WorldWideScience

Sample records for diffusion plant transport

  1. Structure and evolution of the plant cation diffusion facilitator family of ion transporters

    Directory of Open Access Journals (Sweden)

    Zanis Michael J

    2011-03-01

    Full Text Available Abstract Background Members of the cation diffusion facilitator (CDF family are integral membrane divalent cation transporters that transport metal ions out of the cytoplasm either into the extracellular space or into internal compartments such as the vacuole. The spectrum of cations known to be transported by proteins of the CDF family include Zn, Fe, Co, Cd, and Mn. Members of this family have been identified in prokaryotes, eukaryotes, and archaea, and in sequenced plant genomes. CDF families range in size from nine members in Selaginella moellendorffii to 19 members in Populus trichocarpa. Phylogenetic analysis suggests that the CDF family has expanded within plants, but a definitive plant CDF family phylogeny has not been constructed. Results Representative CDF members were annotated from diverse genomes across the Viridiplantae and Rhodophyta lineages and used to identify phylogenetic relationships within the CDF family. Bayesian phylogenetic analysis of CDF amino acid sequence data supports organizing land plant CDF family sequences into 7 groups. The origin of the 7 groups predates the emergence of land plants. Among these, 5 of the 7 groups are likely to have originated at the base of the tree of life, and 2 of 7 groups appear to be derived from a duplication event prior to or coincident with land plant evolution. Within land plants, local expansion continues within select groups, while several groups are strictly maintained as one gene copy per genome. Conclusions Defining the CDF gene family phylogeny contributes to our understanding of this family in several ways. First, when embarking upon functional studies of the members, defining primary groups improves the predictive power of functional assignment of orthologous/paralogous genes and aids in hypothesis generation. Second, defining groups will allow a group-specific sequence motif to be generated that will help define future CDF family sequences and aid in functional motif

  2. Diffusion coefficient for anomalous transport

    International Nuclear Information System (INIS)

    1986-01-01

    A report on the progress towards the goal of estimating the diffusion coefficient for anomalous transport is given. The gyrokinetic theory is used to identify different time and length scale inherent to the characteristics of plasmas which exhibit anomalous transport

  3. Diffusion and bulk flow in phloem loading: A theoretical analysis of the polymer trap mechanism for sugar transport in plants

    Science.gov (United States)

    Dölger, Julia; Rademaker, Hanna; Liesche, Johannes; Schulz, Alexander; Bohr, Tomas

    2014-10-01

    Plants create sugar in the mesophyll cells of their leaves by photosynthesis. This sugar, mostly sucrose, has to be loaded via the bundle sheath into the phloem vascular system (the sieve elements), where it is distributed to growing parts of the plant. We analyze the feasibility of a particular loading mechanism, active symplasmic loading, also called the polymer trap mechanism, where sucrose is transformed into heavier sugars, such as raffinose and stachyose, in the intermediary-type companion cells bordering the sieve elements in the minor veins of the phloem. Keeping the heavier sugars from diffusing back requires that the plasmodesmata connecting the bundle sheath with the intermediary cell act as extremely precise filters, which are able to distinguish between molecules that differ by less than 20% in size. In our modeling, we take into account the coupled water and sugar movement across the relevant interfaces, without explicitly considering the chemical reactions transforming the sucrose into the heavier sugars. Based on the available data for plasmodesmata geometry, sugar concentrations, and flux rates, we conclude that this mechanism can in principle function, but that it requires pores of molecular sizes. Comparing with the somewhat uncertain experimental values for sugar export rates, we expect the pores to be only 5%-10% larger than the hydraulic radius of the sucrose molecules. We find that the water flow through the plasmodesmata, which has not been quantified before, contributes only 10%-20% to the sucrose flux into the intermediary cells, while the main part is transported by diffusion. On the other hand, the subsequent sugar translocation into the sieve elements would very likely be carried predominantly by bulk water flow through the plasmodesmata. Thus, in contrast to apoplasmic loaders, all the necessary water for phloem translocation would be supplied in this way with no need for additional water uptake across the plasma membranes of the

  4. Cooling tower drift studies at the Paducah, Kentucky Gaseous Diffusion Plant. [Transport of drift-derived chromium in terrestrial ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, F.G.; Hanna, S.R.; Parr, P.D.

    1979-01-01

    The transfer and fate of chromium from cooling tower drift to terrestrial ecosystems were quantified at the Department of Energy's uranium enrichment facility at Paducah, Kentucky. Chromium concentrations in plant materials (fescue grass) decreased with increasing distance from the cooing tower, ranging from 251 +- 19 ppM at 15 meters to 0.52 +- 0.07 ppM at 1500 meters. The site of drift contamination, size characteristics, and elemental content of drift particles were determined using a scanning electron microscope with energy dispersive x-ray analysis capabilities. Results indicate that elemental content in drift water (mineral residue) may not be equivalent to the content in the recirculating cooling water of the tower. This hypothesis is contrary to basic assumptions in calculating drift emissions. A laboratory study simulating throughfall from 1 to 6 inches of rain suggested that there are more exchange sites associated with litter than live foliage. Leachate from each one inch throughfall simulant removed 3% of the drift mass from litter compared to 7 to 9% from live foliage. Results suggest that differences in retention are related to chemical properties of the drift rather than physical lodging of the particle residue. To determine the potential for movement of drift-derived chromium to surface streams, soil--water samplers (wells) were placed along a distance gradient to Little Bayou Creek. Samples from two depths following rainstorms revealed the absence of vertical or horizontal movement with maximum concentrations of 0.13 ppb at 50 meters from the tower. Preliminary model estimates of drift deposition are compared to depositionmeasurements. Isopleths of the predicted deposition are useful to identify areas of maximum drift transport in the environs of the gaseous diffusion plant.

  5. Plant Transporter Identification

    DEFF Research Database (Denmark)

    Larsen, Bo

    Membrane transport proteins (transporters) play a critical role for numerous biological processes, by controlling the movements of ions and molecules in and out of cells. In plants, transporters thus function as gatekeepers between the plant and its surrounding environment and between organs......, tissues, cells and intracellular compartments. Since plants are highly compartmentalized organisms with complex transportation infrastructures, they consequently have many transporters. However, the vast majority of predicted transporters have not yet been experimentally verified to have transport...... activity. This project contains a review of the implemented methods, which have led to plant transporter identification, and present our progress on creating a high-throughput functional genomics transporter identification platform....

  6. Photoinduced diffusion molecular transport

    Energy Technology Data Exchange (ETDEWEB)

    Rozenbaum, Viktor M., E-mail: vik-roz@mail.ru, E-mail: litrakh@gmail.com [Chuiko Institute of Surface Chemistry, National Academy of Sciences of Ukraine, Generala Naumova St. 17, Kiev 03164 (Ukraine); Dekhtyar, Marina L. [Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Murmanskaya St. 5, Kiev 02094 (Ukraine); Lin, Sheng Hsien [Department of Applied Chemistry, National Chiao Tung University, 1001 Ta Hsuen Road, Hsinchu 300, Taiwan (China); Trakhtenberg, Leonid I., E-mail: vik-roz@mail.ru, E-mail: litrakh@gmail.com [Semenov Institute of Chemical Physics, Russian Academy of Sciences, Kosygin Street 4, Moscow 119991, Russia and Moscow Institute of Physics and Technology (State University), Institutskii Per. 9, Dolgoprudnyi, Moscow Region 141700 (Russian Federation)

    2016-08-14

    We consider a Brownian photomotor, namely, the directed motion of a nanoparticle in an asymmetric periodic potential under the action of periodic rectangular resonant laser pulses which cause charge redistribution in the particle. Based on the kinetics for the photoinduced electron redistribution between two or three energy levels of the particle, the time dependence of its potential energy is derived and the average directed velocity is calculated in the high-temperature approximation (when the spatial amplitude of potential energy fluctuations is small relative to the thermal energy). The thus developed theory of photoinduced molecular transport appears applicable not only to conventional dichotomous Brownian motors (with only two possible potential profiles) but also to a much wider variety of molecular nanomachines. The distinction between the realistic time dependence of the potential energy and that for a dichotomous process (a step function) is represented in terms of relaxation times (they can differ on the time intervals of the dichotomous process). As shown, a Brownian photomotor has the maximum average directed velocity at (i) large laser pulse intensities (resulting in short relaxation times on laser-on intervals) and (ii) excited state lifetimes long enough to permit efficient photoexcitation but still much shorter than laser-off intervals. A Brownian photomotor with optimized parameters is exemplified by a cylindrically shaped semiconductor nanocluster which moves directly along a polar substrate due to periodically photoinduced dipole moment (caused by the repetitive excited electron transitions to a non-resonant level of the nanocylinder surface impurity).

  7. Diffusive charge transport in graphene

    Science.gov (United States)

    Chen, Jianhao

    The physical mechanisms limiting the mobility of graphene on SiO 2 are studied and printed graphene devices on a flexible substrate are realized. Intentional addition of charged scattering impurities is used to study the effects of charged impurities. Atomic-scale defects are created by noble-gas ions irradiation to study the effect of unitary scatterers. The results show that charged impurities and atomic-scale defects both lead to conductivity linear in density in graphene, with a scattering magnitude that agrees quantitatively with theoretical estimates. While charged impurities cause intravalley scattering and induce a small change in the minimum conductivity, defects in graphene scatter electrons between the valleys and suppress the minimum conductivity below the metallic limit. Temperature-dependent measurements show that longitudinal acoustic phonons in graphene produce a small resistivity which is linear in temperature and independent of carrier density; at higher temperatures, polar optical phonons of the SiO2 substrate give rise to an activated, carrier density-dependent resistivity. Graphene is also made into high mobility transparent and flexible field effect device via the transfer-printing method. Together the results paint a complete picture of charge carrier transport in graphene on SiO2 in the diffusive regime, and show the promise of graphene as a novel electronic material that have potential applications not only on conventional inorganic substrates, but also on flexible substrates.

  8. Possible phthalates transport into plants

    Directory of Open Access Journals (Sweden)

    Alžbeta Jarošová

    2010-01-01

    Full Text Available Soils can be contaminated by high concentrations of phthalic acid esters (PAE resulting from industrial and intensive agricultural activities. A plant receives water and substances (including pollutants from soil by means of rootage. Water solution received by the roots is distributed in particular by means of xylem. Reception by means of floem is not very considerable. Pollutants (including phthalates can be absorbed by roots either by diffusion by means of soil gas phase or soil liquid phase. Another possible way of pollutant entering into the plant is diffusion from atmosphere. Way of substance entering into the plant is decided by so called Henry constant as well as octanol-water partition coefficient. In case of phthalates, big differences between di-n-butyl phthalate (DBP reception and dioctyl phthalate reception were detected. For example, DBP can enter into the plant by means of gas as well as liquid phase while dioctyl phthalate only by gas phase.This publication summarizes fundamental knowledge on possible phthalates transport into plants.

  9. Benchmarks with diffusion theory and transport theory

    International Nuclear Information System (INIS)

    Cunha Menezes Filho, A. da; Souza, A.L. de.

    1984-01-01

    The multiplication factor and some spectral indices for five critical assemblies (ZPR-6-7, ZPR-3-11, GODIVA, BIG-TEN and FLATTOP) are calculated by Diffusion and Transport Theory, with group constants generated by MC 2 (for diffusion calculations) and by NJOY (for transport calculations). The discrepancies encountered in the ZPR-6-7 spectra, can be tracked to the large differences in the elastic cross section for Iron, calculated by MC 2 and NJOY. (Author) [pt

  10. Gas Transport and Exchange through Wetland Plant Aerenchyma

    DEFF Research Database (Denmark)

    Sorrell, Brian Keith; Brix, Hans

    2013-01-01

    Aerenchyma, the large airspaces in aquatic plants, is a rapid gas transport pathway between atmosphere and soil in wetlands. Oxygen transport aerates belowground tissue and oxidizes rhizosphere soil, an important process in wetland biogeochemistry. Most plant O2 transport occurs by diffusion...

  11. Diffusion and transport coefficients in synthetic opals

    International Nuclear Information System (INIS)

    Sofo, J. O.; Mahan, G. D.

    2000-01-01

    Opals are structures composed of close-packed spheres in the size range of nano to micrometers. They are sintered to create small necks at the points of contact. We have solved the diffusion problem in such structures. The relation between the diffusion coefficient and the thermal and electrical conductivity is used to estimate the transport coefficients of opal structures as a function of the neck size and the mean free path of the carriers. The theory presented is also applicable to the diffusion problem in other periodic structures. (c) 2000 The American Physical Society

  12. Oxygen transport in waterlogged soils, Part II. Diffusion coefficients

    International Nuclear Information System (INIS)

    Obando Moncayo, F.H.

    2004-01-01

    Several equations are available for Oxygen Transport in Waterlogged Soils and have been used for soils and plants. All of them are some form of first Fick's law as given by dQ = - DA(dc/dx)/dt. This equation illustrates some important aspects of aeration in waterlogged soils; first, D is a property of the medium and the gas, and is affected by temperature T. Likewise, the amount of diffusing substance dQ in dt is a direct function of the cross sectional area A and inversely proportional to the distance x. In fact, increasing the water content of air-dry soil, drastically decreases A and creates a further resistance for the flow of oxygen through water films around root plants, soil micro organisms and soil aggregates. The solid phase is also limiting the cross-section of surface of the free gaseous diffusion and the length and tortuosity of diffusion path in soil. In most of cases, soil gas porosity and tortuosity of soil voids are expressed in the equations of diffusion as a broad 'diffusion coefficient' (apparent coefficient diffusion). The process of soil respiration is complicated, involves many parameters, and is difficult to realistically quantify. With regard to the oxygen supply, it is convenient to distinguish macro and micro models, and hence, the flux of oxygen is assumed to have two steps. The first step is related to oxygen diffusion from the atmosphere and the air-filled porosity. The second step is related to the oxygen diffusion through water-films in and around plant roots, soil micro organisms and aggregates. Because of these models we obtain coefficients of macro or micro diffusion, rates of macro or micro diffusion, etc. In the macro diffusion process oxygen is transferred in the soil profile, mainly from the soil surface to a certain depth of the root zone, while micro diffusion deals with the flux over very short distances. Both processes, macro and micro diffusion are highly influenced by soil water content. Of course, if water is added to

  13. Boron transport in plants: co-ordinated regulation of transporters

    Science.gov (United States)

    Miwa, Kyoko; Fujiwara, Toru

    2010-01-01

    Background The essentiality of boron (B) for plant growth was established >85 years ago. In the last decade, it has been revealed that one of the physiological roles of B is cross-linking the pectic polysaccharide rhamnogalacturonan II in primary cell walls. Borate cross-linking of pectic networks serves both for physical strength of cell walls and for cell adhesion. On the other hand, high concentrations of B are toxic to plant growth. To avoid deficiency and toxicity problems, it is important for plants to maintain their tissue B concentrations within an optimum range by regulating transport processes. Boron transport was long believed to be a passive, unregulated process, but the identification of B transporters has suggested that plants sense and respond to the B conditions and regulate transporters to maintain B homeostasis. Scope Transporters responsible for efficient B uptake by roots, xylem loading and B distribution among leaves have been described. These transporters are required under B limitation for efficient acquisition and utilization of B. Transporters important for tolerating high B levels in the environment have also been identified, and these transporters export B from roots back to the soil. Two types of transporters are involved in these processes: NIPs (nodulin-26-like intrinsic proteins), boric acid channels, and BORs, B exporters. It is demonstrated that the expression of genes encoding these transporters is finely regulated in response to B availability in the environment to ensure tissue B homeostasis. Furthermore, plants tolerant to stress produced by low B or high B in the environment can be generated through altered expression of these transporters. Conclusions The identification of the first B transporter led to the discovery that B transport was a process mediated not only by passive diffusion but also by transporters whose activity was regulated in response to B conditions. Now it is evident that plants sense internal and external B

  14. A Note on Diffusive Mass Transport.

    Science.gov (United States)

    Haynes, Henry W., Jr.

    1986-01-01

    Current chemical engineering textbooks teach that the driving force for diffusive mass transport in ideal solutions is the gradient in mole fraction. This is only true for ideal solution liquids. Therefore, it is shown that the appropriate driving force for use with ideal gases is the gradient in partial pressure. (JN)

  15. Diffusive limits for linear transport equations

    International Nuclear Information System (INIS)

    Pomraning, G.C.

    1992-01-01

    The authors show that the Hibert and Chapman-Enskog asymptotic treatments that reduce the nonlinear Boltzmann equation to the Euler and Navier-Stokes fluid equations have analogs in linear transport theory. In this linear setting, these fluid limits are described by diffusion equations, involving familiar and less familiar diffusion coefficients. Because of the linearity extant, one can carry out explicitly the initial and boundary layer analyses required to obtain asymptotically consistent initial and boundary conditions for the diffusion equations. In particular, the effects of boundary curvature and boundary condition variation along the surface can be included in the boundary layer analysis. A brief review of heuristic (nonasymptotic) diffusion description derivations is also included in our discussion

  16. Diffusion transport of nanoparticles at nanochannel boundaries

    International Nuclear Information System (INIS)

    Mahadevan, T. S.; Milosevic, M.; Kojic, M.; Hussain, F.; Kojic, N.; Serda, R.; Ferrari, M.; Ziemys, A.

    2013-01-01

    The manipulation of matter at the nanoscale has unleashed a great potential for engineering biomedical drug carriers, but the transport of nanoparticles (NPs) under nanoscale confinement is still poorly understood. Using colloidal physics to describe NP interactions, we have computationally studied the passive transport of NPs using experimentally relevant conditions from bulk into a nanochannel of 60–90 nm height. NP size, channel height, and the Debye length are comparable so that changes in nanoscale dimensions may induce substantial changes in NP transport kinetics. We show that subtle changes in nanochannel dimensions may alter the energy barrier by about six orders of magnitude resulting in different NP penetration depths and diffusion mechanisms: ballistic, first-order and quasi zero-order transport regimes. The analysis of NP diffusion by continuum methods reveals that apparent diffusivity is reduced by decreasing channel size. The continuum finite element (FE) numerical method reproduced the colloidal model results only when surface interactions were accounted for. These results give a new insight into NP passive transport at the boundaries of nanoconfined domains, and have implications on the design of nanoscale fluidics and NP systems for biomedical and engineering applications.

  17. Fractional diffusion models of nonlocal transport

    International Nuclear Information System (INIS)

    Castillo-Negrete, D. del

    2006-01-01

    A class of nonlocal models based on the use of fractional derivatives (FDs) is proposed to describe nondiffusive transport in magnetically confined plasmas. FDs are integro-differential operators that incorporate in a unified framework asymmetric non-Fickian transport, non-Markovian ('memory') effects, and nondiffusive scaling. To overcome the limitations of fractional models in unbounded domains, we use regularized FDs that allow the incorporation of finite-size domain effects, boundary conditions, and variable diffusivities. We present an α-weighted explicit/implicit numerical integration scheme based on the Grunwald-Letnikov representation of the regularized fractional diffusion operator in flux conserving form. In sharp contrast with the standard diffusive model, the strong nonlocality of fractional diffusion leads to a linear in time response for a decaying pulse at short times. In addition, an anomalous fractional pinch is observed, accompanied by the development of an uphill transport region where the 'effective' diffusivity becomes negative. The fractional flux is in general asymmetric and, for steady states, it has a negative (toward the core) component that enhances confinement and a positive component that increases toward the edge and leads to poor confinement. The model exhibits the characteristic anomalous scaling of the confinement time, τ, with the system's size, L, τ∼L α , of low-confinement mode plasma where 1<α<2 is the order of the FD operator. Numerical solutions of the model with an off-axis source show that the fractional inward transport gives rise to profile peaking reminiscent of what is observed in tokamak discharges with auxiliary off-axis heating. Also, cold-pulse perturbations to steady sates in the model exhibit fast, nondiffusive propagation phenomena that resemble perturbative experiments

  18. Plant air systems safety study: Portsmouth Gaseous Diffusion Plant

    International Nuclear Information System (INIS)

    1982-05-01

    The Portsmouth Gaseous Diffusion Plant Air System facilities and operations are reviewed for potential safety problems not covered by standard industrial safety procedures. Information is presented under the following section headings: facility and process description (general); air plant equipment; air distribution system; safety systems; accident analysis; plant air system safety overview; and conclusion

  19. The Tricastin gaseous diffusion plant

    International Nuclear Information System (INIS)

    Ergalant, J.; Lebrun, C.; Leduc, C.; Perrault, M.

    1975-01-01

    The building of the EURODIF plant began just over a year ago. The documents on which this enterprise was based were already assembled, which allowed construction work to start without delay. A brief description of the equipment is given, together with an approach to the problems of planning and estimates. Mention is also made of running problems and those related to safety in operation. The present state of the project promises a successful outcome, regarding both the production start-up schedule and the respecting of the building estimate [fr

  20. Diffuse-Illumination Systems for Growing Plants

    Science.gov (United States)

    May, George; Ryan, Robert

    2010-01-01

    Agriculture in both terrestrial and space-controlled environments relies heavily on artificial illumination for efficient photosynthesis. Plant-growth illumination systems require high photon flux in the spectral range corresponding with plant photosynthetic active radiation (PAR) (400 700 nm), high spatial uniformity to promote uniform growth, and high energy efficiency to minimize electricity usage. The proposed plant-growth system takes advantage of the highly diffuse reflective surfaces on the interior of a sphere, hemisphere, or other nearly enclosed structure that is coated with highly reflective materials. This type of surface and structure uniformly mixes discrete light sources to produce highly uniform illumination. Multiple reflections from within the domelike structures are exploited to obtain diffuse illumination, which promotes the efficient reuse of photons that have not yet been absorbed by plants. The highly reflective surfaces encourage only the plant tissue (placed inside the sphere or enclosure) to absorb the light. Discrete light sources, such as light emitting diodes (LEDs), are typically used because of their high efficiency, wavelength selection, and electronically dimmable properties. The light sources are arranged to minimize shadowing and to improve uniformity. Different wavelengths of LEDs (typically blue, green, and red) are used for photosynthesis. Wavelengths outside the PAR range can be added for plant diagnostics or for growth regulation

  1. Transport phenomena in sharply contrasting media with a diffusion barrier

    International Nuclear Information System (INIS)

    Dvoretskaya, O A; Kondratenko, P S

    2011-01-01

    Using the advection–diffusion equation, we analytically study contaminant transport in a sharply contrasting medium with a diffusion barrier due to localization of a contaminant source in a low-permeability medium. Anomalous diffusion behavior and a crossover between different transport regimes are observed. The diffusion barrier results in exponential attenuation of the source power, retardation of the contaminant plume growth and modification of the concentration distribution at large distances. (paper)

  2. Inhibitors of plant hormone transport

    Czech Academy of Sciences Publication Activity Database

    Klíma, Petr; Laňková, Martina; Zažímalová, Eva

    2016-01-01

    Roč. 253, č. 6 (2016), s. 1391-1404 ISSN 0033-183X R&D Projects: GA MŠk(CZ) LD15088 Institutional support: RVO:61389030 Keywords : polar auxin transport * acid-binding protein * gnom arf-gef * equilibrative nucleoside transporter * efflux carrier polarity * plasma-membrane-protein * cultured tobacco cells * arabidopsis-thaliana * gravitropic response * brefeldin-a * Plant hormones * Transport * Inhibitors * Auxin * Cytokinins * Strigolactones * Abscisic acid * Cell biology Subject RIV: ED - Physiology Impact factor: 2.870, year: 2016

  3. Application of a numerical transport correction in diffusion calculations

    International Nuclear Information System (INIS)

    Tomatis, Daniele; Dall'Osso, Aldo

    2011-01-01

    Full core calculations by ordinary transport methods can demand considerable computational time, hardly acceptable in the industrial work frame. However, the trend of next generation nuclear cores goes toward more heterogeneous systems, where transport phenomena of neutrons become very important. On the other hand, using diffusion solvers is more practical allowing faster calculations, but a specific formulation of the diffusion coefficient is requested to reproduce the scalar flux with reliable physical accuracy. In this paper, the Ronen method is used to evaluate numerically the diffusion coefficient in the slab reactor. The new diffusion solution is driven toward the solution of the integral neutron transport equation by non linear iterations. Better estimates of currents are computed and diffusion coefficients are corrected at node interfaces, still assuming Fick's law. This method enables obtaining closer results to the transport solution by a common solver in multigroup diffusion. (author)

  4. Fractional diffusion models of transport in magnetically confined plasmas

    International Nuclear Information System (INIS)

    Castillo-Negrete, D. del; Carreras, B. A.; Lynch, V. E.

    2005-01-01

    Experimental and theoretical evidence suggests that transport in magnetically confined fusion plasmas deviates from the standard diffusion paradigm. Some examples include the confinement time scaling in L-mode plasmas, rapid pulse propagation phenomena, and inward transport in off-axis fueling experiments. The limitations of the diffusion paradigm can be traced back to the restrictive assumptions in which it is based. In particular, Fick's law, one of the cornerstones of diffusive transport, assumes that the fluxes only depend on local quantities, i. e. the spatial gradient of the field (s). another key issue is the Markovian assumption that neglects memory effects. Also, at a microscopic level, standard diffusion assumes and underlying Gaussian, uncorrelated stochastic process (i. e. a Brownian random walk) with well defined characteristic spatio-temporal scales. Motivated by the need to develop models of non-diffusive transport, we discuss here a class of transport models base on the use of fractional derivative operators. The models incorporates in a unified way non-Fickian transport, non-Markovian processes or memory effects, and non-diffusive scaling. At a microscopic level, the models describe an underlying stochastic process without characteristic spatio-temporal scales that generalizes the Brownian random walk. As a concrete case study to motivate and test the model, we consider transport of tracers in three-dimensional, pressure-gradient-driven turbulence. We show that in this system transport is non-diffusive and cannot be described in the context of the standard diffusion parading. In particular, the probability density function (pdf) of the radial displacements of tracers is strongly non-Gaussian with algebraic decaying tails, and the moments of the tracer displacements exhibit super-diffusive scaling. there is quantitative agreement between the turbulence transport calculations and the proposed fractional diffusion model. In particular, the model

  5. Generalized diffusion theory for calculating the neutron transport scalar flux

    International Nuclear Information System (INIS)

    Alcouffe, R.E.

    1975-01-01

    A generalization of the neutron diffusion equation is introduced, the solution of which is an accurate approximation to the transport scalar flux. In this generalization the auxiliary transport calculations of the system of interest are utilized to compute an accurate, pointwise diffusion coefficient. A procedure is specified to generate and improve this auxiliary information in a systematic way, leading to improvement in the calculated diffusion scalar flux. This improvement is shown to be contingent upon satisfying the condition of positive calculated-diffusion coefficients, and an algorithm that ensures this positivity is presented. The generalized diffusion theory is also shown to be compatible with conventional diffusion theory in the sense that the same methods and codes can be used to calculate a solution for both. The accuracy of the method compared to reference S/sub N/ transport calculations is demonstrated for a wide variety of examples. (U.S.)

  6. A consistent transported PDF model for treating differential molecular diffusion

    Science.gov (United States)

    Wang, Haifeng; Zhang, Pei

    2016-11-01

    Differential molecular diffusion is a fundamentally significant phenomenon in all multi-component turbulent reacting or non-reacting flows caused by the different rates of molecular diffusion of energy and species concentrations. In the transported probability density function (PDF) method, the differential molecular diffusion can be treated by using a mean drift model developed by McDermott and Pope. This model correctly accounts for the differential molecular diffusion in the scalar mean transport and yields a correct DNS limit of the scalar variance production. The model, however, misses the molecular diffusion term in the scalar variance transport equation, which yields an inconsistent prediction of the scalar variance in the transported PDF method. In this work, a new model is introduced to remedy this problem that can yield a consistent scalar variance prediction. The model formulation along with its numerical implementation is discussed, and the model validation is conducted in a turbulent mixing layer problem.

  7. Transport equivalent diffusion constants for reflector region in PWRs

    International Nuclear Information System (INIS)

    Tahara, Yoshihisa; Sekimoto, Hiroshi

    2002-01-01

    The diffusion-theory-based nodal method is widely used in PWR core designs for reason of its high computing speed in three-dimensional calculations. The baffle/reflector (B/R) constants used in nodal calculations are usually calculated based on a one-dimensional transport calculation. However, to achieve high accuracy of assembly power prediction, two-dimensional model is needed. For this reason, the method for calculating transport equivalent diffusion constants of reflector material was developed so that the neutron currents on the material boundaries could be calculated exactly in diffusion calculations. Two-dimensional B/R constants were calculated using the transport equivalent diffusion constants in the two-dimensional diffusion calculation whose geometry reflected the actual material configuration in the reflector region. The two-dimensional B/R constants enabled us to predict assembly power within an error of 1.5% at hot full power conditions. (author)

  8. Unconditionally stable diffusion-acceleration of the transport equation

    International Nuclear Information System (INIS)

    Larson, E.W.

    1982-01-01

    The standard iterative procedure for solving fixed-source discrete-ordinates problems converges very slowly for problems in optically thick regions with scattering ratios c near unity. The diffusion-synthetic acceleration method has been proposed to make use of the fact that for this class of problems, the diffusion equation is often an accurate approximation to the transport equation. However, stability difficulties have historically hampered the implementation of this method for general transport differencing schemes. In this article we discuss a recently developed procedure for obtaining unconditionally stable diffusion-synthetic acceleration methods for various transport differencing schemes. We motivate the analysis by first discussing the exact transport equation; then we illustrate the procedure by deriving a new stable acceleration method for the linear discontinuous transport differencing scheme. We also provide some numerical results

  9. Unconditionally stable diffusion-acceleration of the transport equation

    International Nuclear Information System (INIS)

    Larsen, E.W.

    1982-01-01

    The standard iterative procedure for solving fixed-source discrete-ordinates problems converges very slowly for problems in optically large regions with scattering ratios c near unity. The diffusion-synthetic acceleration method has been proposed to make use of the fact that for this class of problems the diffusion equation is often an accurate approximation to the transport equation. However, stability difficulties have historically hampered the implementation of this method for general transport differencing schemes. In this article we discuss a recently developed procedure for obtaining unconditionally stable diffusion-synthetic acceleration methods for various transport differencing schemes. We motivate the analysis by first discussing the exact transport equation; then we illustrate the procedure by deriving a new stable acceleration method for the linear discontinuous transport differencing scheme. We also provide some numerical results

  10. Diffusion tensor in electron swarm transport

    International Nuclear Information System (INIS)

    Makabe, T.; Mori, T.

    1983-01-01

    Expression for the diffusion tensor of the electron (or light ion) swarm is presented from the higher-order expansion of the velocity distribution in the Boltzmann equation in hydrodynamic stage. Derived diffusion coefficients for the transverse and longitudinal directions include the additional terms representative of the curvature effect under the action of an electric field with the usual-two-term expressions. Numerical analysis is given for the electron swarm in model gases having the momentum transfer cross section Qsub(m)(epsilon)=Q 0 epsilon sup(beta) (β=0, 1/2, 1) using the present theory. As the result, appreciable degree of discrepancy appears between the transverse diffusion coefficient defined here and the conventional expression with increasing of β in Qsub(m). (Author)

  11. Species specificity of resistance to oxygen diffusion in thin cuticular membranes from amphibious plants

    DEFF Research Database (Denmark)

    Frost-Christensen, Henning; Jørgensen, Lise Bolt; Floto, Franz

    2003-01-01

    oxygen, diffusion, cuticula, amphibious plants, Hygrophila, Berula, Lobelia, Mentha, Potamogeton, Veronica, aquatic plants, submerged plants......oxygen, diffusion, cuticula, amphibious plants, Hygrophila, Berula, Lobelia, Mentha, Potamogeton, Veronica, aquatic plants, submerged plants...

  12. Atmospheric transport, diffusion, and deposition of radioactivity

    International Nuclear Information System (INIS)

    Crawford, T.V.

    1969-01-01

    From a meteorological standpoint there are two types of initial sources for atmospheric diffusion from Plowshare applications. One is the continuous point-source plume - a slow, small leak from an underground engineering application. The other is the large cloud produced almost instantaneously from a cratering application. For the purposes of this paper the effluent from neither type has significant fall speed. Both are carried by the prevailing wind, but the statistics of diffusion for each type are different. The use of constant altitude, isobaric and isentropic techniques for predicting the mean path of the effluent is briefly discussed. Limited data are used to assess the accuracy of current trajectory forecast techniques. Diffusion of continuous point-source plumes has been widely studied; only a brief review is given of the technique used and the variability of their results with wind speed and atmospheric stability. A numerical model is presented for computing the diffusion of the 'instantaneously-produced' large clouds. This model accounts for vertical and diurnal changes in atmospheric turbulence, wet and dry deposition, and radioactivity decay. Airborne concentrations, cloud size, and deposition on the ground are calculated. Pre- and post-shot calculations of cloud center, ground level concentration of gross radioactivity, and dry and wet deposition of iodine-131 are compared with measurements on Cabriolet and Buggy. (author)

  13. Atmospheric transport, diffusion, and deposition of radioactivity

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, T V [Lawrence Radiation Laboratory, Livermore, CA (United States)

    1969-07-01

    From a meteorological standpoint there are two types of initial sources for atmospheric diffusion from Plowshare applications. One is the continuous point-source plume - a slow, small leak from an underground engineering application. The other is the large cloud produced almost instantaneously from a cratering application. For the purposes of this paper the effluent from neither type has significant fall speed. Both are carried by the prevailing wind, but the statistics of diffusion for each type are different. The use of constant altitude, isobaric and isentropic techniques for predicting the mean path of the effluent is briefly discussed. Limited data are used to assess the accuracy of current trajectory forecast techniques. Diffusion of continuous point-source plumes has been widely studied; only a brief review is given of the technique used and the variability of their results with wind speed and atmospheric stability. A numerical model is presented for computing the diffusion of the 'instantaneously-produced' large clouds. This model accounts for vertical and diurnal changes in atmospheric turbulence, wet and dry deposition, and radioactivity decay. Airborne concentrations, cloud size, and deposition on the ground are calculated. Pre- and post-shot calculations of cloud center, ground level concentration of gross radioactivity, and dry and wet deposition of iodine-131 are compared with measurements on Cabriolet and Buggy. (author)

  14. Diffusion and transport phenomena in a collisional magnetoplasma ...

    Indian Academy of Sciences (India)

    Boltzmann-transport equation is analytically solved for two-component magnetoplasma using Chapman-Enskog analysis to include collisional diffusion transport having anisotropies in both streaming velocity and temperature components. The modified collisional integrals are analytically solved with flux integrals and ...

  15. Neutron transport equation - indications on homogenization and neutron diffusion

    International Nuclear Information System (INIS)

    Argaud, J.P.

    1992-06-01

    In PWR nuclear reactor, the practical study of the neutrons in the core uses diffusion equation to describe the problem. On the other hand, the most correct method to describe these neutrons is to use the Boltzmann equation, or neutron transport equation. In this paper, we give some theoretical indications to obtain a diffusion equation from the general transport equation, with some simplifying hypothesis. The work is organised as follows: (a) the most general formulations of the transport equation are presented: integro-differential equation and integral equation; (b) the theoretical approximation of this Boltzmann equation by a diffusion equation is introduced, by the way of asymptotic developments; (c) practical homogenization methods of transport equation is then presented. In particular, the relationships with some general and useful methods in neutronic are shown, and some homogenization methods in energy and space are indicated. A lot of other points of view or complements are detailed in the text or the remarks

  16. Gas Transport and Exchange through Wetland Plant Aerenchyma

    DEFF Research Database (Denmark)

    Sorrell, Brian Keith; Brix, Hans

    2013-01-01

    Aerenchyma, the large airspaces in aquatic plants, is a rapid gas transport pathway between atmosphere and soil in wetlands. Oxygen transport aerates belowground tissue and oxidizes rhizosphere soil, an important process in wetland biogeochemistry. Most plant O2 transport occurs by diffusion......, and the major challenge for its accurate measurement is avoiding disturbing small-scale gradients in O2 concentration and demand in the pathway. Small O2 sensors with rapid response times and high spatial resolution are the most popular methods for quantifying O2 transport and rhizosphere oxidation...... such as stirring of solutions. In some species, pressurized gas flows develop in shoots and rhizomes, and their contribution to gas fluxes can be assessed with pressure transducers and flow meters. Other gases produced in wetlands (e.g., CO2, CH4, and N2O) are also transported in aerenchyma. Their fluxes...

  17. Color diffusion in QCD transport theory

    International Nuclear Information System (INIS)

    Selikhov, A.V.; Gyulassy, M.

    1993-01-01

    Color diffusion is shown to be an important dissipative property of quark-gluon plasmas with the characteristic color relaxation time scale, t c ∼ (3α s T log (m E /m M )) -1 , showing its sensitivity to the ratio of the static color electric and magnetic screening masses. Fokker-Planck equations are derived for QCD Wigner distributions taking into account quantum color dynamics. These equations show that the anomalously small color relaxation time leads to a small color conductivity and to strong damping of collective color modes

  18. Freezer-sublimer for gaseous diffusion plant

    International Nuclear Information System (INIS)

    Reti, G.R.

    1978-01-01

    A method and apparatus is disclosed for freezing and subliming uranium hexafluoride (UF 6 ) as part of a gaseous diffusion plant from which a quantity of the UF 6 inventory is intermittently withdrawn and frozen to solidify it. A plurality of upright heat pipes holds a coolant and is arranged in a two compartment vessel, the lower compartment is exposed to UF 6 , the higher one serves for condensing the evaporated coolant by means of cooling water. In one embodiment, each pipe has a quantity of coolant such as freon, hermetically sealded therein. In the other embodiment, each pipe is sealed only at the lower end while the upper end communicates with a common vapor or cooling chamber which contains a water cooled condenser. The cooling water has a sufficiently low temperature to condense the evaporated coolant. The liquid coolant flows gravitationally downward to the lower end portion of the pipe. UF 6 gas is flowed into the tank where it contacts the finned outside surface of the heat pipes. Heat from the gas evaporates the coolant and the gas in turn is solidified on the exterior of the heat pipe sections in the tank. To recover UF 6 gas from the tank, the solidified UF 6 is sublimed by passing compressed UF 6 gas over the frozen UF 6 gas on the pipes or by externally heating the lower ends of the pipes sufficiently to evaporate the coolant therein above the subliming temperature of the UF 6 . The subliming UF 6 gas then condenses the coolant in the vertical heat pipes, so that it can gravitationally flow back to the lower end portions

  19. Raffinate treatment at the Portsmouth Gaseous Diffusion Plant

    International Nuclear Information System (INIS)

    Acox, T.A.

    1983-01-01

    Raffinate solutions, which contain uranium, technetium, nitrates, and lesser amounts of heavy metals, are produced in the decontamination and uranium recovery operations at the Portsmouth Gaseous Diffusion Plant. These solutions are presently being placed in temporary storage until three treatment facilities are constructed which will produce an environmentally acceptable effluent from the raffinate. These facilities are: (1) The Heavy Metals Precipitation Facility; (2) The Technetium Ion Exchange Facility; and (3) The Biodenitrification Pilot Plant. When the facilities are completed, the raffinate will be treated in 500 gallon batches. The first treatment is the heavy metals precipitation by caustic addition and filtering. The effluent proceeds to the ion exchange columns where the technetium is removed by adsorption onto a strongly basic, anion exchange resin which has been converted to the hydroxyl form. Following ion exchange, the solution is transported to the biodenitrification pilot plant. The biodenitrification column is a fluidized-bed using bacteria-laden coal particles as the denitrifying media. The resulting effluent should meet the limits established by the US EPA for all metals and nitrate. Technetium will be 98+% removed and the uranium concentration will be less than one milligram per liter. 13 references

  20. The quasi-diffusive approximation in transport theory: Local solutions

    International Nuclear Information System (INIS)

    Celaschi, M.; Montagnini, B.

    1995-01-01

    The one velocity, plane geometry integral neutron transport equation is transformed into a system of two equations, one of them being the equation of continuity and the other a generalized Fick's law, in which the usual diffusion coefficient is replaced by a self-adjoint integral operator. As the kernel of this operator is very close to the Green function of a diffusion equation, an approximate inversion by means of a second order differential operator allows to transform these equations into a purely differential system which is shown to be equivalent, in the simplest case, to a diffusion-like equation. The method, the principles of which have been exposed in a previous paper, is here extended and applied to a variety of problems. If the inversion is properly performed, the quasi-diffusive solutions turn out to be quite accurate, even in the vicinity of the interface between different material regions, where elementary diffusion theory usually fails. 16 refs., 3 tabs

  1. Basic Studies of Non-Diffusive Transport in Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Morales, George J. [University of California, Los Angeles, CA (United States); Maggs, James E. [University of California, Los Angeles, CA (United States)

    2014-10-25

    The project expanded and developed mathematical descriptions, and corresponding numerical modeling, of non-diffusive transport to incorporate new perspectives derived from basic transport experiments performed in the LAPD device at UCLA, and at fusion devices throughout the world. By non-diffusive it is meant that the transport of fundamental macroscopic parameters of a system, such as temperature and density, does not follow the standard diffusive behavior predicted by a classical Fokker-Planck equation. The appearance of non-diffusive behavior is often related to underlying microscopic processes that cause the value of a system parameter, at one spatial position, to be linked to distant events, i.e., non-locality. In the LAPD experiments the underlying process was traced to large amplitude, coherent drift-waves that give rise to chaotic trajectories. Significant advances were made in this project. The results have lead to a new perspective about the fundamentals of edge transport in magnetically confined plasmas; the insight has important consequences for worldwide studies in fusion devices. Progress was also made in advancing the mathematical techniques used to describe fractional diffusion.

  2. Anomalous Transport of Cosmic Rays in a Nonlinear Diffusion Model

    Energy Technology Data Exchange (ETDEWEB)

    Litvinenko, Yuri E. [Department of Mathematics, University of Waikato, P. B. 3105, Hamilton 3240 (New Zealand); Fichtner, Horst; Walter, Dominik [Institut für Theoretische Physik IV, Ruhr-Universität Bochum, Universitätsstrasse 150, D-44780 Bochum (Germany)

    2017-05-20

    We investigate analytically and numerically the transport of cosmic rays following their escape from a shock or another localized acceleration site. Observed cosmic-ray distributions in the vicinity of heliospheric and astrophysical shocks imply that anomalous, superdiffusive transport plays a role in the evolution of the energetic particles. Several authors have quantitatively described the anomalous diffusion scalings, implied by the data, by solutions of a formal transport equation with fractional derivatives. Yet the physical basis of the fractional diffusion model remains uncertain. We explore an alternative model of the cosmic-ray transport: a nonlinear diffusion equation that follows from a self-consistent treatment of the resonantly interacting cosmic-ray particles and their self-generated turbulence. The nonlinear model naturally leads to superdiffusive scalings. In the presence of convection, the model yields a power-law dependence of the particle density on the distance upstream of the shock. Although the results do not refute the use of a fractional advection–diffusion equation, they indicate a viable alternative to explain the anomalous diffusion scalings of cosmic-ray particles.

  3. Discrete Diffusion Monte Carlo for Electron Thermal Transport

    Science.gov (United States)

    Chenhall, Jeffrey; Cao, Duc; Wollaeger, Ryan; Moses, Gregory

    2014-10-01

    The iSNB (implicit Schurtz Nicolai Busquet electron thermal transport method of Cao et al. is adapted to a Discrete Diffusion Monte Carlo (DDMC) solution method for eventual inclusion in a hybrid IMC-DDMC (Implicit Monte Carlo) method. The hybrid method will combine the efficiency of a diffusion method in short mean free path regions with the accuracy of a transport method in long mean free path regions. The Monte Carlo nature of the approach allows the algorithm to be massively parallelized. Work to date on the iSNB-DDMC method will be presented. This work was supported by Sandia National Laboratory - Albuquerque.

  4. On the diffusive nature of W7-AS transport

    Energy Technology Data Exchange (ETDEWEB)

    Stroth, U; Giannone, L.; Erckmann, V; Geist, T; Hartfuss, H J; Jaenicke, R; Kuehner, G; Ringler, H; Sardei, F [Max-Planck-Institut fuer Plasmaphysik, Garching (Germany)

    1994-12-31

    Particle and energy transport in W7-AS have many aspects which are in qualitative agreement with diffusive transport mechanisms. Unlike in tokamaks, the density profiles are flat in the source-free region and for the electron temperature no profile resilience is observed. A strong dependence of transport on the temperature gradient could be ruled out since agreement between the transport coefficients from steady state and perturbative studies has been observed both, in absolute value and parameter dependences. Furthermore, W7-AS transport was found to be compatible with a gyro-Bohm-like and, hence, local transport model. Similar to tokamaks, however, there are problems in relating the local transport coefficients to local plasma parameters. Especially the degradation of confinement with heating power cannot easily be connected to a local quantity. This difficulty is the subject of this paper. (author) 2 refs., 4 figs.

  5. On the diffusive nature of W7-AS transport

    International Nuclear Information System (INIS)

    Stroth, U.; Giannone, L.; Erckmann, V.; Geist, T.; Hartfuss, H.J.; Jaenicke, R.; Kuehner, G.; Ringler, H.; Sardei, F.

    1993-01-01

    Particle and energy transport in W7-AS have many aspects which are in qualitative agreement with diffusive transport mechanisms. Unlike in tokamaks, the density profiles are flat in the source-free region and for the electron temperature no profile resilience is observed. A strong dependence of transport on the temperature gradient could be ruled out since agreement between the transport coefficients from steady state and perturbative studies has been observed both, in absolute value and parameter dependences. Furthermore, W7-AS transport was found to be compatible with a gyro-Bohm-like and, hence, local transport model. Similar to tokamaks, however, there are problems in relating the local transport coefficients to local plasma parameters. Especially the degradation of confinement with heating power cannot easily be connected to a local quantity. This difficulty is the subject of this paper. (orig.)

  6. On the diffusive nature of W7-AS transport

    International Nuclear Information System (INIS)

    Stroth, U.; Giannone, L.; Erckmann, V.; Geist, T.; Hartfuss, H.J.; Jaenicke, R.; Kuehner, G.; Ringler, H.; Sardei, F.

    1993-01-01

    Particle and energy transport in W7-AS have many aspects which are in qualitative agreement with diffusive transport mechanisms. Unlike in tokamaks, the density profiles are flat in the source-free region and for the electron temperature no profile resilience is observed. A strong dependence of transport on the temperature gradient could be ruled out since agreement between the transport coefficients from steady state and perturbative studies has been observed both, in absolute value and parameter dependences. Furthermore, W7-AS transport was found to be compatible with a gyro-Bohm-like and, hence, local transport model. Similar to tokamaks, however, there are problems in relating the local transport coefficients to local plasma parameters. Especially the degradation of confinement with heating power cannot easily be connected to a local quantity. This difficulty is the subject of this paper. (author) 2 refs., 4 figs

  7. Predictability of solute transport in diffusion-controlled hydrogeologic regimes

    International Nuclear Information System (INIS)

    Gillham, R.W.; Cherry, J.A.

    1983-01-01

    Hydrogeologic regimes that are favourable for the subsurface management of low-level radioactive wastes must have transport properties that will limit the migration velocity of contaminants to some acceptably low value. Of equal importance, for the purpose of impact assessment and licensing, is the need to be able to predict, with a reasonable degree of certainty and over long time periods, what the migration velocity of the various contaminants of interest will be. This paper presents arguments to show that in addition to having favourable velocity characteristics, transport in saturated, diffusion-controlled hydrogeologic regimes is considerably more predictable than in the most common alternatives. The classical transport models for unsaturated, saturated-advection-controlled and saturated-diffusion-controlled environments are compared, with particular consideration being given to the difficulties associated with the characterization of the respective transport parameters. Results are presented which show that the diffusion of non-reactive solutes and solutes that react according to a constant partitioning ratio (K/sub d/) are highly predictable under laboratory conditions and that the diffusion coefficients for the reactive solutes can be determined with a reasonable degree of accuracy from independent measurements of bulk density, porosity, distribution coefficient and tortuosity. Field evidence is presented which shows that the distribution of environmental isotopes and chloride in thick clayey deposits is consistent with a diffusion-type transport process in these media. These results are particularly important in that they not only demonstrate the occurrence of diffusion-controlled hydrogeologic regimes, but they also demonstrate the predictability of the migration characteristics over very long time periods

  8. S sub(N) transport and diffusion acceleration

    International Nuclear Information System (INIS)

    Gho, C.J.

    1986-01-01

    After brief description of the characteristics and history of S sub(N) transport method and the present development of transport codes, the technique of diffusion acceleration and the characteristics of its implementation in BISTRO computer code are exposed. It is showed that the method to discretize algorithms leads to strongly results using some simple calculations which alloy to compare the performance of BISTRO computer code to distinguished versions of DOT computer code. (M.C.K.) [pt

  9. Analytical solution to the hybrid diffusion-transport equation

    International Nuclear Information System (INIS)

    Nanneh, M.M.; Williams, M.M.R.

    1986-01-01

    A special integral equation was derived in previous work using a hybrid diffusion-transport theory method for calculating the flux distribution in slab lattices. In this paper an analytical solution of this equation has been carried out on a finite reactor lattice. The analytical results of disadvantage factors are shown to be accurate in comparison with the numerical results and accurate transport theory calculations. (author)

  10. Analysis of discrete reaction-diffusion equations for autocatalysis and continuum diffusion equations for transport

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Chi-Jen [Iowa State Univ., Ames, IA (United States)

    2013-01-01

    In this thesis, we analyze both the spatiotemporal behavior of: (A) non-linear “reaction” models utilizing (discrete) reaction-diffusion equations; and (B) spatial transport problems on surfaces and in nanopores utilizing the relevant (continuum) diffusion or Fokker-Planck equations. Thus, there are some common themes in these studies, as they all involve partial differential equations or their discrete analogues which incorporate a description of diffusion-type processes. However, there are also some qualitative differences, as shall be discussed below.

  11. Diffusive transport in a one dimensional disordered potential involving correlations

    International Nuclear Information System (INIS)

    Monthus, C.; Paris-6 Univ., 75

    1995-03-01

    Transport properties of one dimensional Brownian diffusion under the influence of a quenched random force, distributed as a two-level Poisson process is discussed. Large time scaling laws of the position of the Brownian particle, and the probability distribution of the stationary flux going through a sample between two prescribed concentrations are studied. (author) 14 refs.; 3 figs

  12. Reaction-diffusion systems in intracellular molecular transport and control.

    Science.gov (United States)

    Soh, Siowling; Byrska, Marta; Kandere-Grzybowska, Kristiana; Grzybowski, Bartosz A

    2010-06-07

    Chemical reactions make cells work only if the participating chemicals are delivered to desired locations in a timely and precise fashion. Most research to date has focused on active-transport mechanisms, although passive diffusion is often equally rapid and energetically less costly. Capitalizing on these advantages, cells have developed sophisticated reaction-diffusion (RD) systems that control a wide range of cellular functions-from chemotaxis and cell division, through signaling cascades and oscillations, to cell motility. These apparently diverse systems share many common features and are "wired" according to "generic" motifs such as nonlinear kinetics, autocatalysis, and feedback loops. Understanding the operation of these complex (bio)chemical systems requires the analysis of pertinent transport-kinetic equations or, at least on a qualitative level, of the characteristic times of the constituent subprocesses. Therefore, in reviewing the manifestations of cellular RD, we also describe basic theory of reaction-diffusion phenomena.

  13. Plant water relations I: uptake and transport

    Science.gov (United States)

    Plants, like all living things, are mostly water. Water is the matrix of life, and its availability determines the distribution and productivity of plants on earth. Vascular plants evolved structures that enable them to transport water long distances with little input of energy, but the hollow trach...

  14. From conservative to reactive transport under diffusion-controlled conditions

    Science.gov (United States)

    Babey, Tristan; de Dreuzy, Jean-Raynald; Ginn, Timothy R.

    2016-05-01

    We assess the possibility to use conservative transport information, such as that contained in transit time distributions, breakthrough curves and tracer tests, to predict nonlinear fluid-rock interactions in fracture/matrix or mobile/immobile conditions. Reference simulated data are given by conservative and reactive transport simulations in several diffusive porosity structures differing by their topological organization. Reactions includes nonlinear kinetically controlled dissolution and desorption. Effective Multi-Rate Mass Transfer models (MRMT) are calibrated solely on conservative transport information without pore topology information and provide concentration distributions on which effective reaction rates are estimated. Reference simulated reaction rates and effective reaction rates evaluated by MRMT are compared, as well as characteristic desorption and dissolution times. Although not exactly equal, these indicators remain very close whatever the porous structure, differing at most by 0.6% and 10% for desorption and dissolution. At early times, this close agreement arises from the fine characterization of the diffusive porosity close to the mobile zone that controls fast mobile-diffusive exchanges. At intermediate to late times, concentration gradients are strongly reduced by diffusion, and reactivity can be captured by a very limited number of rates. We conclude that effective models calibrated solely on conservative transport information like MRMT can accurately estimate monocomponent kinetically controlled nonlinear fluid-rock interactions. Their relevance might extend to more advanced biogeochemical reactions because of the good characterization of conservative concentration distributions, even by parsimonious models (e.g., MRMT with 3-5 rates). We propose a methodology to estimate reactive transport from conservative transport in mobile-immobile conditions.

  15. Local transport method for hybrid diffusion-transport calculations in 2-D cylindrical (R, THETA) geometry

    International Nuclear Information System (INIS)

    Zhang, Dingkang; Rahnema, Farzad; Ougouag, Abderrfi M.

    2011-01-01

    A response-based local transport method has been developed in 2-D (r, θ) geometry for coupling to any coarse-mesh (nodal) diffusion method/code. Monte Carlo method is first used to generate a (pre-computed) the response function library for each unique coarse mesh in the transport domain (e.g., the outer reflector region of the Pebble Bed Reactor). The scalar flux and net current at the diffusion/transport interface provided by the diffusion method are used as an incoming surface source to the transport domain. A deterministic iterative sweeping method together with the response function library is utilized to compute the local transport solution within all transport coarse meshes. After the partial angular currents crossing the coarse mesh surfaces are converged, albedo coefficients are computed as boundary conditions for the diffusion methods. The iteration on the albedo boundary condition (for the diffusion method via transport) and the incoming angular flux boundary condition (for the transport via diffusion) is continued until convergence is achieved. The method was tested for in a simplified 2-D (r, θ) pebble bed reactor problem consisting of an inner reflector, an annular fuel region and a controlled outer reflector. The comparisons have shown that the results of the response-function-based transport method agree very well with a direct MCNP whole core solution. The agreement in coarse mesh averaged flux was found to be excellent: relative difference of about 0.18% and a maximum difference of about 0.55%. Note that the MCNP uncertainty was less than 0.1%. (author)

  16. Flow, transport and diffusion in random geometries II: applications

    KAUST Repository

    Asinari, Pietro

    2015-01-07

    Multilevel Monte Carlo (MLMC) is an efficient and flexible solution for the propagation of uncertainties in complex models, where an explicit parametrization of the input randomness is not available or too expensive. We present several applications of our MLMC algorithm for flow, transport and diffusion in random heterogeneous materials. The absolute permeability and effective diffusivity (or formation factor) of micro-scale porous media samples are computed and the uncertainty related to the sampling procedures is studied. The algorithm is then extended to the transport problems and multiphase flows for the estimation of dispersion and relative permeability curves. The impact of water drops on random stuctured surfaces, with microfluidics applications to self-cleaning materials, is also studied and simulated. Finally the estimation of new drag correlation laws for poly-dispersed dilute and dense suspensions is presented.

  17. Flow, transport and diffusion in random geometries II: applications

    KAUST Repository

    Asinari, Pietro; Ceglia, Diego; Icardi, Matteo; Prudhomme, Serge; Tempone, Raul

    2015-01-01

    Multilevel Monte Carlo (MLMC) is an efficient and flexible solution for the propagation of uncertainties in complex models, where an explicit parametrization of the input randomness is not available or too expensive. We present several applications of our MLMC algorithm for flow, transport and diffusion in random heterogeneous materials. The absolute permeability and effective diffusivity (or formation factor) of micro-scale porous media samples are computed and the uncertainty related to the sampling procedures is studied. The algorithm is then extended to the transport problems and multiphase flows for the estimation of dispersion and relative permeability curves. The impact of water drops on random stuctured surfaces, with microfluidics applications to self-cleaning materials, is also studied and simulated. Finally the estimation of new drag correlation laws for poly-dispersed dilute and dense suspensions is presented.

  18. Internal transport control in pot plant production

    NARCIS (Netherlands)

    Annevelink, E.

    1999-01-01

    Drawing up internal transport schedules in pot plant production is a very complex task. Scheduling internal transport at the operational level and providing control on a day-to-day or even hour-to-hour basis in particular requires a new approach. A hierarchical planning approach based on

  19. Impact of porosity variation on diffusive transport: experimentation vs simulation

    International Nuclear Information System (INIS)

    Fatnassi, Ikram

    2015-01-01

    Reactions induced by the diffusion of reactants from different sources may alter rock confinement properties, and are therefore critical processes to assess short-term and long-term behaviour of rocks displaying a low permeability, such as argillites which are used as barriers in underground storage installation. In order to test transport-chemistry codes based on a continuous approach, the author of this research thesis reports the development and performance of simplest as possible experiments of sealing/dissolution diffusion, by using porous media of increasing complexity: compact sand, sintered glass, stoneware, chalk, until a material close to that envisaged within the frame of a storage like a Tournemire argillite. The principle of these experiments relies on the characterisation of the diffusive behaviour of an inert tracer within a porous medium submitted to dissolution reactions (attack of a carbonate matrix by an acid solution) and/or precipitation of mineral compounds (calcium oxalate, gypsum or barite) which results in an evolution of porosity and a modification of the diffusive transport of the studied tracer. At the end of the experiment, porous media and precipitates are characterised by SEM-EDS [fr

  20. Interaction and diffusion transport of americium in soils

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez-Guinart, Oriol; Rigol, Anna; Vidal, Miquel [Analytical Chemistry department, Faculty of Chemistry, University of Barcelona, Marti i Franques 1-11, 08028, Barcelona (Spain)

    2014-07-01

    The final disposal of High Level Radioactive Wastes (HLRW) is based on its long-term storage in underground facilities located in geological stable sites with a multi-barrier system, the so called Deep Geological Repositories (DGR), that will keep HLRW confined for >10.000 years. After this period of time, leachates rich in long-live radioisotopes might escape from DGR and start to transport towards the biosphere. There is still a lack of information concerning the interaction and transport in soils of some radionuclides present in HLRW, especially for radionuclides that present a high sorption, such as americium (Am). Having reliable information about the mobility of radionuclides in soils is crucial in order to develop risk assessment models and to take proper decisions in case of soil contamination. The aim of the present work was, by means of laboratory scale experiments, to study the interaction and, for first time, to evaluate the diffusion transport of {sup 241}Am in soils. The {sup 241}Am interaction in soils was assessed by applying sorption batch assays to 20 soil samples with contrasted edaphic properties which allowed us to quantify the solid-liquid distribution coefficient (K{sub d}) and desorption percentage. K{sub d} (Am) values ranged from 10{sup 3} to 10{sup 5} L kg{sup -1} and desorption percentages were always less than 2% which denoted a high capacity of the soil to incorporate the Am and a low reversibility of the sorption process. The influence of soil properties in {sup 241}Am interaction was studied by means of multiple linear and multivariate regressions. Although a single correlation between K{sub d} (Am) values and a soil property was not found, the main properties affecting {sup 241}Am interaction in soils were soil pH, carbonate and organic matter contents in the soil. Finally, additional batch assays at different controlled pH were done to study Am sorption as a function of the contact solution pH. A variation of the Am sorption

  1. Sap flow and sugar transport in plants

    DEFF Research Database (Denmark)

    Jensen, Kaare Hartvig; Berg-Sørensen, Kirstine; Bruus, Henrik

    2016-01-01

    Green plants are Earth’s primary solar energy collectors. They harvest the energy of the Sun by converting light energy into chemical energy stored in the bonds of sugar molecules. A multitude of carefully orchestrated transport processes are needed to move water and minerals from the soil to sites...... of photosynthesis and to distribute energy-rich sugars throughout the plant body to support metabolism and growth. The long-distance transport happens in the plants’ vascular system, where water and solutes are moved along the entire length of the plant. In this review, the current understanding of the mechanism...... and the quantitative description of these flows are discussed, connecting theory and experiments as far as possible. The article begins with an overview of low-Reynolds-number transport processes, followed by an introduction to the anatomy and physiology of vascular transport in the phloem and xylem. Next, sugar...

  2. Modelling activity transport behavior in PWR plant

    International Nuclear Information System (INIS)

    Henshaw, Jim; McGurk, John; Dickinson, Shirley; Burrows, Robert; Hinds, Kelvin; Hussey, Dennis; Deshon, Jeff; Barrios Figueras, Joan Pau; Maldonado Sanchez, Santiago; Fernandez Lillo, Enrique; Garbett, Keith

    2012-09-01

    The activation and transport of corrosion products around a PWR circuit is a major concern to PWR plant operators as these may give rise to high personnel doses. The understanding of what controls dose rates on ex-core surfaces and shutdown releases has improved over the years but still several questions remain unanswered. For example the relative importance of particle and soluble deposition in the core to activity levels in the plant is not clear. Wide plant to plant and cycle to cycle variations are noted with no apparent explanations why such variations are observed. Over the past few years this group have been developing models to simulate corrosion product transport around a PWR circuit. These models form the basis for the latest version of the BOA code and simulate the movement of Fe and Ni around the primary circuit. Part of this development is to include the activation and subsequent transport of radioactive species around the circuit and this paper describes some initial modelling work in this area. A simple model of activation, release and deposition is described and then applied to explain the plant behaviour at Sizewell B and Vandellos II. This model accounts for activation in the core, soluble and particulate activity movement around the circuit and for activity capture ex-core on both the inner and outer oxides. The model gives a reasonable comparison with plant observations and highlights what controls activity transport in these plants and importantly what factors can be ignored. (authors)

  3. Application of safeguards techniques to the Eurodif gas diffusion plant

    International Nuclear Information System (INIS)

    Coates, J.H.; Goens, J.R.

    1979-01-01

    The characteristic features of gas diffusion plants are such that safeguards procedures specifically suited for this technique can be proposed. The first of these features is the fact that appreciably altering the enrichment level of the plant product is not possible without making easily detectable changes either in the plant structure itself or in the movement of incoming and outgoing materials. Furthermore, because of the size of gas diffusion plants large stocks of uranium are present in them. Although inventory differences may be small in relative terms, they are large in abosolute terms and exceed the quantities of low-enriched uranium considered significant from the standpoint of safeguards. Lastly, the impossibility for economic reasons for taking a physical inventory of the plant after it has been emptied prevents a comparison of the physical inventory with the book inventory. It would therefore seem that the safeguarding of a gas diffusion plant should be focused on the movement of nuclear material between the plant and the outside world. The verification of inputs and outputs can be considered satisfactory from the safeguards standpoint as long as it is possible to make sure of the containment of the plant and of the surveillance for the purpose of preventing clandestine alterations of structure. The description of the Eurodif plant and the movement of materials planned there at present indicate that the application of such a safeguards technique to the plant should be acceptable to the competent authorities. For this purpose a monitoring area has been set aside in which the inspectors will be able to keep track of all movements between the outside world and the enrichment plant

  4. Liquid water transport mechanism in the gas diffusion layer

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, P.; Wu, C.W. [State Key Laboratory of Structure Analysis for Industrial Equipment, Department of Engineering Mechanics, Faculty of Vehicle Engineering and Mechanics, Dalian University of Technology, Dalian 116024 (China)

    2010-03-01

    We developed an equivalent capillary model of a microscale fiber-fence structure to study the microscale evolution and transport of liquid in a porous media and to reveal the basic principles of water transport in gas diffusion layer (GDL). Analytical solutions using the model show that a positive hydraulic pressure is needed to drive the liquid water to penetrate through the porous GDL even consisting of the hydrophilic fibers. Several possible contributions for the water configuration, such as capillary pressure, gravity, vapor condensation, wettability and microstructures of the GDL, are discussed using the lattice Boltzmann method (LBM). It is found that the distribution manners of the fibers and the spatial mixed-wettability in the GDL also play an important role in the transport of liquid water. (author)

  5. Decommissioning of the gaseous diffusion plant at BNFL Capenhurst

    International Nuclear Information System (INIS)

    Baxter, S.G.; Bradbury, P.

    1992-01-01

    The history of the on-going dismantling and disposal program for the Capenhurst Diffusion Plant is described. Reference is made to the scale of the project and to the special techniques developed, particularly in the areas of size reduction, decontamination and protection of personnel and the environment. When the project is successfully concluded by the end of 1993 over 99% of the materials of construction of the plant will have been recycled to the environment as clean material. (author)

  6. THE ISOTROPIC DIFFUSION SOURCE APPROXIMATION FOR SUPERNOVA NEUTRINO TRANSPORT

    International Nuclear Information System (INIS)

    Liebendoerfer, M.; Whitehouse, S. C.; Fischer, T.

    2009-01-01

    Astrophysical observations originate from matter that interacts with radiation or transported particles. We develop a pragmatic approximation in order to enable multidimensional simulations with basic spectral radiative transfer when the available computational resources are not sufficient to solve the complete Boltzmann transport equation. The distribution function of the transported particles is decomposed into a trapped particle component and a streaming particle component. Their separate evolution equations are coupled by a source term that converts trapped particles into streaming particles. We determine this source term by requiring the correct diffusion limit for the evolution of the trapped particle component. For a smooth transition to the free streaming regime, this 'diffusion source' is limited by the matter emissivity. The resulting streaming particle emission rates are integrated over space to obtain the streaming particle flux. Finally, a geometric estimate of the flux factor is used to convert the particle flux to the streaming particle density, which enters the evaluation of streaming particle-matter interactions. The efficiency of the scheme results from the freedom to use different approximations for each particle component. In supernovae, for example, reactions with trapped particles on fast timescales establish equilibria that reduce the number of primitive variables required to evolve the trapped particle component. On the other hand, a stationary-state approximation considerably facilitates the treatment of the streaming particle component. Different approximations may apply in applications to stellar atmospheres, star formation, or cosmological radiative transfer. We compare the isotropic diffusion source approximation with Boltzmann neutrino transport of electron flavor neutrinos in spherically symmetric supernova models and find good agreement. An extension of the scheme to the multidimensional case is also discussed.

  7. Radioactive effluents, Portsmouth Gaseous Diffusion Plant, calendar year 1982

    International Nuclear Information System (INIS)

    Acox, T.A.; Hary, L.F.; Klein, L.S.

    1983-03-01

    Radioactive discharges from the Portsmouth Gaseous Diffusion Plant are discussed and tabulated. Tables indicate both the location of the discharge and the nuclides discharged. All discharges for 1982 are well below the Radioactive Concentration Guide limits specified in DOE Order 5480.1, Chapter XI. 1 figure

  8. Portsmouth Gaseous Diffusion Plant expansion: final environmental statement. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    1977-09-01

    Volume 1 is comprised of chapters on: background and description; environmental impacts of add-on gaseous diffusion plant; unavoidable adverse environmental effects; alternatives; relationship between short-term uses and long-term productivity; relationship of program to land-use plans, policies, and controls; irreversible and irretrievable commitments of resources; cost-benefit analysis; and response to comment letters. (LK)

  9. Portsmouth Gaseous Diffusion Plant expansion: final environmental statement. Volume 1

    International Nuclear Information System (INIS)

    1977-09-01

    Volume 1 is comprised of chapters on: background and description; environmental impacts of add-on gaseous diffusion plant; unavoidable adverse environmental effects; alternatives; relationship between short-term uses and long-term productivity; relationship of program to land-use plans, policies, and controls; irreversible and irretrievable commitments of resources; cost-benefit analysis; and response to comment letters

  10. ENERGETIC PARTICLE TRANSPORT ACROSS THE MEAN MAGNETIC FIELD: BEFORE DIFFUSION

    International Nuclear Information System (INIS)

    Laitinen, T.; Dalla, S.

    2017-01-01

    Current particle transport models describe the propagation of charged particles across the mean field direction in turbulent plasmas as diffusion. However, recent studies suggest that at short timescales, such as soon after solar energetic particle (SEP) injection, particles remain on turbulently meandering field lines, which results in nondiffusive initial propagation across the mean magnetic field. In this work, we use a new technique to investigate how the particles are displaced from their original field lines, and we quantify the parameters of the transition from field-aligned particle propagation along meandering field lines to particle diffusion across the mean magnetic field. We show that the initial decoupling of the particles from the field lines is slow, and particles remain within a Larmor radius from their initial meandering field lines for tens to hundreds of Larmor periods, for 0.1–10 MeV protons in turbulence conditions typical of the solar wind at 1 au. Subsequently, particles decouple from their initial field lines and after hundreds to thousands of Larmor periods reach time-asymptotic diffusive behavior consistent with particle diffusion across the mean field caused by the meandering of the field lines. We show that the typical duration of the prediffusive phase, hours to tens of hours for 10 MeV protons in 1 au solar wind turbulence conditions, is significant for SEP propagation to 1 au and must be taken into account when modeling SEP propagation in the interplanetary space.

  11. ENERGETIC PARTICLE TRANSPORT ACROSS THE MEAN MAGNETIC FIELD: BEFORE DIFFUSION

    Energy Technology Data Exchange (ETDEWEB)

    Laitinen, T.; Dalla, S., E-mail: tlmlaitinen@uclan.ac.uk [Jeremiah Horrocks Institute, University of Central Lancashire, Preston (United Kingdom)

    2017-01-10

    Current particle transport models describe the propagation of charged particles across the mean field direction in turbulent plasmas as diffusion. However, recent studies suggest that at short timescales, such as soon after solar energetic particle (SEP) injection, particles remain on turbulently meandering field lines, which results in nondiffusive initial propagation across the mean magnetic field. In this work, we use a new technique to investigate how the particles are displaced from their original field lines, and we quantify the parameters of the transition from field-aligned particle propagation along meandering field lines to particle diffusion across the mean magnetic field. We show that the initial decoupling of the particles from the field lines is slow, and particles remain within a Larmor radius from their initial meandering field lines for tens to hundreds of Larmor periods, for 0.1–10 MeV protons in turbulence conditions typical of the solar wind at 1 au. Subsequently, particles decouple from their initial field lines and after hundreds to thousands of Larmor periods reach time-asymptotic diffusive behavior consistent with particle diffusion across the mean field caused by the meandering of the field lines. We show that the typical duration of the prediffusive phase, hours to tens of hours for 10 MeV protons in 1 au solar wind turbulence conditions, is significant for SEP propagation to 1 au and must be taken into account when modeling SEP propagation in the interplanetary space.

  12. Diffusive transport of strontium-85 in sand-bentonite mixtures

    International Nuclear Information System (INIS)

    Gillham, R.W.; Robin, M.J.L.; Dytynyshyn, D.J.

    1983-06-01

    Diffusion experiments have been used to determine the transport of 85 Sr in sand-bentonite mixtures. The diffusion experiments were performed on one natural soil (Chalk River sand) and on seven mixtures of bentonite and silica sand, containing from 0 percent to 100 percent bentonite. Two non-reactive solutes ( 36 Cl and 3 H) and one reactive solute ( 85 Sr) were used in the study. The experiments with non-reactive solutes yielded estimates of tortuosity factors. Retardation factors were obtained from experimental porosities, experimental bulk densities, and from batch distribution coefficients (Ksub(d)). These Ksub(d) values are a simple way of describing the solute/medium reaction, and are based on the assumption that the cation-exchange reaction may be described by a linear adsorption isotherm passing through the origin. The results demonstrate that, for practical purposes and for our experimental conditions, the use of the distribution coefficient provides a convenient means of calculating the effective diffusion coefficient for 85 Sr. The porosity and bulk density were also found to have a considerable influence on the effective diffusion coefficient, through the retardation factor. Mixtures containing 5-10 percent bentonite were found to be more effective in retarding 85 Sr than either sand alone, or mixtures containing more bentonite. In the soils of higher bentonite content, the effect of increased cation-exchange capacity was balanced by a decreasing ratio of bulk density to porosity

  13. Hybrid transport and diffusion modeling using electron thermal transport Monte Carlo SNB in DRACO

    Science.gov (United States)

    Chenhall, Jeffrey; Moses, Gregory

    2017-10-01

    The iSNB (implicit Schurtz Nicolai Busquet) multigroup diffusion electron thermal transport method is adapted into an Electron Thermal Transport Monte Carlo (ETTMC) transport method to better model angular and long mean free path non-local effects. Previously, the ETTMC model had been implemented in the 2D DRACO multiphysics code and found to produce consistent results with the iSNB method. Current work is focused on a hybridization of the computationally slower but higher fidelity ETTMC transport method with the computationally faster iSNB diffusion method in order to maximize computational efficiency. Furthermore, effects on the energy distribution of the heat flux divergence are studied. Work to date on the hybrid method will be presented. This work was supported by Sandia National Laboratories and the Univ. of Rochester Laboratory for Laser Energetics.

  14. Anomalous transport regimes in a stochastic advection-diffusion model

    International Nuclear Information System (INIS)

    Dranikov, I.L.; Kondratenko, P.S.; Matveev, L.V.

    2004-01-01

    A general solution to the stochastic advection-diffusion problem is obtained for a fractal medium with long-range correlated spatial fluctuations. A particular transport regime is determined by two basic parameters: the exponent 2h of power-law decay of the two-point velocity correlation function and the mean advection velocity u. The values of these parameters corresponding to anomalous diffusion are determined, and anomalous behavior of the tracer distribution is analyzed for various combinations of u and h. The tracer concentration is shown to decrease exponentially at large distances, whereas power-law decay is predicted by fractional differential equations. Equations that describe the essential characteristics of the solution are written in terms of coupled space-time fractional differential operators. The analysis relies on a diagrammatic technique and makes use of scale-invariant properties of the medium

  15. A study on the ocean circulation and thermal diffusion near a nuclear power plant

    International Nuclear Information System (INIS)

    Shu, Kyung Suk; Han, Moon Hee; Kim, Eun Han; Hwang, Won Tae

    1994-08-01

    The thermal discharge used with cooling water at nuclear power plant is released to a neighbour sea and it is influenced on marine environment. The thermal discharge released from power plant is mainly transported and diffused by ocean circulation of neighbour sea. So the evaluation for characteristics of ocean circulation around neighbour sea is firstly performed. The purpose of this research is primarily analyzed the thermal diffusion in sea around Yongkwang nuclear power plant. For this viewpoint, fundamental oceanographic data sets are collected and analyzed in Yellow sea, west sea of Korea, sea around Yongkwang. The ocean circulation and the effects of temperature increase by thermal discharge are evaluated using these data. The characteristics of tide is interpreted by the analysis of observed tidal elevation and tidal currents. The characteristics of temperature and salinity is investigated by the long-term observation of Korea Fisheries Research and Development Agency and the short-term observation around Yongkwang. (Author)

  16. Plant nutrient transporter regulation in arbuscular mycorrhizas

    DEFF Research Database (Denmark)

    Burleigh, Stephen; Bechmann, I.E.

    2002-01-01

    of nutrition. Their down-regulation in mycorrhizal roots, therefore, would be predicted as a result of symbiotic function. A variety of studies on Pi- Zn- and ammonium- or nitrate-transporter genes from two plant species indirectly support this model. For example, one study showed that the expression...... of the high-affinity Pi-transporter MtPT2 within mycorrhizal roots of Medicago truncatula was inversely correlated with the concentration of P within the shoots, which suggested that P supply from the fungus influenced this gene's expression. However, there is some evidence that these plant nutrient...

  17. Use of diffusive optical fibers for plant lighting

    Energy Technology Data Exchange (ETDEWEB)

    Kozai, T.; Kitaya, Y.; Fujiwara, K. [Chiba Univ., Matsudo (Japan); Kino, S.; Kinowaki, M. [Topy Green Ltd., Tokyo (Japan)

    1994-12-31

    Lighting is one of the most critical aspects in plant production and environmental research with plants. Much research has been repeated on the effect of light intensity, spectral distribution of light and lighting cycle, but comparatively little research done on the effect of lighting direction on the growth, development and morphology of plants. When plants are grown with lamps above, light is directed downward to the plants. Downward or overhead lighting is utilized in almost all cases. However, downward lighting does not always give the best result in terms of lighting efficiency, growth, development and morphology of plants. Kitaya et al. (1988) developed a lighting system in which two rooting beds were arranged; one above and the other under fluorescent lamps. Lettuce plants grew normally in the lower bed and suspended upside-down under the upper bed. The lettuce plants suspended upside-down were given the light in upward direction (upward lighting). No significant difference in growth, development and morphology was found between the lettuce plants grown by the downward and upward lighting. Combining upward and downward lighting, improved spacing efficiency and reduced electricity cost per plant compared with conventional, downward lighting. From the above example, when designing a lighting system for plants with lamps more lighting direction should be considered. In the present study, a sideward lighting system was developed using diffusive optical fiber belts. More higher quality tissue-cultured transplants could be produced in reduced space with sideward lighting system than with a downward lighting system. An application of the sideward lighting system using diffusive optical fiber belts is described and advantages and disadvantages are discussed.

  18. Portsmouth Gaseous Diffusion Plant environmental report for 1992

    International Nuclear Information System (INIS)

    Horak, C.M.

    1993-09-01

    This calendar year (CY) 1992 annual report on environmental surveillance of the US Department of Energy's (DOE's) Portsmouth Gaseous Diffusion Plant (PORTS) and its environs consists of two parts: narrative, summaries, and conclusions (Part 1) and data presentation (Part 2). The objectives of this report are to: (1) report 1992 monitoring data for the installation and its environs that may have been affected by operations on the plant site, (2) provide reasonably detailed information about the plant site and plant operations, (3) provide detailed information on input and assumptions used in all calculations, (4) provide trend analyses (where appropriate) to indicate increases and decreases in environmental impact, and (5) provide general information on plant quality assurance

  19. Portsmouth Gaseous Diffusion Plant Environmental report for 1990

    Energy Technology Data Exchange (ETDEWEB)

    Counce-Brown, D. (ed.)

    1991-09-01

    This calendar year 1990 annual report on environmental surveillance of the US Department of Energy's (DOE's) Portsmouth Gaseous Diffusion Plant (PORTS) and its environs consists of two parts: the summary, discussion, and conclusions (Part 1) and the data presentation (Part 2). The objectives of this report are as follows: report 1990 monitoring data for the installation and its environs that may have been affected by operations on the plant site, provide reasonably detailed information about the plant site and plant operations, provide detailed information on input and assumptions used in all calculations, provide trend analyses (when appropriate) to indicate increases and decreases in environmental impact, and provide general information on plant quality assurance.

  20. On Perturbation Components Correspondence between Diffusion and Transport

    Energy Technology Data Exchange (ETDEWEB)

    G. Palmiotti

    2012-11-01

    We have established a correspondence between perturbation components in diffusion and transport theory. In particular we have established the correspondence between the leakage perturbation component of the diffusion theory to that of the group self scattering in transport theory. This has been confirmed by practical applications on sodium void reactivity calculations of fast reactors. Why this is important for current investigations? Recently, there has been a renewed interest in designing fast reactors where the sodium void reactivity coefficient is minimized. In particular the ASTRID8,9 reactor concept has been optimized with this goal in mind. The correspondence on the leakage term that has been established here has a twofold implication for the design of this kind of reactors. First, this type of reactor has a radial reflector; therefore, as shown before, the sodium void reactivity coefficient calculation requires the use of transport theory. The minimization of the sodium reactivity coefficient is normally done by increasing the leakage component that has a negative sign. The correspondence established in this paper allows to directly look at this component in transport theory. The second implication is related to the uncertainty evaluation on sodium void reactivity. As it has shown before, the total sodium void reactivity effect is the result of a large compensation (opposite sign) between the scattering (called often spectral) component and the leakage one. Consequently, one has to evaluate separately the uncertainty on each separate component and then combine them statistically. If one wants to compute the cross section sensitivity coefficients of the two different components, the formulation established in this paper allows to achieve this goal by playing on the contribution to the sodium void reactivity coming from the group self scattering of the sodium cross section.

  1. Analysis of diffusive mass transport in a cracked buffer

    International Nuclear Information System (INIS)

    Garisto, N.C.; Garisto, F.

    1989-11-01

    In the disposal vault design for the Canadian Nuclear Fuel Waste Management Program, cylindrical containers of used nuclear fuel would be placed in vertical boreholes in rock and surrounded with a bentonite-based buffer material. The buffer is expected to absorb and/or retard radionuclides leaching from the fuel after the containers fail. There is some evidence, however, that the buffer may be susceptible to cracking. In this report we investigate numerically the consequences of cracking on uranium diffusion through the buffer. The derivation of the mass-transport equations and the numerical solution method are presented for the solubility-limited diffusion of uranium in a cracked buffer system for both swept-away and semi-impermeable boundary conditions at the rock-buffer interface. The results indicate that for swept-away boundary conditions the total uranium flux through the cracked buffer system is, as expected, greater than through the uncracked buffer. The effect of the cracks is strongly dependent on the ratio D/D eff , where D and D eff are the pore-water and the effective buffer diffusion coefficient, respectively. However, although a decrease in D eff enhances the effect of cracks on the total cumulative flux (relative to the uncracked buffer), it also decreases the total cumulative flux through the cracked buffer system (relative to a cracked buffer with a larger D eff value). Finally, for semi-impermeable boundary conditions, the effect of cracks on the total radionuclide flux is relatively small

  2. Plant uptake and transport of 241Am

    International Nuclear Information System (INIS)

    Wallace, A.; Romney, E.M.; Mueller, R.T. Sr.; soufi, S.M.

    1981-01-01

    We conducted several experiments with 241 Am to obtain a more complete understanding of how this transuranium element is absorbed and transported in plants. In a plant species (Tamarix pentandra Pall.) that has salt glands in the leaves excreting NaCl and other ions, 241 Am was not pumped through these glands. Cyanide, which forms complexes with any metals, when applied to a calcareous soil, greatly increased the transport of 241 Am into stems and leaves of bush bean plants. Radioactive cyanide ( 14 C) was also transported to leaves and stems. When radish was grown in both calcareous and noncalcareous soils, 241 Am appeared to be fixed on the peel so firmly that it was resistant to removal by HNO 3 washing. The chelating agent DTPA induced increased transport of 241 Am to leaves and into the fleshy roots of the radish. Data for Golden Cross hybrid corn grown in solution culture showed at least seven times as much 241 Am transport to the xylem exudatields are corrected by recovery of added tracers

  3. THE LOS ALAMOS NATIONAL LABORATORY ATMOSPHERIC TRANSPORT AND DIFFUSION MODELS

    Energy Technology Data Exchange (ETDEWEB)

    M. WILLIAMS [and others

    1999-08-01

    The LANL atmospheric transport and diffusion models are composed of two state-of-the-art computer codes. The first is an atmospheric wind model called HOThlAC, Higher Order Turbulence Model for Atmospheric circulations. HOTMAC generates wind and turbulence fields by solving a set of atmospheric dynamic equations. The second is an atmospheric diffusion model called RAPTAD, Random Particle Transport And Diffusion. RAPTAD uses the wind and turbulence output from HOTMAC to compute particle trajectories and concentration at any location downwind from a source. Both of these models, originally developed as research codes on supercomputers, have been modified to run on microcomputers. Because the capability of microcomputers is advancing so rapidly, the expectation is that they will eventually become as good as today's supercomputers. Now both models are run on desktop or deskside computers, such as an IBM PC/AT with an Opus Pm 350-32 bit coprocessor board and a SUN workstation. Codes have also been modified so that high level graphics, NCAR Graphics, of the output from both models are displayed on the desktop computer monitors and plotted on a laser printer. Two programs, HOTPLT and RAPLOT, produce wind vector plots of the output from HOTMAC and particle trajectory plots of the output from RAPTAD, respectively. A third CONPLT provides concentration contour plots. Section II describes step-by-step operational procedures, specifically for a SUN-4 desk side computer, on how to run main programs HOTMAC and RAPTAD, and graphics programs to display the results. Governing equations, boundary conditions and initial values of HOTMAC and RAPTAD are discussed in Section III. Finite-difference representations of the governing equations, numerical solution procedures, and a grid system are given in Section IV.

  4. Paducah Gaseous Diffusion Plant Environmental report for 1990

    Energy Technology Data Exchange (ETDEWEB)

    Counce-Brown, D. (ed.)

    1991-09-01

    This two-part report, Paducah Gaseous Diffusion Plant Site Environmental Report for 1990, is published annually. It reflects the results of a comprehensive, year-round program to monitor the impact of operations at Paducah Gaseous Diffusion Plant (PGDP) on the area's groundwater and surface waters, soil, air quality, vegetation, and wildlife. In addition, an assessment of the effect of PGDP effluents on the resident human population is made. PGDP's overall goal for environmental management is to protect the environment and PGDP's neighbors and to maintain full compliance with all current regulations. The current environmental strategy is to identify any deficiencies and to develop a system to resolve them. The long-range goal of environmental management is to minimize the source of pollutants, to reduce the formation of waste, and to minimize hazardous waste by substitution of materials.

  5. Paducah Gaseous Diffusion Plant environmental report for 1992

    Energy Technology Data Exchange (ETDEWEB)

    Horak, C.M. [ed.] [Martin Marietta Energy Systems, Inc., Oak Ridge, TN (United States)

    1993-09-01

    This two-part report, Paducah Gaseous Diffusion Plant Environmental Report for 1992, is published annually. It reflects the results of an environmental monitoring program designed to quantify potential increases in the concentration of contaminants and potential doses to the resident human population. The Paducah Gaseous Diffusion Plant (PGDP) overall goal for environmental management is to protect the environment and PGDP`s neighbors and to maintain full compliance with all current regulations. The current environmental strategy is to identify any deficiencies and to develop a system to resolve them. The long-range goal of environmental management is to minimize the source of pollutants, reduce the generation of waste, and minimize hazardous waste by substitution of materials.

  6. Paducah Gaseous Diffusion Plant environmental report for 1992

    International Nuclear Information System (INIS)

    Horak, C.M.

    1993-09-01

    This two-part report, Paducah Gaseous Diffusion Plant Environmental Report for 1992, is published annually. It reflects the results of an environmental monitoring program designed to quantify potential increases in the concentration of contaminants and potential doses to the resident human population. The Paducah Gaseous Diffusion Plant (PGDP) overall goal for environmental management is to protect the environment and PGDP's neighbors and to maintain full compliance with all current regulations. The current environmental strategy is to identify any deficiencies and to develop a system to resolve them. The long-range goal of environmental management is to minimize the source of pollutants, reduce the generation of waste, and minimize hazardous waste by substitution of materials

  7. Portsmouth Gaseous Diffusion Plant annual site environmental report for 1993

    Energy Technology Data Exchange (ETDEWEB)

    Horak, C.M. [ed.

    1994-11-01

    This calendar year (CY) 1993 annual report on environmental monitoring of the US Department of Energy`s (DOE`s) Portsmouth Gaseous Diffusion Plant (Portsmouth) and its environs consists of three separate documents: a summary pamphlet for the general public; a more detail discussion and of compliance status, data, and environmental impacts (this document); and a volume of detailed data that is available on request. The objectives of this report are to report compliance status during 1993; provide information about the plant site and plant operations; report 1993 monitoring data for the installation and its environs that may have been affected by operations on the plant site; document information on input and assumptions used in calculations; provide trend analyses (where appropriate) to indicate increases and decreases in environmental impact, and provide general information on quality assurance for the environmental monitoring program.

  8. Portsmouth Gaseous Diffusion Plant annual site environmental report for 1993

    International Nuclear Information System (INIS)

    Horak, C.M.

    1994-11-01

    This calendar year (CY) 1993 annual report on environmental monitoring of the US Department of Energy's (DOE's) Portsmouth Gaseous Diffusion Plant (Portsmouth) and its environs consists of three separate documents: a summary pamphlet for the general public; a more detail discussion and of compliance status, data, and environmental impacts (this document); and a volume of detailed data that is available on request. The objectives of this report are to report compliance status during 1993; provide information about the plant site and plant operations; report 1993 monitoring data for the installation and its environs that may have been affected by operations on the plant site; document information on input and assumptions used in calculations; provide trend analyses (where appropriate) to indicate increases and decreases in environmental impact, and provide general information on quality assurance for the environmental monitoring program

  9. Reliability study: maintenance facilities Portsmouth Gaseous Diffusion Plant

    International Nuclear Information System (INIS)

    Post, B.E.; Sikorski, P.A.; Fankell, R.; Johnson, O.; Ferryman, D.S.; Miller, R.L.; Gearhart, E.C.; Rafferty, M.J.

    1981-08-01

    A reliability study of the maintenance facilities at the Portsmouth Gaseous Diffusion Plant has been completed. The reliability study team analyzed test data and made visual inspections of each component contributing to the overall operation of the facilities. The impacts of facilities and equipment failures were given consideration with regard to personnel safety, protection of government property, health physics, and environmental control. This study revealed that the maintenance facilities are generally in good condition. After evaluating the physical condition and technology status of the major components, the study team made several basic recommendations. Implementation of the recommendations proposed in this report will help assure reliable maintenance of the plant through the year 2000

  10. Radionuclides: Accumulation and Transport in Plants.

    Science.gov (United States)

    Gupta, D K; Chatterjee, S; Datta, S; Voronina, A V; Walther, C

    Application of radioactive elements or radionuclides for anthropogenic use is a widespread phenomenon nowadays. Radionuclides undergo radioactive decays releasing ionizing radiation like gamma ray(s) and/or alpha or beta particles that can displace electrons in the living matter (like in DNA) and disturb its function. Radionuclides are highly hazardous pollutants of considerable impact on the environment, food chain and human health. Cleaning up of the contaminated environment through plants is a promising technology where the rhizosphere may play an important role. Plants belonging to the families of Brassicaceae, Papilionaceae, Caryophyllaceae, Poaceae, and Asteraceae are most important in this respect and offer the largest potential for heavy metal phytoremediation. Plants like Lactuca sativa L., Silybum marianum Gaertn., Centaurea cyanus L., Carthamus tinctorius L., Helianthus annuus and H. tuberosus are also important plants for heavy metal phytoremediation. However, transfer factors (TF) of radionuclide from soil/water to plant ([Radionuclide]plant/[Radionuclide]soil) vary widely in different plants. Rhizosphere, rhizobacteria and varied metal transporters like NRAMP, ZIP families CDF, ATPases (HMAs) family like P1B-ATPases, are involved in the radio-phytoremediation processes. This review will discuss recent advancements and potential application of plants for radionuclide removal from the environment.

  11. Portsmouth Gaseous Diffusion Plant expansion: final environmental statement. Volume 2. Appendices

    International Nuclear Information System (INIS)

    1977-09-01

    Volume 2 is comprised of appendices: Portsmouth Gaseous Diffusion Plant Existing Facilities; Ecology; Civic Involvement; Social Analysis; Population Projections; Toxicity of Air Pollutants to Biota at Portsmouth Gaseous Diffusion Plant; and Assessment of Noise Effects of an Add-On to the Portsmouth Gaseous Diffusion Plant

  12. Portsmouth Gaseous Diffusion Plant expansion: final environmental statement. Volume 2. Appendices. [Appendices only

    Energy Technology Data Exchange (ETDEWEB)

    Liverman, James L.

    1977-09-01

    Volume 2 is comprised of appendices: Portsmouth Gaseous Diffusion Plant Existing Facilities; Ecology; Civic Involvement; Social Analysis; Population Projections; Toxicity of Air Pollutants to Biota at Portsmouth Gaseous Diffusion Plant; and Assessment of Noise Effects of an Add-On to the Portsmouth Gaseous Diffusion Plant. (LK)

  13. Mitochondrial Electron Transport and Plant Stress

    DEFF Research Database (Denmark)

    Rasmusson, Allan G; Møller, Ian Max

    2011-01-01

    Due to the sessile nature of plants, it is crucial for their survival and growth that they can handle a constantly changing, and thus stressful, ambient environment by modifying their structure and metabolism. The central metabolism of plants is characterized by many alternative options...... for metabolic pathways, which allow a wide range of adjustments of metabolic processes in response to environmental variations. Many of the metabolic pathways in plants involve the processing of redox compounds and the use of adenylates. They converge at the mitochondrial electron transport chain (ETC) where...... redox compounds from carbon degradation are used for powering ATP synthesis. The standard ETC contains three sites of energy conservation in complexes I, III, and IV, which are in common with most other eukaryotes. However, the complexity of the plant metabolic system is mirrored in the ETC. In addition...

  14. Sediment transport via needle ice: a new method for diffusive transport on laboratory-scale hillslopes

    Science.gov (United States)

    Sweeney, K. E.; Roering, J. J.; Rempel, A. W.

    2012-12-01

    Convex hilltops formed by diffusive sediment transport are a fundamental feature of soil-mantled landscapes worldwide. Additionally, the competition and interaction between hillslopes and valleys control basic topographic metrics, such as relief, drainage density, and breaks in slope-area scaling. Despite recent progress in erosive landscape experiments, no published work has explored the competition of hillslope diffusion and channel advection experimentally. Here, we present preliminary findings on the plausibility of needle ice driven frost creep as a mechanism for laboratory hillslope transport of wet sediment. In nature, needle ice is a diurnal form of ice segregation, whereby liquid water held in sediment pore space is driven upward toward a near-surface freezing front by a temperature-controlled liquid pressure gradient. As needles grow perpendicular to the surface, sediment is incorporated in the growing needle ice by temperature perturbations and associated downward shifts in the freezing front. Sediment then moves downslope due to melting or sublimation of the ice needles. We constructed a slope of saturated sediment in a freezer to constrain the temperature, grain size, and soil moisture limits on laboratory needle ice growth and sediment transport. Surficial sediment transport is measured during experimentation by tracking the movement of colored grains. Additionally, at the end of each run we measure depth-dependent sediment transport by taking slices of the experimental slope and observing the displacement of buried columns of colored grains. In agreement with past work, we find that with temperatures just below freezing, soil moisture above 35%, and silt-sized sediment, the moisture migration induced by freezing releases enough latent heat to maintain the location of the freezing front and encourage needle ice growth. Our experiments demonstrate that the amount of sediment incorporated during needle growth, i.e., the transport efficiency, can be

  15. Probabilistic transport models for plasma transport in the presence of critical thresholds: Beyond the diffusive paradigma)

    Science.gov (United States)

    Sánchez, R.; van Milligen, B. Ph.; Carreras, B. A.

    2005-05-01

    It is argued that the modeling of plasma transport in tokamaks may benefit greatly from extending the usual local paradigm to accommodate scale-free transport mechanisms. This can be done by combining Lévy distributions and a nonlinear threshold condition within the continuous time random walk concept. The advantages of this nonlocal, nonlinear extension are illustrated by constructing a simple particle density transport model that, as a result of these ideas, spontaneously exhibits much of nondiffusive phenomenology routinely observed in tokamaks. The fluid limit of the system shows that the kind of equations that are appropriate to capture these dynamics are based on fractional differential operators. In them, effective diffusivities and pinch velocities are found that are dynamically set by the system in response to the specific characteristics of the fueling source and external perturbations. This fact suggests some dramatic consequences for the extrapolation of these transport properties to larger size systems.

  16. Probabilistic transport models for plasma transport in the presence of critical thresholds: Beyond the diffusive paradigm

    International Nuclear Information System (INIS)

    Sanchez, R.; Milligen, B.Ph. van; Carreras, B.A.

    2005-01-01

    It is argued that the modeling of plasma transport in tokamaks may benefit greatly from extending the usual local paradigm to accommodate scale-free transport mechanisms. This can be done by combining Levy distributions and a nonlinear threshold condition within the continuous time random walk concept. The advantages of this nonlocal, nonlinear extension are illustrated by constructing a simple particle density transport model that, as a result of these ideas, spontaneously exhibits much of nondiffusive phenomenology routinely observed in tokamaks. The fluid limit of the system shows that the kind of equations that are appropriate to capture these dynamics are based on fractional differential operators. In them, effective diffusivities and pinch velocities are found that are dynamically set by the system in response to the specific characteristics of the fueling source and external perturbations. This fact suggests some dramatic consequences for the extrapolation of these transport properties to larger size systems

  17. Mixed-hybrid finite element method for the transport equation and diffusion approximation of transport problems

    International Nuclear Information System (INIS)

    Cartier, J.

    2006-04-01

    This thesis focuses on mathematical analysis, numerical resolution and modelling of the transport equations. First of all, we deal with numerical approximation of the solution of the transport equations by using a mixed-hybrid scheme. We derive and study a mixed formulation of the transport equation, then we analyse the related variational problem and present the discretization and the main properties of the scheme. We particularly pay attention to the behavior of the scheme and we show its efficiency in the diffusion limit (when the mean free path is small in comparison with the characteristic length of the physical domain). We present academical benchmarks in order to compare our scheme with other methods in many physical configurations and validate our method on analytical test cases. Unstructured and very distorted meshes are used to validate our scheme. The second part of this thesis deals with two transport problems. The first one is devoted to the study of diffusion due to boundary conditions in a transport problem between two plane plates. The second one consists in modelling and simulating radiative transfer phenomenon in case of the industrial context of inertial confinement fusion. (author)

  18. Mitochondrial Iron Transport and Homeostasis in Plants

    Directory of Open Access Journals (Sweden)

    Anshika eJain

    2013-09-01

    Full Text Available Iron (Fe is an essential nutrient for plants and although the mechanisms controlling iron uptake from the soil are relatively well understood, comparatively little is known about subcellular trafficking of iron in plant cells. Mitochondria represent a significant iron sink within cells, as iron is required for the proper functioning of respiratory chain protein complexes. Mitochondria are a site of Fe-S cluster synthesis, and possibly heme synthesis as well. Here we review recent insights into the molecular mechanisms controlling mitochondrial iron transport and homeostasis. We focus on the recent identification of a mitochondrial iron uptake transporter in rice and a possible role for metalloreductases in iron uptake by mitochondria. In addition, we highlight recent advances in mitochondrial iron homeostasis with an emphasis on the roles of frataxin and ferritin in iron trafficking and storage within mitochondria.

  19. Radon transport from uranium mill tailings via plant transpiration. Final report

    International Nuclear Information System (INIS)

    Lewis, B.A.G.

    1985-01-01

    Radon exhalation by vegetation planted on bare or soil-covered uranium mill wastes was studied based on an assumption that radon transport from soil to atmosphere via plants takes place in the transpiration stream. Results show that radon exhalation by plants is inversely related to water transpired, primarily a dilution effect. Radon released appeared directly related to leaf area, suggesting that radon is carried into the plant by mass flow in water; however, once within the plant, radon very likely diffuses through the entire leaf cuticle, while water vapor diffuses primarily through open stomates. Application of a computerized model for water transpiration to radon exhalation is not immediately useful until the role of water in radon transport is defined throughout the continuum from rooting medium to the atmosphere. Until then, a simple calculation based on leaf area index and Ra-226 concentration in the rooting medium can provide an estimate of radon release from revegetated wastes containing radium

  20. Diffusive charge transport in graphene on SiO 2

    Science.gov (United States)

    Chen, J.-H.; Jang, C.; Ishigami, M.; Xiao, S.; Cullen, W. G.; Williams, E. D.; Fuhrer, M. S.

    2009-07-01

    We review our recent work on the physical mechanisms limiting the mobility of graphene on SiO 2. We have used intentional addition of charged scattering impurities and systematic variation of the dielectric environment to differentiate the effects of charged impurities and short-range scatterers. The results show that charged impurities indeed lead to a conductivity linear in density ( σ(n)∝n) in graphene, with a scattering magnitude that agrees quantitatively with theoretical estimates; increased dielectric screening reduces the scattering from charged impurities, but increases the scattering from short-range scatterers. We evaluate the effects of the corrugations (ripples) of graphene on SiO 2 on transport by measuring the height-height correlation function. The results show that the corrugations cannot mimic long-range (charged impurity) scattering effects, and have too small an amplitude-to-wavelength ratio to significantly affect the observed mobility via short-range scattering. Temperature-dependent measurements show that longitudinal acoustic phonons in graphene produce a resistivity that is linear in temperature and independent of carrier density; at higher temperatures, polar optical phonons of the SiO 2 substrate give rise to an activated, carrier density-dependent resistivity. Together the results paint a complete picture of charge carrier transport in graphene on SiO 2 in the diffusive regime.

  1. Intramyocardial oxygen transport by quantitative diffuse reflectance spectroscopy in calves

    Science.gov (United States)

    Lindbergh, Tobias; Larsson, Marcus; Szabó, Zoltán; Casimir-Ahn, Henrik; Strömberg, Tomas

    2010-03-01

    Intramyocardial oxygen transport was assessed during open-chest surgery in calves by diffuse reflectance spectroscopy using a small intramuscular fiber-optic probe. The sum of hemo- and myoglobin tissue fraction and oxygen saturation, the tissue fraction and oxidation of cytochrome aa3, and the tissue fraction of methemoglobin were estimated using a calibrated empirical light transport model. Increasing the oxygen content in the inhaled gas, 21%-50%-100%, in five calves (group A) gave an increasing oxygen saturation of 19+/-4%, 24+/-5%, and 28+/-8% (panimals increased with LVAD pump speed (p<0.001, ANOVA) and with oxygen content in inhaled gas (p<0.001, ANOVA). The cytochrome aa3 oxidation level was above 96% in both group A and group B calves, including the two cases involving cardiac arrest. In conclusion, the estimated tissue fractions and oxygenation/oxidation levels of the myocardial chromophores during respiratory and hemodynamic provocations were in agreement with previously presented results, demonstrating the potential of the method.

  2. Study of transport processes in soils and plants by microautoradiographic and radioabsorption methods

    International Nuclear Information System (INIS)

    Varro, T.; Gelencser, Judit; Somogyi, G.

    1987-01-01

    The concentration profiles of lead and boron in carrot root and potato tuber were determined at various diffusion times by microradiographic method. The transport process of nutrients, leaf-manures and plant-protecting agents in plants was investigated by radioabsorption method. The influence of the pH of soils and complex-forming agents on the effective diffusion coefficients of nutritives was studied by radioabsorption technique. In soils, the effective diffusion coefficient of the nutrients was found to change in the region of 10 -16 -10 -10 m 2 s -1 . The data of the measurements give valuable information about the transport processes in plants and soils. (author) 9 refs., 4 figs

  3. Buildup of 236U in the gaseous diffusion plant product

    International Nuclear Information System (INIS)

    Ford, J.S.

    1975-01-01

    A generalized projection of the average annual 236 U concentration that can be expected in future enriched uranium product from the US-ERDA gaseous diffusion plants when reprocessed fuels become available for cascade feeding is given. It is concluded that the buildup of 236 U is not an ever-increasing function, but approaches a limiting value. Projected concentrations result in only slight separative work losses and present no operational problem to ERDA in supplying light water reactor requirements. The use of recycle uranium from power reactor spent fuels will result in significant savings in natural uranium feed

  4. Portsmouth Gaseous Diffusion Plant environmental report for 1989

    Energy Technology Data Exchange (ETDEWEB)

    Turner, J.W. (ed.) (Martin Marietta Energy Systems, Inc., Oak Ridge, TN (USA))

    1990-10-01

    This calendar year 1989 annual report on environmental surveillance of the US Department of Energy's (DOE) Portsmouth Gaseous Diffusion Plant (PORTS) and its environs consists of two parts: the Summary, Discussion, and Conclusions (Part 1) and the Data Presentation (Part 2). The objectives of this report are the following: report 1989 monitoring data for the installation and its environs that may have been affected by operations on the plant site, provide reasonably detailed information about the plant site and plant operations, provide detailed information on input and assumptions used in all calculations, provide trend analyses (where appropriate) to indicate increases and decreases in environmental impact, and provide general information on plant quality assurance. Routine monitoring and sampling for radiation, radioactive materials, and chemical substances on and off the DOE site are used to document compliance with appropriate standards, to identify trends, to provide information for the public, and to contribute to general environmental knowledge. The surveillance program assists in fulfilling the DOE policy of protecting the public, employees, and environment from harm that could be caused by its activities and reducing negative environmental impacts to the greatest degree practicable. Environmental-monitoring information complements data on specific releases, trends, and summaries. 26 refs.

  5. Multimodel analysis of anisotropic diffusive tracer-gas transport in a deep arid unsaturated zone

    Science.gov (United States)

    Green, Christopher T.; Walvoord, Michelle Ann; Andraski, Brian J.; Striegl, Robert G.; Stonestrom, David A.

    2015-01-01

    Gas transport in the unsaturated zone affects contaminant flux and remediation, interpretation of groundwater travel times from atmospheric tracers, and mass budgets of environmentally important gases. Although unsaturated zone transport of gases is commonly treated as dominated by diffusion, the characteristics of transport in deep layered sediments remain uncertain. In this study, we use a multimodel approach to analyze results of a gas-tracer (SF6) test to clarify characteristics of gas transport in deep unsaturated alluvium. Thirty-five separate models with distinct diffusivity structures were calibrated to the tracer-test data and were compared on the basis of Akaike Information Criteria estimates of posterior model probability. Models included analytical and numerical solutions. Analytical models provided estimates of bulk-scale apparent diffusivities at the scale of tens of meters. Numerical models provided information on local-scale diffusivities and feasible lithological features producing the observed tracer breakthrough curves. The combined approaches indicate significant anisotropy of bulk-scale diffusivity, likely associated with high-diffusivity layers. Both approaches indicated that diffusivities in some intervals were greater than expected from standard models relating porosity to diffusivity. High apparent diffusivities and anisotropic diffusivity structures were consistent with previous observations at the study site of rapid lateral transport and limited vertical spreading of gas-phase contaminants. Additional processes such as advective oscillations may be involved. These results indicate that gases in deep, layered unsaturated zone sediments can spread laterally more quickly, and produce higher peak concentrations, than predicted by homogeneous, isotropic diffusion models.

  6. Comparison of diffusion and transport theory analysis with experimental results in fast breeder test reactor

    International Nuclear Information System (INIS)

    Sathyabama, N.; Mohanakrishnan, P.; Lee, S.M.

    1994-01-01

    A systematic analysis has been performed by 3 dimensional diffusion and transport methods to calculate the measured control rod worths and subassembly wise power distribution in fast breeder test reactor. Geometry corrections (rectangular to hexagonal and diffusion to transport corrections are estimated for multiplication factors and control rod worths. Calculated control rod worths by diffusion and transport theory are nearly the same and 10% above measured values. Power distribution in the core periphery is over predicted (15%) by diffusion theory. But, this over prediction reduces to 8% by use of the S N method. (authors). 9 refs., 4 tabs., 3 fig

  7. Control of technetium at the Portsmouth Gaseous Diffusion Plant

    International Nuclear Information System (INIS)

    Saraceno, A.J.

    1981-01-01

    Technetium-99 entered the gaseous diffusion complex as a volatile impurity in recycled uranium that was fed to the Paducah Gaseous Diffusion Plant. Subsequently, it entered the Oak Ridge and Portsmouth cascades as an impurity in Paducah product feed. Most of the technetium was adsorbed on cascade equipment in increasingly high concentrations as it moved up the cascade. Since the low energy beta radiation produced by technetium cannot penetrate cascade equipment, it presents no significant hazard to workers as long as it remains inside of equipment. However, when equipment that contains high concentrations of technetium is opened for maintenance or change-out, precautions are taken to ensure worker safety. Traps containing activated alumina are used at the plant vent streams to limit radioactive emissions as far as possible. Annual vent stream emissions have been well below DOE limits. To allow continued compliance, other potential trapping agents have been tested. Several that limit emissions more effectively than activated alumina have been found. Other traps containing magnesium fluoride are used in the upper cascade to reduce the technetium concentration. Waste solutions from decontamination can also contain technetium. These solutions must either be stored for controlled discharge or treated to remove the technetium. To allow the latter, an ion exchange facility is being installed for operation by the end of FY-1982. Liquid discharges at Portsmouth have usually been less than 5% of the DOE imposed limits

  8. Universality of phloem transport in seed plants

    DEFF Research Database (Denmark)

    Jensen, Kåre Hartvig; Liesche, Johannes; Bohr, Tomas

    2012-01-01

    predictions. The compiled data allowed calculating stem sieve element conductivity and predicting phloem sap flow velocity. The central finding of this work is that all vascular plants seem to have evolved efficient osmotic pumping units, despite their huge disparity in size and morphology. This contribution......Since Münch in the 1920s proposed that sugar transport in the phloem vascular system is driven by osmotic pressure gradients, his hypothesis has been strongly supported by evidence from herbaceous angiosperms. Experimental constraints made it difficult to test this proposal in large trees, where...

  9. Parallel computing for homogeneous diffusion and transport equations in neutronics

    International Nuclear Information System (INIS)

    Pinchedez, K.

    1999-06-01

    Parallel computing meets the ever-increasing requirements for neutronic computer code speed and accuracy. In this work, two different approaches have been considered. We first parallelized the sequential algorithm used by the neutronics code CRONOS developed at the French Atomic Energy Commission. The algorithm computes the dominant eigenvalue associated with PN simplified transport equations by a mixed finite element method. Several parallel algorithms have been developed on distributed memory machines. The performances of the parallel algorithms have been studied experimentally by implementation on a T3D Cray and theoretically by complexity models. A comparison of various parallel algorithms has confirmed the chosen implementations. We next applied a domain sub-division technique to the two-group diffusion Eigen problem. In the modal synthesis-based method, the global spectrum is determined from the partial spectra associated with sub-domains. Then the Eigen problem is expanded on a family composed, on the one hand, from eigenfunctions associated with the sub-domains and, on the other hand, from functions corresponding to the contribution from the interface between the sub-domains. For a 2-D homogeneous core, this modal method has been validated and its accuracy has been measured. (author)

  10. Cooperative learning of neutron diffusion and transport theories

    International Nuclear Information System (INIS)

    Robinson, Michael A.

    1999-01-01

    A cooperative group instructional strategy is being used to teach a unit on neutron transport and diffusion theory in a first-year-graduate level, Reactor Theory course that was formerly presented in the traditional lecture/discussion style. Students are divided into groups of two or three for the duration of the unit. Class meetings are divided into traditional lecture/discussion segments punctuated by cooperative group exercises. The group exercises were designed to require the students to elaborate, summarize, or practice the material presented in the lecture/discussion segments. Both positive interdependence and individual accountability are fostered by adjusting individual grades on the unit exam by a factor dependent upon group achievement. Group collaboration was also encouraged on homework assignments by assigning each group a single grade on each assignment. The results of the unit exam have been above average in the two classes in which the cooperative group method was employed. In particular, the problem solving ability of the students has shown particular improvement. Further,the students felt that the cooperative group format was both more educationally effective and more enjoyable than the lecture/discussion format

  11. Polar transport in plants mediated by membrane transporters: focus on mechanisms of polar auxin transport.

    Science.gov (United States)

    Naramoto, Satoshi

    2017-12-01

    Directional cell-to-cell transport of functional molecules, called polar transport, enables plants to sense and respond to developmental and environmental signals. Transporters that localize to plasma membranes (PMs) in a polar manner are key components of these systems. PIN-FORMED (PIN) auxin efflux carriers, which are the most studied polar-localized PM proteins, are implicated in the polar transport of auxin that in turn regulates plant development and tropic growth. In this review, the regulatory mechanisms underlying polar localization of PINs, control of auxin efflux activity, and PIN abundance at PMs are considered. Up to date information on polar-localized nutrient transporters that regulate directional nutrient movement from soil into the root vasculature is also discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. IAEA verification experiment at the Portsmouth Gaseous Diffusion Plant

    International Nuclear Information System (INIS)

    Gordon, D.M.; Subudhi, M.; Calvert, O.L.; Bonner, T.N.; Cherry, R.C.; Whiting, N.E.

    1998-01-01

    In April 1996, the United States (US) added the Portsmouth Gaseous Diffusion Plant to the list of facilities eligible for the application of International Atomic Energy Agency (IAEA) safeguards. At that time, the US proposed that the IAEA carry out a Verification Experiment at the plant with respect to the downblending of about 13 metric tons of highly enriched uranium (HEU) in the form of UF 6 . This material is part of the 226 metric tons of fissile material that President Clinton has declared to be excess to US national-security needs and which will be permanently withdrawn from the US nuclear stockpile. In September 1997, the IAEA agreed to carry out this experiment, and during the first three weeks of December 1997, the IAEA verified the design information concerning the downblending process. The plant has been subject to short-notice random inspections since December 17, 1997. This paper provides an overview of the Verification Experiment, the monitoring technologies used in the verification approach, and some of the experience gained to date

  13. Plant ABC transporters enable many unique aspects of a terrestrial plant's lifestyle

    DEFF Research Database (Denmark)

    Hwang, Jae-Ung; Song, Won-Yong; Hong, Daewoong

    2016-01-01

    Terrestrial plants have two to four times more ATP-binding cassette (ABC) transporter genes than other organisms, including their ancestral microalgae. Recent studies found that plants harboring mutations in these transporters exhibit dramatic phenotypes, many of which are related to developmental...... to propose that diverse ABC transporters enabled many unique and essential aspects of a terrestrial plant's lifestyle, by transporting various compounds across specific membranes of the plant....

  14. Measurement of the Portsmouth Gaseous Diffusion Plant criticality accident alarm

    International Nuclear Information System (INIS)

    Tayloe, R.W. Jr.; McGinnis, B.

    1990-01-01

    Measurements of the Portsmouth Gaseous Diffusion Plant's nuclear criticality accident radiation alarm signal response time, sound wave frequency, and sound volume levels were made to demonstrate compliance with ANSI/ANS-8.3-1986. A steady-state alarm signal is produced within one-half second of obtaining a two-out-of-three detector trip. The fundamental alarm sound wave frequency is 440 hertz. The sound volume levels are greater than 10 decibels above background and ranged from 100 to 125 A-weighted decibels. The requirements of the standard were met; however the recommended maximum sound volume level of 115 dBA was exceeded. Emergency procedures require immediate evacuation upon initiation of a facility's radiation alarm. Comparison with standards for allowable time of exposure at different noise levels indicate that the elevated noise level at this location does not represent an occupational injury hazard. 8 refs., 5 figs

  15. Gaseous diffusion plant transition from DOE to external regulation

    International Nuclear Information System (INIS)

    Dann, R.K.; Crites, T.R.; Rahm-Crites, L.K.

    1997-01-01

    After many years of operation as government-owned/contractor-operated facilities, large portions of the gaseous diffusion plants (GDPs) at Portsmouth, Ohio, and Paducah, Kentucky, were leased to the United States Enrichment Corporation (USEC). These facilities are now certified by the U.S. Nuclear Regulatory Commission (NRC) and subject to oversight by the Occupational Safety and Health Administration (OSHA). The transition from DOE to NRC regulation was more difficult than expected. The original commitment was to achieve NRC certification in October 1995; however, considerably more time was required and transition-related costs escalated. The Oak Ridge Operations Office originally estimated the cost of transition at $60 million; $240 million has been spent to date. The DOE's experience in transitioning the GDPs to USEC operation with NRC oversight provides valuable lessons (both positive and negative) that could be applied to future transitions

  16. Paducah Gaseous Diffusion Plant Annual Site Environmental Report for 1993

    International Nuclear Information System (INIS)

    1994-10-01

    The purpose of this document is to summarize effluent monitoring and environmental surveillance results and compliance with environmental laws, regulations, and orders at the Paducah Gaseous Diffusion Plant (PGDP). Environmental monitoring at PGDP consists of two major activities: effluent monitoring and environmental surveillance. Effluent monitoring is direct measurement or the collection and analysis of samples of liquid and gaseous discharges to the environment. Environmental surveillance is direct measurement or the collection and analysis of samples of air, water, soil, foodstuff, biota, and other media. Environmental monitoring is performed to characterize and quantify contaminants, assess radiation exposures of members of the public, demonstrate compliance with applicable standards and permit requirements, and detect and assess the effects (if any) on the local environment. Multiple samples are collected throughout the year and are analyzed for radioactivity, chemical content, and various physical attributes

  17. Paducah Gaseous Diffusion Plant environmental report for 1989

    Energy Technology Data Exchange (ETDEWEB)

    Turner, J.W. (ed.) (Martin Marietta Energy Systems, Inc., Oak Ridge, TN (USA))

    1990-10-01

    This two-part environmental report is published annually. It reflects the results of a comprehensive, year-round program to monitor the impact of operations at Paducah Gaseous Diffusion Plant (PGDP) on the area's groundwater and surface waters, soil, air quality, vegetation, and wildlife. In addition, an assessment of the effect of PGDP effluents on the resident human population is made. PGDP's overall goal for environmental management is to protect the environment and PGDP's neighbors and to maintain full compliance with all current regulations. The current environmental strategy is to identify any deficiencies and to develop a system to resolve them. The long-range goal of environmental management is to minimize the source of pollutants, to reduce the formation of waste, and to minimize hazardous waste by substitution of materials. 36 refs.

  18. Actinide transport in Topopah Spring Tuff: Pore size, particle size, and diffusion

    International Nuclear Information System (INIS)

    Buchholtz ten Brink, M.; Phinney, D.L.; Smith, D.K.

    1991-04-01

    Diffusive transport rates for aqueous species in a porous medium are a function of sorption, molecular diffusion, and sample tortuosity. With heterogeneous natural samples, an understanding of the effect of multiple transport paths and sorption mechanisms is particularly important since a small amount of radioisotope traveling via a faster-than-anticipated transport path may invalidate the predictions of transport codes which assume average behavior. Static-diffusion experiments using aqueous 238 U tracer in tuff indicated that U transport was faster in regions of greater porosity and that apparent diffusion coefficients depended on the scale (m or μm) over which concentration gradients were measured in Topopah Spring Tuff. If a significant fraction of actinides in high-level waste are released to the environment in forms that do not sorb to the matrix, they may be similarly transported along fast paths in porous regions of the tuff. To test this, aqueous diffusion rates in tuff were measured for 238 U and 239 Pu leached from doped glass. Measured transport rates and patterns were consistent in both systems with a dual-porosity transported moeld. In addition, filtration or channelling of actinides associated with colloidal particles may significantly affect the radionuclide transport rate in Topopah Spring tuff. 9 refs., 7 figs

  19. Measurement of the Portsmouth Gaseous Diffusion Plant criticality accident alarm

    International Nuclear Information System (INIS)

    Tayloe, R.W. Jr.; D'Aquila, D.M.; McGinnis, R.B.

    1991-01-01

    The nuclear criticality accident radiation alarm system installed at the Portsmouth Gaseous Diffusion Plant was tested extensively at critical facilities located at the Los Alamos National Laboratory. The ability of the neutron scintillator radiation detection units to respond to a minimum accident of concern as defined in Standard ANSI/ANS-83.-1986 was demonstrated. Detector placement and the established trip point are based on shielding calculations performed by the Oak Ridge National Laboratory and criticality specialists at the Portsmouth plant. Based on these experiments and calculations, a detector trip point of 5 mrad/h in air is used. Any credible criticality accident is expected to produce neutron radiation fields >5 mrad/h in air at one or more radiation alarm locations. Each radiation alarm location has a cluster of three detectors that employs a two-out-of-three alarm logic. Earlier work focused on testing the alarm logic latching circuitry. This work was directed toward measurements involving the actual audible alarm signal delivered

  20. Air sampling program at the Portsmouth Gaseous Diffusion Plant

    International Nuclear Information System (INIS)

    Hulett, S.H.

    1975-01-01

    An extensive air sampling program has been developed at the Portsmouth Gaseous Diffusion Plant for monitoring the concentrations of radioactive aerosols present in the atmosphere on plantsite as well as in the environs. The program is designed to minimize exposures of employees and the environment to airborne radioactive particulates. Five different air sampling systems, utilizing either filtration or impaction, are employed for measuring airborne alpha and beta-gamma activity produced from 235 U and 234 Th, respectively. Two of the systems have particle selection capabilities: a personal sampler with a 10-mm nylon cyclone eliminates most particles larger than about 10 microns in diameter; and an Annular Kinetic Impactor collects particulates greater than 0.4 microns in diameter which have a density greater than 12-15 gm/cm 3 . A Hi-Volume Air Sampler and an Eberline Model AIM-3 Scintillation Air Monitor are used in collecting short-term samples for assessing compliance with ''ceiling'' standards or peak concentration limits. A film-sort aperture IBM card system is utilized for continuous 8-hour samples. This sampling program has proven to be both practical and effective for assuring accurate monitoring of the airborne activity associated with plant operations

  1. Exposure to recycled uranium contaminants in gaseous diffusion plants

    International Nuclear Information System (INIS)

    Anderson, Jeri L.; Yiin, James H.; Tseng, Chih-Yu; Apostoaei, A. Iulian

    2017-01-01

    As part of an ongoing study of health effects in a pooled cohort of gaseous diffusion plant workers, organ dose from internal exposure to uranium was evaluated. Due to the introduction of recycled uranium into the plants, there was also potential for exposure to radiologically significant levels of "9"9Tc, "2"3"7Np and "2"3"8","2"3"9Pu. In the evaluation of dose response, these radionuclide exposures could confound the effect of internal uranium. Using urine bioassay data for study subjects reported in facility records, intakes and absorbed dose to bone surface, red bone marrow and kidneys were estimated as these organs were associated with a priori outcomes of interest. Additionally, "9"9Tc intakes and doses were calculated using a new systemic model for technetium and compared to intakes and doses calculated using the current model recommended by the International Commission on Radiological Protection. Organ absorbed doses for the transuranics were significant compared to uranium doses; however, "9"9Tc doses calculated using the new systemic model were significant as well. Use of the new model resulted in an increase in "9"9Tc-related absorbed organ dose of a factor of 8 (red bone marrow) to 30 (bone surface). (authors)

  2. Concentration transients in a gaseous diffusion plant (1961); Cinetique des concentrations dans une usine de separation isotopique (1961)

    Energy Technology Data Exchange (ETDEWEB)

    Jacques, R; Bilous, O [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1961-07-01

    Concentration transients are examined in the case of a gaseous diffusion plant for uranium isotope separation. An application is made for a plant built with two rectifying cascades of different sizes and a stripping cascade. Transients are calculated for a change in the feed concentration, the transport and also for shutdown of a group of separating stages in one of the cascades. (authors) [French] On examine l'evolution des concentrations dans une usine de separation isotopique de l'uranium basee sur le procede de diffusion gazeuse et formee de cascades carrees. Une application est faite pour une installation formee de deux cascades enrichissantes de tailles differentes et d'une cascade appauvrissante. On calcule en particulier les regimes transitoires apres variation de la concentration d'alimentation, du transport et apres mise hors circuit d'un groupe d'etages dans l'une des cascades. (auteurs)

  3. Non-kinematic Flux-transport Dynamos Including the Effects of Diffusivity Quenching

    Energy Technology Data Exchange (ETDEWEB)

    Ichimura, Chiaki; Yokoyama, Takaaki [Department of Earth and Planetary Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan)

    2017-04-10

    Turbulent magnetic diffusivity is quenched when strong magnetic fields suppress turbulent motion in a phenomenon known as diffusivity quenching. Diffusivity quenching can provide a mechanism for amplifying magnetic field and influencing global velocity fields through Lorentz force feedback. To investigate this effect, we conducted mean field flux-transport dynamo simulations that included the effects of diffusivity quenching in a non-kinematic regime. We found that toroidal magnetic field strength is amplified by up to approximately 1.5 times in the convection zone as a result of diffusivity quenching. This amplification is much weaker than that in kinematic cases as a result of Lorentz force feedback on the system’s differential rotation. While amplified toroidal fields lead to the suppression of equatorward meridional flow locally near the base of the convection zone, large-scale equatorward transport of magnetic flux via meridional flow, which is the essential process of the flux-transport dynamo, is sustainable in our calculations.

  4. Diffusion equation and spin drag in spin-polarized transport

    DEFF Research Database (Denmark)

    Flensberg, Karsten; Jensen, Thomas Stibius; Mortensen, Asger

    2001-01-01

    We study the role of electron-electron interactions for spin-polarized transport using the Boltzmann equation, and derive a set of coupled transport equations. For spin-polarized transport the electron-electron interactions are important, because they tend to equilibrate the momentum of the two-s...

  5. Transport-diffusion comparisons for small core LMFBR disruptive accidents

    International Nuclear Information System (INIS)

    Tomlinson, E.T.

    1977-11-01

    A number of numerical experiments were performed to assess the validity of diffusion theory for calculating the reactivity state of various small core LMFBR disrupted geometries. The disrupted configurations correspond, in general, to various configurations predicted by SAS3A for transient undercooling (TUC) and transient overpower (TOP) accidents for homogeneous cores and to the ZPPR-7 configurations for heterogeneous core. In all TUC cases diffusion theory was shown to be inadequate for the calculation of reactivity changes during core disassembly

  6. A symmetrized quasi-diffusion method for solving multidimensional transport problems

    International Nuclear Information System (INIS)

    Miften, M.M.; Larsen, E.W.

    1992-01-01

    In this paper, the authors propose a 'symmetrized' QD (SQD) method in which the non-self-adjoint QD diffusion problem is replaced by two self-adjoint diffusion problems. These problems are more easily discretized and more efficiently solved than in the standard QD method. They also give SQD calculational results for transport problems in x-y geometry

  7. Carbon dioxide sequestration: Modeling the diffusive and convective transport under a CO2 cap

    KAUST Repository

    Allen, Rebecca; Sun, Shuyu

    2012-01-01

    of low permeability. CO2 from this ‘capped' region diffuses into the fluid underlying it, and the resulting CO2-fluid mixture increases in density. This increase in density leads to gravity-driven convection. Accordingly, diffusive-convective transport

  8. Non-diffusive transport in 3-D pressure driven plasma turbulence

    International Nuclear Information System (INIS)

    Del-Castillo-Negrete, D.; Carreras, B.A.; Lynch, V.

    2005-01-01

    Numerical evidence of non-diffusive transport in 3-dimensional, resistive, pressure-gradient-driven plasma turbulence is presented. It is shown that the probability density function (pdf) of tracers is strongly non-Gaussian and exhibits algebraic decaying tails. To describe these results, a transport model using fractional derivative operators in proposed. The model incorporates in a unified way non-locality (i.e., non-Fickian transport), memory effects (i.e., non-Markovian transport), and non-diffusive scaling features known to be present in fusion plasmas. There is quantitative agreement between the model and the turbulent transport numerical calculations. In particular, the model reproduces the shape and space-time scaling of the pdf, and the super-diffusive scaling of the moments. (author)

  9. Biodenitrification of gaseous diffusion plant aqueous wastes: stirred bed reactor

    International Nuclear Information System (INIS)

    Holland, M.E.

    1980-01-01

    Approximately 30 kilograms of nitrates per day are discarded in the raffinates (acid wastes) of the Portsmouth Gaseous Diffusion Plant's X-705 Uranium Recovery and Decontamination Facility. A biodenitrification process employing continuous-flow, stirred-bed reactors has been successfully used to remove nitrates from similar acid wastes at the Oak Ridge Y-12 Plant. Laboratory studies have been made at Portsmouth to characterize the X-705 raffinates and to test the stirred-bed biodenitrification process on such raffinates. Raffinates which had been previously characterized were pumped through continuous-flow, stirred-bed, laboratory-scale reactors. Tests were conducted over a period of 146 days and involved variations in composition, mixing requirements, and the fate of several metal ions in the raffinates. Tests results show that 20 weight percent nitrates were reduced to a target nitrate effluent concentration of 100 μg/ml with a 99.64 percent efficiency. However, the average denitrification rate achieved was only 33% of that demonstrated with the Y-12 stirred-bed system. These low rates were probably due to the toxic effects of heavy metal ions on the denitrifying bacteria. Also, most of the uranium in the raffinate feed remained in the biomass and calcite, which collected in the reactor. This could cause criticality problems. For these reasons, it was decided not to make use of the stirred-bed bioreactor at Portsmouth. Instead, the biodenitrification installation now planned will use fluidized bed columns whose performance will be the subject of a subsequent report

  10. Methodology for assessment of safety risk due to potential accidents in US gaseous diffusion plants

    International Nuclear Information System (INIS)

    Turner, J.H.; O'Kain, D.U.

    1991-01-01

    Gaseous diffusion plants that operate in the United States represent a unique combination of nuclear and chemical hazards. Assessing and controlling the health, safety, and environmental risks that can result from natural phenomena events, process upset conditions, and operator errors require a unique methodology. Such a methodology has been developed for the diffusion plants and is being utilized to assess and control the risk of operating the plants. A summary of the methodology developed to assess the unique safety risks at the US gaseous diffusion plants is presented in this paper

  11. Ionic diffusion in quartz studied by transport measurements, SIMS and atomistic simulations

    International Nuclear Information System (INIS)

    Sartbaeva, Asel; Wells, Stephen A; Redfern, Simon A T; Hinton, Richard W; Reed, Stephen J B

    2005-01-01

    Ionic diffusion in the quartz-β-eucryptite system is studied by DC transport measurements, SIMS and atomistic simulations. Transport data show a large transient increase in ionic current at the α-β phase transition of quartz (the Hedvall effect). The SIMS data indicate two diffusion processes, one involving rapid Li + motion and the other involving penetration of Al and Li atoms into quartz at the phase transition. Atomistic simulations explain why the fine microstructure of twin domain walls in quartz near the transition does not hinder Li + diffusion

  12. Partnering efforts at the Paducah Gaseous Diffusion Plant

    International Nuclear Information System (INIS)

    Warren, C.B.

    1995-01-01

    Before individuals or agencies can effectively work together to solve common problems, they must first agree on exactly what those problems are and establish common goals and methods that will lead to mutually acceptable solutions. Then, they must make a conscientious effort to form a cohesive team that focuses on the established goals and deemphasize traditional roles, which may in some instances be considered adversarial. This kind of teamwork/partnering process can be more difficult, though not impossible, to achieve in cases where there are traditional (real or imagined) adversarial relationships between the parties, i.e. regulator vs. regulated. The US Department of Energy Site Office (DOE) at Paducah, Kentucky, the Kentucky Department of Environmental Protection (KDEP) and the US Environmental Protection Agency, Region IV (EPA) have made t strides toward teamwork and partnering at DOE's Paducah Gaseous Diffusion Plant. They have accomplished this in a number of ways, which will be discussed in greater detail but first and foremost, the agencies agreed up front that they had mutual goals and interests. These goals are to protect public health and the environment in a cost-effective and timely manner, taking care to make the wisest use of public resources (tax dollars); to evaluate and minimize risks, and to achieve ''Win-Win'' for all parties concerned

  13. Bioavailability study for the Paducah Gaseous Diffusion Plant

    Energy Technology Data Exchange (ETDEWEB)

    Phipps, T.L.; Kszos, L.A.

    1996-08-01

    The overall purpose of this plan is to assess the bioavailability of metals in the continuous and intermittent outfalls. The results may be used to determine alternative metal limits that more appropriately measure the portion of metal present necessary for toxicity to aquatic life. These limits must remain protective of in-stream aquatic life; thus, the highest concentration of metal in the water will be determined concurrently with an assessment of acute or chronic toxicity on laboratory tests. Using the method developed by the Kentucky Division of Water (KDOW), biomonitoring results and chemical data will be used to recommend alternative metal limits for the outfalls of concern. The data will be used to meet the objectives of the study: (1) evaluate the toxicity of continuous outfalls and intermittent outfalls at Paducah Gaseous Diffusion Plant; (2) determine the mean ratio of dissolved to Total Recoverable metal for Cd, Cr, Cu, Pb, Ni, and Zn in the continuous and intermittent outfalls; (3) determine whether the concentration of total recoverable metal discharged causes toxicity to fathead minnows and /or Ceriodaphnia; and (4) determine alternative metal limits for each metal of concern (Cd, Cr, Cu, Pb, Ni, and Zn).

  14. Innovative Decontamination Technology for Use in Gaseous Diffusion Plant Decommissioning

    International Nuclear Information System (INIS)

    Peters, M.J.; Norton, C.J.; Fraikor, G.B.; Potter, G.L.; Chang, K.C.

    2006-01-01

    The results of bench scale tests demonstrated that TechXtract R RadPro TM technology (hereinafter referred to as RadPro R ) can provide 100% coverage of complex mockup gaseous diffusion plant (GDP) equipment and can decontaminate uranium (U) deposits with 98% to 99.99% efficiency. Deployment tests demonstrated RadPro R can be applied as foam, mist/fog, or steam, and fully cover the internal surfaces of complex mockup equipment, including large piping. Decontamination tests demonstrated that two formulations of RadPro R , one with neutron attenuators and one without neutron attenuators, could remove up to 99.99% of uranyl fluoride deposits, one of the most difficult to remove deposits in GDP equipment. These results were supplemented by results from previous tests conducted in 1994 that showed RadPro R could remove >97% of U and Tc-99 contamination from actual GDP components. Operational use of RadPro R at other DOE and commercial facilities also support these data. (authors)

  15. Paducah Gaseous Diffusion Plant Northwest Plume interceptor system evaluation

    International Nuclear Information System (INIS)

    Laase, A.D.; Clausen, J.L.

    1998-01-01

    The Paducah Gaseous Diffusion Plant (PGDP) recently installed an interceptor system consisting of four wells, evenly divided between two well fields, to contain the Northwest Plume. As stated in the Northwest Plume Record of Decision (ROD), groundwater will be pumped at a rate to reduce further contamination and initiate control of the northwest contaminant plume. The objective of this evaluation was to determine the optimum (minimal) well field pumping rates required for plume hotspot containment. Plume hotspot, as defined in the Northwest Plume ROD and throughout this report, is that portion of the plume with trichloroethene (TCE) concentrations greater than 1,000 microg/L. An existing 3-dimensional groundwater model was modified and used to perform capture zone analyses of the north and south interceptor system well fields. Model results suggest that the plume hotspot is not contained at the system design pumping rate of 100 gallons per minute (gal/min) per well field. Rather, the modeling determined that north and south well field pumping rates of 400 and 150 gal/min, respectively, are necessary for plume hotspot containment. The difference between the design and optimal pumping rates required for containment can be attributed to the discovery of a highly transmissive zone in the vicinity of the two well fields

  16. Ebullition, Plant-Mediated Transport, and Subsurface Horizontal Water Flow Dominate Methane Transport in an Arctic Sphagnum Bog

    Science.gov (United States)

    Wehr, R. A.; McCalley, C. K.; Logan, T. A.; Chanton, J.; Crill, P. M.; Rich, V. I.; Saleska, S. R.

    2017-12-01

    Emission of the greenhouse gas methane from wetlands is of prime concern in the prediction of climate change - especially emission associated with thawing permafrost, which may drive a positive feedback loop of emission and warming. In addition to the biochemistry of methane production and consumption, wetland methane emission depends critically on the transport mechanisms by which methane moves through and out of the ecosystem. We therefore developed a model of methane biochemistry and transport for a sphagnum bog representing an intermediate permafrost thaw stage in Stordalen Mire, Sweden. In order to simultaneously reproduce measured profiles of both the concentrations and isotopic compositions of both methane and carbon dioxide in the peat pore water (Fig. 1) - as well as the surface methane emission - it was necessary for the model to include ebullition, plant-mediated transport via aerenchyma, and subsurface horizontal water flow. Diffusion of gas through the pore water was relatively unimportant. As a result, 90% of the produced methane escaped the wetland rather than being consumed by methanotrophic organisms in the near-surface pore water. Our model provides a comprehensive picture of methane emission from this bog site by quantifying the vertical profiles of: acetoclastic methanogenesis, hydrogenotrophic methanogenesis, methane oxidation, aerobic respiration, ebullition, plant-mediated transport, subsurface horizontal water flow, and diffusion.

  17. Application of diffusion theory to neutral atom transport in fusion plasmas

    International Nuclear Information System (INIS)

    Hasan, M.Z.; Conn, R.W.; Pomraning, G.C.

    1987-01-01

    It is found that the energy dependent diffusion theory provides excellent accuracy in the modelling of transport of neutral atoms in fusion plasmas. Two reasons in particular explain the good accuracy. First, while the plasma is optically thick for low energy neutrals, it is optically thin for high energy neutrals and the diffusion theory with Marshak boundary conditions gives accurate results for an optically thin medium, even for small values of c, the ratio of the scattering cross-section to the total cross-section. Second, the effective value of c at low energy is very close to 1 because of the downscattering via collisions of high energy neutrals. The first reason is proven computationally and theoretically by solving the transport equation in a power series in c and solving the diffusion equation with 'general' Marshak boundary conditions. The second reason is established numerically by comparing the results from a one-dimensional, general geometry, multigroup diffusion theory code, written for this purpose, with the results obtained using the transport code ANISN. Earlier studies comparing one-speed diffusion and transport theory indicated that the diffusion theory would be inaccurate. A detailed analysis shows that this conclusion is limited to a very specific case. Surprisingly, for a very wide range of conditions and when energy dependence is included, the diffusion theory is highly accurate. (author)

  18. Quantum Transmission Conditions for Diffusive Transport in Graphene with Steep Potentials

    Science.gov (United States)

    Barletti, Luigi; Negulescu, Claudia

    2018-05-01

    We present a formal derivation of a drift-diffusion model for stationary electron transport in graphene, in presence of sharp potential profiles, such as barriers and steps. Assuming the electric potential to have steep variations within a strip of vanishing width on a macroscopic scale, such strip is viewed as a quantum interface that couples the classical regions at its left and right sides. In the two classical regions, where the potential is assumed to be smooth, electron and hole transport is described in terms of semiclassical kinetic equations. The diffusive limit of the kinetic model is derived by means of a Hilbert expansion and a boundary layer analysis, and consists of drift-diffusion equations in the classical regions, coupled by quantum diffusive transmission conditions through the interface. The boundary layer analysis leads to the discussion of a four-fold Milne (half-space, half-range) transport problem.

  19. Random walk, diffusion and mixing in simulations of scalar transport in fluid flows

    International Nuclear Information System (INIS)

    Klimenko, A Y

    2008-01-01

    Physical similarity and mathematical equivalence of continuous diffusion and particle random walk form one of the cornerstones of modern physics and the theory of stochastic processes. In many applied models used in simulation of turbulent transport and turbulent combustion, mixing between particles is used to reflect the influence of the continuous diffusion terms in the transport equations. We show that the continuous scalar transport and diffusion can be accurately specified by means of mixing between randomly walking Lagrangian particles with scalar properties and assess errors associated with this scheme. This gives an alternative formulation for the stochastic process which is selected to represent the continuous diffusion. This paper focuses on statistical errors and deals with relatively simple cases, where one-particle distributions are sufficient for a complete description of the problem.

  20. Transport of radioselenium oxyanions by diffusion in unsaturated soils

    Energy Technology Data Exchange (ETDEWEB)

    Aldaba, David; Rigol, Anna; Vidal, Miquel [Barcelona Univ. (Spain). Dept. de Quimica Analitica; Garcia-Gutierrez, Miguel [CIEMAT, Dept. de Medioambiente, Madrid (Spain); Abrao, Taufik [State University of Londrina (UEL) (Brazil). Dept. of Electrical Engineering (DEEL)

    2015-07-01

    There is a lack of data on the diffusion of long-lived radionuclides in soils, especially of those originated from the leaching of radioactive waste in waste disposal facilities. Here, the simultaneous diffusion of two radioselenium species, which were postulated to be radioselenite and radioselenate, was examined for the first time in four soils at laboratory level by applying the planar-source method. The Gaussian-shaped experimental diffusion profile was deconvoluted into two Gaussian functions, and then the apparent diffusion coefficients (D{sub a}) were quantified for each species. Radioselenate D{sub a} values ranged from 1.4 x 10{sup -11} to 1.5 x 10{sup -10} m{sup 2}s{sup -1}, while those of radioselenite were two orders of magnitude lower (from 5.2 x 10{sup -13} to 2.7 x 10{sup -12} m{sup 2}s{sup -1}) for all samples and conditions tested. The radioselenite distribution coefficient values derived from D{sub a} correlated to soil properties, such as pH and Al/Fe mineral content, and thus were consistent with the factors controlling the sorption of selenium species in soils.

  1. Diffusive transport of radon in a homogeneous column of dry sand

    NARCIS (Netherlands)

    van der Spoel, W.H.; van der Graaf, E.R.; de Meijer, R.J.

    To validate a model for radon transport in soil, measurements of diffusive radon transport under well-defined and controlled conditions have been made in a homogeneous column of dry sand with an air-filled volume on top. This volume simulates a crawl space. The measurements concern time-dependent

  2. Experimental Setup for Measuring Diffusive and Advective Transport of Radon through Building Materials

    NARCIS (Netherlands)

    Pal, van der M.; Graaf, van der E.R.; Meijer, de R.J.; Wit, de M.H.; Hendriks, N.A.

    2000-01-01

    This study describes an approach for measuring and modelling diffusive and advective transport of radon through building materials. The goal of these measurements and model calculations is to improve our understanding concerning the factors influencing the transport of radon through building

  3. Persistent wind-induced enhancement of diffusive CO2 transport in a mountain forest snowpack

    Science.gov (United States)

    D. R. Bowling; W. J. Massman

    2011-01-01

    Diffusion dominates the transport of trace gases between soil and the atmosphere. Pressure gradients induced by atmospheric flow and wind interacting with topographical features cause a small but persistent bulk flow of air within soil or snow. This forcing, called pressure pumping or wind pumping, leads to a poorly quantified enhancement of gas transport beyond the...

  4. Interface methods for hybrid Monte Carlo-diffusion radiation-transport simulations

    International Nuclear Information System (INIS)

    Densmore, Jeffery D.

    2006-01-01

    Discrete diffusion Monte Carlo (DDMC) is a technique for increasing the efficiency of Monte Carlo simulations in diffusive media. An important aspect of DDMC is the treatment of interfaces between diffusive regions, where DDMC is used, and transport regions, where standard Monte Carlo is employed. Three previously developed methods exist for treating transport-diffusion interfaces: the Marshak interface method, based on the Marshak boundary condition, the asymptotic interface method, based on the asymptotic diffusion-limit boundary condition, and the Nth-collided source technique, a scheme that allows Monte Carlo particles to undergo several collisions in a diffusive region before DDMC is used. Numerical calculations have shown that each of these interface methods gives reasonable results as part of larger radiation-transport simulations. In this paper, we use both analytic and numerical examples to compare the ability of these three interface techniques to treat simpler, transport-diffusion interface problems outside of a more complex radiation-transport calculation. We find that the asymptotic interface method is accurate regardless of the angular distribution of Monte Carlo particles incident on the interface surface. In contrast, the Marshak boundary condition only produces correct solutions if the incident particles are isotropic. We also show that the Nth-collided source technique has the capacity to yield accurate results if spatial cells are optically small and Monte Carlo particles are allowed to undergo many collisions within a diffusive region before DDMC is employed. These requirements make the Nth-collided source technique impractical for realistic radiation-transport calculations

  5. Asymptotic equivalence of neutron diffusion and transport in time-independent reactor systems

    International Nuclear Information System (INIS)

    Borysiewicz, M.; Mika, J.; Spiga, G.

    1982-01-01

    Presented in this paper is the asymptotic analysis of the time-independent neutron transport equation in the second-order variational formulation. The small parameter introduced into the equation is an estimate of the ratio of absorption and leakage to scattering in the system considered. When the ratio tends to zero, the weak solution to the transport problem tends to the weak solution of the diffusion problem, including properly defined boundary conditions. A formula for the diffusion coefficient different from that based on averaging the transport mean-free-path is derived

  6. Operating limit study for the proposed solid waste landfill at Paducah Gaseous Diffusion Plant

    Energy Technology Data Exchange (ETDEWEB)

    Lee, D.W.; Wang, J.C.; Kocher, D.C.

    1995-06-01

    A proposed solid waste landfill at Paducah Gaseous Diffusion Plant (PGDP) would accept wastes generated during normal operations that are identified as non-radioactive. These wastes may include small amounts of radioactive material from incidental contamination during plant operations. A site-specific analysis of the new solid waste landfill is presented to determine a proposed operating limit that will allow for waste disposal operations to occur such that protection of public health and the environment from the presence of incidentally contaminated waste materials can be assured. Performance objectives for disposal were defined from existing regulatory guidance to establish reasonable dose limits for protection of public health and the environment. Waste concentration limits were determined consistent with these performance objectives for the protection of off-site individuals and inadvertent intruders who might be directly exposed to disposed wastes. Exposures of off-site individuals were estimated using a conservative, site-specific model of the groundwater transport of contamination from the wastes. Direct intrusion was analyzed using an agricultural homesteader scenario. The most limiting concentrations from direct intrusion or groundwater transport were used to establish the concentration limits for radionuclides likely to be present in PGDP wastes.

  7. Operating limit study for the proposed solid waste landfill at Paducah Gaseous Diffusion Plant

    International Nuclear Information System (INIS)

    Lee, D.W.; Wang, J.C.; Kocher, D.C.

    1995-06-01

    A proposed solid waste landfill at Paducah Gaseous Diffusion Plant (PGDP) would accept wastes generated during normal operations that are identified as non-radioactive. These wastes may include small amounts of radioactive material from incidental contamination during plant operations. A site-specific analysis of the new solid waste landfill is presented to determine a proposed operating limit that will allow for waste disposal operations to occur such that protection of public health and the environment from the presence of incidentally contaminated waste materials can be assured. Performance objectives for disposal were defined from existing regulatory guidance to establish reasonable dose limits for protection of public health and the environment. Waste concentration limits were determined consistent with these performance objectives for the protection of off-site individuals and inadvertent intruders who might be directly exposed to disposed wastes. Exposures of off-site individuals were estimated using a conservative, site-specific model of the groundwater transport of contamination from the wastes. Direct intrusion was analyzed using an agricultural homesteader scenario. The most limiting concentrations from direct intrusion or groundwater transport were used to establish the concentration limits for radionuclides likely to be present in PGDP wastes

  8. On the theory of gaseous transport to plant canopies

    Science.gov (United States)

    Bache, D. H.

    Solutions of the convection-diffusion equations are developed to show the relationship between bulk transport parameters affecting gaseous transfer to plant canopies and local rates of transfer within the canopy. Foliage density is considered to be uniform and the drag coefficient of elements is specified by cd = γu- n with u as the local wind-speed and γ and n constants. Under conditions of high surface resistance, the bulk deposition velocity at the top of the canopy vg( h) approaches a limit defined by v g(h) = v̂gL p(1-ψ v̂gL p/u ∗) , where v̂g is the local deposition rate, Lp the effective foliage area, u ∗ the friction velocity and ψ a structure coefficient. From this, a criterion is proposed for defining the conditions in which the local resistances may be added in parallel. Comparisons with the external model for the bulk transport resistance rp = ra + rb + rc (where r p = 1/v g(h) and ra is a diffusive resistance between the apparent momentum sink and height h) shows that the bulk surface resistance r c = r̂s/L p( r̂s being a local surface resistance due to internal properties of the surface) and r b = overliner̂p-r a, appearing as an excess aerodynamic component; overliner̂p refers to the depth-averaged value of r̂p—the resistance to transfer through the laminar sublayer enveloping individual canopy elements. In conditions of zero surface resistance the bulk transport rate rp, o can be specified by r p,o/r a = E( r̂p/r̂∗) hq with E and q as constants, the term r̂p/r̂∗ referring to the resistances to mass and momentum transfer to canopy elements. A general expression is formulated for the sublayer Stanton number B -1  r bu ∗ at the extremes of high and zero surface resistance. In conditions of low surface resistance, it is shown that the terms rb + rc cannot be conveniently separated into equivalent aerodynamic and surface components as at the limit of high surface resistance. This conclusion is a departure from previous

  9. DANTSYS: A diffusion accelerated neutral particle transport code system

    International Nuclear Information System (INIS)

    Alcouffe, R.E.; Baker, R.S.; Brinkley, F.W.; Marr, D.R.; O'Dell, R.D.; Walters, W.F.

    1995-06-01

    The DANTSYS code package includes the following transport codes: ONEDANT, TWODANT, TWODANT/GQ, TWOHEX, and THREEDANT. The DANTSYS code package is a modular computer program package designed to solve the time-independent, multigroup discrete ordinates form of the boltzmann transport equation in several different geometries. The modular construction of the package separates the input processing, the transport equation solving, and the post processing (or edit) functions into distinct code modules: the Input Module, one or more Solver Modules, and the Edit Module, respectively. The Input and Edit Modules are very general in nature and are common to all the Solver Modules. The ONEDANT Solver Module contains a one-dimensional (slab, cylinder, and sphere), time-independent transport equation solver using the standard diamond-differencing method for space/angle discretization. Also included in the package are solver Modules named TWODANT, TWODANT/GQ, THREEDANT, and TWOHEX. The TWODANT Solver Module solves the time-independent two-dimensional transport equation using the diamond-differencing method for space/angle discretization. The authors have also introduced an adaptive weighted diamond differencing (AWDD) method for the spatial and angular discretization into TWODANT as an option. The TWOHEX Solver Module solves the time-independent two-dimensional transport equation on an equilateral triangle spatial mesh. The THREEDANT Solver Module solves the time independent, three-dimensional transport equation for XYZ and RZΘ symmetries using both diamond differencing with set-to-zero fixup and the AWDD method. The TWODANT/GQ Solver Module solves the 2-D transport equation in XY and RZ symmetries using a spatial mesh of arbitrary quadrilaterals. The spatial differencing method is based upon the diamond differencing method with set-to-zero fixup with changes to accommodate the generalized spatial meshing

  10. DANTSYS: A diffusion accelerated neutral particle transport code system

    Energy Technology Data Exchange (ETDEWEB)

    Alcouffe, R.E.; Baker, R.S.; Brinkley, F.W.; Marr, D.R.; O`Dell, R.D.; Walters, W.F.

    1995-06-01

    The DANTSYS code package includes the following transport codes: ONEDANT, TWODANT, TWODANT/GQ, TWOHEX, and THREEDANT. The DANTSYS code package is a modular computer program package designed to solve the time-independent, multigroup discrete ordinates form of the boltzmann transport equation in several different geometries. The modular construction of the package separates the input processing, the transport equation solving, and the post processing (or edit) functions into distinct code modules: the Input Module, one or more Solver Modules, and the Edit Module, respectively. The Input and Edit Modules are very general in nature and are common to all the Solver Modules. The ONEDANT Solver Module contains a one-dimensional (slab, cylinder, and sphere), time-independent transport equation solver using the standard diamond-differencing method for space/angle discretization. Also included in the package are solver Modules named TWODANT, TWODANT/GQ, THREEDANT, and TWOHEX. The TWODANT Solver Module solves the time-independent two-dimensional transport equation using the diamond-differencing method for space/angle discretization. The authors have also introduced an adaptive weighted diamond differencing (AWDD) method for the spatial and angular discretization into TWODANT as an option. The TWOHEX Solver Module solves the time-independent two-dimensional transport equation on an equilateral triangle spatial mesh. The THREEDANT Solver Module solves the time independent, three-dimensional transport equation for XYZ and RZ{Theta} symmetries using both diamond differencing with set-to-zero fixup and the AWDD method. The TWODANT/GQ Solver Module solves the 2-D transport equation in XY and RZ symmetries using a spatial mesh of arbitrary quadrilaterals. The spatial differencing method is based upon the diamond differencing method with set-to-zero fixup with changes to accommodate the generalized spatial meshing.

  11. Transport and diffusion on crystalline surfaces under external forces

    International Nuclear Information System (INIS)

    Lindenberg, Katja; Lacasta, A M; Sancho, J M; Romero, A H

    2005-01-01

    We present a numerical study of classical particles obeying a Langevin equation and moving on a solid crystalline surface under an external force that may either be constant or modulated by periodic oscillations. We focus on the particle drift velocity and diffusion. The roles of friction and equilibrium thermal fluctuations are studied for two nonlinear dynamical regimes corresponding to low and to high but finite friction. We identify a number of resonances and antiresonances, and provide phenomenological interpretations of the observed behaviour

  12. Diffusion

    International Nuclear Information System (INIS)

    Kubaschewski, O.

    1983-01-01

    The diffusion rate values of titanium, its compounds and alloys are summarized and tabulated. The individual chemical diffusion coefficients and self-diffusion coefficients of certain isotopes are given. Experimental methods are listed which were used for the determination of diffusion coefficients. Some values have been taken over from other studies. Also given are graphs showing the temperature dependences of diffusion and changes in the diffusion coefficient with concentration changes

  13. Prioritizing and scheduling Portsmouth Gaseous Diffusion Plant safeguards upgrades

    International Nuclear Information System (INIS)

    Edmunds, T.; Saleh, R.; Zevanove, S.

    1992-02-01

    As part of the Site Safeguards and Security Plan (SSSP), facilities are required to develop a Resource Plan (RP). The Resource Plan provides documentation and justification for the facility's planned upgrades, including the schedule, priority, and cost estimates for the safeguards and security upgrades. Portsmouth Gaseous Diffusion Plant (PORTS) management has identified and obtained funding approval for a number of safeguards and security upgrades, including line-item construction projects. These upgrade projects were selected to address a variety of concerns identified in the PORTS vulnerability assessments and other reviews performed in support of the SSSP process. However, budgeting and scheduling constraints do not make it possible to simultaneously begin implementation of all of the upgrade projects. A formal methodology and analysis are needed to explicitly address the trade-offs between competing safeguards objectives, and to prioritize and schedule the upgrade projects to ensure that the maximum benefit can be realized in the shortest possible time frame. The purpose of this report is to describe the methodology developed to support these upgrade project scheduling decisions. The report also presents the results obtained from applying the methodology to a set of the upgrade projects selected by PORTS S ampersand S management. Data for the analysis are based on discussions with personnel familiar with the PORTS safeguards and security needs, the requirements for implementing these upgrades, and upgrade funding limitations. The analysis results presented here assume continued highly enriched uranium (HEU) operations at PORTS. However, the methodology developed is readily adaptable for the evaluation of other operational scenarios and other resource allocation issues relevant to PORTS

  14. Comparison of Experimental Methods for Estimating Matrix Diffusion Coefficients for Contaminant Transport Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Telfeyan, Katherine Christina [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Ware, Stuart Douglas [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Reimus, Paul William [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Birdsell, Kay Hanson [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-11-06

    Diffusion cell and diffusion wafer experiments were conducted to compare methods for estimating matrix diffusion coefficients in rock core samples from Pahute Mesa at the Nevada Nuclear Security Site (NNSS). A diffusion wafer method, in which a solute diffuses out of a rock matrix that is pre-saturated with water containing the solute, is presented as a simpler alternative to the traditional through-diffusion (diffusion cell) method. Both methods yielded estimates of matrix diffusion coefficients that were within the range of values previously reported for NNSS volcanic rocks. The difference between the estimates of the two methods ranged from 14 to 30%, and there was no systematic high or low bias of one method relative to the other. From a transport modeling perspective, these differences are relatively minor when one considers that other variables (e.g., fracture apertures, fracture spacings) influence matrix diffusion to a greater degree and tend to have greater uncertainty than diffusion coefficients. For the same relative random errors in concentration measurements, the diffusion cell method yields diffusion coefficient estimates that have less uncertainty than the wafer method. However, the wafer method is easier and less costly to implement and yields estimates more quickly, thus allowing a greater number of samples to be analyzed for the same cost and time. Given the relatively good agreement between the methods, and the lack of any apparent bias between the methods, the diffusion wafer method appears to offer advantages over the diffusion cell method if better statistical representation of a given set of rock samples is desired.

  15. Comparison of experimental methods for estimating matrix diffusion coefficients for contaminant transport modeling

    Science.gov (United States)

    Telfeyan, Katherine; Ware, S. Doug; Reimus, Paul W.; Birdsell, Kay H.

    2018-02-01

    Diffusion cell and diffusion wafer experiments were conducted to compare methods for estimating effective matrix diffusion coefficients in rock core samples from Pahute Mesa at the Nevada Nuclear Security Site (NNSS). A diffusion wafer method, in which a solute diffuses out of a rock matrix that is pre-saturated with water containing the solute, is presented as a simpler alternative to the traditional through-diffusion (diffusion cell) method. Both methods yielded estimates of effective matrix diffusion coefficients that were within the range of values previously reported for NNSS volcanic rocks. The difference between the estimates of the two methods ranged from 14 to 30%, and there was no systematic high or low bias of one method relative to the other. From a transport modeling perspective, these differences are relatively minor when one considers that other variables (e.g., fracture apertures, fracture spacings) influence matrix diffusion to a greater degree and tend to have greater uncertainty than effective matrix diffusion coefficients. For the same relative random errors in concentration measurements, the diffusion cell method yields effective matrix diffusion coefficient estimates that have less uncertainty than the wafer method. However, the wafer method is easier and less costly to implement and yields estimates more quickly, thus allowing a greater number of samples to be analyzed for the same cost and time. Given the relatively good agreement between the methods, and the lack of any apparent bias between the methods, the diffusion wafer method appears to offer advantages over the diffusion cell method if better statistical representation of a given set of rock samples is desired.

  16. Uranium hexafluoride packaging tiedown systems overview at Portsmouth Gaseous Diffusion Plant, Piketon, Ohio

    International Nuclear Information System (INIS)

    Becker, D.L.; Green, D.J.; Lindquist, M.R.

    1993-07-01

    The Portsmouth Gaseous Diffusion Plant (PORTS) in Piketon, Ohio, is operated by Martin Marietta Energy Systems, Inc., through the US Department of Energy-Oak Ridge Operations Office (DOE-ORO) for the US Department of Energy-Headquarters, Office of Nuclear Energy. The PORTS conducts those operations that are necessary for the production, packaging, and shipment of uranium hexafluoride (UF 6 ). Uranium hexafluoride enriched uranium than 1.0 wt percent 235 U shall be packaged in accordance with the US Department of Transportation (DOT) regulations of Title 49 CFR Parts 173 (Reference 1) and 178 (Reference 2), or in US Nuclear Regulatory Commission (NRC) or US Department of Energy (DOE) certified package designs. Concerns have been expressed regarding the various tiedown methods and condition of the trailers being used by some shippers/carriers for international transport of the UF 6 cylinders/overpacks. Because of the concerns about international shipments, the US Department of Energy-Headquarters (DOE-HQ) Office of Nuclear Energy, through DOE-HQ Transportation Management Division, requested Westinghouse Hanford Company (Westinghouse Hanford) to review UF 6 packaging tiedown and shipping practices used by PORTS, and where possible and appropriate, provide recommendations for enhancing these practices. Consequently, a team of two individuals from Westinghouse Hanford visited PORTS on March 5 and 6, 1990, for the purpose of conducting this review. The paper provides a brief discussion of the review activities and a summary of the resulting findings and recommendations. A detailed reporting of the is documented in Reference 4

  17. Evolutionary relationships and functional diversity of plant sulfate transporters

    Directory of Open Access Journals (Sweden)

    Hideki eTakahashi

    2012-01-01

    Full Text Available Sulfate is an essential nutrient cycled in nature. Ion transporters that specifically facilitate the transport of sulfate across the membranes are found ubiquitously in living organisms. The phylogenetic analysis of known sulfate transporters and their homologous proteins from eukaryotic organisms indicate two evolutionarily distinct groups of sulfate transport systems. One major group named Tribe 1 represents yeast and fungal SUL, plant SULTR and animal SLC26 families. The evolutionary origin of SULTR family members in land plants and green algae is suggested to be common with yeast and fungal sulfate transporters (SUL and animal anion exchangers (SLC26. The lineage of plant SULTR family is expanded into four subfamilies (SULTR1 to SULTR4 in land plant species. By contrast, the putative SULTR homologues from Chlorophyte green algae are in two separate lineages; one with the subfamily of plant tonoplast-localized sulfate transporters (SULTR4, and the other diverged before the appearance of lineages for SUL, SULTR and SLC26. There also was a group of yet undefined members of putative sulfate transporters in yeast and fungi divergent from these major lineages in Tribe 1. The other distinct group is Tribe 2, primarily composed of animal sodium-dependent sulfate/carboxylate transporters (SLC13 and plant tonoplast-localized dicarboxylate transporters (TDT. The putative sulfur-sensing protein (SAC1 and SAC1-like transporters (SLT of Chlorophyte green algae, bryophyte and lycophyte show low degrees of sequence similarities with SLC13 and TDT. However, the phylogenetic relationship between SAC1/SLT and the other two families, SLC13 and TDT in Tribe 2, is not clearly supported. In addition, the SAC1/SLT family is completely absent in the angiosperm species analyzed. The present study suggests distinct evolutionary trajectories of sulfate transport systems for land plants and green algae.

  18. Scheduling the maintenance of gaseous diffusion and electric power distribution plants

    International Nuclear Information System (INIS)

    Chauvet, D.

    1990-01-01

    A computer aided scheduling applied to the maintenance of a uranium enrichment plant is presented. The plant exploits gaseous diffusion and electric power distribution plants, for which the operating conditions must be satisfied. The management and the execution of the maintenance actions are computer aided. Concerning the techniques, the cost, the safety and the scheduling actions were optimized [fr

  19. Diffusion and transport in locally disordered driven lattices

    Energy Technology Data Exchange (ETDEWEB)

    Wulf, Thomas, E-mail: Thomas.Wulf@physnet.uni-hamburg.de; Okupnik, Alexander [Zentrum für Optische Quantentechnologien, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg (Germany); Schmelcher, Peter, E-mail: Peter.Schmelcher@physnet.uni-hamburg.de [Zentrum für Optische Quantentechnologien, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg (Germany); The Hamburg Centre for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg (Germany)

    2016-09-15

    We study the effect of disorder on the particle density evolution in a classical Hamiltonian driven lattice setup. If the disorder is localized within a finite sub-domain of the lattice, the emergence of strong tails in the density distribution which even increases towards larger positions is shown, thus yielding a highly non-Gaussian particle density evolution. As the key underlying mechanism, we identify the conversion between different components of the unperturbed systems mixed phase space which is induced by the disorder. Based on the introduction of individual conversion rates between chaotic and regular components, a theoretical model is developed which correctly predicts the scaling of the particle density. The effect of disorder on the transport properties is studied where a significant enhancement of the transport for cases of localized disorder is shown, thereby contrasting strongly the merely weak modification of the transport for global disorder.

  20. Diffusion and transport in locally disordered driven lattices

    International Nuclear Information System (INIS)

    Wulf, Thomas; Okupnik, Alexander; Schmelcher, Peter

    2016-01-01

    We study the effect of disorder on the particle density evolution in a classical Hamiltonian driven lattice setup. If the disorder is localized within a finite sub-domain of the lattice, the emergence of strong tails in the density distribution which even increases towards larger positions is shown, thus yielding a highly non-Gaussian particle density evolution. As the key underlying mechanism, we identify the conversion between different components of the unperturbed systems mixed phase space which is induced by the disorder. Based on the introduction of individual conversion rates between chaotic and regular components, a theoretical model is developed which correctly predicts the scaling of the particle density. The effect of disorder on the transport properties is studied where a significant enhancement of the transport for cases of localized disorder is shown, thereby contrasting strongly the merely weak modification of the transport for global disorder.

  1. Ion Transport through Diffusion Layer Controlled by Charge Mosaic Membrane

    Directory of Open Access Journals (Sweden)

    Akira Yamauchi

    2012-01-01

    Full Text Available The kinetic transport behaviors in near interface of the membranes were studied using commercial anion and cation exchange membrane and charge mosaic membrane. Current-voltage curve gave the limiting current density that indicates the ceiling of conventional flux. From chronopotentiometry above the limiting current density, the transition time was estimated. The thickness of boundary layer was derived with conjunction with the conventional limiting current density and the transition time from steady state flux. On the other hand, the charge mosaic membrane was introduced in order to examine the ion transport on the membrane surface in detail. The concentration profile was discussed by the kinetic transport number with regard to the water dissociation (splitting on the membrane surface.

  2. Methane transport and emissions from soil as affected by water table and vascular plants.

    Science.gov (United States)

    Bhullar, Gurbir S; Iravani, Majid; Edwards, Peter J; Olde Venterink, Harry

    2013-09-08

    The important greenhouse gas (GHG) methane is produced naturally in anaerobic wetland soils. By affecting the production, oxidation and transport of methane to the atmosphere, plants have a major influence upon the quantities emitted by wetlands. Different species and functional plant groups have been shown to affect these processes differently, but our knowledge about how these effects are influenced by abiotic factors such as water regime and temperature remains limited. Here we present a mesocosm experiment comparing eight plant species for their effects on internal transport and overall emissions of methane under contrasting hydrological conditions. To quantify how much methane was transported internally through plants (the chimney effect), we blocked diffusion from the soil surface with an agar seal. We found that graminoids caused higher methane emissions than forbs, although the emissions from mesocosms with different species were either lower than or comparable to those from control mesocosms with no plant (i.e. bare soil). Species with a relatively greater root volume and a larger biomass exhibited a larger chimney effect, though overall methane emissions were negatively related to plant biomass. Emissions were also reduced by lowering the water table. We conclude that plant species (and functional groups) vary in the degree to which they transport methane to the atmosphere. However, a plant with a high capacity to transport methane does not necessarily emit more methane, as it may also cause more rhizosphere oxidation of methane. A shift in plant species composition from graminoids to forbs and/or from low to high productive species may lead to reduction of methane emissions.

  3. Diffusion related isotopic fractionation effects with one-dimensional advective–dispersive transport

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Bruce S. [Civil Engineering Department, University of Toronto, 35 St George Street, Toronto, ON M5S 1A4 (Canada); Lollar, Barbara Sherwood [Earth Sciences Department, University of Toronto, 22 Russell Street, Toronto, ON M5S 3B1 (Canada); Passeport, Elodie [Civil Engineering Department, University of Toronto, 35 St George Street, Toronto, ON M5S 1A4 (Canada); Chemical Engineering and Applied Chemistry Department, University of Toronto, 200 College Street, Toronto, ON M5S 3E5 (Canada); Sleep, Brent E., E-mail: sleep@ecf.utoronto.ca [Civil Engineering Department, University of Toronto, 35 St George Street, Toronto, ON M5S 1A4 (Canada)

    2016-04-15

    Aqueous phase diffusion-related isotope fractionation (DRIF) for carbon isotopes was investigated for common groundwater contaminants in systems in which transport could be considered to be one-dimensional. This paper focuses not only on theoretically observable DRIF effects in these systems but introduces the important concept of constraining “observable” DRIF based on constraints imposed by the scale of measurements in the field, and on standard limits of detection and analytical uncertainty. Specifically, constraints for the detection of DRIF were determined in terms of the diffusive fractionation factor, the initial concentration of contaminants (C{sub 0}), the method detection limit (MDL) for isotopic analysis, the transport time, and the ratio of the longitudinal mechanical dispersion coefficient to effective molecular diffusion coefficient (D{sub mech}/D{sub eff}). The results allow a determination of field conditions under which DRIF may be an important factor in the use of stable carbon isotope measurements for evaluation of contaminant transport and transformation for one-dimensional advective–dispersive transport. This study demonstrates that for diffusion-dominated transport of BTEX, MTBE, and chlorinated ethenes, DRIF effects are only detectable for the smaller molar mass compounds such as vinyl chloride for C{sub 0}/MDL ratios of 50 or higher. Much larger C{sub 0}/MDL ratios, corresponding to higher source concentrations or lower detection limits, are necessary for DRIF to be detectable for the higher molar mass compounds. The distance over which DRIF is observable for VC is small (less than 1 m) for a relatively young diffusive plume (< 100 years), and DRIF will not easily be detected by using the conventional sampling approach with “typical” well spacing (at least several meters). With contaminant transport by advection, mechanical dispersion, and molecular diffusion this study suggests that in field sites where D{sub mech}/D{sub eff} is

  4. Diffusion related isotopic fractionation effects with one-dimensional advective–dispersive transport

    International Nuclear Information System (INIS)

    Xu, Bruce S.; Lollar, Barbara Sherwood; Passeport, Elodie; Sleep, Brent E.

    2016-01-01

    Aqueous phase diffusion-related isotope fractionation (DRIF) for carbon isotopes was investigated for common groundwater contaminants in systems in which transport could be considered to be one-dimensional. This paper focuses not only on theoretically observable DRIF effects in these systems but introduces the important concept of constraining “observable” DRIF based on constraints imposed by the scale of measurements in the field, and on standard limits of detection and analytical uncertainty. Specifically, constraints for the detection of DRIF were determined in terms of the diffusive fractionation factor, the initial concentration of contaminants (C_0), the method detection limit (MDL) for isotopic analysis, the transport time, and the ratio of the longitudinal mechanical dispersion coefficient to effective molecular diffusion coefficient (D_m_e_c_h/D_e_f_f). The results allow a determination of field conditions under which DRIF may be an important factor in the use of stable carbon isotope measurements for evaluation of contaminant transport and transformation for one-dimensional advective–dispersive transport. This study demonstrates that for diffusion-dominated transport of BTEX, MTBE, and chlorinated ethenes, DRIF effects are only detectable for the smaller molar mass compounds such as vinyl chloride for C_0/MDL ratios of 50 or higher. Much larger C_0/MDL ratios, corresponding to higher source concentrations or lower detection limits, are necessary for DRIF to be detectable for the higher molar mass compounds. The distance over which DRIF is observable for VC is small (less than 1 m) for a relatively young diffusive plume (< 100 years), and DRIF will not easily be detected by using the conventional sampling approach with “typical” well spacing (at least several meters). With contaminant transport by advection, mechanical dispersion, and molecular diffusion this study suggests that in field sites where D_m_e_c_h/D_e_f_f is larger than 10, DRIF

  5. Evolutionary relationships and functional diversity of plant sulfate transporters.

    Science.gov (United States)

    Takahashi, Hideki; Buchner, Peter; Yoshimoto, Naoko; Hawkesford, Malcolm J; Shiu, Shin-Han

    2011-01-01

    Sulfate is an essential nutrient cycled in nature. Ion transporters that specifically facilitate the transport of sulfate across the membranes are found ubiquitously in living organisms. The phylogenetic analysis of known sulfate transporters and their homologous proteins from eukaryotic organisms indicate two evolutionarily distinct groups of sulfate transport systems. One major group named Tribe 1 represents yeast and fungal SUL, plant SULTR, and animal SLC26 families. The evolutionary origin of SULTR family members in land plants and green algae is suggested to be common with yeast and fungal SUL and animal anion exchangers (SLC26). The lineage of plant SULTR family is expanded into four subfamilies (SULTR1-SULTR4) in land plant species. By contrast, the putative SULTR homologs from Chlorophyte green algae are in two separate lineages; one with the subfamily of plant tonoplast-localized sulfate transporters (SULTR4), and the other diverged before the appearance of lineages for SUL, SULTR, and SLC26. There also was a group of yet undefined members of putative sulfate transporters in yeast and fungi divergent from these major lineages in Tribe 1. The other distinct group is Tribe 2, primarily composed of animal sodium-dependent sulfate/carboxylate transporters (SLC13) and plant tonoplast-localized dicarboxylate transporters (TDT). The putative sulfur-sensing protein (SAC1) and SAC1-like transporters (SLT) of Chlorophyte green algae, bryophyte, and lycophyte show low degrees of sequence similarities with SLC13 and TDT. However, the phylogenetic relationship between SAC1/SLT and the other two families, SLC13 and TDT in Tribe 2, is not clearly supported. In addition, the SAC1/SLT family is absent in the angiosperm species analyzed. The present study suggests distinct evolutionary trajectories of sulfate transport systems for land plants and green algae.

  6. Organelle-localized potassium transport systems in plants.

    Science.gov (United States)

    Hamamoto, Shin; Uozumi, Nobuyuki

    2014-05-15

    Some intracellular organelles found in eukaryotes such as plants have arisen through the endocytotic engulfment of prokaryotic cells. This accounts for the presence of plant membrane intrinsic proteins that have homologs in prokaryotic cells. Other organelles, such as those of the endomembrane system, are thought to have evolved through infolding of the plasma membrane. Acquisition of intracellular components (organelles) in the cells supplied additional functions for survival in various natural environments. The organelles are surrounded by biological membranes, which contain membrane-embedded K(+) transport systems allowing K(+) to move across the membrane. K(+) transport systems in plant organelles act coordinately with the plasma membrane intrinsic K(+) transport systems to maintain cytosolic K(+) concentrations. Since it is sometimes difficult to perform direct studies of organellar membrane proteins in plant cells, heterologous expression in yeast and Escherichia coli has been used to elucidate the function of plant vacuole K(+) channels and other membrane transporters. The vacuole is the largest organelle in plant cells; it has an important task in the K(+) homeostasis of the cytoplasm. The initial electrophysiological measurements of K(+) transport have categorized three classes of plant vacuolar cation channels, and since then molecular cloning approaches have led to the isolation of genes for a number of K(+) transport systems. Plants contain chloroplasts, derived from photoautotrophic cyanobacteria. A novel K(+) transport system has been isolated from cyanobacteria, which may add to our understanding of K(+) flux across the thylakoid membrane and the inner membrane of the chloroplast. This chapter will provide an overview of recent findings regarding plant organellar K(+) transport proteins. Copyright © 2014 Elsevier GmbH. All rights reserved.

  7. A desk study of surface diffusion and mass transport in clay

    International Nuclear Information System (INIS)

    Cook, A.J.

    1988-09-01

    The concept of a geological barrier to radionuclide migration from theoretical radioactive waste repositories has drawn attention to the physico-chemical properties of clays, which are traditionally regarded as retarding media. This report addresses the different mechanisms of transport of radionuclides through clay and in particular focuses on the surface diffusion movement of sorbed cations. The relative contributory importance of the different transport mechanisms is governed by the pore size distributions and interconnections within the clay fabric. Surface diffusion data in the literature have been from experiments using compacted montmorillonite and biotite gneiss. A possible programme of laboratory work is outlined, based on diffusion experiments, which describes the way of measuring the effect of surface diffusion more accurately in clays, mudstones and shales. (author)

  8. Sugar Transporters in Plants: New Insights and Discoveries.

    Science.gov (United States)

    Julius, Benjamin T; Leach, Kristen A; Tran, Thu M; Mertz, Rachel A; Braun, David M

    2017-09-01

    Carbohydrate partitioning is the process of carbon assimilation and distribution from source tissues, such as leaves, to sink tissues, such as stems, roots and seeds. Sucrose, the primary carbohydrate transported long distance in many plant species, is loaded into the phloem and unloaded into distal sink tissues. However, many factors, both genetic and environmental, influence sucrose metabolism and transport. Therefore, understanding the function and regulation of sugar transporters and sucrose metabolic enzymes is key to improving agriculture. In this review, we highlight recent findings that (i) address the path of phloem loading of sucrose in rice and maize leaves; (ii) discuss the phloem unloading pathways in stems and roots and the sugar transporters putatively involved; (iii) describe how heat and drought stress impact carbohydrate partitioning and phloem transport; (iv) shed light on how plant pathogens hijack sugar transporters to obtain carbohydrates for pathogen survival, and how the plant employs sugar transporters to defend against pathogens; and (v) discuss novel roles for sugar transporters in plant biology. These exciting discoveries and insights provide valuable knowledge that will ultimately help mitigate the impending societal challenges due to global climate change and a growing population by improving crop yield and enhancing renewable energy production. © The Author 2017. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  9. Diffusive heat transport across magnetic islands and stochastic layers in tokamaks

    International Nuclear Information System (INIS)

    Hoelzl, Matthias

    2010-01-01

    Heat transport in tokamak plasmas with magnetic islands and ergodic field lines was simulated at realistic plasma parameters in realistic tokamak geometries. This requires the treatment of anisotropic heat diffusion, which is more efficient along magnetic field lines by up to ten orders of magnitude than perpendicular to them. Comparisons with analytical predictions and experimental measurements allow to determine the stability properties of neoclassical tearing modes as well as the experimental heat diffusion anisotropy.

  10. Second order time evolution of the multigroup diffusion and P1 equations for radiation transport

    International Nuclear Information System (INIS)

    Olson, Gordon L.

    2011-01-01

    Highlights: → An existing multigroup transport algorithm is extended to be second-order in time. → A new algorithm is presented that does not require a grey acceleration solution. → The two algorithms are tested with 2D, multi-material problems. → The two algorithms have comparable computational requirements. - Abstract: An existing solution method for solving the multigroup radiation equations, linear multifrequency-grey acceleration, is here extended to be second order in time. This method works for simple diffusion and for flux-limited diffusion, with or without material conduction. A new method is developed that does not require the solution of an averaged grey transport equation. It is effective solving both the diffusion and P 1 forms of the transport equation. Two dimensional, multi-material test problems are used to compare the solution methods.

  11. Numerical fluid solutions for nonlocal electron transport in hot plasmas: Equivalent diffusion versus nonlocal source

    International Nuclear Information System (INIS)

    Colombant, Denis; Manheimer, Wallace

    2010-01-01

    Flux limitation and preheat are important processes in electron transport occurring in laser produced plasmas. The proper calculation of both of these has been a subject receiving much attention over the entire lifetime of the laser fusion project. Where nonlocal transport (instead of simple single flux limit) has been modeled, it has always been with what we denote the equivalent diffusion solution, namely treating the transport as only a diffusion process. We introduce here a new approach called the nonlocal source solution and show it is numerically viable for laser produced plasmas. It turns out that the equivalent diffusion solution generally underestimates preheat. Furthermore, the advance of the temperature front, and especially the preheat, can be held up by artificial 'thermal barriers'. The nonlocal source method of solution, on the other hand more accurately describes preheat and can stably calculate the solution for the temperature even if the heat flux is up the gradient.

  12. Dust particle diffusion in ion beam transport region

    Energy Technology Data Exchange (ETDEWEB)

    Miyamoto, N.; Okajima, Y.; Romero, C. F.; Kuwata, Y.; Kasuya, T.; Wada, M., E-mail: mwada@mail.doshisha.ac.jp [Graduate school of Science and Engineering, Doshisha University, Kyotanabe, Kyoto 610-0321 (Japan)

    2016-02-15

    Dust particles of μm size produced by a monoplasmatron ion source are observed by a laser light scattering. The scattered light signal from an incident laser at 532 nm wavelength indicates when and where a particle passes through the ion beam transport region. As the result, dusts with the size more than 10 μm are found to be distributed in the center of the ion beam, while dusts with the size less than 10 μm size are distributed along the edge of the ion beam. Floating potential and electron temperature at beam transport region are measured by an electrostatic probe. This observation can be explained by a charge up model of the dust in the plasma boundary region.

  13. Diffusive flux in a model of stochastically gated oxygen transport in insect respiration

    Energy Technology Data Exchange (ETDEWEB)

    Berezhkovskii, Alexander M. [Mathematical and Statistical Computing Laboratory, Division of Computational Bioscience, Center for Information Technology, National Institutes of Health, Bethesda, Maryland 20892 (United States); Shvartsman, Stanislav Y. [Department of Chemical and Biological Engineering and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08544 (United States)

    2016-05-28

    Oxygen delivery to insect tissues is controlled by transport through a branched tubular network that is connected to the atmosphere by valve-like gates, known as spiracles. In certain physiological regimes, the spiracles appear to be randomly switching between open and closed states. Quantitative analysis of this regime leads a reaction-diffusion problem with stochastically switching boundary condition. We derive an expression for the diffusive flux at long times in this problem. Our approach starts with the derivation of the passage probability for a single particle that diffuses between a stochastically gated boundary, which models the opening and closing spiracle, and the perfectly absorbing boundary, which models oxygen absorption by the tissue. This passage probability is then used to derive an expression giving the diffusive flux as a function of the geometric parameters of the tube and characteristic time scales of diffusion and gate dynamics.

  14. Advective-diffusive transport of D2O in unsaturated media under evaporation condition

    International Nuclear Information System (INIS)

    Koarashi, Jun; Atarashi-Andoh, Mariko; Amano, Hikaru; Yamazawa, Hiromi; Iida, Takao

    2003-01-01

    Advective-diffusive transport of HTO in unsaturated media was investigated empirically using deuterated water (D 2 O) and columns filled with glass beads. The tortuosity factor was evaluated by numerical model calculations corresponding to first experiment for diffusion under no-evaporation condition. Temporal variations in depth profiles of D 2 O concentrations in the columns were observed by second experiment, which considers the transferring and spreading of D 2 O by pore-water flow caused by evaporation. Measurements and model calculations indicated that diffusion was about two times more efficient than dispersion for D 2 O spreading process under this evaporation condition. (author)

  15. Application of diffusion theory to the transport of neutral particles in fusion plasmas

    International Nuclear Information System (INIS)

    Hasan, M.Z.

    1985-01-01

    It is shown that the widely held view that diffusion theory can not provide good accuracy for the transport of neutral particles in fusion plasmas is misplaced. In fact, it is shown that multigroup diffusion theory gives quite good accuracy as compared to the transport theory. The reasons for this are elaborated and some of the physical and theoretical reasons which make the multigroup diffusion theory provide good accuracy are explained. Energy dependence must be taken into consideration to obtain a realistic neutral atom distribution in fusion plasmas. There are two reasons for this; presence of either is enough to necessitate an energy dependent treatment. First, the plasma temperature varies spatially, and second, the ratio of charge-exchange to total plasma-neutral interaction cross section (c) is not close to one. A computer code to solve the one-dimensional multigroup diffusion theory in general geometry (slab, cylindrical and spherical) has been written for use on Cray computers, and its results are compared with those from the one-dimensional transport code ANISN to support the above finding. A fast, compact and versatile two-dimensional finite element multigroup diffusion theory code, FINAT, in X-Y and R-Z cylindrical/toroidal geometries has been written for use on CRAY computers. This code has been compared with the two dimensional transport code DOT-4.3. The accuracy is very good, and FENAT runs much faster compared even to DOT-4.3 which is a finite difference code

  16. Climatology of transport and diffusion conditions along the United States Atlantic and Gulf coasts

    International Nuclear Information System (INIS)

    Raynor, G.S.; Hayes, J.V.

    1981-01-01

    A study of the atmospheric transport and diffusion climatology of the United States east and Gulf coasts was conducted to aid in planning and site selection for potentially polluting installations. This paper presents selected results from an extensive statistical study. Regular hourly observational data were obtained from 30 coastal stations from Maine to Texas and analyzed in terms of conditions important to emission transport and diffusion. The 30 stations included four pairs with one of each pair at a greater distance from the coast than the other but near the same latitude

  17. Transport of beta-blockers and calcium antagonists by diffusion in cat myocardium

    DEFF Research Database (Denmark)

    Haunsø, Stig; Sejrsen, Per; Svendsen, Jesper Hastrup

    1991-01-01

    Beta-blockers and calcium antagonists have been claimed to possess cardioprotective properties. This study addresses the question of whether a significant amount of these drugs will reach the cardiac myocytes during no-flow ischemia, where solute transport depends solely on diffusion. In anesthet......Beta-blockers and calcium antagonists have been claimed to possess cardioprotective properties. This study addresses the question of whether a significant amount of these drugs will reach the cardiac myocytes during no-flow ischemia, where solute transport depends solely on diffusion...

  18. Multigroup neutron transport equation in the diffusion and P{sub 1} approximation

    Energy Technology Data Exchange (ETDEWEB)

    Obradovic, D [Boris Kidric Institute of nuclear sciences Vinca, Belgrade (Yugoslavia)

    1970-07-01

    Investigations of the properties of the multigroup transport operator, width and without delayed neutrons in the diffusion and P{sub 1} approximation, is performed using Keldis's theory of operator families as well as a technique . recently used for investigations into the properties of the general linearized Boltzmann operator. It is shown that in the case without delayed neutrons, multigroup transport operator in the diffusion and P{sub 1} approximation possesses a complete set of generalized eigenvectors. A formal solution to the initial value problem is also given. (author)

  19. Intracellular Transport of Cargo in a Sub-diffusive Environment over an Explicit Cytoskeletal Network

    Science.gov (United States)

    Maelfeyt, Bryan; Gopinathan, Ajay

    Intracellular transport occurs in nearly all eukaryotic cells, where materials such as proteins, lipids, carbohydrates, and nucleic acids travel to target locations through phases of passive, diffusion-based transport and active, motor-driven transport along filaments that make up the cell's cytoskeleton.We develop a computational model of the process with explicit cytoskeletal filament networks. In the active transport phase, cargo moves in straight lines along these filaments that are spread throughout the cell. To model the passive transport phase of cargo in the cytoplasm, where anomalous sub-diffusion is thought to take place, we implement a continuous-time random walk. We use this approach to provide a stepping stone to a predictive model where we can determine transport properties over a cytoskeletal network provided by experimental images of real filaments. We illustrate our approach by modeling the transport of insulin out of the cell and determining the impact of network geometry, anomalous sub-diffusion and motor number on the first-passage time distributions for insulin granules reaching their target destinations on the membrane.

  20. The influence of collisional and anomalous radial diffusion on parallel ion transport in edge plasmas

    International Nuclear Information System (INIS)

    Helander, P.; Hazeltine, R.D.; Catto, P.J.

    1996-01-01

    The orderings in the kinetic equations commonly used to study the plasma core of a tokamak do not allow a balance between parallel ion streaming and radial diffusion, and are, therefore, inappropriate in the plasma edge. Different orderings are required in the edge region where radial transport across the steep gradients associated with the scrape-off layer is large enough to balance the rapid parallel flow caused by conditions close to collecting surfaces (such as the Bohm sheath condition). In the present work, we derive and solve novel kinetic equations, allowing for such a balance, and construct distinctive transport laws for impure, collisional, edge plasmas in which the perpendicular transport is (i) due to Coulomb collisions of ions with heavy impurities, or (ii) governed by anomalous diffusion driven by electrostatic turbulence. In both the collisional and anomalous radial transport cases, we find that one single diffusion coefficient determines the radial transport of particles, momentum and heat. The parallel transport laws and parallel thermal force in the scrape-off layer assume an unconventional form, in which the relative ion-impurity flow is driven by a combination of the conventional parallel gradients, and new (i) collisional or (ii) anomalous terms involving products of radial derivatives of the temperature and density with the radial shear of the parallel velocity. Thus, in the presence of anomalous radial diffusion, the parallel ion transport cannot be entirely classical, as usually assumed in numerical edge computations. The underlying physical reason is the appearance of a novel type of parallel thermal force resulting from the combined action of anomalous diffusion and radial temperature and velocity gradients. In highly sheared flows the new terms can modify impurity penetration into the core plasma

  1. Sucrose assimilation and the role of sucrose transporters in plant ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-12-29

    Dec 29, 2008 ... African Journal of Biotechnology Vol. 7 (25), pp. ... Review. Sucrose assimilation and the role of sucrose transporters in plant wound response. Omodele ... Key words: Sucrose transporters, Plasma membrane, carbohydrate, sieve element, source-sink. ... pathogens (Paul et al., 2000) and results in a severe.

  2. Modeling mesoscale diffusion and transport processes for releases within coastal zones during land/sea breezes

    International Nuclear Information System (INIS)

    Lyons, W.A.; Keen, C.S.; Schuh, J.A.

    1983-12-01

    This document discusses the impacts of coastal mesoscale regimes (CMRs) upon the transport and diffusion of potential accidental radionuclide releases from a shoreline nuclear power plant. CMRs exhibit significant spatial (horizontal and vertical) and temporal variability. Case studies illustrate land breezes, sea/lake breeze inflows and return flows, thermal internal boundary layers, fumigation, plume trapping, coastal convergence zones, thunderstorms and snow squalls. The direct application of a conventional Gaussian straight-line dose assessment model, initialized only by on-site tower data, can potentially produce highly misleading guidance as to plume impact locations. Since much is known concerning CMRs, there are many potential improvements to modularized dose assessment codes, such as by proper parameterization of TIBLs, forecasting the inland penetration of convergence zones, etc. A three-dimensional primitive equation prognostic model showed excellent agreement with detailed lake breeze field measurements, giving indications that such codes can be used in both diagnostic and prognostic studies. The use of relatively inexpensive supplemental meteorological data especially from remote sensing systems (Doppler sodar, radar, lightning strike tracking) and computerized data bases should save significantly on software development costs. Better quality assurance of emergency response codes could include systems of flags providing personnel with confidence levels as to the applicability of a code being used during any given CMR

  3. Spin transport in diffusive ferromagnetic Josephson junctions with noncollinear magnetization

    Energy Technology Data Exchange (ETDEWEB)

    Shomali, Zahra; Zareyan, Malek [Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45195 (Iran, Islamic Republic of); Belzig, Wolfgang [Fachbereich Physik, Universitaet Konstanz, D-78457 Konstanz (Germany)

    2011-07-01

    We numerically study the Josephson coupling of two s-wave superconductors which are connected through a diffusive contact made of two ferromagnetic domains with the magnetization vectors misoriented by an angle {theta}. The assumed superconducting leads are conventional s-wave type with the phase difference of {phi}. Using the quantum circuit theory, we find that in addition to the charge supercurrent, which shows a 0-{pi} transition relative to the angle {theta}, the spin supercurrent with a spin polarization normal to the magnetization vectors will flow through the contact. Our results present a 0-{pi} quantum phase transition as a function of the wave vector, Q{xi}. Finally, we investigate the spin supercurrent in an extended magnetic texture with multiple domain walls. We find the behavior of spin supercurrent is highly sensitive to the barrier. When asymmetric barriers don't change the value of the spin supercurrent, the symmetric ones decrease the value of it notably. We also investigate some other interesting effects for these systems. In addition, we present when Q{xi} is the even multiple of {pi}, the spin-current which is penetrated into the nonhomogeneous ferromagnets is nearly zero, how ever the odd ones show the large amount of penetrated spin supercurrent.

  4. Measuring groundwater transport through lake sediments by advection and diffusion

    International Nuclear Information System (INIS)

    Cornett, R.J.; Risto, B.A.; Lee, D.R.

    1989-08-01

    A method for estimating low rates of groundwater inflow and outflow through the bottom sediments of surface waters was developed and tested. A one-dimensional advection-diffusion model was fitted to measured pore water profiles of two nonreactive solutes, tritiated water and chloride, and the advection rate was calculated by a nonlinear least squares technique. Using 3 H profiles measured 0-0.5 m below the sediment-water interface, rates of groundwater advection into a lake through interbedded sands and gyttja were estimated to be about 1.0 m/year. In midlake locations underlain by soft organic gyttja, rates of advection were much lower (<0.1 m/year). Knowledge of the rate and direction of groundwater flow substantially altered the interpretation of pore water profiles within the sediments and the fluxes of solutes. This technique can be used to estimate flow rates less than 2 m/annum with minimal disturbance, without enclosing the sediments in a container, in a diversity of systems. (author)

  5. Lateral diffusion of CO2 in leaves of the crassulacean acid metabolism plant Kalanchoe daigremontiana Hamet et Perrier.

    Science.gov (United States)

    Duarte, Heitor M; Jakovljevic, Ivona; Kaiser, Friedemann; Lüttge, Ulrich

    2005-04-01

    Dynamic patchiness of photosystem II (PSII) activity in leaves of the crassulacean acid metabolism (CAM) plant Kalanchoe daigremontiana Hamet et Perrier, which was independent of stomatal control and was observed during both the day/night cycle and circadian endogenous oscillations of CAM, was previously explained by lateral CO2 diffusion and CO2 signalling in the leaves [Rascher et al. (2001) Proc Natl Acad Sci USA 98:11801-11805; Rascher and Luttge (2002) Plant Biol 4:671-681]. The aim here was to actually demonstrate the importance of lateral CO2 diffusion and its effects on localized PSII activity. Covering small sections of entire leaves with silicone grease was used for local exclusion of a contribution of atmospheric CO2 to internal CO2 via transport through stomata. A setup for combined measurement of gas exchange and chlorophyll fluorescence imaging was used for recording photosynthetic activity with a spatiotemporal resolution. When remobilization of malic acid from vacuolar storage and its decarboxylation in the CAM cycle caused increasing internal CO2 concentrations sustaining high PSII activity behind closed stomata, PSII activity was also increased in adjacent leaf sections where vacuolar malic acid accumulation was minimal as a result of preventing external CO2 supply due to leaf-surface greasing, and where therefore CO2 could only be supplied by diffusion from the neighbouring malic acid-remobilizing leaf tissue. This demonstrates lateral CO2 diffusion and its effect on local photosynthetic activity.

  6. Proposed sale of radioactively contaminated nickel ingots located at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky

    International Nuclear Information System (INIS)

    1995-10-01

    The U.S. Department of Energy (DOE) proposes to sell 8,500 radioactively contaminated nickel ingots (9.350 short tons), currently in open storage at the Paducah Gaseous Diffusion Plant (PGDP), to Scientific Ecology Group, Inc. (SEG) for decontamination and resale on the international market. SEG would take ownership of the ingots when they are loaded for transport by truck to its facility in Oak Ridge, Tennessee. SEG would receive approximately 200 short tons per month over approximately 48 months (an average of 180 ingots per month). The nickel decontamination process specified in SEG's technical proposal is considered the best available technology and has been demonstrated in prototype at SEG. The resultant metal for resale would have contamination levels between 0.3 and 20 becquerel per gram (Bq/g). The health hazards associated with release of the decontaminated nickel are minimal. The activity concentration of the end product would be further reduced when the nickel is combined with other metals to make stainless steel. Low-level radioactive waste from the SEG decontamination process, estimated to be approximately 382 m 3 (12,730 ft), would be shipped to a licensed commercial or DOE disposal facility. If the waste were packaged in 0.23 m 3 -(7.5 ft 3 -) capacity drums, approximately 1,500 to 1,900 drums would be transported over the 48-month contract period. Impacts from the construction of decontamination facilities and the selected site are minimal

  7. Transport proteins of the plant plasma membrane

    Science.gov (United States)

    Assmann, S. M.; Haubrick, L. L.; Evans, M. L. (Principal Investigator)

    1996-01-01

    Recently developed molecular and genetic approaches have enabled the identification and functional characterization of novel genes encoding ion channels, ion carriers, and water channels of the plant plasma membrane.

  8. Theory of spin-polarized transport in ferromagnet-semiconductor structures: Unified description of ballistic and diffusive transport

    International Nuclear Information System (INIS)

    Lipperheide, R.; Wille, U.

    2006-01-01

    A theory of spin-polarized electron transport in ferromagnet-semiconductor heterostructures, based on a unified semiclassical description of ballistic and diffusive transport in semiconductors, is outlined. The aim is to provide a framework for studying the interplay of spin relaxation and transport mechanism in spintronic devices. Transport inside the (nondegenerate) semiconductor is described in terms of a thermoballistic current, in which electrons move ballistically in the electric field arising from internal and external electrostatic potentials, and are thermalized at randomly distributed equilibration points. Spin relaxation is allowed to take place during the ballistic motion. For arbitrary potential profile and arbitrary values of the momentum and spin relaxation lengths, an integral equation for a spin transport function determining the spin polarization in the semiconductor is derived. For field-driven transport in a homogeneous semiconductor, the integral equation can be converted into a second-order differential equation that generalizes the spin drift-diffusion equation. The spin polarization in ferromagnet-semiconductor structures is obtained by matching the spin-resolved chemical potentials at the interfaces, with allowance for spin-selective interface resistances. Illustrative examples are considered

  9. New diffusion-like solutions of one-speed transport equations in spherical geometry

    International Nuclear Information System (INIS)

    Sahni, D.C.

    1988-01-01

    Stationary, one-speed, spherically symmetric transport equations are considered in a conservative medium. Closed-form expressions are obtained for the angular flux ψ(r, μ) that yield a total flux varying as 1/r by using Sonine transforms. Properties of this solution are studied and it is shown that the solution can not be identified as a diffusion mode solution of the transport equation. Limitations of the Sonine transform technique are noted. (author)

  10. Determination of operating limits for radionuclides for a proposed landfill at Paducah Gaseous Diffusion Plant

    International Nuclear Information System (INIS)

    Wang, J.C.; Lee, D.W.; Ketelle, R.H.; Lee, R.R.; Kocher, D.C.

    1994-01-01

    The operating limits for radionuclides in sanitary and industrial wastes were determined for a proposed landfill at the Paducah Gaseous Diffusion Plant (PGDP), Kentucky. These limits, which may be very small but nonzero, are not mandated by law or regulation but are needed for rational operation. The approach was based on analyses of the potential contamination of groundwater at the plant boundary and the potential exposure to radioactivity of an intruder at the landfill after closure. The groundwater analysis includes (1) a source model describing the disposal of waste and the release of radionuclides from waste to the groundwater, (2) site-specific groundwater flow and contaminant transport calculations, and (3) calculations of operating limits from the dose limit and conversion factors. The intruder analysis includes pathways through ingestion of contaminated vegetables and soil, external exposure to contaminated soil, and inhalation of suspended activity from contaminated soil particles. In both analyses, a limit on annual effective dose equivalent of 4 mrem (0.04 mSv) was adopted. The intended application of the results is to refine the radiological monitoring standards employed by the PGDP Health Physics personnel to determine what constitutes radioactive wastes, with concurrence of the Commonwealth of Kentucky

  11. Morphological, Chemical Surface, and Diffusive Transport Characterizations of a Nanoporous Alumina Membrane

    Directory of Open Access Journals (Sweden)

    María I. Vázquez

    2015-12-01

    Full Text Available Synthesis of a nanoporous alumina membrane (NPAM by the two-step anodization method and its morphological and chemical surface characterization by analyzing Scanning Electron Microscopy (SEM micrographs and X-Ray Photoelectron Spectroscopy (XPS spectra is reported. Influence of electrical and diffusive effects on the NaCl transport across the membrane nanopores is determined from salt diffusion measurements performed with a wide range of NaCl concentrations, which allows the estimation of characteristic electrochemical membrane parameters such as the NaCl diffusion coefficient and the concentration of fixed charges in the membrane, by using an appropriated model and the membrane geometrical parameters (porosity and pore length. These results indicate a reduction of ~70% in the value of the NaCl diffusion coefficient through the membrane pores with respect to solution. The transport number of ions in the membrane pores (Na+ and Cl−, respectively were determined from concentration potential measurements, and the effect of concentration-polarization at the membrane surfaces was also considered by comparing concentration potential values obtained with stirred solutions (550 rpm and without stirring. From both kinds of results, a value higher than 0.05 M NaCl for the feed solution seems to be necessary to neglect the contribution of electrical interactions in the diffusive transport.

  12. Asymptotic solutions of numerical transport problems in optically thick, diffusive regimes

    International Nuclear Information System (INIS)

    Larsen, E.W.; Morel, J.E.; Miller, W.F. Jr.

    1987-01-01

    We present an asymptotic analysis of spatial differencing schemes for the discrete-ordinates equations, for diffusive media with spatial cells that are not optically thin. Our theoretical tool is an asymptotic expansion that has previously been used to describe the transform from analytic transport to analytic diffusion theory for such media. To introduce this expansion and its physical rationale, we first describe it for the analytic discrete-ordinates equations. Then, we apply the expansion to the spatially discretized discrete-ordinates equations, with the spatial mesh scaled in either of two physically relevant ways such that the optical thickness of the spatial cells is not small. If the result of either expansion is a legitimate diffusion description for either the cell-averaged or cell-edge fluxes, then we say that the approximate flux has the appropriate diffusion limit; otherwise, we say it does not. We consider several transport differencing schemes that are applicable in neutron transport and thermal radiation applications. We also include numerical results which demonstrate the validity of our theory and show that differencing schemes that do have a particular diffusion limit are substantially more accurate, in the regime described by the limit, than those that do not. copyright 1987 Academic Press, Inc

  13. Preliminary analyses on hydrogen diffusion through small break of thermo-chemical IS process hydrogen plant

    International Nuclear Information System (INIS)

    Somolova, Marketa; Terada, Atsuhiko; Takegami, Hiroaki; Iwatsuki, Jin

    2008-12-01

    Japan Atomic Energy Agency has been conducting a conceptual design study of nuclear hydrogen demonstration plant, that is, a thermal-chemical IS process hydrogen plant coupled with the High temperature Engineering Test Reactor (HTTR-IS), which will be planed to produce a large amount of hydrogen up to 1000m 3 /h. As part of the conceptual design work of the HTTR-IS system, preliminary analyses on small break of a hydrogen pipeline in the IS process hydrogen plant was carried out as a first step of the safety analyses. This report presents analytical results of hydrogen diffusion behaviors predicted with a CFD code, in which a diffusion model focused on the turbulent Schmidt number was incorporated. By modifying diffusion model, especially a constant accompanying the turbulent Schmidt number in the diffusion term, analytical results was made agreed well with the experimental results. (author)

  14. Ubiquity of non-diffusive momentum transport in JET H-modes

    NARCIS (Netherlands)

    Weisen, H.; Camenen, Y.; Salmi, A.; Versloot, T. W.; de Vries, P. C.; Maslov, M.; Tala, T.; Beurskens, M.; Giroud, C.; JET-EFDA Contributors,

    2012-01-01

    A broad survey of the experimental database of neutral beam heated baseline H-modes and hybrid scenarios in the JET tokamak has established the ubiquity of non-diffusive momentum transport mechanisms in rotating plasmas. As a result of their presence, the normalized angular frequency gradient R

  15. Hydrodynamic theory of convective transport across a dynamically stabilized diffuse boundary layer

    International Nuclear Information System (INIS)

    Gerhauser, H.

    1983-09-01

    The diffuse boundary layer between miscible liquids is subject to Rayleigh-Taylor instabilities if the heavy fluid is supported by the light one. The resulting rapid interchange of the liquids can be suppressed by enforcing vertical oscillations on the whole system. This dynamic stabilization is incomplete and produces some peculiar novel transport phenomena such as decay off the density profile into several steps, periodic peeling of density sheets of the boundary layer and the appearance of steady vortex flow. The theory presented in this paper identifies the basic mechanism as formation of convective cells leading to enhanced diffusion, and explains previous experimental results with water and ZnJ 2 -solutions. A nonlinear treatment of the stationary convective flow problem gives the saturation amplitude of the ground mode and provides an upper bound for the maximum convective transport. The hydrodynamic model can be used for visualizing similar transport processes in the plasma of toroidal confinement devices such as sawtooth oscillations in soft disruptions of tokamak discharges and anomalous diffusion by excitation of convective cells. The latter process is investigated here in some detail, leading to the result that the maximum possible transport is of the order of Bohm diffusion. (orig.)

  16. Advective and diffusive contributions to reactive gas transport during pyrite oxidation in the unsaturated zone

    NARCIS (Netherlands)

    Binning, P. J.; POSTMA, D; Russell, T. F.; Wesselingh, J. A.; Boulin, P. F.

    2007-01-01

    [1] Pyrite oxidation in unsaturated mine waste rock dumps and soils is limited by the supply of oxygen from the atmosphere. In models, oxygen transport through the subsurface is often assumed to be driven by diffusion. However, oxygen comprises 23.2% by mass of dry air, and when oxygen is consumed

  17. Diffusion and transport in the human interphase cell nucleus - FCS experiments compared to simulations.

    NARCIS (Netherlands)

    M. Wachsmuth (Malte); T.A. Knoch (Tobias); C. Münkel (Christian); J. Langowski (Jörg)

    2001-01-01

    markdownabstractDespite the succesful linear sequencing of the human genome the three-dimensional arrangement of chromatin, functional, and structural components is still largely unknown. Molecular transport and diffusion are important for processes like gene regulation, replication, or repair and

  18. Transport from diffuse sources of contamination and its application to a coupled unsaturated - saturated system

    NARCIS (Netherlands)

    Ommen, van H.C.

    1988-01-01

    A simple theory to predict groundwater quality upon contamination from diffuse sources was developed. It appeared that an analogy exists between the predominant transport phenomena and the reaction of a reservoir, in which perfect mixing takes place. Such an analogy enables a simple

  19. Influence of magnetic impurities on charge transport in diffusive-normal-metal/superconductor junctions

    NARCIS (Netherlands)

    Yokoyama, T.; Tanaka, Y.; Golubov, Alexandre Avraamovitch; Inoue, J.; Asano, Y.

    2005-01-01

    Charge transport in the diffusive normal metal (DN)/insulator/s- and d-wave superconductor junctions is studied in the presence of magnetic impurities in DN in the framework of the quasiclassical Usadel equations with the generalized boundary conditions. The cases of s- and d-wave superconducting

  20. Theory of thermal and charge transport in diffusive normal metal / superconductor junctions

    NARCIS (Netherlands)

    Yokoyama, T.; Tanaka, Y.; Golubov, Alexandre Avraamovitch; Asano, Y.

    2005-01-01

    Thermal and charge transport in diffusive normal metal (DN)/insulator/s-, d-, and p-wave superconductor junctions are studied based on the Usadel equation with the Nazarov's generalized boundary condition. We derive a general expression of the thermal conductance in unconventional superconducting

  1. Diffusive transport and evaporation to the atmosphere from a NAPL source in the vadose zone

    DEFF Research Database (Denmark)

    Holtegaard, L.E.; Bjerre, T.; Christophersen, Mette

    2002-01-01

    To evaluate the risks concerned with the presence of volatile organic compounds in the unsaturated zone it is important to know how the compounds are transported in the soil. In this project the effective diffusion coefficient of 3-methylpentane, hexane, methyl-cyclopentane, iso-octane and methyl...

  2. Diffusion as a Ruler: Modeling Kinesin Diffusion as a Length Sensor for Intraflagellar Transport.

    Science.gov (United States)

    Hendel, Nathan L; Thomson, Matthew; Marshall, Wallace F

    2018-02-06

    An important question in cell biology is whether cells are able to measure size, either whole cell size or organelle size. Perhaps cells have an internal chemical representation of size that can be used to precisely regulate growth, or perhaps size is just an accident that emerges due to constraint of nutrients. The eukaryotic flagellum is an ideal model for studying size sensing and control because its linear geometry makes it essentially one-dimensional, greatly simplifying mathematical modeling. The assembly of flagella is regulated by intraflagellar transport (IFT), in which kinesin motors carry cargo adaptors for flagellar proteins along the flagellum and then deposit them at the tip, lengthening the flagellum. The rate at which IFT motors are recruited to begin transport into the flagellum is anticorrelated with the flagellar length, implying some kind of communication between the base and the tip and possibly indicating that cells contain some mechanism for measuring flagellar length. Although it is possible to imagine many complex scenarios in which additional signaling molecules sense length and carry feedback signals to the cell body to control IFT, might the already-known components of the IFT system be sufficient to allow length dependence of IFT? Here we investigate a model in which the anterograde kinesin motors unbind after cargo delivery, diffuse back to the base, and are subsequently reused to power entry of new IFT trains into the flagellum. By mathematically modeling and simulating such a system, we are able to show that the diffusion time of the motors can in principle be sufficient to serve as a proxy for length measurement. We found that the diffusion model can not only achieve a stable steady-state length without the addition of any other signaling molecules or pathways, but also is able to produce the anticorrelation between length and IFT recruitment rate that has been observed in quantitative imaging studies. Copyright © 2017 Biophysical

  3. A hybrid transport-diffusion Monte Carlo method for frequency-dependent radiative-transfer simulations

    International Nuclear Information System (INIS)

    Densmore, Jeffery D.; Thompson, Kelly G.; Urbatsch, Todd J.

    2012-01-01

    Discrete Diffusion Monte Carlo (DDMC) is a technique for increasing the efficiency of Implicit Monte Carlo radiative-transfer simulations in optically thick media. In DDMC, particles take discrete steps between spatial cells according to a discretized diffusion equation. Each discrete step replaces many smaller Monte Carlo steps, thus improving the efficiency of the simulation. In this paper, we present an extension of DDMC for frequency-dependent radiative transfer. We base our new DDMC method on a frequency-integrated diffusion equation for frequencies below a specified threshold, as optical thickness is typically a decreasing function of frequency. Above this threshold we employ standard Monte Carlo, which results in a hybrid transport-diffusion scheme. With a set of frequency-dependent test problems, we confirm the accuracy and increased efficiency of our new DDMC method.

  4. Multi-level nonlinear diffusion acceleration method for multigroup transport k-Eigenvalue problems

    International Nuclear Information System (INIS)

    Anistratov, Dmitriy Y.

    2011-01-01

    The nonlinear diffusion acceleration (NDA) method is an efficient and flexible transport iterative scheme for solving reactor-physics problems. This paper presents a fast iterative algorithm for solving multigroup neutron transport eigenvalue problems in 1D slab geometry. The proposed method is defined by a multi-level system of equations that includes multigroup and effective one-group low-order NDA equations. The Eigenvalue is evaluated in the exact projected solution space of smallest dimensionality, namely, by solving the effective one- group eigenvalue transport problem. Numerical results that illustrate performance of the new algorithm are demonstrated. (author)

  5. Diffusion Dominant Solute Transport Modelling In Deep Repository Under The Effect of Emplacement Media Degradation - 13285

    International Nuclear Information System (INIS)

    Kwong, S.; Jivkov, A.P.

    2013-01-01

    Deep geologic disposal of high activity and long-lived radioactive waste is being actively considered and pursued in many countries, where low permeability geological formations are used to provide long term waste contaminant with minimum impact to the environment and risk to the biosphere. A multi-barrier approach that makes use of both engineered and natural barriers (i.e. geological formations) is often used to further enhance the containment performance of the repository. As the deep repository system subjects to a variety of thermo-hydro-chemo-mechanical (THCM) effects over its long 'operational' lifespan (e.g. 0.1 to 1.0 million years, the integrity of the barrier system will decrease over time (e.g. fracturing in rock or clay)). This is broadly referred as media degradation in the present study. This modelling study examines the effects of media degradation on diffusion dominant solute transport in fractured media that are typical of deep geological environment. In particular, reactive solute transport through fractured media is studied using a 2-D model, that considers advection and diffusion, to explore the coupled effects of kinetic and equilibrium chemical processes, while the effects of degradation is studied using a pore network model that considers the media diffusivity and network changes. Model results are presented to demonstrate the use of a 3D pore-network model, using a novel architecture, to calculate macroscopic properties of the medium such as diffusivity, subject to pore space changes as the media degrade. Results from a reactive transport model of a representative geological waste disposal package are also presented to demonstrate the effect of media property change on the solute migration behaviour, illustrating the complex interplay between kinetic biogeochemical processes and diffusion dominant transport. The initial modelling results demonstrate the feasibility of a coupled modelling approach (using pore-network model and reactive

  6. Transport of neutral solute across articular cartilage: the role of zonal diffusivities.

    Science.gov (United States)

    Arbabi, V; Pouran, B; Weinans, H; Zadpoor, A A

    2015-07-01

    Transport of solutes through diffusion is an important metabolic mechanism for the avascular cartilage tissue. Three types of interconnected physical phenomena, namely mechanical, electrical, and chemical, are all involved in the physics of transport in cartilage. In this study, we use a carefully designed experimental-computational setup to separate the effects of mechanical and chemical factors from those of electrical charges. Axial diffusion of a neutral solute Iodixanol into cartilage was monitored using calibrated microcomputed tomography micro-CT images for up to 48 hr. A biphasic-solute computational model was fitted to the experimental data to determine the diffusion coefficients of cartilage. Cartilage was modeled either using one single diffusion coefficient (single-zone model) or using three diffusion coefficients corresponding to superficial, middle, and deep cartilage zones (multizone model). It was observed that the single-zone model cannot capture the entire concentration-time curve and under-predicts the near-equilibrium concentration values, whereas the multizone model could very well match the experimental data. The diffusion coefficient of the superficial zone was found to be at least one order of magnitude larger than that of the middle zone. Since neutral solutes were used, glycosaminoglycan (GAG) content cannot be the primary reason behind such large differences between the diffusion coefficients of the different cartilage zones. It is therefore concluded that other features of the different cartilage zones such as water content and the organization (orientation) of collagen fibers may be enough to cause large differences in diffusion coefficients through the cartilage thickness.

  7. Uranium hexafluoride packaging tiedown systems overview at Portsmouth Gaseous Diffusion Plant, Piketon, Ohio

    International Nuclear Information System (INIS)

    Becker, D.L.; Lindquist, M.R.

    1993-01-01

    The Portsmouth Gaseous Diffusion Plant (PORTS) in Piketon, Ohio, is operated by Martin Marietta Energy Systems, Inc., through the US Department of Energy-Oak Ridge Operations Office (DOE-ORO) for the US Department of Energy-Headquarters, Office of Nuclear Energy. The PORTS conducts those operations that are necessary for the production, packaging, and shipment of enriched uranium hexafluoride (UF 6 ). Uranium hexafluoride enriched greater than 1.0 wt percent 235 U shall be packaged in accordance with the US Department of Transportation (DOT) regulations of Title 49 CFR Parts 173 and 178, or in US Nuclear Regulatory Commission (NRC) or US Department of Energy (DOE) certified package designs. Concerns have been expressed regarding the various tiedown methods and condition of the trailers being used by some shippers/carriers for international transport of the UF 6 cylinders/overpacks. International shipments typically are not made using dedicated trailers, and numerous trailers have been received at PORTS with improperly and potentially dangerously secured overpacks. Because of the concerns about international shipments, the US Department of Energy-Headquarters (DOE-HQ) Office of Nuclear Energy, through DOE-HQ Transportation Management Division, requested Westinghouse Hanford Company (Westinghouse Hanford) to review UF 6 packaging tiedown and shipping practices used by PORTS; and where possible and appropriate, provide recommendations for enhancing these practices. Consequently, a team of two individuals from Westinghouse Hanford visited PORTS on March 5 and 6, 1990, for the purpose of conducting this review. The paper provides a brief discussion of the review activities and a summary of the resulting findings and recommendations

  8. Transportation of part supply improvement in agricultural machinery assembly plant

    Science.gov (United States)

    Saysaman, Anusit; Chutima, Parames

    2018-02-01

    This research focused on the problem caused by the transportation of part supply in agricultural machinery assembly plant in Thailand, which is one of the processes that are critical to the whole production process. If poorly managed, it will affect transportation of part supply, the emergence of sink cost, quality problems, and the ability to respond to the needs of the customers in time. Since the competition in the agricultural machinery market is more intense, the efficiency of part transportation process has to be improved. In this study, the process of transporting parts of the plant was studied and it was found that the efficiency of the process of transporting parts from the sub assembly line to its main assembly line was 83%. The approach to the performance improvement is done by using the Lean tool to limit wastes based on the ECRS principle and applying pull production system by changing the transportation method to operate as milkrun for transportation of parts to synchronize with the part demands of the main assembly line. After the transportation of parts from sub-assembly line to the main assembly line was improved, the efficiency raised to 98% and transportation process cost was saved to 540,000 Baht per year.

  9. Asymptotic diffusion limit of cell temperature discretisation schemes for thermal radiation transport

    International Nuclear Information System (INIS)

    Smedley-Stevenson, Richard P.; McClarren, Ryan G.

    2015-01-01

    This paper attempts to unify the asymptotic diffusion limit analysis of thermal radiation transport schemes, for a linear-discontinuous representation of the material temperature reconstructed from cell centred temperature unknowns, in a process known as ‘source tilting’. The asymptotic limits of both Monte Carlo (continuous in space) and deterministic approaches (based on linear-discontinuous finite elements) for solving the transport equation are investigated in slab geometry. The resulting discrete diffusion equations are found to have nonphysical terms that are proportional to any cell-edge discontinuity in the temperature representation. Based on this analysis it is possible to design accurate schemes for representing the material temperature, for coupling thermal radiation transport codes to a cell centred representation of internal energy favoured by ALE (arbitrary Lagrange–Eulerian) hydrodynamics schemes

  10. Analytical solutions of a fractional diffusion-advection equation for solar cosmic-ray transport

    International Nuclear Information System (INIS)

    Litvinenko, Yuri E.; Effenberger, Frederic

    2014-01-01

    Motivated by recent applications of superdiffusive transport models to shock-accelerated particle distributions in the heliosphere, we analytically solve a one-dimensional fractional diffusion-advection equation for the particle density. We derive an exact Fourier transform solution, simplify it in a weak diffusion approximation, and compare the new solution with previously available analytical results and with a semi-numerical solution based on a Fourier series expansion. We apply the results to the problem of describing the transport of energetic particles, accelerated at a traveling heliospheric shock. Our analysis shows that significant errors may result from assuming an infinite initial distance between the shock and the observer. We argue that the shock travel time should be a parameter of a realistic superdiffusive transport model.

  11. Asymptotic diffusion limit of cell temperature discretisation schemes for thermal radiation transport

    Energy Technology Data Exchange (ETDEWEB)

    Smedley-Stevenson, Richard P., E-mail: richard.smedley-stevenson@awe.co.uk [AWE PLC, Aldermaston, Reading, Berkshire, RG7 4PR (United Kingdom); Department of Earth Science and Engineering, Imperial College London, SW7 2AZ (United Kingdom); McClarren, Ryan G., E-mail: rmcclarren@ne.tamu.edu [Department of Nuclear Engineering, Texas A & M University, College Station, TX 77843-3133 (United States)

    2015-04-01

    This paper attempts to unify the asymptotic diffusion limit analysis of thermal radiation transport schemes, for a linear-discontinuous representation of the material temperature reconstructed from cell centred temperature unknowns, in a process known as ‘source tilting’. The asymptotic limits of both Monte Carlo (continuous in space) and deterministic approaches (based on linear-discontinuous finite elements) for solving the transport equation are investigated in slab geometry. The resulting discrete diffusion equations are found to have nonphysical terms that are proportional to any cell-edge discontinuity in the temperature representation. Based on this analysis it is possible to design accurate schemes for representing the material temperature, for coupling thermal radiation transport codes to a cell centred representation of internal energy favoured by ALE (arbitrary Lagrange–Eulerian) hydrodynamics schemes.

  12. Heat transport in the XXZ spin chain: from ballistic to diffusive regimes and dephasing enhancement

    International Nuclear Information System (INIS)

    Mendoza-Arenas, J J; Al-Assam, S; Clark, S R; Jaksch, D

    2013-01-01

    In this work we study the heat transport in an XXZ spin-1/2 Heisenberg chain with homogeneous magnetic field, incoherently driven out of equilibrium by reservoirs at the boundaries. We focus on the effect of bulk dephasing (energy-dissipative) processes in different parameter regimes of the system. The non-equilibrium steady state of the chain is obtained by simulating its evolution under the corresponding Lindblad master equation, using the time evolving block decimation method. In the absence of dephasing, the heat transport is ballistic for weak interactions, while being diffusive in the strongly interacting regime, as evidenced by the heat current scaling with the system size. When bulk dephasing takes place in the system, diffusive transport is induced in the weakly interacting regime, with the heat current monotonically decreasing with the dephasing rate. In contrast, in the strongly interacting regime, the heat current can be significantly enhanced by dephasing for systems of small size. (paper)

  13. Characterization of diffusive transport in cementitious materials: influence of microstructure in mortars

    International Nuclear Information System (INIS)

    Larbi, B.

    2013-01-01

    Concrete durability is a subject of considerable interest, especially with the use of cement based materials on structures increasingly demanding on term of sustainability and resistance to aggressive ions penetration or radionuclide release. Diffusion is considered as one of the main transport phenomena that cause migration of aggressive solutes and radionuclide in a porous media according to most studies. In order to enable more effective prediction of structures service life, the understanding of the link between cement based materials microstructure and transport macro properties needed to be enhanced. In this context, the present study is undertaken to enhance our understanding of the links between microstructure and tritiated water diffusivity in saturated mortars. The effect of aggregates via the ITZ (Interfacial Transition Zone) on transport properties and materials durability is studied. (author) [fr

  14. A hybrid transport-diffusion method for Monte Carlo radiative-transfer simulations

    International Nuclear Information System (INIS)

    Densmore, Jeffery D.; Urbatsch, Todd J.; Evans, Thomas M.; Buksas, Michael W.

    2007-01-01

    Discrete Diffusion Monte Carlo (DDMC) is a technique for increasing the efficiency of Monte Carlo particle-transport simulations in diffusive media. If standard Monte Carlo is used in such media, particle histories will consist of many small steps, resulting in a computationally expensive calculation. In DDMC, particles take discrete steps between spatial cells according to a discretized diffusion equation. Each discrete step replaces many small Monte Carlo steps, thus increasing the efficiency of the simulation. In addition, given that DDMC is based on a diffusion equation, it should produce accurate solutions if used judiciously. In practice, DDMC is combined with standard Monte Carlo to form a hybrid transport-diffusion method that can accurately simulate problems with both diffusive and non-diffusive regions. In this paper, we extend previously developed DDMC techniques in several ways that improve the accuracy and utility of DDMC for nonlinear, time-dependent, radiative-transfer calculations. The use of DDMC in these types of problems is advantageous since, due to the underlying linearizations, optically thick regions appear to be diffusive. First, we employ a diffusion equation that is discretized in space but is continuous in time. Not only is this methodology theoretically more accurate than temporally discretized DDMC techniques, but it also has the benefit that a particle's time is always known. Thus, there is no ambiguity regarding what time to assign a particle that leaves an optically thick region (where DDMC is used) and begins transporting by standard Monte Carlo in an optically thin region. Also, we treat the interface between optically thick and optically thin regions with an improved method, based on the asymptotic diffusion-limit boundary condition, that can produce accurate results regardless of the angular distribution of the incident Monte Carlo particles. Finally, we develop a technique for estimating radiation momentum deposition during the

  15. Uptake and transport of chromium in plants

    International Nuclear Information System (INIS)

    Ramachandran, V.; D'souza, T.J.; Mistry, K.B.

    1980-01-01

    The uptake of chromium, an important soil and water pollutant, by five different plant species was examined in nutrient culture experiments using chromium-51 as a tracer. The concentration in aerial tissues of both trivalent and hexavalent forms of chromium was the greatest in peas followed by beans, tomato and the cereals over identical uptake periods. The uptake of 51 Cr 3+ was, in general, greater than 51 CrO 4 2- . Studies with bean plants indicated that shoot uptake of both forms of chromium decreased with increasing pH and salt concentration of the external solution. Concentrations of 10 -4 M and 10 -5 M DNP inhibited 51 Cr uptake by bean shoots. (author)

  16. Diffusive smoothing of surfzone bathymetry by gravity-driven sediment transport

    Science.gov (United States)

    Moulton, M. R.; Elgar, S.; Raubenheimer, B.

    2012-12-01

    Gravity-driven sediment transport often is assumed to have a small effect on the evolution of nearshore morphology. Here, it is shown that down-slope gravity-driven sediment transport is an important process acting to smooth steep bathymetric features in the surfzone. Gravity-driven transport can be modeled as a diffusive term in the sediment continuity equation governing temporal (t) changes in bed level (h): ∂h/∂t ≈ κ ▽2h, where κ is a sediment diffusion coefficient that is a function of the bed shear stress (τb) and sediment properties, such as the grain size and the angle of repose. Field observations of waves, currents, and the evolution of large excavated holes (initially 10-m wide and 2-m deep, with sides as steep as 35°) in an energetic surfzone are consistent with diffusive smoothing by gravity. Specifically, comparisons of κ estimated from the measured bed evolution with those estimated with numerical model results for several transport theories suggest that gravity-driven sediment transport dominates the bed evolution, with κ proportional to a power of τb. The models are initiated with observed bathymetry and forced with observed waves and currents. The diffusion coefficients from the measurements and from the model simulations were on average of order 10-5 m2/s, implying evolution time scales of days for features with length scales of 10 m. The dependence of κ on τb varies for different transport theories and for high and low shear stress regimes. The US Army Corps of Engineers Field Research Facility, Duck, NC provided excellent logistical support. Funded by a National Security Science and Engineering Faculty Fellowship, a National Defense Science and Engineering Graduate Fellowship, and the Office of Naval Research.

  17. Transport of soluble proteins through the Golgi occurs by diffusion via continuities across cisternae

    Science.gov (United States)

    Beznoussenko, Galina V; Parashuraman, Seetharaman; Rizzo, Riccardo; Polishchuk, Roman; Martella, Oliviano; Di Giandomenico, Daniele; Fusella, Aurora; Spaar, Alexander; Sallese, Michele; Capestrano, Maria Grazia; Pavelka, Margit; Vos, Matthijn R; Rikers, Yuri GM; Helms, Volkhard; Mironov, Alexandre A; Luini, Alberto

    2014-01-01

    The mechanism of transport through the Golgi complex is not completely understood, insofar as no single transport mechanism appears to account for all of the observations. Here, we compare the transport of soluble secretory proteins (albumin and α1-antitrypsin) with that of supramolecular cargoes (e.g., procollagen) that are proposed to traverse the Golgi by compartment progression–maturation. We show that these soluble proteins traverse the Golgi much faster than procollagen while moving through the same stack. Moreover, we present kinetic and morphological observations that indicate that albumin transport occurs by diffusion via intercisternal continuities. These data provide evidence for a transport mechanism that applies to a major class of secretory proteins and indicate the co-existence of multiple intra-Golgi trafficking modes. DOI: http://dx.doi.org/10.7554/eLife.02009.001 PMID:24867214

  18. Application of diffusion theory to neutral atom transport in fusion plasmas

    International Nuclear Information System (INIS)

    Hasan, M.Z.; Conn, R.W.; Pomraning, G.C.

    1986-05-01

    It is found that energy dependent diffusion theory provides excellent accuracy in the modelling of transport of neutral atoms in fusion plasmas. Two reasons in particular explain the good accuracy. First, while the plasma is optically thick for low energy neutrals, it is optically thin for high energy neutrals and diffusion theory with Marshak boundary conditions gives accurate results for an optically thin medium even for small values of 'c', the ratio of the scattering to the total cross section. Second, the effective value of 'c' at low energy becomes very close to one due to the down-scattering via collisions of high energy neutrals. The first reason is proven both computationally and theoretically by solving the transport equation in a power series in 'c' and the diffusion equation with 'general' Marshak boundary conditions. The second reason is established numerically by comparing the results from a one-dimensional, general geometry, multigroup diffusion theory code, written for this purpose, with the results obtained using the transport code ANISN

  19. Some experiments to study diffusive transport through a semi interpenetrating polymeric network in the absence and presence of aqueous electrolytes

    Science.gov (United States)

    Biswas, Pritha; Das, Atreyee; Yasmin, Tanvee; Kanjilal, Baishali; Chakrabarti, Haimanti

    2018-05-01

    The study of ion transport in biological system has become a topic of great current interest. This work presents the diffusive transport properties through a typical semi interpenetrating polymeric network (SIPN) which mimics many characteristic features of the walls of human food pipes. The SIPN matrix has been synthesised from Polyvinyl alcohol, Acrylamide monomer, Glutaraldehyde and Ammonium Per sulphate in our laboratory is utilised to study the diffusive transport in the absence and presence of aqueous electrolyte (KCl) at varying concentrations. The diffusivity of the SIPN polymer hydrogel was estimated by the `Theory of Elastomer' to get an insight into process of Potassium and Chlorine ion transport through the SIPN.

  20. Transport and diffusion climatology of the US Atlantic and Gulf coasts

    International Nuclear Information System (INIS)

    Raynor, G.S.; Hayes, J.V.

    1980-01-01

    This study is part of a larger study of coastal meteorology and diffusion and was planned to assist in site selection of energy facilities by describing the transport and diffusion climatology of the United States east and Gulf coasts in as much detail as can be extracted from readily available meteorological data. The area covered in this study is the United States east and Gulf coasts from Maine to Texas. The region studied is all within the coastal plain and is generally characterized by flat beaches and very gentle slopes inland except in New England, where the coast is more rugged and the terrain hilly close to the sea. Meteorological variables of primary concern in this study are those which govern or influence transport and diffusion of airborne gases and particles. The most important are wind direction and speed and some measure of diffusive capacity such as turbulence, gustiness or lapse rate. Eight stations were chosen to give four pairs for comparison between a coastal station and another somewhat farther inland. The pairs are Boston and Bedford, Massachusetts; Belmar and Lakehurst, New Jersey; Cape Kennedy and Orlando, Florida; and Galveston and Houston, Texas. The same years of data were obtained for both stations in each pair. Results of selected examples are presented. The frequency of calms and of winds in the three sectors relative to the coastline is reported for the 25 coastal stations from Portland, Maine (PWM) to Brownsville, Texas (BRO). Differences between day and night in wind direction distribution are shown for six selected stations. The frequency of the five diffusion rating classes at the same coastal stations during onshore winds is also shown. Differences in dffusion conditions between day and night at six selected stations are given. The results obtained were arranged for easy use with diffusion models in which the primary meteorological inputs are wind speed and measures of lateral and vertical diffusion

  1. A diffusive ink transport model for lipid dip-pen nanolithography

    Science.gov (United States)

    Urtizberea, A.; Hirtz, M.

    2015-09-01

    Despite diverse applications, phospholipid membrane stacks generated by dip-pen nanolithography (DPN) still lack a thorough and systematic characterization that elucidates the whole ink transport process from writing to surface spreading, with the aim of better controlling the resulting feature size and resolution. We report a quantitative analysis and modeling of the dependence of lipid DPN features (area, height and volume) on dwell time and relative humidity. The ink flow rate increases with humidity in agreement with meniscus size growth, determining the overall feature size. The observed time dependence indicates the existence of a balance between surface spreading and the ink flow rate that promotes differences in concentration at the meniscus/substrate interface. Feature shape is controlled by the substrate surface energy. The results are analyzed within a modified model for the ink transport of diffusive inks. At any humidity the dependence of the area spread on the dwell time shows two diffusion regimes: at short dwell times growth is controlled by meniscus diffusion while at long dwell times surface diffusion governs the process. The critical point for the switch of regime depends on the humidity.Despite diverse applications, phospholipid membrane stacks generated by dip-pen nanolithography (DPN) still lack a thorough and systematic characterization that elucidates the whole ink transport process from writing to surface spreading, with the aim of better controlling the resulting feature size and resolution. We report a quantitative analysis and modeling of the dependence of lipid DPN features (area, height and volume) on dwell time and relative humidity. The ink flow rate increases with humidity in agreement with meniscus size growth, determining the overall feature size. The observed time dependence indicates the existence of a balance between surface spreading and the ink flow rate that promotes differences in concentration at the meniscus

  2. Diffuser Design for Marine Outfalls in Areas with Strong Currents, High waves and Sediment Transport

    DEFF Research Database (Denmark)

    Larsen, Torben

    1995-01-01

    The design of marine outfalls is often based on environmental criteria for a minimum initial dilution. Accordingly advanced diffuser arrangement are designed to fulfil these requirements. A large number of examples of malfunction and blocking in sea outfalls have occurred around the world...... as a result of this uncompromising consent to environmental demands. Two examples of unconventional design are given in this paper. Both cases involved risk of blockage of the diffuser section because of wave and current induced sediment transport The paper also discusses how acceptable far field dilution...

  3. Allocation, stress tolerance and carbon transport in plants: how does phloem physiology affect plant ecology?

    Science.gov (United States)

    Savage, Jessica A; Clearwater, Michael J; Haines, Dustin F; Klein, Tamir; Mencuccini, Maurizio; Sevanto, Sanna; Turgeon, Robert; Zhang, Cankui

    2016-04-01

    Despite the crucial role of carbon transport in whole plant physiology and its impact on plant-environment interactions and ecosystem function, relatively little research has tried to examine how phloem physiology impacts plant ecology. In this review, we highlight several areas of active research where inquiry into phloem physiology has increased our understanding of whole plant function and ecological processes. We consider how xylem-phloem interactions impact plant drought tolerance and reproduction, how phloem transport influences carbon allocation in trees and carbon cycling in ecosystems and how phloem function mediates plant relations with insects, pests, microbes and symbiotes. We argue that in spite of challenges that exist in studying phloem physiology, it is critical that we consider the role of this dynamic vascular system when examining the relationship between plants and their biotic and abiotic environment. © 2015 John Wiley & Sons Ltd.

  4. Convective and diffusive effects on particle transport in asymmetric periodic capillaries.

    Directory of Open Access Journals (Sweden)

    Nazmul Islam

    Full Text Available We present here results of a theoretical investigation of particle transport in longitudinally asymmetric but axially symmetric capillaries, allowing for the influence of both diffusion and convection. In this study we have focused attention primarily on characterizing the influence of tube geometry and applied hydraulic pressure on the magnitude, direction and rate of transport of particles in axi-symmetric, saw-tooth shaped tubes. Three initial value problems are considered. The first involves the evolution of a fixed number of particles initially confined to a central wave-section. The second involves the evolution of the same initial state but including an ongoing production of particles in the central wave-section. The third involves the evolution of particles a fully laden tube. Based on a physical model of convective-diffusive transport, assuming an underlying oscillatory fluid velocity field that is unaffected by the presence of the particles, we find that transport rates and even net transport directions depend critically on the design specifics, such as tube geometry, flow rate, initial particle configuration and whether or not particles are continuously introduced. The second transient scenario is qualitatively independent of the details of how particles are generated. In the third scenario there is no net transport. As the study is fundamental in nature, our findings could engender greater understanding of practical systems.

  5. The transport of natural radionuclides from soil to plants

    International Nuclear Information System (INIS)

    Bikit, I.; Conkic, Lj.; Slivka, J.; Krmar, M.

    1995-01-01

    The transport and accumulation processes of Ra-226, U-238, Th-232 and K-40 from soil to plants have been studied. Plant samples with consumable parts grown below surface have been bred in natural conditions on soil with enhanced levels of natural radioactivity (barren soil of the uranium mine Gabrovnica-Kalna). An intensive transport of heavy natural radionuclides from soil to the roots was established. The transfer factors for U-238 and Ra-226 have been much bigger than for Th-232. The most intensive uptake was registered for beet root. (author)

  6. Quantitative characterization of water transport and flooding in the diffusion layers of polymer electrolyte fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Casalegno, A.; Colombo, L.; Galbiati, S.; Marchesi, R. [Department of Energy, Politecnico di Milano, via Lambruschini 4, 20156 Milano (Italy)

    2010-07-01

    Optimization of water management in polymer electrolyte membrane fuel cells (PEMFC) and in direct methanol fuel cells (DMFC) is a very important factor for the achievement of high performances and long lifetime. A good hydration of the electrolyte membrane is essential for high proton conductivity; on the contrary water in excess may lead to electrode flooding and severe reduction in performances. Many studies on water transport across the gas diffusion layer (GDL) have been carried out to improve these components; anyway efforts in this field are affected by lack of effective experimental methods. The present work reports an experimental investigation with the purpose to determine the global coefficient of water transport across different diffusion layers under real operating conditions. An appropriate and accurate experimental apparatus has been designed and built to test the single GDL under a wide range of operating conditions. Data analysis has allowed quantification of both the water vapor transport across different diffusion layers, and the effects of micro-porous layers; furthermore flooding onset and its consequences on the mass transport coefficient have been characterized by means of suitably defined parameters. (author)

  7. Recovery of energy in a gaseous diffusion plant

    International Nuclear Information System (INIS)

    Ergalant, Jacques; Guais, J.-C.; Perrault, Michel; Vignet, Paul

    1975-01-01

    Any energy recovery, even partial, goes in the direction of savings in energy and should be sought for. The Tricastin plant, now in the course of being built, will be able to deliver several hundreds of MW for the purpose of urban and agricultural heating. The new Coredif project will more completely integrate the valorization of calories in its definition (choice of temperatures, design of the heat exchangers, recovery cycles). In fact the recent evolution in energy costs renders the otpimization of a plant equipped with a heat recovery system (1 to 2% on the cost of the uranium produced) now economically worth-while. In the same way, the choice of the site of the future plant may be conditioned by the possible uses of calories in its vicinity [fr

  8. 29 CFR 788.11 - “Transporting [such] products to the mill, processing plant, railroad, or other transportation...

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 3 2010-07-01 2010-07-01 false âTransporting [such] products to the mill, processing plant... EMPLOYED § 788.11 “Transporting [such] products to the mill, processing plant, railroad, or other transportation terminal.” The transportation or movement of logs or other forestry products to a “mill processing...

  9. Investigating water transport through the xylem network in vascular plants.

    Science.gov (United States)

    Kim, Hae Koo; Park, Joonghyuk; Hwang, Ildoo

    2014-04-01

    Our understanding of physical and physiological mechanisms depends on the development of advanced technologies and tools to prove or re-evaluate established theories, and test new hypotheses. Water flow in land plants is a fascinating phenomenon, a vital component of the water cycle, and essential for life on Earth. The cohesion-tension theory (CTT), formulated more than a century ago and based on the physical properties of water, laid the foundation for our understanding of water transport in vascular plants. Numerous experimental tools have since been developed to evaluate various aspects of the CTT, such as the existence of negative hydrostatic pressure. This review focuses on the evolution of the experimental methods used to study water transport in plants, and summarizes the different ways to investigate the diversity of the xylem network structure and sap flow dynamics in various species. As water transport is documented at different scales, from the level of single conduits to entire plants, it is critical that new results be subjected to systematic cross-validation and that findings based on different organs be integrated at the whole-plant level. We also discuss the functional trade-offs between optimizing hydraulic efficiency and maintaining the safety of the entire transport system. Furthermore, we evaluate future directions in sap flow research and highlight the importance of integrating the combined effects of various levels of hydraulic regulation.

  10. Carbon dioxide sequestration: Modeling the diffusive and convective transport under a CO2 cap

    KAUST Repository

    Allen, Rebecca

    2012-01-01

    A rise in carbon dioxide levels from industrial emissions is contributing to the greenhouse effect and global warming. CO2 sequestration in saline aquifers is a strategy to reduce atmospheric CO2 levels. Scientists and researchers rely on numerical simulators to predict CO2 storage by modeling the fluid transport behaviour. Studies have shown that after CO2 is injected into a saline aquifer, undissolved CO2 rises due to buoyant forces and will spread laterally away from the injection site under an area of low permeability. CO2 from this ‘capped\\' region diffuses into the fluid underlying it, and the resulting CO2-fluid mixture increases in density. This increase in density leads to gravity-driven convection. Accordingly, diffusive-convective transport is important to model since it predicts an enhanced storage capacity of the saline aquifer. This work incorporates the diffusive and convective transport processes into the transport modeling equation, and uses a self-generated code. Discretization of the domain is done with a cell-centered finite difference method. Cases are set up using similar parameters from published literature in order to compare results. Enhanced storage capacity is predicted in this work, similar to work done by others. A difference in the onset of convective transport between this work and published results is noticed and discussed in this paper. A sensitivity analysis is performed on the density model used in this work, and on the diffusivity value assumed. The analysis shows that the density model and diffusivity value is a key component on simulation results. Also, perturbations are added to porosity and permeability in order to see the effect of perturbations on the onset of convection, and results agree with similar findings by others. This work provides a basis for studying other cases, such as the impact of heterogeneity on the diffusion-convective transport. An extension of this work may involve the use of an equation of state to

  11. The Profile of Student Misconceptions on The Human and Plant Transport Systems

    Science.gov (United States)

    Ainiyah, M.; Ibrahim, M.; Hidayat, M. T.

    2018-01-01

    This research aims to identify misconceptions on the humans and plants transportation systems. The research was done in the 8th grade in Indonesia. Data were collected to use a three-tier test. This type of research was used survey design. Content analysis was used to analyze the misconception data. The results of this research were the location of misconception of each student is different. The highest misconceptions identified in this research, namely: a) arteries that drain blood to the heart (73.3%); b) veins that drain blood from the heart (70.0%); c) place of oxygen and carbon dioxide exchange occurs in the veins (66.7%); d) blood pressure in veins greater than in capillaries (63.3%); e) absorption of water occurs diffusion and absorption of minerals occurs osmosis (76.7%); f) transport of photosynthesis process occurs by diffusion (66.7%); g) photosynthesis process occurs during the day (63.3%); and h) process of evaporation of water through the leaves are guttation (56.7%). The results of this research show that the level of students misconceptions on the of human and plant transport systems is still high so that it can serve as a reference to improve the learning process and the reduction of student misconceptions.

  12. Peculiarities of the radioactive particles transport phenomena in the facilitated diffusion processes

    International Nuclear Information System (INIS)

    Gavryushenko, D.A.; Sisojev, V.M.; Cherevko, K.V.; Vlasenko, T.S.

    2017-01-01

    The work is devoted to the up to date problem that is the description of the radioactive particle diffusion processes. One of the aims of the present study is to estimate the effects caused by the irradiation of the liquid systems on the ongoing transport processes. That can allow predicting the behavior of the liquid systems in the presence of the radioactive sources. The main objective of the present work is studying the radioactive particles diffusion phenomena with the possible facilitated diffusion processes being considered. The phenomena are studied based on the fundamental relations of the nonequilibrium statistical thermodynamics. The diffusive flows are evaluated with the special attention given to the accounting of the entropy effects due to the appearance of the new radioactive particles in the system. The developed approach is used to estimate the diffusive flow of the radioactive particles for the case of the plane-parallel pore with the semi-transparent walls. The choice of a model can be justified as it might be used to describe the production of the radioactive contaminated water when the radionuclide face the diffusion process after being washed from the radioactive wastes and the rests of the nuclear fuel. Within the suggested model it is shown that the diffusion coefficient depends on the structural properties of the liquid systems that might be changed under the influence of the irradiation. The obtained equations for calculating the diffusive flows show the definite stabilizing effect in respect to the concentration difference in between the boundaries of the plane-parallel pore. It leads to the decreased changes of the diffusive flow when the concentrations of the radioactive particles at the boundaries are changed in comparison with those observed for the constant diffusion coefficient. The observed behavior for the ideal solution model is explained by the entropy effects. The qualitative analysis of the possible influence of the changes in

  13. Dispersion of UO2F2 aerosol and HF vapor in the operating floor during winter ventilation at the Paducah Gaseous Diffusion Plant

    International Nuclear Information System (INIS)

    Kim, S.H.; Chen, N.C.J.; Taleyarkhan, R.P.; Keith, K.D.; Schmidt, R.W.; Carter, J.C.

    1996-01-01

    The gaseous diffusion process is currently employed at two plants in the US: the Paducah Gaseous Diffusion Plant and the Portsmouth Gaseous Diffusion Plant. As part of a facility-wide safety evaluation, a postulated design basis accident involving large line-rupture induced releases of uranium hexafluoride (UF 6 ) into the process building of a gaseous diffusion plant (GDP) is evaluated. When UF 6 is released into the atmosphere, it undergoes an exothermic chemical reaction with moisture (H 2 O) in the air to form vaporized hydrogen fluoride (HF) and aerosolized uranyl fluoride (UO 2 F 2 ). These reactants disperse in the process building and transport through the building ventilation system. The ventilation system draws outside air into the process building, distributes it evenly throughout the building, and discharges it to the atmosphere at an elevated temperature. Since air is recirculated from the cell floor area to the operating floor, issues concerning in-building worker safety and evacuation need to be addressed. Therefore, the objective of this study is to evaluate the transport of HF vapor and UO 2 F 2 aerosols throughout the operating floor area following B-line break accident in the cell floor area

  14. Transport phenomena of nanoparticles in plants and animals/humans.

    Science.gov (United States)

    Anjum, Naser A; Rodrigo, Miguel Angel Merlos; Moulick, Amitava; Heger, Zbynek; Kopel, Pavel; Zítka, Ondřej; Adam, Vojtech; Lukatkin, Alexander S; Duarte, Armando C; Pereira, Eduarda; Kizek, Rene

    2016-11-01

    The interaction of a plethora nanoparticles with major biota such as plants and animals/humans has been the subject of various multidisciplinary studies with special emphasis on toxicity aspects. However, reports are meager on the transport phenomena of nanoparticles in the plant-animal/human system. Since plants and animals/humans are closely linked via food chain, discussion is imperative on the main processes and mechanisms underlying the transport phenomena of nanoparticles in the plant-animal/human system, which is the main objective of this paper. Based on the literature appraised herein, it is recommended to perform an exhaustive exploration of so far least explored aspects such as reproducibility, predictability, and compliance risks of nanoparticles, and insights into underlying mechanisms in context with their transport phenomenon in the plant-animal/human system. The outcomes of the suggested studies can provide important clues for fetching significant benefits of rapidly expanding nanotechnology to the plant-animal/human health-improvements and protection as well. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Nitrogen-system safety study: Portsmouth Gaseous Diffusion Plant

    International Nuclear Information System (INIS)

    1982-07-01

    The Department of Energy has primary responsibility for the safety of operations at DOE-owned nuclear facilities. The guidelines for the analysis of credible accidents are outlined in DOE Order 5481.1. DOE has requested that existing plant facilities and operations be reviewed for potential safety problems not covered by standard industrial safety procedures. This review is being conducted by investigating individual facilities and documenting the results in Safety Study Reports which will be compiled to form the Existing Plant Final Safety Analysis Report which is scheduled for completion in September, 1984. This Safety Study documents the review of the Plant Nitrogen System facilities and operations and consists of Section 4.0, Facility and Process Description, and Section 5.0, Accident Analysis, of the Final Safety Analysis Report format. The existing nitrogen system consists of a Superior Air Products Company Type D Nitrogen Plant, nitrogen storage facilities, vaporization facilities and a distribution system. The system is designed to generate and distribute nitrogen gas used in the cascade for seal feed, buffer systems, and for servicing equipment when exceptionally low dew points are required. Gaseous nitrogen is also distributed to various process auxiliary buildings. The average usage is approximately 130,000 standard cubic feet per day

  16. LANMAS alpha configured for Sandia National Laboratories and Paducah Gaseous Diffusion Plant

    International Nuclear Information System (INIS)

    Woychick, M.R.; Bracey, J.T.; Kern, E.A.; Alvarado, A.

    1993-07-01

    Los Alamos National Laboratory and the Westinghouse Hanford Company have been working jointly for the past 2 years to develop LANMAS (Local Area Network Material Accountability System), the next generation of a US Department of Energy nuclear material accountability system. LANMAS is being designed to reflect the broad-based needs of the US Department of Energy's Material Control ampersand Accountability and Nuclear Materials Management communities, and its developers believe that significant cost savings can be achieved by implementing LANMAS complex-wide, where feasible. LANMAS is being designed so that it is transportable to appropriate US Department of Energy sites. To accomplish this, LANMAS will be configurable to local site work culture. Many US Department of Energy sites are interested in the LANMAS project, and several have participated in its development; some have committed resources. The original LANMAS project team included representatives from the Hanford Site and Los Alamos. As of June 1993, the following sites have also supported the project: Sandia National Laboratory Albuquerque; Sandia National Laboratory Livermore; Paducah Gaseous Diffusion Plant; Lawrence Livermore National Laboratory; Bettis Atomic Power Laboratory; and Knolls Atomic Power Laboratory. In addition, LANMAS is being targeted as a candidate for the US Department of Energy Complex 21, a project designed to restructure the nation's nuclear weapons complex

  17. Power dependence of ion thermal diffusivity at the internal transport barrier in JT-60U

    Energy Technology Data Exchange (ETDEWEB)

    Sakamoto, Yoshiteru; Suzuki, Takahiro; Ide, Shunsuke [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment] [and others

    2002-09-01

    The formation properties of an internal transport barrier (ITB) were investigated in a weak positive magnetic shear plasma by changing the neutral beam heating power. The ion thermal diffusivity in the core region shows L-mode state, weak ITB, and strong ITB, depending upon the heating power. Two features of ITB formation were experimentally confirmed. Weak ITB was formed in spite of the absence of an apparent transition in an ion temperature profile. On the other hand, strong ITB appeared after an apparent transition from the weak ITB. In addition, the ion thermal diffusivity at the ITB is correlated to the radial electric field shear. In the case of the weak ITB, ion thermal diffusivity decreased gradually with increases in the radial electric field shear. There exists a threshold in the radial electric field shear, which allows for a change in state from that of weak to strong ITBs. (author)

  18. Thermal diffusivity and electron transport properties of NTC samples obtained by the photoacoustic method

    International Nuclear Information System (INIS)

    Savic, S.M.; Aleksic, O.S.; Nikolic, M.V.; Lukovic, D.T.; Pejovic, V.Z.; Nikolic, P.M.

    2006-01-01

    Thermal diffusivity and electron transport parameters of sintered NTC samples were determined by the photoacoustic (PA) technique. Powder mixtures composed of MnO, NiO, CoO and Fe 2 O 3 were milled to nanometer particle size. NTC discs were dry powder pressed and sintered at different temperatures in the range from 900 deg. C to 1300 deg. C for 30 min. A second group of NTC discs was sintered at 1200 deg. C with the sintering time varying from 30 min to 360 min. These NTC samples were polished and exposed to a chopped laser beam in order to plot a response in the acoustic range. The thermal diffusivity of sintered NTC layers based on a metal oxide powder mixture was measured at room temperature by the photoacoustic technique. An increase of thermal diffusivity with the sintering temperature and time of sintering was observed

  19. Thermal diffusivity and electron transport properties of NTC samples obtained by the photoacoustic method

    Energy Technology Data Exchange (ETDEWEB)

    Savic, S.M. [Institute of Technical Sciences of SASA, Knez Mihailova 35/IV, 11000 Belgrade (Serbia); Aleksic, O.S. [Center for Multidisciplinary Studies of the University of Belgrade, Kneza Viseslava 1, 11000 Belgrade (Serbia); Nikolic, M.V. [Center for Multidisciplinary Studies of the University of Belgrade, Kneza Viseslava 1, 11000 Belgrade (Serbia); Lukovic, D.T. [Institute of Technical Sciences of SASA, Knez Mihailova 35/IV, 11000 Belgrade (Serbia); Pejovic, V.Z. [Center for Multidisciplinary Studies of the University of Belgrade, Kneza Viseslava 1, 11000 Belgrade (Serbia); Nikolic, P.M. [Institute of Technical Sciences of SASA, Knez Mihailova 35/IV, 11000 Belgrade (Serbia)]. E-mail: nikolic@sanu.ac.yu

    2006-07-15

    Thermal diffusivity and electron transport parameters of sintered NTC samples were determined by the photoacoustic (PA) technique. Powder mixtures composed of MnO, NiO, CoO and Fe{sub 2}O{sub 3} were milled to nanometer particle size. NTC discs were dry powder pressed and sintered at different temperatures in the range from 900 deg. C to 1300 deg. C for 30 min. A second group of NTC discs was sintered at 1200 deg. C with the sintering time varying from 30 min to 360 min. These NTC samples were polished and exposed to a chopped laser beam in order to plot a response in the acoustic range. The thermal diffusivity of sintered NTC layers based on a metal oxide powder mixture was measured at room temperature by the photoacoustic technique. An increase of thermal diffusivity with the sintering temperature and time of sintering was observed.

  20. Convective-diffusive transport of fission products in the gap of a failed fuel element

    International Nuclear Information System (INIS)

    Lian, Z.W.; Carlucci, L.N.; Arimescu, V.I.

    1995-03-01

    A model is presented to describe the transport behaviour of gaseous fission products along the axial fuel-to-sheathe gap of a failed fuel element to the coolant system. The model is applicable to an element having failed under normal operating conditions or loss-of coolant-accident conditions. Because of the large differences in operating parameters, the transport characteristics of gaseous fission products in a failed element under these two operating conditions are significantly different. However, in both cases the transport process can be described by convection-diffusion caused by the continuous release of fission products from the fuel to the gap. Under normal operating conditions, the bulk-flow velocity is found to be negligible, due to the low release rate of fission products from fuel. The process can be well approximated by the diffusion of fission products in a stagnant gas-steam mixture. The effect of convection on the fission product transport, however, becomes significant under loss-of-coolant-accident conditions, where the release rates of fission products from fuel can be several orders of magnitude higher that that under normal operating conditions. The convection of the mixture in the gap not only contributes an additional flux to the gas-mixture transport, but also increases the gradient of fission products concentration across the opening, and therefore increases the diffusion flux to the coolant. As a result of the bulk flow, the transport of fission products along the gap is accelerated and the hold-up of short-lived isotopes in the gap is significantly reduced. Steam ingress through the opening into the gap is obstructed by the bulk flow, resulting in low steam concentrations in the gap under loss-of-coolant-accident conditions. (author). 6 refs., 8 figs

  1. Handling of UF6 in U.S. gaseous diffusion plants

    International Nuclear Information System (INIS)

    Legeay, A.J.

    1978-01-01

    A comprehensive systems analysis of UF 6 handling has been made in the three U.S. gaseous diffusion plants and has resulted in a significant impact on the equipment design and the operating procedures of these facilities. The equipment, facilities, and industrial practices in UF 6 handling operations as they existed in the early 1970's are reviewed with particular emphasis placed on the changes which have been implemented. The changes were applied to the systems and operating methods which evolved from the design, startup, and operation of the Oak Ridge Gaseous Diffusion Plant in 1945

  2. Portsmouth Gaseous Diffusion Plant expansion, Piketon, Ohio. Volume 2. Draft environmental statement

    Energy Technology Data Exchange (ETDEWEB)

    Pennington, W. H.

    1976-06-01

    The need for additional uranium enrichment facilities and the environmental impacts of the add-on gaseous diffusion plant proposed for the Portsmouth Gaseous Diffusion Plant are discussed. A detailed description of the proposed facilities is included and unavoidable adverse environmental effects, possible alternatives, and anticipated benefits from the proposed facilities are considered. The flora and fauna of the area are tabulated and possible effects of air and water pollution on aquatic and terrestrial ecosystems are postulated. The extent of anticipated noise impact on the vicinity and the anticipated extent of civic envolvement are discussed. (CH)

  3. Portsmouth Gaseous Diffusion Plant expansion, Piketon, Ohio. Volume 2. Draft environmental statement

    International Nuclear Information System (INIS)

    1976-06-01

    The need for additional uranium enrichment facilities and the environmental impacts of the add-on gaseous diffusion plant proposed for the Portsmouth Gaseous Diffusion Plant are discussed. A detailed description of the proposed facilities is included and unavoidable adverse environmental effects, possible alternatives, and anticipated benefits from the proposed facilities are considered. The flora and fauna of the area are tabulated and possible effects of air and water pollution on aquatic and terrestrial ecosystems are postulated. The extent of anticipated noise impact on the vicinity and the anticipated extent of civic envolvement are discussed

  4. Preliminary study of PCBs in raccoons living on or near the Paducah Gaseous Diffusion Plant, Kentucky

    Energy Technology Data Exchange (ETDEWEB)

    Halbrook, Richard S. [Southern Illinois Univ., Carbondale, IL (United States). Dept. of Zoology. Cooperative Wildlife Research Lab. Kentucky Research Consortium for Energy and Environment

    2016-01-15

    The “Ecological Monitoring at the Paducah Gaseous Diffusion Plant: Historical Evaluation and Guidelines for Future Monitoring” report (Halbrook, et al. 2007) recommended the raccoon as a species for study at the Paducah Gaseous Diffusion Plant (PGDP). This species was selected to fill data gaps in ecological resources and provide resource managers with knowledge that will be valuable in making decisions and implementing specific actions to safeguard ecological resources and reduce human exposure. The current paper reports results of a preliminary evaluation to establish protocols for collection of tissues and initial screening of polychlorinated biphenyls (PCBs) in raccoons collected near the PGDP. These data are useful in developing future more comprehensive studies.

  5. Advective and diffusive contributions to reactive gas transport during pyrite oxidation in the unsaturated zone

    DEFF Research Database (Denmark)

    Binning, Philip John; Postma, Diederik Jan; Russel, T.F.

    2007-01-01

    Pyrite oxidation in unsaturated mine waste rock dumps and soils is limited by the supply of oxygen from the atmosphere. In models, oxygen transport through the subsurface is often assumed to be driven by diffusion. However, oxygen comprises 23.2% by mass of dry air, and when oxygen is consumed at...... parameters; for example, the time to approach steady state depends exponentially on the distance between the soil surface and the subsurface reactive zone. Copyright 2007 by the American Geophysical Union....... at depth in the unsaturated zone, a pressure gradient is created between the reactive zone and the ground surface, causing a substantial advective air flow into the subsurface. To determine the balance between advective and diffusive transport, a one-dimensional multicomponent unsaturated zone gas...

  6. Resuspension of toxic aerosol using MATHEW--ADPIC wind field--transport and diffusion codes

    International Nuclear Information System (INIS)

    Porch, W.M.

    1979-01-01

    Computer codes have been written which estimate toxic aerosol resuspension based on computed deposition from a primary source, wind, and surface characteristics. The primary deposition pattern and the transport, diffusion, and redeposition of the resuspended toxic aerosol are calculated using a mass-consistent wind field model including topography (MATHEW) and a particle-in-cell diffusion and transport model (ADPIC) which were developed at LLL. The source term for resuspended toxic aerosol is determined by multiplying the total aerosol flux as a function of wind speed by the area of highest concentration and the fraction of suspended material estimated to be toxic. Preliminary calculations based on a test problem at the Nevada Test Site determined an hourly averaged maximum resuspension factor of 10 -4 for a 15 m/sec wind which is within an admittedly large range of resuspension factor measurements using experimental data

  7. A statistical approach for predicting thermal diffusivity profiles in fusion plasmas as a transport model

    International Nuclear Information System (INIS)

    Yokoyama, Masayuki

    2014-01-01

    A statistical approach is proposed to predict thermal diffusivity profiles as a transport “model” in fusion plasmas. It can provide regression expressions for the ion and electron heat diffusivities (χ i and χ e ), separately, to construct their radial profiles. An approach that this letter is proposing outstrips the conventional scaling laws for the global confinement time (τ E ) since it also deals with profiles (temperature, density, heating depositions etc.). This approach has become possible with the analysis database accumulated by the extensive application of the integrated transport analysis suite to experiment data. In this letter, TASK3D-a analysis database for high-ion-temperature (high-T i ) plasmas in the LHD (Large Helical Device) is used as an example to describe an approach. (author)

  8. Uranium isotope separation by gaseous diffusion and plant safety

    International Nuclear Information System (INIS)

    Simeon, Claude; Dumas, Maurice.

    1980-07-01

    This report constitutes a safety guide for operators of uranium isotope separation plants, and includes both aspects of safety and protection. Taking into account the complexity of safety problems raised at design and during operation of plants which require specialized guides, this report mainly considers both the protection of man, the environment and goods, and the principles of occupational safety. It does not claim to be comprehensive, but intends to state the general principles, the particular points related to the characteristics of the basic materials and processes, and to set forth a number of typical solutions suitable for various human and technical environments. It is based on the French experience gained during the last fifteen years [fr

  9. Characterization of transport properties in uranium dioxide: the case of the oxygen auto-diffusion

    International Nuclear Information System (INIS)

    Fraczkiewicz, M.; Baldinozzi, G.

    2008-01-01

    Point defects in uranium dioxide which control the transport phenomena are still badly known. The aim of this work is to show how in carrying out several experimental techniques, it is possible to demonstrate both the existence and to determine the nature (charge and localization) of predominant defects responsible of the transport phenomena in a fluorite-type structure oxide. The oxygen diffusion in the uranium dioxide illustrates this. In the first part of this work, the accent is put on the electric properties of uranium dioxide and more particularly on the variation laws of the electric conductivity in terms of temperature, of oxygen potential and of the impurities amounts present in the material. These evolutions are connected to point and charged complex defects models and the pertinence of these models is discussed. Besides, it is shown how the electric conductivity measurements can allow to define oxygen potential domains in which the concentrations in electronic carriers are controlled. This characterization being made, it is shown that the determination of the oxygen intrinsic diffusion coefficient and particularly its dependence to the oxygen potential and to the amount of impurity, allows to determine the main defect responsible to the atomic diffusion as well as its nature and its charge. In the second part, the experimental techniques to determine the oxygen diffusion coefficient are presented: there are the isotopic exchange technique for introducing the tracer in the material, and two techniques to characterize the diffusion profiles (SIMS and NRA). Examples of preliminary results are given for mono and polycrystalline samples. At last, from this methodology on uranium dioxide, studies considered to quantify the thermal and physicochemical effects are presented. Experiments considered with the aim to characterize the radiation diffusion in uranium dioxide are presented too. (O.M.)

  10. The Transport Equation in Optically Thick Media: Discussion of IMC and its Diffusion Limit

    Energy Technology Data Exchange (ETDEWEB)

    Szoke, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Brooks, E. D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-07-12

    We discuss the limits of validity of the Implicit Monte Carlo (IMC) method for the transport of thermally emitted radiation. The weakened coupling between the radiation and material energy of the IMC method causes defects in handling problems with strong transients. We introduce an approach to asymptotic analysis for the transport equation that emphasizes the fact that the radiation and material temperatures are always different in time-dependent problems, and we use it to show that IMC does not produce the correct diffusion limit. As this is a defect of IMC in the continuous equations, no improvement to its discretization can remedy it.

  11. A desk study of surface diffusion and mass transport in clay

    International Nuclear Information System (INIS)

    Cook, A.J.

    1989-01-01

    Research into the properties of clays as barrier materials for nuclear waste disposal has led to the realization that they have important transport properties which are relatively insignificant in most other geological materials. Sorption has always been regarded as a purely retarding mechanism, but laboratory experiments over the past decade have indicated that surface diffusion of sorbed cations is a potentially significant transport mechanism in both compacted montmorillonite, and biotite gneiss. The present desk study about these issues was part of the CEC coordinated project Mirage-Second phase, research area Natural analogues

  12. GABA signalling modulates plant growth by directly regulating the activity of plant-specific anion transporters.

    Science.gov (United States)

    Ramesh, Sunita A; Tyerman, Stephen D; Xu, Bo; Bose, Jayakumar; Kaur, Satwinder; Conn, Vanessa; Domingos, Patricia; Ullah, Sana; Wege, Stefanie; Shabala, Sergey; Feijó, José A; Ryan, Peter R; Gilliham, Matthew; Gillham, Matthew

    2015-07-29

    The non-protein amino acid, gamma-aminobutyric acid (GABA) rapidly accumulates in plant tissues in response to biotic and abiotic stress, and regulates plant growth. Until now it was not known whether GABA exerts its effects in plants through the regulation of carbon metabolism or via an unidentified signalling pathway. Here, we demonstrate that anion flux through plant aluminium-activated malate transporter (ALMT) proteins is activated by anions and negatively regulated by GABA. Site-directed mutagenesis of selected amino acids within ALMT proteins abolishes GABA efficacy but does not alter other transport properties. GABA modulation of ALMT activity results in altered root growth and altered root tolerance to alkaline pH, acid pH and aluminium ions. We propose that GABA exerts its multiple physiological effects in plants via ALMT, including the regulation of pollen tube and root growth, and that GABA can finally be considered a legitimate signalling molecule in both the plant and animal kingdoms.

  13. Diffusive and convective transport modelling from analysis of ECRH-stimulated electron heat wave propagation

    International Nuclear Information System (INIS)

    Erckmann, V.; Gasparino, U.; Giannone, L.

    1992-01-01

    ECRH power modulation experiments in toroidal devices offer the chance to analyze the electron heat transport more conclusively: the electron heat wave propagation can be observed by ECE (or SX) leading to radial profiles of electron temperature modulation amplitude and time delay (phase shift). Taking also the stationary power balance into account, the local electron heat transport can be modelled by a combination of diffusive and convective transport terms. This method is applied to ECRH discharges in the W7-AS stellarator (B=2.5T, R=2m, a≤18 cm) where the ECRH power deposition is highly localized. In W7-AS, the T e modulation profiles measured by a high resolution ECE system are the basis for the local transport analysis. As experimental errors limit the separation of diffusive and convective terms in the electron heat transport for central power deposition, also ECRH power modulation experiments with off-axis deposition and inward heat wave propagation were performed (with 70 GHz o-mode as well as with 140 GHz x-mode for increased absorption). Because collisional electron-ion coupling and radiative losses are only small, low density ECRH discharges are best candidates for estimating the electron heat flux from power balance. (author) 2 refs., 3 figs

  14. Modeling cytoskeletal traffic: an interplay between passive diffusion and active transport.

    Science.gov (United States)

    Neri, Izaak; Kern, Norbert; Parmeggiani, Andrea

    2013-03-01

    We introduce the totally asymmetric simple exclusion process with Langmuir kinetics on a network as a microscopic model for active motor protein transport on the cytoskeleton, immersed in the diffusive cytoplasm. We discuss how the interplay between active transport along a network and infinite diffusion in a bulk reservoir leads to a heterogeneous matter distribution on various scales: we find three regimes for steady state transport, corresponding to the scale of the network, of individual segments, or local to sites. At low exchange rates strong density heterogeneities develop between different segments in the network. In this regime one has to consider the topological complexity of the whole network to describe transport. In contrast, at moderate exchange rates the transport through the network decouples, and the physics is determined by single segments and the local topology. At last, for very high exchange rates the homogeneous Langmuir process dominates the stationary state. We introduce effective rate diagrams for the network to identify these different regimes. Based on this method we develop an intuitive but generic picture of how the stationary state of excluded volume processes on complex networks can be understood in terms of the single-segment phase diagram.

  15. Modeling diffuse sources of surface water contamination with plant protection products

    Science.gov (United States)

    Wendland, Sandra; Bock, Michael; Böhner, Jürgen; Lembrich, David

    2015-04-01

    Entries of chemical pollutants in surface waters are a serious environmental problem. Among water pollutants plant protection products (ppp) from farming practice are of major concern not only for water suppliers and environmental agencies, but also for farmers and industrial manufacturers. Lost chemicals no longer fulfill their original purpose on the field, but lead to severe damage of the environment and surface waters. Besides point-source inputs of chemical pollutants, the diffuse-source inputs from agricultural procedures play an important and not yet sufficiently studied role concerning water quality. The two most important factors for diffuse inputs are erosion and runoff. The latter usually occurs before erosion begins, and is thus often not visible in hindsight. Only if it has come to erosion, it is obvious to expect runoff in foresight at this area, too. In addition to numerous erosion models, there are also few applications to model runoff processes available. However, these conventional models utilize approximations of catchment parameters based on long-term average values or theoretically calculated concentration peaks which can only provide indications to relative amounts. Our study aims to develop and validate a simplified spatially-explicit dynamic model with high spatiotemporal resolution that enables to measure current and forecast runoff potential not only at catchment scale but field-differentiated. This method allows very precise estimations of runoff risks and supports risk reduction measures to be targeted before fields are treated. By focusing on water pathways occurring on arable land, targeted risk reduction measures like buffer strips at certain points and adapted ppp use can be taken early and pollution of rivers and other surface waters through transported pesticides, fertilizers and their products could be nearly avoided or largely minimized. Using a SAGA-based physical-parametric modeling approach, major factors influencing runoff

  16. Cooling tower drift studies at the Paducah, Kentucky Gaseous Diffusion Plant

    International Nuclear Information System (INIS)

    Taylor, F.G.; Hanna, S.R.; Parr, P.D.

    1979-01-01

    The transfer and fate of chromium from cooling tower drift to terrestrial ecosystems were quantified at the Department of Energy's uranium enrichment facility at Paducah, Kentucky. Chromium concentrations in plant materials (fescue grass) decreased with increasing distance from the cooing tower, ranging from 251 +- 19 ppM at 15 meters to 0.52 +- 0.07 ppM at 1500 meters. The site of drift contamination, size characteristics, and elemental content of drift particles were determined using a scanning electron microscope with energy dispersive x-ray analysis capabilities. Results indicate that elemental content in drift water (mineral residue) may not be equivalent to the content in the recirculating cooling water of the tower. This hypothesis is contrary to basic assumptions in calculating drift emissions. A laboratory study simulating throughfall from 1 to 6 inches of rain suggested that there are more exchange sites associated with litter than live foliage. Leachate from each one inch throughfall simulant removed 3% of the drift mass from litter compared to 7 to 9% from live foliage. Results suggest that differences in retention are related to chemical properties of the drift rather than physical lodging of the particle residue. To determine the potential for movement of drift-derived chromium to surface streams, soil--water samplers (wells) were placed along a distance gradient to Little Bayou Creek. Samples from two depths following rainstorms revealed the absence of vertical or horizontal movement with maximum concentrations of 0.13 ppb at 50 meters from the tower. Preliminary model estimates of drift deposition are compared to depositionmeasurements. Isopleths of the predicted deposition are useful to identify areas of maximum drift transport in the environs of the gaseous diffusion plant

  17. Light source distribution and scattering phase function influence light transport in diffuse multi-layered media

    Science.gov (United States)

    Vaudelle, Fabrice; L'Huillier, Jean-Pierre; Askoura, Mohamed Lamine

    2017-06-01

    Red and near-Infrared light is often used as a useful diagnostic and imaging probe for highly scattering media such as biological tissues, fruits and vegetables. Part of diffusively reflected light gives interesting information related to the tissue subsurface, whereas light recorded at further distances may probe deeper into the interrogated turbid tissues. However, modelling diffusive events occurring at short source-detector distances requires to consider both the distribution of the light sources and the scattering phase functions. In this report, a modified Monte Carlo model is used to compute light transport in curved and multi-layered tissue samples which are covered with a thin and highly diffusing tissue layer. Different light source distributions (ballistic, diffuse or Lambertian) are tested with specific scattering phase functions (modified or not modified Henyey-Greenstein, Gegenbauer and Mie) to compute the amount of backscattered and transmitted light in apple and human skin structures. Comparisons between simulation results and experiments carried out with a multispectral imaging setup confirm the soundness of the theoretical strategy and may explain the role of the skin on light transport in whole and half-cut apples. Other computational results show that a Lambertian source distribution combined with a Henyey-Greenstein phase function provides a higher photon density in the stratum corneum than in the upper dermis layer. Furthermore, it is also shown that the scattering phase function may affect the shape and the magnitude of the Bidirectional Reflectance Distribution (BRDF) exhibited at the skin surface.

  18. A diffusive ink transport model for lipid dip-pen nanolithography.

    Science.gov (United States)

    Urtizberea, A; Hirtz, M

    2015-10-14

    Despite diverse applications, phospholipid membrane stacks generated by dip-pen nanolithography (DPN) still lack a thorough and systematic characterization that elucidates the whole ink transport process from writing to surface spreading, with the aim of better controlling the resulting feature size and resolution. We report a quantitative analysis and modeling of the dependence of lipid DPN features (area, height and volume) on dwell time and relative humidity. The ink flow rate increases with humidity in agreement with meniscus size growth, determining the overall feature size. The observed time dependence indicates the existence of a balance between surface spreading and the ink flow rate that promotes differences in concentration at the meniscus/substrate interface. Feature shape is controlled by the substrate surface energy. The results are analyzed within a modified model for the ink transport of diffusive inks. At any humidity the dependence of the area spread on the dwell time shows two diffusion regimes: at short dwell times growth is controlled by meniscus diffusion while at long dwell times surface diffusion governs the process. The critical point for the switch of regime depends on the humidity.

  19. NON-AXISYMMETRIC PERPENDICULAR DIFFUSION OF CHARGED PARTICLES AND THEIR TRANSPORT ACROSS TANGENTIAL MAGNETIC DISCONTINUITIES

    Energy Technology Data Exchange (ETDEWEB)

    Strauss, R. D.; Engelbrecht, N. E.; Dunzlaff, P. [Center for Space Research, North-West University, Potchefstroom, 2522 (South Africa); Roux, J. A. le [Center for Space Plasma and Aeronomic Research, University of Alabama in Huntsville, Huntsville, AL 3585 (United States); Ruffolo, D., E-mail: dutoit.strauss@nwu.ac.za [Department of Physics, Faculty of Science, Mahidol University, Bangkok 10400 (Thailand)

    2016-07-01

    We investigate the transport of charged particles across magnetic discontinuities, focusing specifically on stream interfaces associated with co-rotating interaction regions in the solar wind. We argue that the magnetic field fluctuations perpendicular to the magnetic discontinuity, and usually also perpendicular to the mean magnetic field, are strongly damped in the vicinity of such a magnetic structure, leading to anisotropic perpendicular diffusion. Assuming that perpendicular diffusion arises from drifts in a turbulent magnetic field, we adopt a simplified approach to derive the relevant perpendicular diffusion coefficient. This approach, which we believe gives the correct principal dependences as expected from more elaborate calculations, allows us to investigate transport in different turbulent geometries, such as longitudinal compressional turbulence that may be present near the heliopause. Although highly dependent on the (possibly anisotropic) perpendicular length scales and turbulence levels, we generally find perpendicular diffusion to be strongly damped at magnetic discontinuities, which may in turn provide an explanation for the large particle gradients associated with these structures.

  20. An aerial radiological survey of the Portsmouth Gaseous Diffusion Plant and surrounding area, Portsmouth, Ohio

    International Nuclear Information System (INIS)

    1992-09-01

    An aerial radiological survey was conducted from July 11--20, 1990, over an 83-square-kilometer (32-square-mile) area surrounding the Portsmouth Gaseous Diffusion Plant located near Portsmouth, Ohio. The survey was conducted at a nominal altitude of 91 meters (300 feet) with line spacings of 122 meters (400 feet). A contour map of the terrestrial gamma exposure rate extrapolated to 1 meter above ground level (AGL) was prepared and overlaid on an aerial photograph and a set of United States Geological Survey (USGS) topographic maps of the area. The terrestrial exposure rates varied from about 7 to 14 microroentgens per hour (μR/h) at 1 meter above the ground. Analysis of the data for man-made sources and for the uranium decay product, protactinium-234m ( 234m Pa), showed five sites within the boundaries of the Portsmouth Gaseous Diffusion Plant with elevated readings. Spectra obtained in the vicinity of the buildings at the Portsmouth Gaseous Diffusion Plant showed the presence of 234m Pa, a uranium-238 ( 238 U) decay product. In addition, spectral analysis of the data obtained over the processing plant facility showed gamma activity indicative of uranium-235 ( 234 U). No other man-made gamma ray emitting radioactive material was detected, either on or off the Portsmouth Gaseous Diffusion Plant property. Soil samples and pressurized ion chamber measurements were obtained at five different locations within the survey boundlaries to support the aerial data

  1. Transport from diffuse sources of contamination and its application to a coupled unsaturated - saturated system

    OpenAIRE

    Ommen, van, H.C.

    1988-01-01

    A simple theory to predict groundwater quality upon contamination from diffuse sources was developed. It appeared that an analogy exists between the predominant transport phenomena and the reaction of a reservoir, in which perfect mixing takes place. Such an analogy enables a simple incorporation of physico-chemical processes (decomposition, adsorption), as was shown by an illustrative response of the quality of groundwater to an input of a radio-active decaying solute (and its decay...

  2. Classroom Techniques to Illustrate Water Transport in Plants

    Science.gov (United States)

    Lakrim, Mohamed

    2013-01-01

    The transport of water in plants is among the most difficult and challenging concepts to explain to students. It is even more difficult for students enrolled in an introductory general biology course. An easy approach is needed to demonstrate this complex concept. I describe visual and pedagogical examples that can be performed quickly and easily…

  3. Finite element transport using Wachspress rational basis functions on quadrilaterals in diffusive regions

    International Nuclear Information System (INIS)

    Davidson, G.; Palmer, T.S.

    2005-01-01

    In 1975, Wachspress developed basis functions that can be constructed upon very general zone shapes, including convex polygons and polyhedra, as well as certain zone shapes with curved sides and faces. Additionally, Adams has recently shown that weight functions with certain properties will produce solutions with full-resolution. Wachspress rational functions possess those necessary properties. Here we present methods to construct and integrate Wachspress rational functions on quadrilaterals. We also present an asymptotic analysis of a discontinuous finite element discretization on quadrilaterals, and we present 3 numerical results that confirm the predictions of our analysis. In the first test problem, we showed that Wachspress rational functions could give robust solutions for a strongly heterogeneous problem with both orthogonal and skewed meshes. This strongly heterogenous problem contained thick, diffusive regions, and the discretization provided full-resolution solutions. In the second test problem, we confirmed our asymptotic analysis by demonstrating that the transport solution will converge to the diffusion solution as the problem is made increasingly thick and diffusive. In the third test problem, we demonstrated that bilinear discontinuous based transport and Wachspress rational function based transport converge in the one-mesh limit

  4. Crowding and hopping in a protein’s diffusive transport on DNA

    International Nuclear Information System (INIS)

    Koslover, Elena F; Spakowitz, Andrew J; Díaz de la Rosa, Mario

    2017-01-01

    Diffusion is a ubiquitous phenomenon that impacts virtually all processes that involve random fluctuations, and as such, the foundational work of Smoluchowski has proven to be instrumental in addressing innumerable problems. Here, we focus on a critical biological problem that relies on diffusive transport and is analyzed using a probabilistic treatment originally developed by Smoluchowski. The search of a DNA binding protein for its specific target site is believed to rely on non-specific binding to DNA with transient hops along the chain. In this work, we address the impact of protein crowding along the DNA on the transport of a DNA-binding protein. The crowders dramatically alter the dynamics of the protein while bound to the DNA, resulting in single-file transport that is subdiffusive in nature. However, transient unbinding and hopping results in a long-time behavior (shown to be superdiffusive) that is qualitatively unaffected by the crowding on the DNA. Thus, hopping along the chain mitigates the role that protein crowding has in restricting the translocation dynamics along the chain. The superdiffusion coefficient is influenced by the quantitative values of the effective binding rate, which is influenced by protein crowding. We show that vacancy fraction and superdiffusion coefficient exhibits a non-monotonic relationship under many circumstances. We leverage analytical theory and dynamic Monte Carlo simulations to address this problem. With several additional contributions, the core of our modeling work adopts a reaction-diffusion framework that is based on Smoluchowski’s original work. (paper)

  5. A simple Boltzmann transport equation for ballistic to diffusive transient heat transport

    International Nuclear Information System (INIS)

    Maassen, Jesse; Lundstrom, Mark

    2015-01-01

    Developing simplified, but accurate, theoretical approaches to treat heat transport on all length and time scales is needed to further enable scientific insight and technology innovation. Using a simplified form of the Boltzmann transport equation (BTE), originally developed for electron transport, we demonstrate how ballistic phonon effects and finite-velocity propagation are easily and naturally captured. We show how this approach compares well to the phonon BTE, and readily handles a full phonon dispersion and energy-dependent mean-free-path. This study of transient heat transport shows (i) how fundamental temperature jumps at the contacts depend simply on the ballistic thermal resistance, (ii) that phonon transport at early times approach the ballistic limit in samples of any length, and (iii) perceived reductions in heat conduction, when ballistic effects are present, originate from reductions in temperature gradient. Importantly, this framework can be recast exactly as the Cattaneo and hyperbolic heat equations, and we discuss how the key to capturing ballistic heat effects is to use the correct physical boundary conditions

  6. Diffusion Dominant Solute Transport Modelling in Fractured Media Under Deep Geological Environment - 12211

    Energy Technology Data Exchange (ETDEWEB)

    Kwong, S. [National Nuclear Laboratory (United Kingdom); Jivkov, A.P. [Research Centre for Radwaste and Decommissioning and Modelling and Simulation Centre, University of Manchester (United Kingdom)

    2012-07-01

    Deep geologic disposal of high activity and long-lived radioactive waste is gaining increasing support in many countries, where suitable low permeability geological formation in combination with engineered barriers are used to provide long term waste contaminant and minimise the impacts to the environment and risk to the biosphere. This modelling study examines the solute transport in fractured media under low flow velocities that are relevant to a deep geological environment. In particular, reactive solute transport through fractured media is studied using a 2-D model, that considers advection and diffusion, to explore the coupled effects of kinetic and equilibrium chemical processes. The effects of water velocity in the fracture, matrix porosity and diffusion on solute transport are investigated and discussed. Some illustrative modelled results are presented to demonstrate the use of the model to examine the effects of media degradation on solute transport, under the influences of hydrogeological (diffusion dominant) and microbially mediated chemical processes. The challenges facing the prediction of long term degradation such as cracks evolution, interaction and coalescence are highlighted. The potential of a novel microstructure informed modelling approach to account for these effects is discussed, particularly with respect to investigating multiple phenomena impact on material performance. The GRM code is used to examine the effects of media degradation for a geological waste disposal package, under the combined hydrogeological (diffusion dominant) and chemical effects in low groundwater flow conditions that are typical of deep geological disposal systems. An illustrative reactive transport modelling application demonstrates the use of the code to examine the interplay of kinetic controlled biogeochemical reactive processes with advective and diffusive transport, under the influence of media degradation. The initial model results are encouraging which show the

  7. Diffusion Coefficient Calculations With Low Order Legendre Polynomial and Chebyshev Polynomial Approximation for the Transport Equation in Spherical Geometry

    International Nuclear Information System (INIS)

    Yasa, F.; Anli, F.; Guengoer, S.

    2007-01-01

    We present analytical calculations of spherically symmetric radioactive transfer and neutron transport using a hypothesis of P1 and T1 low order polynomial approximation for diffusion coefficient D. Transport equation in spherical geometry is considered as the pseudo slab equation. The validity of polynomial expansionion in transport theory is investigated through a comparison with classic diffusion theory. It is found that for causes when the fluctuation of the scattering cross section dominates, the quantitative difference between the polynomial approximation and diffusion results was physically acceptable in general

  8. Detector for flow abnormalities in gaseous diffusion plant compressors

    Science.gov (United States)

    Smith, S.F.; Castleberry, K.N.

    1998-06-16

    A detector detects a flow abnormality in a plant compressor which outputs a motor current signal. The detector includes a demodulator/lowpass filter demodulating and filtering the motor current signal producing a demodulated signal, and first, second, third and fourth bandpass filters connected to the demodulator/lowpass filter, and filtering the demodulated signal in accordance with first, second, third and fourth bandpass frequencies generating first, second, third and fourth filtered signals having first, second, third and fourth amplitudes. The detector also includes first, second, third and fourth amplitude detectors connected to the first, second, third and fourth bandpass filters respectively, and detecting the first, second, third and fourth amplitudes, and first and second adders connected to the first and fourth amplitude detectors and the second and third amplitude detectors respectively, and adding the first and fourth amplitudes and the second and third amplitudes respectively generating first and second added signals. Finally, the detector includes a comparator, connected to the first and second adders, and comparing the first and second added signals and detecting the abnormal condition in the plant compressor when the second added signal exceeds the first added signal by a predetermined value. 6 figs.

  9. Uptake and transport of positron-emitting tracer in plants

    Energy Technology Data Exchange (ETDEWEB)

    Kume, Tamikazu; Matsuhashi, Shinpei; Shimazu, Masamitsu [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment; and others

    1997-03-01

    The transport of a positron-emitting isotope introduced into a plant was dynamically followed by a special observation apparatus called `Positron-Emitting Tracer Imaging System`. In the system, annihilation {gamma}-rays from the positron emitter are detected with two planer detectors (5 x 6 cm square). The water containing ca. 5 MBq/ml of {sup 18}F was fed to the cut stem of soybean for 2 min and then the images of tracer activity were recorded for 30 - 50 min. When the midrib of a leaf near the petiole was cut just before measurement, the activity in the injured leaf was decreased but detected even at the apex. This result suggests that the damaged leaf recovered the uptake of water through the lamina. Maximum tracer activities in leaves of unirradiated plant were observed within 10 min, whereas those of irradiated plant at 100 Gy were observed after over 25 min. The final activity of irradiated plant after 30 min was lower than that of unirradiated plant. In case of beans, there was a difference in the absorption behavior of the {sup 18}F-labeled water between unirradiated and irradiated samples. These results show that the system is effective to observe the uptake and transportation of water containing positron emitting tracer for the study of damage and recovery functions of plants. (author)

  10. Composite Transport Model and Water and Solute Transport across Plant Roots: An Update

    Directory of Open Access Journals (Sweden)

    Yangmin X. Kim

    2018-02-01

    Full Text Available The present review examines recent experimental findings in root transport phenomena in terms of the composite transport model (CTM. It has been a well-accepted conceptual model to explain the complex water and solute flows across the root that has been related to the composite anatomical structure. There are three parallel pathways involved in the transport of water and solutes in roots – apoplast, symplast, and transcellular paths. The role of aquaporins (AQPs, which facilitate water flows through the transcellular path, and root apoplast is examined in terms of the CTM. The contribution of the plasma membrane bound AQPs for the overall water transport in the whole plant level was varying depending on the plant species, age of roots with varying developmental stages of apoplastic barriers, and driving forces (hydrostatic vs. osmotic. Many studies have demonstrated that the apoplastic barriers, such as Casparian bands in the primary anticlinal walls and suberin lamellae in the secondary cell walls, in the endo- and exodermis are not perfect barriers and unable to completely block the transport of water and some solute transport into the stele. Recent research on water and solute transport of roots with and without exodermis triggered the importance of the extension of conventional CTM adding resistances that arrange in series (epidermis, exodermis, mid-cortex, endodermis, and pericycle. The extension of the model may answer current questions about the applicability of CTM for composite water and solute transport of roots that contain complex anatomical structures with heterogeneous cell layers.

  11. Composite Transport Model and Water and Solute Transport across Plant Roots: An Update.

    Science.gov (United States)

    Kim, Yangmin X; Ranathunge, Kosala; Lee, Seulbi; Lee, Yejin; Lee, Deogbae; Sung, Jwakyung

    2018-01-01

    The present review examines recent experimental findings in root transport phenomena in terms of the composite transport model (CTM). It has been a well-accepted conceptual model to explain the complex water and solute flows across the root that has been related to the composite anatomical structure. There are three parallel pathways involved in the transport of water and solutes in roots - apoplast, symplast, and transcellular paths. The role of aquaporins (AQPs), which facilitate water flows through the transcellular path, and root apoplast is examined in terms of the CTM. The contribution of the plasma membrane bound AQPs for the overall water transport in the whole plant level was varying depending on the plant species, age of roots with varying developmental stages of apoplastic barriers, and driving forces (hydrostatic vs. osmotic). Many studies have demonstrated that the apoplastic barriers, such as Casparian bands in the primary anticlinal walls and suberin lamellae in the secondary cell walls, in the endo- and exodermis are not perfect barriers and unable to completely block the transport of water and some solute transport into the stele. Recent research on water and solute transport of roots with and without exodermis triggered the importance of the extension of conventional CTM adding resistances that arrange in series (epidermis, exodermis, mid-cortex, endodermis, and pericycle). The extension of the model may answer current questions about the applicability of CTM for composite water and solute transport of roots that contain complex anatomical structures with heterogeneous cell layers.

  12. Long-range global warming impact of gaseous diffusion plant operation

    International Nuclear Information System (INIS)

    Trowbridge, L.D.

    1992-09-01

    The DOE gaseous diffusion plant complex makes extensive use of CFC-114 as a primary coolant. As this material is on the Montreal Protocol list of materials scheduled for production curtailment, a substitute must be found. In addition to physical cooling properties, the gaseous diffusion application imposes the unique requirement of chemical inertness to fluorinating agents. This has narrowed the selection of a near-term substitute to two fully fluorinated material, FC-318 and FC-3110, which are likely to be strong, long-lived greenhouse gases. In this document, calculations are presented showing, for a number of plausible scenarios of diffusion plant operation and coolant replacement strategy, the future course of coolant use, greenhouse gas emissions (including coolant and power-related indirect CO 2 emissions), and the consequent global temperature impacts of these scenarios

  13. Modelling uncertainties in the diffusion-advection equation for radon transport in soil using interval arithmetic.

    Science.gov (United States)

    Chakraverty, S; Sahoo, B K; Rao, T D; Karunakar, P; Sapra, B K

    2018-02-01

    Modelling radon transport in the earth crust is a useful tool to investigate the changes in the geo-physical processes prior to earthquake event. Radon transport is modeled generally through the deterministic advection-diffusion equation. However, in order to determine the magnitudes of parameters governing these processes from experimental measurements, it is necessary to investigate the role of uncertainties in these parameters. Present paper investigates this aspect by combining the concept of interval uncertainties in transport parameters such as soil diffusivity, advection velocity etc, occurring in the radon transport equation as applied to soil matrix. The predictions made with interval arithmetic have been compared and discussed with the results of classical deterministic model. The practical applicability of the model is demonstrated through a case study involving radon flux measurements at the soil surface with an accumulator deployed in steady-state mode. It is possible to detect the presence of very low levels of advection processes by applying uncertainty bounds on the variations in the observed concentration data in the accumulator. The results are further discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Diffusivity-Based Characterization of Plant Growth Media for Earth and Space

    DEFF Research Database (Denmark)

    Chamindu, Deepagoda; Møldrup, Per; Jones, Scot B.

    will likely fulfill diffusion requirements when designing safe plant growth media for earth and space. The CWD concept was also applied to a natural volcanic ash soil (Nishi-Tokyo, Japan), and natural volcanic ash soil exhibited a CWD performance fully comparable with the best among the aggregated growth...

  15. Environmental Restoration Site-Specific Plan for the Portsmouth Gaseous Diffusion Plant, FY 93

    International Nuclear Information System (INIS)

    1993-01-01

    The purpose of this Site-Specific Plan (SSP) is to describe past, present, and future activities undertaken to implement Environmental Restoration and Waste Management goals at the Portsmouth Gaseous Diffusion Plant (PORTS). The SSP is presented in sections emphasizing Environmental Restoration description of activities, resources, and milestones

  16. 78 FR 66779 - United States Enrichment Corporation, Paducah Gaseous Diffusion Plant, Including On-Site Leased...

    Science.gov (United States)

    2013-11-06

    ... DEPARTMENT OF LABOR Employment and Training Administration [TA-W-82,862] United States Enrichment..., applicable to workers of United States Enrichment Corporation, Paducah Gaseous Diffusion Plant, including on... were engaged in the production of low enrichment uranium. The company reports that workers leased from...

  17. Hierarchical optimization in isotope separation-gaseous diffusion: plant, cascade, stage, principles, and applications

    Energy Technology Data Exchange (ETDEWEB)

    Guais, J. C.

    1975-09-01

    The large scale system represented by a gaseous diffusion plant model, and its hierarchical mathematical structure are the reasons for a decomposition method, minimizing the total cost of enrichment. This procedure has been used for years in the optimization problems of the french projects.

  18. Real Time Demonstration Project XRF Performance Evaluation Report for Paducah Gaseous Diffusion Plant AOC 492

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Robert L [Argonne National Laboratory

    2008-04-03

    This activity was undertaken to demonstrate the applicability of market-available XRF instruments to quantify metal concentrations relative to background and risk-based action and no action levels in Paducah Gaseous Diffusion Plant (PGDP) soils. As such, the analysis below demonstrates the capabilities of the instruments relative to soil characterization applications at the PGDP.

  19. Hierarchical optimization in isotope separation. Gaseous diffusion: plant, cascade, stage. Principles and applications

    International Nuclear Information System (INIS)

    Guais, J.C.

    1975-01-01

    The large scale system represented by a gaseous diffusion plant model, and its hierarchical mathematical structure are the reasons for a decomposition method, minimizing the total cost of enrichment. This procedure has been used for years in the optimization problems of the french projects [fr

  20. Heat, mass, and momentum transport model for hydrogen diffusion flames in nuclear reactor containments

    International Nuclear Information System (INIS)

    Travis, J.R.

    1985-01-01

    It is now possible to analyze the time-dependent, fully three-dimensional behavior of hydrogen diffusion flames in nuclear reactor containments. This analysis involves coupling the full Navier-Stokes equations with multi-species transport to the global chemical kinetics of hydrogen combustion. A transport equation for the subgrid scale turbulent kinetic energy density is solved to produce the time and space dependent turbulent transport coefficients. The heat transfer coefficient governing the exchange of heat between fluid computational cells adjacent to wall cells is calculated by a modified Reynolds analogy formulation. The analysis of a MARK-III containment indicates very complex flow patterns that greatly influence fluid and wall temperatures and heat fluxes. 18 refs., 24 figs

  1. Chloroplast Iron Transport Proteins - Function and Impact on Plant Physiology.

    Science.gov (United States)

    López-Millán, Ana F; Duy, Daniela; Philippar, Katrin

    2016-01-01

    Chloroplasts originated about three billion years ago by endosymbiosis of an ancestor of today's cyanobacteria with a mitochondria-containing host cell. During evolution chloroplasts of higher plants established as the site for photosynthesis and thus became the basis for all life dependent on oxygen and carbohydrate supply. To fulfill this task, plastid organelles are loaded with the transition metals iron, copper, and manganese, which due to their redox properties are essential for photosynthetic electron transport. In consequence, chloroplasts for example represent the iron-richest system in plant cells. However, improvement of oxygenic photosynthesis in turn required adaptation of metal transport and homeostasis since metal-catalyzed generation of reactive oxygen species (ROS) causes oxidative damage. This is most acute in chloroplasts, where radicals and transition metals are side by side and ROS-production is a usual feature of photosynthetic electron transport. Thus, on the one hand when bound by proteins, chloroplast-intrinsic metals are a prerequisite for photoautotrophic life, but on the other hand become toxic when present in their highly reactive, radical generating, free ionic forms. In consequence, transport, storage and cofactor-assembly of metal ions in plastids have to be tightly controlled and are crucial throughout plant growth and development. In the recent years, proteins for iron transport have been isolated from chloroplast envelope membranes. Here, we discuss their putative functions and impact on cellular metal homeostasis as well as photosynthetic performance and plant metabolism. We further consider the potential of proteomic analyses to identify new players in the field.

  2. Heavy Metals in Crop Plants: Transport and Redistribution Processes on the Whole Plant Level

    Directory of Open Access Journals (Sweden)

    Valérie Page

    2015-09-01

    Full Text Available Copper, zinc, manganese, iron, nickel and molybdenum are essential micronutrients for plants. However, when present in excess they may damage the plant or decrease the quality of harvested plant products. Some other heavy metals such as cadmium, lead or mercury are not needed by plants and represent pollutants. The uptake into the roots, the loading into the xylem, the acropetal transport to the shoot with the transpiration stream and the further redistribution in the phloem are crucial for the distribution in aerial plant parts. This review is focused on long-distance transport of heavy metals via xylem and phloem and on interactions between the two transport systems. Phloem transport is the basis for the redistribution within the shoot and for the accumulation in fruits and seeds. Solutes may be transferred from the xylem to the phloem (e.g., in the small bundles in stems of cereals, in minor leaf veins. Nickel is highly phloem-mobile and directed to expanding plant parts. Zinc and to a lesser degree also cadmium are also mobile in the phloem and accumulate in meristems (root tips, shoot apex, axillary buds. Iron and manganese are characterized by poor phloem mobility and are retained in older leaves.

  3. The Role of Diffusion in the Transport of Energetic Electrons during Solar Flares

    Energy Technology Data Exchange (ETDEWEB)

    Bian, Nicolas H.; Kontar, Eduard P. [School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ, Scotland (United Kingdom); Emslie, A. Gordon, E-mail: nicolas.bian@glasgow.gla.ac.uk, E-mail: emslieg@wku.edu [Department of Physics and Astronomy, Western Kentucky University, Bowling Green, KY 42101 (United States)

    2017-02-01

    The transport of the energy contained in suprathermal electrons in solar flares plays a key role in our understanding of many aspects of flare physics, from the spatial distributions of hard X-ray emission and energy deposition in the ambient atmosphere to global energetics. Historically the transport of these particles has been largely treated through a deterministic approach, in which first-order secular energy loss to electrons in the ambient target is treated as the dominant effect, with second-order diffusive terms (in both energy and angle) generally being either treated as a small correction or even neglected. Here, we critically analyze this approach, and we show that spatial diffusion through pitch-angle scattering necessarily plays a very significant role in the transport of electrons. We further show that a satisfactory treatment of the diffusion process requires consideration of non-local effects, so that the electron flux depends not just on the local gradient of the electron distribution function but on the value of this gradient within an extended region encompassing a significant fraction of a mean free path. Our analysis applies generally to pitch-angle scattering by a variety of mechanisms, from Coulomb collisions to turbulent scattering. We further show that the spatial transport of electrons along the magnetic field of a flaring loop can be modeled rather effectively as a Continuous Time Random Walk with velocity-dependent probability distribution functions of jump sizes and occurrences, both of which can be expressed in terms of the scattering mean free path.

  4. Atmospherical experiment in Angra I plant for characterizing the effluent transport threw in the atmospheric

    International Nuclear Information System (INIS)

    Silva Lobo, M.A. da; Kronemberger, B.M.E.

    1989-01-01

    Available as short communication only. The Environmental Safety Division of the Nuclear Safety and Fuel Department from FURNAS Electric Station S.A. joint with the National Oceanic and Atmospheric Administration (NOAA), achieved a field experiment for characterizing the atmospheric transport and diffusion in the site complex of Angra I Nuclear Power Plant. The complex topography with the thick vegetation and the neighbour building bring problems for the modelling of the effluent transport and the dispersion. The actual meteorological measure system is automatic and compound with four towers. An intensive atmospheric measure with captive balloon is included, and the collected data shows that the site flux is strongly influenced by the topography and insolation. (C.G.C.). 2 figs

  5. Methodological study of the diffusion of interacting cations through clays. Application: experimental tests and simulation of coupled chemistry-diffusion transport of alkaline ions through a synthetical bentonite

    International Nuclear Information System (INIS)

    Melkior, Th.

    2000-01-01

    The subject of this work deals with the project of underground disposal of radioactive wastes in deep geological formations. It concerns the study of the migration of radionuclides through clays. In these materials, the main transport mechanism is assumed to be diffusion under natural conditions. Therefore, some diffusion experiments are conducted. With interacting solutes which present a strong affinity for the material, the duration of these tests will be too long, for the range of concentrations of interest. An alternative is to determine on one hand the geochemical retention properties using batch tests and crushed rock samples and, on the other hand, to deduce the transport parameters from diffusion tests realised with a non-interacting tracer, tritiated water. These data are then used to simulate the migration of the reactive elements with a numerical code which can deal with coupled chemistry-diffusion equations. The validity of this approach is tested by comparing the numerical simulations with the results of diffusion experiments of cations through a clay. The subject is investigated in the case of the diffusion of cesium, lithium and sodium through a compacted sodium bentonite. The diffusion tests are realised with the through-diffusion method. The comparison between the experimental results and the simulations shows that the latter tends to under estimate the propagation of the considered species. The differences could be attributed to surface diffusion and to a decrease of the accessibility to the sites of fixation of the bentonite, from the conditions of clay suspensions in batch tests to the situation of compacted samples. The influence of the experimental apparatus used during the diffusion tests on the results of the measurement has also been tested. It showed that these apparatus have to be taken into consideration when the experimental data are interpreted. A specific model has been therefore developed with the numerical code CASTEM 2000. (author)

  6. Stochastic interpretation of the advection-diffusion equation and its relevance to bed load transport

    Science.gov (United States)

    Ancey, C.; Bohorquez, P.; Heyman, J.

    2015-12-01

    The advection-diffusion equation is one of the most widespread equations in physics. It arises quite often in the context of sediment transport, e.g., for describing time and space variations in the particle activity (the solid volume of particles in motion per unit streambed area). Phenomenological laws are usually sufficient to derive this equation and interpret its terms. Stochastic models can also be used to derive it, with the significant advantage that they provide information on the statistical properties of particle activity. These models are quite useful when sediment transport exhibits large fluctuations (typically at low transport rates), making the measurement of mean values difficult. Among these stochastic models, the most common approach consists of random walk models. For instance, they have been used to model the random displacement of tracers in rivers. Here we explore an alternative approach, which involves monitoring the evolution of the number of particles moving within an array of cells of finite length. Birth-death Markov processes are well suited to this objective. While the topic has been explored in detail for diffusion-reaction systems, the treatment of advection has received no attention. We therefore look into the possibility of deriving the advection-diffusion equation (with a source term) within the framework of birth-death Markov processes. We show that in the continuum limit (when the cell size becomes vanishingly small), we can derive an advection-diffusion equation for particle activity. Yet while this derivation is formally valid in the continuum limit, it runs into difficulty in practical applications involving cells or meshes of finite length. Indeed, within our stochastic framework, particle advection produces nonlocal effects, which are more or less significant depending on the cell size and particle velocity. Albeit nonlocal, these effects look like (local) diffusion and add to the intrinsic particle diffusion (dispersal due

  7. Two-relaxation-time lattice Boltzmann method and its application to advective-diffusive-reactive transport

    Science.gov (United States)

    Yan, Zhifeng; Yang, Xiaofan; Li, Siliang; Hilpert, Markus

    2017-11-01

    The lattice Boltzmann method (LBM) based on single-relaxation-time (SRT) or multiple-relaxation-time (MRT) collision operators is widely used in simulating flow and transport phenomena. The LBM based on two-relaxation-time (TRT) collision operators possesses strengths from the SRT and MRT LBMs, such as its simple implementation and good numerical stability, although tedious mathematical derivations and presentations of the TRT LBM hinder its application to a broad range of flow and transport phenomena. This paper describes the TRT LBM clearly and provides a pseudocode for easy implementation. Various transport phenomena were simulated using the TRT LBM to illustrate its applications in subsurface environments. These phenomena include advection-diffusion in uniform flow, Taylor dispersion in a pipe, solute transport in a packed column, reactive transport in uniform flow, and bacterial chemotaxis in porous media. The TRT LBM demonstrated good numerical performance in terms of accuracy and stability in predicting these transport phenomena. Therefore, the TRT LBM is a powerful tool to simulate various geophysical and biogeochemical processes in subsurface environments.

  8. Modeling gravity effects on water retention and gas transport characteristics in plant growth substrates

    DEFF Research Database (Denmark)

    Deepagoda Thuduwe Kankanamge Kelum, Chamindu; Jones, Scott B.; Tuller, Markus

    2014-01-01

    utilization to conserve energy and to limit transport costs, native materials mined on Moon or Mars are of primary interest for plant growth media in a future outpost, while terrestrial porous substrates with optimal growth media characteristics will be useful for onboard plant growth during space missions....... Due to limited experimental opportunities and prohibitive costs, liquid and gas behavior in porous substrates under reduced gravity conditions has been less studied and hence remains poorly understood. Based on ground-based measurements, this study examined water retention, oxygen diffusivity and air...... that estimates the gas percolation threshold based on the pore size distribution. The model successfully captured measured data for all investigated media and demonstrated the implications of the poorly-understood shift in gas percolation threshold with improved gas percolation in reduced gravity. Finally, using...

  9. Carbon Sequestration in Saline Aquifers: Modeling Diffusive and Convective Transport Of a Carbon-­Dioxide Cap

    KAUST Repository

    Allen, Rebecca

    2011-01-01

    done on the diffusive-convective transport that occurs under a cap of CO2-saturated fluid, which results after CO2 is injected into an aquifer and spreads laterally under an area of low permeability. The diffusive-convective modeling reveals an enhanced

  10. Grass Plants Bind, Retain, Uptake, and Transport Infectious Prions

    Directory of Open Access Journals (Sweden)

    Sandra Pritzkow

    2015-05-01

    Full Text Available Prions are the protein-based infectious agents responsible for prion diseases. Environmental prion contamination has been implicated in disease transmission. Here, we analyzed the binding and retention of infectious prion protein (PrPSc to plants. Small quantities of PrPSc contained in diluted brain homogenate or in excretory materials (urine and feces can bind to wheat grass roots and leaves. Wild-type hamsters were efficiently infected by ingestion of prion-contaminated plants. The prion-plant interaction occurs with prions from diverse origins, including chronic wasting disease. Furthermore, leaves contaminated by spraying with a prion-containing preparation retained PrPSc for several weeks in the living plant. Finally, plants can uptake prions from contaminated soil and transport them to aerial parts of the plant (stem and leaves. These findings demonstrate that plants can efficiently bind infectious prions and act as carriers of infectivity, suggesting a possible role of environmental prion contamination in the horizontal transmission of the disease.

  11. Grass plants bind, retain, uptake, and transport infectious prions.

    Science.gov (United States)

    Pritzkow, Sandra; Morales, Rodrigo; Moda, Fabio; Khan, Uffaf; Telling, Glenn C; Hoover, Edward; Soto, Claudio

    2015-05-26

    Prions are the protein-based infectious agents responsible for prion diseases. Environmental prion contamination has been implicated in disease transmission. Here, we analyzed the binding and retention of infectious prion protein (PrP(Sc)) to plants. Small quantities of PrP(Sc) contained in diluted brain homogenate or in excretory materials (urine and feces) can bind to wheat grass roots and leaves. Wild-type hamsters were efficiently infected by ingestion of prion-contaminated plants. The prion-plant interaction occurs with prions from diverse origins, including chronic wasting disease. Furthermore, leaves contaminated by spraying with a prion-containing preparation retained PrP(Sc) for several weeks in the living plant. Finally, plants can uptake prions from contaminated soil and transport them to aerial parts of the plant (stem and leaves). These findings demonstrate that plants can efficiently bind infectious prions and act as carriers of infectivity, suggesting a possible role of environmental prion contamination in the horizontal transmission of the disease. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Design, construction and testing of annular diffusers for high speed civil transportation combustor applications

    Science.gov (United States)

    Okhio, Cyril B.

    1995-01-01

    A theoretical and an experimental design study of subsonic flow through curved-wall annular diffusers is being carried out in order to establish the most pertinent design parameters for such devices and the implications of their application in the design of engine components in the aerospace industries. This investigation consists of solving numerically the full Navier Stokes and Continuity equations for the time-mean flow. Various models of turbulence are being evaluated for adoption throughout the study and comparisons would be made with experimental data where they exist. Assessment of diffuser performance based on the dissipated mechanical energy would also be made. The experimental work involves the application of Computer Aided Design software tool to the development of a suitable annular diffuser geometry and the subsequent downloading of such data to a CNC machine at Central State University. The results of the investigations are expected to indicate that more cost effective component design of such devices as effective component design of such devices as diffusers which normally contain complex flows can still be achieved. In this regard a review paper was accepted and presented at the First International Conference on High Speed Civil Transportation Research held at North Carolina A&T in December of 1994.

  13. Modeling bioluminescent photon transport in tissue based on Radiosity-diffusion model

    Science.gov (United States)

    Sun, Li; Wang, Pu; Tian, Jie; Zhang, Bo; Han, Dong; Yang, Xin

    2010-03-01

    Bioluminescence tomography (BLT) is one of the most important non-invasive optical molecular imaging modalities. The model for the bioluminescent photon propagation plays a significant role in the bioluminescence tomography study. Due to the high computational efficiency, diffusion approximation (DA) is generally applied in the bioluminescence tomography. But the diffusion equation is valid only in highly scattering and weakly absorbing regions and fails in non-scattering or low-scattering tissues, such as a cyst in the breast, the cerebrospinal fluid (CSF) layer of the brain and synovial fluid layer in the joints. A hybrid Radiosity-diffusion model is proposed for dealing with the non-scattering regions within diffusing domains in this paper. This hybrid method incorporates a priori information of the geometry of non-scattering regions, which can be acquired by magnetic resonance imaging (MRI) or x-ray computed tomography (CT). Then the model is implemented using a finite element method (FEM) to ensure the high computational efficiency. Finally, we demonstrate that the method is comparable with Mont Carlo (MC) method which is regarded as a 'gold standard' for photon transportation simulation.

  14. Symplastic Transport of Carboxyfluorescein in Staminal Hairs of Setcreasea purpurea Is Diffusive and Includes Loss to the Vacuole 1

    Science.gov (United States)

    Tucker, Joseph E.; Mauzerall, David; Tucker, Edward B.

    1989-01-01

    The kinetics of symplastic transport in staminal hairs of Setcreasea purpurea was studied. The tip cell of a staminal hair was microinjected with carboxyfluorescein (CF) and the symplastic transport of this CF was videotaped and the digital data analyzed to produce kinetic curves. Using a finite difference equation for diffusion between cells and for loss of dye into the vacuole, kinetic curves were calculated and fitted to the observed data. These curves were matched with data from actual microinjection experiments by adjusting K (the coefficient of intercellular junction diffusion) and L (the coefficient of intracellular loss) until a minimum in the least squares difference between the curves was obtained. (a) Symplastic transport of CF was governed by diffusion through intercellular pores (plasmodesmata) and intracellular loss. Diffusion within the cell cytoplasm was never limiting. (b) Each cell and its plasmodesmata must be considered as its own diffusion system. Therefore, a diffusion coefficient cannot be calculated for an entire chain of cells. (c) The movement through plasmodesmata in either direction was the same since the data are fit by a diffusion equation. (d) Diffusion through the intercellular pores was estimated to be slower than diffusion through similar pores filled with water. PMID:16666864

  15. Symplastic Transport of Carboxyfluorescein in Staminal Hairs of Setcreasea purpurea Is Diffusive and Includes Loss to the Vacuole.

    Science.gov (United States)

    Tucker, J E; Mauzerall, D; Tucker, E B

    1989-07-01

    The kinetics of symplastic transport in staminal hairs of Setcreasea purpurea was studied. The tip cell of a staminal hair was microinjected with carboxyfluorescein (CF) and the symplastic transport of this CF was videotaped and the digital data analyzed to produce kinetic curves. Using a finite difference equation for diffusion between cells and for loss of dye into the vacuole, kinetic curves were calculated and fitted to the observed data. These curves were matched with data from actual microinjection experiments by adjusting K (the coefficient of intercellular junction diffusion) and L (the coefficient of intracellular loss) until a minimum in the least squares difference between the curves was obtained. (a) Symplastic transport of CF was governed by diffusion through intercellular pores (plasmodesmata) and intracellular loss. Diffusion within the cell cytoplasm was never limiting. (b) Each cell and its plasmodesmata must be considered as its own diffusion system. Therefore, a diffusion coefficient cannot be calculated for an entire chain of cells. (c) The movement through plasmodesmata in either direction was the same since the data are fit by a diffusion equation. (d) Diffusion through the intercellular pores was estimated to be slower than diffusion through similar pores filled with water.

  16. PHYSIOLOGY OF ION TRANSPORT ACROSS THE TONOPLAST OF HIGHER PLANTS.

    Science.gov (United States)

    Barkla, Bronwyn J.; Pantoja, Omar

    1996-06-01

    The vacuole of plant cells plays an important role in the homeostasis of the cell. It is involved in the regulation of cytoplasmic pH, sequestration of toxic ions and xenobiotics, regulation of cell turgor, storage of amino acids, sugars and CO2 in the form of malate, and possibly as a source for elevating cytoplasmic calcium. All these activities are driven by two primary active transport mechanisms present in the vacuolar membrane (tonoplast). These two mechanisms employ high-energy metabolites to pump protons into the vacuole, establishing a proton electrochemical potential that mediates the transport of a diverse range of solutes. Within the past few years, great advances at the molecular and functional levels have been made on the characterization and identification of these mechanisms. The aim of this review is to summarize these studies in the context of the physiology of the plant cell.

  17. Rock-matrix diffusion in transport of salinity. Implementation in CONNECTFLOW

    International Nuclear Information System (INIS)

    Hoch, A.R.; Jackson, C.P.

    2004-07-01

    calculations were carried out for a Base Case without rock-matrix diffusion, but with the porosity taken to be all of the accessible porosity in the rock matrix, and for nine variants with different values of the rock-matrix diffusion parameters. In the calculations, piecewise linear interpolation was used for the residual pressure and the salinity, and piecewise constant interpolation was used for the groundwater density. Nodal quadrature helps to avoid so-called 'mass-matrix' ripples in the salinity resulting from the finite-element discretisation of the time derivative terms in the flow and transport equations. These changes make the numerical equations less non-linear and therefore easier to solve. In the sequential iteration scheme, at each time step: (i) the average density in each element is calculated from a suitable equation; (ii) the residual pressure at the end of the time step is calculated (using the calculated average density) from a discretised version of the steady-state flow equations; (iii) the salinity at the end of the time step is calculated from a discretised version of the salinity transport equation using the calculated average density and calculated flow. There are different variants of this scheme, in which a single cycle of the above calculations is carried out for each time step, or a fixed number of cycles is carried out, or the cycles are repeated until convergence is obtained for the non-linear equations at each time step. It was found that, for the realistic example, repeating the cycles until convergence was obtained required a small time step, leading to prohibitively long calculations. However, if the time-stepping scheme that involved only a single cycle for each time step was used, it was found to be possible to use much larger time steps, similar to those used in calculations for the model without rock-matrix diffusion. This scheme was therefore adopted for the calculations.With these changes, it proved to be possible to carry out

  18. Lung Cancer Mortality among Uranium Gaseous Diffusion Plant Workers: A Cohort Study 1952–2004

    Directory of Open Access Journals (Sweden)

    LW Figgs

    2013-07-01

    Full Text Available Background: 9%–15% of all lung cancers are attributable to occupational exposures. Reports are disparate regarding elevated lung cancer mortality risk among workers employed at uranium gaseous diffusion plants. Objective: To investigate whether external radiation exposure is associated with lung cancer mortality risk among uranium gaseous diffusion workers. Methods: A cohort of 6820 nuclear industry workers employed from 1952 to 2003 at the Paducah uranium gaseous diffusion plant (PGDP was assembled. A job-specific exposure matrix (JEM was used to determine likely toxic metal exposure categories. In addition, radiation film badge dosimeters were used to monitor cumulative external ionizing radiation exposure. International Classification for Disease (ICD codes 9 and 10 were used to identify 147 lung cancer deaths. Logistic and proportional hazards regression were used to estimate lung cancer mortality risk. Results: Lung cancer mortality risk was elevated among workers who experienced external radiation >3.5 mrem and employment duration >12 years. Conclusion: Employees of uranium gaseous diffusion plants carry a higher risk of lung cancer mortality; the mortality is associated with increased radiation exposure and duration of employment.

  19. Diffuse correlation tomography in the transport regime: A theoretical study of the sensitivity to Brownian motion

    Science.gov (United States)

    Tricoli, Ugo; Macdonald, Callum M.; Durduran, Turgut; Da Silva, Anabela; Markel, Vadim A.

    2018-02-01

    Diffuse correlation tomography (DCT) uses the electric-field temporal autocorrelation function to measure the mean-square displacement of light-scattering particles in a turbid medium over a given exposure time. The movement of blood particles is here estimated through a Brownian-motion-like model in contrast to ordered motion as in blood flow. The sensitivity kernel relating the measurable field correlation function to the mean-square displacement of the particles can be derived by applying a perturbative analysis to the correlation transport equation (CTE). We derive an analytical expression for the CTE sensitivity kernel in terms of the Green's function of the radiative transport equation, which describes the propagation of the intensity. We then evaluate the kernel numerically. The simulations demonstrate that, in the transport regime, the sensitivity kernel provides sharper spatial information about the medium as compared with the correlation diffusion approximation. Also, the use of the CTE allows one to explore some additional degrees of freedom in the data such as the collimation direction of sources and detectors. Our results can be used to improve the spatial resolution of DCT, in particular, with applications to blood flow imaging in regions where the Brownian motion is dominant.

  20. Is there ballistic transport in metallic nano-objects? Ballistic versus diffusive contributions

    International Nuclear Information System (INIS)

    Garcia, N; Bai Ming; Lu Yonghua; Munoz, M; Cheng Hao; Levanyuk, A P

    2007-01-01

    When discussing the resistance of an atomic-or nanometre-size contact we should consider both its ballistic and its diffusive contributions. But there is a contribution of the leads to the resistance of the contact as well. In this context, the geometry and the roughness of the surfaces limiting the system will contribute to the resistance, and these contributions should be added to the ideal ballistic resistance of the nanocontact. We have calculated, for metallic materials, the serial resistance of the leads arising from the roughness, and our calculations show that the ohmic resistance is as important as the ballistic resistance of the constriction. The classical resistance is a lower limit to the quantum resistance of the leads. Many examples of earlier experiments show that the mean free path of the transport electrons is of the order of the size of the contacts or the leads. This is not compatible with the idea of ballistic transport. This result may put in serious difficulties the current, existing interpretation of experimental data in metals where only small serial resistances compared with the ballistic component of the total resistance have been taken into account. The two-dimensional electron gas (2DEG) is also discussed and the serial corrections appear to be smaller than for metals. Experiments with these last systems are proposed that may reveal new interesting aspects in the physics of ballistic and diffusive transport

  1. Transport and trapping of dust particles in a potential well created by inductively coupled diffused plasmas.

    Science.gov (United States)

    Choudhary, Mangilal; Mukherjee, S; Bandyopadhyay, P

    2016-05-01

    A versatile linear dusty (complex) plasma device is designed to study the transport and dynamical behavior of dust particles in a large volume. Diffused inductively coupled plasma is generated in the background of argon gas. A novel technique is used to introduce the dust particles in the main plasma by striking a secondary direct current glow discharge. These dust particles are found to get trapped in an electrostatic potential well, which is formed due to the combination of the ambipolar electric field caused by diffusive plasma and the field produced by the charged glass wall of the vacuum chamber. According to the requirements, the volume of the dust cloud can be controlled very precisely by tuning the plasma and discharge parameters. The present device can be used to address the underlying physics behind the transport of dust particles, self-excited dust acoustic waves, and instabilities. The detailed design of this device, plasma production and characterization, trapping and transport of the dust particle, and some of the preliminary experimental results are presented.

  2. Water transport in gas diffusion media for PEM fuel cells. Experimental and numerical investigation

    Energy Technology Data Exchange (ETDEWEB)

    Roth, Joerg

    2010-08-20

    The water flux in partially saturated hydrophobic carbon fibre paper for polymer electrolyte membrane fuel cell applications is investigated and compared with the frequently used constitutive two-phase flow model based on Darcy's law. Further, the first steps towards a math-based material design for gas diffusion media are explored in this thesis. Two self-developed ex-situ experiments to investigate the liquid water transport are introduced. The first is a newly developed buoyancy-based measurement of the pressuresaturation relationship on thin porous material with an accuracy of 0.5 kPa for the pressure and {+-} 5% for the saturation. The second experiment measures the pressure drop in dependence of flow rates down to magnitudes of {mu}L/s across the partially saturated thin porous material. This flow rate is relevant for the fuel cell application. The liquid water transport through Toray 060 carbon fibre paper, impregnated with 7% and 10% PTFE is investigated at wet and dry boundary conditions. The experiments are also accompanied by analytical and numerical free surface modelling with the consideration of the material morphology and liquid-solid interaction. The imbibing and draining cases of an arrangement of six fibres at varying solid-liquid interaction and boundary conditions are studied with 'Surface Evolver'. In order to evaluate the findings of ex-situ and modelling work for applicability to water transport in fuel cell operation, the technique of nuclear magnetic resonance (NMR) imaging is assessed. The focus is on the visualisation of 2D and 3D water distribution in the operating fuel cell. The compatibility of the NMR experiment with fuel cell operation in relation to material selection, operating temperature, and current density is addressed. NMR imaging is employed for different current densities, stoichiometries, and fuel cell arrangements. The fuel cell arrangements differ by the cathode diffusion medium. Plain, hydrophobic, and

  3. Modeling and analyses of postulated UF6 release accidents in gaseous diffusion plant

    International Nuclear Information System (INIS)

    Kim, S.H.; Taleyarkhan, R.P.; Keith, K.D.; Schmidt, R.W.; Carter, J.C.; Dyer, R.H.

    1995-10-01

    Computer models have been developed to simulate the transient behavior of aerosols and vapors as a result of a postulated accident involving the release of uranium hexafluoride (UF 6 ) into the process building of a gaseous diffusion plant. UF 6 undergoes an exothermic chemical reaction with moisture (H 2 O) in the air to form hydrogen fluoride (HF) and radioactive uranyl fluoride (UO 2 F 2 ). As part of a facility-wide safety evaluation, this study evaluated source terms consisting of UO 2 F 2 as well as HF during a postulated UF 6 release accident in a process building. In the postulated accident scenario, ∼7900 kg (17,500 lb) of hot UF 6 vapor is released over a 5 min period from the process piping into the atmosphere of a large process building. UO 2 F 2 mainly remains as airborne-solid particles (aerosols), and HF is in a vapor form. Some UO 2 F 2 aerosols are removed from the air flow due to gravitational settling. The HF and the remaining UO 2 F 2 are mixed with air and exhausted through the building ventilation system. The MELCOR computer code was selected for simulating aerosols and vapor transport in the process building. MELCOR model was first used to develop a single volume representation of a process building and its results were compared with those from past lumped parameter models specifically developed for studying UF 6 release accidents. Preliminary results indicate that MELCOR predicted results (using a lumped formulation) are comparable with those from previously developed models

  4. Transportable nuclear power plant TEC-M with two reactor plants of improved safety

    International Nuclear Information System (INIS)

    Ogloblin, B.G.; Sazonov, A.G.; Svishchev, A.M.; Gromov, B.F.; Zelensky, V.N.; Komkova, O.I.; Sidorov, V.I.; Tolstopyatov, V.P.; Toshinsky, G.I.

    1993-01-01

    Liquid metals are the best to meet the requirements of inherently safety nuclear power plants among the coolants used. A great experience has been gained in lead coolant power plant development and operation as applied to transportable power set-ups. Low chemical activity of this coolant with respect to air-water interaction is a determining factor for this coolant. The transportable nuclear power plant is described. It is intended to generate electric power for populated areas placed a long distance from the main electric power supply sources where it is difficult or not economical to deliver the conventional types of fuel. There are several remote areas in Siberia, Kamchatka in need of this type of power plant

  5. Improved age-diffusion model for low-energy electron transport in solids. I. Theory

    International Nuclear Information System (INIS)

    Devooght, J.; Dubus, A.; Dehaes, J.C.

    1987-01-01

    We have developed in this paper a semianalytical electron transport model designed for parametric studies of secondary-electron emission induced by low-energy electrons (keV range) and by fast light ions (100 keV range). The primary-particle transport is assumed to be known and to give rise to an internal electron source. The importance of the nearly isotropic elastic scattering in the secondary-electron energy range (50 eV) and the slowing-down process strongly reduce the influence of the anisotropy of the internal electron source, and the internal electron flux is nearly isotropic as is evidenced by the experimental results. The differential energy behavior of the inelastic scattering kernel is very complicated and the real kernel is replaced by a synthetic scattering kernel of which parameters are obtained by energy and angle moments conservation. Through a P 1 approximation and the use of the synthetic scattering kernel, the Boltzmann equation is approximated by a diffusion--slowing-down equation for the isotropic part of the internal electron flux. The energy-dependent partial reflection boundary condition reduces to a Neumann-Dirichlet boundary condition. An analytical expression for the Green's function of the diffusion--slowing-down equation with the surface boundary condition is obtained by means of approximations close to the age-diffusion theory and the model allows for transient conditions. Independently from the ''improved age-diffusion'' model, a correction formula is developed in order to take into account the backscattering of primary electrons for an incident-electron problem

  6. Analysis of solute transport in plants using positron emission tomography

    International Nuclear Information System (INIS)

    Partelova, D.

    2016-01-01

    In the first part of the work, geometrically and radiochemically characterized standards (phantoms) imitating the plant tissues and allowing the exact quantification of visualised radioindicator in plant tissues were designed and prepared within the study of visual and analytical characteristics of used positron emission tomograph (microPET system) commercially developed for animal objects at visualization of thin objects. Individual experiments carried out by exposure of excised leaves of tobacco (Nicotiana tabacum L.) or radish (Raphanus sativus L.) in solutions of 2-deoxy-2-fluoro-D-glucose labelled with positron emitter 18 F (2-[ 18 F]FDG) containing 10-, 100-, or 1000-times higher concentrations of D-glucose (c glu ) in comparison with the original 2-[ 18 F]FDG solution showed that the significant changes in visualisation of 2-[ 18 F]FDG distribution as well as in chemical portion of 2-[ 18 F]FDG within the leaf blade were observed as result of increased c glu . In the experiments with the whole plants of tobacco or radish exposed in 2-[ 18 F]FDG solution through the root system, only minimal translocation of 18 F radioactivity into the above-ground parts of plants, also in the case of increased c glu , was observed, which suggest the role of root system as a selective barrier of 2-[ 18 F]FDG transport from roots to the above-ground parts. On the basis of mentioned knowledge and analytical approaches (application of prepared phantoms), the dynamic study of 2-[ 18 F]FDG uptake and transport within the excised leaf of tobacco or whole radish plant was carried out. The description of these processes was realized through the 3D PET images and through the quantification of 2-[ 18 F]FDG distribution within the chosen regions of interest from the point of view of accumulated 18 F radioactivity (in Bq) or amount of D-glucose (in μg) as well. Application of methods of multivariate analysis allows to found the similarities between studied objects mainly from the point

  7. Test of the 'glymphatic' hypothesis demonstrates diffusive and aquaporin-4-independent solute transport in rodent brain parenchyma.

    Science.gov (United States)

    Smith, Alex J; Yao, Xiaoming; Dix, James A; Jin, Byung-Ju; Verkman, Alan S

    2017-08-21

    Transport of solutes through brain involves diffusion and convection. The importance of convective flow in the subarachnoid and paravascular spaces has long been recognized; a recently proposed 'glymphatic' clearance mechanism additionally suggests that aquaporin-4 (AQP4) water channels facilitate convective transport through brain parenchyma. Here, the major experimental underpinnings of the glymphatic mechanism were re-examined by measurements of solute movement in mouse brain following intracisternal or intraparenchymal solute injection. We found that: (i) transport of fluorescent dextrans in brain parenchyma depended on dextran size in a manner consistent with diffusive rather than convective transport; (ii) transport of dextrans in the parenchymal extracellular space, measured by 2-photon fluorescence recovery after photobleaching, was not affected just after cardiorespiratory arrest; and (iii) Aqp4 gene deletion did not impair transport of fluorescent solutes from sub-arachnoid space to brain in mice or rats. Our results do not support the proposed glymphatic mechanism of convective solute transport in brain parenchyma.

  8. Cytopathological evidence for transport of phytoplasma in infected plants

    Directory of Open Access Journals (Sweden)

    Anna Rudzińska-Langwald

    2014-01-01

    Full Text Available Pleomorphic phytoplasmas were observed in sieve tubes, companion cells and in phloem parenchyma of Tagetes patula L., Helichrysum bracteatum Willd. and Gladiolus sp. L. plants with morphological changes typical for phytoplasma infection. In the pores of the sieve plate phytoplasma cells were seen which suggests that the vertical transport of this pathogen goes in the sieve tubes of infected plants throughout the sieve tube pores. The contact of the sieve tube with the neighbouring cells goes through the plasmodesmata, but no changes of the plasmodesmata were observed in the phloem of infected plants. The size and structure of unchanged plasmodesmata does not allow passing through such big structures like phytoplasma. Instead close contact between phytoplasma cells and vertical sieve tube walls takes place. Damages to the cell wall were observed forming cavities in which the phytoplasma cells were present. The damages of parenchyma and companion cells walls also were seen. In cells where the damages of the walls were observed phytoplasmas were present. The phytoplasma cells were sporadically seen also in the intercellular spaces of parenchyma. These data suggest that horizontal transport depends on damages to the infected plant cell walls caused by the phytoplasma itself.

  9. Nonlinear waves in reaction-diffusion systems: The effect of transport memory

    International Nuclear Information System (INIS)

    Manne, K. K.; Hurd, A. J.; Kenkre, V. M.

    2000-01-01

    Motivated by the problem of determining stress distributions in granular materials, we study the effect of finite transport correlation times on the propagation of nonlinear wave fronts in reaction-diffusion systems. We obtain results such as the possibility of spatial oscillations in the wave-front shape for certain values of the system parameters and high enough wave-front speeds. We also generalize earlier known results concerning the minimum wave-front speed and shape-speed relationships stemming from the finiteness of the correlation times. Analytic investigations are made possible by a piecewise linear representation of the nonlinearity. (c) 2000 The American Physical Society

  10. Nonlinear waves in reaction-diffusion systems: The effect of transport memory

    Science.gov (United States)

    Manne, K. K.; Hurd, A. J.; Kenkre, V. M.

    2000-04-01

    Motivated by the problem of determining stress distributions in granular materials, we study the effect of finite transport correlation times on the propagation of nonlinear wave fronts in reaction-diffusion systems. We obtain results such as the possibility of spatial oscillations in the wave-front shape for certain values of the system parameters and high enough wave-front speeds. We also generalize earlier known results concerning the minimum wave-front speed and shape-speed relationships stemming from the finiteness of the correlation times. Analytic investigations are made possible by a piecewise linear representation of the nonlinearity.

  11. Potential of BODIPY-cholesterol for analysis of cholesterol transport and diffusion in living cells

    DEFF Research Database (Denmark)

    Wüstner, Daniel; Lund, Frederik Wendelboe; Röhrl, Clemens

    2016-01-01

    and collaborative efforts with Bob Bittman for studying diffusion in the plasma membrane (PM) and uptake of BChol in a quantitative manner. For that purpose, we used a variety of fluorescence approaches including fluorescence correlation spectroscopy and its imaging variants, fluorescence recovery after...... photobleaching (FRAP) and fluorescence loss in photobleaching (FLIP). We also describe pulse-chase studies from the PM using BChol in direct comparison to DHE. Based on the gathered imaging data, we present a two-step kinetic model for sterol transport between PM and recycling endosomes. In addition, we...

  12. The contribution of diffusion to methane transport in deep underground gas deposits; Der Beitrag der Diffusion zum Methantransport in tiefliegenden Gas-Lagerstaetten

    Energy Technology Data Exchange (ETDEWEB)

    Sachs, W. [Institut fuer Erdoel- und Erdgasforschung, Clausthal-Zellerfeld (Germany)

    1998-12-31

    Optimisation of gas production necessitates accurate knowledge of gas transport mechanisms. In view of the extreme temperatures, pressures, and permeability conditions of underground gas deposits, linear transfer of existing knowledge will be inappropriate. The author therefore uses a simple capillary bundle model with exemplary pressures, temperatures and permeabilities in order to assess the contribution of transport by diffusion. The diffusion coefficients, which are required for this and so far could not be measured under pressure, were determined by a new experimental method whose results will permit a better interpretation of the concentration dependence of the diffusion coefficient. The velocity of methane inflow and outflow in the water-filled pore space may provide knowledge on problems of gas storage in the pore space. (orig.) [Deutsch] Fuer den Foerderprozess und insbesondere seine Optimierung ist eine genaue Kenntnis der Transportmechanismen wesentlich. Unter den drastischen Bedingungen fuer Temperatur, Druck und Permeabilitaet tiefliegender Gas-Lagerstaetten mag die Uebertragung der bisherigen Vorstellungen ueber den Transport in der Lagerstaette zu einer unvollstaendigen Beschreibung fuehren. Unter Anwendung eines einfachen Kapillarbuendelmodells wird mit Beispielen fuer Druck, Temperatur und Permeabilitaet der moegliche Beitrag des Transports durch Diffusion abgeschaetzt. Zur Bestimmung der hierfuer notwendigen und bisher unter Druckbeaufschlagung nicht gemessenen Diffusionskoeffizienten wurde eine neue experimentelle Methode angewandt, deren Ergebnisse eine weiterfuehrende Interpretation der Konzentrationsabhaengigkeit des Diffusionskoeffizienten ermoeglichen. Auch fuer Fragestellungen der Speicherung von Gas im Porenraum kann die Geschwindigkeit der Ein- und Ausloesung von Methan im wasserhaltigen Porenraum von Interesse sein. (orig.)

  13. Removal ratio of gaseous toluene and xylene transported from air to root zone via the stem by indoor plants.

    Science.gov (United States)

    Kim, K J; Kim, H J; Khalekuzzaman, M; Yoo, E H; Jung, H H; Jang, H S

    2016-04-01

    This work was designed to investigate the removal efficiency as well as the ratios of toluene and xylene transported from air to root zone via the stem and by direct diffusion from the air into the medium. Indoor plants (Schefflera actinophylla and Ficus benghalensis) were placed in a sealed test chamber. Shoot or root zone were sealed with a Teflon bag, and gaseous toluene and xylene were exposed. Removal efficiency of toluene and total xylene (m, p, o) was 13.3 and 7.0 μg·m(-3)·m(-2) leaf area over a 24-h period in S. actinophylla, and was 13.0 and 7.3 μg·m(-3)·m(-2) leaf area in F. benghalensis. Gaseous toluene and xylene in a chamber were absorbed through leaf and transported via the stem, and finally reached to root zone, and also transported by direct diffusion from the air into the medium. Toluene and xylene transported via the stem was decreased with time after exposure. Xylene transported via the stem was higher than that by direct diffusion from the air into the medium over a 24-h period. The ratios of toluene transported via the stem versus direct diffusion from the air into the medium were 46.3 and 53.7% in S. actinophylla, and 46.9 and 53.1% in F. benghalensis, for an average of 47 and 53% for both species. The ratios of m,p-xylene transported over 3 to 9 h via the stem versus direct diffusion from the air into the medium was 58.5 and 41.5% in S. actinophylla, and 60.7 and 39.3% in F. benghalensis, for an average of 60 and 40% for both species, whereas the ratios of o-xylene transported via the stem versus direct diffusion from the air into the medium were 61 and 39%. Both S. actinophylla and F. benghalensis removed toluene and xylene from the air. The ratios of toluene and xylene transported from air to root zone via the stem were 47 and 60 %, respectively. This result suggests that root zone is a significant contributor to gaseous toluene and xylene removal, and transported via the stem plays an important role in this process.

  14. Transport and diffusion of material quantities on propagating interfaces via level set methods

    CERN Document Server

    Adalsteinsson, D

    2003-01-01

    We develop theory and numerical algorithms to apply level set methods to problems involving the transport and diffusion of material quantities in a level set framework. Level set methods are computational techniques for tracking moving interfaces; they work by embedding the propagating interface as the zero level set of a higher dimensional function, and then approximate the solution of the resulting initial value partial differential equation using upwind finite difference schemes. The traditional level set method works in the trace space of the evolving interface, and hence disregards any parameterization in the interface description. Consequently, material quantities on the interface which themselves are transported under the interface motion are not easily handled in this framework. We develop model equations and algorithmic techniques to extend the level set method to include these problems. We demonstrate the accuracy of our approach through a series of test examples and convergence studies.

  15. Transport and diffusion of material quantities on propagating interfaces via level set methods

    International Nuclear Information System (INIS)

    Adalsteinsson, David; Sethian, J.A.

    2003-01-01

    We develop theory and numerical algorithms to apply level set methods to problems involving the transport and diffusion of material quantities in a level set framework. Level set methods are computational techniques for tracking moving interfaces; they work by embedding the propagating interface as the zero level set of a higher dimensional function, and then approximate the solution of the resulting initial value partial differential equation using upwind finite difference schemes. The traditional level set method works in the trace space of the evolving interface, and hence disregards any parameterization in the interface description. Consequently, material quantities on the interface which themselves are transported under the interface motion are not easily handled in this framework. We develop model equations and algorithmic techniques to extend the level set method to include these problems. We demonstrate the accuracy of our approach through a series of test examples and convergence studies

  16. Analytical synthetic methods of solution of neutron transport equation with diffusion theory approaches energy multigroup

    International Nuclear Information System (INIS)

    Moraes, Pedro Gabriel B.; Leite, Michel C.A.; Barros, Ricardo C.

    2013-01-01

    In this work we developed a software to model and generate results in tables and graphs of one-dimensional neutron transport problems in multi-group formulation of energy. The numerical method we use to solve the problem of neutron diffusion is analytic, thus eliminating the truncation errors that appear in classical numerical methods, e.g., the method of finite differences. This numerical analytical method increases the computational efficiency, since they are not refined spatial discretization necessary because for any spatial discretization grids used, the numerical result generated for the same point of the domain remains unchanged unless the rounding errors of computational finite arithmetic. We chose to develop a computational application in MatLab platform for numerical computation and program interface is simple and easy with knobs. We consider important to model this neutron transport problem with a fixed source in the context of shielding calculations of radiation that protects the biosphere, and could be sensitive to ionizing radiation

  17. Mass and Momentum Transport in Microcavities for Diffusion-Dominant Cell Culture Applications

    Science.gov (United States)

    Yew, Alvin G.; Pinero, Daniel; Hsieh, Adam H.; Atencia, Javier

    2012-01-01

    For the informed design of microfluidic devices, it is important to understand transport phenomena at the microscale. This letter outlines an analytically-driven approach to the design of rectangular microcavities extending perpendicular to a perfusion microchannel for microfluidic cell culture devices. We present equations to estimate the spatial transition from advection- to diffusion-dominant transport inside cavities as a function of the geometry and flow conditions. We also estimate the time required for molecules, such as nutrients or drugs to travel from the microchannel to a given depth into the cavity. These analytical predictions can facilitate the rational design of microfluidic devices to optimize and maintain long-term, physiologically-based culture conditions with low fluid shear stress.

  18. Portsmouth gaseous diffusion plant environmental monitoring report for calendar year 1975

    International Nuclear Information System (INIS)

    Martin, W.E.; Netzer, W.D.

    1976-01-01

    At the Portsmouth Gaseous Diffusion Plant the ambient atmosphere and all effluent streams are sampled and analyzed regularly for conformance to applicable environmental standards. Although neither the State of Ohio nor the federal government has established standards for fluorides in the ambient atmosphere or in vegetation, these parameters also are monitored because fluoride compounds are used extensively in the gaseous diffusion process. Radioactivity is measured in air, water, food, soil, and sediments; and radiation doses are calculated for the public. All public radiation doses are well within federal standards. Non-radioactive effluent parameters either comply with federal standards, or there are projects planned to allow compliance. A disposal facility to remove chromium from recirculating cooling water blowdown will begin operation in June 1976. Also, pH adjustment facilities for liquid effluents and electrostatic precipitators for a coal-fired steam plant are planned for the near future

  19. Natural phenomena hazards evaluation of equipment and piping of Gaseous Diffusion Plant Uranium Enrichment Facility

    International Nuclear Information System (INIS)

    Singhal, M.K.; Kincaid, J.H.; Hammond, C.R.; Stockdale, B.I.; Walls, J.C.

    1995-01-01

    In support of the Gaseous Diffusion Plant Safety Analysis Report Upgrade program (GDP SARUP), a natural phenomena hazards evaluation was performed for the main process equipment and piping in the uranium enrichment buildings at Paducah and Portsmouth gaseous diffusion plants. In order to reduce the cost of rigorous analyses, the evaluation methodology utilized a graded approach based on an experience data base collected by SQUG/EPRI that contains information on the performance of industrial equipment and piping during past earthquakes. This method consisted of a screening walkthrough of the facility in combination with the use of engineering judgment and simple calculations. By using these screenings combined with evaluations that contain decreasing conservatism, reductions in the time and cost of the analyses were significant. A team of experienced seismic engineers who were trained in the use of the DOE SQUG/EPRI Walkdown Screening Material was essential to the success of this natural phenomena hazards evaluation

  20. Natural phenomena hazards evaluation of equipment and piping of Gaseous Diffusion Plant Uranium Enrichment Facility

    Energy Technology Data Exchange (ETDEWEB)

    Singhal, M.K.; Kincaid, J.H.; Hammond, C.R.; Stockdale, B.I.; Walls, J.C. [Oak Ridge National Lab., TN (United States). Technical Programs and Services; Brock, W.R.; Denton, D.R. [Lockheed Martin Energy Systems, Inc., Oak Ridge, TN (United States)

    1995-12-31

    In support of the Gaseous Diffusion Plant Safety Analysis Report Upgrade program (GDP SARUP), a natural phenomena hazards evaluation was performed for the main process equipment and piping in the uranium enrichment buildings at Paducah and Portsmouth gaseous diffusion plants. In order to reduce the cost of rigorous analyses, the evaluation methodology utilized a graded approach based on an experience data base collected by SQUG/EPRI that contains information on the performance of industrial equipment and piping during past earthquakes. This method consisted of a screening walkthrough of the facility in combination with the use of engineering judgment and simple calculations. By using these screenings combined with evaluations that contain decreasing conservatism, reductions in the time and cost of the analyses were significant. A team of experienced seismic engineers who were trained in the use of the DOE SQUG/EPRI Walkdown Screening Material was essential to the success of this natural phenomena hazards evaluation.

  1. Parallel computing for homogeneous diffusion and transport equations in neutronics; Calcul parallele pour les equations de diffusion et de transport homogenes en neutronique

    Energy Technology Data Exchange (ETDEWEB)

    Pinchedez, K

    1999-06-01

    Parallel computing meets the ever-increasing requirements for neutronic computer code speed and accuracy. In this work, two different approaches have been considered. We first parallelized the sequential algorithm used by the neutronics code CRONOS developed at the French Atomic Energy Commission. The algorithm computes the dominant eigenvalue associated with PN simplified transport equations by a mixed finite element method. Several parallel algorithms have been developed on distributed memory machines. The performances of the parallel algorithms have been studied experimentally by implementation on a T3D Cray and theoretically by complexity models. A comparison of various parallel algorithms has confirmed the chosen implementations. We next applied a domain sub-division technique to the two-group diffusion Eigen problem. In the modal synthesis-based method, the global spectrum is determined from the partial spectra associated with sub-domains. Then the Eigen problem is expanded on a family composed, on the one hand, from eigenfunctions associated with the sub-domains and, on the other hand, from functions corresponding to the contribution from the interface between the sub-domains. For a 2-D homogeneous core, this modal method has been validated and its accuracy has been measured. (author)

  2. Study of effective transport properties of fresh and aged gas diffusion layers

    Science.gov (United States)

    Bosomoiu, Magdalena; Tsotridis, Georgios; Bednarek, Tomasz

    2015-07-01

    Gas diffusion layers (GDLs) play an important role in proton exchange membrane fuel cells (PEMFCs) for the diffusion of reactant and the removal of product water. In the current study fresh and aged GDLs (Sigracet® GDL34BC) were investigated by X-ray computed tomography to obtain a representative 3D image of the real GDL structure. The examined GDL samples are taken from areas located under the flow channel and under the land. Additionally, a brand new Sigracet® GDL34BC was taken as a reference sample in order to find out the impact of fuel cell assembly on GDL. The produced 3D image data were used to calculate effective transport properties such as thermal and electrical conductivity, diffusivity, permeability and capillary pressure curves of the dry and partially saturated GDL. The simulation indicates flooding by product water occurs at contact angles lower than 125° depending on sample porosity. In addition, GDL anisotropy significantly affects the permeability as well as thermal and electrical conductivities. The calculated material bulk properties could be next used as input for CFD modelling of PEM fuel cells where GDL is usually assumed layer-like and homogeneous. Tensor material parameters allow to consider GDL anisotropy and lead to more realistic results.

  3. Sorbate Transport in Carbon Molecular Sieve Membranes and FAU/EMT Intergrowth by Diffusion NMR

    Directory of Open Access Journals (Sweden)

    John J. Low

    2012-02-01

    Full Text Available In this paper we present and discuss selected results of our recent studies of sorbate self-diffusion in microporous materials. The main focus is given to transport properties of carbon molecular sieve (CMS membranes as well as of the intergrowth of FAU-type and EMT-type zeolites. CMS membranes show promise for applications in separations of mixtures of small gas molecules, while FAU/EMT intergrowth can be used as an active and selective cracking catalyst. For both types of applications diffusion of guest molecules in the micropore networks of these materials is expected to play an important role. Diffusion studies were performed by a pulsed field gradient (PFG NMR technique that combines advantages of high field (17.6 T NMR and high magnetic field gradients (up to 30 T/m. This technique has been recently introduced at the University of Florida in collaboration with the National Magnet Lab. In addition to a more conventional proton PFG NMR, also carbon-13 PFG NMR was used.

  4. Volumetric vs Mass Velocity in Analyzing Convective-Diffusive Transport Processes in Liquids

    Science.gov (United States)

    Brenner, Howard

    2000-11-01

    Because mass rather than volume is preserved in fluid-mechanical problems involving density changes, a natural predilection exists for quantifying convective-diffusive transport phenomena in terms of a velocity field based upon mass, rather than volume. Indeed, in the classic BSL "Transport Phenomena" textbook, but a single reference exists even to the very concept of a volume velocity, and even then it is relegated to a homework assignment. However, especially when dealing with transport in fluids in which the mass density of the conserved property being transported (e.g., chemical species, internal energy, etc.) is independent of the prevailing pressure, as is largely true in the case of liquids, overwhelming advantages exist is preferring the volume velocity over the more ubiquitous and classical mass velocity. In a generalization of ideas pioneered by D. D. Joseph and co-workers, we outline the reasons for this volumetric velocity preference in a broad general context by identifying a large class of physical problems whose solutions are rendered more accessible by exploiting this unconventional velocity choice.

  5. Portsmouth Gaseous Diffusion Plant expansion, Piketon, Ohio. Volume 1. Draft environmental statement

    International Nuclear Information System (INIS)

    1976-06-01

    Subject to authorizing legislation and funding, ERDA will proceed with steps for additional uranium enrichment capacity at the Portsmouth Gaseous Diffusion Plant near Piketon, Ohio. This environmental statement was prepared by ERDA to cover this action. The statement was prepared in accordance with the National Environmental Policy Act of 1969, and ERDA's implementing regulations, 10 CFR Chapter III, Part 711. The statement describes the reasonably foreseeable environmental, social, economic and technological costs and benefits of the construction and operation of the expanded enrichment plant and its reasonably available alternatives and their anticipated effects

  6. Portsmouth Gaseous Diffusion Plant expansion, Piketon, Ohio. Volume 1. Draft environmental statement

    Energy Technology Data Exchange (ETDEWEB)

    1976-06-01

    Subject to authorizing legislation and funding, ERDA will proceed with steps for additional uranium enrichment capacity at the Portsmouth Gaseous Diffusion Plant near Piketon, Ohio. This environmental statement was prepared by ERDA to cover this action. The statement was prepared in accordance with the National Environmental Policy Act of 1969, and ERDA's implementing regulations, 10 CFR Chapter III, Part 711. The statement describes the reasonably foreseeable environmental, social, economic and technological costs and benefits of the construction and operation of the expanded enrichment plant and its reasonably available alternatives and their anticipated effects.

  7. Method for estimate the economic characteristics of an uranium enrichment plant by gaseous diffusion

    International Nuclear Information System (INIS)

    Berault, J.C.

    1975-01-01

    To estimate the economic characteristics of an uranium enrichment plant by gaseous diffusion is to determine the prospective price of the separative work unit to which leads the concerned technology, and to collect the data allowing to ascertain that this price remains in the area of development of the prices forecasted by the other projects. The prospective price estimated by the promoter is the synthesis of the components of the go decision and which are a potential market and a comprehensive industrially proven plant design, including the basic economic and technical data of the project. Procedures for estimating these components and their synthesis, exclusive of financing problems are reviewed [fr

  8. Introduction to the nuclear criticality safety evaluation of facility X-705, Portsmouth Gaseous Diffusion Plant

    International Nuclear Information System (INIS)

    Sheaffer, M.K.; Keeton, S.C.

    1993-01-01

    This report is the first in a series of documents that will evaluate nuclear criticality safety in the Decontamination and Recovery Facility, X-705, Portsmouth Gaseous Diffusion Plant. It provides an overview of the facility, categorizes its functions for future analysis, reviews existing NCS documentation, and explains the follow-on effort planned for X-705. A detailed breakdown of systems, subsystems, and operational areas is presented and cross-referenced to existing NCS documentation

  9. The new local control systems for operating gaseous diffusion plant units at Pierrelatte

    International Nuclear Information System (INIS)

    Delacroix, C.

    1990-01-01

    The development of a local control network for operating gaseous diffusion plant units is presented. The objective of the control system up date was to replace all the information network hardware. The new generation HP1000 calculators and a network architecture were chosen. The validation tests performed in laboratory and in situ, and the management policies towards the personnel during the technical changes are summarized [fr

  10. Environmental Restoration Site-Specific Plan for the Paducah Gaseous Diffusion Plant, FY 93

    International Nuclear Information System (INIS)

    1993-01-01

    This report provides an overview of the major Environmental Restoration (ER) concerns at Paducah Gaseous Diffusion Plant (PGDP). The identified solid waste management units at PGDP are listed. In the Department of Energy (DOE) Five Year Plan development process, one or more waste management units are addressed in a series of activity data sheets (ADSs) which identify planned scope, schedule, and cost objectives that are representative of the current state of planned technical development for individual or multiple sites

  11. Nuclear criticality safety evaluation of Spray Booth Operations in X-705, Portsmouth Gaseous Diffusion Plant

    International Nuclear Information System (INIS)

    Sheaffer, M.K.; Keeton, S.C.

    1993-01-01

    This report evaluates nuclear criticality safety for Spray Booth Operations in the Decontamination and Recovery Facility, X-705, at the Portsmouth Gaseous Diffusion Plant. A general description of current procedures and related hardware/equipment is presented. Control parameters relevant to nuclear criticality safety are explained, and a consolidated listing of administrative controls and safety systems is developed. Based on compliance with DOE Orders and MMES practices, the overall operation is evaluated, and recommendations for enhanced safety are suggested

  12. Transport of nano-objects in narrow channels: influence of Brownian diffusion, confinement and particle nature.

    Science.gov (United States)

    Liot, O; Socol, M; Garcia, L; Thiéry, J; Figarol, A; Mingotaud, A F; Joseph, P

    2018-06-13

    This paper presents experimental results about transport of dilute suspensions of nano-objects in silicon-glass micrometric and sub-micrometric channels. Two kinds of objects are used: solid, rigid latex beads and spherical capsule-shaped, soft polymersomes. They are tracked using fluorescence microscopy. Three aspects are studied: confinement (ratio between particle diameter and channel depth), Brownian diffusion and particle nature. The aim of this work is to understand how these different aspects affect the transport of suspensions in narrow channels and to understand the different mechanisms at play. Concerning the solid beads we observe the appearance of two regimes, one where the experimental mean velocity is close to the expected one and another where this velocity is lower. This is directly related to a competition between confinement, Brownian diffusion and advection. These two regimes are shown to be linked to the inhomogeneity of particles distribution in the channel depth, which we experimentally deduce from velocity distributions. This inhomogeneity appears during the entrance process into the sub-micrometric channels, as for hydrodynamic separation or deterministic lateral displacement. Concerning the nature of the particles we observed a shift of transition towards the second regime likely due to the relationships between shear stress and polymersomes mechanical properties which could reduce the inhomogeneity imposed by the geometry of our device.

  13. Universal linear-temperature resistivity: possible quantum diffusion transport in strongly correlated superconductors.

    Science.gov (United States)

    Hu, Tao; Liu, Yinshang; Xiao, Hong; Mu, Gang; Yang, Yi-Feng

    2017-08-25

    The strongly correlated electron fluids in high temperature cuprate superconductors demonstrate an anomalous linear temperature (T) dependent resistivity behavior, which persists to a wide temperature range without exhibiting saturation. As cooling down, those electron fluids lose the resistivity and condense into the superfluid. However, the origin of the linear-T resistivity behavior and its relationship to the strongly correlated superconductivity remain a mystery. Here we report a universal relation [Formula: see text], which bridges the slope of the linear-T-dependent resistivity (dρ/dT) to the London penetration depth λ L at zero temperature among cuprate superconductor Bi 2 Sr 2 CaCu 2 O 8+δ and heavy fermion superconductors CeCoIn 5 , where μ 0 is vacuum permeability, k B is the Boltzmann constant and ħ is the reduced Planck constant. We extend this scaling relation to different systems and found that it holds for other cuprate, pnictide and heavy fermion superconductors as well, regardless of the significant differences in the strength of electronic correlations, transport directions, and doping levels. Our analysis suggests that the scaling relation in strongly correlated superconductors could be described as a hydrodynamic diffusive transport, with the diffusion coefficient (D) approaching the quantum limit D ~ ħ/m*, where m* is the quasi-particle effective mass.

  14. On the use of diffusion synthetic acceleration in parallel 3D neutral particle transport calculations

    International Nuclear Information System (INIS)

    Brown, P.; Chang, B.

    1998-01-01

    The linear Boltzmann transport equation (BTE) is an integro-differential equation arising in deterministic models of neutral and charged particle transport. In slab (one-dimensional Cartesian) geometry and certain higher-dimensional cases, Diffusion Synthetic Acceleration (DSA) is known to be an effective algorithm for the iterative solution of the discretized BTE. Fourier and asymptotic analyses have been applied to various idealizations (e.g., problems on infinite domains with constant coefficients) to obtain sharp bounds on the convergence rate of DSA in such cases. While DSA has been shown to be a highly effective acceleration (or preconditioning) technique in one-dimensional problems, it has been observed to be less effective in higher dimensions. This is due in part to the expense of solving the related diffusion linear system. We investigate here the effectiveness of a parallel semicoarsening multigrid (SMG) solution approach to DSA preconditioning in several three dimensional problems. In particular, we consider the algorithmic and implementation scalability of a parallel SMG-DSA preconditioner on several types of test problems

  15. Simulation of Electron and Ion Transport in Methane-Air Counterflow Diffusion Flames

    Science.gov (United States)

    Choi, Sangkyu; Bisetti, Fabrizio; Chung, Suk Ho

    2010-11-01

    The spatial distribution of charged species in a methane-air counterflow diffusion flame is simulated with a detailed ion chemistry. The electric field induced by the distribution of charged species is calculated and compared to that obtained invoking the ambipolar diffusion assumption. The two calculations showed identical profiles for charged species and electric field. The profiles of ion mole fractions show two peaks: one near the maximum temperature and a second peak on the oxidizer side. The major ions near the maximum temperature are electron, C2H3O+ and H3O+. CHO3- and H3O+ contribute to the second peak. These profiles are quite different from those adopting a simplified three-step mechanism based solely on E-, CHO+ and H3O+, which shows only a single peak. Reaction pathway analyses showed that near the flame region, the proton is transferred by the path of CHO+ -> H3O+ -> C2H3O+ -> CHO+ in a circulating manner. In the second peak, CHO3- is produced though the pathway of E- -> O- -> OH- -> CHO3-. The sensitivity of the charged species profiles to transport properties is investigated, and it is found that the variation of charged species profiles near peak temperature is relatively small, while on the oxidizer side, it is quite sensitive to transport properties.

  16. Discontinuous diffusion synthetic acceleration for Sn transport on 2D arbitrary polygonal meshes

    International Nuclear Information System (INIS)

    Turcksin, Bruno; Ragusa, Jean C.

    2014-01-01

    In this paper, a Diffusion Synthetic Acceleration (DSA) technique applied to the S n radiation transport equation is developed using Piece-Wise Linear Discontinuous (PWLD) finite elements on arbitrary polygonal grids. The discretization of the DSA equations employs an Interior Penalty technique, as is classically done for the stabilization of the diffusion equation using discontinuous finite element approximations. The penalty method yields a system of linear equations that is Symmetric Positive Definite (SPD). Thus, solution techniques such as Preconditioned Conjugate Gradient (PCG) can be effectively employed. Algebraic MultiGrid (AMG) and Symmetric Gauss–Seidel (SGS) are employed as conjugate gradient preconditioners for the DSA system. AMG is shown to be significantly more efficient than SGS. Fourier analyses are carried out and we show that this discontinuous finite element DSA scheme is always stable and effective at reducing the spectral radius for iterative transport solves, even for grids with high-aspect ratio cells. Numerical results are presented for different grid types: quadrilateral, hexagonal, and polygonal grids as well as grids with local mesh adaptivity

  17. Transport of nano-objects in narrow channels: influence of Brownian diffusion, confinement and particle nature

    Science.gov (United States)

    Liot, O.; Socol, M.; Garcia, L.; Thiéry, J.; Figarol, A.; Mingotaud, A. F.; Joseph, P.

    2018-06-01

    This paper presents experimental results about transport of dilute suspensions of nano-objects in silicon-glass micrometric and sub-micrometric channels. Two kinds of objects are used: solid, rigid latex beads and spherical capsule-shaped, soft polymersomes. They are tracked using fluorescence microscopy. Three aspects are studied: confinement (ratio between particle diameter and channel depth), Brownian diffusion and particle nature. The aim of this work is to understand how these different aspects affect the transport of suspensions in narrow channels and to understand the different mechanisms at play. Concerning the solid beads we observe the appearance of two regimes, one where the experimental mean velocity is close to the expected one and another where this velocity is lower. This is directly related to a competition between confinement, Brownian diffusion and advection. These two regimes are shown to be linked to the inhomogeneity of particles distribution in the channel depth, which we experimentally deduce from velocity distributions. This inhomogeneity appears during the entrance process into the sub-micrometric channels, as for hydrodynamic separation or deterministic lateral displacement. Concerning the nature of the particles we observed a shift of transition towards the second regime likely due to the relationships between shear stress and polymersomes mechanical properties which could reduce the inhomogeneity imposed by the geometry of our device.

  18. Application of a diffusion model to measure ion leakage of resurrection plant leaves undergoing desiccation.

    Science.gov (United States)

    Mihailova, Gergana; Kocheva, Konstantina; Goltsev, Vasilij; Kalaji, Hazem M; Georgieva, Katya

    2018-04-01

    Haberlea rhodopensis is a chlorophyll-retaining resurrection plant, which can survive desiccation to air dry state under both low light and sunny environments. Maintaining the integrity of the membrane during dehydration of resurrection plants is extremely important. In the present study, the diffusion model was improved and used for a first time to evaluate the changes in ion leakage through different cellular compartments upon desiccation of H. rhodopensis and to clarify the reasons for significant increase of electrolyte leakage from dry leaves. The applied diffusion approach allowed us to distinguish the performance of plants subjected to dehydration and subsequent rehydration under different light intensities. Well-hydrated (control) shade plants had lower and slower electrolyte leakage compared to control sun plants as revealed by lower values of phase amplitudes, lower rate constants and ion concentration. In well-hydrated and moderately dehydrated plants (50% relative water content, RWC) ion efflux was mainly due to leakage from apoplast. The electrolyte leakage sharply increased in severely desiccated leaves (8% RWC) from both sun and shade plants mainly due to ion efflux from symplast. After 1 day of rehydration the electrolyte leakage was close to control values, indicating fast recovery of plants. We suggest that the enhanced leakage in air-dried leaves should not be considered as damage but rather as a survival mechanism based on a reversible modification in the structure of cell wall, plasma membrane and alterations in vacuolar system of the cells. However, further studies should be conducted to investigate the changes in cell wall/plasma membrane to support this conclusion. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  19. Uranium deposit removal from the Oak Ridge Gaseous Diffusion Plant K-25 Building

    International Nuclear Information System (INIS)

    Ladd, L.D.; Stinnett, E.C. Jr.; Hale, J.R.; Haire, M.J.

    1993-01-01

    The Oak Ridge Gaseous Diffusion Plant went into operation as the first plant to separate uranium by the gaseous diffusion process. It was built during World War II as part of the U.S. Army Corps of Engineers' Manhattan Project. Its war-time code name was K-25, which was also the name of the first uranium separation building constructed at the installation. The K-25 building was considered an engineering miracle at the time of its construction. Built in a U shape ∼1 mile long and 400 ft wide, it housed complex and unique separation equipment. Despite its size and complexity, it was made fully operational within <2 yr after construction began. The facility operated successfully for more than 20 yr until it was placed in a standby mode in 1964. It is now clear the K-25 gaseous diffusion plant will never again be used to enrich uranium. The U.S. Department of Energy, therefore, has initiated a decontamination and decommission program. This paper discusses various procedures and techniques for addressing critical mass, uranium deposits, and safeguards issues

  20. Preduction of the vibratory behaviour of a multistage gaseous diffusion plant

    International Nuclear Information System (INIS)

    Descleve, P.; Bertaut, C.; Briot, P.

    1979-01-01

    A study has been made to predict the vibratory behaviour of the rotating machinery of a gaseous diffusion plant starting from the results obtained for a single machine. TRICASTIN gaseous diffusion plant uses several hundred of enrichment stages but only three different sizes of machine are used. Each individual machine is a vertical assembly of a compressor heat exchanger and diffusion barriers, this column is supported on four lugs on a concrete slab. This slab must accomodate thermal expansion and is placed on neoprene pads. Due to the compactness of the system the mass of concrete is relatively small. Typically the mass of a machine of the intermediate size is 84 T, the mass of associated concrete is 55 T. Furthermore this supporting slab is flexible, meaning that a dynamic analysis of the slab shows several frequencies below the compressor rotational speed. Extensive dynamic tests have been conducted on a machine supported on a rigid foundation. These tests have shown that the main source of mechanical excitation was caused at 50 Hz by the unbalance of the electrical motor rotor. Then the problem remained to predict the behaviour of a group of twenty machines in the plant itself. (orig.)

  1. Long-distance transport of natrium in bean plants

    International Nuclear Information System (INIS)

    Marschner, H.; Ossenberg-Neuhaus, H.

    1976-01-01

    After Na + -application to a certain zone of the root or after application to the tip or to the base of a primary leaf or along the stem of bean plants, the long-distance transport of Na + was studied. The age of the plants was 8 d when root application took place, 10 d at the time of leaf application. After application to the root zone, the long-distance transport of Na + in the direction of the shoot was strongly prevented, and the transport in the direction of the root point could be neglected. Presence of K + in the ambient nutritive solution led to a strong increase of Na + efflux from the roots. Within 48 hrs., 30-40% of the Na + applied to a primary leaf were transported towards the roots. The Na + efflux to the ambient nutritive solution came from the basal regions; it was mostly more than 10% of the amount recepted through the leaf and was only slightly increased by the presence of K + in the external solution. In the case of Na + application through the hypokotyl, this Na + -efflux from the roots was even more than 25% within 12 hrs. Both with leaf and with stem application, only 1% of the Na + taken up was transported in the direction of the shoot point. The separation of the hypocotyl tissue in the bark and in the central cylinder showed the extremely high Na + storage capacity of the central cylinder. The transfer of Na + from the central cylinder into the bark seems to be fast in the hypocotyl, while the escape of Na + from the phloem of the bark into the central cylinder is rather limited. Long-distance transport of Na + in the phloem of the bark is highly basispetal and of high efficiency. Low Na + -contents in bean leaves are thus due to several regulation mechanisms: K + -stimulated Na + -efflux in the root, restricted long-distance transport in the xylemadue to high storage capacity of the xylemparenchyma, Na + influx pumps at the phloem in stem and leaf and strictly basipetal phloem-retransport of Na + in the root and efflux into the surrounding

  2. Modeling and simulation of spin-polarized transport at the kinetic and diffusive level

    International Nuclear Information System (INIS)

    Possanner, S.

    2012-01-01

    The aim of this thesis is to contribute to the understanding of spin-induced phenomena in electron motion. These phenomena arise when electrons move through a (partially) magnetic environment, in such a way that its magnetic moment (spin) may interact with the surroundings. The pure quantum nature of the spin requires transport models that deal with effects like quantum coherence, entanglement (correlation) and quantum dissipation. On the meso- and macroscopic level it is not yet clear under which circumstances these quantum effects may transpire. The purpose of this work is, on the one hand, to derive novel spin transport models from basic principles and, on the other hand, to develop numerical algorithms that allow for a solution of these new and other existing model equations. The thesis consists of four parts. The first part comprises an overview of fundamental spin-related concepts in electronic transport such as the giant-magneto-resistance (GMR) effect, the spin-transfer torque in metallic magnetic multilayers and the matrix-character of transport equations that take spin-coherent electron states into account. In particular, we consider the diffusive Zhang-Levy-Fert (ZLF) model, an exchange-torque model that consists of the Landau-Lifshitz equation and a heuristic matrix spin-diffusion equation. A finite difference scheme based on Strang operator splitting is developed that enables a numerical, self-consistent solution of this non-linear system within multilayer structures. Finally, the model is tested by comparison of numerical results to recent experimental data. In part two we propose a matrix-Boltzmann equation that allows for the description of spin-coherent electron transport on a kinetic level. The novelty here is a linear collision operator in which the transition rates from momentum k to momentum k' are modeled by a 2x2 Hermitian matrix; hence the mean-free paths of spin-up and spin-down electrons are represented by the eigenvalues of this

  3. THE TONOPLAST TRANSPORT SYSTEMS OF PLANT VACUOLES AND THEIR POTENTIAL APPLICATION IN BIOTECHNOLOGY

    Directory of Open Access Journals (Sweden)

    S. V. Isayenkov

    2013-06-01

    Full Text Available The pivotal role of plant vacuoles in plant survival was discussed in the review. Particularly, the providing of cellular turgor, accumulation of inorganic osmolytes and nutrients are the primary tasks of these cellular organelles. The main mechanisms of tonoplast transport systems were described. The known transport pathways of minerals, heavy metals, vitamins and other organic compounds were classified and outlined. The main systems of membrane vacuolar transport were reviewed. The outline of the physiological functions and features of vacuolar membrane transport proteins were performed. The physiological role of transport of minerals, nutrients and other compounds into vacuoles were discussed. This article reviews the main types of plant vacuoles and their functional role in plant cell. Current state and progress in vacuolar transport research was outlined. The examples of application for rinciples and mechanisms of vacuolar membrane transport in plant biotechnology were iven. The perspectives and approaches in plant and food biotechnology concerning transport and physiology of vacuoles are discussed.

  4. Light-induced modification of plant plasma membrane ion transport.

    Science.gov (United States)

    Marten, I; Deeken, R; Hedrich, R; Roelfsema, M R G

    2010-09-01

    Light is not only the driving force for electron and ion transport in the thylakoid membrane, but also regulates ion transport in various other membranes of plant cells. Light-dependent changes in ion transport at the plasma membrane and associated membrane potential changes have been studied intensively over the last century. These studies, with various species and cell types, revealed that apart from regulation by chloroplasts, plasma membrane transport can be controlled by phytochromes, phototropins or channel rhodopsins. In this review, we compare light-dependent plasma membrane responses of unicellular algae (Eremosphaera and Chlamydomonas), with those of a multicellular alga (Chara), liverworts (Conocephalum), mosses (Physcomitrella) and several angiosperm cell types. Light-dependent plasma membrane responses of Eremosphaera and Chara are characterised by the dominant role of K(+) channels during membrane potential changes. In most other species, the Ca(2+)-dependent activation of plasma membrane anion channels represents a general light-triggered event. Cell type-specific responses are likely to have evolved by modification of this general response or through the development of additional light-dependent signalling pathways. Future research to elucidate these light-activated signalling chains is likely to benefit from the recent identification of S-type anion channel genes and proteins capable of regulating these channels.

  5. Transportable Hydrogen Research Plant Based on Renewable Energy

    International Nuclear Information System (INIS)

    Mikel Fernandez; Carlos Madina; Asier Gil de Muro; Jose Angel Alzolab; Iker Marino; Javier Garcia-Tejedor; Juan Carlos Mugica; Inaki Azkkrate; Jose Angel Alzola

    2006-01-01

    Efficiency and cost are nowadays the most important barriers for the penetration of systems based on hydrogen and renewable energies. According to this background, TECNALIA Corporation has started in 2004 the HIDROTEC project: 'Hydrogen Technologies for Renewable Energy Applications'. The ultimate aim of this project is the implementation of a multipurpose demonstration and research plant in order to explore diverse options for sustainable energetic solutions based on hydrogen. The plant is conceived as an independent system that can be easily transported and assembled. Research and demonstration activities can thus be carried out at very different locations, including commercial renewable facilities. Modularity and scalability have also been taken into account for an optimised exploitation. (authors)

  6. Absorption, transport, and chemical fate of plutonium in soybean plants

    International Nuclear Information System (INIS)

    Garland, T.R.; Cataldo, D.A.; Wildung, R.E.

    1981-01-01

    Absorption of plutonium (Pu) by soybean plants (Glycine max cv. Williams) is limited by Pu solubility in soils. Changes in Pu concentration in different tissues with time to senescence indicate Pu is freely transported through the xylem during growth but not subject to remobilization on flowering. Studies in which the DTPA complex of 238 Pu was supplied to the plant suggest a change in chemical form following root absorption. Of the Pu in roots, stems, and leaves at senescence, 28, 54, and 67%, respectively, were soluble. The Pu in the solluble fraction was primarily associated with components of >10000 equivalent molecular weight in leaves and roots, whereas stems exhibited an equal distribution between components in the >10000 and <500 molecular weight fractions. Plutonium associated with mature seeds is concentrated in the seed hull (85%) and cotyledons (14%). The Pu associated with the cotyledon was primarily in the insoluble residues and soluble soy whey

  7. Analysis Of Provided Service Quality In Flowers And Living Plants Transport

    Science.gov (United States)

    Poliaková, Adela

    2015-06-01

    This paper analyses quality of the living flowers and plants transportation. A part of this paper compares the demands for a particular transport mode and a practical demonstration of these transport modes within a specific transport mode. The paper presents a survey of quality of services provided by individual transport modes.

  8. Photosynthesis of crop plants as influenced by light, carbon dioxide, temperature, and stomatal diffusion resistance

    NARCIS (Netherlands)

    Gaastra, P.

    1959-01-01

    The effect was estimated of light intensity, leaf temperature, and C0 2 concentration on photosynthetic rate in leaves of crop plants. The potential capacities of photochemical and biochemical processes and of C0 2 transport were compared.

    Resistance to C0 2

  9. Quantum dot transport in soil, plants, and insects

    Energy Technology Data Exchange (ETDEWEB)

    Al-Salim, Najeh [Industrial Research Ltd, P.O. Box 31310, Lower Hutt 5040 (New Zealand); Barraclough, Emma; Burgess, Elisabeth [New Zealand Institute for Plant and Food Research Ltd, Private Bag 92169, Victoria Street West, Auckland 1142 (New Zealand); Clothier, Brent, E-mail: brent.clothier@plantandfood.co.nz [New Zealand Institute for Plant and Food Research Ltd, Private Bag 11600, Manawatu Mail Centre, Palmerston North 4442 (New Zealand); Deurer, Markus; Green, Steve [New Zealand Institute for Plant and Food Research Ltd, Private Bag 11600, Manawatu Mail Centre, Palmerston North 4442 (New Zealand); Malone, Louise [New Zealand Institute for Plant and Food Research Ltd, Private Bag 92169, Victoria Street West, Auckland 1142 (New Zealand); Weir, Graham [Industrial Research Ltd, P.O. Box 31310, Lower Hutt 5040 (New Zealand)

    2011-08-01

    Environmental risk assessment of nanomaterials requires information not only on their toxicity to non-target organisms, but also on their potential exposure pathways. Here we report on the transport and fate of quantum dots (QDs) in the total environment: from soils, through their uptake into plants, to their passage through insects following ingestion. Our QDs are nanoparticles with an average particle size of 6.5 nm. Breakthrough curves obtained with CdTe/mercaptopropionic acid QDs applied to columns of top soil from a New Zealand organic apple orchard, a Hastings silt loam, showed there to be preferential flow through the soil's macropores. Yet the effluent recovery of QDs was just 60%, even after several pore volumes, indicating that about 40% of the influent QDs were filtered and retained by the soil column via some unknown exchange/adsorption/sequestration mechanism. Glycine-, mercaptosuccinic acid-, cysteine-, and amine-conjugated CdSe/ZnS QDs were visibly transported to a limited extent in the vasculature of ryegrass (Lolium perenne), onion (Allium cepa) and chrysanthemum (Chrysanthemum sp.) plants when cut stems were placed in aqueous QD solutions. However, they were not seen to be taken up at all by rooted whole plants of ryegrass, onion, or Arabidopsis thaliana placed in these solutions. Leafroller (Lepidoptera: Tortricidae) larvae fed with these QDs for two or four days, showed fluorescence along the entire gut, in their frass (larval feces), and, at a lower intensity, in their haemolymph. Fluorescent QDs were also observed and elevated cadmium levels detected inside the bodies of adult moths that had been fed QDs as larvae. These results suggest that exposure scenarios for QDs in the total environment could be quite complex and variable in each environmental domain. - Research highlights: {yields} Quantum dots are transported rapidly through soil but half were retained. {yields} Intact roots of plants did not take up quantum dots. Excised plants

  10. Significantly High Thermal Rectification in an Asymmetric Polymer Molecule Driven by Diffusive versus Ballistic Transport.

    Science.gov (United States)

    Ma, Hao; Tian, Zhiting

    2018-01-10

    Tapered bottlebrush polymers have novel nanoscale polymer architecture. Using nonequilibrium molecular dynamics simulations, we showed that these polymers have the unique ability to generate thermal rectification in a single polymer molecule and offer an exceptional platform for unveiling different heat conduction regimes. In sharp contrast to all other reported asymmetric nanostructures, we observed that the heat current from the wide end to the narrow end (the forward direction) in tapered bottlebrush polymers is smaller than that in the opposite direction (the backward direction). We found that a more disordered to less disordered structural transition within tapered bottlebrush polymers is essential for generating nonlinearity in heat conduction for thermal rectification. Moreover, the thermal rectification ratio increased with device length, reaching as high as ∼70% with a device length of 28.5 nm. This large thermal rectification with strong length dependence uncovered an unprecedented phenomenon-diffusive thermal transport in the forward direction and ballistic thermal transport in the backward direction. This is the first observation of radically different transport mechanisms when heat flow direction changes in the same system. The fundamentally new knowledge gained from this study can guide exciting research into nanoscale organic thermal diodes.

  11. Effect of Porosity and Concentration Polarization on Electrolyte Diffusive Transport Parameters through Ceramic Membranes with Similar Nanopore Size

    Directory of Open Access Journals (Sweden)

    Virginia Romero

    2014-08-01

    Full Text Available Diffusive transport through nanoporous alumina membranes (NPAMs produced by the two-step anodization method, with similar pore size but different porosity, is studied by analyzing membrane potential measured with NaCl solutions at different concentrations. Donnan exclusion of co-ions at the solution/membrane interface seem to exert a certain control on the diffusive transport of ions through NPAMs with low porosity, which might be reduced by coating the membrane surface with appropriated materials, as it is the case of SiO2. Our results also show the effect of concentration polarization at the membrane surface on ionic transport numbers (or diffusion coefficients for low-porosity and high electrolyte affinity membranes, which could mask values of those characteristic electrochemical parameters.

  12. Portsmouth Gasseous Diffusion Plant site, Piketon, Ohio. Final environmental impact statement. Volume 1

    International Nuclear Information System (INIS)

    1977-05-01

    This environmental statement provides a detailed analysis of the environmental effects associated with continued operation of the Portsmouth Gaseous Diffusion Plant, one of the three government-owned uranium enrichment plants operated by the Energy Research and Development Administration (ERDA). The Portsmouth facility, which has been operating for over twenty years, is located in Pike County, Ohio, on a 4000-acre federally owned reservation. The uranium enrichment capacity of the plant is currently being increased through a cascade improvement program (CIP) and a cascade uprating program (CUP). This environmental statement evaluates the Portsmouth facility at the fully uprated CUP production level. Environmental impacts of the production of offsite electric power for the Portsmouth facility are also assessed. The bulk of this power is supplied by the Ohio Valley Electric Corporation (OVEC) from two coal-fired plants, the Clifty Creek Power Plant near Madison, Indiana, and the Kyger Creek Power Plant near Cheshire, Ohio. The remaining required power will be obtained on a system basis through OVEC from the 15 sponsoring utilities of OVEC. The draft statement was issued for public comment on February 15, 1977, and public hearing to afford the public further opportunity to comment was held in Cincinnati, Ohio, on April 5, 1977

  13. Existence of negative differential thermal conductance in one-dimensional diffusive thermal transport

    Science.gov (United States)

    Hu, Jiuning; Chen, Yong P.

    2013-06-01

    We show that in a finite one-dimensional (1D) system with diffusive thermal transport described by the Fourier's law, negative differential thermal conductance (NDTC) cannot occur when the temperature at one end is fixed and there are no abrupt junctions. We demonstrate that NDTC in this case requires the presence of junction(s) with temperature-dependent thermal contact resistance (TCR). We derive a necessary and sufficient condition for the existence of NDTC in terms of the properties of the TCR for systems with a single junction. We show that under certain circumstances we even could have infinite (negative or positive) differential thermal conductance in the presence of the TCR. Our predictions provide theoretical basis for constructing NDTC-based devices, such as thermal amplifiers, oscillators, and logic devices.

  14. Transport tensors in perfectly aligned low-density fluids: Self-diffusion and thermal conductivity

    International Nuclear Information System (INIS)

    Singh, G. S.; Kumar, B.

    2001-01-01

    The modified Taxman equation for the kinetic theory of low-density fluids composed of rigid aspherical molecules possessing internal degrees of freedom is generalized to obtain the transport tensors in a fluid of aligned molecules. The theory takes care of the shape of the particles exactly but the solution has been obtained only for the case of perfectly aligned hard spheroids within the framework of the first Sonine polynomial approximation. The expressions for the thermal-conductivity components have been obtained for the first time whereas the self-diffusion components obtained here turn out to be exactly the same as those derived by Kumar and Masters [Mol. Phys. >81, 491 (1994)] through the solution of the Lorentz-Boltzmann equation. All our expressions yield correct results in the hard-sphere limit

  15. HAMMER, 1-D Multigroup Neutron Transport Infinite System Cell Calculation for Few-Group Diffusion Calculation

    International Nuclear Information System (INIS)

    Honeck, H.C.

    1984-01-01

    1 - Description of problem or function: HAMMER performs infinite lattice, one-dimensional cell multigroup calculations, followed (optionally) by one-dimensional, few-group, multi-region reactor calculations with neutron balance edits. 2 - Method of solution: Infinite lattice parameters are calculated by means of multigroup transport theory, composite reactor parameters by few-group diffusion theory. 3 - Restrictions on the complexity of the problem: - Cell calculations - maxima of: 30 thermal groups; 54 epithermal groups; 20 space points; 20 regions; 18 isotopes; 10 mixtures; 3 thermal up-scattering mixtures; 200 resonances per group; no overlap or interference; single level only. - Reactor calculations - maxima of : 40 regions; 40 mixtures; 250 space points; 4 groups

  16. Verification of a dust transport model against theoretical solutions in multidimensional advection diffusion problems

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Z., E-mail: zhanjie.xu@kit.ed [Forschungszentrum Karlsruhe, P.O. Box 3640, 76021 Karlsruhe (Germany); Travis, J.R. [Ingenieurbuero DuBois-Pitzer-Travis, 63071 Offenbach (Germany); Breitung, W.; Jordan, T. [Forschungszentrum Karlsruhe, P.O. Box 3640, 76021 Karlsruhe (Germany)

    2010-12-15

    Potentially explosive dust aerosol mobilization in the vacuum vessel is an important safety issue of the ITER facility, especially in scenarios of loss of vacuum accidents. Therefore dust mobilization modeling is ongoing in Research Center Karlsuhe. At first the aerosol particle model in the GASFLOW computer code is introduced briefly. To verify the particle model, a series of particle diffusion problems are simulated in one-, two- and three-dimensions. In each problem a particle source is initially exposed to an advective gas flow. Then a dust cloud is formed in the down stream. To obtain the theoretical solution about the particle concentration in the dust cloud, the governing diffusion partial differential equations with an additional advection term are solved by using Green's function method. Different spatial and temporal characters about the particle sources are also considered, e.g., instantaneous or continuous sources, line, or volume sources and so forth. The GASFLOW simulation results about the particle concentrations and the corresponding Green's function solutions are compared case by case. Very good agreements are found between the theoretical solutions and the GASGLOW simulations, when the drag force between the micron-sized particles and the conveying gas flow meets the Stokes' law about resistance. This situation is corresponding to a very small Reynolds number based on the particle diameter, with a negligible inertia effect of the particles. This verification work shows that the particle model of the GASFLOW code can reproduce numerically particle transport and diffusion in a good way.

  17. Modeling diffusion-governed solidification of ternary alloys - Part 2: Macroscopic transport phenomena and macrosegregation.

    Science.gov (United States)

    Wu, M; Li, J; Ludwig, A; Kharicha, A

    2014-09-01

    Part 1 of this two-part investigation presented a multiphase solidification model incorporating the finite diffusion kinetics and ternary phase diagram with the macroscopic transport phenomena (Wu et al., 2013). In Part 2, the importance of proper treatment of the finite diffusion kinetics in the calculation of macrosegregation is addressed. Calculations for a two-dimensional (2D) square casting (50 × 50 mm 2 ) of Fe-0.45 wt.%C-1.06 wt.%Mn considering thermo-solutal convection and crystal sedimentation are performed. The modeling result indicates that the infinite liquid mixing kinetics as assumed by classical models (e.g., the Gulliver-Scheil or lever rule), which cannot properly consider the solute enrichment of the interdendritic or inter-granular melt at the early stage of solidification, might lead to an erroneous estimation of the macrosegregation. To confirm this statement, further theoretical and experimental evaluations are desired. The pattern and intensity of the flow and crystal sedimentation are dependent on the crystal morphologies (columnar or equiaxed); hence, the potential error of the calculated macrosegregation caused by the assumed growth kinetics depends on the crystal morphology. Finally, an illustrative simulation of an engineering 2.45-ton steel ingot is performed, and the results are compared with experimental results. This example demonstrates the model applicability for engineering castings regarding both the calculation efficiency and functionality.

  18. A general advection-diffusion model for radioactive substance dispersion released from nuclear power plants

    International Nuclear Information System (INIS)

    Buske, D.

    2011-01-01

    The present contribution focuses on the question of radioactive material dispersion after discharge from a nuclear power plant in the context of micro-meteorology, i.e. an atmospheric dispersion model. The advection-diffusion equation with Fickian closure for the turbulence is solved for the atmospheric boundary layer where the eddy diffusivity coefficients and the wind profile are assumed to be space dependent. The model is solved in closed form using integral transform and spectral theory. Convergence of the solution is discussed in terms of a convergence criterion using a new interpretation of the Cardinal Theorem of Interpolation theory and Parseval's theorem. The solution is compared to other methods and model adequacy is analyzed. Model validation is performed against experimental data from a controlled release of radioactive material at the Itaorna Beach (Angra dos Reis, Rio de Janeiro state, Brazil, 1985). (author)

  19. Protein diffusion in plant cell plasma membranes: The cell-wall corral

    Directory of Open Access Journals (Sweden)

    Alexandre eMartinière

    2013-12-01

    Full Text Available Studying protein diffusion informs us about how proteins interact with their environment. Work on protein diffusion over the last several decades has illustrated the complex nature of biological lipid bilayers. The plasma membrane contains an array of membrane-spanning proteins or proteins with peripheral membrane associations. Maintenance of plasma membrane microstructure can be via physical features that provide intrinsic ordering such as lipid microdomains, or from membrane-associated structures such as the cytoskeleton. Recent evidence indicates, that in the case of plant cells, the cell wall seems to be a major player in maintaining plasma membrane microstructure. This interconnection / interaction between cell-wall and plasma membrane proteins most likely plays an important role in signal transduction, cell growth, and cell physiological responses to the environment.

  20. Protein diffusion in plant cell plasma membranes: the cell-wall corral.

    Science.gov (United States)

    Martinière, Alexandre; Runions, John

    2013-01-01

    Studying protein diffusion informs us about how proteins interact with their environment. Work on protein diffusion over the last several decades has illustrated the complex nature of biological lipid bilayers. The plasma membrane contains an array of membrane-spanning proteins or proteins with peripheral membrane associations. Maintenance of plasma membrane microstructure can be via physical features that provide intrinsic ordering such as lipid microdomains, or from membrane-associated structures such as the cytoskeleton. Recent evidence indicates, that in the case of plant cells, the cell wall seems to be a major player in maintaining plasma membrane microstructure. This interconnection / interaction between cell-wall and plasma membrane proteins most likely plays an important role in signal transduction, cell growth, and cell physiological responses to the environment.

  1. Coherent quantum transport in disordered systems: II. Temperature dependence of carrier diffusion coefficients from the time-dependent wavepacket diffusion method

    International Nuclear Information System (INIS)

    Zhong, Xinxin; Zhao, Yi; Cao, Jianshu

    2014-01-01

    The time-dependent wavepacket diffusion method for carrier quantum dynamics (Zhong and Zhao 2013 J. Chem. Phys. 138 014111), a truncated version of the stochastic Schrödinger equation/wavefunction approach that approximately satisfies the detailed balance principle and scales well with the size of the system, is applied to investigate the carrier transport in one-dimensional systems including both the static and dynamic disorders on site energies. The predicted diffusion coefficients with respect to temperature successfully bridge from band-like to hopping-type transport. As demonstrated in paper I (Moix et al 2013 New J. Phys. 15 085010), the static disorder tends to localize the carrier, whereas the dynamic disorder induces carrier dynamics. For the weak dynamic disorder, the diffusion coefficients are temperature-independent (band-like property) at low temperatures, which is consistent with the prediction from the Redfield equation, and a linear dependence of the coefficient on temperature (hopping-type property) only appears at high temperatures. In the intermediate regime of dynamic disorder, the transition from band-like to hopping-type transport can be easily observed at relatively low temperatures as the static disorder increases. When the dynamic disorder becomes strong, the carrier motion can follow the hopping-type mechanism even without static disorder. Furthermore, it is found that the memory time of dynamic disorder is an important factor in controlling the transition from the band-like to hopping-type motions. (paper)

  2. Diffusion and export dynamics of 137Cs deposited on the forested area in Fukushima after the nuclear power plant accident in March 2011. Preliminary results

    International Nuclear Information System (INIS)

    Ohte, Nobuhito; Iseda, Kohei; Tanoi, Keitaro; Murakami, Masashi; Suzuki, Takahiro; Ishii, Nobuyoshi

    2012-01-01

    A massive amount of radioactive substances, including cesium-137 ( 137 Cs), emitted from the disabled nuclear power plant, has been deposited on the forested areas in the northeastern region of Honshu Island, Japan after the Fukushima Daiichi nuclear power plant accident. Forests in these regions are particularly important, not only for the forest products industry but also for source areas of drinking water and for residential environments. To clarify the mechanisms of diffusion and export of 137 Cs deposited on the forested ecosystem, we initiated intensive field observations in a small catchment that included forest and farmlands. Specifically, we were interested in the Kami-Oguni River catchment that is located in the northern part of Fukushima Prefecture. The following expected major pathways of 137 Cs export and diffusion were investigated: 1) transportation of dissolved and particulate or colloidal forms via hydrological processes within a forested catchment and export dynamics through the stream, and 2) diffusion through the food web in terrestrial and aquatic ecosystems of forests. Preliminary findings indicated the following: 1) Most of the 137 Cs was discharged as suspended matter. High water flow generated by storm acted to accelerate the transportation of 137 Cs from the forested catchments. Thus, the estimation of 137 Cs export requires precise evaluation of the high flow acceleration during storm events; 2) Because litter and its detritus may form the biggest pool of 137 Cs in the forested ecosystem, 137 Cs diffusion occurs more rapidly through the detritus food chain than the grazing food chain. Most predators have already ingested 137 Cs, particularly in aquatic environments. An urgent question that needs to be addressed is when and how 137 Cs diffuses through grazing food chains and how rapidly this process occurs. To elucidate or to be able to predict these phenomena, the mechanisms of 137 Cs release from litter and soil's organic matter

  3. Computational fluid dynamics tracking of UF6 reaction products release into a gaseous diffusion plant cell housing

    International Nuclear Information System (INIS)

    Wendel, M.W.; Chen, N.C.J.; Kim, S.H.; Taleyarkhan, R.P.; Keith, K.D.; Schmidt, R.W.

    1996-01-01

    A three-dimensional (3-D) computational fluid dynamics (CFD) model has been developed using CFDS-FLOW3D Version 3.3 to model the transport of aerosol products formed during a release of uranium hexafluoride (UF 6 ) into a gaseous diffusion plant (GDP) process building. As part of a facility-wide safety evaluation, a one-dimensional (1-D) analysis of aerosol/vapor transport following such an hypothesized severe accident is being performed. The objective of this study is to supplement the 1-D analysis with more detailed 3-D results. Specifically, the goal is to quantify the distribution of aerosol passing out of the process building during the hypothetical accident. This work demonstrates a useful role for CFD in large 3-D problems, where some experimental data are available for calibrating key parameters and the desired results are global (total time-integrated aerosol flow rates across a few boundary surfaces) as opposed to local velocities, temperatures, or heat transfer coefficients

  4. GPU-based parallel computing in real-time modeling of atmospheric transport and diffusion of radioactive material

    International Nuclear Information System (INIS)

    Santos, Marcelo C. dos; Pereira, Claudio M.N.A.; Schirru, Roberto; Pinheiro, André; Coordenacao de Pos-Graduacao e Pesquisa de Engenharia

    2017-01-01

    Atmospheric radionuclide dispersion systems (ARDS) are essential mechanisms to predict the consequences of unexpected radioactive releases from nuclear power plants. Considering, that during an eventuality of an accident with a radioactive material release, an accurate forecast is vital to guide the evacuation plan of the possible affected areas. However, in order to predict the dispersion of the radioactive material and its impact on the environment, the model must process information about source term (radioactive materials released, activities and location), weather condition (wind, humidity and precipitation) and geographical characteristics (topography). Furthermore, ARDS is basically composed of 4 main modules: Source Term, Wind Field, Plume Dispersion and Doses Calculations. The Wind Field and Plume Dispersion modules are the ones that require a high computational performance to achieve accurate results within an acceptable time. Taking this into account, this work focuses on the development of a GPU-based parallel Plume Dispersion module, focusing on the radionuclide transport and diffusion calculations, which use a given wind field and a released source term as parameters. The program is being developed using the C ++ programming language, allied with CUDA libraries. In comparative case study between a parallel and sequential version of the slower function of the Plume Dispersion module, a speedup of 11.63 times could be observed. (author)

  5. GPU-based parallel computing in real-time modeling of atmospheric transport and diffusion of radioactive material

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Marcelo C. dos; Pereira, Claudio M.N.A.; Schirru, Roberto; Pinheiro, André, E-mail: jovitamarcelo@gmail.com, E-mail: cmnap@ien.gov.br, E-mail: schirru@lmp.ufrj.br, E-mail: apinheiro99@gmail.com [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil); Coordenacao de Pos-Graduacao e Pesquisa de Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear

    2017-07-01

    Atmospheric radionuclide dispersion systems (ARDS) are essential mechanisms to predict the consequences of unexpected radioactive releases from nuclear power plants. Considering, that during an eventuality of an accident with a radioactive material release, an accurate forecast is vital to guide the evacuation plan of the possible affected areas. However, in order to predict the dispersion of the radioactive material and its impact on the environment, the model must process information about source term (radioactive materials released, activities and location), weather condition (wind, humidity and precipitation) and geographical characteristics (topography). Furthermore, ARDS is basically composed of 4 main modules: Source Term, Wind Field, Plume Dispersion and Doses Calculations. The Wind Field and Plume Dispersion modules are the ones that require a high computational performance to achieve accurate results within an acceptable time. Taking this into account, this work focuses on the development of a GPU-based parallel Plume Dispersion module, focusing on the radionuclide transport and diffusion calculations, which use a given wind field and a released source term as parameters. The program is being developed using the C ++ programming language, allied with CUDA libraries. In comparative case study between a parallel and sequential version of the slower function of the Plume Dispersion module, a speedup of 11.63 times could be observed. (author)

  6. Laminar oxy-fuel diffusion flame supported by an oxygen-permeable-ion-transport membrane

    KAUST Repository

    Hong, Jongsup

    2013-03-01

    A numerical model with detailed gas-phase chemistry and transport was used to predict homogeneous fuel conversion processes and to capture the important features (e.g., the location, temperature, thickness and structure of a flame) of laminar oxy-fuel diffusion flames stabilized on the sweep side of an oxygen permeable ion transport membrane (ITM). We assume that the membrane surface is not catalytic to hydrocarbon or syngas oxidation. It has been demonstrated that an ITM can be used for hydrocarbon conversion with enhanced reaction selectivity such as oxy-fuel combustion for carbon capture technologies and syngas production. Within an ITM unit, the oxidizer flow rate, i.e., the oxygen permeation flux, is not a pre-determined quantity, since it depends on the oxygen partial pressures on the feed and sweep sides and the membrane temperature. Instead, it is influenced by the oxidation reactions that are also dependent on the oxygen permeation rate, the initial conditions of the sweep gas, i.e., the fuel concentration, flow rate and temperature, and the diluent. In oxy-fuel combustion applications, the sweep side is fuel-diluted with CO2, and the entire unit is preheated to achieve a high oxygen permeation flux. This study focuses on the flame structure under these conditions and specifically on the chemical effect of CO2 dilution. Results show that, when the fuel diluent is CO2, a diffusion flame with a lower temperature and a larger thickness is established in the vicinity of the membrane, in comparison with the case in which N2 is used as a diluent. Enhanced OH-driven reactions and suppressed H radical chemistry result in the formation of products with larger CO and H2O and smaller H2 concentrations. Moreover, radical concentrations are reduced due to the high CO2 fraction in the sweep gas. CO2 dilution reduces CH3 formation and slows down the formation of soot precursors, C2H2 and C2H4. The flame location impacts the species diffusion and heat transfer from the

  7. Diffusive-to-ballistic transition of the modulated heat transport in a rarefied air chamber

    Directory of Open Access Journals (Sweden)

    C. L. Gomez-Heredia

    2017-01-01

    Full Text Available Modulated heat transfer in air subject to pressures from 760 Torr to 10-4 Torr is experimentally studied by means of a thermal-wave resonant cavity placed in a vacuum chamber. This is done through the analysis of the amplitude and phase delay of the photothermal signal as a function of the cavity length and pressure through of the Knudsen’s number. The viscous, transitional, and free molecular regimes of heat transport are observed for pressures P>1.5 Torr, 25 mTorrdiffusive and ballistic heat transport.

  8. Data processing in studies of diffusion for seawage disposal and of sediment transportation

    International Nuclear Information System (INIS)

    Szulak, C.; Agudo, E.G.

    1974-01-01

    The radiotracer applications on diffusion studies for sewage disposal in sea waters, as well as some large scale experiments on sediments transportation, are characterized by the bulky amount data obtained in the field. Data processing and plotting is a very time consuming task if they are to be handled manually, as may occurs in small research institutes. In order to overcome this difficulty, a program suitable for a 9810-A, Model Hewlett Packard calculator with plotter, was been developed. Through this program the following sequence of operations is performed: 1 - Background and decay corrections on activity measurements; 2 - conversion of angular position data taken with sextants, to rectangular coordinates; 3 - Position corrections as a function of the mean transport velocity of the radioactive cloud; 4 - Interpolation and plotting for each cloud section; of the points belonging ro preselected values of isoactivity curves; 5 - Interpolation and plotting between maximum activity points from two consecutive trajectories of the points belonging to preselected isoactivity curves. As a result of each data processing and plotting, a definition of shape of the radioactive, as well as the instantaneous concentration distribution are obtained. Interpolating a curve through the points with same activity, the preselected isoactivity lines are easily drawn [pt

  9. Construction and operation of an industrial solid waste landfill at Portsmouth Gaseous Diffusion Plant, Piketon, Ohio

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-10-01

    The US Department of Energy (DOE), Office of Waste Management, proposes to construct and operate a solid waste landfill within the boundary of the Portsmouth Gaseous Diffusion Plant (PORTS), Piketon, Ohio. The purpose of the proposed action is to provide PORTS with additional landfill capacity for non-hazardous and asbestos wastes. The proposed action is needed to support continued operation of PORTS, which generates non-hazardous wastes on a daily basis and asbestos wastes intermittently. Three alternatives are evaluated in this environmental assessment (EA): the proposed action (construction and operation of the X-737 landfill), no-action, and offsite shipment of industrial solid wastes for disposal.

  10. Cleanup operations at the Oak Ridge Gaseous Diffusion Plant contaminated metal scrapyard

    International Nuclear Information System (INIS)

    Williams, L.C.

    1987-01-01

    Cleanup operations at the contaminated metal storage yard located at the Oak Ridge, Tennessee, Gaseous Diffusion Plant have been completed. The storage yard, in existence since the early 1970s, contained an estimated 35,000 tons of mixed-type metals spread over an area of roughly 30 acres. The overall cleanup program required removing the metal from the storage yard, sorting by specific metal types, and size reduction of specific types for future processing. This paper explains the methods and procedures used to accomplish this task

  11. Study of technetium uptake in vegetation in the vicinity of the Portsmouth Gaseous Diffusion Plant

    International Nuclear Information System (INIS)

    Acox, T.A.

    1982-01-01

    Technetium-99 was measured in vegetation and soil collected on and near the Portsmouth Gaseous Diffusion Plant to obtain an estimate of the soil-to-vegetation concentration factors. The concentration factors appear to be lognormally distributed with a geometric mean of 3.4 (Bq/kg dry wt. tissue per Bq/kg dry wt. soil) and a geometric standard deviation of 4.7. A dose commitment was calculated using a hypothetical 3.7 x 10 10 Bq Tc-99/year release and the actual CY-1981 concentration release of Tc-99. The radiological significance of Tc-99 in the terrestial food chain is substantially less than previously believed

  12. Nuclear criticality safety evaluation of large cylinder cleaning operations in X-705, Portsmouth Gaseous diffusion Plant

    International Nuclear Information System (INIS)

    Sheaffer, M.K.; Keeton, S.C.; Lutz, H.F.

    1995-06-01

    This report evaluates nuclear criticality safety for large cylinder cleaning operations in the Decontamination and Recovery Facility, X-705, at the Portsmouth Gaseous Diffusion Plant. A general description of current cleaning procedures and required hardware/equipment is presented, and documentation for large cylinder cleaning operations is identified and described. Control parameters, design features, administrative controls, and safety systems relevant to nuclear criticality are discussed individually, followed by an overall assessment based on the Double Contingency Principle. Recommendations for enhanced safety are suggested, and issues for increased efficiency are presented

  13. Construction and operation of an industrial solid waste landfill at Portsmouth Gaseous Diffusion Plant, Piketon, Ohio

    International Nuclear Information System (INIS)

    1995-10-01

    The US Department of Energy (DOE), Office of Waste Management, proposes to construct and operate a solid waste landfill within the boundary of the Portsmouth Gaseous Diffusion Plant (PORTS), Piketon, Ohio. The purpose of the proposed action is to provide PORTS with additional landfill capacity for non-hazardous and asbestos wastes. The proposed action is needed to support continued operation of PORTS, which generates non-hazardous wastes on a daily basis and asbestos wastes intermittently. Three alternatives are evaluated in this environmental assessment (EA): the proposed action (construction and operation of the X-737 landfill), no-action, and offsite shipment of industrial solid wastes for disposal

  14. Aerial radiological survey of the area surrounding the Portsmouth Gaseous Diffusion Plant, Portsmouth, Ohio

    International Nuclear Information System (INIS)

    1979-09-01

    An airborne radiological survey was conducted in July 1976. It was centered on the Portsmouth Gaseous Diffusion Plant. Two areas were surveyed: one 35 km 2 and the other 16 km 2 . Using Nal(Tl) scintillation detectors, measurements were made of the terrestrial gamma radiation over the areas with a series of north-south flight lines. The processed data indicated that on-site radioactivity was due to nuclear matterials currently or previously handled, processed, or stored. Off-site activities were found to be due wholly to the naturally occurring 40 K, the 238 U chain, and thorium chain gamma emitters

  15. Effect of the poloidal current from the classical diffusion in the steady-state neo-classical transport

    International Nuclear Information System (INIS)

    Igna Junior, A.D.

    1984-01-01

    The relevant parameters of two steady-state models of a plasma column, in fusion regime, were analyzed for an ideal Tokamak. The neo-classical transport theory was considered in the banana regime and in the Pfirsch-Schlueter regime. The first model proposes a correction in the numerical coefficients of the transport equations. In the other one, a poloidal current from Pfirsch-Schlueter classical diffusion is considered aiming to satisfy the pressure balance. (M.C.K.) [pt

  16. Neutron transport in hexagonal reactor cores modeled by trigonal-geometry diffusion and simplified P{sub 3} nodal methods

    Energy Technology Data Exchange (ETDEWEB)

    Duerigen, Susan

    2013-05-15

    The superior advantage of a nodal method for reactor cores with hexagonal fuel assemblies discretized as cells consisting of equilateral triangles is its mesh refinement capability. In this thesis, a diffusion and a simplified P{sub 3} (or SP{sub 3}) neutron transport nodal method are developed based on trigonal geometry. Both models are implemented in the reactor dynamics code DYN3D. As yet, no other well-established nodal core analysis code comprises an SP{sub 3} transport theory model based on trigonal meshes. The development of two methods based on different neutron transport approximations but using identical underlying spatial trigonal discretization allows a profound comparative analysis of both methods with regard to their mathematical derivations, nodal expansion approaches, solution procedures, and their physical performance. The developed nodal approaches can be regarded as a hybrid NEM/AFEN form. They are based on the transverse-integration procedure, which renders them computationally efficient, and they use a combination of polynomial and exponential functions to represent the neutron flux moments of the SP{sub 3} and diffusion equations, which guarantees high accuracy. The SP{sub 3} equations are derived in within-group form thus being of diffusion type. On this basis, the conventional diffusion solver structure can be retained also for the solution of the SP{sub 3} transport problem. The verification analysis provides proof of the methodological reliability of both trigonal DYN3D models. By means of diverse hexagonal academic benchmark and realistic detailed-geometry full-transport-theory problems, the superiority of the SP{sub 3} transport over the diffusion model is demonstrated in cases with pronounced anisotropy effects, which is, e.g., highly relevant to the modeling of fuel assemblies comprising absorber material.

  17. Advances in methods for identification and characterization of plant transporter function

    DEFF Research Database (Denmark)

    Larsen, Bo; Xu, Deyang; Halkier, Barbara Ann

    2017-01-01

    Transport proteins are crucial for cellular function at all levels. Numerous importers and exporters facilitate transport of a diverse array of metabolites and ions intra- and intercellularly. Identification of transporter function is essential for understanding biological processes at both......-based approaches. In this review, we highlight examples that illustrate how new technology and tools have advanced identification and characterization of plant transporter functions....

  18. An incident flux expansion transport theory method suitable for coupling to diffusion theory methods in hexagonal geometry

    International Nuclear Information System (INIS)

    Hayward, Robert M.; Rahnema, Farzad; Zhang, Dingkang

    2013-01-01

    Highlights: ► A new hybrid stochastic–deterministic transport theory method to couple with diffusion theory. ► The method is implemented in 2D hexagonal geometry. ► The new method produces excellent results when compared with Monte Carlo reference solutions. ► The method is fast, solving all test cases in less than 12 s. - Abstract: A new hybrid stochastic–deterministic transport theory method, which is designed to couple with diffusion theory, is presented. The new method is an extension of the incident flux response expansion method, and it combines the speed of diffusion theory with the accuracy of transport theory. With ease of use in mind, the new method is derived in such a way that it can be implemented with only minimal modifications to an existing diffusion theory method. A new angular expansion, which is necessary for the diffusion theory coupling, is developed in 2D and 3D. The method is implemented in 2D hexagonal geometry, and an HTTR benchmark problem is used to test its accuracy in a standalone configuration. It is found that the new method produces excellent results (with average relative error in partial current less than 0.033%) when compared with Monte Carlo reference solutions. Furthermore, the method is fast, solving all test cases in less than 12 s

  19. Paducah Gaseous Diffusion Plant Annual Site Environmental Report summary for 1993

    International Nuclear Information System (INIS)

    1994-11-01

    This report contains summaries of the environmental programs at Paducah Gaseous Diffusion Plant, environmental monitoring and the results, and the impact of operations on the environment and the public for 1993. The environmental monitoring program at Paducah includes effluent monitoring and environmental surveillance. Effluent monitoring is measurement of releases as they occur. Contaminants are released through either airborne emissions or liquids discharged from the plant. These releases occur as part of normal site operations, such as cooling water discharged from the uranium enrichment cascade operations or airborne releases from ventilation systems. In the event of system failure, this monitoring provides timely warning so that corrective action can be taken before releases reach an unsafe level. Environmental surveillance tracks the dispersion of materials into the environment after they have been released. This involves the collection of samples from various media, such as water, soil, vegetation, and food crops, and the analysis of these samples for certain radionuclides, chemicals, and metals

  20. Decommissioning of the gaseous diffusion plant at BNF plc Capenhurst in the UK

    International Nuclear Information System (INIS)

    Clements, D.W.; Cross, J.R.

    1993-01-01

    Since 1982, a gaseous diffusion plant located at the British Nuclear Fuels plc (BNFL) site at Capenhurst in the United Kingdom, has been undergoing decontamination, decommissioning, and dismantling. By March 1994, the decontamination and decommissioning activities will be complete with 99% of the materials used to construct the plant recycled to the environment as clean material. This paper describes the history of the decontamination, decommissioning, dismantling, and disposal program. Reference is made to the scale of the project and to the special techniques developed, particularly in the areas of size reduction, decontamination, and protection of personnel and the environment. The quantities of material involved that require decontamination and release levels for recycling materials in the U.K. metals market are discussed

  1. Portsmouth Gaseous Diffusion Plant Annual Site Environmental Report summary for 1993

    International Nuclear Information System (INIS)

    1994-11-01

    This report contains summaries of the environmental programs at Paducah Gaseous Diffusion Plant, environmental monitoring and the results, and the impact of operations on the environment and the public for 1993. The environmental monitoring program at Paducah includes effluent monitoring and environmental surveillance. Effluent monitoring is measurement of releases as they occur. Contaminants are released through either airborne emissions or liquids discharged from the plant. These releases occur as part of normal site operations, such as cooling water discharged from the uranium enrichment cascade operations or airborne releases from ventilation systems. In the event of system failure, this monitoring provides timely warning so that corrective action can be taken before releases reach an unsafe level. Environmental surveillance tracks the dispersion of materials into the environment after they have been released. This involves the collection of samples from various media, such as water, soil, vegetation, and food crops, and the analysis of these samples for certain radionuclides, chemicals, and metals

  2. A probabilistic safety analysis of UF{sub 6} handling at the Portsmouth Gaseous Diffusion Plant

    Energy Technology Data Exchange (ETDEWEB)

    Boyd, G.J.; Lewis, S.R.; Summitt, R.L. [Safety and Reliability Optimization Services (SAROS), Inc., Knoxville, TN (United States)

    1991-12-31

    A probabilistic safety study of UF{sub 6} handling activities at the Portsmouth Gaseous Diffusion Plant has recently been completed. The analysis provides a unique perspective on the safety of UF{sub 6} handling activities. The estimated release frequencies provide an understanding of current risks, and the examination of individual contributors yields a ranking of important plant features and operations. Aside from the probabilistic results, however, there is an even more important benefit derived from a systematic modeling of all operations. The integrated approach employed in the analysis allows the interrelationships among the equipment and the required operations to be explored in depth. This paper summarizes the methods used in the study and provides an overview of some of the technical insights that were obtained. Specific areas of possible improvement in operations are described.

  3. Theory of charge transport in diffusive normal metal/conventional superconductor point contacts in the presence of magnetic impurity

    NARCIS (Netherlands)

    Yokoyama, T.; Tanaka, Y.; Golubov, Alexandre Avraamovitch; Inoue, J.; Asano, Y.

    2006-01-01

    Charge transport in the diffusive normal metal/insulator/s-wave superconductor junctions is studied in the presence of the magnetic impurity for various situations, where we have used the Usadel equation with Nazarov's generalized boundary condition. It is revealed that the magnetic impurity

  4. Some reciprocity-like relations in multi-group neutron diffusion and transport theory over bare homogeneous regions

    International Nuclear Information System (INIS)

    Modak, R.S.; Sahni, D.C.

    1996-01-01

    Some simple reciprocity-like relations that exist in multi-group neutron diffusion and transport theory over bare homogeneous regions are presented. These relations do not involve the adjoint solutions and are directly related to numerical schemes based on an explicit evaluation of the fission matrix. (author)

  5. Effective Thermal Conductivity and Diffusivity of Containment Wall for Nuclear Power Plant OPR1000

    Directory of Open Access Journals (Sweden)

    Hyung Gyun Noh

    2017-04-01

    Full Text Available The goal of this study is to evaluate the effective thermal conductivity and diffusivity of containment walls as heat sinks or passive cooling systems during nuclear power plant (NPP accidents. Containment walls consist of steel reinforced concrete, steel liners, and tendons, and provide the main thermal resistance of the heat sinks, which varies with the volume fraction and geometric alignment of the rebar and tendons, as well as the temperature and chemical composition. The target geometry for the containment walls of this work is the standard Korean NPP OPR1000. Sample tests and numerical simulations are conducted to verify the correlations for models with different densities of concrete, volume fractions, and alignments of steel. Estimation of the effective thermal conductivity and diffusivity of the containment wall models is proposed. The Maxwell model and modified Rayleigh volume fraction model employed in the present work predict the experiment and finite volume method (FVM results well. The effective thermal conductivity and diffusivity of the containment walls are summarized as functions of density, temperature, and the volume fraction of steel for the analysis of the NPP accidents.

  6. Effective thermal conductivity and diffusivity of containment wall for nuclear power plant OPR1000

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Hyung Gyun; Park, Hyun Sun [Div. of Advanced Nuclear Engineering (DANE), Pohang University of Science and Technology (POSTECH), Pohang (Korea, Republic of); Lee, Jong Hwi; Kang, Hie Chan [Mechanical Engineering Div., Kunsan National University (KNU), Gunsan (Korea, Republic of)

    2017-04-15

    The goal of this study is to evaluate the effective thermal conductivity and diffusivity of containment walls as heat sinks or passive cooling systems during nuclear power plant (NPP) accidents. Containment walls consist of steel reinforced concrete, steel liners, and tendons, and provide the main thermal resistance of the heat sinks, which varies with the volume fraction and geometric alignment of the rebar and tendons, as well as the temperature and chemical composition. The target geometry for the containment walls of this work is the standard Korean NPP OPR1000. Sample tests and numerical simulations are conducted to verify the correlations for models with different densities of concrete, volume fractions, and alignments of steel. Estimation of the effective thermal conductivity and diffusivity of the containment wall models is proposed. The Maxwell model and modified Rayleigh volume fraction model employed in the present work predict the experiment and finite volume method (FVM) results well. The effective thermal conductivity and diffusivity of the containment walls are summarized as functions of density, temperature, and the volume fraction of steel for the analysis of the NPP accidents.

  7. Improvement of the symbolic Monte-Carlo method for the transport equation: P1 extension and coupling with diffusion

    International Nuclear Information System (INIS)

    Clouet, J.F.; Samba, G.

    2005-01-01

    We use asymptotic analysis to study the diffusion limit of the Symbolic Implicit Monte-Carlo (SIMC) method for the transport equation. For standard SIMC with piecewise constant basis functions, we demonstrate mathematically that the solution converges to the solution of a wrong diffusion equation. Nevertheless a simple extension to piecewise linear basis functions enables to obtain the correct solution. This improvement allows the calculation in opaque medium on a mesh resolving the diffusion scale much larger than the transport scale. Anyway, the huge number of particles which is necessary to get a correct answer makes this computation time consuming. Thus, we have derived from this asymptotic study an hybrid method coupling deterministic calculation in the opaque medium and Monte-Carlo calculation in the transparent medium. This method gives exactly the same results as the previous one but at a much lower price. We present numerical examples which illustrate the analysis. (authors)

  8. Peclet number as affected by molecular diffusion controls transient anomalous transport in alluvial aquifer-aquitard complexes

    Science.gov (United States)

    Zhang, Yong; Green, Christopher T.; Tick, Geoffrey R.

    2015-01-01

    This study evaluates the role of the Peclet number as affected by molecular diffusion in transient anomalous transport, which is one of the major knowledge gaps in anomalous transport, by combining Monte Carlo simulations and stochastic model analysis. Two alluvial settings containing either short- or long-connected hydrofacies are generated and used as media for flow and transport modeling. Numerical experiments show that 1) the Peclet number affects both the duration of the power-law segment of tracer breakthrough curves (BTCs) and the transition rate from anomalous to Fickian transport by determining the solute residence time for a given low-permeability layer, 2) mechanical dispersion has a limited contribution to the anomalous characteristics of late-time transport as compared to molecular diffusion due to an almost negligible velocity in floodplain deposits, and 3) the initial source dimensions only enhance the power-law tail of the BTCs at short travel distances. A tempered stable stochastic (TSS) model is then applied to analyze the modeled transport. Applications show that the time-nonlocal parameters in the TSS model relate to the Peclet number, Pe. In particular, the truncation parameter in the TSS model increases nonlinearly with a decrease in Pe due to the decrease of the mean residence time, and the capacity coefficient increases with an increase in molecular diffusion which is probably due to the increase in the number of immobile particles. The above numerical experiments and stochastic analysis therefore reveal that the Peclet number as affected by molecular diffusion controls transient anomalous transport in alluvial aquifer–aquitard complexes.

  9. Analog simulation of concentration transients in a gaseous diffusion plant (1961); Etude sur simulateur des regimes transitoires des concentrations dans une installation de diffusion gazeuse (1961)

    Energy Technology Data Exchange (ETDEWEB)

    Delarousse, P; Trouve, C; Jacques, R [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1962-07-01

    A finite difference system is used to describe concentration transients in a gaseous diffusion plant for uranium isotope separation. The equipment used in this study is described and examples are given to illustrate the problems which have been solved with it. (authors) [French] Le comportement transitoire d'une cascade de diffusion gazeuse est represente de facon approchee par un systeme differentiel aux differences. On decrit le materiel analogique original qui a permis de simuler ce systeme. Une serie d'exemples illustre les differents problemes qui ont ete resolus au moyen de cet appareil. (auteurs)

  10. The Blend Down Monitoring System Demonstration at the Padijcah Gaseous Diffusion Plant

    International Nuclear Information System (INIS)

    Benton, J.; Close, D.; Johnson, W. Jr.; Kerr, P.; March-Leuba, J.; Mastal, E.; Moss, C.; Powell, D.; Sumner, J.; Uckan, T.; Vines, R.; Wright, P.D.

    1999-01-01

    Agreements between the governments of the US and the Russian Federation for the US purchase of low enriched uranium (LEU) derived from highly enriched uranium (HEU) from dismantled Russian nuclear weapons calls for the establishment of transparency measures to provide confidence that nuclear nonproliferation goals are being met. To meet these transparency goals, the agreements call for the installation of nonintrusive US instruments to monitor the down blending of HEU to LEU. The Blend Down Monitoring System (BDMS) has been jointly developed by the Los Alamos National Laboratory (LANL) and the Oak Ridge National Laboratory (ORNL) to continuously monitor 235 U enrichments and mass flow rates at Russian blending facilities. Prior to its installation in Russian facilities, the BDMS was installed and operated in a UF 6 flow loop in the Paducah Gaseous Diffusion Plant simulating flow and enrichment conditions expected in a typical down-blending facility. A Russian delegation to the US witnessed the equipment demonstration in June, 1998. To conduct the demonstration in the Paducah Gaseous Diffusion Plant (PGDP), the BDMS was required to meet stringent Nuclear Regulatory Commission licensing, safety and operational requirements. The Paducah demonstration was an important milestone in achieving the operational certification for the BDMS use in Russian facilities

  11. Project plan for the background soils project for the Paducah Gaseous Diffusion Plant, Paducah, Kentucky

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    The Background Soils Project for the Paducah Gaseous Diffusion Plant (BSPP) will determine the background concentration levels of selected naturally occurring metals, other inorganics, and radionuclides in soils from uncontaminated areas in proximity to the Paducah Gaseous Diffusion Plant (PGDP) in Paducah, Kentucky. The data will be used for comparison with characterization and compliance data for soils, with significant differences being indicative of contamination. All data collected as part of this project will be in addition to other background databases established for the PGDP. The BSPP will address the variability of surface and near-surface concentration levels with respect to (1) soil taxonomical types (series) and (2) soil sampling depths within a specific soil profile. The BSPP will also address the variability of concentration levels in deeper geologic formations by collecting samples of geologic materials. The BSPP will establish a database, with recommendations on how to use the data for contaminated site assessment, and provide data to estimate the potential human and health and ecological risk associated with background level concentrations of potentially hazardous constituents. BSPP data will be used or applied as follows.

  12. Project plan for the background soils project for the Paducah Gaseous Diffusion Plant, Paducah, Kentucky

    International Nuclear Information System (INIS)

    1995-09-01

    The Background Soils Project for the Paducah Gaseous Diffusion Plant (BSPP) will determine the background concentration levels of selected naturally occurring metals, other inorganics, and radionuclides in soils from uncontaminated areas in proximity to the Paducah Gaseous Diffusion Plant (PGDP) in Paducah, Kentucky. The data will be used for comparison with characterization and compliance data for soils, with significant differences being indicative of contamination. All data collected as part of this project will be in addition to other background databases established for the PGDP. The BSPP will address the variability of surface and near-surface concentration levels with respect to (1) soil taxonomical types (series) and (2) soil sampling depths within a specific soil profile. The BSPP will also address the variability of concentration levels in deeper geologic formations by collecting samples of geologic materials. The BSPP will establish a database, with recommendations on how to use the data for contaminated site assessment, and provide data to estimate the potential human and health and ecological risk associated with background level concentrations of potentially hazardous constituents. BSPP data will be used or applied as follows

  13. An aerial radiological survey of the Portsmouth Gaseous Diffusion Plant and surrounding area

    International Nuclear Information System (INIS)

    Sampoll-Ramirez, G.

    1994-09-01

    An aerial radiological survey was conducted from August 10-16, 1993, over a 78-square-kilometer (30-square-mile) area of the Portsmouth Gaseous Diffusion Plant and surrounding area located near Portsmouth, Ohio. The survey was performed at a nominal altitude of 46 meters (150 feet) with a line spacing of 76 meters (250 feet). A contour map of the terrestrial gamma exposure rate extrapolated to 1 meter above ground level was prepared and overlaid on a set of United States Geological Survey topographic maps of the area and an aerial photograph of the plant. The terrestrial gamma exposure rates varied from about 7 to 14 microroentgens per hour at 1 meter above the ground. Protactinium-234m was observed at six sites within the boundaries of the plant. At a seventh site, only uranium-235 was observed. No other man-made, gamma ray-emitting radioactive material was present in a detectable quantity, either on or off the plant property. Soil sample and pressurized ion chamber measurements were obtained at four locations within the survey boundaries to support the aerial data. The results of the aerial and ground-based measurements were found to agree within ± 7.5%

  14. Biogeochemical reactive-diffusive transport of heavy metals in Lake Coeur d'Alene sediments

    International Nuclear Information System (INIS)

    Sevinc Sengoer, S.; Spycher, Nicolas F.; Ginn, Timothy R.; Sani, Rajesh K.; Peyton, Brent

    2007-01-01

    Decades of runoff from precious-metal mining operations in the Lake Coeur d'Alene Basin, Idaho, have left the sediments in this lake heavily enriched with toxic metals, most notably Zn, Pb and Cu, together with As. The bioavailability, fate and transport of these metals in the sediments are governed by complex biogeochemical processes. In particular, indigenous microbes are capable of catalyzing reactions that detoxify their environments, and thus constitute an important driving component in the biogeochemical cycling of these metals. Here, the development of a quantitative model to evaluate the transport and fate of Zn, Pb and Cu in Lake Coeur d'Alene sediments is reported. The current focus is on the investigation and understanding of local-scale processes, rather than the larger-scale dynamics of sedimentation and diagenesis, with particular emphasis on metal transport through reductive dissolution of Fe hydroxides. The model includes 1-D inorganic diffusive transport coupled to a biotic reaction network including consortium biodegradation kinetics with multiple terminal electron acceptors and syntrophic consortium biotransformation dynamics of redox front. The model captures the mobilization of metals initially sorbed onto hydrous ferric oxides, through bacterial reduction of Fe(III) near the top of the sediment column, coupled with the precipitation of metal sulfides at depth due to biogenic sulfide production. Key chemical reactions involve the dissolution of ferrihydrite and precipitation of siderite and Fe sulfide. The relative rates of these reactions play an important role in the evolution of the sediment pore-water chemistry, notably pH, and directly depend on the relative activity of Fe and SO 4 reducers. The model captures fairly well the observed trends of increased alkalinity, sulfide, Fe and heavy metal concentrations below the sediment-water interface, together with decreasing terminal electron acceptor concentrations with depth, including the

  15. OCCUPATIONAL EXPOSURE TO TRICHLOROETHYLENE AND CANCER RISK FOR WORKERS AT THE PADUCAH GASEOUS DIFFUSION PLANT

    Science.gov (United States)

    BAHR, DEBRA E.; ALDRICH, TIMOTHY E.; SEIDU, DAZAR; BRION, GAIL M.; TOLLERUD, DAVID J.; MULDOON, SUSAN; REINHART, NANCY; YOUSEEFAGHA, AHMED; MCKINNEY, PAUL; HUGHES, THERESE; CHAN, CAROLINE; RICE, CAROL; BREWER, DAVID E.; FREYBERG, RONALD W.; MOHLENKAMP, ADRIANE MOSER; HAHN, KRISTEN; HORNUNG, RICHARD; HO, MONA; DASTIDAR, ANIRUDDHA; FREITAS, SAMANTHA; SAMAN, DANIEL; RAVDAL, HEGE; SCUTCHFIELD, DOUGLAS; EGER, KENNETH J.; MINOR, STEVE

    2016-01-01

    Objective The Paducah Gaseous Diffusion Plant (PGDP) became operational in 1952; it is located in the western part of Kentucky. We conducted a mortality study for adverse health effects that workers may have suffered while working at the plant, including exposures to chemicals. Materials and Methods We studied a cohort of 6820 workers at the PGDP for the period 1953 to 2003; there were a total of 1672 deaths to cohort members. Trichloroethylene (TCE) is a specific concern for this workforce; exposure to TCE occurred primarily in departments that clean the process equipment. The Life Table Analysis System (LTAS) program developed by NIOSH was used to calculate the standardized mortality ratios for the worker cohort and standardized rate ratio relative to exposure to TCE (the U.S. population is the referent for age-adjustment). LTAS calculated a significantly low overall SMR for these workers of 0.76 (95% CI: 0.72–0.79). A further review of three major cancers of interest to Kentucky produced significantly low SMR for trachea, bronchus, lung cancer (0.75, 95% CI: 0.72–0.79) and high SMR for Non-Hodgkin's lymphoma (NHL) (1.49, 95% CI: 1.02–2.10). Results No significant SMR was observed for leukemia and no significant SRRs were observed for any disease. Both the leukemia and lung cancer results were examined and determined to reflect regional mortality patterns. However, the Non-Hodgkin's Lymphoma finding suggests a curious amplification when living cases are included with the mortality experience. Conclusions Further examination is recommended of this recurrent finding from all three U.S. Gaseous Diffusion plants. PMID:21468904

  16. A comparative analysis of diffusion and transport models applying to releases in the marine environment

    International Nuclear Information System (INIS)

    Mejon, M.J.

    1984-05-01

    This study is a contribution to the development of methodologies allowing to assess the radiological impact of liquid effluent releases from nuclear power plants. It first concerns hydrodynamics models and their applications to the North sea, which is of great interest to the European Community. Starting from basic equations of geophysical fluid mechanics, the assumptions made at each step in order to simplifly resolution are analysed and commented. The results published on the application of the Liege University models (NIHOUL, RONDAY et al.) are compared to observations both on tides and tempests and residual circulation which is responsible for the long-terme transport of pollutants. The results for residual circulation compare satisfactorily, and the expected accuracy of the other models is indicated. A dispersion model by the same authors is then studied with a numerical integration method using a moving grid. Others models (Laboratoire National d'Hydraulique, EDF) used for the Channel, are also presented [fr

  17. Procedure for obtaining neutron diffusion coefficients from neutron transport Monte Carlo calculations (AWBA Development Program)

    International Nuclear Information System (INIS)

    Gast, R.C.

    1981-08-01

    A procedure for defining diffusion coefficients from Monte Carlo calculations that results in suitable ones for use in neutron diffusion theory calculations is not readily obtained. This study provides a survey of the methods used to define diffusion coefficients from deterministic calculations and provides a discussion as to why such traditional methods cannot be used in Monte Carlo. This study further provides the empirical procedure used for defining diffusion coefficients from the RCP01 Monte Carlo program

  18. A CUMULATIVE MIGRATION METHOD FOR COMPUTING RIGOROUS TRANSPORT CROSS SECTIONS AND DIFFUSION COEFFICIENTS FOR LWR LATTICES WITH MONTE CARLO

    Energy Technology Data Exchange (ETDEWEB)

    Zhaoyuan Liu; Kord Smith; Benoit Forget; Javier Ortensi

    2016-05-01

    A new method for computing homogenized assembly neutron transport cross sections and dif- fusion coefficients that is both rigorous and computationally efficient is proposed in this paper. In the limit of a homogeneous hydrogen slab, the new method is equivalent to the long-used, and only-recently-published CASMO transport method. The rigorous method is used to demonstrate the sources of inaccuracy in the commonly applied “out-scatter” transport correction. It is also demonstrated that the newly developed method is directly applicable to lattice calculations per- formed by Monte Carlo and is capable of computing rigorous homogenized transport cross sections for arbitrarily heterogeneous lattices. Comparisons of several common transport cross section ap- proximations are presented for a simple problem of infinite medium hydrogen. The new method has also been applied in computing 2-group diffusion data for an actual PWR lattice from BEAVRS benchmark.

  19. Communication: A method to compute the transport coefficient of pure fluids diffusing through planar interfaces from equilibrium molecular dynamics simulations.

    Science.gov (United States)

    Vermorel, Romain; Oulebsir, Fouad; Galliero, Guillaume

    2017-09-14

    The computation of diffusion coefficients in molecular systems ranks among the most useful applications of equilibrium molecular dynamics simulations. However, when dealing with the problem of fluid diffusion through vanishingly thin interfaces, classical techniques are not applicable. This is because the volume of space in which molecules diffuse is ill-defined. In such conditions, non-equilibrium techniques allow for the computation of transport coefficients per unit interface width, but their weak point lies in their inability to isolate the contribution of the different physical mechanisms prone to impact the flux of permeating molecules. In this work, we propose a simple and accurate method to compute the diffusional transport coefficient of a pure fluid through a planar interface from equilibrium molecular dynamics simulations, in the form of a diffusion coefficient per unit interface width. In order to demonstrate its validity and accuracy, we apply our method to the case study of a dilute gas diffusing through a smoothly repulsive single-layer porous solid. We believe this complementary technique can benefit to the interpretation of the results obtained on single-layer membranes by means of complex non-equilibrium methods.

  20. Theoretical and experimental determination of matrix diffusion and related solute transport properties of fractured tuffs from the Nevada Test Site

    International Nuclear Information System (INIS)

    Walter, G.R.

    1982-10-01

    Theoretical and experimental studies of the chemical and physical factors which affect molecular diffusion of dissolved substances from fractures into a tuffaceous rock matrix have been made on rocks from G-Tunnel and Yucca Mountain at the Nevada Test Site (NTS). A variety of groundwater tracers, which may be useful in field tests at the NTS, have also been developed and tested. Although a number of physical/chemical processes may cause nonconvective transport of dissolved species from fractures into the tuff matrix, molecular diffusion seems to be the most important process. Molecular diffusion in these rocks is controlled by the composition of the groundwater through multicomponent effects and several rock properties. The porosities of the samples studied ranged from about 0.1 to 0.4. The constrictivity-tortuosity parameter ranged from 0.1 and 0.3 and effective matrix-diffusion coefficients were measured to be between 2 to 17. x 10 -7 c, 2 /s for sodium halides and sodium pentafluorobenzoate. Total porosity was found to be the principle factor accounting for the variation in effective diffusion coefficients. The constrictivity-tortuosity factor was found to have a fair correlation (r = 0.75) with the median pore diameters measured by mercury intrusion. Measurements of bulk-rock electrical impedance changes with frequency indicate that the constrictivity factor has a maximum value of 0.8 to 1, but may be smaller. If the larger values are correct, then the diffusion paths in tuff are more tortuous than in granular media. Computation of the full diffusion-coefficient matrix for various tracers in J-13 well water from the NTS indicates coupling of the diffusion fluxes of all ionic species. These effects are being incorporated into a numerical model of multicomponent-matrix diffusion

  1. Crossover properties of a one-dimensional reaction-diffusion process with a transport current

    International Nuclear Information System (INIS)

    Fortin, Jean-Yves

    2014-01-01

    1D non-equilibrium models of particles subjected to a coagulation-diffusion process are important in understanding non-equilibrium dynamics, and fluctuation-dissipation relations. We consider in this paper transport properties in finite and semi-infinite one-dimensional chains. A set of particles freely hop between nearest-neighbor sites, with the additional condition that, when two particles meet, they merge instantaneously into one particle. A localized source of particle-current is imposed at the origin as well as a non-symmetric hopping rate between the left and right directions (particle drift). This model was previously studied with exact results for the particle density by Hinrichsen et al [1] in the long-time limit. We are interested here in the crossover process between a scaling regime and long-time behavior, starting with a chain filled with particles. As in the previous reference [1], we employ the empty-interval-particle method, where the probability of finding an empty interval between two given sites is considered. However a different method is developed here to treat the boundary conditions by imposing the continuity and differentiability of the interval probability, which allows for a closed and unique solution, especially for any given initial particle configuration. In the finite size case, we find a crossover between the scaling regime and two different exponential decays for the particle density as a function of the input current. Precise asymptotic expressions for the particle density and coagulation rate are given. (paper)

  2. TASK, 1-D Multigroup Diffusion or Transport Theory Reactor Kinetics with Delayed Neutron

    International Nuclear Information System (INIS)

    Buhl, A.R.; Hermann, O.W.; Hinton, R.J.; Dodds, H.L. Jr.; Robinson, J.C.; Lillie, R.A.

    1975-01-01

    1 - Description of problem or function: TASK solves the one-dimensional multigroup form of the reactor kinetics equations, using either transport or diffusion theory and allowing an arbitrary number of delayed neutron groups. The program can also be used to solve standard static problems efficiently such as eigenvalue problems, distributed source problems, and boundary source problems. Convergence problems associated with sources in highly multiplicative media are circumvented, and such problems are readily calculable. 2 - Method of solution: TASK employs a combination scattering and transfer matrix method to eliminate certain difficulties that arise in classical finite difference approximations. As such, within-group (inner) iterations are eliminated and solution convergence is independent of spatial mesh size. The time variable is removed by Laplace transformation. (A later version will permit direct time solutions.) The code can be run either in an outer iteration mode or in closed (non-iterative) form. The running mode is dictated by the number of groups times the number of angles, consistent with available storage. 3 - Restrictions on the complexity of the problem: The principal restrictions are available storage and computation time. Since the code is flexibly-dimensioned and has an outer iteration option there are no internal restrictions on group structure, quadrature, and number of ordinates. The flexible-dimensioning scheme allows optional use of core storage. The generalized cylindrical geometry option is not complete in Version I of the code. The feedback options and omega-mode search options are not included in Version I

  3. The nature and role of advection in advection-diffusion equations used for modelling bed load transport

    Science.gov (United States)

    Ancey, Christophe; Bohorquez, Patricio; Heyman, Joris

    2016-04-01

    The advection-diffusion equation arises quite often in the context of sediment transport, e.g., for describing time and space variations in the particle activity (the solid volume of particles in motion per unit streambed area). Stochastic models can also be used to derive this equation, with the significant advantage that they provide information on the statistical properties of particle activity. Stochastic models are quite useful when sediment transport exhibits large fluctuations (typically at low transport rates), making the measurement of mean values difficult. We develop an approach based on birth-death Markov processes, which involves monitoring the evolution of the number of particles moving within an array of cells of finite length. While the topic has been explored in detail for diffusion-reaction systems, the treatment of advection has received little attention. We show that particle advection produces nonlocal effects, which are more or less significant depending on the cell size and particle velocity. Albeit nonlocal, these effects look like (local) diffusion and add to the intrinsic particle diffusion (dispersal due to velocity fluctuations), with the important consequence that local measurements depend on both the intrinsic properties of particle displacement and the dimensions of the measurement system.

  4. Issues and recommendations related to replacement of CFC-114 at the uranium enrichment gaseous diffusion plant

    International Nuclear Information System (INIS)

    Anderson, B.L.; Banaghan, E.

    1993-01-01

    The operating uranium enrichment gaseous diffusion plants (GDPs) in Portsmouth, Ohio and Paducah, Kentucky, which are operated for the United States Department for Energy by Martin Marietta Energy Systems (MMES), currently use a chlorofluorocarbon (CFC-114) as the primary process stream coolant. Due to recent legislation embodied in the Clean Air Act, the production of this and other related chlorofluorocarbons (CFCS) are to be phased out with no production occurring after 1995. Since the plants lose approximately 500,000 pounds per year of this process stream coolant through various leaks, the GDPs are faced with the challenge of identifying a replacement coolant that will allow continued operation of the plants. MMES formed the CFC Task Team to identify and solve the various problems associated with identifying and implementing a replacement coolant. This report includes a review of the work performed by the CFC Task Team, and recommendations that were formulated based on this review and upon original work. The topics covered include; identifying a replacement coolant, coolant leak detection and repair efforts, coolant safety concerns, coolant level sensors, regulatory issues, and an analytical decision analysis

  5. Portsmouth Gaseous Diffusion Plant Decontamination and Decommissioning Program surveillance and maintenance plan, FY 1993--2002

    International Nuclear Information System (INIS)

    Schloesslin, W.

    1992-11-01

    The Decontamination and Decommissioning (D ampersand D) Program at the Portsmouth Gaseous Diffusion Plant (PORTS) is part of the Environmental Restoration (ER) and Waste Management (WM) Programs (ERWM). The objective of the ER Program is to provide PORTS the capability to meet applicable environmental regulations through facility development activities and site remedial actions. The WM Program supports the ER Program. The D ampersand D Program provides collective management of the sites within the plant which require decontamination and decommissioning, prioritizes those areas in terms of health, safety and environmental concerns, and implements the appropriate level of remedial action. The D ampersand D Program provides support to facilities which formerly served one or more of the many Plant functions. Program activities include (1) surveillance and maintenance of facilities awaiting decommissioning; (2) planning safe and orderly facility decommissioning; and (3) implementing a program to accomplish facility disposition in a safe, cost effective, and timely manner. In order to achieve the first objective, a formal plan which documents the surveillance and maintenance needs for each inactive facility has been prepared. This report provides this documentation for the PORTS facilities currently included in the D ampersand D Program and includes projected resource requirements for the planning period of FY 1993 through FY 2002

  6. Colloid-facilitated radionuclide transport in the fractured rock: effects of decay chain and limited matrix diffusion

    International Nuclear Information System (INIS)

    Park, J. B.; Park, J. W.; Lee, E. Y.; Kim, C. R.

    2002-01-01

    Colloid-facilitated radionuclide transport in the fractured rock is studies by considering radioactive decay chain and limited matrix diffusion into surrounding porous media. Semi-analytical solution in the Laplace domain is obtained from the mass balance equation of radionuclides and colloid particles. Numerical inversion of the Laplace solution is used to get the concentration profiles both in a fracture and in rock matrix. There issues are analyzed for the radionuclide concentration in a fracture by 1) formation constant of pseudo-colloid, 2) filtration coefficient of radio-colloid and 3) effective diffusion depth into the surrounding porous rock media

  7. Investigation of the transportation requirements for fusion power plants

    International Nuclear Information System (INIS)

    Rhoads, R.E.; Davis, D.K.

    1976-09-01

    This report presents a general investigation of the transport requirements associated with the construction and operation of conceptual fusion reactors. Projections of amounts of construction and operating materials requiring transportation are presented for several proposed designs. The material to be shipped is described along with the shipping containers that might be used, the transport modes and the expected impact of transporting these materials. Transportation of both radioactive and nonradioactive materials will be required. Most of these materials are routinely shipped by the transportation industry. Transportation requirements of a representative fusion reactor are also compared with Liquid Metal Fast Breeder Reactor (LMFBR) requirements

  8. Assessment of the influences of groundwater colloids on the migration of technetium-99 at the Paducah Gaseous Diffusion Plant Site in Paducah, Kentucky

    International Nuclear Information System (INIS)

    Gu, B.; McDonald, J.A.; McCarthy, J.F.; Clausen, J.L.

    1994-07-01

    This short report summarizes the influences of groundwater colloids on the migration/transport of 99 Tc at the Paducah Gaseous Diffusion Plant (PGDP) site in Paducah, Kentucky. Limited data suggest that inorganic colloidal materials (e.g., aluminosilicate clay minerals) may not play a significant role in the retention and transport of Tc. Studies by size fractionation reveal that both Tc and natural organic matter (NOM) are largely present in the -8 mol/L or parts per billion), regardless of the redox conditions, Tc will stay in solution phase as TC(IV) or Tc(VII). The mechanisms of adsorption/association vs precipitation must be understood under reduced and low Tc conditions so that strategic plans for remediation of Tc contaminated soils and groundwaters can be developed

  9. Report on the biological monitoring program at Paducah Gaseous Diffusion Plant December 1990 to November 1992

    Energy Technology Data Exchange (ETDEWEB)

    Kszos, L.A. [ed.

    1994-03-01

    On September 23, 1987, the Commonwealth of Kentucky Natural Resources and Environmental Protection Cabinet issued an Agreed Order that required the development of a Biological Monitoring Program (BMP) for the Paducah Gaseous Diffusion Plant (PGDP). Beginning in fall 1991, the Environmental Sciences Division (ESD) at Oak Ridge National Lab (ORNL) added data collection and report preparation to its responsibilities for the PGDP BMP. The BMP has been continued because it has proven to be extremely valuable in identifying those effluents with the potential for adversely affecting instream fauna, assessing the ecological health of receiving streams, guiding plans for remediation, and protecting human health. In September 1992, a renewed permit was issued which requires toxicity monitoring of continuous and intermittent outfalls on a quarterly basis. The BMP for PGDP consists of three major tasks: (1) effluent and ambient toxicity monitoring, (2) bioaccumulation studies, and (3) ecological surveys of stream communities. This report includes ESD/ORNL activities occurring from December 1990 to November 1992.

  10. Validation of KENO V.a for the Portsmouth Gaseous Diffusion Plant

    International Nuclear Information System (INIS)

    Felsher, H.D.; Fentiman, A.W.; Tayloe, R.W.; D'Aquila, D.

    1992-01-01

    At the Portsmouth Gaseous Diffusion Plant, KENO V.a is used to make criticality calculations for complex configurations and a wide range of 235 U enrichments. It is essential that the calculated critical conditions either accurately reflect the true critical state or that the bias from the true critical conditions are well known. Accordingly, a study has been initiated to validate KENO V.a over the ranges of parameters expected to be used when modeling equipment and processes at Portsmouth. Preliminary results of that study are reported in this paper. The ultimate goal of this study is to identify a set of data from existing critical experiments that will exercise all KENO V.a parameters commonly used by Portsmouth's criticality safety personnel. A second goal is to identify a relatively small subset of those experiments that may be run frequently to ensure that KENO V.a provides consistent results

  11. An in situ survey of the Paducah Gaseous Diffusion Plant and surrounding area

    International Nuclear Information System (INIS)

    Hoover, R.A.

    1994-02-01

    An in situ survey of the area surrounding the Paducah Gaseous Diffusion Plant was conducted between May 17 and 24, 1990. The survey consisted of in situ measurements and of ground sampling. A High Purity Germanium detector was used for the in situ measurements. The ground samples were taken to the, laboratory at EG ampersand G Energy Measurements, Inc., in Santa Barbara, California, for a radionuclide assay on a laboratory system. Results of the in situ measurements found evidence of naturally occurring radioisotopes, cesium-137 from international fallout, and some evidence of anomalous uranium-238. The soil sampling results show only the presence of naturally occurring radioisotopes, cesium-137, and also anomalous uranium-238

  12. Seismically-induced soil amplification at the DOE Paducah Gaseous Diffusion Plant site

    International Nuclear Information System (INIS)

    Sykora, D.W.; Haynes, M.E.

    1991-01-01

    A site-specific earthquake site response (soil amplification) study is being conducted for the Department of Energy (DOE), Paducah Gaseous Diffusion Plant (PGDP). This study is pursuant to an upgraded Final Safety Analysis Report in accordance with requirements specified by DOE. The seismic hazard at PGDP is dominated by the New Madrid Seismic Zone. Site-specific synthetic earthquake records developed by others were applied independently to four soil columns with heights above baserock of about 325 ft. The results for the 1000-year earthquake event indicate that the site period is between 1.0 and 1.5 sec. Incident shear waves are amplified at periods of motion greater than 0.15 sec. The peak free-field horizontal acceleration, occurring at very low periods, is 0.28 g. 13 refs., 13 figs

  13. Seismically-induced soil amplification at the DOE Paducah Gaseous Diffusion Plant Site

    International Nuclear Information System (INIS)

    Sykora, D.W.; Hynes, M.E.; Brock, W.R.; Hunt, R.J.; Shaffer, K.E.

    1991-01-01

    A site-specific earthquake site response (soil amplification) study is being conducted for the Department of Energy (DOE), Paducah Gaseous Diffusion Plant (PGDP). This study is pursuant to an upgraded Final Safety Analysis Report in accordance with requirements specified by DOE. The seismic hazard at PGDP is dominated by the New Madrid Seismic Zone. Site-specific synthetic earthquake records developed by others were applied independently to four soil columns with heights above baserock of about 325 ft. The results for the 1000-year earthquake event indicate that the site period is between 1.0 and 1.5 sec. Incident shear waves are strongly amplified at periods of motion greater than 0.3 sec. The peak free-field horizontal acceleration, occurring at very low periods, is 0.28 g

  14. Local drainage analyses of the Paducah and Portsmouth Gaseous Diffusion Plants during an extreme storm

    International Nuclear Information System (INIS)

    Johnson, R.O.; Wang, J.C.; Lee, D.W.

    1993-01-01

    Local drainage analyses have been performed for the Paducah and Portsmouth Gaseous Diffusion Plants during an extreme storm having an approximate 10,000-yr recurrence interval. This review discusses the methods utilized to accomplish the analyses in accordance with US Department of Energy (DOE) design and evaluation guidelines, and summarizes trends, results, generalizations, and uncertainties applicable to other DOE facilities. Results indicate that some culverts may be undersized, and that the storm sewer system cannot drain the influx of precipitation from the base of buildings. Roofs have not been designed to sustain ponding when the primary drainage system is clogged. Some underground tunnels, building entrances, and ground level air intakes may require waterproofing

  15. Meteorological effects of the mechanical-draft cooling towers of the Oak Ridge Gaseous Diffusion Plant

    International Nuclear Information System (INIS)

    Hanna, S.R.

    1975-01-01

    The mechanical-draft cooling towers at the Oak Ridge Gaseous Diffusion Plant dissipate about 2000 MW of heat. Downwash occurs about 40 percent of the time, when wind speeds exceed about 3 m/sec. An elevated cloud forms about 10 percent of the time. The length of the visible plume, which is typically 100 or 200 m, is satisfactorily modeled if it is assumed that the plumes from all the cells in a cooling-tower bank combine. The calculation of fog concentration is complicated by the fact that the moisture is not inert but is taking part in the energy exchanges of a thermodynamic system. Calculations of drift deposition agree fairly well with observations

  16. Report on the biological monitoring program at Paducah Gaseous Diffusion Plant December 1990 to November 1992

    International Nuclear Information System (INIS)

    Kszos, L.A.

    1994-03-01

    On September 23, 1987, the Commonwealth of Kentucky Natural Resources and Environmental Protection Cabinet issued an Agreed Order that required the development of a Biological Monitoring Program (BMP) for the Paducah Gaseous Diffusion Plant (PGDP). Beginning in fall 1991, the Environmental Sciences Division (ESD) at Oak Ridge National Lab (ORNL) added data collection and report preparation to its responsibilities for the PGDP BMP. The BMP has been continued because it has proven to be extremely valuable in identifying those effluents with the potential for adversely affecting instream fauna, assessing the ecological health of receiving streams, guiding plans for remediation, and protecting human health. In September 1992, a renewed permit was issued which requires toxicity monitoring of continuous and intermittent outfalls on a quarterly basis. The BMP for PGDP consists of three major tasks: (1) effluent and ambient toxicity monitoring, (2) bioaccumulation studies, and (3) ecological surveys of stream communities. This report includes ESD/ORNL activities occurring from December 1990 to November 1992

  17. Report on the Biological Monitoring Program at Paducah Gaseous Diffusion Plant December 1992--December 1993

    Energy Technology Data Exchange (ETDEWEB)

    Kszos, L.A.; Hinzman, R.L.; Peterson, M.J.; Ryon, M.G.; Smith, J.G.; Southworth, G.R.

    1995-06-01

    On September 24, 1987, the Commonwealth of Kentucky Natural Resources and Environmental Protection Cabinet issued an Agreed Order that required the development of a Biological Monitoring Program (BMP) for the Paducah Gaseous Diffusion Plant (PGDP). The goals of BMP are to demonstrate that the effluent limitations established for PGDP protect and maintain the use of Little Bayou and Big Bayou creeks for growth and propagation of fish and other aquatic life, characterize potential health and environmental impacts, document the effects of pollution abatement facilities on stream biota, and recommend any program improvements that would increase effluent treatability. The BMP for PGDP consists of three major tasks: effluent and ambient toxicity monitoring, bioaccumulation studies, and ecological surveys of stream communities (i.e., benthic macroinvertebrates and fish). This report includes ESD activities occurring from December 1992 to December 1993, although activities conducted outside this time period are included as appropriate.

  18. Delisting efforts for mixed radioactive and chemically hazardous waste at the Oak Ridge Gaseous Diffusion Plant

    International Nuclear Information System (INIS)

    Goodpasture, S.T.

    1987-01-01

    Presently, there are four hazardous wastes at the Oak Ridge Gaseous Diffusion Plant that are candidates for the delisting from the Resource Conservation and Recovery Act (RCRA) hazardous waste regulations. These candidates are the sludges from K-1407-B and C ponds, Central Neutralization Facility sludges, mixed sludges from Y-12 and the ash generated by the RCRA/Toxic Substances Control Act (TSCA) Incinerator. All of these hazardous wastes contain radioactive constituents as well as hazardous constituents. The delisting will be based upon the nonradioactive constituents. Whether the delisting petition is granted or not, the wastes will be handled according to the Department of Energy guidelines for radioactive wastes. The presentation discusses the methodologies for delisting these wastes and the rationale behind the processes

  19. Portsmouth Gaseous Diffusion Plant environmental monitoring report for calendar year 1981

    International Nuclear Information System (INIS)

    Acox, T.A.; Anderson, R.E.; Hary, L.F.; Klein, L.S.; Vausher, A.L.

    1982-04-01

    At the Portsmouth Gaseous Diffusion Plant all effluent streams are sampled regularly and analyzed to assess compliance with applicable environmental standards. Radioactivity is measured in air, water, food, soil, and sediments; and radiation doses to the public are calculated. All public radiation doses from process effluents are well within Department of Energy and US EPA standards. Non-radioactive effluents either presently comply with federal standards or will comply upon completion of planned projects. The environmental impact of effluents from cleaning and decontamination operations has been reduced through flow reduction and improved chemical treatment. CY-1981 was the first full year under a new National Pollutant Discharge. Elimination System (NPDES) permit for liquid effluents; compliance with the permit's discharge limits did not present any significant problems. Engineering is proceeding on projects to be constructed through 1985 to further reduce the impact of liquid effluents. A new licensed sanitary landfill utilizing the area fill method went into operation in July 1981. Although neither the State of Ohio nor the federal government has established standards for fluoride in the atmosphere or in vegetation, fluorides are monitored because they are used extensively in the gaseous diffusion process

  20. Reassessment of liquefaction potential and estimation of earthquake- induced settlements at Paducah Gaseous Diffusion Plant, Paducah, Kentucky. Final report

    International Nuclear Information System (INIS)

    Sykora, D.W.; Yule, D.E.

    1996-04-01

    This report documents a reassessment of liquefaction potential and estimation of earthquake-induced settlements for the U.S. Department of Energy (DOE), Paducah Gaseous Diffusion Plant (PGDP), located southwest of Paducah, KY. The U.S. Army Engineer Waterways Experiment Station (WES) was authorized to conduct this study from FY91 to FY94 by the DOE, Oak Ridge Operations (ORO), Oak Ridge, TN, through Inter- Agency Agreement (IAG) No. DE-AI05-91OR21971. The study was conducted under the Gaseous Diffusion Plant Safety Analysis Report (GDP SAR) Program

  1. A study of atmospheric diffusion from the LANDSAT imagery. [pollution transport over the ocean

    Science.gov (United States)

    Dejesusparada, N. (Principal Investigator); Viswanadham, Y.; Torsani, J. A.

    1981-01-01

    LANDSAT multispectral scanner data of the smoke plumes which originated in eastern Cabo Frio, Brazil and crossed over into the Atlantic Ocean, are analyzed to illustrate how high resolution LANDSAT imagery can aid meteorologists in evaluating specific air pollution events. The eleven LANDSAT images selected are for different months and years. The results show that diffusion is governed primarily by water and air temperature differences. With colder water, low level air is very stable and the vertical diffusion is minimal; but water warmer than the air induces vigorous diffusion. The applicability of three empirical methods for determining the horizontal eddy diffusivity coefficient in the Gaussian plume formula was evaluated with the estimated standard deviation of the crosswind distribution of material in the plume from the LANDSAT imagery. The vertical diffusion coefficient in stable conditions is estimated using Weinstock's formulation. These results form a data base for use in the development and validation of meso scale atmospheric diffusion models.

  2. Theoretical analysis of turbulent transport through the diffuse boundary layer in the dynamic stabilization of superimposed miscible liquids

    International Nuclear Information System (INIS)

    Gerhauser, H.

    1980-02-01

    Two superimposed miscible liquids are separated by a diffuse boundary layer providing a steady transition of density. If the heavy fluid is on top of the light one, Rayleigh-Taylor-instabilities develop and cause a rapid interchange and eventually an intermixing. This process can be subjected to dynamic stabilization by enforcing vertical oscillations upon the whole system. However, since only part of the unstable mode spectrum is completely stabilized, the remaining weakly unstable modes lead to turbulent transport processes through the boundary layer ('anomalous diffusion'), so that only a quasistationary equilibrium is achieved. In the present paper, previous experimental results on the dynamic stabilization of water superimposed by an aqueous ZnJ-solution are theoretically interpreted, and the observed spatial structure as well as the time development of the density profiles are explained. There exists an analogy between these phenomena and turbulent transport processes in tokamak discharges such as the sawtooth oscillations of internal disruptions. (orig.) [de

  3. Diffusive Transport of Sulphide through an Engineering Barrier System in a Deep Geological Repository

    Science.gov (United States)

    Briggs, S. A.; Sleep, B. E.; McKelvie, J. R. M.; Krol, M.

    2015-12-01

    Bentonite is a naturally occurring clay-rich sediment containing montmorillonite, a smectitic clay mineral that has a high cation exchange capacity and swells upon contact with water. Owing to these characteristics, highly compacted bentonite (HCB) is an often included component of engineered barrier systems (EBS) designed to protect used fuel containers (UFCs) in deep geological repositories (DGR) for high-level nuclear waste. The low water activity and high swelling pressure of HCB suppresses microbial activity and the related production of sulphide that could cause microbiologically influenced corrosion (MIC) of UFCs The Canadian Nuclear Waste Management Organization (NWMO) has chosen a UFC that consists of an inner steel core and outer copper coating which is resistant to corrosion. However, under anaerobic conditions, MIC can still contribute to UFC corrosion if sulphides are present in the groundwater. Therefore the EBS consisting of bentonite blocks and pellets has been designed to impede the movement of sulphides to the UFC. In order to examine the effectiveness of the EBS, a 3D numerical model was developed capable of simulating the diffusive transport of sulphide within the NWMO EBS. The model was developed using COMSOL Multiphysics, a finite element software package and is parametric which allows the impact of different repository layouts to be assessed. The developed model was of the entire NWMO placement room, as well as, a stand-alone UFC and included conservative assumptions such as a fully saturated system and a constant concentration boundary condition. The results showed that the highest sulphide flux occurred at the semi-spherical end caps of the UFC. Further studies examined the effect of sulphide hotspots and fractures, representing possible EBS failure mechanisms. The model results highlight that even with conservative assumptions the chosen EBS will effectively protect the UFC from microbiologically influenced corrosion.

  4. ADDIGAS. Advective and diffusive gas transport in rock salt formations. Final report

    International Nuclear Information System (INIS)

    Jockwer, Norbert; Wieczorek, Klaus

    2008-04-01

    Beside granite and clay formations also rock salt is investigated as potential host rock for the disposal or radioactive waste. As a result of the mining activities the stress and strain state is changed which leads to dilatancy (i.e., volume increase, manly caused by microfracturing) in the vicinity of the excavations. The affected area is termed as Excavation Disturbed Zone (EDZ) and is characterized by an increased porosity and permeability with micro- and potential macrofractures. For the radioactive waste disposal in a geologic formation the properties of the EDZ with its permeability, extent, and evolution with time is of importance especially for the construction and building of geotechnical barriers. In the recent years the EDZ in rock salt formations was investigated at GRS in the frame of various projects. Main subjects of these projects were the characterisation of the EDZ with regard to its extent, hydraulic behaviour and possible healing at the in-situ stress conditions. The main emphasis of the ADDIGAS project reported here was the evolution of the EDZ after cutting off the drift contour, the anisotropy of permeability, and the diffusive gas transport which had not been investigated in earlier projects. Moreover, an constitutive model for calculating EDZ behaviour which had been developed in the frame of the BAMBUS II project was tested. The experimental work was performed on the 800-m level of the ASSe salt mine. The project ran from 2004 to 2007 and was funded by German Ministry of Economics and Labour (BMWA) under the contract No. 02 E 9924. The modelling work was co-funded by the CEC in the frame of the Integrated Project NF-PRO under contract no. F16W-CT-2003-002389. (orig.)

  5. Diffusive and convective transport modelling from analysis of ECRH-stimulated electron heat wave propagation. [ECRH (Electron Cyclotron Resonance Heating)

    Energy Technology Data Exchange (ETDEWEB)

    Erckmann, V; Gasparino, U; Giannone, L. (Max-Planck-Institut fuer Plasmaphysik, Garching (Germany)) (and others)

    1992-01-01

    ECRH power modulation experiments in toroidal devices offer the chance to analyze the electron heat transport more conclusively: the electron heat wave propagation can be observed by ECE (or SX) leading to radial profiles of electron temperature modulation amplitude and time delay (phase shift). Taking also the stationary power balance into account, the local electron heat transport can be modelled by a combination of diffusive and convective transport terms. This method is applied to ECRH discharges in the W7-AS stellarator (B=2.5T, R=2m, a[<=]18 cm) where the ECRH power deposition is highly localized. In W7-AS, the T[sub e] modulation profiles measured by a high resolution ECE system are the basis for the local transport analysis. As experimental errors limit the separation of diffusive and convective terms in the electron heat transport for central power deposition, also ECRH power modulation experiments with off-axis deposition and inward heat wave propagation were performed (with 70 GHz o-mode as well as with 140 GHz x-mode for increased absorption). Because collisional electron-ion coupling and radiative losses are only small, low density ECRH discharges are best candidates for estimating the electron heat flux from power balance. (author) 2 refs., 3 figs.

  6. Numerical solution of the equation of neutrons transport on plane geometry by analytical schemes using acceleration by synthetic diffusion

    International Nuclear Information System (INIS)

    Alonso-Vargas, G.

    1991-01-01

    A computer program has been developed which uses a technique of synthetic acceleration by diffusion by analytical schemes. Both in the diffusion equation as in that of transport, analytical schemes were used which allowed a substantial time saving in the number of iterations required by source iteration method to obtain the K e ff. The program developed ASD (Synthetic Diffusion Acceleration) by diffusion was written in FORTRAN and can be executed on a personal computer with a hard disc and mathematical O-processor. The program is unlimited as to the number of regions and energy groups. The results obtained by the ASD program for K e ff is nearly completely concordant with those of obtained utilizing the ANISN-PC code for different analytical type problems in this work. The ASD program allowed obtention of an approximate solution of the neutron transport equation with a relatively low number of internal reiterations with good precision. One of its applications would be in the direct determinations of axial distribution neutronic flow in a fuel assembly as well as in the obtention of the effective multiplication factor. (Author)

  7. Regional flood hazard assessment of the Paducah and Portsmouth Gaseous Diffusion Plants

    International Nuclear Information System (INIS)

    Johnson, R.O.; Wang, J.C.; Lee, D.W.

    1991-01-01

    Regional flood-hazard assessments performed for the Paducah and Portsmouth Gaseous Diffusion Plants are reviewed, compared, and contrasted to determine the relationship of probable maximum flood methodology with respect to US Department of Energy design and evaluation guidelines. The Paducah assessment was carried out using probable minimum flood methodology, while the Portsmouth assessment utilized probabilistic techniques. Results indicated that regional flooding along nearby rivers would not inundate either plant, and that the guidelines were satisfied. A comparison of results indicated that the probable minimum flood recurrence interval associated with the Paducah assessment exceeded the 10,000-year requirement of the guidelines, while recurrence intervals obtained in the Portsmouth assessment could be above or below 10,000 years depending on the choice of the probabilistic model used to perform the assessment. It was concluded, based on an analysis of two data points, that smaller watersheds driven by single event storms could be assessed using probabilistic techniques, while probable maximum flood methodology could be applied to larger drainage basins flooded by storm sequences

  8. Environmental program audit: Oak Ridge Gaseous Diffusion Plant, Roane County, Tennessee. Final report

    International Nuclear Information System (INIS)

    Smith, W.M.; Waller, R.

    1985-01-01

    An environmental audit of the Oak Ridge Gaseous Diffusion Plant (ORGDP) was conducted by a team of NUS scientists and engineers during the week of June 3 through June 7, 1985. ORGDP is owned by the Department of Energy and operated by Martin-Marietta Energy Systems, Inc. To enrich uranium feedstocks for nuclear fuels. The team evaluated ORGDP in terms of compliance with environmental regulations and DOE Orders, the adequacy of pollution control equipment, the effectiveness of environmental monitoring, and the application of quality control procedures to environmental programs. The audit was conducted by observing operations, inspecting facilities, evaluating analysis and monitoring techniques, reviewing reports and data, and interviewing personnel. Overall, the ORGDP environmental program appears to be well structured and has attempted to address all areas of air, water, and land media likely to be affected by the operations of the facility. The plant management is knowledgeable about environmental concerns and has established clear, well-defined goals to address these areas. An adequate professional staff is available to manage the environmental program

  9. A synthetic peptide shows retro- and anterograde neuronal transport before disrupting the chemosensation of plant-pathogenic nematodes.

    Directory of Open Access Journals (Sweden)

    Dong Wang

    2011-03-01

    Full Text Available Cyst nematodes are a group of plant pathogens each with a defined host range that cause major losses to crops including potato, soybean and sugar beet. The infective mobile stage hatches from dormant eggs and moves a short distance through the soil to plant roots, which it then invades. A novel strategy for control has recently been proposed in which the plant is able to secrete a peptide which disorientates the infective stage and prevents invasion of the pathogen. This study provides indirect evidence to support the mechanism by which one such peptide disrupts chemosensory function in nematodes. The peptide is a disulphide-constrained 7-mer with the amino acid sequence CTTMHPRLC that binds to nicotinic acetylcholine receptors. A fluorescently tagged version of this peptide with both epifluorescent and confocal microscopy was used to demonstrate that retrograde transport occurs from an aqueous environment along bare-ending primary cilia of chemoreceptive sensilla. The peptide is transported to the cell bodies of these neurons and on to a limited number of other neurons to which they connect. It appears to be localised in both neuronal processes and organelles adjacent to nuclei of some neurons suggesting it could be transported through the Golgi apparatus. The peptide takes 2.5 h to reach the neuronal cell bodies. Comparative studies established that similar but less abundant uptake occurs for Caenorhabditis elegans along its well studied dye-filling chemoreceptive neurons. Incubation in peptide solution or root-exudate from transgenic plants that secrete the peptide disrupted normal orientation of infective cyst nematodes to host root diffusate. The peptide probably undergoes transport along the dye-filling non-cholinergic chemoreceptive neurons to their synapses where it is taken up by the interneurons to which they connect. Coordinated responses to chemoreception are disrupted when the sub-set of cholinergic interneurons secrete the peptide

  10. A synthetic peptide shows retro- and anterograde neuronal transport before disrupting the chemosensation of plant-pathogenic nematodes.

    Science.gov (United States)

    Wang, Dong; Jones, Laura M; Urwin, Peter E; Atkinson, Howard J

    2011-03-07

    Cyst nematodes are a group of plant pathogens each with a defined host range that cause major losses to crops including potato, soybean and sugar beet. The infective mobile stage hatches from dormant eggs and moves a short distance through the soil to plant roots, which it then invades. A novel strategy for control has recently been proposed in which the plant is able to secrete a peptide which disorientates the infective stage and prevents invasion of the pathogen. This study provides indirect evidence to support the mechanism by which one such peptide disrupts chemosensory function in nematodes. The peptide is a disulphide-constrained 7-mer with the amino acid sequence CTTMHPRLC that binds to nicotinic acetylcholine receptors. A fluorescently tagged version of this peptide with both epifluorescent and confocal microscopy was used to demonstrate that retrograde transport occurs from an aqueous environment along bare-ending primary cilia of chemoreceptive sensilla. The peptide is transported to the cell bodies of these neurons and on to a limited number of other neurons to which they connect. It appears to be localised in both neuronal processes and organelles adjacent to nuclei of some neurons suggesting it could be transported through the Golgi apparatus. The peptide takes 2.5 h to reach the neuronal cell bodies. Comparative studies established that similar but less abundant uptake occurs for Caenorhabditis elegans along its well studied dye-filling chemoreceptive neurons. Incubation in peptide solution or root-exudate from transgenic plants that secrete the peptide disrupted normal orientation of infective cyst nematodes to host root diffusate. The peptide probably undergoes transport along the dye-filling non-cholinergic chemoreceptive neurons to their synapses where it is taken up by the interneurons to which they connect. Coordinated responses to chemoreception are disrupted when the sub-set of cholinergic interneurons secrete the peptide at synapses that

  11. The Host Plant Metabolite Glucose Is the Precursor of Diffusible Signal Factor (DSF) Family Signals in Xanthomonas campestris

    OpenAIRE

    Deng, Yinyue; Liu, Xiaoling; Wu, Ji'en; Lee, Jasmine; Chen, Shaohua; Cheng, Yingying; Zhang, Chunyan; Zhang, Lian-Hui

    2015-01-01

    Plant pathogen Xanthomonas campestris pv. campestris produces cis-11-methyl-2-dodecenoic acid (diffusible signal factor [DSF]) as a cell-cell communication signal to regulate biofilm dispersal and virulence factor production. Previous studies have demonstrated that DSF biosynthesis is dependent on the presence of RpfF, an enoyl-coenzyme A (CoA) hydratase, but the DSF synthetic mechanism and the influence of the host plant on DSF biosynthesis are still not clear. We show here that exogenous ad...

  12. Anomalous convection diffusion and wave coupling transport of cells on comb frame with fractional Cattaneo-Christov flux

    Science.gov (United States)

    Liu, Lin; Zheng, Liancun; Liu, Fawang; Zhang, Xinxin

    2016-09-01

    An improved Cattaneo-Christov flux model is proposed which can be used to capture the effects of the time and spatial relaxations, the time and spatial inhomogeneous diffusion and the spatial transition probability of cell transport in a highly non-homogeneous medium. Solutions are obtained by numerical discretization method where the time and spatial fractional derivative are discretized by the L1-approximation and shifted Grünwald definition, respectively. The solvability, stability and convergence of the numerical method for the special case of the Cattaneo-Christov equation are proved. Results indicate that the fractional convection diffusion-wave equation is an evolution equation which displays the coexisting characteristics of parabolicity and hyperbolicity. In other words, for α in (0, 1), the cells transport occupies the characteristics of coupling convection diffusion and wave spreading. Moreover, the effects of pertinent time parameter, time and spatial fractional derivative parameters, relaxation parameter, weight coefficient and the convection velocity on the anomalous transport of cells are shown graphically and analyzed in detail.

  13. Location-dependent coronary artery diffusive and convective mass transport properties of a lipophilic drug surrogate measured using nonlinear microscopy.

    Science.gov (United States)

    Keyes, Joseph T; Simon, Bruce R; Vande Geest, Jonathan P

    2013-04-01

    Arterial wall mass transport properties dictate local distribution of biomolecules or locally delivered dugs. Knowing how these properties vary between coronary artery locations could provide insight into how therapy efficacy is altered between arterial locations. We introduced an indocarbocyanine drug surrogate to the lumens of left anterior descending and right coronary (LADC; RC) arteries from pigs with or without a pressure gradient. Interstitial fluorescent intensity was measured on live samples with multiphoton microscopy. We also measured binding to porcine coronary SMCs in monoculture. Diffusive transport constants peaked in the middle sections of the LADC and RC arteries by 2.09 and 2.04 times, respectively, compared to the proximal and distal segments. There was no statistical difference between the average diffusivity value between LADC and RC arteries. The convection coefficients had an upward trend down each artery, with the RC being higher than the LADC by 3.89 times. This study demonstrates that the convective and diffusive transport of lipophilic molecules changes between the LADC and the RC arteries as well as along their length. These results may have important implications in optimizing drug delivery for the treatment of coronary artery disease.

  14. Rate of Contamination Removal of Two Phyto-remediation Sites at the DOE Portsmouth Gaseous Diffusion Plant

    International Nuclear Information System (INIS)

    Lewis, A.C.; Baird, D.R.

    2006-01-01

    This paper describes applications of phyto-remediation at the Portsmouth Gaseous Diffusion Plant (PORTS), a Department of Energy (DOE) Facility that enriched uranium from the early 1950's until 2000. Phyto-remediation has been implemented to assist in the removal of TCE (trichloroethylene) in the groundwater at two locations at the PORTS facility: the X-740 area and the X-749/X-120 area. Phyto-remediation technology is based on the ability of certain plants species (in this case hybrid poplar trees) and their associated rhizo-spheric microorganisms to remove, degrade, or contain chemical contaminants located in the soil, sediment, surface water, groundwater, and possibly even the atmosphere. Phyto-remediation technology is a promising clean-up solution for a wide variety of pollutants and sites. Mature trees, such as the hybrid poplar, can consume up to 3,000 gallons of groundwater per acre per day. Organic compounds are captured in the trees' root systems. These organic compounds are degraded by ultraviolet light as they are transpired along with the water vapor through the leaves of the trees. The phyto-remediation system at the X-740 area encompasses 766 one-year old hybrid poplar trees (Populus nigra x nigra, Populus nigra x maximowiczii, and Populus deltoides x nigra) that were planted 10 feet apart in rows 10 feet to 20 feet apart, over an area of 2.6 acres. The system was installed to manage the VOC contaminant plume. At the X749/X-120 area, a phyto-remediation system of 2,640 hybrid poplar trees (Populus nigra x maximowiczii) was planted in seven areas/zones to manage the VOC contaminant plume. The objectives of these systems are to remove contamination from the groundwater and to prevent further migration of contaminants. The goal of these remediation procedures is to achieve completely mature and functional phyto-remediation systems within two years of the initial planting of the hybrid poplar trees at each planting location. There is a direct

  15. HKT transporters mediate salt stress resistance in plants: from structure and function to the field.

    Science.gov (United States)

    Hamamoto, Shin; Horie, Tomoaki; Hauser, Felix; Deinlein, Ulrich; Schroeder, Julian I; Uozumi, Nobuyuki

    2015-04-01

    Plant cells are sensitive to salinity stress and do not require sodium as an essential element for their growth and development. Saline soils reduce crop yields and limit available land. Research shows that HKT transporters provide a potent mechanism for mediating salt tolerance in plants. Knowledge of the molecular ion transport and regulation mechanisms and the control of HKT gene expression are crucial for understanding the mechanisms by which HKT transporters enhance crop performance under salinity stress. This review focuses on HKT transporters in monocot plants and in Arabidopsis as a dicot plant, as a guide to efforts toward improving salt tolerance of plants for increasing the production of crops and bioenergy feedstocks. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. [Isotope tracer studies of diffusion in silicates and of geological transport processes using actinide elements

    International Nuclear Information System (INIS)

    Wasserburg, G.J.

    1991-01-01

    This report consists of sections entitled resonance ionization mass spectrometry of Os, Mg self-diffusion in spinel and silicate melts, neotectonics: U-Th ages of solitary corals from the California coast, uranium-series evidence on diagenesis and hydrology of carbonates of Barbados, diffusion of H 2 O molecules in silicate glasses, and development of an extremely high abundance sensitivity mass spectrometer

  17. Gas transport and separation with ceramic membranes. Part I: Multilayer diffusion and capillary condensation

    NARCIS (Netherlands)

    Uhlhorn, R.J.R.; Uhlhorn, R.J.R.; Keizer, Klaas; Burggraaf, Anthonie; Burggraaf, A.J.

    1992-01-01

    Multilayer diffusion and capillary condensation of propylene on supported γ-alumina films greatly improved the permeability and selectivity. Multilayer diffusion, occurring at relative pressures of 0.4 to 0.8 strongly increased the permeability of 6 times the Knudsen permeability, yielding

  18. A coupled diffusion-transport computational method and its application for the determination of space dependent angular flux distributions at a cold neutron source

    International Nuclear Information System (INIS)

    Turgut, M.H.

    1985-01-01

    A fast calculation program ''BRIDGE'' was developed for the calculation of a Cold Neutron Source (CNS) at a radial beam tube of the FRG-I reactor, which couples a total assembly diffusion calculation to a transport calculation for a certain subregion. For the coupling flux and current boundary values at the common surfaces are taken from the diffusion calculation and are used as driving conditions in the transport calculation. 'Equivalence Theorie' is used for the transport feedback effect on the diffusion calculation to improve the consistency of the boundary values. The optimization of a CNS for maximizing the subthermal flux in the wavelength range 4 - 6 A is discussed. (orig.) [de

  19. Carbon Sequestration in Saline Aquifers: Modeling Diffusive and Convective Transport Of a Carbon-­Dioxide Cap

    KAUST Repository

    Allen, Rebecca

    2011-05-01

    An increase in the earth’s surface temperature has been directly linked to the rise of carbon dioxide (CO2) levels In the atmosphere and an enhanced greenhouse effect. CO2 sequestration is one of the proposed mitigation Strategies in the effort to reduce atmospheric CO2 concentrations. Globally speaking, saline aquifers provide an adequate storage capacity for the world’s carbon emissions, and CO2 sequestration projects are currently underway in countries such as Norway, Germany, Japan, USA, and others. Numerical simulators serve as predictive tools for CO2 storage, yet must model fluid transport behavior while coupling different transport processes together accurately. With regards to CO2 sequestration, an extensive amount of research has been done on the diffusive-convective transport that occurs under a cap of CO2-saturated fluid, which results after CO2 is injected into an aquifer and spreads laterally under an area of low permeability. The diffusive-convective modeling reveals an enhanced storage capacity in saline aquifers, due to the density increase between pure fluid and CO2‐saturated fluid. This work presents the transport modeling equations that are used for diffusive- convective modeling. A cell-centered finite difference method is used, and simulations are run using MATLAB. Two cases are explored in order to compare the results from this work’s self-generated code with the results published in literature. Simulation results match relatively well, and the discrepancy for a delayed onset time of convective transport observed in this work is attributed to numerical artifacts. In fact, onset time in this work is directly attributed to the instability of the physical system: this instability arises from non-linear coupling of fluid flow, transport, and convection, but is triggered by numerical errors in these simulations. Results from this work enable the computation of a value for the numerical constant that appears in the onset time equation that

  20. French Regulatory Framework for the Recycling/Reuse of Nuclear Waste and the Dismantling of George Besse Gaseous Diffusion Plant

    Energy Technology Data Exchange (ETDEWEB)

    Themines, R., E-mail: robert.themines@areva.com [AREVA (France)

    2011-07-15

    The regulatory framework in France governing the management of materials containing low levels of radionuclides is described. The plans for the management of the materials arising from the dismantling of the Georges Besse Gaseous Diffusion Plant are described as an example of the application of the regulations. (author)

  1. PGDP [Paducah Gaseous Diffusion Plant]-UF6 handling, sampling, analysis and associated QC/QA and safety related procedures

    International Nuclear Information System (INIS)

    Harris, R.L.

    1987-01-01

    This document is a compilation of Paducah Gaseous Diffusion Plant procedures on UF 6 handling, sampling, and analysis, along with associated QC/QA and safety related procedures. It was assembled for transmission by the US Department of Energy to the Korean Advanced Energy Institute as a part of the US-Korea technical exchange program

  2. Uncertainty for calculating transport on Titan: A probabilistic description of bimolecular diffusion parameters

    Science.gov (United States)

    Plessis, S.; McDougall, D.; Mandt, K.; Greathouse, T.; Luspay-Kuti, A.

    2015-11-01

    Bimolecular diffusion coefficients are important parameters used by atmospheric models to calculate altitude profiles of minor constituents in an atmosphere. Unfortunately, laboratory measurements of these coefficients were never conducted at temperature conditions relevant to the atmosphere of Titan. Here we conduct a detailed uncertainty analysis of the bimolecular diffusion coefficient parameters as applied to Titan's upper atmosphere to provide a better understanding of the impact of uncertainty for this parameter on models. Because temperature and pressure conditions are much lower than the laboratory conditions in which bimolecular diffusion parameters were measured, we apply a Bayesian framework, a problem-agnostic framework, to determine parameter estimates and associated uncertainties. We solve the Bayesian calibration problem using the open-source QUESO library which also performs a propagation of uncertainties in the calibrated parameters to temperature and pressure conditions observed in Titan's upper atmosphere. Our results show that, after propagating uncertainty through the Massman model, the uncertainty in molecular diffusion is highly correlated to temperature and we observe no noticeable correlation with pressure. We propagate the calibrated molecular diffusion estimate and associated uncertainty to obtain an estimate with uncertainty due to bimolecular diffusion for the methane molar fraction as a function of altitude. Results show that the uncertainty in methane abundance due to molecular diffusion is in general small compared to eddy diffusion and the chemical kinetics description. However, methane abundance is most sensitive to uncertainty in molecular diffusion above 1200 km where the errors are nontrivial and could have important implications for scientific research based on diffusion models in this altitude range.

  3. Influence of microstructure on the diffusive transport in pastes, mortars and concretes made with cement Portland and silica fume

    International Nuclear Information System (INIS)

    Bajja, Zineb

    2016-01-01

    Thanks to its high mechanical strength and its potential containment capacity conferred by a compact microstructure, concrete is considered as the most suitable material to compose the engineered barrier of some radioactive waste storage structure. Knowledge of diffusion properties and microstructure of these cementitious materials is then essential to study their long-term durability. In a more specific context of low and intermediate waste management, the use of formulations containing silica fume (SF) appears of great importance. The experimental approach consists in selecting many formulations of pastes and mortars to test by the HTO through-out diffusion test. Their initial compositions (water to binder ratio, SF content, sand content and particle size) were varied in order to browse different microstructures and diffusion properties, and to see the influence of each parameter (water, SF, content and grain size of sand) on the evolution of diffusivity within these materials. The microstructure was investigated to interpret the obtained values of diffusion coefficients. Different complementary techniques have been used to characterize the porous structure (water and mercury intrusion porosimetry, nitrogen adsorption), to verify SF reactivity (TGA, SEM associated to EDS) or to determine the profile porosity at ITZ (SEM combined with image analysis).The relationship between microstructure and diffusion coefficients (DeHTO) was then discussed. The ultimate goal was to find a link between microstructure properties and transport parameters to estimate from a simple characterization, the DeHTO of concrete, difficult to get from HTO diffusion cells test. Other attempts have also been made to try to assess the concrete diffusion coefficient, such as the multi-scale modeling approach (the scale of hydrates 3D model), or the diffusion of other elements ( like oxygen or nitrogen). This study shows that silica fume agglomerates (slurry) observed in cement paste and mortar

  4. Storage, handling and internal transport of radioactive materials (fuel elements excepted) in nuclear power plants

    International Nuclear Information System (INIS)

    1983-06-01

    The rule applies to storage and handling as well as to transport within the plant and to the exchange of - solid radioactive wastes, - liquid radioactive wastes, except for those covered by the rule KTA 3603, - radioactive components and parts which are planned to be mounted and dismounted until shutdown of the plant, - radioactive-contaminated tools and appliances, - radioactive preparations. The rule is to be applied within the fenced-in sites of stationary nuclear power plants with LWR or HTR including their transport load halls, as fas as these are situated so as to be approachable from the nuclear power station by local transport systems. (orig./HP) [de

  5. An integrated field-effect microdevice for monitoring membrane transport in Xenopus laevis oocytes via lateral proton diffusion.

    Directory of Open Access Journals (Sweden)

    Daniel Felix Schaffhauser

    Full Text Available An integrated microdevice for measuring proton-dependent membrane activity at the surface of Xenopus laevis oocytes is presented. By establishing a stable contact between the oocyte vitelline membrane and an ion-sensitive field-effect (ISFET sensor inside a microperfusion channel, changes in surface pH that are hypothesized to result from facilitated proton lateral diffusion along the membrane were detected. The solute diffusion barrier created between the sensor and the active membrane area allowed detection of surface proton concentration free from interference of solutes in bulk solution. The proposed sensor mechanism was verified by heterologously expressing membrane transport proteins and recording changes in surface pH during application of the specific substrates. Experiments conducted on two families of phosphate-sodium cotransporters (SLC20 & SLC34 demonstrated that it is possible to detect phosphate transport for both electrogenic and electroneutral isoforms and distinguish between transport of different phosphate species. Furthermore, the transport activity of the proton/amino acid cotransporter PAT1 assayed using conventional whole cell electrophysiology correlated well with changes in surface pH, confirming the ability of the system to detect activity proportional to expression level.

  6. Diffusion and export dynamics of "1"3"7Cs deposited on the forested area in Fukushima after the nuclear power plant accident in March 2011. Preliminary results

    International Nuclear Information System (INIS)

    Ohte, Nobuhito; Iseda, Kohei; Tanoi, Keitaro; Murakami, Masashi; Suzuki, Takahiro; Ishii, Nobuyoshi

    2013-01-01

    A massive amount of radioactive substances, including cesium-137 ("1"3"7Cs), emitted from the disabled nuclear power plant, has been deposited on the forested areas in the northeastern region of Honshu Island, Japan after the Fukushima Daiichi nuclear power plant accident. Forests in these regions are particularly important, not only for the forest products industry but also for source areas of drinking water and for residential environments. To clarify the mechanisms of diffusion and export of "1"3"7Cs deposited on the forested ecosystem, we initiated intensive field observations in a small catchment that included forest and farmlands. Specifically, we were interested in the Kami-Oguni River catchment that is located in the northern part of Fukushima Prefecture. The following expected major pathways of "1"3"7Cs export and diffusion were investigated: 1) transportation of dissolved and particulate or colloidal forms via hydrological processes within a forested catchment and export dynamics through the stream, and 2) diffusion through the food web in terrestrial and aquatic ecosystems of forests. Preliminary findings indicated the following: 1) Most of the "1"3"7Cs was discharged as suspended matter. High water flow generated by storm acted to accelerate the transportation of "1"3"7Cs from the forested catchments. Thus, the estimation of "1"3"7Cs export requires precise evaluation of the high flow acceleration during storm events; 2) Because litter and its detritus may form the biggest pool of "1"3"7Cs in the forested ecosystem, "1"3"7Cs diffusion occurs more rapidly through the detritus food chain than the grazing food chain. Most predators have already ingested "1"3"7Cs, particularly in aquatic environments. An urgent question that needs to be addressed is when and how "1"3"7Cs diffuses through grazing food chains and how rapidly this process occurs. To elucidate or to be able to predict these phenomena, the mechanisms of "1"3"7Cs release from litter and soil

  7. Modelisation of transport in fractured media with a smeared fractures modeling approach: special focus on matrix diffusion process.

    Science.gov (United States)

    Fourno, A.; Grenier, C.; Benabderrahmane, H.

    2003-04-01

    Modeling flow and transport in natural fractured media is a difficult issue due among others to the complexity of the system, the particularities of the geometrical features, the strong parameter value contrasts between the fracture zones (flow zones) and the matrix zones (no flow zones). This lead to the development of dedicated tools like for instance discrete fracture network models (DFN). We follow here another line applicable for classical continuous modeling codes. The fracture network is not meshed here but presence of fractures is taken into account by means of continuous heterogeneous fields (permeability, porosity, head, velocity, concentration ...). This line, followed by different authors, is referred as smeared fracture approach and presents the following advantages: the approach is very versatile because no dedicated spatial discretization effort is required (we use a basic regular mesh, simulations can be done on a rough mesh saving computer time). This makes this kind of approach very promising for taking heterogeneity of properties as well as uncertainties into account within a Monte Carlo framework for instance. Furthermore, the geometry of the matrix blocks where transfers proceed by diffusion is fully taken into account contrary to classical simplified 1D approach for instance. Nevertheless continuous heterogeneous field representation of a fractured medium requires a homogenization process at the scale of the mesh considered. Literature proves that this step of homogenization for transport is still a challenging task. Consequently, the level precision of the results has to be estimated. We precedently proposed a new approach dedicated to Mixed and Hybrid Finite Element approach. This numerical scheme is very interesting for such highly heterogeneous media and in particular guaranties exact conservation of mass flow for each mesh leading to good transport results. We developed a smeared fractures approach to model flow and transport limited to

  8. The Transfer and diffusion of Cesium 137 within forest ecosystem in Fukushima after the nuclear power plant accident

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Takahiro; Murakami, Masashi [Community Ecology Lab., Biology Course, Faculty of Science, Chiba University, Chiba, 263-8522 (Japan); Ishii, Nobuyoshi [National Institute of Radiological Sciences, Chiba, 263-8555 (Japan); Tanoi, Keitaro; Hirose, Atsushi; Ohte, Nobuhito [Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657 (Japan)

    2014-07-01

    A large amount of radionuclides was released from the Fukushima Daiichi Nuclear Power Plant (FDNPP) accident after the disastrous earthquake and subsequent tsunami of March 2011. Among the variety of radionuclides released from FDNPP, cesium 137 ({sup 137}Cs) is the most worrying radionuclide in the environment, with a half-life of 30 years. Since most of the Japanese land area is covered by forest, the distribution and transportation of radioactive materials within forest ecosystems should be conscientiously monitored. In Europe, many studies reported that the {sup 137}Cs deposition caused by the Chernobyl accident has still been distributed in the litter and soil layers and has become a source for the soil-to-plant transfer. Most of these studies emphasize the 'stability' of {sup 137}Cs within forest ecosystems, because {sup 137}Cs are considered to be strongly and immediately fixed in clay minerals. Even though there are many studies of the soil-to-plant transfer of {sup 137}Cs in forest after several years of Chernobyl accident, very initial distribution and transfer of {sup 137}Cs in food web within one to two years after the deposition in forest ecosystems have never been examined. The evaluation of the initial dynamics of {sup 137}Cs in forest ecosystems should be quite important because of the increasing stability of {sup 137}Cs after the deposition. The accumulation and transfer of {sup 137}Cs through food web within forest ecosystems were examined by collecting various organisms at forests in Fukushima. The {sup 137}Cs concentrations, natural Cs and K concentrations, and delta {sup 15}N of the specimens were measured to evaluate the occurrence of bioaccumulation or bio-diffusion of {sup 137}Cs through tropic interaction within forest ecosystem. {sup 137}Cs was highly concentrated on leaf litters which had been deposited in autumn 2010, before the accident. This accumulated {sup 137}Cs had transferred to higher trophic organisms mainly through

  9. Silicon transport under rotating and combined magnetic fields in liquid phase diffusion growth of SiGe

    Energy Technology Data Exchange (ETDEWEB)

    Armour, N.; Dost, S. [Crystal Growth Laboratory, University of Victoria, Victoria, BC, V8W 3P6 (Canada)

    2010-04-15

    The effect of applied rotating and combined (rotating and static) magnetic fields on silicon transport during the liquid phase diffusion growth of SiGe was experimentally studied. 72-hour growth periods produced some single crystal sections. Single and polycrystalline sections of the processed samples were examined for silicon composition. Results show that the application of a rotating magnetic field enhances silicon transport in the melt. It also has a slight positive effect on flattening the initial growth interface. For comparison, growth experiments were also conducted under combined (rotating and static) magnetic fields. The processed samples revealed that the addition of static field altered the thermal characteristics of the system significantly and led to a complete melt back of the germanium seed. Silicon transport in the melt was also enhanced under combined fields compared with experiments with no magnetic field. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  10. Modeling of radiocesium transport kinetics in system water-aquatic plants

    International Nuclear Information System (INIS)

    Svadlenkova, M.

    1988-01-01

    Compartment models were used to describe the kinetics of the transport of radionuclides in the system water-biomass of aquatic plants. Briefly described are linear models and models with time variable parameters. The model was tested using data from a locality in the environs of the Bohunice nuclear power plant. Cladophora glomerata algae were the monitored plants, 137 Cs the monitored radionuclide. The models may be used when aquatic plants serve as bioindicators of the radioactive contamination of surface waters, for monitoring the transport of radionuclides in food chains. (M.D.). 10 refs

  11. Nonlinear Porous Diffusion Modeling of Hydrophilic Ionic Agrochemicals in Astomatous Plant Cuticle Aqueous Pores: A Mechanistic Approach.

    Science.gov (United States)

    Tredenick, Eloise C; Farrell, Troy W; Forster, W Alison; Psaltis, Steven T P

    2017-01-01

    The agricultural industry requires improved efficacy of sprays being applied to crops and weeds in order to reduce their environmental impact and deliver improved financial returns. Enhanced foliar uptake is one means of improving efficacy. The plant leaf cuticle is known to be the main barrier to diffusion of agrochemicals within the leaf. The usefulness of a mathematical model to simulate uptake of agrochemicals in plant cuticles has been noted previously in the literature, as the results of each uptake experiment are specific to each formulation of active ingredient, plant species and environmental conditions. In this work we develop a mathematical model and numerical simulation for the uptake of hydrophilic ionic agrochemicals through aqueous pores in plant cuticles. We propose a novel, nonlinear, porous diffusion model for ionic agrochemicals in isolated cuticles, which extends simple diffusion through the incorporation of parameters capable of simulating: plant species variations, evaporation of surface droplet solutions, ion binding effects on the cuticle surface and swelling of the aqueous pores with water. We validate our theoretical results against appropriate experimental data, discuss the key sensitivities in the model and relate theoretical predictions to appropriate physical mechanisms. Major influencing factors have been found to be cuticle structure, including tortuosity and density of the aqueous pores, and to a lesser extent humidity and cuticle surface ion binding effects.

  12. Nonlinear Porous Diffusion Modeling of Hydrophilic Ionic Agrochemicals in Astomatous Plant Cuticle Aqueous Pores: A Mechanistic Approach

    Directory of Open Access Journals (Sweden)

    Eloise C. Tredenick

    2017-05-01

    Full Text Available The agricultural industry requires improved efficacy of sprays being applied to crops and weeds in order to reduce their environmental impact and deliver improved financial returns. Enhanced foliar uptake is one means of improving efficacy. The plant leaf cuticle is known to be the main barrier to diffusion of agrochemicals within the leaf. The usefulness of a mathematical model to simulate uptake of agrochemicals in plant cuticles has been noted previously in the literature, as the results of each uptake experiment are specific to each formulation of active ingredient, plant species and environmental conditions. In this work we develop a mathematical model and numerical simulation for the uptake of hydrophilic ionic agrochemicals through aqueous pores in plant cuticles. We propose a novel, nonlinear, porous diffusion model for ionic agrochemicals in isolated cuticles, which extends simple diffusion through the incorporation of parameters capable of simulating: plant species variations, evaporation of surface droplet solutions, ion binding effects on the cuticle surface and swelling of the aqueous pores with water. We validate our theoretical results against appropriate experimental data, discuss the key sensitivities in the model and relate theoretical predictions to appropriate physical mechanisms. Major influencing factors have been found to be cuticle structure, including tortuosity and density of the aqueous pores, and to a lesser extent humidity and cuticle surface ion binding effects.

  13. Interpretation of changes in diffusive and non-diffusive transport in the edge plasma during pedestal buildup following a low-high transition in DIII-D

    Energy Technology Data Exchange (ETDEWEB)

    Stacey, W. M.; Sayer, M.-H.; Floyd, J.-P. [Georgia Tech, Atlanta, Georgia 30332 (United States); Groebner, R. J. [General Atomics, San Diego, California 92186 (United States)

    2013-01-15

    The evolution of diffusive and non-diffusive transport during pedestal buildup following a low-high (L-H) transition has been interpreted from a particle-momentum-energy balance analysis of the measured density, temperature, and rotation velocity profiles in the plasma edge (0.82<{rho}<1.0) of a DIII-D [Luxon, Nucl. Fusion 42, 614 (2002)] discharge. In the discharge examined, there was an edge-localized-mode-free period of more than 600 ms following the L-H transition, and the majority of edge pedestal development occurred within the first 100 ms following the L-H transition. There appears to be a spatio-temporal correlation among the measured toroidal and poloidal rotation, the formation of a negative well in the measured radial electric field, the creation of a large inward particle pinch, the calculated intrinsic rotation due to ion orbit loss, and the measured formation of steep gradients in density and temperature in the outer region ({rho}>0.95) of the edge pedestal.

  14. "Conjugate channeling" effect in dislocation core diffusion: carbon transport in dislocated BCC iron.

    Science.gov (United States)

    Ishii, Akio; Li, Ju; Ogata, Shigenobu

    2013-01-01

    Dislocation pipe diffusion seems to be a well-established phenomenon. Here we demonstrate an unexpected effect, that the migration of interstitials such as carbon in iron may be accelerated not in the dislocation line direction ξ, but in a conjugate diffusion direction. This accelerated random walk arises from a simple crystallographic channeling effect. c is a function of the Burgers vector b, but not ξ, thus a dislocation loop possesses the same everywhere. Using molecular dynamics and accelerated dynamics simulations, we further show that such dislocation-core-coupled carbon diffusion in iron has temperature-dependent activation enthalpy like a fragile glass. The 71° mixed dislocation is the only case in which we see straightforward pipe diffusion that does not depend on dislocation mobility.

  15. Quantum-corrected drift-diffusion models for transport in semiconductor devices

    International Nuclear Information System (INIS)

    De Falco, Carlo; Gatti, Emilio; Lacaita, Andrea L.; Sacco, Riccardo

    2005-01-01

    In this paper, we propose a unified framework for Quantum-corrected drift-diffusion (QCDD) models in nanoscale semiconductor device simulation. QCDD models are presented as a suitable generalization of the classical drift-diffusion (DD) system, each particular model being identified by the constitutive relation for the quantum-correction to the electric potential. We examine two special, and relevant, examples of QCDD models; the first one is the modified DD model named Schroedinger-Poisson-drift-diffusion, and the second one is the quantum-drift-diffusion (QDD) model. For the decoupled solution of the two models, we introduce a functional iteration technique that extends the classical Gummel algorithm widely used in the iterative solution of the DD system. We discuss the finite element discretization of the various differential subsystems, with special emphasis on their stability properties, and illustrate the performance of the proposed algorithms and models on the numerical simulation of nanoscale devices in two spatial dimensions

  16. An Expanding Role For Purine Uptake Permease (PUP -like Transporters In Plant Secondary Metabolism.

    Directory of Open Access Journals (Sweden)

    John G. Jelesko

    2012-05-01

    Full Text Available For the past decade, our understanding of the plant purine uptake permease (PUP transporter family of was primarily oriented on purine nucleobase substrates and their tissue-specific expression patterns in Arabidopsis. However, a tobacco PUP-like homolog demonstrating nicotine uptake permease (NUP activity was recently shown to affect both nicotine metabolism and root cell growth. These new findings expand the physiological role for PUP-like transporters to include plant secondary metabolism. Molecular evolution analyses of PUP-like transporters indicate they are distinct group within an ancient super family of drug and metabolite transporters (DMTs. The PUP-like family originated during terrestrial plant evolution sometime between the bryophytes and the lycophytes. A phylogenetic analysis indicates that the PUP-like transporters were likely were derived from a pre-existing nucleotide sugar transporter family within the DMT super family. Within the lycophyte Selaginella, there are three paralogous groups of PUP-like transporters. One of the three PUP-like paralogous groups showed an extensive pattern of gene duplication and diversification within the angiosperm lineage, whereas the other two more ancestral PUP-like paralogous groups did not. Biochemical characterization of four closely-related PUP-like paralogs together with model-based phylogenetic analyses indicate both subfunctionalization and neofunctionalization during the molecular evolution of angiosperm PUP-like transporters. These findings suggest that members of the PUP-like family of DMT transporters are likely involved in diverse primary and secondary plant metabolic pathways.

  17. Structural inspection and wind analysis of redwood cooling towers at the Portsmouth Gaseous Diffusion Plant

    International Nuclear Information System (INIS)

    Chung, T.; Solack, T.; Hortel, J.

    1991-01-01

    As part of the plant upgrade program, structural analyses and field inspections were performed on four redwood cooling towers at the DOE Portsmouth gaseous diffusion plant located in Piketon, Ohio. The cooling towers are categorized as important hazard facilities. The loadings are derived from UCRL-15910 according to the pertinent hazard category. In addition to the seismic and wind loadings, the wood cooling towers are constantly subject to adverse environmental effects such as elevated temperature, chemical attack, icing and snow load, and motor vibrations. A thorough structural evaluation for all load combinations was performed for each of the cooling towers based on the structural code requirements of the Cooling Tower Institute and National Forest Products Association. Most stress criteria are unique for the redwood material. This evaluation was performed using finite element techniques on the global structural integrity and supplemented by hand calculations on the individual connection joints. Overloaded wood structural members and joints are identified by the analysis. The rectangular tower structure sits on a concrete basin that span across 60 ft by 200 ft. A major part of the cooling towers upgrading program involved field inspections of the individual cells of each tower. The primary purpose of these inspections was to identify any existing structural damage or deficiencies such as failed members, degraded wood, and deficiencies resulting from poor construction practice. Inspection of 40 cells identified some generic deficiencies that mostly are consistent with the analytical finding. Based on the analysis, some effective but inexpensive upgrading techniques were developed and recommended to bring the cooling towers into compliance with current DOE requirements

  18. Report on the biological monitoring program at Paducah Gaseous Diffusion Plant, January--December 1996

    Energy Technology Data Exchange (ETDEWEB)

    Kszos, L.A. [ed.; Konetsky, B.K.; Peterson, M.J.; Petrie, R.B.; Ryon, M.G.; Smith, J.G.; Southworth, G.R.

    1997-06-01

    On September 24, 1987, the Commonwealth of Kentucky Natural Resources and Environmental Protection Cabinet issued an Agreed Order that required the development of a Biological Monitoring Program (BMP) for the Paducah Gaseous diffusion Plant (PGDP). The PGDP BMP was conducted by the University of Kentucky Between 1987 and 1992 and by staff of the Environmental Sciences Division (ESD) at Oak Ridge National Laboratory (ORNL) from 1991 to present. The goals of BMP are to (1) demonstrate that the effluent limitations established for PGDP protect and maintain the use of Little Bayou and Big Bayou creeks for growth and propagation of fish and other aquatic life, (2) characterize potential environmental impacts, and (3) document the effects of pollution abatement facilities on stream. The BMP for PGDP consists of three major tasks: (1) effluent toxicity monitoring, (2) bioaccumulation studies, and (3) ecological surveys of stream communities (i.e., benthic macroinvertebrates and fish). This report focuses on ESD activities occurring from January 1996 to December 1996, although activities conducted outside this time period are included as appropriate.

  19. Characterization of process holdup material at the Portsmouth Gaseous Diffusion Plant

    International Nuclear Information System (INIS)

    Boyd, D.E.; Miller, R.R.

    1986-01-01

    The cascade material balance area at the Portsmouth Gaseous Diffusion Plant is characterized by continuous, large, in-process inventories of gaseous uranium hexafluoride (UF 6 ) and very large inputs and outputs of UF 6 over a complete range of 235 U enrichments. Monthly inventories are conducted to quantify the in-place material, but the inventory techniques are blind to material not in the gas phase. Material is removed from the gas phase by any one of four mechanisms: (1) freeze-outs which are the solidification of UF 6 , (2) inleakage of wet air which produces solid uranium oxyfluorides, (3) consumption of uranium through UF 6 reaction with internal metal surfaces, and (4) adsorption of UF 6 on internal surfaces. This presentation describes efforts to better characterize and, where possible, to eliminate or reduce the effects of these mechanisms on material accountability. Freeze-outs and wet air deposits occur under absormal operating conditions, and techniques are available to prevent, detect and reverse them. Consumption and adsorption occur under normal operating conditions and are more complex to manage, however, computer models have been developed to quantify monthly the net effects due to consumption and adsorption. These models have shown that consumption and adsorption effects on inventory differences are significant

  20. Development of NF3 Deposit Removal Technology for the Portsmouth Gaseous Diffusion Plant

    International Nuclear Information System (INIS)

    Scheele, R.D.; McNamara, B.K.; Rapko, B.M.; Edwards, M.K.; Kozelisky, A.E.; Daniel, R.C.; McSweeney, T.I.; Maharas, S.J.; Weaver, P.J.; Iwamasa, K.J.; Kefgen, R.B.

    2006-01-01

    This paper summarizes the Battelle, Stoller, and WASTREN (BSW) team's efforts, to date, in support of the United States Department of Energy's plans to remove uranium and technetium deposits before decommissioning the Portsmouth Gaseous Diffusion Plant. The BSW team investigated nitrogen trifluoride (NF 3 ) as a safer yet effective alternative gaseous treatment to the chlorine trifluoride (ClF 3 )-elemental fluorine (F 2 ) treatment currently used to remove uranium and technetium deposits from the uranium enrichment cascade. Both ClF 3 and F 2 are highly reactive, toxic, and hazardous gases, while NF 3 , although toxic [1], is no more harmful than moth balls [2]. BSW's laboratory thermo-analytical and laboratory-scale prototype studies with NF 3 established that thermal NF 3 can effectively remove likely and potential uranium (UO 2 F 2 and UF 4 ) and technetium deposits (a surrogate deposit material, TcO 2 , and pertechnetates) by conversion to volatile compounds. Our engineering evaluations suggest that NF 3 's effectiveness could be enhanced by combining with a lesser concentration of ClF 3 . BSW's and other's studies indicate compatibility with Portsmouth materials of construction (aluminum, copper, and nickel). (authors)

  1. An aerial radiological survey of the Paducah Gaseous Diffusion Plant and surrounding area, Paducah, Kentucky

    International Nuclear Information System (INIS)

    1992-11-01

    An aerial radiological survey of the Paducah Gaseous Diffusion Plant (PGDP) and surrounding area in Paducah, Kentucky, was conducted during May 15--25, 1990. The purpose of the survey was to measure and document the terrestrial radiological environment at the PGDP and surrounding area for use in effective environmental management and emergency response planning. The aerial survey was flown at an altitude of 61 meters (200 feet) along a series of parallel lines 107 meters (350 feet) apart. The survey encompassed an area of 62 square kilometers (24 square miles), bordered on the north by the Ohio River. The results of the aerial survey are reported as inferred exposure rates at 1 meter above ground level in the form of a gamma radiation contour map. Typical background exposure rates were found to vary from 5 to 12 microroentgens per hour (μR/h). Protactinium-234m, a radioisotope indicative of uranium-238, was detected at several facilities at the PGDR. In support of the aerial survey, ground-based exposure rate and soil sample measurements were obtained at several sites within the survey perimeter. The results of the aerial and ground-based measurements were found to agree within ±15%

  2. Environmental Survey preliminary report, Oak Ridge Gaseous Diffusion Plant, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    1989-02-01

    This report presents the preliminary findings from the first phase of the Environmental Survey of the US Department of Energy's (DOE) Oak Ridge Gaseous Diffusion Plant (ORGDP) conducted March 14 through 25, 1988. The Survey is being conducted by an interdisciplinary team of environmental specialists, led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. Individual team components are being supplied by a private contractor. The objective of the Survey is to identify environmental risk associated with ORGDP. The Survey covers all environmental media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. This phase of the Survey involves the review of existing site environmental data, observations of the operations carried on at ORGDP, and interviews with site personnel. The Survey team developed a Sampling and Analysis Plan to assist in further assessing certain of the environmental problems identified during is on-site activities. The Sampling and Analysis Plan will be executed by Idaho National Engineering Laboratory (INEL). When completed, the results will be incorporated into the ORGDP Survey findings for in inclusion into the Environmental Survey Summary Report. 120 refs., 41 figs., 74 tabs.

  3. Martin Marietta Paducah Gaseous Diffusion Plant comprehensive earthquake emergency management program

    International Nuclear Information System (INIS)

    1990-01-01

    Recognizing the value of a proactive, integrated approach to earthquake preparedness planning, Martin Marietta Energy Systems, Inc. initiated a contract in June 1989 with Murray State University, Murray, Kentucky, to develop a comprehensive earthquake management program for their Gaseous Diffusion Plant in Paducah, Kentucky. The overall purpose of the program is to mitigate the loss of life and property in the event of a major destructive earthquake. The program includes four distinct (yet integrated) components: an emergency management plan, with emphasis on the catastrophic earthquake; an Emergency Operations Center Duty Roster Manual; an Integrated Automated Emergency Management Information System (IAEMIS); and a series of five training program modules. The PLAN itself is comprised of four separate volumes: Volume I -- Chapters 1--3; Volume II -- Chapters 4--6, Volume III -- Chapter 7, and Volume IV -- 23 Appendices. The EOC Manual (which includes 15 mutual aid agreements) is designated as Chapter 7 in the PLAN and is a ''stand alone'' document numbered as Volume III. This document, Volume I, provides an introduction, summary and recommendations, and the emergency operations center direction and control

  4. Report on the biological monitoring program at Paducah Gaseous Diffusion Plant, January-December 1997

    International Nuclear Information System (INIS)

    Kszos, L.A.; Peterson, M.J.; Ryon, M.G.; Smith, J.G.; Southworth, G.R.

    1998-03-01

    On September 24, 1987, the Commonwealth of Kentucky Natural Resources and Environmental Protection Cabinet issued an Agreed Order that required the development of a Biological Monitoring Program (BMP) for the Paducah Gaseous Diffusion Plant (PGDP). A plan for the biological monitoring of the receiving streams was implemented in 1987 and consisted of ecological surveys, toxicity monitoring of effluents and receiving streams, evaluation of bioaccumulation of trace contaminants in biota, and supplemental chemical characterization of effluents. Beginning in fall 1991, the Environmental Sciences Division (ESD) at Oak Ridge National Laboratory added data collection and report preparation to its responsibilities for the PGDP BMP. The BMP has been continued because it has proven to be extremely valuable in (1) identifying those effluents with the potential for adversely affecting instream fauna, (2) assessing the ecological health of receiving streams, and (3) guiding plans for remediation and protecting human health. The BMP for PGDP consists of three major tasks: (1) effluent toxicity monitoring, (2) bioaccumulation studies, and (3) ecological surveys of benthic macroinvertebrate communities and fish. With the exception of the benthic macroinvertebrate community surveys, this report focuses on activities from January to December 1997

  5. Operating experience with aluminum bearings at the Portsmouth Gaseous Diffusion Plant

    International Nuclear Information System (INIS)

    Langebrake, C.O.

    1975-01-01

    Considerable operating experience has been gained at the Portsmouth Gaseous Diffusion Plant over the last 15 years in the use of aluminum bearings in process related and auxiliary equipment. All of this experience has been excellent and, in several cases, the use of this type of bearing material has solved significant operating problems. Aluminum 850-T101 alloy was first used as a bearing material in purge cascade (PC-9) centrifugal compressors where a fatigue problem was being experienced with babbitt-type bearings. Good experience in this application led to the extended use of this bearing material in other equipment including process related as well as auxiliary equipment. Since 1961 aluminum bearings have been installed in approximately 21 Type PC-9 (centrifugal), 97 Type 9 (centrifugal), 262 Type X-29 (axial), and 101 Type 31 (axial) compressors, and 3 speed increasers in the X-330 Evacuation Booster Station. Based on successful operation of these bearings, continued and expanded use of aluminum bearings is recommended as a means of obtaining a high fatigue resistant bearing at a cost lower than that for babbitt-type bearings. (U.S.)

  6. Report on the biological monitoring program at Paducah Gaseous Diffusion Plant, January--December 1997

    Energy Technology Data Exchange (ETDEWEB)

    Kszos, L.A.; Peterson, M.J.; Ryon, M.G.; Smith, J.G.; Southworth, G.R.

    1998-03-01

    On September 24, 1987, the Commonwealth of Kentucky Natural Resources and Environmental Protection Cabinet issued an Agreed Order that required the development of a Biological Monitoring Program (BMP) for the Paducah Gaseous Diffusion Plant (PGDP). A plan for the biological monitoring of the receiving streams was implemented in 1987 and consisted of ecological surveys, toxicity monitoring of effluents and receiving streams, evaluation of bioaccumulation of trace contaminants in biota, and supplemental chemical characterization of effluents. Beginning in fall 1991, the Environmental Sciences Division (ESD) at Oak Ridge National Laboratory added data collection and report preparation to its responsibilities for the PGDP BMP. The BMP has been continued because it has proven to be extremely valuable in (1) identifying those effluents with the potential for adversely affecting instream fauna, (2) assessing the ecological health of receiving streams, and (3) guiding plans for remediation and protecting human health. The BMP for PGDP consists of three major tasks: (1) effluent toxicity monitoring, (2) bioaccumulation studies, and (3) ecological surveys of benthic macroinvertebrate communities and fish. With the exception of the benthic macroinvertebrate community surveys, this report focuses on activities from January to December 1997.

  7. Report on the biological monitoring program at Paducah Gaseous Diffusion Plant December 1993 to December 1994

    Energy Technology Data Exchange (ETDEWEB)

    Kszos, L.A. [ed.

    1996-05-01

    On September 24, 1987, the Commonwealth of Kentucky Natural Resources and Environmental Protection Cabinet issued an Agreed Order that required the development of a Biological Monitoring Program (BMP) for the Paducah Gaseous Diffusion Plant (PGDP). The PGDP BMP was implemented in 1987 by the University of Kentucky. Research staff of the Environmental Sciences Division (ESD) at Oak Ridge National Laboratory (ORNL) served as reviewers and advisers to the University of Kentucky. Beginning in fall 1991, ESD added data collection and report preparation to its responsibilities for the PGDP BMP. The goals of BMP are to (1) demonstrate that the effluent limitations established for PGDP protect and maintain the use of Little Bayou and Big Bayou creeks for growth and propagation of fish and other aquatic life, (2) characterize potential environmental impacts, (3) document the effects of pollution abatement facilities on stream biota, and (4) recommend any program improvements that would increase effluent treatability. In September 1992, a renewed Kentucky Pollutant Discharge Elimination System (KPDES) permit was issued to PGDP. The BMP for PGDP consists of three major tasks: (1) effluent and ambient toxicity monitoring, (2) bioaccumulation studies, and (3) ecological surveys of stream communities (i.e., benthic macroinvertebrates and fish). This report includes ESD activities occurring from December 1993 to December 1994, although activities conducted outside this time period are included as appropriate.

  8. Report on the biological monitoring program at Paducah Gaseous Diffusion Plant December 1993 to December 1994

    International Nuclear Information System (INIS)

    Kszos, L.A.

    1996-05-01

    On September 24, 1987, the Commonwealth of Kentucky Natural Resources and Environmental Protection Cabinet issued an Agreed Order that required the development of a Biological Monitoring Program (BMP) for the Paducah Gaseous Diffusion Plant (PGDP). The PGDP BMP was implemented in 1987 by the University of Kentucky. Research staff of the Environmental Sciences Division (ESD) at Oak Ridge National Laboratory (ORNL) served as reviewers and advisers to the University of Kentucky. Beginning in fall 1991, ESD added data collection and report preparation to its responsibilities for the PGDP BMP. The goals of BMP are to (1) demonstrate that the effluent limitations established for PGDP protect and maintain the use of Little Bayou and Big Bayou creeks for growth and propagation of fish and other aquatic life, (2) characterize potential environmental impacts, (3) document the effects of pollution abatement facilities on stream biota, and (4) recommend any program improvements that would increase effluent treatability. In September 1992, a renewed Kentucky Pollutant Discharge Elimination System (KPDES) permit was issued to PGDP. The BMP for PGDP consists of three major tasks: (1) effluent and ambient toxicity monitoring, (2) bioaccumulation studies, and (3) ecological surveys of stream communities (i.e., benthic macroinvertebrates and fish). This report includes ESD activities occurring from December 1993 to December 1994, although activities conducted outside this time period are included as appropriate

  9. Replacement of chlorofluorocarbons at the DOE gaseous diffusion plants: An assessment of global impacts

    International Nuclear Information System (INIS)

    Socolof, M.L.; McCold, L.N.; Saylor, R.E.

    1997-01-01

    Three gaseous diffusion plants (GDPs) for enriching uranium maintain a large inventory of chlorofluorocarbon-114 (CFC-114) as a coolant. To address the continued use of CFC-114, an ozone-depleting substance, the US Department of Energy (DOE) considered introducing perfluorocarbons (PFCs) by the end of 1995. These PFCs would not contribute to stratospheric ozone depletion but would be larger contributors to global warming than would CFC-114. The paper reports the results of an assessment of the global impacts of four alternatives for modifying GDP coolant system operations over a three-year period beginning in 1996. The overall contribution of GDP coolant releases to impacts on ozone depletion and global warming were quantified by parameters referred to as ozone-depletion impact and global-warming impact. The analysis showed that these parameters could be used as surrogates for predicting global impacts to all resources and could provide a framework for assessing environmental impacts of a permanent coolant replacement, eliminating the need for subsequent resource-specific analyses

  10. Environmental Survey preliminary report, Oak Ridge Gaseous Diffusion Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1989-02-01

    This report presents the preliminary findings from the first phase of the Environmental Survey of the US Department of Energy's (DOE) Oak Ridge Gaseous Diffusion Plant (ORGDP) conducted March 14 through 25, 1988. The Survey is being conducted by an interdisciplinary team of environmental specialists, led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. Individual team components are being supplied by a private contractor. The objective of the Survey is to identify environmental risk associated with ORGDP. The Survey covers all environmental media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. This phase of the Survey involves the review of existing site environmental data, observations of the operations carried on at ORGDP, and interviews with site personnel. The Survey team developed a Sampling and Analysis Plan to assist in further assessing certain of the environmental problems identified during is on-site activities. The Sampling and Analysis Plan will be executed by Idaho National Engineering Laboratory (INEL). When completed, the results will be incorporated into the ORGDP Survey findings for in inclusion into the Environmental Survey Summary Report. 120 refs., 41 figs., 74 tabs

  11. Martin Marietta Paducah Gaseous Diffusion Plant comprehensive earthquake emergency management program

    International Nuclear Information System (INIS)

    1990-01-01

    Recognizing the value of a proactive, integrated approach to earthquake preparedness planning, Martin Marietta Energy Systems, Inc. initiated a contract in June 1989 with Murray State University, Murray, Kentucky, to develop a comprehensive earthquake management program for their Gaseous Diffusion Plant in Paducah, Kentucky (PGDP -- Subcontract No. 19P-JV649V). The overall purpose of the program is to mitigate the loss of life and property in the event of a major destructive earthquake. The program includes four distinct (yet integrated) components: an emergency management plan, with emphasis on the catastrophic earthquake; an Emergency Operations Center Duty Roster Manual; an Integrated Automated Emergency Management Information System (IAEMIS); and a series of five training program modules. The PLAN itself is comprised of four separate volumes: Volume I -- Chapters 1--3; Volume II -- Chapters 4--6, Volume III -- Chapter 7, and Volume IV -- 23 Appendices. The EOC Manual (which includes 15 mutual aid agreements) is designated as Chapter 7 in the PLAN and is a ''stand alone'' document numbered as Volume III. This document, Volume II, discusses methodology, engineering and environmental analyses, and operational procedures

  12. Martin Marietta Paducah Gaseous Diffusion Plant comprehensive earthquake emergency management program

    International Nuclear Information System (INIS)

    1990-01-01

    Recognizing the value of a proactive, integrated approach to earthquake preparedness planning, Martin Marietta Energy Systems, Inc, initiated a contract in June 1989 with Murray State University, Murray, Kentucky, to develop a comprehensive earthquake management program for their Gaseous Diffusion Plant in Paducah, Kentucky (PGDP--Subcontract No. 19P-JV649V). The overall purpose of the program is to mitigate the loss of life and property in the event of a major destructive earthquake. The program includes four distinct (yet integrated) components: (1) an emergency management plan, with emphasis on the catas trophic earthquake, (2) an Emergency Operations Center Duty Roster Manual, (3) an Integrated Automated Emergency Management Information System (IAEMIS), and (4) a series of five training program modules. The PLAN itself is comprised of four separate volumes: Volume I--Chapters 1--3; Volume II--Chapters 4--6, Volume III--Chapter 7, and Volume IV--23 Appendices. The EOC Manual (which includes 15 mutual aid agreements) is designated as Chapter 7 in the PLAN and is a ''stand alone'' document numbered as Volume III. This document, Volume IV contains the appendices to this report

  13. Application of a Kalman filter to UF6 gaseous diffusion plant freezer/sublimer systems

    International Nuclear Information System (INIS)

    Ruppel, F.R.

    1992-03-01

    A signal is required to control the flow of UF 6 in gaseous diffusion plant freezer/sublimer systems. The original strategy envisioned for deriving a flow signal was to take the derivative of the freezer/sublimer weigh cell signal. However, the derivative of the digitized weight signal is noisy, preventing good control. In addition, a bias is introduced into the weight derivative signal because a refrigerant is circulated through a shell-and-tube heat exchanger inside the freezer/sublimer. The weight of the refrigerant is included in the weight measured by the weigh cell. If the circulation rate of the refrigerent is not steady state, a bias exists. Measurements of upstream pressure, vessel pressure, and output to the system control valve are available to the control system. Thus, if the flow through the control valve is characterized properly by the measurements, a Kalman filter can be used in conjunction with these auxiliary inputs and the weigh cell input to overcome the noise and bias problem and provide an improve estimate of flow rate. A discussion of the development and the current status of a Kalman filter used for this application is given. 5 refs

  14. Martin Marietta Paducah Gaseous Diffusion Plant comprehensive earthquake emergency management program

    International Nuclear Information System (INIS)

    1990-01-01

    Recognizing the value of a proactive, integrated approach to earthquake preparedness planning, Martin Marietta Energy Systems, Inc. initiated a contract in June 1989 with Murray State University, Murray, Kentucky, to develop a comprehensive earthquake management program for their Gaseous Diffusion Plant in Paducah, Kentucky (PGDP -- Subcontract No. 19P-JV649V). The overall purpose of the program is to mitigate the loss of life and property in the event of a major destructive earthquake. The program includes four distinct (yet integrated) components: (1) an emergency management plan with emphasis on the catas trophic earthquake; (2) an Emergency Operations Center Duty Roster Manual; (3) an Integrated Automated Emergency Management Information System (IAEMIS); and (4) a series of five training program modules. The PLAN itself is comprised of four separate volumes: Volume I -- Chapters 1--3; Volume II -- Chapters 4--6; Volume III -- Chapter 7; and Volume IV -- 23 Appendices. The EOC Manual (which includes 15 mutual aid agreements) is designated as Chapter 7 in the PLAN and is this document numbered as Volume III

  15. Assessment and interpretation of cross- and down-hole seismograms at the Paducah Gaseous Diffusion Plant

    Energy Technology Data Exchange (ETDEWEB)

    Staub, W.P.; Wang, J.C. (Oak Ridge National Lab., TN (United States)); Selfridge, R.J. (Automated Sciences Group, (United States))

    1991-09-01

    This paper is an assessment and interpretation of cross-and down-hole seismograms recorded at four sites in the vicinity of the Paducah Gaseous Diffusion Plant (PGDP). Arrival times of shear (S-) and compressional (P-) waves are recorded on these seismograms in milliseconds. Together with known distances between energy sources and seismometers lowered into boreholes, these arrival times are used to calculate S- and P-wave velocities in unconsolidated soils and sediments that overlie bedrock approximately 320 ft beneath PGDP. The soil columns are modified after an earlier draft by ERC Environmental and Energy Services Company (ERCE), 1990. In addition to S- and P- wave velocity estimates from this paper, the soil columns contain ERCE's lithologic and other geotechnical data for unconsolidated soils and sediments from the surface to bedrock. Soil columns for Sites 1 through 4 and a site location map are in Plates 1 through 5 of Appendix 6. The velocities in the four columns are input parameters for the SHAKE computer program, a nationally recognized computer model that simulates ground response of unconsolidated materials to earthquake generated seismic waves. The results of the SHAKE simulation are combined with predicted ground responses on rock foundations (caused by a given design earthquake) to predict ground responses of facilities with foundations placed on unconsolidated materials. 3 refs.

  16. Report on the biological monitoring program at Paducah Gaseous Diffusion Plant, January - December 1996

    International Nuclear Information System (INIS)

    Kszos, L.A.; Konetsky, B.K.; Peterson, M.J.; Petrie, R.B.; Ryon, M.G.; Smith, J.G.; Southworth, G.R.

    1997-06-01

    On September 24, 1987, the Commonwealth of Kentucky Natural Resources and Environmental Protection Cabinet issued an Agreed Order that required the development of a Biological Monitoring Program (BMP) for the Paducah Gaseous diffusion Plant (PGDP). The PGDP BMP was conducted by the University of Kentucky Between 1987 and 1992 and by staff of the Environmental Sciences Division (ESD) at Oak Ridge National Laboratory (ORNL) from 1991 to present. The goals of BMP are to (1) demonstrate that the effluent limitations established for PGDP protect and maintain the use of Little Bayou and Big Bayou creeks for growth and propagation of fish and other aquatic life, (2) characterize potential environmental impacts, and (3) document the effects of pollution abatement facilities on stream. The BMP for PGDP consists of three major tasks: (1) effluent toxicity monitoring, (2) bioaccumulation studies, and (3) ecological surveys of stream communities (i.e., benthic macroinvertebrates and fish). This report focuses on ESD activities occurring from January 1996 to December 1996, although activities conducted outside this time period are included as appropriate

  17. Effect on the annual atmospheric dispersion factor of different diffusion parameters and meteorological data at nuclear power plant

    International Nuclear Information System (INIS)

    Hu Erbang; Yan Jiangyu; Wang Han; Xin Cuntian

    2003-01-01

    Based on the hourly metrological observing data of 100 m high tower during 1997-1999 at Tianwan Nuclear Power Plant (NPP) site and 1995-1997 in Fujian Huian NPP site, the effect on the annual atmospheric dispersion factor (AADF) of four different diffusion parameters (on-site measuring values, IAEA's, Briggs's and Pasquill's) are estimated. The analysis shows that the deviation between the results from IAEA's, Briggs's and on-site measured diffusion parameters is less than 20%. The effect on the AADF from different years' meteorological data also is estimated. (authors)

  18. Coupling of Groundwater Transport and Plant Uptake Models

    DEFF Research Database (Denmark)

    Rein, Arno; Bauer-Gottwein, Peter; Trapp, Stefan

    2010-01-01

    in environmental systems at different scale. Feedback mechanisms between plants and hydrological systems can play an important role, however having received little attention to date. Here, a new model concept for dynamic plant uptake models applying analytical matrix solutions is presented, which can be coupled...

  19. Analysis and selection of a system for hydraulic transport of slags in the Mironovskii power plant

    Energy Technology Data Exchange (ETDEWEB)

    Mirgorodskii, V.G.; Mova, M.E.; Korenev, V.E.; Grechikhin, Yu.A. (Donetskii Politekhnicheskii Institut (USSR))

    1991-01-01

    Discusses systems for hydraulic transport of ashes and slags from combustion of black coal (with an ash content of 40.5%) in the Mironovskii power plant. Three systems are comparatively evaluated: hydraulic transport under influence of gravity, hydraulic transport with a system of dredging pumps, or an airlift pump system. Design of each system, its operation and types of pumps or airlift systems are discussed. The evaluation concentrates on the hydraulic transport system with 1 to 3 airlift pumps each with a capacity ranging from 110 to 890 m{sup 3}/h. Optimum design of the airlift hydraulic system for slag and ash transport is described.

  20. Ionic Diffusion and Kinetic Homogeneous Chemical Reactions in the Pore Solution of Porous Materials with Moisture Transport

    DEFF Research Database (Denmark)

    Johannesson, Björn

    2009-01-01

    Results from a systematic continuum mixture theory will be used to establish the governing equations for ionic diffusion and chemical reactions in the pore solution of a porous material subjected to moisture transport. The theory in use is the hybrid mixture theory (HMT), which in its general form......’s law of diffusion and the generalized Darcy’s law will be used together with derived constitutive equations for chemical reactions within phases. The mass balance equations for the constituents and the phases together with the constitutive equations gives the coupled set of non-linear differential...... general description of chemical reactions among constituents is described. The Petrov – Galerkin approach are used in favour of the standard Galerkin weighting in order to improve the solution when the convective part of the problem is dominant. A modified type of Newton – Raphson scheme is derived...

  1. Unconditionally stable and robust adjacent-cell diffusive preconditioning of weighted-difference particle transport methods is impossible

    CERN Document Server

    Azmy, Y Y

    2002-01-01

    We construct a particle transport problem for which there exists no preconditioner with a cell-centered diffusion coupling stencil that is unconditionally stable and robust. In particular we consider an asymptotic limit of the periodic horizontal interface (PHI) configuration wherein the cell height in both layers approaches zero like sigma sup 2 while the total cross section vanishes like sigma in one layer and diverges like sigma sup - sup 1 as sigma->0 in the other layer. In such cases we show that the conditions for stability and robustness of the flat eigenmodes of the iteration residual imply instability of the modes flat in the y-dimension and rapidly varying in the x-dimension. Two assumptions are made in the proof. (i) Only cell-centered adjacent-cell preconditioners (AP) are considered; nevertheless numerical experiments with face-centered preconditioners of the diffusion synthetic acceleration (DSA) type on problem configurations with sharp material discontinuities suffer similar deterioration in s...

  2. Improving estimates of subsurface gas transport in unsaturated fractured media using experimental Xe diffusion data and numerical methods

    Science.gov (United States)

    Ortiz, J. P.; Ortega, A. D.; Harp, D. R.; Boukhalfa, H.; Stauffer, P. H.

    2017-12-01

    Gas transport in unsaturated fractured media plays an important role in a variety of applications, including detection of underground nuclear explosions, transport from volatile contaminant plumes, shallow CO2 leakage from carbon sequestration sites, and methane leaks from hydraulic fracturing operations. Gas breakthrough times are highly sensitive to uncertainties associated with a variety of hydrogeologic parameters, including: rock type, fracture aperture, matrix permeability, porosity, and saturation. Furthermore, a couple simplifying assumptions are typically employed when representing fracture flow and transport. Aqueous phase transport is typically considered insignificant compared to gas phase transport in unsaturated fracture flow regimes, and an assumption of instantaneous dissolution/volatilization of radionuclide gas is commonly used to reduce computational expense. We conduct this research using a twofold approach that combines laboratory gas experimentation and numerical modeling to verify and refine these simplifying assumptions in our current models of gas transport. Using a gas diffusion cell, we are able to measure air pressure transmission through fractured tuff core samples while also measuring Xe gas breakthrough measured using a mass spectrometer. We can thus create synthetic barometric fluctuations akin to those observed in field tests and measure the associated gas flow through the fracture and matrix pore space for varying degrees of fluid saturation. We then attempt to reproduce the experimental results using numerical models in PLFOTRAN and FEHM codes to better understand the importance of different parameters and assumptions on gas transport. Our numerical approaches represent both single-phase gas flow with immobile water, as well as full multi-phase transport in order to test the validity of assuming immobile pore water. Our approaches also include the ability to simulate the reaction equilibrium kinetics of dissolution

  3. The Arabidopsis Golgi-localized GDP-L-fucose transporter is required for plant development

    DEFF Research Database (Denmark)

    Rautengarten, Carsten; Ebert, Berit; Liu, Lifeng

    2016-01-01

    assays, we show that GFT preferentially transports GDP-L-fucose over other nucleotide sugars in vitro, while GFT1-silenced plants are almost devoid of L-fucose in cell wall-derived xyloglucan and rhamnogalacturonan II. Furthermore, these lines display reduced L-fucose content in N-glycan structures......Nucleotide sugar transport across Golgi membranes is essential for the luminal biosynthesis of glycan structures. Here we identify GDP-fucose transporter 1 (GFT1), an Arabidopsis nucleotide sugar transporter that translocates GDP-L-fucose into the Golgi lumen. Using proteo-liposome-based transport...... accompanied by severe developmental growth defects. We conclude that GFT1 is the major nucleotide sugar transporter for import of GDP-L-fucose into the Golgi and is required for proper plant growth and development....

  4. The Arabidopsis Golgi-localized GDP-L-fucose transporter is required for plant development.

    Science.gov (United States)

    Rautengarten, Carsten; Ebert, Berit; Liu, Lifeng; Stonebloom, Solomon; Smith-Moritz, Andreia M; Pauly, Markus; Orellana, Ariel; Scheller, Henrik Vibe; Heazlewood, Joshua L

    2016-07-06

    Nucleotide sugar transport across Golgi membranes is essential for the luminal biosynthesis of glycan structures. Here we identify GDP-fucose transporter 1 (GFT1), an Arabidopsis nucleotide sugar transporter that translocates GDP-L-fucose into the Golgi lumen. Using proteo-liposome-based transport assays, we show that GFT preferentially transports GDP-L-fucose over other nucleotide sugars in vitro, while GFT1-silenced plants are almost devoid of L-fucose in cell wall-derived xyloglucan and rhamnogalacturonan II. Furthermore, these lines display reduced L-fucose content in N-glycan structures accompanied by severe developmental growth defects. We conclude that GFT1 is the major nucleotide sugar transporter for import of GDP-L-fucose into the Golgi and is required for proper plant growth and development.

  5. System-wide organization of actin cytoskeleton determines organelle transport in hypocotyl plant cells

    Science.gov (United States)

    Nowak, Jacqueline; Ivakov, Alexander; Somssich, Marc; Persson, Staffan; Nikoloski, Zoran

    2017-01-01

    The actin cytoskeleton is an essential intracellular filamentous structure that underpins cellular transport and cytoplasmic streaming in plant cells. However, the system-level properties of actin-based cellular trafficking remain tenuous, largely due to the inability to quantify key features of the actin cytoskeleton. Here, we developed an automated image-based, network-driven framework to accurately segment and quantify actin cytoskeletal structures and Golgi transport. We show that the actin cytoskeleton in both growing and elongated hypocotyl cells has structural properties facilitating efficient transport. Our findings suggest that the erratic movement of Golgi is a stable cellular phenomenon that might optimize distribution efficiency of cell material. Moreover, we demonstrate that Golgi transport in hypocotyl cells can be accurately predicted from the actin network topology alone. Thus, our framework provides quantitative evidence for system-wide coordination of cellular transport in plant cells and can be readily applied to investigate cytoskeletal organization and transport in other organisms. PMID:28655850

  6. Co-regulation of water and K(+) transport in sunflower plants during water stress recovery.

    Science.gov (United States)

    Benlloch, Manuel; Benlloch-González, María

    2016-06-01

    16-day-old sunflower (Helianthus annuus L.) plants were subjected to deficit irrigation for 12 days. Following this period, plants were rehydrated for 2 days to study plant responses to post-stress recovery. The moderate water stress treatment applied reduced growth in all plant organs and the accumulation of K(+) in the shoot. After the rehydration period, the stem recovered its growth and reached a similar length to the control, an effect which was not observed in either root or leaves. Moreover, plant rehydration after water stress favored the accumulation of K(+) in the apical zone of the stem and expanding leaves. In the roots of plants under water stress, watering to field capacity, once the plants were de- topped, rapidly favored K(+) and water transport in the excised roots. This quick and short-lived response was not observed in roots of plants recovered from water stress for 2 days. These results suggest that the recovery of plant growth after water stress is related to coordinated water and K(+) transport from the root to the apical zone of the ​​stem and expanding leaves. This stimulation of K(+) transport in the root and its accumulation in the cells of the growing zones of the ​​stem must be one of the first responses induced in the plant during water stress recovery. Copyright © 2016 Elsevier GmbH. All rights reserved.

  7. Field evaluation of a horizontal well recirculation system for groundwater treatment: Pilot test at the Clean Test Site Portsmouth Gaseous Diffusion Plant, Piketon, Ohio

    International Nuclear Information System (INIS)

    Muck, M.T.; Kearl, P.M.; Siegrist, R.L.

    1998-01-01

    This report presents the results of field testing a horizontal well recirculation system at the Portsmouth Gaseous Diffusion Plant (PORTS). The recirculation system uses a pair of horizontal wells, one for groundwater extraction and treatment and the other for reinjection of treated groundwater, to set up a recirculation flow field. The induced flow field from the injection well to the extraction well establishes a sweeping action for the removal and treatment of groundwater contaminants. The overall purpose of this project is to study treatment of mixed groundwater contaminants that occur in a thin water-bearing zone not easily targeted by traditional vertical wells. The project involves several research elements, including treatment-process evaluation, hydrodynamic flow and transport modeling, pilot testing at an uncontaminated site, and pilot testing at a contaminated site. The results of the pilot test at an uncontaminated site, the Clean Test Site (CTS), are presented in this report

  8. SHADOK-3-6, Transport Equation with Anisotropic Diffusion in P1 Approximation for Spherical and Cylindrical Geometry

    International Nuclear Information System (INIS)

    Ligou, J.; Thomi, P.A.

    1973-01-01

    1 - Nature of physical problem solved: Integral transport equation, anisotropy of diffusion in P1 approximation. SHADOK3 - cylindrical geometry; direct solution of the linear system. SHADOK4 - cylindrical geometry; Thermalization iteration; solution of the linear system with inverse matrix calculation. SHADOK5 - like SHADOK3 for spherical geometry. SHADOK6 - like SHADOK4 for spherical geometry. 2 - Method of solution: Analysis in terms of annuli for each of which polynomial approximation is applied. Dynamic allocation (for formulas see report TM(10)). 3 - Restrictions on the complexity of the problem: Relative accuracy of the Bickley functions about 1.0E-13

  9. Improved age-diffusion model for low-energy electron transport in solids. II. Application to secondary emission from aluminum

    International Nuclear Information System (INIS)

    Dubus, A.; Devooght, J.; Dehaes, J.C.

    1987-01-01

    The ''improved age-diffusion'' model for secondary-electron transport is applied to aluminum. Electron cross sections for inelastic collisions with the free-electron gas using the Lindhard dielectric function and for elastic collisions with the randomly distributed ionic cores are used in the calculations. The most important characteristics of backward secondary-electron emission induced by low-energy electrons on polycrystalline Al targets are calculated and compared to experimental results and to Monte Carlo calculations. The model appears to predict the electronic yield, the energy spectra, and the spatial dependence of secondary emission with reasonable accuracy

  10. Columnar to equiaxed transition in a refined Al-Cu alloy under diffusive and convective transport conditions

    Energy Technology Data Exchange (ETDEWEB)

    Dupouy, M.D.; Camel, D.; Mazille, J.E. [CEA Centre d' Etudes et de Recherches sur les Materiaux, 38 - Grenoble (France); Hugon, I. [Lab. de Metallographie, DCC/DTE/SIM, CEA Valrho (France)

    2000-07-01

    The columnar-equiaxed transition under diffusive transport conditions was studied in microgravity (EUROMIR95 and spacelab-LMS96) by solidifying four Al-4wt%Cu alloys refined at different levels, with a constant cooling rate (1 K/min), both under nearly isothermal conditions and under a decreasing temperature gradient. Isothermal samples showed a homogeneous equiaxed structure with no fading of the refiner efficiency. Gradient samples revealed a continuous transition consisting of an orientation of the microsegregation parallel to the solidification direction, without any grain selection effect. For comparison, ground samples evidence the influence of the motion of both refiner particles and growing equiaxed grains. (orig.)

  11. Methodological study of the diffusion of interacting cations through clays. Application: experimental tests and simulation of coupled chemistry-diffusion transport of alkaline ions through a synthetical bentonite; Etude methodologique de la diffusion de cations interagissants dans les argiles. Application: mise en oeuvre experimentale et modelisation du couplage chimie-diffusion d'alcalins dans une bentonite synthetique

    Energy Technology Data Exchange (ETDEWEB)

    Melkior, Th

    2000-07-01

    The subject of this work deals with the project of underground disposal of radioactive wastes in deep geological formations. It concerns the study of the migration of radionuclides through clays. In these materials, the main transport mechanism is assumed to be diffusion under natural conditions. Therefore, some diffusion experiments are conducted. With interacting solutes which present a strong affinity for the material, the duration of these tests will be too long, for the range of concentrations of interest. An alternative is to determine on one hand the geochemical retention properties using batch tests and crushed rock samples and, on the other hand, to deduce the transport parameters from diffusion tests realised with a non-interacting tracer, tritiated water. These data are then used to simulate the migration of the reactive elements with a numerical code which can deal with coupled chemistry-diffusion equations. The validity of this approach is tested by comparing the numerical simulations with the results of diffusion experiments of cations through a clay. The subject is investigated in the case of the diffusion of cesium, lithium and sodium through a compacted sodium bentonite. The diffusion tests are realised with the through-diffusion method. The comparison between the experimental results and the simulations shows that the latter tends to under estimate the propagation of the considered species. The differences could be attributed to surface diffusion and to a decrease of the accessibility to the sites of fixation of the bentonite, from the conditions of clay suspensions in batch tests to the situation of compacted samples. The influence of the experimental apparatus used during the diffusion tests on the results of the measurement has also been tested. It showed that these apparatus have to be taken into consideration when the experimental data are interpreted. A specific model has been therefore developed with the numerical code CASTEM 2000. (author)

  12. Predicting release and transport of pesticides from a granular formulation during unsaturated diffusion in porous media

    DEFF Research Database (Denmark)

    Paradelo Pérez, Marcos; Soto-Gómez, Diego; Pérez-Rodrígez, Paula

    2014-01-01

    The release and transport of active ingredients (AIs) from controlled-release formulations (CRFs) have potential to reduce groundwater pesticide pollution. These formulations have a major effect on the release rate and subsequent transport to groundwater. Therefore the influence of CRFs should be...

  13. The multiplicity of dehydrogenases in the electron transport chain of plant mitochondria

    DEFF Research Database (Denmark)

    Rasmusson, Allan G; Geisler, Daniela A; Møller, Ian Max

    2008-01-01

    The electron transport chain in mitochondria of different organisms contains a mixture of common and specialised components. The specialised enzymes form branches to the universal electron path, especially at the level of ubiquinone, and allow the chain to adjust to different cellular and metabolic...... and their consequences for the understanding of electron transport and redundancy of electron paths...... requirements. In plants, specialised components have been known for a long time. However, recently, the known number of plant respiratory chain dehydrogenases has increased, including both components specific to plants and those with mammalian counterparts. This review will highlight the novel branches...

  14. Regulations for safe transport of spent fuels from nuclear power plants in CMEA member countries. Part III

    International Nuclear Information System (INIS)

    Zizka, B.

    1978-11-01

    The regulations for safe transport of spent fuel from nuclear power plants in the CMEA member countries consist of general provisions, technical requirements for spent fuel transport, transport conditions, procedures for submitting reports on transport, regulations for transport and protection of radioactive material to be transported, procedures for customs clearance, technical and organizational measures for the prevention of hypothetical accidents and the elimination of their consequences. The bodies responsible for spent fuel transport in the CMEA member countries are listed. (J.B.)

  15. Role of soot in the transport of chlorine in hydrocarbon-air diffusion flames

    International Nuclear Information System (INIS)

    Venkatesh, S.; Saito, K.; Stencel, J.M.; Majidi, V.; Owens, M.

    1991-01-01

    Soot is an inevitable product of incomplete combustion in many practical combustion systems such as automobiles, incinerators and furnaces. Recent studies on chlorinated hydrocarbon combustion have shown that soot and other praticulates (eg. fly ash) play an important role in secondary reactions leading to the formation of chlorine substituted polyaromatic hydrocarbons (PAHs). In order to attain very high destruction efficiencies the fundamental chemical and physical processes that are associated with combustion, and post-combustion cleanup must be well understood. In order to understand the effect of chlorine on the soot formed in a combustion system, fundamental studies using a coflow laminar hydrocarbon-air diffusion flame have been carried out. Phenomenological studies have revealed the effect of chlorine on the visible structure of the flame. Soot inception activation energies were estimated for methane, ethane and ethylene diffusion flames for the case of with and without chlorine addition. No significant difference in the activation energy was estimated for either case. The effect of chlorine on the soot escape rate of an acetylene diffusion flame was estimated. The soot formed in these diffusion flames was analyzed for chlorine using scanning electron microscopy with energy dispersive spectroscopy (SEM/EDS) and by laser induced plasma spectroscopy (LIPS). REsults from these techniques indicate the presence of chlorine in the soot formed. In this paper a chemical scheme to explain the chlorine found in the soot is proposed based on known theories of soot formation

  16. Theory of charge transport in diffusive normal metal conventional superconductor point contacts

    NARCIS (Netherlands)

    Tanaka, Y.; Golubov, Alexandre Avraamovitch; Kashiwaya, S.

    2003-01-01

    Tunneling conductance in diffusive normal (DN) metal/insulator/s-wave superconductor junctions is calculated for various situations by changing the magnitudes of the resistance and Thouless energy in DN and the transparency of the insulating barrier. The generalized boundary condition introduced by

  17. Physiological Roles of Plant Post-Golgi Transport Pathways in Membrane Trafficking.

    Science.gov (United States)

    Uemura, Tomohiro

    2016-10-01

    Membrane trafficking is the fundamental system through which proteins are sorted to their correct destinations in eukaryotic cells. Key regulators of this system include RAB GTPases and soluble N-ethylmaleimide sensitive factor attachment protein receptors (SNAREs). Interestingly, the numbers of RAB GTPases and SNAREs involved in post-Golgi transport pathways in plant cells are larger than those in animal and yeast cells, suggesting that plants have evolved unique and complex post-Golgi transport pathways. The trans-Golgi network (TGN) is an important organelle that acts as a sorting station in the post-Golgi transport pathways of plant cells. The TGN also functions as the early endosome, which is the first compartment to receive endocytosed proteins. Several endocytosed proteins on the plasma membrane (PM) are initially targeted to the TGN/EE, then recycled back to the PM or transported to the vacuole for degradation. The recycling and degradation of the PM localized proteins is essential for the development and environmental responses in plant. The present review describes the post-Golgi transport pathways that show unique physiological functions in plants. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  18. BLINDAGE: A neutron and gamma-ray transport code for shieldings with the removal-diffusion technique coupled with the point-kernel technique

    International Nuclear Information System (INIS)

    Fanaro, L.C.C.B.

    1984-01-01

    It was developed the BLINDAGE computer code for the radiation transport (neutrons and gammas) calculation. The code uses the removal - diffusion method for neutron transport and point-kernel technique with buil-up factors for gamma-rays. The results obtained through BLINDAGE code are compared with those obtained with the ANISN and SABINE computer codes. (Author) [pt

  19. Mixed-hybrid finite element method for the transport equation and diffusion approximation of transport problems; Resolution de l'equation du transport par une methode d'elements finis mixtes-hybrides et approximation par la diffusion de problemes de transport

    Energy Technology Data Exchange (ETDEWEB)

    Cartier, J

    2006-04-15

    This thesis focuses on mathematical analysis, numerical resolution and modelling of the transport equations. First of all, we deal with numerical approximation of the solution of the transport equations by using a mixed-hybrid scheme. We derive and study a mixed formulation of the transport equation, then we analyse the related variational problem and present the discretization and the main properties of the scheme. We particularly pay attention to the behavior of the scheme and we show its efficiency in the diffusion limit (when the mean free path is small in comparison with the characteristic length of the physical domain). We present academical benchmarks in order to compare our scheme with other methods in many physical configurations and validate our method on analytical test cases. Unstructured and very distorted meshes are used to validate our scheme. The second part of this thesis deals with two transport problems. The first one is devoted to the study of diffusion due to boundary conditions in a transport problem between two plane plates. The second one consists in modelling and simulating radiative transfer phenomenon in case of the industrial context of inertial confinement fusion. (author)

  20. Mixed-hybrid finite element method for the transport equation and diffusion approximation of transport problems; Resolution de l'equation du transport par une methode d'elements finis mixtes-hybrides et approximation par la diffusion de problemes de transport

    Energy Technology Data Exchange (ETDEWEB)

    Cartier, J

    2006-04-15

    This thesis focuses on mathematical analysis, numerical resolution and modelling of the transport equations. First of all, we deal with numerical approximation of the solution of the transport equations by using a mixed-hybrid scheme. We derive and study a mixed formulation of the transport equation, then we analyse the related variational problem and present the discretization and the main properties of the scheme. We particularly pay attention to the behavior of the scheme and we show its efficiency in the diffusion limit (when the mean free path is small in comparison with the characteristic length of the physical domain). We present academical benchmarks in order to compare our scheme with other methods in many physical configurations and validate our method on analytical test cases. Unstructured and very distorted meshes are used to validate our scheme. The second part of this thesis deals with two transport problems. The first one is devoted to the study of diffusion due to boundary conditions in a transport problem between two plane plates. The second one consists in modelling and simulating radiative transfer phenomenon in case of the industrial context of inertial confinement fusion. (author)