results concerning the permeation of two different compounds through human skin in vivo, such as piroxicam, an anti-inflammatory drug and 4-cyanophenol, a test chemical model compound. In both cases, reasonably good agreement has been found.

  20. The memory formalism in the diffusion of drugs through skin membrane

    International Nuclear Information System (INIS)

    Caputo, Michele; Cametti, Cesare

    2009-01-01

    The diffusion of drugs across a composite structure such as a biological membrane is a rather complex phenomenon, where the assumptions on which the Fick equations are based are not always true, because of the inhomogeneous nature of the lipid membrane, the diffusion rate and the solubility of the drug being strongly dependent on the local position across the membrane. These problems are particularly strengthened in composite structures of a considerable thickness such as the human skin, where the high heterogeneity provokes the transport through different simultaneous pathways. In this note, we generalize the diffusion model based on Fick's second equation by the introduction of a space-dependent diffusion constant within the memory formalism (diffusion with memory) approach. The model predictions have been compared with experimental results concerning the permeation of two different compounds through human skin in vivo, such as piroxicam, an anti-inflammatory drug and 4-cyanophenol, a test chemical model compound. In both cases, reasonably good agreement has been found.

  1. First-principles calculations of impurity diffusion coefficients in dilute Mg alloys using the 8-frequency model

    International Nuclear Information System (INIS)

    Ganeshan, S.; Hector, L.G.; Liu, Z.-K.

    2011-01-01

    Research highlights: → Implemented the eight frequency model for impurity diffusion in hexagonal metals. → Model inputs were energetics/vibrational properties from first princples. → Predicted diffusion coefficients for Al, Ca, Zn and Sn impurity diffusion in Mg. → Successful prediction of partial correlation factors and jump frequencies. → Good agreement between calculated and experimental results. - Abstract: Diffusion in dilute Mg-X alloys, where X denotes Al, Zn, Sn and Ca impurities, was investigated with first-principles density functional theory in the local density approximation. Impurity diffusion coefficients were computed as a function of temperature using the 8-frequency model which provided the relevant impurity and solvent (Mg) jump frequencies and correlation factors. Minimum energy pathways for impurity diffusion and associated saddle point structures were computed with the climbing image nudged elastic band method. Vibrational properties were obtained with the supercell (direct) method for lattice dynamics. Calculated diffusion coefficients were compared with available experimental data. For diffusion between basal planes, we find D Mg-Ca > D Mg-Zn > D Mg-Sn > D Mg-Al, where D is the diffusion coefficient. For diffusion within a basal plane, the same trend holds except that D Mg-Zn overlaps with D Mg-Al at high temperatures and D Mg-Sn at low temperatures. These trends were explored with charge density contours in selected planes of each Mg-X alloy, the variation of the activation energy for diffusion with the atomic radius of each impurity and the electronic density of states. The theoretical methodology developed herein can be applied to impurity diffusion in other hexagonal materials.

  2. Modelling and control of a diffusion/LPCVD furnace

    Science.gov (United States)

    Dewaard, H.; Dekoning, W. L.

    1988-12-01

    Heat transfer inside a cylindrical resistance diffusion/Low Pressure Chemical Vapor Deposition (LPCVD) furnace is studied with the aim of developing an improved temperature controller. A model of the thermal behavior is derived, which covers the important class of furnaces equipped with semitransparent quartz process tubes. The model takes into account the thermal behavior of the thermocouples. Currently used temperature controllers are shown to be highly inefficient for very large scale integration applications. Based on the model an alternative temperature controller of the LQG (linear quadratic Gaussian) type is proposed which features direct wafer temperature control. Some simulation results are given.

  3. Diffusion in silicon isotope heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Silvestri, Hughes Howland [Univ. of California, Berkeley, CA (United States)

    2004-01-01

    The simultaneous diffusion of Si and the dopants B, P, and As has been studied by the use of a multilayer structure of isotopically enriched Si. This structure, consisting of 5 pairs of 120 nm thick natural Si and 28Si enriched layers, enables the observation of 30Si self-diffusion from the natural layers into the 28Si enriched layers, as well as dopant diffusion from an implanted source in an amorphous Si cap layer, via Secondary Ion Mass Spectrometry (SIMS). The dopant diffusion created regions of the multilayer structure that were extrinsic at the diffusion temperatures. In these regions, the Fermi level shift due to the extrinsic condition altered the concentration and charge state of the native defects involved in the diffusion process, which affected the dopant and self-diffusion. The simultaneously recorded diffusion profiles enabled the modeling of the coupled dopant and self-diffusion. From the modeling of the simultaneous diffusion, the dopant diffusion mechanisms, the native defect charge states, and the self- and dopant diffusion coefficients can be determined. This information is necessary to enhance the physical modeling of dopant diffusion in Si. It is of particular interest to the modeling of future electronic Si devices, where the nanometer-scale features have created the need for precise physical models of atomic diffusion in Si. The modeling of the experimental profiles of simultaneous diffusion of B and Si under p-type extrinsic conditions revealed that both species are mediated by neutral and singly, positively charged Si self-interstitials. The diffusion of As and Si under extrinsic n-type conditions yielded a model consisting of the interstitialcy and vacancy mechanisms of diffusion via singly negatively charged self-interstitials and neutral vacancies. The simultaneous diffusion of P and Si has been modeled on the basis of neutral and singly negatively charged self-interstitials and neutral and singly

  4. Repeatability of derived parameters from histograms following non-Gaussian diffusion modelling of diffusion-weighted imaging in a paediatric oncological cohort

    Energy Technology Data Exchange (ETDEWEB)

    Jerome, Neil P.; Miyazaki, Keiko; Collins, David J.; Orton, Matthew R.; D' Arcy, James A.; Leach, Martin O. [Cancer Research UK Cancer Imaging Centre, Division of Radiotherapy and Imaging, The Institute of Cancer Research, London (United Kingdom); Wallace, Toni; Koh, Dow-Mu [Royal Marsden NHS Foundation Trust, Department of Radiology, Sutton, Surrey (United Kingdom); Moreno, Lucas [The Institute of Cancer Research, Paediatric Drug Development Team, Division of Cancer Therapeutics and Clinical Studies, London (United Kingdom); Hospital Nino Jesus, Madrid (Spain); Royal Marsden NHS Foundation Trust, Paediatric Drug Development Unit, Children and Young People' s Unit, Sutton, Surrey (United Kingdom); Pearson, Andrew D.J.; Marshall, Lynley V.; Carceller, Fernando; Zacharoulis, Stergios [The Institute of Cancer Research, Paediatric Drug Development Team, Division of Cancer Therapeutics and Clinical Studies, London (United Kingdom); Royal Marsden NHS Foundation Trust, Paediatric Drug Development Unit, Children and Young People' s Unit, Sutton, Surrey (United Kingdom)

    2017-01-15

    To examine repeatability of parameters derived from non-Gaussian diffusion models in data acquired in children with solid tumours. Paediatric patients (<16 years, n = 17) were scanned twice, 24 h apart, using DWI (6 b-values, 0-1000 mm{sup -2} s) at 1.5 T in a prospective study. Tumour ROIs were drawn (3 slices) and all data fitted using IVIM, stretched exponential, and kurtosis models; percentage coefficients of variation (CV) calculated for each parameter at all ROI histogram centiles, including the medians. The values for ADC, D, DDC{sub α}, α, and DDC{sub K} gave CV < 10 % down to the 5th centile, with sharp CV increases below 5th and above 95th centile. K, f, and D* showed increased CV (>30 %) over the histogram. ADC, D, DDC{sub α}, and DDC{sub K} were strongly correlated (ρ > 0.9), DDC{sub α} and α were not correlated (ρ = 0.083). Perfusion- and kurtosis-related parameters displayed larger, more variable CV across the histogram, indicating observed clinical changes outside of D/DDC in these models should be interpreted with caution. Centiles below 5th for all parameters show high CV and are unreliable as diffusion metrics. The stretched exponential model behaved well for both DDC{sub α} and α, making it a strong candidate for modelling multiple-b-value diffusion imaging data. (orig.)

  5. 3-D Spherical Convection Modeling Applied to Mercury: Dislocation Versus Diffusion Rheology

    Science.gov (United States)

    Robertson, S. D.; King, S. D.

    2016-12-01

    Mercury is the smallest among the terrestrial planets and, prior to NASA's MESSENGER mission was thought to be the least tectonically and volcanically active body. Gravity and moment of inertia from MESSENGER constrain Mercury to have a thin silicate mantle shell of approximately 400 km over a massive iron core. This mantle is thinner than previously thought and the smallest end-member in comparison with the other terrestrial planets. Although Mercury currently has a stagnant lid and the present day mantle is likely not convecting, a significant proportion of Mercury's surface features could have been derived from convection in the viscous mantle. Given Mercury's small size, the amount of volcanism and tectonic activity was a surprise. We investigate the effect of dislocation creep rheology in olivine on the dynamics of Mercury. At the pressures and temperatures of Mercury's mantle, laboratory creep studies indicate that olivine deforms by dislocation creep. Previous studies using diffusion creep rheology find that the thin mantle shell of Mercury quickly becomes diffusive and, this is difficult to reconcile with the surface observations. We use the three-dimensional spherical code, CitcomS, to compare numerical models with both dislocation and diffusion creep. We compare gravity, topography, and mantle temperature as a function of time from the models with constraints on the timing of volcanic and tectonic activity on Mercury. The results show that with the dislocation creep mechanism, there is potential for convective flow in the mantle over billions of years. In contrast, models with the diffusion creep mechanism start with a convecting mantle that transitions to global diffusive cooling within 500 Myrs. Diffusion creep rheology does not adequately produce a dynamic interior that is consistent with the historical volcanic and tectonic evolution of the planet. This research is the result of participation in GLADE, a nine-week summer REU program directed by Dave

  6. Lattice Boltzmann scheme for mixture modeling: analysis of the continuum diffusion regimes recovering Maxwell-Stefan model and incompressible Navier-Stokes equations.

    Science.gov (United States)

    Asinari, Pietro

    2009-11-01

    A finite difference lattice Boltzmann scheme for homogeneous mixture modeling, which recovers Maxwell-Stefan diffusion model in the continuum limit, without the restriction of the mixture-averaged diffusion approximation, was recently proposed [P. Asinari, Phys. Rev. E 77, 056706 (2008)]. The theoretical basis is the Bhatnagar-Gross-Krook-type kinetic model for gas mixtures [P. Andries, K. Aoki, and B. Perthame, J. Stat. Phys. 106, 993 (2002)]. In the present paper, the recovered macroscopic equations in the continuum limit are systematically investigated by varying the ratio between the characteristic diffusion speed and the characteristic barycentric speed. It comes out that the diffusion speed must be at least one order of magnitude (in terms of Knudsen number) smaller than the barycentric speed, in order to recover the Navier-Stokes equations for mixtures in the incompressible limit. Some further numerical tests are also reported. In particular, (1) the solvent and dilute test cases are considered, because they are limiting cases in which the Maxwell-Stefan model reduces automatically to Fickian cases. Moreover, (2) some tests based on the Stefan diffusion tube are reported for proving the complete capabilities of the proposed scheme in solving Maxwell-Stefan diffusion problems. The proposed scheme agrees well with the expected theoretical results.

  7. Business models for maximising the diffusion of technological innovations for climate-smart agriculture

    NARCIS (Netherlands)

    Long, Thomas B.; Blok, Vincent; Poldner, Kim

    2017-01-01

    Technological innovations will play a prominent role in the transition to climate-smart agriculture (CSA). However, CSA technological innovation diffusion is subject to socio-economic barriers. The success of innovations is partly dependent on the business models that are used to diffuse them.

  8. A first approximation for modeling the liquid diffusion pathway at the greater confinement disposal facilities

    International Nuclear Information System (INIS)

    Olague, N.E.; Price, L.L.

    1991-01-01

    The greater confinement disposal (GCD) project is an ongoing project examining the disposal of orphan wastes in Area 5 of the Nevada Test Site. One of the major tasks for the project is performance assessment. With regard to performance assessment, a preliminary conceptual model for ground-water flow and radionuclide transport to the accessible environment at the GCD facilities has been developed. One of the transport pathways that has been postulated is diffusion of radionuclides in the liquid phase upward to the land surface. This pathway is not usually considered in a performance assessment, but is included in the GCD conceptual model because of relatively low recharge estimates at the GCD site and the proximity of the waste to the land surface. These low recharge estimates indicate that convective flow downward to the water table may be negligible; thus, diffusion upward to the land surface may then become important. As part of a preliminary performance assessment which considered a basecase scenario and a climate-change scenario, a first approximation for modeling the liquid-diffusion pathway was formulated. The model includes an analytical solution that incorporates both diffusion and radioactivity decay. Overall, these results indicate that, despite the configuration of the GCD facilities that establishes the need for considering the liquid-diffusion pathway, the GCD disposal concept appears to be a technically feasible method for disposing of orphan wastes. Future analyses will consist of investigating the underlying assumptions of the liquid-diffusion model, refining the model is necessary, and reducing uncertainty in the input parameters. 11 refs., 6 figs

  9. Electro-oxidation of methanol diffused through proton exchange membrane on Pt surface: crossover rate of methanol

    International Nuclear Information System (INIS)

    Jung, Inhwa; Kim, Doyeon; Yun, Yongsik; Chung, Suengyoung; Lee, Jaeyoung; Tak, Yongsug

    2004-01-01

    Methanol crossover rate through proton exchange membrane (Nafion 117) was investigated with a newly designed electrochemical stripping cell. Nanosize Pt electrode was prepared by the electroless deposition. Distinct electrocatalytic oxidation behaviors of methanol inside membrane were similar to the methanol oxidation in aqueous electrolyte, except adsorption/desorption of hydrogen. The amount of methanol diffused through membrane was calculated from the charge of methanol oxidation during repetitive cyclic voltammetry (CV) and methanol crossover rate was estimated to be 0.69 nmol/s

  10. Beam diffusion measurements using collimator scans in the LHC

    Directory of Open Access Journals (Sweden)

    Gianluca Valentino

    2013-02-01

    Full Text Available The time evolution of beam losses during a collimator scan provides information on halo diffusion and population. This is an essential input for machine performance characterization and for the design of collimation systems. Beam halo measurements in the CERN Large Hadron Collider were conducted through collimator scrapings in a dedicated beam study for the first time at 4 TeV. Four scans were performed with two collimators, in the vertical plane for beam 1 and horizontally for beam 2, before and after bringing the beams into collisions. Inward and outward steps were performed. A diffusion model was used to interpret the observed loss rate evolution in response to the collimator steps. With this technique, diffusion coefficients were estimated as a function of betatron oscillation amplitude from approximately 3 to 7 standard deviations of the transverse beam distribution. A comparison of halo diffusion and core emittance growth rates is also presented.

  11. Hierarchical Bayesian modeling of the space - time diffusion patterns of cholera epidemic in Kumasi, Ghana

    NARCIS (Netherlands)

    Osei, Frank B.; Osei, F.B.; Duker, Alfred A.; Stein, A.

    2011-01-01

    This study analyses the joint effects of the two transmission routes of cholera on the space-time diffusion dynamics. Statistical models are developed and presented to investigate the transmission network routes of cholera diffusion. A hierarchical Bayesian modelling approach is employed for a joint

  12. Mass transfer rate through liquid membranes: interfacial chemical reactions and diffusion as simultaneous permeability controlling factors

    International Nuclear Information System (INIS)

    Danesi, P.R.; Horwitz, E.P.; Vandegrift, G.F.; Chiarizia, R.

    1981-01-01

    Equations describing the permeability of a liquid membrane to metal cations have been derived taking into account aqueous diffusion, membrane diffusion, and interfacial chemical reactions as simultaneous permeability controlling factors. Diffusion and chemical reactions have been coupled by a simple model analogous to the one previously described by us to represent liquid-liquid extraction kinetics. The derived equations, which make use of experimentally determined interfacial reaction mechanisms, qualitatively fit unexplained literature data regarding Cu 2+ transfer through liquid membranes. Their use to predict and optimize membrane permeability in practical separation processes by setting the appropriate concentration of the membrane carrier [LIX 64 (General Mills), a commercial β-hydroxy-oxime] and the pH of the aqueous copper feed solution is briefly discussed. 4 figures

  13. Alignment dynamics of diffusive scalar gradient in a two-dimensional model flow

    Science.gov (United States)

    Gonzalez, M.

    2018-04-01

    The Lagrangian two-dimensional approach of scalar gradient kinematics is revisited accounting for molecular diffusion. Numerical simulations are performed in an analytic, parameterized model flow, which enables considering different regimes of scalar gradient dynamics. Attention is especially focused on the influence of molecular diffusion on Lagrangian statistical orientations and on the dynamics of scalar gradient alignment.

  14. Modeling of Particle Acceleration at Multiple Shocks Via Diffusive Shock Acceleration: Preliminary Results

    Science.gov (United States)

    Parker, L. N.; Zank, G. P.

    2013-12-01

    Successful forecasting of energetic particle events in space weather models require algorithms for correctly predicting the spectrum of ions accelerated from a background population of charged particles. We present preliminary results from a model that diffusively accelerates particles at multiple shocks. Our basic approach is related to box models (Protheroe and Stanev, 1998; Moraal and Axford, 1983; Ball and Kirk, 1992; Drury et al., 1999) in which a distribution of particles is diffusively accelerated inside the box while simultaneously experiencing decompression through adiabatic expansion and losses from the convection and diffusion of particles outside the box (Melrose and Pope, 1993; Zank et al., 2000). We adiabatically decompress the accelerated particle distribution between each shock by either the method explored in Melrose and Pope (1993) and Pope and Melrose (1994) or by the approach set forth in Zank et al. (2000) where we solve the transport equation by a method analogous to operator splitting. The second method incorporates the additional loss terms of convection and diffusion and allows for the use of a variable time between shocks. We use a maximum injection energy (Emax) appropriate for quasi-parallel and quasi-perpendicular shocks (Zank et al., 2000, 2006; Dosch and Shalchi, 2010) and provide a preliminary application of the diffusive acceleration of particles by multiple shocks with frequencies appropriate for solar maximum (i.e., a non-Markovian process).

  15. Continuous Dependence in Front Propagation for Convective Reaction-Diffusion Models with Aggregative Movements

    Directory of Open Access Journals (Sweden)

    Luisa Malaguti

    2011-01-01

    Full Text Available The paper deals with a degenerate reaction-diffusion equation, including aggregative movements and convective terms. The model also incorporates a real parameter causing the change from a purely diffusive to a diffusive-aggregative and to a purely aggregative regime. Existence and qualitative properties of traveling wave solutions are investigated, and estimates of their threshold speeds are furnished. Further, the continuous dependence of the threshold wave speed and of the wave profiles on a real parameter is studied, both when the process maintains its diffusion-aggregation nature and when it switches from it to another regime.

  16. A multiscale MD–FE model of diffusion in composite media with internal surface interaction based on numerical homogenization procedure

    Science.gov (United States)

    Kojic, M.; Milosevic, M.; Kojic, N.; Kim, K.; Ferrari, M.; Ziemys, A.

    2014-01-01

    Mass transport by diffusion within composite materials may depend not only on internal microstructural geometry, but also on the chemical interactions between the transported substance and the material of the microstructure. Retrospectively, there is a gap in methods and theory to connect material microstructure properties with macroscale continuum diffusion characteristics. Here we present a new hierarchical multiscale model for diffusion within composite materials that couples material microstructural geometry and interactions between diffusing particles and the material matrix. This model, which bridges molecular dynamics (MD) and the finite element (FE) method, is employed to construct a continuum diffusion model based on a novel numerical homogenization procedure. The procedure is general and robust for evaluating constitutive material parameters of the continuum model. These parameters include the traditional bulk diffusion coefficients and, additionally, the distances from the solid surface accounting for surface interaction effects. We implemented our models to glucose diffusion through the following two geometrical/material configurations: tightly packed silica nanospheres, and a complex fibrous structure surrounding nanospheres. Then, rhodamine 6G diffusion analysis through an aga-rose gel network was performed, followed by a model validation using our experimental results. The microstructural model, numerical homogenization and continuum model offer a new platform for modeling and predicting mass diffusion through complex biological environment and within composite materials that are used in a wide range of applications, like drug delivery and nanoporous catalysts. PMID:24578582

  17. Diffusivity, solubility and thermodynamic modelling of diffusion growth of Ga"3"+-doped LiTaO_3 thin film for integrated optics

    International Nuclear Information System (INIS)

    Zhang, De-Long; Zhang, Qun; Zhang, Pei; Kang, Jian; Wong, Wing-Han; Yu, Dao-Yin

    2016-01-01

    Graphical abstract: Diffusion growth of Ga"3"+-doped LiTaO_3(LT) thin film was studied thermodynamically. Some Ga"3"+-doped LT thin films were grown on LT surface by in-diffusion of homogeneously coated Ga_2O_3 film at the temperature range of (1273 to 1473) K. The Ga"3"+ profile in the grown thin film was analyzed by secondary ion mass spectrometry. Form the measured Ga"3"+ profiles, some thermodynamic parameters were obtained. These include diffusivity, diffusion constant, chemical activation energy, solubility, solubility constant and enthalpy of solution. These parameters are crucial to design and growth of a Ga"3"+-doped LT thin film with desired Ga"3"+ profile for integrated optics application. A thermodynamic model is suggested for the growth and verified experimentally. - Highlights: • Diffusion growth of Ga"3"+-doped LiTaO_3 thin film were studied thermodynamically. • Diffusion constant is 1.41 · 10"−"6 m"2/s and activation energy is 237.2 kJ/mol. • Solubility constant is 22.9 · 10"2"6 ions/m"3 and enthalpy of solution is 28.9 kJ/mol. • Ga"3"+ dopant has small effect on LiTaO_3 refractive index. • Ga"3"+ growth can be described by a Fick-type equation with a constant diffusivity. - Abstract: A thermodynamic study was performed on diffusion growth of Ga"3"+-doped LiTaO_3(LT) thin film for integrated optics. Some Ga"3"+-doped LT thin films were grown on LT surface by in-diffusion of homogeneously coated Ga_2O_3 film at the temperature range of (1273 to 1473) K. After growth, the refractive indices at Ga"3"+-doped and un-doped surface parts were measured by prism coupling technique and Li composition there was evaluated from the measured refractive indices. The results show that Ga"3"+ dopant has small effect on the LT index. Li_2O out-diffusion is not measurable. The Ga"3"+ profile in the grown thin film was analysed by secondary ion mass spectrometry. It is found that the grown Ga"3"+ ions follow a complementary error function profile. A

  18. Diffusion of antimony in silicon in the presence of point defects

    International Nuclear Information System (INIS)

    Yu Xiangkun; Ma, K.B.; Chen, Q.Y.; Wang Xuemei; Liu Jiarui; Chu, W.-K.; Shao Lin; Thompson, Phillip E.

    2007-01-01

    We have investigated the diffusion of Sb in Si in the presence of defects injected by high-energy implantation of Si ions at room temperature. MeV ion implantation increases the concentrations of vacancies, which induce transient-enhanced diffusion of Sb deposited in Si. We observed a significant enhancement of Sb diffusion. Secondary ions mass spectroscopy has been performed on the implanted samples before and after annealing. Rutherford-backscattering spectrometry has been used to characterize the high-energy implantation damage. By fitting diffusion profiles to a linear diffusive model, information about atomic scale diffusion of Sb, i.e. the generation rate of mobile state Sb and its mean migration length were extracted

  19. Flagella-Driven Flows Circumvent Diffusive Bottlenecks that Inhibit Metabolite Exchange

    Science.gov (United States)

    Short, Martin; Solari, Cristian; Ganguly, Sujoy; Kessler, John; Goldstein, Raymond; Powers, Thomas

    2006-03-01

    The evolution of single cells to large and multicellular organisms requires matching the organisms' needs to the rate of exchange of metabolites with the environment. This logistic problem can be a severe constraint on development. For organisms with a body plan that approximates a spherical shell, such as colonies of the volvocine green algae, the required current of metabolites grows quadratically with colony radius whereas the rate at which diffusion can exchange metabolites grows only linearly with radius. Hence, there is a bottleneck radius beyond which the diffusive current cannot keep up with metabolic demands. Using Volvox carteri as a model organism, we examine experimentally and theoretically the role that advection of fluid by surface-mounted flagella plays in enhancing nutrient uptake. We show that fluid flow driven by the coordinated beating of flagella produces a convective boundary layer in the concentration of a diffusing solute which in turn renders the metabolite exchange rate quadratic in the colony radius. This enhanced transport circumvents the diffusive bottleneck, allowing increase in size and thus evolutionary transitions to multicellularity in the Volvocales.

  20. The effect of a realistic thermal diffusivity on numerical model of a subducting slab

    Science.gov (United States)

    Maierova, P.; Steinle-Neumann, G.; Cadek, O.

    2010-12-01

    A number of numerical studies of subducting slab assume simplified (constant or only depth-dependent) models of thermal conductivity. The available mineral physics data indicate, however, that thermal diffusivity is strongly temperature- and pressure-dependent and may also vary among different mantle materials. In the present study, we examine the influence of realistic thermal properties of mantle materials on the thermal state of the upper mantle and the dynamics of subducting slabs. On the basis of the data published in mineral physics literature we compile analytical relationships that approximate the pressure and temperature dependence of thermal diffusivity for major mineral phases of the mantle (olivine, wadsleyite, ringwoodite, garnet, clinopyroxenes, stishovite and perovskite). We propose a simplified composition of mineral assemblages predominating in the subducting slab and the surrounding mantle (pyrolite, mid-ocean ridge basalt, harzburgite) and we estimate their thermal diffusivity using the Hashin-Shtrikman bounds. The resulting complex formula for the diffusivity of each aggregate is then approximated by a simpler analytical relationship that is used in our numerical model as an input parameter. For the numerical modeling we use the Elmer software (open source finite element software for multiphysical problems, see http://www.csc.fi/english/pages/elmer). We set up a 2D Cartesian thermo-mechanical steady-state model of a subducting slab. The model is partly kinematic as the flow is driven by a boundary condition on velocity that is prescribed on the top of the subducting lithospheric plate. Reology of the material is non-linear and is coupled with the thermal equation. Using the realistic relationship for thermal diffusivity of mantle materials, we compute the thermal and flow fields for different input velocity and age of the subducting plate and we compare the results against the models assuming a constant thermal diffusivity. The importance of the