WorldWideScience

Sample records for diffuse infrared light

  1. Interstitial near-infrared photoimmunotherapy: effective treatment areas and light doses needed for use with fiber optic diffusers.

    Science.gov (United States)

    Okuyama, Shuhei; Nagaya, Tadanobu; Sato, Kazuhide; Ogata, Fusa; Maruoka, Yasuhiro; Choyke, Peter L; Kobayashi, Hisataka

    2018-02-16

    Near-infrared photoimmunotherapy (NIR-PIT), a promising cancer therapy utilizing an antibody-photoabsorber conjugate (APC) and NIR light, which induces rapid necrotic cell death only in APC-bound cells. Effective NIR-PIT in mouse models has been achieved using superficial light illumination (SLI) with light emitting diodes (LEDs) or lasers, but in the clinical setting, fiber optic diffusers have been employed to deliver light to deeper tumors. However, the performance of NIR light in tissue delivered by fiber optic diffusers is poorly understood. Here, we investigated NIR-PIT using a cylindrical fiber optic diffuser in a mouse model of A431 tumors. NIR-PIT with 100 J/cm, the same light dose used in clinical trials of NIR-PIT, was applied after insertion of the diffuser within the tumor bed, and then both bioluminescence and fluorescence imaging were analyzed to assess the therapeutic efficacy. The diffuser can deliver adequate NIR light dose for effective NIR-PIT to the A431 tumor at a distance of approximately 1 cm around the light source at 100 J/cm. At 50 J/cm NIR light effective NIR-PIT was reduced to a distance of 5 - 7 mm diameter around the light source. These results indicate that the energy of interstitial light (measured in Joules/cm) administered via a fiber diffuser determines the depth of effective NIR-PIT around the diffuser and determines the spacing at which such diffusers should be placed to entirely cover the tumor. Thermal measurements demonstrate that interstitial light for NIR-PIT does not cause damage to the skin overlying the diffuser.

  2. Near-infrared background anisotropies from diffuse intrahalo light of galaxies

    Science.gov (United States)

    Cooray, Asantha; Smidt, Joseph; de Bernardis, Francesco; Gong, Yan; Stern, Daniel; Ashby, Matthew L. N.; Eisenhardt, Peter R.; Frazer, Christopher C.; Gonzalez, Anthony H.; Kochanek, Christopher S.; Kozłowski, Szymon; Wright, Edward L.

    2012-10-01

    Unresolved anisotropies of the cosmic near-infrared background radiation are expected to have contributions from the earliest galaxies during the epoch of reionization and from faint, dwarf galaxies at intermediate redshifts. Previous measurements were unable to pinpoint conclusively the dominant origin because they did not sample spatial scales that were sufficiently large to distinguish between these two possibilities. Here we report a measurement of the anisotropy power spectrum from subarcminute to one-degree angular scales, and find the clustering amplitude to be larger than predicted by the models based on the two existing explanations. As the shot-noise level of the power spectrum is consistent with that expected from faint galaxies, a new source population on the sky is not necessary to explain the observations. However, a physical mechanism that increases the clustering amplitude is needed. Motivated by recent results related to the extended stellar light profile in dark-matter haloes, we consider the possibility that the fluctuations originate from intrahalo stars of all galaxies. We find that the measured power spectrum can be explained by an intrahalo light fraction of 0.07 to 0.2 per cent relative to the total luminosity in dark-matter haloes of 109 to 1012 solar masses at redshifts of about 1 to 4.

  3. Near-infrared background anisotropies from diffuse intrahalo light of galaxies.

    Science.gov (United States)

    Cooray, Asantha; Smidt, Joseph; De Bernardis, Francesco; Gong, Yan; Stern, Daniel; Ashby, Matthew L N; Eisenhardt, Peter R; Frazer, Christopher C; Gonzalez, Anthony H; Kochanek, Christopher S; Kozłowski, Szymon; Wright, Edward L

    2012-10-25

    Unresolved anisotropies of the cosmic near-infrared background radiation are expected to have contributions from the earliest galaxies during the epoch of reionization and from faint, dwarf galaxies at intermediate redshifts. Previous measurements were unable to pinpoint conclusively the dominant origin because they did not sample spatial scales that were sufficiently large to distinguish between these two possibilities. Here we report a measurement of the anisotropy power spectrum from subarcminute to one-degree angular scales, and find the clustering amplitude to be larger than predicted by the models based on the two existing explanations. As the shot-noise level of the power spectrum is consistent with that expected from faint galaxies, a new source population on the sky is not necessary to explain the observations. However, a physical mechanism that increases the clustering amplitude is needed. Motivated by recent results related to the extended stellar light profile in dark-matter haloes, we consider the possibility that the fluctuations originate from intrahalo stars of all galaxies. We find that the measured power spectrum can be explained by an intrahalo light fraction of 0.07 to 0.2 per cent relative to the total luminosity in dark-matter haloes of 10(9) to 10(12) solar masses at redshifts of about 1 to 4.

  4. Light diffusing fiber optic chamber

    Science.gov (United States)

    Maitland, Duncan J.

    2002-01-01

    A light diffusion system for transmitting light to a target area. The light is transmitted in a direction from a proximal end to a distal end by an optical fiber. A diffusing chamber is operatively connected to the optical fiber for transmitting the light from the proximal end to the distal end and transmitting said light to said target area. A plug is operatively connected to the diffusing chamber for increasing the light that is transmitted to the target area.

  5. Bringing the infrared to light

    DEFF Research Database (Denmark)

    Dam, Jeppe Seidelin; Tidemand-Lichtenberg, Peter; Pedersen, Christian

    Infrared imaging is usually done by use of infrared cameras. We present an effective alternative approach where infrared light is converted to near visible light in a non-linear process, and then detected by low cost, high performance camera. The approach is generic and can be applied towards many...

  6. Anisotropic light diffusion: an oxymoron?

    Science.gov (United States)

    Kienle, Alwin

    2007-05-25

    Light propagation in anisotropic random media is studied in the steady-state and time domains. Solutions of the anisotropic diffusion equation are compared to results obtained by the Monte Carlo method. Contrary to what has been reported so far, we find that even in the "diffusive regime" the anisotropic diffusion equation does not describe correctly the light propagation in anisotropic random media.

  7. Breast Cancer Diagnosis Using Ultrasound and Diffusive Light

    National Research Council Canada - National Science Library

    Zhu, Quing

    2001-01-01

    The main goal of this study is to evaluate a novel imaging system and method that combines ultrasound with near infrared diffusive light to increase the sensitivity and specificity of breast cancer detection...

  8. Mid infrared upconversion spectroscopy using diffuse reflectance

    DEFF Research Database (Denmark)

    Sanders, Nicolai Højer; Kehlet, Louis M.; Dam, Jeppe Seidelin

    2014-01-01

    specifically that upconversion methods can be deployed using a diffuse reflectance setup where the test sample is irradiated by a thermal light source, i.e. a globar. The diffuse reflectance geometry is particularly well suited when a transmission setup cannot be used. This situation may happen for highly...

  9. The Diffuse Light of the Universe

    Science.gov (United States)

    Bonnet-Bidaud, Jean-Marc

    2017-06-01

    In 1965, the discovery of a new type of uniform radiation, located between radiowaves and infrared light, was accidental. Known today as Cosmic Microwave background (CMB), this diffuse radiation is commonly interpreted as a fossil light released in an early hot and dense universe and constitutes today the main 'pilar' of the big bang cosmology. Considerable efforts have been devoted to derive fundamental cosmological parameters from the characteristics of this radiation that led to a surprising universe that is shaped by at least three major unknown components: inflation, dark matter and dark energy. This is an important weakness of the present consensus cosmological model that justifies raising several questions on the CMB interpretation. Can we consider its cosmological nature as undisputable? Do other possible interpretations exist in the context of other cosmological theories or simply as a result of other physical mechanisms that could account for it? In an effort to questioning the validity of scientific hypotheses and the under-determination of theories compared to observations, we examine here the difficulties that still exist on the interpretation of this diffuse radiation and explore other proposed tracks to explain its origin. We discuss previous historical concepts of diffuse radiation before and after the CMB discovery and underline the limit of our present understanding.

  10. Monitoring hemodynamic and morphologic responses to closed head injury in a mouse model using orthogonal diffuse near-infrared light reflectance spectroscopy

    Science.gov (United States)

    Abookasis, David; Shochat, Ariel; Mathews, Marlon S.

    2013-04-01

    The authors' aim is to assess and quantitatively measure brain hemodynamic and morphological variations during closed-head injury (CHI) in mice using orthogonal diffuse near-infrared reflectance spectroscopy (o-DRS). CHI is a type of injury to the head that does not penetrate the skull. Usually, it is caused by mechanical blows to the head and frequently occurs in traffic accidents, falls, and assaults. Measurements of brain optical properties, namely absorption and reduced scattering coefficients in the wavelength range from 650 to 1000 nm were carried out by employing different source-detector distance and locations to provide depth sensitivity on an intact scalp over the duration of the whole experiment. Furthermore, alteration in both cortical hemodynamics and morphologic markers, i.e., scattering power and amplitude properties were derived. CHI was induced in anesthetized male mice by a weight-drop model using ˜50 g cylindrical metal falling from a height of 90 cm onto the intact scalp producing an impact of 4500 g cm. With respect to baseline, difference in brain physiological properties was observed following injury up to 1 h post-trauma. Additionally, the reduced scattering spectral shapes followed Mie scattering theory was quantified and clearly shows changes in both scattering amplitude and power from baseline indicating structural variations likely from evolving cerebral edema during CHI. We further demonstrate high correlation between scattering amplitude and scattering power, with more than 20% difference in slope in comparison to preinjury. This result indicates the possibility of using the slope also as a marker for detection of structural changes. Finally, experiments investigating brain function during the first 20 min postinjury were conducted and changes in chromophore concentrations and scattering were observed. Overall, our experiments demonstrate the potential of using the proposed technique as a valuable quantitative noninvasive tool for

  11. Using light transmission to watch hydrogen diffuse.

    Science.gov (United States)

    Pálsson, Gunnar K; Bliersbach, Andreas; Wolff, Max; Zamani, Atieh; Hjörvarsson, Björgvin

    2012-06-12

    Because of its light weight and small size, hydrogen exhibits one of the fastest diffusion rates in solid materials, comparable to the diffusion rate of liquid water molecules at room temperature. The diffusion rate is determined by an intricate combination of quantum effects and dynamic interplay with the displacement of host atoms that is still only partially understood. Here we present direct observations of the spatial and temporal changes in the diffusion-induced concentration profiles in a vanadium single crystal and we show that the results represent the experimental counterpart of the full time and spatial solution of Fick's diffusion equation. We validate the approach by determining the diffusion rate of hydrogen in a single crystal vanadium (001) film, with net diffusion in the [110] direction.

  12. [Near infrared light irradiator using halogen lamp].

    Science.gov (United States)

    Ide, Yasuo

    2012-07-01

    The practical electric light bulb was invented by Thomas Alva Edison in 1879. Halogen lamp is the toughest and brightest electric light bulb. With light filter, it is used as a source of near infrared light. Super Lizer and Alphabeam are made as near infrared light irradiator using halogen lamp. The light emmited by Super Lizer is linear polarized near infrared light. The wave length is from 600 to 1,600 nm and strongest at about 1,000 nm. Concerning Super Lizer, there is evidence of analgesic effects and normalization of the sympathetic nervous system. Super Lizer has four types of probes. SG type is used for stellate ganglion irradiation. B type is used for narrow area irradiation. C and D types are for broad area irradiation. The output of Alphabeam is not polarized. The wave length is from 700 to 1,600 nm and the strongest length is about 1,000nm. Standard attachment is used for spot irradiation. Small attachment is used for stellate ganglion irradiation. Wide attachment is used for broad area irradiation. The effects of Alphabeam are thought to be similar to that of Super Lizer.

  13. Clustering of the Diffuse Infrared Light from the COBE DIRBE Maps. 3; Power Spectrum Analysis and Excess Isotropic Component of Fluctuations

    Science.gov (United States)

    Kashlinsky, A.; Mather, J. C.; Odenwald, S.

    1999-01-01

    The cosmic infrared background (CIB) radiation is the cosmic repository for energy release throughout the history of the universe. The spatial fluctuations of the CIB resulting from galaxy clustering are expected to be at least a few percent on scales of a degree, depending on the luminosity and clustering history of the early universe. Using the all-sky data from the COBE DIRBE instrument at wavelengths 1.25 - 100 microns we attempt to measure the CIB fluctuations. In the near-IR, foreground emission is dominated by small scale structure due to stars in the Galaxy. There we find a strong correlation between the amplitude of the fluctuations and Galactic latitude after removing bright foreground stars. Using data outside the Galactic plane (absolute value of b > 20 deg) and away from the center (90 deg < l < 270 deg) we extrapolate the amplitude of the fluctuations to cosec absolute value of b = 0. We find a positive intercept of delta.F(sub rms) = 15.5(sup +3.7, sub -7.0), 5.9(sup +1.6, sub -3.7), 2.4(sup +0.5, sub -0.9), 2.0(sup +0.25, sub -0.5) nW/sq m.sr at 1.25, 2.2, 3.5 and 4.9 microns respectively, where the errors are the range of 92% confidence limits. For color subtracted maps between band 1 and 2 we find the isotropic part of the fluctuations at 7.6(sup +1.2, sub -2.4) nW/sq m.sr. Based on detailed numerical and analytic models, this residual is not likely to originate from the Galaxy, our clipping algorithm, or instrumental noise. We demonstrate that the residuals from the fit used in the extrapolation are distributed isotropically and suggest that this extra variance may result from structure in the CIB. We also obtain a positive intercept from a linear combination of maps at 1.25 and 2.2 microns. For 2 deg < theta < 15 deg, a power-spectrum analysis yields limits of (theta/5 deg) x delta.F(sub rms)(theta) < 6, 2.5, 0.8, 0.5 nW/sq m.sr at 1.25, 2.2, 3.5 and 4.9 microns respectively. From 10 - 100 microns, the dominant foregrounds are emission by dust

  14. New design of textile light diffusers for photodynamic therapy

    International Nuclear Information System (INIS)

    Cochrane, Cédric; Mordon, Serge R.; Lesage, Jean Claude; Koncar, Vladan

    2013-01-01

    A homogeneous and reproducible fluence delivery rate during clinical photodynamic therapy (PDT) plays a determinant role in preventing under- or overtreatment. PDT applied in dermatology has been carried out with a wide variety of light sources delivering a broad range of more or less adapted light doses. Due to the complexities of the human anatomy, these light sources do not in fact deliver a uniform light distribution to the skin. Therefore, the development of flexible light sources would considerably improve the homogeneity of light delivery. The integration of plastic optical fiber (POF) into textile structures could offer an interesting alternative. In this article, a textile light diffuser (TLD) has been developed using POF and Polyester yarns. Predetermined POF macrobending leads to side emission of light when the critical angle is exceeded. Therefore, a specific pattern based on different satin weaves has been developed in order to improve light emission homogeneity and to correct the decrease of side emitted radiation intensity along POF. The prototyped fabrics (approximately 100 cm 2 : 5 × 20 cm) were woven using a hand loom, then both ends of the POF were coupled to a laser diode (5 W, 635 nm). The fluence rate (mW/cm 2 ) and the homogeneity of light delivery by the TLD were evaluated. Temperature evolution, as a function of time, was controlled with an infrared thermographic camera. When using a power source of 5 W, the fluence rate of the TLD was 18 ± 2.5 mw/cm 2 . Due to the high efficiency of the TLD, the optical losses were very low. The TLD temperature elevation was 0.6 °C after 10 min of illumination. Our TLD meets the basic requirements for PDT: homogeneous light distribution and flexibility. It also proves that large (500 cm 2 ) textile light diffusers adapted to skin, but also to peritoneal or pleural cavity, PDTs can be easily produced by textile manufacturing processes

  15. New design of textile light diffusers for photodynamic therapy

    Energy Technology Data Exchange (ETDEWEB)

    Cochrane, Cédric, E-mail: cedric.cochrane@ensait.fr [Univ Lille Nord de France, F-59000 Lille (France); ENSAIT, GEMTEX, F-59100 Roubaix (France); Mordon, Serge R.; Lesage, Jean Claude [Univ Lille Nord de France, F-59000 Lille (France); INSERM U 703, Lille University Hospital — CHRU (France); Koncar, Vladan [Univ Lille Nord de France, F-59000 Lille (France); ENSAIT, GEMTEX, F-59100 Roubaix (France)

    2013-04-01

    A homogeneous and reproducible fluence delivery rate during clinical photodynamic therapy (PDT) plays a determinant role in preventing under- or overtreatment. PDT applied in dermatology has been carried out with a wide variety of light sources delivering a broad range of more or less adapted light doses. Due to the complexities of the human anatomy, these light sources do not in fact deliver a uniform light distribution to the skin. Therefore, the development of flexible light sources would considerably improve the homogeneity of light delivery. The integration of plastic optical fiber (POF) into textile structures could offer an interesting alternative. In this article, a textile light diffuser (TLD) has been developed using POF and Polyester yarns. Predetermined POF macrobending leads to side emission of light when the critical angle is exceeded. Therefore, a specific pattern based on different satin weaves has been developed in order to improve light emission homogeneity and to correct the decrease of side emitted radiation intensity along POF. The prototyped fabrics (approximately 100 cm{sup 2}: 5 × 20 cm) were woven using a hand loom, then both ends of the POF were coupled to a laser diode (5 W, 635 nm). The fluence rate (mW/cm{sup 2}) and the homogeneity of light delivery by the TLD were evaluated. Temperature evolution, as a function of time, was controlled with an infrared thermographic camera. When using a power source of 5 W, the fluence rate of the TLD was 18 ± 2.5 mw/cm{sup 2}. Due to the high efficiency of the TLD, the optical losses were very low. The TLD temperature elevation was 0.6 °C after 10 min of illumination. Our TLD meets the basic requirements for PDT: homogeneous light distribution and flexibility. It also proves that large (500 cm{sup 2}) textile light diffusers adapted to skin, but also to peritoneal or pleural cavity, PDTs can be easily produced by textile manufacturing processes.

  16. Light diffusion through a turbid parallelepiped.

    Science.gov (United States)

    Kienle, Alwin

    2005-09-01

    Solutions of the diffusion approximation to the radiative transport equation are derived for a turbid (rectangular) parallelepiped using the method of image sources and applying extrapolated boundary conditions. The derived solutions are compared with Monte Carlo simulations in the steady-state and time domains. It is found that the diffusion theory is in good agreement with Monte Carlo simulations provided that the light is detected sufficiently far from the incident beam. Applications of the derived solutions, including the determination of the optical properties of the turbid parallelepiped, are discussed.

  17. Diffuse optical imaging using spatially and temporally modulated light

    Science.gov (United States)

    O'Sullivan, Thomas D.; Cerussi, Albert E.; Cuccia, David J.; Tromberg, Bruce J.

    2012-07-01

    The authors describe the development of diffuse optical imaging (DOI) technologies, specifically the use of spatial and temporal modulation to control near infrared light propagation in thick tissues. We present theory and methods of DOI focusing on model-based techniques for quantitative, in vivo measurements of endogenous tissue absorption and scattering properties. We specifically emphasize the common conceptual framework of the scalar photon density wave for both temporal and spatial frequency-domain approaches. After presenting the history, theoretical foundation, and instrumentation related to these methods, we provide a brief review of clinical and preclinical applications from our research as well as our outlook on the future of DOI technology.

  18. Diffusion model for ultrasound-modulated light.

    Science.gov (United States)

    Hollmann, Joseph L; Horstmeyer, Roarke; Yang, Changhuei; DiMarzio, Charles A

    2014-03-01

    Researchers use ultrasound (US) to modulate diffusive light in a highly scattering medium like tissue. This paper analyzes the US-optical interaction in the scattering medium and derives an expression for the US-modulated optical radiance. The diffusion approximation to the radiative transport equation is employed to develop a Green's function for US-modulated light. The predicted modulated fluence and flux are verified using finite-difference time-domain simulations. The Green's function is then utilized to illustrate the modulated reflectance as the US-optical interaction increases in depth. The intent of this paper is to focus on high US frequencies necessary for high-resolution imaging because they are of interest for applications such as phase conjugation.

  19. New design of textile light diffusers for photodynamic therapy.

    Science.gov (United States)

    Cochrane, Cédric; Mordon, Serge R; Lesage, Jean Claude; Koncar, Vladan

    2013-04-01

    A homogeneous and reproducible fluence delivery rate during clinical photodynamic therapy (PDT) plays a determinant role in preventing under- or overtreatment. PDT applied in dermatology has been carried out with a wide variety of light sources delivering a broad range of more or less adapted light doses. Due to the complexities of the human anatomy, these light sources do not in fact deliver a uniform light distribution to the skin. Therefore, the development of flexible light sources would considerably improve the homogeneity of light delivery. The integration of plastic optical fiber (POF) into textile structures could offer an interesting alternative. In this article, a textile light diffuser (TLD) has been developed using POF and Polyester yarns. Predetermined POF macrobending leads to side emission of light when the critical angle is exceeded. Therefore, a specific pattern based on different satin weaves has been developed in order to improve light emission homogeneity and to correct the decrease of side emitted radiation intensity along POF. The prototyped fabrics (approximately 100 cm(2): 5×20 cm) were woven using a hand loom, then both ends of the POF were coupled to a laser diode (5 W, 635 nm). The fluence rate (mW/ cm(2)) and the homogeneity of light delivery by the TLD were evaluated. Temperature evolution, as a function of time, was controlled with an infrared thermographic camera. When using a power source of 5 W, the fluence rate of the TLD was 18±2.5 mw/cm(2). Due to the high efficiency of the TLD, the optical losses were very low. The TLD temperature elevation was 0.6 °C after 10 min of illumination. Our TLD meets the basic requirements for PDT: homogeneous light distribution and flexibility. It also proves that large (500 cm(2)) textile light diffusers adapted to skin, but also to peritoneal or pleural cavity, PDTs can be easily produced by textile manufacturing processes. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Conversion of infrared light into usable energy

    Science.gov (United States)

    St. John, Thomas C.; Marinelli, Zachary J.; Kaczmar, Justin M.; Given, Robert P.; Wenger, Kyle S.; Utter, Brian C.; Scarel, Giovanna

    2016-09-01

    Light-matter interaction involving photons with large period τ of 3 fs (10-15 s) and above, i.e. infrared (IR) to microand radio-waves, displays interesting properties so far mostly unexplored. These photons indeed can produce voltages after activating charges or currents. For example, in the literature it is demonstrated that animals and plants neural system (which is similar to a system consisting of capacitors in series) can be stimulated by IR photons. Additionally, radio waves can activate currents in antennas. However, a systematic investigation of the voltages and currents produced, of the charge density changes, and of the number of photons involved is missing. Here we initiate the investigation of the voltages produced by a capacitor-type device. We shine broadband IR light in the middle IR region (MIR) at a power of 25 mW onto capacitors with capacitance C from 30 to 300 pF. We observe that the voltage produced increases with decreasing C while developing negligible temperature changes. Further increases can be obtained by increasing τ and, modestly, by deviating from normal incidence the angle of incidence θ between the IR light and the illuminated plate of the capacitor. Specifically, here we compare τ in the MIR and far IR (FIR) regions, and θ from 0° (normal incidence) to 45°. The effects of the power of the light will be explored in the near future. These results suggest that it is possible to harvest and transform IR, micro- and radio-waves into usable and sustainable electricity.

  1. Non-collinear upconversion of infrared light

    DEFF Research Database (Denmark)

    Pedersen, Christian; Hu, Qi; Høgstedt, Lasse

    2014-01-01

    Two dimensional mid-infrared upconversion imaging provides unique spectral and spatial information showing good potential for mid- infrared spectroscopy and hyperspectral imaging. However, to extract spectral or spatial information from the upconverted images an elaborate model is needed, which...

  2. Do epidermal lens cells facilitate the absorptance of diffuse light?

    Science.gov (United States)

    Brodersen, Craig R; Vogelmann, Thomas C

    2007-07-01

    Many understory plants rely on diffuse light for photosynthesis because direct light is usually scattered by upper canopy layers before it strikes the forest floor. There is a considerable gap in the literature concerning the interaction of direct and diffuse light with leaves. Some understory plants have well-developed lens-shaped epidermal cells, which have long been thought to increase the absorption of diffuse light. To assess the role of epidermal cell shape in capturing direct vs. diffuse light, we measured leaf reflectance and transmittance with an integrating sphere system using leaves with flat (Begonia erythrophylla, Citrus reticulata, and Ficus benjamina) and lens-shaped epidermal cells (B. bowerae, Colocasia esculenta, and Impatiens velvetea). In all species examined, more light was absorbed when leaves were irradiated with direct as opposed to diffuse light. When leaves were irradiated with diffuse light, more light was transmitted and more was reflected in both leaf types, resulting in absorptance values 2-3% lower than in leaves irradiated with direct light. These data suggest that lens-shaped epidermal cells do not aid the capture of diffuse light. Palisade and mesophyll cell anatomy and leaf thickness appear to have more influence in the capture and absorption of light than does epidermal cell shape.

  3. Fabrication and Characterization of Cylindrical Light Diffusers Comprised of Shape Memory Polymer

    Energy Technology Data Exchange (ETDEWEB)

    Small IV, W; Buckley, P R; Wilson, T S; Loge, J M; Maitland, K D; Maitland, D J

    2007-01-29

    We have developed a technique for constructing light diffusing devices comprised of a flexible shape memory polymer (SMP) cylindrical diffuser attached to the tip of an optical fiber. Devices were fabricated by casting an SMP rod over the cleaved tip of an optical fiber and media blasting the SMP rod to create a light diffusing surface. The axial and polar emission profiles and circumferential (azimuthal) uniformity were characterized for various blasting pressures, nozzle-to-sample distances, and nozzle translation speeds. The diffusers were generally strongly forward-directed and consistently withstood over 8 W of incident infrared laser light without suffering damage when immersed in water. These devices are suitable for various endoluminal and interstitial biomedical applications.

  4. COBE diffuse infrared background experiment observations of the galactic bulge

    Science.gov (United States)

    Weiland, J. L.; Arendt, R. G.; Berriman, G. B.; Dwek, E.; Freudenreich, H. T.; Hauser, M. G.; Kelsall, T.; Lisse, C. M.; Mitra, M.; Moseley, S. H.

    1994-01-01

    Low angular resolution maps of the Galactic bulge at 1.25, 2.2, 3.5, and 4.9 micrometers obtained by the Diffuse Infrared Background Experiment (DIRBE) onboard NASA's Cosmic Background Explorer (COBE) are presented. After correction for extinction and subtraction of an empirical model for the Galactic disk, the surface brightness distribution of the bulge resembles a flattened ellipse with a minor-to-major axis ratio of approximately 0.6. The bulge minor axis scale height is found to be 2.1 deg +/- 0.2 deg for all four near-infrared wavelengths. Asymmetries in the longitudinal distribution of bulge brightness contours are qualitatively consistent with those expected for a triaxial bar with its near end in the first Galactic quadrant (0 deg less than l less than 90 deg). There is no evidence for an out-of-plane tilt of such a bar.

  5. Diffuse Reflection of Laser Light From Clouds

    Science.gov (United States)

    Cahalan, R. F.; Davis, A.; McGill, M.

    1999-01-01

    Laser light reflected from an aqueous suspension of particles or "cloud" with known thickness and particle size distribution defines the "cloud radiative Green's function", G. G is sensitive to cloud thickness, allowing retrieval of that important quantity. We describe a laboratory simulation of G, useful in design of an offbeam Lidar instrument for remote sensing of cloud thickness. Clouds of polystyrene microspheres suspended in water are analogous to real clouds of water droplets suspended in air. The size distribution extends from 0.5 microns to 25 microns, roughly lognormal, similar to real clouds. Density of suspended spheres is adjusted so photon mean-free-path is about 10 cm, 1000 times smaller than in real clouds. The light source is a Nd:YAG laser at 530 nm. Detectors are flux and photon-counting PMTs, with a glass probe for precise positioning. A Labview 5 VI controls position and data acquisition, via an NI Motion Control board connected to a stepper motor driving an Edmund linear slider,and a 16-channel 16-bit NI-DAQ board. The stepper motor is accurate to 10 microns. Step size is selectable. Far from the beam, the rate of exponential increase in the beam direction scales as expected from diffusion theory, linearly with cloud thickness, and inversely as the square root of the reduced optical thickness, independent of particle size. Nearer the beam the signal increases faster than exponential and depends on particle size. Results verify 3D Monte Carlo simulations that demonstrate detectability of remotely sensed offbeam returns, without filters at night, with narrow bandpass filter in day.

  6. Silkworm Gut Fiber of Bombyx mori as an Implantable and Biocompatible Light-Diffusing Fiber

    Directory of Open Access Journals (Sweden)

    Jose Luis Cenis

    2016-07-01

    Full Text Available This work describes a new approach to the delivery of light in deeper tissues, through a silk filament that is implantable, biocompatible, and biodegradable. In the present work, silkworm gut fibers (SGFs of Bombyx mori L., are made by stretching the silk glands. Morphological, structural, and optical properties of the fibers have been characterized and the stimulatory effect of red laser light diffused from the fiber was assayed in fibroblast cultures. SGFs are formed by silk fibroin (SF mainly in a β-sheet conformation, a stable and non-soluble state in water or biological fluids. The fibers showed a high degree of transparency to visible and infrared radiation. Using a red laser (λ = 650 nm as source, the light was efficiently diffused along the fiber wall, promoting a significant increment in the cell metabolism 5 h after the irradiation. SGFs have shown their excellent properties as light-diffusing optical fibers with a stimulatory effect on cells.

  7. A low cost light diffuser made of metal coil.

    Science.gov (United States)

    Morita, Nozomi; Arai, Tsunenori

    2008-01-01

    We proposed a low cost flexible light diffuser made of metal coil to obtain an appropriate light dose against certain laser therapies in narrow bending organs. We investigated experimentally the diffusion light dose of prototype coils made of stainless steel (sus304). We measured the diffusion light intensity of the prototype coils along the irradiation direction and the circumferential direction with the various pitch distances of the prototype coils and numerical aperture (NA) of laser light beam as the characteristic parameters of the light diffusion. We measured the temperature elevation of the prototype coils to study the waste energy of these prototype coils. The FWHM on the light intensity along the prototype coils marked up to 12.8mm with the constant pitch distance of 0.09 mm and the fiber output light NA of 0.038. The FWHM on the light intensity was improved to 13.7 mm with the composite pitch distance coils of which the pitch distances were 0.09 mm in the proximate and 0.18 mm in the distal. Since the efficiency of the diffusion irradiation against the fiber output was typically 7.7% in the prototype coils of which the surface reflectance was 50%, approximately 90% of the laser light energy was transferred to the temperature elevation. We estimated the practical diffusion efficiency around 75% using the high reflection of the prototype coils surface up to 90%.

  8. The origin of the infrared light of cataclysmic variable stars

    International Nuclear Information System (INIS)

    Berriman, G.; Szkody, P.; Capps, R.W.

    1985-01-01

    This paper presents a model-independent overview of the origin of the near infrared (1-2 μm) light of a sample of 28 cataclysmic binary stars, largely dwarf novae in quiescence. The infrared light comes from the red dwarf that supplies matter to the white dwarf companion and the accretion disc around the white dwarf. The complex nature of the disc prevents near-infrared photometry from being a good probe of the red dwarfs, even in those systems where they are seen in the visual. All that can be found reliably is an upper limit to the proportion light that the red dwarfs supply, and consequently lower limits to the distances to the systems. The infrared light of the discs comes from opaque material and from the optically thin gas that gives rise to the visual and UV emission lines. (author)

  9. Near-infrared light emitting device using semiconductor nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Supran, Geoffrey J.S.; Song, Katherine W.; Hwang, Gyuweon; Correa, Raoul Emile; Shirasaki, Yasuhiro; Bawendi, Moungi G.; Bulovic, Vladimir; Scherer, Jennifer

    2018-04-03

    A near-infrared light emitting device can include semiconductor nanocrystals that emit at wavelengths beyond 1 .mu.m. The semiconductor nanocrystals can include a core and an overcoating on a surface of the core.

  10. CsI(Tl) infrared scintillation light yield and spectrum

    CERN Document Server

    Belogurov, S; Carugno, Giovanni; Conti, E; Iannuzzi, D; Meneguzzo, Anna Teresa

    2000-01-01

    Infrared emission from CsI(Tl) excited by approx 70 keV electrons was detected with an InGaAs PIN photodiode. Some parameters of infrared scintillation were studied. The emission spectrum is located between 1.55 and 1.70 mu m with a maximum at 1.60 mu m. The light yield of infrared scintillation is (4.9+-0.3)x10 sup 3 photons/MeV. Infrared scintillation caused by 3 MeV alpha-particles is detected as well.

  11. Nanocellulose-based Translucent Diffuser for Optoelectronic Device Applications with Dramatic Improvement of Light Coupling.

    Science.gov (United States)

    Wu, Wei; Tassi, Nancy G; Zhu, Hongli; Fang, Zhiqiang; Hu, Liangbing

    2015-12-09

    Nanocellulose is a biogenerated and biorenewable organic material. Using a process based on 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO)/NaClO/NaBr system, a highly translucent and light-diffusive film consisting of many layers of nanocellulose fibers and wood pulp microfibers was made. The film demonstrates a combination of large optical transmittance of ∼90% and tunable diffuse transmission of up to ∼78% across the visible and near-infrared spectra. The detailed characterizations of the film indicate the combination of high optical transmittance and haze is due to the film's large packing density and microstructured surface. The superior optical properties make the film a translucent light diffuser and applicable for improving the efficiencies of optoelectronic devices such as thin-film silicon solar cells and organic light-emitting devices.

  12. Diffusion filter eliminates fringe effects of coherent laser light source

    Science.gov (United States)

    Olsasky, M. J.

    1970-01-01

    Diffusion filter comprised of small particles in colloidal suspension reduces the coherence of a laser beam used as a photographic light source. Interference patterns which obscure details in photographic film are eliminated, the intensity and collimation are moderately affected.

  13. Transport Mean Free Path for Magneto-Transverse Light Diffusion

    OpenAIRE

    Lacoste, D.; van Tiggelen, B. A.

    1998-01-01

    We derive an expression for the transport mean free path $\\ell^*_\\perp$ associated with magneto-transverse light diffusion for a random collection of Faraday-active Mie scatterers. This expression relates the magneto-transverse diffusion in multiple scattering directly to the magneto-transverse scattering of a single scatterer.

  14. Uncloaking diffusive-light invisibility cloaks by speckle analysis.

    Science.gov (United States)

    Niemeyer, Andreas; Mayer, Frederik; Naber, Andreas; Koirala, Milan; Yamilov, Alexey; Wegener, Martin

    2017-05-15

    Within the range of validity of the stationary diffusion equation, an ideal diffusive-light invisibility cloak can make an arbitrary macroscopic object hidden inside of the cloak indistinguishable from the surroundings for all colors, polarizations, and directions of incident visible light. However, the diffusion equation for light is an approximation which becomes exact only in the limit of small coherence length. Thus, one expects that the cloak can be revealed by illumination with coherent light. The experiments presented here show that the cloaks are robust in the limit of large coherence length but can be revealed by analysis of the speckle patterns under illumination with partially coherent light. Experiments on cylindrical core-shell cloaks and corresponding theory are in good agreement.

  15. Use of diffusive optical fibers for plant lighting

    Energy Technology Data Exchange (ETDEWEB)

    Kozai, T.; Kitaya, Y.; Fujiwara, K. [Chiba Univ., Matsudo (Japan); Kino, S.; Kinowaki, M. [Topy Green Ltd., Tokyo (Japan)

    1994-12-31

    Lighting is one of the most critical aspects in plant production and environmental research with plants. Much research has been repeated on the effect of light intensity, spectral distribution of light and lighting cycle, but comparatively little research done on the effect of lighting direction on the growth, development and morphology of plants. When plants are grown with lamps above, light is directed downward to the plants. Downward or overhead lighting is utilized in almost all cases. However, downward lighting does not always give the best result in terms of lighting efficiency, growth, development and morphology of plants. Kitaya et al. (1988) developed a lighting system in which two rooting beds were arranged; one above and the other under fluorescent lamps. Lettuce plants grew normally in the lower bed and suspended upside-down under the upper bed. The lettuce plants suspended upside-down were given the light in upward direction (upward lighting). No significant difference in growth, development and morphology was found between the lettuce plants grown by the downward and upward lighting. Combining upward and downward lighting, improved spacing efficiency and reduced electricity cost per plant compared with conventional, downward lighting. From the above example, when designing a lighting system for plants with lamps more lighting direction should be considered. In the present study, a sideward lighting system was developed using diffusive optical fiber belts. More higher quality tissue-cultured transplants could be produced in reduced space with sideward lighting system than with a downward lighting system. An application of the sideward lighting system using diffusive optical fiber belts is described and advantages and disadvantages are discussed.

  16. Near-infrared branding efficiently correlates light and electron microscopy.

    Science.gov (United States)

    Bishop, Derron; Nikić, Ivana; Brinkoetter, Mary; Knecht, Sharmon; Potz, Stephanie; Kerschensteiner, Martin; Misgeld, Thomas

    2011-06-05

    The correlation of light and electron microscopy of complex tissues remains a major challenge. Here we report near-infrared branding (NIRB), which facilitates such correlation by using a pulsed, near-infrared laser to create defined fiducial marks in three dimensions in fixed tissue. As these marks are fluorescent and can be photo-oxidized to generate electron contrast, they can guide re-identification of previously imaged structures as small as dendritic spines by electron microscopy.

  17. Far-infrared Beamline at the Canadian Light Source

    Science.gov (United States)

    Zhao, Jianbao; Billinghurst, Brant

    2017-06-01

    Far-infrared is a particularly useful technique for studies on lattice modes as they generally appear in the Far-infrared region. Far-infrared is also an important tool for gathering information on the electrical transport properties of metallic materials and the band gap of semiconductors. This poster will describe the horizontal microscope that has recently been built in the Far-infrared beamline at the Canadian Light Source Inc. (CLS). This microscope is specially designed for high-pressure Far-infrared absorbance and reflectance spectroscopic studies. The numerical aperture (0.5) and the long working distance (82.1 mm) in the microscope are good fits for Diamond Anvil Cell (DAC). The spectra are recorded using liquid helium cooled Si bolometer or Ge:Cu detector. The pressure in the DAC can be determined by using the fluorescence spectrometer available onsite. The Far-infrared beamline at CLS is a state-of-the-art synchrotron facility, offering significantly more brightness than conventional sources. Because of the high brightness of the synchrotron radiation, we can obtain the Far-infrared reflectance/absorbance spectra on the small samples with more throughput than with a conventional source. The Far-infrared beamline is open to users through peer review.

  18. System for diffusing light from an optical fiber or light guide

    Science.gov (United States)

    Maitland, Duncan J [Pleasant Hill, CA; Wilson, Thomas S [San Leandro, CA; Benett, William J [Livermore, CA; Small, IV, Ward [

    2008-06-10

    A system for diffusing light from an optical fiber wherein the optical fiber is coupled to a light source, comprising forming a polymer element adapted to be connected to the optical fiber and incorporating a scattering element with the polymer element wherein the scattering element diffuses the light from the polymer element. The apparatus of the present invention comprises a polymer element operatively connected to the optical fiber and a scattering element operatively connected with the shape polymer element that diffuses the light from the polymer element.

  19. Luminescence from potassium feldspars stimulated by infrared and green light

    DEFF Research Database (Denmark)

    Duller, G.A.T.; Bøtter-Jensen, L.

    1993-01-01

    A series of experiments are reported which investigate stimulated luminescence from potassium feldspar. The aim is to provide a basic phenomenological description of the response of the material to stimulation by heat, infrared radiation (875 DELTA 80 nm) and a green light wavelength band from 5 15...

  20. COBE DIRBE near-infrared polarimetry of the zodiacal light: Initial results

    Science.gov (United States)

    Berriman, G. B.; Boggess, N. W.; Hauser, M. G.; Kelsall, T.; Lisse, C. M.; Moseley, S. H.; Reach, W. T.; Silverberg, R. F.

    1994-01-01

    This Letter describes near-infrared polarimetry of the zodiacal light at 2.2 micrometers, measured with the Diffuse Infrared Background Experiment (DIRBE) aboard the Cosmic Background Explorer (COBE) spacecraft. The polarization is due to scattering of sunlight. The polarization vector is perpendicular to the scattering plane, and its observed amplitude on the ecliptic equator at an elongation of 90 deg and ecliptic longitude of 10 deg declines from 12.0 +/- 0.4% at 1.25 micrometers to 8.0 +/- 0.6% at 3.5 micrometers (cf. 16% in the visible); the principal source of uncertainty is photometric noise due to stars. The observed near-infrared colors at this location are redder than Solar, but at 3.5 micrometers this is due at least in part to the thermal emission contribution from the interplanetary dust. Mie theory calculations show that both polarizations and colors are important in constraining models of interplanetary dust.

  1. Light diffusion in quenched disorder: role of step correlations.

    Science.gov (United States)

    Svensson, Tomas; Vynck, Kevin; Adolfsson, Erik; Farina, Andrea; Pifferi, Antonio; Wiersma, Diederik S

    2014-02-01

    We present a theoretical and experimental study of light transport in disordered media with strongly heterogeneous distribution of scatterers formed via nonscattering regions. Step correlations induced by quenched disorder are found to prevent diffusivity from diverging with increasing heterogeneity scale, contrary to expectations from annealed models. Spectral diffusivity is measured for a porous ceramic where nanopores act as scatterers and macropores render their distribution heterogeneous. Results agree well with Monte Carlo simulations and a proposed analytical model.

  2. Diffusion and light-dependent compartmentalization of transducin.

    Science.gov (United States)

    Kerov, Vasily; Artemyev, Nikolai O

    2011-01-01

    Diffusion and light-dependent compartmentalization of transducin are essential for phototransduction and light adaptation of rod photoreceptors. Here, transgenic Xenopus laevis models were designed to probe the roles of transducin/rhodopsin interactions and lipid modifications in transducin compartmentalization, membrane mobility, and light-induced translocation. Localization and diffusion of EGFP-fused rod transducin-α subunit (Gα(t1)), mutant Gα(t1) that is predicted to be N-acylated and S-palmitoylated (Gα(t1)A3C), and mutant Gα(t1) uncoupled from light-activated rhodopsin (Gα(t1)-Ctα(s)), were examined by EGFP-fluorescence imaging and fluorescence recovery after photobleaching (FRAP). Similar to Gα(t1), Gα(t1)A3C and Gα(t1)-Ctα(s) were correctly targeted to the rod outer segments in the dark, however the light-dependent translocation of both mutants was markedly impaired. Our analysis revealed a moderate acceleration of the lateral diffusion for the activated Gα(t1) consistent with the diffusion of the separated Gα(t1)GTP and Gβ(1)γ(1) on the membrane surface. Unexpectedly, the kinetics of longitudinal diffusion were comparable for Gα(t1)GTP with a single lipid anchor and heterotrimeric Gα(t1)β(1)γ(1) or Gα(t1)-Ctα(s)β(1)γ(1) with two lipid modifications. This contrasted the lack of the longitudinal diffusion of the Gα(t1)A3C mutant apparently caused by its stable two lipid attachment to the membrane and suggests the existence of a mechanism that facilitates axial diffusion of Gα(t1)β(1)γ(1). Copyright © 2010 Elsevier Inc. All rights reserved.

  3. Electrical Energy Harvesting from Thermal Energy with Converged Infrared Light

    Science.gov (United States)

    Goh, S. Y.; Kok, S. L.

    2017-06-01

    Photovoltaics (PV) cell is a common energy harvester that had been used to harvest solar energy and convert it into electrical energy. However, the vast energy from the spectrum of sunlight is not fully harvested. Therefore, thermoelectric (TE) module that harvest electrical energy from heat is being proposed in this paper. Generally, the part of the sunlight spectrum that induce heat is in the spectrum band of infrared (IR). For the experimental set-up in this paper, infrared (IR) light bulb was being used to simulate the IR spectrum band of the sunlight. In order to maximize the heat energy collection, a convex lens was being used to converge the IR light and therefore focused the heat on an aluminium sheet and heat sink which was placed on top of the hot side of the TE module. The distance between convex lens and IR light bulb is varying in between 10cm and 55cm and the reading was taken at an interval of 5cm. Firstly, the temperature of the IR light and converged IR light were recorded and plotted in graph. The graph showed that the temperature of the converged IR light bulb is higher than the IR light bulb. Lastly, the voltage and power output of the TE module with different heat source was compared. The output voltage and power of the TE module increased inverse proportional to the distance between IR light bulb and TE module.

  4. Infrared Light Absorption Computed Tomography Measurements for Gaseous Hydrocarbon Fuel Concentration

    Science.gov (United States)

    Kawazoe, Hiromitsu; Emi, Yasuyuki; Nakamura, Yoshiaki

    A system to measure gaseous fuel distribution was devised, which is based on infra-red light absorption by carbon-hydrogen stretch mode of vibration and the computed tomography method (IR-CT method). Since the incident light intensity from an infra-red laser fluctuated temporally, the effect was diminished by dividing the beam to two, one of which was monitored for better measurement accuracy. It was found that the error due to the laser fluctuation was within 0.8% and the feasibility of the IR-CT method was confirmed by applying the system to the measurements of the methane fuel concentration in an internal combustion engine model and a burner with diffusion flame. Furthermore, calibration to determine absorptivity was undertaken, which was used for the conversions from the measured line absorption coefficients to spatial fuel concentration in the combustion field.

  5. All-Quantum-Dot Infrared Light-Emitting Diodes

    KAUST Repository

    Yang, Zhenyu

    2015-12-22

    © 2015 American Chemical Society. Colloidal quantum dots (CQDs) are promising candidates for infrared electroluminescent devices. To date, CQD-based light-emitting diodes (LEDs) have employed a CQD emission layer sandwiched between carrier transport layers built using organic materials and inorganic oxides. Herein, we report the infrared LEDs that use quantum-tuned materials for each of the hole-transporting, the electron-transporting, and the light-emitting layers. We successfully tailor the bandgap and band position of each CQD-based component to produce electroluminescent devices that exhibit emission that we tune from 1220 to 1622 nm. Devices emitting at 1350 nm achieve peak external quantum efficiency up to 1.6% with a low turn-on voltage of 1.2 V, surpassing previously reported all-inorganic CQD LEDs.

  6. Infrared observations of Comet Austin (1990 V) by the COBE/Diffuse Infrared Background Experiment

    Science.gov (United States)

    Lisse, C. M.; Freudenreich, H. T.; Hauser, M. G.; Kelsall, T.; Moseley, S. H.; Reach, W. T.; Silverberg, R. F.

    1994-01-01

    Comet Austin was observed by the Cosmic Background Explorer (COBE)/Diffuse Infrared Background Experiment (DIRBE) with broadband photometry at 1-240 micrometers during the comet's close passage by Earth in 1990 May. A 6 deg long (6 x 10(exp 6) km) dust tail was found at 12 and 25 micrometers, with detailed structure due to variations in particle properties and mass-loss rate. The spectrum of the central 42 x 42 sq arcmin pixel was found to agree with that of a graybody of temperature 309 +/- 5 K and optical depth 7.3 +/- 10(exp -8). Comparison with IUE and ground-based obervations indicates that particles of radius greater than 20 micrometers predominate by surface area. A mass-loss rate of 510 (+510/-205) kg/s and a total tail mass of 7 +/- 2 x 10(exp 10) kg was found for a model dust tail composed of Mie spheres with a differential particle mass distribution dn/d log m approx. m(exp -0.63) and 2:1 silicate:amorphous carbon composition by mass.

  7. Light diffusion in a radially N-layered cylinder.

    Science.gov (United States)

    Liemert, André; Kienle, Alwin

    2011-10-01

    Analytical solutions of the diffusion equation for a radially N-layered cylinder were derived in the steady-state, frequency, and time domains. Solutions for axially infinite and finite cylinders are presented. The derived formulas were compared to a known solution of the diffusion equation for a layered semi-infinite geometry and to Monte Carlo simulations, showing excellent and good agreement, respectively. The analytical solutions were applied to calculate the light propagation in models of the forearm and the finger, demonstrating the improvement in analysis of hemodynamics measurements compared to the formulas used so far.

  8. Room-temperature near-infrared electroluminescence from boron-diffused silicon pn junction diodes

    Directory of Open Access Journals (Sweden)

    Si eLi

    2015-02-01

    Full Text Available Silicon pn junction diodes with different doping concentrations were prepared by boron diffusion into Czochralski (CZ n-type silicon substrate. Their room-temperature near-infrared electroluminescence (EL was measured. In the EL spectra of the heavily boron doped diode, a luminescence peak at ~1.6 m (0.78 eV was observed besides the band-to-band line (~1.1eV under the condition of high current injection, while in that of the lightly boron doped diode only the band-to-band line was observed. The intensity of peak at 0.78 eV increases exponentially with current injection with no observable saturation at room temperature. Furthermore, no dislocations were found in the cross-sectional transmission electron microscopy image, and no dislocation-related luminescence was observed in the low-temperature photoluminescence spectra. We deduce the 0.78 eV emission originates from the irradiative recombination in the strain region of diodes caused by the diffusion of large number of boron atoms into silicon crystal lattice.

  9. DiffusionKit: A light one-stop solution for diffusion MRI data analysis.

    Science.gov (United States)

    Xie, Sangma; Chen, Liangfu; Zuo, Nianming; Jiang, Tianzi

    2016-11-01

    Diffusion magnetic resonance imaging (dMRI) techniques are receiving increasing attention due to their ability to characterize the arrangement map of white matter in vivo. However, the existing toolkits for dMRI analysis that have accompanied this surge possess noticeable limitations, such as large installation size, an incomplete pipeline, and a lack of cross-platform support. In this work, we developed a light, one-stop, cross-platform solution for dMRI data analysis, called DiffusionKit. It delivers a complete pipeline, including data format conversion, dMRI preprocessing, local reconstruction, white matter fiber tracking, fiber statistical analyses and various visualization schemes. Furthermore, DiffusionKit is a self-contained executable toolkit, without the need to install any other software. The DiffusionKit package is implemented in C/C++ and Qt/VTK, is freely available at http://diffusion.brainnetome.org and https://www.nitrc.org/projects/diffusionkit. The website of DiffusionKit includes test data, a complete tutorial and a series of tutorial examples. A mailing list has also been established for update notification and questions and answers. DiffusionKit provides a full-function pipeline for dMRI data analysis, including data processing, modeling and visualization. Additionally, it provides both a graphical user interface (GUI) and command-line functions, which are helpful for batch processing. The standalone installation package has a small size and cross-platform support. DiffusionKit provides a complete pipeline with cutting-edge methods for dMRI data analysis, including both a GUI interface and command-line functions. The rich functions for both data analysis and visualization will facilitate and benefit dMRI research. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Near Infrared Photoimmunotherapy with Combined Exposure of External and Interstitial Light Sources.

    Science.gov (United States)

    Maruoka, Yasuhiro; Nagaya, Tadanobu; Sato, Kazuhide; Ogata, Fusa; Okuyama, Shuhei; Choyke, Peter L; Kobayashi, Hisataka

    2018-02-21

    Near infrared photoimmunotherapy (NIR-PIT) is a new target-cell-specific cancer treatment that induces highly selective necrotic/immunogenic cell death after systemic administration of a photoabsorber antibody conjugate and subsequent NIR light exposure. However, the depth of NIR light penetration in tissue (approximately 2 cm) with external light sources limits the therapeutic effects of NIR-PIT. Interstitial light exposure using cylindrical diffusing optical fibers can overcome this limitation. The purpose in this study was to compare three NIR light delivery methods for treating tumors with NIR-PIT using a NIR laser system at an identical light energy; external exposure alone, interstitial exposure alone, and the combination. Panitumumab conjugated with the photoabsorber IRDye-700DX (pan-IR700) was intravenously administered to mice with A431-luc xenografts which are epithelial growth factor receptor (EGFR) positive. One and 2 days later, NIR light was administered to the tumors using one of three methods. Interstitial exposure alone and in combination with external sources showed the greatest decrease in bioluminescence signal intensity. Additionally, the combination of external and interstitial NIR light exposure showed significantly greater tumor size reduction and prolonged survival after NIR-PIT compared to external exposure alone. This result suggested that the combination of external and interstitial NIR light exposure was more effective than externally applied light alone. Although external exposure is the least invasive means of delivering light, the combination of external and interstitial exposures produces superior therapeutic efficacy in tumors greater than 2 cm in depth from the tissue surface.

  11. Infrared light sensor applied to early detection of tooth decay

    Science.gov (United States)

    Benjumea, Eberto; Espitia, José; Díaz, Leonardo; Torres, Cesar

    2017-08-01

    The approach dentistry to dental care is gradually shifting to a model focused on early detection and oral-disease prevention; one of the most important methods of prevention of tooth decay is opportune diagnosis of decay and reconstruction. The present study aimed to introduce a procedure for early diagnosis of tooth decay and to compare result of experiment of this method with other common treatments. In this setup, a laser emitting infrared light is injected in core of one bifurcated fiber-optic and conduced to tooth surface and with the same bifurcated fiber the radiation reflected for the same tooth is collected and them conduced to surface of sensor that measures thermal and light frequencies to detect early signs of decay below a tooth surface, where demineralization is difficult to spot with x-ray technology. This device will can be used to diagnose tooth decay without any chemicals and rays such as high power lasers or X-rays.

  12. Origin of Infrared Light Modulation in Reflectance-Mode Photoplethysmography.

    Directory of Open Access Journals (Sweden)

    Igor S Sidorov

    Full Text Available We recently pointed out the important role of dermis deformation by pulsating arterial pressure in the formation of a photoplethysmographic signal at green light. The aim of this study was to explore the role of this novel finding in near-infrared (NIR light. A light-emitting diode (LED-based imaging photoplethysmography (IPPG system was used to detect spatial distribution of blood pulsations under frame-to-frame switching green and NIR illumination in the palms of 34 healthy individuals. We observed a significant increase of light-intensity modulation at the heartbeat frequency for both illuminating wavelengths after a palm was contacted with a glass plate. Strong positive correlation between data measured at green and NIR light was found, suggesting that the same signal was read independently from the depth of penetration. Analysis of the data shows that an essential part of remitted NIR light is modulated in time as a result of elastic deformations of dermis caused by variable blood pressure in the arteries. Our observations suggest that in contrast with the classical model, photoplethysmographic waveform originates from the modulation of the density of capillaries caused by the variable pressure applied to the skin from large blood vessels. Particularly, beat-to-beat transmural pressure in arteries compresses/decompresses the dermis and deforms its connective-tissue components, thus affecting the distance between the capillaries, which results in the modulation of absorption and scattering coefficients of both green and NIR light. These findings are important for the correct interpretation of this widely used medical technique, which may have novel applications in diagnosis and treatment monitoring of aging and skin diseases.

  13. Diffusive-light invisibility cloak for transient illumination

    Science.gov (United States)

    Orazbayev, B.; Beruete, M.; Martínez, A.; García-Meca, C.

    2016-12-01

    Invisibility in a diffusive-light-scattering medium has been recently demonstrated by employing a scattering-cancellation core-shell cloak. Unlike nondiffusive cloaks, such a device can be simultaneously macroscopic, broadband, passive, polarization independent, and omnidirectional. Unfortunately, it has been verified that this cloak, as well as more sophisticated ones based on transformation optics, fail under pulsed illumination, invalidating their use for a variety of applications. Here, we introduce a different approach based on unimodular transformations that enables the construction of unidirectional diffusive-light cloaks exhibiting a perfect invisibility effect, even under transient conditions. Moreover, we demonstrate that a polygonal cloak can extend this functionality to multiple directions with a nearly ideal behavior, while preserving all other features. We propose and numerically verify a simple cloak realization based on a layered stack of two isotropic materials. The studied devices have several applications not addressable by any of the other cloaks proposed to date, including shielding from pulse-based detection techniques, cloaking undesired scattering elements in time-of-flight imaging or high-speed communication systems for diffusive environments, and building extreme optical security features. The discussed cloaking strategy could also be applied to simplify the implementation of thermal cloaks.

  14. Broadband mid-infrared superlattice light-emitting diodes

    Science.gov (United States)

    Ricker, R. J.; Provence, S. R.; Norton, D. T.; Boggess, T. F.; Prineas, J. P.

    2017-05-01

    InAs/GaSb type-II superlattice light-emitting diodes were fabricated to form a device that provides emission over the entire 3-5 μm mid-infrared transmission window. Variable bandgap emission regions were coupled together using tunnel junctions to emit at peak wavelengths of 3.3 μm, 3.5 μm, 3.7 μm, 3.9 μm, 4.1 μm, 4.4 μm, 4.7 μm, and 5.0 μm. Cascading the structure recycles the electrons in each emission region to emit several wavelengths simultaneously. At high current densities, the light-emitting diode spectra broadened into a continuous, broadband spectrum that covered the entire mid-infrared band. When cooled to 77 K, radiances of over 1 W/cm2 sr were achieved, demonstrating apparent temperatures above 1000 K over the 3-5 μm band. InAs/GaSb type-II superlattices are capable of emitting from 3 μm to 30 μm, and the device design can be expanded to include longer emission wavelengths.

  15. [Application of near-infrared diffuse reflectance spectroscopy to the detection and identification of transgenic corn].

    Science.gov (United States)

    Rui, Yu-kui; Luo, Yun-bo; Huang, Kun-lun; Wang, Wei-min; Zhang, Lu-da

    2005-10-01

    With the rapid development of the GMO, more and more GMO food has been pouring into the market. Much attention has been paid to GMO labeling under the controversy of GMO safety. Transgenic corns and their parents were scanned by continuous wave of near infrared diffuse reflectance spectroscopy range of 12000-4000 cm(-1); the resolution was 4 cm(-1); scanning was carried out for 64 times; BP algorithm was applied for data processing. The GMO food was easily resolved. Near-infrared diffuse reflectance spectroscopy is unpolluted and inexpensive compared with PCR and ELISA, so it is a very promising detection method for GMO food.

  16. Determination of Thermal Diffusivity of Austenitic Steel Using Pulsed Infrared Thermography

    Directory of Open Access Journals (Sweden)

    Kochanowski K.

    2014-10-01

    Full Text Available The simple method of determining thermal diffusivity of solid materials at room temperature using the pulsed infrared thermography (IRT is proposed. The theoretical basis of the method and experimental results are presented. The study was conducted on austenitic steel 316L. Theobtained results show that the thermal diffusivity value of the tested steel determined by means of pulsed infrared thermography is very approximate to the values given in the literature, obtained by using more complicated methods. The differences between these values are 0.5%.

  17. Diffuse reflectance infrared Fourier-Transform spectra of selected organic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Harmon, S.H.; Caton, J.E.

    1982-05-01

    Diffuse reflectance infrared spectra of a variety of different organic compounds have been determined. Profiles of the spectra along with the location and relative intensity of the principal bands have been included for each compound studied. In addition both diffuse reflectance and transmittance infrared spectra were obtained for the same samples, and the spectral results were compared. Although some minor variations are observed between a diffuse reflectance spectrum and the corresponding transmittance spectrum, the diffuse reflectance is quite useful and may be a superior technique for the study of many samples because it possesses an inherently higher signal-to-noise response, requires less sample preparation and allows a very wide range of samples (solids, liquids of low volatility, neat sample, or sample diluted in a reflecting medium) to be studied under very similar conditions.

  18. Prediction of tablets disintegration times using near-infrared diffuse reflectance spectroscopy as a nondestructive method.

    Science.gov (United States)

    Donoso, M; Ghaly, Evone S

    2005-01-01

    The goals of this study are to user near-infrared reflectance (NIR) spectroscopy to measure the disintegration time of a series of tablets compacted at different compressional forces, calibrate NIR data vs. laboratory equipment data, develop a model equation, validate the model, and test the model's predictive ability. Seven theophylline tablet formulations of the same composition but with different disintegration time values (0.224, 1.141, 2.797, 5.492, 9.397, 16.8, and 30.092 min) were prepared along with five placebo tablet formulations with different disintegration times. Laboratory disintegration time was compared to near-infrared diffuse reflectance data. Linear regression, quadratic, cubic, and partial least square techniques were used to determine the relationship between disintegration time and near-infrared spectra. The results demonstrated that an increase in disintegration time produced an increase in near-infrared absorbance. Series of model equations, which depended on the mathematical technique used for regression, were developed from the calibration of disintegration time using laboratory equipment vs. the near-infrared diffuse reflectance for each formulation. The results of NIR disintegration time were similar to laboratory tests. The near-infrared diffuse reflectance spectroscopy method is an alternative nondestructive method for measurement of disintegration time of tablets.

  19. Light Diffusion in the Tropical Dry Forest of Costa Rica

    Science.gov (United States)

    Calvo-Rodriguez, S.; Sanchez-Azofeifa, G. A.

    2016-06-01

    Leaf Area Index (LAI) has been defined as the total leaf area (one-sided) in relation to the ground. LAI has an impact on tree growth and recruitment through the interception of light, which in turn affects primary productivity. Even though many instruments exist for estimating LAI from ground, they are often laborious and costly to run continuously. Measurements of LAI from the field using traditional sensors (e.g., LAI-2000) require multiple visits to the field under very specific sky conditions, making them unsuitable to operate in inaccessible areas and forests with dense vegetation, as well as areas where persistent sunny conditions are the norm like tropical dry forests. With this context, we proposed a methodology to characterize light diffusion based on NDVI and LAI measurements taken from the field in two successional stages in the tropical dry forest of Santa Rosa National Park in Costa Rica. We estimate a "K" coefficient to characterize light diffusion by the canopy, based on field NDVI measurements derived from optical phenology instruments and MODIS NDVI. From the coefficients determined, we estimated LAI values and compared them with ground measurements of LAI. In both successional stages ground measurements of LAI had no significant difference to the tower-derived LAI and the estimated LAI from MODIS NDVI.

  20. LIGHT DIFFUSION IN THE TROPICAL DRY FOREST OF COSTA RICA

    Directory of Open Access Journals (Sweden)

    S. Calvo-Rodriguez

    2016-06-01

    Full Text Available Leaf Area Index (LAI has been defined as the total leaf area (one-sided in relation to the ground. LAI has an impact on tree growth and recruitment through the interception of light, which in turn affects primary productivity. Even though many instruments exist for estimating LAI from ground, they are often laborious and costly to run continuously. Measurements of LAI from the field using traditional sensors (e.g., LAI-2000 require multiple visits to the field under very specific sky conditions, making them unsuitable to operate in inaccessible areas and forests with dense vegetation, as well as areas where persistent sunny conditions are the norm like tropical dry forests. With this context, we proposed a methodology to characterize light diffusion based on NDVI and LAI measurements taken from the field in two successional stages in the tropical dry forest of Santa Rosa National Park in Costa Rica. We estimate a "K" coefficient to characterize light diffusion by the canopy, based on field NDVI measurements derived from optical phenology instruments and MODIS NDVI. From the coefficients determined, we estimated LAI values and compared them with ground measurements of LAI. In both successional stages ground measurements of LAI had no significant difference to the tower-derived LAI and the estimated LAI from MODIS NDVI.

  1. Light reflection visualization to determine solute diffusion into clays.

    Science.gov (United States)

    Yang, Minjune; Annable, Michael D; Jawitz, James W

    2014-06-01

    Light reflection visualization (LRV) experiments were performed to investigate solute diffusion in low-permeability porous media using a well-controlled two-dimensional flow chamber with a domain composed of two layers (one sand and one clay). Two different dye tracers (Brilliant Blue FCF and Ponceau 4R) and clay domains (kaolinite and montmorillonite) were used. The images obtained through the LRV technique were processed to monitor two-dimensional concentration distributions in the low-permeability zone by applying calibration curves that related light intensity to equilibrium concentrations for each dye tracer in the clay. One dimensional experimentally-measured LRV concentration profiles in the clay were found to be in very good agreement with those predicted from a one-dimensional analytical solution, with coefficient of efficiency values that exceeded 0.97. The retardation factors (R) for both dyes were relatively large, leading to slow diffusive penetration into the clays. At a relative concentration C/C0=0.1, Brilliant Blue FCF in kaolinite (R=11) diffused approximately 10 mm after 21 days of source loading, and Ponceau 4R in montmorillonite (R=7) diffused approximately 12 mm after 23 days of source loading. The LRV experimentally-measured two-dimensional concentration profiles in the clay were also well described by a simple analytical solution. The results from this study demonstrate that the LRV approach is an attractive non-invasive tool to investigate the concentration distribution of dye tracers in clays in laboratory experiments. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Infrared reflectometry of skin: Analysis of backscattered light from different skin layers

    Science.gov (United States)

    Pleitez, Miguel A.; Hertzberg, Otto; Bauer, Alexander; Lieblein, Tobias; Glasmacher, Mathias; Tholl, Hans; Mäntele, Werner

    2017-09-01

    We have recently reported infrared spectroscopy of human skin in vivo using quantum cascade laser excitation and photoacoustic or photothermal detection for non-invasive glucose measurement . Here, we analyze the IR light diffusely reflected from skin layers for spectral contributions of glucose. Excitation of human skin by an external cavity tunable quantum cascade laser in the spectral region from 1000 to 1245 cm- 1, where glucose exhibits a fingerprint absorption, yields reflectance spectra with some contributions from glucose molecules. A simple three-layer model of skin was used to calculate the scattering intensities from the surface and from shallow and deeper layers using the Boltzmann radiation transfer equation. Backscattering of light at wavelengths around 10 μm from the living skin occurs mostly from the Stratum corneum top layers and the shallow layers of the living epidermis. The analysis of the polarization of the backscattered light confirms this calculation. Polarization is essentially unchanged; only a very small fraction (< 3%) is depolarized at 90° with respect to the laser polarization set at 0°. Based on these findings, we propose that the predominant part of the backscattered light is due to specular reflectance and to scattering from layers close to the surface. Diffusely reflected light from deeper layers undergoing one or more scattering processes would appear with significantly altered polarization. We thus conclude that a non-invasive glucose measurement based on backscattering of IR light from skin would have the drawback that only shallow layers containing some glucose at concentrations only weakly related to blood glucose are monitored.

  3. Hydrogen peroxide diffusion with and without light activation.

    Science.gov (United States)

    Llena, Carmen; Forner, Leopoldo; Vazquez, María

    The aim of this study was to assess the dental bleaching efficacy of 37.5% hydrogen peroxide (HP), with and without light activation, in HP-exposed and unexposed areas. 28 bovine teeth were selected and divided into two groups (n = 14). Crowns were detached and stained with tea. The gingival half was covered with a gingival barrier. In the incisal half, 37.5% HP (Pola Office+, SDI) was applied three times, with a 1-week interval between applications. In HP-A group, the bleaching agent was activated for 3 min with a LED lamp. No light activation was applied in HP-N group. Dental color variation was determined through a spectrophotometer in both halves. Statistical analysis between groups was performed with an ANOVA test, and intragroup differences were evaluated, with an ANOVA test for paired data, with a significance level of P lightness and a decrease in chroma were found in both groups and halves. No significant differences in ΔE between groups (P > 0.5) were detected in the incisal half. After treatment, a significantly higher ΔE was found in the gingival half for HP-A group (P light activation does not significantly increase the whitening effect, but it can improve the bleaching diffusion to areas where it has not been directly applied.

  4. Organic infrared and near-infrared light-emitting materials and devices for optical communication applications

    Science.gov (United States)

    Suzuki, Hiroyuki

    2004-06-01

    The luminescent properties of organic infrared (IR) and near-infrared (NIR) light-emitting materials were investigated for optical communication applications. These materials consisted of two organic ionic dyes, (2-[6-(4-dimethylaminophenyl)-2,4-neopentylene-1,3,5-hexatrienyl]-3-methyl-benzothiazonium perchlorate) (LDS821) and [C41H33Cl2N2]+×BF4- (IR1051), and an organic rare-earth complex, erbium (III) tris(8-hydroxyquinoline) (ErQ). The three materials are both photoluminescent and electroluminescent in the 0.8-, 1.1- and 1.5-μm wavelength regions, respectively, and so can be used as optically active species in devices operated by either optical or current excitation. Three device forms were fabricated with these light-emitting materials as optically active species, namely vacuum-deposited or spin-coated polymer thin-films, monodispersed polymer microparticles and embedded polymeric optical waveguides. Their luminescent processes are discussed and possible optical communication applications are proposed.

  5. Diffusion-Driven Charge Transport in Light Emitting Devices.

    Science.gov (United States)

    Kim, Iurii; Kivisaari, Pyry; Oksanen, Jani; Suihkonen, Sami

    2017-12-12

    Almost all modern inorganic light-emitting diode (LED) designs are based on double heterojunctions (DHJs) whose structure and current injection principle have remained essentially unchanged for decades. Although highly efficient devices based on the DHJ design have been developed and commercialized for energy-efficient general lighting, the conventional DHJ design requires burying the active region (AR) inside a pn-junction. This has hindered the development of emitters utilizing nanostructured ARs located close to device surfaces such as nanowires or surface quantum wells. Modern DHJ III-N LEDs also exhibit resistive losses that arise from the DHJ device geometry. The recently introduced diffusion-driven charge transport (DDCT) emitter design offers a novel way to transport charge carriers to unconventionally placed ARs. In a DDCT device, the AR is located apart from the pn-junction and the charge carriers are injected into the AR by bipolar diffusion. This device design allows the integration of surface ARs to semiconductor LEDs and offers a promising method to reduce resistive losses in high power devices. In this work, we present a review of the recent progress in gallium nitride (GaN) based DDCT devices, and an outlook of potential DDCT has for opto- and microelectronics.

  6. Radiative Transfer Theory and Diffusion of Light in Nematic Liquid Crystals

    OpenAIRE

    Stark, Holger

    1997-01-01

    In nematic liquid crystals light is strongly scattered from director fluctuations. We are interested in the limit where the incoming light wave is scattered many times. Then, the light transport can be described by a diffusion equation for the energy density of light with diffusion constants $D_{\\|}$ and $D_{\\perp}$, respectively, parallel and perpendicular to the director. We start from a radiative transfer theory, connect the diffusion constants to the dynamic structure factor of director f...

  7. Wavelength-selective and diffuse infrared thermal emission mediated by magnetic polaritons from silicon carbide metasurfaces

    Science.gov (United States)

    Yang, Yue; Taylor, Sydney; Alshehri, Hassan; Wang, Liping

    2017-07-01

    In the present study, we experimentally demonstrate the spectrally coherent and diffuse thermal emission by exciting magnetic polaritons in SiC metasurfaces fabricated by the focused ion beam technique. Spectral emittance characterized by using an infrared microscope coupled to a Fourier transform spectrometer clearly shows a wavelength-selective emission peak as high as 0.8. Numerical simulations including emittance spectra and contour plot of electromagnetic field distribution were carried out to verify and understand the underlying mechanism of magnetic polaritons. The metasurfaces were further shown to be direction and polarization independent. The results would facilitate metasurfaces for applications like radiative thermal management and infrared sensing.

  8. Infrared light-absorbing gold/gold sulfide nanoparticles induce cell death in esophageal adenocarcinoma

    Science.gov (United States)

    Li, Yan; Gobin, Andre M; Dryden, Gerald W; Kang, Xinqin; Xiao, Deyi; Li, Su Ping; Zhang, Guandong; Martin, Robert CG

    2013-01-01

    Gold nanoparticles and near infrared-absorbing light are each innocuous to tissue but when combined can destroy malignant tissue while leaving healthy tissue unharmed. This study investigated the feasibility of photothermal ablation therapy for esophageal adenocarcinoma using chitosan-coated gold/gold sulfide (CS-GGS) nanoparticles. A rat esophagoduodenal anastomosis model was used for the in vivo ablation study, and three human esophageal cell lines were used to study the response of cancer cells and benign cells to near infrared light after treatment with CS-GGS. The results indicate that both cancerous tissue and cancer cells took up more gold nanoparticles and were completely ablated after exposure to near infrared light. The benign tissue and noncancerous cells showed less uptake of these nanoparticles, and remained viable after exposure to near infrared light. CS-GGS nanoparticles could provide an optimal endoluminal therapeutic option for near infrared light ablation of esophageal cancer. PMID:23818775

  9. Fluorescent light induces neurodegeneration in the rodent nigrostriatal system but near infrared LED light does not.

    Science.gov (United States)

    Romeo, Stefania; Vitale, Flora; Viaggi, Cristina; di Marco, Stefano; Aloisi, Gabriella; Fasciani, Irene; Pardini, Carla; Pietrantoni, Ilaria; Di Paolo, Mattia; Riccitelli, Serena; Maccarone, Rita; Mattei, Claudia; Capannolo, Marta; Rossi, Mario; Capozzo, Annamaria; Corsini, Giovanni U; Scarnati, Eugenio; Lozzi, Luca; Vaglini, Francesca; Maggio, Roberto

    2017-05-01

    We investigated the effects of continuous artificial light exposure on the mouse substantia nigra (SN). A three month exposure of C57Bl/6J mice to white fluorescent light induced a 30% reduction in dopamine (DA) neurons in SN compared to controls, accompanied by a decrease of DA and its metabolites in the striatum. After six months of exposure, neurodegeneration progressed slightly, but the level of DA returned to the basal level, while the metabolites increased with respect to the control. Three month exposure to near infrared LED light (∼710nm) did not alter DA neurons in SN, nor did it decrease DA and its metabolites in the striatum. Furthermore mesencephalic cell viability, as tested by [ 3 H]DA uptake, did not change. Finally, we observed that 710nm LED light, locally conveyed in the rat SN, could modulate the firing activity of extracellular-recorded DA neurons. These data suggest that light can be detrimental or beneficial to DA neurons in SN, depending on the source and wavelength. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Quantum hologram of macroscopically entangled light via the mechanism of diffuse light storage

    International Nuclear Information System (INIS)

    Gerasimov, L V; Sokolov, I M; Kupriyanov, D V; Havey, M D

    2012-01-01

    In this paper, we consider a quantum memory scheme for light diffusely propagating through a spatially disordered atomic gas. A unique characteristic is enhanced trapping of the signal light pulse by quantum multiple scattering, which can be naturally integrated with the mechanism of stimulated Raman conversion into a long-lived spin coherence. Then, the quantum state of the light can be mapped onto the disordered atomic spin subsystem and can be stored in it for a relatively long time. The proposed memory scheme can be applicable for storage of the macroscopic analogue of the Ψ (−) Bell state and the prepared entangled atomic state performs its quantum hologram, which suggests the possibility of further quantum information processing. (paper)

  11. Prepreg cure monitoring using diffuse reflectance-FTIR. [Fourier Transform Infrared Technique

    Science.gov (United States)

    Young, P. R.; Chang, A. C.

    1984-01-01

    An in situ diffuse reflectance-Fourier transform infrared technique was developed to determine infrared spectra of graphite fiber prepregs as they were being cured. A bismaleimide, an epoxy, and addition polyimide matrix resin prepregs were studied. An experimental polyimide adhesive was also examined. Samples were positioned on a small heater at the focal point of diffuse reflectance optics and programmed at 15 F/min while FTIR spectra were being scanned, averaged, and stored. An analysis of the resulting spectra provided basic insights into changes in matrix resin molecular structure which accompanied reactions such as imidization and crosslinking. An endo-exothermal isomerization involving reactive end-caps was confirmed for the addition polyimide prepregs. The results of this study contribute to a fundamental understanding of the processing of composites and adhesives. Such understanding will promote the development of more efficient cure cycles.

  12. Infrared Organic Light-Emitting Diodes with Carbon Nanotube Emitters.

    Science.gov (United States)

    Graf, Arko; Murawski, Caroline; Zakharko, Yuriy; Zaumseil, Jana; Gather, Malte C

    2018-01-30

    While organic light-emitting diodes (OLEDs) covering all colors of the visible spectrum are widespread, suitable organic emitter materials in the near-infrared (nIR) beyond 800 nm are still lacking. Here, the first OLED based on single-walled carbon nanotubes (SWCNTs) as the emitter is demonstrated. By using a multilayer stacked architecture with matching charge blocking and charge-transport layers, narrow-band electroluminescence at wavelengths between 1000 and 1200 nm is achieved, with spectral features characteristic of excitonic and trionic emission of the employed (6,5) SWCNTs. Here, the OLED performance is investigated in detail and it is found that local conduction hot-spots lead to pronounced trion emission. Analysis of the emissive dipole orientation shows a strong horizontal alignment of the SWCNTs with an average inclination angle of 12.9° with respect to the plane, leading to an exceptionally high outcoupling efficiency of 49%. The SWCNT-based OLEDs represent a highly attractive platform for emission across the entire nIR. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Transcranial red and near infrared light transmission in a cadaveric model.

    Directory of Open Access Journals (Sweden)

    Jared R Jagdeo

    Full Text Available BACKGROUND AND OBJECTIVE: Low level light therapy has garnered significant interest within the past decade. The exact molecular mechanisms of how red and near infrared light result in physiologic modulation are not fully understood. Heme moieties and copper within cells are red and near infrared light photoreceptors that induce the mitochondrial respiratory chain component cytochrome C oxidase, resulting in a cascade linked to cytoprotection and cellular metabolism. The copper centers in cytochrome C oxidase have a broad absorption range that peaks around 830 nm. Several in vitro and in vivo animal and human models exist that have demonstrated the benefits of red light and near infrared light for various conditions. Clinical applications for low level light therapy are varied. One study in particular demonstrated improved durable functional outcomes status post-stroke in patients treated with near infrared low level light therapy compared to sham treatment [1]. Despite previous data suggesting the beneficial effect in treating multiple conditions, including stroke, with low level light therapy, limited data exists that measures transmission in a human model. STUDY DESIGN/MATERIALS AND METHODS: To investigate this idea, we measured the transmission of near infrared light energy, using red light for purposes of comparison, through intact cadaver soft tissue, skull bones, and brain using a commercially available LED device at 830 nm and 633 nm. RESULTS: Our results demonstrate that near infrared measurably penetrates soft tissue, bone and brain parenchyma in the formalin preserved cadaveric model, in comparison to negligible red light transmission in the same conditions. CONCLUSION: These findings indicate that near infrared light can penetrate formalin fixed soft tissue, bone and brain and implicate that benefits observed in clinical studies are potentially related to direct action of near infrared light on neural tissue.

  14. 2-10 μm Mid-infrared Supercontinuum Light Sources

    DEFF Research Database (Denmark)

    Petersen, Christian Rosenberg; Møller, Uffe Visbech

    Spectroscopy is the study of how light interacts with molecules, which can be used to identify various substances in for example foods and medicine, by observing which parts of the light is absorbed after interaction with the sample. Especially infrared light, more precisely the mid infrared part...... of the spectrum, is of interest because almost all molecules display distinct absorption fingerprints in this region. Current instrumentation however relies on thermal light sources, much like the wellknown incandescent light bulb, which has very limited brightness and limited possibilities for manipulating...... and using the light in different applications. This dissertation presents the past three years of my work with developing an alternative light source that has the broad spectral bandwidth of a lamp, and high power focused in a tight spot similar to a laser. Such a mid‐infrared light source can be achieved...

  15. Enhancement of crop photosynthesis by diffuse light: quantifying the contributing factors.

    Science.gov (United States)

    Li, T; Heuvelink, E; Dueck, T A; Janse, J; Gort, G; Marcelis, L F M

    2014-07-01

    Plants use diffuse light more efficiently than direct light. However, experimental comparisons between diffuse and direct light have been obscured by co-occurring differences in environmental conditions (e.g. light intensity). This study aims to analyse the factors that contribute to an increase in crop photosynthesis in diffuse light and to quantify their relative contribution under different levels of diffuseness at similar light intensities. The hypothesis is that the enhancement of crop photosynthesis in diffuse light results not only from the direct effects of more uniform vertical and horizontal light distribution in the crop canopy, but also from crop physiological and morphological acclimation. Tomato (Solanum lycopersicum) crops were grown in three greenhouse compartments that were covered by glass with different degrees of light diffuseness (0, 45 and 71 % of the direct light being converted into diffuse light) while maintaining similar light transmission. Measurements of horizontal and vertical photosynthetic photon flux density (PPFD) distribution in the crop, leaf photosynthesis light response curves and leaf area index (LAI) were used to quantify each factor's contribution to an increase in crop photosynthesis in diffuse light. In addition, leaf temperature, photoinhibition, and leaf biochemical and anatomical properties were studied. The highest degree of light diffuseness (71 %) increased the calculated crop photosynthesis by 7·2 %. This effect was mainly attributed to a more uniform horizontal (33 % of the total effect) and vertical PPFD distribution (21 %) in the crop. In addition, plants acclimated to the high level of diffuseness by gaining a higher photosynthetic capacity of leaves in the middle of the crop and a higher LAI, which contributed 23 and 13 %, respectively, to the total increase in crop photosynthesis in diffuse light. Moreover, diffuse light resulted in lower leaf temperatures and less photoinhibition at the top of the canopy when

  16. Spectral purification and infrared light recycling in extreme ultraviolet lithography sources

    NARCIS (Netherlands)

    Bayraktar, M.; van Goor, F. A.; Boller, K. J.; F. Bijkerk,

    2014-01-01

    We present the design of a novel collector mirror for laser produced plasma (LPP) light sources to be used in extreme ultraviolet (EUV) lithography. The design prevents undesired infrared (IR) drive laser light, reflected from the plasma, from reaching the exit of the light source. This results in a

  17. Light-Induced Infrared Difference Spectroscopy in the Investigation of Light Harvesting Complexes

    Directory of Open Access Journals (Sweden)

    Alberto Mezzetti

    2015-07-01

    Full Text Available Light-induced infrared difference spectroscopy (IR-DS has been used, especially in the last decade, to investigate early photophysics, energy transfer and photoprotection mechanisms in isolated and membrane-bound light harvesting complexes (LHCs. The technique has the definite advantage to give information on how the pigments and the other constituents of the biological system (proteins, membranes, etc. evolve during a given photoreaction. Different static and time-resolved approaches have been used. Compared to the application of IR-DS to photosynthetic Reaction Centers (RCs, however, IR-DS applied to LHCs is still in an almost pioneering age: very often sophisticated techniques (step-scan FTIR, ultrafast IR or data analysis strategies (global analysis, target analysis, multivariate curve resolution are needed. In addition, band assignment is usually more complicated than in RCs. The results obtained on the studied systems (chromatophores and RC-LHC supercomplexes from purple bacteria; Peridinin-Chlorophyll-a-Proteins from dinoflagellates; isolated LHCII from plants; thylakoids; Orange Carotenoid Protein from cyanobacteria are summarized. A description of the different IR-DS techniques used is also provided, and the most stimulating perspectives are also described. Especially if used synergically with other biophysical techniques, light-induced IR-DS represents an important tool in the investigation of photophysical/photochemical reactions in LHCs and LHC-containing systems.

  18. Biomimetic light-harvesting funnels for re-directioning of diffuse light.

    Science.gov (United States)

    Pieper, Alexander; Hohgardt, Manuel; Willich, Maximilian; Gacek, Daniel Alexander; Hafi, Nour; Pfennig, Dominik; Albrecht, Andreas; Walla, Peter Jomo

    2018-02-14

    Efficient sunlight harvesting and re-directioning onto small areas has great potential for more widespread use of precious high-performance photovoltaics but so far intrinsic solar concentrator loss mechanisms outweighed the benefits. Here we present an antenna concept allowing high light absorption without high reabsorption or escape-cone losses. An excess of randomly oriented pigments collects light from any direction and funnels the energy to individual acceptors all having identical orientations and emitting ~90% of photons into angles suitable for total internal reflection waveguiding to desired energy converters (funneling diffuse-light re-directioning, FunDiLight). This is achieved using distinct molecules that align efficiently within stretched polymers together with others staying randomly orientated. Emission quantum efficiencies can be >80% and single-foil reabsorption <0.5%. Efficient donor-pool energy funneling, dipole re-orientation, and ~1.5-2 nm nearest donor-acceptor transfer occurs within hundreds to ~20 ps. Single-molecule 3D-polarization experiments confirm nearly parallel emitters. Stacked pigment selection may allow coverage of the entire solar spectrum.

  19. [The evaluation of hydrocarbon potential generation for source rocks by near-infrared diffuse reflection spectra].

    Science.gov (United States)

    Zhang, Yu-Jia; Xu, Xiao-Xuan; Song, Ning; Wu, Zhong-Chen; Zhou, Xiang; Chen, Jin; Cao, Xue-Wei; Wang, Bin

    2011-04-01

    Near-infrared (NIR) and mid-infrared (MIR) diffuse reflection spectra were compared and evaluated for hydrocarbon potential generation of source rocks. Near-infrared diffuse reflectance often exhibits significant differences in the spectra due to the non-homogeneous distribution of the particles, so the signal-to-noise ratio of NIR is much lower than MIR It is too difficult to get accurate results by NIR without using a strong spectral preprocessing method to remove systematic noise such as base-line variation and multiplicative scatter effects. In the present paper, orthogonal signal correction (OSC) and an improved algorithm of it, i.e. direct orthogonal signal correction (DOSC), are used as different methods to preprocess both the NIR and MIR spectra of the hydrocarbon source rocks. Another algorithm, wavelet multi-scale direct orthogonal signal correction (WMDOSC), which is a combination of discrete wavelet transform (DWT) and DOSC, is also used as a preprocessing method. Then, the calibration model of hydrocarbon source rocks before and after pretreatment was established by interval partial least square (iPLS). The experimental results show that WMDOSC is more successfully applied to preprocess the NIR spectra data of the hydrocarbon source rocks than other two algorithms, and NIR performed as good as MIR in the analysis of hydrocarbon potential generation of source rocks with WMDOSC-iPLS pretreatment calibration model.

  20. Quantum Well Infrared Photodetectors: Device Physics and Light Coupling

    Science.gov (United States)

    Bandara, S. V.; Gunapala, S. D.; Liu, J. K.; Mumolo, J.; Luong, E.; Hong, W.; Sengupta, D. K.

    1997-01-01

    It is customary to make infrared (IR) detectors in the long wavelength range by utilizing the interband transition which promotes an electron across the band gap (Eg) from the valence band to the conduction.

  1. Robust Visible and Infrared Light Emitting Devices Using Rare-Earth-Doped GaN

    National Research Council Canada - National Science Library

    Steckl, Andrew

    2006-01-01

    Rare earth (RE) dopants (such as Er, Eu, Tm) in the wide bandgap semiconductor (WBGS) GaN are investigated for the fabrication of robust visible and infrared light emitting devices at a variety of wavelengths...

  2. Effects of diffuse light in cultivation of roses; Effecten van diffuus licht in de rozenteelt

    Energy Technology Data Exchange (ETDEWEB)

    Schapendonk, A. [Plant-Dynamics, Englaan 8, 6703 EW Wageningen (Netherlands); Rappoldt, K. [EcoCurves, Kamperfoelieweg 17, 9753 ER Haren (Netherlands)

    2011-09-15

    An overview is given of the effects of diffuse glass and the rose production and the interactions with light, CO2 and Relative Humidity. Diffuse glass prevents peaks in the horizontal distribution of light and increases the average use of light [Dutch] Een overzicht wordt gegeven van de effecten van diffuus glas op de opbrengst van roos en de interacties met licht, CO2, en RV. Diffuus glas voorkomt pieken in de horizontale lichtverdeling en verhoogt de gemiddelde lichtbenutting.

  3. Determination of Moisture Content in 5-Fluorouracil using Diffuse Reflectance Infrared Spectroscopy

    Science.gov (United States)

    Singh, Parul; Jangir, Deepak Kumar; Mehrotra, Ranjana; Kandpal, H. C.

    2008-11-01

    Determination of moisture content in pharmaceuticals is very important, as moisture is mainly responsible for the degradation of drugs. The degraded drug has not only reduced efficacy but is also hazardous for health. The objective of the present work is to replace the Karl Fischer (KF) titration method used for moisture analysis with a method that is rapid, involves no toxic materials and is more effective. Diffuse reflectance infrared spectroscopy, which is explored as a potential alternate for various applications, is investigated for moisture analysis in 5-Fluorouracil, an anticancer drug.

  4. Broadband integrated mid infrared light sources as enabling technology for point of care mid-infrared spectroscopy

    Science.gov (United States)

    2017-08-20

    DD-MM-YYYY)      06-09-2017 2. REPORT TYPE Final 3. DATES COVERED (From - To) 01 Aug 2016 to 31 Jul 2017 4. TITLE AND SUBTITLE Broadband integrated ...AFRL-AFOSR-JP-TR-2017-0061 Broadband integrated mid-infrared light sources as enabling technology for point-of-care mid- infrared spectroscopy Alex...Fuerbach MACQUARIE UNIVERSITY Final Report 08/20/2017 DISTRIBUTION A: Distribution approved for public release. AF Office Of Scientific Research (AFOSR

  5. Metamaterial devices for molding the flow of diffuse light (Conference Presentation)

    Science.gov (United States)

    Wegener, Martin

    2016-09-01

    Much of optics in the ballistic regime is about designing devices to mold the flow of light. This task is accomplished via specific spatial distributions of the refractive index or the refractive-index tensor. For light propagating in turbid media, a corresponding design approach has not been applied previously. Here, we review our corresponding recent work in which we design spatial distributions of the light diffusivity or the light-diffusivity tensor to accomplish specific tasks. As an application, we realize cloaking of metal contacts on large-area OLEDs, eliminating the contacts' shadows, thereby homogenizing the diffuse light emission. In more detail, metal contacts on large-area organic light-emitting diodes (OLEDs) are mandatory electrically, but they cast optical shadows, leading to unwanted spatially inhomogeneous diffuse light emission. We show that the contacts can be made invisible either by (i) laminate metamaterials designed by coordinate transformations of the diffusion equation or by (ii) triangular-shaped regions with piecewise constant diffusivity, hence constant concentration of scattering centers. These structures are post-optimized in regard to light throughput by Monte-Carlo ray-tracing simulations and successfully validated by model experiments.

  6. MEASUREMENTS OF THE MEAN DIFFUSE GALACTIC LIGHT SPECTRUM IN THE 0.95–1.65 μm BAND FROM CIBER

    Energy Technology Data Exchange (ETDEWEB)

    Arai, T.; Matsuura, S.; Sano, K.; Matsumoto, T.; Nakagawa, T.; Onishi, Y. [Department of Space Astronomy and Astrophysics, Institute of Space and Astronautical Science (ISAS), Japan Aerospace Exploration Agency (JAXA), Sagamihara, Kanagawa 252-5210 (Japan); Bock, J.; Lanz, A.; Korngut, P.; Zemcov, M. [Department of Astronomy, California Institute of Technology, Pasadena, CA 91125 (United States); Cooray, A.; Smidt, J. [Center for Cosmology, University of California, Irvine, Irvine, CA 92697 (United States); Kim, M. G.; Lee, H. M. [Department of Physics and Astronomy, Seoul National University, Seoul 151-742 (Korea, Republic of); Lee, D. H. [Korea Astronomy and Space Science Institute (KASI), Daejeon 305-348 (Korea, Republic of); Shirahata, M. [National Institutes of Natural Science, National Astronomical Observatory of Japan (NAOJ), Tokyo 181-8588 (Japan); Tsumura, K. [Frontier Research Institute for Interdisciplinary Science, Tohoku University, Sendai 980-8578 (Japan)

    2015-06-10

    We report measurements of the diffuse galactic light (DGL) spectrum in the near-infrared, spanning the wavelength range 0.95–1.65 μm by the Cosmic Infrared Background ExpeRiment. Using the low-resolution spectrometer calibrated for absolute spectro-photometry, we acquired long-slit spectral images of the total diffuse sky brightness toward six high-latitude fields spread over four sounding rocket flights. To separate the DGL spectrum from the total sky brightness, we correlated the spectral images with a 100 μm intensity map, which traces the dust column density in optically thin regions. The measured DGL spectrum shows no resolved features and is consistent with other DGL measurements in the optical and at near-infrared wavelengths longer than 1.8 μm. Our result implies that the continuum is consistently reproduced by models of scattered starlight in the Rayleigh scattering regime with a few large grains.

  7. Explicit studies of the quantum theory of light interstitial diffusion

    Energy Technology Data Exchange (ETDEWEB)

    Emin, D.; Baskes, M.I.; Wilson, W.D.

    1978-01-01

    The formalism associated with small-polaron diffusion in the high temperature semiclassical regime is generalized so as to transcend simplifications employed in developing the nonadiabatic theory. The diffusion constant is then calculated for simple models in which the metal atoms interact with each other and with the interstitial atom with two-body forces. Studies of these models not only confirm the necessity of generalizing the formalism but also yield diffusion constants whose magnitudes and temperature dependenes ar consistent with the general features of the existing data for the diffusion of hydrogen and its isotopes in bcc metals. The motion of a positive muon between interstitial positions of a metal is also investigated. (GHT)

  8. Production of a table of diffusion of light at small angles

    International Nuclear Information System (INIS)

    Desert, Sylvain

    2001-01-01

    This thesis reports the development of an optical table for the analysis, in absolute unit, of the light diffused by samples in air within an angle range from 1 to 25 degrees, by using a 16 bit Ccd camera. In this installation, a sample is located in a parallelepiped vessel where it is illuminated by a laser beam, and the power of this laser is controlled by means of a polarizer system. A lens is placed behind the sample, and the sensor (a Ccd camera) behind its focal point. After some generalities about light diffusion (Van de Huist criterion, Rayleigh diffusion, Mie theory), the author presents the different components of the experimental set-up, reports its calibration and the measurement of its performance (linearity, dynamics and detectability, angular range and resolution). He describes how a diffusion measurement is performed: experimental protocol, data processing, experimental limitations. He reports the application to light diffusion by latexes [fr

  9. Validation of ultraviolet, infrared, and narrow band light alternate light sources for detection of bruises in a pigskin model.

    Science.gov (United States)

    Olds, Kelly; Byard, Roger W; Winskog, Calle; Langlois, Neil E I

    2016-12-01

    Alternate light sources such as ultraviolet, narrow band, and infrared have been used in an attempt to reveal the presence of bruising that is not otherwise apparent (inapparent). The following study evaluates the ability of alternate light sources to enhance visibility of bruises by employing an objective assessment of digital photography images in conjunction with histology. A pigskin model was employed with bruises created by injection of blood to be not visible or barely visible (inapparent) under white light. The pigskin was photographed using alternate light source illumination. Images were assessed using the program Fiji ® to measure enhancement in terms of bruise length (cm). Photography results were compared with histology to confirm the presence of bruising. Violet and blue light sources produced the greatest enhancement, both with a p light sources in this study, indicating that light sources are not specific, and that their use to enhance the visibility of bruising should be undertaken with caution.

  10. Protein folding and misfolding shining light by infrared spectroscopy

    CERN Document Server

    Fabian, Heinz

    2012-01-01

    Infrared spectroscopy is a new and innovative technology to study protein folding/misfolding events in the broad arsenal of techniques conventionally used in this field. The progress in understanding protein folding and misfolding is primarily due to the development of biophysical methods which permit to probe conformational changes with high kinetic and structural resolution. The most commonly used approaches rely on rapid mixing methods to initiate the folding event via a sudden change in solvent conditions. Traditionally, techniques such as fluorescence, circular dichroism or visible absorption are applied to probe the process. In contrast to these techniques, infrared spectroscopy came into play only very recently, and the progress made in this field up to date which now permits to probe folding events over the time scale from picoseconds to minutes has not yet been discussed in a book. The aim of this book is to provide an overview of the developments as seen by some of the main contributors to the field...

  11. Excess diffuse light absorption in upper mesophyll limits CO2 drawdown and depresses photosynthesis

    Science.gov (United States)

    Sun-grown and shade-grown leaves of some species absorb direct and diffuse light differently. Sun-grown leaves can photosynthesize ~10-15% less under diffuse compared to direct irradiance, while shade-grown leaves do not exhibit this sensitivity. In this study, we investigate if the spatial differen...

  12. The Investigation of Property of Radiation and Absorbed of Infrared Lights of the Biological Tissues

    Science.gov (United States)

    Pang, Xiao-Feng; Deng, Bo; Xiao, He-Lan; Cai, Guo-Ping

    2010-04-01

    The properties of absorption of infrared light for collagen, hemoglobin, bivine serum albumen (BSA) protein molecules with α- helix structure and water in the living systems as well as the infrared transmission spectra for person’s skins and finger hands of human body in the region of 400-4000 cm-1 (i.e., wavelengths of 2-20 μm) have been collected and determined by using a Nicolet Nexus 670 FT-IR Spectrometer, a Perkin Elmer GX FT-IR spectrometer, an OMA (optical multichannel analysis) and an infrared probe systems, respectively. The experimental results obtained show that the protein molecules and water can all absorb the infrared lights in the ranges of 600-1900 cm-1 and 2900-3900 cm-l, but their properties of absorption are somewhat different due to distinctions of their structure and conformation and molecular weight. We know from the transmission spectra of person’s finger hands and skin that the infrared lights with wavelengths of 2 μm-7 μm can not only transmit over the person’s skin and finger hands, but also be absorbed by the above proteins and water in the living systems. Thus, we can conclude from this study that the human beings and animals can absorb the infrared lights with wavelengths of 2 μm-7 μm.

  13. An On-Line Method for Thermal Diffusivity Detection of Thin Films Using Infrared Video

    Directory of Open Access Journals (Sweden)

    Dong Huilong

    2016-03-01

    Full Text Available A novel method for thermal diffusivity evolution of thin-film materials with pulsed Gaussian beam and infrared video is reported. Compared with common pulse methods performed in specialized labs, the proposed method implements a rapid on-line measurement without producing the off-centre detection error. Through mathematical deduction of the original heat conduction model, it is discovered that the area s, which is encircled by the maximum temperature curve rTMAX(θ, increases linearly over elapsed time. The thermal diffusivity is acquired from the growth rate of the area s. In this study, the off-centre detection error is avoided by performing the distance regularized level set evolution formulation. The area s was extracted from the binary images of temperature variation rate, without inducing errors from determination of the heat source centre. Thermal diffusivities of three materials, 304 stainless steel, titanium, and zirconium have been measured with the established on-line detection system, and the measurement errors are: −2.26%, −1.07%, and 1.61% respectively.

  14. Treatment planning using tailored and standard cylindrical light diffusers for photodynamic therapy of the prostate

    International Nuclear Information System (INIS)

    Rendon, Augusto; Lilge, Lothar; Beck, J Christopher

    2008-01-01

    Interstitial photodynamic therapy (PDT) has seen a rebirth, partially prompted by the development of photosensitizers with longer absorption wavelengths that enable the treatment of larger tissue volumes. Here, we study whether using diffusers with customizable longitudinal emission profiles, rather than conventional ones with flat emission profiles, improves our ability to conform the light dose to the prostate. We present a modified Cimmino linear feasibility algorithm to solve the treatment planning problem, which improves upon previous algorithms by (1) correctly minimizing the cost function that penalizes deviations from the prescribed light dose, and (2) regularizing the inverse problem. Based on this algorithm, treatment plans were obtained under a variety of light delivery scenarios using 5-15 standard or tailored diffusers. The sensitivity of the resulting light dose distributions to uncertainties in the optical properties, and the placement of diffusers was also studied. We find that tailored diffusers only marginally outperform conventional ones in terms of prostate coverage and rectal sparing. Furthermore, it is shown that small perturbations in optical properties can lead to large changes in the light dose distribution, but that those changes can be largely corrected with a simple light dose re-normalization. Finally, we find that prostate coverage is only minimally affected by small changes in diffuser placement. Our results suggest that prostate PDT is not likely to benefit from the use of tailored diffusers. Other locations with more complex geometries might see a better improvement

  15. Protein diffusion coefficients determined by macroscopic-gradient Rayleigh interferometry and dynamic light scattering.

    Science.gov (United States)

    Annunziata, Onofrio; Buzatu, Daniela; Albright, John G

    2005-12-20

    Dynamic light scattering (DLS) is extensively used for measuring macromolecule diffusion coefficients. Contrary to classical techniques based on macroscopic concentration gradients, DLS probes microscopic fluctuations in concentration. DLS accuracy and its concordance with macroscopic-gradient techniques remains an outstanding important issue. We measured lysozyme diffusion coefficients in aqueous salt using both DLS and Rayleigh interferometry, a highly accurate macroscopic-gradient technique. The precision of our results is unprecedented. We find that our DLS values were systematically 2% higher than interferometry values. We believe that our interferometric measurements have produced the most accurate diffusion data ever reported for a protein, providing a new standard for quality control of DLS measurements. Furthermore, by interferometry, we have determined the whole diffusion coefficient matrix required for rigorously describing lysozyme-salt coupled diffusion. For the first time, we experimentally demonstrate that DLS does not provide the protein diffusion coefficient but one eigenvalue of the diffusion coefficient matrix.

  16. Time-resolved far-infrared experiments at the National Synchrotron Light Source. Final report

    International Nuclear Information System (INIS)

    Tanner, D.B.; Reitze, D.H.; Carr, G.L.

    1999-01-01

    A facility for time-resolved infrared and far-infrared spectroscopy has been built and commissioned at the National Synchrotron Light Source. This facility permits the study of time dependent phenomena over a frequency range from 2-8000cm -1 (0.25 meV-1 eV). Temporal resolution is approximately 200 psec and time dependent phenomena in the time range out to 100 nsec can be investigated

  17. Near-infrared light-triggered dissociation of block copolymer micelles for controlled drug release

    Science.gov (United States)

    Cao, Jie; Huang, Shanshan; Chen, Yuqi; Li, Siwen; Achilefu, Samuel; Qian, Zhiyu; Gu, Yueqing

    2013-02-01

    In this manuscript, a new near-infrared (NIR) light-breakable amphiphilic block copolymer containing light-sensitive triggering group on the hydrophobic block was developed. By encapsulating NIR dye cypate inside micelles of poly (N-succinyl-N'-4- (2-nitrobenzyloxy)-succinyl chitosan) and exposing the micellar solution to 765.9 nm light, the photo-cleavage reaction was activated and leading to the dissociation of micelles and release of co-loaded hydrophobic species. The UV-vis absorption spectra, fourier transform infrared (FTIR) spectra and 1H nuclear magnetic resonance (1H NMR) spectra of micelles were characterized. Triggered burst release of the payload upon NIR irradiation and subsequent degradation of the micelles were observed by transmission electron microscopy (TEM). This system represents a general and efficient method to circumvent the need for UV or visible light excitation that is a common drawback for light-responsive polymeric systems developed for potential biomedical applications.

  18. 3D-surface reconstruction method for diffuse optical tomography phantoms and tissues using structured and polarized light

    Science.gov (United States)

    Baum, K.; Hartmann, R.; Bischoff, T.; Himmelreich, F.; Heverhagen, J. T.

    2011-07-01

    In recent years optical methods became increasingly popular for pre-clinical research and small animal imaging. One main field in biomedical optics research is the diffuse optical tomography (DOT). Many new systems were invented for small animal imaging and breast cancer detection. In combination with the progress in the development of optical markers, optical detectors and near infrared light sources, these new systems have become a formidable source of information. Most of the systems detect the transmitted light which passes through an object and one observes the intensity variations on the detector side. The biggest challenge for all diffuse optical tomography systems is the enormous scattering of light in tissues and tissue-like phantoms resulting in loss of image information. Many systems work with contact gels and optical fibers that have direct contact with the object to neglect the light path between surface and detector. Highly developed mathematic models and reconstruction algorithms based on FEM and Monte Carlo simulations describe the light transport inside tissues and determine differences in absorption and scattering coefficients inside. The proposed method allows a more exact description of the orientation of surface elements from semi-transparent objects towards the detector. Using Polarization Difference Imaging (PDI) in combination with structured light 3D-scanning, it is possible to separate information from the surface from that of the subsurface. Thus, the actual surface shape can be determined. Furthermore, overlaying byproducts caused by inter-reflections and multiple scattering can be filtered from the basic image information with this method. To enhance the image quality, the intensity dispersion between surface and camera is calculated and the creation of 3D-FEM-meshes simplified.

  19. Diffusion theory for light propagation in biological tissue : limitations and adaptations

    NARCIS (Netherlands)

    Graaff, R; Hoenders, BJ; Tuchin, VV

    2005-01-01

    Diffusion theory is an approximation of the equation of radiative transport, that is used to describe light propagation in turbid media. This approximation is very popular because of its simplicity, possibilities to describe time-resolved light propagation, and for its appeal to physical intuition.

  20. Light-dependent changes in outer retinal water diffusion in rats in vivo.

    Science.gov (United States)

    Bissig, David; Berkowitz, Bruce A

    2012-01-01

    To test the hypothesis that in rats, intraretinal light-dependent changes on diffusion-weighted magnetic resonance imaging (MRI) in vivo are consistent with known retinal layer-specific physiology. In male Sprague-Dawley rats, retinal morphology (thickness, extent, surface area, volume) and intraretinal profiles of the apparent diffusion coefficient (ADC, i.e., water mobility) parallel and perpendicular to the optic nerve were measured in vivo using quantitative MRI methods during light and dark stimulation. The parallel ADC in the posterior half of the avascular, photoreceptor-dominated outer retina was significantly higher in light than dark, and this pattern was reversed (dark>light) in the anterior outer retina. The perpendicular ADC in the posterior outer retina was similar in light and dark, but was significantly higher in dark than light in the anterior outer retina. No light-dark changes in the inner retina were noted. We identified light-dependent intraretinal diffusion changes that reflected established stimulation-based changes in outer retinal hydration. These findings are expected to motivate future applications of functional diffusion-based MRI in blinding disorders of the outer retina.

  1. A rotational diffusion coefficient of the 70s ribosome determined by depolarized laser light scattering

    NARCIS (Netherlands)

    Bruining, J.; Fijnaut, H.M.

    We have obtained a rotational diffusion coefficient of the 70S ribosome isolated from Escherichia-coli (MRE-600), from the depolarized light scattering spectrum measured by photon correlation spectroscopy. The intensity correlation function of depolarized scattered light contains contributions due

  2. Defect Detection in Fuel Cell Gas Diffusion Electrodes Using Infrared Thermography

    Energy Technology Data Exchange (ETDEWEB)

    Ulsh, Michael; Porter, Jason M.; Bittinat, Daniel C.; Bender, Guido

    2016-04-01

    Polymer electrolyte membrane fuel cells are energy conversion devices that offer high power densities and high efficiencies for mobile and other applications. Successful introduction into the marketplace requires addressing cost barriers such as production volumes and platinum loading. For cost reduction, it is vital to minimize waste and maximize quality during the manufacturing of platinum-containing electrodes, including gas diffusion electrodes (GDEs). In this work, we report on developing a quality control diagnostic for GDEs, involving creating an ex situ exothermic reaction on the electrode surface and using infrared thermography to measure the resulting temperature profile. Experiments with a moving GDE containing created defects were conducted to demonstrate the applicability of the diagnostic for real-time web-line inspection.

  3. Photothermal and infrared thermography characterizations of thermal diffusion in hydroxyapatite materials

    Science.gov (United States)

    Bante-Guerra, J.; Conde-Contreras, M.; Trujillo, S.; Martinez-Torres, P.; Cruz-Jimenez, B.; Quintana, P.; Alvarado-Gil, J. J.

    2009-02-01

    Non destructive analysis of hydroxyapatite materials is an active research area mainly in the study of dental pieces and bones due to the importance these pieces have in medicine, archeology, dentistry, forensics and anthropology. Infrared thermography and photothermal techniques constitute highly valuable tools in those cases. In this work the quantitative analysis of thermal diffusion in bones is presented. The results obtained using thermographic images are compared with the ones obtained from the photothermal radiometry. Special emphasis is done in the analysis of samples with previous thermal damage. Our results show that the treatments induce changes in the physical properties of the samples. These results could be useful in the identification of the agents that induced modifications of unknown origin in hydroxyapatite structures.

  4. Design of a solid state laser for low noise upconversion detection of near infrared light

    DEFF Research Database (Denmark)

    Høgstedt, Lasse; Tidemand-Lichtenberg, Peter; Pedersen, Christian

    2015-01-01

    To maximize signal-to-noise ratio for upconversion of near-infrared light we show that the mixing intensity should be 3 GW/m2. With emphasis on the noise contribution from random duty-cycle errors the optimum design parameters is discussed.......To maximize signal-to-noise ratio for upconversion of near-infrared light we show that the mixing intensity should be 3 GW/m2. With emphasis on the noise contribution from random duty-cycle errors the optimum design parameters is discussed....

  5. Diffuse reflectance near infrared-chemometric methods development and validation of amoxicillin capsule formulations

    Directory of Open Access Journals (Sweden)

    Ahmed Nawaz Khan

    2016-01-01

    Full Text Available Objective: The aim of present study was to establish near infrared-chemometric methods that could be effectively used for quality profiling through identification and quantification of amoxicillin (AMOX in formulated capsule which were similar to commercial products. In order to evaluate a large number of market products easily and quickly, these methods were modeled. Materials and Methods: Thermo Scientific Antaris II near infrared analyzer with TQ Analyst Chemometric Software were used for the development and validation of the identification and quantification models. Several AMOX formulations were composed with four excipients microcrystalline cellulose, magnesium stearate, croscarmellose sodium and colloidal silicon dioxide. Development includes quadratic mixture formulation design, near infrared spectrum acquisition, spectral pretreatment and outlier detection. According to prescribed guidelines by International Conference on Harmonization (ICH and European Medicine Agency (EMA developed methods were validated in terms of specificity, accuracy, precision, linearity, and robustness. Results: On diffuse reflectance mode, an identification model based on discriminant analysis was successfully processed with 76 formulations; and same samples were also used for quantitative analysis using partial least square algorithm with four latent variables and 0.9937 correlation of coefficient followed by 2.17% root mean square error of calibration (RMSEC, 2.38% root mean square error of prediction (RMSEP, 2.43% root mean square error of cross-validation (RMSECV. Conclusion: Proposed model established a good relationship between the spectral information and AMOX identity as well as content. Resulted values show the performance of the proposed models which offers alternate choice for AMOX capsule evaluation, relative to that of well-established high-performance liquid chromatography method. Ultimately three commercial products were successfully evaluated

  6. Photosensitizer and light diffusion through dentin in photodynamic therapy.

    Science.gov (United States)

    Nogueira, Ana C; Graciano, Ariane X; Nagata, Juliana Y; Fujimaki, Mitsue; Terada, Raquel S S; Bento, Antonio C; Astrath, Nelson G C; Baesso, Mauro L

    2013-05-01

    Photodynamic therapy has been considered a potential antimicrobial modality against oral infections, including dental caries. A model to estimate the penetration of both photosensitizers and light through human dentin, a factor of interest in photodynamic therapy, is proposed. The photoacoustic spectroscopy technique was used to evaluate in vitro dentin permeability of three different photosensitizers. Using the dentin optical absorption and scattering coefficients, it was possible to propose a semi-quantitative model predicting both photosensitizer and light doses within dentin. The graphic illustrations obtained provided guidelines that may be useful in photodynamic therapy protocols used as antimicrobial tools in caries lesions.

  7. Comparative effectiveness of light emitting diodes (LEDs) and Lasers in near infrared photoimmunotherapy

    Science.gov (United States)

    Sato, Kazuhide; Watanabe, Rira; Hanaoka, Hirofumi; Nakajima, Takahito; Choyke, Peter L.; Kobayashi, Hisataka

    2016-01-01

    Near infrared photoimmunotherapy (NIR-PIT) is a new cancer treatment that combines the specificity of antibodies for targeting tumors with the toxicity induced by photosensitizers after exposure to near infrared (NIR) light. Herein we compare two NIR-light sources; light emitting diodes (LEDs) and Lasers, for their effectiveness in NIR-PIT. A photosensitizer, IRDye-700DX, conjugated to panitumumab (pan-IR700), was incubated with EGFR-expressing A431 and MDA-MB-468-luc cells. NIR-light was provided by LEDs or Lasers at the same light dose. Laser-light produced more cytotoxicity and greater reductions in IR700-fluorescence intensity than LED-light. Laser-light also produced more cytotoxicity in vivo in both cell lines. Assessment of super-enhanced permeability and retention (SUPR) effects were stronger with Laser than LED. These results suggest that Laser-light produced significantly more cytotoxic effects compared to LEDs. Although LED is less expensive, Laser-light produces superior results in NIR-PIT. PMID:26885688

  8. Comparative effectiveness of light emitting diodes (LEDs) and Lasers in near infrared photoimmunotherapy.

    Science.gov (United States)

    Sato, Kazuhide; Watanabe, Rira; Hanaoka, Hirofumi; Nakajima, Takahito; Choyke, Peter L; Kobayashi, Hisataka

    2016-03-22

    Near infrared photoimmunotherapy (NIR-PIT) is a new cancer treatment that combines the specificity of antibodies for targeting tumors with the toxicity induced by photosensitizers after exposure to near infrared (NIR) light. Herein we compare two NIR-light sources; light emitting diodes (LEDs) and Lasers, for their effectiveness in NIR-PIT. A photosensitizer, IRDye-700DX, conjugated to panitumumab (pan-IR700), was incubated with EGFR-expressing A431 and MDA-MB-468-luc cells. NIR-light was provided by LEDs or Lasers at the same light dose. Laser-light produced more cytotoxicity and greater reductions in IR700-fluorescence intensity than LED-light. Laser-light also produced more cytotoxicity in vivo in both cell lines. Assessment of super-enhanced permeability and retention (SUPR) effects were stronger with Laser than LED. These results suggest that Laser-light produced significantly more cytotoxic effects compared to LEDs. Although LED is less expensive, Laser-light produces superior results in NIR-PIT.

  9. Searching for diffuse light in the M96 galaxy group

    Energy Technology Data Exchange (ETDEWEB)

    Watkins, Aaron E.; Mihos, J. Christopher; Harding, Paul [Department of Astronomy, Case Western Reserve University, Cleveland, OH 44106 (United States); Feldmeier, John J. [Department of Physics and Astronomy, Youngstown State University, Youngstown, OH 44555 (United States)

    2014-08-10

    We present deep, wide-field imaging of the M96 galaxy group (also known as the Leo I Group). Down to surface brightness limits of μ{sub B} = 30.1 and μ{sub V} = 29.5, we find no diffuse, large-scale optical counterpart to the 'Leo Ring', an extended H I ring surrounding the central elliptical M105 (NGC 3379). However, we do find a number of extremely low surface brightness (μ{sub B} ≳ 29) small-scale streamlike features, possibly tidal in origin, two of which may be associated with the Ring. In addition, we present detailed surface photometry of each of the group's most massive members—M105, NGC 3384, M96 (NGC 3368), and M95 (NGC 3351)—out to large radius and low surface brightness, where we search for signatures of interaction and accretion events. We find that the outer isophotes of both M105 and M95 appear almost completely undisturbed, in contrast to NGC 3384 which shows a system of diffuse shells indicative of a recent minor merger. We also find photometric evidence that M96 is accreting gas from the H I ring, in agreement with H I data. In general, however, interaction signatures in the M96 Group are extremely subtle for a group environment, and provide some tension with interaction scenarios for the formation of the Leo H I Ring. The lack of a significant component of diffuse intragroup starlight in the M96 Group is consistent with its status as a loose galaxy group in which encounters are relatively mild and infrequent.

  10. Reflection Matrix Method for Controlling Light After Reflection From a Diffuse Scattering Surface

    Science.gov (United States)

    2016-12-22

    of Philosophy Kenneth W. Burgi, BS, MS Major, USAF 22 December 2016 DISTRIBUTION STATEMENT A APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. AFIT...refocusing light through thin films of a turbid medium. When coherent light is trans- mitted through a stationary diffuser (i.e. a turbid medium), a fine...resultant light scatter [14, 15, 21, 23]. Transmission matrices were measured with microscopic objectives and thin films of turbid media, resulting in

  11. Moisture assay of an antifungal by near-infrared diffuse reflectance spectroscopy.

    Science.gov (United States)

    Dunko, Adam; Dovletoglou, Angelos

    2002-04-01

    Near-infrared (NIR) diffuse reflectance spectroscopy was employed in the method development and validation of a moisture assay for the novel antifungal caspofungin acetate. Spectra were obtained over the entire spectral region available (950-1650 nm) using an InGaAs photodiode array detector equipped with a diffuse reflectance probe. No sample pre-treatment was required and the analysis time was less than 1 min. Primary reference data were obtained using a Karl Fischer (KF) titration (coulometric, volumetric or both). The investigated range of water content was 2.6-9.9% (w/w) with a standard error of prediction (SEP) of 0.2%. The predictive capabilities of the partial least-squares (PLS) regression calibration model used in the moisture assay were verified using independent test sets. The NIR predicted values of the developed method were equivalent to the reference method sets and the prediction error was equivalent to the reference method error. These results reveal that the predictive model constructed by means of a PLS regression is valid, rugged and could be used to determine moisture levels on-line in caspofungin acetate drug substance.

  12. Phosphorous Diffuser Diverged Blue Laser Diode for Indoor Lighting and Communication

    KAUST Repository

    Chi, Yu-Chieh

    2015-12-21

    An advanced light-fidelity (Li-Fi) system based on the blue Gallium nitride (GaN) laser diode (LD) with a compact white-light phosphorous diffuser is demonstrated for fusing the indoor white-lighting and visible light communication (VLC). The phosphorous diffuser adhered blue GaN LD broadens luminescent spectrum and diverges beam spot to provide ample functionality including the completeness of Li-Fi feature and the quality of white-lighting. The phosphorous diffuser diverged white-light spot covers a radiant angle up to 120o with CIE coordinates of (0.34, 0.37). On the other hand, the degradation on throughput frequency response of the blue LD is mainly attributed to the self-feedback caused by the reflection from the phosphor-air interface. It represents the current state-of-the-art performance on carrying 5.2-Gbit/s orthogonal frequency-division multiplexed 16-quadrature-amplitude modulation (16-QAM OFDM) data with a bit error rate (BER) of 3.1 × 10−3 over a 60-cm free-space link. This work aims to explore the plausibility of the phosphorous diffuser diverged blue GaN LD for future hybrid white-lighting and VLC systems.

  13. Baseline Correction of Diffuse Reflection Near-Infrared Spectra Using Searching Region Standard Normal Variate (SRSNV).

    Science.gov (United States)

    Genkawa, Takuma; Shinzawa, Hideyuki; Kato, Hideaki; Ishikawa, Daitaro; Murayama, Kodai; Komiyama, Makoto; Ozaki, Yukihiro

    2015-12-01

    An alternative baseline correction method for diffuse reflection near-infrared (NIR) spectra, searching region standard normal variate (SRSNV), was proposed. Standard normal variate (SNV) is an effective pretreatment method for baseline correction of diffuse reflection NIR spectra of powder and granular samples; however, its baseline correction performance depends on the NIR region used for SNV calculation. To search for an optimal NIR region for baseline correction using SNV, SRSNV employs moving window partial least squares regression (MWPLSR), and an optimal NIR region is identified based on the root mean square error (RMSE) of cross-validation of the partial least squares regression (PLSR) models with the first latent variable (LV). The performance of SRSNV was evaluated using diffuse reflection NIR spectra of mixture samples consisting of wheat flour and granular glucose (0-100% glucose at 5% intervals). From the obtained NIR spectra of the mixture in the 10 000-4000 cm(-1) region at 4 cm intervals (1501 spectral channels), a series of spectral windows consisting of 80 spectral channels was constructed, and then SNV spectra were calculated for each spectral window. Using these SNV spectra, a series of PLSR models with the first LV for glucose concentration was built. A plot of RMSE versus the spectral window position obtained using the PLSR models revealed that the 8680–8364 cm(-1) region was optimal for baseline correction using SNV. In the SNV spectra calculated using the 8680–8364 cm(-1) region (SRSNV spectra), a remarkable relative intensity change between a band due to wheat flour at 8500 cm(-1) and that due to glucose at 8364 cm(-1) was observed owing to successful baseline correction using SNV. A PLSR model with the first LV based on the SRSNV spectra yielded a determination coefficient (R2) of 0.999 and an RMSE of 0.70%, while a PLSR model with three LVs based on SNV spectra calculated in the full spectral region gave an R2 of 0.995 and an RMSE of

  14. Dynamic Softening or Stiffening a Supramolecular Hydrogel by Ultraviolet or Near-Infrared Light.

    Science.gov (United States)

    Zheng, Zhao; Hu, Jingjing; Wang, Hui; Huang, Junlin; Yu, Yihua; Zhang, Qiang; Cheng, Yiyun

    2017-07-26

    The development of light-responsive hydrogels that exhibit switchable size and mechanical properties with temporal and spatial resolution is of great importance in many fields. However, it remains challenging to prepare smart hydrogels that dramatically change their properties in response to both ultraviolet (UV) and near-infrared (NIR) lights. Here, we designed a dual-light responsive supramolecular gel by integrating UV light-switchable host-guest recognition, temperature responsiveness, and NIR photothermal ability in the gel. The gel could rapidly self-heal and is capable of both softening and stiffening controlled by UV and NIR lights, respectively. Besides stiffness modulation, the bending direction of the gel can be controlled by UV or NIR light irradiation. The smart gel makes it possible to generate dynamic materials that respond to both UV and NIR lights and represents a useful tool that might be used to modulate cellular microenvironments with spatiotemporal resolution.

  15. Diffuse-reflectance fourier-transform mid-infrared spectroscopy as a method of characterizing changes in soil organic matter

    Science.gov (United States)

    Diffuse-Reflectance Fourier-Transform Mid-Infrared Spectroscopy (MidIR) can identify the presence of important organic functional groups in soil organic matter (SOM). Soils contain myriad organic and inorganic components that absorb in the MidIR so spectral interpretation needs to be validated in or...

  16. Near-infrared light controlled photocatalytic activity of carbon quantum dots for highly selective oxidation reaction

    Science.gov (United States)

    Li, Haitao; Liu, Ruihua; Lian, Suoyuan; Liu, Yang; Huang, Hui; Kang, Zhenhui

    2013-03-01

    Selective oxidation of alcohols is a fundamental and significant transformation for the large-scale production of fine chemicals, UV and visible light driven photocatalytic systems for alcohol oxidation have been developed, however, the long wavelength near infrared (NIR) and infrared (IR) light have not yet fully utilized by the present photocatalytic systems. Herein, we reported carbon quantum dots (CQDs) can function as an effective near infrared (NIR) light driven photocatalyst for the selective oxidation of benzyl alcohol to benzaldehyde. Based on the NIR light driven photo-induced electron transfer property and its photocatalytic activity for H2O2 decomposition, this metal-free catalyst could realize the transformation from benzyl alcohol to benzaldehyde with high selectivity (100%) and conversion (92%) under NIR light irradiation. HO&z.rad; is the main active oxygen specie in benzyl alcohol selective oxidative reaction confirmed by terephthalic acid photoluminescence probing assay (TA-PL), selecting toluene as the substrate. Such metal-free photocatalytic system also selectively converts other alcohol substrates to their corresponding aldehydes with high conversion, demonstrating a potential application of accessing traditional alcohol oxidation chemistry.Selective oxidation of alcohols is a fundamental and significant transformation for the large-scale production of fine chemicals, UV and visible light driven photocatalytic systems for alcohol oxidation have been developed, however, the long wavelength near infrared (NIR) and infrared (IR) light have not yet fully utilized by the present photocatalytic systems. Herein, we reported carbon quantum dots (CQDs) can function as an effective near infrared (NIR) light driven photocatalyst for the selective oxidation of benzyl alcohol to benzaldehyde. Based on the NIR light driven photo-induced electron transfer property and its photocatalytic activity for H2O2 decomposition, this metal-free catalyst could realize

  17. Development of infrared water sensors based on novel light sources

    Science.gov (United States)

    Donohue, John R.; Masterson, Hugh J.; Maze, Gwenael; O'Dwyer, Kieran; MacCraith, Brian D.

    2003-03-01

    The detection and measurement of vapour-phase or liquid-phase water is important in many industrial and chemical processes. Water exhibits strong absorption bands compared to other substances in the near infrared (NIR), and for this reason NIR spectroscopy is especially well suited to moisture determination. A lack of suitable sources in the NIR, however, has impeded the application of optical sensors to water detection. We have developed a modulatable IR source for use in a moisture sensor. In the system, the luminescent emission from optically pumped rare earth doped glasses is used. Thulium doped zirconium fluoride glass, which luminesces at 1.83 mm was the material chosen. The spectral overlap with the water absorption band is significant, and the output stability matches that of the pump source, which is typically an internally modulated diode laser emitting at 685nm. The detection system uses a reference beam and a probe beam to monitor changes in absorption due to moisture or water vapour. Results illustrating the effectiveness of the novel IR source in a sensor platform to measure trace amounts of liquid water and water vapor will be presented.

  18. Position Detection Based on Intensities of Reflected Infrared Light

    DEFF Research Database (Denmark)

    Christensen, Henrik Vie

    measurements of reflected light intensities, and includes easy calibration. The method for reconstructing 3D positions has been implemented in a prototype of a “non-Touch Screen” for a computer, so that the user can control a cursor in three dimensions by moving his/hers hand in front of the computer screen....... The 2D position reconstruction method is mplemented in a prototype of a human-machine interface (HMI) for an electrically powered wheelchair, such that the wheelchair user can control the movement of the wheelchair by head movements. Both “non-Touch Screen” prototype and wheelchair HMI has been tested...

  19. Near-infrared light absorption by brown carbon in the ambient atmosphere

    Science.gov (United States)

    Chung, C.; Hoffer, A.; Beres, N. D.; Moosmüller, H.; Liu, C.; Green, M.; Kim, S. W.; Engelbrecht, J. P.; Gelencser, A.

    2017-12-01

    Organic aerosols have been assumed to have little-to-no absorption in the red and near-infrared spectral regions of solar radiation, even though a class of organic aerosols were shown to absorb significantly in these spectral regions. Here, we show that ambient atmospheric data from commonly-used 7-wavelength aethalometers contain evidence of abundant near-infrared light absorption by organic aerosol. This evidence comes from the absorption Ångström exponent over 880 950 nm, which often exceeds values explainable by fresh or coated black carbon, or mineral dust. This evidence is not due to an artifact from the instrument random errors or biases, either. The best explanation for these large 880/950 nm absorption Ångström exponent values in the aethalometer data is near-infrared light absorption by tar balls. Tar balls are among common particles from forest fire.

  20. Influence of cloud optical thickness on surface diffuse light and carbon uptake in forests and croplands

    Science.gov (United States)

    Cheng, S. J.; Steiner, A. L.; Nadelhoffer, K. J.

    2014-12-01

    Accurately modeling atmospheric CO2 removal by terrestrial ecosystems requires an understanding of how atmospheric conditions change the rate of photosynthesis across major vegetation types. Diffuse light, which is created from interactions between incident solar radiation and atmospheric aerosols and clouds, has been postulated to increase carbon uptake in terrestrial ecosystems. To determine how cloud conditions affect carbon uptake through its influence on diffuse light, we quantify the relationship between cloud optical thickness, which indicates surface light attenuation by clouds, and surface diffuse light. We then examine the relationship between cloud optical thickness and gross primary productivity (GPP) to determine whether cloud properties could modulate GPP in temperate ecosystems. Surface diffuse light and GPP data are obtained from publically available Ameriflux data (Mead Crop sites, University of Michigan Biological Station, Morgan Monroe, and Howland Forest) and cloud optical thickness data over the Ameriflux sites are retrieved from NASA's Moderate Resolution Imaging Spetroradiometer. We compare the response of GPP to cloud optical thickness between croplands and forests, as well as within ecosystem types to determine ecosystem-specific responses and the role of plant community composition on ecosystem-level GPP under varying cloud conditions. By linking atmospheric cloud properties to surface light conditions and ecosystem carbon fluxes, we refine understanding of land-atmosphere carbon cycling and how changes in atmospheric cloud conditions may influence the future of the land carbon sink.

  1. Effects of ultraviolet radiation, visible light, and infrared radiation on erythema and pigmentation: a review.

    Science.gov (United States)

    Sklar, Lindsay R; Almutawa, Fahad; Lim, Henry W; Hamzavi, Iltefat

    2013-01-01

    The effects of ultraviolet radiation, visible light, and infrared radiation on cutaneous erythema, immediate pigment darkening, persistent pigment darkening, and delayed tanning are affected by a variety of factors. Some of these factors include the depth of cutaneous penetration of the specific wavelength, the individual skin type, and the absorption spectra of the different chromophores in the skin. UVB is an effective spectrum to induce erythema, which is followed by delayed tanning. UVA induces immediate pigment darkening, persistent pigment darkening, and delayed tanning. At high doses, UVA (primarily UVA2) can also induce erythema in individuals with skin types I-II. Visible light has been shown to induce erythema and a tanning response in dark skin, but not in fair skinned individuals. Infrared radiation produces erythema, which is probably a thermal effect. In this article we reviewed the available literature on the effects of ultraviolet radiation, visible light, and infrared radiation on the skin in regards to erythema and pigmentation. Much remains to be learned on the cutaneous effects of visible light and infrared radiation.

  2. LIGHT DIFFUSION IN THE TROPICAL DRY FOREST OF COSTA RICA

    OpenAIRE

    Calvo-Rodriguez, S.; Sanchez-Azofeifa, G. A

    2016-01-01

    Leaf Area Index (LAI) has been defined as the total leaf area (one-sided) in relation to the ground. LAI has an impact on tree growth and recruitment through the interception of light, which in turn affects primary productivity. Even though many instruments exist for estimating LAI from ground, they are often laborious and costly to run continuously. Measurements of LAI from the field using traditional sensors (e.g., LAI-2000) require multiple visits to the field under very specific sky condi...

  3. AN IN-DEPTH VIEW OF THE MID-INFRARED PROPERTIES OF POINT SOURCES AND THE DIFFUSE ISM IN THE SMC GIANT H II REGION, N66

    International Nuclear Information System (INIS)

    Whelan, David G.; Johnson, Kelsey E.; Indebetouw, Rémy; Lebouteiller, Vianney; Galliano, Frédéric; Peeters, Els; Bernard-Salas, Jeronimo; Brandl, Bernhard R.

    2013-01-01

    The focus of this work is to study mid-infrared point sources and the diffuse interstellar medium (ISM) in the low-metallicity (∼0.2 Z ☉ ) giant H II region N66 in order to determine properties that may shed light on star formation in these conditions. Using the Spitzer Space Telescope's Infrared Spectrograph, we study polycyclic aromatic hydrocarbon (PAH), dust continuum, silicate, and ionic line emission from 14 targeted infrared point sources as well as spectra of the diffuse ISM that is representative of both the photodissociation regions (PDRs) and the H II regions. Among the point source spectra, we spectroscopically confirm that the brightest mid-infrared point source is a massive embedded young stellar object, we detect silicates in emission associated with two young stellar clusters, and we see spectral features of a known B[e] star that are commonly associated with Herbig Be stars. In the diffuse ISM, we provide additional evidence that the very small grain population is being photodestroyed in the hard radiation field. The 11.3 μm PAH complex emission exhibits an unexplained centroid shift in both the point source and ISM spectra that should be investigated at higher signal-to-noise and resolution. Unlike studies of other regions, the 6.2 μm and 7.7 μm band fluxes are decoupled; the data points cover a large range of I 7.7 /I 11.3 PAH ratio values within a narrow band of I 6.2 /I 11.3 ratio values. Furthermore, there is a spread in PAH ionization, being more neutral in the dense PDR where the radiation field is relatively soft, but ionized in the diffuse ISM/PDR. By contrast, the PAH size distribution appears to be independent of local ionization state. Important to unresolved studies of extragalactic low-metallicity star-forming regions, we find that emission from the infrared-bright point sources accounts for only 20%-35% of the PAH emission from the entire region. These results make a comparative data set to other star-forming regions with

  4. Prophylactic treatment of seasonal affective disorder (SAD) by using light visors : Bright white or infrared light?

    NARCIS (Netherlands)

    Meesters, Y; Beersma, DGM; Bouhuys, AL; van den Hoofdakker, RH

    1999-01-01

    Background: Thirty-eight patients with SAD participated in a light visor study addressing two questions. 1. Can the development of a depressive episode be prevent ed by daily exposure to bright light started before symptom onset in early fall and continued throughout the winter? 2. Does the light

  5. Infrared

    Science.gov (United States)

    Vollmer, M.

    2013-11-01

    techniques such as attenuated total reflectance [6]. The two final papers deal with what seem to be wholly different scientific fields [7, 8]. One paper describes SOFIA, an aeroplane-based astronomical observatory covering the whole IR range [7], while the other represents a small review of the quite new topic of terahertz physics at the upper end of the IR spectral range, from around 30 µm to 3 mm wavelength, and its many applications in science and industry [8]. Although artificially separated, all these fields use similar kinds of detectors, similar kinds of IR sources and similar technologies, while the instruments use the same physical principles. We are convinced that the field of infrared physics will develop over the next decade in the same dynamic way as during the last, and this special issue may serve as starting point for regular submissions on the topic. At any rate, it shines a light on this fascinating and many-faceted subject, which started more than 200 years ago. References [1] Mangold K, Shaw J A and Vollmer M 2013 The physics of near-infrared photography Eur. J. Phys. 34 S51-71 [2] Vollmer M and Möllmann K-P 2013 Characterization of IR cameras in student labs Eur. J. Phys. 34 S73-90 [3] Ibarra-Castanedo C, Tarpani J R and Maldague X P V 2013 Nondestructive testing with thermography Eur. J. Phys. 34 S91-109 [4] Shaw J A and Nugent P W 2013 Physics principles in radiometric infrared imaging of clouds in the atmosphere Eur. J. Phys. 34 S111-21 [5] Möllmann K-P and Vollmer M 2013 Fourier transform infrared spectroscopy in physics laboratory courses Eur. J. Phys. 34 S123-37 [6] Heise H M, Fritzsche J, Tkatsch H, Waag F, Karch K, Henze K, Delbeck S and Budde J 2013 Recent advances in mid- and near-infrared spectroscopy with applications for research and teaching, focusing on petrochemistry and biotechnology relevant products Eur. J. Phys. 34 S139-59 [7] Krabbe A, Mehlert D, Röser H-P and Scorza C 2013 SOFIA, an airborne observatory for infrared astronomy

  6. The effect of lunarlike satellites on the orbital infrared light curves of Earth-analog planets.

    Science.gov (United States)

    Moskovitz, Nicholas A; Gaidos, Eric; Williams, Darren M

    2009-04-01

    We have investigated the influence of lunarlike satellites on the infrared orbital light curves of Earth-analog extrasolar planets. Such light curves will be obtained by NASA's Terrestrial Planet Finder (TPF) and ESA's Darwin missions as a consequence of repeat observations to confirm the companion status of a putative planet and determine its orbit. We used an energy balance model to calculate disk-averaged infrared (bolometric) fluxes from planet-satellite systems over a full orbital period (one year). The satellites are assumed to lack an atmosphere, have a low thermal inertia like that of the Moon, and span a range of plausible radii. The planets are assumed to have thermal and orbital properties that mimic those of Earth, while their obliquities and orbital longitudes of inferior conjunction remain free parameters. Even if the gross thermal properties of the planet can be independently constrained (e.g., via spectroscopy or visible-wavelength detection of specular glint from a surface ocean), only the largest (approximately Mars-sized) lunarlike satellites can be detected by light curve data from a TPF-like instrument (i.e., one that achieves a photometric signal-to-noise ratio of 10 to 20 at infrared wavelengths). Nondetection of a lunarlike satellite can obfuscate the interpretation of a given system's infrared light curve so that it may resemble a single planet with high obliquity, different orbital longitude of vernal equinox relative to inferior conjunction, and in some cases drastically different thermal characteristics. If the thermal properties of the planet are not independently established, then the presence of a lunarlike satellite cannot be inferred from infrared data, which would thus demonstrate that photometric light curves alone can only be used for preliminary study, and the addition of spectroscopic data will be necessary.

  7. METHOD OF AND APPARATUS FOR WITHDRAWING LIGHT ISOTOPIC PRODUCT FROM A LIQUID THERMAL DIFFUSION PLANT

    Science.gov (United States)

    Dole, M.

    1959-09-22

    An improved process and apparatus are described for removing enriched product from the columns of a thermal diffusion plant for separation of isotopes. In the removal cycle, light product at the top cf the diffusion columns is circulated through the column tops and a shipping cylinder connected thereto unttl the concertation of enriched product in the cylinder reaches the desired point. During the removal, circulation through the bottoms is blocked bv freezing. in the diffusion cycle, the bottom portion is unfrozen, fresh feed is distributed to the bottoms of the columns, ard heavy product is withdrawn from the bottoms, while the tops of the columns are blocked by freezing.

  8. Reflection of diffuse light from dielectric one-dimensional rough surfaces.

    Science.gov (United States)

    González-Alcalde, Alma K; Méndez, Eugenio R; Terán, Emiliano; Cuppo, Fabio L S; Olivares, J A; García-Valenzuela, Augusto

    2016-03-01

    We study the reflection of diffuse light from 1D randomly rough dielectric interfaces. Results for the reflectance under diffuse illumination are obtained by rigorous numerical simulations and then contrasted with those obtained for flat surfaces. We also explore the possibility of using perturbation theories and conclude that they are limited for this type of study. Numerical techniques based on Kirchhoff approximation and reduced Rayleigh equations yield better results. We find that, depending on the refractive index contrast and nature of the irregularities, the roughness can increase or decrease the diffuse reflectance of the surface.

  9. Scale-Up of flat plate photobioreactors considering diffuse and direct light characteristics.

    Science.gov (United States)

    Quinn, Jason C; Turner, Chris W; Bradley, Thomas H

    2012-02-01

    This study investigates the scaling of photobioreactor productivity based on the growth of Nannochloropsis salina incorporating the effects of direct and diffuse light. The scaling and optimization of photobioreactor geometry was analyzed by determining the growth response of a small-scale system designed to represent a core sample of a large-scale photobioreactor. The small-scale test apparatus was operated at a variety of light intensities on a batch time scale to generate a photosynthetic irradiance (PI) growth dataset, ultimately used to inform a PI growth model. The validation of the scalability of the PI growth model to predict productivity in large-scale systems was done by comparison with experimental growth data collected from two geometrically different large-scale photobioreactors operated at a variety of light intensities. For direct comparison, the small-scale and large-scale experimental systems presented were operated similarly and in such a way to incorporate cultivation relevant time scales, light intensities, mixing, and nutrient loads. Validation of the scalability of the PI growth model enables the critical evaluation of different photobioreactor geometries and design optimization incorporating growth effects from diffuse and direct light. Discussion focuses on the application of the PI growth model to assess the effect of diffuse light growth compared to direct light growth for the evaluation of photobioreactors followed by the use of the model for photobioreactor geometry optimization on the metric of areal productivity. Copyright © 2011 Wiley Periodicals, Inc.

  10. Transmissive liquid crystal light-valve for near-infrared applications.

    Science.gov (United States)

    Bortolozzo, Umberto; Residori, Stefania; Huignard, Jean-Pierre

    2013-08-01

    An optical valve is realized by associating a nematic liquid crystal layer with a Cr-doped gallium arsenide as a photoconductive substrate. The light-valve is shown to efficiently operate in transmission at 1.06 μm optical wavelength. The optical phase shift and refractive index change are measured as a function of the incident light intensity and of the voltage applied. Additionally, the light-valve is shown to act as a self-defocusing medium. Combining transmissive properties and nonlinear features, applications for dynamic holography in the near-infrared region of the spectrum can be envisaged.

  11. Parametric Processes for Generation and Low Noise Detection of Infrared Light

    DEFF Research Database (Denmark)

    Høgstedt, Lasse

    . The first chapter of the thesis introduces and motivates the work with frequency conversion, sketching the potential of the noise properties for upconversion based detection systems and the increased wavelength availability for parametric light sources. A selection of prior work is presented to give...... an overview of the focus in the field and to place the thesis in a general context. The second chapter introduces the basic concepts of nonlinear parametric interaction in the context of this work, where phasematching is a key factor in the work on both light sources and detection systems. Third chapter...... presents the work on infrared light sources. An optical parametric generator was constructed, and worked as an optical parametric amplifier for both a near- and a mid-infrared seed. The setups are analyzed spectrally and temporally, and discussed with respect to spectroscopic applications. It is concluded...

  12. Production of a diffuse very high reflectivity material for light collection in nuclear detectors

    CERN Document Server

    Pichler, B J; Mirzoyan, R; Weiss, L; Ziegler, S I

    2000-01-01

    A diffuse very high reflectivity material, based on polytetrafluorethylene (PTFE) for optimization of light-collection efficiency has been developed. PTFE powder was used to produce reflector block material. The powder was pressed with 525 kPa in a form and sintered at 375 deg. C. The reflectivity was above 98% within the spectral range from 350 to 1000 nm. The blocks of this material are machinable with saws, drilling and milling machines. The reflector is used as a housing for scintillating crystals in a nuclear medicine application (small animal positron emission tomograph). It is also used as a light collector in very high-energy gamma-ray astrophysicas experiments, HEGRA and MAGIC. The application of this inexpensive, easy to make diffuse reflector may allow the optimization of light collection in a wide range of low-level light-detector configurations.

  13. Evaluating fibre orientation dispersion in white matter: Comparison of diffusion MRI, histology and polarized light imaging.

    Science.gov (United States)

    Mollink, Jeroen; Kleinnijenhuis, Michiel; Cappellen van Walsum, Anne-Marie van; Sotiropoulos, Stamatios N; Cottaar, Michiel; Mirfin, Christopher; Heinrich, Mattias P; Jenkinson, Mark; Pallebage-Gamarallage, Menuka; Ansorge, Olaf; Jbabdi, Saad; Miller, Karla L

    2017-08-15

    Diffusion MRI is an exquisitely sensitive probe of tissue microstructure, and is currently the only non-invasive measure of the brain's fibre architecture. As this technique becomes more sophisticated and microstructurally informative, there is increasing value in comparing diffusion MRI with microscopic imaging in the same tissue samples. This study compared estimates of fibre orientation dispersion in white matter derived from diffusion MRI to reference measures of dispersion obtained from polarized light imaging and histology. Three post-mortem brain specimens were scanned with diffusion MRI and analyzed with a two-compartment dispersion model. The specimens were then sectioned for microscopy, including polarized light imaging estimates of fibre orientation and histological quantitative estimates of myelin and astrocytes. Dispersion estimates were correlated on region - and voxel-wise levels in the corpus callosum, the centrum semiovale and the corticospinal tract. The region-wise analysis yielded correlation coefficients of r = 0.79 for the diffusion MRI and histology comparison, while r = 0.60 was reported for the comparison with polarized light imaging. In the corpus callosum, we observed a pattern of higher dispersion at the midline compared to its lateral aspects. This pattern was present in all modalities and the dispersion profiles from microscopy and diffusion MRI were highly correlated. The astrocytes appeared to have minor contribution to dispersion observed with diffusion MRI. These results demonstrate that fibre orientation dispersion estimates from diffusion MRI represents the tissue architecture well. Dispersion models might be improved by more faithfully incorporating an informed mapping based on microscopy data. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Numerical Study on Infrared Optical Property of Diffuse Coal Particles in Mine Fully Mechanized Working Combined with CFD Method

    Directory of Open Access Journals (Sweden)

    Wen-Zheng Wang

    2015-01-01

    Full Text Available Coal dust seriously threatens the safety and occupational health of coal mines. Numerical simulation research on the infrared radiation characteristics of diffused coal dust is carried out in fully mechanized working faces based on the optical monitoring problem of dust particles in mine atmospheric environments. The CFD method is applied to obtain the law of dust transport and distribution. Combined with Mie scattering model, the infrared radiation change characteristics and spectral selection of diffused coal dust particles are simulated and analyzed along the working face. The comparison results show the following: the attenuation and scattering characteristics of mine dust particles system are first enhanced, and then they weaken as the distance from dust source increases. The infrared attenuation of mine dust at the center of the vertical cross-section is generally greater than that at the roof and floor in the same location. The dispersion of mine dust directly determines the attenuation contribution of respirable dust to total dust. Moreover, the infrared absorption effect of functional groups in coal causes the infrared attenuation effect of coal dust to have obvious optical selectivity along the roadway, the existing optical “window.”

  15. Detection of canine skin and subcutaneous tumors by visible and near-infrared diffuse reflectance spectroscopy

    Science.gov (United States)

    Cugmas, Blaž; Plavec, Tanja; Bregar, Maksimilijan; Naglič, Peter; Pernuš, Franjo; Likar, Boštjan; Bürmen, Miran

    2015-03-01

    Cancer is the main cause of canine morbidity and mortality. The existing evaluation of tumors requires an experienced veterinarian and usually includes invasive procedures (e.g., fine-needle aspiration) that can be unpleasant for the dog and the owner. We investigate visible and near-infrared diffuse reflectance spectroscopy (DRS) as a noninvasive optical technique for evaluation and detection of canine skin and subcutaneous tumors ex vivo and in vivo. The optical properties of tumors and skin were calculated in a spectrally constrained manner, using a lookup table-based inverse model. The obtained optical properties were analyzed and compared among different tumor groups. The calculated parameters of the absorption and reduced scattering coefficients were subsequently used for detection of malignant skin and subcutaneous tumors. The detection sensitivity and specificity of malignant tumors ex vivo were 90.0% and 73.5%, respectively, while corresponding detection sensitivity and specificity of malignant tumors in vivo were 88.4% and 54.6%, respectively. The obtained results show that the DRS is a promising noninvasive optical technique for detection and classification of malignant and benign canine skin and subcutaneous tumors. The method should be further investigated on tumors with common origin.

  16. Rapid assessment of soluble solids content in navel orange by near-infrared diffuse reflectance spectra

    Science.gov (United States)

    Liu, Yande; Luo, Ji; Chen, Xingmiao; Ying, Yibin

    2006-10-01

    The potential of using Near Infrared diffuse reflectance spectroscopy to assess soluble solids content (SSC) of intact navel orange was examined. A total 40 samples were used to develop the calibration and prediction models. NIR spectral data were collected in the spectral region between 350 nm and 2500 nm and its second derivative spectra was used for this study. Different scattering correction algorithms (no preprocessing and multiplicative scattering correction (MSC) were compared. Calibration models based on different spectral ranges, different derivatives and different kinds of statistical models including partial least square (PLS) and principle component regression (PCR) were also compared in this research. The best results of PLS models with the second derivative spectra are r=0.929, RMSEC=0.517 and RMSEP=0.592, in the wavelength range of 361-2488 nm. The segment length used to derivate the spectra influences the calibration model and the results are better when the segment lengths and gap sizes are lower in Norris derivate filter. The results show that this method is feasible for rapid assessing SSC of the navel orange.

  17. Determining thermal diffusivity and defect attributes in ceramic matrix composites by infrared imaging

    Science.gov (United States)

    Ahuja, Sanjay; Ellingson, William A.; Stuckey, J. B.; Koehl, E. R.

    1996-03-01

    Ceramic matrix composites are being developed for numerous high temperature applications, including rotors and combustors for advanced turbine engines, heat exchanger and hot-gas filters for coal gasification plants. Among the materials of interest are silicon-carbide-fiber- reinforced-silicon-carbide (SiC(f)/SiC), silicon-carbide-fiber-reinforced-silicon-nitride (SiC(f)/Si3N4), aluminum-oxide-reinforced-alumina (Al2O3(f)/Al2O3, etc. In the manufacturing of these ceramic composites, the conditions of the fiber/matrix interface are critical to the mechanical and thermal behavior of the component. Defects such as delaminations and non-uniform porosity can directly affect the performance. A nondestructive evaluation (NDE) method, developed at Argonne National Laboratory has proved beneficial in analyzing as-processed conditions and defect detection created during manufacturing. This NDE method uses infrared thermal imaging for full-field quantitative measurement of the distribution of thermal diffusivity in large components. Intensity transform algorithms have been used for contrast enhancement of the output image. Nonuniformity correction and automatic gain control are used to dynamically optimize video contrast and brightness, providing additional resolution in the acquired images. Digital filtering, interpolation, and least-squares-estimation techniques have been incorporated for noise reduction and data acquisition. The Argonne NDE system has been utilized to determine thermal shock damage, density variations, and variations in fiber coating in a full array of test specimens.

  18. Cerebral monitoring during carotid endarterectomy using near-infrared diffuse optical spectroscopies and electroencephalogram

    Energy Technology Data Exchange (ETDEWEB)

    Shang Yu; Cheng Ran; Dong Lixin; Yu Guoqiang [Center for Biomedical Engineering, University of Kentucky, KY (United States); Ryan, Stephen J [Department of Neurology, University of Kentucky, KY (United States); Saha, Sibu P, E-mail: guoqiang.yu@uky.edu [Division of Cardiothoracic Surgery, University of Kentucky, KY (United States)

    2011-05-21

    Intraoperative monitoring of cerebral hemodynamics during carotid endarterectomy (CEA) provides essential information for detecting cerebral hypoperfusion induced by temporary internal carotid artery (ICA) clamping and post-CEA hyperperfusion syndrome. This study tests the feasibility and sensitivity of a novel dual-wavelength near-infrared diffuse correlation spectroscopy technique in detecting cerebral blood flow (CBF) and cerebral oxygenation in patients undergoing CEA. Two fiber-optic probes were taped on both sides of the forehead for cerebral hemodynamic measurements, and the instantaneous decreases in CBF and electroencephalogram (EEG) alpha-band power during ICA clamping were compared to test the measurement sensitivities of the two techniques. The ICA clamps resulted in significant CBF decreases (-24.7 {+-} 7.3%) accompanied with cerebral deoxygenation at the surgical sides (n = 12). The post-CEA CBF were significantly higher (+43.2 {+-} 16.9%) than the pre-CEA CBF. The CBF responses to ICA clamping were significantly faster, larger and more sensitive than EEG responses. Simultaneous monitoring of CBF, cerebral oxygenation and EEG power provides a comprehensive evaluation of cerebral physiological status, thus showing potential for the adoption of acute interventions (e.g., shunting, medications) during CEA to reduce the risks of severe cerebral ischemia and cerebral hyperperfusion syndrome.

  19. Effective moisture diffusivity, moisture sorption, thermo-physical properties and infrared drying kinetics of germinated paddy

    Directory of Open Access Journals (Sweden)

    Supawan Tirawanichakul

    2014-02-01

    Full Text Available Temperature and relative humidity (RH dependence of moisture sorption phenomena for agricultural products provide valuable information related to the thermodynamics of the system. So the equilibrium moisture contents (EMC, effective moisture diffusivity (Deff and thermo-physical properties in terms of void fraction, specific heat capacity, and the apparent density of germinated non-waxy Suphanburi 1 paddy were evaluated. Five commonly cited EMC equations were fitted to the experimental data among temperatures of 40-60°C correlating with RH of 0-90%. The results showed that the modified GAB equation was the best function for describing experimental results while those evaluated thermo-physical properties depended on moisture content. To determine drying kinetics model, the simulated values using Midilli et al. (2002 model and Page’s model was the best fitting to exact drying kinetics values for infrared (IR and hot air (HA drying, respectively. Finally, the Deff value of paddy dried with IR and HA sources were also evaluated and the calculated Deff value of both HA and IR drying was in order of 10-9 m2/s.

  20. Effects of polychromatic visible and infrared light on biological liquid media.

    Science.gov (United States)

    Zilov, V G; Khadartsev, A A; Bitsoev, V D

    2014-08-01

    Experimental study of the effects of polychromatic visible and infrared light on biological fluids was carried out in order to validate the new approaches to phototherapy. Polychromatic light generated by Bioptron device at different modes and frequencies was released through the fiberoptic cable, including the exposure paralleled by CO2 saturation of water and exposure from a device placed 10 cm above the water surface, which ensured maximum light absorption. The effects of irradiation were recorded in 26 and 15 min, while the increase of light absorption by blood plasma in vivo was recorded 1 h after a bath with water pre-exposed to polarized light. Absorption bands corresponding to those for immunomodulatory, anti-inflammatory, and antiviral drugs, were detected. Changes in the spectra of valency oscillations, depending on the oscillation anharmonism values, were detected.

  1. Determination of thermal diffusivity of dental enamel and dentin as a function of temperature, using infrared thermography

    International Nuclear Information System (INIS)

    Pereira, Thiago Martini

    2009-01-01

    In this work it was developed a software that calculates automatically, the thermal diffusivity value as a function of temperature in materials. The infrared thermography technique was used for data acquisition of temperature distribution as a function of time. These data were used to adjust a temperature function obtained from the homogeneous heat equation with specific boundary conditions. For that, an infrared camera (detecting from 8 μm to 9 μm) was calibrated to detect temperature ranging from 185 degree C up to 1300 degree C at an acquisition rate of 300 Hz. It was used, 10 samples of dental enamel and 10 samples of dentin, with 4 mm x 4 mm x 2 mm, which were obtained from bovine lower incisor teeth. These samples were irradiated with an Er:Cr:YSGG pulsed laser (λ = 2,78 μm). The resulting temperature was recorded 2 s prior, 10 s during irradiation and continuing for 2 more seconds after it. After each irradiation, all obtained thermal images were processed in the software, creating a file with the data of thermal diffusivity as a function of temperature. Another file with the thermal diffusivity values was also calculated after each laser pulse. The mean result of thermal diffusivity obtained for dental enamel was 0,0084 ± 0,001 cm2/s for the temperature interval of 220-550 degree C. The mean value for thermal diffusivity obtained for dentin was 0,0015 0,0004 cm2/s in temperatures up to 360 degree C; however, this value increases for higher temperatures. According to these results, it was possible to conclude that the use of infrared thermography, associated with the software developed in this work, is an efficient method to determine the thermal diffusivity values as a function of temperature in different materials. (author)

  2. The influence of melt purification and structure defects on mid-infrared light emitting diodes

    CERN Document Server

    Krier, A

    2003-01-01

    Mid-infrared light emitting diodes which exhibit more than 7 mW (pulsed) and 0.35 mW dc output power at 3.3 mu m and at room temperature have been fabricated by liquid phase epitaxy using Pb as a neutral solvent. Using Pb solution an increase in pulsed output power of between two and three times was obtained compared with InAs light emitting diodes (LEDs) made using rare-earth gettering. The performance improvements were attributed to a reduction in residual carrier concentration arising from the removal of un-intentional donors and structure defects in the InAs active region material. These LEDs are well matched to the CH sub 4 absorption spectrum and potentially could form the basis of a practical infrared CH sub 4 gas sensor.

  3. Intrauterine device for laser light diffusion and method of using the same

    Science.gov (United States)

    Tadir, Yona; Berns, Michael W.; Svaasand, Lars O.; Tromberg, Bruce J.

    1995-01-01

    An improved device for delivery of photoenergy from a light source, such as a laser, into a uterine cavity for photodynamic therapy is comprised of a plurality of optic fibers, which are bundled together and inserted into the uterine cavity by means of a uterine cannula. The cannula is positioned within the uterine cavity at a preferred location and then withdrawn thereby allowing the plurality of optic fibers to splay or diverge one from the other within the cavity. Different portions of the distal tip of the optic fiber is provided with a light diffusing tip, the remainder being provided with a nondiffusing tip portion. The fiber optic shape, as well as the segment which is permitted to actively diffuse light through the tip, is selected in order to provide a more uniform exposure intensity of the photo energy or at least sufficient radiation directed to each segment of the uterine walls.

  4. Intrauterine device for laser light diffusion and method of using the same

    Energy Technology Data Exchange (ETDEWEB)

    Tadir, Y.; Berns, M.W.; Svaasand, L.O.; Tromberg, B.J.

    1995-12-26

    An improved device for delivery of photoenergy from a light source, such as a laser, into a uterine cavity for photodynamic therapy is comprised of a plurality of optic fibers, which are bundled together and inserted into the uterine cavity by means of a uterine cannula. The cannula is positioned within the uterine cavity at a preferred location and then withdrawn thereby allowing the plurality of optic fibers to splay or diverge one from the other within the cavity. Different portions of the distal tip of the optic fiber is provided with a light diffusing tip, the remainder being provided with a nondiffusing tip portion. The fiber optic shape, as well as the segment which is permitted to actively diffuse light through the tip, is selected in order to provide a more uniform exposure intensity of the photo energy or at least sufficient radiation directed to each segment of the uterine walls. 5 figs.

  5. Transient Reactivity of Solid Silver Acetate in Hydrogen and Oxygen by In Situ Diffuse Reflectance Infrared Fourier Transform Spectroscopy*

    OpenAIRE

    Tohru, KANNO; Masayoshi, KOBAYASHI

    1985-01-01

    The reactivity of solid silver acetate in hydrogen and oxygen has been studied by using the transient response method and the in situ diffuse reflectance infrared fourier transform spectroscopic (DKIFTS) technique to compare its nature to that of the reaction intermediates in ethylene oxidation. 0n the analysis of the transient response curves, solid silver acetate produced acetic acid and a small amount of carbon dioxide in a hydrogen stream, and produced CO_2 and a small amount of CH_3COOH ...

  6. Electrically tunable selective reflection of light from ultraviolet to visible and infrared by heliconical cholesterics.

    Science.gov (United States)

    Xiang, Jie; Li, Yannian; Li, Quan; Paterson, Daniel A; Storey, John M D; Imrie, Corrie T; Lavrentovich, Oleg D

    2015-05-20

    Electrical tuning of selective reflection of light is achieved in a very broad spectral range from ultraviolet to visible and infrared by an oblique helicoidal state of a cholesteric liquid crystal in a wide temperature range (including room temperature). The phenomenon offers potential applications in tunable smart windows, lasers, optical filters and limiters, as well as in displays. © 2015 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Ultra low emittance electron beams from multi-alkali antimonide photocathode operated with infrared light

    Science.gov (United States)

    Cultrera, L.; Gulliford, C.; Bartnik, A.; Lee, H.; Bazarov, I.

    2016-03-01

    The intrinsic emittance of electron beams generated from a multi-alkali photocathode operated in a high voltage DC gun is reported. The photocathode showed sensitivity extending to the infrared part of the spectrum up to 830 nm. The measured intrinsic emittances of electron beams generated with light having wavelength longer than 800 nm are approaching the limit imposed by the thermal energy of electrons at room temperature with quantum efficiencies comparable to metallic photocathodes used in operation of modern photoinjectors.

  8. Mechanical action of infrared light on atoms and molecules through a rectification of the electric force

    International Nuclear Information System (INIS)

    Tu Yaoquan; Felicissimo, Viviane Costa; Guimaraes, Freddy Fernandes; Agren, Hans; Gel'mukhanov, Faris

    2009-01-01

    We report the mechanical action of infrared light on atoms and molecules based on the rectification of the electric force. This mechanism is qualitatively different from the conventional ways of controlling photochemistry. The rectification of the electric force originates from the synchronous charge transfer induced by the laser field. This brings about an opportunity to produce a site selective light-induced action, controlled by the tailored intense laser field, on atoms in molecules and clusters. The concept is illustrated by ab initio molecular dynamics simulations of the water hexamer.

  9. Mechanical action of infrared light on atoms and molecules through a rectification of the electric force

    Energy Technology Data Exchange (ETDEWEB)

    Tu Yaoquan; Felicissimo, Viviane Costa; Guimaraes, Freddy Fernandes; Agren, Hans; Gel' mukhanov, Faris [Department of Theoretical Chemistry, Royal Institute of Technology, S-106 91 Stockholm (Sweden)], E-mail: faris@theochem.kth.se

    2009-11-15

    We report the mechanical action of infrared light on atoms and molecules based on the rectification of the electric force. This mechanism is qualitatively different from the conventional ways of controlling photochemistry. The rectification of the electric force originates from the synchronous charge transfer induced by the laser field. This brings about an opportunity to produce a site selective light-induced action, controlled by the tailored intense laser field, on atoms in molecules and clusters. The concept is illustrated by ab initio molecular dynamics simulations of the water hexamer.

  10. The Use of NASA Light-Emitting Diode Near-Infrared Technology for Biostimulation

    Science.gov (United States)

    Whelan, Harry T.

    2002-01-01

    Studies on cells exposed to microgravity and hypergravity indicate that human cells need gravity to stimulate growth. As the gravitational force increases or decreases, the cell function responds in a linear fashion. This poses significant health risks for astronauts in long-term spaceflight. The application of light therapy with the use of NASA LEDs will significantly improve the medical care that is available to astronauts on long-term space missions. NASA LEDs stimulate the basic energy processes in the mitochondria (energy compartments) of each cell, particularly when near-infrared light is used to activate the color sensitive chemicals (chromophores, cytochrome systems) inside. Optimal LED wavelengths include 680, 730 and 880 nm and our laboratory has improved the healing of wounds in laboratory animals by using both NASA LED light and hyperbaric oxygen. Furthermore, DNA synthesis in fibroblasts and muscle cells has been quintupled using NASA LED light alone, in a single application combining 680, 730 and 880 nm each at 4 Joules per centimeter squared. Muscle and bone atrophy are well documented in astronauts, and various minor injuries occurring in space have been reported not to heal until landing on Earth. An LED blanket device may be used for the prevention of bone and muscle atrophy in astronauts. The depth of near-infrared light penetration into human tissue has been measured spectroscopically.

  11. Clinical evaluation of near-infrared light transillumination in approximal dentin caries detection.

    Science.gov (United States)

    Ozkan, Gokhan; Guzel, Kadriye Gorkem Ulu

    2017-08-01

    The objective of this clinical study was to compare conventional caries detection techniques, pen-type laser fluorescence device, and near-infrared light transillumination method in approximal dentin caries lesions. The study included 157 patients, aged 12-18, without any cavity in the posterior teeth. Two calibrated examiners carried out the assessments of selected approximal caries sites independently. After the assessments, the unopened sites were excluded and a total of 161 approximal sites were included in the study. When both the examiners arrived at a consensus regarding the presence of dentin caries, the detected lesions were opened with a conical diamond burr, the cavity extent was examined and validated (gold standard). Sensitivity, specificity, negative predictive value, positive predictive value, accuracy, and area under the ROC curve (Az) values among the caries detection methods were calculated. Bitewing radiography and near-infrared (NIR) light transillumination methods showed the highest sensitivity (0.83-0.82) and accuracy (0.82-0.80) among the methods. Visual inspection showed the lowest sensitivity (0.54). Laser fluorescence device and visual inspection showed nearly equal performance. Near-infrared light transillumination can be used as an alternative method to approximal dentin caries detection. Visual inspection and laser fluorescence device alone should not be used for approximal dentin caries.

  12. High Resolution Near Infrared Spectrometer to Study the Zodiacal Light Spectrum

    Science.gov (United States)

    Kutyrev, Alexander; Arendt, R.; Dwek, E.; Moseley, S. H.; Silverberg, R.; Rapchun, D.

    2007-12-01

    We are developing a near infrared spectrometer for measuring solar absorption lines in the zodiacal light in the near infrared region. R. Reynolds at el. (2004, ApJ 612, 1206) demonstrated that observing single Fraunhofer line can be a powerful tool for extracting zodiacal light parameters based on their measurements of the profile of the Mg I line at 5184 A. We are extending this technique to the near infrared with the primary goal of measuring the absolute intensity of the zodiacal light. This measurement will provide the crucial information needed to accurately subtract zodiacal emission from the DIRBE measurements to get a much higher quality measurement of the extragalactic IR background. The instrument design is based on a dual Fabry-Perot interferometer with a narrow band filter. Its double etalon design allows to achieve high spectral contrast to reject the bright out of band telluric OH emission. High spectral contrast is absolutely necessary to achieve detection limits needed to accurately measure the intensity of the absorption line. We present the design, estimated performance of the instrument with the expected results of the observing program. The project is supported by NASA ROSES-APRA grant.

  13. Coupling of light into the fundamental diffusion mode of a scattering medium (Conference Presentation)

    Science.gov (United States)

    Ojambati, Oluwafemi S.; Yılmaz, Hasan; Lagendijk, Ad; Mosk, Allard P.; Vos, Willem L.

    2016-03-01

    Diffusion equation describes the energy density inside a scattering medium such as biological tissues and paint [1]. The solution of the diffusion equation is a sum over a complete set of eigensolutions that shows a characteristic linear decrease with depth in the medium. It is of particular interest if one could launch energy in the fundamental eigensolution, as this opens the opportunity to achieve a much greater internal energy density. For applications in optics, an enhanced energy density is vital for solid-state lighting, light harvesting in solar cells, low-threshold random lasers, and biomedical optics. Here we demonstrate the first ever selective coupling of optical energy into a diffusion eigensolution of a scattering medium of zinc oxide (ZnO) paint. To this end, we exploit wavefront shaping to selectively couple energy into the fundamental diffusion mode, employing fluorescence of nanoparticles randomly positioned inside the medium as a probe of the energy density. We observe an enhanced fluorescence in case of optimized incident wavefronts, and the enhancement increases with sample thickness, a typical mesoscopic control parameter. We interpret successfully our result by invoking the fundamental eigensolution of the diffusion equation, and we obtain excellent agreement with our observations, even in absence of adjustable parameters [2]. References [1] R. Pierrat, P. Ambichl, S. Gigan, A. Haber, R. Carminati, and R. Rotter, Proc. Natl. Acad. Sci. U.S.A. 111, 17765 (2014). [2] O. S. Ojambati, H. Yilmaz, A. Lagendijk, A. P. Mosk, and W. L. Vos, arXiv:1505.08103.

  14. Vertical excitation profile in diffusion injected multi-quantum well light emitting diode structure

    Science.gov (United States)

    Riuttanen, L.; Kivisaari, P.; Svensk, O.; Vasara, T.; Myllys, P.; Oksanen, J.; Suihkonen, S.

    2015-03-01

    Due to their potential to improve the performance of light-emitting diodes (LEDs), novel device structures based on nanowires, surface plasmons, and large-area high-power devices have received increasing amount of interest. These structures are almost exclusively based on the double hetero junction (DHJ) structure, that has remained essentially unchanged for decades. In this work we study a III-nitride diffusion injected light-emitting diode (DILED), in which the active region is located outside the pn-junction and the excitation of the active region is based on bipolar diffusion of charge carriers. This unorthodox approach removes the need of placing the active region in the conventional current path and thus enabling carrier injection in device structures, which would be challenging to realize with the conventional DHJ design. The structure studied in this work is has 3 indium gallium nitride / gallium nitride (InGaN/GaN) quantum wells (QWs) under a GaN pn-junction. The QWs are grown at diferent growth temperatures for obtaining distinctive luminescence peaks. This allows to obtain knowledge on the carrier diffusion in the structure. When the device is biased, all QWs emit light indicating a significant diffusion current into the QW stack.

  15. Interhemispheric connectivity in amyotrophic lateral sclerosis: A near-infrared spectroscopy and diffusion tensor imaging study.

    Science.gov (United States)

    Kopitzki, Klaus; Oldag, Andreas; Sweeney-Reed, Catherine M; Machts, Judith; Veit, Maria; Kaufmann, Jörn; Hinrichs, Hermann; Heinze, Hans-Jochen; Kollewe, Katja; Petri, Susanne; Mohammadi, Bahram; Dengler, Reinhard; Kupsch, Andreas R; Vielhaber, Stefan

    2016-01-01

    Aim of the present study was to investigate potential impairment of non-motor areas in amyotrophic lateral sclerosis (ALS) using near-infrared spectroscopy (NIRS) and diffusion tensor imaging (DTI). In particular, we evaluated whether homotopic resting-state functional connectivity (rs-FC) of non-motor associated cortical areas correlates with clinical parameters and disease-specific degeneration of the corpus callosum (CC) in ALS. Interhemispheric homotopic rs-FC was assessed in 31 patients and 30 healthy controls (HCs) for 8 cortical sites, from prefrontal to occipital cortex, using NIRS. DTI was performed in a subgroup of 21 patients. All patients were evaluated for cognitive dysfunction in the executive, memory, and visuospatial domains. ALS patients displayed an altered spatial pattern of correlation between homotopic rs-FC values when compared to HCs ( p  = 0.000013). In patients without executive dysfunction a strong correlation existed between the rate of motor decline and homotopic rs-FC of the anterior temporal lobes (ATLs) (ρ = - 0.85, p  = 0.0004). Furthermore, antero-temporal homotopic rs-FC correlated with fractional anisotropy in the central corpus callosum (CC), corticospinal tracts (CSTs), and forceps minor as determined by DTI ( p  < 0.05). The present study further supports involvement of non-motor areas in ALS. Our results render homotopic rs-FC as assessed by NIRS a potential clinical marker for disease progression rate in ALS patients without executive dysfunction and a potential anatomical marker for ALS-specific degeneration of the CC and CSTs.

  16. Calibration of a thin metal foil for infrared imaging video bolometer to estimate the spatial variation of thermal diffusivity using a photo-thermal technique.

    Science.gov (United States)

    Pandya, Shwetang N; Peterson, Byron J; Sano, Ryuichi; Mukai, Kiyofumi; Drapiko, Evgeny A; Alekseyev, Andrey G; Akiyama, Tsuyoshi; Itomi, Muneji; Watanabe, Takashi

    2014-05-01

    A thin metal foil is used as a broad band radiation absorber for the InfraRed imaging Video Bolometer (IRVB), which is a vital diagnostic for studying three-dimensional radiation structures from high temperature plasmas in the Large Helical Device. The two-dimensional (2D) heat diffusion equation of the foil needs to be solved numerically to estimate the radiation falling on the foil through a pinhole geometry. The thermal, physical, and optical properties of the metal foil are among the inputs to the code besides the spatiotemporal variation of temperature, for reliable estimation of the exhaust power from the plasma illuminating the foil. The foil being very thin and of considerable size, non-uniformities in these properties need to be determined by suitable calibration procedures. The graphite spray used for increasing the surface emissivity also contributes to a change in the thermal properties. This paper discusses the application of the thermographic technique for determining the spatial variation of the effective in-plane thermal diffusivity of the thin metal foil and graphite composite. The paper also discusses the advantages of this technique in the light of limitations and drawbacks presented by other calibration techniques being practiced currently. The technique is initially applied to a material of known thickness and thermal properties for validation and finally to thin foils of gold and platinum both with two different thicknesses. It is observed that the effect of the graphite layer on the estimation of the thermal diffusivity becomes more pronounced for thinner foils and the measured values are approximately 2.5-3 times lower than the literature values. It is also observed that the percentage reduction in thermal diffusivity due to the coating is lower for high thermal diffusivity materials such as gold. This fact may also explain, albeit partially, the higher sensitivity of the platinum foil as compared to gold.

  17. Detection and characterization of stacking faults by light beam induced current mapping and scanning infrared microscopy in silicon

    Science.gov (United States)

    Vève-Fossati, C.; Martinuzzi, S.

    1998-08-01

    Non destructive techniques like scanning infrared microscopy and light beam induced current mapping are used to reveal the presence of stacking faults in heat treated Czochralski grown silicon wafers. In oxidized or contaminated samples, scanning infrared microscopy reveals that stacking faults grow around oxygen precipitates. This could be due to an aggregation of silicon self-interstitials emitted by the growing precipitates in the (111) plane. Light beam induced current maps show that the dislocations which surround the stacking faults are the main source of recombination centers, especially when they are decorated by a fast diffuser like copper. Des techniques non destructives telles que la microscopie infrarouge à balayage et la cartographie de photocourant induit par un spot lumineux ont été utilisées pour révéler la présence de fautes d'empilement après traitements thermiques, dans des plaquettes de silicium préparées par tirage Czochralski. Dans des échantillons oxydés ou contaminés, la microscopie infrarouge à balayage révèle des fautes d'empilement qui se développent autour des précipités d'oxygène. Cela peut être dû à la formation d'un agglomérat d'auto-interstitiels de silicium émis par la croissance des précipités dans les plans (111). Les cartographies de photocourant montrent que les dislocations qui entourent les fautes d'empilement sont la principale source de centres de recombinaison, et cela tout particulièrement quand ces fautes sont décorées par un diffuseur rapide tel que le cuivre.

  18. Mitochondrial signal transduction in accelerated wound and retinal healing by near-infrared light therapy.

    Science.gov (United States)

    Eells, Janis T; Wong-Riley, Margaret T T; VerHoeve, James; Henry, Michele; Buchman, Ellen V; Kane, Mary P; Gould, Lisa J; Das, Rina; Jett, Marti; Hodgson, Brian D; Margolis, David; Whelan, Harry T

    2004-09-01

    Photobiomodulation by light in the red to near infrared range (630-1000 nm) using low energy lasers or light-emitting diode (LED) arrays has been shown to accelerate wound healing, improve recovery from ischemic injury in the heart and attenuate degeneration in the injured optic nerve. Recent evidence indicates that the therapeutic effects of red to near infrared light result, in part, from intracellular signaling mechanisms triggered by the interaction of NIR light with the mitochondrial photoacceptor molecule cytochrome c oxidase. We have demonstrated that NIR-LED photo-irradiation increases the production of cytochrome oxidase in cultured primary neurons and reverses the reduction of cytochrome oxidase activity produced by metabolic inhibitors. We have also shown that NIR-LED treatment prevents the development of oral mucositis in pediatric bone marrow transplant patients. Photobiomodulation improves wound healing in genetically diabetic mice by upregulating genes important in the promotion of wound healing. More recent studies have provided evidence for the therapeutic benefit of NIR-LED treatment in the survival and functional recovery of the retina and optic nerve in vivo after acute injury by the mitochondrial toxin, formic acid generated in the course of methanol intoxication. Gene discovery studies conducted using microarray technology documented a significant upregulation of gene expression in pathways involved in mitochondrial energy production and antioxidant cellular protection. These findings provide a link between the actions of red to near infrared light on mitochondrial oxidative metabolism in vitro and cell injury in vivo. Based on these findings and the strong evidence that mitochondrial dysfunction is involved in the pathogenesis of numerous diseases processes, we propose that NIR-LED photobiomodulation represents an innovative and non-invasive therapeutic approach for the treatment of tissue injury and disease processes in which mitochondrial

  19. Diffusion of light gases in advanced nanoporous membranes and catalysts via NMR diffusometry

    Science.gov (United States)

    Mueller, Robert A.

    Diffusion in nanoporous gas separation membranes and catalysts plays an important role in their selectivity and performance. As a result, there is an intense effort towards development of novel membranes and catalysts with microstructures tailored for improved transport properties. Fundamental understanding and prediction of the mass transport properties of these materials can be obtained by studies of mass transport on a broad range of microscopic length scales. In this dissertation, a novel NMR diffusometry technique is employed to study the influence of the pore network properties on light gas diffusion for several nanoporous systems, which represent promising advanced gas separation membranes and catalysts. The following systems were investigated: (i) carbon molecular sieve membranes, (ii) mixed-matrix membranes and (iii) rare-earth aerogel catalysts. For carbon molecular sieve membranes, the self-diffusion properties of several light gases of industrial importance are characterized by investigating the dependences of the self diffusivity on displacement length scale, temperature, sorbate loading and composition. Analysis of these dependences and comparison of the measured microscopic transport data with the corresponding results of membrane permeation enabled the determination of membrane structural properties which lead to the remarkable diffusion selectivity of these membranes. For mixed-matrix membranes, detailed measurements of light gas sorbate diffusion over a broad range of microscopic length scales enables resolution of the different modes of sorbate self-diffusion inside mixed-matrix membranes. Finally for samaria-aerogel catalyst, the influence of catalyst packing is explored based on detailed microscopic diffusion measurements over a broad range of sorbate loading pressures and detailed data analysis. These studies were enabled by application of a novel pulsed-field gradient nuclear magnetic resonance technique, developed in part by this work

  20. Hybrid diffusion and two-flux approximation for multilayered tissue light propagation modeling.

    Science.gov (United States)

    Yudovsky, Dmitry; Durkin, Anthony J

    2011-07-20

    Accurate and rapid estimation of fluence, reflectance, and absorbance in multilayered biological media has been essential in many biophotonics applications that aim to diagnose, cure, or model in vivo tissue. The radiative transfer equation (RTE) rigorously models light transfer in absorbing and scattering media. However, analytical solutions to the RTE are limited even in simple homogeneous or plane media. Monte Carlo simulation has been used extensively to solve the RTE. However, Monte Carlo simulation is computationally intensive and may not be practical for applications that demand real-time results. Instead, the diffusion approximation has been shown to provide accurate estimates of light transport in strongly scattering tissue. The diffusion approximation is a greatly simplified model and produces analytical solutions for the reflectance and absorbance in tissue. However, the diffusion approximation breaks down if tissue is strongly absorbing, which is common in the visible part of the spectrum or in applications that involve darkly pigmented skin and/or high local volumes of blood such as port-wine stain therapy or reconstructive flap monitoring. In these cases, a model of light transfer that can accommodate both strongly and weakly absorbing regimes is required. Here we present a model of light transfer through layered biological media that represents skin with two strongly scattering and one strongly absorbing layer. © 2011 Optical Society of America

  1. Hybrid simplified spherical harmonics with diffusion equation for light propagation in tissues.

    Science.gov (United States)

    Chen, Xueli; Sun, Fangfang; Yang, Defu; Ren, Shenghan; Zhang, Qian; Liang, Jimin

    2015-08-21

    Aiming at the limitations of the simplified spherical harmonics approximation (SPN) and diffusion equation (DE) in describing the light propagation in tissues, a hybrid simplified spherical harmonics with diffusion equation (HSDE) based diffuse light transport model is proposed. In the HSDE model, the living body is first segmented into several major organs, and then the organs are divided into high scattering tissues and other tissues. DE and SPN are employed to describe the light propagation in these two kinds of tissues respectively, which are finally coupled using the established boundary coupling condition. The HSDE model makes full use of the advantages of SPN and DE, and abandons their disadvantages, so that it can provide a perfect balance between accuracy and computation time. Using the finite element method, the HSDE is solved for light flux density map on body surface. The accuracy and efficiency of the HSDE are validated with both regular geometries and digital mouse model based simulations. Corresponding results reveal that a comparable accuracy and much less computation time are achieved compared with the SPN model as well as a much better accuracy compared with the DE one.

  2. Diffusion voltage in polymer light emitting diodes measured with electric field induced second harmonic generation

    Energy Technology Data Exchange (ETDEWEB)

    Kristensen, P.K.; Rafaelsen, J.; Pedersen, T.G.; Pedersen, K. [Department of Physics and Nanotechnology, Aalborg University, Pontoppidanstraede 103, 9220 Aalborg East (Denmark)

    2005-12-01

    We apply electric field induced second harmonic (EFISH) to polymer light emitting diodes (PLEDs) and demonstrate the ability to determine the diffusion voltage in PLED devices. The EFISH signal is proportional to the square of the effective field, which is the sum of the diffusion voltage and the applied voltage. By minimizing the EFISH-signal as a function of the applied voltage, the diffusion voltage is determined by measuring the applied voltage that cancels out the diffusion voltage. The PLEDs are fabricated with indium tin oxide (ITO) as the hole injecting contact and two different electron injecting contacts, namely aluminum and calcium. The diffusion voltage originates from the rearranged charges caused by the difference in Fermi levels in the materials in the PLEDs. Different contacts will thus cause different diffusion voltages. We demonstrate here that the EFISH signal is proportional to the square of the effective field in both reverse and forward bias, and discuss the dependence on contact materials. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  3. Methods for quantitative infrared directional-hemispherical and diffuse reflectance measurements using an FTIR and a commercial integrating sphere

    Energy Technology Data Exchange (ETDEWEB)

    Blake, Thomas A.; Johnson, Timothy J.; Tonkyn, Russell G.; Forland, Brenda M.; Myers, Tanya L.; Brauer, Carolyn S.; Su, Yin-Fong; Bernacki, Bruce E.; Hanssen, Leonard; Gonzalez, Gerardo

    2018-01-01

    Infrared integrating sphere measurements of solid samples are important in providing reference data for contact, standoff and remote sensing applications. At the Pacific Northwest National Laboratory (PNNL) we have developed protocols to measure both the directional-hemispherical ( and diffuse (d) reflectances of powders, liquids, and disks of powders and solid materials using a commercially available, matte gold-coated integrating sphere and Fourier transform infrared spectrometer. Detailed descriptions of the sphere alignment and its use for making these reflectance measurements are given. Diffuse reflectance values were found to be dependent on the bidirectional reflection distribution function (BRDF) of the sample and the solid angle intercepted by the sphere’s specular exclusion port. To determine how well the sphere and protocols produce quantitative reflectance data, measurements were made of three diffuse and two specular standards prepared by the National institute of Standards and Technology (NIST, USA), LabSphere Infragold and Spectralon standards, hand-loaded sulfur and talc powder samples, and water. The five NIST standards behaved as expected: the three diffuse standards had a high degree of “diffuseness,” d/ = D > 0.9, whereas the two specular standards had D ≤ 0.03. The average absolute differences between the NIST and PNNL measurements of the NIST standards for both directional-hemispherical and diffuse reflectances are on the order of 0.01 reflectance units. Other quantitative differences between the PNNL-measured and calibration (where available) or literature reflectance values for these standards and materials are given and the possible origins of discrepancies are discussed. Random uncertainties and estimates of systematic uncertainties are presented. Corrections necessary to provide better agreement between the PNNL reflectance values as measured for the NIST standards and the NIST reflectance values for these same standards are also

  4. Bright infrared quantum-dot light-emitting diodes through inter-dot spacing control

    KAUST Repository

    Sun, Liangfeng

    2012-05-06

    Infrared light-emitting diodes are currently fabricated from direct-gap semiconductors using epitaxy, which makes them expensive and difficult to integrate with other materials. Light-emitting diodes based on colloidal semiconductor quantum dots, on the other hand, can be solution-processed at low cost, and can be directly integrated with silicon. However, so far, exciton dissociation and recombination have not been well controlled in these devices, and this has limited their performance. Here, by tuning the distance between adjacent PbS quantum dots, we fabricate thin-film quantum-dot light-emitting diodes that operate at infrared wavelengths with radiances (6.4 W sr \\'1 m \\'2) eight times higher and external quantum efficiencies (2.0%) two times higher than the highest values previously reported. The distance between adjacent dots is tuned over a range of 1.3 nm by varying the lengths of the linker molecules from three to eight CH 2 groups, which allows us to achieve the optimum balance between charge injection and radiative exciton recombination. The electroluminescent powers of the best devices are comparable to those produced by commercial InGaAsP light-emitting diodes. By varying the size of the quantum dots, we can tune the emission wavelengths between 800 and 1,850 nm.© 2012 Macmillan Publishers Limited.

  5. Diffusion barriers for achieving controlled concentrations of luminescent dopants via diffusion for mask-less RGB color patterning of organic light emitting devices.

    Science.gov (United States)

    Kajiyama, Yoshitaka; Kajiyama, Koichi; Aziz, Hany

    2015-11-30

    Using molecular diffusion as an approach to introduce organic luminescent dopants for making organic light emitting devices (OLEDs) of different colors on one substrate has the potential to overcome the yield and resolution limitations of the current OLED display technology. In this work, diffusion barriers made of MoO3 and a hole transport material mixture are introduced. The barriers effectively confine the diffusion of the dopants to only the desired depths. With the use of these barriers, OLEDs with highly controlled doping concentrations and performance are fabricated. The barriers thus allow utilizing simple diffusion methods for RGB patterning in OLEDs.

  6. Light source depth estimation in porcine skin using spatially resolved diffuse imaging.

    Science.gov (United States)

    Brennan, Kieran A; Ruddy, Bryan P; Nielsen, Poul M F; Taberner, Andrew J

    2016-08-01

    We present an inexpensive imaging system for measuring the diffuse surface radiance profile produced by a light source within a turbid medium. The diffusion model of light propagation in multiple scattering media is used to estimate the optical properties of a sample and subsequently approximate the depth of an optical source. The system is shown to accurately estimate the relative changes in source depth in a homogeneous phantom. The absolute depth estimate may be improved with a better estimate of the optical parameters. Preliminary tests on a porcine skin sample show that the simple model can be used to roughly track the relative changes in the depth of a source in a layered medium. However, a rigorous model of the layered geometry may be required to more accurately localize a source, particularly near interfaces between tissue layers.

  7. Lethal photosensitization of wound-associated microbes using indocyanine green and near-infrared light

    DEFF Research Database (Denmark)

    Omar, Ghada Said Mohammed; Wilson, Michael; Nair, Sean P.

    2008-01-01

    Background: The increase in resistance to antibiotics among disease-causing bacteria necessitates the development of alternative antimicrobial approaches such as the use of light-activated antimicrobial agents (LAAAs). Light of an appropriate wavelength activates the LAAA to produce cytotoxic...... species which can then cause bacterial cell death via loss of membrane integrity, lipid peroxidation, the inactivation of essential enzymes, and/or exertion of mutagenic effects due to DNA modification. In this study, the effect of the LAAA indocyanine green excited with high or low intensity light (808...... nm) from a near-infrared laser (NIR) on the viability of Staphylococcus aureus, Streptococcus pyogenes and Pseudomonas aeruginosa was investigated. Results: All species were susceptible to killing by the LAAA, the bactericidal effect being dependent on both the concentration of indocyanine green...

  8. Gold nanocages covered by smart polymers for controlled release with near-infrared light.

    Science.gov (United States)

    Yavuz, Mustafa S; Cheng, Yiyun; Chen, Jingyi; Cobley, Claire M; Zhang, Qiang; Rycenga, Matthew; Xie, Jingwei; Kim, Chulhong; Song, Kwang H; Schwartz, Andrea G; Wang, Lihong V; Xia, Younan

    2009-12-01

    Photosensitive caged compounds have enhanced our ability to address the complexity of biological systems by generating effectors with remarkable spatial/temporal resolutions. The caging effect is typically removed by photolysis with ultraviolet light to liberate the bioactive species. Although this technique has been successfully applied to many biological problems, it suffers from a number of intrinsic drawbacks. For example, it requires dedicated efforts to design and synthesize a precursor compound for each effector. The ultraviolet light may cause damage to biological samples and is suitable only for in vitro studies because of its quick attenuation in tissue. Here we address these issues by developing a platform based on the photothermal effect of gold nanocages. Gold nanocages represent a class of nanostructures with hollow interiors and porous walls. They can have strong absorption (for the photothermal effect) in the near-infrared while maintaining a compact size. When the surface of a gold nanocage is covered with a smart polymer, the pre-loaded effector can be released in a controllable fashion using a near-infrared laser. This system works well with various effectors without involving sophisticated syntheses, and is well suited for in vivo studies owing to the high transparency of soft tissue in the near-infrared region.

  9. [Study and analysis of light infrared detection system with dual spectrum and wide temperature range].

    Science.gov (United States)

    Shen, Man-De; Jiang, Qing-Xiu; Ren, Huan-Huan; Li, Cheng

    2014-05-01

    Because harmonic diffractive optics elements has special achromatism, athermalization and arbitrary phase modulation characteristics, an infrared detection system method with dual spectrum and wide temperature range was presented based on the most advanced infrared dual color detector which had a format of 320 X 240 and the pixel pitch of 30 microm. A hybrid refractive/ harmonic diffractive infrared detection system with dual spectrum and wide temperature range was designed. The working wavelength range was 3. 8 - 4. 2 and 8. 8 -11. 2 microm. The system was only consisted of three lenses, including one aspheric surfaces and a harmonic diffraction surface, which made the system have compact structure and light weight. In the temperature range -120 -200 degreesC, the RMS radius of spot diagram in 3. 8 approximately 4. 2 and 8. 8-11. 2 pm was 19. 07 and 17. 75 microm respectively, which is less than the pixel size of infrared detector with 30 m, the enclosed energy in 30 microm, the enclosed energy in 3. 8-4. 2 and 8. 8-11. 2 microm is 88. 7% and 82. 4% in two pixel size. The method and structure was convenient and predominant. It was proved that the design was feasible.

  10. A photoacoustic imager with light illumination through an infrared-transparent silicon CMUT array.

    Science.gov (United States)

    Chen, Jingkuang; Wang, Mengli; Cheng, Jui-Ching; Wang, Yu-Hsin; Li, Pai-Chi; Cheng, Xiaoyang

    2012-04-01

    A novel hardware design and preliminary experimental results for photoacoustic imaging are reported in this paper. This imaging system makes use of an infrared-transparent capacitive micromachined ultrasonic transducer (CMUT) chip for ultrasound reception and illuminates the image target through the CMUT array. The cascaded arrangement between the light source and transducer array allows for a more compact imager head and results in more uniform illumination. Taking advantage of the low optical absorption coefficient of silicon in the near infrared spectrum as well as the broad acoustic bandwidth that CMUTs provide, an infrared-transparent CMUT array has been developed for ultrasound reception. The center frequency of the polysilicon-membrane CMUT devices used in this photoacoustic system is 3.5 MHz, with a fractional bandwidth of 118% in reception mode. The silicon substrate of the CMUT array has been thinned to 100 μm and an antireflection dielectric layer is coated on the back side to improve the infrared-transmission rate. Initial results show that the transmission rate of a 1.06-μm Nd:Yag laser through this CMUT chip is 12%. This transmission rate can be improved if the thickness of silicon substrate and the thin-film dielectrics in the CMUT structure are properly tailored. Imaging of a metal wire phantom using this cascaded photoacoustic imager is demonstrated.

  11. Study of microparticles' anomalous diffusion in active bath using speckle light fields (Presentation Recording)

    Science.gov (United States)

    Pince, Ercag; Sabareesh, Sabareesh K. P.; Volpe, Giorgio; Gigan, Sylvain; Volpe, Giovanni S.

    2015-08-01

    Particles undergoing a stochastic motion within a disordered medium is a ubiquitous physical and biological phenomenon. Examples can be given from organelles as molecular machines of cells performing physical tasks in a populated cytoplasm to human mobility in patchy environment at larger scales. Our recent results showed that it is possible to use the disordered landscape generated by speckle light fields to perform advanced manipulation tasks at the microscale. Here, we use speckle light fields to study the anomalous diffusion of micron size silica particles (5 μm) in the presence of active microswimmers. The microswimmers we used in the experiments are motile bacteria, Escherichia coli (E.coli). They constitute an active background constantly agitating passive silica particles within complex optical potentials. The speckle fields are generated by mode mixing inside a multimode optical fiber where a small amount of incident laser power (maximum power = 12 μW/μm2) is needed to obtain an effective random landscape pattern for the purpose of optical manipulation. We experimentally show how complex potentials contribute to the anomalous diffusion of silica particles undergoing collisions with swimming bacteria. We observed an enhanced diffusion of particles interacting with the active bath of E.coli inside speckle light fields: this effect can be tuned and controlled by varying the intensity and the statistical properties of the speckle pattern. Potentially, these results could be of interest for many technological applications, such as the manipulation of microparticles inside optically disordered media of biological interests.

  12. J-Black: a stray light coating for optical and infrared systems

    Science.gov (United States)

    Waddell, Patrick; Black, David S.

    2016-07-01

    A new stray light coating, called J-Black, has been developed for NASA's Stratospheric Observatory for Infrared Astronomy (SOFIA). The coating is a layered composition of Nextel-Suede 3101 primers and top coats and silicon carbide grit. J-Black has been applied to large areas of the SOFIA airborne telescope and is currently operating within the open cavity environment of the Boeing 747. Over a series of discrete filter bands, from 0.4 to 21 microns, J-Black optical and infrared reflectivity performance is compared with other available coatings. Measured total reflectance values are less than 2% at the longest wavelengths, including at high incidence angles. Detailed surface structure characteristics are also compared via electron and ion microscopy. Environmental tests applicable for aerospace applications are presented, as well as the detailed steps required to apply the coating.

  13. The Role of Triplet Exciton Diffusion in Light-Upconverting Polymer Glasses.

    Science.gov (United States)

    Raišys, Steponas; Kazlauskas, Karolis; Juršėnas, Saulius; Simon, Yoan C

    2016-06-22

    Light upconversion (UC) via triplet-triplet annihilation (TTA) by using noncoherent photoexcitation at subsolar irradiance power densities is extremely attractive, particularly for enhanced solar energy harvesting. Unfortunately, practical TTA-UC application is hampered by low UC efficiency of upconverting polymer glasses, which is commonly attributed to poor exciton diffusion of the triplet excitons across emitter molecules. The present study addresses this issue by systematically evaluating triplet exciton diffusion coefficients and diffusion lengths (LD) in a UC model system based on platinum-octaethylporphyrin-sensitized poly(methyl methacrylate)/diphenylanthracene (emitter) films as a function of emitter concentration (15-40 wt %). For this evaluation time-resolved photoluminescence bulk-quenching technique followed by Stern-Volmer-type quenching analysis of experimental data was employed. The key finding is that although increasing emitter concentration in the disordered PMMA/DPA/PtOEP films improves triplet exciton diffusion, and thus LD, this does not result in enhanced UC quantum yield. Conversely, improved LD accompanied by the accelerated decay of UC intensity on millisecond time scale degrades TTA-UC performance at high emitter loadings (>25 wt %) and suggests that diffusion-enhanced nonradiative decay of triplet excitons is the major limiting factor.

  14. Non-collinear upconversion of incoherent light: designing infrared spectrometers and imaging systems

    DEFF Research Database (Denmark)

    Dam, Jeppe Seidelin; Hu, Qi; Pedersen, Christian

    2014-01-01

    Upconversion of incoherent mid-infrared radiation to near visible wavelengths, offers very attractive sensitivity compared to conventional means of infrared detection. Incoherent light, focused into a nonlinear crystal, results in noncollinear phase matching of a narrow range of wavelengths for e...... experiments. We finally discuss how it can be used to design and predict system performance and how incoherent upconversion can be used for mid-IR spectroscopy and imaging....... of periodically poled crystals have allowed for non-critical collinear phase matching of most wavelengths, virtually eliminating the need for non-collinear phase matching. When considering upconversion of thermal light, spectral radiance is limited due to the finite temperature of the Planck radiation source...... that filling the nonlinear crystal with as large a pump beam as possible yields the best conversion as this allows for upconversion of large angles of incoming incoherent light. We present results of non-collinear mixing and how it affects spectral and spatial resolution in the image and compare against...

  15. Origin of Enhanced Hole Injection in Organic Light-Emitting Diodes with an Electron-Acceptor Doping Layer: p-Type Doping or Interfacial Diffusion?

    Science.gov (United States)

    Zhang, Lei; Zu, Feng-Shuo; Deng, Ya-Li; Igbari, Femi; Wang, Zhao-Kui; Liao, Liang-Sheng

    2015-06-10

    The electrical doping nature of a strong electron acceptor, 1,4,5,8,9,11-hexaazatriphenylene hexacarbonitrile (HATCN), is investigated by doping it in a typical hole-transport material, N,N'-bis(naphthalen-1-yl)-N,N'-diphenylbenzidine (NPB). A better device performance of organic light-emitting diodes (OLEDs) was achieved by doping NPB with HATCN. The improved performance could, in principle, arise from a p-type doping effect in the codeposited thin films. However, physical characteristics evaluations including UV-vis absorption, Fourier transform infrared absorption, and X-ray photoelectron spectroscopy demonstrated that there was no obvious evidence of charge transfer in the NPB:HATCN composite. The performance improvement in NPB:HATCN-based OLEDs is mainly attributed to an interfacial modification effect owing to the diffusion of HATCN small molecules. The interfacial diffusion effect of the HATCN molecules was verified by the in situ ultraviolet photoelectron spectroscopy evaluations.

  16. Efficacy of a near-infrared light device in pediatric intravenous cannulation: a randomized controlled trial.

    Science.gov (United States)

    Perry, Andrew M; Caviness, Alison Chantal; Hsu, Deborah C

    2011-01-01

    To determine whether the use of a near-infrared light venipuncture aid (VeinViewer; Luminetx Corporation, Memphis, Tenn) would improve the rate of successful first-attempt placement of intravenous (IV) catheters in a high-volume pediatric emergency department (ED). Patients younger than 20 years with standard clinical indications for IV access were randomized to have IV placement by ED nurses (in 3 groups stratified by 5-year blocks of nursing experience) using traditional methods (standard group) or with the aid of the near-infrared light source (device group). If a vein could not be cannulated after 3 attempts, patients crossed over from one study arm to the other, and study nurses attempted placement with the alternative technique. The primary end point was first-attempt success rate for IV catheter placement. After completion of patient enrollment, a questionnaire was completed by study nurses as a qualitative assessment of the device. A total of 123 patients (median age, 3 years) were included in the study: 62 in the standard group and 61 in the device group. There was no significant difference in first-attempt success rate between the standard (79.0%, 95% confidence interval [CI], 66.8%-88.3%) and device (72.1%, 95% CI, 59.2%-82.9%) groups. Of the 19 study nurses, 14 completed the questionnaire of whom 70% expressed neutral or unfavorable assessments of the device in nondehydrated patients without chronic underlying medical conditions and 90% found the device a helpful tool for patients in whom IV access was difficult. First-attempt success rate for IV placement was nonsignificantly higher without than with the assistance of a near-infrared light device in a high-volume pediatric ED. Nurses placing IVs did report several benefits to use of the device with specific patient groups, and future research should be conducted to demonstrate the role of the device in these patients.

  17. Infrared characterization of uranium oxide powders using a metal light pipe

    International Nuclear Information System (INIS)

    Cort, B.; Andrew, J.F.; Hansen, G.J.

    1987-01-01

    A light-pipe technique has been used to measure infrared spectra of UO 2 , U 3 O 8 , and UO 3 in the range 2000 to 450 cm -1 . Comparison with transmission spectra found in the literature indicates that the technique is very suitable for characterization of actinide powders and will therefore be a useful tool for future work, especially with hazardous materials such as actinides. The spectra obtained show all features predicted by group theory calculations, and the spectrum for the trioxide exhibits previously unseen features characteristic of uranyl bonds

  18. Searching for biological traces on different materials using a forensic light source and infrared photography.

    Science.gov (United States)

    Sterzik, V; Panzer, S; Apfelbacher, M; Bohnert, M

    2016-05-01

    Because biological traces often play an important role in the investigation process of criminal acts, their detection is essential. As they are not always visible to the human eye, tools like a forensic light source or infrared photography can be used. The intention of the study presented was to give advice how to visualize biological traces best. Which wavelengths and/or filters give the best results for different traces on different fabrics of different colors? Therefore, blood (undiluted and diluted), semen, urine, saliva, and perspiration have been examined on 29 different materials.

  19. Ultra low emittance electron beams from multi-alkali antimonide photocathode operated with infrared light

    Energy Technology Data Exchange (ETDEWEB)

    Cultrera, L.; Gulliford, C.; Bartnik, A.; Lee, H.; Bazarov, I. [Cornell Laboratory for Accelerator-Based Sciences and Education, Cornell University, Ithaca, New York 14853 (United States)

    2016-03-28

    The intrinsic emittance of electron beams generated from a multi-alkali photocathode operated in a high voltage DC gun is reported. The photocathode showed sensitivity extending to the infrared part of the spectrum up to 830 nm. The measured intrinsic emittances of electron beams generated with light having wavelength longer than 800 nm are approaching the limit imposed by the thermal energy of electrons at room temperature with quantum efficiencies comparable to metallic photocathodes used in operation of modern photoinjectors.

  20. [UV, visible and infrared light. Which wavelengths produce oxidative stress in human skin?].

    Science.gov (United States)

    Zastrow, L; Groth, N; Klein, F; Kockott, D; Lademann, J; Ferrero, L

    2009-04-01

    Experimental evidence suggests that the creation of free radicals--mainly reactive oxygen species (ROS)--is the common photobiological answer to the skin-sunlight interaction. The free radical action spectrum (wavelength dependency) for ultraviolet and visible light (280-700 nm) has been determined by quantitative ESR spectroscopy. Visible light produces around 50% of the total oxidative stress caused by sunlight. Reactive species like *O(-)(2), *OH and *CHR are generated by visible light. The amount of ROS correlates with the visible light intensity (illuminance). We demonstrated the creation of excess free radicals by near-infrared light (NIR, 700-1600 nm). Free radical generation does not depend exclusively on the NIR irradiance, but also on the NIR initiated skin temperature increase. The temperature dependence follows the physiological fever curve. Our results indicate that the complex biological system skin creates the same type of free radicals over the entire active solar spectrum. This general response will make it possible to define the beneficial or deleterious action of sunlight on human skin by introduction of a free radical threshold value.

  1. Correlation transfer and diffusion of ultrasound-modulated multiply scattered light.

    Science.gov (United States)

    Sakadzić, Sava; Wang, Lihong V

    2006-04-28

    We develop a temporal correlation transfer equation (CTE) and a temporal correlation diffusion equation (CDE) for ultrasound-modulated multiply scattered light. These equations can be applied to an optically scattering medium with embedded optically scattering and absorbing objects to calculate the power spectrum of light modulated by a nonuniform ultrasound field. We present an analytical solution based on the CDE and Monte Carlo simulation results for light modulated by a cylinder of ultrasound in an optically scattering slab. We further validate with experimental measurements the numerical calculations for an actual ultrasound field. The CTE and CDE are valid for moderate ultrasound pressures and on a length scale comparable with the optical transport mean-free path. These equations should be applicable to a wide spectrum of conditions for ultrasound-modulated optical tomography of soft biological tissues.

  2. Light diffusion through composite restorations added with spherical glass mega fillers.

    Science.gov (United States)

    Andreasi Bassi, M; Andreasi Bassi, S; Andrisani, C; Lico, S; Baggi, L; Lauritano, D

    2016-01-01

    Evaluate how the spherical glass mega fillers (SGMFs) can positively interfere with light diffusion when incorporated in a composite restoration. 30 samples (Ss) were performed, applying 2 composite layers of 3 mm each: 6 were made with composite only; 6 with a layer of SGMFs of O1.5mm within the first layer of composite; 6 with 2 overlapping layers of SGMFs of O1.5mm; 6 with a layer of SGMFs of O2mm; 6 with 2 overlapping layers of SGMFs of O2mm. The curing time was set at 40s for the first layer, and 120s for the second layer, transilluminated through the first layer. Digital pictures were taken, in standardized settings, during the transillumination, and the light intensity was measured with a digital image analysis software. From a lateral view the Ss with a single layer of SGMFs of O1.5mm and O2mm, the relative increments of light intensity, were of 24.37% and 33.33% respectively. Concerning the Ss made with 2 layers of SGMFs, the relative increments were of 67.99% and 66.4% respectively. In front view has emerged a relative increase rate of light intensity of 53.66% and 79.58%, in the Ss with a single layer of SGMFs of O1.5mm and of O2mm respectively. Furthermore, in the Ss with two layers of SGMFs of O1.5mm and O2mm the relative increments were of 267.53 and 319.63% respectively. The SGMFs are reliable in facilitating light diffusion within the light-curing composite resins.

  3. On the origin of near-infrared extragalactic background light anisotropy.

    Science.gov (United States)

    Zemcov, Michael; Smidt, Joseph; Arai, Toshiaki; Bock, James; Cooray, Asantha; Gong, Yan; Kim, Min Gyu; Korngut, Phillip; Lam, Anson; Lee, Dae Hee; Matsumoto, Toshio; Matsuura, Shuji; Nam, Uk Won; Roudier, Gael; Tsumura, Kohji; Wada, Takehiko

    2014-11-07

    Extragalactic background light (EBL) anisotropy traces variations in the total production of photons over cosmic history and may contain faint, extended components missed in galaxy point-source surveys. Infrared EBL fluctuations have been attributed to primordial galaxies and black holes at the epoch of reionization (EOR) or, alternately, intrahalo light (IHL) from stars tidally stripped from their parent galaxies at low redshift. We report new EBL anisotropy measurements from a specialized sounding rocket experiment at 1.1 and 1.6 micrometers. The observed fluctuations exceed the amplitude from known galaxy populations, are inconsistent with EOR galaxies and black holes, and are largely explained by IHL emission. The measured fluctuations are associated with an EBL intensity that is comparable to the background from known galaxies measured through number counts and therefore a substantial contribution to the energy contained in photons in the cosmos. Copyright © 2014, American Association for the Advancement of Science.

  4. White light spectral interferometer for measuring dispersion in the visible-near infrared

    Science.gov (United States)

    Arosa, Yago; Rodríguez Fernández, Carlos Damian; Algnamat, Bilal S.; López-Lago, Elena; de la Fuente, Raul

    2017-08-01

    We have designed a spectrally resolved interferometer to measure the refractive index of transparent samples over a wide spectral band from 400 to 1550 nm. The measuring device consists of a Michelson interferometer whose output is analyzed by means of three fiber spectrometers. The first one is a homemade prism spectrometer, which obtains the interferogram produced by the sample over 400 to 1050 nm; the second one is a homemade transmission grating spectrometer thought to measure the interferogram in the near infrared spectral band from 950 to 1550 nm; the last one is a commercial Czerny-Turner spectrometer used to make high precision measurements of the displacement between the Michelson mirrors also using white light interferometry. The whole system is illuminated by a white light source with an emission spectrum similar to black body. We have tested the instrument with solid and liquids samples achieving accuracy to the fourth decimal on the refractive index after fitting it to a Cauchy formula

  5. Efficient light emitting diodes by photon recycling and their application in pixelless infrared imaging devices

    Science.gov (United States)

    Dupont, E.; Chiu, S.

    2000-02-01

    The success of the pixelless imaging concept using a quantum well infrared photodetector integrated with a light emitting diode (QWIP-LED) depends critically on the extent of spatial lateral spreading of both photocurrent generated in the QWIP and near infrared (NIR) photons emitted by the LED as they escape from the device layers. According to the photon recycling model proposed by Schnitzer et al. [Appl. Phys. Lett. 62, 131 (1993)] there appears to be a trade-off between a high LED external quantum efficiency and a small photon lateral spread, the former being a necessary condition for achieving high detector sensitivity. This lateral spreading due to multireflections and reincarnations of the NIR photons could potentially degrade the image quality or resolution of the device. By adapting Schnitzer's model to the QWIP-LED structure, we have identified device parameters that could potentially influence the NIR photon lateral spread and the LED external efficiency. In addition, we have developed a simple sequential model to estimate the crosstalk between the incoming far infrared image and the up-converted NIR image. We have found that the thickness of the LED is an important parameter that needs to be optimized in order to maximize the external efficiency and to minimize the crosstalk. A 6000-Å-thick LED active layer should give a resolution of ˜30 μm and an external efficiency of ˜10%.

  6. Lethal photosensitization of wound-associated microbes using indocyanine green and near-infrared light

    Directory of Open Access Journals (Sweden)

    Wilson Michael

    2008-07-01

    Full Text Available Abstract Background The increase in resistance to antibiotics among disease-causing bacteria necessitates the development of alternative antimicrobial approaches such as the use of light-activated antimicrobial agents (LAAAs. Light of an appropriate wavelength activates the LAAA to produce cytotoxic species which can then cause bacterial cell death via loss of membrane integrity, lipid peroxidation, the inactivation of essential enzymes, and/or exertion of mutagenic effects due to DNA modification. In this study, the effect of the LAAA indocyanine green excited with high or low intensity light (808 nm from a near-infrared laser (NIR on the viability of Staphylococcus aureus, Streptococcus pyogenes and Pseudomonas aeruginosa was investigated. Results All species were susceptible to killing by the LAAA, the bactericidal effect being dependent on both the concentration of indocyanine green and the light dose. Indocyanine green photosensitization using both high (1.37 W cm-2 and low (0.048 W cm-2 intensity NIR laser light was able to achieve reductions of 5.6 log10 (>99.99% and 6.8 log10 (>99.99% in the viable counts of Staph. aureus and Strep. pyogenes (using starting concentrations of 106–107 CFU ml-1. Kills of 99.99% were obtained for P. aeruginosa (initial concentration 108–109 CFU ml-1 photosensitized by the high intensity light (1.37 W cm-2; while a kill of 80% was achieved using low intensity irradiation (0.07 W cm-2. The effects of L-tryptophan (a singlet oxygen scavenger and deuterium oxide (as an enhancer of the life span of singlet oxygen on the survival of Staph. aureus was also studied. L-tryptophan reduced the proportion of Staph. aureus killed; whereas deuterium oxide increased the proportion killed suggesting that singlet oxygen was involved in the killing of the bacteria. Conclusion These findings imply that indocyanine green in combination with light from a near-infrared laser may be an effective means of eradicating bacteria

  7. Recognition of Banknote Fitness Based on a Fuzzy System Using Visible Light Reflection and Near-infrared Light Transmission Images.

    Science.gov (United States)

    Kwon, Seung Yong; Pham, Tuyen Danh; Park, Kang Ryoung; Jeong, Dae Sik; Yoon, Sungsoo

    2016-06-11

    Fitness classification is a technique to assess the quality of banknotes in order to determine whether they are usable. Banknote classification techniques are useful in preventing problems that arise from the circulation of substandard banknotes (such as recognition failures, or bill jams in automated teller machines (ATMs) or bank counting machines). By and large, fitness classification continues to be carried out by humans, and this can cause the problem of varying fitness classifications for the same bill by different evaluators, and requires a lot of time. To address these problems, this study proposes a fuzzy system-based method that can reduce the processing time needed for fitness classification, and can determine the fitness of banknotes through an objective, systematic method rather than subjective judgment. Our algorithm was an implementation to actual banknote counting machine. Based on the results of tests on 3856 banknotes in United States currency (USD), 3956 in Korean currency (KRW), and 2300 banknotes in Indian currency (INR) using visible light reflection (VR) and near-infrared light transmission (NIRT) imaging, the proposed method was found to yield higher accuracy than prevalent banknote fitness classification methods. Moreover, it was confirmed that the proposed algorithm can operate in real time, not only in a normal PC environment, but also in an embedded system environment of a banknote counting machine.

  8. Recognition of Banknote Fitness Based on a Fuzzy System Using Visible Light Reflection and Near-infrared Light Transmission Images

    Directory of Open Access Journals (Sweden)

    Seung Yong Kwon

    2016-06-01

    Full Text Available Fitness classification is a technique to assess the quality of banknotes in order to determine whether they are usable. Banknote classification techniques are useful in preventing problems that arise from the circulation of substandard banknotes (such as recognition failures, or bill jams in automated teller machines (ATMs or bank counting machines. By and large, fitness classification continues to be carried out by humans, and this can cause the problem of varying fitness classifications for the same bill by different evaluators, and requires a lot of time. To address these problems, this study proposes a fuzzy system-based method that can reduce the processing time needed for fitness classification, and can determine the fitness of banknotes through an objective, systematic method rather than subjective judgment. Our algorithm was an implementation to actual banknote counting machine. Based on the results of tests on 3856 banknotes in United States currency (USD, 3956 in Korean currency (KRW, and 2300 banknotes in Indian currency (INR using visible light reflection (VR and near-infrared light transmission (NIRT imaging, the proposed method was found to yield higher accuracy than prevalent banknote fitness classification methods. Moreover, it was confirmed that the proposed algorithm can operate in real time, not only in a normal PC environment, but also in an embedded system environment of a banknote counting machine.

  9. Quantum Dots in Two-Dimensional Perovskite Matrices for Efficient Near-Infrared Light Emission

    KAUST Repository

    Yang, Zhenyu

    2017-03-13

    Quantum-dot-in-perovskite solids are excellent candidates for infrared light-emitting applications. The first generation of dot-in-perovskite light-emitting diodes (LEDs) has shown bright infrared electroluminescence with tunable emission wavelength; however, their performance has been limited by degradation of the active layer at practical operating voltages. This arises from the instability of the three-dimensional (3D) organolead halide perovskite matrix. Herein we report the first dot-in-perovskite solids that employ two-dimensional (2D) perovskites as the matrix. 2D perovskite passivation is achieved via an in situ alkylammonium/alkylamine substitution carried out during the quantum dot (QD) ligand exchange process. This single-step film preparation process enables deposition of the QD/perovskite active layers with thicknesses of 40 nm, over seven times thinner than the first-generation dot-in-perovskite thin films that relied on a multistep synthesis. The dot-in-perovskite film roughness improved from 31 nm for the first-generation films to 3 nm for films as a result of this new approach. The best devices exhibit external quantum efficiency peaks exceeding 2% and radiances of ∼1 W sr–1 m–2, with an improved breakdown voltage up to 7.5 V. Compared to first-generation dot-in-perovskites, this new process reduces materials consumptions 10-fold and represents a promising step toward manufacturable devices.

  10. Tunneling Injection and Exciton Diffusion of White Organic Light-Emitting Diodes with Composed Buffer Layers

    Science.gov (United States)

    Yang, Su-Hua; Wu, Jian-Ping; Huang, Tao-Liang; Chung, Bin-Fong

    2018-02-01

    Four configurations of buffer layers were inserted into the structure of a white organic light emitting diode, and their impacts on the hole tunneling-injection and exciton diffusion processes were investigated. The insertion of a single buffer layer of 4,4'-bis(carbazol-9-yl)biphenyl (CBP) resulted in a balanced carrier concentration and excellent color stability with insignificant chromaticity coordinate variations of Δ x diffusion of excitons were confirmed by the preparation of a dual buffer layer of CBP:tris-(phenylpyridine)-iridine (Ir(ppy)3)/BCP. A maximum current efficiency of 12.61 cd/A with a luminance of 13,850 cd/m2 was obtained at 8 V when a device with a dual-buffer layer of CBP:6 wt.% Ir(ppy)3/BCP was prepared.

  11. Mechanism of light-induced translocation of arrestin and transducin in photoreceptors: interaction-restricted diffusion.

    Science.gov (United States)

    Slepak, Vladlen Z; Hurley, James B

    2008-01-01

    Many signaling proteins change their location within cells in response to external stimuli. In photoreceptors, this phenomenon is remarkably robust. The G protein of rod photoreceptors and rod transducin concentrates in the outer segments (OS) of these neurons in darkness. Within approximately 30 minutes after illumination, rod transducin redistributes throughout all of the outer and inner compartments of the cell. Visual arrestin concurrently relocalises from the inner compartments to become sequestered primarily within the OS. In the past several years, the question of whether these proteins are actively moved by molecular motors or whether they are redistributed by simple diffusion has been extensively debated. This review focuses on the most essential works in the area and concludes that the basic principle driving this protein movement is diffusion. The directionality and light dependence of this movement is achieved by the interactions of arrestin and transducin with their spatially restricted binding partners.

  12. On-line hyperfine structure and isotope shift measurements with diffuse light collection and photon burst detection

    International Nuclear Information System (INIS)

    Lassen, J.; Benck, E.C.; Schuessler, H.A.

    1997-01-01

    An experiment is presently being set up which combines collinear-fast-beam laser spectroscopy with photon burst spectroscopy. Selectivity is provided by the large kinetic isotope shifts together with the practically Doppler free linewidth of the fluorescence from the fast atom beam. The photon burst detection, based on photon correlations in the resonance fluorescence, increases the sensitivity, so that on-line optical isotope shift and hyperfine structure measurements on low intensity radioactive beams become feasible. In order to improve photon burst detection the solid angle of detection and the observation time have to be optimized. To this end a diffuse reflecting cavity has been designed and built, which collects fluorescence over a 45 cm length of the beam and covers the full solid angle. The light collection efficiency of the cavity is calculated to be about 45%. The cavity is being tested with a 11 keV beam of krypton atoms, probing the near infrared transitions in our apparatus at Texas A ampersand M University. copyright 1997 American Institute of Physics

  13. White light emission from Er2O3 nano-powder excited by infrared radiation

    Science.gov (United States)

    Tabanli, Sevcan; Eryurek, Gonul; Di Bartolo, Baldassare

    2017-07-01

    Phosphors of Er2O3 nano-crystalline powders were synthesized by the thermal decomposition method. The structural properties of the nano-powders were investigated with XRD and HRTEM measurements. The cubic phase with a = 10.540 Å was the only phase observed. The average crystalline sizes and the widths of the grain size distribution curves were determined to be 27.2, 18.7 and 9.7 nm, respectively. The spectroscopic properties of the Er2O3 nano-powder were studied by measuring the luminescence, decay and rise patterns under 808 and 975 nm diode laser excitations. A peculiar effect of the pressure was observed since an optically active ion (Er) is part of the complex and not a dopant. A broad band of the white light emission combined with blue, green and red up-conversion emission bands of Er3+ ions were observed at 0.03 mbar pressure under both excitation wavelengths. Only, an intense broad band white light emission was observed from these nanocrystals at atmospheric pressure. Rising patterns show that the white light intensity reaches its maximum value more rapidly under 975 nm excitation although it decays slower than that of 808 nm excitation. The color quality parameters such as the color coordinate (CRI), correlated color temperature and the color rendering index were found to vary with both the excitation wavelength and the ambient pressure indicating that these nanocrystals could be considered good white light emitting source under the infrared excitations.

  14. Generalized Beer-Lambert model for near-infrared light propagation in thick biological tissues

    Science.gov (United States)

    Bhatt, Manish; Ayyalasomayajula, Kalyan R.; Yalavarthy, Phaneendra K.

    2016-07-01

    The attenuation of near-infrared (NIR) light intensity as it propagates in a turbid medium like biological tissue is described by modified the Beer-Lambert law (MBLL). The MBLL is generally used to quantify the changes in tissue chromophore concentrations for NIR spectroscopic data analysis. Even though MBLL is effective in terms of providing qualitative comparison, it suffers from its applicability across tissue types and tissue dimensions. In this work, we introduce Lambert-W function-based modeling for light propagation in biological tissues, which is a generalized version of the Beer-Lambert model. The proposed modeling provides parametrization of tissue properties, which includes two attenuation coefficients μ0 and η. We validated our model against the Monte Carlo simulation, which is the gold standard for modeling NIR light propagation in biological tissue. We included numerous human and animal tissues to validate the proposed empirical model, including an inhomogeneous adult human head model. The proposed model, which has a closed form (analytical), is first of its kind in providing accurate modeling of NIR light propagation in biological tissues.

  15. Modeling the light-travel-time effect on the far-infrared size of IRC +10216

    Science.gov (United States)

    Wright, Edward L.; Baganoff, Frederick K.

    1995-01-01

    Models of the far-infrared emission from the large circumstellar dust envelope surrounding the carbon star IRC +10216 are used to assess the importance of the light-travel-time effect (LTTE) on the observed size of the source. The central star is a long-period variable with an average period of 644 +/- 17 days and a peak-to-peak amplitude of two magnituds, so a large light-travel-time effect is seen at 1 min radius. An attempt is made to use the LTTE to reconcile the discrepancy between the observations of Fazio et al. and Lester et al. regarding the far-infrared source size. This discrepancy is reviewed in light of recent, high-spatial-resolution observations at 11 microns by Danchi et al. We conclude that IRC +10216 has been resolved on the arcminute scale by Fazio et al. Convolution of the model intensity profile at 61 microns with the 60 sec x 90 sec Gaussian beam of Fazio et al. yields an observed source size full width at half maximum (FWHM) that ranges from approximately 67 sec to 75 sec depending on the phase of the star and the assumed distance to the source. Using a simple r(exp -2) dust distribution and the 106 deg phase of the Fazio et al. observations, the LTTE model reaches a peak size of 74.3 sec at a distance of 300 pc. This agrees favorably with the 78 sec x 6 sec size measured by Fazio et al. Finally, a method is outlined for using the LTTE as a distance indicator to IRC +10216 and other stars with extended mass outflows.

  16. Radiative Energy Budgets of Phototrophic Surface-Associated Microbial Communities and their Photosynthetic Efficiency Under Diffuse and Collimated Light.

    Science.gov (United States)

    Lichtenberg, Mads; Brodersen, Kasper E; Kühl, Michael

    2017-01-01

    We investigated the radiative energy budgets of a heterogeneous photosynthetic coral reef sediment and a compact uniform cyanobacterial biofilm on top of coastal sediment. By combining electrochemical, thermocouple and fiber-optic microsensor measurements of O 2 , temperature and light, we could calculate the proportion of the absorbed light energy that was either dissipated as heat or conserved by photosynthesis. We show, across a range of different incident light regimes, that such radiative energy budgets are highly dominated by heat dissipation constituting up to 99.5% of the absorbed light energy. Highest photosynthetic energy conservation efficiency was found in the coral sediment under low light conditions and amounted to 18.1% of the absorbed light energy. Additionally, the effect of light directionality, i.e., diffuse or collimated light, on energy conversion efficiency was tested on the two surface-associated systems. The effects of light directionality on the radiative energy budgets of these phototrophic communities were not unanimous but, resulted in local spatial differences in heat-transfer, gross photosynthesis, and light distribution. The light acclimation index, E k , i.e., the irradiance at the onset of saturation of photosynthesis, was >2 times higher in the coral sediment compared to the biofilm and changed the pattern of photosynthetic energy conservation under light-limiting conditions. At moderate to high incident irradiances, the photosynthetic conservation of absorbed energy was highest in collimated light; a tendency that changed in the biofilm under sub-saturating incident irradiances, where higher photosynthetic efficiencies were observed under diffuse light. The aim was to investigate how the physical structure and light propagation affected energy budgets and light utilization efficiencies in loosely organized vs. compact phototrophic sediment under diffuse and collimated light. Our results suggest that the optical properties and the

  17. Quantitative structural analysis of lignin by diffuse reflectance fourier transform infrared spectrometry

    International Nuclear Information System (INIS)

    Schultz, T.P.; Glasser, W.G.

    1986-01-01

    Empirical quantitative relationships were established between infrared (IR) spectral information and several structural features in lignins as determined by conventional methods. The structural composition of average phenylpropane (C g ) units which significantly correlated (0.01 level) with IR peak intensities included methoxy content, aromatic hydrogen content, phenolic hydroxy content, guaiacyl/syringyl ratio, and ''hydrolysis'' and ''condensation'' ratios

  18. Infrared Video Pupillography Coupled with Smart Phone LED for Measurement of Pupillary Light Reflex.

    Science.gov (United States)

    Chang, Lily Yu-Li; Turuwhenua, Jason; Qu, Tian Yuan; Black, Joanna M; Acosta, Monica L

    2017-01-01

    Clinical assessment of pupil appearance and pupillary light reflex (PLR) may inform us the integrity of the autonomic nervous system (ANS). Current clinical pupil assessment is limited to qualitative examination, and relies on clinical judgment. Infrared (IR) video pupillography combined with image processing software offer the possibility of recording quantitative parameters. In this study we describe an IR video pupillography set-up intended for human and animal testing. As part of the validation, resting pupil diameter was measured in human subjects using the NeurOptics ™ (Irvine, CA, USA) pupillometer, to compare against that measured by our IR video pupillography set-up, and PLR was assessed in guinea pigs. The set-up consisted of a smart phone with a light emitting diode (LED) strobe light (0.2 s light ON, 5 s light OFF cycles) as the stimulus and an IR camera to record pupil kinetics. The consensual response was recorded, and the video recording was processed using a custom MATLAB program. The parameters assessed were resting pupil diameter (D1), constriction velocity (CV), percentage constriction ratio, re-dilation velocity (DV) and percentage re-dilation ratio. We report that the IR video pupillography set-up provided comparable results as the NeurOptics ™ pupillometer in human subjects, and was able to detect larger resting pupil size in juvenile male guinea pigs compared to juvenile female guinea pigs. At juvenile age, male guinea pigs also had stronger pupil kinetics for both pupil constriction and dilation. Furthermore, our IR video pupillography set-up was able to detect an age-specific increase in pupil diameter (female guinea pigs only) and reduction in CV (male and female guinea pigs) as animals developed from juvenile (3 months) to adult age (7 months). This technique demonstrated accurate and quantitative assessment of pupil parameters, and may provide the foundation for further development of an integrated system useful for clinical

  19. Near-infrared light therapy to attenuate strength loss after strenuous resistance exercise.

    Science.gov (United States)

    Larkin-Kaiser, Kelly A; Christou, Evangelos; Tillman, Mark; George, Steven; Borsa, Paul A

    2015-01-01

    Near-infrared (NIR) light therapy is purported to act as an ergogenic aid by enhancing the contractile function of skeletal muscle. Improving muscle function is a new avenue for research in the area of laser therapy; however, very few researchers have examined the ergogenic effects of NIR light therapy and the influence it may have on the recovery process during rehabilitation. To evaluate the ergogenic effect of NIR light therapy on skeletal muscle function. Crossover study. Controlled laboratory. Thirty-nine healthy men (n = 21) and women (n = 18; age = 20.0 ± 0.2 years, height = 169 ± 2 cm, mass = 68.4 ± 1.8 kg, body mass index = 23.8 ± 0.4 kg/m(2)). Each participant received active and sham treatments on the biceps brachii muscle on 2 separate days. The order of treatment was randomized. A class 4 laser with a cumulative dose of 360 J was used for the active treatment. After receiving the treatment on each day, participants completed an elbow-flexion resistance-exercise protocol. The dependent variables were elbow range of motion, muscle point tenderness, and strength (peak torque). Analysis of variance with repeated measures was used to assess changes in these measures between treatments at baseline and at follow-up, 48 hours postexercise. Additionally, immediate strength loss postexercise was compared between treatments using a paired t test. Preexercise to postexercise strength loss for the active laser treatment, although small, was less than with the sham treatment (P = .05). Applied to skeletal muscle before resistance exercise, NIR light therapy effectively attenuated strength loss. Therefore, NIR light therapy may be a beneficial, noninvasive modality for improving muscle function during rehabilitation after musculoskeletal injury. However, future studies using higher treatment doses are warranted.

  20. Multi-channel up-conversion infrared spectrometer and method of detecting a spectral distribution of light

    DEFF Research Database (Denmark)

    2015-01-01

    A multi-channel infrared spectrometer for detecting an infrared spectrum of light received from an object. The spectrometer comprises a wavelength converter system comprising a nonlinear material and having an input side and an output side. The wavelength converter system comprises at least a first...... on the first side into light in a second output wavelength range output on the second side. The spectrometer further comprises a demultiplexer configured for demultiplexing light in the first up-conversion channel and light in the second up-conversion channel. The demultiplexer is located on the first side...... or the second side of the wavelength converter system. Finally, the spectrometer comprises a spatially resolved detector arranged in the image plane to detect light in the first output wavelength range and second output wavelength range output of the wavelength converter system....

  1. Three-dimensional visualization system for ophthalmic microscopes using visible light and near-infrared illumination.

    Science.gov (United States)

    Kwon, Ki-Chul; Im, Chan Young; Seo, Kyoung Yul; Nam, Sang Min; Erdenebat, Munkh-Uchral; Shim, Young Bo; Han, Young-Geun; Kim, Nam

    2018-02-01

    In this paper, we describe a three-dimensional visualization system for ophthalmic microscopes that is aimed at microsurgery without the eyepieces. A three-dimensional visualization system for ophthalmic microscopes using the mixed illumination, which consists of visible light and near-infrared illumination, is established in order to acquire more exact information of object and reduce the amount of light irradiated to the patients, and its usage in microsurgery without eyepieces is herein described. A custom-designed stereoscopic three-dimensional display which is manufactured for the convenience of the surgeons during the long-time surgery, is connected directly to the camera of the ophthalmic microscope in order to eliminate the discomfort of eyepieces to the surgeon and signal delay between the camera, mounted on the microscope, and display device for surgeon. The main features of the established system are the signal delay-free for surgeon and the low level of illumination for patient. In particular, it could significantly reduce the amount of light irradiated on a patient's eye via NIR illumination. Upon comparison with the conventional system during clinical ophthalmology trials, this system is confirmed to require almost the same operation time and reduced discomfort and eyestrain during long periods of observation. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Near-infrared light curves of Type Ia supernovae: studying properties of the second maximum

    Science.gov (United States)

    Dhawan, S.; Leibundgut, B.; Spyromilio, J.; Maguire, K.

    2015-04-01

    Type Ia supernovae (SNe Ia) have been proposed to be much better distance indicators at near-infrared (NIR) compared to optical wavelengths - the effect of dust extinction is expected to be lower and it has been shown that SNe Ia behave more like `standard candles' at NIR wavelengths. To better understand the physical processes behind this increased uniformity, we have studied the Y, J and H-filter light curves of 91 SNe Ia from the literature. We show that the phases and luminosities of the first maximum in the NIR light curves are extremely uniform for our sample. The phase of the second maximum, the late-phase NIR luminosity and the optical light-curve shape are found to be strongly correlated, in particular more luminous SNe Ia reach the second maximum in the NIR filters at a later phase compared to fainter objects. We also find a strong correlation between the phase of the second maximum and the epoch at which the SN enters the Lira law phase in its optical colour curve (epochs ˜ 15 to 30 d after B-band maximum). The decline rate after the second maximum is very uniform in all NIR filters. We suggest that these observational parameters are linked to the nickel and iron mass in the explosion, providing evidence that the amount of nickel synthesized in the explosion is the dominating factor shaping the optical and NIR appearance of SNe Ia.

  3. Blue-Light Therapy following Mild Traumatic Brain Injury: Effects on White Matter Water Diffusion in the Brain.

    Science.gov (United States)

    Bajaj, Sahil; Vanuk, John R; Smith, Ryan; Dailey, Natalie S; Killgore, William D S

    2017-01-01

    Mild traumatic brain injury (mTBI) is a common and often inconspicuous wound that is frequently associated with chronic low-grade symptoms and cognitive dysfunction. Previous evidence suggests that daily blue wavelength light therapy may be effective at reducing fatigue and improving sleep in patients recovering from mTBI. However, the effects of light therapy on recovering brain structure remain unexplored. In this study, we analyzed white matter diffusion properties, including generalized fractional anisotropy, and the quantity of water diffusion in isotropic (i.e., isotropic diffusion) and anisotropic fashion (i.e., quantitative anisotropy, QA) for fibers crossing 11 brain areas known to be significantly affected following mTBI. Specifically, we investigated how 6 weeks of daily morning blue light exposure therapy (compared to an amber-light placebo condition) impacted changes in white matter diffusion in individuals with mTBI. We observed a significant impact of the blue light treatment (relative to the placebo) on the amount of water diffusion (QA) for multiple brain areas, including the corpus callosum, anterior corona radiata, and thalamus. Moreover, many of these changes were associated with improvements in sleep latency and delayed memory. These findings suggest that blue wavelength light exposure may serve as one of the potential non-pharmacological treatments for facilitating structural and functional recovery following mTBI; they also support the use of QA as a reliable neuro-biomarker for mTBI therapies.

  4. Blue-Light Therapy following Mild Traumatic Brain Injury: Effects on White Matter Water Diffusion in the Brain

    Directory of Open Access Journals (Sweden)

    Sahil Bajaj

    2017-11-01

    Full Text Available Mild traumatic brain injury (mTBI is a common and often inconspicuous wound that is frequently associated with chronic low-grade symptoms and cognitive dysfunction. Previous evidence suggests that daily blue wavelength light therapy may be effective at reducing fatigue and improving sleep in patients recovering from mTBI. However, the effects of light therapy on recovering brain structure remain unexplored. In this study, we analyzed white matter diffusion properties, including generalized fractional anisotropy, and the quantity of water diffusion in isotropic (i.e., isotropic diffusion and anisotropic fashion (i.e., quantitative anisotropy, QA for fibers crossing 11 brain areas known to be significantly affected following mTBI. Specifically, we investigated how 6 weeks of daily morning blue light exposure therapy (compared to an amber-light placebo condition impacted changes in white matter diffusion in individuals with mTBI. We observed a significant impact of the blue light treatment (relative to the placebo on the amount of water diffusion (QA for multiple brain areas, including the corpus callosum, anterior corona radiata, and thalamus. Moreover, many of these changes were associated with improvements in sleep latency and delayed memory. These findings suggest that blue wavelength light exposure may serve as one of the potential non-pharmacological treatments for facilitating structural and functional recovery following mTBI; they also support the use of QA as a reliable neuro-biomarker for mTBI therapies.

  5. Shining new light on treating dementia: integrating EEG neurofeedback training and near infrared photobiomodulation (Conference Presentation)

    Science.gov (United States)

    Berman, Marvin H.

    2017-02-01

    Evidence from animal and human studies regarding the biological impact of near infrared light stimulation has significantly increased of late noting the disease modifying properties of photobiomodulation for improving physical and cognitive performance in subjects with a variety of neurodegenerative conditions. Concurrently we see a growing body of literature regarding the efficacy of operant conditioning of EEG amplitude and connectivity in remediating both cognitive and behavioral symptoms of both neuropsychiatric and neurodegenerative disorders including traumatic brain injury, ADHD, PTSD, and dementia. This presentation seeks to outline a treatment model combining these two treatment methods to stop the progression of neurodegeneration using pulsed (10hz), brief (5-20minutes) repeated (1-2x/daily) transcranial and intranasal photobiomodulation with 810nm and 1068nm near infrared phototherapy and operant conditioning of EEG amplitude and coherence. Our initial study on treating dementia with EEG biofeedback (N=37) showed neuroplasticity's potential for modifying cognitive and behavioral symptoms using the evidence from decades of neurological research that never felt the warm touch of a translational researcher's hand. The near infrared interventional studies clarified the order of treatment, i.e., tissue health and renewal were achieved, followed by neural connectivity enhancement. Significant improvements in both immediate and delayed recall and praxis memory as well as executive functioning and behavioral regulation were obtained with each intervention. The inferred synergistic impact of properly combining these approaches is what informs our current clinical applications and future research efforts examining the value of combined treatments for all dementias, parkinson's disease and age-related dry macular degeneration.

  6. Diffuse X-ray scattering and far infrared absorption of barium and lead β" aluminas

    DEFF Research Database (Denmark)

    Hayes, W.; Kjær, Kristian; Pratt, F. L.

    1985-01-01

    The authors have carried out high-momentum-resolution studies in diffuse X-ray scattering of barium and lead B" aluminas in the temperature range 20-700 degrees C. They have also measured the vibrational spectra of these compounds between 2K and 300K in the energy range 10-100 cm-1. The results...

  7. Coupling mid-infrared light from a photonic crystal waveguide to metallic transmission lines

    Energy Technology Data Exchange (ETDEWEB)

    Blanco-Redondo, Andrea, E-mail: andrea.blanco@tecnalia.com, E-mail: r.hillenbrand@nanogune.eu [ICT-European Software Institute Division, Tecnalia, Ibaizabal Bidea, Ed. 202, 48170 Zamudio, Bizkaia (Spain); Dpto. Electronica y Telecom., E.T.S. Ingeniería Bilbao, UPV/EHU, Alda. Urquijo, 48103 Bilbao, Bizkaia (Spain); Sarriugarte, Paulo [Nanooptics Group, CIC nanoGUNE Consolider, 20018 Donostia–San Sebastian, Gipuzkoa (Spain); Garcia-Adeva, Angel [Dpto. Fisica Aplicada I, E.T.S. Ingeniería de Bilbao, UPV-EHU, Alda. Urquijo, 48103 Bilbao, Bizkaia (Spain); Zubia, Joseba [Dpto. Electronica y Telecom., E.T.S. Ingeniería Bilbao, UPV/EHU, Alda. Urquijo, 48103 Bilbao, Bizkaia (Spain); Hillenbrand, Rainer, E-mail: andrea.blanco@tecnalia.com, E-mail: r.hillenbrand@nanogune.eu [Nanooptics Group, CIC nanoGUNE Consolider, 20018 Donostia–San Sebastian, Gipuzkoa (Spain); IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Bizkaia (Spain)

    2014-01-06

    We propose and theoretically study a hybrid structure consisting of a photonic crystal waveguide (PhC-wg) and a two-wire metallic transmission line (TL), engineered for efficient transfer of mid-infrared (mid-IR) light between them. An efficiency of 32% is obtained for the coupling from the transverse magnetic (TM) photonic mode to the symmetric mode of the TL, with a predicted intensity enhancement factor of 53 at the transmission line surface. The strong coupling is explained by the small phase velocity mismatch and sufficient spatial overlapping between the modes. This hybrid structure could find applications in highly integrated mid-IR photonic-plasmonic devices for biological and gas sensing, among others.

  8. Note: Three wavelengths near-infrared spectroscopy system for compensating the light absorbance by water

    Science.gov (United States)

    Bhutta, M. Raheel; Hong, Keum-Shik; Kim, Beop-Min; Hong, Melissa Jiyoun; Kim, Yun-Hee; Lee, Se-Ho

    2014-02-01

    Given that approximately 80% of blood is water, we develop a wireless functional near-infrared spectroscopy system that detects not only the concentration changes of oxy- and deoxy-hemoglobin (HbO and HbR) during mental activity but also that of water (H2O). Additionally, it implements a water-absorption correction algorithm that improves the HbO and HbR signal strengths during an arithmetic task. The system comprises a microcontroller, an optical probe, tri-wavelength light emitting diodes, photodiodes, a WiFi communication module, and a battery. System functionality was tested by means of arithmetic-task experiments performed by healthy male subjects.

  9. A high-speed, eight-wavelength visible light-infrared pyrometer for shock physics experiments

    Science.gov (United States)

    Wang, Rongbo; Li, Shengfu; Zhou, Weijun; Luo, Zhen-Xiong; Meng, Jianhua; Tian, Jianhua; He, Lihua; Cheng, Xianchao

    2017-09-01

    An eight-channel, high speed pyrometer for precise temperature measurement is designed and realized in this work. The addition of longer-wavelength channels sensitive at lower temperatures highly expands the measured temperature range, which covers the temperature of interest in shock physics from 1500K-10000K. The working wavelength range is 400-1700nm from visible light to near-infrared (NIR). Semiconductor detectors of Si and InGaAs are used as photoelectric devices, whose bandwidths are 50MHz and 150MHz respectively. Benefitting from the high responsivity and high speed of detectors, the time resolution of the pyrometer can be smaller than 10ns. By combining the high-transmittance beam-splitters and narrow-bandwidth filters, the peak spectrum transmissivity of each channel can be higher than 60%. The gray-body temperatures of NaI crystal under shock-loading are successfully measured by this pyrometer.

  10. A high-speed, eight-wavelength visible light-infrared pyrometer for shock physics experiments

    Directory of Open Access Journals (Sweden)

    Rongbo Wang

    2017-09-01

    Full Text Available An eight-channel, high speed pyrometer for precise temperature measurement is designed and realized in this work. The addition of longer-wavelength channels sensitive at lower temperatures highly expands the measured temperature range, which covers the temperature of interest in shock physics from 1500K-10000K. The working wavelength range is 400-1700nm from visible light to near-infrared (NIR. Semiconductor detectors of Si and InGaAs are used as photoelectric devices, whose bandwidths are 50MHz and 150MHz respectively. Benefitting from the high responsivity and high speed of detectors, the time resolution of the pyrometer can be smaller than 10ns. By combining the high-transmittance beam-splitters and narrow-bandwidth filters, the peak spectrum transmissivity of each channel can be higher than 60%. The gray-body temperatures of NaI crystal under shock-loading are successfully measured by this pyrometer.

  11. The first synchrotron infrared beamlines at the Advanced Light Source: Microspectroscopy and fast timing

    International Nuclear Information System (INIS)

    Martin, M.C.; McKinney, W.R.

    1998-05-01

    A set of new infrared (IR) beamlines on the 1.4 bending magnet port at the Advanced Light Source, LBNL, are described. Using a synchrotron as an IR source provides considerable brightness advantages, which manifests itself most beneficially when performing spectroscopy on a microscopic length scale. Beamline (BL) 1.4.3 is a dedicated microspectroscopy beamline, where the much smaller focused spot size using the synchrotron source is utilized. This enables an entirely new set of experiments to be performed where spectroscopy on a truly microscopic scale is now possible. BL 1.4.2 consists of a vacuum FTIR bench with a wide spectral range and step-scan capabilities. The fast timing is demonstrated by observing the synchrotron electron storage pattern at the ALS

  12. Transdermal gelation of methacrylated macromers with near-infrared light and gold nanorods

    International Nuclear Information System (INIS)

    Gramlich, William M; Holloway, Julianne L; Rai, Reena; Burdick, Jason A

    2014-01-01

    Injectable hydrogels provide locally controlled tissue bulking and a means to deliver drugs and cells to the body. The formation of hydrogels in vivo may involve the delivery of two solutions that spontaneously crosslink when mixed, with pH or temperature changes, or with light (e.g., visible or ultraviolet). With these approaches, control over the kinetics of gelation, introduction of the initiation trigger (e.g., limited penetration of ultraviolet light through tissues), or alteration of the material physical properties (e.g., mechanics) may be difficult to achieve. To overcome these limitations, we used the interaction of near-infrared (NIR) light with gold nanorods (AuNRs) to generate heat through the photothermal effect. NIR light penetrates tissues to a greater extent than other wavelengths and provides a means to indirectly initiate radical polymerization. Specifically, this heating coupled with a thermal initiator (VA-044) produced radicals that polymerized methacrylated hyaluronic acid (MeHA) and generated hydrogels. A range of VA-044 concentrations changed the gelation time, yielding a system stable at 37 ° C for 22 min that gels quickly (∼3 min) when heated to 55 ° C. With a constant irradiation time (10 min) and laser power (0.3 W), different VA-044 and AuNR concentrations tuned the compressive modulus of the hydrogel. By changing the NIR irradiation time we attained a wide range of moduli at a set solution composition. In vivo mouse studies confirmed that NIR laser irradiation through tissue could gel an injected precursor solution transdermally. (paper)

  13. Transdermal gelation of methacrylated macromers with near-infrared light and gold nanorods

    Science.gov (United States)

    Gramlich, William M.; Holloway, Julianne L.; Rai, Reena; Burdick, Jason A.

    2014-01-01

    Injectable hydrogels provide locally controlled tissue bulking and a means to deliver drugs and cells to the body. The formation of hydrogels in vivo may involve the delivery of two solutions that spontaneously crosslink when mixed, with pH or temperature changes, or with light (e.g., visible or ultraviolet). With these approaches, control over the kinetics of gelation, introduction of the initiation trigger (e.g., limited penetration of ultraviolet light through tissues), or alteration of the material physical properties (e.g., mechanics) may be difficult to achieve. To overcome these limitations, we used the interaction of near-infrared (NIR) light with gold nanorods (AuNRs) to generate heat through the photothermal effect. NIR light penetrates tissues to a greater extent than other wavelengths and provides a means to indirectly initiate radical polymerization. Specifically, this heating coupled with a thermal initiator (VA-044) produced radicals that polymerized methacrylated hyaluronic acid (MeHA) and generated hydrogels. A range of VA-044 concentrations changed the gelation time, yielding a system stable at 37 ° C for 22 min that gels quickly (˜3 min) when heated to 55 ° C. With a constant irradiation time (10 min) and laser power (0.3 W), different VA-044 and AuNR concentrations tuned the compressive modulus of the hydrogel. By changing the NIR irradiation time we attained a wide range of moduli at a set solution composition. In vivo mouse studies confirmed that NIR laser irradiation through tissue could gel an injected precursor solution transdermally.

  14. Infrared light-emitting diode radiation causes gravitropic and morphological effects in dark-grown oat seedlings

    Science.gov (United States)

    Johnson, C. F.; Brown, C. S.; Wheeler, R. M.; Sager, J. C.; Chapman, D. K.; Deitzer, G. F.

    1996-01-01

    Oat (Avena sativa cv Seger) seedlings were irradiated with IR light-emitting diode (LED) radiation passed through a visible-light-blocking filter. Infrared LED irradiated seedlings exhibited differences in growth and gravitropic response when compared to seedlings grown in darkness at the same temperature. Thus, the oat seedlings in this study were able to detect IR LED radiation. These findings call into question the use of IR LED as a safe-light for some photosensitive plant response experiments. These findings also expand the defined range of wavelengths involved in radiation-gravity (light-gravity) interactions to include wavelengths in the IR region of the spectrum.

  15. Determination of oxygen content and carbonate impurity in YBa2Cu3O7-x by diffuse reflectance infrared spectroscopy

    International Nuclear Information System (INIS)

    Merzbacher, C.I.; Bonner, B.P.

    1991-01-01

    Samples of YBa 2 Cu 3 O 7-x with x ranging from ∼0 to 0.65 have been analyzed by diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) in the midinfrared region (400--6000 cm -1 ). Spectral line shapes vary gradually as a function of oxygen stoichiometry, and the reflectance at 400 and 1000 cm -1 decreases linearly with decreasing oxygen content. Spectra of samples that were incompletely synthesized or exposed to a 4% CO 2 atmosphere at 650 degree C clearly indicated the presence of carbonate. DRIFTS is therefore a quick, nondestructive method for determining oxygen content in YBa 2 Cu 3 O 7-x powders, and for detecting carbonate species due to synthesis error or reaction with CO 2 -bearing atmosphere

  16. THE CYTOTOXIC EFFECTS OF LOW INTENSITY VISIBLE AND INFRARED LIGHT ON HUMAN BREAST CANCER (MCF7 CELLS

    Directory of Open Access Journals (Sweden)

    P Peidaee

    2013-03-01

    Full Text Available A concept of using low intensity light therapy (LILT as an alternative approach to cancer treatment is at early stages of development; while the therapeutic effects of LILT as a non-invasive treatment modality for localized joint and soft tissue wound healing are widely corroborated. The LEDs-based exposure system was designed and constructed to irradiate the selected cancer and normal cells and evaluate the biological effects induced by light exposures in visible and infrared light range. In this study, human breast cancer (MCF7 cells and human epidermal melanocytes (HEM cells (control were exposed to selected far infrared light (3400nm, 3600nm, 3800nm, 3900nm, 4100nm and 4300nm and visible and near infrared wavelengths (466nm, 585nm, 626nm, 810nm, 850nm and 950nm. The optical intensities of LEDs used for exposures were in the range of 15µW to 30µW. Cellular morphological changes of exposed and sham-exposed cells were evaluated using light microscopy. The cytotoxic effects of these low intensity light exposures on human cancer and normal cell lines were quantitatively determined by Lactate dehydrogenase (LDH cytotoxic activity and PrestoBlueTM cell viability assays. Findings reveal that far-infrared exposures were able to reduce cell viability of MCF7 cells as measured by increased LDH release activity and PrestoBlueTM assays. Further investigation of the effects of light irradiation on different types of cancer cells, study of possible signaling pathways affected by electromagnetic radiation (EMR and in vivo experimentation are required in order to draw a firm conclusion about the efficacy of low intensity light as an alternative non-invasive cancer treatment.

  17. Graphene-pyramid textured silicon heterojunction for sensitive near-infrared light photodiode

    Science.gov (United States)

    Wang, Li; Ren, Zhi-Fei; Wang, Kui-Yuan; He, Shu-Juan; Luo, Lin-Bao

    2017-04-01

    In this study, we report on the fabrication of a near-infrared (NIR) light photodiode, which was constructed by transferring monolayer graphene films onto pyramid textured silicon etched by an aqueous solution method. It is found that the photodiode exhibits an obvious rectification characteristic, with a rectification ratio as high as 1.5  ×  104. What is more, the as-fabricated graphene-pyramid textured silicon Schottky photodiode could function as an efficient light photodetector that was highly sensitive to NIR irradiation with a high on/off ratio, and good reproducibility. In addition, such an NIR photodiode is able to monitor a fast-switching optical signal with a frequency as high as 2000 Hz. The rise/fall times were estimated to be 96/160 µs, respectively, which are comparable to or even higher than other Si nanostructure-based devices. The generality of the above results implies that the present graphene-pyramid textured silicon Schottky photodiode would have possible potential for future optoelectronic device applications.

  18. Caries detection and diagnostics with near-infrared light transillumination: clinical experiences.

    Science.gov (United States)

    Söchtig, Friederike; Hickel, Reinhard; Kühnisch, Jan

    2014-06-01

    The aim of this paper was to present the function and potential of diagnosing caries lesions using a recently introduced near-infrared (NIR) transillumination technique (DIAGNOcam, KaVo). The study included 130 adolescents and adults with complete permanent dentition (age > 12). All patients underwent visual examination and, if necessary, bitewing radiographs. Proximal and occlusal surfaces, which had not yet been restored, were photographed by a NIR transillumination camera system using light with a wavelength of 780 nm rather than ionizing radiation. Of the study patients, 85 showed 127 proximal dentin caries lesions that were treated operatively. A cross table shows the correlation of radiography and NIR transillumination. Based on our practical clinical experiences to date, a possible classifi cation of diagnosis is introduced. The main result of our study was that NIR light was able to visualize caries lesions on proximal and occlusal surfaces. The study suggests that NIR transillumination is a method that may help to avoid bitewing radiographs for diagnosis of caries in everyday clinical practice.

  19. Pulpal blood flow recorded from exposed dentine with a laser Doppler flow meter using red or infrared light.

    Science.gov (United States)

    Kijsamanmith, Kanittha; Vongsavan, Noppakun; Matthews, Bruce

    2018-03-01

    To determine the percentage of the blood flow signal that is derived from dental pulp when recording from exposed dentine in a human premolar. Recordings were made from 7 healthy teeth in 5 subjects (aged 22-33 yr.) with a laser Doppler flow meter (Periflux 4001) using either a red (635 nm) or an infrared (780 nm) laser. After exposing dentine above the buccal pulpal horn (cavity diam. 1.6 mm, depth 3 mm) and isolating the crown with opaque rubber dam, blood flow was recorded alternately with infrared or red light from the exposed dentine under four conditions: before and after injecting local anaesthetic (3% Mepivacaine without vasoconstrictor) (LA) over the apex of the root of the tooth; after exposing the pulp by cutting a buccal, class V cavity in the tooth; and after sectioning the coronal pulp transversely through the exposure. There was no significant change in mean blood flow recorded with either light source when the tooth was anaesthetized or when the pulp was exposed. After the pulp had been sectioned, the blood flow recorded with infrared light fell by 67.8% and with red light, by 68.4%. The difference between these effects was not significant. When recording blood flow from exposed coronal dentine with either infrared or red light in a tooth isolated with opaque rubber dam, about 68% to the signal was contributed by the pulp. The signal:noise ratio was better with infrared than red light, and when recording from dentine than enamel. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. A partial least squares model for non-volatile residue quantification using diffuse reflectance infrared reflectance spectroscopy

    Science.gov (United States)

    Chen, Amylynn; Moision, Robert M.

    2016-09-01

    Traditionally, quantification of non-volatile residue (NVR) on surfaces relevant to space systems has been performed using solvent wipes for NVR removal followed by gravimetric analysis. In this approach the detectable levels of NVR are ultimately determined by the mass sensitivity of the analytical balance employed. Unfortunately, for routine samples, gravimetric measurement requires large sampling areas, on the order of a square foot, in order to clearly distinguish sample and background levels. Diffuse Reflectance Infrared Reflectance Spectroscopy (DRIFTS) is one possible alternative to gravimetric analysis for NVR measurement. DRIFTS is an analytical technique used for the identification and quantification of organic compounds that has two primary advantages relative to gravimetric based methods: increased sensitivity and the ability to identify classes of organic species present. However, the use of DRIFTS is not without drawbacks, most notably repeatability of sample preparation and the additive quantification uncertainty arising from overlapping infrared signatures. This can result in traditional calibration methods greatly overestimating the concentration of species in mixtures. In this work, a partial least squares (PLS) regression model is shown to be an effective method for removing the over prediction error of a three component mixture of common contaminant species.

  1. Infrared spectroscopy and Mie scattering of acetylene aerosols formed in a low temperature diffusion cell

    Science.gov (United States)

    Dunder, T.; Miller, R. E.

    1990-01-01

    A method is described for forming and spectroscopically characterizing cryogenic aerosols formed in a low temperature gas cell. By adjusting the cell pressure, gas composition and flow rate, the size distribution of aerosol particles can be varied over a wide range. The combination of pressure and flow rate determine the residence time of the aerosols in the cell and hence the time available for the particles to grow. FTIR spectroscopy, over the range from 600/cm to 6000/cm, is used to characterize the aerosols. The particle size distribution can be varied so that, at one extreme, the spectra show only absorption features associated with the infrared active vibrational bands and, at the other, they display both absorption and Mie scattering. In the latter case, Mie scattering theory is used to obtain semiquantitative aerosol size distributions, which can be understood in terms of the interplay between nucleation and condensation. In the case of acetylene aerosols, the infrared spectra suggest that the particles exist in the high temperature cubic phase of the solid.

  2. Sensitivity of near-infrared spectroscopy and diffuse correlation spectroscopy to brain hemodynamics: simulations and experimental findings during hypercapnia.

    Science.gov (United States)

    Selb, Juliette; Boas, David A; Chan, Suk-Tak; Evans, Karleyton C; Buckley, Erin M; Carp, Stefan A

    2014-07-01

    Near-infrared spectroscopy (NIRS) and diffuse correlation spectroscopy (DCS) are two diffuse optical technologies for brain imaging that are sensitive to changes in hemoglobin concentrations and blood flow, respectively. Measurements for both modalities are acquired on the scalp, and therefore hemodynamic processes in the extracerebral vasculature confound the interpretation of cortical hemodynamic signals. The sensitivity of NIRS to the brain versus the extracerebral tissue and the contrast-to-noise ratio (CNR) of NIRS to cerebral hemodynamic responses have been well characterized, but the same has not been evaluated for DCS. This is important to assess in order to understand their relative capabilities in measuring cerebral physiological changes. We present Monte Carlo simulations on a head model that demonstrate that the relative brain-to-scalp sensitivity is about three times higher for DCS (0.3 at 3 cm) than for NIRS (0.1 at 3 cm). However, because DCS has higher levels of noise due to photon-counting detection, the CNR is similar for both modalities in response to a physiologically realistic simulation of brain activation. Even so, we also observed higher CNR of the hemodynamic response during graded hypercapnia in adult subjects with DCS than with NIRS.

  3. Preliminary evaluation of optical glucose sensing in red cell concentrations using near-infrared diffuse-reflectance spectroscopy

    Science.gov (United States)

    Suzuki, Yusuke; Maruo, Katsuhiko; Zhang, Alice W.; Shimogaki, Kazushige; Ogawa, Hideto; Hirayama, Fumiya

    2012-01-01

    Bacterial contamination of blood products is one of the most frequent infectious complications of transfusion. Since glucose levels in blood supplies decrease as bacteria proliferate, it should be possible to detect the presence of bacterial contamination by measuring the glucose concentrations in the blood components. Hence this study is aimed to serve as a preliminary study for the nondestructive measurement of glucose level in transfusion blood. The glucose concentrations in red blood cell (RBC) samples were predicted using near-infrared diffuse-reflectance spectroscopy in the 1350 to 1850 nm wavelength region. Furthermore, the effects of donor, hematocrit level, and temperature variations among the RBC samples were observed. Results showed that the prediction performance of a dataset which contained samples that differed in all three parameters had a standard error of 29.3 mg/dL. Multiplicative scatter correction (MSC) preprocessing method was also found to be effective in minimizing the variations in scattering patterns created by various sample properties. The results suggest that the diffuse-reflectance spectroscopy may provide another avenue for the detection of bacterial contamination in red cell concentrations (RCC) products.

  4. Real time and non-destructive analysis of tablet coating thickness using acoustic microscopy and infrared diffuse reflectance spectroscopy.

    Science.gov (United States)

    Bikiaris, D; Koutri, I; Alexiadis, D; Damtsios, A; Karagiannis, G

    2012-11-15

    Tablet coating thicknesses were estimated using several techniques such as weight gain and scanning electron microscopy (SEM), in comparison with acoustic microscopy and diffuse reflectance spectroscopy. Acoustic microscopy, used for the first time in such an application, is based on the physical phenomenon of ultrasound propagation through the materials and the echoes generated by their interfaces. Based on the time of flights (TOFs) of the echoes from the coating surface and the tablet, it is possible to calculate the coating thickness. In order to evaluate the accuracy and robustness of these methods, drug tablets were coated with Kollicoat SR polymer for several times, so that to prepare tablets with different coating thicknesses. Tablets with 3, 6 and 9 wt% coating material have been prepared and based on SEM micrographs it was found that the tablet coating thickness is 71.99 ± 1.2 μm, 92.5 ± 1.7 μm and 132.3 ± 2.1 μm, respectively (SEM analysis). The tablet coating thicknesses measured with acoustic microscopy and infrared diffuse reflectance spectroscopy, were in agreement with those obtained using SEM. This verifies that both techniques can be successfully applied for real time and non-destructive thickness measurements of tablet coating. Furthermore, both techniques, compared with SEM and weight gained measurements, are fast and fully automated. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Stray Light Artifacts in Imagery from the Landsat 8 Thermal Infrared Sensor

    Directory of Open Access Journals (Sweden)

    Matthew Montanaro

    2014-10-01

    Full Text Available The Thermal Infrared Sensor (TIRS has been collecting imagery of the Earth since its launch aboard Landsat 8 in early 2013. In many respects, TIRS has been exceeding its performance requirements on orbit, particularly in terms of noise and stability. However, several artifacts have been observed in the TIRS data which include banding and absolute calibration discrepancies that violate requirements in some scenes. Banding is undesired structure that appears within and between the focal plane array assemblies. In addition, in situ measurements have shown an error in the TIRS absolute radiometric calibration that appears to vary with season and location within the image. The source of these artifacts has been determined to be out-of-field radiance that scatters onto the detectors thereby adding a non-uniform signal across the field-of-view. The magnitude of this extra signal can be approximately 8% or higher (band 11 and is generally twice as large in band 11 as it is in band 10. A series of lunar scans were obtained to gather information on the source of this out-of-field radiance. Analyses of these scans have produced a preliminary map of stray light, or ghost, source locations in the TIRS out-of-field area. This dataset has been used to produce a synthetic TIRS scene that closely reproduces the banding effects seen in actual TIRS imagery. Now that the cause of the banding has been determined, a stray light optics model is in development that will pin-point the cause of the stray light source. Several methods are also being explored to correct for the banding and the absolute calibration error in TIRS imagery.

  6. Perturbative diffusion theory formalism for interpreting temporal light intensity changes during laser interstitial thermal therapy.

    Science.gov (United States)

    Chin, Lee C L; Whelan, William M; Vitkin, I Alex

    2007-03-21

    In an effort to understand dynamic optical changes during laser interstitial thermal therapy (LITT), we utilize the perturbative solution of the diffusion equation in heterogeneous media to formulate scattering weight functions for cylindrical line sources. The analysis explicitly shows how changes in detected interstitial light intensity are associated with the extent and location of the volume of thermal coagulation during treatment. Explanations for previously reported increases in optical intensity observed early during laser heating are clarified using the model and demonstrated with experimental measurements in ex vivo bovine liver tissue. This work provides an improved understanding of interstitial optical signal changes during LITT and indicates the sensitivity and potential of interstitial optical monitoring of thermal damage.

  7. Method of measuring blood oxygenation based on spectroscopy of diffusely scattered light

    Science.gov (United States)

    Kleshnin, M. S.; Orlova, A. G.; Kirillin, M. Yu.; Golubyatnikov, G. Yu.; Turchin, I. V.

    2017-05-01

    A new approach to the measurement of blood oxygenation is developed and implemented, based on an original two-step algorithm reconstructing the relative concentration of biological chromophores (haemoglobin, water, lipids) from the measured spectra of diffusely scattered light at different distances from the radiation source. The numerical experiments and approbation of the proposed approach using a biological phantom have shown the high accuracy of the reconstruction of optical properties of the object in question, as well as the possibility of correct calculation of the haemoglobin oxygenation in the presence of additive noises without calibration of the measuring device. The results of the experimental studies in animals agree with the previously published results obtained by other research groups and demonstrate the possibility of applying the developed method to the monitoring of blood oxygenation in tumour tissues.

  8. Diffuse reflectors for improving light management in solar cells: a review and outlook

    Science.gov (United States)

    Barugkin, Chog; Beck, Fiona J.; Catchpole, Kylie R.

    2017-01-01

    Pigment based diffuse reflectors (DRs) have several advantages over metal reflectors such as good stability, high reflectivity, and low parasitic absorption. As such, DRs have the potential to be applied on high efficiency silicon solar cells and further increase the power conversion efficiency. In this paper, we perform a thorough review on the notable achievements to date of DRs’ application for photovoltaics. We outline unique attributes of these technologies and discuss the theoretical and laboratory development working towards overcoming the challenges of transferring to high efficiency silicon solar cells. In order to understand the potential of DRs for high efficiency silicon solar cells, we provide a qualitative analysis of the impact of front reflection, rear absorption and the angular distribution on the useful light absorption in silicon wafers. By including this discussion, we provide an outlook for the application of DR in reaching maximum photo-current for high efficiency silicon solar cells.

  9. Light-Modulated Intermittent Wave Groups in a Diffusively Fed Reactive Gel.

    Science.gov (United States)

    Luo, Hainan; Wang, Chenlong; Ren, Lin; Gao, Qingyu; Pan, Changwei; Epstein, Irving R

    2016-04-11

    Inspired by the biological growth that takes place in time-varying external fields such as light or temperature, we design an open reaction-diffusion system in order to investigate growth dynamics. The system is composed of the Belousov-Zhabotinsky (BZ) oscillatory reaction coupled with a copolymer gel consisting of NIPAAm and a photosensitive ruthenium catalyst. When subject to a unidirectional flow of the BZ reactants, the system displays groups of chemical waves whose structure depends upon the period and amplitude of illumination. Simulations of a modified six-variable Oregonator model exhibit all the complex wave groups found in our experiments. Studying this growth structure may aid in understanding the influence of periodic environmental variation on complex growth processes in living systems. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Study of the relation between diffusion and sedimentation of charged silica sols by dynamic light scattering, ultracentrifugation, and turbidimetry

    Science.gov (United States)

    Finsy, R.; Moreels, E.; Bottger, A.; Lekkerkerker, H.

    1985-04-01

    Measurements of the diffusion coefficient, the sedimentation constant and the turbidity by dynamic light scattering, ultracentrifugation and turbidimetry, respectively, of a charged silica sol as a function of the colloid concentration are reported. The strong repulsive interparticle interactions give rise to a spectacular increase of the inverse osmotic compressibility with concentration. It is found that the generalized Einstein relation between the sedimentation and diffusion coefficients and the osmotic compressibility is satisfied, within the experimental accuracies, at finite concentrations.

  11. Determination of the pigments present in a wallpaper of the middle nineteenth century: the combination of mid-diffuse reflectance and far infrared spectroscopies.

    Science.gov (United States)

    Arrizabalaga, Iker; Gómez-Laserna, Olivia; Aramendia, Julene; Arana, Gorka; Madariaga, Juan Manuel

    2014-04-24

    In this work the determination of the pigments present in a decorative wallpaper of the middle nineteenth century from the Santa Isabel factory (Vitoria-Gasteiz, Basque Country, Spain) has been performed by a combination of mid-Diffuse Reflectance Infrared Spectroscopy (DRIFT) and Far Infrared Spectroscopy (FIR) in transmission mode. The DRIFT is a powerful infrared technique that is not widely used in the analyses of artworks in spite of being especially adequate for powdered samples. In this mode, sample pretreatment is not required and the obtained spectra are easier to solve than those obtained in transmittance mode. Those pigments which are not active in the mid-infrared region may be determined easily by FIR. In the last decade, in the field of painted materials very few studies performed by far infrared spectroscopy and mid infrared spectroscopy in diffuse reflectance mode can be found. In most of them the researchers have used one of these techniques, but in no case the combination of both. As we demonstrate in this work, combining these two techniques a complete characterization of the wallpaper can be carried out. Small samples were collected from the wallpaper for the analysis of the rose, brown, yellow and blue colours. In this way, minium (Pb3O4), calcite (CaCO3), barium sulphate (BaSO4), prussian blue (Fe7C18N18), iron oxide yellow (α-FeOOH), vermillion (HgS) and carbon black pigment from organic origen were detected. Finally, the validation was carried out by XRF and Raman spectroscopy getting the same results as with the combination of diffuse reflectance infrared spectroscopy and far infrared spectroscopy. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Transcranial measurement of diffuse light reflectance from brain edema in rats: effect of change in the blood flow

    Science.gov (United States)

    Ueda, Yoshinori; Sato, Shunichi; Ooigawa, Hidetoshi; Nawashiro, Hiroshi; Saitoh, Daizoh; Shima, Katsuji; Okada, Yoshiaki; Ashida, Hiroshi; Obara, Minoru

    2005-04-01

    We assumed that edema causes a decrease in the scattering coefficient of brain tissue and hence a decrease in the intensity of diffuse reflectance from the brain. On the basis of this assumption, we attempted to transcranially detect a formation of brain edema by measuring diffuse light reflectance. In rats, edema was induced by making a cold injury in the brain. The skull was irradiated with 633-nm and 532-nm laser light delivered through an optical fiber, and the diffuse light reflectance from the brain was collected with another optical fiber. We observed that reflectance intensities were significantly decreased around the cold injury both at 633 nm and 532 nm, suggesting that scattering coefficient of brain tissue was reduced due to a formation of edema in this area. In the injury, reflectance intensity was increased at 532 nm, indicating that cerebral blood volume was decreased in this region.

  13. Diffusing-wave spectroscopy in a standard dynamic light scattering setup

    Science.gov (United States)

    Fahimi, Zahra; Aangenendt, Frank J.; Voudouris, Panayiotis; Mattsson, Johan; Wyss, Hans M.

    2017-12-01

    Diffusing-wave spectroscopy (DWS) extends dynamic light scattering measurements to samples with strong multiple scattering. DWS treats the transport of photons through turbid samples as a diffusion process, thereby making it possible to extract the dynamics of scatterers from measured correlation functions. The analysis of DWS data requires knowledge of the path length distribution of photons traveling through the sample. While for flat sample cells this path length distribution can be readily calculated and expressed in analytical form; no such expression is available for cylindrical sample cells. DWS measurements have therefore typically relied on dedicated setups that use flat sample cells. Here we show how DWS measurements, in particular DWS-based microrheology measurements, can be performed in standard dynamic light scattering setups that use cylindrical sample cells. To do so we perform simple random-walk simulations that yield numerical predictions of the path length distribution as a function of both the transport mean free path and the detection angle. This information is used in experiments to extract the mean-square displacement of tracer particles in the material, as well as the corresponding frequency-dependent viscoelastic response. An important advantage of our approach is that by performing measurements at different detection angles, the average path length through the sample can be varied. For measurements performed on a single sample cell, this gives access to a wider range of length and time scales than obtained in a conventional DWS setup. Such angle-dependent measurements also offer an important consistency check, as for all detection angles the DWS analysis should yield the same tracer dynamics, even though the respective path length distributions are very different. We validate our approach by performing measurements both on aqueous suspensions of tracer particles and on solidlike gelatin samples, for which we find our DWS-based microrheology

  14. Hemodynamic measurements in rat brain and human muscle using diffuse near-infrared absorption and correlation spectroscopies

    Science.gov (United States)

    Yu, Guoqiang; Durduran, Turgut; Furuya, D.; Lech, G.; Zhou, Chao; Chance, Britten; Greenberg, J. H.; Yodh, Arjun G.

    2003-07-01

    Measurement of concentration, oxygenation, and flow characteristics of blood cells can reveal information about tissue metabolism and functional heterogeneity. An improved multifunctional hybrid system has been built on the basis of our previous hybrid instrument that combines two near-infrared diffuse optical techniques to simultaneously monitor the changes of blood flow, total hemoglobin concentration (THC) and blood oxygen saturation (StO2). Diffuse correlation spectroscopy (DCS) monitors blood flow (BF) by measuring the optical phase shifts caused by moving blood cells, while diffuse photon density wave spectroscopy (DPDW) measures tissue absorption and scattering. Higher spatial resolution, higher data acquisition rate and higher dynamic range of the improved system allow us to monitor rapid hemodynamic changes in rat brain and human muscles. We have designed two probes with different source-detector pairs and different separations for the two types of experiments. A unique non-contact probe mounted on the back of a camera, which allows continuous measurements without altering the blood flow, was employed to in vivo monitor the metabolic responses in rat brain during KCl induced cortical spreading depression (CSD). A contact probe was used to measure changes of blood flow and oxygenation in human muscle during and after cuff occlusion or exercise, where the non-contact probe is not appropriate for monitoring the moving target. The experimental results indicate that our multifunctional hybrid system is capable of in vivo and non-invasive monitoring of the hemodynamic changes in different tissues (smaller tissues in rat brain, larger tissues in human muscle) under different conditions (static versus moving). The time series images of flow during CSD obtained by our technique revealed spatial and temporal hemodynamic changes in rat brain. Two to three fold longer recovery times of flow and oxygenation after cuff occlusion or exercise from calf flexors in a

  15. ISO-SWS observations of infrared absorption bands of the diffuse interstellar medium : The 6.2 mu m feature of aromatic compounds

    NARCIS (Netherlands)

    Schutte, WA; van der Hucht, KA; Whittet, DCB; Boogert, ACA; Tielens, AGGM; Morris, PW; Greenberg, JM; Williams, PM; van Dishoeck, EF; Chiar, JE; de Graauw, T

    We present ISO-SWS spectroscopy of eight strong infrared sources with large extinction through the diffuse interstellar medium. These are five late-type Wolf-Rayet stars, the blue hypergiant Cyg OB2 #12 and the Galactic Center Sources 3 and 4. The spectra show a number of absorption features that

  16. To See the World in a Grain of Sand: Recognizing the Origin of Sand Specimens by Diffuse Reflectance Infrared Fourier Transform Spectroscopy and Multivariate Exploratory Data Analysis

    Science.gov (United States)

    Pezzolo, Alessandra De Lorenzi

    2011-01-01

    The diffuse reflectance infrared Fourier transform (DRIFT) spectra of sand samples exhibit features reflecting their composition. Basic multivariate analysis (MVA) can be used to effectively sort subsets of homogeneous specimens collected from nearby locations, as well as pointing out similarities in composition among sands of different origins.…

  17. Diffuse Reflectance Infrared Fourier Transform Study of NOx Adsorption on CGO10 Impregnated with K2O or BaO

    DEFF Research Database (Denmark)

    Traulsen, Marie Lund; Härelind Ingelsten, H.; Kammer Hansen, Kent

    2012-01-01

    In the present work Diffuse Reflectance Infrared Fourier Transform (DRIFT) spectroscopy is applied to study the adsorption of NOx at 300-500 °C in different atmospheres on gadolinium doped ceria (CGO), an important material in electrodes investigated for electrochemical NOx removal. Furthermore...

  18. Fabrication of engineered particle-doped light diffuser with a soft transparent mold of UV-curable polymer

    Science.gov (United States)

    Zhu, Jicheng; Liu, Yanhua; Shen, Su; Wu, Jianhong

    2017-11-01

    Engineered particle-doped light diffuser is realized by a simple, low-cost soft lithographic method. A flexible photopolymerizable mold is employed as an intermediate transferring template directly from the developed photoresist texture to fabricate engineered particle-doped light diffuser. The well-designed surface microstructure can directionally scatter the incident light, while the doped ultra-violet curable resin with low concentration of the 2 μm-diameter organosilicone particles can homogenize the scattering light without decreasing transmittance. Experimental results show that the measured transmittance can be as high as 96.9% with little backscattering effect over the whole visible regime. Meanwhile, the haze raises from 30% to 75% with increased dopant concentration from 1 wt% to 7 wt% and thickness of the residual layer from 10 μm to 40 μm remained in the imprinting process. The proposed engineered particle-doped light diffuser can manage scattering angle, luminance uniformity and haze, thus it has the capability of homogenizing light and eliminating striations to create more visually pleasing structured lighting in commercial and residential environments. We anticipate that the approach appears to be a strong candidate for future development because of its scalable nature, environmentally-friendly process and relatively low cost.

  19. Simultaneous measurement of thermal diffusivity and effective infrared absorption coefficient in IR semitransparent and semiconducting n-CdMgSe crystals using photothermal radiometry

    Energy Technology Data Exchange (ETDEWEB)

    Pawlak, M., E-mail: mpawlak@fizyka.umk.pl [Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziądzka 5/7, Toruń (Poland); Maliński, M. [Department of Electronics and Computer Science, Koszalin University of Technology, 2 Śniadeckich St., Koszalin 75-453 (Poland)

    2015-01-10

    Highlights: • The new method of determination of the effective infrared absorption coefficient is presented. • The method can be used for transparent samples for the excitation radiation. • The effect of aluminum foil on the PTR signal in a transmission configuration is discussed. - Abstract: In this paper we propose a new procedure of simultaneous estimation of the effective infrared optical absorption coefficient and the thermal diffusivity of solid state samples using the photothermal infrared radiometry method in the transmission configuration. The proposed procedure relies on the analysis of the frequency dependent signal obtained from the samples covered with thin aluminum foil. This method can be applied for both optically opaque and transparent samples. The proposed method is illustrated with the results of the thermal diffusivity and the effective IR absorption coefficient obtained for several Cd{sub 1−x}Mg{sub x}Se crystals.

  20. An infrared transient method for determining the thermal inertia, conductivity, and diffusivity of solids.

    Science.gov (United States)

    Schultz, A W

    1968-09-01

    A novel method has been developed for nondestructively determining the thermal inertia (k(p)C(p)) of solids near room temperature. The method involves heating, with radiant energy, for a short time a small area on the surface of a solid whose dimensions are such that it appears semi-infinite during this period. Simultaneously, the characteristically shaped temperature rise of the central region of this area is observed using an ir radiometer as the sensor. A comparison of this history with that for a reference standard yields the local thermal inertia value. The localized thermal conductivity and diffusivity can then be determined if the density and specific heat are known. Present technique precision for good conductors is slightly less than that for destructive measuring techniques.

  1. Speckle-scale focusing in the diffusive regime with time reversal of variance-encoded light (TROVE)

    Science.gov (United States)

    Judkewitz, Benjamin; Wang, Ying Min; Horstmeyer, Roarke; Mathy, Alexandre; Yang, Changhuei

    2013-04-01

    Focusing of light in the diffusive regime inside scattering media has long been considered impossible. Recently, this limitation has been overcome with time reversal of ultrasound-encoded light (TRUE), but the resolution of this approach is fundamentally limited by the large number of optical modes within the ultrasound focus. Here, we introduce a new approach, time reversal of variance-encoded light (TROVE), which demixes these spatial modes by variance encoding to break the resolution barrier imposed by the ultrasound. By encoding individual spatial modes inside the scattering sample with unique variances, we effectively uncouple the system resolution from the size of the ultrasound focus. This enables us to demonstrate optical focusing and imaging with diffuse light at an unprecedented, speckle-scale lateral resolution of ~5 µm.

  2. Speckle-scale focusing in the diffusive regime with time-reversal of variance-encoded light (TROVE).

    Science.gov (United States)

    Judkewitz, Benjamin; Wang, Ying Min; Horstmeyer, Roarke; Mathy, Alexandre; Yang, Changhuei

    2013-04-01

    Focusing of light in the diffusive regime inside scattering media has long been considered impossible. Recently, this limitation has been overcome with time reversal of ultrasound-encoded light (TRUE), but the resolution of this approach is fundamentally limited by the large number of optical modes within the ultrasound focus. Here, we introduce a new approach, time reversal of variance-encoded light (TROVE), which demixes these spatial modes by variance-encoding to break the resolution barrier imposed by the ultrasound. By encoding individual spatial modes inside the scattering sample with unique variances, we effectively uncouple the system resolution from the size of the ultrasound focus. This enables us to demonstrate optical focusing and imaging with diffuse light at unprecedented, speckle-scale lateral resolution of ~ 5 μm.

  3. Acceleration of the Meckel Syndrome by Near-Infrared Light Therapy

    Directory of Open Access Journals (Sweden)

    Jinhwan Lim

    2011-11-01

    Full Text Available Background/Aims: Phototherapy using a narrow-band, near-infrared (NIR light (using a light-emitting diode, LED is being used to treat certain medical conditions. This narrow-band red light has been shown to stimulate cytochrome c oxidase (CCO in mitochondria that would stimulate ATP production and has the ability to stimulate wound healing. LED treatment also decreases chemical-induced oxidative stress in tested systems. As renal cystic diseases are known to have evidence of oxidative stress with reduced antioxidant protection, we hypothesized that NIR light therapy might ameliorate the renal pathology in renal cystic disease. Methods: Wistar-Wpk/Wpk rats with Meckel syndrome (MKS were treated with light therapy on days 10–18 at which time disease severity was evaluated. Wpk rats were either treated daily for 80 s with narrow-band red light (640–690 nm wavelength or sham treated. At termination, renal and cerebral pathology was evaluated, and renal expression and activity of enzymes were assessed to evaluate oxidative stress. Blood was collected for blood urea nitrogen (BUN determination, the left kidney frozen for biochemical evaluation, and the right kidney and head fixed for morphological evaluation. Results: There were no significant effects of LED treatment on body weight (BW or total kidney weight in non-cystic rats. Total kidney weight was increased and anephric BW was decreased in cystic versus non-cystic controls. LED reduced BW and total kidney weight in cystic rats compared to non-light-treated cystic (control rats. BUN was already increased almost 6-fold in cystic rats compared to control rats. BUN was further increased almost 2-fold with NIR treatment in both non-cystic and cystic rats compared to cystic and control rats. The hydrocephalus associated with Wpk/Wpk (ventricular volume expressed as total volume and as percent of anephric BW was also more severe in NIR-treated cystic rats compared to the normal control rats. Renal

  4. Infrared rotational light curves on Jupiter induced by wave activities and cloud patterns andimplications on brown dwarfs

    Science.gov (United States)

    Ge, Huazhi; Zhang, Xi; Fletcher, Leigh; Orton, Glenn S.; Sinclair, James Andrew; Fernandes,, Joshua; Momary, Thomas W.; Warren, Ari; Kasaba, Yasumasa; Sato, Takao M.; Fujiyoshi, Takuya

    2017-10-01

    Many brown dwarfs exhibit infrared rotational light curves with amplitude varying from a fewpercent to twenty percent (Artigau et al. 2009, ApJ, 701, 1534; Radigan et al. 2012, ApJ, 750,105). Recently, it was claimed that weather patterns, especially planetary-scale waves in thebelts and cloud spots, are responsible for the light curves and their evolutions on brown dwarfs(Apai et al. 2017, Science, 357, 683). Here we present a clear relationship between the direct IRemission maps and light curves of Jupiter at multiple wavelengths, which might be similar withthat on cold brown dwarfs. Based on infrared disk maps from Subaru/COMICS and VLT/VISIR,we constructed full maps of Jupiter and rotational light curves at different wavelengths in thethermal infrared. We discovered a strong relationship between the light curves and weatherpatterns on Jupiter. The light curves also exhibit strong multi-bands phase shifts and temporalvariations, similar to that detected on brown dwarfs. Together with the spectra fromTEXES/IRTF, our observations further provide detailed information of the spatial variations oftemperature, ammonia clouds and aerosols in the troposphere of Jupiter (Fletcher et al. 2016,Icarus, 2016 128) and their influences on the shapes of the light curves. We conclude that waveactivities in Jupiter’s belts (Fletcher et al. 2017, GRL, 44, 7140), cloud holes, and long-livedvortices such as the Great Red Spot and ovals control the shapes of IR light curves and multi-wavelength phase shifts on Jupiter. Our finding supports the hypothesis that observed lightcurves on brown dwarfs are induced by planetary-scale waves and cloud spots.

  5. Near-Infrared Spectroscopy Analysis of Heavy Fuel Oils Using a New Diffusing Support.

    Science.gov (United States)

    Dupuy, Nathalie; Brahem, Zeineb; Amat, Sandrine; Kister, Jacky

    2015-10-01

    The characterization of heavy fuel oils (HFOs), used as fuel for boats, requires the analysis of various properties that are essential for engine optimization and pollution control. For some time, near-infrared (NIR) spectroscopy combined with chemometric treatment of the spectra was used for on-line analysis. This preliminary study included 61 heavy fuels from Europe, America, and Asia with different specifications according to their geographical origin; their refining process; and their physicochemical properties, including density, flash point, viscosity, and sulfur content. We have developed a new method for sampling heavy fuels on a fiberglass cell support. This support offers the advantages of speed, easy implementation, repeatable results, and freedom from problems associated with tank cleaning. Two sample presentations, an integrating sphere and an optical fiber, were used to collect the NIR spectra. A theoretical study of the choice of the value of resolution, scan number, and spectral region was conducted. The best conditions were chosen as a function of the quality of quantitative analysis results on viscosity, sulfur content, flash point, and density. The two collecting methods were compared on the same criteria.

  6. Shear-induced diffusion of red blood cells measured with dynamic light scattering-optical coherence tomography.

    Science.gov (United States)

    Tang, Jianbo; Erdener, Sefik Evren; Li, Baoqiang; Fu, Buyin; Sakadzic, Sava; Carp, Stefan A; Lee, Jonghwan; Boas, David A

    2018-02-01

    Quantitative measurements of intravascular microscopic dynamics, such as absolute blood flow velocity, shear stress and the diffusion coefficient of red blood cells (RBCs), are fundamental in understanding the blood flow behavior within the microcirculation, and for understanding why diffuse correlation spectroscopy (DCS) measurements of blood flow are dominantly sensitive to the diffusive motion of RBCs. Dynamic light scattering-optical coherence tomography (DLS-OCT) takes the advantages of using DLS to measure particle flow and diffusion within an OCT resolution-constrained three-dimensional volume, enabling the simultaneous measurements of absolute RBC velocity and diffusion coefficient with high spatial resolution. In this work, we applied DLS-OCT to measure both RBC velocity and the shear-induced diffusion coefficient within penetrating venules of the somatosensory cortex of anesthetized mice. Blood flow laminar profile measurements indicate a blunted laminar flow profile and the degree of blunting decreases with increasing vessel diameter. The measured shear-induced diffusion coefficient was proportional to the flow shear rate with a magnitude of ~0.1 to 0.5 × 10 -6  mm 2 . These results provide important experimental support for the recent theoretical explanation for why DCS is dominantly sensitive to RBC diffusive motion. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. TYPE Ia SUPERNOVA LIGHT CURVE INFERENCE: HIERARCHICAL MODELS IN THE OPTICAL AND NEAR-INFRARED

    International Nuclear Information System (INIS)

    Mandel, Kaisey S.; Narayan, Gautham; Kirshner, Robert P.

    2011-01-01

    We have constructed a comprehensive statistical model for Type Ia supernova (SN Ia) light curves spanning optical through near-infrared (NIR) data. A hierarchical framework coherently models multiple random and uncertain effects, including intrinsic supernova (SN) light curve covariances, dust extinction and reddening, and distances. An improved BAYESN Markov Chain Monte Carlo code computes probabilistic inferences for the hierarchical model by sampling the global probability density of parameters describing individual SNe and the population. We have applied this hierarchical model to optical and NIR data of 127 SNe Ia from PAIRITEL, CfA3, Carnegie Supernova Project, and the literature. We find an apparent population correlation between the host galaxy extinction A V and the ratio of total-to-selective dust absorption R V . For SNe with low dust extinction, A V ∼ V ∼ 2.5-2.9, while at high extinctions, A V ∼> 1, low values of R V < 2 are favored. The NIR luminosities are excellent standard candles and are less sensitive to dust extinction. They exhibit low correlation with optical peak luminosities, and thus provide independent information on distances. The combination of NIR and optical data constrains the dust extinction and improves the predictive precision of individual SN Ia distances by about 60%. Using cross-validation, we estimate an rms distance modulus prediction error of 0.11 mag for SNe with optical and NIR data versus 0.15 mag for SNe with optical data alone. Continued study of SNe Ia in the NIR is important for improving their utility as precise and accurate cosmological distance indicators.

  8. Red/near-infrared light-emitting diode therapy for traumatic brain injury

    Science.gov (United States)

    Naeser, Margaret A.; Martin, Paula I.; Ho, Michael D.; Krengel, Maxine H.; Bogdanova, Yelena; Knight, Jeffrey A.; Yee, Megan K.; Zafonte, Ross; Frazier, Judith; Hamblin, Michael R.; Koo, Bang-Bon

    2015-05-01

    This invited paper reviews our research with scalp application of red/near-infrared (NIR) light-emitting diodes (LED) to improve cognition in chronic, traumatic brain injury 1. Application of red/NIR light improves mitochondrial function (especially hypoxic/compromised cells) promoting increased ATP, important for cellular metabolism. Nitric oxide is released locally, increasing regional cerebral blood flow. Eleven chronic, mTBI participants with closed-head injury and cognitive dysfunction received 18 outpatient treatments (MWF, 6 Wks) starting at 10 Mo. to 8 Yr. post-mTBI (MVA, sports-related, IED blast injury). LED therapy is non-invasive, painless, non-thermal (FDA-cleared, non-significant risk device). Each LED cluster head (2.1" diameter, 500mW, 22.2mW/cm2) was applied 10 min (13J/cm2) to 11 scalp placements: midline, from front-to-back hairline; and bilaterally on dorsolateral prefrontal cortex, temporal, and parietal areas. Testing performed pre- and post-LED (+1 Wk, 1 and 2 Mo post- 18th treatment) showed significant linear trend for LED effect over time, on improved executive function and verbal memory. Fewer PTSD symptoms were reported. New studies at VA Boston include TBI patients treated with transcranial LED (26J/cm2); or treated with only intranasal red, 633nm and NIR, 810nm diodes placed into the nostrils (25 min, 6.5mW, 11.4J/cm2). Intranasal LEDs are hypothesized to deliver photons to hippocampus. Results are similar to Naeser et al. (2014). Actigraphy sleep data show increased sleep time (average, +1 Hr/night) post-18th transcranial or intranasal LED treatment. LED treatments may be self-administered at home (Naeser et al., 2011). A shamcontrolled study with Gulf War Illness Veterans is underway.

  9. Cancer theranostics with near-infrared light-activatable multimodal nanoparticles.

    Science.gov (United States)

    Melancon, Marites P; Zhou, Min; Li, Chun

    2011-10-18

    Nanomaterials that interact with light provide a unique opportunity for applications in biophotonic nanomedicine. Image-guided therapies could be designed based on multifunctional nanoparticles (NPs). Such NPs have a strong and tunable surface plasmon resonance absorption in the near-infrared region and can be detected using multiple imaging modalities (magnetic resonance imaging, nuclear imaging, and photoacoustic imaging). These novel nanostructures, once introduced, are expected to home in on solid tumors either via a passive targeting mechanism (i.e., the enhanced permeability and retention effect) or via an active targeting mechanism facilitated by ligands bound to their surfaces. Once the NPs reach their target tissue, their activity can then be turned on using an external stimulus. For example, photothermal conducting NPs primarily act by converting light energy into heat. As a result, the temperature in the treatment volume is elevated above the thermal damage threshold, which kills the cells. This process, termed photothermal ablation therapy (PTA), is effective, but it is also unlikely to kill all tumor cells when used alone. In addition to PTA, photothermal conducting NPs can also efficiently trigger the release of drugs and activate RNA interference. A multimodal approach, which permits simultaneous PTA therapy, chemotherapy, and therapeutic RNA interference, has the potential to completely eradicate residual diseased cells. In this Account, we provide an up-to-date review of the synthesis and characterization, functionalization, and in vitro and in vivo evaluation of NIR lightactivatable multifunctional nanostructures used for imaging and therapy. We emphasize research on hollow gold nanospheres, magnetic core-shell gold nanoshells, and semiconductor copper monosulfide NPs. We discuss three types of novel drug delivery systems in which hollow gold nanospheres are used to mediate controlled drug release.

  10. Shape memory nanocomposite of poly(L-lactic acid/graphene nanoplatelets triggered by infrared light and thermal heating

    Directory of Open Access Journals (Sweden)

    S. Lashgari

    2016-04-01

    Full Text Available In this study, the effect of graphene nanoplatelets (GNPs on the shape memory properties of poly(L-lactic acid (PLLA was studied. In addition to thermal activation, the possibility of infrared actuating of thermo-responsive shape memory PLLA/GNPs nanocomposite was investigated. The incorporated GNPs were expected to absorb infrared wave’s energy and activate shape memory PLLA/GNPs. Different techniques such as differential scanning calorimetry (DSC, wide-angle X-ray diffraction (WAXD, field emission gun scanning electron microscope (FEG-SEM and dynamic mechanical thermal analysis (DMTA were used to characterize samples. DSC and WAXD results indicated that GNPs augmented crystallinity due to nucleating effect of graphene particles. GNPs improved both thermal and infrared activating shape memory properties along with faster response. Pure shape memory PLLA was slightly responsive to infrared light and its infrared actuated shape recovery ratio was 86% which increased to more than 95% with loading of GNPs. Drastic improvement in the crystallinity was obtained in nanocomposites with lower GNPs contents (0.5 and 1 wt% due to finer dispersion of graphene which resulted in more prominent mechanical and shape memory properties enhancement. Infrared activated shape memory PLLA/GNPs nanocomposites can be developed for wireless remote shape control of smart medical and bio-systems.

  11. On interstellar light polarization by diamagnetic silicate and carbon dust in the infrared

    Science.gov (United States)

    Papoular, R.

    2018-04-01

    The motion of diamagnetic dust particles in interstellar magnetic fields is studied numerically with several different sets of parameters. Two types of behaviour are observed, depending on the value of the critical number R, which is a function of the grain inertia, the magnetic susceptibility of the material and of the strength of rotation braking. If R ≤ 10, the grain ends up in a static state and perfectly aligned with the magnetic field, after a few braking times. If not, it goes on precessing and nutating about the field vector for a much longer time. Usual parameters are such that the first situation can hardly be observed. Fortunately, in the second and more likely situation, there remains a persistent partial alignment that is far from negligible, although it decreases as the field decreases and as R increases. The solution of the complete equations of motion of grains in a field helps understanding the details of this behaviour. One particular case of an ellipsoidal forsterite silicate grain is studied in detail and shown to polarize light in agreement with astronomical measurements of absolute polarization in the infrared. Phonons are shown to contribute to the progressive flattening of extinction and polarization towards long wavelengths. The measured dielectric properties of forsterite qualitatively fit the Serkowski peak in the visible.

  12. Effects of Linear-Polarized Near-Infrared Light Irradiation on Chronic Pain

    Directory of Open Access Journals (Sweden)

    Dong Huang

    2012-01-01

    Full Text Available In order to study the efficacy of linear-polarized near-infrared light irradiation (LPNIR on relieving chronic pain in conjunction with nerve block (NB or local block (LB, a 3-week prospective, randomized, double-blind, controlled study was conducted to evaluate the pre- and post-therapy pain intensity. Visual analogue scales (VASs were measured in all patients before and 6 months after therapy visiting the pain clinic during the period of August 2007 to January 2008. A total of 52 patients with either shoulder periarthritis or myofascial pain syndrome or lateral epicondylitis were randomly assigned into two groups by drawing lots. Patients in Group I were treated with NB or LB plus LPNIR; Group II patients, for their part, were treated with the same procedures as in Group I, but not using LPNIR. In both groups, the pain intensity (VAS score decreased significantly immediately after therapy as compared to therapy. There was a significant difference between the test and control groups immediately after therapy (P<0.05, while no effect 6 months later. No side effects were observed. It is concluded that LPNIR is an effective and safe modality to treat various chronic pains, which has synergic effects with NB or LB.

  13. Tuning light emission of PbS nanocrystals from infrared to visible range by cation exchange

    KAUST Repository

    Binetti, Enrico

    2015-10-27

    Colloidal semiconductor nanocrystals, with intense and sharp-line emission between red and near-infrared spectral regions, are of great interest for optoelectronic and bio-imaging applications. The growth of an inorganic passivation layer on nanocrystal surfaces is a common strategy to improve their chemical and optical stability and their photoluminescence quantum yield. In particular, cation exchange is a suitable approach for shell growth at the expense of the nanocrystal core size. Here, the cation exchange process is used to promote the formation of a CdS passivation layer on the surface of very small PbS nanocrystals (2.3 nm in diameter), blue shifting their optical spectra and yielding luminescent and stable nanostructures emitting in the range of 700–850 nm. Structural, morphological and compositional investigation confirms the nanocrystal size contraction after the cation-exchange process, while the PbS rock-salt crystalline phase is retained. Absorption and photoluminescence spectroscopy demonstrate the growth of a passivation layer with a decrease of the PbS core size, as inferred by the blue-shift of the excitonic peaks. The surface passivation strongly increases the photoluminescence intensity and the excited state lifetime. In addition, the nanocrystals reveal increased stability against oxidation over time. Thanks to their absorption and emission spectral range and the slow recombination dynamics, such highly luminescent nano-objects can find interesting applications in sensitized photovoltaic cells and light-emitting devices.

  14. INFRARED HIGH-RESOLUTION INTEGRATED LIGHT SPECTRAL ANALYSES OF M31 GLOBULAR CLUSTERS FROM APOGEE

    Energy Technology Data Exchange (ETDEWEB)

    Sakari, Charli M. [Department of Astronomy, University of Washington, Seattle WA 98195-1580 (United States); Shetrone, Matthew D. [McDonald Observatory, University of Texas at Austin, HC75 Box 1337-MCD, Fort Davis, TX 79734 (United States); Schiavon, Ricardo P. [Gemini Observatory, 670 N. A’Ohoku Place, Hilo, HI 96720 (United States); Bizyaev, Dmitry; Pan, Kaike [Apache Point Observatory and New Mexico State University, P.O. Box 59, Sunspot, NM, 88349-0059 (United States); Prieto, Carlos Allende; García-Hernández, Domingo Aníbal [Instituto de Astrofísica de Canarias (IAC), Va Lactea s/n, E-38205 La Laguna, Tenerife (Spain); Beers, Timothy C. [Department of Physics and JINA Center for the Evolution of the Elements, University of Notre Dame, Notre Dame, IN 46556 (United States); Caldwell, Nelson [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Lucatello, Sara [INAF Osservatorio Astronomico di Padova, Vicolo dellOsservatorio 5, I-35122 Padova (Italy); Majewski, Steven; O’Connell, Robert W. [Dept. of Astronomy, University of Virginia, Charlottesville, VA 22904-4325 (United States); Strader, Jay, E-mail: sakaricm@u.washington.edu [Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States)

    2016-10-01

    Chemical abundances are presented for 25 M31 globular clusters (GCs), based on moderately high resolution ( R = 22,500) H -band integrated light (IL) spectra from the Apache Point Observatory Galactic Evolution Experiment (APOGEE). Infrared (IR) spectra offer lines from new elements, lines of different strengths, and lines at higher excitation potentials compared to the optical. Integrated abundances of C, N, and O are derived from CO, CN, and OH molecular features, while Fe, Na, Mg, Al, Si, K, Ca, and Ti abundances are derived from atomic features. These abundances are compared to previous results from the optical, demonstrating the validity and value of IR IL analyses. The CNO abundances are consistent with typical tip of the red giant branch stellar abundances but are systematically offset from optical Lick index abundances. With a few exceptions, the other abundances agree between the optical and the IR within the 1 σ uncertainties. The first integrated K abundances are also presented and demonstrate that K tracks the α elements. The combination of IR and optical abundances allows better determinations of GC properties and enables probes of the multiple populations in extragalactic GCs. In particular, the integrated effects of the Na/O anticorrelation can be directly examined for the first time.

  15. Near-infrared light-responsive inorganic nanomaterials for photothermal therapy

    Directory of Open Access Journals (Sweden)

    Zhihong Bao

    2016-06-01

    Full Text Available Novel nanomaterials and advanced nanotechnologies prompt the fast development of new protocols for biomedical application. The unique light-to-heat conversion property of nanoscale materials can be utilized to produce novel and effective therapeutics for cancer treatment. In particular, near-infrared (NIR photothermal therapy (PTT has gained popularity and very quickly developed in recent years due to minimally invasive treatments for patients. This review summarizes the current state-of-the-art in the development of inorganic nanocomposites for photothermal cancer therapy. The current states of the design, synthesis, the cellular uptake behavior, the cellular cytotoxicity and both in vivo and in vitro nanoparticle assisted photothermal treatments of inorganic photothermal therapy agents (PTA are described. Finally, the perspective and challenges of PTT development are presented and some proposals are suggested for its further development and exploration. This summary should provide improved understanding of cancer treatment with photothermal nanomaterials and push nanoscience and nanotechnology one step at a time toward clinical applications.

  16. 3D structure tensor analysis of light microscopy data for validating diffusion MRI.

    Science.gov (United States)

    Khan, Ahmad Raza; Cornea, Anda; Leigland, Lindsey A; Kohama, Steven G; Jespersen, Sune Nørhøj; Kroenke, Christopher D

    2015-05-01

    Diffusion magnetic resonance imaging (d-MRI) is a powerful non-invasive and non-destructive technique for characterizing brain tissue on the microscopic scale. However, the lack of validation of d-MRI by independent experimental means poses an obstacle to accurate interpretation of data acquired using this method. Recently, structure tensor analysis has been applied to light microscopy images, and this technique holds promise to be a powerful validation strategy for d-MRI. Advantages of this approach include its similarity to d-MRI in terms of averaging the effects of a large number of cellular structures, and its simplicity, which enables it to be implemented in a high-throughput manner. However, a drawback of previous implementations of this technique arises from it being restricted to 2D. As a result, structure tensor analyses have been limited to tissue sectioned in a direction orthogonal to the direction of interest. Here we describe the analytical framework for extending structure tensor analysis to 3D, and utilize the results to analyze serial image "stacks" acquired with confocal microscopy of rhesus macaque hippocampal tissue. Implementation of 3D structure tensor procedures requires removal of sources of anisotropy introduced in tissue preparation and confocal imaging. This is accomplished with image processing steps to mitigate the effects of anisotropic tissue shrinkage, and the effects of anisotropy in the point spread function (PSF). In order to address the latter confound, we describe procedures for measuring the dependence of PSF anisotropy on distance from the microscope objective within tissue. Prior to microscopy, ex vivo d-MRI measurements performed on the hippocampal tissue revealed three regions of tissue with mutually orthogonal directions of least restricted diffusion that correspond to CA1, alveus and inferior longitudinal fasciculus. We demonstrate the ability of 3D structure tensor analysis to identify structure tensor orientations that

  17. Quantifying the cerebral metabolic rate of oxygen by combining diffuse correlation spectroscopy and time-resolved near-infrared spectroscopy.

    Science.gov (United States)

    Verdecchia, Kyle; Diop, Mamadou; Lee, Ting-Yim; St Lawrence, Keith

    2013-02-01

    Preterm infants are highly susceptible to ischemic brain injury; consequently, continuous bedside monitoring to detect ischemia before irreversible damage occurs would improve patient outcome. In addition to monitoring cerebral blood flow (CBF), assessing the cerebral metabolic rate of oxygen (CMRO2) would be beneficial considering that metabolic thresholds can be used to evaluate tissue viability. The purpose of this study was to demonstrate that changes in absolute CMRO2 could be measured by combining diffuse correlation spectroscopy (DCS) with time-resolved near-infrared spectroscopy (TR-NIRS). Absolute CBF was determined using bolus-tracking TR-NIRS to calibrate the DCS measurements. Cerebral venous blood oxygenation (SvO2) was determined by multiwavelength TR-NIRS measurements, the accuracy of which was assessed by directly measuring the oxygenation of sagittal sinus blood. In eight newborn piglets, CMRO2 was manipulated by varying the anesthetics and by injecting sodium cyanide. No significant differences were found between the two sets of SvO2 measurements obtained by TR-NIRS or sagittal sinus blood samples and the corresponding CMRO2 measurements. Bland-Altman analysis showed a mean CMRO2 difference of 0.0268 ± 0.8340 mLO2/100 g/min between the two techniques over a range from 0.3 to 4 mL O2/100 g/min.

  18. Non-invasive characterization of colorants by portable diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy and chemometrics

    Science.gov (United States)

    Manfredi, Marcello; Barberis, Elettra; Aceto, Maurizio; Marengo, Emilio

    2017-06-01

    During the last years the need for non-invasive and non-destructive analytical methods brought to the development and application of new instrumentation and analytical methods for the in-situ analysis of cultural heritage objects. In this work we present the application of a portable diffuse reflectance infrared Fourier transform (DRIFT) method for the non-invasive characterization of colorants prepared according to ancient recipes and using egg white and Gum Arabic as binders. Approximately 50 colorants were analyzed with the DRIFT spectroscopy: we were able to identify and discriminate the most used yellow (i.e. yellow ochres, Lead-tin Yellow, Orpiment, etc.), red (i.e. red ochres, Hematite) and blue (i.e. Lapis Lazuli, Azurite, indigo) colorants, creating a complete DRIFT spectral library. The Principal Component Analysis-Discriminant Analysis (PCA-DA) was then employed for the colorants classification according to the chemical/mineralogical composition. The DRIFT analysis was also performed on a gouache painting of the artist Sutherland; and the colorants used by the painter were identified directly in-situ and in a non-invasive manner.

  19. Quantitative evaluation of multiple adulterants in roasted coffee by Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS) and chemometrics.

    Science.gov (United States)

    Reis, Nádia; Franca, Adriana S; Oliveira, Leandro S

    2013-10-15

    The current study presents an application of Diffuse Reflectance Infrared Fourier Transform Spectroscopy for detection and quantification of fraudulent addition of commonly employed adulterants (spent coffee grounds, coffee husks, roasted corn and roasted barley) to roasted and ground coffee. Roasted coffee samples were intentionally blended with the adulterants (pure and mixed), with total adulteration levels ranging from 1% to 66% w/w. Partial Least Squares Regression (PLS) was used to relate the processed spectra to the mass fraction of adulterants and the model obtained provided reliable predictions of adulterations at levels as low as 1% w/w. A robust methodology was implemented that included the detection of outliers. High correlation coefficients (0.99 for calibration; 0.98 for validation) coupled with low degrees of error (1.23% for calibration; 2.67% for validation) confirmed that DRIFTS can be a valuable analytical tool for detection and quantification of adulteration in ground, roasted coffee. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Study of Surface Wettability Change of Unconsolidated Sand Using Diffuse Reflectance Infrared Fourier Transform Spectroscopy and Thermogravimetric Analysis.

    Science.gov (United States)

    Gómora-Herrera, Diana; Navarrete Bolaños, Juan; Lijanova, Irina V; Olivares-Xometl, Octavio; Likhanova, Natalya V

    2018-04-01

    The effects exerted by the adsorption of vapors of a non-polar compound (deuterated benzene) and a polar compound (water) on the surface of Ottawa sand and a sample of reservoir sand (Channel), which was previously impregnated with silicon oil or two kinds of surfactants, (2-hydroxyethyl) trimethylammonium oleate (HETAO) and (2-hydroxyethyl)trimethylammonium azelate (HETAA), were studied by diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and thermogravimetric analysis (TGA). The surface chemistry of the sandstone rocks was elucidated by X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) with energy dispersive X-ray spectroscopy (EDX). Terminal surface groups such as hydroxyls can strongly adsorb molecules that interact with these surface groups (surfactants), resulting in a wettability change. The wettability change effect suffered by the surface after treating it with surfactants was possible to be detected by the DRIFTS technique, wherein it was observed that the surface became more hydrophobic after being treated with silicon oil and HETAO; the surface became more hydrophilic after treating it with HETAA.

  1. Rapid Analysis of the Quality of Amoxicillin and Clavulanate Potassium Tablets Using Diffuse Reflectance Near-Infrared Spectroscopy.

    Science.gov (United States)

    Chong, Xiao-Meng; Zou, Wen-Bo; Yao, Shang-Chen; Hu, Chang-Qin

    2017-05-01

    The cycle-closed dimer of amoxicillin influences its critical quality and is an important impurity in amoxicillin and clavulanate potassium tablets. The quality of the tablets could be rapidly evaluated using the impurity as an indicator. Here, we report a quantitative model to determine the cycle-closed dimer in samples from different manufacturers using diffuse reflectance near-infrared (NIR) spectroscopy by partial least squares regression for one y variable (PLS1) and hierarchical cluster analysis. Because the contents of the (active pharmaceutical ingredients) APIs (amoxicillin and clavulanate potassium) and water are also the important indexes of the tablet quality, three other quantitative models were used to confirm the API data and water content. All of the four models facilitate rapid and complete control of the tablet quality. In addition, quantitative models were validated in terms of specificity, linearity, accuracy, repeatability, and intermediate precision according to the International Conference on Harmonisation guidelines by evaluating the characteristics of the NIR spectra. These results confirmed that the models were satisfactory.

  2. Quantifying the cerebral metabolic rate of oxygen by combining diffuse correlation spectroscopy and time-resolved near-infrared spectroscopy

    Science.gov (United States)

    Verdecchia, Kyle; Diop, Mamadou; Lee, Ting-Yim; St. Lawrence, Keith

    2013-02-01

    Preterm infants are highly susceptible to ischemic brain injury; consequently, continuous bedside monitoring to detect ischemia before irreversible damage occurs would improve patient outcome. In addition to monitoring cerebral blood flow (CBF), assessing the cerebral metabolic rate of oxygen (CMRO2) would be beneficial considering that metabolic thresholds can be used to evaluate tissue viability. The purpose of this study was to demonstrate that changes in absolute CMRO2 could be measured by combining diffuse correlation spectroscopy (DCS) with time-resolved near-infrared spectroscopy (TR-NIRS). Absolute CBF was determined using bolus-tracking TR-NIRS to calibrate the DCS measurements. Cerebral venous blood oxygenation (SvO2) was determined by multiwavelength TR-NIRS measurements, the accuracy of which was assessed by directly measuring the oxygenation of sagittal sinus blood. In eight newborn piglets, CMRO2 was manipulated by varying the anesthetics and by injecting sodium cyanide. No significant differences were found between the two sets of SvO2 measurements obtained by TR-NIRS or sagittal sinus blood samples and the corresponding CMRO2 measurements. Bland-Altman analysis showed a mean CMRO2 difference of 0.0268±0.8340 mL O2/100 g/min between the two techniques over a range from 0.3 to 4 mL O2/100 g/min.

  3. Discrimination between immature and mature green coffees by attenuated total reflectance and diffuse reflectance Fourier transform infrared spectroscopy.

    Science.gov (United States)

    Craig, Ana Paula; Franca, Adriana S; Oliveira, Leandro S

    2011-10-01

    The objective of this work was to evaluate the potential of Fourier transform infrared spectroscopy (FTIR) in the characterization and discrimination between immature and mature or ripe coffee beans. Arabica coffee beans were submitted to FTIR analysis by reflectance readings employing attenuated total reflectance (ATR) and diffuse reflectance (DR) accessories. The obtained spectra were similar, but in general higher absorbance values were observed for nondefective beans in comparison to immature ones. Multivariate statistical analysis (principal component analysis, PCA, and agglomerative hierarchical clustering, AHC) was performed in order to verify the possibility of discrimination between immature and mature coffee samples. A clear separation between immature and mature coffees was observed based on AHC and PCA analyses of the normalized spectra obtained by employing both ATR and DR accessories. Linear discriminant analysis was employed for developing classification models, with recognition and prediction abilities of 100%. Such results showed that FTIR analysis presents potential for the development of a simple routine methodology for separation of immature and mature coffee beans. Practical Application: The ultimate goal of this research is to be able to propose improvements in the way immature coffee beans are separated from graded mature beans in coffee facilities (cooperatives and other coffee producer's associations). The results obtained herein point toward FTIR as a potential tool for the aimed improvements. © 2011 Institute of Food Technologists®

  4. Feasibility of diffuse reflectance infrared Fourier spectroscopy (DRIFTS) to quantify iron-cyanide (Fe-CN) complexes in soil

    Science.gov (United States)

    Sut-Lohmann, Magdalena; Raab, Thomas

    2017-04-01

    Contaminated sites create a significant risk to human health, by poisoning drinking water, soil, air and as a consequence food. Continuous release of persistent iron-cyanide (Fe-CN) complexes from various industrial sources poses a high hazard to the environment and indicates the necessity to analyze considerable amount of samples. At the present time quantitative determination of Fe-CN concentration in soil usually requires a time consuming two step process: digestion of the sample (e.g., micro distillation system) and its analytical detection performed, e.g., by automated spectrophotometrical flow injection analysis (FIA). In order to determine the feasibility of diffuse reflectance infrared Fourier spectroscopy (DRIFTS) to quantify the Fe-CN complexes in soil matrix, 42 soil samples were collected (8 to 12.520 mg kg-1CN) indicating single symmetrical CN band in the range 2092 - 2084 cm-1. Partial least squares (PLS) calibration-validation model revealed IR response to CNtot exceeding 1268 mg kg-1 (limit of detection, LOD). Subsequently, leave-one-out cross-validation (LOO-CV) was performed on soil samples containing low CNtot (900 mg kg-1 resulted in LOD equal to 3494 mg kg-1. Our results indicate that spectroscopic data in combination with PLS statistics can efficiently be used to predict Fe-CN concentrations in soil. We conclude that the protocol applied in this study can strongly reduce the time and costs essential for the spatial and vertical screening of the site affected by complexed Fe-CN.

  5. Monitoring closed head injury induced changes in brain physiology with orthogonal diffuse near-infrared reflectance spectroscopy

    Science.gov (United States)

    Abookasis, David; Shochat, Ariel; Mathews, Marlon S.

    2014-03-01

    We applied an orthogonal diffuse reflectance spectroscopy (o-DRS) to assess brain physiology following closed head injury (CHI). CHI was induced in anesthetized male mice by weight-drop device using ~50gram cylindrical metal falling from a height of 90 cm onto the intact scalp. A total of twenty-six mice were used in the experiments divided randomly into three groups as follows: Group 1 (n=11) consisted of injured mice monitored for 1 hour every 10 minutes. Group 2 (n=10) were the control mice not experience CHI. Group 3 (n=5) consisted of injured mice monitored every minute up to 20 minutes. Measurement of optical quantities of brain tissue (absorption and reduced scattering coefficients) in the near-infrared window from 650 to 1000 nm were carried out by employing different source-detector distances and locations to provide depth sensitivity. With respect to baseline, we found difference in brain hemodynamic properties following injury. In addition, o-DRS successfully evaluate the structural variations likely from evolving cerebral edema throughout exploring the scattering spectral shape.

  6. Visible near infrared diffuse reflectance spectroscopy (VisNIR DRS) for rapid measurement of organic matter in compost.

    Science.gov (United States)

    McWhirt, Amanda L; Weindorf, David C; Chakraborty, Somsubhra; Li, Bin

    2012-10-01

    Commercial compost is the inherently variable organic product of a controlled decomposition process. In the USA, assessment of compost's physicochemical parameters presently relies on standard laboratory analyses set forth in Test Methods for the Examination of Composting and Compost (TMECC). A rapid, field-portable means of assessing the organic matter (OM) content of compost products would be useful to help producers ensure optimal uniformity in their compost products. Visible near infrared diffuse reflectance spectroscopy (VisNIR DRS) is a rapid, proximal-sensing technology proven effective at quantifying organic matter levels in soils. As such, VisNIR DRS was evaluated to assess its applicability to compost. Thirty-six compost samples representing a wide variety of source materials and moisture content were collected and scanned with VisNIR DRS under moist and oven-dry conditions. Partial least squares (PLS) regression and principal component regression (PCR) were used to relate the VisNIR DRS spectra with laboratory-measured OM to build compost OM prediction models. Raw reflectance, and first- and second-derivatives of the reflectance spectra were considered. In general, PLS regression outperformed PCR and the oven-dried first-derivative PLS model produced an r(2) value of 0.82 along with a residual prediction deviation value of 1.72. As such, VisNIR DRS shows promise as a suitable technique for the analysis of compost OM content for dried samples.

  7. Rhodamine B as an optical thermometer in cells focally exposed to infrared laser light or nanosecond pulsed electric fields.

    Science.gov (United States)

    Moreau, David; Lefort, Claire; Burke, Ryan; Leveque, Philippe; O'Connor, Rodney P

    2015-10-01

    The temperature-dependent fluorescence property of Rhodamine B was used to measure changes in temperature at the cellular level induced by either infrared laser light exposure or high intensity, ultrashort pulsed electric fields. The thermal impact of these stimuli were demonstrated at the cellular level in time and contrasted with the change in temperature observed in the extracellular bath. The method takes advantage of the temperature sensitivity of the fluorescent dye Rhodamine B which has a quantum yield linearly dependent on temperature. The thermal effects of different temporal pulse applications of infrared laser light exposure and of nanosecond pulsed electric fields were investigated. The temperature increase due to the application of nanosecond pulsed electric fields was demonstrated at the cellular level.

  8. Hydrogel patterning by diffusion through the matrix and subsequent light-triggered chemical immobilization.

    Science.gov (United States)

    Yi, Zheyi; Zhang, Yu; Kootala, Sujit; Hilborn, Jöns; Ossipov, Dmitri A

    2015-01-21

    A novel approach to hyaluronic acid (HA) hydrogel with a chemical gradient of the matrix-linked bisphosphonate (BP) groups is presented. The method consists of two steps, including initial generation of physical gradient patterns of BPs by diffusion of BP acrylamide reagent into HA matrix carrying thiol groups and subsequent chemical immobilization of the BP groups by UV light-triggered thiol-ene addition reaction. This gradient hydrogel permits spatial three-dimensional regulation of secondary interactions of different molecules with the polymer matrix. In particular, graded amounts of cytochrome c (cyt c) were reversibly absorbed in the hydrogel, thus enabling the subsequent spatially controlled release of the therapeutic protein. The obtained patterned hydrogel acts also as a unique reactor in which peroxidase-catalyzed oxidation of a substrate is determined by spatial position of the enzyme (cyt c) in the matrix resulting in a range of product concentrations. As an example, matrix template-assisted oxidation of 3,3',5,5'-tetarmethylbenzydine (TMB) in the presence of H2O2 occurs simultaneously at different rates within the gradient hydrogel. Moreover, calcium binding to the gradient HABP hydrogel reflects the pattern of immobilized BP groups eventually leading to the graded biomineralization of the matrix. This approach opens new possibilities for use of hydrogels as dynamic models for biologic three-dimensional structures such as extracellular matrix.

  9. Low Efficiency Upconversion Nanoparticles for High-Resolution Coalignment of Near-Infrared and Visible Light Paths on a Light Microscope.

    Science.gov (United States)

    Sundaramoorthy, Sriramkumar; Garcia Badaracco, Adrian; Hirsch, Sophia M; Park, Jun Hong; Davies, Tim; Dumont, Julien; Shirasu-Hiza, Mimi; Kummel, Andrew C; Canman, Julie C

    2017-03-08

    The combination of near-infrared (NIR) and visible wavelengths in light microscopy for biological studies is increasingly common. For example, many fields of biology are developing the use of NIR for optogenetics, in which an NIR laser induces a change in gene expression and/or protein function. One major technical barrier in working with both NIR and visible light on an optical microscope is obtaining their precise coalignment at the imaging plane position. Photon upconverting particles (UCPs) can bridge this gap as they are excited by NIR light but emit in the visible range via an anti-Stokes luminescence mechanism. Here, two different UCPs have been identified, high-efficiency micro 540 -UCPs and lower efficiency nano 545 -UCPs, that respond to NIR light and emit visible light with high photostability even at very high NIR power densities (>25 000 Suns). Both of these UCPs can be rapidly and reversibly excited by visible and NIR light and emit light at visible wavelengths detectable with standard emission settings used for Green Fluorescent Protein (GFP), a commonly used genetically encoded fluorophore. However, the high efficiency micro 540 -UCPs were suboptimal for NIR and visible light coalignment, due to their larger size and spatial broadening from particle-to-particle energy transfer consistent with a long-lived excited state and saturated power dependence. In contrast, the lower efficiency nano-UCPs were superior for precise coalignment of the NIR beam with the visible light path (∼2 μm versus ∼8 μm beam broadening, respectively) consistent with limited particle-to-particle energy transfer, superlinear power dependence for emission, and much smaller particle size. Furthermore, the nano-UCPs were superior to a traditional two-camera method for NIR and visible light path alignment in an in vivo Infrared-Laser-Evoked Gene Operator (IR-LEGO) optogenetics assay in the budding yeast Saccharomyces cerevisiae. In summary, nano-UCPs are powerful new tools

  10. Low efficiency upconversion nanoparticles for high-resolution coalignment of near-infrared and visible light paths on a light microscope

    Science.gov (United States)

    Sundaramoorthy, Sriramkumar; Badaracco, Adrian Garcia; Hirsch, Sophia M.; Park, Jun Hong; Davies, Tim; Dumont, Julien; Shirasu-Hiza, Mimi; Kummel, Andrew C.; Canman, Julie C.

    2017-01-01

    The combination of near infrared (NIR) and visible wavelengths in light microscopy for biological studies is increasingly common. For example, many fields of biology are developing the use of NIR for optogenetics, in which an NIR laser induces a change in gene expression and/or protein function. One major technical barrier in working with both NIR and visible light on an optical microscope is obtaining their precise coalignment at the imaging plane position. Photon upconverting particles (UCPs) can bridge this gap as they are excited by NIR light but emit in the visible range via an anti-Stokes luminescence mechanism. Here, two different UCPs have been identified, high-efficiency micro540-UCPs and lower efficiency nano545-UCPs, that respond to NIR light and emit visible light with high photostability even at very high NIR power densities (>25,000 Suns). Both of these UCPs can be rapidly and reversibly excited by visible and NIR light and emit light at visible wavelengths detectable with standard emission settings used for Green Fluorescent Protein (GFP), a commonly used genetically-encoded fluorophore. However, the high efficiency micro540-UCPs were suboptimal for NIR and visible light coalignment, due to their larger size and spatial broadening from particle-to-particle energy transfer consistent with a long lived excited state and saturated power dependence. In contrast, the lower efficiency nano-UCPs were superior for precise coalignment of the NIR beam with the visible light path (~2 µm versus ~8 µm beam broadening respectively) consistent with limited particle-to-particle energy transfer, superlinear power dependence for emission, and much smaller particle size. Furthermore, the nano-UCPs were superior to a traditional two-camera method for NIR and visible light path alignment in an in vivo Infrared-Laser-Evoked Gene Operator (IR-LEGO) optogenetics assay in the budding yeast S. cerevisiae. In summary, nano-UCPs are powerful new tools for coaligning NIR and

  11. The bactericidal effect of carbon nanotube/agar composites irradiated with near-infrared light on Streptococcus mutans

    OpenAIRE

    Akasaka, Tsukasa; Matsuoka, Makoto; Hashimoto, Takeshi; Abe, Shigeaki; Uo, Motohiro; Watari, Fumio

    2010-01-01

    Dental caries are mainly associated with oral pathogens, and Streptococcus 2 mutans is a primary cariogenic organism. Many methods have been established to eliminate S. mutans from the oral cavity. This study aimed to evaluate the effect of carbon nanotube (CNT)/agar composites irradiated with near-infrared (NIR) light on S. mutans, as a potential photothermal antimicrobial nanotherapy. A colony-forming unit assay clearly showed that CNT/agar composites attain bactericidal activity after NIR ...

  12. Penetration Depth Measurement of Near-Infrared Hyperspectral Imaging Light for Milk Powder.

    Science.gov (United States)

    Huang, Min; Kim, Moon S; Chao, Kuanglin; Qin, Jianwei; Mo, Changyeun; Esquerre, Carlos; Delwiche, Stephen; Zhu, Qibing

    2016-03-25

    The increasingly common application of the near-infrared (NIR) hyperspectral imaging technique to the analysis of food powders has led to the need for optical characterization of samples. This study was aimed at exploring the feasibility of quantifying penetration depth of NIR hyperspectral imaging light for milk powder. Hyperspectral NIR reflectance images were collected for eight different milk powder products that included five brands of non-fat milk powder and three brands of whole milk powder. For each milk powder, five different powder depths ranging from 1 mm-5 mm were prepared on the top of a base layer of melamine, to test spectral-based detection of the melamine through the milk. A relationship was established between the NIR reflectance spectra (937.5-1653.7 nm) and the penetration depth was investigated by means of the partial least squares-discriminant analysis (PLS-DA) technique to classify pixels as being milk-only or a mixture of milk and melamine. With increasing milk depth, classification model accuracy was gradually decreased. The results from the 1-mm, 2-mm and 3-mm models showed that the average classification accuracy of the validation set for milk-melamine samples was reduced from 99.86% down to 94.93% as the milk depth increased from 1 mm-3 mm. As the milk depth increased to 4 mm and 5 mm, model performance deteriorated further to accuracies as low as 81.83% and 58.26%, respectively. The results suggest that a 2-mm sample depth is recommended for the screening/evaluation of milk powders using an online NIR hyperspectral imaging system similar to that used in this study.

  13. Penetration Depth Measurement of Near-Infrared Hyperspectral Imaging Light for Milk Powder

    Directory of Open Access Journals (Sweden)

    Min Huang

    2016-03-01

    Full Text Available The increasingly common application of the near-infrared (NIR hyperspectral imaging technique to the analysis of food powders has led to the need for optical characterization of samples. This study was aimed at exploring the feasibility of quantifying penetration depth of NIR hyperspectral imaging light for milk powder. Hyperspectral NIR reflectance images were collected for eight different milk powder products that included five brands of non-fat milk powder and three brands of whole milk powder. For each milk powder, five different powder depths ranging from 1 mm–5 mm were prepared on the top of a base layer of melamine, to test spectral-based detection of the melamine through the milk. A relationship was established between the NIR reflectance spectra (937.5–1653.7 nm and the penetration depth was investigated by means of the partial least squares-discriminant analysis (PLS-DA technique to classify pixels as being milk-only or a mixture of milk and melamine. With increasing milk depth, classification model accuracy was gradually decreased. The results from the 1-mm, 2-mm and 3-mm models showed that the average classification accuracy of the validation set for milk-melamine samples was reduced from 99.86% down to 94.93% as the milk depth increased from 1 mm–3 mm. As the milk depth increased to 4 mm and 5 mm, model performance deteriorated further to accuracies as low as 81.83% and 58.26%, respectively. The results suggest that a 2-mm sample depth is recommended for the screening/evaluation of milk powders using an online NIR hyperspectral imaging system similar to that used in this study.

  14. Highly asymmetric near infrared light transmission in an all-dielectric grating-on-mirror photonic structure.

    Science.gov (United States)

    Zinkiewicz, Łukasz; Haberko, Jakub; Wasylczyk, Piotr

    2015-02-23

    We demonstrate a photonic structure, composed of a dielectric quarter-wavelength stack topped with a transmission phase grating, designed to exhibit a significant asymmetry in the near infrared light transmission for waves propagating in opposite directions. The asymmetry, defined as the difference between the intensity transmission coefficients, reaches 0.72 ± 0.06 for a single wavelength and exceeds 0.2 over a spectral range spanning from 700 to 850 nm for one incident polarization and 750-800 nm for both polarizations. The experimental results are consistent with the numerical model of light propagation in the structure.

  15. Avoiding thermal injury during near-infrared photoimmunotherapy (NIR-PIT): the importance of NIR light power density.

    Science.gov (United States)

    Okuyama, Shuhei; Nagaya, Tadanobu; Ogata, Fusa; Maruoka, Yasuhiro; Sato, Kazuhide; Nakamura, Yuko; Choyke, Peter L; Kobayashi, Hisataka

    2017-12-22

    Near-infrared photoimmunotherapy (NIR-PIT) is a newly-established cancer treatment which employs the combination of an antibody-photoabsorber conjugate (APC) and NIR light. When NIR light is absorbed by APC-bound tissues, a certain amount of heat is generated locally. For the most part this results in a subclinical rise in skin temperature, however, excessive light exposure may cause non-specific thermal damage. In this study, we investigated the potential for thermal damage caused by NIR-PIT by measuring surface temperature. Two sources of light, laser and light emitting diode (LED), were compared in a mouse tumor model. First, we found that the skin was heated rapidly by NIR light regardless of whether laser or LED light sources were used. Air cooling at the surface reduced the rise in temperature. There were no associations between the rise of skin temperature and tumor volume of the treated tumor, or APC concentration. Second, we investigated the extent of thermal damage to the skin at various light doses. We detected burn injuries 1 day after NIR-PIT, when the NIR light was at a power density higher than 600 mW/cm 2 . Successful treatments at lower power density could be achieved if the total light energy absorbed by the tumor was the same, i.e. by extending the duration of light exposure. In conclusion, this study demonstrates that thermal injury after NIR-PIT can be avoided by either employing a cooling system or by lowering the power density of the light source and prolonging the exposure time such that the total energy is constant. Thus, thermal damage is preventable side effect of NIR-PIT.

  16. Simultaneous Evaluation of Cerebral Hemodynamics and Light Scattering Properties of the In Vivo Rat Brain Using Multispectral Diffuse Reflectance Imaging.

    Science.gov (United States)

    Nishidate, Izumi; Mustari, Afrina; Kawauchi, Satoko; Sato, Shunichi; Sato, Manabu

    2017-05-07

    The simultaneous evaluation of cerebral hemodynamics and the light scattering properties of in vivo rat brain tissue is demonstrated using a conventional multispectral diffuse reflectance imaging system. This system is constructed from a broadband white light source, a motorized filter wheel with a set of narrowband interference filters, a light guide, a collecting lens, a video zoom lens, and a monochromatic charged-coupled device (CCD) camera. An ellipsoidal cranial window is made in the skull bone of a rat under isoflurane anesthesia to capture in vivo multispectral diffuse reflectance images of the cortical surface. Regulation of the fraction of inspired oxygen using a gas mixture device enables the induction of different respiratory states such as normoxia, hyperoxia, and anoxia. A Monte Carlo simulation-based multiple regression analysis for the measured multispectral diffuse reflectance images at nine wavelengths (500, 520, 540, 560, 570, 580, 600, 730, and 760 nm) is then performed to visualize the two-dimensional maps of hemodynamics and the light scattering properties of the in vivo rat brain.

  17. Pedestrian Detection Based on Adaptive Selection of Visible Light or Far-Infrared Light Camera Image by Fuzzy Inference System and Convolutional Neural Network-Based Verification

    Science.gov (United States)

    Kang, Jin Kyu; Hong, Hyung Gil; Park, Kang Ryoung

    2017-01-01

    A number of studies have been conducted to enhance the pedestrian detection accuracy of intelligent surveillance systems. However, detecting pedestrians under outdoor conditions is a challenging problem due to the varying lighting, shadows, and occlusions. In recent times, a growing number of studies have been performed on visible light camera-based pedestrian detection systems using a convolutional neural network (CNN) in order to make the pedestrian detection process more resilient to such conditions. However, visible light cameras still cannot detect pedestrians during nighttime, and are easily affected by shadows and lighting. There are many studies on CNN-based pedestrian detection through the use of far-infrared (FIR) light cameras (i.e., thermal cameras) to address such difficulties. However, when the solar radiation increases and the background temperature reaches the same level as the body temperature, it remains difficult for the FIR light camera to detect pedestrians due to the insignificant difference between the pedestrian and non-pedestrian features within the images. Researchers have been trying to solve this issue by inputting both the visible light and the FIR camera images into the CNN as the input. This, however, takes a longer time to process, and makes the system structure more complex as the CNN needs to process both camera images. This research adaptively selects a more appropriate candidate between two pedestrian images from visible light and FIR cameras based on a fuzzy inference system (FIS), and the selected candidate is verified with a CNN. Three types of databases were tested, taking into account various environmental factors using visible light and FIR cameras. The results showed that the proposed method performs better than the previously reported methods. PMID:28698475

  18. Improvement of Infrared Detectors for Tissue Oximetry using Black Silicon Nanostructures

    DEFF Research Database (Denmark)

    Petersen, Søren Dahl; Davidsen, Rasmus Schmidt; Alcala, Lucia R.

    2014-01-01

    We present a nanostructured surface, made of dry etched black silicon, which lowers the reflectance for light incident at all angles. This surface is fabricated on infrared detectors used for tissue oximetry, where the detection of weak diffuse light signals is important. Monte Carlo simulations...... performed on a model of a neonatal head shows that approximately 60% of the injected light will be diffuse reflected. However, the change in diffuse reflected light due to the change in cerebral oxygenation is very low and the light will be completely isotropic scattered. The reflectance of the black...... in quantum efficiency for both normal incident light and light incident at 38°....

  19. Theoretical Research on Ellipsoidal Structure Methane Gas Detection Based on Near Infrared Light Sources of PbSe Quantum Dots

    Directory of Open Access Journals (Sweden)

    Xiaoxue Xing

    2017-01-01

    Full Text Available To improve the precision and sensitivity of the detection in near infrared gas detection system, the selection of light source and design of gas chamber structure are two key links. In this paper, the near infrared (NIR light sources fabricated with PbSe quantum dots (QDs and a new gas cell structure using an ellipsoid reflector were designed to test the concentration of methane (CH4. The double wavelengths differential detection method was used in the paper. The signal wavelength is 1.665 μm from the NIR QD-based light source with 5.1 nm PbSe QDs. The reference wavelength is 1.943 μm from the NIR QD-based light source with 6.1 nm PbSe QDs. The experimental results show that the differential gain signal could be enhanced 80 times when the major axis, the focus, and the open length of the ellipsoid reflector are 4.18 cm, 3.98 cm, and 0.36 cm, respectively. The structure will be convenient for the signal amplifying, AD converting, and other process in the latter circuits, and therefore both the detection sensitivity and precision can be improved.

  20. Monitoring and scoring counter-diffusion protein crystallization experiments in capillaries by in situ dynamic light scattering.

    Science.gov (United States)

    Oberthuer, Dominik; Melero-García, Emilio; Dierks, Karsten; Meyer, Arne; Betzel, Christian; Garcia-Caballero, Alfonso; Gavira, Jose A

    2012-01-01

    In this paper, we demonstrate the feasibility of using in situ Dynamic Light Scattering (DLS) to monitor counter-diffusion crystallization experiments in capillaries. Firstly, we have validated the quality of the DLS signal in thin capillaries, which is comparable to that obtained in standard quartz cuvettes. Then, we have carried out DLS measurements of a counter-diffusion crystallization experiment of glucose isomerase in capillaries of different diameters (0.1, 0.2 and 0.3 mm) in order to follow the temporal evolution of protein supersaturation. Finally, we have compared DLS data with optical recordings of the progression of the crystallization front and with a simulation model of counter-diffusion in 1D.

  1. Monitoring and scoring counter-diffusion protein crystallization experiments in capillaries by in situ dynamic light scattering.

    Directory of Open Access Journals (Sweden)

    Dominik Oberthuer

    Full Text Available In this paper, we demonstrate the feasibility of using in situ Dynamic Light Scattering (DLS to monitor counter-diffusion crystallization experiments in capillaries. Firstly, we have validated the quality of the DLS signal in thin capillaries, which is comparable to that obtained in standard quartz cuvettes. Then, we have carried out DLS measurements of a counter-diffusion crystallization experiment of glucose isomerase in capillaries of different diameters (0.1, 0.2 and 0.3 mm in order to follow the temporal evolution of protein supersaturation. Finally, we have compared DLS data with optical recordings of the progression of the crystallization front and with a simulation model of counter-diffusion in 1D.

  2. A Thermal-, Water-, and Near-Infrared Light-Induced Shape Memory Composite Based on Polyvinyl Alcohol and Polyaniline Fibers.

    Science.gov (United States)

    Bai, Yongkang; Zhang, Jiwen; Chen, Xin

    2018-04-16

    A multiresponsive shape memory composite was prepared by incorporating polyaniline (PAn) fibers into polyvinyl alcohol (PVA), where in situ polymerization assisted by surfactant was used to homogeneously disperse PAn fibers in a PVA matrix. The PAn fibers not only increased physical cross-linking points in the system but also served as photothermal conversion reagents, resulting in excellent water-, thermal-, and near-infrared (NIR) light-induced shape memory properties of the composites, where their light-induced shape recovery ratio and speed could be enhanced via the increase of PAn loading percentage and light power density. Moreover, the composites possessed high mechanical properties with tensile strength over 83 MPa. On the basis of these dramatic mechanical properties and shape memory properties, the composites could show high recovery stress over 6.0 MPa, which increased with the increase of temperature and PAn loading percentage. This presented composite could be a great candidate as actuator element for various applications.

  3. Evaluating fibre orientation dispersion in white matter: Comparison of diffusion MRI, histology and polarized light imaging

    NARCIS (Netherlands)

    Mollink, J.; Kleinnijenhuis, M.; Cappellen van Walsum, A.M. van; Sotiropoulos, S.N.; Cottaar, M.; Mirfin, C.; Heinrich, M.P.; Jenkinson, M.; Pallebage-Gamarallage, M.; Ansorge, O.; Jbabdi, S.; Miller, K.L.

    2017-01-01

    Diffusion MRI is an exquisitely sensitive probe of tissue microstructure, and is currently the only non-invasive measure of the brain's fibre architecture. As this technique becomes more sophisticated and microstructurally informative, there is increasing value in comparing diffusion MRI with

  4. Changes in Cell Viability of Wounded Fibroblasts following Laser Irradiation in Broad-Spectrum or Infrared Light

    International Nuclear Information System (INIS)

    Hawkins, D.; Abrahamse, H.

    2007-01-01

    Objective. This study aimed to establish if broad-spectrum or infrared (IR) light in combination with laser therapy can assist phototherapy to improve the cell function of wounded cells. Background. The effect of laser light may be partly or completely reduced by broad-spectrum light. Methods. Wounded human skin fibroblasts were irradiated with 5 J/cm2 using a helium-neon laser, a diode laser, or an Nd:YAG laser in the dark, in the light, or in IR. Changes in cell viability were evaluated by cell morphology, ATP cell viability, LDH membrane integrity, and caspase 3/7 as an early marker of apoptosis. Results. Wounded cells exposed to 5 J/cm2 using 632.8 nm in the dark or 830 nm in the light or 1064 nm in the dark showed an increase in ATP viability, an increase in cytokine expression, and a decrease in LDH cytotoxicity indicating that the metabolic activity of the wounded cells was stimulated. Conclusion. Wounded cells irradiated in IR light showed an undesirable thermal effect that was proportional to the duration of exposure.

  5. Diffusion of myosin light chain kinase on actin: A mechanism to enhance myosin phosphorylation rates in smooth muscle.

    Science.gov (United States)

    Hong, Feng; Brizendine, Richard K; Carter, Michael S; Alcala, Diego B; Brown, Avery E; Chattin, Amy M; Haldeman, Brian D; Walsh, Michael P; Facemyer, Kevin C; Baker, Josh E; Cremo, Christine R

    2015-10-01

    Smooth muscle myosin (SMM) light chain kinase (MLCK) phosphorylates SMM, thereby activating the ATPase activity required for muscle contraction. The abundance of active MLCK, which is tightly associated with the contractile apparatus, is low relative to that of SMM. SMM phosphorylation is rapid despite the low ratio of MLCK to SMM, raising the question of how one MLCK rapidly phosphorylates many SMM molecules. We used total internal reflection fluorescence microscopy to monitor single molecules of streptavidin-coated quantum dot-labeled MLCK interacting with purified actin, actin bundles, and stress fibers of smooth muscle cells. Surprisingly, MLCK and the N-terminal 75 residues of MLCK (N75) moved on actin bundles and stress fibers of smooth muscle cell cytoskeletons by a random one-dimensional (1-D) diffusion mechanism. Although diffusion of proteins along microtubules and oligonucleotides has been observed previously, this is the first characterization to our knowledge of a protein diffusing in a sustained manner along actin. By measuring the frequency of motion, we found that MLCK motion is permitted only if acto-myosin and MLCK-myosin interactions are weak. From these data, diffusion coefficients, and other kinetic and geometric considerations relating to the contractile apparatus, we suggest that 1-D diffusion of MLCK along actin (a) ensures that diffusion is not rate limiting for phosphorylation, (b) allows MLCK to locate to areas in which myosin is not yet phosphorylated, and (c) allows MLCK to avoid getting "stuck" on myosins that have already been phosphorylated. Diffusion of MLCK along actin filaments may be an important mechanism for enhancing the rate of SMM phosphorylation in smooth muscle. © 2015 Hong et al.

  6. Real-time convolution method for generating light diffusion profiles of layered turbid media.

    Science.gov (United States)

    Kim, Hoe-Min; Ko, Kwang Hee; Lee, Kwan H

    2011-06-01

    In this paper we present a technique to obtain a diffusion profile of layered turbid media in real time by using the quasi fast Hankel transform (QFHT) and the latest graphics processing unit technique. We apply the QFHT to convolve the diffusion profiles of each layer so as to dramatically reduce the time for the convolution step while maintaining the accuracy. In addition, we also introduce an accelerated technique to generate individual discrete diffusion profiles for each layer through parallel processing. The proposed method is 2 orders of magnitude faster than the existing method, and we validate its efficiency by comparing it with Monte Carlo simulation and another relevant methods.

  7. Zn diffusion in binary base of light Mg-Al alloys

    Czech Academy of Sciences Publication Activity Database

    Čermák, Jiří; Stloukal, Ivo

    2007-01-01

    Roč. 263, - (2007), s. 165-170 ISSN 1012-0386. [D&T ’06 Seminar on Diffusion and Thermodynamics of Materials /9./. Brno, 13.09.2006-15.09.2006] R&D Projects: GA ČR GA106/05/2115 Institutional research plan: CEZ:AV0Z20410507 Keywords : magnesium * AZ91 * zinc diffusion in Mg-Al alloys Subject RIV: BJ - Thermodynamics Impact factor: 0.483, year: 2005

  8. The distribution of stars around the Milky Way's central black hole. II. Diffuse light from sub-giants and dwarfs

    Science.gov (United States)

    Schödel, R.; Gallego-Cano, E.; Dong, H.; Nogueras-Lara, F.; Gallego-Calvente, A. T.; Amaro-Seoane, P.; Baumgardt, H.

    2018-01-01

    Context. This is the second of three papers that search for the predicted stellar cusp around the Milky Way's central black hole, Sagittarius A*, with new data and methods. Aims: We aim to infer the distribution of the faintest stellar population currently accessible through observations around Sagittarius A*. Methods: We used adaptive optics assisted high angular resolution images obtained with the NACO instrument at the ESO VLT. Through optimised PSF fitting we removed the light from all detected stars above a given magnitude limit. Subsequently we analysed the remaining, diffuse light density. Systematic uncertainties were constrained by the use of data from different observing epochs and obtained with different filters. We show that it is necessary to correct for the diffuse emission from the mini-spiral, which would otherwise lead to a systematically biased light density profile. We used a Paschen α map obtained with the Hubble Space Telescope for this purpose. Results: The azimuthally averaged diffuse surface light density profile within a projected distance of R ≲ 0.5 pc from Sagittarius A* can be described consistently by a single power law with an exponent of Γ = 0.26 ± 0.02stat ± 0.05sys, similar to what has been found for the surface number density of faint stars in Paper I. Conclusions: The analysed diffuse light arises from sub-giant and main-sequence stars with Ks ≈ 19-22 with masses of 0.8-1.5 M⊙. These stars can be old enough to be dynamically relaxed. The observed power-law profile and its slope are consistent with the existence of a relaxed stellar cusp around the Milky Way's central black hole. We find that a Nuker law provides an adequate description of the nuclear cluster's intrinsic shape (assuming spherical symmetry). The 3D power-law slope near Sgr A* is γ = 1.13 ± 0.03model ± 0.05sys. The stellar density decreases more steeply beyond a break radius of about 3 pc, which corresponds roughly to the radius of influence of the

  9. Lateral CO2 diffusion inside dicotyledonous leaves can be substantial: quantification in different light intensities.

    Science.gov (United States)

    Morison, James I L; Lawson, Tracy; Cornic, Gabriel

    2007-11-01

    Substantial lateral CO(2) diffusion rates into leaf areas where stomata were blocked by grease patches were quantified by gas exchange and chlorophyll a fluorescence imaging in different species across the full range of photosynthetic photon flux densities (PPFD). The lateral CO(2) flux rate over short distances was substantial and very similar in five dicotyledonous species with different vascular anatomies (two species with bundle sheath extensions, sunflower [Helianthus annuus] and dwarf bean [Phaseolus vulgaris]; and three species without bundle sheath extensions, faba bean [Vicia faba], petunia [Petunia hybrida], and tobacco [Nicotiana tabacum]). Only in the monocot maize (Zea mays) was there little or no evident lateral CO(2) flux. Lateral diffusion rates were low when PPFD diffusion represented 15% to 24% of the normal CO(2) assimilation rate. Smaller patches and higher ambient CO(2) concentration increased lateral CO(2) diffusion rates. Calculations with a two-dimensional diffusion model supported these observations that lateral CO(2) diffusion over short distances inside dicotyledonous leaves can be important to photosynthesis. The results emphasize that supply of CO(2) from nearby stomata usually dominates assimilation, but that lateral supply over distances up to approximately 1 mm can be important if stomata are blocked, particularly when assimilation rate is low.

  10. Near-infrared diffuse interstellar bands in APOGEE telluric standard star spectra . Weak bands and comparisons with optical counterparts

    Science.gov (United States)

    Elyajouri, M.; Lallement, R.; Monreal-Ibero, A.; Capitanio, L.; Cox, N. L. J.

    2017-04-01

    Aims: Information on the existence and properties of diffuse interstellar bands (DIBs) outside the optical domain is still limited. Additional infra-red (IR) measurements and IR-optical correlative studies are needed to constrain DIB carriers and locate various absorbers in 3D maps of the interstellar matter. Methods: We extended our study of H-band DIBs in Apache Point Observatory Galactic Evolution Experiment (APOGEE) Telluric Standard Star (TSS) spectra. We used the strong λ15273 band to select the most and least absorbed targets. We used individual spectra of the former subsample to extract weaker DIBs, and we searched the two stacked series for differences that could indicate additional bands. High-resolution NARVAL and SOPHIE optical spectra for a subsample of 55 TSS targets were additionally recorded for NIR/optical correlative studies. Results: From the TSS spectra we extract a catalog of measurements of the poorly studied λλ15617, 15653, and 15673 DIBs in ≃300 sightlines, we obtain a first accurate determination of their rest wavelength and constrained their intrinsic width and shape. In addition, we studied the relationship between these weak bands and the strong λ15273 DIB. We provide a first or second confirmation of several other weak DIBs that have been proposed based on different instruments, and we add new constraints on their widths and locations. We finally propose two new DIB candidates. Conclusions: We compared the strength of the λ15273 absorptions with their optical counterparts λλ5780, 5797, 6196, 6283, and 6614. Using the 5797-5780 ratio as a tracer of shielding against the radiation field, we showed that the λ15273 DIB carrier is significantly more abundant in unshielded (σ-type) clouds, and it responds even more strongly than the λ5780 band carrier to the local ionizing field. Full Table 5 is available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc

  11. Evaluation of Diffuse Reflection Infrared Spectrometry for End-of-Shift Measurement of α-quartz in Coal Dust Samples.

    Science.gov (United States)

    Miller, Arthur L; Murphy, Nathaniel C; Bayman, Sean J; Briggs, Zachary P; Kilpatrick, Andrew D; Quinn, Courtney A; Wadas, Mackenzie R; Cauda, Emanuele G; Griffiths, Peter R

    2015-01-01

    The inhalation of toxic substances is a major threat to the health of miners, and dust containing respirable crystalline silica (α-quartz) is of particular concern, due to the recent rise in cases of coal workers' pneumoconiosis and silicosis in some U.S. mining regions. Currently, there is no field-portable instrument that can measure airborne α-quartz and give miners timely feedback on their exposure. The U.S. National Institute for Occupational Safety and Health (NIOSH) is therefore conducting studies to investigate technologies capable of end-of-shift or real-time measurement of airborne quartz. The present study focuses on the potential application of Fourier transform infrared (FT-IR) spectrometry conducted in the diffuse reflection (DR) mode as a technique for measuring α-quartz in respirable mine dust. A DR accessory was used to analyze lab-generated respirable samples of Min-U-Sil 5 (which contains more than 90% α-quartz) and coal dust, at mass loadings in the ranges of 100-600 μg and 600-5300 μg, respectively. The dust samples were deposited onto three different types of filters, borosilicate fiberglass, nylon, and polyvinyl chloride (PVC). The reflectance, R, was calculated by the ratio of a blank filter and a filter with deposited mine dust. Results suggest that for coal and pure quartz dusts deposited on 37 mm PVC filters, measurements of -log R correlate linearly with known amounts of quartz on filters, with R(2) values of approximately 0.99 and 0.94, respectively, for samples loaded up to ∼4000 μg. Additional tests were conducted to measure quartz in coal dusts deposited onto the borosilicate fiberglass and nylon filter media used in the NIOSH-developed Personal Dust Monitor (PDM). The nylon filter was shown to be amenable to DR analysis, but quantification of quartz is more accurate when the filter is "free," as opposed to being mounted in the PDM filter holder. The borosilicate fiberglass filters were shown to produce excessive

  12. Visible-Near-Infrared-Light-Driven Oxygen Evolution Reaction with Noble-Metal-Free WO2-WO3 Hybrid Nanorods.

    Science.gov (United States)

    Wang, Song Ling; Mak, Yan Lin; Wang, Shijie; Chai, Jianwei; Pan, Feng; Foo, Maw Lin; Chen, Wei; Wu, Kai; Xu, Guo Qin

    2016-12-13

    Understanding and manipulating the one half-reaction of photoinduced hole-oxidation to oxygen are of fundamental importance to design and develop an efficient water-splitting process. To date, extensive studies on oxygen evolution from water splitting have focused on visible-light harvesting. However, capturing low-energy photons for oxygen evolution, such as near-infrared (NIR) light, is challenging and not well-understood. This report presents new insights into photocatalytic water oxidation using visible and NIR light. WO 2 -WO 3 hybrid nanorods were in situ fabricated using a wet-chemistry route. The presence of metallic WO 2 strengthens light absorption and promotes the charge-carrier separation of WO 3 . The efficiency of the oxygen evolution reaction over noble-metal-free WO 2 -WO 3 hybrids was found to be significantly promoted. More importantly, NIR light (≥700 nm) can be effectively trapped to cause the photocatalytic water oxidation reaction. The oxygen evolution rates are even up to around 220 (λ = 700 nm) and 200 (λ = 800 nm) mmol g -1 h -1 . These results demonstrate that the WO 2 -WO 3 material is highly active for water oxidation with low-energy photons and opens new opportunities for multichannel solar energy conversion.

  13. Lipogels responsive to near-infrared light for the triggered release of therapeutic agents

    NARCIS (Netherlands)

    Martín-Saavedra, Francisco; Ruiz-Hernández, Eduardo; Escudero-Duch, Clara; Prieto, Martín; Arruebo, Manuel; Sadeghi, Negar; Deckers, Roel|info:eu-repo/dai/nl/341697834; Storm, Gert|info:eu-repo/dai/nl/073356328; Hennink, Wim E.; Santamaría, Jesús; Vilaboa, Nuria

    2017-01-01

    Here we report a composite system based on fibrin hydrogels that incorporate in their structure near-infrared (NIR) responsive nanomaterials and thermosensitive liposomes (TSL). Polymerized fibrin networks entrap simultaneously gold-based nanoparticles (NPs) capable of transducing NIR photon energy

  14. Visualizing Veins With Near-Infrared Light to Facilitate Blood Withdrawal in Children

    NARCIS (Netherlands)

    Cuper, Natascha J.; Verdaasdonk, Rudolf M.; de Roode, Rowland; de Vooght, Karen M. K.; Viergever, Max A.; Kalkman, Cor J.; de Graaff, Jurgen C.

    Introduction. This study aims to evaluate for the first time the value of visualizing veins by a prototype of a near-infrared (NIR) vascular imaging system for venipuncture in children. Methods. An observational feasibility study of venipunctures in children (0-6 years) attending the clinical

  15. Microcavity light emitting diodes in the visible red and near infrared wavelength range

    OpenAIRE

    Joray, Reto

    2005-01-01

    It was about 125 years ago that the light bulb was commercialized by Thomas Edison. No doubt a brilliant invention at the time, today its low power conversion efficiency is one of the reasons why lighting in the western world has such high energy consumption. Thus, the potential for saving energy is enormous in this area. The introduction of halogen, discharge and fluorescent lamps has lead to certain efficiency improvements, however more than half of the energy is still lost as heat. Light-e...

  16. Characterization of process-induced damage in Cu/low-k interconnect structure by microscopic infrared spectroscopy with polarized infrared light

    Energy Technology Data Exchange (ETDEWEB)

    Seki, Hirofumi, E-mail: Hirofumi-Seki@trc.toray.co.jp; Hashimoto, Hideki [Toray Research Center, Inc., 3-3-7 Sonoyama, Otsu, Shiga 520-8567 (Japan); Ozaki, Yukihiro [Department of Chemistry, School of Science and Technology, Kwansei Gakuin University, 2-1, Gakuen, Sanda, Hyogo 669-1337 (Japan)

    2016-09-07

    Microscopic Fourier-transform infrared (FT-IR) spectra are measured for a Cu/low-k interconnect structure using polarized IR light for different widths of low-k spaces and Cu lines, and for different heights of Cu lines, on Si substrates. Although the widths of the Cu line and the low-k space are 70 nm each, considerably smaller than the wavelength of the IR light, the FT-IR spectra of the low-k film were obtained for the Cu/low-k interconnect structure. A suitable method was established for measuring the process-induced damage in a low-k film that was not detected by the TEM-EELS (Transmission Electron Microscope-Electron Energy-Loss Spectroscopy) using microscopic IR polarized light. Based on the IR results, it was presumed that the FT-IR spectra mainly reflect the structural changes in the sidewalls of the low-k films for Cu/low-k interconnect structures, and the mechanism of generating process-induced damage involves the generation of Si-OH groups in the low-k film when the Si-CH{sub 3} bonds break during the fabrication processes. The Si-OH groups attract moisture and the OH peak intensity increases. It was concluded that the increase in the OH groups in the low-k film is a sensitive indicator of low-k damage. We achieved the characterization of the process-induced damage that was not detected by the TEM-EELS and speculated that the proposed method is applicable to interconnects with line and space widths of 70 nm/70 nm and on shorter scales of leading edge devices. The location of process-induced damage and its mechanism for the Cu/low-k interconnect structure were revealed via the measurement method.

  17. Near infrared light-driven water oxidation in a molecule-based artificial photosynthetic device using an upconversion nano-photosensitizer

    NARCIS (Netherlands)

    Liu, X.; Chen, H.C.; Kong, X.; Zhang, Y.; Tu, L.; Chang, Y.; Wu, F.; Wang, T.; Reek, J.N.H.; Brouwer, A.M.; Zhang, H.

    2015-01-01

    We provide the first demonstration of a near infrared light driven water oxidation reaction in a molecule-based artificial photosynthetic device using an upconversion nano-photosensitizer. One very attractive advantage of this system is that using NIR light irradiation does not cause significant

  18. The bactericidal effect of carbon nanotube/agar composites irradiated with near-infrared light on Streptococcus mutans

    International Nuclear Information System (INIS)

    Akasaka, Tsukasa; Matsuoka, Makoto; Hashimoto, Takeshi; Abe, Shigeaki; Uo, Motohiro; Watari, Fumio

    2010-01-01

    Dental caries are mainly associated with oral pathogens, and Streptococcus mutans is a primary cariogenic organism. Many methods have been established to eliminate S. mutans from the oral cavity. This study aimed to evaluate the effect of carbon nanotube (CNT)/agar composites irradiated with near-infrared (NIR) light on S. mutans, as a potential photothermal antimicrobial nanotherapy. A colony-forming unit assay clearly showed that CNT/agar composites attain bactericidal activity after NIR light irradiation; this bactericidal activity is higher than that of graphite (GP)/agar and activated carbon (AC)/agar composites. Furthermore, it was observed that longer irradiation times immobilized S. mutans in the CNT/agar composite.

  19. CLASSIFICATION OF SEVERAL SKIN CANCER TYPES BASED ON AUTOFLUORESCENCE INTENSITY OF VISIBLE LIGHT TO NEAR INFRARED RATIO

    Directory of Open Access Journals (Sweden)

    Aryo Tedjo

    2009-12-01

    Full Text Available Skin cancer is a malignant growth on the skin caused by many factors. The most common skin cancers are Basal Cell Cancer (BCC and Squamous Cell Cancer (SCC. This research uses a discriminant analysis to classify some tissues of skin cancer based on criterion number of independent variables. An independent variable is variation of excitation light sources (LED lamp, filters, and sensors to measure Autofluorescence Intensity (IAF of visible light to near infrared (VIS/NIR ratio of paraffin embedded tissue biopsy from BCC, SCC, and Lipoma. From the result of discriminant analysis, it is known that the discriminant function is determined by 4 (four independent variables i.e., Blue LED-Red Filter, Blue LED-Yellow Filter, UV LED-Blue Filter, and UV LED-Yellow Filter. The accuracy of discriminant in classifying the analysis of three skin cancer tissues is 100 %.

  20. Visible near-infrared light scattering of single silver split-ring structure made by nanosphere lithography.

    Science.gov (United States)

    Okamoto, Toshihiro; Fukuta, Tetsuya; Sato, Shuji; Haraguchi, Masanobu; Fukui, Masuo

    2011-04-11

    We succeeded in making a silver split-ring (SR) structure of approximately 130 nm in diameter on a glass substrate using a nanosphere lithography technique. The light scattering spectrum in visible near-infrared region of a single, isolated SR was measured using a microscope spectroscopy optical system. The electromagnetic field enhancement spectrum and distribution of the SR structure were simulated by the finite-difference time-domain method, and the excitation modes were clarified. The long wavelength peak in the light scattering spectra corresponded to a fundamental LC resonance mode excited by an incident electric field. It was shown that a single SR structure fabricated as abovementioned can operate as a resonator and generate a magnetic dipole. © 2011 Optical Society of America

  1. The bactericidal effect of carbon nanotube/agar composites irradiated with near-infrared light on Streptococcus mutans

    Energy Technology Data Exchange (ETDEWEB)

    Akasaka, Tsukasa, E-mail: akasaka@den.hokudai.ac.jp [Graduate School of Dental Medicine, Hokkaido University, Kita13 Nishi7, Kita-ku, Sapporo 060-8586 (Japan); Matsuoka, Makoto [Graduate School of Dental Medicine, Hokkaido University, Kita13 Nishi7, Kita-ku, Sapporo 060-8586 (Japan); Hashimoto, Takeshi [Meijo Nano Carbon Co. Ltd., Otsubashi bldg. 4F, 3-4-10 Marunouchi, Naka-ku, Nagoya 460-0002 (Japan); Abe, Shigeaki; Uo, Motohiro; Watari, Fumio [Graduate School of Dental Medicine, Hokkaido University, Kita13 Nishi7, Kita-ku, Sapporo 060-8586 (Japan)

    2010-10-15

    Dental caries are mainly associated with oral pathogens, and Streptococcus mutans is a primary cariogenic organism. Many methods have been established to eliminate S. mutans from the oral cavity. This study aimed to evaluate the effect of carbon nanotube (CNT)/agar composites irradiated with near-infrared (NIR) light on S. mutans, as a potential photothermal antimicrobial nanotherapy. A colony-forming unit assay clearly showed that CNT/agar composites attain bactericidal activity after NIR light irradiation; this bactericidal activity is higher than that of graphite (GP)/agar and activated carbon (AC)/agar composites. Furthermore, it was observed that longer irradiation times immobilized S. mutans in the CNT/agar composite.

  2. Near-infrared diode-pumped white-light emission from erbium-doped calcium fluoride crystal

    Science.gov (United States)

    Culp, Mical; Edwards, Vernessa M.; Reddi, B. Rami

    2016-02-01

    CaF2 is a cubic material and Erbium enters the lattice in triply ionized state. Erbium occupies Ca sites in the material. Defects occur in the material because a trivalent dopant ion replaces a divalent host ion. Er3+ occupies several different sites. Absorption spectrum of Er3+-doped CaF2 revealed absorption peaks at 255, 365, 379, 407, 441, 449, 487, 522, 539, 652 and 798 nm. When the sample was excited with an 800 nm near-infrared laser it revealed emissions at 390, 415, 462, 555, 665 and 790 nm. The absorption and emission peaks are identified with Er3+ spectral transitions. The sample color appears to be either white or green under near-infrared laser excitation. Emission color was found to be dependent on the pump laser wavelength used and laser power. Excitation spectral recordings were made by tuning the pump laser wavelength. The sample emission appears to be white under near-infrared excitation as well as violet laser excitation. Excited state lifetimes are measured to analyze the data. Our studies indicate that this sample is useful in solid state lighting applications.

  3. Viability of fibroblasts cultured under nutritional stress irradiated with red laser, infrared laser, and red light-emitting diode

    Science.gov (United States)

    Volpato, Luiz Evaristo Ricci; de Oliveira, Rodrigo Cardoso; Espinosa, Mariano Martinez; Bagnato, Vanderley Salvador; Machado, Maria A. A. M.

    2011-07-01

    Phototherapy is noninvasive, painless and has no known side effect. However, for its incorporation into clinical practice, more well-designed studies are necessary to define optimal parameters for its application. The viability of fibroblasts cultured under nutritional stress irradiated with either a red laser, an infrared laser, or a red light-emitting diode (LED) was analyzed. Irradiation parameters were: red laser (660 nm, 40 mW, 1 W/cm2), infrared laser (780 nm, 40 mW, 1 W/cm2), and red LED (637 +/- 15 nm, 40 mW, 1 W/cm2). All applications were punctual and performed with a spot with 0.4 mm2 of diameter for 4 or 8 s. The Kruskal-Wallis test and analysis of variance of the general linear model (p phototherapy with low-intensity laser and LED showed no toxicity at the cellular level. It even stimulated methylthiazol tetrazolium assay (MTT) conversion and neutral red uptake of fibroblasts cultured under nutritional stress, especially in the group irradiated with infrared laser (p = 0.004 for MTT conversion and p phototherapy used, it can be concluded that phototherapy stimulated the viability of fibroblasts cultured under nutritional deficit resembling those found in traumatized tissue in which cell viability is reduced.

  4. Impacts of Diffuse Radiation on Light Use Efficiency across Terrestrial Ecosystems Based on Eddy Covariance Observation in China

    Science.gov (United States)

    Huang, Kun; Wang, Shaoqiang; Zhou, Lei; Wang, Huimin; Zhang, Junhui; Yan, Junhua; Zhao, Liang; Wang, Yanfen; Shi, Peili

    2014-01-01

    Ecosystem light use efficiency (LUE) is a key factor of production models for gross primary production (GPP) predictions. Previous studies revealed that ecosystem LUE could be significantly enhanced by an increase on diffuse radiation. Under large spatial heterogeneity and increasing annual diffuse radiation in China, eddy covariance flux data at 6 sites across different ecosystems from 2003 to 2007 were used to investigate the impacts of diffuse radiation indicated by the cloudiness index (CI) on ecosystem LUE in grassland and forest ecosystems. Our results showed that the ecosystem LUE at the six sites was significantly correlated with the cloudiness variation (0.24≤R2≤0.85), especially at the Changbaishan temperate forest ecosystem (R2 = 0.85). Meanwhile, the CI values appeared more frequently between 0.8 and 1.0 in two subtropical forest ecosystems (Qianyanzhou and Dinghushan) and were much larger than those in temperate ecosystems. Besides, cloudiness thresholds which were favorable for enhancing ecosystem carbon sequestration existed at the three forest sites, respectively. Our research confirmed that the ecosystem LUE at the six sites in China was positively responsive to the diffuse radiation, and the cloudiness index could be used as an environmental regulator for LUE modeling in regional GPP prediction. PMID:25393629

  5. METHOD FOR REMOVAL OF LIGHT ISOTOPE PRODUCT FROM LIQUID THERMAL DIFFUSION UNITS

    Science.gov (United States)

    Hoffman, J.D.; Ballou, J.K.

    1957-11-19

    A method and apparatus are described for removing the lighter isotope of a gaseous-liquid product from a number of diffusion columns of a liquid thermal diffusion system in two stages by the use of freeze valves. The subject liquid flows from the diffusion columns into a heated sloping capsule where the liquid is vaporized by the action of steam in a heated jacket surrounding the capsule. When the capsule is filled the gas flows into a collector. Flow between the various stages is controlled by freeze valves which are opened and closed by the passage of gas and cool water respectively through coils surrounding portions of the pipes through which the process liquid is passed. The use of the dual stage remover-collector and the freeze valves is an improvement on the thermal diffusion separation process whereby the fraction containing the lighter isotope many be removed from the tops of the diffusion columns without intercolumn flow, or prior stage flow while the contents of the capsule is removed to the final receiver.

  6. Improved ZIF-8 membrane: Effect of activation procedure and determination of diffusivities of light hydrocarbons

    KAUST Repository

    Pan, Yichang

    2015-06-23

    Zeolitic imidazolate framework ZIF-8 has shown great potential for effective separation of hydrocarbon mixtures based on its intrinsic ultramicroporous feature. In order to explore the permeation and diffusion properties of hydrocarbons through ZIF-8 membrane, high-quality ZIF-8 membranes with a separation factor of ~90 for propylene/propane are successfully prepared via optimizing the activation processes. Single-component permeation data for hydrocarbons (C1–C4) through the improved ZIF-8 membrane are measured and analyzed by Maxwell-Stefan (MS) model to get the transport diffusivities of these hydrocarbons. The diffusivity values of hydrocarbon compare well with those obtained by other experimental techniques. Binary mixture permeation also can be well predicted through single-component adsorption parameters.

  7. Use of near-infrared light to reduce symptoms associated with restless legs syndrome in a woman: a case report

    Directory of Open Access Journals (Sweden)

    Mitchell Ulrike H

    2010-08-01

    Full Text Available Abstract Introduction We describe a potential new treatment option for patients suffering from restless legs syndrome. Contemporary treatment for restless legs syndrome consists mostly of dopaminergic drugs that leave some patients feeling nauseated and dizzy. A non-invasive, drug-free option would open new doors for patients suffering from restless legs syndrome. Case presentation A 69-year-old Caucasian woman met International Restless Legs Syndrome Study Group criteria for the diagnosis of restless legs syndrome. She had been afflicted with restless legs syndrome for over 30 years and tried many of the available pharmaceutical remedies without success. For this study she received 30-minute treatment sessions with near-infrared light, three times a week for four weeks. The restless legs syndrome rating scale was used to track symptom changes; at baseline she scored "27" on the 0 to 40 point scale, which is considered to be "severe". Our patient was almost symptom free at week two, indicated by a score of "2" on the rating scale. By week four she was completely symptom free. The symptoms slowly returned during week three post treatment. Conclusions The findings suggest that near-infrared light may be a feasible method for treating patients suffering from restless legs syndrome. Undesirable side-effects from medication are non-existent. This study might revive the neglected vascular mechanism theory behind restless legs syndrome and encourage further research into this area.

  8. Method for estimating closed-form solutions of the light diffusion equation for turbid media of any boundary shape.

    Science.gov (United States)

    Alqasemi, Umar; Salehi, Hassan S; Zhu, Quing

    2016-02-01

    This paper reports a method of estimating an approximate closed-form solution to the light diffusion equation for any type of geometry involving Dirichlet's boundary condition with known source location. It is based on estimating the optimum locations of multiple imaginary point sources to cancel the fluence at the extrapolated boundary by constrained optimization using a genetic algorithm. The mathematical derivation of the problem to approach the optimum solution for the direct-current type of diffuse optical systems is described in detail. Our method is first applied to slab geometry and compared with a truncated series solution. After that, it is applied to hemispherical geometry and compared with Monte Carlo simulation results. The method provides a fast and sufficiently accurate fluence distribution for optical reconstruction.

  9. Light propagation through weakly scattering media: a study of Monte Carlo vs. diffusion theory with application to neuroimaging

    Science.gov (United States)

    Ancora, Daniele; Zacharopoulos, Athanasios; Ripoll, Jorge; Zacharakis, Giannis

    2015-07-01

    One of the major challenges within Optical Imaging, photon propagation through clear layers embedded between scattering tissues, can be now efficiently modelled in real-time thanks to the Monte Carlo approach based on GPU. Because of its nature, the photon propagation problem can be very easily parallelized and ran on low cost hardware, avoiding the need for expensive Super Computers. A comparison between Diffusion and MC photon propagation theory is presented in this work with application to neuroimaging, investigating low scattering regions in a mouse-like phantom. Regions such as the Cerebral Spinal Fluid, are currently not taken into account in the classical computational models because of the impossibility to accurately simulate light propagation using fast Diffusive Equation approaches, leading to inaccuracies during the reconstruction process. The goal of the study presented here, is to reduce and further improve the computation accuracy of the reconstructed solution in a highly realistic scenario in the case of neuroimaging in preclinical mouse models.

  10. Toward real-time diffuse optical tomography: accelerating light propagation modeling employing parallel computing on GPU and CPU

    Science.gov (United States)

    Doulgerakis, Matthaios; Eggebrecht, Adam; Wojtkiewicz, Stanislaw; Culver, Joseph; Dehghani, Hamid

    2017-12-01

    Parameter recovery in diffuse optical tomography is a computationally expensive algorithm, especially when used for large and complex volumes, as in the case of human brain functional imaging. The modeling of light propagation, also known as the forward problem, is the computational bottleneck of the recovery algorithm, whereby the lack of a real-time solution is impeding practical and clinical applications. The objective of this work is the acceleration of the forward model, within a diffusion approximation-based finite-element modeling framework, employing parallelization to expedite the calculation of light propagation in realistic adult head models. The proposed methodology is applicable for modeling both continuous wave and frequency-domain systems with the results demonstrating a 10-fold speed increase when GPU architectures are available, while maintaining high accuracy. It is shown that, for a very high-resolution finite-element model of the adult human head with ˜600,000 nodes, consisting of heterogeneous layers, light propagation can be calculated at ˜0.25 s/excitation source.

  11. Post-pregnancy body contouring using a combined radiofrequency, infrared light and tissue manipulation device.

    Science.gov (United States)

    Winter, Marc L

    2009-12-01

    Non-invasive body contouring is an increasingly popular aesthetic application. Previous data support the efficacy of combined radiofrequency, infrared and skin manipulation for cellulite treatment. To evaluate the performance of a high-power device (50 W as opposed to 25 W) combining these energies for reshaping and improvement of skin texture/laxity in postpartum women. Twenty women received five weekly treatments to the abdomen, buttocks and thighs with the VelaShape system. We followed up each patient's weight and nutritional habits. Outcome was assessed using reproducible circumference measurements, digital photography, the physician's scores of cellulite and improvement as well as patient satisfaction. Safety was evaluated by recording subjects' comfort and tolerance. The overall mean circumferences reduction was 5.4 +/- 0.7 cm (p radiofrequency, infrared and mechanical manipulation.

  12. Gallium antimonide texturing for enhanced light extraction from infrared optoelectronics devices

    Directory of Open Access Journals (Sweden)

    Ella Wassweiler

    2016-06-01

    Full Text Available The use of gallium antimonide (GaSb is increasing, especially for optoelectronic devices in the infrared wavelengths. It has been demonstrated in gallium nitride (GaN devices operating at ultraviolet (UV wavelengths, that surface textures increase the overall device efficiency. In this work, we fabricated eight different surface textures in GaSb to be used in enhancing efficiency in infrared wavelength devices. Through chemical etching with hydrofluoric acid, hydrogen peroxide, and tartaric acid we characterize the types of surface textures formed and the removal rate of entire layers of GaSb. Through optimization of the etching recipes we lower the reflectivity from 35.7% to 1% at 4 μm wavelength for bare and textured GaSb, respectively. In addition, we simulate surface textures using ray optics in finite element method solver software to provide explanation of our experimental findings.

  13. Escaping losses of diffuse light emitted by luminescent dyes doped in micro/nanostructured solar cell systems

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, Noboru [Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188 (Japan); Nguyen Anh, Linh; Kambayashi, Toshio [Nagaoka University of Technology (Japan)

    2010-03-15

    One approach to improve the efficiency of electricity generation of solar cells is to use a luminescent/fluorescent dye that absorbs a part of the spectrum of incident light and then simultaneously emits down-shifted light that matches the spectral response of the solar cells. In this study, the authors numerically simulated the escaping energy losses of isotropic diffuse down-shifted light emitted by luminescent dyes doped in micro/nanostructured solar cell systems. The simulation was accomplished by using the two-dimensional total-field finite-difference time-domain (FDTD) method, which simulates not only reflection and refraction but also diffraction. Two simulation models - one based on a V-grooved luminescent down-shifting (LDS) layer and the other based on a planar luminescent solar concentrator (LSC) - were used, and the size effects of the LDS layer and LSC, effect of doping position on the escaping energy loss, and angle dependency of the escaping energy loss were clarified. For the V-grooved LDS layer, the escaping loss was found to be less than 10% in the wavelength range of 400-1170 nm when the height and width of the V-groove were 360 and 424 nm, respectively. This value of the escaping loss is less than half of that calculated from ray optics, which simulates only reflection and refraction. A planar LSC with a thickness of 300 nm and a length in the submicron range also exhibited smaller escaping loss than a conventional-sized one. Furthermore, the authors confirmed that the reflectance of the micro/nanostructured solar cell systems is lower than the theoretical ray optical reflectance of an air-PMMA-Flat Si layer. This indicates that doping luminescent dyes in such micro/nanostructured solar cell systems potentially improves the light trapping efficiency of down-shifted diffuse light emitted by the luminescent dyes. (author)

  14. The synthesis and characterization of Al/Co3O4 magnetic composite pigments with low infrared emissivity and low lightness

    Science.gov (United States)

    Liu, Yunfeng; Xie, Jianliang; Luo, Mei; Jian, Shuai; Peng, Bo; Deng, Longjiang

    2017-06-01

    The main challenge of low infrared emissivity coatings based on aluminum flake lies in finding an efficient method to synthesize the composite pigment with low infrared emissivity and low lightness simultaneously. In this work, we overcome this constraint to some extent, synthesizing a novel Al/Co3O4 magnetic composite pigments with low infrared emissivity and low lightness by thermal cracking and hot flowing method. The results show that the covering area of Co3O4 on the aluminum flake can be tuned by the amount of CoCO3 adding in precursor and the reaction temperature of hot flowing, both of which pay a key factor on the VIS and IR spectral reflectance and magnetic properties. The magnetic Al/Co3O4 composite pigments with low lightness and low infrared emissivity can be obtained at 130 °C for 24 h in hot flowing liquid. The lightness L∗ can be decreased to 69.2, however the infrared emissivity (8-14 μm) is also low to 0.45. Compared with the single Al flakes, Al/Co3O4 magnetic composite pigments present stronger magnetic properties. Therefore, the Al/Co3O4 magnetic composite pigments have offered new choice for the pigments of low infrared emissivity coatings.

  15. Reversible near-infrared light directed reflection in a self-organized helical superstructure loaded with upconversion nanoparticles.

    Science.gov (United States)

    Wang, Ling; Dong, Hao; Li, Yannian; Xue, Chenming; Sun, Ling-Dong; Yan, Chun-Hua; Li, Quan

    2014-03-26

    Adding external, dynamic control to self-organized superstructures with desired functionalities is an important leap necessary in leveraging the fascinating molecular systems for applications. Here, the new light-driven chiral molecular switch and upconversion nanoparticles, doped in a liquid crystal media, were able to self-organize into an optically tunable helical superstructure. The resulting nanoparticle impregnated helical superstructure was found to exhibit unprecedented reversible near-infrared (NIR) light-guided tunable behavior only by modulating the excitation power density of a continuous-wave NIR laser (980 nm). Upon irradiation by the NIR laser at the high power density, the reflection wavelength of the photonic superstructure red-shifted, whereas its reverse process occurred upon irradiation by the same laser but with the lower power density. Furthermore, reversible dynamic NIR-light-driven red, green, and blue reflections in a single thin film, achieved only by varying the power density of the NIR light, were for the first time demonstrated.

  16. NPP Visible Infrared Imager-Radiometer Suite (VIIRS) Diffuse Attenuation Coefficient for Downwelling Irradiance (KD) Global Mapped Data

    Data.gov (United States)

    National Aeronautics and Space Administration — The Visible and Infrared Imager/Radiometer Suite (VIIRS) is a multi-disciplinary instrument that is being flown on the Joint Polar Satellite System (JPSS) series of...

  17. Diffusion-Controlled Recrystallization of Water Sorbed into Poly(meth)acrylates Revealed by Variable-Temperature Mid-Infrared Spectroscopy and Molecular Dynamics Simulation.

    Science.gov (United States)

    Yasoshima, Nobuhiro; Fukuoka, Mizuki; Kitano, Hiromi; Kagaya, Shigehiro; Ishiyama, Tatsuya; Gemmei-Ide, Makoto

    2017-05-18

    Recrystallization behaviors of water sorbed into four poly(meth)acrylates, poly(2-methoxyethyl acrylate), poly(tetrahydrofurfuryl acrylate), poly(methyl acrylate), and poly(methyl methacrylate), are investigated by variable-temperature mid-infrared (VT-MIR) spectroscopy and molecular dynamics (MD) simulation. VT-MIR spectra demonstrate that recrystallization temperatures of water sorbed into the polymers are positively correlated with their glass-transition temperatures reported previously. The present MD simulation shows that a lower-limit temperature of the diffusion for the sorbed water and the glass-transition temperatures of the polymers also have a positive correlation, indicating that the recrystallization is controlled by diffusion mechanism rather than reorientation mechanism. Detailed molecular processes of not only recrystallization during rewarming but also crystallization during cooling and hydrogen-bonding states of water in the polymers are systematically analyzed and discussed.

  18. SPECTRAL CHARACTERISTICS OF MID-INFRARED LIGHT-EMITTING DIODES BASED ON InAs (Sb,P

    Directory of Open Access Journals (Sweden)

    N. K. Zhumashev

    2016-01-01

    Full Text Available Subject of Study. We consider spectral characteristics of mid-infrared light-emitting diodes with heterostructures based on InAs(Sb,P emitting at T=300 K in the wavelength range 3.4–4.1 micrometers. The aim of the study was to search for the ways of increasing the diode efficiency. Methods. The heterostructures were grown from metal-organic chemical compounds with the use of vapor-phase epitaxial technique. The spectra were recorded under pulse excitation with the use of computer-controlled installation employing MDR-23 grating monochromator and a lock-in amplifier. InSb photodiode was used as a detector. Comparative study of electroluminescence spectra of the diodes was carried out at the temperatures equal to 300 K and 77 K. We compared the obtained data with the calculation results of the band diagrams of the heterostructures. Main Results. As a result of comparative study of the electroluminescence spectra of the diodes recorded at 300 K and 77 K we have established that increasing of their efficiency is hindered by substantial influence of Auger recombination. For the first time at 77 К we have observed the effect of stimulated emission from InAsSb active layer in light-emitting structures made of InAs/InAsSb/InAsSbP. For heterostructures with quantum wells InAs/(InAs/InAsSb/InAsSbP we have found out that at 77 К the carrier recombination occurs outside quantum wells, which points out to the insufficient carrier localization in the active layer. Thus, we have shown that the efficiency of mid-infrared light-emitting diodes based on InAs(Sb,P can be increased via suppression of Auger-recombination and improvement of carrier localization in the active region. Practical Relevance. The results of the study can be used for development of heterostructures for mid-infrared light-emitting diodes.

  19. Large scale diffuse light in the Coma cluster: A multi-scale approach

    Science.gov (United States)

    Adami, C.; Slezak, E.; Durret, F.; Conselice, C. J.; Cuillandre, J. C.; Gallagher, J. S.; Mazure, A.; Pelló, R.; Picat, J. P.; Ulmer, M. P.

    2005-01-01

    We have obtained wide field images of the Coma cluster in the B, V, R and I bands with the CFH12K camera at CFHT. To search for large scale diffuse emission, we have applied to these images an iterative multiscale wavelet analysis and reconstruction technique which made it possible to model all the sources (stars and galaxies) and subtract them from the original images. We found various concentrations of diffuse emission present in the central zone around the central galaxies NGC 4874 and NGC 4889. We characterize the positions, sizes and colors of these concentrations. Some sources do not seem to have strong star formation, while one probably exhibits spiral-like colors. One possible origin for the star forming diffuse emission sources is that in the region of the two main galaxies NGC 4874 and NGC 4889 spiral galaxies have recently been disrupted and star formation is still active in the dispersed material. We also use the characteristics of the sources of diffuse emission to trace the cluster dynamics. A scenario in which the group around NGC 4874 is moving north is consistent with our data.

  20. Modeling gamma-ray burst observations by Fermi and MAGIC including attenuation due to diffuse background light

    OpenAIRE

    Gilmore, Rudy C.; Prada, Francisco; Primack, Joel R.

    2009-01-01

    Gamma rays from extragalactic sources are attenuated by pair-production interactions with diffuse photons of the extragalactic background light (EBL). Gamma-ray bursts (GRBs) are a source of high-redshift photons above 10 GeV, and could be therefore useful as a probe of the evolving UV background radiation. In this paper, we develop a simple phenomenological model for the number and redshift distribution of gamma-ray bursts that can be seen at GeV energies with the Fermi satellite and MAGIC a...

  1. Three Dimensional Reconstruction Algorithm for Imaging Pathophysiological Signals Within Breast Tissue Using Near Infrared Light

    Science.gov (United States)

    2006-07-01

    liver the source light while the remaining fibers collect trans- mitted light and are coupled to photomultiplier tube PMT detectors located in the...preoperative evaluation of breast cancer: a comparative study with mammography and ultrasonography ,” J. Am. Coll. Surg. 198, 190 2004. 11. P. A. Carney, C. J...The patient also went through ultrasonography which confirmed the existence of a hypoechoic irregular mass in the same location. Multiple simple cysts

  2. Highly efficient absorption of visible and near infrared light in convex gold and nickel grooves

    DEFF Research Database (Denmark)

    Eriksen, René Lynge; Beermann, Jonas; Søndergaard, Thomas

    The realization of nonresonant light absorption with nanostructured metal surfaces by making practical use of nanofocusing optical energy in tapered plasmonic waveguides, is of one of the most fascinating and fundamental phenomena in plasmonics [1,2]. We recently realized broadband light absorption...... in gold via adiabatic nanofocusing of gap surface plasmon modes in well-defined geometries of ultra-sharp convex grooves and being excited by scattering off subwavelength-sized wedges [3]....

  3. Acquisition of reproducible transmission near-infrared (NIR) spectra of solid samples with inconsistent shapes by irradiation with isotropically diffused radiation using polytetrafluoroethylene (PTFE) beads.

    Science.gov (United States)

    Lee, Jinah; Duy, Pham Khac; Yoon, Jihye; Chung, Hoeil

    2014-06-21

    A bead-incorporated transmission scheme (BITS) has been demonstrated for collecting reproducible transmission near-infrared (NIR) spectra of samples with inconsistent shapes. Isotropically diffused NIR radiation was applied around a sample and the surrounding radiation was allowed to interact homogeneously with the sample for transmission measurement. Samples were packed in 1.40 mm polytetrafluoroethylene (PTFE) beads, ideal diffusers without NIR absorption, and then transmission spectra were collected by illuminating the sample-containing beads using NIR radiation. When collimated radiation was directly applied, a small portion of the non-fully diffused radiation (NFDR) propagated through the void space of the packing and eventually degraded the reproducibility. Pre-diffused radiation was introduced by placing an additional PTFE disk in front of the packing to diminish NFDR, which produced more reproducible spectral features. The proposed scheme was evaluated by analyzing two different solid samples: density determination for individual polyethylene (PE) pellets and identification of mining locality for tourmalines. Because spectral collection was reproducible, the use of the spectrum acquired from one PE pellet was sufficient to accurately determine the density of nine other pellets with different shapes. The differentiation of tourmalines, which are even more dissimilar in appearance, according to their mining locality was also feasible with the help of the scheme.

  4. Polyhedral shaped gold nanoparticles with outstanding near-infrared light absorption

    Energy Technology Data Exchange (ETDEWEB)

    Mayoral, Alvaro; Vazquez-Duran, Alma; Barron, Hector; Jose-Yacaman, Miguel [University of Texas, San Antonio (United States). Department of Physics and Astronomy

    2009-10-15

    Au/Ag nanoparticles which absorb radiation near the infrared zone have been synthesized with the expectation that they will be employed in photothermal cancer diagnosis and treatment. The material exhibited two main morphologies, triangular shapes and nanostars, which in both cases presented two extra very bright peaks ending in a triangular face in a plane parallel to the electron beam direction. The particles have been characterized by weak beam dark field (WBDF) transmission electron microscopy, STEM-HAADF, SEM, and the composition was confirmed by point EDX analysis. HRTEM was used to analyze the defects observed in the microstructure. (orig.)

  5. Polyhedral shaped gold nanoparticles with outstanding near-infrared light absorption

    Science.gov (United States)

    Mayoral, Alvaro; Vazquez-Duran, Alma; Barron, Hector; Jose-Yacaman, Miguel

    2009-10-01

    Au/Ag nanoparticles which absorb radiation near the infrared zone have been synthesized with the expectation that they will be employed in photothermal cancer diagnosis and treatment. The material exhibited two main morphologies, triangular shapes and nanostars, which in both cases presented two extra very bright peaks ending in a triangular face in a plane parallel to the electron beam direction. The particles have been characterized by weak beam dark field (WBDF) transmission electron microscopy, STEM-HAADF, SEM, and the composition was confirmed by point EDX analysis. HRTEM was used to analyze the defects observed in the microstructure.

  6. Biological Effects of Sunlight, Ultraviolet Radiation, Visible Light, Infrared Radiation and Vitamin D for Health.

    Science.gov (United States)

    Holick, Michael F

    2016-03-01

    Humans evolved in sunlight and had depended on sunlight for its life giving properties that was appreciated by our early ancestors. However, for more than 40 years the lay press and various medical and dermatology associations have denounced sun exposure because of its association with increased risk for skin cancer. The goal of this review is to put into perspective the many health benefits that have been associated with exposure to sunlight, ultraviolet A (UVA) ultraviolet B (UVB), visible and infrared radiation. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  7. Relationship between Secchi depth and the diffuse light attenuation coefficient in Danish estuaries

    DEFF Research Database (Denmark)

    Murray, Ciarán; Markager, Stiig

    Analyis of temporal and spatial variation in the in the relationship between light attenuation and Secchi depth in Danish monitoring data There can be found timeseries of Secchi depth measurements in Danish waters which extend relatively far back in time. The Secchi depth measurement is therefore...... useful in that it allows comparison of present conditions with these older observations. An empirical inverse relationship between Secchi depth and light attenuation coefficient, Kd, has traditionally been used to estimate the light attenuation coefficient from Secchi depth measurements. However, studies...... have shown that the assumption of a constant inverse relationship between Kd and Secchi depth does not hold. The authors have analyzed measurements of Secchi depth and light attenuation from Danish monitoring data. The data used in our investigation was collected over a continuous period from 1986...

  8. My Precious! The Location and Diffusion of Scientific Research: Evidence from the Synchrotron Diamond Light Source

    OpenAIRE

    Christian Helmers; Henry Overman

    2013-01-01

    We analyze the impact of the establishment of a GBP 380 million basic scientific research facility in the UK on the geographical distribution of related research. We investigate whether the siting of the Diamond Light Source, a 3rd generation synchrotron light source, in Oxfordshire induced a clustering of related research in its geographic proximity. To account for the potentially endogenous location choice of the synchrotron, we exploit the availability of a `runner-up' site near Manchester...

  9. Combined diffuse light reflectance and electric impedance measurements for navigation aid in deep brain surgery

    OpenAIRE

    Johansson, Johannes D.; Blomstedt, Patric; Haj-Hosseini, Neda; Bergenheim, Tommy; Eriksson, Ola; Wårdell, Karin

    2009-01-01

    Aim: The aim of this study is to investigate reflected light intensity combined with impedance for navigation aid during stereotactic neurosurgery. Methods: During creation of 21 trajectories for stereotactic implantation of deep brain stimulation electrodes in the globus pallidus internus or subthalamus (zona incerta or subthalamic nucleus), impedance at 512 kHz and reflected light intensity at 780 nm were measured continuously and simultaneously with a radio frequency electrode containing o...

  10. Anisotropic diffusion of concentrated hard-sphere colloids near a hard wall studied by evanescent wave dynamic light scattering.

    Science.gov (United States)

    Michailidou, V N; Swan, J W; Brady, J F; Petekidis, G

    2013-10-28

    Evanescent wave dynamic light scattering and Stokesian dynamics simulations were employed to study the dynamics of hard-sphere colloidal particles near a hard wall in concentrated suspensions. The evanescent wave averaged short-time diffusion coefficients were determined from experimental correlation functions over a range of scattering wave vectors and penetration depths. Stokesian dynamics simulations performed for similar conditions allow a direct comparison of both the short-time self- and collective diffusivity. As seen earlier [V. N. Michailidou, G. Petekidis, J. W. Swan, and J. F. Brady, Phys. Rev. Lett. 102, 068302 (2009)] while the near wall dynamics in the dilute regime slow down compared to the free bulk diffusion, the reduction is negligible at higher volume fractions due to an interplay between the particle-wall and particle-particle hydrodynamic interactions. Here, we provide a comprehensive comparison between experiments and simulations and discuss the interplay of particle-wall and particle-particle hydrodynamics in the self- and cooperative dynamics determined at different scattering wave vectors and penetration depths.

  11. Synthesis and Study of Shape-Memory Polymers Selectively Induced by Near-Infrared Lights via In Situ Copolymerization

    Directory of Open Access Journals (Sweden)

    Tianyu Fang

    2017-05-01

    Full Text Available Shape-memory polymers (SMPs selectively induced by near-infrared lights of 980 or 808 nm were synthesized via free radical copolymerization. Methyl methacrylate (MMA monomer, ethylene glycol dimethylacrylate (EGDMA as a cross-linker, and organic complexes of Yb(TTA2AAPhen or Nd(TTA2AAPhen containing a reactive ligand of acrylic acid (AA were copolymerized in situ. The dispersion of the organic complexes in the copolymer matrix was highly improved, while the transparency of the copolymers was negligibly influenced in comparison with the pristine cross-linked PMMA. In addition, the thermal resistance of the copolymers was enhanced with the complex loading, while their glass transition temperature, cross-linking level, and mechanical properties were to some extent reduced. Yb(TTA2AAPhen and Nd(TTA2AAPhen provided the prepared copolymers with selective photothermal effects and shape-memory functions for 980 and 808 nm NIR lights, respectively. Finally, smart optical devices which exhibited localized transparency or diffraction evolution procedures were demonstrated based on the prepared copolymers, owing to the combination of good transparency and selective light wavelength responsivity.

  12. The in-vivo monitoring method for traumatic brain injury of mouse based on near-infrared light intensity

    Science.gov (United States)

    Li, Weitao; Wang, Xuena; Qian, Zhiyu; Xie, Jieru; Liu, Xing

    2012-02-01

    A system based on near-infrared light intensity was used to monitor mouse model of traumatic brain injury (TBI) noninvasively. The measurement system was controlled by microcontroller. Light from a 760/850nm dual-wavelength light emitting diode was coupled to a 0.6-mm-diameter optical fiber. The collection fibers were coupled to optoelectronic detectors, which were placed in the different distance from the source fiber. The system consisted of a constant current bias, a circuit lock-in amplifier (including band pass filter, lock-in amplifier, and low pass filter), a PCI 6240 data acquisition card and a multi-core-processor computer. The modified Lambert Beer law was used to calculate the concentration of ΔHbO2 and ΔHb. The sensitivity matrix was defined to evaluate the region of effective detection of optical probe. Five groups of TBI mouse models were built by Feeney's free-falling method. The data measured by system show after TBI the concentration of ΔHbO2 decreased and that of ΔHb increased. It can be concluded that the system can be used to monitor the changes of TBI of mouse non-invasively.

  13. Development and application of the near-infrared and white-light thoracoscope system for minimally invasive lung cancer surgery

    Science.gov (United States)

    Mao, Yamin; Wang, Kun; He, Kunshan; Ye, Jinzuo; Yang, Fan; Zhou, Jian; Li, Hao; Chen, Xiuyuan; Wang, Jun; Chi, Chongwei; Tian, Jie

    2017-06-01

    In minimally invasive surgery, the white-light thoracoscope as a standard imaging tool is facing challenges of the low contrast between important anatomical or pathological regions and surrounding tissues. Recently, the near-infrared (NIR) fluorescence imaging shows superior advantages over the conventional white-light observation, which inspires researchers to develop imaging systems to improve overall outcomes of endoscopic imaging. We developed an NIR and white-light dual-channel thoracoscope system, which achieved high-fluorescent signal acquisition efficiency and the simultaneously optimal visualization of the NIR and color dual-channel signals. The system was designed to have fast and accurate image registration and high signal-to-background ratio by optimizing both software algorithms and optical hardware components for better performance in the NIR spectrum band. The system evaluation demonstrated that the minimally detectable concentration of indocyanine green (ICG) was 0.01 μM, and the spatial resolution was 35 μm. The in vivo feasibility of our system was verified by the preclinical experiments using six porcine models with the intravenous injection of ICG. Furthermore, the system was successfully applied for guiding the minimally invasive segmentectomy in three lung cancer patients, which revealed that our system held great promise for the clinical translation in lung cancer surgeries.

  14. Near-infrared light-emitting ambipolar organic field-effect transistors

    NARCIS (Netherlands)

    Smits, Edsger C. P.; Setayesh, Sepas; Anthopoulos, Thomas D.; Buechel, Michael; Nijssen, Wim; Coehoorn, Reinder; Blom, Paul W. M.; de Boer, Bert; de Leeuw, Dago M.

    2007-01-01

    Near-IR light-emitting ambipolar OFETs are demonstrated, employing a squaraine derivative as the electroactive layer. Efficient control of the emission-region position in the channel is achieved by varying the drain/gate potentials. By using a transport model, combined with experimental results,

  15. Harnessing structural darkness in the visible and infrared wavelengths for a new source of light

    KAUST Repository

    Huang, Jianfeng

    2015-10-19

    Engineering broadband light absorbers is crucial to many applications, including energy-harvesting devices and optical interconnects. The performances of an ideal absorber are that of a black body, a dark material that absorbs radiation at all angles and polarizations. Despite advances in micrometre-thick films, the absorbers available to date are still far from an ideal black body. Here, we describe a disordered nanostructured material that shows an almost ideal black-body absorption of 98-99% between 400 and 1,400 nm that is insensitive to the angle and polarization of the incident light. The material comprises nanoparticles composed of a nanorod with a nanosphere of 30 nm diameter attached. When diluted into liquids, a small concentration of nanoparticles absorbs on average 26% more than carbon nanotubes, the darkest material available to date. By pumping a dye optical amplifier with nanosecond pulses of 100 mW power, we harness the structural darkness of the material and create a new type of light source, which generates monochromatic emission (5 nm wide) without the need for any resonance. This is achieved through the dynamics of light condensation in which all absorbed electromagnetic energy spontaneously generates single-colour energy pulses. © 2016 Macmillan Publishers Limited. All rights reserved.

  16. The First Maximum-light Ultraviolet through Near-infrared Spectrum of a Type Ia Supernova

    DEFF Research Database (Denmark)

    Foley, Ryan J.; Kromer, Markus; Howie Marion, G.

    2012-01-01

    strong constraints on the composition of the SN ejecta, and similarly the SN explosion and progenitor system. SN 2011iv is spectroscopically normal, but has a relatively fast decline (Δm 15(B) = 1.69 ± 0.05 mag). We compare SN 2011iv to other SNe Ia with UV spectra near maximum light and examine trends...

  17. Tunable mW Narrow Bandwidth Mid-Infrared Light Source

    DEFF Research Database (Denmark)

    Krenzen, Erik; Kehlet, Louis M.; Tidemand-Lichtenberg, Peter

    2012-01-01

    A Tunable Mid-IR light source base on single resonant Difference Frequency Generation (DFG) is experimentally investigated. The DFG process is pumped by an 800 nm tunable tapered diode laser. Grating feedback to the single mode channel of the tapered diode narrows the spectrum and allows for tuning...

  18. Thermography applied during exercises with or without infrared light-emitting diode irradiation: individual and comparative analysis.

    Science.gov (United States)

    Paolillo, Fernanda Rossi; Lins, Emery C; Corazza, Adalberto Vieira; Kurachi, Cristina; Bagnato, Vanderlei Salvador

    2013-07-01

    The aim of our study was to evaluate the cutaneous temperature during an exercise on a treadmill with or without infrared light-emitting diode (LED) irradiation in postmenopausal women. Thermography is an imaging technique in which radiation emitted by a body in the middle and far infrared spectrum is detected and associated with the temperature of the body's surface. Eighteen postmenopausal women were randomly divided into two groups: (1) the LED group, which performed the exercises on a treadmill associated with phototherapy (n=9) and; (2) the exercise group, which performed the exercises on a treadmill without additional phototherapy (n=9). The irradiation parameters for each women's thigh were: array of 2000 infrared LEDs (850 nm) with an area of 1,110 cm(2), 100 mW, 39 mW/cm(2), and 108 J/cm(2) for 45 min. The submaximal constant-speed exercise on the treadmill at intensities between 85% and 90% maximal heart rate (HRmax) with or without phototherapy were performed during 45 min, to perform the thermographic analysis. Thermography images were captured before the exercise (t=0), after 10, 35, and 45 min of exercising (t=10, t=35, and t=45) and at 5 min post-exercising (t=50). The LED group showed an increased cutaneous thigh temperature during the exercise (from 33.5±0.8°C to 34.6±0.9°C, p=0.03), whereas the exercise group showed a reduced cutaneous temperature (from 33.5±0.6 to 32.7±0.7°C, p=0.02). The difference between the groups was significant (p<0.05) at t=35, t=45, and t=50. These data indicate an improved microcirculation, and can explain one possible mechanism of action of phototherapy associated with physical exercises.

  19. Intense pulsed light, near infrared pulsed light, and fractional laser combination therapy for skin rejuvenation in Asian subjects: a prospective multi-center study in China.

    Science.gov (United States)

    Tao, Li; Wu, Jiaqiang; Qian, Hui; Lu, Zhong; Li, Yuanhong; Wang, Weizhen; Zhao, Xiaozhong; Tu, Ping; Yin, Rui; Xiang, Leihong

    2015-09-01

    Ablative skin rejuvenation therapies have limitations for Asian people, including post-inflammatory hyperpigmentation and long down time. Non-ablative lasers are safer but have limited efficacy. This study is to investigate the safety and efficacy of a combination therapy consisting of intense pulsed light (IPL), near infrared (NIR) light, and fractional erbium YAG (Er:YAG) laser for skin rejuvenation in Asian people. This study recruited 113 subjects from six sites in China. Subjects were randomly assigned to a full-face group, who received combination therapy, and split-face groups, in which one half of the face received combination therapy and the other half received IPL monotherapy. Each subject received five treatment sessions during a period of 90 days. Subjects were followed up at 1 and 3 months post last treatment. Three months after last treatment, the full-face group (n = 57) had a global improvement rate of 29 % and 29 % for wrinkles, 32 % for skin texture, 33 % for pigment spots, 28 % for pore size, respectively. For patients in the split-face groups (n = 54), monotherapy side had a global improvement rate of 23 % and 20 % for wrinkles, 27 % for skin texture, 25 % for pigment spots, 25 % for pore size, respectively. Both combination therapy and monotherapy resulted in significant improvements at the follow-up visits compared to baseline (P skin rejuvenation in Asian people.

  20. Size and diffusion phenomena of AOT/alcohol/water system in the presence of morin by dynamic light scattering.

    Science.gov (United States)

    Bhattarai, Ajaya; Wilczura-Wachnik, Hanna

    2015-01-30

    Presented paper is a continuation of our studies on morin interaction with AOT (sodium bis(2-ethylhexyl) sulfosuccinate) reversed micelles solutions in two solvents: ethanol and n-decanol. Now we focused on morin influence on size and diffusion phenomena in the system morin/solvent/AOT/water. In this paper precise measurements of dynamic light scattering (DLS) of the effects of temperature, solvents (alcohols), water on the size and diffusion of AOT reversed micelles in the morin/AOT/alcohol/water system are reported. The concentrations of AOT were varied from 0.51 to 0.78mol/L. Morin concentration in during auto-correlation function registration was not the same in each solvent because of its different solubility depending on the solvent. Water concentration in the studied systems was defined by R parameter according to relation: R=(H2O)/(AOT) and was equal 0 and 30 in ethanol, and 0 in n-decanol. DLS measurements were done at 298.15 and 308.15K. DLS experiment involved on detection two relaxation modes (fast and slow) in the systems containing AOT reversed micelles, water, morin and solvents (ethanol and n-decanol). The DLS data clearly show the solvent influence as well as morin presence on AOT reversed micelles size and consequently their diffusion coefficients. Contrary to n-decanol strong competition between morin and ethanol molecules in AOT reversed micelles palisade layer has been found. It suggests that morin molecules replaced ethanol in AOT reversed micelles and locate in their palisade layer strongly increasing AOT reversed micelles size. Furthermore, it was found a sharp increase in correlation radii of slow modes of AOT reversed micelles containing morin molecules and their diffusion coefficients diminishing. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Monitoring light-induced structural changes of Channelrhodopsin-2 by UV-visible and Fourier transform infrared spectroscopy.

    Science.gov (United States)

    Ritter, Eglof; Stehfest, Katja; Berndt, Andre; Hegemann, Peter; Bartl, Franz J

    2008-12-12

    Channelrhodopsin-2 (ChR2) is a microbial type rhodopsin and a light-gated cation channel that controls phototaxis in Chlamydomonas. We expressed ChR2 in COS-cells, purified it, and subsequently investigated this unusual photoreceptor by flash photolysis and UV-visible and Fourier transform infrared difference spectroscopy. Several transient photoproducts of the wild type ChR2 were identified, and their kinetics and molecular properties were compared with those of the ChR2 mutant E90Q. Based on the spectroscopic data we developed a model of the photocycle comprising six distinguishable intermediates. This photocycle shows similarities to the photocycle of the ChR2-related Channelrhodopsin of Volvox but also displays significant differences. We show that molecular changes include retinal isomerization, changes in hydrogen bonding of carboxylic acids, and large alterations of the protein backbone structure. These alterations are stronger than those observed in the photocycle of other microbial rhodopsins like bacteriorhodopsin and are related to those occurring in animal rhodopsins. UV-visible and Fourier transform infrared difference spectroscopy revealed two late intermediates with different time constants of tau = 6 and 40 s that exist during the recovery of the dark state. The carboxylic side chain of Glu(90) is involved in the slow transition. The molecular changes during the ChR2 photocycle are discussed with respect to other members of the rhodopsin family.

  2. Soft Lithographic Procedure for Producing Plastic Microfluidic Devices with View-ports Transparent to Visible and Infrared Light.

    Science.gov (United States)

    Suryana, Mona; Shanmugarajah, Jegan V; Maniam, Sivakumar M; Grenci, Gianluca

    2017-08-17

    Infrared (IR) spectro-microscopy of living biological samples is hampered by the absorption of water in the mid-IR range and by the lack of suitable microfluidic devices. Here, a protocol for the fabrication of plastic microfluidic devices is demonstrated, where soft lithographic techniques are used to embed transparent Calcium Fluoride (CaF2) view-ports in connection with observation chamber(s). The method is based on a replica casting approach, where a polydimethylsiloxane (PDMS) mold is produced through standard lithographic procedures and then used as the template to produce a plastic device. The plastic device features ultraviolet/visible/infrared (UV/Vis/IR) -transparent windows made of CaF2 to allow for direct observation with visible and IR light. The advantages of the proposed method include: a reduced need for accessing a clean room micro-fabrication facility, multiple view-ports, an easy and versatile connection to an external pumping system through the plastic body, flexibility of the design, e.g., open/closed channels configuration, and the possibility to add sophisticated features such as nanoporous membranes.

  3. Study on the performance of infrared thermal imaging light source for detection of impact defects in CFRP composite sandwich panels

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hee Sang [R and D, Korea Research Institute of Smart Material and Structures System Association, Daejeon (Korea, Republic of); Choi, Man Yong; Kwon, Koo Ahn; Park, Jeong Hak; Choi, Won Jae [Safety measurement center, Korea research Institute of Standards and Science, Daejeon (Korea, Republic of); Jung, Hyun Chul [Dept. of Mechanical Engineering Chosun University, Gwangju (Korea, Republic of)

    2017-04-15

    Recently, composite materials have been mainly used in the main wings, ailerons, and fuselages of aircraft and rotor blades of helicopters. Composite materials used in rapid moving structures are subject to impact by hail, lightning, and bird strike. Such an impact can destroy fiber tissues in the composite materials as well as deform the composite materials, resulting in various problems such as weakened rigidity of the composite structure and penetration of water into tiny cracks. In this study, experiments were conducted using a 2 kW halogen lamp which is most frequently used as a light source, a 2 kW near-infrared lamp, which is used for heating to a high temperature, and a 6 kW xenon flash lamp which emits a large amount of energy for a moment. CFRP composite sandwich panels using Nomex honeycomb core were used as the specimens. Experiments were carried out under impact damages of 1, 4 and 8 J. It was found that the detection of defects was fast when the xenon flash lamp was used. The detection of damaged regions was excellent when the halogen lamp was used. Furthermore, the near-infrared lamp is an effective technology for showing the surface of a test object.

  4. Prospective for graphene based thermal mid-infrared light emitting devices

    Directory of Open Access Journals (Sweden)

    L. M. Lawton

    2014-08-01

    Full Text Available We have investigated the spatial and spectral characteristics of mid-infrared thermal emission from large area Chemical Vapor Deposition (CVD graphene, transferred onto SiO2/Si, and show that the emission is broadly that of a grey-body emitter, with emissivity values of approximately 2% and 6% for mono- and multilayer graphene. For the currents used, which could be sustained for over one hundred hours, the emission peaked at a wavelength of around 4 μm and covered the characteristic absorption of many important gases. A measurable modulation of thermal emission was obtained even when the drive current was modulated at frequencies up to 100 kHz.

  5. The linewidth of infrared light transitions between the Landau levels in graphene

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zi-Wu, E-mail: zwwang@semi.ac.cn [Department of Physics, Tianjin University, Tianjin 300072 (China); Suzhou Institute of Nano-tech and Nano-bionics, CAS, Suzhou, 215125 (China); Liu, Lei [Suzhou Institute of Nano-tech and Nano-bionics, CAS, Suzhou, 215125 (China); Li, Wei-Ping [Department of Physics and Electronic Informational Engineering, Chifeng University, Chifeng 024000, Inner Mongolia (China); Xu, Ke [Suzhou Institute of Nano-tech and Nano-bionics, CAS, Suzhou, 215125 (China)

    2014-01-03

    We theoretically propose a structure that the population inversion between the Landau levels (LLs) of the graphene can be achieved by the electrical injection. This structure may be used for the Landau level-laser and related infrared and terahertz emitters. We mainly study the linewidth of the optical transitions between LLs in graphene due to the electron–acoustic phonon scattering. Within the Huang–Rhys's lattice relaxation model, we improve the effective single-phonon mode (ESM) for the acoustic phonon to calculate the linewidth of the optical transition and compare the obtained results with that of in the low and high-temperature limit. We find that the ESM provides a very good approximation for the temperature dependence of linewidth, which covers the dominating features of the low and high-temperature limit.

  6. Shedding light on words and sentences: near-infrared spectroscopy in language research.

    Science.gov (United States)

    Rossi, Sonja; Telkemeyer, Silke; Wartenburger, Isabell; Obrig, Hellmuth

    2012-05-01

    Investigating the neuronal network underlying language processing may contribute to a better understanding of how the brain masters this complex cognitive function with surprising ease and how language is acquired at a fast pace in infancy. Modern neuroimaging methods permit to visualize the evolvement and the function of the language network. The present paper focuses on a specific methodology, functional near-infrared spectroscopy (fNIRS), providing an overview over studies on auditory language processing and acquisition. The methodology detects oxygenation changes elicited by functional activation of the cerebral cortex. The main advantages for research on auditory language processing and its development during infancy are an undemanding application, the lack of instrumental noise, and its potential to simultaneously register electrophysiological responses. Also it constitutes an innovative approach for studying developmental issues in infants and children. The review will focus on studies on word and sentence processing including research in infants and adults. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. The linewidth of infrared light transitions between the Landau levels in graphene

    International Nuclear Information System (INIS)

    Wang, Zi-Wu; Liu, Lei; Li, Wei-Ping; Xu, Ke

    2014-01-01

    We theoretically propose a structure that the population inversion between the Landau levels (LLs) of the graphene can be achieved by the electrical injection. This structure may be used for the Landau level-laser and related infrared and terahertz emitters. We mainly study the linewidth of the optical transitions between LLs in graphene due to the electron–acoustic phonon scattering. Within the Huang–Rhys's lattice relaxation model, we improve the effective single-phonon mode (ESM) for the acoustic phonon to calculate the linewidth of the optical transition and compare the obtained results with that of in the low and high-temperature limit. We find that the ESM provides a very good approximation for the temperature dependence of linewidth, which covers the dominating features of the low and high-temperature limit

  8. IRMPD Spectroscopy Sheds New (Infrared) Light on the Sulfate Pattern of Carbohydrates.

    Science.gov (United States)

    Schindler, B; Barnes, L; Gray, C J; Chambert, S; Flitsch, S L; Oomens, J; Daniel, R; Allouche, A R; Compagnon, I

    2017-03-16

    IR spectroscopy of gas-phase ions is proposed to resolve positional isomers of sulfated carbohydrates. Mass spectrometric fingerprints and gas-phase vibrational spectra in the near and mid-IR regions were obtained for sulfated monosaccharides, yielding unambiguous signatures of sulfated isomers. We report the first systematic exploration of the biologically relevant but notoriously challenging deprotonated state in the near IR region. Remarkably, anions displayed very atypical vibrational profiles, which challenge the well-established DFT (Density Functionnal Theory) modeling. The proposed approach was used to elucidate the sulfate patterns in glycosaminoglycans, a ubiquitous class of mammalian carbohydrates, which is regarded as a major challenge in carbohydrate structural analysis. Isomeric glycosaminoglycan disaccharides from heparin and chondroitin sources were resolved, highlighting the potential of infrared multiple photon dissociation spectroscopy as a novel structural tool for carbohydrates.

  9. Visualizing veins with near-infrared light to facilitate blood withdrawal in children.

    Science.gov (United States)

    Cuper, Natascha J; Verdaasdonk, Rudolf M; de Roode, Rowland; de Vooght, Karen M K; Viergever, Max A; Kalkman, Cor J; de Graaff, Jurgen C

    2011-06-01

    This study aims to evaluate for the first time the value of visualizing veins by a prototype of a near-infrared (NIR) vascular imaging system for venipuncture in children. An observational feasibility study of venipunctures in children (0-6 years) attending the clinical laboratory of a pediatric university hospital during a period of 2 months without (n = 80) and subsequently during a period of 1 month with a prototype of an NIR vascular imaging system (n = 45) was conducted. Failure rate (ie, more than 1 puncture) and time of needle manipulation were determined. With the NIR vascular imaging system, failure rate decreased from 10/80 to 1/45 (P = .05) and time decreased from 2 seconds (1-10) to 1 second (1-4, P = .07). This study showed promising results on the value of an NIR vascular imaging system in facilitating venipunctures.

  10. Triphase interface synthesis of plasmonic gold bellflowers as near-infrared light mediated acoustic and thermal theranostics.

    Science.gov (United States)

    Huang, Peng; Rong, Pengfei; Lin, Jing; Li, Wanwan; Yan, Xuefeng; Zhang, Molly Gu; Nie, Liming; Niu, Gang; Lu, Jie; Wang, Wei; Chen, Xiaoyuan

    2014-06-11

    We present a novel gold bellflower (GBF) platform with multiple-branched petals, prepared by a liquid-liquid-gas triphase interface system, for photoacoustic imaging (PAI)-guided photothermal therapy (PTT). Upon near-infrared (NIR) laser irradiation, the GBFs, with strong NIR absorption, showed very strong PA response and an ultrahigh photothermal conversion efficiency (η, ∼74%) among the reported photothermal conversion agents. The excellent performance in PAI and PTT is mainly attributed to the unique features of the GBFs: (i) multiple-branched petals with an enhanced local electromagnetic field, (ii) long narrow gaps between adjacent petals that induce a strong plasmonic coupling effect, and (iii) a bell-shaped nanostructure that can effectively amplify the acoustic signals during the acoustic propagation. Besides the notable PTT and an excellent PAI effect, the NIR-absorbing GBFs may also find applications in NIR light-triggered drug delivery, catalysis, surface enhanced Raman scattering, stealth, antireflection, IR sensors, telecommunications, and the like.

  11. Near-infrared light-triggered theranostics for tumor-specific enhanced multimodal imaging and photothermal therapy

    Directory of Open Access Journals (Sweden)

    Wu B

    2017-06-01

    Full Text Available Bo Wu,1,* Bing Wan,2,* Shu-Ting Lu,1 Kai Deng,3 Xiao-Qi Li,1 Bao-Lin Wu,1 Yu-Shuang Li,1 Ru-Fang Liao,1 Shi-Wen Huang,3 Hai-Bo Xu1,2 1Department of Radiology, Zhongnan Hospital of Wuhan University, 2Department of Radiology, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, 3Department of Chemistry, Key Laboratory of Biomedical Polymers, Ministry of Education, Wuhan University, Wuhan, People’s Republic of China *These authors contributed equally to this work Abstract: The major challenge in current clinic contrast agents (CAs and chemotherapy is the poor tumor selectivity and response. Based on the self-quench property of IR820 at high concentrations, and different contrast effect ability of Gd-DOTA between inner and outer of liposome, we developed “bomb-like” light-triggered CAs (LTCAs for enhanced CT/MRI/FI multimodal imaging, which can improve the signal-to-noise ratio of tumor tissue specifically. IR820, Iohexol and Gd-chelates were firstly encapsulated into the thermal-sensitive nanocarrier with a high concentration. This will result in protection and fluorescence quenching. Then, the release of CAs was triggered by near-infrared (NIR light laser irradiation, which will lead to fluorescence and MRI activation and enable imaging of inflammation. In vitro and in vivo experiments demonstrated that LTCAs with 808 nm laser irradiation have shorter T1 relaxation time in MRI and stronger intensity in FI compared to those without irradiation. Additionally, due to the high photothermal conversion efficiency of IR820, the injection of LTCAs was demonstrated to completely inhibit C6 tumor growth in nude mice up to 17 days after NIR laser irradiation. The results indicate that the LTCAs can serve as a promising platform for NIR-activated multimodal imaging and photothermal therapy. Keywords: light triggered, near-infrared light, tumor-specific, multimodal imaging, photothermal therapy, contrast agents

  12. Investigation of the internal reflectance and prediction of infrared diffuse reflectance of the polymeric coating on aluminum substrate

    Science.gov (United States)

    Ho, Wen-Dar; Ma, Chen-Chi M.

    1998-02-01

    This study employs the ray tracing method to develop and analyze mathematical formulae for the IR diffuse reflectance of the polymeric coating on a metal substrate. The effects of the thickness and the absorption property of the polymer film on the internal reflectance are also investigated. In addition, the diffuse reflectance of the coating/substrate system which is irradiated with a perfect diffuse source is formulated as well. Analysis results indicate that the internal reflectance of the internal front surface (polymer/air interface) is not a constant which depends on the film thickness and absorption property. Closely examining the internal multiple reflections between the front and the substrate surface reveals that the diffuse reflectance of the coating/substrate system can be obtained by summing the fractions of rays emerging from the front surface. By knowing the refractive index and the extinction coefficient of the polymer, the diffuse reflectance of the coating/substrate system can be calculated by the formulae presented here. In addition an alkyd resin coating/aluminum substrate system is also implemented to compare the experimental reflectances with the calculated ones. According to the comparisons the analysis and developed formulae are quite effective.

  13. Transmission channels for light in absorbing random media: from diffusive to ballistic-like transport

    NARCIS (Netherlands)

    Liew, S.F.; Popoff, S.M.; Mosk, Allard; Vos, Willem L.; Cao, H.

    2014-01-01

    While the absorption of light is ubiquitous in nature and in applications, the question remains how absorption modifies the transmission channels in random media. We present a numerical study on the effects of optical absorption on the maximal transmission and minimal reflection channels in a

  14. Wavelength dependence of light diffusion in strongly scattering macroporous gallium phosphide

    NARCIS (Netherlands)

    Peeters, W.H.; Vellekoop, Ivo Micha; Mosk, Allard; Lagendijk, Aart

    2008-01-01

    We present time-resolved measurements of light transport through strongly scattering macroporous gallium phosphide at various vacuum wavelengths between 705 nm and 855 nm. Within this range the transport mean free path is strongly wavelength dependent, whereas the observed energy velocity is shown

  15. Effects of absorption on coherence domain path length resolved dynamic light scattering in the diffuse regime

    NARCIS (Netherlands)

    Petoukhova, A. L.; Steenbergen, W.; van Leeuwen, T. G.; de Mul, F. F. M.

    2002-01-01

    A low coherence Mach-Zehnder interferometer is developed for path length resolved dynamic light scattering in highly turbid media. The path length distribution of multiply scattered photons in Intralipid is changed by the addition of absorbing dyes. Path length distributions obtained for various

  16. Effects of absorption on coherence domain path length resolved dynamic light scattering in the diffuse regime

    NARCIS (Netherlands)

    Petoukhova, Anna; Steenbergen, Wiendelt; van Leeuwen, Ton; de Mul, F.F.M.

    2002-01-01

    A low coherence Mach–Zehnder interferometer is developed for path length resolved dynamic light scattering in highly turbid media. The path length distribution of multiply scatteredphotons in Intralipid is changed by the addition of absorbing dyes. Path length distributions obtained for various

  17. Combined diffuse light reflectance and electrical impedance measurements as a navigation aid in deep brain surgery.

    Science.gov (United States)

    Johansson, Johannes D; Blomstedt, Patric; Haj-Hosseini, Neda; Bergenheim, A Tommy; Eriksson, Ola; Wårdell, Karin

    2009-01-01

    The aim of this study is to assess reflected light intensity combined with impedance as a navigation aid during stereotactic neurosurgery. During creation of 21 trajectories for stereotactic implantation of deep brain stimulation electrodes in the globus pallidus internus or subthalamus (zona incerta or subthalamic nucleus), impedance at 512 kHz and reflected light intensity at 780 nm were measured continuously and simultaneously with a radio frequency electrode containing optical fibres. The signals were compared with the anatomy, determined from pre- and post-operative MRI and CT. The measurements were performed within minutes, and signal analysis was done post-operatively. Reflected light intensity was low from the cortex, lateral ventricle, caudate nucleus and putamen; intermediate from the globus pallidus and thalamus; while it was high from the subcortical white matter, internal capsule and subthalamus. The electrical impedance was less consistent, but generally low in the cortex, intermediate in the subcortical white matter, putamen, globus pallidus and thalamus, and high in the internal capsule and subthalamus. Reflected light intensity and electrical impedance give complementary information about passed tissue, and the combination seems promising as a navigation aid during stereotactic neurosurgery. (c) 2009 S. Karger AG, Basel.

  18. Biointerfacing polymeric microcapsules for in vivo near-infrared light-triggered drug release

    Science.gov (United States)

    Shao, Jingxin; Xuan, Mingjun; Si, Tieyan; Dai, Luru; He, Qiang

    2015-11-01

    Seeking safe and effective water-soluble drug carriers is of great significance in nanomedicine. To achieve this goal, we present a novel drug delivery system based on biointerfacing hollow polymeric microcapsules for effectively encapsulating water-soluble antitumor drug and gold nanorod (GNR) functionalization for triggered release of therapeutic drugs on-demand using low power near-infrared (NIR) radiation. The surface of polymeric microcapsules is covered with fluidic lipid bilayers to decrease the permeability of the wall of polymeric capsules. The temperature increase upon NIR illumination deconstructs the structure of the lipid membrane and polyelectrolyte multilayers, which in turn results in the rapid release of encapsulated water-soluble drug. In vivo antitumor tests demonstrate that this microcapsule has the effective ability of inhibiting tumor growth and preventing metastases. Real time in vivo fluorescence imaging results confirm that capsules can be excreted gradually from the animal body which in turn demonstrates the biocompatibility and biodegradation of these biointerfacing GNR-microcapsules. This intelligent system provides a novel anticancer platform with the advantages of controlled release, biological friendliness and credible biosafety.Seeking safe and effective water-soluble drug carriers is of great significance in nanomedicine. To achieve this goal, we present a novel drug delivery system based on biointerfacing hollow polymeric microcapsules for effectively encapsulating water-soluble antitumor drug and gold nanorod (GNR) functionalization for triggered release of therapeutic drugs on-demand using low power near-infrared (NIR) radiation. The surface of polymeric microcapsules is covered with fluidic lipid bilayers to decrease the permeability of the wall of polymeric capsules. The temperature increase upon NIR illumination deconstructs the structure of the lipid membrane and polyelectrolyte multilayers, which in turn results in the rapid

  19. All-photonic drying and sintering process via flash white light combined with deep-UV and near-infrared irradiation for highly conductive copper nano-ink

    Science.gov (United States)

    Hwang, Hyun-Jun; Oh, Kyung-Hwan; Kim, Hak-Sung

    2016-01-01

    We developed an ultra-high speed photonic sintering method involving flash white light (FWL) combined with near infrared (NIR) and deep UV light irradiation to produce highly conductive copper nano-ink film. Flash white light irradiation energy and the power of NIR/deep UV were optimized to obtain high conductivity Cu films. Several microscopic and spectroscopic characterization techniques such as scanning electron microscopy (SEM), a x-ray diffraction (XRD), and Fourier-transform infrared (FT-IR) spectroscopy were employed to characterize the Cu nano-films. Optimally sintered Cu nano-ink films produced using a deep UV-assisted flash white light sintering technique had the lowest resistivity (7.62 μΩ·cm), which was only 4.5-fold higher than that of bulk Cu film (1.68 μΩ•cm). PMID:26806215

  20. Diffusion of new automotive technologies for improving energy efficiency in Brazil's light vehicle fleet

    International Nuclear Information System (INIS)

    Bastin, Cristina; Szklo, Alexandre; Rosa, Luiz Pinguelli

    2010-01-01

    Historically, Brazil has promoted the development and sales of light duty vehicles running on ethanol (firstly, ethanol-dedicated cars, and recently flexfuel cars). In the 1990s, the country also favored the sales of compact cars to middle and low-income classes. However, in the last years, the profile of vehicles sold in Brazil has converged towards larger and less-efficient vehicles. In 2008, Brazil launched the vehicle labeling program. Based on the outcomes of the historical programs oriented towards the development of automotive innovations, and on a survey conducted with the country's main auto makers, this article evaluates whether the vehicle labeling program will both improve the energy efficiency of light vehicles, and introduce new technologies. Our results indicate that, despite its virtuous intentions, the program will not control the tendency of rising fuel consumption of passenger cars sold in Brazil. Therefore, other policies are needed to boost innovations in Brazil's automotive industry. (author)

  1. Biointerfacing polymeric microcapsules for in vivo near-infrared light-triggered drug release.

    Science.gov (United States)

    Shao, Jingxin; Xuan, Mingjun; Si, Tieyan; Dai, Luru; He, Qiang

    2015-12-07

    Seeking safe and effective water-soluble drug carriers is of great significance in nanomedicine. To achieve this goal, we present a novel drug delivery system based on biointerfacing hollow polymeric microcapsules for effectively encapsulating water-soluble antitumor drug and gold nanorod (GNR) functionalization for triggered release of therapeutic drugs on-demand using low power near-infrared (NIR) radiation. The surface of polymeric microcapsules is covered with fluidic lipid bilayers to decrease the permeability of the wall of polymeric capsules. The temperature increase upon NIR illumination deconstructs the structure of the lipid membrane and polyelectrolyte multilayers, which in turn results in the rapid release of encapsulated water-soluble drug. In vivo antitumor tests demonstrate that this microcapsule has the effective ability of inhibiting tumor growth and preventing metastases. Real time in vivo fluorescence imaging results confirm that capsules can be excreted gradually from the animal body which in turn demonstrates the biocompatibility and biodegradation of these biointerfacing GNR-microcapsules. This intelligent system provides a novel anticancer platform with the advantages of controlled release, biological friendliness and credible biosafety.

  2. Image-Guided Surgery Using Invisible Near-Infrared Light: Fundamentals of Clinical Translation

    Directory of Open Access Journals (Sweden)

    Sylvain Gioux

    2010-09-01

    Full Text Available The field of biomedical optics has matured rapidly over the last decade and is poised to make a significant impact on patient care. In particular, wide-field (typically > 5 cm, planar, near-infrared (NIR fluorescence imaging has the potential to revolutionize human surgery by providing real-time image guidance to surgeons for tissue that needs to be resected, such as tumors, and tissue that needs to be avoided, such as blood vessels and nerves. However, to become a clinical reality, optimized imaging systems and NIR fluorescent contrast agents will be needed. In this review, we introduce the principles of NIR fluorescence imaging, analyze existing NIR fluorescence imaging systems, and discuss the key parameters that guide contrast agent development. We also introduce the complexities surrounding clinical translation using our experience with the Fluorescence-Assisted Resection and Exploration (FLARE™ imaging system as an example. Finally, we introduce state-of-the-art optical imaging techniques that might someday improve image-guided surgery even further.

  3. Non-Markovian Quantum State Diffusion for temperature-dependent linear spectra of light harvesting aggregates.

    Science.gov (United States)

    Ritschel, Gerhard; Suess, Daniel; Möbius, Sebastian; Strunz, Walter T; Eisfeld, Alexander

    2015-01-21

    Non-Markovian Quantum State Diffusion (NMQSD) has turned out to be an efficient method to calculate excitonic properties of aggregates composed of organic chromophores, taking into account the coupling of electronic transitions to vibrational modes of the chromophores. NMQSD is an open quantum system approach that incorporates environmental degrees of freedom (the vibrations in our case) in a stochastic way. We show in this paper that for linear optical spectra (absorption, circular dichroism), no stochastics is needed, even for finite temperatures. Thus, the spectra can be obtained by propagating a single trajectory. To this end, we map a finite temperature environment to the zero temperature case using the so-called thermofield method. The resulting equations can then be solved efficiently by standard integrators.

  4. Light-Cone and Diffusive Propagation of Correlations in a Many-Body Dissipative System

    Science.gov (United States)

    Bernier, Jean-Sébastien; Tan, Ryan; Bonnes, Lars; Guo, Chu; Poletti, Dario; Kollath, Corinna

    2018-01-01

    We analyze the propagation of correlations after a sudden interaction change in a strongly interacting quantum system in contact with an environment. In particular, we consider an interaction quench in the Bose-Hubbard model, deep within the Mott-insulating phase, under the effect of dephasing. We observe that dissipation effectively speeds up the propagation of single-particle correlations while reducing their coherence. In contrast, for two-point density correlations, the initial ballistic propagation regime gives way to diffusion at intermediate times. Numerical simulations, based on a time-dependent matrix product state algorithm, are supplemented by a quantitatively accurate fermionic quasiparticle approach providing an intuitive description of the initial dynamics in terms of holon and doublon excitations.

  5. Integrated-light Two Micron All Sky Survey infrared photometry of Galactic globular clusters

    OpenAIRE

    Cohen, Judith G.; Hsieh, Scott; Metchev, Stanimir; Djorgovski, S. G.; Malkan, M.

    2007-01-01

    We have mosaicked Two Micron All Sky Survey (2MASS) images to derive surface brightness profiles in J, H, and K_s for 104 Galactic globular clusters. We fit these with King profiles and show that the core radii are identical to within the errors for each of these IR colors and are identical to the core radii at V in essentially all cases. We derive integrated-light colors V-J, V-H, V-K_s, J-H, and J-Ks for these globular clusters. Each color shows a reasonably tight relation between the dered...

  6. Development of Plasmonic Cu2O/Cu Composite Arrays as Visible- and Near-Infrared-Light-Driven Plasmonic Photocatalysts.

    Science.gov (United States)

    Sugawa, Kosuke; Tsunenari, Natsumi; Takeda, Hideyuki; Fujiwara, Saki; Akiyama, Tsuyoshi; Honda, Jotaro; Igari, Shuto; Inoue, Wataru; Tokuda, Kyo; Takeshima, Naoto; Watanuki, Yasuhiro; Tsukahara, Satoshi; Takase, Kouichi; Umegaki, Tetsuo; Kojima, Yoshiyuki; Nishimiya, Nobuyuki; Fukuda, Nobuko; Kusaka, Yasuyuki; Ushijima, Hirobumi; Otsuki, Joe

    2017-06-13

    We describe efficient visible- and near-infrared (vis/NIR) light-driven photocatalytic properties of hybrids of Cu 2 O and plasmonic Cu arrays. The Cu 2 O/Cu arrays were prepared simply by allowing a Cu half-shell array to stand in an oxygen atmosphere for 3 h, which was prepared by depositing Cu on two-dimensional colloidal crystals with a diameter of 543 or 224 nm. The localized surface plasmon resonances (LSPRs) of the arrays were strongly excited at 866 and 626 nm, respectively, at which the imaginary part of the dielectric function of Cu is small. The rate of photodegradation of methyl orange was 27 and 84 times faster, respectively, than that with a Cu 2 O/nonplasmonic Cu plate. The photocatalytic activity was demonstrated to be dominated by Cu LSPR excitation. These results showed that the inexpensive Cu 2 O/Cu arrays can be excellent vis/NIR-light-driven photocatalysts based on the efficient excitation of Cu LSPR.

  7. Effect of low-level light therapy on diabetic foot ulcers: a near-infrared spectroscopy study

    Science.gov (United States)

    Salvi, Massimo; Rimini, Daniele; Molinari, Filippo; Bestente, Gianni; Bruno, Alberto

    2017-03-01

    Diabetic foot ulcer (DFU) is a diabetic complication due to peripheral vasculopathy and neuropathy. A promising technology for wound healing in DFU is low-level light therapy (LLLT). Despite several studies showing positive effects of LLLT on DFU, LLLT's physiological effects have not yet been studied. The objective of this study was to investigate vascular and nervous systems modification in DFU after LLLT. Two samples of 45 DFU patients and 11 healthy controls (HCs) were recruited. The total hemoglobin (totHb) concentration change was monitored before and after LLLT by near-infrared spectroscopy and analyzed in time and frequency domains. The spectral power of the totHb changes in the very-low frequency (VLF, 20 to 60 mHz) and low frequency (LF, 60 to 140 mHz) bandwidths was calculated. Data analysis revealed a mean increase of totHb concentration after LLLT in DFU patients, but not in HC. VLF/LF ratio decreased significantly after the LLLT period in DFU patients (indicating an increased activity of the autonomic nervous system), but not in HC. Eventually, different treatment intensities in LLLT therapy showed a different response in DFU. Overall, our results demonstrate that LLLT improves blood flow and autonomic nervous system regulation in DFU and the importance of light intensity in therapeutic protocols.

  8. Near-Infrared to Visible Organic Upconversion Devices Based on Organic Light-Emitting Field Effect Transistors.

    Science.gov (United States)

    Li, Dongwei; Hu, Yongsheng; Zhang, Nan; Lv, Ying; Lin, Jie; Guo, Xiaoyang; Fan, Yi; Luo, Jinsong; Liu, Xingyuan

    2017-10-18

    The near-infrared (NIR) to visible upconversion devices have attracted great attention because of their potential applications in the fields of night vision, medical imaging, and military security. Herein, a novel all-organic upconversion device architecture has been first proposed and developed by incorporating a NIR absorption layer between the carrier transport layer and the emission layer in heterostructured organic light-emitting field effect transistors (OLEFETs). The as-prepared devices show a typical photon-to-photon upconversion efficiency as high as 7% (maximum of 28.7% under low incident NIR power intensity) and millisecond-scale response time, which are the highest upconversion efficiency and one of the fastest response time among organic upconversion devices as referred to the previous reports up to now. The high upconversion performance mainly originates from the gain mechanism of field-effect transistor structures and the unique advantage of OLEFETs to balance between the photodetection and light emission. Meanwhile, the strategy of OLEFETs also offers the advantage of high integration so that no extra OLED is needed in the organic upconversion devices. The results would pave way for low-cost, flexible and portable organic upconversion devices with high efficiency and simplified processing.

  9. Investigation of human visual cortex responses to flickering light using functional near infrared spectroscopy and constrained ICA

    Directory of Open Access Journals (Sweden)

    Nguyen Duc Thang

    2014-11-01

    Full Text Available The human visual sensitivity to the flickering light has been under investigation for decades. The finding of research in this area can contribute to the understanding of human visual system mechanism and visual disorders, and establishing diagnosis and treatment of diseases. The aim of this study is to investigate the effects of the flickering light to the visual cortex by monitoring the hemodynamic responses of the brain with the functional near infrared spectroscopy (fNIRS method. Since the acquired fNIRS signals are affected by physiological factors and measurement artifacts, constrained independent component analysis (cICA was applied to extract the actual fNIRS responses from the obtained data. The experimental results revealed significant changes (p < 0.0001 of the hemodynamic responses of the visual cortex from the baseline when the flickering stimulation was activated. With the uses of cICA, the contrast to noise ratio (CNR, reflecting the contrast of hemodynamic concentration between rest and task, became larger. This indicated the improvement of the fNIRS signals when the noise was eliminated. In subsequent studies, statistical analysis was used to infer the correlation between the fNIRS signals and the visual stimulus. We found that there was a slight decrease of the oxygenated hemoglobin concentration (about 5.69% over four frequencies when the modulation increased. However, the variations of oxy and deoxy-hemoglobin were not statistically significant.

  10. The Origin and Evolution of the Infrared Light Curve of SN2010jl

    Science.gov (United States)

    Dwek, Eli; Sarangi, Arkaprabha; Arendt, Richard; Fox, Ori; Kallman, Timothy; Kazanas, Demosthenes

    2018-01-01

    SN2010jl is a luminous core-collapse supernova (CCSN) of Type IIn that is surrounded by a dense circumstellar medium (CSM). The supernova (SN) luminosity vastly exceeds the available power from radiactive elements in the ejecta, and is powered by the interaction of the SN shock wave with the ambient medium. Upper limits on the UV and near-IR (NIR) emission from pre-explosion images of the region suggest that any progenitor star was hidden by pre-existing CSM dust. After day ~80, the SN spectrum shows the development of an IR excess above the extrapolated UVO emission arising from the shocked CSM. This IR component is attributed to thermal emission from dust.After day ~300, the light curve exhibits a rise in the NIR luminosity, concurrent with a steep decline at UVO wavelengths. Ruling out any possible contribution of SN-condensed dust to the IR light curve, we show that the early IR emission arises from the pre-existing CSM dust that survived the flash of radiation from the shock breakout. The late IR emission arises from newly-formed CSM dust that condensed in the cooling dust-free postshock gas of the advancing SN shock wave. Our analysis presents the first detailed modeling of dust formation in a cooling postshock environment, and provides important insights into the interaction of the SN shock wave with the CSM.

  11. THE 1.6 μm NEAR-INFRARED NUCLEI OF 3C RADIO GALAXIES: JETS, THERMAL EMISSION, OR SCATTERED LIGHT?

    International Nuclear Information System (INIS)

    Baldi, Ranieri D.; Chiaberge, Marco; Sparks, William; Macchetto, F. Duccio; Capetti, Alessandro; O'Dea, Christopher P.; Axon, David J.; Baum, Stefi A.; Quillen, Alice C.

    2010-01-01

    Using HST NICMOS 2 observations we have measured 1.6 μm near-infrared nuclear luminosities of 100 3CR radio galaxies with z < 0.3, by modeling and subtracting the extended emission from the host galaxy. We performed a multiwavelength statistical analysis (including optical and radio data) of the properties of the nuclei following classification of the objects into FR I and FR II, and low-ionization galaxies (LIGs), high-ionization galaxies (HIGs), and broad-line objects (BLOs) using the radio morphology and optical spectra, respectively. The correlations among near-infrared, optical, and radio nuclear luminosity support the idea that the near-infrared nuclear emission of FR Is has a non-thermal origin. Despite the difference in radio morphology, the multiwavelength properties of FR II LIG nuclei are statistically indistinguishable from those of FR Is, an indication of a common structure of the central engine. All BLOs show an unresolved near-infrared nucleus and a large near-infrared excess with respect to FR II LIGs and FR Is of equal radio core luminosity. This requires the presence of an additional (and dominant) component other than the non-thermal light. Considering the shape of their spectral energy distribution, we ascribe the origin of their near-infrared light to hot circumnuclear dust. A near-infrared excess is also found in HIGs, but their nuclei are substantially fainter than those of BLO. This result indicates that substantial obscuration along the line of sight to the nuclei is still present at 1.6 μm. Nonetheless, HIG nuclei cannot simply be explained in terms of dust obscuration: a significant contribution from light reflected in a circumnuclear scattering region is needed to account for their multiwavelength properties.

  12. Smart pH-responsive upconversion nanoparticles for enhanced tumor cellular internalization and near-infrared light-triggered photodynamic therapy.

    Science.gov (United States)

    Wang, Sheng; Zhang, Lei; Dong, Chunhong; Su, Lin; Wang, Hanjie; Chang, Jin

    2015-01-01

    A smart pH-responsive photodynamic therapy system based on upconversion nanoparticle loaded PEG coated polymeric lipid vesicles (RB-UPPLVs) was designed and prepared. These RB-UPPLVs which are promising agents for deep cancer photodynamic therapy applications can achieve enhanced tumor cellular internalization and near-infrared light-triggered photodynamic therapy.

  13. Study on triplet exciton diffusion length of mCP in phosphorescent organic light-emitting devices using electroluminescent spectra

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Wei [State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Information, University of Electronic Science and Technology of China (UESTC), Chengdu 610054 (China); Yu Junsheng, E-mail: jsyu@uestc.edu.c [State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Information, University of Electronic Science and Technology of China (UESTC), Chengdu 610054 (China); Wen Wen; Jiang Yadong [State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Information, University of Electronic Science and Technology of China (UESTC), Chengdu 610054 (China)

    2011-07-15

    Electroluminescent (EL) spectra was employed to probe the triplet exciton diffusion length (L{sub T}) of a commonly used host material of N,N'-dicarbazolyl-3,5-benzene (mCP) in phosphorescent organic light-emitting devices (OLEDs). By varying the film thickness of bis [2-(4-tertbutylphenyl) benzothiazolato-N,C{sup 2}], iridium (acetylacetonate) [(t-bt){sub 2}Ir(acac)] phosphor doped layer within 30 nm thick mCP layer, a series of devices were fabricated to investigate the EL characteristics. The results showed that with the increasing doped layer thickness (d), both (t-bt){sub 2}Ir(acac) emission peaks at 562 nm and mCP emission centered at 403 nm were observed. Moreover, the relationship between mCP EL intensity and d was detected. The L{sub T} was induced by an abrupt decrease in variation of mCP EL intensity when d is increased from 10 to 15 nm, and the reason to cause this phenomenon was investigated. The L{sub T} of mCP approximately to 15 nm was perfectly consistent to the result of 16{+-}1 nm, which was calculated by the traditional steady-state diffusion model. - Highlights: {yields} EL spectra were employed to probe triplet exciton diffusion length (L{sub T}). {yields} The relationship between mCP EL intensity and doped layer thickness was studied. {yields} The L{sub T} ({approx}15 nm) was induced by an abrupt decrease in variation of mCP EL intensity.

  14. PbS/CdS-sensitized mesoscopic SnO2 solar cells for enhanced infrared light harnessing.

    Science.gov (United States)

    Hossain, Md Anower; Koh, Zhen Yu; Wang, Qing

    2012-05-28

    Metal oxide semiconductors with lower lying conduction band minimum and superior electron mobility are essential for efficient charge separation and collection in PbS-sensitized solar cells. In the present study, mesoscopic SnO(2) was investigated as an alternative photoanode to the commonly used TiO(2) and examined comprehensively in PbS-sensitized liquid junction solar cells. To exploit the capability of PbS in an optimized structure, cascaded nPbS/nCdS and alternate n(PbS/CdS) layers deposited by a successive ionic layer adsorption and reaction method were systematically scrutinized. It was observed that the surface of SnO(2) has greater affinity to the growth of PbS compared with TiO(2), giving rise to much enhanced light absorption. In addition, the deposition of a CdS buffer layer and a ZnS passivation layer before and after a PbS layer was found to be beneficial for efficient charge separation. Under optimized conditions, cascaded PbS/CdS-sensitized SnO(2) exhibited an unprecedented photocurrent density of 17.38 mA cm(-2) with pronounced infrared light harvesting extending beyond 1100 nm, and a power conversion efficiency of 2.23% under AM 1.5, 1 sun illumination. In comparison, TiO(2) cells fabricated under similar conditions showed much inferior performance owing to the less efficient light harnessing of long wavelength photons. We anticipate that the systematic study of PbS-sensitized solar cells utilizing different metal oxide semiconductors as electron transporters would provide useful insights and promote the development of semiconductor-sensitized mesoscopic solar cells employing panchromatic sensitizers.

  15. Human Detection Based on the Generation of a Background Image by Using a Far-Infrared Light Camera

    Directory of Open Access Journals (Sweden)

    Eun Som Jeon

    2015-03-01

    Full Text Available The need for computer vision-based human detection has increased in fields, such as security, intelligent surveillance and monitoring systems. However, performance enhancement of human detection based on visible light cameras is limited, because of factors, such as nonuniform illumination, shadows and low external light in the evening and night. Consequently, human detection based on thermal (far-infrared light cameras has been considered as an alternative. However, its performance is influenced by the factors, such as low image resolution, low contrast and the large noises of thermal images. It is also affected by the high temperature of backgrounds during the day. To solve these problems, we propose a new method for detecting human areas in thermal camera images. Compared to previous works, the proposed research is novel in the following four aspects. One background image is generated by median and average filtering. Additional filtering procedures based on maximum gray level, size filtering and region erasing are applied to remove the human areas from the background image. Secondly, candidate human regions in the input image are located by combining the pixel and edge difference images between the input and background images. The thresholds for the difference images are adaptively determined based on the brightness of the generated background image. Noise components are removed by component labeling, a morphological operation and size filtering. Third, detected areas that may have more than two human regions are merged or separated based on the information in the horizontal and vertical histograms of the detected area. This procedure is adaptively operated based on the brightness of the generated background image. Fourth, a further procedure for the separation and removal of the candidate human regions is performed based on the size and ratio of the height to width information of the candidate regions considering the camera viewing direction

  16. Determination of the radiance of cylindrical light diffusers: design of a one-axis charge-coupled device camera-based goniometer setup

    Science.gov (United States)

    Pitzschke, Andreas; Bertholet, Jenny; Lovisa, Blaise; Zellweger, Matthieu; Wagnières, Georges

    2017-03-01

    A one-axis charge-coupled device camera-based goniometer setup was developed to measure the three-dimensional radiance profile (longitudinal, azimuthal, and polar) of cylindrical light diffusers in air and water. An algorithm was programmed to project the two-dimensional camera data onto the diffuser coordinates. The optical system was designed to achieve a spatial resolution on the diffuser surface in the submillimeter range. The detection threshold of the detector was well below the values of measured radiance. The radiance profiles of an exemplary cylindrical diffuser measured in air showed local deviations in radiance below 10% for wavelengths at 635 and 671 nm. At 808 nm, deviations in radiance became larger, up to 45%, most probable due to the manufacturing process of the diffuser. Radiance profiles measured in water were less Lambertian than in air due to the refractive index matching privileging the radial decoupling of photons from the optical fiber.

  17. Gas sensing properties and in situ diffuse reflectance infrared Fourier transform spectroscopy study of trichloroethylene adsorption and reactions on SnO2 films

    Science.gov (United States)

    Zhang, Zhenxin; Huang, Kaijin; Yuan, Fangli; Xie, Changsheng

    2014-05-01

    The detection of trichloroethylene has attracted much attention because it has an important effect on human health. The sensitivity of the SnO2 flat-type coplanar gas sensor arrays to 100 ppm trichloroethylene in air was investigated. The adsorption and surface reactions of trichloroethylene were investigated at 100-200 °C by in-situ diffuse reflection Fourier transform infrared spectroscopy (DIRFTS) on SnO2 films. Molecularly adsorbed trichloroethylene, dichloroacetyl chloride (DCAC), phosgene, HCl, CO, H2O, CHCl3, Cl2 and CO2 surface species are formed during trichloroethylene adsorption at 100-200 °C. A possible mechanism of the reaction process is discussed.

  18. Enhanced middle-infrared light transmission through Au/SiO(x)N(y)/Au aperture arrays.

    Science.gov (United States)

    Xiao, Gongli; Yao, Xiang; Ji, Xinming; Zhou, Jia; Bao, Zongming; Huang, Yiping

    2011-12-01

    The enhanced middle-infrared light transmission through Au/SiO(x)N(y)/Au aperture arrays by changing the refractive index and the thickness of a dielectric layer was studied experimentally. The results indicated that the transmission spectra was highly dependent on the refractive index and the thickness of SiO(x)N(y). We found that the transmission peaks redshifted regularly along with the refractive index from 1.6 to 1.8, owing to the role of surface plasmon polaritons (SPP) coupling in the Au/SiO(x)N(y)/Au cascaded metallic structure. Simultaneously, a higher transmission efficiency and narrower transmission peak was obtained in Au/SiO2.1N0.3/Au cascaded metallic structure with small refractive index (1.6) than in Au/SiO0.6N1/Au cascaded metallic structure with large refractive index (1.8). When the thickness of SiO(x)N(y) changes from 0.2 to 0.4 microm, the shape of transmission spectra exhibits a large change. It was found that a higher transmission efficiency and narrower transmission peak was obtained in Au/SiO(x)N(y)/Au cascaded metallic structure with a thin dielectric film (0.2 microm), with the increase of SiO(x)N(y) film's thickness, the transmission peak gradually widened and disappeared finally. This effect is useful in applications of biochemical sensing and tunable integrated plasmonic devices in the middle-infrared region.

  19. Thermography Applied During Exercises With or Without Infrared Light-Emitting Diode Irradiation: Individual and Comparative Analysis

    Science.gov (United States)

    Lins, Emery C.; Corazza, Adalberto Vieira; Kurachi, Cristina; Bagnato, Vanderlei Salvador

    2013-01-01

    Abstract Objective: The aim of our study was to evaluate the cutaneous temperature during an exercise on a treadmill with or without infrared light-emitting diode (LED) irradiation in postmenopausal women. Background data: Thermography is an imaging technique in which radiation emitted by a body in the middle and far infrared spectrum is detected and associated with the temperature of the body's surface. Materials and methods: Eighteen postmenopausal women were randomly divided into two groups: (1) the LED group, which performed the exercises on a treadmill associated with phototherapy (n=9) and; (2) the exercise group, which performed the exercises on a treadmill without additional phototherapy (n=9). The irradiation parameters for each women's thigh were: array of 2000 infrared LEDs (850 nm) with an area of 1,110 cm2, 100 mW, 39 mW/cm2, and 108 J/cm2 for 45 min. The submaximal constant-speed exercise on the treadmill at intensities between 85% and 90% maximal heart rate (HRmax) with or without phototherapy were performed during 45 min, to perform the thermographic analysis. Thermography images were captured before the exercise (t=0), after 10, 35, and 45 min of exercising (t=10, t=35, and t=45) and at 5 min post-exercising (t=50). Results: The LED group showed an increased cutaneous thigh temperature during the exercise (from 33.5±0.8°C to 34.6±0.9°C, p=0.03), whereas the exercise group showed a reduced cutaneous temperature (from 33.5±0.6 to 32.7±0.7°C, p=0.02). The difference between the groups was significant (p<0.05) at t=35, t=45, and t=50. Conclusions: These data indicate an improved microcirculation, and can explain one possible mechanism of action of phototherapy associated with physical exercises. PMID:23819505

  20. Diffuse reflectance infrared fourier transform spectroscopic (DRIFTS) investigation of E.coli, Staphylococcus aureus and Candida albicans

    Digital Repository Service at National Institute of Oceanography (India)

    DeSouza, L; PrabhaDevi; Kamat, T.; Naik, C

    INDIAN J. MAR. SCI., VOL. 38, NO. 1, MARCH 2009 48 Fig. 3—Representative original mid-infrared absorption spectra (I), Kubelka Munk (II) and second derivative (III) for A) Candida albicans B) E. coli and C) Staphylococcus aureus D'SOUZA et... hand in the case of the strain Candida albicans, absorption bands were evident at 2931 cm-1 and 2894 cm-1 which is due to C-H asymmetric stretching of CH2 methylene and due to C-H stretching of C-H methine respectively. The region between 1800...

  1. Electrical 2π phase control of infrared light in a 350-nm footprint using graphene plasmons

    Science.gov (United States)

    Woessner, Achim; Gao, Yuanda; Torre, Iacopo; Lundeberg, Mark B.; Tan, Cheng; Watanabe, Kenji; Taniguchi, Takashi; Hillenbrand, Rainer; Hone, James; Polini, Marco; Koppens, Frank H. L.

    2017-07-01

    Modulating the amplitude and phase of light is at the heart of many applications such as wavefront shaping, transformation optics, phased arrays, modulators and sensors. Performing this task with high efficiency and small footprint is a formidable challenge. Metasurfaces and plasmonics are promising, but metals exhibit weak electro-optic effects. Two-dimensional materials, such as graphene, have shown great performance as modulators with small drive voltages. Here, we show a graphene plasmonic phase modulator that is capable of tuning the phase between 0 and 2π in situ. The device length of 350 nm is more than 30 times shorter than the 10.6 μm free-space wavelength. The modulation is achieved by spatially controlling the plasmon phase velocity in a device where the spatial carrier density profile is tunable. We provide a scattering theory for plasmons propagating through spatial density profiles. This work constitutes a first step towards two-dimensional transformation optics for ultracompact modulators and biosensing.

  2. Direct and simultaneous quantification of tannin mean degree of polymerization and percentage of galloylation in grape seeds using diffuse reflectance fourier transform-infrared spectroscopy.

    Science.gov (United States)

    Pappas, Christos; Kyraleou, Maria; Voskidi, Eleni; Kotseridis, Yorgos; Taranilis, Petros A; Kallithraka, Stamatina

    2015-02-01

    The direct and simultaneous quantitative determination of the mean degree of polymerization (mDP) and the degree of galloylation (%G) in grape seeds were quantified using diffuse reflectance infrared Fourier transform spectroscopy and partial least squares (PLS). The results were compared with those obtained using the conventional analysis employing phloroglucinolysis as pretreatment followed by high performance liquid chromatography-UV and mass spectrometry detection. Infrared spectra were recorded in solid state samples after freeze drying. The 2nd derivative of the 1832 to 1416 and 918 to 739 cm(-1) spectral regions for the quantification of mDP, the 2nd derivative of the 1813 to 607 cm(-1) spectral region for the degree of %G determination and PLS regression were used. The determination coefficients (R(2) ) of mDP and %G were 0.99 and 0.98, respectively. The corresponding values of the root-mean-square error of calibration were found 0.506 and 0.692, the root-mean-square error of cross validation 0.811 and 0.921, and the root-mean-square error of prediction 0.612 and 0.801. The proposed method in comparison with the conventional method is simpler, less time consuming, more economical, and requires reduced quantities of chemical reagents and fewer sample pretreatment steps. It could be a starting point for the design of more specific models according to the requirements of the wineries. © 2015 Institute of Food Technologists®

  3. Seeing in a Different Light--Using an Infrared Camera to Teach Heat Transfer and Optical Phenomena

    Science.gov (United States)

    Wong, Choun Pei; Subramaniam, R.

    2018-01-01

    The infrared camera is a useful tool in physics education to 'see' in the infrared. In this paper, we describe four simple experiments that focus on phenomena related to heat transfer and optics that are encountered at undergraduate physics level using an infrared camera, and discuss the strengths and limitations of this tool for such purposes.

  4. Effects of the approximations of light propagation on quantitative photoacoustic tomography using two-dimensional photon diffusion equation and linearization

    Science.gov (United States)

    Okawa, Shinpei; Hirasawa, Takeshi; Kushibiki, Toshihiro; Ishihara, Miya

    2017-12-01

    Quantitative photoacoustic tomography (QPAT) employing a light propagation model will play an important role in medical diagnoses by quantifying the concentration of hemoglobin or a contrast agent. However, QPAT by the light propagation model with the three-dimensional (3D) radiative transfer equation (RTE) requires a huge computational load in the iterative forward calculations involved in the updating process to reconstruct the absorption coefficient. The approximations of the light propagation improve the efficiency of the image reconstruction for the QPAT. In this study, we compared the 3D/two-dimensional (2D) photon diffusion equation (PDE) approximating 3D RTE with the Monte Carlo simulation based on 3D RTE. Then, the errors in a 2D PDE-based linearized image reconstruction caused by the approximations were quantitatively demonstrated and discussed in the numerical simulations. It was clearly observed that the approximations affected the reconstructed absorption coefficient. The 2D PDE-based linearized algorithm succeeded in the image reconstruction of the region with a large absorption coefficient in the 3D phantom. The value reconstructed in the phantom experiment agreed with that in the numerical simulation, so that it was validated that the numerical simulation of the image reconstruction predicted the relationship between the true absorption coefficient of the target in the 3D medium and the reconstructed value with the 2D PDE-based linearized algorithm. Moreover, the the true absorption coefficient in 3D medium was estimated from the 2D reconstructed image on the basis of the prediction by the numerical simulation. The estimation was successful in the phantom experiment, although some limitations were revealed.

  5. Planck intermediate results: XVII. Emission of dust in the diffuse interstellar medium from the far-infrared to microwave frequencies

    DEFF Research Database (Denmark)

    Bartlett, J.G.; Cardoso, J.-F.; Delabrouille, J.

    2014-01-01

    of 7500 deg2 centred on the southern Galactic pole. We present a general methodology to study the dust-H i correlation over the sky, including simulations to quantify uncertainties. Our analysis yields four specific results. (1) We map the temperature, submillimetre emissivity, and opacity of the dust per...... it with the far infrared spectral index βFIR derived from greybody fits at higher frequencies, and find a systematic difference, βmm -βFIR = -0.15, which suggests that the dust spectral energy distribution (SED) flattens at v ≤ 353 GHz. (3) We present spectral fits of the microwave emission correlated with Hi...... represent magnetic dipole emission. Alternatively, it could account for an increasing contribution of carbon dust, or a flattening of the emissivity of amorphous silicates, at millimetre wavelengths. These interpretations make different predictions for the dust polarization SED. (4) We analyse the residuals...

  6. Analysis of peripheral thermal damage after laser irradiation of dentin using polarized light microscopy and synchrotron radiation infrared spectromicroscopy

    Science.gov (United States)

    Dela Rosa, Alfredo; Sarma, Anupama V.; Le, Charles Q.; Jones, Robert S.; Fried, Daniel

    2004-05-01

    It is necessary to minimize peripheral thermal damage during laser irradiation, since thermal damage to collagen and mineral compromises the bond strength to restorative materials in dentin and inhibits healing and osteointegration in bone. The overall objective of this study was to test the hypothesis that lasers resonant to the specific absorption of water, collagen, and hydroxyapatite with pulse durations less than the thermal relaxation times at each respective laser wavelength will efficiently remove dentin with minimal peripheral thermal damage. Precise incisions were produced in 3 x 3 mm2 blocks of human dentin using CO2 (9.6 μm), Er:YSGG (2.79 μm), and Nd:YAG (355 nm) lasers with and without a computer controlled water spray. Polarization-sensitive optical coherence tomography was used to obtain optical cross-sections of each incision to determine the rate and efficiency of ablation. The peripheral thermal damage zone around each incision was analyzed using polarized light microscopy (PLM) and Synchrotron-Radiation Fourier Transform Infrared Spectro-microscopy (SR-FTIR). Thermally induced chemical changes to both mineral and the collagen matrix was observed with SR-FTIR with a 10-μm spatial resolution and those changes were correlated with optical changes observed with PLM. Minimal (alveolar bone.

  7. Energy upconversion in GaP/GaNP core/shell nanowires for enhanced near-infrared light harvesting.

    Science.gov (United States)

    Dobrovolsky, Alexander; Sukrittanon, Supanee; Kuang, Yanjin; Tu, Charles W; Chen, Weimin M; Buyanova, Irina A

    2014-11-12

    Semiconductor nanowires (NWs) have recently gained increasing interest due to their great potential for photovoltaics. A novel material system based on GaNP NWs is considered to be highly suitable for applications in efficient multi-junction and intermediate band solar cells. This work shows that though the bandgap energies of GaN(x)P(1-x) alloys lie within the visible spectral range (i.e., within 540-650 nm for the currently achievable x Si substrates can also harvest infrared light utilizing energy upconversion. This energy upconversion can be monitored via anti-Stokes near-band-edge photoluminescence (PL) from GaNP, visible even from a single NW. The dominant process responsible for this effect is identified as being due to two-step two-photon absorption (TS-TPA) via a deep level lying at about 1.28 eV above the valence band, based on the measured dependences of the anti-Stokes PL on excitation power and wavelength. The formation of the defect participating in the TS-TPA process is concluded to be promoted by nitrogen incorporation. The revealed defect-mediated TS-TPA process can boost efficiency of harvesting solar energy in GaNP NWs, beneficial for applications of this novel material system in third-generation photovoltaic devices. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Optical Design of a Broadband Infrared Spectrometer for Bunch Length Measurement at the Linac Coherent Light Source

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Kiel; /SLAC

    2012-09-07

    The electron pulses generated by the Linac Coherent Light Source at the SLAC National Accelerator Laboratory occur on the order of tens of femtoseconds and cannot be directly measured by conventional means. The length of the pulses can instead be reconstructed by measuring the spectrum of optical transition radiation emitted by the electrons as they move toward a conducting foil. Because the emitted radiation occurs in the mid-infrared from 0.6 to 30 microns a novel optical layout is required. Using a helium-neon laser with wavelength 633 nm, a series of gold-coated off-axis parabolic mirrors were positioned to direct a beam through a zinc selenide prism and to a focus at a CCD camera for imaging. Constructing this layout revealed a number of novel techniques for reducing the aberrations introduced into the system by the off-axis parabolic mirrors. The beam had a recorded radius of less than a millimeter at its final focus on the CCD imager. This preliminary setup serves as a model for the spectrometer that will ultimately measure the LCLS electron pulse duration.

  9. Performance Improvement of GaN-Based Flip-Chip White Light-Emitting Diodes with Diffused Nanorod Reflector and with ZnO Nanorod Antireflection Layer

    Directory of Open Access Journals (Sweden)

    Hsin-Ying Lee

    2014-01-01

    Full Text Available The GaN-based flip-chip white light-emitting diodes (FCWLEDs with diffused ZnO nanorod reflector and with ZnO nanorod antireflection layer were fabricated. The ZnO nanorod array grown using an aqueous solution method was combined with Al metal to form the diffused ZnO nanorod reflector. It could avoid the blue light emitted out from the Mg-doped GaN layer of the FCWLEDs, which caused more blue light emitted out from the sapphire substrate to pump the phosphor. Moreover, the ZnO nanorod array was utilized as the antireflection layer of the FCWLEDs to reduce the total reflection loss. The light output power and the phosphor conversion efficiency of the FCWLEDs with diffused nanorod reflector and 250 nm long ZnO nanorod antireflection layer were improved from 21.15 mW to 23.90 mW and from 77.6% to 80.1% in comparison with the FCWLEDs with diffused nanorod reflector and without ZnO nanorod antireflection layer, respectively.

  10. Lighting

    Data.gov (United States)

    Federal Laboratory Consortium — Lighting Systems Test Facilities aid research that improves the energy efficiency of lighting systems. • Gonio-Photometer: Measures illuminance from each portion of...

  11. Comparison of Portable and Bench-Top Spectrometers for Mid-Infrared Diffuse Reflectance Measurements of Soils

    Directory of Open Access Journals (Sweden)

    Christopher Hutengs

    2018-03-01

    Full Text Available Mid-infrared (MIR spectroscopy has received widespread interest as a method to complement traditional soil analysis. Recently available portable MIR spectrometers additionally offer potential for on-site applications, given sufficient spectral data quality. We therefore tested the performance of the Agilent 4300 Handheld FTIR (DRIFT spectra in comparison to a Bruker Tensor 27 bench-top instrument in terms of (i spectral quality and measurement noise quantified by wavelet analysis; (ii accuracy of partial least squares (PLS calibrations for soil organic carbon (SOC, total nitrogen (N, pH, clay and sand content with a repeated cross-validation analysis; and (iii key spectral regions for these soil properties identified with a Monte Carlo spectral variable selection approach. Measurements and multivariate calibrations with the handheld device were as good as or slightly better than Bruker equipped with a DRIFT accessory, but not as accurate as with directional hemispherical reflectance (DHR data collected with an integrating sphere. Variations in noise did not markedly affect the accuracy of multivariate PLS calibrations. Identified key spectral regions for PLS calibrations provided a good match between Agilent and Bruker DHR data, especially for SOC and N. Our findings suggest that portable FTIR instruments are a viable alternative for MIR measurements in the laboratory and offer great potential for on-site applications.

  12. Optimization of image reconstruction for magnetic resonance imaging-guided near-infrared diffuse optical spectroscopy in breast

    Science.gov (United States)

    Zhao, Yan; Mastanduno, Michael A.; Jiang, Shudong; EI-Ghussein, Fadi; Gui, Jiang; Pogue, Brian W.; Paulsen, Keith D.

    2015-05-01

    An optimized approach to nonlinear iterative reconstruction of magnetic resonance imaging (MRI)-guided near-infrared spectral tomography (NIRST) images was developed using an L-curve-based algorithm for the choice of regularization parameter. This approach was applied to clinical exam data to maximize the reconstructed values differentiating malignant and benign lesions. MRI/NIRST data from 25 patients with abnormal breast readings (BI-RADS category 4-5) were analyzed using this optimal regularization methodology, and the results showed enhanced p values and area under the curve (AUC) for the task of differentiating malignant from benign lesions. Of the four absorption parameters and two scatter parameters, the most significant differences for benign versus malignant were total hemoglobin (HbT) and tissue optical index (TOI) with p values=0.01 and 0.001, and AUC values=0.79 and 0.94, respectively, in terms of HbT and TOI. This dramatically improved the values relative to fixed regularization (p value=0.02 and 0.003; AUC=0.75 and 0.83) showing that more differentiation was possible with the optimal method. Through a combination of both biomarkers, HbT and TOI, the AUC increased from 82.9% (fixed regulation=0.1) to 94.3% (optimal method).

  13. Properties of the Variation of the Infrared Emission of OH/IR Stars I. The K Band Light Curves

    Directory of Open Access Journals (Sweden)

    Kyung-Won Suh

    2009-09-01

    Full Text Available To study properties of the variation of the infrared emission of OH/IR stars, we collect and analyze the infrared observational data in K band for nine OH/IR stars. We use the observational data obtained for about three decades including recent data from the two micron all sky survey (2MASS and the deep near infrared survey of the southern sky (DENIS. We use Marquardt-Levenberg algorithm to determine the pulsation period and amplitude for each star and compare them with previous results of infrared and radio investigations.

  14. Light

    DEFF Research Database (Denmark)

    Prescott, N.B.; Kristensen, Helle Halkjær; Wathes, C.M.

    2004-01-01

    This chapter presents the effect of artificial light environments (light levels, colour, photoperiod and flicker) on the welfare of broilers in terms of vision, behaviour, lameness and mortality......This chapter presents the effect of artificial light environments (light levels, colour, photoperiod and flicker) on the welfare of broilers in terms of vision, behaviour, lameness and mortality...

  15. Towards strong light-matter coupling at the single-resonator level with sub-wavelength mid-infrared nano-antennas

    Energy Technology Data Exchange (ETDEWEB)

    Malerba, M.; De Angelis, F., E-mail: francesco.deangelis@iit.it [Istituto Italiano di Tecnologia, Via Morego, 30, I-16163 Genova (Italy); Ongarello, T.; Paulillo, B.; Manceau, J.-M.; Beaudoin, G.; Sagnes, I.; Colombelli, R., E-mail: raffaele.colombelli@u-psud.fr [Centre for Nanoscience and Nanotechnology (C2N Orsay), CNRS UMR9001, Univ. Paris Sud, Univ. Paris Saclay, 91405 Orsay (France)

    2016-07-11

    We report a crucial step towards single-object cavity electrodynamics in the mid-infrared spectral range using resonators that borrow functionalities from antennas. Room-temperature strong light-matter coupling is demonstrated in the mid-infrared between an intersubband transition and an extremely reduced number of sub-wavelength resonators. By exploiting 3D plasmonic nano-antennas featuring an out-of-plane geometry, we observed strong light-matter coupling in a very low number of resonators: only 16, more than 100 times better than what reported to date in this spectral range. The modal volume addressed by each nano-antenna is sub-wavelength-sized and it encompasses only ≈4400 electrons.

  16. Qualitative and simultaneous quantitative analysis of cimetidine polymorphs by ultraviolet-visible and shortwave near-infrared diffuse reflectance spectroscopy and multivariate calibration models.

    Science.gov (United States)

    Feng, Yuyan; Li, Xiangling; Xu, Kailin; Zou, Huayu; Li, Hui; Liang, Bing

    2015-02-01

    The object of the present study was to investigate the feasibility of applying ultraviolet-visible and shortwave near-infrared diffuse reflectance spectroscopy (UV-vis-SWNIR DRS) coupled with chemometrics in qualitative and simultaneous quantitative analysis of drug polymorphs, using cimetidine as a model drug. Three polymorphic forms (A, B and D) and a mixed crystal (M1) of cimetidine, obtained by preparation under different crystallization conditions, were characterized by microscopy, X-ray powder diffraction (XRPD) and infrared spectroscopy (IR). The discriminant models of four forms (A, B, D and M1) were established by discriminant partial least squares (PLS-DA) using different pretreated spectra. The R and RMSEP of samples in the prediction set by discriminant model with original spectra were 0.9959 and 0.1004. Among the quantitative models of binary mixtures (A and D) established by partial least squares (PLS) and least squares-support vector machine (LS-SVM) with different pretreated spectra, the LS-SVM models based on original and MSC spectra had better prediction effect with a R of 1.0000 and a RMSEP of 0.0134 for form A, and a R of 1.0000 and a RMSEP of 0.0024 for form D. For ternary mixtures, the established PLS quantitative models based on normalized spectra had relatively better prediction effect for forms A, B and D with R of 0.9901, 0.9820 and 0.9794 and RMSEP of 0.0471, 0.0529 and 0.0594, respectively. This research indicated that UV-vis-SWNIR DRS can be used as a simple, rapid, nondestructive qualitative and quantitative method for the analysis of drug polymorphs. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Assessing saffron (Crocus sativus L.) adulteration with plant-derived adulterants by diffuse reflectance infrared Fourier transform spectroscopy coupled with chemometrics.

    Science.gov (United States)

    Petrakis, Eleftherios A; Polissiou, Moschos G

    2017-01-01

    Saffron, the dried red stigmas of the plant Crocus sativus L., is well-known as one of the most important and expensive spices worldwide. It is thus highly susceptible to fraudulent practices that employ, among others, plant-derived adulterants. This study presents an application of diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and chemometric techniques for evaluating adulteration of saffron with six characteristic adulterants of plant origin, i.e. C. sativus stamens, calendula, safflower, turmeric, buddleja, and gardenia. The proposed method involved a three-step process for the detection of adulteration as well as for the identification and quantification of adulterants. Partial least squares discriminant analysis (PLS-DA) was applied to perform authentication of saffron based on mid-infrared fingerprints (4000-600cm -1 ), resulting in 99% correct classification of pure saffron and saffron adulterated at 5-20% (w/w) levels. Adulterant identification in positive samples was performed with high sensitivity and specificity by a six-class PLS-DA model, with spectroscopic data from the region 2000-600cm -1 . Subsequently, partial least squares (PLS) regression models were built for the quantification of each adulterant. By using synergy interval PLS (siPLS) for variable selection, models with improved performance were developed, with detection limits ranging from 1.0% to 3.1% (w/w). The results obtained illustrate that this strategy based on DRIFTS has the potential to complement existing methodologies for the rapid and cost-effective assessment of typical saffron frauds. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Complex adjustments of photosynthetic potentials and internal diffusion conductance to current and previous light availabilities and leaf age in Mediterranean evergreen species Quercus ilex.

    Science.gov (United States)

    Niinemets, Ulo; Cescatti, Alessandro; Rodeghiero, Mirco; Tosens, Tiina

    2006-06-01

    Mature non-senescent leaves of evergreen species become gradually shaded as new foliage develops and canopy expands, but the interactive effects of integrated light during leaf formation (Q(int)G), current light (Q(int)C) and leaf age on foliage photosynthetic competence are poorly understood. In Quercus ilex L., we measured the responses of leaf structural and physiological variables to Q(int)C and Q(int)G for four leaf age classes. Leaf aging resulted in increases in leaf dry mass per unit area (M(A)), and leaf dry to fresh mass ratio (D(F)) and decreases in N content per dry mass (N(M)). N content per area (N(A)) was independent of age, indicating that decreases in N(M) reflected dilution of leaf N because of accumulation of dry mass (NA = N(M) M(A)). M(A), D(F) and N(A) scaled positively with irradiance, whereas these age-specific correlations were stronger with leaf growth light than with current leaf light. Area-based maximum ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) carboxylase activity (V(cmax)A), capacity for photosynthetic electron transport (J(max)A) and the rate of non-photorespiratory respiration in light (R(d)A) were also positively associated with irradiance. Differently from leaf structural characteristics, for all data pooled, these relationships were stronger with current light with little differences among leaves of different age. Acclimation to current leaf light environment was achieved by light-dependent partitioning of N in rate-limiting proteins. Mass-based physiological activities decreased with increasing leaf age, reflecting dilution of leaf N and a larger fraction of non-photosynthetic N in older leaves. This resulted in age-dependent modification of leaf photosynthetic potentials versus N relationships. Internal diffusion conductance (g(m)) per unit area (g(m)A) increased curvilinearly with increasing irradiance for two youngest leaf age classes and was independent of light for older leaves. In contrast, g(m) per dry

  19. A Novel Diffuse Fraction-Based Two-Leaf Light Use Efficiency Model: An Application Quantifying Photosynthetic Seasonality across 20 AmeriFlux Flux Tower Sites

    Science.gov (United States)

    Yan, Hao; Wang, Shao-Qiang; Yu, Kai-Liang; Wang, Bin; Yu, Qin; Bohrer, Gil; Billesbach, Dave; Bracho, Rosvel; Rahman, Faiz; Shugart, Herman H.

    2017-10-01

    Diffuse radiation can increase canopy light use efficiency (LUE). This creates the need to differentiate the effects of direct and diffuse radiation when simulating terrestrial gross primary production (GPP). Here, we present a novel GPP model, the diffuse-fraction-based two-leaf model (DTEC), which includes the leaf response to direct and diffuse radiation, and treats maximum LUE for shaded leaves (ɛmsh defined as a power function of the diffuse fraction (Df)) and sunlit leaves (ɛmsu defined as a constant) separately. An Amazonian rainforest site (KM67) was used to calibrate the model by simulating the linear relationship between monthly canopy LUE and Df. This showed a positive response of forest GPP to atmospheric diffuse radiation, and suggested that diffuse radiation was more limiting than global radiation and water availability for Amazon rainforest GPP on a monthly scale. Further evaluation at 20 independent AmeriFlux sites showed that the DTEC model, when driven by monthly meteorological data and MODIS leaf area index (LAI) products, explained 70% of the variability observed in monthly flux tower GPP. This exceeded the 51% accounted for by the MODIS 17A2 big-leaf GPP product. The DTEC model's explicit accounting for the impacts of diffuse radiation and soil water stress along with its parameterization for C4 and C3 plants was responsible for this difference. The evaluation of DTEC at Amazon rainforest sites demonstrated its potential to capture the unique seasonality of higher GPP during the diffuse radiation-dominated wet season. Our results highlight the importance of diffuse radiation in seasonal GPP simulation.Plain Language SummaryAs diffuse radiation can increase canopy light use efficiency (LUE), there is a need to differentiate the effects of direct and diffuse radiation in simulating terrestrial gross primary production (GPP). A novel diffuse-fraction (Df)-based two leaf GPP model (DTEC) developed by this study considers these effects. Evaluation

  20. Inter- and intraexaminer reliability of bitewing radiography and near-infrared light transillumination for proximal caries detection and assessment.

    Science.gov (United States)

    Litzenburger, Friederike; Heck, Katrin; Pitchika, Vinay; Neuhaus, Klaus W; Jost, Fabian N; Hickel, Reinhard; Jablonski-Momeni, Anahita; Welk, Alexander; Lederer, Alexander; Kühnisch, Jan

    2018-02-01

    The purpose of this in vitro study was to evaluate the inter- and intraexaminer reliability of digital bitewing (DBW) radiography and near-infrared light transillumination (NIRT) for proximal caries detection and assessment in posterior teeth. From a pool of 85 patients, 100 corresponding pairs of DBW and NIRT images (~1/3 healthy, ~1/3 with enamel caries and ~1/3 with dentin caries) were chosen. 12 dentists with different professional status and clinical experience repeated the evaluation in two blinded cycles. Two experienced dentists provided a reference diagnosis after analysing all images independently. Statistical analysis included the calculation of simple (κ) and weighted Kappa (wκ) values as a measure of reliability. Logistic regression with a backward elimination model was used to investigate the influence of the diagnostic method, evaluation cycle, type of tooth, and clinical experience on reliability. Altogether, inter- and intraexaminer reliability exhibited good to excellent κ and wκ values for DBW radiography (Inter: κ = 0.60/ 0.63; wκ = 0.74/0.76; Intra: κ = 0.64; wκ = 0.77) and NIRT (Inter: κ = 0.74/0.64; wκ = 0.86/0.82; Intra: κ = 0.68; wκ = 0.84). The backward elimination model revealed NIRT to be significantly more reliable than DBW radiography. This study revealed a good to excellent inter- and intraexaminer reliability for proximal caries detection using DBW and NIRT images. The logistic regression analysis revealed significantly better reliability for NIRT. Additionally, the first evaluation cycle was more reliable according to the reference diagnoses.

  1. Affibody-DyLight conjugates for in vivo assessment of HER2 expression by near-infrared optical imaging.

    Science.gov (United States)

    Zielinski, Rafal; Hassan, Moinuddin; Lyakhov, Ilya; Needle, Danielle; Chernomordik, Victor; Garcia-Glaessner, Alejandra; Ardeshirpour, Yasaman; Capala, Jacek; Gandjbakhche, Amir

    2012-01-01

    Amplification of the HER2/neu gene and/or overexpression of the corresponding protein have been identified in approximately 20% of invasive breast carcinomas. Assessment of HER2 expression in vivo would advance development of new HER2-targeted therapeutic agents and, potentially, facilitate choice of the proper treatment strategy offered to the individual patient. We present novel HER2-specific probes for in vivo evaluation of the receptor status by near-infrared (NIR) optical imaging. Affibody molecules were expressed, purified, and labeled with NIR-fluorescent dyes. The binding affinity and specificity of the obtained probe were tested in vitro. For in vivo validation, the relationship of the measured NIR signal and HER2 expression was characterized in four breast cancer xenograft models, expressing different levels of HER2. Accumulation of Affibody molecules in tumor tissue was further confirmed by ex vivo analysis. Affibody-DyLight conjugates showed high affinity to HER2 (K(D) = 3.66±0.26). No acute toxicity resulted from injection of the probes (up to 0.5 mg/kg) into mice. Pharmacokinetic studies revealed a relatively short (37.53±2.8 min) half-life of the tracer in blood. Fluorescence accumulation in HER2-positive BT-474 xenografts was evident as soon as a few minutes post injection and reached its maximum at 90 minutes. On the other hand, no signal retention was observed in HER2-negative MDA-MB-468 xenografts. Immunostaining of extracted tumor tissue confirmed penetration of the tracer into tumor tissue. The results of our studies suggest that Affibody-DyLight-750 conjugate is a powerful tool to monitor HER2 status in a preclinical setting. Following clinical validation, it might provide complementary means for assessment of HER2 expression in breast cancer patients (assuming availability of proper NIR scanners) and/or be used to facilitate detection of HER2-positive metastatic lesions during NIR-assisted surgery.

  2. Defect-induced infrared electroluminescence from radial GaInP/AlGaInP quantum well nanowire array light- emitting diodes

    Science.gov (United States)

    Hussain, Laiq; Karimi, Mohammad; Berg, Alexander; Jain, Vishal; Borgström, Magnus T.; Gustafsson, Anders; Samuelson, Lars; Pettersson, Håkan

    2017-12-01

    Radial GaInP/AlGaInP nanowire array light-emitting diodes (LEDs) are promising candidates for novel high-efficiency solid state lighting due to their potentially large strain-free active emission volumes compared to planar LEDs. Moreover, by proper tuning of the diameter of the nanowires, the fraction of emitted light extracted can be significantly enhanced compared to that of planar LEDs. Reports so far on radial growth of nanowire LED structures, however, still point to significant challenges related to obtaining defect-free radial heterostructures. In this work, we present evidence of optically active growth-induced defects in a fairly broad energy range in vertically processed radial GaInP/AlGaInP quantum well nanowire array LEDs using a variety of complementary experimental techniques. In particular, we demonstrate strong infrared electroluminescence in a spectral range centred around 1 eV (1.2 μm) in addition to the expected red light emission from the quantum well. Spatially resolved cathodoluminescence studies reveal a patchy red light emission with clear spectral features along the NWs, most likely induced by variations in QW thickness, composition and barriers. Dark areas are attributed to infrared emission generated by competing defect-assisted radiative transitions, or to trapping mechanisms involving non-radiative recombination processes. Possible origins of the defects are discussed.

  3. A Fractional Bipolar Radiofrequency Device Combined with a Bipolar Radiofrequency and Infrared Light Treatment for Improvement in Facial Wrinkles and Overall Skin Tone and Texture.

    Science.gov (United States)

    Gold, Alan H; Pozner, Jason; Weiss, Robert

    2016-10-01

    A variety of techniques and energy-based technologies are currently utilized for the treatment of facial wrinkles. Fractional bipolar radiofrequency treatment and treatment with bipolar radiofrequency combined with infrared light have both been reported to be safe and effective for the non-invasive treatment of wrinkles and overall facial rejuvenation. A multicenter, prospective clinical trial evaluated a protocol of treatment with a device incorporating bipolar radiofrequency and infrared light followed by treatment with a fractional bipolar radiofrequency device for facial wrinkle reduction and improvement in the overall appearance of aged facial skin. Fifty-six patients with mild to moderate facial wrinkles received three full-face treatments (forehead, nose, cheeks, periorbital, and perioral areas) at 4 to 6 week intervals and were evaluated at 12 and 24 weeks after the last treatment. Clinical photographs at baseline and follow-ups were assessed by both the investigators and patients using the Global Aesthetic Improvement scale. Treatment safety was evaluated. Study participants also completed a satisfaction and improvement questionnaire. Fitzpatrick Wrinkling and Elastosis Score was decreased significantly at three months (P radiofrequency and infrared light treatment followed by fractionated bipolar radiofrequency treatment results in safe, well tolerated, and effective improvement in overall skin tone and texture and reduction of facial wrinkles. 4 Therapeutic. © 2016 The American Society for Aesthetic Plastic Surgery, Inc. Reprints and permission: journals.permissions@oup.com.

  4. Combined photothermal-chemotherapy of breast cancer by near infrared light responsive hyaluronic acid-decorated nanostructured lipid carriers

    Science.gov (United States)

    Zheng, Shaohui; Du Nguyen, Van; Song, Seung Yoon; Han, Jiwon; Park, Jong-Oh

    2017-10-01

    In this study, a novel type of hyaluronic acid (HA)-decorated nanostructured lipid carrier (NLC) was prepared and investigated as a light-triggered drug release and combined photothermal-chemotherapy for cancer treatment. Polyhedral gold nanoparticles (Au NPs) with an average size of 10 nm were synthesized and co-encapsulated with doxorubicin (DOX) in the matrix of NLCs with a high drug loading efficiency (above 80%). HA decoration was achieved by the electrostatic interaction between HA and CTAB on the NLC surface. A remarkable temperature increase was observed by exposing the Au NP-loaded NLCs to an NIR laser, which heated the samples sufficiently (above 40 °C) to kill tumor cells. The entrapped DOX exhibited a sustained, stepwise NIR laser-triggered drug release pattern. The biocompatibility of the NLCs was investigated by MTT assay and the cell viability was maintained above 85%, even at high concentrations. The intracellular uptake of free DOX and entrapped DOX, observed by confocal microscopy, revealed two distinct uptake mechanisms, i.e. passive diffusion and endocytosis, respectively. In particular, internalization of the HA-Au-DOX-NLCs was more extensively enhanced than the Au-DOX-NLCs, which was attributed to HA-CD44 receptor-mediated endocytosis. Meanwhile, the internalized NLCs successfully escaped from the lysosomes, increasing the intracellular DOX. The HA-Au-DOX-NLCs IC50 value decreased from 2.3 to 0.6 μg ml-1 with NIR irradiation at 72 h, indicating the excellent synergistic antitumor effect of photothermal-chemotherapy. The photothermal ablation was further confirmed by a live/dead cell staining assay. Thus, a combined photothermal-chemotherapy approach has been proposed as a promising strategy for cancer treatment.

  5. Optimizing the models for rapid determination of chlorogenic acid, scopoletin and rutin in plant samples by near-infrared diffuse reflectance spectroscopy

    Science.gov (United States)

    Mao, Zhiyi; Shan, Ruifeng; Wang, Jiajun; Cai, Wensheng; Shao, Xueguang

    2014-07-01

    Polyphenols in plant samples have been extensively studied because phenolic compounds are ubiquitous in plants and can be used as antioxidants in promoting human health. A method for rapid determination of three phenolic compounds (chlorogenic acid, scopoletin and rutin) in plant samples using near-infrared diffuse reflectance spectroscopy (NIRDRS) is studied in this work. Partial least squares (PLS) regression was used for building the calibration models, and the effects of spectral preprocessing and variable selection on the models are investigated for optimization of the models. The results show that individual spectral preprocessing and variable selection has no or slight influence on the models, but the combination of the techniques can significantly improve the models. The combination of continuous wavelet transform (CWT) for removing the variant background, multiplicative scatter correction (MSC) for correcting the scattering effect and randomization test (RT) for selecting the informative variables was found to be the best way for building the optimal models. For validation of the models, the polyphenol contents in an independent sample set were predicted. The correlation coefficients between the predicted values and the contents determined by high performance liquid chromatography (HPLC) analysis are as high as 0.964, 0.948 and 0.934 for chlorogenic acid, scopoletin and rutin, respectively.

  6. Diffuse Reflectance Spectroscopy of Hidden Objects, Part I: Interpretation of the Reflection-Absorption-Scattering Fractions in Near-Infrared (NIR) Spectra of Polyethylene Films.

    Science.gov (United States)

    Pomerantsev, Alexey L; Rodionova, Oxana Ye; Skvortsov, Alexej N

    2017-08-01

    Investigation of a sample covered by an interfering layer is required in many fields, e.g., for process control, biochemical analysis, and many other applications. This study is based on the analysis of spectra collected by near-infrared (NIR) diffuse reflectance spectroscopy. Each spectrum is a composition of a useful, target spectrum and a spectrum of an interfering layer. To recover the target spectrum, we suggest using a new phenomenological approach, which employs the multivariate curve resolution (MCR) method. In general terms, the problem is very complex. We start with a specific problem of analyzing a system, which consists of several layers of polyethylene (PE) film and underlayer samples with known spectral properties. To separate information originating from PE layers and the target, we modify the system versus both the number of the PE layers as well as the reflectance properties of the target sample. We consider that the interfering spectrum of the layer can be modeled using three components, which can be tentatively called transmission, absorption, and scattering contributions. The novelty of our approach is that we do not remove the reflectance and scattering effects from the spectra, but study them in detail aiming to use this information to recover the target spectrum.

  7. [Simultaneous determination of instant coffee, plant fat and sugar content in liquid coffee beverage by diffuse reflectance near-infrared spectroscopy].

    Science.gov (United States)

    Wang, Dong; Min, Shun-geng; Duan, Jia; Xiong, Yan-mei; Li, Qian-qian

    2012-04-01

    The diffuse reflectance near-infrared spectra of 20 liquid coffee beverage samples were collected by FT-NIR spectrometer combined with integral sphere in this thesis. The quantitative calibration models of instant coffee, plant fat and sugar were developed respectively. The result indicated that for the calibration models of instant coffee, plant fat and sugar, the dimensions of the calibration models are 4, 5 and 4 respectively; the determination coefficients (R2) are 98.97%, 99.94% and 99.18% respectively; the root mean square errors of calibration (RMSEC) are 1.62, 0.42 and 1.58 respectively; the root mean square errors of cross validation (RMSECV) are 2.12, 0.72 and 2.01 respectively. The result of F-test showed that a very remarkable correlation exists between the estimated and specified values for each calibration model. This research indicated that NIR spectroscopy can be applied in the rapid, accurate and simultaneous determination of the three main ingredients in liquid coffee beverage. This research can provide some references for the quality control of liquid coffee beverage and the determination of the substance with chemical-fixation composition in liquid formula food.

  8. Capabilities and limitations of handheld Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS) for the analysis of colourants and binders in 20th-century reverse paintings on glass

    Science.gov (United States)

    Steger, Simon; Stege, Heike; Bretz, Simone; Hahn, Oliver

    2018-04-01

    A non-invasive method has been carried out to show the capabilities and limitations of Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS) for identifying of colourants and binders in modern reverse glass paintings. For this purpose, the reverse glass paintings "Zwei Frauen am Tisch" (1920-22), "Bäume" (1946) (both by Heinrich Campendonk), "Lofoten" (1933) (Edith Campendonk-van Leckwyck) and "Ohne Titel" (1954) (Marianne Uhlenhuth), were measured. In contrast to other techniques (e.g. panel and mural painting), the paint layers are applied in reverse succession. In multi-layered paint systems, the front paint layer may no longer be accessible. The work points out the different spectral appearance of a given substance (gypsum, basic lead white) in reverse glass paintings. However, inverted bands, band overlapping and derivative-shaped spectral features can be interpreted by comparing the spectra from the paintings with spectra from pure powders and pigment/linseed oil mock-ups. Moreover, the work focuses on this method's capabilities in identifying synthetic organic pigments (SOP). Reference spectra of three common SOP (PG7, PY1, PR83) were obtained from powders and historical colour charts. We identified PR83 and PY1 in two reverse glass paintings, using the measured reference spectra. The recorded DRIFTS spectra of pure linseed oil, gum Arabic, mastic, polyvinyl acetate resin and bees wax can be used to classify the binding media of the measured paintings.

  9. Using visible and near-infrared diffuse reflectance spectroscopy for predicting soil properties based on regression with peaks parameters as derived from continuum-removed spectra

    Science.gov (United States)

    Vasat, Radim; Klement, Ales; Jaksik, Ondrej; Kodesova, Radka; Drabek, Ondrej; Boruvka, Lubos

    2014-05-01

    Visible and near-infrared diffuse reflectance spectroscopy (VNIR-DRS) provides a rapid and inexpensive tool for simultaneous prediction of a variety of soil properties. Usually, some sophisticated multivariate mathematical or statistical methods are employed in order to extract the required information from the raw spectra measurement. For this purpose especially the Partial least squares regression (PLSR) and Support vector machines (SVM) are the most frequently used. These methods generally benefit from the complexity with which the soil spectra are treated. But it is interesting that also techniques that focus only on a single spectral feature, such as a simple linear regression with selected continuum-removed spectra (CRS) characteristic (e.g. peak depth), can often provide competitive results. Therefore, we decided to enhance the potential of CRS taking into account all possible CRS peak parameters (area, width and depth) and develop a comprehensive methodology based on multiple linear regression approach. The eight considered soil properties were oxidizable carbon content (Cox), exchangeable (pHex) and active soil pH (pHa), particle and bulk density, CaCO3 content, crystalline and amorphous (Fed) and amorphous Fe (Feox) forms. In four cases (pHa, bulk density, Fed and Feox), of which two (Fed and Feox) were predicted reliably accurately (0.50 0.80). Acknowledgment: Authors acknowledge the financial support of the Ministry of Agriculture of the Czech Republic (grant No. QJ1230319).

  10. Study of the aerosol fragrances of eugenol derivatives in Cananga odorata using diffuse reflectance infrared Fourier transform spectroscopy and gas chromatography.

    Science.gov (United States)

    Kuo, Su-Ching; Chuang, Shien-Kai; Lin, Ho-Yang; Wang, Lai-Hao

    2009-10-19

    The purpose of this study was to develop and test a diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) method, a fast and non-destructive method without extraction, and compare it with the standard gas chromatography (GC) method currently used. A micro-orifice uniform deposit impactor (MOUDI) was used to sample all the size distributions of the aerosol particles of essential oils to investigate the relation between size distributions and the indoor concentration distributions of ylang essential oils. Correlation coefficients for DRIFTS and GC were 0.9904, 0.9910, 0.9913, and 0.9983 for eugenol, isoeugenol, methyl ether, and eugenyl acetate, respectively. The results showed that the concentrations of the four eugenol derivatives of smoke were approximately three times higher than those of mist. Additionally, the major size distributions of aerosol were 0.19 microm and 1.8 microm for the smoke and mist methods, respectively. Because these two methods produce similar results, DRIFTS is a practical method for assessing these fragrances in aerosols.

  11. Capabilities and limitations of handheld Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS) for the analysis of colourants and binders in 20th-century reverse paintings on glass.

    Science.gov (United States)

    Steger, Simon; Stege, Heike; Bretz, Simone; Hahn, Oliver

    2018-04-15

    A non-invasive method has been carried out to show the capabilities and limitations of Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS) for identifying of colourants and binders in modern reverse glass paintings. For this purpose, the reverse glass paintings "Zwei Frauen am Tisch" (1920-22), "Bäume" (1946) (both by Heinrich Campendonk), "Lofoten" (1933) (Edith Campendonk-van Leckwyck) and "Ohne Titel" (1954) (Marianne Uhlenhuth), were measured. In contrast to other techniques (e.g. panel and mural painting), the paint layers are applied in reverse succession. In multi-layered paint systems, the front paint layer may no longer be accessible. The work points out the different spectral appearance of a given substance (gypsum, basic lead white) in reverse glass paintings. However, inverted bands, band overlapping and derivative-shaped spectral features can be interpreted by comparing the spectra from the paintings with spectra from pure powders and pigment/linseed oil mock-ups. Moreover, the work focuses on this method's capabilities in identifying synthetic organic pigments (SOP). Reference spectra of three common SOP (PG7, PY1, PR83) were obtained from powders and historical colour charts. We identified PR83 and PY1 in two reverse glass paintings, using the measured reference spectra. The recorded DRIFTS spectra of pure linseed oil, gum Arabic, mastic, polyvinyl acetate resin and bees wax can be used to classify the binding media of the measured paintings. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Cloud point extraction and diffuse reflectance-Fourier transform infrared spectroscopic determination of chromium(VI): A probe to adulteration in food stuffs.

    Science.gov (United States)

    Tiwari, Swapnil; Deb, Manas Kanti; Sen, Bhupendra K

    2017-04-15

    A new cloud point extraction (CPE) method for the determination of hexavalent chromium i.e. Cr(VI) in food samples is established with subsequent diffuse reflectance-Fourier transform infrared (DRS-FTIR) analysis. The method demonstrates enrichment of Cr(VI) after its complexation with 1,5-diphenylcarbazide. The reddish-violet complex formed showed λ max at 540nm. Micellar phase separation at cloud point temperature of non-ionic surfactant, Triton X-100 occurred and complex was entrapped in surfactant and analyzed using DRS-FTIR. Under optimized conditions, the limit of detection (LOD) and quantification (LOQ) were 1.22 and 4.02μgmL -1 , respectively. Excellent linearity with correlation coefficient value of 0.94 was found for the concentration range of 1-100μgmL -1 . At 10μgmL -1 the standard deviation for 7 replicate measurements was found to be 0.11μgmL -1 . The method was successfully applied to commercially marketed food stuffs, and good recoveries (81-112%) were obtained by spiking the real samples. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Characteristics of Optical Diffusers for Light-Emitting Diodes Backlight Unit Prepared by Melt-Extrusion Process

    Science.gov (United States)

    Kim, Hyo Jin; Kim, Dong Won; Kim, Seong Woo

    2013-10-01

    Using extrusion compounding followed by compression molding processes, polycarbonate-based optical diffusers with uniform dispersion of diffusing particles could be prepared for application in direct-lit LED backlight unit. Inorganic porous silica and organic silicone microsphere particles were employed as diffusing agents. The inclusion of diffusing particles up to 3 wt % substantially improved the luminance uniformity with respect to both location and viewing angle, and the effect was shown to be more prominent for the silicone particles. Alternatively, inorganic silica particles could yield diffusers with enhanced absolute luminance and thermal resistance property. The thermo-mechanical property of the elastic modulus was revealed to be improved upon addition of diffusing particles of silica and silicone with cross-linked structure.

  14. Spectrally resolved infrared microscopy and chemometric tools to reveal the interaction between blue light (470nm) and methicillin-resistant Staphylococcus aureus.

    Science.gov (United States)

    Bumah, Violet V; Aboualizadeh, Ebrahim; Masson-Meyers, Daniela S; Eells, Janis T; Enwemeka, Chukuka S; Hirschmugl, Carol J

    2017-02-01

    Blue light inactivates methicillin-resistant Staphylococcus aureus (MRSA), a Gram-positive antibiotic resistant bacterium that leads to fatal infections; however, the mechanism of bacterial death remains unclear. In this paper, to uncover the mechanism underlying the bactericidal effect of blue light, a combination of Fourier transform infrared (FTIR) spectroscopy and chemometric tools is employed to detect the photoreactivity of MRSA and its distinctive pathway toward apoptosis after treatment. The mechanism of action of UV light and vancomycin against MRSA is also investigated to support the findings. Principal component analysis followed by linear discriminant analysis (PCA- LDA) is employed to reveal clustering of five groups of MRSA samples, namely untreated (control I), untreated and incubated at ambient air (control II), irradiated with 470nm blue light, irradiated with 253.5 UV light, and vancomycin-treated MRSA. Loadings plot from PCA-LDA analysis reveals important functional groups in proteins (1683, 1656, 1596, 1542cm -1 ), lipids (1743, 1409cm -1 ), and nucleic acids region of the spectrum (1060, 1087cm -1 ) that are responsible for the classification of blue light irradiated spectra and control spectra. Cluster vector plots and scores plot reveals that UV light-irradiated spectra are the most biochemically similar to blue light- irradiated spectra; however, some wavenumbers experience a shift. The shifts between blue light and UV light irradiated loadings plot at ν asym PO 2- band (from 1228 to 1238cm -1 ), DNA backbone (from 970 to 966cm -1 ) and base pairing vibration of DNA (from 1717 to 1712cm -1 ) suggest distinctive changes in DNA conformation in response to irradiation. Our findings indicate that irradiation of MRSA with 470nm light induces A-DNA cleavage and that B-DNA is more resistant to damage by blue light. Blue light and UV light treatment of MRSA are complementary and distinct from the known antimicrobial effect of vancomycin. Moreover

  15. EDITORIAL: Optical mammography: Imaging and characterization of breast lesions by pulsed near-infrared laser light (OPTIMAMM)

    Science.gov (United States)

    Hebden, Jeremy C.; Rinneberg, Herbert

    2005-06-01

    The Commission of the European Union (EU) conceived its Fifth Framework Programme (FP5) to identify the priorities for the European Union's research, technological development and demonstration activities for the period 1998-2002. By encouraging collaborative research between groups in different member countries, FP5 was intended to help solve problems the EU is facing and respond to major socio-economic challenges. The programme focused on a number of objectives and areas combining technological, industrial, economic, social and cultural aspects. A specific call was made, under its `Quality of Life and Management of Living Resources' section, for proposals which aim to explore improvements in non-invasive methods of imaging for early diagnosis and clinical evaluation of disease. Among the projects successfully funded under the FP5 programme was one entitled `Optical mammography: Imaging and characterization of breast lesions by pulsed near-infrared laser light', known by its acronym OPTIMAMM. The project involved a consortium of nine partners, comprising ten applied science and clinical research groups based in six EU countries, with overall administration and management provided by the Physikalisch-Technische Bundesanstalt, Berlin, Germany. The broad aim of the OPTIMAMM project was to combine multi-disciplinary basic (physics, engineering, mathematics, computer science) and clinical (oncology, histology) research to assess the diagnostic potential of time-domain optical and photoacoustic mammography as novel, non-invasive imaging modalities for the detection and clinical evaluation of breast lesions. Funding for the project, at a total cost of about 1.67 MEuro, began in December 2000 for a period of three years, although a zero-cost extension was granted to enable the ongoing project activities to continue until the end of May 2004. The importance of developing new tools for the detection and diagnosis of breast disease is evident from the very high incidence and

  16. Comparison of NMR and Dynamic Light Scattering for Measuring Diffusion Coefficients of Formulated Insulin: Implications for Particle Size Distribution Measurements in Drug Products.

    Science.gov (United States)

    Patil, Sharadrao M; Keire, David A; Chen, Kang

    2017-11-01

    Particle size distribution, a measurable physicochemical quantity, is a critical quality attribute of drug products that needs to be controlled in drug manufacturing. The non-invasive methods of dynamic light scattering (DLS) and Diffusion Ordered SpectroscopY (DOSY) NMR can be used to measure diffusion coefficient and derive the corresponding hydrodynamic radius. However, little is known about their use and sensitivity as analytical tools for particle size measurement of formulated protein therapeutics. Here, DLS and DOSY-NMR methods are shown to be orthogonal and yield identical diffusion coefficient results for a homogenous monomeric protein standard, ribonuclease A. However, different diffusion coefficients were observed for five insulin drug products measured using the two methods. DOSY-NMR yielded an averaged diffusion coefficient among fast exchanging insulin oligomers, ranging between dimer and hexamer in size. By contrast, DLS showed several distinct species, including dimer, hexamer, dodecamer and other aggregates. The heterogeneity or polydisperse nature of insulin oligomers in formulation caused DOSY-NMR and DLS results to differ from each other. DLS measurements provided more quality attributes and higher sensitivity to larger aggregates than DOSY-NMR. Nevertheless, each method was sensitive to a different range of particle sizes and complemented each other. The application of both methods increases the assurance of complex drug quality in this similarity comparison.

  17. Developmental changes in mesophyll diffusion conductance and photosynthetic capacity under different light and water availabilities in Populus tremula: how structure constrains function.

    Science.gov (United States)

    Tosens, Tiina; Niinemets, Ulo; Vislap, Vivian; Eichelmann, Hillar; Castro Díez, Pilar

    2012-05-01

    Finite mesophyll diffusion conductance (g(m) ) significantly constrains net assimilation rate (A(n) ), but g(m) variations and variation sources in response to environmental stresses during leaf development are imperfectly known. The combined effects of light and water limitations on g(m) and diffusion limitations of photosynthesis were studied in saplings of Populus tremula L. An one-dimensional diffusion model was used to gain insight into the importance of key anatomical traits in determining g(m) . Leaf development was associated with increases in dry mass per unit area, thickness, density, exposed mesophyll (S(mes) /S) and chloroplast (S(c) /S) to leaf area ratio, internal air space (f(ias) ), cell wall thickness and chloroplast dimensions. Development of S(mes) /S and S(c) /S was delayed under low light. Reduction in light availability was associated with lower S(c) /S, but with larger f(ias) and chloroplast thickness. Water stress reduced S(c) /S and increased cell wall thickness under high light. In all treatments, g(m) and A(n) increased and CO(2) drawdown because of g(m) , C(i) -C(c) , decreased with increasing leaf age. Low light and drought resulted in reduced g(m) and A(n) and increased C(i) -C(c) . These results emphasize the importance of g(m) and its components in determining A(n) variations during leaf development and in response to stress. © 2011 Blackwell Publishing Ltd.

  18. The safety and efficacy of a combined diode laser and bipolar radiofrequency compared with combined infrared light and bipolar radiofrequency for skin rejuvenation.

    Science.gov (United States)

    Choi, Yeon Jin; Lee, Jung Yeon; Ahn, Ji Young; Kim, Myeung Nam; Park, Mi Youn

    2012-01-01

    As the demand for noninvasive procedures for skin rejuvenation is increasing, combined diode laser and radiofrequency and combined infrared and radiofrequency devices have recently emerged. To compare Polaris WRA(TM), a combination device of diode light and RF, and ReFirme ST(TM), a combination device of infrared and bipolar RF, in terms of safety and efficacy on skin rejuvenation. Fourteen Korean volunteers of skin type II-IV, with facial laxity and periorbital rhytids, received three treatments at 3-week intervals with combined diode laser and bipolar radiofrequency (laser fluence 30 J/cm2, RF fluence 90 J/cm3) on the right half of their faces and combined infrared light and bipolar radiofrequency (RF fluence 120 J/cm3) on the left half of their faces. Clinical photos of front and bilateral sides of the subjects' faces were taken at baseline and at 6, 9, 12 weeks after the treatment initiation. The investigators' and the subjects' global assessments were performed. There is no statistically significant difference in the overall outcome between Polaris WRA(TM) and Refirme ST(TM) based on pre- and post-treatment objective measurements. Polaris WRA(TM) was more effective than Refirme ST(TM) at reducing wrinkles when therapeutic results of the two appliances were compared based on the patient satisfaction measurements. After the treatment with both instruments, histological increase in the production and rearrangement of collagen fibers at the dermal layer was observed. The density of the collagen fibers was more increased with the Polaris WRA(TM)-treated facial area than that of Refirme ST(TM). Treatment was generally well tolerated, and there was no serious complication. In this study, both the lasers appeared to be safe, and effective methods for treating skin laxity and facial wrinkles. Combined diode laser and radiofrequency was more effective than combined infrared and radiofrequency at reducing wrinkles and pores when the therapeutic results of both the

  19. The safety and efficacy of a combined diode laser and bipolar radiofrequency compared with combined infrared light and bipolar radiofrequency for skin rejuvenation

    Directory of Open Access Journals (Sweden)

    Yeon Jin Choi

    2012-01-01

    Full Text Available Background: As the demand for noninvasive procedures for skin rejuvenation is increasing, combined diode laser and radiofrequency and combined infrared and radiofrequency devices have recently emerged. Aim: To compare Polaris WRA TM , a combination device of diode light and RF, and ReFirme ST TM , a combination device of infrared and bipolar RF, in terms of safety and efficacy on skin rejuvenation. Methods: Fourteen Korean volunteers of skin type II-IV, with facial laxity and periorbital rhytids, received three treatments at 3-week intervals with combined diode laser and bipolar radiofrequency (laser fluence 30 J/cm 2 , RF fluence 90 J/cm 3 on the right half of their faces and combined infrared light and bipolar radiofrequency (RF fluence 120 J/cm 3 on the left half of their faces. Clinical photos of front and bilateral sides of the subjects′ faces were taken at baseline and at 6, 9, 12 weeks after the treatment initiation. The investigators′ and the subjects′ global assessments were performed. Results: There is no statistically significant difference in the overall outcome between Polaris WRA TM and Refirme ST TM based on pre- and post-treatment objective measurements. Polaris WRA TM was more effective than Refirme ST TM at reducing wrinkles when therapeutic results of the two appliances were compared based on the patient satisfaction measurements. After the treatment with both instruments, histological increase in the production and rearrangement of collagen fibers at the dermal layer was observed. The density of the collagen fibers was more increased with the Polaris WRA TM -treated facial area than that of Refirme ST TM . Treatment was generally well tolerated, and there was no serious complication. Conclusion: In this study, both the lasers appeared to be safe, and effective methods for treating skin laxity and facial wrinkles. Combined diode laser and radiofrequency was more effective than combined infrared and radiofrequency at

  20. Cloaking through cancellation of diffusive wave scattering

    KAUST Repository

    Farhat, Mohamed

    2016-08-10

    A new cloaking mechanism, which makes enclosed objects invisible to diffusive photon density waves, is proposed. First, diffusive scattering from a basic core-shell geometry, which represents the cloaked structure, is studied. The conditions of scattering cancellation in a quasi-static scattering regime are derived. These allow for tailoring the diffusivity constant of the shell enclosing the object so that the fields scattered from the shell and the object cancel each other. This means that the photon flow outside the cloak behaves as if the cloaked object were not present. Diffusive light invisibility may have potential applications in hiding hot spots in infrared thermography or tissue imaging. © 2016 The Author(s) Published by the Royal Society. All rights reserved.

  1. Development of a real-time and quantitative thrombus sensor for an extracorporeal centrifugal blood pump by near-infrared light.

    Science.gov (United States)

    Sakota, Daisuke; Fujiwara, Tatsuki; Ohuchi, Katsuhiro; Kuwana, Katsuyuki; Yamazaki, Hiroyuki; Kosaka, Ryo; Nishida, Masahiro; Mizuno, Tomohiro; Arai, Hirokuni; Maruyama, Osamu

    2018-01-01

    We developed an optical thrombus sensor for a monopivot extracorporeal centrifugal blood pump. In this study, we investigated its quantitative performance for thrombus detection in acute animal experiments of left ventricular assist using the pump on pathogen-free pigs. Optical fibers were set in the driver unit of the pump. The incident light at the near-infrared wavelength of 810 nm was aimed at the pivot bearing, and the resulting scattered light was guided to the optical fibers. The detected signal was analyzed to obtain the thrombus formation level. As a result, real-time and quantitative monitoring of the thrombus surface area on the pivot bearing was achieved with an accuracy of 3.6 ± 2.3 mm 2 . In addition, the sensing method using the near-infrared light was not influenced by changes in the oxygen saturation and the hematocrit. It is expected that the developed sensor will be useful for optimal anticoagulation management for long-term extracorporeal circulation therapies.

  2. Enhanced high-energy protocol using a fractional bipolar radiofrequency device combined with bipolar radiofrequency and infrared light for improving facial skin appearance and wrinkles.

    Science.gov (United States)

    Gold, Michael H; Biesman, Brian S; Taylor, Mark

    2017-06-01

    Fractional bipolar radiofrequency treatment and treatment with bipolar radiofrequency combined with infrared light have been shown in previous trials to safely and effectively improve the appearance of facial wrinkles. To evaluate a high-energy protocol with combined bipolar radiofrequency and infrared light energies for improvement in photoaged facial skin. Seventy-two patients presenting with mild to moderate facial wrinkles underwent a single full-face treatment (n=54) or two treatments (n=18) at 6-week intervals. Independent blinded assessment and investigator assessment were performed, using the Fitzpatrick Wrinkle and Elastosis Scale (0-9) and the Global Aesthetic Improvement scale. Patients also completed a self-assessment questionnaire concerning satisfaction with the treatment. All patients achieved some degree of improvement in their wrinkles and skin appearance, following a single treatment or two treatments with the enhanced-energy protocol. Blinded evaluation demonstrated 71% and 70% of the patients showing improvement of one unit or greater on the Fitzpatrick Scale, at the 12-week and 24-week follow-ups post-treatment, respectively. Similar results were reported by investigators. Under the Global Aesthetic Improvement Scale, investigators observed 87%, 91% and 81% of patients showing improvement at the 6-, 12-, and 24-week post-treatment end, respectively. Patients tolerated the treatments well and were satisfied with the clinical results. The enhanced-energy treatment protocol, with fractional bipolar radiofrequency treatment and treatment with bipolar radiofrequency combined with infrared light applications, yields significant improvement of skin texture, wrinkling, and overall appearance following a single treatment. The results appear gradually over time and are maintained for at least 6 months' post-treatment. © 2017 Wiley Periodicals, Inc.

  3. Fractionated bipolar radiofrequency and bipolar radiofrequency potentiated by infrared light for treating striae: A prospective randomized, comparative trial with objective evaluation.

    Science.gov (United States)

    Harmelin, Yona; Boineau, Dominique; Cardot-Leccia, Nathalie; Fontas, Eric; Bahadoran, Philippe; Becker, Anne-Lise; Montaudié, Henri; Castela, Emeline; Perrin, Christophe; Lacour, Jean-Philippe; Passeron, Thierry

    2016-03-01

    Very few treatments for striae are based on prospective randomized trials. The objective of this study was to assess the efficacy of bipolar fractional radiofrequency and bipolar radiofrequency potentiated with infrared light, alone or combined, for treating abdominal stretch marks. Bicentric prospective interventional randomized controlled trial in the department of Dermatology of University Hospital of Nice and Aesthetics Laser Center of Bordeaux, France. Men and women of age 18 years or above, who presented for the treatment of mature or immature abdominal striae were included. The patients' abdomens were divided into four equal quadrants. Bipolar radiofrequency potentiated with infrared light and fractional bipolar radiofrequency were applied, alone or combined, and compared to the remaining untreated quadrant. The main criterion of evaluation was the measurement of depth of striae, using 3D photography at 6 months follow-up. A global assessment was also rated by the physician performing the treatment and by the patients. Histological analysis and confocal laser microscopy were additionally performed. A total of 22 patients were enrolled, and 384 striae were measured. In per protocol analysis mean striae depth was decreased by 21.64%, observed at 6 months follow-up with the combined approach, compared to an increase of 1.73% in the control group (P < 0.0001). No significant difference in striae width was observed between the treated or control quadrants. Global assessment by the physician who performed the treatment and by the patient both showed greater improved with the combination treatment compared to control areas (P = 0.004 and P = 0.01, respectively). A more homogeneous interlacing pattern and thicker collagen fibers with a decreased proportion of elastic fibers was observed after treatment. Fractional bipolar radiofrequency, combined with bipolar radiofrequency potentiated by infrared light, is an effective treatment of both immature and

  4. Simulation of the Unexpected Photosynthetic Seasonality in Amazonian Evergreen Forests by Using an Improved Diffuse Fraction-Based Light Use Efficiency Model

    Science.gov (United States)

    Yan, Hao; Wang, Shao-Qiang; da Rocha, Humberto R.; Rap, Alexandru; Bonal, Damien; Butt, Nathalie; Coupe, Natalia Restrepo; Shugart, Herman H.

    2017-11-01

    Understanding the mechanism of photosynthetic seasonality in Amazonian evergreen forests is critical for its formulation in global climate and carbon cycle models. However, the control of the unexpected photosynthetic seasonality is highly uncertain. Here we use eddy-covariance data across a network of Amazonian research sites and a novel evapotranspiration (E) and two-leaf-photosynthesis-coupled model to investigate links between photosynthetic seasonality and climate factors on monthly scales. It reproduces the GPP seasonality (R2 = 0.45-0.69) with a root-mean-square error (RMSE) of 0.67-1.25 g C m-2 d-1 and a Bias of -0.03-1.04 g C m-2 d-1 for four evergreen forest sites. We find that the proportion of diffuse and direct sunlight governs the photosynthetic seasonality via their interaction with sunlit and shaded leaves, supported by a proof that canopy light use efficiency (LUE) has a strong linear relationship with the fraction of diffuse sunlight for Amazonian evergreen forests. In the transition from dry season to rainy season, incident total radiation (Q) decreased while LUE and diffuse fraction increased, which produced the large seasonal increase ( 34%) in GPP of evergreen forests. We conclude that diffuse radiation is an important environmental driver of the photosynthetic seasonality in tropical Amazon forests yet depending on light utilization by sunlit and shaded leaves. Besides, the GPP model simulates the precipitation-dominated GPP seasonality (R2 = 0.40-0.69) at pasture and savanna sites. These findings present an improved physiological method to relate light components with GPP in tropical Amazon.

  5. Light

    CERN Document Server

    Robertson, William C

    2003-01-01

    Why is left right and right left in the mirror? Baffled by the basics of reflection and refraction? Wondering just how the eye works? If you have trouble teaching concepts about light that you don t fully grasp yourself, get help from a book that s both scientifically accurate and entertaining with Light. By combining clear explanations, clever drawings, and activities that use easy-to-find materials, this book covers what science teachers and parents need to know to teach about light with confidence. It uses ray, wave, and particle models of light to explain the basics of reflection and refraction, optical instruments, polarization of light, and interference and diffraction. There s also an entire chapter on how the eye works. Each chapter ends with a Summary and Applications section that reinforces concepts with everyday examples. Whether you need a deeper understanding of how light bends or a good explanation of why the sky is blue, you ll find Light more illuminating and accessible than a college textbook...

  6. Determination of carbohydrates in Folium Lysium Chinensis using capillary electrophoresis combined with far-infrared light irradiation-assisted extraction.

    Science.gov (United States)

    Fu, Yuejiao; Zhang, Luyan; Chen, Gang

    2011-11-01

    In this work, a method based on capillary electrophoresis with amperometric detection and far-infrared-assisted extraction has been developed for the determination of mannitol, sucrose, glucose and fructose in Folium Lysium Chinensis, a commonly used traditional Chinese medicine. The water-soluble constituents in the herbal drug were extracted with double distilled water with the assistance of far-infrared radiations. The effects of detection potential, irradiation time, and the voltage applied on the infrared generator were investigated to acquire the optimum analysis conditions. The detection electrode was a 300-μm-diameter copper disk electrode at a detection potential of +0.65 V. The four carbohydrates could be well separated within 18 min in a 50-cm length fused-silica capillary at a separation voltage of 9 kV in a 50-mM NaOH aqueous solution. The relation between peak current and analyte concentration was linear over about three orders of magnitude with detection limits (S/N=3) ranging from 0.66 to 1.15 μM for all analytes. The results indicated that far infrared significantly enhanced the extraction efficiency of the carbohydrates in Folium Lysium Chinensis. The extraction time was significantly reduced to 7 min compared with several hours for conventional hot solvent extraction. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Light

    CERN Document Server

    Rivera, Andrea

    2017-01-01

    Light is all around us. Learn how it is used in art, technology, and engineering. Five easy-to-read chapters explain the science behind light, as well as its real-world applications. Vibrant, full-color photos, bolded glossary words, and a key stats section let readers zoom in even deeper. Aligned to Common Core Standards and correlated to state standards. Abdo Zoom is a division of ABDO.

  8. Diffusivities of lysozyme in aqueous MgCl2 solutions from dynamic light-scattering data:  Effect of protein and salt concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Grigsby, J. J. [Univ. of California, Berkeley, CA (United States); Blanch, H. W. [Univ. of California, Berkeley, CA (United States); Prausnitz, J. M. [Univ. of California, Berkeley, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2000-03-25

    Dynamic light-scattering (DLS) studies are reported for lysozyme in aqueous magnesium chloride solutions at ionic strengths 0.6, 0.8, and 1.0 M for a temperature range 10–30 °C at pH 4.0. The diffusion coefficient of lysozyme was calculated as a function of protein concentration, salt concentration, temperature, and scattering angle. A Zimm-plot analysis provided the infinitely-dilute diffusion coefficient and the protein-concentration dependence of the diffusion coefficient. The hydrodynamic radius of a lysozyme monomer was obtained from the Stokes–Einstein equation; it is 18.6 ± 1.0 Å. The difference (1.4 Å) between the hydrodynamic and the crystal-structure radius is attributed to binding of Mg2+ ions to the protein surface and subsequent water structuring. The effect of protein concentration on the diffusion coefficient indicates that attractive interactions increase as the temperature falls at fixed salt concentration. However, when plotted against ionic strength, attractive interactions exhibit a maximum at ionic strength 0.84 M, probably because Mg2+–protein binding and water structuring become increasingly important as the concentration of magnesium ion rises. Finally, the present work suggests that inclusion of ion binding and water structuring at the protein surface in a pair-potential model is needed to achieve accurate predictions of protein-solution phase behavior.

  9. Development of infrared point-source light emitting diodes (LED) with a distributed Bragg reflector (DBR); Bragg hanshakyo wo mochiita sekigai ten kogen LED no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Kato, T.; Saka, T.; Hirotani, M.; Sone, H. [Daido Steel Co. Ltd., Nagoya (Japan)

    1997-05-20

    It has been required to develop LED with a small point-source for optical sensors and optical encoders. To fabricate a high efficiency point-source LED, the structure and fabrication process have been considered in which the current can be focused on a small light emitting region and the light can be obtained effectively from a small window. Thus, a high output point-source LED with a light emitting diameter 50{mu}m has been developed. A Bragg reflector with AlGaAs/AlAs multi-layer film was put on the n-GaAs substrate, and n-AlGaAs/p-GaAs/p-AlGaAs double hetero-structure layer and n-AlGaAs current block layer were put on the layer in the order. For making a small point-source LED, a part of the current block layer was opened by etching, and a current path was made by diffusing Zn from the surface. A structure was made in which the current can be concentrated only in a region immediately below the light collection part of p-AlGaAs light emitting layer. The LED was deposited by the epitaxial growth on the n-GaAs substrate using a vertical-type MOCVD apparatus under the atmospheric pressure. From the results of the continuous operation test, this system was considered to have sufficient reliability for the practical use. 7 refs., 7 figs., 1 tab.

  10. Incorporating diffuse radiation into a light use efficiency and evapotranspiration model: An 11-year study in a high latitude deciduous forest

    DEFF Research Database (Denmark)

    Wang, Sheng; Ibrom, Andreas; Bauer-Gottwein, Peter

    2018-01-01

    The fraction of diffuse photosynthetic active radiation (PAR) reaching the land surface is one of the biophysical factors regulating carbon and water exchange between terrestrial ecosystems and the atmosphere. This is especially relevant for high latitude ecosystems, where cloudy days are prevalent...... set were used to statistically explore the independent and joint effects of diffuse PAR on GPP, ET, incident light use efficiency (LUE), evaporative fraction (EF) and ecosystem water use efficiency (WUE). The independent and joint effects of CI were compared from global sensitivity analysis...... of the ‘top-down’ models. Results indicate that for independent effects, CI increased GPP, LUE, ET, EF and WUE. Analysis of joint effects shows that CI mainly interacted with the radiation intercepted in the canopy (PAR, net radiation and leaf area index) to influence GPP, ET and WUE. Moreover, Ta and vapor...

  11. New class of photocatalytic materials and a novel principle for efficient water splitting under infrared and visible light: MgB2 as unexpected example.

    Science.gov (United States)

    Kravets, V G; Grigorenko, A N

    2015-11-30

    Water splitting is unanimously recognized as environment friendly, potentially low cost and renewable energy solution based on the future hydrogen economy. Especially appealing is photocatalytic water splitting whereby a suitably chosen catalyst dramatically improves efficiency of the hydrogen production driven by direct sunlight and allows it to happen even at zero driving potential. Here, we suggest a new class of stable photocatalysts and the corresponding principle for catalytic water splitting in which infrared and visible light play the main role in producing the photocurrent and hydrogen. The new class of catalysts - ionic or covalent binary metals with layered graphite-like structures - effectively absorb visible and infrared light facilitating the reaction of water splitting, suppress the inverse reaction of ion recombination by separating ions due to internal electric fields existing near alternating layers, provide the sites for ion trapping of both polarities, and finally deliver the electrons and holes required to generate hydrogen and oxygen gases. As an example, we demonstrate conversion efficiency of ~27% at bias voltage Vbias = 0.5V for magnesium diboride working as a catalyst for photoinduced water splitting. We discuss its advantages over some existing materials and propose the underlying mechanism of photocatalytic water splitting by binary layered metals.

  12. Influences of Pinpoint Plantar Long-Wavelength Infrared Light Irradiation (Stress-Free Therapy on Chorioretinal Hemodynamics, Atherosclerosis Factors, and Vascular Endothelial Growth Factor

    Directory of Open Access Journals (Sweden)

    Keisou Ishimaru

    2018-03-01

    Full Text Available Background: We previously reported that pinpoint plantar long-wavelength infrared light irradiation (stress-free therapy; SFT is useful for alleviating insulin resistance and improving intracranial blood flow in patients with type 2 diabetes mellitus. This study was undertaken to evaluate the influences of SFT on chorioretinal hemodynamics (retinal artery and vein blood flows as well as atherosclerosis-related factors (TG, LDL-C and VEGF in patients with dyslipidemia. Methods: Four patients with dyslipidemia received 15-minute irradiation with a stress-free apparatus (far-infrared wavelength, 30 mW. Using laser speckle flowgraphy, associations of chorioretinal blood flow with peripheral atherosclerosis-inducing factors/VEGF levels before and after irradiation were analyzed. Results: Chorioretinal blood flow increased, while TG/LDL-C levels decreased, after irradiation. VEGF tended to rise in cases with pre-irradiation baseline levels at the lower limit but tended to decrease in cases in which baseline levels had exceeded the normal range. Conclusion: SFT was suggested to enhance chorioretinal circulation and to normalize VEGF, thereby possibly contributing to amelioration of atherosclerosis-inducing factors. Abnormalities in chorioretinal hemodynamics are known to be highly involved in the pathophysiology of diabetic retinopathy and age-related macular degeneration, and anti-VEGF antibody has been used for treating these conditions. The necessity of risk management, involving chorioretinal blood flow, has been pointed out when dealing with central retinal vein occlusion, diabetes mellitus, ischemic cerebral/cardiac disease, dementia and so on. SFT is therefore a potential complementary medical strategy which can be expected to contribute to normalization of chorioretinal blood flow and atherosclerosis-inducing factors/VEGF levels, and thereby to the prevention of lifestyle-related chronic diseases. Keywords: Pinpoint plantar long

  13. Light

    CERN Document Server

    Ditchburn, R W

    1963-01-01

    This classic study, available for the first time in paperback, clearly demonstrates how quantum theory is a natural development of wave theory, and how these two theories, once thought to be irreconcilable, together comprise a single valid theory of light. Aimed at students with an intermediate-level knowledge of physics, the book first offers a historical introduction to the subject, then covers topics such as wave theory, interference, diffraction, Huygens' Principle, Fermat's Principle, and the accuracy of optical measurements. Additional topics include the velocity of light, relativistic o

  14. Discrimination of various paper types using diffuse reflectance ultraviolet-visible near-infrared (UV-Vis-NIR) spectroscopy: forensic application to questioned documents.

    Science.gov (United States)

    Kumar, Raj; Kumar, Vinay; Sharma, Vishal

    2015-06-01

    Diffuse reflectance ultraviolet-visible-near-infrared (UV-Vis-NIR) spectroscopy is applied as a means of differentiating various types of writing, office, and photocopy papers (collected from stationery shops in India) on the basis of reflectance and absorbance spectra that otherwise seem to be almost alike in different illumination conditions. In order to minimize bias, spectra from both sides of paper were obtained. In addition, three spectra from three different locations (from one side) were recorded covering the upper, middle, and bottom portions of the paper sample, and the mean average reflectivity of both the sides was calculated. A significant difference was observed in mean average reflectivity of Side A and Side B of the paper using Student's pair >t-test. Three different approaches were used for discrimination: (1) qualitative features of the whole set of samples, (2) principal component analysis, and (3) a combination of both approaches. On the basis of the first approach, i.e., qualitative features, 96.49% discriminating power (DP) was observed, which shows highly significant results with the UV-Vis-NIR technique. In the second approach the discriminating power is further enhanced by incorporating the principal component analysis (PCA) statistical method, where this method describes each UV-Vis spectrum in a group through numerical loading values connected to the first few principal components. All components described 100% variance of the samples, but only the first three PCs are good enough to explain the variance (PC1 = 51.64%, PC2 = 47.52%, and PC3 = 0.54%) of the samples; i.e., the first three PCs described 99.70% of the data, whereas in the third approach, the four samples, C, G, K, and N, out of a total 19 samples, which were not differentiated using qualitative features (approach no. 1), were therefore subjected to PCA. The first two PCs described 99.37% of the spectral features. The discrimination was achieved by using a loading plot between

  15. Advanced infrared optically black baffle materials

    International Nuclear Information System (INIS)

    Seals, R.D.; Egert, C.M.; Allred, D.D.

    1990-01-01

    Infrared optically black baffle surfaces are an essential component of many advanced optical systems. All internal surfaces in advanced infrared optical sensors that require stray light management to achieve resolution are of primary concern in baffle design. Current industrial materials need improvements to meet advanced optical sensor systems requirements for optical, survivability, and endurability. Baffles are required to survive and operate in potentially severe environments. Robust diffuse-absorptive black surfaces, which are thermally and mechanically stable to threats of x-ray, launch, and in-flight maneuver conditions, with specific densities to allow an acceptable weight load, handleable during assembly, cleanable, and adaptive to affordable manufacturing, are required as optical baffle materials. In this paper an overview of recently developed advanced infrared optical baffle materials, requirements, manufacturing strategies, and the Optics MODIL (Manufacturing Operations Development and Integration Laboratory) Advanced Baffle Program are discussed

  16. Generating shaped femtosecond pulses in the far infrared using a spatial light modulator and difference frequency generation

    CSIR Research Space (South Africa)

    Botha, N

    2010-08-31

    Full Text Available Femtosecond pulse shaping can be done by different kinds of pulse shapers, such as liquid crystal spatial light modulators (LC SLM), acousto optic modulators (AOM) and deformable and movable mirrors. A few applications where pulse shaping...

  17. A webcam in Bayer-mode as a light beam profiler for the near infra-red

    Science.gov (United States)

    Langer, Gregor; Hochreiner, Armin; Burgholzer, Peter; Berer, Thomas

    2013-01-01

    Beam profiles are commonly measured with complementary metal oxide semiconductors (CMOS) or charge coupled devices (CCD). The devices are fast and reliable but expensive. By making use of the fact that the Bayer-filter in commercial webcams is transparent in the near infra-red (>800 nm) and their CCD chips are sensitive up to about 1100 nm, we demonstrate a cheap and simple way to measure laser beam profiles with a resolution down to around ±1 μm, which is close to the resolution of the knife-edge technique. PMID:23645943

  18. Museum lighting for golden artifacts, with low correlated color temperature, high color uniformity and high color rendering index, using diffusing color mixing of red, cyan, and white-light-emitting diodes

    DEFF Research Database (Denmark)

    Thorseth, Anders; Corell, Dennis Dan; Poulsen, Peter Behrensdorff

    2012-01-01

    Museum lighting presents challenges mainly due to the demand for precise color rendering and the damaging effects of radiation. Golden objects must normally be illuminated by the non-standard CCT of 2200 K. An LED system that conforms to these requirements has been developed and implemented...... at the Royal Danish Collection at Rosenborg Castle. Color mixing of red, cyan, and white LEDs was employed to achieve the spectral power distribution needed for the required CCT and a CRI above 90. Color uniformity is achieved by the use of a highly diffusing reflector. The system has shown energy saving above...

  19. Defect induced visible-light-activated near-infrared emissions in Gd3-x-y-zYbxBiyErzGa5O12

    Science.gov (United States)

    Tong, Liping; Saito, Katsuhiko; Guo, Qixin; Zhou, Han; Fan, Tongxiang; Zhang, Di

    2017-11-01

    Visible-light-activated near-infrared luminescent materials are promising photoluminescent materials due to their convenience and low cost. Crystal defects can seriously affect the performance of luminescent materials, and better understanding of the complexity of the structural disorder and electronic structures of such materials opens up new possibilities in luminescent material development. In this work, we successfully design a novel, effective, visible-light-activated near-infrared luminescent Gd3Ga5O12: 4.2%Yb3+, 8.4%Er3+, and 4.2%Bi3+ system based on first principles. This exhibits strong emission intensity and high luminous efficiency (0.993) and also has a lifetime (7.002 ms) that is at least twice as long as the longest lifetime reported in published papers. We utilize density functional theory with an effective LSDA + U method to study the structural properties of Gd3-x-y-zGa5O12: xYb3+, yBi3+, zEr3+ (GGG: Yb3+, Bi3+, Er3+). The d and f electron orbits of rare-earth ions are considered for an effective Hund exchange. Detailed analysis reveals that GGG: 4.2%Yb3+, 8.4%Er3+, 4.2%Bi3+ has the smallest cell volume because of the strong covalent bonds of Bi-O, Er-O, and Yb-O. Bi 3d is a hybridized state that acts as sensitizing ions during the process of luminescence in GGG: Yb3+, Bi3+, Er3+. Together with experimental and theoretical results, we analyze the influence of defects on emission intensity. The locations of Yb3+, Er3+, and Bi3+ are determined by X-ray absorption fine structure measurements, which are in agreement with the model constructed using first principles. This work may provide innovative guidance for the design of high-performance visible-light-activated near-infrared luminophores based on calculations and a new methodology for application of coherent laser radar and optical communication.

  20. Vitamin C affects the antioxidative/oxidative status in rats irradiated with ultraviolet (UV) and infrared (IR) light

    DEFF Research Database (Denmark)

    Niemiec, T.; Sawosz, E.; Chwalibog, André

    2006-01-01

    Four grups of twenty growing Wistar rats were irradiated with either UV, IR, UV+IR light or were not irradiated (control). Ten rats from each group received a diet supplemented with 0.6% of L-ascorbic acid. The effects of the mega-dose of vitamin C were evaluated by changes in the antioxidative....../oxidative status. UV and IR radiation promoted oxidative DNA degradation in rat livers and supplementation with ascorbic acid strengthened the prooxidative effects on DNA oxidation in rats irradiated with UV or IR light. Vitamin C also increased the tiobarbituric acid reactive substances (TBARS) concentration...

  1. Near infrared imaging-guided photodynamic therapy under an extremely low energy of light by galactose targeted amphiphilic polypeptide micelle encapsulating BODIPY-Br2.

    Science.gov (United States)

    Liu, Le; Ruan, Zheng; Li, Tuanwei; Yuan, Pan; Yan, Lifeng

    2016-10-18

    Near infrared (NIR) imaging-guided photodynamic therapy (PDT) is attractive, especially the utilization of one dye as both a photosensitizer and fluorescent probe, and the as-synthesized BODIPY-Br 2 molecule is a candidate. Here, a galactose targeted amphiphilic copolymer of a polypeptide was synthesized and its micelles work as nanocarriers for BODIPY for targeting the NIR imaging-guided PDT of hepatoma cancer cells. At the same time, BODIPY could light up the cytoplasm for real-time imaging and kill cancer cells when the light was switched on. In vitro tests performed on both HepG2 and HeLa cells confirmed that the as-prepared PMAGP-POEGMA-PLys-B micelles showed efficient cell suppression of the cells with galactose receptors in the presence of light under an extremely low energy density (6.5 J cm -2 ). This protocol highlights the potential of polypeptides as biodegradable carriers for NIR image-guided and confined targeting photodynamic therapy.

  2. Systematic research on Ag2X (X = O, S, Se, Te) as visible and near-infrared light driven photocatalysts and effects of their electronic structures

    Science.gov (United States)

    Jiang, Wei; Wu, Zhaomei; Zhu, Yingming; Tian, Wen; Liang, Bin

    2018-01-01

    Four silver chalcogen compounds, Ag2O, Ag2S, Ag2Se and Ag2Te, can be utilized as visible-light-driven photocatalysts. In this research, the electronic structures of these compounds were analyzed by simulation and experiments to systematically reveal the relationship between photocatalytic performance and energetic structure. All four chalcogenides exhibited interesting photocatalytic activities under ultraviolet, visible and near-infrared light. However, their photocatalytic performances and stability significantly depended on the band gap width, and the valence band and conduct band position, which was determined by their composition. Increasing the X atomic number from O to Te resulted in the upward movement of the valence band top and the conduct band bottom, which resulted in narrower band gaps, a wider absorption spectrum, a weaker photo-oxidization capacity, a higher recombination probability of hole and electron pairs, lower quantum efficiency, and worse stability. Among them, Ag2O has the highest photocatalytic performance and stability due to its widest band gap and lowest position of VB and CB. The combined action of photogenerated holes and different radicals, depending on the different electronic structures, including anion ozone radical, hydroxide radical, and superoxide radical, was observed and understood. The results of experimental observations and simulations of the four silver chalcogen compounds suggested that a proper electronic structure is necessary to obtain a balance between photocatalytic performance and absorbable light region in the development of new photocatalysts.

  3. Stray light in cone beam optical computed tomography: I. Measurement and reduction strategies with planar diffuse source.

    Science.gov (United States)

    Granton, Patrick V; Dekker, Kurtis H; Battista, Jerry J; Jordan, Kevin J

    2016-04-07

    Optical cone-beam computed tomographic (CBCT) scanning of 3D radiochromic dosimeters may provide a practical method for 3D dose verification in radiation therapy. However, in cone-beam geometry stray light contaminates the projection images, degrading the accuracy of reconstructed linear attenuation coefficients. Stray light was measured using a beam pass aperture array (BPA) and structured illumination methods. The stray-to-primary ray ratio (SPR) along the central axis was found to be 0.24 for a 5% gelatin hydrogel, representative of radiochromic hydrogels. The scanner was modified by moving the spectral filter from the detector to the source, changing the light's spatial fluence pattern and lowering the acceptance angle by extending distance between the source and object. These modifications reduced the SPR significantly from 0.24 to 0.06. The accuracy of the reconstructed linear attenuation coefficients for uniform carbon black liquids was compared to independent spectrometer measurements. Reducing the stray light increased the range of accurate transmission readings. In order to evaluate scanner performance for the more challenging application to small field dosimetry, a carbon black finger gel phantom was prepared. Reconstructions of the phantom from CBCT and fan-beam CT scans were compared. The modified source resulted in improved agreement. Subtraction of residual stray light, measured with BPA or structured illumination from each projection further improved agreement. Structured illumination was superior to BPA for measuring stray light for the smaller 1.2 and 0.5 cm diameter phantom fingers. At the costs of doubling the scanner size and tripling the number of scans, CBCT reconstructions of low-scattering hydrogel dosimeters agreed with those of fan-beam CT scans.

  4. Near-infrared light stimuli-responsive synergistic therapy nanoplatforms based on the coordination of tellurium-containing block polymer and cisplatin for cancer treatment.

    Science.gov (United States)

    Li, Feng; Li, Tianyu; Cao, Wei; Wang, Lu; Xu, Huaping

    2017-07-01

    Cisplatin (CDDP) has received worldwide approval for clinical use in the past decades. However, its development in cancer chemotherapy was overshadowed by severe side effects and drug resistance. Herein, we developed a CDDP drug delivery system with high encapsulation efficiency and near-infrared light stimuli-responsive drug release properties based on the coordination of novel tellurium-containing block polymer (PEG-PUTe-PEG) and CDDP. The nanocarriers made from PEG-PUTe-PEG were loaded with CDDP and indocyanine green (ICG) simultaneously. The coordination chemistry between CDDP and tellurium guaranteed the nanocarrier a high stability in plasma and prolonged circulation time in vivo by reducing possible penetration of water molecule into the nanoparticles. Under the stimuli of a near-infrared laser, an amount of ROS can be generated by irradiation of ICG. The tellurium is easily oxidized by ROS because of the low electronegativity of tellurium. The CDDP could be rapidly released from the nanocarriers along with the oxidation of the tellurium at the tumor sites as the oxidized tellurium will weaken the coordination interaction with CDDP. In addition, the encapsulated ICG played a synergistic antitumor effect through photothermal effect with mild laser irradiation. The integrated strategy achieved higher antitumor efficacy and showed minimal side effects compared with the CDDP alone. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Making Mass Spectrometry See the Light: The Promises and Challenges of Cryogenic Infrared Ion Spectroscopy as a Bioanalytical Technique.

    Science.gov (United States)

    Cismesia, Adam P; Bailey, Laura S; Bell, Matthew R; Tesler, Larry F; Polfer, Nicolas C

    2016-05-01

    The detailed chemical information contained in the vibrational spectrum of a cryogenically cooled analyte ion would, in principle, make infrared (IR) ion spectroscopy a gold standard technique for molecular identification in mass spectrometry. Despite this immense potential, there are considerable challenges in both instrumentation and methodology to overcome before the technique is analytically useful. Here, we discuss the promise of IR ion spectroscopy for small molecule analysis in the context of metabolite identification. Experimental strategies to address sensitivity constraints, poor overall duty cycle, and speed of the experiment are intimately tied to the development of a mass-selective cryogenic trap. Therefore, the most likely avenues for success, in the authors' opinion, are presented here, alongside alternative approaches and some thoughts on data interpretation.

  6. Fabrication of Photothermal Stable Gold Nanosphere/Mesoporous Silica Hybrid Nanoparticle Responsive to Near-Infrared Light.

    Science.gov (United States)

    Cheng, Bei; Xu, Peisheng

    2017-01-01

    Various gold nanoparticles have been explored in biomedical systems and proven to be promising in photothermal therapy and drug delivery. Among them, nanoshells were regarded as traditionally strong near infrared absorbers that have been widely used to generate photothermal effect for cancer therapy. However, the nanoshell is not photo-thermal stable and thus is not suitable for repeated irradiation. Here, we describe a novel discrete gold nanostructure by mimicking the continuous gold nanoshell-gold/mesoporous silica hybrid nanoparticle (GoMe). It possesses the best characteristics of both conventional gold nanoparticles and mesoporous silica nanoparticles, such as excellent photothermal converting ability as well as high drug loading capacity and triggerable drug release.

  7. Temperature increase at the light guide tip of 15 contemporary LED units and thermal variation at the pulpal floor of cavities: an infrared thermographic analysis.

    Science.gov (United States)

    Gomes, M; DeVito-Moraes, A; Francci, C; Moraes, R; Pereira, T; Froes-Salgado, N; Yamazaki, L; Silva, L; Zezell, D

    2013-01-01

    In this study, a comprehensive investigation on the temperature increase at the light guide tip of several commercial light-emitting diode (LED) light-curing units (LCUs) and the associated thermal variation (ΔT) at the pulpal floor of dental cavities was carried out. In total, 15 LEDs from all generations were investigated, testing a quartz-tungsten-halogen (QTH) unit as a reference. The irradiance level was measured with a power meter, and spectral distribution was analyzed using a spectrometer. Temperature increase at the tip was measured with a type-K thermocouple connected to a thermometer, while ΔT at the pulpal floor was measured by an infrared photodetector in class V cavities, with a 1-mm-thick dentin pulpal floor. The relationship among measured irradiance, ΔT at the tip, and ΔT at the pulpal floor was investigated using regression analyses. Large discrepancies between the expected and measured irradiances were detected for some LCUs. Most of the LCUs showed an emission spectrum narrower than the QTH unit, with emission peaks usually between 450 and 470 nm. The temperature increase at the tip followed a logarithmic growth for LCUs with irradiance ≥1000 mW/cm(2), with ΔT at the tip following the measured irradiance linearly (R(2)=0.67). Linear temperature increase at the pulpal floor over the 40-second exposure time was observed for several LCUs, with linear association between ΔT at the pulpal floor and measured irradiance (R(2)=0.39) or ΔT at the tip (R(2)=0.28). In conclusion, contemporary LED units show varied irradiance levels that affect the temperature increase at the light guide tip and, as a consequence, the thermal variation at the pulpal floor of dental cavities.

  8. New intelligent multifunctional SiO2/VO2 composite films with enhanced infrared light regulation performance, solar modulation capability, and superhydrophobicity.

    Science.gov (United States)

    Wang, Chao; Zhao, Li; Liang, Zihui; Dong, Binghai; Wan, Li; Wang, Shimin

    2017-01-01

    Highly transparent, energy-saving, and superhydrophobic nanostructured SiO 2 /VO 2 composite films have been fabricated using a sol-gel method. These composite films are composed of an underlying infrared (IR)-regulating VO 2 layer and a top protective layer that consists of SiO 2 nanoparticles. Experimental results showed that the composite structure could enhance the IR light regulation performance, solar modulation capability, and hydrophobicity of the pristine VO 2 layer. The transmittance of the composite films in visible region ( T lum ) was higher than 60%, which was sufficient to meet the requirements of glass lighting. Compared with pristine VO 2 films and tungsten-doped VO 2 film, the near IR control capability of the composite films was enhanced by 13.9% and 22.1%, respectively, whereas their solar modulation capability was enhanced by 10.9% and 22.9%, respectively. The water contact angles of the SiO 2 /VO 2 composite films were over 150°, indicating superhydrophobicity. The transparent superhydrophobic surface exhibited a high stability toward illumination as all the films retained their initial superhydrophobicity even after exposure to 365 nm light with an intensity of 160 mW . cm -2 for 10 h. In addition, the films possessed anti-oxidation and anti-acid properties. These characteristics are highly advantageous for intelligent windows or solar cell applications, given that they can provide surfaces with anti-fogging, rainproofing, and self-cleaning effects. Our technique offers a simple and low-cost solution to the development of stable and visible light transparent superhydrophobic surfaces for industrial applications.

  9. Stray light in cone beam optical computed tomography: I. Measurement and reduction strategies with planar diffuse source

    Science.gov (United States)

    Granton, Patrick V.; Dekker, Kurtis H.; Battista, Jerry J.; Jordan, Kevin J.

    2016-04-01

    Optical cone-beam computed tomographic (CBCT) scanning of 3D radiochromic dosimeters may provide a practical method for 3D dose verification in radiation therapy. However, in cone-beam geometry stray light contaminates the projection images, degrading the accuracy of reconstructed linear attenuation coefficients. Stray light was measured using a beam pass aperture array (BPA) and structured illumination methods. The stray-to-primary ray ratio (SPR) along the central axis was found to be 0.24 for a 5% gelatin hydrogel, representative of radiochromic hydrogels. The scanner was modified by moving the spectral filter from the detector to the source, changing the light’s spatial fluence pattern and lowering the acceptance angle by extending distance between the source and object. These modifications reduced the SPR significantly from 0.24 to 0.06. The accuracy of the reconstructed linear attenuation coefficients for uniform carbon black liquids was compared to independent spectrometer measurements. Reducing the stray light increased the range of accurate transmission readings. In order to evaluate scanner performance for the more challenging application to small field dosimetry, a carbon black finger gel phantom was prepared. Reconstructions of the phantom from CBCT and fan-beam CT scans were compared. The modified source resulted in improved agreement. Subtraction of residual stray light, measured with BPA or structured illumination from each projection further improved agreement. Structured illumination was superior to BPA for measuring stray light for the smaller 1.2 and 0.5 cm diameter phantom fingers. At the costs of doubling the scanner size and tripling the number of scans, CBCT reconstructions of low-scattering hydrogel dosimeters agreed with those of fan-beam CT scans.

  10. Light and CO2 do not affect the mesophyll conductance to CO2 diffusion in wheat leaves.

    Science.gov (United States)

    Tazoe, Youshi; von Caemmerer, Susanne; Badger, Murray R; Evans, John R

    2009-01-01

    In C(3) plants, diffusion of CO(2) into leaves is restricted by stomata and subsequently by the intercellular airspaces and liquid phase into chloroplasts. While considerable information exists on the effect of environmental conditions on stomatal conductance (g(s)), little is known on whether the mesophyll conductance to CO(2) diffusion (g(m)) changes with respect to photon flux density (PFD) and CO(2) partial pressure (pCO(2)). In this study, the effects of PFD and/or pCO(2) on g(m) were examined in wheat leaves by combining gas exchange with carbon isotope discrimination measurements using a membrane inlet mass spectrometer. Measurements were made in 2% O(2) to reduce the fractionation associated with photorespiration. The magnitude of g(m) was estimated using the observed carbon isotope discrimination (Delta), ambient and intercellular pCO(2), CO(2) assimilation and respiration rates, either from an individual measurement made under one environmental condition or from a global fit to multiple measurements where PFD was varied. It was found that respiration made a significant and variable contribution to the observed discrimination, which associated with the difference in isotopic composition between CO(2) in the greenhouse and that used for gas exchange measurements. In wheat, g(m) was independent of PFD between 200 and 1500 micromol m(-2) s(-1) and was independent of p(i) between 80 and 500 microbar.

  11. Detection of the value of consecutive serum total light chain (sTLC) in patients diagnosed with diffuse large B cell lymphoma.

    Science.gov (United States)

    Zhai, Linzhu; Zhao, Yuanyuan; Peng, Songguo; Zhu, Ke; Yu, Rongjian; Chen, Hailong; Lin, Tongyu; Lin, Lizhu

    2016-12-01

    There are limited data on serum total light chain (sTLC) in lymphoma and its relative role on the outcome of diffuse large B cell lymphoma (DLBCL) patients. Blood samples from 46 cases newly diagnosed with DLBCL were collected consecutively during chemotherapy to detect sTLC, IgG, IgA, and IgM levels. Clinical data and survival outcomes were analyzed according to the results of sTLC measurements. In summary, 22 patients (47.8 %) had abnormal k or λ light chain, respectively, and 6 patients (13.0 %) had both abnormal k and λ light chains before chemotherapy. Patients with elevated k light chain more frequently displayed multiple extra-nodal organ involvement (P = 0.01) and had an inferior overall survival (OS) (P = 0.041) and progression-free survival (PFS) (P = 0.044) compared to patients with normal level of k light chain. Furthermore, patients with elevated level of both k and λ also exhibited significant association with shorter OS (P = 0.002) and PFS (P = 0.009). Both elevated k alone and concurrent elevated k and λ had independent adverse effects on PFS (P = 0.031 and P = 0.019, respectively). sTLC level was reduced gradually by treatment in this study and reached the lowest point after the fourth cycle of chemotherapy, which was consistent with the disease behavior during chemotherapy. Considering the small sample size of this study, these results should be confirmed in a larger prospective study.

  12. Efficient second harmonic generation of double-end diffusion-bonded Nd:YVO4 self-Raman laser producing 7.9 W yellow light.

    Science.gov (United States)

    Zhu, Haiyong; Duan, Yanmin; Zhang, Ge; Huang, Chenghui; Wei, Yong; Shen, Hongyuan; Zheng, Yiqun; Huang, Lingxiong; Chen, Zhenqiang

    2009-11-23

    A high power and efficient 588 nm yellow light is demonstrated through intracavity frequency doubling of an acousto-optic Q-switched self-frequency Raman laser. A 30-mm-length double-end diffusion-bonded Nd:YVO(4) crystal was utilized for efficient self-Raman laser operation by reducing the thermal effects and increasing the interaction length for the stimulated Raman scattering. A 15-mm-length LBO with non-critical phase matching (theta = 90 degrees, phi = 0 degrees) cut was adopted for efficient second-harmonic generation. The focus position of incident pump light and both the repetition rate and the duty cycle of the Q-switch have been optimized. At a repetition rate of 110 kHz and a duty cycle of 5%, the average power of 588 nm light is up to 7.93 W while the incident pump power is 26.5 W, corresponding to an overall diode-yellow conversion efficiency of 30% and a slope efficiency of 43%.

  13. Multiple scattering contribution to the diffuse light of a night sky: A model which embraces all orders of scattering

    Science.gov (United States)

    Kocifaj, Miroslav

    2018-02-01

    The mechanism in which multiple scattering influences the radiance of a night sky has been poorly quantified until recently, or even completely unknown from the theoretical point of view. In this paper, the relative contribution of higher-scattering radiances to the total sky radiance is treated analytically for all orders of scattering, showing that a fast and accurate numerical solution to the problem exists. Unlike a class of ray tracing codes in which CPU requirements increase tremendously with each new scattering mode, the solution developed here requires the same processor time for each scattering mode. This allows for rapid estimation of higher-scattering radiances and residual error that is otherwise unknown if these radiances remain undetermined. Such convergence testing is necessary to guarantee accuracy and the stability of the numerical predictions. The performance of the method developed here is demonstrated in a set of numerical experiments aiming to uncover the relative importance of higher-scattering radiances at different distances from a light source. We have shown, that multiple scattering effects are generally low if distance to the light source is below 30 km. At large distances the multiple scattering can become important at the dark sky elements situated opposite to the light source. However, the brightness at this part of sky is several orders of magnitude smaller than that of a glowing dome of light over a city, so we do not expect that a partial increase or even doubling the radiance of otherwise dark sky elements can noticeably affect astronomical observations or living organisms (including humans). Single scattering is an appropriate approximation to the sky radiance of a night sky in the vast majority of cases.

  14. Plasmonic enhancement of cyanine dyes for near-infrared light-triggered photodynamic/photothermal therapy and fluorescent imaging

    Science.gov (United States)

    Lu, Mindan; Kang, Ning; Chen, Chuan; Yang, Liuqing; Li, Yang; Hong, Minghui; Luo, Xiangang; Ren, Lei; Wang, Xiumin

    2017-11-01

    Near-infrared (NIR) triggered cyanine dyes have attracted considerable attention in multimodal tumor theranostics. However, NIR cyanine dyes used in tumor treatment often suffer from low fluorescence intensity and weak singlet oxygen generation efficiency, resulting in inadequate diagnostic and therapy efficacy for tumors. It is still a great challenge to improve both the photodynamic therapy (PDT) and fluorescent imaging (FLI) efficacy of cyanine dyes in tumor applications. Herein, a novel multifunctional nanoagent AuNRs@SiO2-IR795 was developed to realize the integrated photothermal/photodynamic therapy (PTT/PDT) and FLI at a very low dosage of IR795 (0.4 μM) based on metal-enhanced fluorescence (MEF) effects. In our design, both the fluorescence intensity and reactive oxygen species of AuNRs@SiO2-IR795 nanocomposites were significantly enhanced up to 51.7 and 6.3 folds compared with free IR795, owing to the localized surface plasmon resonance band of AuNRs overlapping with the absorption or fluorescence emission band of the IR795 dye. Under NIR laser irradiation, the cancer cell inhibition efficiency in vitro with synergetic PDT/PTT was up to 82.3%, compared with 10.3% for free IR795. Moreover, the enhanced fluorescence intensity of our designed nanocomposites was helpful to track their behavior in tumor cells. Therefore, our designed nanoagents highlight the applications of multimodal diagnostics and therapy in tumors based on MEF.

  15. Do infrared light-emitting diodes have a stimulatory effect on wound healing? From an in-vitro trial to patient treatment

    Science.gov (United States)

    Vinck, Elke; Cagnie, B.; Cambier, D.; Cornelissen, M.

    2002-10-01

    Variable effects of different forms of light therapy on wound healing have been reported. This preliminary study covers the efficacy of infrared light emitting diodes (LED) in this domain. Cultured embryonic chicken fibroblasts were treated in a controlled, radomised manner. LED irradiation was performed three consecutive days with a wavelength of 950 nm and a power output of 160 mW, at 0,6 cm distance from the fibroblasts. Each treatment lasted 6 minutes, resulting in a surface energy denstiy of 3,2 J/cm2. The results indicated that LED treatment does not influence fibroblast proliferation at the applied energy density and irradiation frequency (p=0,474). Meanwhile the effects of LED on wound healing in vivo were studied by treating a surgical incision (6 cm) on the lateral side of the right foot in a male patient. The treatment started after 13 days, when initial stitches were being removed. The same parameters as in the in vitro study were used but the treatment was performed five times. The healing could only be evaluated clinically, the irradiated area (2,6 cm) showed a more appropriate contraction, less discoloration and a less hypertrophic scar than the control area (3,4 cm). The used parameters failed to demonstrate any biological effect of LED irradiation in vitro, although the case study on the other hand illustrated a beneficial effect.

  16. Built-in hyperspectral camera for smartphone in visible, near-infrared and middle-infrared lights region (third report): spectroscopic imaging for broad-area and real-time componential analysis system against local unexpected terrorism and disasters

    Science.gov (United States)

    Hosono, Satsuki; Kawashima, Natsumi; Wollherr, Dirk; Ishimaru, Ichiro

    2016-05-01

    The distributed networks for information collection of chemical components with high-mobility objects, such as drones or smartphones, will work effectively for investigations, clarifications and predictions against unexpected local terrorisms and disasters like localized torrential downpours. We proposed and reported the proposed spectroscopic line-imager for smartphones in this conference. In this paper, we will mention the wide-area spectroscopic-image construction by estimating 6 DOF (Degrees Of Freedom: parallel movements=x,y,z and rotational movements=θx, θy, θz) from line data to observe and analyze surrounding chemical-environments. Recently, smartphone movies, what were photographed by peoples happened to be there, had worked effectively to analyze what kinds of phenomenon had happened around there. But when a gas tank suddenly blew up, we did not recognize from visible-light RGB-color cameras what kinds of chemical gas components were polluting surrounding atmospheres. Conventionally Fourier spectroscopy had been well known as chemical components analysis in laboratory usages. But volatile gases should be analyzed promptly at accident sites. And because the humidity absorption in near and middle infrared lights has very high sensitivity, we will be able to detect humidity in the sky from wide field spectroscopic image. And also recently, 6-DOF sensors are easily utilized for estimation of position and attitude for UAV (Unmanned Air Vehicle) or smartphone. But for observing long-distance views, accuracies of angle measurements were not sufficient to merge line data because of leverage theory. Thus, by searching corresponding pixels between line spectroscopic images, we are trying to estimate 6-DOF in high accuracy.

  17. Increase in indium diffusion by tetrafluoromethane plasma treatment and its effects on the device performance of polymer light-emitting diodes

    Science.gov (United States)

    Jo, Sung Jin; Kim, Chang Su; Kim, Jong Bok; Ryu, Seung Yoon; Noh, Joo Hyon; Baik, Hong Koo; Kim, Youn Sang; Lee, Se-Jong

    2008-06-01

    The effects of tetrafluoromethane (CF4) plasma treatment of indium-tin-oxide (ITO) anode on indium diffusion into a poly(3,4-ethylene dioxythiophene):poly(styrene sulphonate) (PEDOT:PSS) layer were studied. Auger electron spectroscopy (AES) depth profile showed that 0.2at.% indium was present in the PEDOT:PSS layer when ITO was not plasma treated. The plasma treatment of ITO increased the indium concentration to ˜6at.%. The increase in indium can be explained by an oxygen deficiency in the CF4 plasma treated ITO. The presence of indium in the PEDOT:PSS layer showed a correlation with performance degradation of polymer light-emitting diodes.

  18. The reports of thick discs' deaths are greatly exaggerated. Thick discs are NOT artefacts caused by diffuse scattered light

    Science.gov (United States)

    Comerón, S.; Salo, H.; Knapen, J. H.

    2018-02-01

    Recent studies have made the community aware of the importance of accounting for scattered light when examining low-surface-brightness galaxy features such as thick discs. In our past studies of the thick discs of edge-on galaxies in the Spitzer Survey of Stellar Structure in Galaxies - the S4G - we modelled the point spread function as a Gaussian. In this paper we re-examine our results using a revised point spread function model that accounts for extended wings out to more than 2\\farcm5. We study the 3.6 μm images of 141 edge-on galaxies from the S4G and its early-type galaxy extension. Thus, we more than double the samples examined in our past studies. We decompose the surface-brightness profiles of the galaxies perpendicular to their mid-planes assuming that discs are made of two stellar discs in hydrostatic equilibrium. We decompose the axial surface-brightness profiles of galaxies to model the central mass concentration - described by a Sérsic function - and the disc - described by a broken exponential disc seen edge-on. Our improved treatment fully confirms the ubiquitous occurrence of thick discs. The main difference between our current fits and those presented in our previous papers is that now the scattered light from the thin disc dominates the surface brightness at levels below μ 26 mag arcsec-2. We stress that those extended thin disc tails are not physical, but pure scattered light. This change, however, does not drastically affect any of our previously presented results: 1) Thick discs are nearly ubiquitous. They are not an artefact caused by scattered light as has been suggested elsewhere. 2) Thick discs have masses comparable to those of thin discs in low-mass galaxies - with circular velocities vc< 120 km s-1 - whereas they are typically less massive than the thin discs in high-mass galaxies. 3) Thick discs and central mass concentrations seem to have formed at the same epoch from a common material reservoir. 4) Approximately 50% of the up

  19. Indirect application of near infrared light induces neuro-protection in a mouse model of parkinsonism - an abscopal neuro-protective effective evaluation

    International Nuclear Information System (INIS)

    Johnstone, D.M.; Spana, S.; Purushothuman, S.; Stone, J.; Mitrofanis, J.; Johnstone, D.M.; Spana, S.; Purushothuman, S.; Stone, J.; El Massri, N.; Mitrofanis, J.; Moro, C.; Torres, N.; Chabrol, C.; De Jaeger, X.; Reinhart, F.; Benabid, A.L.; Wang, X.S.

    2014-01-01

    We have previously shown near infrared light (NIr), directed transcranially, mitigates the loss of dopaminergic cells in MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine)-treated mice, a model of parkinsonism. These findings complement others suggesting NIr treatment protects against damage from various insults. However one puzzling feature of NIr treatment is that unilateral exposure can lead to a bilateral healing response, suggesting NIr may have 'indirect' protective effects. We investigated whether remote NIr treatment is neuro-protective by administering different MPTP doses (50-, 75-, 100-mg/kg) to mice and treating with 670-nm light directed specifically at either the head or body. Our results show that, despite no direct irradiation of the damaged tissue, remote NIr treatment produces a significant rescue of tyrosine hydroxylase-positive cells in the substantia nigra pars compacta at the milder MPTP dose of 50-mg/kg (30% increase vs sham-treated MPTP mice, p≤ 0.05). However this protection did not appear as robust as that achieved by direct irradiation of the head (50% increase vs sham-treated MPTP mice, p ≤0.001). There was no quantifiable protective effect of NIr at higher MPTP doses, irrespective of the delivery mode. Astrocyte and microglia cell numbers in substantia nigra pars compacta were not influenced by either mode of NIr treatment. In summary, the findings suggest that treatment of a remote tissue with NIr is sufficient to induce protection of the brain, reminiscent of the 'abscopal effect' sometimes observed in radiation treatment of metastatic cancer. This discovery has implications for the clinical translation of light-based therapies, providing an improved mode of delivery over trans-cranial irradiation. (authors)

  20. Non-invasive measurements of hemoglobin + myoglobin, their oxygenation and NIR light pathlength in heart in vivo by diffuse reflectance spectroscopy

    Science.gov (United States)

    Gussakovsky, Eugene; Jilkina, Olga; Yang, Yanmin; Kupriyanov, Valery

    2009-02-01

    The existing non-invasive optical methods of the hemoglobin (Hb) and myoglobin (Mb) estimation in cardiac tissues imply knowledge of the light pathlength (L) when various modifications of Lambert-Beer law for either spectrophotometry or light diffuse reflectance is applied. For Hb and/or Mb quantification in tissue, a few invasive (biochemical) approaches were applied. For L (differential pathlength factor; DPF) determination in tissue, special optical methods were used. No approaches have been proposed to simultaneously and non-invasively determine Hb/Mb and L in cardiac or other muscle tissues. In the present study, the first derivative of the NIR diffuse reflectance spectrum is shown to be effective in simultaneous determination of Hb+Mb concentration (in mM) and L (in mm) in cardiac tissue in vivo. The results showed that measured in a few minutes in a normal pig heart in vivo the total Hb+Mb concentration was 0.9-1.2 mM of heme, tissue oxygen saturation parameter (OSP) was approximately 65%, and DPF at 700-965 nm was of 2.7-2.8. At the experimental ischemia, total [Hb+Mb] decreased by 25%, OSP reduced to zero, while DPF did not change. These results correlated with the previously published. The method may be applied during open-heart surgery, heart studies ex vivo or to any muscle tissue to continuously and non-invasively monitor the [Hb+Mb] content and oxygenation as well as L, which may reflect the changes in tissue structure.

  1. Large animal evaluation of riboflavin and ultraviolet light-treated whole blood transfusion in a diffuse, nonsurgical bleeding porcine model.

    Science.gov (United States)

    Okoye, Obi T; Reddy, Heather; Wong, Monica D; Doane, Suzann; Resnick, Shelby; Karamanos, Efstathios; Skiada, Dimitra; Goodrich, Raymond; Inaba, Kenji

    2015-03-01

    The Mirasol system has been demonstrated to effectively inactivate white blood cells (WBCs) and reduce pathogens in whole blood in vitro. The purpose of this study was to compare the safety and efficacy of Mirasol-treated fresh whole blood (FWB) to untreated FWB in an in vivo model of surgical bleeding. A total of 18 anesthetized pigs (40 kg) underwent a 35% total blood volume bleed, cooling to 33°C, and a standardized liver injury. Animals were then randomly assigned to resuscitation with either Mirasol-treated or untreated FWB, and intraoperative blood loss was measured. After abdominal closure, the animals were observed for 14 days, after which the animals were euthanized and tissues were obtained for histopathologic examination. Mortality, tissue near-infrared spectroscopy, red blood cell (RBC) variables, platelets (PLTs), WBCs, and coagulation indices were analyzed. Total intraoperative blood loss was similar in test and control arms (8.3 ± 3.2 mL/kg vs. 7.7 ± 3.9 mL/kg, p = 0.720). All animals survived to Day 14. Trended values over time did not show significant differences-tissue oxygenation (p = 0.605), hemoglobin (p = 0.461), PLTs (p = 0.807), WBCs (p = 0.435), prothrombin time (p = 0.655), activated partial thromboplastin time (p = 0.416), thromboelastography (TEG)-reaction time (p = 0.265), or TEG-clot formation time (p = 0.081). Histopathology did not show significant differences between arms. Mirasol-treated FWB did not impact survival, blood loss, tissue oxygen delivery, RBC indices, or coagulation variables in a standardized liver injury model. These data suggest that Mirasol-treated FWB is both safe and efficacious in vivo. © 2015 AABB.

  2. Effect of Diffuse Luminance Flicker Light Stimulation on Total Retinal Blood Flow Assessed With Dual-Beam Bidirectional Doppler OCT.

    Science.gov (United States)

    Aschinger, Gerold C; Schmetterer, Leopold; Fondi, Klemens; Aranha Dos Santos, Valentin; Seidel, Gerald; Garhöfer, Gerhard; Werkmeister, René M

    2017-02-01

    We assess the increase in total retinal blood flow (TRBF) induced by flicker stimulation of the human retina in vivo and investigate the flicker induced hyperemia by means of a vascular flow model of the retinal circulation to study neurovascular coupling (NC). In six healthy subjects, TRBF was measured before and during stimulation with diffuse luminance flicker. Blood flow velocities in retinal vessels were measured via dual-beam bidirectional Doppler Fourier-domain optical coherence tomography (FD-OCT), retinal vessel diameters were assessed based on FD-OCT phase data. This allowed for the calculation of TRBF before and during visual stimulation. Additionally, a mathematical flow model for the retinal vasculature was adapted to study the implications of diameter variations on retinal perfusion. Measured and simulated perfusion was compared to draw conclusions on the diameter variations in different layers of the vascular tree. The measured mean baseline flow was 36.4 ± 6.5 μl/min while the mean flow during flicker stimulation was 53.4% ± 8.3 μl/min. The individual increase in TRBF during flicker stimulation ranged between 34% and 66%. The average increase in TRBF over all measured subjects was 47.6% ± 12.6%. Dual-beam bidirectional Doppler FD-OCT allowed quantifying NC in the human retina in vivo and may be a promising method for monitoring alterations in NC caused by various pathologies. The comparison of the measured data with the results obtained in the simulated vasculature indicates that the vasodilation induced by NC is more pronounced in smaller vessels.

  3. Near infrared organic light-emitting diodes based on acceptor-donor-acceptor (ADA) using novel conjugated isatin Schiff bases

    International Nuclear Information System (INIS)

    Taghi Sharbati, Mohammad; Soltani Rad, Mohammad Navid; Behrouz, Somayeh; Gharavi, Alireza; Emami, Farzin

    2011-01-01

    Fabrications of a single layer organic light emitting diodes (OLEDs) based on two conjugated acceptor-donor-acceptor (ADA) isatin Schiff bases are described. The electroluminescent spectra of these materials range from 630 to 700 nm and their band gaps were measured between 1.97 and 1.77 eV. The measured maximum external quantum efficiencies (EQE) for fabricated OLEDs are 0.0515% and 0.054% for two acceptor-donor-acceptor chromophores. The Commission International De L'Eclairage (CIE) (1931) coordinates of these two compounds were attained and found to be (0.4077, 0.4128) and (0.4411, 0.4126) for two used acceptor-donor-acceptor chromophores. The measured I-V curves demonstrated the apparent diode behavior of two ADA chromophores. The turn-on voltages in these OLEDs are directly dependent on the thickness. These results have demonstrated that ADA isatin Schiff bases could be considered as promising electroluminescence-emitting materials for fabrication of OLEDs.

  4. Ultraviolet photometry from the orbiting astronomical observatory. XXV. Diffuse galactic light in the 1500--4200 A region and the scattering properties of interstellar dust grains

    International Nuclear Information System (INIS)

    Lillie, C.F.; Witt, A.N.

    1976-01-01

    New measurements of the ultraviolet surface brightness of the night sky in 71 fields in the galactic longitude range 65degree< or =l/sub i//sub i/< or =145degree are presented. The data were obtained with the Orbiting Astronomical Observatory (OAO-2) at nine wavelengths between 1500 A and 4200 A and have been corrected for the contributions due to zodiacal light and integrated starlight. The residual brightnesses were analyzed with radiative transfer models for the diffuse galactic light which incorporate a z-dependent source function. The results qualitatively confirm earlier findings for this wavelength region, yielding a wavelength dependent albedo of the interstellar grains of approximately α=0.7 +- 0.1 longward of lambda3000, α=0.35 +- 0.05 around the pronounced minimum near lambda2200, and α=0.6 +- 0.05 at lambda1550. The true absorption nature of the bump in the interstellar extinction curve near lambda2200, as well as the increase of the albedo shortward of lambda2000 are thus reconfirmed. The phase function asymmetry factor is found to lie between g=0.6 and g=0.9 for the entire wavelength range, indicating the interstellar grains are strongly forward scattering

  5. Near-Infrared Properties of Moderate-Redshift Galaxy Clusters: Halo Occupation Number, Mass-to-Light Ratios and Omega(M)

    Energy Technology Data Exchange (ETDEWEB)

    Muzzin, Adam; Yee, H.K.C.; /Toronto U., Astron. Dept.; Hall, Patrick B.; /York U., Canada; Lin, Huan; /Fermilab

    2007-03-01

    Using K-band imaging for 15 of the Canadian Network for Observational Cosmology (CNOC1) clusters we examine the near-infrared properties of moderate-redshift (0.19 < z < 0.55) galaxy clusters. We find that the number of K-band selected cluster galaxies within R{sub 500} (the Halo Occupation Number, HON) is well-correlated with the cluster dynamical mass (M{sub 500}) and X-ray Temperature (T{sub x}); however, the intrinsic scatter in these scaling relations is 37% and 46% respectively. Comparison with clusters in the local universe shows that the HON-M{sub 500} relation does not evolve significantly between z = 0 and z {approx} 0.3. This suggests that if dark matter halos are disrupted or undergo significant tidal-stripping in high-density regions as seen in numerical simulations, the stellar mass within the halos is tightly bound, and not removed during the process. The total K-band cluster light (L{sub 200},K) and K-band selected richness (parameterized by B{sub gc,K}) are also correlated with both the cluster T{sub x} and M{sub 200}. The total (intrinsic) scatter in the L{sub 200,K}-M{sub 200} and B{sub gc,K}-M{sub 200} relations are 43%(31%) and 35%(18%) respectively and indicates that for massive clusters both L{sub 200,K} and B{sub gc,K} can predict M{sub 200} with similar accuracy as T{sub x}, L{sub x} or optical richness (B{sub gc}). Examination of the mass-to-light ratios of the clusters shows that similar to local clusters, the K-band mass-to-light ratio is an increasing function of halo mass. Using the K-band mass-to-light ratios of the clusters, we apply the Oort technique and find {Omega}{sub m,0} = 0.22 {+-} 0.02, which agrees well with recent combined concordance cosmology parameters, but, similar to previous cluster studies, is on the low-density end of preferred values.

  6. The Cosmic Infrared Background Experiment

    Science.gov (United States)

    Bock, James; Battle, J.; Cooray, A.; Hristov, V.; Kawada, M.; Keating, B.; Lee, D.; Matsumoto, T.; Matsuura, S.; Nam, U.; Renbarger, T.; Sullivan, I.; Tsumura, K.; Wada, T.; Zemcov, M.

    2009-01-01

    We are developing the Cosmic Infrared Background ExpeRiment (CIBER) to search for signatures of first-light galaxy emission in the extragalactic background. The first generation of stars produce characteristic signatures in the near-infrared extragalactic background, including a redshifted Ly-cutoff feature and a characteristic fluctuation power spectrum, that may be detectable with a specialized instrument. CIBER consists of two wide-field cameras to measure the fluctuation power spectrum, and a low-resolution and a narrow-band spectrometer to measure the absolute background. The cameras will search for fluctuations on angular scales from 7 arcseconds to 2 degrees, where the first-light galaxy spatial power spectrum peaks. The cameras have the necessary combination of sensitivity, wide field of view, spatial resolution, and multiple bands to make a definitive measurement. CIBER will determine if the fluctuations reported by Spitzer arise from first-light galaxies. The cameras observe in a single wide field of view, eliminating systematic errors associated with mosaicing. Two bands are chosen to maximize the first-light signal contrast, at 1.6 um near the expected spectral maximum, and at 1.0 um; the combination is a powerful discriminant against fluctuations arising from local sources. We will observe regions of the sky surveyed by Spitzer and Akari. The low-resolution spectrometer will search for the redshifted Lyman cutoff feature in the 0.7 - 1.8 um spectral region. The narrow-band spectrometer will measure the absolute Zodiacal brightness using the scattered 854.2 nm Ca II Fraunhofer line. The spectrometers will test if reports of a diffuse extragalactic background in the 1 - 2 um band continues into the optical, or is caused by an under estimation of the Zodiacal foreground. We report performance of the assembled and tested instrument as we prepare for a first sounding rocket flight in early 2009. CIBER is funded by the NASA/APRA sub-orbital program.

  7. Far red/near infrared light-induced protection against cardiac ischemia and reperfusion injury remains intact under diabetic conditions and is independent of nitric oxide synthase

    Directory of Open Access Journals (Sweden)

    Agnes eKeszler

    2014-08-01

    Full Text Available Far red/near-infrared light (NIR promotes a wide range of biological effects including tissue protection but whether and how NIR is capable of acutely protecting myocardium against ischemia and reperfusion injury in vivo is not fully elucidated. Our previous work indicates that NIR exposure immediately before and during early reperfusion protects the myocardium against infarction through mechanisms that are nitric oxide (NO-dependent. Here we tested the hypothesis that NIR elicits protection in a diabetic mouse model where other cardioprotective interventions such as pre- and postconditioning fail, and that the protection is independent of nitric oxide synthase (NOS. NIR reduced infarct size dose dependently. Importantly, NIR-induced protection was preserved in a diabetic mouse model (db/db and during acute hyperglycemia, as well as in endothelial NOS-/- mice and in wild type mice treated with NOS inhibitor L-NAME. In in vitro experiments NIR light liberates NO from nitrosyl hemoglobin (HbNO and nitrosyl myoglobin (MbNO in a wavelength (660-830 nm and dose-dependent manner. Irradiation at 660 nm yields the highest release of NO, while at longer wavelengths a dramatic decrease of NO release can be observed. Similar wavelength dependence was observed for the protection of mice against cardiac ischemia and reperfusion injury in vivo. NIR-induced NO release from deoxymyoglobin in the presence of nitrite mildly inhibits respiration of isolated mitochondria after hypoxia. In summary, NIR applied during reperfusion protects the myocardium against infarction in an NO dependent, but NOS-independent mechanisms, whereby mitochondria may be a target of NO released by NIR, leading to reduced reactive oxygen species generation during reperfusion. This unique mechanism preserves protection even during diabetes where other protective strategies fail.

  8. FAR-INFRARED EXTINCTION MAPPING OF INFRARED DARK CLOUDS

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Wanggi [Department of Astronomy, University of Florida, Gainesville, FL 32611 (United States); Tan, Jonathan C. [Departments of Astronomy and Physics, University of Florida, Gainesville, FL 32611 (United States)

    2014-01-10

    Progress in understanding star formation requires detailed observational constraints on the initial conditions, i.e., dense clumps and cores in giant molecular clouds that are on the verge of gravitational instability. Such structures have been studied by their extinction of near-infrared and, more recently, mid-infrared (MIR) background light. It has been somewhat more of a surprise to find that there are regions that appear as dark shadows at far-infrared (FIR) wavelengths as long as ∼100 μm! Here we develop analysis methods of FIR images from Spitzer-MIPS and Herschel-PACS that allow quantitative measurements of cloud mass surface density, Σ. The method builds on that developed for MIR extinction mapping by Butler and Tan, in particular involving a search for independently saturated, i.e., very opaque, regions that allow measurement of the foreground intensity. We focus on three massive starless core/clumps in the Infrared Dark Cloud (IRDC) G028.37+00.07, deriving mass surface density maps from 3.5 to 70 μm. A by-product of this analysis is the measurement of the spectral energy distribution of the diffuse foreground emission. The lower opacity at 70 μm allows us to probe to higher Σ values, up to ∼1 g cm{sup –2} in the densest parts of the core/clumps. Comparison of the Σ maps at different wavelengths constrains the shape of the MIR-FIR dust opacity law in IRDCs. We find that it is most consistent with the thick ice mantle models of Ossenkopf and Henning. There is tentative evidence for grain ice mantle growth as one goes from lower to higher Σ regions.

  9. Near-infrared activatable phthalocyanine-poly-L-glutamic acid conjugate: increased cellular uptake and light-dark toxicity ratio toward an effective photodynamic cancer therapy.

    Science.gov (United States)

    Kiew, Lik Voon; Cheah, Hoay Yan; Voon, Siew Hui; Gallon, Elena; Movellan, Julie; Ng, Kia Hui; Alpugan, Serkan; Lee, Hong Boon; Dumoulin, Fabienne; Vicent, María J; Chung, Lip Yong

    2017-05-01

    In photodynamic therapy (PDT), the low absorptivity of photosensitizers in an aqueous environment reduces singlet oxygen generation efficiency and thereby decreases photosensitizing efficacy in biological conditions. To circumvent this problem, we designed a phthalocyanine-poly-L-glutamic acid conjugate (1-PG) made from a new phthalocyanine (Pc 1) monofunctionalized to allow adequate conjugation to PGA. The resulting 1-PG conjugate retained high absorptivity in the near-infrared (NIR) region at its λ max 675nm in an aqueous environment. The 1-PG conjugate demonstrated good singlet oxygen generation efficiency, increased uptake by 4 T1 breast cancer cells via clathrin-mediated endocytosis, and enhanced photocytotoxic efficacy. The conjugate also displayed a high light-dark toxicity ratio, approximately 1.5-fold greater than zinc phthalocyanine at higher concentration (10 μM), an important feature for the reduction of dark toxicity and unwanted side effects. These results suggest that the 1-PG conjugate could be a useful alternative for deep tissue treatment with enhanced anti-cancer (PDT) efficacy. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Adaptive fusion method of visible light and infrared images based on non-subsampled shearlet transform and fast non-negative matrix factorization

    Science.gov (United States)

    Kong, Weiwei; Lei, Yang; Zhao, Huaixun

    2014-11-01

    The issue of visible light and infrared images fusion has been an active topic in both military and civilian areas, and a great many relevant algorithms and techniques have been developed accordingly. This paper addresses a novel adaptive approach to the above two patterns of images fusion problem, employing multi-scale geometry analysis (MGA) of non-subsampled shearlet transform (NSST) and fast non-negative matrix factorization (FNMF) together. Compared with other existing conventional MGA tools, NSST owns not only better feature-capturing capabilities, but also much lower computational complexities. As a modification version of the classic NMF model, FNMF overcomes the local optimum property inherent in NMF to a large extent. Furthermore, use of the FNMF with a less complex structure and much fewer iteration numbers required leads to the enhancement of the overall computational efficiency, which is undoubtedly meaningful and promising in so many real-time applications especially the military and medical technologies. Experimental results indicate that the proposed method is superior to other current popular ones in both aspects of subjective visual and objective performance.

  11. Effects of high hydrostatic pressure, ultraviolet light-C, and far-infrared treatments on the digestibility, antioxidant and antihypertensive activity of α-casein.

    Science.gov (United States)

    Hu, Guanlan; Zheng, Yuanrong; Liu, Zhenmin; Xiao, Yang; Deng, Yun; Zhao, Yanyun

    2017-04-15

    Alpha-casein is the most important bioactive protein in processing technologies. This study investigated the digestibility, antioxidant and antihypertensive activities of α-casein when treated by high hydrostatic pressure (HPP), ultraviolet light-C (UV-C), and far-infrared radiation (FIR). The in vitro digestibility was modified after treatments, especially after 5min/200MPa HHP treatment. Ultra-performance liquid chromatography-tandem mass spectrometry analysis showed that one 5min/200MPa HHP treatment resulted in the highest yield of peptides. Based on the in vitro gastrointestinal digestion and antioxidant and antihypertensive activity assays, HHP increased the angiotensin converting enzyme inhibitory activity at different levels. The 15min UV-C treatment resulted in the highest antioxidant DPPH radical-scavenging activity, while the 15min UV-C and FIR treatments had higher angiotensin converting enzyme inhibitory and antioxidant activities than those of 5min treatments. This study revealed that HHP, UV-C and FIR treatments increased the antioxidant and antihypertensive activities of α-casein. Copyright © 2016. Published by Elsevier Ltd.

  12. Structure and phase diagram of an adhesive colloidal dispersion under high pressure: a small angle neutron scattering, diffusing wave spectroscopy, and light scattering study.

    Science.gov (United States)

    Vavrin, R; Kohlbrecher, J; Wilk, A; Ratajczyk, M; Lettinga, M P; Buitenhuis, J; Meier, G

    2009-04-21

    We have applied small angle neutron scattering (SANS), diffusing wave spectroscopy (DWS), and dynamic light scattering (DLS) to investigate the phase diagram of a sterically stabilized colloidal system consisting of octadecyl grafted silica particles dispersed in toluene. This system is known to exhibit gas-liquid phase separation and percolation, depending on temperature T, pressure P, and concentration phi. We have determined by DLS the pressure dependence of the coexistence temperature and the spinodal temperature to be dP/dT=77 bar/K. The gel line or percolation limit was measured by DWS under high pressure using the condition that the system became nonergodic when crossing it and we determined the coexistence line at higher volume fractions from the DWS limit of turbid samples. From SANS measurements we determined the stickiness parameter tau(B)(P,T,phi) of the Baxter model, characterizing a polydisperse adhesive hard sphere, using a global fit routine on all curves in the homogenous regime at various temperatures, pressures, and concentrations. The phase coexistence and percolation line as predicted from tau(B)(P,T,phi) correspond with the determinations by DWS and were used to construct an experimental phase diagram for a polydisperse sticky hard sphere model system. A comparison with theory shows good agreement especially concerning the predictions for the percolation threshold. From the analysis of the forward scattering we find a critical scaling law for the susceptibility corresponding to mean field behavior. This finding is also supported by the critical scaling properties of the collective diffusion.

  13. Diffuse interstellar clouds

    International Nuclear Information System (INIS)

    Black, J.H.

    1987-01-01

    The author defines and discusses the nature of diffuse interstellar clouds. He discusses how they contribute to the general extinction of starlight. The atomic and molecular species that have been identified in the ultraviolet, visible, and near infrared regions of the spectrum of a diffuse cloud are presented. The author illustrates some of the practical considerations that affect absorption line observations of interstellar atoms and molecules. Various aspects of the theoretical description of diffuse clouds required for a full interpretation of the observations are discussed

  14. A Near-infrared RR Lyrae Census along the Southern Galactic Plane: The Milky Way’s Stellar Fossil Brought to Light

    Science.gov (United States)

    Dékány, István; Hajdu, Gergely; Grebel, Eva K.; Catelan, Márcio; Elorrieta, Felipe; Eyheramendy, Susana; Majaess, Daniel; Jordán, Andrés

    2018-04-01

    RR Lyrae stars (RRLs) are tracers of the Milky Way’s fossil record, holding valuable information on its formation and early evolution. Owing to the high interstellar extinction endemic to the Galactic plane, distant RRLs lying at low Galactic latitudes have been elusive. We attained a census of 1892 high-confidence RRLs by exploiting the near-infrared photometric database of the VVV survey’s disk footprint spanning ∼70° of Galactic longitude, using a machine-learned classifier. Novel data-driven methods were employed to accurately characterize their spatial distribution using sparsely sampled multi-band photometry. The RRL metallicity distribution function (MDF) was derived from their K s -band light-curve parameters using machine-learning methods. The MDF shows remarkable structural similarities to both the spectroscopic MDF of red clump giants and the MDF of bulge RRLs. We model the MDF with a multi-component density distribution and find that the number density of stars associated with the different model components systematically changes with both the Galactocentric radius and vertical distance from the Galactic plane, equivalent to weak metallicity gradients. Based on the consistency with results from the ARGOS survey, three MDF modes are attributed to the old disk populations, while the most metal-poor RRLs are probably halo interlopers. We propose that the dominant [Fe/H] component with a mean of ‑1 dex might correspond to the outskirts of an ancient Galactic spheroid or classical bulge component residing in the central Milky Way. The physical origins of the RRLs in this study need to be verified by kinematical information.

  15. Antimicrobial Photoinactivation Using Visible Light Plus Water-Filtered Infrared-A (VIS + wIRA) Alters In Situ Oral Biofilms

    Science.gov (United States)

    Al-Ahmad, A.; Bucher, M.; Anderson, A. C.; Tennert, C.; Hellwig, E.; Wittmer, A.; Vach, K.; Karygianni, L.

    2015-01-01

    Recently, growing attention has been paid to antimicrobial photodynamic therapy (aPDT) in dentistry. Changing the microbial composition of initial and mature oral biofilm by aPDT using visible light plus water-filtered infrared-A wavelengths (VIS + wIRA) has not yet been investigated. Moreover, most aPDT studies have been conducted on planktonic bacterial cultures. Therefore, in the present clinical study we cultivated initial and mature oral biofilms in six healthy volunteers for 2 hours or 3 days, respectively. The biofilms were treated with aPDT using VIS+wIRA (200 mW cm-2), toluidine blue (TB) and chlorine e6 (Ce6) for 5 minutes. Chlorhexidine treated biofilm samples served as positive controls, while untreated biofilms served as negative controls. After aPDT treatment the colony forming units (CFU) of the biofilm samples were quantified, and the surviving bacteria were isolated in pure cultures and identified using MALDI-TOF, biochemical tests and 16S rDNA-sequencing. aPDT killed more than 99.9% of the initial viable bacterial count and 95% of the mature oral biofilm in situ, independent of the photosensitizer. The number of surviving bacterial species was highly reduced to 6 (TB) and 4 (Ce6) in the treated initial oral biofilm compared to the 20 different species of the untreated biofilm. The proportions of surviving bacterial species were also changed after TB- and Ce6-mediated aPDT of the mature oral biofilm, resulting in a shift in the microbial composition of the treated biofilm compared to that of the control biofilm. In conclusion, aPDT using VIS + wIRA showed a remarkable potential to eradicate both initial and mature oral biofilms, and also to markedly alter the remaining biofilm. This encourages the clinical use of aPDT with VIS + wIRA for the treatment of periimplantitis and periodontitis. PMID:26162100

  16. A new light on Alkaptonuria: A Fourier-transform infrared microscopy (FTIRM) and low energy X-ray fluorescence (LEXRF) microscopy correlative study on a rare disease.

    Science.gov (United States)

    Mitri, Elisa; Millucci, Lia; Merolle, Lucia; Bernardini, Giulia; Vaccari, Lisa; Gianoncelli, Alessandra; Santucci, Annalisa

    2017-05-01

    Alkaptonuria (AKU) is an ultra-rare disease associated to the lack of an enzyme involved in tyrosine catabolism. This deficiency results in the accumulation of homogentisic acid (HGA) in the form of ochronotic pigment in joint cartilage, leading to a severe arthropathy. Secondary amyloidosis has been also unequivocally assessed as a comorbidity of AKU arthropathy. Composition of ochronotic pigment and how it is structurally related to amyloid is still unknown. We exploited Synchrotron Radiation Infrared and X-Ray Fluorescence microscopies in combination with conventional bio-assays and analytical tools to characterize chemical composition and morphology of AKU cartilage. We evinced that AKU cartilage is characterized by proteoglycans depletion, increased Sodium levels, accumulation of lipids in the peri-lacunar regions and amyloid formation. We also highlighted an increase of aromatic compounds and oxygen-containing species, depletion in overall Magnesium content (although localized in the peri-lacunar region) and the presence of calcium carbonate fragments in proximity of cartilage lacunae. We highlighted common features between AKU and arthropathy, but also specific signatures of the disease, like presence of amyloids and peculiar calcifications. Our analyses provide a unified picture of AKU cartilage, shedding a new light on the disease and opening new perspectives. Ochronotic pigment is a hallmark of AKU and responsible of tissue degeneration. Conventional bio-assays have not yet clarified its composition and its structural relationship with amyloids. The present work proposes new strategies for filling the aforementioned gap that encompass the integration of new analytical approaches with standardized analyses. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Photoinactivation Using Visible Light Plus Water-Filtered Infrared-A (vis+wIRA and Chlorine e6 (Ce6 eradicates Planktonic Periodontal Pathogens and Subgingival Biofilms

    Directory of Open Access Journals (Sweden)

    Ali Al-Ahmad

    2016-11-01

    Full Text Available Alternative treatment methods for pathogens and microbial biofilms are required due to the widespread rise in antibiotic resistance. Antimicrobial photodynamic therapy (aPDT has recently gained attention as a novel method to eradicate pathogens. The aim of this study was to evaluate the antimicrobial effects of a novel aPDT method using visible light (vis and water infiltrated infrared A (wIRA in combination with chlorine e6 (Ce6 against different periodontal pathogens in planktonic form and within in situ subgingival oral biofilms. Eight different periodontal pathogens were exposed to aPDT using vis+wIRA and 100 µg/ml Ce6 in planktonic culture. Additionally, pooled subgingival dental biofilm was also treated by aPDT and the number of viable cells determined as colony forming units (CFU. Live/dead staining was used in combination with confocal laser scanning microscopy (CLSM to visualize and quantify antimicrobial effects within the biofilm samples. Untreated negative controls as well as 0.2 % chlorhexidine (CHX-treated positive controls were used. All eight tested periodontal pathogens including Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis, Eikenella corrodens, Actinomyces odontolyticus, Fusobacterium nucleatum, Parvimonas micra, Slackia exigua and Atopopium rimae and the aPDT-treated subgingival biofilm were eliminated over the ranges of 3.43 - 8.34 and 3.91 - 4.28 log10 CFU in the log10 scale, respectively. Thus, aPDT showed bactericidal effects on the representative pathogens as well as on the in situ subgingival biofilm. The live/dead staining also revealed a significant reduction (33.45 % of active cells within the aPDT-treated subgingival biofilm. Taking the favorable tissue healing effects of vis+wIRA into consideration, the significant antimicrobial effects revealed in this study highlight the potential of aPDT using this light source in combination with Ce6 as an adjunctive method to treat periodontitis as well as

  18. Ratiometric two-photon excited photoluminescence of quantum dots triggered by near-infrared-light for real-time detection of nitric oxide release in situ

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Hui [Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Collaborative Innovation Center for Marine Biomass Fiber Materials and Textiles, College of Chemistry and Chemical Engineering, Laboratory of Fiber Materials and Modern Textile, The Growing Base for State Key Laboratory, Qingdao University, Shandong 266071 (China); Gui, Rijun, E-mail: guirijun@qdu.edu.cn [Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Collaborative Innovation Center for Marine Biomass Fiber Materials and Textiles, College of Chemistry and Chemical Engineering, Laboratory of Fiber Materials and Modern Textile, The Growing Base for State Key Laboratory, Qingdao University, Shandong 266071 (China); Sun, Jie; Wang, Yanfeng [Institute of Materia Medica, Shandong Academy of Medical Sciences, Jinan 250062 (China)

    2016-05-30

    Probe-donor integrated nanocomposites were developed from conjugating silica-coated Mn{sup 2+}:ZnS quantum dots (QDs) with MoS{sub 2} QDs and photosensitive nitric oxide (NO) donors (Fe{sub 4}S{sub 3}(NO){sub 7}{sup −}, RBS). Under excitation with near-infrared (NIR) light at 808 nm, the Mn{sup 2+}:ZnS@SiO{sub 2}/MoS{sub 2}-RBS nanocomposites showed the dual-emissive two-photon excited photoluminescence (TPEPL) that induced RBS photolysis to release NO in situ. NO caused TPEPL quenching of Mn{sup 2+}:ZnS QDs, but it produced almost no impact on the TPEPL of MoS{sub 2} QDs. Hence, the nanocomposites were developed as a novel QDs-based ratiometric TPEPL probe for real-time detection of NO release in situ. The ratiometric TPEPL intensity is nearly linear (R{sup 2} = 0.9901) with NO concentration in the range of 0.01∼0.8 μM, which corresponds to the range of NO release time (0∼15 min). The detection limit was calculated to be approximately 4 nM of NO. Experimental results confirmed that this novel ratiometric TPEPL probe possessed high selectivity and sensitivity for the detection of NO against potential competitors, and especially showed high detection performance for NIR-light triggered NO release in tumor intracellular microenvironments. These results would promote the development of versatile probe-donor integrated systems, also providing a facile and efficient strategy to real-time detect the highly controllable drug release in situ, especially in physiological microenvironments. - Highlights: • Mn{sup 2+}:ZnS@SiO{sub 2}/MoS{sub 2}-RBS nanocomposites were developed as a novel ratiometric two-photon excited fluorescence probe. • This probe could conduct real-time detection of nitric oxide release in situ. • High feasibility of this probe was confirmed in tumor intracellular microenvironments.

  19. Simultaneous Enrichment and On-line Detection of Low-Concentration Copper, Cobalt, and Nickel Ions in Water by Near-Infrared Diffuse Reflectance Spectroscopy Combined with Chemometrics.

    Science.gov (United States)

    Iqbal, Jibran; Du, Yiping; Howari, Fares; Bataineh, Mahmoud; Muhammad, Nawshad; Rahim, Abdur

    2017-03-01

    Sensitive detection of heavy metal ions in water is of great importance considering the effects that heavy metals have on public health. A developed fluidized bed enrichment technique was used to concentrate and detect low concentrations of Cu2+, Co2+, and Ni2+ in water samples by near-IR diffuse reflectance (NIDR) spectroscopy (NIDRS) directly without using any chemicals or reagents. The NIDR spectra of adsorbent were measured on-line, and quantitative detection was achieved by applying a built partial least-squares chemometric model. Sensitivity and accuracy was improved significantly because large-volume mixture solutions were used in the enrichment process. Root mean square error of cross-validation values for Cu2+, Co2+, and Ni2+ were 0.29, 0.41, and 0.35 μg/mL, respectively, with mean relative error values in the acceptable range of 6.56-10.27%. This study confirms the potential application of fluidized bed enrichment combined with NIDRS and chemometrics for the simultaneous detection of trace heavy metal ions in water, with low relative error.

  20. Diffusion in solids with holographic interferometry

    Science.gov (United States)

    Liu, Dingyu

    1996-12-01

    It is of great importance for the formation of p-n junction in semiconductors by penetrating some impurities through the depth near the surface, so it has long been paid attention to control the concentration distribution of impurities during the diffusion process. In recent years, ionic carburizing, and ion bombardment penetration etc. for the treatment of metal surface have also attracted by material sciences. It requires that the diffusion depth and the diffusion time of the impurities should be under precise control. Different methods, such as the method of radioisotopic detection and the method of chemical analysis have been adopted, however, the reports of different workers are very different, especially in the real time measurement, so, finding new method is never ending. In 1984, H. Fenichel have performed experiments on the solutions of table salt and sugar with the method of holographic interferometry. As for metals which are opaque for the visible light, but they become transparent by making them into a very thin film so that, in principle, the diffusion of atoms within a film is capable of measure by holographic interferometry. Alternatively, the electromagnetic waves within 1 - 70 micrometers wavelengths may be utilized, some materials, such as high purified germanium and silicon are good materials for infrared transmission. Some fluorides of alkaline-earth metals have high transmittance in the range of 1 - 8 micrometers , the concentration of impurities in the semiconductor and metal surface treatment are of 1015 - 1020 atoms per cubic cm, which is capable of detection.

  1. Clinical evaluation of near-infrared light transillumination (NIRT as an interproximal caries detection tool in a large sample of patients in a private practice

    Directory of Open Access Journals (Sweden)

    Russotto F

    2016-07-01

    Full Text Available Background: A study has been carried out in order to evaluate in vivo the diagnostic performance of near-infrared light transillumination (NIRT compared to digital radiographic examination (RE in the detection of class II carious lesions. Methods: A total of 114 patients were included, and 2957 proximal surfaces were considered. Surfaces were imaged by means of NIRT and radiographed with a photostimulable phosphor system. NIRT and radiographic images were observed by two blinded operators. Their diagnoses were compared with those made while visiting the patients, when visual-tactile, radiographic and NIRT data were matched by expert operators to obtain the reference diagnoses. Sensitivity, specificity and inter-observer consistency were calculated. Results: Throughout the visits, 395 caries were detected. When investigating without clinical information and in a blind manner, RE performed significantly better than NIRT regarding sensitivity analysis (0.591 vs. 0.456, p<0.001, and NIRT performed significantly better than RE regarding specificity analysis (0.980 vs 0.933, p<0.001. However, NIRT showed sensitivity similar to RE when only enamel caries were concerned. With regard to the agreement between the two observers, NIRT performed significantly better than RE (0.901 for RE analysis, 0.989 for NIRT analysis, P<0.001. A high probability of false positives for enamel caries (95% from 0.699 to 0.791 was observed in RE. NIRT was very likely to detect and correct the erroneous positive diagnosis of enamel carious lesions obtained using RE (95% CI for probability from 0.938 to 0.979. Conclusions: NIRT should be used in caries diagnosis in combination with radiographic images. In fact, NIRT can help to correct a false positive diagnosis of enamel caries. Furthermore, NIRT could be used to detect caries in patients for whom non-urgent radiographic exposition is contraindicated and to monitor enamel caries in medically treated patients. Finally, thanks

  2. THE COSMIC INFRARED BACKGROUND EXPERIMENT (CIBER): THE LOW RESOLUTION SPECTROMETER

    Energy Technology Data Exchange (ETDEWEB)

    Tsumura, K.; Arai, T.; Matsumoto, T.; Matsuura, S.; Murata, K. [Department of Space Astronomy and Astrophysics, Institute of Space and Astronoutical Science (ISAS), Japan Aerospace Exploration Agency (JAXA), Sagamihara, Kanagawa 252-5210 (Japan); Battle, J.; Bock, J. [Jet Propulsion Laboratory (JPL), National Aeronautics and Space Administration (NASA), Pasadena, CA 91109 (United States); Brown, S.; Lykke, K.; Smith, A. [Optical Technology Division, National Institute of Standards and Technology (NIST), Gaithersburg, MD 20899 (United States); Cooray, A. [Center for Cosmology, University of California, Irvine, Irvine, CA 92697 (United States); Hristov, V.; Levenson, L. R.; Mason, P. [Department of Astronomy, California Institute of Technology, Pasadena, CA 91125 (United States); Keating, B.; Renbarger, T. [Department of Physics, University of California, San Diego, San Diego, CA 92093 (United States); Kim, M. G. [Department of Physics and Astronomy, Seoul National University, Seoul 151-742 (Korea, Republic of); Lee, D. H.; Nam, U. W. [Korea Astronomy and Space Science Institute (KASI), Daejeon 305-348 (Korea, Republic of); Sullivan, I., E-mail: tsumura@ir.isas.jaxa.jp [Department of Physics, The University of Washington, Seattle, WA 98195 (United States); and others

    2013-08-15

    Absolute spectrophotometric measurements of diffuse radiation at 1 {mu}m to 2 {mu}m are crucial to our understanding of the radiative content of the universe from nucleosynthesis since the epoch of reionization, the composition and structure of the zodiacal dust cloud in our solar system, and the diffuse galactic light arising from starlight scattered by interstellar dust. The Low Resolution Spectrometer (LRS) on the rocket-borne Cosmic Infrared Background Experiment is a {lambda}/{Delta}{lambda} {approx} 15-30 absolute spectrophotometer designed to make precision measurements of the absolute near-infrared sky brightness between 0.75 {mu}m <{lambda} < 2.1 {mu}m. This paper presents the optical, mechanical, and electronic design of the LRS, as well as the ground testing, characterization, and calibration measurements undertaken before flight to verify its performance. The LRS is shown to work to specifications, achieving the necessary optical and sensitivity performance. We describe our understanding and control of sources of systematic error for absolute photometry of the near-infrared extragalactic background light.

  3. Psychological benefits 2 and 4 weeks after a single treatment with near infrared light to the forehead: a pilot study of 10 patients with major depression and anxiety

    Directory of Open Access Journals (Sweden)

    Teicher Martin H

    2009-12-01

    Full Text Available Abstract Background Many studies have reported beneficial effects from the application of near-infrared (NIR light photobiomodulation (PBM to the body, and one group has reported beneficial effects applying it to the brain in stroke patients. We have reported that the measurement of a patient's left and right hemispheric emotional valence (HEV may clarify data and guide lateralized treatments. We sought to test whether a NIR treatment could 1. improve the psychological status of patients, 2. show a relationship between immediate psychological improvements when HEV was taken into account, and 3. show an increase in frontal pole regional cerebral blood flow (rCBF, and 4. be applied without side effects. Methods We gave 10 patients, (5 M/5 F with major depression, including 9 with anxiety, 7 with a past history of substance abuse (6 with an opiate abuse and 1 with an alcohol abuse history, and 3 with post traumatic stress disorder, a baseline standard diagnostic interview, a Hamilton Depression Rating Scale (HAM-D, a Hamilton Anxiety Rating Scale (HAM-A, and a Positive and Negative Affect Scale (PANAS. We then gave four 4-minute treatments in a random order: NIR to left forehead at F3, to right forehead at F4, and placebo treatments (light off at the same sites. Immediately following each treatment we repeated the PANAS, and at 2-weeks and at 4-weeks post treatment we repeated all 3 rating scales. During all treatments we recorded total hemoglobin (cHb, as a measure of rCBF with a commercial NIR spectroscopy device over the left and the right frontal poles of the brain. Results At 2-weeks post treatment 6 of 10 patients had a remission (a score ≤ 10 on the HAM-D and 7 of 10 achieved this on the HAM-A. Patients experienced highly significant reductions in both HAM-D and HAM-A scores following treatment, with the greatest reductions occurring at 2 weeks. Mean rCBF across hemispheres increased from 0.011 units in the off condition to 0.043 units in

  4. Built-in hyperspectral camera for smartphone in visible, near-infrared and middle-infrared lights region (first report): trial products of beans-size Fourier-spectroscopic line-imager and feasibility experimental results of middle-infrared spectroscopic imaging

    Science.gov (United States)

    Ishimaru, Ichiro; Kawashima, Natsumi; Hosono, Satsuki

    2016-05-01

    We had already proposed and reported the little-finger size hyperspectral-camera that was able to be applied to visible and infrared lights. The proposed method has been expected to be mounted on smartphones for healthcare sensors, and unmanned air vehicles such as drones for antiterrorism measures or environmental measurements. In this report, we will mention the trial product of the thumb size apparatus whose lens diameter was 5[mm]. The proposed Fourier spectroscopic imager is a kind of wavefront-division and common-path phase-shift interferometers. We installed the relative inclined phase-shifter onto optical Fourier transform plane of infinity corrected optical systems. The infinity corrected optical systems was configured with an objective lens and a cylindrical imaging lens. The relative inclined phase-shifter, what was made from a thin glass less than 0.3[mm] thick, had the wedge-prism and cuboid-glass region, because half surface of a thin glass was polished at an oblique angle of around 1[deg.]. The collimated half flux of objective beams derived from single-bright points on objective surface penetrate through the wedge prism and the cuboid glass respectively. These two beams are interfered each other and form the infererogram as spatial fringe patterns. In this case, the horizontal axis on 2-dimensional light receiving device is assigned to the amount of phase-shift. And also the vertical axis is assigned to the imaging coordinates on a line view field. Thus, by installing thin phase-shifter onto optical Fourier transform plane, the line spectroscopic imager, what obtains 1 dimensional spectral character distributions, were able to be realized.

  5. The protozoan, Paramecium primaurelia, as a non-sentient model to test laser light irradiation: The effects of an 808nm infrared laser diode on cellular respiration.

    Science.gov (United States)

    Amaroli, Andrea; Ravera, Silvia; Parker, Steven; Panfoli, Isabella; Benedicenti, Alberico; Benedicenti, Stefano

    2015-07-01

    Photobiomodulation (PBM) has been used in clinical practice for more than 40 years. Unfortunately, conflicting literature has led to the labelling of PBM as a complementary or alternative medicine approach. However, past and ongoing clinical and research studies by reputable investigators have re-established the merits of PBM as a genuine medical therapy, and the technique has, in the last decade, seen an exponential increase in the numbers of clinical instruments available, and their applications. This resurgence has led to a clear need for appropriate experimental models to test the burgeoning laser technology being developed for medical applications. In this context, an ethical model that employs the protozoan, Paramecium primaurelia, is proposed. We studied the possibility of using the measure of oxygen consumption to test PBM by irradiation with an infrared or near-infrared laser. The results show that an 808nm infrared laser diode (1W; 64J/cm²) affects cellular respiration in P. primaurelia, inducing, in the irradiated cells, a significantly (p Paramecium can be an excellent tool in biological assays involving infrared and near-infrared PBM, as it combines the advantages of in vivo results with the practicality of in vitro testing. This test represents a fast, inexpensive and straightforward assay, which offers an alternative to both traditional in vivo testing and more expensive mammalian cellular cultures. 2015 FRAME.

  6. Reflectance diffuse optical tomography. Its application to human brain mapping

    International Nuclear Information System (INIS)

    Ueda, Yukio; Yamanaka, Takeshi; Yamashita, Daisuke; Suzuki, Toshihiko; Ohmae, Etsuko; Oda, Motoki; Yamashita, Yutaka

    2005-01-01

    We report the successful application of reflectance diffuse optical tomography (DOT) using near-infrared light with the new reconstruction algorithm that we developed to the observation of regional hemodynamic changes in the brain under specific mental tasks. Our results reveal the heterogeneous distribution of oxyhemoglobin and deoxyhemoglobin in the brain, showing complementary images of oxyhemoglobin and deoxyhemoglobin changes in certain regions. We conclude that our reflectance DOT has practical potential for human brain mapping, as well as in the diagnostic imaging of brain diseases. (author)

  7. Edge-promoting reconstruction of absorption and diffusivity in optical tomography

    DEFF Research Database (Denmark)

    Hannukainen, A.; Harhanen, Lauri Oskari; Hyvönen, N.

    2015-01-01

    In optical tomography a physical body is illuminated with near-infrared light and the resulting outward photon flux is measured at the object boundary. The goal is to reconstruct internal optical properties of the body, such as absorption and diffusivity. In this work, it is assumed that the imaged...... object is composed of an approximately homogeneous background with clearly distinguishable embedded inhomogeneities. An algorithm for finding the maximum a posteriori estimate for the absorption and diffusion coefficients is introduced assuming an edge-preferring prior and an additive Gaussian...... measurement noise model. The method is based on iteratively combining a lagged diffusivity step and a linearization of the measurement model of diffuse optical tomography with priorconditioned LSQR. The performance of the reconstruction technique is tested via three-dimensional numerical experiments...

  8. A Chandra Observation of the Ultraluminous Infrared Galaxy IRAS 19254-7245 (The Superantennae): X-Ray Emission from the Compton-Thick Active Galactic Nucleus and the Diffuse Starburst

    Science.gov (United States)

    Jia, Jianjun; Ptak, Andrew; Heckman, Timothy M.; Braito, Valentina; Reeves, James

    2012-01-01

    We present a Chandra observation of IRAS 19254-7245, a nearby ultraluminous infrared galaxy also known as the Superantennae. The high spatial resolution of Chandra allows us to disentangle for the first time the diffuse starburst (SB) emission from the embedded Compton-thick active galactic nucleus (AGN) in the southern nucleus. No AGN activity is detected in the northern nucleus. The 2-10 keV spectrum of the AGN emission is fitted by a flat power law (TAU = 1.3) and an He-like Fe Kalpha line with equivalent width 1.5 keV, consistent with previous observations. The Fe K line profile could be resolved as a blend of a neutral 6.4 keV line and an ionized 6.7 keV (He-like) or 6.9 keV (H-like) line. Variability of the neutral line is detected compared with the previous XMM-Newton and Suzaku observations, demonstrating the compact size of the iron line emission. The spectrum of the galaxy-scale extended emission excluding the AGN and other bright point sources is fitted with a thermal component with a best-fit kT of approximately 0.8 keV. The 2-10 keV luminosity of the extended emission is about one order of magnitude lower than that of the AGN. The basic physical and structural properties of the extended emission are fully consistent with a galactic wind being driven by the SB. A candidate ultraluminous X-ray source is detected 8 south of the southern nucleus. The 0.3 - 10 keV luminosity of this off-nuclear point source is approximately 6 x 10(exp 40) erg per second if the emission is isotropic and the source is associated with the Superantennae.

  9. Two-dimensional temperature and carbon dioxide concentration profiles in atmospheric laminar diffusion flames measured by mid-infrared direct absorption spectroscopy at 4.2 μm

    Science.gov (United States)

    Liu, Xunchen; Zhang, Guoyong; Huang, Yan; Wang, Yizun; Qi, Fei

    2018-04-01

    We present a multi-line flame thermometry technique based on mid-infrared direct absorption spectroscopy of carbon dioxide at its v_3 fundamental around 4.2 μm that is particularly suitable for sooting flames. Temperature and concentration profiles of gas phase molecules in a flame are important characteristics to understand its flame structure and combustion chemistry. One of the standard laboratory flames to analyze polycyclic aromatic hydrocarbons (PAH) and soot formation is laminar non-premixed co-flow flame, but PAH and soot introduce artifact to most non-contact optical measurements. Here we report an accurate diagnostic method of the temperature and concentration profiles of CO2 in ethylene diffusion flames by measuring its v_3 vibrational fundamental. An interband cascade laser was used to probe the R-branch bandhead at 4.2 μm, which is highly sensitive to temperature change, free from soot interference and ambient background. Calibration measurement was carried out both in a low-pressure Herriott cell and an atmospheric pressure tube furnace up to 1550 K to obtain spectroscopic parameters for high-temperature spectra. In our co-flow flame measurement, two-dimensional line-of-sight optical depth of an ethylene/N2 laminar sooting flame was recorded by dual-beam absorption scheme. The axially symmetrical attenuation coefficient profile of CO2 in the co-flow flame was reconstructed from the optical depth by Abel inversion. Spatially resolved flame temperature and in situ CO2 volume fraction profiles were derived from the calibrated CO2 spectroscopic parameters and compared with temperature profiles measured by two-line atomic fluorescence.

  10. Evaluation of Uniformity and Glare Improvement with Low Energy Efficiency Losses in Street Lighting LED Luminaires Using Laser-Sintered Polyamide-Based Diffuse Covers

    Directory of Open Access Journals (Sweden)

    Alfonso Gago-Calderón

    2018-04-01

    Full Text Available Energy saving in street lighting is garnering more interest and has become a priority in municipal management. Therefore, LED luminaires are gradually becoming prevalent in our cities. Beyond their energy/economic saving potential, quality in public lighting installations concerns aspects such as uniformity and glare which must be maintained if not improved in any installation renewal project using this technology. The high light intensity generated in a discrete point in LED packages and its directional nature result in significant deficiencies in these last two parameters. To soften these effects, translucent covers are being used as one of the most common solutions with the drawback of significant light intensity losses. The objective of this paper is to evaluate the behavior of LED luminaire’s polyamide-based optical covers manufactured with a laser-sintered process. These are designed to improve glare and uniformity output, to minimize light output reductions, and to be industrially manufactured with no increment of cost for their lighting equipment compared to conventional transparent polycarbonate solutions. A laboratory and field lighting test study has been applied to different covers with the same LED lamp and luminaire to compare the performance of three different solutions built with different polymeric materials and with different light transmission surface textures. The photometric results have been observed and discussed to demonstrate the ability to significantly improve the lighting performance of LED luminaires—illuminance and uniformity levels and discomfort and disability glare indexes— using an improved optic cover.

  11. Speckle Free, Low Coherency, High Brightness, and High Pulse Speed Infrared Collimated Light Sources for Mid-IR Target Designator and Hyperspectral Imaging

    Science.gov (United States)

    2007-10-31

    assembly stage with epoxy UV curing lamp Photon Inc beam scan detector TOSA Melles Griot 6- axis motorized controller UV lamp Doc. No. 418-0041-005-07...stage TOSA Photon-Inc beam scan detector Melles Griot 6-axis motorized controller Light path Doc. No. 418-0041-005-07-006 Page 36 of 57 DenseLight

  12. Construction of near-infrared light-triggered reactive oxygen species-sensitive (UCN/SiO2-RB + DOX)@PPADT nanoparticles for simultaneous chemotherapy and photodynamic therapy

    Science.gov (United States)

    Zhou, Fang; Zheng, Bin; Zhang, Ying; Wu, Yudong; Wang, Hanjie; Chang, Jin

    2016-06-01

    Combined therapy now plays a major role in cancer therapy due to the outcome of huge amounts of scientific experiments in recent years. However, all systems designed previously have been unable to simultaneously deliver therapy effects using several methods to produce a greater overall therapeutic effect. To solve the problem, we constructed a delivery system of near-infrared light (NIR)-triggered reactive oxygen species (ROS)-sensitive nanoparticles (NPs) for simultaneous chemotherapy and photodynamic therapy (PDT). The inner NP was assembled from a hydrophobic upconverting nanoparticle (UCN) core, with a thin silica shell linked with rose bengal (RB). Finally, a type of ROS-induced biodegradable polymer named poly-(1, 4-phenyleneacetone dimethylenethioketal) (PPADT) was self-assembled to form the NP as an outer shell to load the inner NP and doxorubicin (DOX). As the results show, the UCN core works as a transducer to convert deeply penetrating NIR to visible light for activating the photosensitizer RB for PDT under NIR excitation. In the meantime, the redundant ROS caused PPADT to biodegrade to release the loaded DOX, realizing simultaneous chemotherapy and PDT. Properties such as structure, size distribution, morphology, Fourier transform infrared spectroscopy, ROS production test, cell uptake test and combined therapy treatment effect in vitro were evaluated to prove NIR triggere