WorldWideScience

Sample records for diffuse gamma-ray observations

  1. Constraints on the cosmic ray diffusion coefficient in the W28 region from gamma-ray observations

    Science.gov (United States)

    Gabici, S.; Casanova, S.; Aharonian, F. A.; Rowell, G.

    2010-12-01

    GeV and TeV gamma rays have been detected from the supernova remnant W28 and its surroundings. Such emission correlates quite well with the position of dense and massive molecular clouds and thus it is often interpreted as the result of hadronic cosmic ray interactions in the dense gas. Constraints on the cosmic ray diffusion coefficient in the region can be obtained, under the assumption that the cosmic rays responsible for the gamma ray emission have been accelerated in the past at the supernova remnant shock, and subsequently escaped in the surrounding medium. In this scenario, gamma ray observations can be explained only if the diffusion coefficient in the region surrounding the supernova remnant is significantly suppressed with respect to the average galactic one.

  2. Fermi LAT Observation of Diffuse Gamma-Rays Produced through Interactions Between Local Interstellar Matter and High Energy Cosmic Rays

    Energy Technology Data Exchange (ETDEWEB)

    Abdo, A.A.; /Naval Research Lab, Wash., D.C. /Federal City Coll.; Ackermann, M.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Ajello, M.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Atwood, W.B.; /UC, Santa Cruz; Axelsson, M.; /Stockholm U. /Stockholm U., OKC; Baldini, L.; /INFN, Pisa; Ballet, J.; /DAPNIA, Saclay; Barbiellini, G.; /INFN, Trieste /Trieste U.; Bastieri, D.; /INFN, Padua /Padua U.; Baughman, B.M.; /Ohio State U.; Bechtol, K.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bellazzini, R.; /INFN, Pisa; Berenji, B.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bloom, E.D.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bonamente, E.; /INFN, Perugia /Perugia U.; Borgland, A.W.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bregeon, J.; /INFN, Pisa; Brez, A.; /INFN, Pisa; Brigida, M.; /Bari U. /INFN, Bari; Bruel, P.; /Ecole Polytechnique; Burnett, T.H.; /Washington U., Seattle /Bari U. /INFN, Bari /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /IASF, Milan /Milan Polytechnic /Royal Inst. Tech., Stockholm /Stockholm U., OKC /DAPNIA, Saclay /INFN, Perugia /Perugia U. /NASA, Goddard /Naval Research Lab, Wash., D.C. /George Mason U. /NASA, Goddard /INFN, Perugia /Perugia U. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Montpellier U. /Stockholm U. /Stockholm U., OKC /Royal Inst. Tech., Stockholm /ASDC, Frascati /Naval Research Lab, Wash., D.C. /INFN, Trieste /Bari U. /INFN, Bari /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /CENBG, Gradignan /CENBG, Gradignan /Montpellier U. /Bari U. /INFN, Bari /Ecole Polytechnique /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /INFN, Trieste /Hiroshima U. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Bari U. /INFN, Bari /INFN, Bari; /more authors..

    2012-03-30

    Observations by the Large Area Telescope (LAT) on the Fermi mission of diffuse {gamma}-rays in a mid-latitude region in the third quadrant (Galactic longitude l from 200{sup o} to 260{sup o} and latitude |b| from 22{sup o} to 60{sup o}) are reported. The region contains no known large molecular cloud and most of the atomic hydrogen is within 1 kpc of the solar system. The contributions of {gamma}-ray point sources and inverse Compton scattering are estimated and subtracted. The residual {gamma}-ray intensity exhibits a linear correlation with the atomic gas column density in energy from 100 MeV to 10 GeV. The measured integrated {gamma}-ray emissivity is (1.63 {+-} 0.05) x 10{sup -26} photons s{sup -1}sr{sup -1} H-atom{sup -1} and (0.66 {+-} 0.02) x 10{sup -26} photons s{sup -1}sr{sup -1} H-atom{sup -1} above 100 MeV and above 300 MeV, respectively, with an additional systematic error of {approx}10%. The differential emissivity from 100 MeV to 10 GeV agrees with calculations based on cosmic ray spectra consistent with those directly measured, at the 10% level. The results obtained indicate that cosmic ray nuclei spectra within 1 kpc from the solar system in regions studied are close to the local interstellar spectra inferred from direct measurements at the Earth within {approx}10%.

  3. FERMI-LAT OBSERVATIONS OF THE DIFFUSE {gamma}-RAY EMISSION: IMPLICATIONS FOR COSMIC RAYS AND THE INTERSTELLAR MEDIUM

    Energy Technology Data Exchange (ETDEWEB)

    Ackermann, M. [Deutsches Elektronen Synchrotron DESY, D-15738 Zeuthen (Germany); Ajello, M.; Bechtol, K.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Borgland, A. W.; Buehler, R. [W. W. Hansen Experimental Physics Laboratory, Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics and SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94305 (United States); Atwood, W. B. [Santa Cruz Institute for Particle Physics, Department of Physics and Department of Astronomy and Astrophysics, University of California at Santa Cruz, Santa Cruz, CA 95064 (United States); Baldini, L.; Bellazzini, R.; Bregeon, J. [Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, I-56127 Pisa (Italy); Ballet, J. [Laboratoire AIM, CEA-IRFU/CNRS/Universite Paris Diderot, Service d' Astrophysique, CEA Saclay, F-91191 Gif sur Yvette (France); Barbiellini, G. [Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, I-34127 Trieste (Italy); Bastieri, D.; Buson, S. [Istituto Nazionale di Fisica Nucleare, Sezione di Padova, I-35131 Padova (Italy); Bonamente, E. [Istituto Nazionale di Fisica Nucleare, Sezione di Perugia, I-06123 Perugia (Italy); Brandt, T. J. [CNRS, IRAP, F-31028 Toulouse cedex 4 (France); Brigida, M. [Dipartimento di Fisica ' M. Merlin' dell' Universita e del Politecnico di Bari, I-70126 Bari (Italy); Bruel, P., E-mail: tporter@stanford.edu, E-mail: gudlaugu@glast2.stanford.edu, E-mail: aws@mpe.mpg.de [Laboratoire Leprince-Ringuet, Ecole polytechnique, CNRS/IN2P3, Palaiseau (France); and others

    2012-05-01

    The {gamma}-ray sky >100 MeV is dominated by the diffuse emissions from interactions of cosmic rays with the interstellar gas and radiation fields of the Milky Way. Observations of these diffuse emissions provide a tool to study cosmic-ray origin and propagation, and the interstellar medium. We present measurements from the first 21 months of the Fermi Large Area Telescope (Fermi-LAT) mission and compare with models of the diffuse {gamma}-ray emission generated using the GALPROP code. The models are fitted to cosmic-ray data and incorporate astrophysical input for the distribution of cosmic-ray sources, interstellar gas, and radiation fields. To assess uncertainties associated with the astrophysical input, a grid of models is created by varying within observational limits the distribution of cosmic-ray sources, the size of the cosmic-ray confinement volume (halo), and the distribution of interstellar gas. An all-sky maximum-likelihood fit is used to determine the X{sub CO} factor, the ratio between integrated CO-line intensity and H{sub 2} column density, the fluxes and spectra of the {gamma}-ray point sources from the first Fermi-LAT catalog, and the intensity and spectrum of the isotropic background including residual cosmic rays that were misclassified as {gamma}-rays, all of which have some dependency on the assumed diffuse emission model. The models are compared on the basis of their maximum-likelihood ratios as well as spectra, longitude, and latitude profiles. We also provide residual maps for the data following subtraction of the diffuse emission models. The models are consistent with the data at high and intermediate latitudes but underpredict the data in the inner Galaxy for energies above a few GeV. Possible explanations for this discrepancy are discussed, including the contribution by undetected point-source populations and spectral variations of cosmic rays throughout the Galaxy. In the outer Galaxy, we find that the data prefer models with a flatter

  4. The diffuse neutrino flux from the inner Galaxy: constraints from very high energy gamma-ray observations

    CERN Document Server

    Gabici, S; White, R J; Casanova, S; Aharonian, F A

    2008-01-01

    Recently, the MILAGRO collaboration reported on the detection of a diffuse multi-TeV emission from a region of the Galactic disk close to the inner Galaxy. The emission is in excess of what is predicted by conventional models for cosmic ray propagation, which are tuned to reproduce the spectrum of cosmic rays observed locally. By assuming that the excess detected by MILAGRO is of hadronic origin and that it is representative for the whole inner Galactic region, we estimate the expected diffuse flux of neutrinos from a region of the Galactic disk with coordinates $-40^{\\circ} < l < 40^{\\circ}$. Our estimate has to be considered as the maximal expected neutrino flux compatible with all the available gamma ray data, since any leptonic contribution to the observed gamma-ray emission would lower the neutrino flux. The diffuse flux of neutrinos, if close to the maximum allowed level, may be detected by a km$^3$--scale detector located in the northern hemisphere. A detection would unambiguously reveal the hadr...

  5. News from Cosmic Gamma-ray Line Observations

    CERN Document Server

    Diehl, Roland

    2016-01-01

    The measurement of gamma rays at MeV energies from cosmic radioactivities is one of the key tools for nuclear astrophysics, in its study of nuclear reactions and how they shape objects such as massive stars and supernova explosions. Additionally, the unique gamma-ray signature from the annihilation of positrons falls into this same astronomical window, and positrons are often produced from radioactive beta decays. Nuclear gamma-ray telescopes face instrumental challenges from penetrating gamma rays and cosmic-ray induced backgrounds. But the astrophysical benefits of such efforts are underlined by the discoveries of nuclear gamma~rays from the brightest of the expected sources. In recent years, both thermonuclear and core-collapse supernova radioactivity gamma~rays have been measured in spectral detail, and complement conventional supernova observations with measurements of origins in deep supernova interiors, from the decay of $^{56}$Ni, $^{56}$Co, and $^{44}$Ti. The diffuse afterglow in gamma rays of radioa...

  6. Egret observations of the extragalactic gamma-ray emission

    DEFF Research Database (Denmark)

    Sreekumar, P.; Bertsch, D.L.; Dingus, B.L.

    1998-01-01

    with the local interstellar gas and radiation, as well as an almost uniformly distributed component that is generally believed to originate outside the Galaxy. Through a careful study and removal of the Galactic diffuse emission, the flux, spectrum, and uniformity of the extragalactic emission are deduced......The all-sky survey in high-energy gamma rays (E > 30 MeV) carried out by EGRET aboard the Compton Gamma Ray Observatory provides a unique opportunity to examine in detail the diffuse gamma-ray emission. The observed diffuse emission has a Galactic component arising from cosmic-ray interactions...

  7. The pulsar contribution to the diffuse galactic gamma-ray emission

    DEFF Research Database (Denmark)

    Pohl, M.; Kanbach, G.; Hunter, S.D.;

    1997-01-01

    There is active interest in the extent to which unresolved gamma-ray pulsars contribute to the Galactic diffuse emission, and in whether unresolved gamma-ray pulsars could be responsible for the excess of diffuse Galactic emission above 1 GeV that has been observed by EGRET. The diffuse gamma-ray...... for a reasonable number of directly observable gamma-ray pulsars (similar to 14). The latitude distribution of the diffuse emission caused by unresolved pulsars is narrower than that of the observed diffuse emission. While the excess above 1 GeV gamma-ray energy is observed up to at least 6 degrees-8 degrees off...... the plane, the pulsar contribution would be small there. Thus, pulsars do significantly contribute to the diffuse Galactic gamma-ray emission above 1 GeV, but they cannot be made responsible for all the discrepancies between observed intensity and model predictions in this energy range....

  8. Deep observation of the NGC 1275 region with MAGIC: search of diffuse gamma-ray emission from cosmic rays in the Perseus cluster

    CERN Document Server

    Ahnen, M L; Antonelli, L A; Antoranz, P; Babic, A; Banerjee, B; Bangale, P; de Almeida, U Barres; Barrio, J A; González, J Becerra; Bednarek, W; Bernardini, E; Biasuzzi, B; Biland, A; Blanch, O; Bonnefoy, S; Bonnoli, G; Borracci, F; Bretz, T; Buson, S; Carmona, E; Carosi, A; Chatterjee, A; Clavero, R; Colin, P; Colombo, E; Contreras, J L; Cortina, J; Covino, S; Da Vela, P; Dazzi, F; De Angelis, A; De Lotto, B; Wilhelmi, E de Oña; Mendez, C Delgado; Di Pierro, F; Domínguez, A; Prester, D Dominis; Dorner, D; Doro, M; Einecke, S; Glawion, D Eisenacher; Elsaesser, D; Fernández-Barral, A; Fidalgo, D; Fonseca, M V; Font, L; Frantzen, K; Fruck, C; Galindo, D; López, R J García; Garczarczyk, M; Terrats, D Garrido; Gaug, M; Giammaria, P; Godinović, N; Muñoz, A González; Gora, D; Guberman, D; Hadasch, D; Hahn, A; Hanabata, Y; Hayashida, M; Herrera, J; Hose, J; Hrupec, D; Hughes, G; Idec, W; Kodani, K; Konno, Y; Kubo, H; Kushida, J; La Barbera, A; Lelas, D; Lindfors, E; Lombardi, S; Longo, F; López, M; López-Coto, R; Lorenz, E; Majumdar, P; Makariev, M; Mallot, K; Maneva, G; Manganaro, M; Mannheim, K; Maraschi, L; Marcote, B; Mariotti, M; Martínez, M; Mazin, D; Menzel, U; Miranda, J M; Mirzoyan, R; Moralejo, A; Moretti, E; Nakajima, D; Neustroev, V; Niedzwiecki, A; Rosillo, M Nievas; Nilsson, K; Nishijima, K; Noda, K; Orito, R; Overkemping, A; Paiano, S; Palacio, J; Palatiello, M; Paneque, D; Paoletti, R; Paredes, J M; Paredes-Fortuny, X; Pedaletti, G; Persic, M; Poutanen, J; Moroni, P G Prada; Prandini, E; Puljak, I; Rhode, W; Ribó, M; Rico, J; Garcia, J Rodriguez; Saito, T; Satalecka, K; Schultz, C; Schweizer, T; Sillanpää, A; Sitarek, J; Snidaric, I; Sobczynska, D; Stamerra, A; Steinbring, T; Strzys, M; Takalo, L; Takami, H; Tavecchio, F; Temnikov, P; Terzić, T; Tescaro, D; Teshima, M; Thaele, J; Torres, D F; Toyama, T; Treves, A; Acosta, M Vazquez; Verguilov, V; Vovk, I; Ward, J E; Will, M; Wu, M H; Zanin, R; and,; :,; Pfrommer, C; Pinzke, A; Zandanel, F

    2016-01-01

    Clusters of galaxies are expected to be reservoirs of cosmic rays (CRs) that should produce diffuse gamma-ray emission due to their hadronic interactions with the intra-cluster medium. The nearby Perseus cool-core cluster, identified as the most promising target to search for such an emission, has been observed with the MAGIC telescopes at very-high energies (VHE, E>100 GeV) for a total of 253 hr from 2009 to 2014. The active nuclei of NGC 1275, the central dominant galaxy of the cluster, and IC 310, lying at about 0.6$^\\circ$ from the centre, have been detected as point-like VHE gamma-ray emitters during the first phase of this campaign. We report an updated measurement of the NGC 1275 spectrum, which is well described by a power law with a photon index of $3.6\\pm0.2_{stat}\\pm0.2_{syst}$ between 90 GeV and 1.2 TeV. We do not detect any diffuse gamma-ray emission from the cluster and set stringent constraints on its CR population. In order to bracket the uncertainties over the CR spatial and spectral distribu...

  9. Gamma ray observations of the solar system

    Science.gov (United States)

    1981-01-01

    Two general categories are discussed concerning the evolution of the solar system: the dualistic view, the planetesimal approach; and the monistic view, the nebular hypothesis. The major points of each view are given and the models that are developed from these views are described. Possible applications of gamma ray astronomical observations to the question of the dynamic evolution of the solar system are discussed.

  10. Dark matter annihilation bound from the diffuse gamma ray flux

    Energy Technology Data Exchange (ETDEWEB)

    Kachelriess, M.; /Norwegian U. Sci. Tech.; Serpico, P.D.; /Fermilab

    2007-07-01

    An upper limit on the total annihilation rate of dark matter (DM) has been recently derived from the observed atmospheric neutrino background. It is a very conservative upper bound based on the sole hypothesis that the DM annihilation products are the least detectable final states in the Standard Model (SM), neutrinos. Any other decay channel into SM particles would lead to stronger constraints. We show that comparable bounds are obtained for DM masses around the TeV scale by observations of the diffuse gamma ray flux by EGRET, because electroweak bremsstrahlung leads to non-negligible electromagnetic branching ratios, even if DM particles only couple to neutrinos at tree level. A better mapping and the partial resolution of the diffuse gamma-ray background into astrophysical sources by the GLAST satellite will improve this bound in the near future.

  11. Diffuse Galactic gamma-ray emission with H.E.S.S

    CERN Document Server

    :,; Aharonian, F; Benkhali, F Ait; Akhperjanian, A G; Angüner, E O; Backes, M; Balenderan, S; Balzer, A; Barnacka, A; Becherini, Y; Tjus, J Becker; Berge, D; Bernhard, S; Bernlöhr, K; Birsin, E; Biteau, J; Böttcher, M; Boisson, C; Bolmont, J; Bordas, P; Bregeon, J; Brun, F; Brun, P; Bryan, M; Bulik, T; Carrigan, S; Casanova, S; Chadwick, P M; Chakraborty, N; Chalme-Calvet, R; Chaves, R C G; Chrétien, M; Colafrancesco, S; Cologna, G; Conrad, J; Couturier, C; Cui, Y; Davids, I D; Degrange, B; Deil, C; deWilt, P; Djannati-Ataï, A; Domainko, W; Donath, A; Drury, L O'C; Dubus, G; Dutson, K; Dyks, J; Dyrda, M; Edwards, T; Egberts, K; Eger, P; Espigat, P; Farnier, C; Fegan, S; Feinstein, F; Fernandes, M V; Fernandez, D; Fiasson, A; Fontaine, G; Förster, A; Füßling, M; Gabici, S; Gajdus, M; Gallant, Y A; Garrigoux, T; Giavitto, G; Giebels, B; Glicenstein, J F; Gottschall, D; Grondin, M -H; Grudzińska, M; Hadasch, D; Häffner, S; Hahn, J; Harris, J; Heinzelmann, G; Henri, G; Hermann, G; Hervet, O; Hillert, A; Hinton, J A; Hofmann, W; Hofverberg, P; Holler, M; Horns, D; Ivascenko, A; Jacholkowska, A; Jahn, C; Jamrozy, M; Janiak, M; Jankowsky, F; Jung-Richardt, I; Kastendieck, M A; Katarzyński, K; Katz, U; Kaufmann, S; Khélifi, B; Kieffer, M; Klepser, S; Klochkov, D; Kluźniak, W; Kolitzus, D; Komin, Nu; Kosack, K; Krakau, S; Krayzel, F; Krüger, P P; Laffon, H; Lamanna, G; Lefaucheur, J; Lefranc, V; Lemière, A; Lemoine-Goumard, M; Lenain, J -P; Lohse, T; Lopatin, A; Lu, C -C; Marandon, V; Marcowith, A; Marx, R; Maurin, G; Maxted, N; Mayer, M; McComb, T J L; Méhault, J; Meintjes, P J; Menzler, U; Meyer, M; Mitchell, A M W; Moderski, R; Mohamed, M; Morå, K; Moulin, E; Murach, T; de Naurois, M; Niemiec, J; Nolan, S J; Oakes, L; Odaka, H; Ohm, S; Opitz, B; Ostrowski, M; Oya, I; Panter, M; Parsons, R D; Arribas, M Paz; Pekeur, N W; Pelletier, G; Petrucci, P -O; Peyaud, B; Pita, S; Poon, H; Pühlhofer, G; Punch, M; Quirrenbach, A; Raab, S; Reichardt, I; Reimer, A; Reimer, O; Renaud, M; Reyes, R de los; Rieger, F; Romoli, C; Rosier-Lees, S; Rowell, G; Rudak, B; Rulten, C B; Sahakian, V; Salek, D; Sanchez, D A; Santangelo, A; Schlickeiser, R; Schüssler, F; Schulz, A; Schwanke, U; Schwarzburg, S; Schwemmer, S; Sol, H; Spanier, F; Spengler, G; Spies, F; Stawarz, Ł; Steenkamp, R; Stegmann, C; Stinzing, F; Stycz, K; Sushch, I; Tavernet, J -P; Tavernier, T; Taylor, A M; Terrier, R; Tluczykont, M; Trichard, C; Valerius, K; van Eldik, C; van Soelen, B; Vasileiadis, G; Veh, J; Venter, C; Viana, A; Vincent, P; Vink, J; Völk, H J; Volpe, F; Vorster, M; Vuillaume, T; Wagner, S J; Wagner, P; Wagner, R M; Ward, M; Weidinger, M; Weitzel, Q; White, R; Wierzcholska, A; Willmann, P; Wörnlein, A; Wouters, D; Yang, R; Zabalza, V; Zaborov, D; Zacharias, M; Zdziarski, A A; Zech, A; Zechlin, H -S; Fukui, Y

    2014-01-01

    Diffuse $\\gamma$-ray emission is the most prominent observable signature of celestial cosmic-ray interactions at high energies. While already being investigated at GeV energies over several decades, assessments of diffuse $\\gamma$-ray emission at TeV energies remain sparse. After completion of the systematic survey of the inner Galaxy, the H.E.S.S. experiment is in a prime position to observe large-scale diffuse emission at TeV energies. Data of the H.E.S.S. Galactic Plane Survey are investigated in regions off known $\\gamma$-ray sources. Corresponding $\\gamma$-ray flux measurements were made over an extensive grid of celestial locations. Longitudinal and latitudinal profiles of the observed $\\gamma$-ray fluxes show characteristic excess emission not attributable to known $\\gamma$-ray sources. For the first time large-scale $\\gamma$-ray emission along the Galactic Plane using imaging atmospheric Cherenkov telescopes has been observed. While the background subtraction technique limits the ability to recover mo...

  12. SAS-2 galactic gamma-ray results. 1: Diffuse emission

    Science.gov (United States)

    Thompson, D. J.; Fichtel, C. E.; Hartman, R. C.; Kniffen, D. A.; Bignami, G. F.; Lamb, R. C.; Oegelman, H.; Oezel, M. E.; Tuemer, T.

    1977-01-01

    Continuing analysis of the data from the SAS-2 high energy gamma ray experiment has produced an improved picture of the sky at photon energies above 35 MeV. On a large scale, the diffuse emission from the galactic plane is the dominant feature observed by SAS-2. This galactic plane emission is most intense between galactic longitudes 310 deg and 45 deg, corresponding to a region within 7 kpc of the galactic center. Within the high-intensity region, SAS-2 observes peaks around galactic longitudes 315, 330, 345, 0, and 35 deg. These peaks appear to be correlated with galactic features and components such as molecular hydrogen, atomic hydrogen, magnetic fields, cosmic-ray concentrations, and photon fields.

  13. Gamma ray bursts observed with WATCH‐EURECA

    DEFF Research Database (Denmark)

    Brandt, Søren; Lund, Niels; Castro-Tirado, A. J.

    1994-01-01

    The WATCH wide field x‐ray monitor has the capability of independently locating bright Gamma Ray Bursts to 1° accuracy. We report the preliminary positions of 12 Gamma Ray Bursts observed with the WATCH monitor flown on the ES spacecraft EURECA during its 11 month mission. Also the recurrence of ...

  14. Swift observations of gamma-ray bursts.

    Science.gov (United States)

    Gehrels, Neil

    2007-05-15

    Since its launch on 20 November 2004, the Swift mission has been detecting approximately 100 gamma-ray bursts (GRBs) each year, and immediately (within approx. 90s) starting simultaneous X-ray and UV/optical observations of the afterglow. It has already collected an impressive database, including prompt emission to higher sensitivities than BATSE, uniform monitoring of afterglows and a rapid follow-up by other observatories notified through the GCN. Advances in our understanding of short GRBs have been spectacular. The detection of X-ray afterglows has led to accurate localizations and the conclusion that short GRBs can occur in non-star-forming galaxies or regions, whereas long GRBs are strongly concentrated within the star-forming regions. This is consistent with the NS merger model. Swift has greatly increased the redshift range of GRB detection. The highest redshift GRBs, at z approximately 5-6, are approaching the era of reionization. Ground-based deep optical spectroscopy of high redshift bursts is giving metallicity measurements and other information on the source environment to a much greater distance than other techniques. The localization of GRB 060218 to a nearby galaxy, and the association with SN 2006aj, added a valuable member to the class of GRBs with detected supernova.

  15. TeV Gamma-Ray Observations of the Galactic Center Ridge by VERITAS

    Science.gov (United States)

    Archer, A.; Benbow, W.; Bird, R.; Buchovecky, M.; Buckley, J. H.; Bugaev, V.; Byrum, K.; Cardenzana, J. V.; Cerruti, M.; Chen, X.; Ciupik, L.; Collins-Hughes, E.; Connolly, M. P.; Eisch, J. D.; Falcone, A.; Feng, Q.; Finley, J. P.; Fleischhack, H.; Flinders, A.; Fortson, L.; Furniss, A.; Gillanders, G. H.; Griffin, S.; Grube, J.; Gyuk, G.; Håkansson, N.; Hanna, D.; Holder, J.; Humensky, T. B.; Hütten, M.; Johnson, C. A.; Kaaret, P.; Kar, P.; Kelley-Hoskins, N.; Kertzman, M.; Kieda, D.; Krause, M.; Krennrich, F.; Kumar, S.; Lang, M. J.; McArthur, S.; McCann, A.; Meagher, K.; Millis, J.; Moriarty, P.; Mukherjee, R.; Nieto, D.; Ong, R. A.; Park, N.; Pelassa, V.; Pohl, M.; Popkow, A.; Pueschel, E.; Quinn, J.; Ragan, K.; Ratliff, G.; Reynolds, P. T.; Richards, G. T.; Roache, E.; Rousselle, J.; Santander, M.; Sembroski, G. H.; Shahinyan, K.; Smith, A. W.; Staszak, D.; Telezhinsky, I.; Tucci, J. V.; Tyler, J.; Vassiliev, V. V.; Wakely, S. P.; Weiner, O. M.; Weinstein, A.; Wilhelm, A.; Williams, D. A.; Zitzer, B.; Yusef-Zadeh, F.

    2016-04-01

    The Galactic Center ridge has been observed extensively in the past by both GeV and TeV gamma-ray instruments revealing a wealth of structure, including a diffuse component and the point sources G0.9+0.1 (a composite supernova remnant) and Sgr A* (believed to be associated with the supermassive black hole located at the center of our Galaxy). Previous very high energy (VHE) gamma-ray observations with the H.E.S.S. experiment have also detected an extended TeV gamma-ray component along the Galactic plane in the >300 GeV gamma-ray regime. Here we report on observations of the Galactic Center ridge from 2010 to 2014 by the VERITAS telescope array in the >2 TeV energy range. From these observations we (1) provide improved measurements of the differential energy spectrum for Sgr A* in the >2 TeV gamma-ray regime, (2) provide a detection in the >2 TeV gamma-ray emission from the composite SNR G0.9+0.1 and an improved determination of its multi-TeV gamma-ray energy spectrum, and (3) report on the detection of VER J1746-289, a localized enhancement of >2 TeV gamma-ray emission along the Galactic plane.

  16. Review of GRANAT observations of gamma-ray bursts

    DEFF Research Database (Denmark)

    Terekhov, O.; Denissenko, D.; Sunyaev, R.;

    1995-01-01

    The GRANAT observatory was launched into a high apogee orbit on 1 December, 1989. Three instruments onboard GRANAT - PHEBUS, WATCH and SIGMA are able to detect gamma-ray bursts in a very broad energy range from 6 keV up to 100 MeV. Over 250 gamma-ray bursts were detected. We discuss the results...... of four differently behaving componenents in gamma-ray burst spectra is discussed. Statistical properties of the gamma-ray burst sources based on the 5 years of observations with (∼ 10−6 erg/cm2) sensitivity as well as the results of high sensitivity (∼ 10−8 erg/cm2) search for Gamma-Ray Bursts within...... the SIGMA telescope field of view are reviewed....

  17. Fireball and cannonball models of gamma ray bursts confront observations

    OpenAIRE

    Dar, Arnon

    2005-01-01

    The two leading contenders for the theory of gamma-ray bursts (GRBs) and their afterglows, the Fireball and Cannonball models, are compared and their predictions are confronted, within space limitations, with key GRB observations, including recent observations with SWIFT

  18. Optical telescope BIRT in ORIGIN for gamma ray burst observing

    DEFF Research Database (Denmark)

    Content, Robert; Sharples, Ray; Page, Mathew J.

    2012-01-01

    The ORIGIN concept is a space mission with a gamma ray, an X-ray and an optical telescope to observe the gamma ray bursts at large Z to determine the composition and density of the intergalactic matter in the line of sight. It was an answer to the ESA M3 call for proposal. The optical telescope i...... length. All 3 instruments use the same 2k x 2k detector simultaneously so that telescope pointing and tip-tilt control of a fold mirror permit to place the gamma ray burst on the desired instrument without any other mechanism. © 2012 SPIE....

  19. TeV Gamma-ray Observations of The Galactic Center Ridge By VERITAS

    CERN Document Server

    Archer, A; Bird, R; Buchovecky, M; Buckley, J H; Bugaev, V; Byrum, K; Cardenzana, J V; Cerruti, M; Chen, X; Ciupik, L; Collins-Hughes, E; Connolly, M P; Eisch, J D; Falcone, A; Feng, Q; Finley, J P; Fleischhack, H; Flinders, A; Fortson, L; Furniss, A; Gillanders, G H; Griffin, S; Grube, J; Gyuk, G; Hakansson, N; Hanna, D; Holder, J; Humensky, T B; Hutten, M; Johnson, C A; Kaaret, P; Kar, P; Kelley-Hoskins, N; Kertzman, M; Kieda, D; Krause, M; Krennrich, F; Kumar, S; Lang, M J; McArthur, S; McCann, A; Meagher, K; Millis, J; Moriarty, P; Mukherjee, R; Nieto, D; Ong, R A; Park, N; Pelassa, V; Pohl, M; Popkow, A; Pueschel, E; Quinn, J; Ragan, K; Ratliff, G; Reynolds, P T; Richards, G T; Roache, E; Rousselle, J; Santander, M; Sembroski, G H; Shahinyan, K; Smith, A W; Staszak, D; Telezhinsky, I; Tucci, J V; Tyler, J; Vassiliev, V V; Wakely, S P; Weiner, O M; Weinstein, A; Wilhelm, A; Williams, D A; Zitzer, B; Yusef-Zadeh, F

    2016-01-01

    The Galactic Center Ridge has been observed extensively in the past by both GeV and TeV gamma-ray instruments revealing a wealth of structure, including a diffuse component as well as the point sources G0.9+0.1 (a composite supernova remnant) and Sgr A* (believed to be associated with the supermassive black hole located at the center of our Galaxy). Previous very high energy (VHE) gamma-ray observations with the H.E.S.S. experiment have also detected an extended TeV gamma-ray component along the Galactic plane in the >300 GeV gamma-ray regime. Here we report on observations of the Galactic Center Ridge from 2010-2014 by the VERITAS telescope array in the >2 TeV energy range. From these observations we 1.) provide improved measurements of the differential energy spectrum for Sgr A* in the >2 TeV gamma-ray regime, 2.) provide a detection in the >2 TeV gamma-ray emission from the composite SNR G0.9+0.1 and an improved determination of its multi-TeV gamma-ray energy spectrum, 3.) report on the detection of VER J1...

  20. Diffuse gamma-ray emission from the Galactic center and implications of its past activities

    CERN Document Server

    Fujita, Yutaka; Murase, Kohta

    2016-01-01

    It has been indicated that low-luminosity active galactic nuclei (LLAGNs) are accelerating high-energy cosmic-ray (CR) protons in their radiatively inefficient accretion flows (RIAFs). If this is the case, Sagittarius A* (Sgr A*) should also be generating CR protons, because Sgr A* is a LLAGN. Based on this scenario, we calculate a production rate of CR protons in Sgr A* and their diffusion in the central molecular zone (CMZ) around Sgr A*. The CR protons diffusing in the CMZ create gamma-rays through pp interaction. We show that the gamma-ray luminosity and spectrum are consistent with observations if Sgr A* was active in the past.

  1. Searches for Axionlike Particles Using Gamma-Ray Observations

    CERN Document Server

    Meyer, Manuel

    2016-01-01

    Axionlike particles (ALPs) are a common prediction of theories beyond the Standard Model of particle physics that could explain the entirety of the cold dark matter. These particles could be detected through their mixing with photons in external electromagnetic fields. Here, we provide a short review over ALP searches that utilize astrophysical $\\gamma$-ray observations. We summarize current bounds as well as future sensitivities and discuss the possibility that ALPs alter the $\\gamma$-ray opacity of the Universe.

  2. Gamma-Ray Observations of Active Galactic Nuclei

    Science.gov (United States)

    Madejski, Grzegorz (Greg); Sikora, Marek

    2016-09-01

    This article reviews the recent observational results regarding γ-ray emission from active galaxies. The most numerous discrete extragalactic γ-ray sources are AGNs dominated by relativistic jets pointing in our direction (commonly known as blazars), and they are the main subject of the review. They are detected in all observable energy bands and are highly variable. The advent of the sensitive γ-ray observations, afforded by the launch and continuing operation of the Fermi Gamma-ray Space Telescope and the AGILE Gamma-ray Imaging Detector, as well as by the deployment of current-generation Air Cerenkov Telescope arrays such as VERITAS, MAGIC, and HESS-II, continually provides sensitive γ-ray data over the energy range of ˜100 MeV to multi-TeV. Importantly, it has motivated simultaneous, monitoring observations in other bands, resulting in unprecedented time-resolved broadband spectral coverage. After an introduction, in Sections 3, 4, and 5, we cover the current status and highlights of γ-ray observations with (mainly) Fermi but also AGILE and put those in the context of broadband spectra in Section 6. We discuss the radiation processes operating in blazars in Section 7, and we discuss the content of their jets and the constraints on the location of the energy dissipation regions in, respectively, Sections 8 and 9. Section 10 covers the current ideas for particle acceleration processes in jets, and Section 11 discusses the coupling of the jet to the accretion disk in the host galaxy. Finally, Sections 12, 13, and 14 cover, respectively, the contribution of blazars to the diffuse γ-ray background, the utility of blazars to study the extragalactic background light, and the insight they provide for study of populations of supermassive black holes early in the history of the Universe.

  3. Gamma-ray and neutrino diffuse emissions of the Galaxy above the TeV

    CERN Document Server

    Evoli, C; Maccione, L

    2007-01-01

    In this contribution we will discuss recent results concerning the intensity and the angular distribution of the gamma-ray and neutrino emissions as should be originated from the hadronic scattering of cosmic rays (CR) with the interstellar medium (ISM). We assumed that CR sources are supernova remnants (SNR) and estimated the spatial distribution of primary nuclei by solving numerically the diffusion equation. For the ISM, we considered recent models for the 3D spatial distributions of molecular hydrogen. Respect to previous results, we find the secondary gamma-ray and neutrino emissions to be more peaked along the galactic equator and in the galactic centre which improves significantly the perspectives of a positive detection. We compare our predictions with the experimental limits/observations by MILAGRO and TIBET (for the gamma-rays) and by AMANDA-II (for the neutrinos) and discuss the detection perspectives for a km3 neutrino telescope to be built in the North hemisphere.

  4. Limit on an Isotropic Diffuse Gamma-Ray Population with HAWC

    CERN Document Server

    ,

    2015-01-01

    Data from 105 days from the High Altitude Water Cherenkov Observatory (HAWC) have been used to place a new limit on an isotropic diffuse gamma-ray population above 10 TeV. High- energy isotropic diffuse gamma-ray emission is produced by unresolved extragalactic objects such as active galactic nuclei, with potential contributions from interactions of high-energy cosmic rays with the inter-Galactic medium, or dark matter annihilation. Isotropic diffuse gamma-ray emission has been observed up to nearly 1 TeV. Above this energy, only upper limits have been reported. Observations or limits of the isotropic photon population above these energies are very sensitive to local astrophysical particle production. Of particular note, we expect a photon population to accompany the TeV-PeV astrophysical neutrino detection seen in the IceCube instrument. Observations or limits of a photon population above this energy can point to the origin of these neutrinos, indicating whether they are within the gamma-ray horizon or not. ...

  5. VHE $\\gamma$-ray observations of Markarian 501

    CERN Document Server

    Breslin, A C; Bradbury, S M; Buckley, J H; Burdett, A M; Carson, M J; Carter-Lewis, D A; Catanese, M; Cawley, M F; Dunlea, S; D'Vali, M; Fegan, D J; Fegan, S J; Finley, J P; Gaidos, J A; Hall, T A; Hillas, A M; Horan, D; Kildea, J; Knapp, J; Krennrich, F; Le Bohec, S; Lessard, R W; Masterson, C; McKernan, B; Quinn, J; Rose, H J; Samuelson, F W; Sembroski, G H; Vasilev, V; Weekes, T C

    1999-01-01

    Markarian 501, a nearby (z=0.033) X-ray selected BL Lacertae object, is a well established source of Very High Energy (VHE, E>=300 GeV) gamma rays. Dramatic variability in its gamma-ray emission on time-scales from years to as short as two hours has been detected. Multiwavelength observations have also revealed evidence that the VHE gamma-ray and hard X-ray fluxes may be correlated. Here we present results of observations made with the Whipple Collaboration's 10 m Atmospheric Cerenkov Imaging Telescope during 1999 and discuss them in the context of observations made on Markarian 501 during the period from 1996-1998.

  6. Ultrahigh Energy Cosmic Rays, The Diffuse High Energy Gamma Ray Background and Anti-protons

    CERN Document Server

    Eichler, David; Gavish, Eyal

    2016-01-01

    Theories for the origin of ultrahigh energy cosmic rays (UHECR) may imply a significant diffuse background in secondary $\\gamma$-rays from the pair cascads the UHECR initiate when interacting with background light. It is shown that, because the spectrum of these secondary $\\gamma$-rays is softer than the measured diffuse $\\gamma$-ray background in the 10-1000 GeV range, the addition of a hard component from the decay of TeV dark matter particles, subject to the implied constraints on its parameters, improves the fit. It is further argued that any compact astrophysical source of $\\bar p$s is unlikely to be as strong as decay of TeV dark matter particles, given bounds set by neutrino observations. The diffuse $\\gamma$-ray background presently sets the strongest lower bound on the lifetime of TeV dark matter particles, and hence on attendant anti-proton production, and further identification of other contributors to this background will further tighten these constraints.

  7. Doppler Boosted Diffusive Shock Acceleration as an Explanation for the Crab Nebula Gamma-Ray Flares

    Science.gov (United States)

    Becker, Peter A.; Dermer, C. D.

    2013-01-01

    The remarkable observations of intense flares of ~GeV gamma-rays from the Crab Nebula in 2009 and 2010 have raised many difficult questions for high-energy astrophysics. There is a consensus that the gamma rays probably represent synchrotron emission from highly relativistic electrons, but the implied energy budget raises severe constraints on the required acceleration mechanism, because at the electron energies implied by the gamma-ray observations, the synchrotron loss timescale is comparable to the gyration timescale in the magnetic field. We explore a hybrid scenario in which the electrons experience diffusive shock acceleration, which raises their energies to within about a factor of ten of the energy required to produce the observed synchrotron gamma-ray emission. The radiating electrons are envisioned to be entrained in a mildly relativistic flow downstream from the oblique shock, and the associated Doppler boost shifts the radiation into the observed range. Variability in the downstream flow causes the Doppler beamed radiation to point towards Earth during the observed flares. This mechanism may help to explain the energetics, spectrum and duration of the flares, as well as their rarity.

  8. Diffuse flux of galactic neutrinos and gamma rays

    Science.gov (United States)

    Carceller, J. M.; Masip, M.

    2017-03-01

    We calculate the fluxes of neutrinos and gamma rays from interactions of cosmic rays with interstellar matter in our galaxy. We use EPOS-LHC, SIBYLL and GHEISHA to parametrize the yield of these particles in proton, helium and iron collisions at kinetic energies between 1 and 108 GeV, and we correlate the cosmic ray density with the mean magnetic field strength in the disk and the halo of our galaxy. We find that at E > 1 PeV the fluxes depend very strongly on the cosmic-ray composition, whereas at 1–5 GeV the main source of uncertainty is the cosmic-ray spectrum out of the heliosphere. We show that the diffuse flux of galactic neutrinos becomes larger than the conventional atmospheric one at E>1 PeV, but that at all IceCube energies it is 4 times smaller than the atmospheric flux from forward-charm decays.

  9. Diffuse flux of galactic neutrinos and gamma rays

    CERN Document Server

    Carceller, J M

    2016-01-01

    We calculate the fluxes of neutrinos and gamma rays from interactions of cosmic rays with interstellar matter in our galaxy. We use EPOS-LHC, SIBYLL and GHEISHA to obtain the yield of these particles in proton, helium and iron collisions at kinetic energies between 1 and 10^8 GeV. We find that at E>1 PeV the fluxes depend very strongly on the cosmic-ray composition, whereas at 1-5 GeV the main source of uncertainty is the cosmic-ray spectrum out of the heliosphere. We show that the diffuse flux of galactic neutrinos becomes larger than the conventional atmospheric one at E>1 PeV, but that at all IceCube energies it is up to 5 times smaller than the atmospheric flux from forward-charm decays.

  10. Constraining Very Heavy Dark Matter Using Diffuse Backgrounds of Neutrinos and Cascaded Gamma Rays

    CERN Document Server

    Murase, Kohta

    2012-01-01

    We consider multi-messenger constraints on very heavy dark matter (VHDM) from recent Fermi gamma-ray and IceCube neutrino observations of isotropic background radiation. Fermi data on the diffuse gamma-ray background (DGB) shows a possible unexplained feature at very high energies (VHE), which we have called the VHE Excess relative to expectations for an attenuated power law extrapolated from lower energies. We show that VHDM could explain this excess, and that neutrino observations will be an important tool for testing this scenario. More conservatively, we derive new constraints on the properties of VHDM for masses of 10^3-10^10 GeV. These generic bounds follow from cosmic energy budget constraints for gamma rays and neutrinos that we developed elsewhere, based on detailed calculations of cosmic electromagnetic cascades and also neutrino detection rates. We show that combining both gamma-ray and neutrino data is essential for making the constraints on VHDM properties both strong and robust. In the lower mas...

  11. Understanding Limitations in the Determination of the Diffuse Galactic Gamma-ray Emission

    Energy Technology Data Exchange (ETDEWEB)

    Moskalenko, Igor V.; /Stanford U., HEPL /KIPAC, Menlo Park; Digel, S.W.; /SLAC /KIPAC, Menlo Park; Porter, T.A.; /UC, Santa Cruz; Reimer, O.; /Stanford U., HEPL /KIPAC,; Strong, A.W.; /Garching, Max Planck Inst., MPE

    2006-10-03

    We discuss uncertainties and possible sources of errors associated with the determination of the diffuse Galactic {gamma}-ray emission using the EGRET data. Most of the issues will be relevant also in the GLAST era. The focus here is on issues that impact evaluation of dark matter annihilation signals against the diffuse {gamma}-ray emission of the Milky Way.

  12. Electron acceleration in supernova remnants and diffuse gamma rays above 1 GeV

    DEFF Research Database (Denmark)

    Pohl, M.; Esposito, J.A.

    1998-01-01

    important consequences for studies of the Galactic diffuse gamma-ray emission, for which a strong excess over model predictions above 1 GeV has recently been reported. While these models relied on an electron injection spectrum with index 2.4 (chosen to fit the local electron flux up to 1 TeV), we show...... that an electron injection index of around 2.0 would (1) be consistent with the expected Poisson fluctuations in the locally observable electron spectrum and (2) explain the above-mentioned gamma-ray excess above 1 GeV. An electron injection index of around 2 would also correspond to the average radio synchrotron...... spectrum of individual SNRs. We use a three-dimensional propagation code to calculate the spectra of electrons throughout the Galaxy and show that the longitude and latitude distribution of the leptonic gamma-ray production above 1 GeV is in accord with the respective distributions for the gamma-ray excess...

  13. The HAWC Gamma-Ray Observatory: Observations of Cosmic Rays

    CERN Document Server

    Abeysekara, A U; Alvarez, C; Álvarez, J D; Arceo, R; Arteaga-Velázquez, J C; Solares, H A Ayala; Barber, A S; Baughman, B M; Bautista-Elivar, N; Belmont, E; BenZvi, S Y; Berley, D; Rosales, M Bonilla; Braun, J; Caballero-Lopez, R A; Caballero-Mora, K S; Carramiñana, A; Castillo, M; Cotti, U; Cotzomi, J; de la Fuente, E; De León, C; DeYoung, T; Hernandez, R Diaz; Díaz-Vélez, J C; Dingus, B L; DuVernois, M A; Ellsworth, R W; Fernandez, A; Fiorino, D W; Fraija, N; Galindo, A; Garfias, F; González, L X; González, M M; Goodman, J A; Grabski, V; Gussert, M; Hampel-Arias, Z; Hui, C M; Hüntemeyer, P; Imran, A; Iriarte, A; Karn, P; Kieda, D; Kunde, G J; Lara, A; Lauer, R J; Lee, W H; Lennarz, D; Vargas, H León; Linares, E C; Linnemann, J T; Longo, M; Luna-GarcIa, R; Marinelli, A; Martinez, H; Martinez, O; Martínez-Castro, J; Matthews, J A J; Miranda-Romagnoli, P; Moreno, E; Mostafá, M; Nava, J; Nellen, L; Newbold, M; Noriega-Papaqui, R; Oceguera-Becerra, T; Patricelli, B; Pelayo, R; Pérez-Pérez, E G; Pretz, J; Rivière, C; Rosa-González, D; Salazar, H; Salesa, F; Sanchez, F E; Sandoval, A; Santos, E; Schneider, M; Silich, S; Sinnis, G; Smith, A J; Sparks, K; Springer, R W; Taboada, I; Toale, P A; Tollefson, K; Torres, I; Ukwatta, T N; Villaseñor, L; Weisgarber, T; Westerhoff, S; Wisher, I G; Wood, J; Yodh, G B; Younk, P W; Zaborov, D; Zepeda, A; Zhou, H

    2013-01-01

    We describe measurements of GeV and TeV cosmic rays with the High-Altitude Water Cherenkov Gamma-Ray Observatory, or HAWC. The measurements include the observation of the shadow of the moon; the observation of small-scale and large-scale angular clustering of the TeV cosmic rays; the prospects for measurement of transient solar events with HAWC; and the observation of Forbush decreases with the HAWC engineering array and HAWC-30.

  14. VERITAS OBSERVATIONS OF GAMMA-RAY BURSTS DETECTED BY SWIFT

    Energy Technology Data Exchange (ETDEWEB)

    Acciari, V. A.; Benbow, W. [Fred Lawrence Whipple Observatory, Harvard-Smithsonian Center for Astrophysics, Amado, AZ 85645 (United States); Aliu, E.; Errando, M. [Department of Physics and Astronomy, Barnard College, Columbia University, NY 10027 (United States); Arlen, T. [Department of Physics and Astronomy, University of California, Los Angeles, CA 90095 (United States); Aune, T. [Santa Cruz Institute for Particle Physics and Department of Physics, University of California, Santa Cruz, CA 95064 (United States); Beilicke, M.; Buckley, J. H.; Bugaev, V. [Department of Physics, Washington University, St. Louis, MO 63130 (United States); Bradbury, S. M. [School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT (United Kingdom); Byrum, K. [Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439 (United States); Cannon, A.; Collins-Hughes, E. [School of Physics, University College Dublin, Belfield, Dublin 4 (Ireland); Cesarini, A.; Connolly, M. P. [School of Physics, National University of Ireland Galway, University Road, Galway (Ireland); Christiansen, J. L. [Physics Department, California Polytechnic State University, San Luis Obispo, CA 94307 (United States); Ciupik, L. [Astronomy Department, Adler Planetarium and Astronomy Museum, Chicago, IL 60605 (United States); Cui, W. [Department of Physics, Purdue University, West Lafayette, IN 47907 (United States); Duke, C. [Department of Physics, Grinnell College, Grinnell, IA 50112-1690 (United States); Falcone, A. [Department of Astronomy and Astrophysics, 525 Davey Lab, Pennsylvania State University, University Park, PA 16802 (United States); and others

    2011-12-10

    We present the results of 16 Swift-triggered Gamma-ray burst (GRB) follow-up observations taken with the Very Energetic Radiation Imaging Telescope Array System (VERITAS) telescope array from 2007 January to 2009 June. The median energy threshold and response time of these observations were 260 GeV and 320 s, respectively. Observations had an average duration of 90 minutes. Each burst is analyzed independently in two modes: over the whole duration of the observations and again over a shorter timescale determined by the maximum VERITAS sensitivity to a burst with a t{sup -1.5} time profile. This temporal model is characteristic of GRB afterglows with high-energy, long-lived emission that have been detected by the Large Area Telescope on board the Fermi satellite. No significant very high energy (VHE) gamma-ray emission was detected and upper limits above the VERITAS threshold energy are calculated. The VERITAS upper limits are corrected for gamma-ray extinction by the extragalactic background light and interpreted in the context of the keV emission detected by Swift. For some bursts the VHE emission must have less power than the keV emission, placing constraints on inverse Compton models of VHE emission.

  15. Diffuse galactic gamma rays at intermediate and high latitudes. Pt. 1. Constraints on the ISM properties

    Energy Technology Data Exchange (ETDEWEB)

    Cholis, Ilias; Tavakoli, Maryam; Ullio, Piero [SISSA, Trieste (Italy); INFN, Trieste (Italy); Evoli, Carmelo [SISSA, Trieste (Italy); Chinese Academy of Sciences, Beijing (China). National Astronomical Observatories; Maccione, Luca [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2011-06-15

    We study the high latitude (vertical stroke b vertical stroke >10 ) diffuse {gamma}-ray emission in the Galaxy in light of the recently published data from the Fermi collaboration at energies between 100 MeV and 100 GeV. The unprecedented accuracy in these measurements allows to probe and constrain the properties of sources and propagation of cosmic rays (CRs) in the Galaxy, as well as confirming conventional assumptions made on the interstellar medium (ISM). Using the publicly available DRAGON code, that has been shown to reproduce local measurements of CRs, we study assumptions made in the literature on HI and H2 gas distributions in the ISM, and non spatially uniform models of diffusion in the Galaxy. By performing a combined analysis of CR and {gamma}-ray spectra, we derive constraints on the properties of the ISM gas distribution and the vertical scale height of galactic CR diffusion, which may have implications also on indirect Dark Matter detection. We also discuss some of the possible interpretations of the break at {proportional_to}230 GeV in CR protons and helium spectra, recently observed by PAMELA and their impact on {gamma}-rays. (orig.)

  16. FERMI Observations of Gamma -Ray Emission From the Moon

    Science.gov (United States)

    Abdo, A. A.; Ackermann, M.; Ajello, M.; Atwoo, W. B.; Baldini, I.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Berenji, B.; Blandford, R. D.; Bonamente, E.; Borgland, A. W.; Bottacini, E.; Bouvier, A.; Bregeon, J.; Brigida, M.; Bruel, P.; Buehler, R.; Gehrels, N.; Hays, E.; Thompson, D. J.; McEnery, J. E.; Troja, E.

    2012-01-01

    We report on the detection of high-energy ? -ray emission from the Moon during the first 24 months of observations by the Fermi Large Area Telescope (LAT). This emission comes from particle cascades produced by cosmicray (CR) nuclei and electrons interacting with the lunar surface. The differential spectrum of the Moon is soft and can be described as a log-parabolic function with an effective cutoff at 2-3 GeV, while the average integral flux measured with the LAT from the beginning of observations in 2008 August to the end of 2010 August is F(greater than100 MeV) = (1.04 plus or minus 0.01 [statistical error] plus or minus 0.1 [systematic error]) × 10(sup -6) cm(sup -2) s(sup -1). This flux is about a factor 2-3 higher than that observed between 1991 and 1994 by the EGRET experiment on board the Compton Gamma Ray Observatory, F(greater than100 MeV)˜5×10(sup -7) cm(sup -2) s(sup -1), when solar activity was relatively high. The higher gamma -ray flux measured by Fermi is consistent with the deep solar minimum conditions during the first 24 months of the mission, which reduced effects of heliospheric modulation, and thus increased the heliospheric flux of Galactic CRs. A detailed comparison of the light curve with McMurdo Neutron Monitor rates suggests a correlation of the trends. The Moon and the Sun are so far the only known bright emitters of gamma-rays with fast celestial motion. Their paths across the sky are projected onto the Galactic center and high Galactic latitudes as well as onto other areas crowded with high-energy gamma-ray sources. Analysis of the lunar and solar emission may thus be important for studies of weak and transient sources near the ecliptic.

  17. The diffuse GeV-TeV $\\gamma$-ray emission of the Cygnus region

    CERN Document Server

    Bi, X J; Wang, Y; Yuan, Q

    2008-01-01

    The Milagro's observation shows that there is a strong diffuse multi-TeV $\\gamma$-ray excess in the Cygnus region compared with the background estimated by GALPROP. While the GeV observation by EGRET shows no significant excess in this region (except the ``GeV excess''). It indicates that there exists high energy cosmic ray population to generate the very high energy $\\gamma$-rays. We try to build theoretical models to account for this very high energy $\\gamma$-ray emission from GeV to multi-TeV energy range in the Cygnus region. A diffuse source term of cosmic rays (either proton or electron), together with the background contribution from the average Galactic cosmic rays, is used to reproduce both the EGRET observational data in GeV energy range and the Milagro data in TeV range. The background is calculated using GALPROP. A dark matter contribution is introduced to account for the ``GeV excess'' problem of EGRET data. The neutrino emission associated with the hadronic interaction or the hard X-ray synchrot...

  18. Fermi Large Area Telescope Measurements of the Diffuse Gamma-Ray Emission at Intermediate Galactic Latitudes

    Energy Technology Data Exchange (ETDEWEB)

    Abdo, A.A.; /Naval Research Lab, Wash., D.C.; Ackermann, M.; Ajello, M.; /SLAC; Anderson, B.; Atwood, W.B.; /UC, Santa Cruz; Axelsson, M.; /Stockholm U. /Stockholm U., OKC; Baldini, L.; /INFN, Pisa; Ballet, J.; /DAPNIA, Saclay; Barbiellini, G.; /INFN, Trieste /Trieste U.; Bastieri, D.; /INFN, Padua /Padua U.; Baughman, B.M.; /Taiwan, Natl. Taiwan U. /Ohio State U.; Bechtol, K.; /SLAC; Bellazzini, R.; /INFN, Pisa; Berenji, B.; Blandford, R.D.; Bloom, E.D.; /SLAC; Bonamente, E.; /INFN, Perugia /Perugia U.; Borgland, A.W.; /SLAC; Bregeon, J.; Brez, A.; /INFN, Pisa; Brigida, M.; /Bari U. /INFN, Bari /Ecole Polytechnique /Washington U., Seattle /Bari U. /INFN, Bari /Stanford U., HEPL /KIPAC, Menlo Park /SLAC /IASF, Milan /DAPNIA, Saclay /INFN, Perugia /Perugia U. /Stanford U., HEPL /KIPAC, Menlo Park /SLAC /Naval Research Lab, Wash., D.C. /George Mason U. /NASA, Goddard /Stanford U., HEPL /KIPAC, Menlo Park /SLAC /INFN, Perugia /Perugia U. /Stanford U., HEPL /KIPAC, Menlo Park /SLAC /Montpellier U. /Stockholm U. /Stockholm U., OKC /Royal Inst. Tech., Stockholm /Padua U. /Naval Research Lab, Wash., D.C. /Udine U. /INFN, Trieste /Bari U. /INFN, Bari /Stanford U., HEPL /KIPAC, Menlo Park /SLAC /INFN, Pisa /UC, Santa Cruz /Stanford U., HEPL /KIPAC, Menlo Park /SLAC /CENBG, Gradignan /CENBG, Gradignan /Stanford U., HEPL /KIPAC, Menlo Park /SLAC /Montpellier U. /Bari U. /INFN, Bari /Ecole Polytechnique /Stanford U., HEPL /KIPAC, Menlo Park /SLAC /Udine U. /INFN, Trieste /Hiroshima U. /Stanford U., HEPL /KIPAC, Menlo Park /SLAC /Bari U. /INFN, Bari /INFN, Pisa /INFN, Bari /NASA, Goddard /Maryland U.; /more authors..

    2012-04-11

    The diffuse galactic {gamma}-ray emission is produced by cosmic rays (CRs) interacting with the interstellar gas and radiation field. Measurements by the Energetic Gamma-Ray Experiment Telescope (EGRET) instrument on the Compton Gamma-Ray Observatory indicated excess {gamma}-ray emission {ge}1 GeV relative to diffuse galactic {gamma}-ray emission models consistent with directly measured CR spectra (the so-called 'EGRET GeV excess'). The Large Area Telescope (LAT) instrument on the Fermi Gamma-Ray Space Telescope has measured the diffuse {gamma}-ray emission with improved sensitivity and resolution compared to EGRET. We report on LAT measurements for energies 100 MeV to 10 GeV and galactic latitudes 10{sup o} {le} |b| {le} 20{sup o}. The LAT spectrum for this region of the sky is well reproduced by a diffuse galactic {gamma}-ray emission model that is consistent with local CR spectra and inconsistent with the EGRET GeV excess.

  19. Angular Signatures of Dark Matter in the Diffuse Gamma Ray Spectrum

    Energy Technology Data Exchange (ETDEWEB)

    Hooper, Dan; Serpico, Pasquale D.; /Fermilab

    2007-02-01

    Dark matter annihilating in our Galaxy's halo and elsewhere in the universe is expected to generate a diffuse flux of gamma rays, potentially observable with next generation satellite-based experiments, such as GLAST. In this article, we study the signatures of dark matter in the angular distribution of this radiation. Pertaining to the extragalactic contribution, we discuss the effect of the motion of the solar system with respect to the cosmological rest frame, and anisotropies due to the structure of our local universe. For the gamma ray flux from dark matter in our own Galactic halo, we discuss the effects of the offset position of the solar system, the Compton-Getting effect, the asphericity of the Milky Way halo, and the signatures of nearby substructure. We explore the prospects for the detection of these features by the GLAST satellite and find that, if {approx} 10% or more of the diffuse gamma ray background observed by EGRET is the result of dark matter annihilations, then GLAST should be sensitive to anisotropies down to the 0.1% level. Such precision would be sufficient to detect many, if not all, of the signatures discussed in this paper.

  20. SAS-2 gamma-ray observations of PSR 1747-46. [radio pulsar

    Science.gov (United States)

    Thompson, D. J.; Fichtel, C. E.; Kniffen, D. A.; Ogelman, H. B.; Lamb, R. C.

    1976-01-01

    Evidence is reported for the observation of gamma-ray emission from the radio pulsar PSR 1747-46 by the gamma-ray telescope aboard SAS 2. The evidence is based on the presence of both an approximately 3-sigma enhancement of gamma rays at the pulsar's location and an approximately 4-sigma peak in the phase plot of 79 gamma-ray events whose phase was calculated from the pulsar's known period. The gamma-ray pulsation is found to appear at a phase lag of about 0.16 from that predicted by the radio observations. The pulsed gamma-ray fluxes above 35 MeV and 100 MeV are estimated, and it is shown that the gamma-ray pulse width is similar to the radio pulse width. It is concluded that PSR 1747-46 is a most likely candidate for pulsed gamma-ray emission.

  1. Fermi bubble $\\gamma$-rays as a result of diffusive injection of Galactic cosmic rays

    CERN Document Server

    Thoudam, Satyendra

    2013-01-01

    Recently, the {\\it{Fermi}} space telescope has discovered two large $\\gamma$-ray emission regions, the so-called "Fermi bubbles", that extend up to $\\sim 50^\\circ$ above and below the Galactic center. The $\\gamma$-ray emission from the bubbles are found to follow a hard spectrum with no significant spatial variation in intensity and spectral shape. The origin of the emission is still not clearly understood. Suggested explanations include injection of cosmic-ray nuclei from the Galactic center by high-speed Galactic winds, electron acceleration by multiple shocks and stochastic electron acceleration inside the bubbles. In this letter, it is proposed that the $\\gamma$-rays can be the result of diffusive injection of Galactic cosmic-ray protons during their propagation through the Galaxy. Considering that cosmic rays undergo much slower diffusion inside the bubbles than in the averaged Galaxy and at the same time suffer from inelastic collisions with the bubble plasma, this model can explain the observed intensi...

  2. INTEGRAL and XMM-Newton observations of the weak gamma-ray burst GRB 030227

    DEFF Research Database (Denmark)

    Mereghetti, S.; Gotz, D.; Tiengo, A.

    2003-01-01

    We present International Gamma-Ray Astrophysical Laboratory ( INTEGRAL) and XMM-Newton observations of the prompt gamma-ray emission and the X-ray afterglow of GRB 030227, the first gamma-ray burst for which the quick localization obtained with the INTEGRAL Burst Alert System has led to the disco...

  3. INTEGRAL and XMM-Newton observations of the weak gamma-ray burst GRB 030227

    DEFF Research Database (Denmark)

    Mereghetti, S.; Gotz, D.; Tiengo, A.

    2003-01-01

    We present International Gamma-Ray Astrophysical Laboratory ( INTEGRAL) and XMM-Newton observations of the prompt gamma-ray emission and the X-ray afterglow of GRB 030227, the first gamma-ray burst for which the quick localization obtained with the INTEGRAL Burst Alert System has led to the disco...

  4. Gamma-ray-burst beaming and gravitational-wave observations.

    Science.gov (United States)

    Chen, Hsin-Yu; Holz, Daniel E

    2013-11-01

    Using the observed rate of short-duration gamma-ray bursts (GRBs) it is possible to make predictions for the detectable rate of compact binary coalescences in gravitational-wave detectors. We show that the nondetection of mergers in the existing LIGO/Virgo data constrains the beaming angles and progenitor masses of gamma-ray bursts, although these limits are fully consistent with existing expectations. We make predictions for the rate of events in future networks of gravitational-wave observatories, finding that the first detection of a neutron-star-neutron-star binary coalescence associated with the progenitors of short GRBs is likely to happen within the first 16 months of observation, even in the case of only two observatories (e.g., LIGO-Hanford and LIGO-Livingston) operating at intermediate sensitivities (e.g., advanced LIGO design sensitivity, but without signal recycling mirrors), and assuming a conservative distribution of beaming angles (e.g., all GRBs beamed within θ(j) = 30°). Less conservative assumptions reduce the waiting time until first detection to a period of weeks to months, with an event detection rate of >/~10/yr. Alternatively, the compact binary coalescence model of short GRBs can be ruled out if a binary is not seen within the first two years of operation of a LIGO-Hanford, LIGO-Livingston, and Virgo network at advanced design sensitivity. We also demonstrate that the gravitational wave detection rate of GRB triggered sources (i.e., those seen first in gamma rays) is lower than the rate of untriggered events (i.e., those seen only in gravitational waves) if θ(j)≲30°, independent of the noise curve, network configuration, and observed GRB rate. The first detection in gravitational waves of a binary GRB progenitor is therefore unlikely to be associated with the observation of a GRB.

  5. The Diffuse Gamma-Ray Background from Type Ia Supernovae

    Science.gov (United States)

    Lien, Amy; Fields, Brian D.

    2012-01-01

    The origin of the diffuse extragalactic gamma-ray background (EGB) has been intensively studied but remains unsettled. Current popular source candidates include unresolved star-forming galaxies, starburst galaxies, and blazars. In this paper we calculate the EGB contribution from the interactions of cosmic rays accelerated by Type Ia supernovae, extending earlier work which only included core-collapse supernovae. We consider Type Ia events in star-forming galaxies, but also in quiescent galaxies that lack star formation. In the case of star-forming galaxies, consistently including Type Ia events makes little change to the star-forming EGB prediction, so long as both supernova types have the same cosmic-ray acceleration efficiencies in star-forming galaxies. Thus our updated EGB estimate continues to show that star-forming galaxies can represent a substantial portion of the signal measured by Fermi. In the case of quiescent galaxies, conversely, we find a wide range of possibilities for the EGB contribution. The dominant uncertainty we investigated comes from the mass in hot gas in these objects, which provides targets for cosmic rays: total gas masses are as yet poorly known, particularly at larger radii. Additionally, the EGB estimation is very sensitive to the cosmic-ray acceleration efficiency and confinement, especially in quiescent galaxies. In the most optimistic allowed scenarios, quiescent galaxies can be an important source of the EGB. In this case, star-forming galaxies and quiescent galaxies together will dominate the EGB and leave little room for other contributions. If other sources, such as blazars, are found to have important contributions to the EGB, then either the gas mass or cosmic-ray content of quiescent galaxies must be significantly lower than in their star-forming counterparts. In any case, improved Fermi EGB measurements will provide important constraints on hot gas and cosmic rays in quiescent galaxies.

  6. Gamma ray sources observation with the ARGO-YBJ detector

    Energy Technology Data Exchange (ETDEWEB)

    Vernetto, S., E-mail: vernetto@to.infn.it [IFSI-INAF, Corso Fiume 4, 10133 Torino (Italy)

    2012-11-11

    Since November 2007 the air shower detector ARGO-YBJ is continuously monitoring the gamma ray sky in the declination band from -10 Degree-Sign to +70 Degree-Sign at energies E>0.5TeV. In this work we present the results of our observations of galactic and extragalactic sources during more than 3 years, focusing our attention on the Crab Nebula, the blazar Mrk 421 and the galactic extended source MGRO J1908+06, probably associated to the Fermi pulsar PSR J1907+0602.

  7. Gamma ray sources observed with ARGO-YBJ

    Energy Technology Data Exchange (ETDEWEB)

    Vernetto, S., E-mail: vernetto@to.infn.it [INAF, Osservatorio Astrofisico di Torino (Italy); INFN, Sezione di Torino (Italy)

    2013-06-15

    The air shower detector ARGO-YBJ is continuously monitoring the gamma ray sky in the declination band from −10° to +70° at energies E>0.5TeV. After ∼4 years of operation, the integrated sensitivity reached the level of ∼28% the Crab Nebula flux. In this work we present a summary of our observations concerning the Crab Nebula, the Cygnus region, the galactic source MGRO J1908+06, and the blazars Mrk421 and Mrk501.

  8. Centaurus A observation at MeV-gamma-ray energies

    Energy Technology Data Exchange (ETDEWEB)

    Von Ballmoos, P.; Diehl, R.; Schoenfelder, V.

    1987-01-01

    Results are reported from balloon-borne measurements of Cen A gamma-ray emissions in the 0.7-20 Mev interval on Oct. 31, 1982. The Compton telescope used is described, along with data analysis procedures which accounted for the probabilities that the measured events originated in Cen A, background, instrumental and atmospheric contributions, and the arrival probabilities for all observable sky directions. The data were closely approximated with a power-law spectrum, although balloon failure significantly reduced the number of measurements and introduced large uncertainties into the calculations. 28 references.

  9. Terrestrial Gamma-ray Flash (TGF) Observations with the Gamma-ray Burst Monitor on the Fermi Observatory

    Science.gov (United States)

    Fishman, Gerald J.

    2009-01-01

    Terrestrial Gamma-ray Flashes (TGFs) have now been detected with four different orbiting spacecraft. The latest observations are being made with the scintillation detectors of Gamma-ray Burst Monitor (GBM) on the Fermi Gamma-ray Space Telescope Observatory (Fermi). Although this experiment was designed and optimized for the observation of cosmic gamma-ray bursts (GRBs), it has unprecedented capabilities for TGF observations, surpassing those of the experiment that discovered TGFs, the BATSE experiment on the Compton Gamma-ray Observatory. Launched in June 2008 from the Kennedy Space Center, the Fermi-GBM has been detecting about one TGF every four weeks. The thick bismuth germinate (BGO) scintillation detectors of the GBM have now observed photon energies from TGFs at energies up to approx.40 MeV. Individual photons are detected with an absolute timing accuracy of 2 microsec. Unlike the BATSE instrument, the GBM data system allows higher counting rates to be recorded and deadtime characteristics are well-known and correctable; thus the saturation effects seen with BATSE are avoided. TGF pulses as narrow as approx.0.1ms have been observed with the GBM. Like BATSE (and unlike RHESSI) an on-board trigger is required to detect TGFs. The minimum time window for this trigger is 16ms. A trigger window this wide greatly reduces the number of detected TGFs, since they most often have a much shorter duration than this window, thus reducing the signal-to-background. New on-board trigger algorithms based on detected photon energies are about to be implemented; this should increase the number of TGF triggers. High-energy spectra from TGFs observed with Fermi-GBM will be described.

  10. Optical telescope BIRT in ORIGIN for gamma ray burst observing

    Science.gov (United States)

    Content, Robert; Sharples, Ray; Page, Mathew J.; Cole, Richard; Walton, David M.; Winter, Berend; Pedersen, Kristian; Hjorth, Jens; Andersen, Michael; Hornstrup, Allan; den Herder, Jan-Willem A.; Piro, Luigi

    2012-09-01

    The ORIGIN concept is a space mission with a gamma ray, an X-ray and an optical telescope to observe the gamma ray bursts at large Z to determine the composition and density of the intergalactic matter in the line of sight. It was an answer to the ESA M3 call for proposal. The optical telescope is a 0.7-m F/1 with a very small instrument box containing 3 instruments: a slitless spectrograph with a resolution of 20, a multi-imager giving images of a field in 4 bands simultaneously, and a cross-dispersed Échelle spectrograph giving a resolution of 1000. The wavelength range is 0.5 μm to 1.7 μm. All instruments fit together in a box of 80 mm x 80 mm x 200 mm. The low resolution spectrograph uses a very compact design including a special triplet. It contains only spherical surfaces except for one tilted cylindrical surface to disperse the light. To reduce the need for a high precision pointing, an Advanced Image Slicer was added in front of the high resolution spectrograph. This spectrograph uses a simple design with only one mirror for the collimator and another for the camera. The Imager contains dichroics to separate the bandwidths and glass thicknesses to compensate the differences in path length. All 3 instruments use the same 2k x 2k detector simultaneously so that telescope pointing and tip-tilt control of a fold mirror permit to place the gamma ray burst on the desired instrument without any other mechanism.

  11. VERITAS Observations of Gamma-Ray Bursts Detected by Swift

    CERN Document Server

    Acciari, V A; Arlen, T; Aune, T; Beilicke, M; Benbow, W; Bradbury, S M; Buckley, J H; Bugaev, V; Byrum, K; Cannon, A; Cesarini, A; Christiansen, J L; Ciupik, L; Collins-Hughes, E; Connolly, M P; Cui, W; Duke, C; Errando, M; Falcone, A; Finley, J P; Finnegan, G; Fortson, L; Furniss, A; Galante, N; Gall, D; Godambe, S; Griffin, S; Grube, J; Guenette, R; Gyuk, G; Hanna, D; Holder, J; Hughes, G; Hui, C M; Humensky, T B; Jackson, D J; Kaaret, P; Karlsson, N; Kertzman, M; Kieda, D; Krawczynski, H; Krennrich, F; Lang, M J; Madhavan, A S; Maier, G; McArthur, S; McCann, A; Moriarty, P; Newbold, M D; Ong, R A; Orr, M; Otte, A N; Park, N; Perkins, J S; Pohl, M; Prokoph, H; Quinn, J; Ragan, K; Reyes, L C; Reynolds, P T; Roache, E; Rose, H J; Ruppel, J; Saxon, D B; Schroedter, M; Sembroski, G H; Şentürk, G D; Smith, A W; Staszak, D; Swordy, S P; Tešić, G; Theiling, M; Thibadeau, S; Tsurusaki, K; Varlotta, A; Vassiliev, V V; Vincent, S; Vivier, M; Wakely, S P; Ward, J E; Weekes, T C; Weinstein, A; Weisgarber, T; Williams, D A; Wood, M

    2011-01-01

    We present the results of sixteen Swift-triggered GRB follow-up observations taken with the VERITAS telescope array from January, 2007 to June, 2009. The median energy threshold and response time of these observations was 260 GeV and 320 s, respectively. Observations had an average duration of 90 minutes. Each burst is analyzed independently in two modes: over the whole duration of the observations and again over a shorter time scale determined by the maximum VERITAS sensitivity to a burst with a t^-1.5 time profile. This temporal model is characteristic of GRB afterglows with high-energy, long-lived emission that have been detected by the Large Area Telescope (LAT) on-board the Fermi satellite. No significant VHE gamma-ray emission was detected and upper limits above the VERITAS threshold energy are calculated. The VERITAS upper limits are corrected for gamma-ray extinction by the extragalactic background light (EBL) and interpreted in the context of the keV emission detected by Swift. For some bursts the VH...

  12. EDGE: explorer of diffuse emission and gamma-ray burst

    NARCIS (Netherlands)

    Piro, L.; den Herder, J.W.A.; Hermsen, W.; Hoevers, H.F.C.; in 't Zand, J.J.M.; Méndez, M.; Vink, J.

    2008-01-01

    How structures of various scales formed and evolved from the early Universe up to present time is a fundamental question of astrophysical cosmology. EDGE (Piro et al., 2007) will trace the cosmic history of the baryons from the early generations of massive stars by Gamma-Ray Burst (GRB) explosions,

  13. Pinpointing the knee of cosmic rays with diffuse PeV gamma-rays and neutrinos

    CERN Document Server

    Guo, Y Q; Yuan, Q; Tian, Z; Gao, X J

    2013-01-01

    The origin of the knee in cosmic ray spectrum remains to be an unsolved fundamental problem. There are various kinds of models which predict different break positions and the compositions of the knee. In this work, we suggest to use diffuse $\\gamma$-rays and neutrinos as probes to test these models. Based on several typical types of the composition models, the diffuse $\\gamma$-ray and neutrino spectra are calculated, which show distinctive cutoff behaviours at energies from tens of TeV to multi-PeV. The expected flux will be observable by the newly upgraded Tibet-AS$\\gamma$+MD (muon detector) experiment as well as more sensitive future projects, such as LHAASO and HiSCORE. By comparing the neutrino spectrum with the recent observations by IceCube experiment, we find that the diffuse neutrinos from interactions between the cosmic rays and the interstellar medium may not be responsible to the majority of the IceCube events. Future measurements of the neutrinos may be able to identify the Galactic diffuse compon...

  14. AGILE Observations of Terrestrial Gamma-Ray Flashes

    CERN Document Server

    Marisaldi, M; Labanti, C; Bulgarelli, A; Gianotti, F; Trifoglio, M; Tavani, M; Argan, A; Del Monte, E; Longo, F; Barbiellini, G; Giuliani, A; Trois, A

    2011-01-01

    The AGILE satellite, operating since mid 2007 and primarily devoted to high-energy astrophysics, is one of the only three currently operating space instruments capable of detecting Terrestrial Gamma-Ray Flashes (TGFs), together with RHESSI and $Fermi$-GBM. Thanks to the AGILE Mini-Calorimeter instrument energy range extended up to 100MeV and its flexible trigger logic on sub-millisecond time scales, AGILE is detecting more than 10 TGFs/month, adding a wealth of observations which pose severe constrains on production models. The main AGILE discoveries in TGF science during two and a half years of observations are the following: 1) the TGF spectrum extends well above 40 MeV, 2) the high energy tail of the TGF spectrum is harder than expected and cannot be easily explained by previous theoretical models, 3) TGFs can be localized from space using high-energy photons detected by the AGILE gamma-ray imaging detector. In this presentation we will describe the characteristics of the 2.5-years AGILE TGF sample, focusi...

  15. EBL constraints with VERITAS gamma-ray observations

    Science.gov (United States)

    Fernandez Alonso, M.; VERITAS Collaboration

    2017-10-01

    The extragalactic background light (EBL) contains all the radiation emitted by nuclear and accretion processes since the epoch of recombination. Direct measurements of the EBL in the near-IR to mid-IR waveband are extremely difficult due mainly to the zodiacal light foreground. Instead, gamma-ray astronomy offers the possibility to indirectly set limits to the EBL by studying the effects of gamma-ray absorption in the spectra of detected sources in the very high energy range (VHE: 100 GeV). These effects can be generally seen in the spectra of VHE blazars as a softening (steepening) of the spectrum and/or abrupt changes in the spectral index or breaks. In this work, we use recent VERITAS data of a group of blazars and apply two methods to derive constraints for the EBL spectral properties. We present preliminary results that will be completed with new observations in the near future to enhance the calculated restrictions to the EBL.

  16. Fluxes of diffuse gamma rays and neutrinos from cosmic-ray interactions with circumgalactic gas

    CERN Document Server

    Kalashev, Oleg

    2016-01-01

    The Milky Way is surrounded by a gravitationally bound gas corona extending up to the Galaxy's virial radius. Interactions of cosmic-ray particles with this gas give rise to energetic secondary gamma rays and neutrinos. We present a quantitative analysis of the neutrino and gamma-ray fluxes from the corona of the Milky Way together with a combined contribution of coronae of other galaxies. The high-energy neutrino flux is insufficient to explain the IceCube results, while the contribution to the FERMI-LAT diffuse gamma-ray flux is not negligible.

  17. An improved time of flight gamma-ray telescope to monitor diffuse gamma-ray in the energy range 5 MeV - 50 MeV

    Science.gov (United States)

    Dacostafereiraneri, A.; Bui-Van, A.; Lavigne, J. M.; Sabaud, C.; Vedrenne, G.; Agrinier, B.; Gouiffes, C.

    1985-01-01

    A time of flight measuring device is the basic triggering system of most of medium and high energy gamma-ray telescopes. A simple gamma-ray telescope has been built in order to check in flight conditions the functioning of an advanced time of flight system. The technical ratings of the system are described. This telescope has been flown twice with stratospheric balloons, its axis being oriented at various Zenital directions. Flight results are presented for diffuse gamma-rays, atmospheric secondaries, and various causes of noise in the 5 MeV-50 MeV energy range.

  18. MAGIC Gamma-ray Observations of the Perseus Galaxy Cluster

    CERN Document Server

    Zandanel, Fabio; Lombardi, Saverio; Eisenacher, Dorit; Hildebrand, Dorothee; Prada, Francisco; Pfrommer, Christoph; Pinzke, Anders

    2013-01-01

    In order to detect the gamma-ray emission from cosmic ray (CR) interactions with the intra-cluster medium, the ground-based imaging Cherenkov telescope MAGIC conducted the deepest-to-date observational campaign targeting a galaxy cluster at very high-energies (> 100 GeV) and observed the Perseus cluster for a total of 85 hr during 2009-2011. The observations constrain the average CR-to-thermal pressure ratio to be 1-2% and the maximum CR acceleration efficiency at structure formation shocks to be 4-9 muG. This range is well below the field strength inferred from Faraday rotation measurements and, therefore, the hadronic model remains a plausible explanation of the Perseus radio mini-halo. Following this successful campaign, MAGIC is continuing collecting data on Perseus.

  19. Very High Energy Gamma Ray Extension of GRO Observations

    Science.gov (United States)

    Weekes, Trevor C.

    1994-01-01

    The membership, progress, and invited talks, publications, and proceedings made by the Whipple Gamma Ray Collaboration is reported for june 1990 through May 1994. Progress was made in the following areas: the May 1994 Markarian Flare at Whipple and EGRET (Energetic Gamma Ray Experiment Telescope) energies; AGN's (Active Galactic Nuclei); bursts; supernova remnants; and simulations and energy spectra.

  20. Keck Observations of 160 Gamma-Ray Burst Host Galaxies

    CERN Document Server

    Perley, Daniel A; Prochaska, Jason X

    2013-01-01

    We present a preliminary data release from our multi-year campaign at Keck Observatory to study the host galaxies of a large sample of Swift-era gamma-ray bursts via multi-color ground-based optical imaging and spectroscopy. With over 160 targets observed to date (and almost 100 host detections, most of which have not previously been reported in the literature) our effort represents the broadest GRB host survey to date. While targeting was heterogeneous, our observations span the known diversity of GRBs including short bursts, long bursts, spectrally soft GRBs (XRFs), ultra-energetic GRBs, X-ray faint GRBs, dark GRBs, SN-GRBs, and other sub-classes. We also present a preview of our database (currently available online via a convenient web interface) including a catalog of multi-color photometry, redshifts and line ID's. Final photometry and reduced imaging and spectra will be available in the near future.

  1. Constraints on dark matter annihilations from diffuse gamma-ray emission in the Galaxy

    CERN Document Server

    Tavakoli, Maryam; Evoli, Carmelo; Ullio, Piero

    2014-01-01

    Recent advances in gamma-ray cosmic ray, infrared and radio astronomy have allowed us to develop a significantly better understanding of the galactic medium properties in the last few years. In this work using the DRAGON code, that numerically solves the CR propagation equation and calculating gamma-ray emissivities in a 2-dimensional grid enclosing the Galaxy, we study in a self consistent manner models for the galactic diffuse gamma-ray emission. Our models are cross-checked to both the available CR and gamma-ray data. We address the extend to which dark matter annihilations in the Galaxy can contribute to the diffuse gamma-ray flux towards different directions on the sky. Moreover we discuss the impact that astrophysical uncertainties of non DM nature, have on the derived gamma-ray limits. Such uncertainties are related to the diffusion properties on the Galaxy, the interstellar gas and the interstellar radiation field energy densities. Light ~10 GeV dark matter annihilating dominantly to hadrons is more s...

  2. Simulation of diffusive particle propagation and related TeV gamma-ray emission at the Galactic Center

    CERN Document Server

    Ziegler, Alexander

    2016-01-01

    Observations of the Galactic Center (GC) region in very-high-energy (VHE, >100 GeV) gamma rays, conducted with the High Energy Stereoscopic System (H.E.S.S.), led to the detection of an extended region of diffuse gamma-ray emission in 2006. To date, the exact origin of this emission has remained unclear, although a tight spatial correlation between the density distribution of the molecular material of the Central Molecular Zone (CMZ) and the morphology of the observed gamma-ray excess points towards a hadronic production scenario. In this proceeding, we present a numerical study of the propagation of high-energy cosmic rays (CRs) through a turbulent environment such as the GC region. In our analysis, we derive an energy-dependent parametrization for the diffusion coefficient which we use for our simulation of the diffuse gamma-ray emission at the GC. Assuming that hadronic CRs have been released by a single impulsive event at the center of our Galaxy, we probe the question whether or not the interaction proce...

  3. A Measurement of the Spatial Distribution of Diffuse TeV Gamma Ray Emission from the Galactic Plane with Milagro

    CERN Document Server

    Abdo, A A; Aune, T; Berley, D; Blaufuss, E; Casanova, S; Chen, C; Dingus, B L; Ellsworth, R W; Fleysher, L; Fleysher, R; González, M M; Goodman, J A; Hoffman, C M; H"untemeyer, P H; Kolterman, B E; Lansdell, C P; Linnemann, J T; McEnery, J E; Mincer, A I; Nemethy, I V Moskalenko P; Noyes, D; Porter, T A; Pretz, J; Ryan, J M; Parkinson, P M Saz; Shoup, A; Sinnis, G; Smith, A J; Strong, A W; Sullivan, G W; Vasileiou, V; Walker, G P; Williams, D A; Yodh, G B

    2008-01-01

    Diffuse $\\gamma$-ray emission produced by the interaction of cosmic-ray particles with matter and radiation in the Galaxy can be used to probe the distribution of cosmic rays and their sources in different regions of the Galaxy. With its large field of view and long observation time, the Milagro Gamma Ray Observatory is an ideal instrument for surveying large regions of the Northern Hemisphere sky and for detecting diffuse $\\gamma$-ray emission at very high energies. Here, the spatial distribution and the flux of the diffuse $\\gamma$-ray emission in the TeV energy range with a median energy of 15 TeV for Galactic longitudes between 30$^\\circ$ and 110$^\\circ$ and between 136$^\\circ$ and 216$^\\circ$ and for Galactic latitudes between -10$^\\circ$ and 10$^\\circ$ are determined. The measured fluxes are consistent with predictions of the GALPROP model everywhere except for the Cygnus region ($l\\in[65^\\circ,85^\\circ]$). For the Cygnus region, the flux is twice the predicted value. This excess can be explained by the...

  4. Study of test-mass charging process in the LISA missions due to diffuse gamma-rays

    Energy Technology Data Exchange (ETDEWEB)

    Finetti, N; Scrimaglio, R [Dipartimento di Fisica dell' Universita degli Studi dell' Aquila and Gruppo INFN dell' Aquila collegato ai Laboratori Nazionali del Gran Sasso, Via Vetoio, 67010 Coppito, L' Aquila (Italy); Grimani, C; Fabi, M, E-mail: noemi.finetti@aquila.infn.i [Istituto di Fisica dell' Universita degli Studi di Urbino ' Carlo Bo' , Via S. Chiara, 27, 61029, Urbino (Italy)

    2009-03-01

    Gravitational inertial sensors will be placed on board the Laser Interferometer Space Antenna (LISA) and aboard its precursor mission LISA Pathfinder (LISA-PF) in order to detect low frequency gravitational waves in space. Free-floating test-masses (Au{sub 7}Pt{sub 3} cubes) will be housed in inertial sensors for detecting possible laser signal variations induced by gravitational waves. Charging of the LISA test-masses due to exposure of the spacecraft to cosmic radiation and energetic solar particles will affect operation of gravitational inertial sensors. In this paper we report on the role of diffuse gamma-rays in charging the LISA and LISA-PF test-masses with respect to protons and helium nuclei. The diffuse gamma-ray flux in the Galaxy has been interpolated taking into account the outcomes of recent calculations. A comparison with gamma-ray observations gathered by different experiments (COMPTEL and EGRET, Milagro, Whipple, HEGRA, TIBET) has been carried out. Simulations of the test-mass charging process have been performed by means of the FLUKA2006.3b package. Monte Carlo simulations of the interaction of cosmic particles with the LISA spacecraft indicate that the diffuse gamma-ray contribution to the average steady-state test-mass charging rate and to the single-sided power spectrum of the charge rate noise is marginal with respect to that due to galactic cosmic-rays.

  5. CANGAROO-III observation of TeV gamma rays from the unidentified gamma-ray source HESS J1614-518

    CERN Document Server

    Mizukami, T; Yoshida, T; Nakamori, T; Enomoto, R; Tanimori, T; Akimoto, M; Bicknell, G V; Clay, R W; Edwards, P G; Gunji, S; Hara, S; Hara, T; Hayashi, S; Ishioka, H; Kabuki, S; Kajino, F; Katagiri, H; Kawachi, A; Kifune, T; Kiuchi, R; Kunisawa, T; Kushida, J; Matoba, T; Matsubara, Y; Matsuzawa, I; Mizumura, Y; Mizumoto, Y; Mori, M; Muraishi, H; Naito, T; Nakayama, K; Nishijima, K; Ohishi, M; Otake, Y; Ryoki, S; Saito, K; Sakamoto, Y; Stamatescu, V; Suzuki, T; Swaby, D L; Thornton, G; Tokanai, F; Toyota, Y; Tsuchiya, K; Yanagita, S; Yokoe, Y; Yoshikoshi, T; Yukawa, Y

    2011-01-01

    We report the detection, with the CANGAROO-III imaging atmospheric Cherenkov telescope array, of a very high energy gamma-ray signal from the unidentified gamma-ray source HESS J1614-518, which was discovered in the H.E.S.S. Galactic plane survey. Diffuse gamma-ray emission was detected above 760 GeV at the 8.9 sigma level during an effective exposure of 54 hr from 2008 May to August. The spectrum can be represented by a power-law: 8.2+-2.2_{stat}+-2.5_{sys}x10^{-12}x (E/1TeV)^{-Gamma} cm^{-2} s^{-1} TeV^{-1} with a photon index Gamma of 2.4+-0.3_{stat}+-0.2_{sys}, which is compatible with that of the H.E.S.S. observations. By combining our result with multi-wavelength data, we discuss the possible counterparts for HESS J1614-518 and consider radiation mechanisms based on hadronic and leptonic processes for a supernova remnant, stellar winds from massive stars, and a pulsar wind nebula. Although a leptonic origin from a pulsar wind nebula driven by an unknown pulsar remains possible, hadronic-origin emission ...

  6. Prompt Optical Observations of $\\gamma$-ray Bursts

    CERN Document Server

    Akerlof, Carl W; Barthelmy, S D; Bloch, J; Butterworth, P S; Casperson, D E; Cline, T; Fletcher, S; Frontera, F; Gisler, G; Heise, J; Hills, J; Hurley, K; Kehoe, R; Lee, B; Marshall, S; McKay, T; Pawl, A; Piro, L; Szymanski, J J; Wren, J; Akerlof, Carl; Balsano, Richard; Barthelmy, Scott; Bloch, Jeff; Butterworth, Paul; Casperson, Don; Cline, Tom; Fletcher, Sandra; Frontera, Fillippo; Gisler, Galen; Heise, John; Hills, Jack; Hurley, Kevin; Kehoe, Robert; Lee, Brian; Marshall, Stuart; Kay, Tim Mc; Pawl, Andrew; Piro, Luigi; Szymanski, John; Wren, Jim

    2000-01-01

    The Robotic Optical Transient Search Experiment (ROTSE) seeks to measure simultaneous and early afterglow optical emission from gamma-ray bursts (GRBs). A search for optical counterparts to six GRBs with localization errors of 1 square degree or better produced no detections. The earliest limiting sensitivity is m(ROTSE) > 13.1 at 10.85 seconds (5 second exposure) after the gamma-ray rise, and the best limit is m(ROTSE) > 16.0 at 62 minutes (897 second exposure). These are the most stringent limits obtained for GRB optical counterpart brightness in the first hour after the burst. Consideration of the gamma-ray fluence and peak flux for these bursts and for GRB990123 indicates that there is not a strong positive correlation between optical flux and gamma-ray emission.

  7. Multiwavelength observations of a VHE gamma-ray flare from PKS 1510-089 in 2015

    CERN Document Server

    Ahnen, M L; Antonelli, L A; Arcaro, C; Babić, A; Banerjee, B; Bangale, P; de Almeida, U Barres; Barrio, J A; González, J Becerra; Bednarek, W; Bernardini, E; Berti, A; Biasuzzi, B; Biland, A; Blanch, O; Bonnefoy, S; Bonnoli, G; Borracci, F; Bretz, T; Carosi, R; Carosi, A; Chatterjee, A; Colin, P; Colombo, E; Contreras, J L; Cortina, J; Covino, S; Cumani, P; Da Vela, P; Dazzi, F; De Angelis, A; De Lotto, B; Wilhelmi, E de Oña; Di Pierro, F; Doert, M; Domínguez, A; Prester, D Dominis; Dorner, D; Doro, M; Einecke, S; Glawion, D Eisenacher; Elsaesser, D; Engelkemeier, M; Ramazani, V Fallah; Fernández-Barral, A; Fidalgo, D; Fonseca, M V; Font, L; Fruck, C; Galindo, D; López, R J García; Garczarczyk, M; Gaug, M; Giammaria, P; Godinović, N; Gora, D; Guberman, D; Hadasch, D; Hahn, A; Hassan, T; Hayashida, M; Herrera, J; Hose, J; Hrupec, D; Hughes, G; Ishio, K; Konno, Y; Kubo, H; Kushida, J; Kuveždić, D; Lelas, D; Lindfors, E; Lombardi, S; Longo, F; López, M; Majumdar, P; Makariev, M; Maneva, G; Manganaro, M; Mannheim, K; Maraschi, L; Mariotti, M; Martínez, M; Mazin, D; Menzel, U; Mirzoyan, R; Moralejo, A; Moretti, E; Nakajima, D; Neustroev, V; Niedzwiecki, A; Rosillo, M Nievas; Nilsson, K; Nishijima, K; Noda, K; Nogués, L; Paiano, S; Palacio, J; Palatiello, M; Paneque, D; Paoletti, R; Paredes, J M; Paredes-Fortuny, X; Pedaletti, G; Peresano, M; Perri, L; Persic, M; Poutanen, J; Moroni, P G Prada; Prandini, E; Puljak, I; Garcia, J R; Reichardt, I; Rhode, W; Ribó, M; Rico, J; Saito, T; Satalecka, K; Schroeder, S; Schweizer, T; Shore, S N; Sillanpää, A; Sitarek, J; Šnidarić, I; Sobczynska, D; Stamerra, A; Strzys, M; Surić, T; Takalo, L; Tavecchio, F; Temnikov, P; Terzić, T; Tescaro, D; Teshima, M; Torres, D F; Torres-Albà, N; Toyama, T; Treves, A; Vanzo, G; Acosta, M Vazquez; Vovk, I; Ward, J E; Will, M; Wu, M H; Zarić, D; Desiante, R; González, J Becerra; D'Ammando, F; Larsson, S; Raiteri, C M; Reinthal, R; Lähteenmäki, A; Järvelä, E; Tornikoski, M; Ramakrishnan, V; Jorstad, S G; Marscher, A P; Bala, V; MacDonald, N R; Kaur, N; Sameer,; Baliyan, K; Acosta-Pulido, J A; Lazaro, C; Martínez-Lombilla, C; Grinon-Marin, A B; Yabar, A Pastor; Protasio, C; Carnerero, M I; Jermak, H; Steele, I A; Larionov, V M; Borman, G A; Grishina, T S

    2016-01-01

    Context. PKS 1510-089 is one of only a few flat spectrum radio quasars detected in the VHE (very-high-energy, > 100 GeV) gamma-ray band. Aims. We study the broadband spectral and temporal properties of the PKS 1510-089 emission during a high gamma-ray state. Methods. We performed VHE gamma-ray observations of PKS 1510-089 with the MAGIC telescopes during a high gamma-ray state in May 2015. In order to perform broad-band modelling of the source, we have also gathered contemporaneous multiwavelength data in radio, IR, optical photometry and polarization, UV, X-ray and GeV gamma-ray ranges. We construct a broadband spectral energy distribution (SED) in two periods, selected according to VHE gamma-ray state. Results. PKS 1510-089 has been detected in a high optical and gamma-ray state, showing for the first time a significant VHE gamma-ray variability. Similarly to the optical and gamma-ray high state of the source detected in 2012, it was accompanied by a rotation of the optical polarization angle and the emissi...

  8. Dark matter origin of the gamma ray emission from the galactic center observed by HESS

    CERN Document Server

    Cembranos, J A R; Maroto, A L

    2012-01-01

    We show that the gamma ray spectrum observed with the HESS array of Cherenkov telescopes coming from the Galactic Center (GC) region and identified with the source HESS J1745-290, is well fitted by the secondary photons coming from dark matter (DM) annihilation over a diffuse power-law background. The amount of photons and morphology of the signal localized within a region of few parsecs, require compressed DM profiles as those resulting from baryonic contraction, which offer $\\sim 10^3$ enhancements in the signal over DM alone simulations. The fitted background from HESS data is consistent with recent Fermi-LAT observations of the same region.

  9. Study of the diffuse gamma-ray emission from the Galactic plane with ARGO-YBJ

    CERN Document Server

    Bartoli, B; Bi, X J; Branchini, P; Budano, A; Camarri, P; Cao, Z; Cardarelli, R; Catalanotti, S; Chen, S Z; Chen, T L; Creti, P; Cui, S W; Dai, B Z; D'Amone, A; Danzengluobu,; De Mitri, I; Piazzoli, B D'Ettorre; Di Girolamo, T; Di Sciascio, G; Feng, C F; Feng, Zhaoyang; Feng, Zhenyong; Gou, Q B; Guo, Y Q; He, H H; Hu, Haibing; Hu, Hongbo; Iacovacci, M; Iuppa, R; Jia, H Y; Labaciren,; Li, H J; Liguori, G; Liu, C; Liu, J; Liu, M Y; Lu, H; Ma, L L; Ma, X H; Mancarella, G; Mari, S M; Marsella, G; Martello, D; Mastroianni, S; Montini, P; Ning, C C; Panareo, M; Perrone, L; Pistilli, P; Ruggieri, F; Salvini, P; Santonico, R; Shen, P R; Sheng, X D; Shi, F; Surdo, A; Tan, Y H; Vallania, P; Vernetto, S; Vigorito, C; Wang, H; Wu, C Y; Wu, H R; Xue, L; Yang, Q Y; Yang, X C; Yao, Z G; Yuan, A F; Zha, M; Zhang, H M; Zhang, L; Zhang, X Y; Zhang, Y; Zhao, J; Zhaxiciren,; Zhaxisangzhu,; Zhou, X X; Zhu, F R; Zhu, Q Q; Zizzi, G

    2015-01-01

    The events recorded by ARGO-YBJ in more than five years of data collection have been analyzed to determine the diffuse gamma-ray emission in the Galactic plane at Galactic longitudes 25{\\deg} < l < 100{\\deg} and Galactic latitudes . The energy range covered by this analysis, from ~350 GeV to ~2 TeV, allows the connection of the region explored by Fermi with the multi-TeV measurements carried out by Milagro. Our analysis has been focused on two selected regions of the Galactic plane, i.e., 40{\\deg} < l < 100{\\deg} and 65{\\deg} < l < 85{\\deg} (the Cygnus region), where Milagro observed an excess with respect to the predictions of current models. Great care has been taken in order to mask the most intense gamma-ray sources, including the TeV counterpart of the Cygnus cocoon recently identified by ARGO-YBJ, and to remove residual contributions. The ARGO-YBJ results do not show any excess at sub-TeV energies corresponding to the excess found by Milagro, and are consistent with the predictions of ...

  10. Gamma-ray observations of the Orion Molecular Clouds with the Fermi Large Area Telescope

    Energy Technology Data Exchange (ETDEWEB)

    Ackermann, M.; Ajello, M.; Allafort, A.; Antolini, E.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Bonamente, E.; Borgland, A. W.; Bottacini, E.; Brandt, T. J.; Bregeon, J.; Brigida, M.; Bruel, P.; Buehler, R.; Buson, S.; Caliandro, G. A.; Cameron, R. A.; Caraveo, P. A.; Cecchi, C.; Chekhtman, A.; Chiang, J.; Ciprini, S.; Claus, R.; Cohen-Tanugi, J.; Conrad, J.; D' Ammando, F.; de Angelis, A.; de Palma, F.; Dermer, C. D.; do Couto e Silva, E.; Drell, P. S.; Drlica-Wagner, A.; Enoto, T.; Falletti, L.; Favuzzi, C.; Fegan, S. J.; Ferrara, E. C.; Focke, W. B.; Fukazawa, Y.; Fukui, Y.; Fusco, P.; Gargano, F.; Gasparrini, D.; Germani, S.; Giglietto, N.; Giordano, F.; Giroletti, M.; Glanzman, T.; Godfrey, G.; Guiriec, S.; Hadasch, D.; Hanabata, Y.; Harding, A. K.; Hayashida, M.; Hayashi, K.; Horan, D.; Hou, X.; Hughes, R. E.; Jackson, M. S.; Jóhannesson, G.; Johnson, A. S.; Kamae, T.; Katagiri, H.; Kataoka, J.; Kerr, M.; Knödlseder, J.; Kuss, M.; Lande, J.; Larsson, S.; Lee, S. -H.; Longo, F.; Loparco, F.; Lovellette, M. N.; Lubrano, P.; Makishima, K.; Mazziotta, M. N.; Mehault, J.; Mitthumsiri, W.; Moiseev, A. A.; Monte, C.; Monzani, M. E.; Morselli, A.; Moskalenko, I. V.; Murgia, S.; Nakamori, T.; Naumann-Godo, M.; Nishino, S.; Norris, J. P.; Nuss, E.; Ohno, M.; Ohsugi, T.; Okumura, A.; Orienti, M.; Orlando, E.; Ormes, J. F.; Ozaki, M.; Paneque, D.; Panetta, J. H.; Parent, D.; Pelassa, V.; Pesce-Rollins, M.; Pierbattista, M.; Piron, F.; Pivato, G.; Porter, T. A.; Rainò, S.; Razzano, M.; Reimer, A.; Reimer, O.; Roth, M.; Sadrozinski, H. F. -W.; Sgrò, C.; Siskind, E. J.; Spandre, G.; Spinelli, P.; Strong, A. W.; Takahashi, H.; Takahashi, T.; Tanaka, T.; Thayer, J. G.; Thayer, J. B.; Tibolla, O.; Tinivella, M.; Torres, D. F.; Tramacere, A.; Troja, E.; Uchiyama, Y.; Usher, T. L.; Vandenbroucke, J.; Vasileiou, V.; Vianello, G.; Vitale, V.; Waite, A. P.; Wang, P.; Winer, B. L.; Wood, K. S.; Yang, Z.; Zimmer, S.

    2012-08-08

    We report on the gamma-ray observations of giant molecular clouds Orion A and B with the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope. The gamma-ray emission in the energy band between ~100 MeV and ~100 GeV is predicted to trace the gas mass distribution in the clouds through nuclear interactions between the Galactic cosmic rays (CRs) and interstellar gas. The gamma-ray production cross-section for the nuclear interaction is known to ~10% precision which makes the LAT a powerful tool to measure the gas mass column density distribution of molecular clouds for a known CR intensity. We present here such distributions for Orion A and B, and correlate them with those of the velocity-integrated CO intensity (W CO) at a 1° × 1° pixel level. The correlation is found to be linear over a W CO range of ~10-fold when divided in three regions, suggesting penetration of nuclear CRs to most of the cloud volumes. The W CO-to-mass conversion factor, X CO, is found to be ~2.3 × 1020 cm-2(K km s–1)–1 for the high-longitude part of Orion A (l > 212°), ~1.7 times higher than ~1.3 × 1020 found for the rest of Orion A and B. We interpret the apparent high X CO in the high-longitude region of Orion A in the light of recent works proposing a nonlinear relation between H2 and CO densities in the diffuse molecular gas. W CO decreases faster than the H2 column density in the region making the gas "darker" to W CO.

  11. Energetic solar electron spectra and gamma-ray observations

    Science.gov (United States)

    Dröge, Wolfgang

    1996-06-01

    We analyze solar energetic electron events measured with particle detectors on board of the ISEE-3 (ICE) and Helios 1 and 2 spacecraft. Energy spectra in the range 0.1 to tens of MeV are generated applying the results of a careful re-examination of the electron response function of the instruments. The spectral shapes of events observed simultaneously, among them five on all three s/c, are in very good agreement inspite of the sometimes considerable difference in azimuthal and radial distances of the s/c with respect to the flare. These findings suggest that transport processes at the Sun and in the interplanetary medium depend only weakly on the electron energy and that the observed spectra are representative of the accelerated electron spectra at the Sun. A comparison of the electron spectra with SMM gamma-ray spectra gives evidence for the existence of different acceleration and emission mechanism in flares with long (LDEs) and short duration (SDEs) soft X-ray emission.

  12. Diffuse Galactic Gamma Rays at Intermediate and High Latitudes, Constraints on ISM Properties

    CERN Document Server

    Tavakoli, Maryam; Evoli, Carmelo; Ullio, Piero

    2011-01-01

    The spectral data on the diffuse Galactic gamma-rays, at medium and high latitudes (|b| > 10) and energies of 1-100 GeV, recently published by the Fermi Collaboration are used to produce a novel study on the gamma-ray emissivity in the Galaxy. We focus on analyzing the properties of propagation of cosmic rays (CRs), using the publicly available DRAGON code. We critically address some of the models for the interstellar HI and H2 gas distributions commonly used in the literature, as well as test a variety of propagation models. Each model assumes a distinct global profile for the diffusion and the re-acceleration of CRs. Fitting propagation parameters to well measured local CRs such as, the B/C ratio, protons, antiprotons and electron, positron fluxes, we evaluate the gamma-ray spectra at medium and high latitudes in order to place further constraints on these propagation models.

  13. $\\gamma$-ray Observations of the Galactic Plane at Energies E > 500 GeV

    CERN Document Server

    Le Bohec, S; Bradbury, S M; Buckley, J H; Burdett, A M; Carter-Lewis, D A; Catanese, M; Cawley, M F; Dunlea, S; D'Vali, M; Fegan, D J; Fegan, S J; Finley, J P; Gaidos, J A; Hall, T A; Hillas, A M; Horan, D; Knapp, J; Krennrich, F; Lessard, R W; Macomb, D J; Masterson, C; Quinn, J; Rose, H J; Samuelson, F W; Sembroski, G H; Vasilev, V; Weekes, T C

    2000-01-01

    In 1998 and 1999 the Whipple Observatory 10 m telescope was used to search for diffuse gamma ray emission from the Galactic Plane. No signifiant evidence of emission was found. Assuming the TeV emission profile matches EGRET observations above 1 GeV with a differential spectral index of 2.4, we derive an upper limit of {$\\rm {3.0\\cdot10^{-8}cm^{-2}s^{-1}sr^{-1}}$} for the average diffuse emission above {{$\\rm500 GeV$}} in the galactic latitude range from {{$\\rm-2^o$ to $\\rm +2^o$}} at galactic longitude {{$\\rm 40^o$}}. Comparisons with EGRET observations provide a lower limit of 2.31 for the differential spectral index of the diffuse emission, assuming there is no break in the spectrum between 30 GeV and 500 GeV. This constrains models for diffuse emission with a significant inverse Compton contribution.

  14. Radial distribution of the diffuse gamma-ray emissivity in the galactic disk

    CERN Document Server

    Yang, Rui-zhi; Evoli, Carmelo

    2016-01-01

    The Fermi-LAT data accumulated over 7 years of {\\gamma}-ray observations, together with the high resolution gas (CO & HI) and the dust opacity maps, are used to study the emissivity of {\\gamma}-rays induced by interactions of cosmic rays (CRs) with the interstellar medium. Based on the dust opacity templates, the {\\gamma}-ray emissivity was measured for 36 segments of the Galactic plane. Furthermore, the {\\gamma}-ray emissivity was evaluated in six Galactocentric rings. Both the absolute emissivity and the energy spectra of {\\gamma}-rays derived in the interval 0.2-100 GeV show significant variations along the galactic plane. The density of CRs, derived under the assumption that {\\gamma}-rays are predominately produced in CR interactions with the interstellar gas, is characterised by a strong radial dependence. In the inner Galaxy the CR density substantially exceeds the density in the outer parts of the Galaxy: by a factor of a few at 10 GeV, and by more than an order of magnitude at 1 TeV. Remarkably, t...

  15. COS-B gamma ray sources beyond the predicted diffuse emission

    Science.gov (United States)

    Mayer-Hasselwander, H. A.; Simpson, G.

    1990-01-01

    COS-B data were reanalyzed using for background subtraction the modeled galactic diffuse gamma-ray emission based on HI- and CO-line surveys and the gamma-ray data itself. A methodology was developed for this purpose with the following three features: automatic generation of source catalogs using correlation analysis, simulation of trials to derive significance thresholds for source detection, and bootstrap sampling to drive error boxes and confidence intervals for source parameters. The analysis shows that about half of the 2CG sources are explained by concentrations in the distribution of molecular hydrogen. Indication for a few weak new sources is also obtained.

  16. The contribution of blazars to the extragalactic diffuse gamma-ray background

    DEFF Research Database (Denmark)

    Mücke, A.; Pohl, M.; Dermer, C.D.

    1997-01-01

    We present results of a calculation of the blazar contribution to the extragalactic diffuse gamma-ray background (EGRB) in the EGRET-energy range. Our model is based on the non-thermal emission processes known to be important in blazar jets, and on the unification scheme of radio-loud AGN...

  17. Observations of cosmic gamma ray bursts with WATCH on EURECA

    DEFF Research Database (Denmark)

    Brandt, Søren; Lund, N.; Castro-Tirado, A. J.

    1995-01-01

    19 Cosmic Gamma-Ray Bursts were detected by the WATCH wide field X-ray monitor during the 11 months flight of EURECA. The identification of the bursts were complicated by a high frequency of background of events caused by high energy cosmic ray interactions in the detector and by low energy, trap...

  18. Star-forming galaxies as the origin of diffuse high-energy backgrounds: Gamma-ray and neutrino connections, and implications for starburst history

    CERN Document Server

    Tamborra, Irene; Murase, Kohta

    2014-01-01

    Star-forming galaxies have been predicted to contribute considerably to the isotropic diffuse gamma-ray background as they are guaranteed reservoirs of cosmic rays. Recent Fermi observations have reported the possible correlation between their gamma-ray and infrared luminosities from several galaxies identified with their gamma-ray emission. Relying on this correlation, we here compute the diffuse gamma-ray background from star-forming galaxies adopting the Herschel PEP/HerMES luminosity function up to z ~ 4. Thanks to contributions from star-forming galaxies at z > 2, we find that star-forming galaxies can explain the diffuse gamma-ray background in the 0.3-30 GeV range. We also find this result agrees with the one obtained with a simple semi-analytic model based on the star-formation rate and on templates of the Milky Way and the starbursts M82 and NGC 253. The hadronic interactions responsible for high-energy gamma rays also produce high-energy neutrinos. Assuming that at least 100 PeV cosmic rays can be p...

  19. Constraining Dark Matter and Ultra-High Energy Cosmic Ray Sources with Fermi-LAT Diffuse Gamma Ray Background

    CERN Document Server

    Kalashev, Oleg

    2016-01-01

    We use the recent measurement of the isotropic $\\gamma$-ray background (IGRB) by Fermi LAT and analysis of the contribution of unresolved point $\\gamma$-ray sources to IGRB to build constraints on the models of ultra-high cosmic rays (UHECR) origin. We also calculate the minimal expected diffuse $\\gamma$-ray flux produced by UHECR interactions with an interstellar photon background. Finally, for the subclass of dark matter (DM) models with decaying weakly interacting massive particles (WIMP), we build constraints on the particle decay time using minimal expected contributions to the IGRB from unresolved point $\\gamma$-ray sources and UHECR.

  20. Fermi-LAT Gamma-ray Observations of Nova Lupus 2016 (ASASSN-16kt)

    Science.gov (United States)

    Cheung, C. C.; Jean, P.; Shore, S. N.; Fermi Large Area Telescope Collaboration

    2016-10-01

    The Fermi Gamma-ray Space Telescope performed a ~6-day Target of Opportunity (ToO) observation of Nova Lupus 2016 (ATel #9538, #9539, CBET #4322) that commenced on September 28. Considering earlier all-sky survey Large Area Telescope (LAT) observations as well, preliminary analysis indicates gamma-ray emission at ~2 sigma was detected around 1 to 2 days after the optical peak on September 25th (pre-validated AAVSO visual lightcurve; ATel #9550, CBET #4322) when the optical spectra show opaque ejecta, similar to previous gamma-ray detected novae (Fermi-LAT collaboration, 2014 Science 345, 554; Cheung et al. 2016 ApJ 826, 142).

  1. Fermi-LAT Observations of the Gamma-Ray Burst GRB 130427A

    Science.gov (United States)

    Ackermann, M.; Ajello, M.; Asano, K.; Atwood, W. B.; Axelsson, M.; Baldini, L.; Ballet, J.; Barbiellini, G.; Baring, M. G.; Bastieri, D.; Gehrels, Cornelis

    2013-01-01

    The observations of the exceptionally bright gamma-ray burst (GRB) 130427A by the Large Area Telescope aboard the Fermi Gamma-ray Space Telescope provide constraints on the nature of these unique astrophysical sources. GRB 130427A had the largest fluence, highest-energy photon (95 GeV), longest gamma-ray duration (20 hours), and one of the largest isotropic energy releases ever observed from a GRB. Temporal and spectral analyses of GRB 130427A challenge the widely accepted model that the nonthermal high-energy emission in the afterglow phase of GRBs is synchrotron emission radiated by electrons accelerated at an external shock.

  2. Multi-Frequency Observations of Gamma-Ray Blazar 1633 plus 382

    Science.gov (United States)

    Jorstad, S. G.; Marscher, A. P.; Agudo, I.; Smith, P. S.; Larionov, V. M.; Laehteenmaeki, A.

    2011-01-01

    We perform monthly monitoring of the quasar 1633+382 (4C+38.41) within a sample of gamma-ray blazars with the VLBA at 43 GHz along with optical photometric and polarimetric observations. We construct the gamma-ray light curve of 1633+382 using data obtained by the Fermi LAT. We find that a high gamma-ray state of the quasar starting in 2009 September is simultaneous with an increase of the flux in the mm-wave VLBI core. We resolve a superluminal feature on the VLBA images that appears to be responsible for the mm-wave flux increase. We find a strong correlation between optical and gamma-ray light curves with a delay of gamma-ray variations of 5+/-3 days, as well as a strong correlation between optical flux and degree of polarization during the high gamma-ray state. Comparison between the optical polarization position angle and that in the VLBI core supports the idea that in the quasar 1633+382 a high gamma-ray state is connected with processes originating near the mm-VLBI core.

  3. X-ray investigation of the diffuse emission around plausible gamma-ray emitting pulsar wind nebulae in Kookaburra region

    CERN Document Server

    Kishishita, Tetsuichi; Uchiyama, Yasunobu; Tanaka, Yasuyuki; Takahashi, Tadayuki

    2012-01-01

    We report on the results from {\\it Suzaku} X-ray observations of the radio complex region called Kookaburra, which includes two adjacent TeV $\\gamma$-ray sources HESS J1418-609 and HESS J1420-607. The {\\it Suzaku} observation revealed X-ray diffuse emission around a middle-aged pulsar PSR J1420-6048 and a plausible PWN Rabbit with elongated sizes of $\\sigma_{\\rm X}=1^{\\prime}.66$ and $\\sigma_{\\rm X}=1^{\\prime}.49$, respectively. The peaks of the diffuse X-ray emission are located within the $\\gamma$-ray excess maps obtained by H.E.S.S. and the offsets from the $\\gamma$-ray peaks are $2^{\\prime}.8$ for PSR J1420-6048 and $4^{\\prime}.5$ for Rabbit. The X-ray spectra of the two sources were well reproduced by absorbed power-law models with $\\Gamma=1.7-2.3$. The spectral shapes tend to become softer according to the distance from the X-ray peaks. Assuming the one zone electron emission model as the first order approximation, the ambient magnetic field strengths of HESS J1420-607 and HESS J1418-609 can be estimate...

  4. RXTE Observations of PKS 2155-304 during the November 1997 $\\gamma$-Ray Outburst

    CERN Document Server

    Vestrand, W T

    1999-01-01

    We present x-ray observations of the nearby BL Lac PKS 2155-304 taken when it was undergoing a GeV/TeV gamma-ray outburst. During the outburst we measured x-ray fluxes in the 2-10 keV band that are the largest ever observed for PKS 2155-304. Comparison of these November 1997 measurements and other x-ray observations made contemporaneously with GeV or TeV gamma-ray observations indicate that x-ray and gamma-ray emissions are correlated. Measurements with x-ray all-sky monitors such as the ASM/RXTE and MOXE can therefore signal the presence of outbursts at gamma-ray energies from PKS 2155-304.

  5. Observations of cosmic gamma ray bursts with WATCH on EURECA

    DEFF Research Database (Denmark)

    Brandt, Søren; Lund, N.; Castro-Tirado, A. J.

    1995-01-01

    19 Cosmic Gamma-Ray Bursts were detected by the WATCH wide field X-ray monitor during the 11 months flight of EURECA. The identification of the bursts were complicated by a high frequency of background of events caused by high energy cosmic ray interactions in the detector and by low energy......, trapped particle streams. These background events may simulate the count rate increases characteristic of cosmic gamma bursts. For 12 of the detected events, their true cosmic nature have been confirmed through consistent localizations of the burst sources based on several independent WATCH data sets...

  6. Gamma-ray upper limits on magnetars with 6 years of Fermi-LAT observations

    CERN Document Server

    Li, Jian; Torres, Diego F; de Ona-Wilhelmi, Emma

    2016-01-01

    We report on the search for gamma-ray emission from 20 magnetars using 6 years of Fermi, Large Area Telescope (LAT) observations. No significant evidence for gamma-ray emission from any of the currently-known magnetars is found. We derived the most stringent upper limits to date on the 0.1--10 GeV emission of Galactic magnetars, which are estimated between $\\sim10^{-12}-10^{-11}$ erg s$^{-1}$ cm$^{-2}$. Gamma-ray pulsations were searched for the four magnetars having reliable ephemerides over the observing period, but none were detected. On the other hand, we also studied the gamma-ray morphology and spectra of seven Supernova Remnants associated or adjacent to the magnetars.

  7. Low energy gamma ray observations with the MPI-Compton telescope. [balloon-borne detectors

    Science.gov (United States)

    Graml, F.; Penningsfeld, F. P.; Schoenfelder, V.

    1978-01-01

    Although the evaluation of data from the first balloon-flight of a large area Compton telescope is incomplete, two preliminary results are discussed. From the measured background spectrum at float altitude, the sensitivity of the telescope for the detection of cosmic gamma ray lines is estimated. The energy spectra is determined for an enhanced gamma ray flux observed from the direction of the Seyfert galaxy NGC 4151. A schematic drawing of the telescope is presented and discussed.

  8. Observation of TeV gamma ray extended sources with ARGO-YBJ

    Energy Technology Data Exchange (ETDEWEB)

    Vernetto, Silvia, E-mail: vernetto@to.infn.it

    2014-04-01

    More than 80% of TeV galactic gamma ray sources are spatially extended and many of them are still unidentified. The extended emission could be the result of cosmic ray interactions with the ambient medium which provides the target to produce TeV gamma rays. The sensitivity of ground based gamma ray detectors decreases for extended sources; shower detectors, due to their large field of view, are less affected with respect to Cherenkov telescopes. The ARGO-YBJ experiment (Yangbajing Cosmic Ray Laboratory, Tibet, China, 4300 m of altitude) is an air shower detector devoted to gamma ray astronomy at energies above a few hundred GeV, with an integrated sensitivity ranging from 0.24 to ∼1 Crab units, depending on the source declination. In this paper the observation of galactic extended sources with ARGO-YBJ during 5 years is reviewed.

  9. Anisotropies in the Diffuse Gamma-Ray Background Measured by the Fermi LAT

    Science.gov (United States)

    Ferrara, E. C.; McEnery, J. E.; Troja, E.

    2012-01-01

    The contribution of unresolved sources to the diffuse gamma-ray background could induce anisotropies in this emission on small angular scales. We analyze the angular power spectrum of the diffuse emission measured by the Fermi LAT at Galactic latitudes absolute value of b > 30 deg in four energy bins spanning 1 to 50 GeV. At multipoles l >= 155, corresponding to angular scales approx 99.99% CL in the 1-2 GeV, 2- 5 GeV, and 5- 10 GeV energy bins, and at > 99% CL at 10-50 GeV. Within each energy bin the measured angular power takes approximately the same value at all multipoles l >= 155, suggesting that it originates from the contribution of one or more unclustered source populations. The amplitude of the angular power normalized to the mean intensity in each energy bin is consistent with a constant value at all energies, C(sub p) / (I)(exp 2) = 9.05 +/- 0.84 x 10(exp -6) sr, while the energy dependence of C(sub p) is consistent with the anisotropy arising from one or more source populations with power-law photon spectra with spectral index Gamma (sub s) = 2.40 +/- 0.07. We discuss the implications of the measured angular power for gamma-ray source populations that may provide a contribution to the diffuse gamma-ray background.

  10. Calibrating Column Density Tracers with Gamma-ray Observations of the $\\rho$ Ophiuchi Molecular Cloud

    CERN Document Server

    Abrahams, Ryan D; Paglione, Timothy A D

    2016-01-01

    Diffuse gamma-ray emission from interstellar clouds results largely from cosmic ray (CR) proton collisions with ambient gas, regardless of the gas state, temperature, or dust properties of the cloud. The interstellar medium is predominantly transparent to both CRs and gamma-rays, so GeV emission is a unique probe of the total gas column density. The gamma-ray emissivity of a cloud of known column density is then a measure of the impinging CR population and may be used to map the kpc-scale CR distribution in the Galaxy. To this end, we test a number of commonly used column density tracers to evaluate their effectiveness in modeling the GeV emission from the relatively quiescent, nearby $\\rho$ Ophiuchi molecular cloud. We confirm that both \\hi\\ and an appropriate H$_2$ tracer are required to reproduce the total gas column densities probed by diffuse gamma-ray emisison. We find that the optical depth at 353 GHz $\\tau_{353}$ from Planck reproduces the gamma-ray data best overall based on the test statistic across...

  11. Calibrating Column Density Tracers with Gamma-Ray Observations of the ρ Ophiuchi Molecular Cloud

    Science.gov (United States)

    Abrahams, Ryan D.; Teachey, Alex; Paglione, Timothy A. D.

    2017-01-01

    Diffuse gamma-ray emission from interstellar clouds results largely from cosmic ray (CR) proton collisions with ambient gas, regardless of the gas state, temperature, or dust properties of the cloud. The interstellar medium is predominantly transparent to both CRs and gamma-rays, so GeV emission is a unique probe of the total gas column density. The gamma-ray emissivity of a cloud of known column density is then a measure of the impinging CR population and may be used to map the k-scale CR distribution in the Galaxy. To this end, we test a number of commonly used column density tracers to evaluate their effectiveness in modeling the GeV emission from the relatively quiescent, nearby ρ Ophiuchi molecular cloud. We confirm that both H i and an appropriate {{{H}}}2 tracer are required to reproduce the total gas column densities probed by diffuse gamma-ray emisison. We find that the optical depth at 353 GHz ({τ }353) from Planck best reproduces the gamma-ray data overall, based on the test statistic across the entire region of interest, but near-infrared stellar extinction also performs very well, with smaller spatial residuals in the densest parts of the cloud.

  12. SAS-2 gamma-ray observations of PSR 1747-46

    Science.gov (United States)

    Thompson, D. J.; Fichtel, C. E.; Kniffen, D. A.; Lamb, R. C.; Oegelman, H. B.

    1976-01-01

    Observations with the SAS-2 high energy ( 35 MeV) gamma-ray telescope show evidence of gamma-ray emission from the radio pulsar PSR 1747-46. When the arrival times of gamma-rays from the region of the pulsar were converted to pulsar phases using the radio period and period derivative, a single peak was found in the phase plot, with a Poisson probability of occurring by chance of .00008. Independently, the time-averaged data for the PSR 1747-46 region show an enhancement over the surrounding region of the sky at the same galactic latitude, with a Poisson probability of chance occurrence of less than .008. The probability that these results are chance is the product of these two probabilities times the number of radio pulsars examined (73). This overall probability is sufficiently small (.00005) to suggest an identification of a new gamma-ray pulsar. In the gamma-ray pulsar plot, the peak falls 0.16 + or - 0.03 period after the radio pulsar peak. This phase shift is, within uncertainties, the same as that observed between the single radio peak and the first of the two gamma-ray peaks seen in the phase plot for PSR-0833-45 (the Vela pulsar).

  13. $\\gamma$-Rays from Supernova Remnants and the Signatures of Diffusive Shock Acceleration

    CERN Document Server

    Baring, M G; Grenier, I; Baring, Matthew G.; Ellison, Donald C.; Grenier, Isabelle

    1997-01-01

    While the definitive detection of gamma-rays from known supernova remnants (SNRs) remains elusive, the collection of unidentified EGRET sources that may be associated with SNRs has motivated recent modelling of TeV emission from these sources. Current theoretical models use power-law shock-accelerated protons and electrons in their predictions of expected gamma-ray TeV fluxes from those unidentified EGRET sources with remnant associations. In this paper, we explore a more detailed non-linear shock acceleration model, which generates non-thermal proton distributions and includes a self-consistent determination of shock hydrodynamics. We obtain gamma-ray spectra for SNRs allowing for the cessation of acceleration to high energies that is due to the finite ages and sizes of remnants. Gamma-ray spectral cutoffs can be observed in the TeV range for reasonable remnant parameters, and deviations from power-law behaviour are found at all energies ranging from 1 MeV up to the cutoff. Correlated observations by INTEGRA...

  14. Bremsstrahlung component of the diffuse galactic gamma-ray emission at MeV energies

    Energy Technology Data Exchange (ETDEWEB)

    Sacher, W.; Schoenfelder, V.

    1984-04-15

    Recently the galactic plane has been resolved at low and medium ..gamma..-ray energies in the directions toward the center and anticenter. Spectral measurements are now available at those energies, where the contribution of ..pi../sup 0/-decay from nuclear reactions of cosmic-ray protons (and heavier nuclei) with interstellar matter can be neglected. Under the assumption that most of the observed ..gamma..-ray flux below 30 MeV is produced by electron bremsstrahlung, restrictions on the energy spectrum of cosmic-ray electrons in interstellar space below 100 MeV are derived. The most accurate bremsstrahlung production cross sections of Koch and Motz and of Blumental and Gould are used in order to derive the bremsstrahlung production spectrum in interstellar space down to 10 keV-photon energies. If the low-energy ..gamma..-ray emission, as seen by most observers, is indeed produced by electron bremsstrahlung, then a high interstellar electron flux at MeV energy results, which-at higher energies-connects to the upper limit derived by Cummings, Stone, and Vogt. Such a high low-energy electron flux would be able to explain the ionization rate of 1 x 10/sup -15/ ion pairs (H-atom/sup -1/ s/sup -1/) in H I regions. Because of uncertainties in the low-energy ..gamma..-ray measurements, however, no definite conclusion is possible yet.

  15. COS-B observations of gamma-ray emission from local galactic features

    Science.gov (United States)

    Bignami, G. F.; Barbareschi, L.; Caraveo, P. A.; Bloemen, J. B. G. M.; Hermsen, W.; Buccheri, R.; Kanbach, G.; Mayer-Hasselwander, H. A.; Lebrun, F.; Paul, J. A.

    1981-01-01

    Evidence for large scale correlations between the high-energy photon sky and the known local distribution of diffuse interstellar matter is discussed. Evidence is presented of correlations with the Gould's Belt and the Dolidze Belt. The correlations indicate that the emission of gamma rays at medium latitudes can be explained by the distribution of interstellar matter, and the interaction of CR with interstellar matter can explain the mechanism of the gamma-ray emission by regarding the emissivity as a global average of the two systems since they contain most of the local dense cloud.

  16. The Spectrum of Isotropic Diffuse Gamma-Ray Emission Between 100 Mev and 820 Gev

    Science.gov (United States)

    Ackermann, M.; Ajello, M.; Albert, A.; Atwood, W. B.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Brandt, T. J.; Hays, E.; Perkins, J. S.

    2014-01-01

    The gamma-ray sky can be decomposed into individually detected sources, diffuse emission attributed to the interactions of Galactic cosmic rays with gas and radiation fields, and a residual all-sky emission component commonly called the isotropic diffuse gamma-ray background (IGRB). The IGRB comprises all extragalactic emissions too faint or too diffuse to be resolved in a given survey, as well as any residual Galactic foregrounds that are approximately isotropic. The first IGRB measurement with the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope (Fermi) used 10 months of sky-survey data and considered an energy range between 200 MeV and 100 GeV. Improvements in event selection and characterization of cosmic-ray backgrounds, better understanding of the diffuse Galactic emission, and a longer data accumulation of 50 months, allow for a refinement and extension of the IGRB measurement with the LAT, now covering the energy range from 100 MeV to 820 GeV. The IGRB spectrum shows a significant high-energy cutoff feature, and can be well described over nearly four decades in energy by a power law with exponential cutoff having a spectral index of 2.32 plus or minus 0.02 and a break energy of (279 plus or minus 52) GeV using our baseline diffuse Galactic emission model. The total intensity attributed to the IGRB is (7.2 plus or minus 0.6) x 10(exp -6) cm(exp -2) s(exp -1) sr(exp -1) above 100 MeV, with an additional +15%/-30% systematic uncertainty due to the Galactic diffuse foregrounds.

  17. The Spectrum of the Isotropic Diffuse Gamma-Ray Emission Derived From First-Year Fermi Large Area Telescope Data

    Energy Technology Data Exchange (ETDEWEB)

    Abdo, A. A.

    2011-08-19

    We report on the first Fermi Large Area Telescope (LAT) measurements of the so-called 'extra-galactic' diffuse {gamma}-ray emission (EGB). This component of the diffuse {gamma}-ray emission is generally considered to have an isotropic or nearly isotropic distribution on the sky with diverse contributions discussed in the literature. The derivation of the EGB is based on detailed modelling of the bright foreground diffuse Galactic {gamma}-ray emission (DGE), the detected LAT sources and the solar {gamma}-ray emission. We find the spectrum of the EGB is consistent with a power law with differential spectral index {gamma} = 2.41 {+-} 0.05 and intensity, I(> 100 MeV) = (1.03 {+-} 0.17) x 10{sup -5} cm{sup -2} s{sup -1} sr{sup -1}, where the error is systematics dominated. Our EGB spectrum is featureless, less intense, and softer than that derived from EGRET data.

  18. Space-Borne Observations of Intense Gamma-Ray Flashes (TGFs) Above Thunderstorms

    Science.gov (United States)

    Fishman, Gerald J.

    2010-01-01

    Intense millisecond flashes of MeV photons are being observed with space-borne detectors. These terrestrial gamma-ray flashes (TGFs) were discovered with the Burst and Transient Source Experiment (BATSE) aboard the Compton Gamma-Ray Observatory (CGRO) in the early 1990s. They are now being observed with several other instruments, including the Gamma-ray Burst Monitor (GBM) detectors on the Fermi Gamma-ray Space Telescope. Although Fermi-GBM was designed and optimized for the observation of cosmic gamma-ray bursts (GRBs), it has unprecedented capabilities for TGF observations. The TGFs usually have extremely hard continuous spectra, typical of highly-Comptonized bremsstrahlung radiation. These spectral are harder than those of GRBs, with photons extending to over 40 MeV. The most likely origin of these high-energy photons is bremsstrahlung radiation produced by a relativistic runaway avalanche electron beam. Such a beam is expected to be produced in an extended, intense electric field in or above thunderstorm regions. The altitude of origin and beaming characteristics of the radiation are quite uncertain. These TGFs may produce an appreciable radiation dose to passengers and crew in nearby aircraft. They have generated considerable observational and theoretical interest in recent years. Instruments are being designed specifically for TGF observations from new spacecraft as well as from airborne platforms.

  19. Pulsar X-Ray and Gamma-Ray Pulse Profiles Constraint on Obliquity and Observer Angles

    CERN Document Server

    Harding, A K; Harding, Alice K.; Muslimov, Alexander G.

    1998-01-01

    We model the thermal X-ray profiles of Geminga, Vela and PSR 0656+14, which have also been detected as gamma-ray pulsars, to constrain the phase space of obliquity and observer angles required to reproduce the observed X-ray pulsed fractions and pulse widths. These geometrical constraints derived from the X-ray light curves are explored for various assumptions about surface temperature distribution and flux anisotropy caused by the magnetized atmosphere. We include curved spacetime effects on photon trajectories and magnetic field. The observed gamma-ray pulse profiles are double peaked with phase separations of 0.4 - 0.5 between the peaks. Assuming that the gamma-ray profiles are due to emission in a hollow cone centered on the magnetic pole, we derive the constraints on the phase space of obliquity and observer angles, for different gamma-ray beam sizes, required to produce the observed gamma-ray peak phase separations. We compare the constraints from the X-ray emission to those derived from the observed ga...

  20. A Catalog of Terrestrial Gamma-Ray Flashes Observed with the Fermi- Gamma-Ray Burst Monitor: The First Sixteen Months of Operation

    Science.gov (United States)

    Fishman, Gerald J.; Briggs, M. S.; Connaughton, V.; Bhat, P. N.

    2009-01-01

    The Gamma-ray Burst Monitor (GBM) on the Fermi Gamma-ray Space Telescope Observatory (Fermi) has been detecting on the average about one terrestrial gamma-ray flash every four weeks. This catalog presents the basic characteristics of observed TGFs from the beginning of the Fermi-GBM operation in 2008 July until 2009 October. The thick bismuth germanate (BGO) scintillation detectors of the GBM system have observed photon energies from TGFs at energies above 30 MeV. It is found that the TGF pulses are typically shorter than previously reported, and in several cases less than 0.2ms. Extremely high counting rates are encountered 200kcps or higher per detector during portions of some TGFs. These high rates require considerable corrections (with inherent assumptions) to the observed data in order to derive the true counting rates.

  1. Demystifying an unidentified EGRET source by VHE gamma-ray observations

    CERN Document Server

    Reimer, O; Reimer, Olaf; Funk, Stefan

    2006-01-01

    In a novel approach in observational high-energy gamma-ray astronomy, observations carried out by imaging atmospheric Cherenkov telescopes provide necessary templates to pinpoint the nature of intriguing, yet unidentified EGRET gamma-ray sources. Using GeV-photons detected by CGRO EGRET and taking advantage of high spatial resolution images from H.E.S.S. observations, we were able to shed new light on the EGRET observed gamma-ray emission in the Kookaburra complex, whose previous coverage in the literature is somewhat contradictory. 3EGJ1420-6038 very likely accounts for two GeV gamma-ray sources (E>1 GeV), both in positional coincidence with the recently reported pulsar wind nebulae (PWN) by HESS in the Kookaburra/Rabbit complex. PWN associations at VHE energies, supported by accumulating evidence from observations in the radio and X-ray band, are indicative for the PSR/plerionic origin of spatially coincident, but still unidentified Galactic gamma-ray sources from EGRET. This not only supports the already s...

  2. EDGE: Explorer of Diffuse emission and Gamma-ray burst Explosions

    CERN Document Server

    Piro, L; Ohashi, T

    2007-01-01

    How structures on various scales formed and evolved from the early Universe up to present time is a fundamental question of astrophysical cosmology. EDGE will trace the cosmic history of the baryons from the early generations of massive star by Gamma-Ray Burst (GRB) explosions, through the period of cluster formation, down to very low redshifts, when between a third and one half of the baryons are expected to reside in cosmic filaments undergoing gravitational collapse by dark matter (Warm Hot Intragalactic Medium: WHIM). In addition EDGE, with its unprecedented observational capabilities, will provide key results on several other topics. The science is feasible with a medium class mission using existing technology combined with innovative instrumental and observational capabilities on a single satellite by: a) observing with fast reaction Gamma-Ray Bursts with a high spectral resolution (R ~ 500). This enables the study of their (star-forming) environment from the Dark to the local Universe and the use of GR...

  3. Observations of VHE gamma-ray binaries with the MAGIC Telescopes

    CERN Document Server

    López-Oramas, A; Cortina, J; Hadasch, D; Herrero, A; Marcote, B; Munar-Adrover, P; Moldón, J; Paredes, J M; Ribas, I; Ribó, M; Torres, D; Casares, J; Rea, N

    2013-01-01

    Several binary systems, composed of a star and a compact object, have been detected in the GeV-TeV range. Several systems have been observed but only a handful of sources have shown emission at those energies. Here, we present the observations conducted by MAGIC of different {\\gamma}-ray binary systems. On one hand, we show the latest studies on the binary system LS I +61 303, which displays variability on different timescales. With the latest MAGIC observations, we will try to shed light on our understanding of this source, by presenting super-orbital and multi-wavelength studies. On the other hand, we show the observational results on the binary system HD 215227. This source has been proposed as a new {\\gamma}-ray binary for being spatially coincident with the gamma-ray source AGL J2241+4454 detected by AGILE at E >100 GeV.

  4. COMPTEL gamma-ray observations of the quasars CTA 102 and 3C 454.3

    Science.gov (United States)

    Blom, J. J.; Bloemen, H.; Bennett, K.; Collmar, W.; Hermsen, W.; Mcconnell, M.; Schoenfelder, V.; Stacy, J. G.; Steinle, H.; Strong, A.

    1994-01-01

    The blazar-type active galactic nuclei CTA 102 (QSO 2230+114) and 3C 454.3 (QSO 2251+158), located about 7 deg apart, were observed by the Compton Gamma Ray Observatory at four epochs in 1992. Both were detected by Energy Gamma Ray Experiment Telescope (EGRET). The combined Compton Telescope (COMPTEL) observations in the 10-30 MeV energy range clearly indicate a source of MeV emission, which is likely due to a contribution from both quasars. These observations strongly suggest that the power-law spectra measured by EGRET above approximately 50 MeV flatten at lower MeV energies. A comparison with observations at other wavelengths shows that the power spectra of CTA 102 and 3C 454.3 peak at MeV energies. This behavior appears to be a common feature of gamma-ray active galactic nuclei (AGN).

  5. Gamma rays from dark matter annihilation in the Draco and observability at ARGO

    CERN Document Server

    Bi, X J; Zhang, X; Bi, Xiao-Jun; Hu, Hong-Bo; Zhang, Xinmin

    2006-01-01

    The CACTUS experiment recently observed a gamma ray excess above 50 GeV from the direction of the Draco dwarf spheroidal galaxy. Considering that Draco is dark matter dominated the gamma rays may be generated through dark matter annihilation in the Draco halo. In the framework of the minimal supersymmetric extension of the standard model we explore the parameter space to account for the gamma ray signals at CACTUS. We find that the neutralino mass is constrained to be approximately in the range between 100 GeV ~ 400 GeV and a sharp central cuspy of the dark halo profile in Draco is necessary to explain the CACTUS results. We then discuss further constraints on the supersymmetric parameter space by observations at the ground based ARGO detector. It is found that the parameter space can be strongly constrained by ARGO if no excess from Draco is observed above 100 GeV.

  6. Observations of low energy gamma-ray bursts with SAS-2

    Science.gov (United States)

    Oegelman, H.; Fichtel, C. E.; Kniffen, D. A.

    1975-01-01

    The present paper reports on the low-energy gamma-ray bursts observed by the plastic scintillator anticoincidence dome of the Small Astronomy Satellite-2 (SAS-2) gamma-ray telescope. SAS-2 detected two events observed by other satellites and discovered one which was subsequently confirmed by other satellite observations. Two events seen by other satellites were not detected by SAS-2, probably due to earth occultation. The event detection threshold for SAS-2 was almost two orders of magnitude lower than that of the Vela satellites.

  7. Observations with the High Altitude GAmma Ray (HAGAR) telescope array in the Indian Himalayas

    Science.gov (United States)

    Britto, R. J.; Acharya, B. S.; Anupama, G. C.; Bhatt, N.; Bhattacharjee, P.; Bhattacharya, S. S.; Chitnis, V. R.; Cowsik, R.; Dorji, N.; Duhan, S. K.; Gothe, K. S.; Kamath, P. U.; Koul, R.; Mahesh, P. K.; Mitra, A.; Nagesh, B. K.; Parmar, N. K.; Prabhu, T. P.; Rannot, R. C.; Rao, S. K.; Saha, L.; Saleem, F.; Saxena, A. K.; Sharma, S. K.; Shukla, A.; Singh, B. B.; Srinivasan, R.; Srinivasulu, G.; Sudersanan, P. V.; Tickoo, A. K.; Tsewang, D.; Upadhya, S.; Vishwanath, P. R.; Yadav, K. K.

    2010-12-01

    For several decades, it was thought that astrophysical sources emit high energy photons within the energy range of the gamma-ray region of the electromagnetic spectrum also. These photons originate from interactions of high energy particles from sources involving violent phenomena in the Universe (supernovae, pulsars, Active Galactic Nuclei, etc.) with gas and radiation fields. Since the first reliable detections of cosmic gamma rays in the 1970's, improvements in instrumentation have led gamma-ray astronomy to an established branch of modern Astrophysics, with a constant increase in the number of detected sources. But the 30-300 GeV energy range remained sparsely explored until the launch of the Fermi space telescope in June 2008. The ground-based gamma-ray telescope array HAGAR is the first array of atmospheric Cherenkov telescopes established at a so high altitude (4270 m a.s.l.), and was designed to reach a relatively low energy threshold with quite a low mirror area (31 m^2). It is located at Hanle in India, in the Ladakh region of the Himalayas. Regular source observations have begun with the complete setup of 7 telescopes on Sept. 2008. We report and discuss our estimation of the systematics through dark region studies, and present preliminary results from gamma-ray sources in this paper.

  8. Gamma-ray diagnostics of Type Ia supernovae: Predictions of observables from three-dimensional modeling

    CERN Document Server

    Summa, A; Kromer, M; Boyer, S; Roepke, F K; Sim, S A; Seitenzahl, I R; Fink, M; Mannheim, K; Pakmor, R; Ciaraldi-Schoolmann, F; Diehl, R; Maeda, K; Hillebrandt, W

    2013-01-01

    Besides the fact that the gamma-ray emission due to radioactive decays is responsible for powering the light curves of Type Ia supernovae (SNe Ia), gamma rays themselves are of particular interest as a diagnostic tool because they provide a direct way to obtain deeper insights into the nucleosynthesis and the kinematics of these explosion events. Focusing on two of the most broadly discussed SN Ia progenitor scenarios - a delayed detonation in a Chandrasekhar-mass white dwarf (WD) and a violent merger of two WDs - we use three-dimensional explosion models and perform radiative transfer simulations to obtain synthetic gamma-ray spectra. Both chosen models produce the same mass of 56Ni and have similar optical properties that are in reasonable agreement with the recently observed supernova SN 2011fe. In contrast to the optical regime, the gamma-ray emission of our two chosen models proves to be rather different. The almost direct connection of the emission of gamma rays to fundamental physical processes occurin...

  9. Ground-based Gamma-Ray Observations of Pulsars and their Nebulae: Towards a New Order

    CERN Document Server

    De Jager, O C

    2005-01-01

    The excellent sensitivity and high resolution capability of wide FoV ground-based imaging atmospheric Cerenkov telescopes allow us for the first time to resolve the morphological structures of pulsar wind nebulae (PWN) which are older and more extended than the Crab Nebula. VHE gamma-ray observations of such extended nebulae (with field strengths below ~ 20 micro Gauss) probe the electron component corresponding to the unseen extreme ultraviolet (EUV) synchrotron component, which measures electron injection from earlier evolutionary epochs. VHE observations of PWN therefore introduce a new window on PWN research. This review paper also identifies conditions for maximal VHE visbility of PWN. Regarding pulsar pulsed emission, it is becoming clear that the threshold energies of current telescopes are not sufficient to probe the pulsed gamma-ray component from canonical pulsars. Theoretical estimates of pulsed gamma-ray emission from millisecond pulsars seem to converge and it becomes clear that such detections w...

  10. Fermi Observations of high-energy gamma-ray emissions from GRB 080916C

    CERN Document Server

    Abdo, A A; Arimoto, M; Asano, K; Atwood, W B; Axelsson, M; Baldini, L; Ballet, J; Band, D L; Barbiellini, Guido; Baring, Matthew G; Bastieri, Denis; Battelino, M; Baughman, B M; Bechtol, K; Bellardi, F; Bellazzini, R; Berenji, B; Bhat, P N; Bissaldi, E; Blandford, R D; Bloom, Elliott D; Bogaert, G; Bogart, J R; Bonamente, E; Bonnell, J; Borgland, A W; Bouvier, A; Bregeon, J; Brez, A; Briggs, M S; Brigida, M; Bruel, P; Burnett, Thompson H; Burrows, David N; Busetto, Giovanni; Caliandro, G A; Cameron, R A; Caraveo, P A; Casandjian, J M; Ceccanti, M; Cecchi, C; Celotti, Annalisa; Charles, E; Chekhtman, A; Cheung, C.C.Teddy; Chiang, J; Ciprini, S; Claus, R; Cohen-Tanugi, Johann; Cominsky, Lynn R; Connaughton, V; Conrad, J; Costamante, L; Cutini, S; DeKlotz, M; Dermer, C D; De Angelis, Alessandro; de Palma, F; Digel, S W; Dingus, B L; do Couto e Silva, Eduardo; Drell, P S; Dubois, R; Dumora, D; Edmonds, Y; Evans, P A; Fabiani, D; Farnier, C; Favuzzi, C; Finke, Justin D; Fishman, G; Focke, W B; Frailis, M; Fukazawa, Y; Funk, S; Fusco, P; Gargano, F; Gasparrini, D; Gehrels, N; Germani, S; Giebels, B; Giglietto, N; Giommi, P; Giordano, F; Glanzman, Thomas Lynn; Godfrey, Gary L; Goldstein, A; Granot, J; Greiner, J; Grenier, I A; Grondin, M H; Grove, J.Eric; Guillemot, L; Guiriec, S; Haller, G; Hanabata, Y; Harding, Alice K; Hayashida, M; Hays, Elizabeth A; Hernando Morata, J A; Hoover, A; Hughes, R E; Johannesson, G; Johnson, A S; Johnson, R P; Johnson, T J; Johnson, W N; Kamae, Tsuneyoshi; Katagiri, H; Kataoka, J; Kavelaars, A; Kawai, N; Kelly, H; Kennea, J; Kerr, M; Kippen, R M; Knodlseder, J; Kocevski, D; Kocian, M L; Komin, N; Kouveliotou, C; Kuehn, Frederick Gabriel Ivar; Kuss, Michael; Lande, J; Landriu, D; Larsson, S; Latronico, L; Lavalley, C; Lee, B; Lee, S H; Lemoine-Goumard, M; Lichti, G G; Longo, F; Loparco, F; Lott, B; Lovellette, M N; Lubrano, Pasquale; Madejski, G M; Makeev, A; Marangelli, B; Mazziotta, M N; McBreen, Sheila; McEnery, J E; McGlynn, S; Meegan, C; Miszaros, P; Meurer, C; Michelson, P F; Minuti, M; Mirizzi, N; Mitthumsiri, W; Mizuno, T; Moiseev, A A; Monte, C; Monzani, M E; Moretti, E; Morselli, A; Moskalenko, Igor Vladimirovich; Murgia, Simona; Nakamori, T; Nelson, D; Nolan, P L; Norris, J P; Nuss, E; Ohno, M; Ohsugi, Takashi; Okumura, Akira; Omodei, N; Orlando, E; Ormes, J F; Ozaki, M; Paciesas, W S; Paneque, D; Panetta, J H; Parent, D; Pelassa, V; Pepe, M; Perri, M; Pesce-Rollins, M; Petrosian, Vahe; Pinchera, M; Piron, F; Porter, Troy A; Preece, R; Rainr, S; Ramirez-Ruiz, E; Rando, R; Rapposelli, E; Razzano, M; Razzaque, Soebur; Rea, N; Reimer, A; Reimer, O; Reposeur, Thierry; Reyes, Luis C; Ritz, S; Rochester, L S; Rodriguez, A Y; Roth, M; Ryde, F; Sadrozinski, H F W; Sanchez, D; Sander, A; Parkinson, P.M.Saz; Scargle, J D; Schalk, T L; Segal, K N; Sgro, C; Shimokawabe, T; Siskind, E J; Smith, D A; Smith, P D; Spandre, G; Spinelli, P; Stamatikos, M; Starck, Jean-Luc; Stecker, Floyd William; Steinle, H; Stephens, T E; Strickman, M S; Suson, Daniel J; Tagliaferri, G.; Tajima, Hiroyasu; Takahashi, H; Takahashi, T; Tanaka, T; Tenze, A; Thayer, J B; Thayer, J G; Thompson, D J; Tibaldo, L; Torres, Diego F; Tosti, G; Tramacere, A; Turri, M; Tuvi, S; Usher, T L; van der Horst, A J; Vigiani, L; Vilchez, N; Vitale, V; von Kienlin, A; Waite, A P; Williams, D A; Wilson-Hodge, C; Winer, B L; Wood, K S; Wu, X F; Yamazaki, R; Ylinen, T; Ziegler, M

    2009-01-01

    Gamma-ray bursts (GRBs) are highly energetic explosions signaling the death of massive stars in distant galaxies. The Gamma-ray Burst Monitor and Large Area Telescope onboard the Fermi Observatory together record GRBs over a broad energy range spanning about 7 decades of gammaray energy. In September 2008, Fermi observed the exceptionally luminous GRB 080916C, with the largest apparent energy release yet measured. The high-energy gamma rays are observed to start later and persist longer than the lower energy photons. A simple spectral form fits the entire GRB spectrum, providing strong constraints on emission models. The known distance of the burst enables placing lower limits on the bulk Lorentz factor of the outflow and on the quantum gravity mass.

  11. Ultra-Fast Flash Observatory for observation of early photons from gamma ray bursts

    DEFF Research Database (Denmark)

    Park, I. H.; Ahmad, S.; Barrillon, P.

    2012-01-01

    We describe the space project of Ultra-Fast Flash Observatory (UFFO) which will observe early optical photons from gamma-ray bursts (GRBs) with a sub-second optical response, for the first time. The UFFO will probe the early optical rise of GRBs, opening a completely new frontier in GRB and trans......We describe the space project of Ultra-Fast Flash Observatory (UFFO) which will observe early optical photons from gamma-ray bursts (GRBs) with a sub-second optical response, for the first time. The UFFO will probe the early optical rise of GRBs, opening a completely new frontier in GRB...

  12. SAS-2 observations of high energy gamma rays from discrete sources

    Science.gov (United States)

    Kniffen, D. A.; Fichtel, C. E.; Hartman, R. C.; Lamb, R. C.; Thompson, D. J.

    1977-01-01

    The SAS-2 identified six localized high energy (greater than 35 MeV) gamma ray sources. Four of these are the radio pulsars, PSR 0531+21, PSR 0833-45, PSR 1818-04, and PSR 1717-46 discovered in a search of 75 radio pulsars. The fact that only one of these is observed in X-rays, and the significant differences in pulse profiles in the gamma ray and radio observations, leads to the speculation that different mechanisms are involved.

  13. TeV Gamma-Ray Emission Observed from Geminga with HAWC

    CERN Document Server

    Baughman, B M

    2015-01-01

    Geminga is a radio-quiet pulsar ~250 parsecs from Earth that was first discovered as a GeV gamma-ray source and then identified as a pulsar. Milagro observed an extended TeV source spatially consistent with Geminga. HAWC observes a similarly extended source. Observations of Geminga's flux and extension will be presented.

  14. Diffuse Galactic Gamma Rays at intermediate and high latitudes. I. Constraints on the ISM properties

    CERN Document Server

    Cholis, I; Evoli, C; Maccione, L; Ullio, P

    2011-01-01

    We study the high latitude (|b|>10) diffuse gamma-ray emission in the Galaxy in light of the recently published data from the Fermi collaboration at energies between 100 MeV and 100 GeV. The unprecedented accuracy in these measurements allows to probe and constrain the properties of sources and propagation of cosmic rays (CRs) in the Galaxy, as well as confirming conventional assumptions made on the interstellar medium (ISM). Using the publicly available DRAGON code, that has been shown to reproduce local measurements of CRs, we study assumptions made in the literature on HI and H2 gas distributions in the ISM, and non spatially uniform models of diffusion in the Galaxy. By performing a combined analysis of CR and gamma-ray spectra, we derive constraints on the properties of the ISM gas distribution and the vertical scale height of galactic CR diffusion, which may have implications also on indirect Dark Matter detection. We also discuss some of the possible interpretations of the break at ~230 GV in CR proton...

  15. Constraints on Cosmic-Ray Origin Theories from TeV $\\gamma$-Ray Observations

    CERN Document Server

    Lessard, R W; Bradbury, S M; Buckley, J H; Burdett, A C; Gordo, J B; Carter-Lewis, D A; Catanese, M; Cawley, M F; Fegan, D J; Finley, J P; Gaidos, J A; Hillas, A M; Krennrich, F; Lamb, R C; Masterson, C; McEnery, J E; Mohanty, G B; Quinn, J; Rodgers, A J; Rose, H J; Samuelson, F W; Sembroski, G H; Srinivasan, R; Weekes, T C; Zweerink, J A

    1997-01-01

    If supernova remnants (SNRs) are the sites of cosmic-ray acceleration, the associated nuclear interactions should result in observable fluxes of TeV gamma-rays from the nearest SNRs. Measurements of the gamma-ray flux from six nearby, radio-bright, SNRs have been made with the Whipple Observatory gamma-ray telescope. No significant emission has been detected and upper limits on the $>$300 GeV flux are reported. Three of these SNRs (IC443, gamma-Cygni and W44) are spatially coincident with low latitude unidentified sources detected with EGRET. These upper limits weaken the case for the simplest models of shock acceleration and energy dependent propagation.

  16. X-ray observations and the search for Fermi-LAT gamma-ray pulsars

    CERN Document Server

    Parkinson, P M Saz; Caraveo, P; De Luca, A; Marelli, M

    2013-01-01

    The Large Area Telescope (LAT) on Fermi has detected ~150 gamma-ray pulsars, about a third of which were discovered in blind searches of the $\\gamma$-ray data. Because the angular resolution of the LAT is relatively poor and blind searches for pulsars (especially millisecond pulsars, MSPs) are very sensitive to an error in the position, one must typically scan large numbers of locations. Identifying plausible X-ray counterparts of a putative pulsar drastically reduces the number of trials, thus improving the sensitivity of pulsar blind searches with the LAT. I discuss our ongoing program of Swift, XMM-Newton, and Chandra observations of LAT unassociated sources in the context of our blind searches for gamma-ray pulsars.

  17. New Tests of Lorentz Invariance Following from Observations of the Highest Energy Cosmic Gamma Rays

    CERN Document Server

    Stecker, F W; Glashow, Sheldon L.

    2001-01-01

    We use the recent reanalysis of multi-TeV gamma-ray observations of Mrk 501 to constrain the Lorentz invariance breaking parameter involving the maximum electron velocity. Our limit is two orders of magnitude better than that obtained from the maximum observed cosmic-ray electron energy.

  18. Gamma-ray and neutrino diffuse emissions of the Galaxy above the TeV

    CERN Document Server

    Gaggero, Daniele; Marinelli, Antonio; Urbano, Alfredo; Valli, Mauro

    2015-01-01

    As recently shown, Fermi-LAT measurements of the diffuse gamma-ray emission from the Galaxy favor the presence of a smooth softening in the primary cosmic-ray spectrum with increasing Galactocentric distance. This result can be interpreted in terms of a spatial-dependent rigidity scaling of the diffusion coefficient. The DRAGON code was used to build a model based on such feature. That scenario correctly reproduces the latest Fermi-LAT results as well as local cosmic-ray measurements from PAMELA, AMS-02 and CREAM. Here we show that the model, if extrapolated at larger energies, grasps both the gamma-ray flux measured by MILAGRO at 15 TeV and the H.E.S.S. data from the Galactic ridge, assuming that the cosmic-ray spectral hardening found by those experiments at about 250 GeV/n is present in the whole inner Galactic plane region. Moreover, we show as that model also predicts a neutrino emission which may account for a significant fraction, as well as for the correct spectral shape, of the astrophysical flux mea...

  19. Observation of early photons from gamma-ray bursts with the Lomonosov / UFFO-pathfinder

    DEFF Research Database (Denmark)

    Jeong, S.; Brandt, Søren; Budtz-Jørgensen, Carl

    2014-01-01

    UFFO-pathfinder is a pioneering space mission to observe the early evolution of Gamma-ray Bursts using a fast slewing strategy. It consists of the Slewing Mirror Telescope, for rapid pointing at UV/optical wavelengths and the UFFO Burst Alert and Trigger Telescope. It has a total weight of ~ 20 k...

  20. TeV Gamma-Ray Observations of the Perseus and Abell 2029 Galaxy Clusters

    CERN Document Server

    Perkins, J S; Blaylock, G; Bradbury, S M; Chow, Y C K; Cogan, P; Cui, W; Daniel, M K; Falcone, A D; Fegan, S J; Finley, J P; Fortin, P; Fortson, L F; Gillanders, G H; Grube, J; Gutíerrez, K J; Hall, J; Hanna, D; Holder, J; Horan, D; Hughes, S B; Kenny, G E; Kertzman, M; Kieda, D B; Kildea, J; Kosack, K; Krawczynski, H; Krennrich, F; Lang, M J; Le Bohec, S; Maier, G; Moriarty, P; Ong, R A; Pohl, M; Ragan, K; Rebillot, P F; Sembroski, G H; Steele, D; Swordy, S P; Valcarcel, L; Vasilev, V V; Wakely, S P; Weekes, T C; Williams, D A

    2006-01-01

    Galaxy clusters might be sources of TeV gamma rays emitted by high-energy protons and electrons accelerated by large scale structure formation shocks, galactic winds, or active galactic nuclei. Furthermore, gamma rays may be produced in dark matter particle annihilation processes at the cluster cores. We report on observations of the galaxy clusters Perseus and Abell 2029 using the 10 m Whipple Cherenkov telescope during the 2003-2004 and 2004-2005 observing seasons. We apply a two-dimensional analysis technique to scrutinize the clusters for TeV emission. In this paper we first determine flux upper limits on TeV gamma-ray emission from point sources within the clusters. Second, we derive upper limits on the extended cluster emission. We subsequently compare the flux upper limits with EGRET upper limits at 100 MeV and theoretical models. Assuming that the gamma-ray surface brightness profile mimics that of the thermal X-ray emission and that the spectrum of cluster cosmic rays extends all the way from thermal...

  1. Fermi LAT Observations of Gamma-Ray Transients Near the Galactic Plane

    Science.gov (United States)

    Hays, Elizabeth Anne

    2010-01-01

    The Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope provides unprecedented sensitivity for all-sky monitoring of gamma-ray activity from 20 MeV to >300 GeV. The observatory scans the entire sky every three hours and allows a general search for flaring activity on daily timescales. This search is conducted automatically as part of the ground processing and allows a fast response to transient events, typically less than a day. Most flares are spatially associated with known blazars, but in several cases during the first year of observations, gamma-ray flares occurring near the Galactic plane did not reveal any initially compelling counterparts. This prompted follow-up observations in X-ray, optical, and radio to attempt to identify the origin of the emission and probe the possible existence of a class of transient gamma-ray sources in the Galaxy. We will report on the details of these LAT events and the results of the multi-wavelength counterpart searches.

  2. VHE $\\Gamma$-Ray Observation of the Crab Nebula and Pulsar with MAGIC

    CERN Document Server

    Albert, J; Anderhub, H; Antoranz, P; Armada, A; Baixeras, C; Barrio, J A; Bartko, H; Bastieri, D; Becker, J K; Bednarek, W; Berger, K; Bigongiari, C; Biland, A; Böck, R K; Bordas, P; Bosch-Ramon, V; Bretz, T; Britvitch, I; Camara, M; Carmona, E; Chilingarian, A; Coarasa, J A; Commichau, S; Contreras, J L; Cortina, J; Costado, M T; Curtef, V; Danielyan, V; Dazzi, F; De Angelis, A; Delgado, C; De los Reyes, R; De Lotto, B; Domingo-Santamaria, E; Dorner, D; Doro, M; Errando, M; Fagiolini, M; Ferenc, D; Fern, E; Firpo, R; Flix, J; Fonseca, M V; Font, L; Fuchs, M; Galante, N; Garcia-Lopez, R; Garczarczyk, M; Gaug, M; Giller, M; Göbel, F; Hakobyan, D; Hayashida, M; Hengstebeck, T; Herrero, A; Höhne, D; Hose, J; Hsu, C C; Jacon, P; Jogler, T; Kosyra, R; Kranich, D; Kritzer, R; Laille, A; Lindfors, E; Lombardi, S; Longo, F; López, J; López, M; Lorenz, E; Majumdar, P; Maneva, G; Mannheim, K; Mansutti, O; Mariotti, M; Martínez, M; Mazin, D; Merck, C; Meucci, M; Meyer, M; Miranda, J M; Mirzoyan, R; Mizobuchi, S; Moralejo, A; Nieto, D; Nilsson, K; Ninkovic, J; Ona-Wilhelmi, E; Otte, N; Oya, I; Paneque, D; Panniello, M; Paoletti, R; Paredes, J M; Pasanen, M; Pascoli, D; Pauss, F; Pegna, R; Persic, M; Peruzzo, L; Piccioli, A; Poller, M; Prandini, E; Puchades, N; Raymers, A; Rhode, W; Ribó, M; Rico, J; Rissi, M; Robert, A; Rugamer, S; Saggion, A; Sánchez, A; Sartori, P; Scalzotto, V; Scapin, V; Schmitt, R; Schweizer, T; Shayduk, M; Shinozaki, K; Shore, S N; Sidro, N; Sillanpää, A; Sobczynska, D; Stamerra, A; Stark, L S; Takalo, L; Temnikov, P; Tescaro, D; Teshima, M; Tonello, N; Torres, D F; Turini, N; Vankov, H; Vitale, V; Wagner, R M; Wibig, T; Wittek, W; Zandanel, F; Zanin, R; Zapatero, J

    2007-01-01

    We report about very high energy (VHE) gamma-ray observations of the Crab Nebula with the MAGIC telescope. The gamma-ray flux from the nebula was measured between 60 GeV and 9 TeV. The energy spectrum can be described with a curved power law dF/dE=f0 (E/300 GeV)^(a+b*log10(E/300 GeV)) with a flux normalization f0 of(6.0+-0.2)*10^-10 1/(cm^2 s TeV), a=-2.31+-0.06 and b=-0.26+-0.07. The position of the IC-peak is determined at (77+-47) GeV. Within the observation time and the experimental resolution of the telescope, the gamma-ray emission is steady and pointlike. The emission's center of gravity coincides with the position of the pulsar. Pulsed gamma-ray emission from the pulsar could not be detected. We constrain the cutoff energy of the spectrum to be less than 27 GeV, assuming that the differential energy spectrum has an exponential cutoff. For a super-exponential shape, the cutoff energy can be as high as 60 GeV.

  3. Diffuse gamma-ray constraints on dark matter revisited. I: the impact of subhalos

    CERN Document Server

    Blanchet, Steve

    2012-01-01

    We make a detailed analysis of the indirect diffuse gamma-ray signals from dark matter annihilation in the Galaxy. We include the prompt emission, as well as the emission from inverse Compton scattering whenever the annihilation products contain light leptons. We consider both the contribution from the smooth dark matter halo and that from substructures. The main parameters for the latter are the mass function index and the minimal subhalo mass. We use recent results from N-body simulations to set the most reasonable range of parameters, and find that the signal can be boosted by a factor ranging from 2 to 15 towards the Galactic poles, slightly more towards the Galactic anticenter, with an important dependence on the subhalo mass index. This uncertainty is however much less than that of the extragalactic signal studied in the literature. We derive upper bounds on the dark matter annihilation cross section using the isotropic gamma-ray emission measured by Fermi-LAT, for two directions in the sky, the Galacti...

  4. In-flight observation of long duration gamma-ray glows by aircraft

    Science.gov (United States)

    Kochkin, Pavlo; (Lex) van Deursen, A. P. J.; de Boer, Alte; Bardet, Michiel; Allasia, Cedric; Boissin, Jean Francois; Ostgaard, Nikolai

    2017-04-01

    The Gamma-Ray Glow is a long-lasting (several seconds to minutes) X- and gamma radiation presumably originated from high-electric field of thunderclouds. Such glows were previously observed by aircraft, balloons, and from the ground. When detected on ground with other particles, i.e. electrons and neutrons, they are usually called Thunderstorm Ground Enhancements (TGEs). Their measured spectra are often consistent with Relativistic Runaway Electron Avalanche (RREA) mechanism. That is why RREA is a commonly accepted explanation for their existence. The gamma-ray glows are observed to be interrupted by lightning discharge, which terminates the high-electric field region. In January 2016 an Airbus A340 factory test aircraft was performing intentional flights through thunderstorms over Northern Australia. The aircraft was equipped with a dedicated in-flight lightning detection system called ILDAS (http://ildas.nlr.nl). The system also contained two scintillation detectors each with 38x38 mm cylinder LaBr3 crystals. While being at 12 km altitude the system detected a gamma-ray flux enhancement 30 times the background counts. It lasted for 20 seconds and was abruptly terminated by a lightning flash. The flash hit the aircraft and its parameters were recorded with 10 ns sampling time including gamma radiation. Ground-based lightning detection network WWLLN detected 4 strikes in the nearby region, all in association with the same flash. The ILDAS system recorded the time-resolved spectrum of the glow. In 6 minutes, after making a U-turn, the aircraft passed the same glow region. Smaller gamma-ray enhancement was again detected. In this presentation we will show the mapped event timeline including airplane, gamma-ray glow, WWLLN, and cloud data. We will discuss the glow's properties, i.e. intensity and differential spectrum, and its possible origin. This result will also be compared to previously reported observations.

  5. Gamma-ray observations of the Orion Molecular Clouds with the Fermi Large Area Telescope

    CERN Document Server

    Ackermann, M; Allafort, A; Antolini, E; Baldini, L; Ballet, J; Barbiellini, G; Bastieri, D; Bechtol, K; Bellazzini, R; Berenji, B; Blandford, R D; Bloom, E D; Bonamente, E; Borgland, A W; Bottacini, E; Brandt, T J; Bregeon, J; Brigida, M; Bruel, P; Buehler, R; Buson, S; Caliandro, G A; Cameron, R A; Caraveo, P A; Cecchi, C; Chekhtman, A; Chiang, J; Ciprini, S; Claus, R; Cohen-Tanugi, J; Conrad, J; D'Ammando, F; de Angelis, A; de Palma, F; Dermer, C D; Silva, E do Couto e; Drell, P S; Drlica-Wagner, A; Enoto, T; Falletti, L; Favuzzi, C; Fegan, S J; Ferrara, E C; Focke, W B; Fukazawa, Y; Fukui, Y; Fusco, P; Gargano, F; Gasparrini, D; Germani, S; Giglietto, N; Giordano, F; Giroletti, M; Glanzman, T; Godfrey, G; Guiriec, S; Hadasch, D; Hanabata, Y; Harding, A K; Hayashida, M; Hayashi, K; Horan, D; Hou, X; Hughes, R E; Jackson, M S; Jóhannesson, G; Johnson, A S; Kamae, T; Katagiri, H; Kataoka, J; Kerr, M; Knödlseder, J; Kuss, M; Lande, J; Larsson, S; Lee, S -H; Longo, F; Loparco, F; Lovellette, M N; Lubrano, P; Makishima, K; Mazziotta, M N; Mehault, J; Mitthumsiri, W; Moiseev, A A; Monte, C; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Nakamori, T; Naumann-Godo, M; Nishino, S; Norris, J P; Nuss, E; Ohno, M; Ohsugi, T; Okumura, A; Orienti, M; Orlando, E; Ormes, J F; Ozaki, M; Paneque, D; Panetta, J H; Parent, D; Pelassa, V; Pesce-Rollins, M; Pierbattista, M; Piron, F; Pivato, G; Porter, T A; Rainò, S; Razzano, M; Reimer, A; Reimer, O; Roth, M; Sadrozinski, H F -W; Sgrò, C; Siskind, E J; Spandre, G; Spinelli, P; Strong, A W; Takahashi, H; Takahashi, T; Tanaka, T; Thayer, J G; Thayer, J B; Tibolla, O; Tinivella, M; Torres, D F; Tramacere, A; Troja, E; Uchiyama, Y; Usher, T L; Vandenbroucke, J; Vasileiou, V; Vianello, G; Vitale, V; Waite, A P; Wang, P; Winer, B L; Wood, K S; Yang, Z; Zimmer, S

    2012-01-01

    We report on the gamma-ray observations of giant molecular clouds Orion A and B with the Large Area Telescope (LAT) on-board the Fermi Gamma-ray Space Telescope. The gamma-ray emission in the energy band between \\sim100 MeV and \\sim100 GeV is predicted to trace the gas mass distribution in the clouds through nuclear interactions between the Galactic cosmic rays (CRs) and interstellar gas. The gamma-ray production cross-section for the nuclear interaction is known to \\sim10% precision which makes the LAT a powerful tool to measure the gas mass column density distribution of molecular clouds for a known CR intensity. We present here such distributions for Orion A and B, and correlate them with those of the velocity integrated CO intensity (WCO) at a 1{\\deg} \\times1{\\deg} pixel level. The correlation is found to be linear over a WCO range of ~10 fold when divided in 3 regions, suggesting penetration of nuclear CRs to most of the cloud volumes. The Wco-to-mass conversion factor, Xco, is found to be \\sim2.3\\times1...

  6. COMPTEL gamma-ray observations of the C4 solar flare on 20 January 2000

    Science.gov (United States)

    Young, C. A.; Arndt, M. B.; Bennett, K.; Connors, A.; Debrunner, H.; Diehl, R.; McConnell, M.; Miller, R. S.; Rank, G.; Ryan, J. M.; Schoenfelder, V.; Winkler, C.

    2001-10-01

    The ``Pre-SMM'' (Vestrand and Miller 1998) picture of gamma-ray line (GRL) flares was that they are relatively rare events. This picture was quickly put in question with the launch of the Solar Maximum Mission (SMM). Over 100 GRL flares were seen with sizes ranging from very large GOES class events (X12) down to moderately small events (M2). It was argued by some (Bai 1986) that this was still consistent with the idea that GRL events are rare. Others, however, argued the opposite (Vestrand 1988; Cliver, Crosby and Dennis 1994), stating that the lower end of this distribution was just a function of SMM's sensitivity. They stated that the launch of the Compton Gamma-ray Observatory (CGRO) would in fact continue this distribution to show even smaller GRL flares. In response to a BACODINE cosmic gamma-ray burst alert, COMPtonTELescope on the CGRO recorded gamma rays above 1 MeV from the C4 flare at 0221 UT 20 January 2000. This event, though at the limits of COMPTEL's sensitivity, clearly shows a nuclear line excess above the continuum. Using new spectroscopy techniques we were able to resolve individual lines. This has allowed us to make a basic comparison of this event with the GRL flare distribution from SMM and also compare this flare with a well-observed large GRL flare seen by OSSE. .

  7. Observing with a space-borne gamma-ray telescope: selected results from INTEGRAL

    CERN Document Server

    Schanne, S

    2006-01-01

    The International Gamma-Ray Astrophysics Laboratory, i.e. the INTEGRAL satellite of ESA, in orbit since about 3 years, performs gamma-ray observations of the sky in the 15 keV to 8 MeV energy range. Thanks to its imager IBIS, and in particular the ISGRI detection plane based on 16384 CdTe pixels, it achieves an excellent angular resolution (12 arcmin) for point source studies with good continuum spectrum sensitivity. Thanks to its spectrometer SPI, based on 19 germanium detectors maintained at 85 K by a cryogenic system, located inside an active BGO veto shield, it achieves excellent spectral resolution of about 2 keV for 1 MeV photons, which permits astrophysical gamma-ray line studies with good narrow-line sensitivity. In this paper we review some goals of gamma-ray astronomy from space and present the INTEGRAL satellite, in particular its instruments ISGRI and SPI. Ground and in-flight calibration results from SPI are presented, before presenting some selected astrophysical results from INTEGRAL. In partic...

  8. Fermi Observations of the Very Hard Gamma-ray Blazar PG 1553+113

    CERN Document Server

    ,

    2009-01-01

    We report the observations of PG 1553+113 during the first ~200 days of Fermi Gamma-ray Space Telescope science operations, from 4 August 2008 to 22 February 2009 (MJD 54682.7-54884.2). This is the first detailed study of PG 1553+113 in the GeV gamma-ray regime and it allows us to fill a gap of three decades in energy in its spectral energy distribution. We find PG 1553+113 to be a steady source with a hard spectrum that is best fit by a simple power-law in the Fermi energy band. We combine the Fermi data with archival radio, optical, X-ray and very high energy (VHE) gamma-ray data to model its broadband spectral energy distribution and find that a simple, one-zone synchrotron self-Compton model provides a reasonable fit. PG 1553+113 has the softest VHE spectrum of all sources detected in that regime and, out of those with significant detections across the Fermi energy bandpass so far, the hardest spectrum in that energy regime. Thus, it has the largest spectral break of any gamma-ray source studied to date, ...

  9. High-Energy $\\gamma$-Ray Observations of Two Young, Energetic Radio Pulsars

    CERN Document Server

    Kaspi, V M; Mattox, J R; Manchester, R N; Bailes, M; Pace, R

    1999-01-01

    We present results of Compton Gamma-Ray Observatory EGRET observations of the unidentified high-energy gamma-ray sources 2EG J1049-5847 (GEV J1047-5840, 3EG J1048-5840) and 2EG J1103-6106 (3EG J1102-6103). These sources are spatially coincident with the young, energetic radio pulsars PSRs B1046-58 and J1105-6107, respectively. We find evidence for an association between PSR B1046-58 and 2EG J1049-5847. The gamma-ray pulse profile, obtained by folding time-tagged photons having energies above 400 MeV using contemporaneous radio ephemerides, has probability of arising by chance of 1.2E-4 according to the binning-independent H-test. A spatial analysis of the on-pulse photons reveals a point source of equivalent significance 10.2 sigma. Off-pulse, the significance drops to 5.8 sigma. Archival ASCA data show that the only hard X-ray point source in the 95% confidence error box of the gamma-ray source is spatially coincident with the pulsar within the 1' uncertainty (Pivovaroff, Kaspi & Gotthelf 1999). The doub...

  10. Three Solar Gamma-Ray Flares Observed by Yohkoh In Autumn of 1991

    Science.gov (United States)

    Shaltout, M. A. Mosalam

    The Japanese mission Yohkoh (sun-beam) observed three solar gamma-ray flares of October, November and December 1991, on the declining phase of solar cycle 22. Each flare has different spectral characteristics, strong narrow line flare, broad line flare and continuum gamma-ray flare.The solar gamma-ray flares of October, November and December 1991 are produced from the three solar active regions NOAA/USAF 6891, 6919 and 6952 respectively. The aim of the present work is to study the general characteristics of these three active regions, and perform an evolution for the sunspots and their magnetic fields which lead to releasing highly energetic impulsive flares associated with gamma-ray emissions.The method of cumulative summation curves for X-ray bursts and Hα flares produced from the active regions and also, cumulative summation curves for sunspots area and count number for the same active regions are applied to show any steep increase in the trend in the curves for few days prior to the γ-ray flare occurrences

  11. Gamma rays from Galactic pulsars

    OpenAIRE

    2014-01-01

    Gamma rays from young pulsars and milli-second pulsars are expected to contribute to the diffuse gamma-ray emission measured by the {\\it Fermi} Large Area Telescope (LAT) at high latitudes. We derive the contribution of the pulsars undetected counterpart by using information from radio to gamma rays and we show that they explain only a small fraction of the isotropic diffuse gamma-ray background.

  12. A Proposed Student Built and Operated Satellite: The Gamma Ray Burst Polarization Observer (PolOSat)

    Science.gov (United States)

    Malphrus, Benjamin K.; Jernigan, J. G.; Bloom, J. S.; Boggs, S.; Butler, N. R.; Cominsky, L. R.; Doering, T. J.; Doty, J. P.; Erb, D. M.; Figer, D. F.; Hurley, K. C.; Kimel, K. W.; Lumpp, J. E.; Labov, S.

    2009-01-01

    The Polarization Observer (PolOSat) is small satellite mission whose goal is to measure the polarization of bright gamma-ray bursts (GRBs). A precise measurement of the polarization of GRBs will constrain the models of radiative mechanisms associated with GRBs as supermassive stars undergo collapse into black holes. The primary goal of PolOSat is the detection of strongly linearly polarized GRBs (≥20; %) and/or to set upper limits on polarization for a few GRBs (≤30; %). PolOSat is designed to have a sensitivity to polarization that exceeds all prior experiments. The primary scientific instrument, the Gamma-ray Polarization Monitor (GPM) is based on a CMOS hybrid array that is optimized for performance in the low energy gamma-ray band (20-200 keV). The GPM has two passive Beryllium (Be) scattering elements which provide signal gamma-rays within a large field of view (two 45 degree radius cones). Gamma-rays impinge on the Be scatterers and are then Compton scattered into the CZT arrays and detected. A bright GRB (occurring 5 times a year) will produce 100,000s of direct gamma-rays and 1000s of Compton scattered gamma-rays detected by the CZT array. The PolOSat satellite with the GPM is rotated ( 1 Hz) inducing a strong temporal component at twice the spin frequency that is proportional to the linear polarization in the GRB signal. The team includes the University of California, Berkeley, the Kentucky Space Program including the Kentucky Science and Technology Corporation, the University of Kentucky, Morehead State University, Sonoma State University, the Rochester Institute of Technology, the University of Rochester and the Lawrence Livermore National Laboratory. PolOSat features significant participation by undergraduate and graduate students in all phases of development and operation of the spacecraft and instruments and in data analysis. PolOSat was initially proposed as a small complete NASA Mission of Opportunity and is currently seeking funding.

  13. Multi-band Observations of Gamma Ray Bursts

    Indian Academy of Sciences (India)

    S. G. Bhargavi

    2002-03-01

    This talk focuses on the various aspects we learnt from multiband observations of GRBs both, before and during the afterglow era. A statistical analysis to estimate the probable redshifts of host galaxies using the luminosity function of GRBs compatible with both the afterglow redshift data as well as the overall population of GRBs is discussed. We then address the question whether the observed fields of GRBs with precise localizations from third Inter-Planetary Network (IPN3) contain suitable candidates for their host galaxies.

  14. Gamma-ray bursts observed by the watch experiment

    DEFF Research Database (Denmark)

    Lund, Niels; Brandt, Søren; Castro-Tirado, A. J.

    1991-01-01

    After two years in orbit the WATCH instruments on the GRANAT space observatory have localized seven gamma burst sources with better than 1° accuracy. In several cases, follow‐up observations with Schmidt telescopes have been made within a few days. Some of the bursts have also been detected...

  15. Millimetre observations of gamma-ray bursts at IRAM

    DEFF Research Database (Denmark)

    Castro-Tirado, A. J.; Bremer, M.; Winters, J. M.;

    2013-01-01

    Since 1997, and following our detection of the first mm afterglow, we have followed-up 70 GRBs, mainly with the IRAMÅ Plateau de Bure Interferometer, what can be considered as the IRAM Legacy GRB Sample. 66 events were observed at 3 mm, with 19 of them being detected (with another 3 having margin...

  16. Very High Energy Observations of Gamma-Ray Burst Locations with the Whipple Telescope

    CERN Document Server

    Horan, D; Badran, H M; Blaylock, G; Bradbury, S M; Buckley, J H; Byrum, K L; Celik, O; Chow, Y C K; Cogan, P; Cui, W; Daniel, M K; Perez, I de la Calle; Dowdall, C; Falcone, A D; Fegan, D J; Fegan, S J; Finley, J P; Fortin, P; Fortson, L F; Gillanders, G H; Grube, J; Gutíerrez, K J; Hall, J; Hanna, D; Holder, J; Hughes, S B; Humensky, T B; Kenny, G E; Kertzman, M; Kieda, D B; Kildea, J; Krawczynski, H; Krennrich, F; Lang, M J; Le Bohec, S; Maier, G; Moriarty, P; Nagai, T; Ong, R A; Perkins, J S; Petry, D; Quinn, J; Quinn, M; Ragan, K; Reynolds, P T; Rose, H J; Schroedter, M; Sembroski, G H; Steele, D; Swordy, S P; Toner, J A; Valcarcel, L; Vasilev, V V; Wagner, R G; Wakely, S P; Weekes, T C; White, R J; Williams, D A; 10.1086/509567

    2008-01-01

    Gamma-ray burst (GRB) observations at very high energies (VHE, E > 100 GeV) can impose tight constraints on some GRB emission models. Many GRB afterglow models predict a VHE component similar to that seen in blazars and plerions, in which the GRB spectral energy distribution has a double-peaked shape extending into the VHE regime. VHE emission coincident with delayed X-ray flare emission has also been predicted. GRB follow-up observations have had high priority in the observing program at the Whipple 10m Gamma-ray Telescope and GRBs will continue to be high priority targets as the next generation observatory, VERITAS, comes on-line. Upper limits on the VHE emission, at late times (>~4 hours), from seven GRBs observed with the Whipple Telescope are reported here.

  17. Galactic gamma ray astronomy

    Energy Technology Data Exchange (ETDEWEB)

    Schoenfelder, V.

    1982-05-01

    During the last decade the exploration of the sky in the light of gamma rays has begun by means of satellite-and balloon-borne instruments. Like in other ranges of the electromagnetic spectrum the Milky Way clearly stands out against the rest of the sphere. Part of the galactic ..gamma..-ray emission is due to discrete sources, part is diffuse in origin and is produced in interstellar space. Some of the discrete ..gamma..-ray sources are radio pulsars, the nature of the other sources is still unknown. The intensity distribution of the diffuse galactic ..gamma..-ray component is consistent with a decrease of the cosmic-ray intensity towards the outer part of the galaxy. The identification of the cosmic-ray sources will be one of the main objectives of the next generation of ..gamma..-ray telescopes.

  18. Gamma Rays from Radio Galaxies: FERMI/LAT Observations

    Science.gov (United States)

    Grandi, Paola

    We review the high energy properties of Misaligned AGNs associated with γ-ray sources detected by Fermi in 24 months of survey. Most of them are nearby emission low power radio galaxies (i.e FRIs) which probably have structured jets. On the contrary, high power radio sources (i.e FRIIs) with GeV emission are rare. The small number of FRIIs does not seem to be related to their higher redshifts. Assuming proportionality between the radio core flux and the γ-ray flux, several of them are expected to be bright enough to be detected above 100 MeV in spite of their distance. We suggest that beaming/jet structural differences are responsible for the detection rate discrepancy observed between FRIs and FRIIs.

  19. Gamma-Ray Burst Follow Up Observations with BOOTES in 1998--2000

    Science.gov (United States)

    Cerón, J. M. Castro; Castro-Tirado, A. J.; Hudec, R.; Soldán, J.; Bernas, M.; Páta, P.; Sanguino, T. J. Mateo; Postigo, A. De Ugarte; Berná, J. Á.; Nekola, M.; Gorosabel, J.; Morena, B. A. De La; Más-Hesse, J. M.; Giménez, Á.; Riera, J. Torres

    The Burst Observer and Optical Transient Exploring System (BOOTES) provides an automated realtime observing response to the detection of Gamma Ray Bursts (GRBs). Error box size depending, it uses wide field cameras attached to small robotic telescopes or the telescopes themselves. To date we have acquired photometry for about 30 events with the Ultra Wide (UWFC) and the Narrow Field Cameras (NFC) and about 50 events with the Wide Field Camera (WFC).

  20. TETRA Observation of Gamma Rays at Ground Level Associated with Nearby Thunderstorms

    CERN Document Server

    Ringuette, Rebecca; Cherry, Michael L; Granger, Douglas; Guzik, T Gregory; Stewart, Michael; Wefel, John P

    2013-01-01

    Terrestrial Gamma ray Flashes (TGFs) -- very short, intense bursts of electrons, positrons, and energetic photons originating from terrestrial thunderstorms -- have been detected with satellite instruments. TETRA, an array of NaI(Tl) scintillators at Louisiana State University, has now been used to detect similar bursts of 50 keV to over 2 MeV gamma rays at ground level. After 2.6 years of observation, twenty-four events with durations 0.02- 4.2 msec have been detected associated with nearby lightning, three of them coincident events observed by detectors separated by ~1000 m. Nine of the events occurred within 6 msec and 3 miles of negative polarity cloud-to-ground lightning strokes with measured currents in excess of 20 kA. The events reported here constitute the first catalog of TGFs observed at ground level in close proximity to the acceleration site.

  1. Observations of Gamma-ray Bursts with the Fermi Large Area Telescope

    Energy Technology Data Exchange (ETDEWEB)

    Longo, Francesco, E-mail: francesco.longo@ts.infn.it [Dipartimento di Fisica, Università di Trieste and INFN, sezione di Trieste, via Valerio 2, I-34127 Trieste (Italy); Vianello, Giacomo; Omodei, Nicola [Stanford University (HEPL), 452 Lomita Mall, Stanford, CA 94205 (United States); Piron, Frederic; Vasilieou, Vlasios [Laboratoire Univers et Particules de Montpellier, Universite de Montpellier II, CNRS/IN2P3, CC72, Place E. Bataillon, F-34095 Montpellier Cedex 5 (France); Razzaque, Soebur [Department of Physics, University of Johannesburg, P.O. Box 524, Auckland Park 2006 (South Africa)

    2014-04-01

    The Fermi observatory, with its Gamma-ray Bursts Monitor (GBM) and Large Area Telescope (LAT), is observing Gamma-ray Bursts (GRBs) with a very large spectral coverage and unprecedented sensitivity, from ∼10keV to >300GeV. In the first 3 years of the mission it observed emission above 100 MeV from 35 GRBs. In this paper we review the main results obtained on such a sample, highlighting also the relationships with the low-energy spectral and temporal features (as measured by the GBM). Some recent results on high energy photons from GRBs obtained with the preliminary Pass 8 new event-level reconstruction will be discussed.

  2. First observation of low-energy {\\gamma}-ray enhancement in the rare-earth region

    CERN Document Server

    Simon, A; Larsen, A C; Beausang, C W; Humby, P; Burke, J T; Casperson, R J; Hughes, R O; Ross, T J; Allmond, J M; Chyzh, R; Dag, M; Koglin, J; McCleskey, E; McCleskey, M; Ota, S; Saastamoinen, A

    2016-01-01

    The {\\gamma}-ray strength function and level density in the quasi-continuum of 151,153Sm have been measured using BGO shielded Ge clover detectors of the STARLiTeR system. The Compton shields allow for an extraction of the {\\gamma} strength down to unprecedentedly low {\\gamma} energies of about 500 keV. For the first time an enhanced low- energy {\\gamma}-ray strength has been observed in the rare-earth region. In addition, for the first time both the upbend and the well known scissors resonance have been observed simultaneously for the same nucleus. Hauser-Feshbach calculations show that this strength enhancement at low {\\gamma} energies could have an impact of 2-3 orders of magnitude on the (n,{\\gamma}) reaction rates for the r-process nucleosynthesis.

  3. Observation of thundercloud-related gamma rays and neutrons in Tibet

    CERN Document Server

    Tsuchiya, H; Kawata, K; Hotta, N; Tateyama, N; Ohnishi, M; Takita, M; Chen, D; Huang, J; Miyasaka, M; Kondo, I; Takahashi, E; Shimoda, S; Yamada, Y; Lu, H; Zhang, J L; Yu, X X; Tan, Y H; Nie, S M; Munakata, K; Enoto, T; Makishima, K

    2012-01-01

    During the 2010 rainy season in Yangbajing (4300 m above sea level) in Tibet, China, a long-duration count enhancement associated with thunderclouds was detected by a solar neutron telescope and neutron monitors installed at the Yangbajing Comic Ray Observatory. The event, lasting for $\\sim$40 min, was observed on July 22, 2010. The solar neutron telescope detected significant $\\gamma$-ray signals with energies $>$40 MeV in the event. Such a prolonged high-energy event has never been observed in association with thunderclouds, clearly suggesting that electron acceleration lasts for 40 min in thunderclouds. In addition, Monte Carlo simulations showed that $>$10-MeV $\\gamma$ rays largely contribute to the neutron monitor signals, while $>$1-keV neutrons produced via a photonuclear reaction contribute relatively less to the signals. This result suggests that enhancements of neutron monitors during thunderstorms are not necessarily a clear evidence for neutron production, as previously thought.

  4. Observations of the Prompt Gamma-Ray Emission of GRB 070125

    CERN Document Server

    Bellm, Eric C; Pal'shin, Valentin; Yamaoka, Kazutaka; Bandstra, Mark E; Boggs, Steven E; Hong, Soojing; Kodaka, Natsuki; Kozyrev, A S; Litvak, M L; Mitrofanov, I G; Nakagawa, Yujin E; Ohno, Masanori; Onda, Kaori; Sanin, A B; Sugita, Satoshi; Tashiro, Makoto; Tretyakov, V I; Urata, Yuji; Wigger, Claudia

    2007-01-01

    The long, bright gamma-ray burst GRB 070125 was localized by the Interplanetary Network. We present light curves of the prompt gamma-ray emission as observed by Konus-WIND, RHESSI, Suzaku-WAM, and Swift-BAT. We detail the results of joint spectral fits with Konus and RHESSI data. The burst shows moderate hard-to-soft evolution in its multi-peaked emission over a period of about one minute. The total burst fluence as observed by Konus is $1.75 \\times 10^{-4}$ erg/cm$^2$ (20 keV-10 MeV). Using the spectroscopic redshift z = 1.547, we find that the burst is consistent with the Amati $E_{peak,i}-E_{iso}$ and the Ghirlanda $E_{peak,i}-E_\\gamma$ correlations.

  5. Early Fermi Gamma-ray Space Telescope Observations of the Quasar 3C454.3

    Energy Technology Data Exchange (ETDEWEB)

    Abdo, A

    2009-05-07

    This is the first report of Fermi Gamma-ray Space Telescope observations of the quasar 3C 454.3, which has been undergoing pronounced long-term outbursts since 2000. The data from the Large Area Telescope (LAT), covering 2008 July 7-October 6, indicate strong, highly variable {gamma}-ray emission with an average flux of {approx} 3 x 10{sup -6} photons cm{sup -2} s{sup -1}, for energies > 100 MeV. The {gamma}-ray flux is variable, with strong, distinct, symmetrically-shaped flares for which the flux increases by a factor of several on a time scale of about three days. This variability indicates a compact emission region, and the requirement that the source is optically thin to pair-production implies relativistic beaming with Doppler factor {delta} > 8, consistent with the values inferred from VLBI observations of superluminal expansion ({delta} {approx} 25). The observed {gamma}-ray spectrum is not consistent with a simple power-law, but instead steepens strongly above {approx} 2 GeV, and is well described by a broken power-law with photon indices of {approx} 2.3 and {approx} 3.5 below and above the break, respectively. This is the first direct observation of a break in the spectrum of a high luminosity blazar above 100 MeV, and it is likely direct evidence for an intrinsic break in the energy distribution of the radiating particles. Alternatively, the spectral softening above 2GeV could be due to -ray absorption via photonphoton pair production on the soft X-ray photon field of the host AGN, but such an interpretation would require the dissipation region to be located very close ({approx}< 100 gravitational radii) to the black hole, which would be inconsistent with the X-ray spectrum of the source.

  6. Prospects for joint observations of gravitational waves and gamma rays from merging neutron star binaries

    Science.gov (United States)

    Patricelli, B.; Razzano, M.; Cella, G.; Fidecaro, F.; Pian, E.; Branchesi, M.; Stamerra, A.

    2016-11-01

    The detection of the events GW150914 and GW151226, both consistent with the merger of a binary black hole system (BBH), opened the era of gravitational wave (GW) astronomy. Besides BBHs, the most promising GW sources are the coalescences of binary systems formed by two neutron stars or a neutron star and a black hole. These mergers are thought to be connected with short Gamma Ray Bursts (GRBs), therefore combined observations of GW and electromagnetic (EM) signals could definitively probe this association. We present a detailed study on the expectations for joint GW and high-energy EM observations of coalescences of binary systems of neutron stars with Advanced Virgo and LIGO and with the Fermi gamma-ray telescope. To this scope, we designed a dedicated Montecarlo simulation pipeline for the multimessenger emission and detection by GW and gamma-ray instruments, considering the evolution of the GW detector sensitivities. We show that the expected rate of joint detection is low during the Advanced Virgo and Advanced LIGO 2016-2017 run; however, as the interferometers approach their final design sensitivities, the rate will increase by ~ a factor of ten. Future joint observations will help to constrain the association between short GRBs and binary systems and to solve the puzzle of the progenitors of GWs. Comparison of the joint detection rate with the ones predicted in this paper will help to constrain the geometry of the GRB jet.

  7. Interferometric Monitoring of Gamma-ray Bright AGNs I: Results of Single-epoch Multifrequency Observations

    CERN Document Server

    Lee, Sang-Sung; Algaba, Juan-Carlos; Zhao, Guang-Yao; Hodgson, Jeffrey A; Kim, Dae-Won; Park, Jongho; Kim, Jae-Young; Miyazaki, Atsushi; Byun, Do-Young; Kang, Sincheol; Kim, Jeong-Sook; Kim, Soon-Wook; Kino, Motoki; Trippe, Sascha

    2016-01-01

    We present results of single-epoch very long baseline interferometry (VLBI) observations of gamma-ray bright active galactic nuclei (AGNs) using the Korean VLBI Network (KVN) at 22, 43, 86, and 129~GHz bands, which are part of a KVN key science program, Interferometric Monitoring of Gamma-ray Bright AGNs (iMOGABA). We selected a total of 34 radio-loud AGNs of which 30 sources are gamma-ray bright AGNs with flux densities of $>6\\times10^{-10}$~ph~cm$^{-2}$~s$^{-1}$. Single-epoch multi-frequency VLBI observations of the target sources were conducted during a 24-hr session on 2013 November 19 and 20. All observed sources were detected and imaged at all frequency bands with or without a frequency phase transfer technique which enabled the imaging of 12 faint sources at 129~GHz, except for one source. Many of the target sources are resolved on milliarcsecond scales, yielding a core-jet structure with the VLBI core dominating the synchrotron emission on the milliarcsecond scale. CLEAN flux densities of the target s...

  8. Observations of three young gamma-ray pulsars with the Gran Telescopio Canarias

    CERN Document Server

    Mignani, R P; Testa, V; Marelli, M; De Luca, A; Pierbattista, M; Shearer, A; Torres, D F; Wilhelmi, E De Ona

    2016-01-01

    We report the analysis of the first deep optical observations of three isolated $\\gamma$-ray pulsars detected by the {\\em Fermi Gamma-ray Space Telescope}: the radio-loud PSR\\, J0248+6021 and PSR\\, J0631+1036, and the radio-quiet PSR\\, J0633+0632. The latter has also been detected in the X rays. The pulsars are very similar in their spin-down age ($\\tau \\sim$40--60 kyrs), spin-down energy ($\\dot{E} \\sim10^{35}$ erg s$^{-1}$), and dipolar surface magnetic field ($B \\sim 3$--$5\\times10^{12}$ G). These pulsars are promising targets for multi-wavelength observations, since they have been already detected in $\\gamma$ rays and in radio or X-rays. None of them has been detected yet in the optical band. We observed the three pulsar fields in 2014 with the Spanish 10.4m Gran Telescopio Canarias (GTC). We could not find any candidate optical counterpart to the three pulsars close to their most recent radio or {\\em Chandra} positions down to $3 \\sigma$ limits of $g'\\sim27.3$, $g'\\sim27$, $g'\\sim27.3$ for PSR\\, J0248+602...

  9. All-Sky Earth Occultation Observations with the Fermi Gamma Ray Burst Monitor

    CERN Document Server

    Wilson-Hodge, Colleen A; Bhat, P N; Briggs, M S; Chaplin, V; Connaughton, V; Camero-Arranz, A; Case, G; Cherry, M; Rodi, J; Finger, M H; Jenke, P; Haynes, R H

    2009-01-01

    Using the Gamma Ray Burst Monitor (GBM) on-board Fermi, we are monitoring the hard X-ray/soft gamma ray sky using the Earth occultation technique. Each time a source in our catalog enters or exits occultation by the Earth, we measure its flux using the change in count rates due to the occultation. Currently we are using CTIME data with 8 energy channels spanning 8 keV to 1 MeV for the GBM NaI detectors and spanning 150 keV to 40 MeV for the GBM BGO detectors. Our preliminary catalog consists of galactic X-ray binaries, the Crab Nebula, and active galactic nuclei. In addition, to Earth occultations, we have observed numerous occultations with Fermi's solar panels. We will present early results. Regularly updated results can be found on our website http://gammaray.nsstc.nasa.gov/gbm/science/occultation

  10. VERITAS Observations of the gamma-Ray Binary LS I +61 303

    CERN Document Server

    Acciari, V A; Blaylock, G; Bradbury, S M; Buckley, J H; Bugaev, V; Butt, Y; Byrum, K L; Celik, O; Cesarini, A; Ciupik, L; Chow, Y C K; Cogan, P; Colin, P; Cui, W; Daniel, M K; Duke, C; Ergin, T; Falcone, A D; Fegan, S J; Finley, J P; Fortin, P; Fortson, L F; Gall, D; Gibbs, K; Gillanders, G H; Guenette, J Grube R; Hanna, D; Hays, E; Holder, J; Horan, D; Hughes, S B; Hui, C M; Humensky, T B; Kaaret, Philip; Kieda, D B; Kildea, J; Konopelko, A; Krawczynski, H; Krennrich, F; Lang, M J; Le Bohec, S; Lee, K; Maier, G; McCann, A; McCutcheon, M; Millis, J; Moriarty, P; Mukherjee, R; Nagai, T; Ong, R A; Pandel, D; Perkins, J S; Pizlo, F; Pohl, M; Quinn, J; Ragan, K; Reynolds, P T; Rose, H J; Schroedter, M; Sembroski, G H; Smith, A W; Steele, D; Swordy, S P; Toner, J A; Valcarcel, L; Vasilev, V V; Wagner, R; Wakely, S P; Ward, J E; Weekes, T C; Weinstein, A; White, R J; Williams, D A; Wissel, S A; Wood, M; Zitzer, B

    2008-01-01

    LS I +61 303 is one of only a few high-mass X-ray binaries currently detected at high significance in very high energy gamma-rays. The system was observed over several orbital cycles (between September 2006 and February 2007) with the VERITAS array of imaging air-Cherenkov telescopes. A signal of gamma-rays with energies above 300 GeV is found with a statistical significance of 8.4 standard deviations. The detected flux is measured to be strongly variable; the maximum flux is found during most orbital cycles at apastron. The energy spectrum for the period of maximum emission can be characterized by a power law with a photon index of Gamma=2.40+-0.16_stat+-0.2_sys and a flux above 300 GeV corresponding to 15-20% of the flux from the Crab Nebula.

  11. A method to improve observations of gamma-ray sources near 10 (15) eV

    Science.gov (United States)

    Sommers, P.; Elbert, J. W.

    1985-01-01

    Now that sources of gamma rays near 10 to the 15th power eV have been identified, there is a need for telescopes which can study in detail the high energy gamma ray emissions from these sources. The capabilities of a Cerenkov detector which can track a source at large zenith angle (small elevation angle) are analyzed. Because the observed showers must then develop far from the detector, the effective detection area is very large. During a single half-hour hot phase of Cygnus X-3, for example, it may be possible to detect 45 signal showers compared with 10 background showers. Time structure within the hot phase may then be discernible. The precise capabilities of the detector depend on its mirror size, angular acceptance, electronic speed, coincidence properties, etc. Calculations are presented for one feasible design using mirrors of an improved Fly's Eye type.

  12. Characteristics of bursts observed by the SMM Gamma-Ray Spectrometer

    Science.gov (United States)

    Share, G. H.; Messina, D. C.; Iadicicco, A.; Matz, S. M.; Rieger, E.; Forrest, D. J.

    1992-01-01

    The Gamma Ray Spectrometer (GRS) on the SMM completed close to 10 years of highly successful operation when the spacecraft reentered the atmosphere on December 2, 1989. During this period the GRS detected 177 events above 300 keV which have been classified as cosmic gamma-ray bursts. A catalog of these events is in preparation which will include time profiles and spectra for all events. Visual inspection of the spectra indicates that emission typically extends into the MeV range, without any evidence for a high-energy cutoff; 17 of these events are also observed above 10 MeV. We find no convincing evidence for line-like emission features in any of the time-integrated spectra.

  13. All-Sky Earth Occultation Observations with the Fermi Gamma-Ray Burst Monitor

    Science.gov (United States)

    Wilson-Hodge, C. A.; Beklen, E.; Bhat, P. N.; Briggs, M.; Camero-Arranz, A.; Case, G.; Jenke, P.; Chaplin, V.; Cherry, M.; Connaughton, V.; Finger, M.; Haynes, R. H.; Preece, R.; Rodi, J.

    2009-01-01

    Using the Gamma Ray Burst Monitor (GBM) on-board Fermi, we are monitoring the hard X-ray/ soft gamma ray sky using the Earth occultation technique. Each time a source in our catalog is occulted by (or exits occultation by) the Earth, we measure its flux using the change in count rates due to the occultation. Currently we are using CTIME data with 8 energy channels spanning 8 keV to 1 MeV for the GBM NaI detectors and spanning 150 keV to 40 MeV for the GBM BGO detectors. Our preliminary catalog consists of galactic X-ray binaries, the Crab Nebula, and active galactic nuclei. In addition, to Earth occultations, we have observed numerous occultations with Fermi's solar panels.

  14. SAS-2 observations of gamma rays from the galactic plane. [noting longitude and latitude observation

    Science.gov (United States)

    Thompson, D. J.; Bignami, G. F.; Fichtel, C. E.; Hartman, R. C.; Kniffen, D. A.

    1974-01-01

    Preliminary data are given for the SAS-2 high energy galactic gamma ray observation. These data include both latitude and longitude distributions. The longitude distribution shows a high density region. The latitude distributions toward the center and the anti-center are markedly different, the former showing a two-component structure of half-widths of approximately 3 and 6 deg. The energy spectrum in the range 35 to 200 MeV is hard, consistent with cosmic ray interactions with interstellar matter, including neutral pions decay and emission from energetic electron interactions. The data is consistent with an interpretation in terms of the confinement of the cosmic rays in the spiral arms.

  15. An Observed Correlation Between Thermal and Non-Thermal Emission in Gamma-Ray Bursts

    CERN Document Server

    Burgess, J Michael; Ryde, Felix; Veres, Peter; Meszaros, Peter; Connaughton, Valerie; Briggs, Michael; Pe'er, Asaf; Iyyani, Shabnam; Goldstein, Adam; Axelsson, Magnus; Baring, Matthew G; Bhat, P N; Byrne, David; Fitzpatrick, Gerard; Foley, Suzanne; Kocevski, Daniel; Omodei, Nicola; Paciesas, William S; Pelassa, Veronique; Kouveliotou, Chryssa; Xiong, Shaolin; Yu, Hoi-Fung; Zhang, Binbin; Zhu, Sylvia

    2014-01-01

    Recent observations by the $Fermi$ Gamma-ray Space Telescope have confirmed the existence of thermal and non-thermal components in the prompt photon spectra of some Gamma-ray bursts (GRBs). Through an analysis of six bright Fermi GRBs, we have discovered a correlation between the observed photospheric and non-thermal $\\gamma$-ray emission components of several GRBs using a physical model that has previously been shown to be a good fit to the Fermi data. From the spectral parameters of these fits we find that the characteristic energies, $E_{\\rm p}$ and $kT$, of these two components are correlated via the relation $E_{\\rm p} \\propto T^{\\alpha}$ which varies from GRB to GRB. We present an interpretation in which the value of index $\\alpha$ indicates whether the jet is dominated by kinetic or magnetic energy. To date, this jet composition parameter has been assumed in the modeling of GRB outflows rather than derived from the data.

  16. Prospects for joint observations of gravitational waves and gamma rays from merging neutron star binaries

    CERN Document Server

    Patricelli, Barbara; Cella, Giancarlo; Fidecaro, Francesco; Pian, Elena; Branchesi, Marica; Stamerra, Antonio

    2016-01-01

    The detection of the event GW150914 opened the era of gravitational wave (GW) astronomy. Besides binary systems of black holes, the most promising GW sources are the coalescences of binary systems formed by two neutron stars or a neutron star and a black hole. These mergers are thought to be connected with short Gamma Ray Bursts (GRBs), therefore combined observations of GW and electromagnetic (EM) signals could definitively probe this association. We present a detailed study on the expectations for joint GW and high-energy EM observations of coalescences of binary systems of neutron stars with Advanced Virgo and LIGO and with the Fermi gamma-ray telescope. To this scope, we designed a dedicated Montecarlo simulation pipeline for the multimessenger emission and detection by GW and gamma-ray instruments, considering the evolution of the GW detector sensitivities. We show that the expected rate of joint detection is low during the Advanced Virgo and Advanced LIGO 2016-2017 run; however, as the interferometers a...

  17. High-resolution observations of gamma-ray line emission from SN 1987A

    Science.gov (United States)

    Sandie, W. G.; Nakano, G. H.; Chase, L. F., Jr.; Fishman, G. J.; Meegan, C. A.; Wilson, R. B.; Paciesas, W. S.; Lasche, G. P.

    1988-11-01

    A balloon-borne gamma-ray spectrometer was flown from Alice springs, Australia, 1987 October 29 - 31, nominally 250 days after the supernova event. High-resolution data, typically 2.5 keV at 1.33 MeV, were obtained for two transits of the supernova. A significant net flux of gamma rays with energy 847 keV was observed from the direction of SN 1987A on each transit. No prominent gamma-ray features were seen at other energies. A preliminary estimate of the line flux is (5.1±1.7)×10-4photons cm-2s-1. The net flux observed in the first supernova transit extends from 838 keV to 850 keV and may be evidence of dynamical broadening of the 847 keV line. The total excess flux from 838 keV to 850 keV corresponds to (1.0±0.28)×10-3photons cm-2s-1. This line may be interpreted as emission from the first excited state of 56Fe due to the radioactive decay of 56Co.

  18. COMPTEL observations of Ti-44 gamma-ray line emission from Cas A

    Science.gov (United States)

    Iyudin, A. F.; Diehl, R.; Bloemen, H.; Hermsen, W.; Lichti, G. G.; Morris, D.; Ryan, J.; Schoenfelder, V.; Steinle, H.; Varendorff, M.

    1994-01-01

    The Compton Telescope (COMPTEL) telescope aboard the Compton Gamma-Ray Observatory (CGRO) is capable of imaging gamma-ray line sources in the MeV region with a sensitivity of the order 10(exp -5) photons/(sq cm s). During two observations periods in July 1992 and February 1993 the Galactic plane in the region of the young supernova remnant Cas A was observed, showing evidence for line emission at 1.16 MeV from the decay of Ti-44 at a significance level of approximately 4 sigma. This is the first time a supernova remnant has been detected in the gamma-ray line from Ti-44 decay. Adopting a distance of 2.8 kpc to the Cas A remnant, the measured line flux (7.0 +/- 1.7) x 10(exp -5) photons/(sq cm s), can be translated into a Ti-44 mass ejected during the Cas A supernova explosion, between (1.4 +/- 0.4) x 10(exp -4) solar mass and (3.2 +/- 0.8) x 10(exp -4) solar mass, depending on the precise value of the Ti-44 mean life time and on the precise date of the event. Implications of this result for supernova nucleosynthesis models are discussed.

  19. Observation of gamma ray bursts at ground level under the thunderclouds

    CERN Document Server

    Kuroda, Y; Kato, Y; Nakata, R; Inoue, Y; Ito, C; Minowa, M

    2016-01-01

    We observed three $\\gamma$-ray bursts related to thunderclouds in winter using the prototype of anti-neutrino detector PANDA made of 360-kg plastic scintillator deployed at Ohi Power Station at the coastal area of the Japan Sea. The maximum rate of the events which deposited the energy higher than 3 MeV was $(5.5 \\pm 0.1) \\times 10^2 {\\rm /s}$. Monte Carlo simulation showed that the observed total energy spectra of the bursts are well described by the bremsstrahlung $\\gamma$-rays by electrons with approximately monochromatic energy falling downwards from altitudes of order $100\\,$m. It is supposed that secondary cosmic-ray electrons, which act as seed, were accelerated in electric field of thunderclouds and multiplied by relativistic runaway electron avalanche. We actually found that the $\\gamma$-rays of the bursts entered into the detector from the direction close to the zenith. The direction stayed constant during the burst within the detector resolution. In addition, taking advantage of the delayed coincid...

  20. COS-B observations of localized sources of gamma-ray emission

    Science.gov (United States)

    1977-01-01

    In October 1975, the high-energy gamma-ray flux from the Vela pulsar measured by COS-B was found to be 1.6 to 2.1 times higher than the flux measured by SAS-2 in 1973. This factor is too large to be accounted for by error in the COS-B calibration or analysis. This is supported by a comparison of the COS-B measurement of the narrow-line component from the galactic center region with the flux derived from the measurements of SAS-2; the COS-B flux comes out about 15 percent lower than the SAS-2 figure. It is interesting to note that a glitch in the pulsar period took place about 1 month prior to the COS-B observation; the previous glitch occurred about 1.5 years before the SAS-2 observation. The increased rotational energy loss after the glitch cannot simply explain the increased gamma-ray luminosity. If the two phenomena are related, the gamma-ray emission, absorption, or beaming process must be extremely sensitive to changes in rotational parameters. The existence is confirmed of a second region of enhanced radiation in the galactic anticenter in addition to that from the Crab pulsar.

  1. Gamma-Ray Observations of Tycho’s Supernova Remnant with VERITAS and Fermi

    Science.gov (United States)

    Archambault, S.; Archer, A.; Benbow, W.; Bird, R.; Bourbeau, E.; Buchovecky, M.; Buckley, J. H.; Bugaev, V.; Cerruti, M.; Connolly, M. P.; Cui, W.; Dwarkadas, V. V.; Errando, M.; Falcone, A.; Feng, Q.; Finley, J. P.; Fleischhack, H.; Fortson, L.; Furniss, A.; Griffin, S.; Hütten, M.; Hanna, D.; Holder, J.; Johnson, C. A.; Kaaret, P.; Kar, P.; Kelley-Hoskins, N.; Kertzman, M.; Kieda, D.; Krause, M.; Kumar, S.; Lang, M. J.; Maier, G.; McArthur, S.; McCann, A.; Moriarty, P.; Mukherjee, R.; Nieto, D.; O’Brien, S.; Ong, R. A.; Otte, A. N.; Park, N.; Pohl, M.; Popkow, A.; Pueschel, E.; Quinn, J.; Ragan, K.; Reynolds, P. T.; Richards, G. T.; Roache, E.; Sadeh, I.; Santander, M.; Sembroski, G. H.; Shahinyan, K.; Slane, P.; Staszak, D.; Telezhinsky, I.; Trepanier, S.; Tyler, J.; Wakely, S. P.; Weinstein, A.; Weisgarber, T.; Wilcox, P.; Wilhelm, A.; Williams, D. A.; Zitzer, B.

    2017-02-01

    High-energy gamma-ray emission from supernova remnants (SNRs) has provided a unique perspective for studies of Galactic cosmic-ray acceleration. Tycho’s SNR is a particularly good target because it is a young, type Ia SNR that has been well-studied over a wide range of energies and located in a relatively clean environment. Since the detection of gamma-ray emission from Tycho’s SNR by VERITAS and Fermi-LAT, there have been several theoretical models proposed to explain its broadband emission and high-energy morphology. We report on an update to the gamma-ray measurements of Tycho’s SNR with 147 hr of VERITAS and 84 months of Fermi-LAT observations, which represent about a factor of two increase in exposure over previously published data. About half of the VERITAS data benefited from a camera upgrade, which has made it possible to extend the TeV measurements toward lower energies. The TeV spectral index measured by VERITAS is consistent with previous results, but the expanded energy range softens a straight power-law fit. At energies higher than 400 GeV, the power-law index is 2.92 ± 0.42stat ± 0.20sys. It is also softer than the spectral index in the GeV energy range, 2.14 ± 0.09stat ± 0.02sys, measured in this study using Fermi-LAT data. The centroid position of the gamma-ray emission is coincident with the center of the remnant, as well as with the centroid measurement of Fermi-LAT above 1 GeV. The results are consistent with an SNR shell origin of the emission, as many models assume. The updated spectrum points to a lower maximum particle energy than has been suggested previously.

  2. Observations of variability of TeV gamma-ray blazars

    Science.gov (United States)

    Feng, Qi

    The boom in ground-based gamma-ray astronomy since the beginning of the 21st century has enabled a new probe of the universe using very-high-energy photons. The Very Energetic Radiation Imaging Telescope Array System (VERITAS) is an array of four 12-m imaging Cherenkov telescopes that is sensitive to gamma rays in the energy range between ~100 GeV and ~30 TeV. Among all known TeV sources, blazars, a particular type of active galactic nuclei, have shown exceptional variabilities over a wide range of timescales and energies. The observations of such variabilities have been previously limited at lower energies, ranging from radio to X-ray. However, the superior sensitivity of VERITAS has made the detection of fast TeV gamma-ray variability of blazars possible. The studies of their gamma-ray variability can, in a relatively model-independent way, shed significant light on the emitting regions and production mechanisms in blazars. This thesis describes my work on blazar variability, based primarily on the VERITAS observations but are interpreted in a multi-wavelength context. One of the most exceptional phenomena observed in blazars with VERITAS is the fast variability of the TeV gamma rays. The short duration of these flares strongly constrains the size of the emitting region, and provides insights to the kinetics and location of the emitting region. We describe the fast TeV flare of BL Lacertae as an example, and discuss the connection between TeV flares and multi-wavelength observations that may help localize the TeV emitting region. To study the persistent variability of TeV blazars, we examine a variety of statistical properties in the time and frequency domains. We study both local properties of time series, e.g. time lags between different energy bands and spectral hysteresis during flares, and global properties, e.g. variability amplitude and power spectrum. These properties are connected to the physical processes in blazars, although they are also limited by

  3. Observations of Gamma-ray Bursts with ASTRO-H and Fermi

    CERN Document Server

    Ohno, M; Tashiro, M S; Ueno, H; Yonetoku, D; Sameshima, H; Takahashi, T; Seta, H; Mushotzky, R; Yamaoka, K

    2015-01-01

    ASTRO-H, the sixth Japanese X-ray observatory, which is scheduled to be launched by the end of Japanese fiscal year 2015 has a capability to observe the prompt emission from Gamma-ray Bursts (GRBs) utilizing BGO active shields for the soft gamma-ray detector (SGD). The effective area of the SGD shield detectors is very large and its data acquisition system is optimized for short transients such as short GRBs. Thus, we expect to perform more detailed time-resolved spectral analysis with a combination of ASTRO-H and Fermi LAT/GBM to investigate the gamma-ray emission mechanism of short GRBs. In addition, the environment of the GRB progenitor should be a remarkable objective from the point of view of the chemical evolution of high-z universe. If we can maneuver the spacecraft to the GRBs, we can perform a high-resolution spectroscopy of the X-ray afterglow of GRBs utilizing the onboard micro calorimeter and X-ray CCD camera.

  4. Anisotropies in the diffuse gamma-ray background measured by the Fermi LAT

    CERN Document Server

    Ackermann, M

    2012-01-01

    The contribution of unresolved sources to the diffuse gamma-ray background could induce anisotropies in this emission on small angular scales. We analyze the angular power spectrum of the diffuse emission measured by the Fermi LAT at Galactic latitudes |b| > 30 deg in four energy bins spanning 1 to 50 GeV. At multipoles \\ell \\ge 155, corresponding to angular scales \\lesssim 2 deg, angular power above the photon noise level is detected at >99.99% CL in the 1-2 GeV, 2-5 GeV, and 5-10 GeV energy bins, and at >99% CL at 10-50 GeV. Within each energy bin the measured angular power takes approximately the same value at all multipoles \\ell \\ge 155, suggesting that it originates from the contribution of one or more unclustered source populations. The amplitude of the angular power normalized to the mean intensity in each energy bin is consistent with a constant value at all energies, C_P/^2 = 9.05 +/- 0.84 x 10^{-6} sr, while the energy dependence of C_P is consistent with the anisotropy arising from one or more sour...

  5. Gamma-Ray Observations of the Supernova Remnant RX J0852.0-4622 with the Fermi LAT

    CERN Document Server

    Tanaka, T; Ballet, J; Funk, S; Giordano, F; Hewitt, J; Lemoine-Goumard, M; Tajima, H; Tibolla, O; Uchiyama, Y

    2011-01-01

    We report on gamma-ray observations of the supernova remnant (SNR) RX J0852.0-4622 with the Large Area Telescope (LAT) aboard the Fermi Gamma-ray Space Telescope. In the Fermi LAT data, we find a spatially extended source at the location of the SNR. The extension is consistent with the SNR size seen in other wavelengths such as X-rays and TeV gamma rays, leading to the identification of the gamma-ray source with the SNR. The spectrum is well described as a power law with a photon index of Gamma = 1.85 +/- 0.06 (stat) (+0.18,-0.19) (sys), which smoothly connects to the H.E.S.S. spectrum in the TeV energy band. We discuss the gamma-ray emission mechanism based on multiwavelength data. The broadband data can be fit well by a model in which the gamma rays are of hadronic origin. We also consider a scenario with inverse Compton scattering of electrons as the emission mechanism of the gamma rays. Although the leptonic model predicts a harder spectrum in the Fermi LAT energy range, the model can fit the data conside...

  6. Gamma-Ray Observations of the Supernova Remnant RX J0852.0-4622 with the Fermi LAT

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, T.; Allafort, A.; /Stanford U., HEPL /KIPAC, Menlo Park; Ballet, J.; /Saclay; Funk, S.; /Stanford U., HEPL /KIPAC, Menlo Park; Giordano, F.; /Bari U. /INFN, Bari; Hewitt, J.; /NASA, Goddard; Lemoine-Goumard, M.; /Bordeaux U.; Tajima, H.; /Stanford U., HEPL /KIPAC, Menlo Park /Nagoya U., Solar-terrestrial Environ Lab.; Tibolla, O.; /Wurzburg U.; Uchiyama, Y.; /Stanford U., HEPL /KIPAC, Menlo Park

    2011-12-13

    We report on gamma-ray observations of the supernova remnant (SNR) RX J0852.0-4622 with the Large Area Telescope (LAT) aboard the Fermi Gamma-ray Space Telescope. In the Fermi LAT data, we find a spatially extended source at the location of the SNR. The extension is consistent with the SNR size seen in other wavelengths such as X-rays and TeV gamma rays, leading to the identification of the gamma-ray source with the SNR. The spectrum is well described as a power law with a photon index of {Lambda} = 1.85 {+-} 0.06 (stat){sub -0.19}{sup +0.18} (sys), which smoothly connects to the H.E.S.S. spectrum in the TeV energy band. We discuss the gamma-ray emission mechanism based on multiwavelength data. The broadband data can be fit well by a model in which the gamma rays are of hadronic origin. We also consider a scenario with inverse Compton scattering of electrons as the emission mechanism of the gamma rays. Although the leptonic model predicts a harder spectrum in the Fermi LAT energy range, the model can fit the data considering the statistical and systematic errors.

  7. Broad Band Observations of Gravitationally Lensed Blazar during a Gamma-Ray Outburst

    Directory of Open Access Journals (Sweden)

    Julian Sitarek

    2016-09-01

    Full Text Available QSO B0218+357 is a gravitationally lensed blazar located at a cosmological redshift of 0.944. In July 2014 a GeV flare was observed by Fermi-LAT, triggering follow-up observations with the MAGIC telescopes at energies above 100 GeV. The MAGIC observations at the expected time of arrival of the trailing component resulted in the first detection of QSO B0218+357 in Very-High-Energy (VHE, >100 GeV gamma rays. We report here the observed multiwavelength emission during the 2014 flare.

  8. Limits for an inverse bremsstrahlung origin of the diffuse Galactic soft gamma-ray emission

    DEFF Research Database (Denmark)

    Pohl, M.

    1998-01-01

    -7 MeV emission from the Galactic plane, in concert with the constraints from pi(0)-decay gamma-ray emission at higher energies, are in serious conflict with an inverse bremsstrahlung origin of the Galactic soft gamma-ray emission for any physically plausible low-energy cosmic ray spectrum. While...... in case of energetic heavy nuclei the limits are violated by about an order of magnitude, for a large population of low-energy protons the implied gamma-ray line flux and pi(0)-decay continuum intensity are larger than the existing limits by at least a factor of 2....

  9. The TeV gamma-ray sky observed by HAWC after its first year of operations

    Science.gov (United States)

    León Vargas, H.

    2017-07-01

    The High Altitude Water Cherenkov (HAWC) gamma-ray observatory, located in the slopes of the Sierra Negra volcano near Puebla, México, was inaugurated in March 2015. HAWC was designed to continuously monitor the TeV gamma-ray emission from both galactic and extra galactic sources, with a technique that allows to monitor 2/3 of the sky every day, and with an order of magnitude better sensitivity than the previous generation of wide field of view gamma-ray observatories. In this talk we will report on the observation of gamma-ray sources (both point and extended sources) by HAWC and their physical properties. Several of the sources detected by HAWC during its first year of operations have not been previously observed.

  10. Swift and Fermi observations of the early afterglow of the short Gamma-Ray Burst 090510

    CERN Document Server

    De Pasquale, M; Kuin, N P M; Page, M J; Curran, P A; Zane, S; Oates, S R; Holland, S T; Breeveld, A A; Hoversten, E A; Chincarini, G; Grupe, D

    2009-01-01

    We present the observations of GRB090510 performed by the Fermi Gamma-Ray Space Telescope and the Swift observatory. This is a bright, short burst that shows an extended emission detected in the GeV range. Furthermore, its optical emission initially rises, a feature so far observed only in long bursts, while the X-ray flux shows an initial shallow decrease, followed by a steeper decay. This exceptional behavior enables us to investigate the physical properties of the GRB outflow, poorly known in short bursts. We discuss internal shock and external shock models for the broadband energy emission of this object.

  11. Gamma-Ray Burst Follow-up Observations with STACEE During 2003-2007

    CERN Document Server

    Jarvis, A; Carson, J E; Covault, C E; Driscoll, D D; Fortin, P; Gingrich, D M; Hanna, D S; Kildea, J; Lindner, T; Mukherjee, R; Müller, C; Ong, R A; Ragan, K; Williams, D A; Zweerink, J

    2007-01-01

    The Solar Tower Atmospheric Cherenkov Effect Experiment (STACEE) is an atmospheric Cherenkov telescope (ACT) that uses a large mirror array to achieve a relatively low energy threshold. For sources with Crab-like spectra, at high elevations, the detector response peaks near 100 GeV. Gamma-ray burst (GRB) observations have been a high priority for the STACEE collaboration since the inception of the experiment. We present the results of 20 GRB follow-up observations at times ranging from 3 minutes to 15 hours after the burst triggers. Where redshift measurements are available, we place constraints on the intrinsic high-energy spectra of the bursts.

  12. Constraining the Jet Structure of Gamma-Ray Bursts from Viewing Angle Observations

    CERN Document Server

    Miller, N; Bartos, I

    2015-01-01

    The angular dependence of emission in gamma-ray bursts (GRB) is of fundamental importance in understanding the underlying physical mechanisms, as well as in multimessenger search efforts. We examine the prospects of using reconstructed GRB jet opening angles and off-axis observer angles in determining the jet structure. We show that the reconstructed angles by Ryan et al. (2015) are inconsistent with uniform jet structure. We further calculate the number of GRBs with accurately reconstructed opening and observer angles necessary to differentiate between some phenomenological non-uniform structures.

  13. Observationally constraining gravitational wave emission from short gamma-ray burst remnants

    CERN Document Server

    Lasky, Paul D

    2015-01-01

    Observations of short gamma-ray bursts indicate ongoing energy injection following the prompt emission, with the most likely candidate being the birth of a rapidly rotating, highly magnetised neutron star. We utilise X-ray observations of the burst remnant to constrain properties of the nascent neutron star, including its magnetic field-induced ellipticity and the saturation amplitude of various oscillation modes. Moreover, we derive strict upper limits on the gravitational wave emission from these objects by looking only at the X-ray light curve, showing the burst remnants are unlikely to be detected in the near future using ground-based gravitational wave interferometers such as Advanced LIGO.

  14. The spectrum of isotropic diffuse gamma-ray emission between 100 MeV and 820 GeV

    CERN Document Server

    Ackermann, M; Albert, A; Atwood, W B; Baldini, L; Ballet, J; Barbiellini, G; Bastieri, D; Bechtol, K; Bellazzini, R; Bissaldi, E; Blandford, R D; Bloom, E D; Bottacini, E; Brandt, T J; Bregeon, J; Bruel, P; Buehler, R; Buson, S; Caliandro, G A; Cameron, R A; Caragiulo, M; Caraveo, P A; Cavazzuti, E; Cecchi, C; Charles, E; Chekhtman, A; Chiang, J; Chiaro, G; Ciprini, S; Claus, R; Cohen-Tanugi, J; Conrad, J; Cuoco, A; Cutini, S; D'Ammando, F; de Angelis, A; de Palma, F; Dermer, C D; Digel, S W; Silva, E do Couto e; Drell, P S; Favuzzi, C; Ferrara, E C; Focke, W B; Franckowiak, A; Fukazawa, Y; Funk, S; Fusco, P; Gargano, F; Gasparrini, D; Germani, S; Giglietto, N; Giommi, P; Giordano, F; Giroletti, M; Godfrey, G; Gomez-Vargas, G A; Grenier, I A; Guiriec, S; Gustafsson, M; Hadasch, D; Hayashi, K; Hays, E; Hewitt, J W; Ippoliti, P; Jogler, T; Jóhannesson, G; Johnson, A S; Johnson, W N; Kamae, T; Kataoka, J; Knödlseder, J; Kuss, M; Larsson, S; Latronico, L; Li, J; Li, L; Longo, F; Loparco, F; Lott, B; Lovellette, M N; Lubrano, P; Madejski, G M; Manfreda, A; Massaro, F; Mayer, M; Mazziotta, M N; McEnery, J E; Michelson, P F; Mitthumsiri, W; Mizuno, T; Moiseev, A A; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Nemmen, R; Nuss, E; Ohsugi, T; Omodei, N; Orlando, E; Ormes, J F; Paneque, D; Panetta, J H; Perkins, J S; Pesce-Rollins, M; Piron, F; Pivato, G; Porter, T A; Rainò, S; Rando, R; Razzano, M; Razzaque, S; Reimer, A; Reimer, O; Reposeur, T; Ritz, S; Romani, R W; Sánchez-Conde, M; Schaal, M; Schulz, A; Sgrò, C; Siskind, E J; Spandre, G; Spinelli, P; Strong, A W; Suson, D J; Takahashi, H; Thayer, J G; Thayer, J B; Tibaldo, L; Tinivella, M; Torres, D F; Tosti, G; Troja, E; Uchiyama, Y; Vianello, G; Werner, M; Winer, B L; Wood, K S; Wood, M; Zaharijas, G; Zimmer, S

    2014-01-01

    The {\\gamma}-ray sky can be decomposed into individually detected sources, diffuse emission attributed to the interactions of Galactic cosmic rays with gas and radiation fields, and a residual all-sky emission component commonly called the isotropic diffuse {\\gamma}-ray background (IGRB). The IGRB comprises all extragalactic emissions too faint or too diffuse to be resolved in a given survey, as well as any residual Galactic foregrounds that are approximately isotropic. The first IGRB measurement with the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope (Fermi) used 10 months of sky-survey data and considered an energy range between 200 MeV and 100 GeV. Improvements in event selection and characterization of cosmic-ray backgrounds, better understanding of the diffuse Galactic emission, and a longer data accumulation of 50 months, allow for a refinement and extension of the IGRB measurement with the LAT, now covering the energy range from 100 MeV to 820 GeV. The IGRB spectrum shows a sig...

  15. Gamma-Ray Bursts and Fast Transients. Multi-wavelength Observations and Multi-messenger Signals

    Science.gov (United States)

    Willingale, R.; Mészáros, P.

    2017-07-01

    The current status of observations and theoretical models of gamma-ray bursts and some other related transients, including ultra-long bursts and tidal disruption events, is reviewed. We consider the impact of multi-wavelength data on the formulation and development of theoretical models for the prompt and afterglow emission including the standard fireball model utilizing internal shocks and external shocks, photospheric emission, the role of the magnetic field and hadronic processes. In addition, we discuss some of the prospects for non-photonic multi-messenger detection and for future instrumentation, and comment on some of the outstanding issues in the field.

  16. Li production in alpha-alpha reactions. [relation to gamma ray observation

    Science.gov (United States)

    Kozlovsky, B.; Ramaty, R.

    1974-01-01

    The cross section for Li-7 production in alpha-alpha reactions is shown to be increased by about a factor of 2 due to the excitation levels of Li-7 and Be-7 at 478 keV and 431 keV, respectively. The cross section for Li-6 production, however, remains the same as calculated on the basis of the detailed balance principle. The lines at 478 keV and 431 keV may link Li-7 production to feasible gamma-ray observations.

  17. Constraining cosmic reionization with quasar, gamma ray burst, and Lya emitter observations

    CERN Document Server

    Gallerani, S; Choudhury, T R; Fan, X; Salvaterra, R; Dayal, P

    2009-01-01

    We investigate the cosmic reionization history by comparing semi-analytical models of the Lya forest with observations of high-z quasars and gamma ray bursts absorption spectra. In order to constrain the reionization epoch z_rei, we consider two physically motivated scenarios in which reionization ends either early (ERM, z_rei>= 7) or late (LRM, z_rei~6). We analyze the transmitted flux in a sample of 17 quasars spectra at 5.7=11 and completes at z_rei>=7, in agreement with the recent WMAP5 data.

  18. Probing the gamma-ray variability in 3C279 using broadband observations

    CERN Document Server

    Rani, B; Lee, S -S; Sokolovsky, K; Kang, S; Byun, D -Y; Mosunova, D; Zensus, J A

    2016-01-01

    We present the results of a broadband radio-to-GeV observing campaign organized to get a better understanding of the radiation processes responsible for the $\\gamma$-ray flares observed in 3C 279. The total intensity and polarization observations of the source were carried out between December 28, 2013 and January 03, 2014 using the Fermi-LAT, Swift-XRT, Swift-UVOT, and KVN telescopes. A prominent flare observed in the optical/near-UV passbands was found to be correlated with a concurrent $\\gamma$-ray flare at a confidence level $>$95$\\%$, which suggests a co-spatial origin of the two. Moreover, the flaring activity in the two regimes was accompanied by no significant spectral variations. A peak in the X-ray light curve coincides with the peaks of the fractional polarization curves at 43 and 86 GHz radio bands. No prominent variation was noticed for the total intensity and the electric vector position angle (EVPA) observations at radio bands during this period. We noticed a possible hint of steepening of the ...

  19. Gravitational wave observations may constrain gamma-ray burst models: the case of GW 150914 - GBM

    CERN Document Server

    Veres, P; Goldstein, A; Mészáros, P; Burns, E; Connaughton, V

    2016-01-01

    The possible short gamma-ray burst (GRB) observed by {\\it Fermi}/GBM in coincidence with the first gravitational wave (GW) detection, offers new ways to test GRB prompt emission models. Gravitational wave observations provide previously unaccessible physical parameters for the black hole central engine such as its horizon radius and rotation parameter. Using a minimum jet launching radius from the Advanced LIGO measurement of GW~150914, we calculate photospheric and internal shock models and find that they are marginally inconsistent with the GBM data, but cannot be definitely ruled out. Dissipative photosphere models, however have no problem explaining the observations. Based on the peak energy and the observed flux, we find that the external shock model gives a natural explanation, suggesting a low interstellar density ($\\sim 10^{-3}$ cm$^{-3}$) and a high Lorentz factor ($\\sim 2000$). We only speculate on the exact nature of the system producing the gamma-rays, and study the parameter space of a generic Bl...

  20. Search for gamma-ray emission from AE Aquarii with seven years of FERMI-LAT observations

    CERN Document Server

    Li, Jian; Rea, Nanda; Wilhelmi, Emma de Ona; Papitto, Alessandro; Hou, Xian; Mauche, Christopher W

    2016-01-01

    AE Aquarii (AE Aqr) is a cataclysmic binary hosting one of the fastest rotating (P$_{\\rm spin}$ = 33.08 s) white dwarfs known. Based on seven years of Fermi Large Area Telescope (LAT) Pass 8 data, we report on a deep search for gamma-ray emission from AE Aqr. Using X-ray observations from ASCA, XMM-Newton, Chandra, Swift, Suzaku, and NuSTAR, spanning 20 years, we substantially extend and improve the spin ephemeris of AE Aqr. Using this ephemeris, we searched for gamma-ray pulsations at the spin period of the white dwarf. No gamma-ray pulsations were detected above 3 $\\sigma$ significance. Neither phase-averaged gamma-ray emission nor gamma-ray variability of AE Aquarii is detected by Fermi-LAT. We impose the most restrictive upper limit to the gamma-ray flux from AE Aqr to date: $1.3\\times 10^{-12}$ erg cm$^{-2}$ s$^{-1}$ in the 100 MeV-300 GeV energy range, providing constraints on models.

  1. An upper limit on the cosmic-ray luminosity of individual sources from gamma-ray observations

    Energy Technology Data Exchange (ETDEWEB)

    Supanitsky, A.D. [Instituto de Astronomía y Física del Espacio (IAFE), CONICET-UBA (Argentina); Souza, V. de, E-mail: supanitsky@iafe.uba.ar, E-mail: vitor@ifsc.usp.br [Instituto de Física de São Carlos, Universidade de São Paulo (Brazil)

    2013-12-01

    Different types of extragalactic objects are known to produce TeV gamma-rays. Some of these objects are the most probable candidates to accelerate cosmic rays up to 10{sup 20} eV. It is very well known that gamma-rays can be produced as a result of the cosmic ray propagation through the intergalactic medium. These gamma-rays contribute to the total flux observed in the direction of the source. In this paper we propose a new method to derive an upper limit on the cosmic-ray luminosity of an individual source based on the measured upper limit on the integral flux of GeV-TeV gamma-rays. We show how it is possible to calculate an upper limit on the cosmic-ray luminosity of a particular source and we explore the parameter space in which the current GeV-TeV gamma-ray measurements can offer a useful determination. We study in detail two particular sources, Pictor A and NGC 7469, and we calculate the upper limit on the proton luminosity of each source based on the upper limit on the integral gamma-ray flux measured by the H.E.S.S. telescopes.

  2. Gamma-Ray Flares from Mrk421 in 2008 observed with the ARGO-YBJ experiment

    CERN Document Server

    Di Sciascio, G

    2009-01-01

    In 2008, the blazar Mrk421 entered in a very active phase and was one of the brightest sources in the sky at TeV energies, showing strong and frequent flaring. We searched for gamma-ray emission at energies E > 0.8 TeV during the whole 2008 with the ARGO-YBJ experiment, a full coverage air shower detector located at Yangbajing (4300 m a.s.l., Tibet, P.R. China). The observed signal is not constant and in correlation with X-ray measurements. The average emission, during the active period of the source, was about twice the Crab Nebula level, with an integral flux of (4.9$\\pm 2.0$)x 10$^{-11}$ photons cm$^{-2}$ s$^{-1}$ for E$_{\\gamma}$ >1 TeV. This paper concentrates on 2008 June when the Mrk421 flaring activity has been studied from optical to 100 MeV gamma rays, and only partially up to TeV energies, since the moonlight hampered the Cherenkov telescope observations after 8 June. Our data complete these observations, with the detection of a second flare of intensity of about 7 Crab units on June 11-13, with a ...

  3. VHE gamma-ray observations of transient and variable stellar objects with the MAGIC Telescopes

    CERN Document Server

    Fernández-Barral, A; Wilhelmi, E de Oña; Torres, D F; Fruck, C; Hadasch, D; López-Oramas, A; Munar-Adrover, P

    2015-01-01

    Galactic transients, X-ray and gamma-ray binaries provide a proper environment for particle acceleration. This leads to the production of gamma rays with energies reaching the GeV-TeV regime. MAGIC has carried out deep observations of different transient and variable stellar objects of which we highlight 4 of them here: LSI+61 303, MWC 656, Cygnus X-1 and SN 2014J. We present the results of those observations, including long-term monitoring of Cygnus X-1 and LSI+61 303 (7 and 8 years, respectively). The former is one of the brightest X-ray sources and best studied microquasars across a broad range of wavelengths, whose steady and variable signal was studied by MAGIC within a multiwavelength scenario. The latest results of an unique object, MWC 656, are also shown in this presentation. This source is the first high-mass X-ray binary system detected that is composed of a black hole and a Be star. Finally, we report on the observations of SN 2014J, the nearest Type Ia SN of the last 40 years. Its proximity and e...

  4. MAGIC TeV Gamma-Ray Observations of Markarian 421 during Multiwavelength Campaigns in 2006

    CERN Document Server

    Aleksić, J; Antoranz, P; Backes, M; Baixeras, C; Balestra, S; Barrio, J A; Bastieri, D; González, J Becerra; Bednarek, W; Berdyugin, A; Berger, K; Bernardini, E; Biland, A; Bock, R K; Bonnoli, G; Bordas, P; Tridon, D Borla; Bosch-Ramon, V; Bose, D; Braun, I; Bretz, T; Britzger, D; Camara, M; Carmona, E; Carosi, A; Colin, P; Commichau, S; Contreras, J L; Cortina, J; Costado, M T; Covino, S; Dazzi, F; De Angelis, A; del Pozo, E De Cea; Mendez, C Delgado; Reyes, R De los; De Lotto, B; De Maria, M; De Sabata, F; Doert, M; Domínguez, A; Prester, D Dominis; Dorner, D; Doro, M; Elsaesser, D; Errando, M; Ferenc, D; Fonseca, M V; Font, L; López, R J García; Garczarczyk, M; Gaug, M; Godinovic, N; Hadasch, D; Herrero, A; Hildebrand, D; Höhne-Mönch, D; Hose, J; Hrupec, D; Hsu, C C; Jogler, T; Klepser, S; Krähenbühl, T; Kranich, D; La Barbera, A; Laille, A; Leonardo, E; Lindfors, E; Lombardi, S; Longo, F; López, M; Lorenz, E; Majumdar, P; Maneva, G; Mankuzhiyil, N; Mannheim, K; Maraschi, L; Mariotti, M; Martínez, M; Mazin, D; Meucci, M; Miranda, J M; Mirzoyan, R; Miyamoto, H; Moldón, J; Moles, M; Moralejo, A; Nieto, D; Nilsson, K; Ninkovic, J; Orito, R; Oya, I; Paiano, S; Paoletti, R; Paredes, J M; Partini, S; Pasanen, M; Pascoli, D; Pauss, F; Pegna, R G; Perez-Torres, M A; Persic, M; Peruzzo, L; Prada, F; Prandini, E; Puchades, N; Puljak, I; Reichardt, I; Rhode, W; Ribó, M; Rico, J; Rissi, M; Rügamer, S; Saggion, A; Saito, T Y; Salvati, M; Sánchez-Conde, M; Satalecka, K; Scalzotto, V; Scapin, V; Schultz, C; Schweizer, T; Shayduk, M; Shore, S N; Sierpowska-Bartosik, A; Sillanpää, A; Sitarek, J; Sobczynska, D; Spanier, F; Spiro, S; Stamerra, A; Steinke, B; Struebig, J C; Suric, T; Takalo, L; Tavecchio, F; Temnikov, P; Terzic, T; Tescaro, D; Teshima, M; Torres, D F; Vankov, H; Wagner, R M; Zabalza, V; Zandanel, F; Zanin, R

    2014-01-01

    The Major Atmospheric Gamma Imaging Cerenkov (MAGIC) telescope participated in three multiwavelength (MWL) campaigns, observing the blazar Markarian (Mkn) 421 during the nights of 2006 April 28, 29, and 2006 June 14. We analyzed the corresponding MAGIC very-high energy observations during 9 nights from 2006 April 22 to 30 and on 2006 June 14. We inferred light curves with sub-day resolution and night-by-night energy spectra. A strong gamma-ray signal was detected from Mkn 421 on all observation nights. The flux (E > 250 GeV) varied on night-by-night basis between (0.92+-0.11)10^-10 cm^-2 s^-1 (0.57 Crab units) and (3.21+-0.15)10^-10 cm^-2 s^-1 (2.0 Crab units) in 2006 April. There is a clear indication for intra-night variability with a doubling time of 36+-10(stat) minutes on the night of 2006 April 29, establishing once more rapid flux variability for this object. For all individual nights gamma-ray spectra could be inferred, with power-law indices ranging from 1.66 to 2.47. We did not find statistically si...

  5. Simultaneous optical/gamma-ray observations of GRB 121217's prompt emission

    CERN Document Server

    Elliott, J; Schmidl, S; Greiner, J; Gruber, D; Oates, S; Kobayashi, S; Zhang, B; Cummings, J R; Filgas, R; Gehrels, N; Grupe, D; Kann, D A; Klose, S; Krühler, T; Guelbenzu, A Nicuesa; Rau, A; Rossi, A; Siegel, M; Schady, P; Sudilovsky, V; Tanga, M; Varela, K

    2013-01-01

    Since the advent of the Swift satellite it has been possible to obtain precise localisations of GRB positions of sub-arcsec accuracy within seconds, facilitating ground-based robotic telescopes to automatically slew to the target within seconds. This has yielded a plethora of observational data for the afterglow phase of the GRB, but the quantity of data (<2 keV) covering the initial prompt emission still remains small. Only in a handful of cases has it been possible obtain simultaneous coverage of the prompt emission in a multi-wavelength regime (gamma-ray to optical), as a result of: observing the field by chance prior to the GRB (e.g. 080319B/naked-eye burst), long-prompt emission (e.g., 080928, 110205A) or triggered on a pre-cursor (e.g., 041219A, 050820A, 061121). This small selection of bursts have shown both correlated and uncorrelated gamma-ray and optical light curve behaviour, and the multi-wavelength emission mechanism remains far from resolved (i.e. single population synchrotron self-Component,...

  6. Gamma ray flares from Mrk421 in 2008 observed with the ARGO-YBJ detector

    CERN Document Server

    al., G Aielli et

    2010-01-01

    In 2008 the blazar Markarian 421 entered a very active phase and was one of the brightest sources in the sky at TeV energies, showing frequent flaring episodes. Using the data of ARGO-YBJ, a full coverage air shower detector located at Yangbajing (4300 m a.s.l., Tibet, China), we monitored the source at gamma ray energies E > 0.3 TeV during the whole year. The observed flux was variable, with the strongest flares in March and June, in correlation with X-ray enhanced activity. While during specific episodes the TeV flux could be several times larger than the Crab Nebula one, the average emission from day 41 to 180 was almost twice the Crab level, with an integral flux of (3.6 +-0.6) 10^-11 photons cm^-2 s^-1 for energies E > 1 TeV, and decreased afterwards. This paper concentrates on the flares occurred in the first half of June. This period has been deeply studied from optical to 100 MeV gamma rays, and partially up to TeV energies, since the moonlight hampered the Cherenkov telescope observations during the ...

  7. AN OBSERVED CORRELATION BETWEEN THERMAL AND NON-THERMAL EMISSION IN GAMMA-RAY BURSTS

    Energy Technology Data Exchange (ETDEWEB)

    Michael Burgess, J.; Preece, Robert D. [Department of Space Science, University of Alabama in Huntsville, Huntsville, AL 35899 (United States); Ryde, Felix; Axelsson, Magnus [Department of Physics, Royal Institute of Technology (KTH), AlbaNova, SE-106 91 Stockholm (Sweden); Veres, Peter; Mészáros, Peter [Department of Astronomy and Astrophysics, Pennsylvania State University, University Park, PA 16802 (United States); Connaughton, Valerie; Briggs, Michael; Bhat, P. N.; Pelassa, Veronique [Center for Space Plasma and Aeronomic Research (CSPAR), University of Alabama in Huntsville, Huntsville, AL 35899 (United States); Pe' er, Asaf [Physics Department, University College Cork, Cork (Ireland); Iyyani, Shabnam [The Oskar Klein Centre for Cosmoparticle Physics, AlbaNova, SE-106 91 Stockholm (Sweden); Goldstein, Adam [Space Science Office, VP62, NASA/Marshall Space Flight Center, Huntsville, AL 35812 (United States); Baring, Matthew G. [Department of Physics and Astronomy, Rice University, MS-108, P.O. Box 1892, Houston, TX 77251 (United States); Byrne, David; Fitzpatrick, Gerard; Foley, Suzanne [University College Dublin, Belfield, Dublin 4 (Ireland); Kocevski, Daniel; Omodei, Nicola [W. W. Hansen Experimental Physics Laboratory, Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics and SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94305 (United States); Paciesas, William S., E-mail: jmichaelburgess@gmail.com, E-mail: rob.preece@nasa.gov, E-mail: felix@particle.kth.se, E-mail: veres@gwu.edu, E-mail: npp@astro.psu.edu [Universities Space Research Association, Huntsville, AL 35805 (United States); and others

    2014-04-01

    Recent observations by the Fermi Gamma-ray Space Telescope have confirmed the existence of thermal and non-thermal components in the prompt photon spectra of some gamma-ray bursts (GRBs). Through an analysis of six bright Fermi GRBs, we have discovered a correlation between the observed photospheric and non-thermal γ-ray emission components of several GRBs using a physical model that has previously been shown to be a good fit to the Fermi data. From the spectral parameters of these fits we find that the characteristic energies, E {sub p} and kT, of these two components are correlated via the relation E {sub p}∝T {sup α} which varies from GRB to GRB. We present an interpretation in which the value of the index α indicates whether the jet is dominated by kinetic or magnetic energy. To date, this jet composition parameter has been assumed in the modeling of GRB outflows rather than derived from the data.

  8. Cosmic ray composition measurements and cosmic ray background free gamma-ray observations with Cherenkov telescopes

    CERN Document Server

    Neronov, A; Vovk, Ie; Mirzoyan, R

    2016-01-01

    Muon component of extensive air showers (EAS) initiated by cosmic ray particles carries information on the primary particle identity. We show that the muon content of EAS could be measured in a broad energy range from 10-100 TeV up to ultra-high-energy cosmic ray range using wide field-of-view imaging atmospheric Cherenkov telescopes observing strongly inclined or nearly horizontal EAS from the ground of from high altitude. Cherenkov emission from muons in such EAS forms a distinct component (halo or tail) of the EAS image in the telescope camera. We show that detection of the muon signal could be used to measure composition of the cosmic ray spectrum in the energy ranges of the knee, the ankle and of the Galactic-to-extragalactic transition. It could also be used to veto the cosmic ray background in gamma-ray observations. This technique provides a possibility for up to two orders of magnitude improvement of sensitivity for gamma-ray flux in the energy band above 10 PeV, compared to KASCADE-Grande, and an or...

  9. Non-thermal emission from Galaxy Clusters and future observations with the FERMI gamma-ray telescope and LOFAR

    CERN Document Server

    Brunetti, G

    2008-01-01

    FERMI (formely GLAST) and LOFAR will shortly provide crucial information on the non-thermal components (relativistic particles and magnetic field) in galaxy clusters. After discussing observational facts that already put constraints on the properties and origin of non-thermal components, I will report on the emission spectrum from galaxy clusters as expected in the context of general calculations in which relativistic particles (protons and secondary electrons due to proton-proton collisions) interact with MHD turbulence generated in the cluster volume during cluster-cluster mergers. In this scenario (known as re-acceleration scenario) diffuse cluster-scale radio emission is produced in massive clusters during merging events, while gamma ray emission, at some level, is expected to be common in clusters. Expectations of interest for LOFAR and FERMI are also briefly discussed.

  10. The dark connection between the Canis Major dwarf, the Monoceros ring, the gas flaring, the rotation curve and the EGRET excess of diffuse Galactic Gamma Rays

    CERN Document Server

    de Boer, Wim; Weber, M; Sander, C; Zhukov, V; Kazakov, D

    2007-01-01

    The excess of diffuse galactic gamma rays above 1 GeV, as observed by the EGRET telescope on the NASA Compton Gamma Ray Observatory, shows all the key features from Dark Matter (DM) annihilation: (i) the energy spectrum of the excess is the same in all sky directions and is consistent with the gamma rays expected for the annihilation of WIMPs with a mass between 50-100 GeV; (ii) the intensity distribution of the excess in the sky is used to determine the halo profile, which was found to correspond to the usual profile from N-body simulations with additional substructure in the form of two doughnut-shaped structures at radii of 4 and 13 kpc; (iii) recent N-body simulations of the tidal disruption of the Canis Major dwarf galaxy show that it is a perfect progenitor of the ringlike Monoceros tidal stream of stars at 13 kpc with ring parameters in agreement with the EGRET data; (iiii) the mass of the outer ring is so large, that its gravitational effects influence both the gas flaring and the rotation curve of th...

  11. All-Sky Earth Occultation Observations with the Fermi Gamma Ray Burst Monitor

    Science.gov (United States)

    Wilson-Hodge, C. A.; Beklen, E.; Bhat, P. N.; Briggs, M.; Camero-Arranz, A.; Case, G.; Chaplin, V.; Cherry, M.; Connaughton, V.; Finger, M.; Jenke, P.; Paciesas, W.; Preece, R.; Rodi, J.

    2010-01-01

    Using the Gamma Ray Burst Monitor (GBM) on-board Fermi, we are monitoring the hard X-ray/soft gamma ray sky using the Earth occultation technique. Each time a source in our catalog is occulted by (or exits occultation by) the Earth, we measure its flux using the change in count rates due to the occultation. Currently we are using CTIME data with 8 energy channels spanning 8 keV to 1 MeV for the GBM NaI detectors and spanning 150 keV to 40 MeV for the GBM BGO detectors. Our preliminary catalog consists of galactic X-ray binaries, the Crab Nebula, and active galactic nuclei. New sources are added to our catalog as they become active or upon request. In addition to Earth occultations, we have observed numerous occultations with Fermi's solar panels. We will present early results. Regularly updated results will be found on our website http://gammaray.nsstc.nasa.gov/gbm/science/occultation.

  12. Diffuse emission of high-energy neutrinos from gamma-ray burst fireballs

    NARCIS (Netherlands)

    Tamborra, I.; Ando, S.

    2015-01-01

    Gamma-ray bursts (GRBs) have been suggested as possible sources of the high-energy neutrino flux recently detected by the IceCube telescope. We revisit the fireball emission model and elaborate an analytical prescription to estimate the high-energy neutrino prompt emission from pion and kaon decays,

  13. EDGE: explorer of diffuse emission and gamma-ray burst explosions

    NARCIS (Netherlands)

    den Herder, J.W.; Piro, L.; Ohashi, T.; Amati, L.; Atteia, J.; Barthelmy, S.D.; Barbera, M.; Barret, D.; Basso, S.; de Boer, M.; Borgani, S.; Boyarskiy, O.; Branchini, E.; Branduardi-Raymont, G.; Briggs, M.; Brunetti, G.; Budtz-Jorgensenf, C.; Burrows, D.N.; Campana, S.; Caroli, E.; Chincarini, G.; Christensen, F.; Cocchi, M.; Comastri, A.; Corsi, A.; Cotroneo, V.; Conconi, P.; Colasanti, L.; Cusamano, G.; Rosa, A.; Del Santo, M.; Ettori, S.; Ezoe, Y.; Ferrari, L.; Feroci, M.; Finger, M.; Fishman, G.; Fujimoto, R.; Galeazzi, M.; Galli, A.; Gatti, F.; Gehrels, N.; Gendre, B.; Ghirlanda, G.; Ghisellini, G.; Giommi, P.; Girardi, M.; Guzzo, L.; Haardt, F.; Hepburn, I.; Hermsen, W.; Hoevers, H.; Holland, A.; in 't Zand, J.J.M.; Ishisaki, Y.; Kawahara, H.; Kawai, N.; Kaastra, J.; Kippen, M.; de Korte, P.A.J.; Kouveliotou, C.; Kusenko, A.; Labanti, C.; Lieu, R.; Macculi, C.; Makishima, K.; Matt, G.; Mazotta, P.; McCammon, D.; Méndez, M.; Mineo, T.; Mitchell, S.; Mitsuda, K.; Molendi, S.; Moscardini, L.; Mushotzky, R.; Natalucci, L.; Nicastro, F.; O'Brien, P.; Osborne, J.; Paerels, F.; Page, M.; Paltani, S.; Pareschi, G.; Perinati, E.; Perola, C.; Ponman, T.; Rasmussen, A.; Roncarelli, M.; Rosati, P.; Ruchayskiy, O.; Quadrini, E.; Sakurai, I.; Salvaterra, R.; Sasaki, S.; Wijers, R.; et al., [Unknown

    2007-01-01

    How structures of various scales formed and evolved from the early Universe up to present time is a fundamental question of astrophysics. EDGE will trace the cosmic history of the baryons from the early generations of massive stars by Gamma-Ray Burst (GRB) explosions, through the period of galaxy cl

  14. Tests of Quantum Gravity and Large Extra Dimensions Models Using High Energy Gamma Ray Observations

    CERN Document Server

    Stecker, F W

    2004-01-01

    Observations of the multi-TeV spectra of the nearby BL Lac objects Mkn 421 and Mkn 501 exhibit the high energy cutoffs predicted to be the result of intergalactic annihilation interactions, primarily with IR photons having a flux level as determined by various astronomical observations. After correcting for such intergalactic absorption, these spectra can be explained within the framework of synchrotron self-Compton emission models. Stecker & Glashow have shown that the existence of this annihilation via electron-positron pair production puts strong constraints on Lorentz violation. Such constraints have important implications for quantum gravity models and large extra dimension models. We also discuss the implications of observations of high energy gamma-rays from the Crab Nebula on constraining quantum gravity models.

  15. Multi-wavelength observations of the gamma-ray flaring quasar S4 1030+61 in 2009-2014

    CERN Document Server

    Kravchenko, E V; Hovatta, T; Ramakrishnan, V

    2016-01-01

    We present a study of the parsec-scale multi-frequency properties of the quasar S4 1030+61 during a prolonged radio and gamma-ray activity. Observations were performed within Fermi gamma-ray telescope, OVRO 40-m telescope and MOJAVE VLBA monitoring programs, covering five years from 2009. The data are supplemented by four-epoch VLBA observations at 5, 8, 15, 24, and 43 GHz, which were triggered by the bright gamma-ray flare, registered in the quasar in 2010. The S4 1030+61 jet exhibits an apparent superluminal velocity of (6.4+-0.4)c and does not show ejections of new components in the observed period, while decomposition of the radio light curve reveals nine prominent flares. The measured variability parameters of the source show values typical for Fermi-detected quasars. Combined analysis of radio and gamma-ray emission implies a spatial separation between emitting regions at these bands of about 12 pc and locates the gamma-ray emission within a parsec from the central engine. We detected changes in the val...

  16. Synchrotron Cooling in Energetic Gamma-Ray Bursts Observed by the Fermi Gamma-Ray Burst Monitor

    CERN Document Server

    Yu, Hoi-Fung; van Eerten, Hendrik; Burgess, J Michael; Bhat, P Narayana; Briggs, Michael S; Connaughton, Valerie; Diehl, Roland; Goldstein, Adam; Gruber, David; Jenke, Peter A; von Kienlin, Andreas; Kouveliotou, Chryssa; Paciesas, William S; Pelassa, Veronique; Preece, Robert D; Roberts, Oliver J; Zhang, Bin-Bin

    2014-01-01

    We study the time-resolved spectra of eight GRBs observed by Fermi GBM in its first five years of mission, with 1 keV - 1 MeV fluence $f>1.0\\times10^{-4}$ erg cm$^{-2}$ and signal-to-noise level $\\text{S/N}\\geq10.0$ above 900 keV. We aim to constrain in detail the spectral properties of GRB prompt emission on a time-resolved basis and to discuss the theoretical implications of the fitting results in the context of various prompt emission models. We perform time-resolved spectral analysis using a variable temporal binning technique according to optimal S/N criteria, resulting in a total of 299 time-resolved spectra. We fit the Band function to all spectra and obtain the distributions for the low-energy power-law index $\\alpha$, the high-energy power-law index $\\beta$, the peak energy in the observed $\

  17. Comparison of Terrestrial Gamma Ray Flash Simulations with Observations by Fermi

    Science.gov (United States)

    2016-10-31

    allowing a direction comparison between the gamma rays measured in low -Earth orbit and the VLF-LF radio frequency emissions recorded on the ground...directly calculated from X and its time derivative, including the gamma-ray emission rate, the current moment, and the optical power of the TGF. For

  18. Constraints on Cosmological Dark Matter Annihilation from the Fermi-LAT Isotropic Diffuse Gamma-Ray Measurement

    CERN Document Server

    Ackermann, M; Baldini, L; Ballet, J; Barbiellini, G; Bastieri, D; Bechtol, K; Bellazzini, R; Berenji, B; Blandford, R D; Bloom, E D; Bonamente, E; Borgland, A W; Bouvier, A; Bregeon, J; Brez, A; Brigida, M; Bruel, P; Burnett, T H; Buson, S; Caliandro, G A; Cameron, R A; Caraveo, P A; Carrigan, S; Casandjian, J M; Cecchi, C; Elik, O C; Chekhtman, A; Cheung, C C; Chiang, J; Ciprini, S; Claus, R; Cohen-Tanugi, J; Conrad, J; Cutini, S; Dermer, C D; de Angelis, A; de Palma, F; Digel, S W; Silva, E do Couto e; Drell, P S; Dubois, R; Dumora, D; Edmonds, Y; Farnier, C; Favuzzi, C; Fegan, S J; Focke, W B; Fortin, P; Frailis, M; Fukazawa, Y; Fusco, P; Gargano, F; Gasparrini, D; Gehrels, N; Germani, S; Giglietto, N; Giordano, F; Glanzman, T; Godfrey, G; Grove, J E; Guillemot, L; Guiriec, S; Gustafsson, M; Hadasch, D; Harding, A K; Horan, D; Hughes, R E; Johnson, A S; Johnson, W N; Kamae, T; Katagiri, H; Kataoka, J; Kawai, N; Kerr, M; Knodlseder, J; Kuss, M; Lande, J; Latronico, L; Garde, M Llena; Longo, F; Loparco, F; Lott, B; Lovellette, M N; Lubrano, P; Makeev, A; Mazziotta, M N; McEnery, J E; Meurer, C; Michelson, P F; Mitthumsiri, W; Mizuno, T; Monte, C; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Nolan, P L; Norris, J P; Nuss, E; Ohsugi, T; Omodei, N; Orlando, E; Ormes, J F; Paneque, D; Panetta, J H; Parent, D; Pelassa, V; Pepe, M; Pesce-Rollins, M; Piron, F; Raino, S; Rando, R; Reimer, A; Reimer, O; Reposeur, T; Rodriguez, A Y; Roth, M; Sadrozinski, H F W; Sander, A; Parkinson, P M Saz; Scargle, J D; Sellerholm, A; Sgro, C; Siskind, E J; Smith, P D; Spandre, G; Spinelli, P; Starck, J L; Strickman, M S; Suson, D J; Takahashi, H; Tanaka, T; Thayer, J B; Thayer, J G; Torres, D F; Uchiyama, Y; Usher, T L; Vasileiou, V; Vilchez, N; Vitale, V; Waite, A P; Wang, P; Winer, B L; Wood, K S; Ylinen, T; Zaharijas, G; Ziegle, M

    2010-01-01

    The first published Fermi large area telescope (Fermi-LAT) measurement of the isotropic diffuse gamma-ray emission is in good agreement with a single power law, and is not showing any signature of a dominant contribution from dark matter sources in the energy range from 20 to 100 GeV. We use the absolute size and spectral shape of this measured flux to derive cross section limits on three types of generic dark matter candidates: annihilating into quarks, charged leptons and monochromatic photons. Predicted gamma-ray fluxes from annihilating dark matter are strongly affected by the underlying distribution of dark matter, and by using different available results of matter structure formation we assess these uncertainties. We also quantify how the dark matter constraints depend on the assumed conventional backgrounds and on the Universe's transparency to high-energy gamma-rays. In reasonable background and dark matter structure scenarios (but not in all scenarios we consider) it is possible to exclude models pro...

  19. Gamma-Ray Bursts and Other Observations: Constraints on Cosmographic Parameters and Dark Energy Models

    Science.gov (United States)

    Liu, Jian-wei; Wang, Fa-yin

    2012-04-01

    We use the newly released Union2 SNe Ia dataset to constrain cosmographic parameters, namely the deceleration, jerk and snap parameters (q0, j0 and s0), then calibrate the five luminosity relations of Gamma-ray Bursts (GRBs) at redshift z ≤ 1.4. Assuming that the GRB luminosity relations do not evolve with the redshift, we obtain the distance moduli of 66 high-redshift GRBs. At last, we combine the observational datasets including the observations of the Cosmic Microwave Background (CMB), Baryon Acoustic Oscillation (BAO) and the 116 GRBs with known redshifts to constrain some widely-discussed dark energy models. We find that the ΛCDM model is the best according to the Bayesian Information Criterion (BIC), and the JBP model is the best according to the Akaike Information Criterion (AIC).

  20. Optical spectroscopic observations of $\\gamma$-ray blazar candidates VI. Further observations from TNG, WHT, OAN, SOAR and Magellan telescopes

    CERN Document Server

    Crespo, N Álvarez; Milisavljevic, D; Landoni, M; Chavushyan, V; Patiño-Álvarez, V; Masetti, N; Jiménez-Bailón, E; Strader, J; Chomiuk, L; Katagiri, H; Kagaya, M; Cheung, C C; Paggi, A; D'Abrusco, R; Ricci, F; La Franca, F; Smith, Howard A; Tosti, G

    2016-01-01

    Blazars, one of the most extreme class of active galaxies, constitute so far the largest known population of $\\gamma$-ray sources and their number is continuously growing in the Fermi catalogs. However in the latest release of the Fermi catalog there is still a large fraction of sources that are classified as blazar candidate of uncertain type (BCUs) for which optical spectroscopic observations are necessary to confirm their nature and their associations. In addition about 1/3 of the $\\gamma$-ray point sources listed in the Third Fermi-LAT Source Catalog (3FGL) are still unassociated and lacking an assigned lower energy counterpart. Since 2012 we have been carrying out an optical spectroscopic campaign to observe blazar candidates to confirm their nature. In this paper, the sixth of the series, we present optical spectroscopic observations for 30 $\\gamma$-ray blazar candidates from different observing programs we carried out with the TNG, WHT, OAN, SOAR and Magellan telescopes. We found that 21 out of 30 sour...

  1. Optical spectroscopic observations of gamma-ray blazar candidates IV. Results of the 2014 follow-up campaign

    CERN Document Server

    Ricci, F; Landoni, M; D'Abrusco, R; Milisavljevic, D; Stern, D; Masetti, N; Paggi, A; Smith, Howard A; Tosti, G

    2015-01-01

    The extragalactic gamma-ray sky is dominated by the emission arising from blazars, one of the most peculiar classes of radio-loud active galaxies. Since the launch of Fermi several methods were developed to search for blazars as potential counterparts of unidentified gamma-ray sources (UGSs). To confirm the nature of the selected candidates, optical spectroscopic observations are necessary. In 2013 we started a spectroscopic campaign to investigate gamma-ray blazar candidates selected according to different procedures. The main goals of our campaign are: 1) to confirm the nature of these candidates, and 2) whenever possible determine their redshifts. Optical spectroscopic observations will also permit us to verify the robustness of the proposed associations and check for the presence of possible source class contaminants to our counterpart selection. This paper reports the results of observations carried out in 2014 in the Northern hemisphere with Kitt Peak National Observatory (KPNO) and in the Southern hemi...

  2. Observation and Simulation of the Variable Gamma-ray Emission from PSR J2021+4026

    Science.gov (United States)

    Ng, C. W.; Takata, J.; Cheng, K. S.

    2016-07-01

    Pulsars are rapidly spinning and highly magnetized neutron stars, with highly stable rotational periods and a gradual spin-down over a long timescale due to the loss of radiation. Glitches refer to events that suddenly increase the rotational speed of a pulsar. The exact causes of glitches and the resulting processes are not fully understood. It is generally believed that couplings between the normal matter and superfluid components, and starquakes, are the common causes of glitches. In this study, one famous glitching pulsar, PSR J2021+4026, is investigated. PSR J2021+4026 is the first variable gamma-ray pulsar observed by Fermi. From gamma-ray observations, it is found that the pulsar experienced a significant flux drop, an increase in the spin-down rate, a change in the pulse profile and a shift in the spectral cut-off to a lower energy, simultaneously around 2011 October 16. To explain these effects on high-energy emissions by the glitch of PSR J2021+4026, we hypothesized the glitch to be caused by the rearrangement of the surface magnetic field due to crustal plate tectonic activities on the pulsar, which was triggered by a starquake. In this glitch event, the inclination angle of the magnetic dipole axis was slightly shifted. This proposition is then tested by numerical modeling using a three-dimensional two-layer outer gap model. The simulation results indicate that a modification of the inclination angle can affect the pulse profile and the spectral properties, which can explain the observation changes after the glitch.

  3. DEEP BROADBAND OBSERVATIONS OF THE DISTANT GAMMA-RAY BLAZAR PKS 1424+240

    Energy Technology Data Exchange (ETDEWEB)

    Archambault, S. [Physics Department, McGill University, Montreal, QC H3A 2T8 (Canada); Aune, T. [Department of Physics and Astronomy, University of California, Los Angeles, CA 90095 (United States); Behera, B.; Chen, X.; Federici, S. [DESY, Platanenallee 6, D-15738 Zeuthen (Germany); Beilicke, M.; Bugaev, V. [Department of Physics, Washington University, St. Louis, MO 63130 (United States); Benbow, W.; Cerruti, M. [Fred Lawrence Whipple Observatory, Harvard-Smithsonian Center for Astrophysics, Amado, AZ 85645 (United States); Berger, K. [Department of Physics and Astronomy and the Bartol Research Institute, University of Delaware, Newark, DE 19716 (United States); Bird, R. [School of Physics, University College Dublin, Belfield, Dublin 4 (Ireland); Biteau, J. [Santa Cruz Institute for Particle Physics and Department of Physics, University of California, Santa Cruz, CA 95064 (United States); Byrum, K. [Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States); Cardenzana, J. V [Department of Physics and Astronomy, Iowa State University, Ames, IA 50011 (United States); Ciupik, L. [Astronomy Department, Adler Planetarium and Astronomy Museum, Chicago, IL 60605 (United States); Connolly, M. P. [School of Physics, National University of Ireland Galway, University Road, Galway (Ireland); Cui, W. [Department of Physics, Purdue University, West Lafayette, IN 47907 (United States); Dumm, J. [School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455 (United States); Errando, M. [Department of Physics and Astronomy, Barnard College, Columbia University, NY 10027 (United States); Falcone, A., E-mail: amy.furniss@gmail.com [Department of Astronomy and Astrophysics, 525 Davey Lab, Pennsylvania State University, University Park, PA 16802 (United States); Collaboration: VERITAS Collaboration; Fermi LAT Collaboration; and others

    2014-04-10

    We present deep VERITAS observations of the blazar PKS 1424+240, along with contemporaneous Fermi Large Area Telescope, Swift X-ray Telescope, and Swift UV Optical Telescope data between 2009 February 19 and 2013 June 8. This blazar resides at a redshift of z ≥ 0.6035, displaying a significantly attenuated gamma-ray flux above 100 GeV due to photon absorption via pair-production with the extragalactic background light. We present more than 100 hr of VERITAS observations over three years, a multiwavelength light curve, and the contemporaneous spectral energy distributions. The source shows a higher flux of (2.1 ± 0.3) × 10{sup –7} photons m{sup –2} s{sup –1} above 120 GeV in 2009 and 2011 as compared to the flux measured in 2013, corresponding to (1.02 ± 0.08) × 10{sup –7} photons m{sup –2} s{sup –1} above 120 GeV. The measured differential very high energy (VHE; E ≥ 100 GeV) spectral indices are Γ = 3.8 ± 0.3, 4.3 ± 0.6 and 4.5 ± 0.2 in 2009, 2011, and 2013, respectively. No significant spectral change across the observation epochs is detected. We find no evidence for variability at gamma-ray opacities of greater than τ = 2, where it is postulated that any variability would be small and occur on timescales longer than a year if hadronic cosmic-ray interactions with extragalactic photon fields provide a secondary VHE photon flux. The data cannot rule out such variability due to low statistics.

  4. Observation of gamma-ray emission from the galaxy M87 above 250 GeV with VERITAS

    CERN Document Server

    Acciari, V A; Blaylock, G; Bradbury, S M; Buckley, J H; Bugaev, V; Butt, Y; Celik, O; Cesarini, A; Ciupik, L; Cogan, P; Colin, P; Cui, W; Daniel, M K; Duke, C; Ergin, T; Falcone, A D; Fegan, S J; Finley, J P; Finnegan, G; Fortin, P; Fortson, L F; Gibbs, K; Gillanders, G H; Grube, J; Guenette, R; Gyuk, G; Hanna, D; Hays, E; Holder, J; Horan, D; Hughes, S B; Hui, M C; Humensky, T B; Imran, A; Kaaret, Philip; Kertzman, M; Kieda, D B; Kildea, J; Konopelko, A; Krawczynski, H; Krennrich, F; Lang, M J; Le Bohec, S; Lee, K; Maier, G; McCann, A; McCutcheon, M; Millis, J; Moriarty, P; Mukherjee, R; Nagai, T; Ong, R A; Pandel, D; Perkins, J S; Pohl, M; Quinn, J; Ragan, K; Reynolds, P T; Rose, H J; Schroedter, M; Sembroski, G H; Smith, A W; Steele, D; Swordy, S P; Toner, A Syson J A; Valcarcel, L; Vasilev, V V; Wakely, S P; Ward, J E; Weekes, T C; Weinstein, A; White, R J; Williams, D A; Wissel, S A; Wood, M D; Zitzer, B

    2008-01-01

    The multiwavelength observation of the nearby radio galaxy M87 provides a unique opportunity to study in detail processes occurring in Active Galactic Nuclei from radio waves to TeV gamma-rays. Here we report the detection of gamma-ray emission above 250 GeV from M87 in spring 2007 with the VERITAS atmospheric Cherenkov telescope array and discuss its correlation with the X-ray emission. The gamma-ray emission is measured to be point-like with an intrinsic source radius less than 4.5 arcmin. The differential energy spectrum is fitted well by a power-law function: dPhi/dE=(7.4+-1.3_{stat}+-1.5_{sys})(E/TeV)^{-2.31+-0.17_{stat}+-0.2_{sys}} 10^{-9}m^{-2}s^{-1}TeV^{-1}. We show strong evidence for a year-scale correlation between the gamma-ray flux reported by TeV experiments and the X-ray emission measured by the ASM/RXTE observatory, and discuss the possible short-time-scale variability. These results imply that the gamma-ray emission from M87 is more likely associated with the core of the galaxy than with othe...

  5. CHANDRA, KECK, AND VLA OBSERVATIONS OF THE CRAB NEBULA DURING THE 2011-APRIL GAMMA-RAY FLARE

    Energy Technology Data Exchange (ETDEWEB)

    Weisskopf, Martin C.; Tennant, Allyn F.; O' Dell, Stephen L. [NASA Marshall Space Flight Center, Astrophysics Office (ZP12), Huntsville, AL 35812 (United States); Arons, Jonathan [Astronomy Department and Theoretical Astrophysics Center, University of California, Berkeley, 601 Campbell Hall, Berkeley, CA 94720 (United States); Blandford, Roger; Funk, Stefan; Romani, Roger W. [W. W. Hansen Experimental Physics Laboratory, Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics and SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94305 (United States); Buehler, Rolf [DESY, Platanenallee 6, D-15738 Zeuthen (Germany); Caraveo, Patrizia; De Luca, Andrea [INAF-IASF Milano, via E. Bassini 15, I-20133 Milano (Italy); Cheung, Chi C. [National Research Council Research Associate, National Academy of Sciences, Washington, DC 20001 (United States); Costa, Enrico [INFN Roma Tor Vergata, via della Ricerca Scientifica 1, I-00133 Roma (Italy); Ferrigno, Carlo [ISDC, Data Center for Astrophysics of the University of Geneva, chemin d' cogia 16, CH-1290 Versoix (Switzerland); Fu, Hai [Department of Physics and Astronomy, University of California, Irvine, CA 92697 (United States); Habermehl, Moritz; Horns, Dieter [Institut fuer Experimentalphysik, Universitaet Hamburg, Luruper Chaussee 149, D-22761 Hamburg (Germany); Linford, Justin D. [Department of Physics and Astronomy, University of New Mexico, MSC07 4220, Albuquerque, NM 87131-0001 (United States); Lobanov, Andrei [Max-Planck-Institut fuer Radioastronomie, Auf dem Huegel 69, D-53121 Bonn (Germany); Max, Claire [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Mignani, Roberto [Mullard Space Science Laboratory, University College London, Holmbury St. Mary Dorking, Surrey RH5 6NT (United Kingdom); and others

    2013-03-01

    We present results from our analysis of Chandra X-Ray Observatory, W. M. Keck Observatory, and Karl G. Jansky Very Large Array (VLA) images of the Crab Nebula that were contemporaneous with the {gamma}-ray flare of 2011 April. Despite hints in the X-ray data, we find no evidence for statistically significant variations that pinpoint the specific location of the flares within the Nebula. The Keck observations extend this conclusion to the 'inner knot', i.e., the feature within an arcsecond of the pulsar. The VLA observations support this conclusion. We also discuss theoretical implications of the {gamma}-ray flares and suggest that the most dramatic {gamma}-ray flares are due to radiation-reaction-limited synchrotron emission associated with sudden, dissipative changes in the current system sustained by the central pulsar.

  6. Free ion yield observed in liquid isooctane irradiated by {gamma} rays. Comparison with the Onsager theory

    Energy Technology Data Exchange (ETDEWEB)

    Pardo, J [Departamento de FIsica de PartIculas, Facultade de FIsica, 15782 Santiago de Compostela (Spain); Franco, L [Departamento de FIsica de PartIculas, Facultade de FIsica, 15782 Santiago de Compostela (Spain); Gomez, F [Departamento de FIsica de PartIculas, Facultade de FIsica, 15782 Santiago de Compostela (Spain); Iglesias, A [Departamento de FIsica de PartIculas, Facultade de FIsica, 15782 Santiago de Compostela (Spain); Lobato, R [Hospital ClInico Universitario de Santiago, Santiago de Compostela (Spain); Mosquera, J [Hospital ClInico Universitario de Santiago, Santiago de Compostela (Spain); Pazos, A [Departamento de FIsica de PartIculas, Facultade de FIsica, 15782 Santiago de Compostela (Spain); Pena, J [Departamento de FIsica de PartIculas, Facultade de FIsica, 15782 Santiago de Compostela (Spain); Pombar, M [Hospital ClInico Universitario de Santiago, Santiago de Compostela (Spain); RodrIguez, A [Departamento de FIsica de PartIculas, Facultade de FIsica, 15782 Santiago de Compostela (Spain); Sendon, J [Hospital ClInico Universitario de Santiago, Santiago de Compostela (Spain)

    2004-05-21

    We have analysed data on the free ion yield observed in liquid isooctane irradiated by {sup 60}Co {gamma} rays within the framework of the Onsager theory about initial recombination. Several distribution functions describing the electron thermalization distance have been used and compared with the experimental results: a delta function, a Gaussian-type function and an exponential function. A linear dependence between the free ion yield and the external electric field has been found at low-electric-field values (E {<=} 1.2 x 10{sup 3} V mm{sup -1}) in excellent agreement with the Onsager theory. At higher electric field values, we obtain a solution in power series of the external field using the Onsager theory.

  7. Search for extended gamma ray emission in Markarian 421 using VERITAS observations

    CERN Document Server

    ,

    2014-01-01

    Very high energy (VHE: >100 GeV) gamma rays coming from AGN can pair-produce on the intergalactic background light generating an electromagnetic cascade. If the Intergalactic Magnetic Field (IGMF) is sufficiently strong, this cascade may result in an extended isotropic emission of photons around the source, or halo. Using VERITAS observations of the blazar Markarian 421, we search for extended emission by comparing the source angular distribution (${\\theta}^2$) from a quiescent period with one coming from a flare period, which can be considered as halo-free. ${\\chi}^2$ test showed no significant statistical differences between the samples, suggesting that the effect is either non-existent or too weak to be detected. We calculated upper limits for the extended flux considering different angle ranges, the most stringent being <8% of the Crab Nebulae flux (C.U), in the range $0\\deg \\leq {\\theta} \\leq 0.1\\deg$ .

  8. Free ion yield observed in liquid isooctane irradiated by gamma rays. Comparison with the Onsager theory.

    Science.gov (United States)

    Pardo, J; Franco, L; Gómez, F; Iglesias, A; Lobato, R; Mosquera, J; Pazos, A; Pena, J; Pombar, M; Rodríguez, A; Sendón, J

    2004-05-21

    We have analysed data on the free ion yield observed in liquid isooctane irradiated by 60Co gamma rays within the framework of the Onsager theory about initial recombination. Several distribution functions describing the electron thermalization distance have been used and compared with the experimental results: a delta function, a Gaussian-type function and an exponential function. A linear dependence between the free ion yield and the external electric field has been found at low-electric-field values (E < or = 1.2 x 10(3) V mm(-1)) in excellent agreement with the Onsager theory. At higher electric field values, we obtain a solution in power series of the external field using the Onsager theory.

  9. Gamma-ray Bursts and Other Observations: Constraints on Cosmological Parameters and Dark Energy Models

    Science.gov (United States)

    Liu, J. W.; Wang, F. Y.

    2011-11-01

    We use the newly released Union2 SNe Ia dataset to constrain cosmographic parameters, namely deceleration, jerk and snap parameters (q_0,j_0 and s_0), then calibrate five luminosity relations of gamma-ray bursts (GRBs) at redshift z≤1.4. Supposing that the GRB luminosity relations do not evolve with redshift, we obtain the distance moduli of 66 high-redshift GRBs. At last, we combine the observation datasets including Cosmic Microwave Background, Baryon Acoustic Oscillations and 116 GRBs to constrain some widely-discussed dark energy models. We find the ΛCDM model is the best according to the Bayesian Information Criterion, and the JBP model is the best according to the Akaike Information Criterion.

  10. Optical Afterglow Observations of the Unusual Short-Duration Gamma-Ray Burst 040924

    CERN Document Server

    Huang, K Y; Filippenko, A V; Hu, J H; Ip, W H; Kuo, P H; Li, W; Lin, H C; Lin, Z Y; Makishima, K; Onda, K; Qiu, Y; Tamagawa, T

    2005-01-01

    The 1-m telescope at Lulin Observatory and the 0.76-m Katzman Automatic Imaging Telescope at Lick Observatory were used to observe the optical afterglow of the short-duration (1.2--1.5 s) gamma-ray burst (GRB) 040924. This object has a soft high-energy spectrum, thus making it an exceptional case, perhaps actually belonging to the short-duration tail of the long-duration GRBs. Our data, combined with other reported measurements, show that the early R-band light curve can be described by two power laws with index alpha = -0.7 (at t = 16-50 min) and alpha = -1.06 (at later times). The rather small difference in the spectral indices can be more easily explained by an afterglow model invoking a cooling break rather than a jet break.

  11. High-energy gamma-ray and hard X-ray observations of Cyg X-3

    Science.gov (United States)

    Hermsen, W.; Bloemen, J. B. G. M.; Jansen, F. A.; Bennett, K.; Buccheri, R.; Mastichiadis, A.; Mayer-Hasselwander, H. A.; Strong, A. W.; Oezel, M. E.; Pollock, A. M. T.

    1987-01-01

    COS-B viewed the Cyg X-3 region seven times between November, 1975, and February, 1982; a search for steady gamma-ray emission pulsed at the characteristic 4.8-hour period did not reveal its source. Leiden-MIT balloon experiment observations of Cyg X-3 in May, 1979 show the 4.8-hour modulation with sinusoidal light curve and modulation depth of 0.30, for energies of up to about 140 keV. The strong variability of Cyg X-3 over more than one order of magnitude at energies below 20 keV does not emerge in the data collected at hard X-ray energies.

  12. INTEGRAL and XMM-Newton Observations of the Weak Gamma-Ray Burst GRB 030227

    Science.gov (United States)

    Mereghetti, S.; Götz, D.; Tiengo, A.; Beckmann, V.; Borkowski, J.; Courvoisier, T. J.-L.; von Kienlin, A.; Schoenfelder, V.; Roques, J. P.; Bouchet, L.; Ubertini, P.; Castro-Tirado, A.; Lebrun, F.; Paul, J.; Lund, N.; Mas-Hesse, J. M.; Hermsen, W.; den Hartog, P. R.; Winkler, C.

    2003-06-01

    We present International Gamma-Ray Astrophysical Laboratory (INTEGRAL) and XMM-Newton observations of the prompt γ-ray emission and the X-ray afterglow of GRB 030227, the first gamma-ray burst for which the quick localization obtained with the INTEGRAL Burst Alert System has led to the discovery of X-ray and optical afterglows. GRB 030227 had a duration of about 20 s and a peak flux of ~1.1 photons cm-2 s-1 in the 20-200 keV energy range. The time-averaged spectrum can be fitted by a single power law with photon index ~2, and we find some evidence for a hard-to-soft spectral evolution. The X-ray afterglow has been detected starting only 8 hr after the prompt emission, with a 0.2-10 keV flux decreasing as t-1 from 1.3×10-12 to 5×10-13 ergs cm-2 s-1. The afterglow spectrum is well described by a power law with photon index 1.94+/-0.05 modified by a redshifted neutral absorber with column density of several 1022 cm-2. A possible emission line at 1.67 keV could be due to Fe for a redshift z~3, consistent with the value inferred from the absorption. Based on observations with INTEGRAL, an ESA project with instruments and science data center funded by ESA member states (especially the PI countries: Denmark, France, Germany, Italy, Switzerland, and Spain), the Czech Republic, and Poland and with the participation of Russia and the US, and XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA member states and the US.

  13. Indirect dark matter search with diffuse gamma rays from the Galactic Center with the Alpha Magnetic Spectrometer

    Science.gov (United States)

    Jacholkowska, A.; Lamanna, G.; Nuss, E.; Bolmont, J.; Adloff, C.; Alcaraz, J.; Battiston, R.; Brun, P.; Burger, W. J.; Choutko, V.; Coignet, G.; Falvard, A.; Fiandrini, E.; Girard, L.; Goy, C.; Jedamzik, K.; Kossakowski, R.; Moultaka, G.; Natale, S.; Pochon, J.; Pohl, M.; Rosier-Lees, S.; Sapinski, M.; Sevilla Noarbe, I.; Vialle, J. P.

    2006-07-01

    The detection of nonbaryonic dark matter through its gamma-ray annihilation in the center of our galaxy has been studied. The gamma fluxes according to different models have been simulated and compared to those expected to be observed with the Alpha Magnetic Spectrometer (AMS), during a long-term mission on board of the international space station. Under the assumption that the dark matter is composed of the lightest, stable supersymmetric particle, the neutralino, the results of the simulations in the framework of minimal supergravity models, show that with a cuspy dark matter halo profile or a clumpy halo, the annihilation gamma-ray signal would be detected by AMS. More optimistic perspectives are obtained with the anomaly mediated supersymmetry breaking (AMSB) model. The latter leads also to a cosmologically important Li2 abundance. Finally, the discovery potential for the massive Kaluza-Klein dark matter candidates has been evaluated and their detection looks feasible.

  14. An indirect dark matter search with diffuse gamma rays from the Galactic Centre: prospects for the Alpha Magnetic Spectrometer

    CERN Document Server

    Jacholkowska, A; Nuss, E; Adloff, C; Alcaraz, J; Battiston, R; Bolmont, J; Brun, P; Burger, W J; Choutko, V; Coignet, G; Falvard, A; Flandrini, E; Girard, L; Goy, C; Jedamzik, K; Kossakowski, R; Moultaka, G; Natale, S; Pochon, J; Pohl, M; Rosier-Lees, S; Sapinski, M; Noarbe, I S; Vialle, J P; Vialle, JP.

    2005-01-01

    The detection of non-baryonic dark matter through its gamma-ray annihilation in the centre of our galaxy has been studied. The gamma fluxes according to different models have been simulated and compared to those expected to be observed with the Alpha Magnetic Spectrometer (AMS), during a long-term mission on board of the International Space Station. Under the assumption that the dark matter halo is composed of the lightest, stable supersymmetric particle, the neutralino, the results of the simulations in the framework of mSUGRA models, show that with a cuspy dark matter halo or a clumpy halo, the annihilation gamma-ray signal would be detected by AMS. More optimistic perspectives are obtained with the Anomaly Mediated Supersymmetry Breaking (AMSB) model. The latter leads also to a cosmologically important 6Li abundance. Finally, the discovery potential for the massive Kaluza-Klein dark matter candidates has been evaluated and their detection looks feasible.

  15. Fermi LAT observation of renewed and strong GeV gamma-ray activity from blazar CTA 102

    Science.gov (United States)

    Ciprini, Stefano

    2016-12-01

    The Large Area Telescope (LAT), one of the two instruments on the Fermi Gamma-ray Space Telescope, has observed a new phase of strong gamma-ray activity from a source positionally consistent with the flat spectrum radio quasar CTA 102 (also known as 4C +11.69, PKS 2230+11, 3FGL J2232.5+1143) with VLBI coordinates, (J2000.0), R.A.: 338.151704 deg, Dec.: 11.730807 deg (Johnston et al. 1995, AJ, 110, 880).

  16. Broad Line Radio Galaxies Observed with Fermi-LAT: The Origin of the GeV Gamma-Ray Emission

    Energy Technology Data Exchange (ETDEWEB)

    Kataoka, J.; /Waseda U., RISE; Stawarz, L.; /JAXA, Sagamihara /Jagiellonian U., Astron. Observ.; Takahashi, Y.; /Waseda U., RISE; Cheung, C.C.; /Natl. Acad. Sci. /Naval Research Lab, Wash., D.C.; Hayashida, M.; /SLAC /Stanford U., HEPL /KIPAC, Menlo Park; Grandi, P.; /Bologna Observ.; Burnett, T.H.; /Washington U., Seattle; Celotti, A.; /SISSA, Trieste; Fegan, S.J.; Fortin, P.; /Ecole Polytechnique; Maeda, K.; Nakamori, T.; /Waseda U., RISE; Taylor, G.B.; /New Mexico U.; Tosti, G.; /INFN, Perugia /Perugia U.; Digel, S.W.; /SLAC /Stanford U., HEPL /KIPAC, Menlo Park; McConville, W.; /NASA, Goddard /Maryland U.; Finke, J.; /Naval Research Lab, Wash., D.C.; D' Ammando, F.; /IASF, Palermo /INAF, Rome

    2012-06-07

    We report on a detailed investigation of the {gamma}-ray emission from 18 broad line radio galaxies (BLRGs) based on two years of Fermi Large Area Telescope (LAT) data. We confirm the previously reported detections of 3C 120 and 3C 111 in the GeV photon energy range; a detailed look at the temporal characteristics of the observed {gamma}-ray emission reveals in addition possible flux variability in both sources. No statistically significant {gamma}-ray detection of the other BLRGs was however found in the considered dataset. Though the sample size studied is small, what appears to differentiate 3C 111 and 3C 120 from the BLRGs not yet detected in {gamma}-rays is the particularly strong nuclear radio flux. This finding, together with the indications of the {gamma}-ray flux variability and a number of other arguments presented, indicate that the GeV emission of BLRGs is most likely dominated by the beamed radiation of relativistic jets observed at intermediate viewing angles. In this paper we also analyzed a comparison sample of high accretion-rate Seyfert 1 galaxies, which can be considered radio-quiet counterparts of BLRGs, and found none were detected in {gamma}-rays. A simple phenomenological hybrid model applied for the broad-band emission of the discussed radio-loud and radio-quiet type 1 active galaxies suggests that the relative contribution of the nuclear jets to the accreting matter is {ge} 1% on average for BLRGs, while {le} 0.1% for Seyfert 1 galaxies.

  17. MAGIC gamma-ray and multifrequency observations of flat spectrum radio quasar PKS 1510-089 in early 2012

    CERN Document Server

    Aleksić, J; Antonelli, L A; Antoranz, P; Babic, A; Bangale, P; de Almeida, U Barres; Barrio, J A; González, J Becerra; Bednarek, W; Bernardini, E; Biland, A; Blanch, O; Bonnefoy, S; Bonnoli, G; Borracci, F; Bretz, T; Carmona, E; Carosi, A; Carreto-Fidalgo, D; Colin, P; Colombo, E; Contreras, J L; Cortina, J; Covino, S; Da Vela, P; Dazzi, F; De Angelis, A; De Caneva, G; De Lotto, B; Mendez, C Delgado; Doert, M; Domínguez, A; Prester, D Dominis; Dorner, D; Doro, M; Einecke, S; Eisenacher, D; Elsaesser, D; Farina, E; Ferenc, D; Fonseca, M V; Font, L; Frantzen, K; Fruck, C; López, R J García; Garczarczyk, M; Terrats, D Garrido; Gaug, M; Godinović, N; Muñoz, A González; Gozzini, S R; Hadasch, D; Hayashida, M; Herrera, J; Herrero, A; Hildebrand, D; Hose, J; Hrupec, D; Idec, W; Kadenius, V; Kellermann, H; Kodani, K; Konno, Y; Krause, J; Kubo, H; Kushida, J; La Barbera, A; Lelas, D; Lewandowska, N; Lindfors, E; Lombardi, S; López, M; López-Coto, R; López-Oramas, A; Lorenz, E; Lozano, I; Makariev, M; Mallot, K; Maneva, G; Mankuzhiyil, N; Mannheim, K; Maraschi, L; Marcote, B; Mariotti, M; Martínez, M; Mazin, D; Menzel, U; Meucci, M; Miranda, J M; Mirzoyan, R; Moralejo, A; Munar-Adrover, P; Nakajima, D; Niedzwiecki, A; Nilsson, K; Nishijima, K; Noda, K; Nowak, N; Orito, R; Overkemping, A; Paiano, S; Palatiello, M; Paneque, D; Paoletti, R; Paredes, J M; Paredes-Fortuny, X; Partini, S; Persic, M; Prada, F; Moroni, P G Prada; Prandini, E; Preziuso, S; Puljak, I; Reinthal, R; Rhode, W; Ribó, M; Rico, J; Garcia, J Rodriguez; Rügamer, S; Saggion, A; Saito, T; Saito, K; Satalecka, K; Scalzotto, V; Scapin, V; Schultz, C; Schweizer, T; Shore, S N; Sillanpää, A; Sitarek, J; Snidaric, I; Sobczynska, D; Spanier, F; Stamatescu, V; Stamerra, A; Steinbring, T; Storz, J; Strzys, M; Sun, S; Surić, T; Takalo, L; Takami, H; Tavecchio, F; Temnikov, P; Terzić, T; Tescaro, D; Teshima, M; Thaele, J; Tibolla, O; Torres, D F; Toyama, T; Treves, A; Uellenbeck, M; Vogler, P; Wagner, R M; Zandanel, F; Zanin, R; Lucarelli, F; Pittori, C; Vercellone, S; Verrecchia, F; Buson, S; D'Ammando, F; Stawarz, L; Giroletti, M; Orienti, M; Mundell, C; Steele, I; Zarpudin, B; Raiteri, C M; Villata, M; Sandrinelli, A; Lähteenäki, A; Tammi, J; Tornikoski, M; Hovatta, T; Readhead, A C S; Max-Moerbeck, W; Richards, J L; Jorstad, S; Marscher, A; Gurwell, M A; Larionov, V M; Blinov, D A; Konstantinova, T S; Kopatskaya, E N; Larionova, L V; Larionova, E G; Morozova, D A; Troitsky, I S; Mokrushina, A A; Pavlova, Yu V; Chen, W P; Lin, H C; Panwar, N; Agudo, I; Casadio, C; Gómez, J L; Molina, S N; Kurtanidze, O M; Nikolashvili, M G; Kurtanidze, S O; Chigladze, R A; Acosta-Pulido, J A; Carnerero, M I; Manilla-Robles, A; Ovcharov, E; Bozhilov, V; Metodieva, I; Aller, M F; Aller, H D; Fuhrmann, L; Angelakis, E; Nestoras, I; Krichbaum, T P; Zensus, J A; Ungerechts, H; Sievers, A; Riquelme, D

    2014-01-01

    Among more than fifty blazars detected in very high energy (VHE, E>100GeV) gamma-rays, only three belong to the subclass of Flat Spectrum Radio Quasars (FSRQs). MAGIC observed FSRQ PKS 1510-089 in February-April 2012 during a high activity state in the high energy (HE, E>100 MeV) gamma-ray band observed by AGILE and Fermi. MAGIC observations result in the detection of a source with significance of 6.0 sigma. In agreement with the previous VHE observations of the source, we find no statistically significant variability during the MAGIC observations in daily, weekly or monthly time scales. The other two known VHE FSRQs have shown daily scale to sub-hour variability. We study the multifrequency behaviour of the source at the epoch of MAGIC observation, collecting quasi-simultaneous data at radio and optical (GASP-WEBT and F-Gamma collaborations, REM, Steward, Perkins, Liverpool, OVRO and VLBA telescopes), X-ray (Swift satellite) and HE gamma-ray frequencies. The gamma-ray SED combining AGILE, Fermi and MAGIC dat...

  18. Fermi Solar Flare X-Ray and Gamma-Ray Observations

    Data.gov (United States)

    National Aeronautics and Space Administration — The Fermi Gamma-ray Space Telescope was launched in June 2008 to explore high-energy phenomena in the Universe. This GI program is targeted specifically at Fermi...

  19. SAS-2 high-energy gamma-ray observations of the Vela pulsar

    Science.gov (United States)

    Thompson, D. J.; Fichtel, C. E.; Kniffen, D. A.; Ogelman, H. B.

    1975-01-01

    The Second Small Astronomy Satellite (SAS-2) high-energy (in excess of 35 MeV) gamma-ray telescope has detected pulsed gamma-ray emission at the radio period from PSR 0833-45, the Vela pulsar, as well as an unpulsed flux from the Vela region. The pulsed emission consists of two peaks following the single radio peak by about 13 ms and 48 ms. The luminosity of the pulsed emission above 100 MeV from Vela is about 0.1 that of the pulsar NP 0532 in the Crab nebula, whereas the pulsed emission from Vela at optical wavelengths is less than 0.0002 that from the Crab. The relatively high intensity of the pulsed gamma-ray emission, and the double peak structure, compared with the single pulse in the radio emission, suggest that the high-energy gamma-ray pulsar emission may be produced under different conditions from those at lower energies.

  20. A Bright Gamma-ray Galactic Center Excess and Dark Dwarfs: Strong Tension for Dark Matter Annihilation Despite Milky Way Halo Profile and Diffuse Emission Uncertainties

    CERN Document Server

    Abazajian, Kevork N

    2015-01-01

    We incorporate Milky Way dark matter halo profile uncertainties, as well as an accounting of diffuse gamma-ray emission uncertainties in dark matter annihilation models for the Galactic Center Extended gamma-ray excess (GCE) detected by the Fermi Gamma Ray Space Telescope. The range of particle annihilation rate and masses expand when including these unknowns. However, empirical determinations of the Milky Way halo's local density and density profile leave the signal region to be in considerable tension with dark matter annihilation searches from combined dwarf galaxy analyses. Extreme changes to the Milky Way halo, which may be possible in cases of extreme adiabatic contraction, must be adopted to escape these constraints in a dark matter annihilation model for the GCE. Dark matter annihilation models that produce the gamma-ray excess via differential mechanisms in the GCE and dwarfs may circumvent this tension.

  1. Compact sources as the origin of the soft gamma-ray emission of the Milky Way

    DEFF Research Database (Denmark)

    Lebrun, F.; Terrier, R.; Bazzano, A.

    2004-01-01

    The Milky Way is known to be an abundant source of gamma-ray photons(1), now determined to be mainly diffuse in nature and resulting from interstellar processes(2). In the soft gamma-ray domain, point sources are expected to dominate, but the lack of sensitive high-resolution observations did...... show that these sources account for the entirety of the Milky Way's emission in soft gamma-rays, leaving at most a minor role for diffuse processes....

  2. Very high energy gamma-ray follow-up observations of novae and dwarf novae with the MAGIC telescopes

    CERN Document Server

    López-Coto, R; Bednarek, W; Desiante, R; Longo, F

    2015-01-01

    In the last few years the Fermi-LAT instrument has detected GeV gamma-ray emission from several novae. Such GeV emission can be interpreted in terms of inverse Compton emission from electrons accelerated in the shock or in terms of emission from hadrons accelerated in the same conditions. The latter might reach much higher energies and could produce a second component in the gamma-ray spectrum at TeV energies. We perform follow-up observations of selected novae and dwarf novae in search of the second component in TeV energy gamma rays. This can shed light on the acceleration process of leptons and hadrons in nova explosions. We have performed observations with the MAGIC telescopes of 3 sources, a symbiotic nova YY Her, a dwarf nova ASASSN-13ax and a classical nova V339 Del, shortly after their outbursts. We did not detect TeV gamma-ray emission from any of the objects observed. The TeV upper limits from MAGIC observations and the GeV detection by Fermi constrain the acceleration parameters for electrons and h...

  3. Observation of Multi-TeV Gamma Rays from the Crab Nebula using the Tibet Air Shower Array.

    Science.gov (United States)

    Amenomori; Ayabe; Cao; Danzengluobu; Ding; Feng; Fu; Guo; He; Hibino; Hotta; Huang; Huo; Izu; Jia; Kajino; Kasahara; Katayose; Labaciren; Li; Lu; Lu; Luo; Meng; Mizutani; Mu; Nanjo; Nishizawa; Ohnishi; Ohta; Ouchi; Ren; Saito; Sakata; Sasaki; Shi; Shibata; Shiomi; Shirai; Sugimoto; Taira; Tan; Tateyama; Torii; Utsugi; Wang; Wang; Xu; Yamamoto; Yu; Yuan; Yuda; Zhang; Zhang; Zhang; Zhang; Zhang; Zhaxisangzhu; Zhaxiciren; Zhou; Collaboration)

    1999-11-10

    The Tibet experiment, operating at Yangbajing (4300 m above sea level), is the lowest energy air shower array, and the new high-density array constructed in 1996 is sensitive to gamma-ray air showers at energies as low as 3 TeV. With this new array, the Crab Nebula was observed in multi-TeV gamma-rays and a signal was detected at the 5.5 sigma level. We also obtained the energy spectrum of gamma-rays in the energy region above 3 TeV which partially overlaps those observed with imaging atmospheric Cerenkov telescopes. The Crab spectrum observed in this energy region can be represented by the power-law fit dJ&parl0;E&parr0;&solm0;dE=&parl0;4.61+/-0.90&parr0;x10-12&parl0;E&solm0;3 TeV&parr0;-2.62+/-0.17 cm-2 s-1 TeV-1. This is the first observation of gamma-ray signals from point sources with a conventional air shower array using scintillation detectors.

  4. $\\gamma$-Ray Bursts Cannot Produce the Observed Cosmic Rays Above $10^{19} eV$

    CERN Document Server

    Stecker, F W

    2000-01-01

    Using recent results indicating that the redshift distribution of gamma-ray bursts most likely follows the redshift evolution of the star formation rate, I show that the energy input from these bursts at low redshifts is insufficient to account for the observed flux of ultrahigh energy cosmic rays with energies above $10^{19}$ eV.

  5. Gamma-ray flaring activity from the gravitationally lensed blazar PKS 1830-211 observed by Fermi LAT

    CERN Document Server

    Abdo, A A; Ajello, M; Allafort, A; Amin, M A; Baldini, L; Barbiellini, G; Bastieri, D; Bechtol, K; Bellazzini, R; Blandford, R D; Bonamente, E; Borgland, A W; Bregeon, J; Brigida, M; Buehler, R; Bulmash, D; Buson, S; Caliandro, G A; Cameron, R A; Caraveo, P A; Cavazzuti, E; Cecchi, C; Charles, E; Cheung, C C; Chiang, J; Chiaro, G; Ciprini, S; Claus, R; Cohen-Tanugi, J; Conrad, J; Corbet, R H D; Cutini, S; D'Ammando, F; de Angelis, A; de Palma, F; Dermer, C D; Drell, P S; Drlica-Wagner, A; Favuzzi, C; Finke, J; Focke, W B; Fukazawa, Y; Fusco, P; Gargano, F; Gasparrini, D; Gehrels, N; Giglietto, N; Giordano, F; Giroletti, M; Glanzman, T; Grenier, I A; Grove, J E; Guiriec, S; Hadasch, D; Hayashida, M; Hays, E; Hughes, R E; Inoue, Y; Jackson, M S; Jogler, T; Jòhannesson, G; Johnson, A S; Kamae, T; Knödlseder, J; Kuss, M; Lande, J; Larsson, S; Latronico, L; Longo, F; Loparco, F; Lott, B; Lovellette, M N; Lubrano, P; Madejski, G M; Mazziotta, M N; Mehault, J; Michelson, P F; Mizuno, T; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Nemmen, R; Nuss, E; Ohno, M; Ohsugi, T; Paneque, D; Perkins, J S; Pesce-Rollins, M; Piron, F; Pivato, G; Porter, T A; Rainò, S; Rando, R; Razzano, M; Reimer, A; Reimer, O; Reyes, L C; Ritz, S; Romoli, C; Roth, M; Parkinson, P M Saz; Sgrò, C; Siskind, E J; Spandre, G; Spinelli, P; Takahashi, H; Takeuchi, Y; Tanaka, T; Thayer, J G; Thayer, J B; Thompson, D J; Tibaldo, L; Tinivella, M; Torres, D F; Tosti, G; Troja, E; Tronconi, V; Usher, T L; Vandenbroucke, J; Vasileiou, V; Vianello, G; Vitale, V; Waite, A P; Werner, M; Winer, B L; Wood, K S

    2014-01-01

    The Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope routinely detects the highly dust-absorbed, reddened, and MeV-peaked flat spectrum radio quasar PKS 1830-211 (z=2.507). Its apparent isotropic gamma-ray luminosity (E>100 MeV) averaged over $\\sim$ 3 years of observations and peaking on 2010 October 14/15 at 2.9 X 10^{50} erg s^{-1}, makes it among the brightest high-redshift Fermi blazars. No published model with a single lens can account for all of the observed characteristics of this complex system. Based on radio observations, one expects time delayed variability to follow about 25 days after a primary flare, with flux about a factor 1.5 less. Two large gamma-ray flares of PKS 1830-211 have been detected by the LAT in the considered period and no substantial evidence for such a delayed activity was found. This allows us to place a lower limit of about 6 on the gamma rays flux ratio between the two lensed images. Swift XRT observations from a dedicated Target of Opportunity program ...

  6. Prospects for joint gravitational wave and short gamma-ray burst observations

    CERN Document Server

    Clark, J; Fairhurst, S; Harry, I W; Macdonald, E; Macleod, D; Sutton, P J; Williamson, A R

    2014-01-01

    We present a detailed evaluation of the expected rate of joint gravitational-wave and short gamma-ray burst (GRB) observations over the coming years. We begin by evaluating the improvement in distance sensitivity of the gravitational wave search that arises from using the GRB observation to restrict the time and sky location of the source. We argue that this gives a 25% increase in sensitivity when compared to an all-sky, all-time search, corresponding to more than doubling the number of detectable gravitational wave signals associated with GRBs. Using this, we present the expected rate of joint observations with the advanced LIGO and Virgo instruments, taking into account the expected evolution of the gravitational wave detector network. We show that in the early advanced gravitational wave detector observing runs, from 2015-2017, there is only a small chance of a joint observation. However, as the detectors approach their design sensitivities, there is a good chance of joint observations provided wide field...

  7. Very-high-energy {\\gamma}-ray observations of novae and dwarf novae with the MAGIC telescopes

    CERN Document Server

    Ahnen, M L; Antonelli, L A; Antoranz, P; Babic, A; Banerjee, B; Bangale, P; de Almeida, U Barres; Barrio, J A; González, J Becerra; Bednarek, W; Bernardini, E; Biasuzzi, B; Biland, A; Blanch, O; Bonnefoy, S; Bonnoli, G; Borracci, F; Bretz, T; Carmona, E; Carosi, A; Chatterjee, A; Clavero, R; Colin, P; Colombo, E; Contreras, J L; Cortina, J; Covino, S; Da Vela, P; Dazzi, F; De Angelis, A; De Caneva, G; De Lotto, B; Wilhelmi, E de Oña; Mendez, C Delgado; Di Pierro, F; Prester, D Dominis; Dorner, D; Doro, M; Einecke, S; Glawion, D Eisenacher; Elsaesser, D; Fernández-Barral, A; Fidalgo, D; Fonseca, M V; Font, L; Frantzen, K; Fruck, C; Galindo, D; López, R J García; Garczarczyk, M; Terrats, D Garrido; Gaug, M; Giammaria, P; Godinović, N; Muñoz, A González; Guberman, D; Hanabata, Y; Hayashida, M; Herrera, J; Hose, J; Hrupec, D; Hughes, G; Idec, W; Kellermann, H; Kodani, K; Konno, Y; Kubo, H; Kushida, J; La Barbera, A; Lelas, D; Lewandowska, N; Lindfors, E; Lombardi, S; Longo, F; López, M; López-Coto, R; López-Oramas, A; Lorenz, E; Majumdar, P; Makariev, M; Mallot, K; Maneva, G; Manganaro, M; Mannheim, K; Maraschi, L; Marcote, B; Mariotti, M; Martínez, M; Mazin, D; Menzel, U; Miranda, J M; Mirzoyan, R; Moralejo, A; Nakajima, D; Neustroev, V; Niedzwiecki, A; Rosillo, M Nievas; Nilsson, K; Nishijima, K; Noda, K; Orito, R; Overkemping, A; Paiano, S; Palacio, J; Palatiello, M; Paneque, D; Paoletti, R; Paredes, J M; Paredes-Fortuny, X; Persic, M; Poutanen, J; Moroni, P G Prada; Prandini, E; Puljak, I; Reinthal, R; Rhode, W; Ribó, M; Rico, J; Garcia, J Rodriguez; Saito, T; Saito, K; Satalecka, K; Scapin, V; Schultz, C; Schweizer, T; Sillanpää, A; Sitarek, J; Snidaric, I; Sobczynska, D; Stamerra, A; Steinbring, T; Strzys, M; Takalo, L; Takami, H; Tavecchio, F; Temnikov, P; Terzić, T; Tescaro, D; Teshima, M; Thaele, J; Torres, D F; Toyama, T; Treves, A; Verguilov, V; Vovk, I; Will, M; Zanin, R; Desiante, R; Hays, E

    2015-01-01

    Context. In the last five years the Fermi Large Area Telescope (LAT) instrument detected GeV {\\gamma}-ray emission from five novae. The GeV emission can be interpreted in terms of an inverse Compton process of electrons accelerated in a shock. In this case it is expected that protons in the same conditions can be accelerated to much higher energies. Consequently they may produce a second component in the {\\gamma}-ray spectrum at TeV energies. Aims. We aim to explore the very-high-energy domain to search for {\\gamma}-ray emission above 50 GeV and to shed light on the acceleration process of leptons and hadrons in nova explosions. Methods. We have performed observations with the MAGIC telescopes of the classical nova V339 Del shortly after the 2013 outburst, triggered by optical and subsequent GeV {\\gamma}-ray detec- tions. We also briefly report on VHE observations of the symbiotic nova YY Her and the dwarf nova ASASSN-13ax. We complement the TeV MAGIC observations with the analysis of con- temporaneous Fermi-...

  8. Multiwavelength observations of the gamma-ray emitting narrow-line Seyfert 1 PMN J0948+0022 in 2011

    CERN Document Server

    D'Ammando, F; Orienti, M; Raiteri, C M; Angelakis, E; Carraminana, A; Carrasco, L; Drake, A J; Fuhrmann, L; Giroletti, M; Hovatta, T; Max-Moerbeck, W; Porras, A; Readhead, A C S; Recillas, E; Richards, J L

    2013-01-01

    We report on radio-to-gamma-ray observations during 2011 May-September of PMN J0948+0022, the first narrow-line Seyfert 1 (NLSy1) galaxy detected in gamma-rays by Fermi-LAT. Strong variability was observed in gamma-rays, with two flaring periods peaking on 2011 June 20 and July 28. The variability observed in optical and near-infrared seems to have no counterpart in gamma-rays. This different behaviour could be related to a bending and inhomogeneous jet or a turbulent extreme multi-cell scenario. The radio spectra showed a variability pattern typical of relativistic jets. The XMM spectrum shows that the emission from the jet dominates above 2 keV, while a soft X-ray excess is evident in the low-energy part of the X-ray spectrum. Models where the soft emission is partly produced by blurred reflection or Comptonisation of the thermal disc emission provide good fits to the data. The X-ray spectral slope is similar to that found in radio-quiet NLSy1, suggesting that a standard accretion disc is present, as expect...

  9. GAMMA-RAY OBSERVATIONS OF CYGNUS X-1 ABOVE 100 MeV IN THE HARD AND SOFT STATES

    Energy Technology Data Exchange (ETDEWEB)

    Sabatini, S.; Tavani, M.; Del Santo, M.; Campana, R.; Evangelista, Y.; Piano, G.; Del Monte, E.; Giusti, M.; Striani, E. [INAF/IAPS-Roma, I-00133 Roma (Italy); Coppi, P. [Yale University, P.O. Box 208101, New Haven, CT 06520-8101 (United States); Pooley, G. [Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE (United Kingdom); Chen, A.; Giuliani, A. [INAF/IASF-Milano, I-20133 Milano (Italy); Bulgarelli, A. [INAF/IASF-Bologna, I-40129 Bologna (Italy); Cattaneo, P. W. [INFN-Pavia, I-27100 Pavia (Italy); Colafrancesco, S. [INAF-OAR, I-00040 Monteporzio Catone (Italy); Longo, F. [Dip. Fisica and INFN Trieste, I-34127 Trieste (Italy); Morselli, A. [INFN Roma Tor Vergata, I-00133 Roma (Italy); Pellizzoni, A. [INAF-OAC, I-09012 Capoterra (Italy); Pilia, M. [ASTRON, The Netherlands Institute for Radio Astronomy, Postbus 2, 7990 AA, Dwingeloo (Netherlands); and others

    2013-04-01

    We present the results of multi-year gamma-ray observations by the AGILE satellite of the black hole binary system Cygnus X-1. In a previous investigation we focused on gamma-ray observations of Cygnus X-1 in the hard state during the period mid-2007/2009. Here we present the results of the gamma-ray monitoring of Cygnus X-1 during the period 2010/mid-2012 which includes a remarkably prolonged 'soft state' phase (2010 June-2011 May). Previous 1-10 MeV observations of Cyg X-1 in this state hinted at a possible existence of a non-thermal particle component with substantial modifications of the Comptonized emission from the inner accretion disk. Our AGILE data, averaged over the mid-2010/mid-2011 soft state of Cygnus X-1, provide a significant upper limit for gamma-ray emission above 100 MeV of F{sub soft} < 20 Multiplication-Sign 10{sup -8} photons cm{sup -2} s{sup -1} , excluding the existence of prominent non-thermal emission above 100 MeV during the soft state of Cygnus X-1. We discuss theoretical implications of our findings in the context of high-energy emission models of black hole accretion. We also discuss possible gamma-ray flares detected by AGILE. In addition to a previously reported episode observed by AGILE in 2009 October during the hard state, we report a weak but important candidate for enhanced emission which occurred at the end of 2010 June (2010 June 30 10:00-2010 July 2 10:00 UT) exactly coinciding with a hard-to-soft state transition and before an anomalous radio flare. An appendix summarizes all previous high-energy observations and possible detections of Cygnus X-1 above 1 MeV.

  10. Broadband Observations of the Gamma-ray Emitting Narrow Line Seyfert 1 Galaxy SBS 0846+513

    CERN Document Server

    Paliya, Vaidehi S; Stalin, C S; Pandey, S B

    2016-01-01

    We present the results of our broadband study of the $\\gamma$-ray emitting narrow line Seyfert 1 (NLSy1) galaxy SBS 0846+513 ($z=0.585$). This includes multi-band flux variations, $\\gamma$-ray spectral analysis, broad band spectral energy distribution (SED) modeling, and intranight optical variability (INOV) observations carried over 6 nights between 2012 November and 2013 March using the 2 m Himalayan Chandra Telescope and the 1.3 m telescope at Devasthal. Multiple episodes of flaring activity are seen in the $\\gamma$-ray light curve of the source which are also reflected in the observations at lower frequencies. A statistically significant curvature is noticed in the seven years averaged $\\gamma$-ray spectrum, thus indicating its similarity with powerful flat spectrum radio quasars (FSRQs). Modeling the SEDs with a one zone leptonic emission model hints the optical-UV spectrum to be dominated by synchrotron radiation, whereas, inverse Compton scattering of broad line region photons reproduces the $\\gamma$-r...

  11. Fermi LAT Observations of LS I +61 303: First Detection of an Orbital Modulation in GeV Gamma Rays

    Energy Technology Data Exchange (ETDEWEB)

    Abdo, A.A.; /Federal City Coll. /Naval Research Lab, Wash., D.C.; Ackermann, M.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Ajello, M.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Atwood, W.B.; /UC, Santa Cruz; Axelsson, M.; /Stockholm U., OKC /Stockholm U.; Baldini, L.; /INFN, Pisa; Ballet, J.; /DAPNIA, Saclay; Barbiellini, G.; /INFN, Trieste /Trieste U.; Bastieri, D.; /INFN, Padua /Padua U.; Baughman, B.M.; /Ohio State U.; Bechtol, K.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bellazzini, R.; /INFN, Pisa; Berenji, B.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Blandford, R.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bloom, E.D.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bonamente, E.; /INFN, Perugia /Perugia U.; Borgland, A.W.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bregeon, J.; /INFN, Pisa; Brez, A.; /INFN, Pisa; Brigida, M.; /Bari U. /INFN, Bari; Bruel, P.; /Ecole Polytechnique /Washington U., Seattle /Bari U. /INFN, Bari /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /IASF, Milan /Milan Polytechnic /DAPNIA, Saclay /ASDC, Frascati /INFN, Perugia /Perugia U. /NASA, Goddard /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /DAPNIA, Saclay /Naval Research Lab, Wash., D.C. /George Mason U. /NASA, Goddard /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /INFN, Perugia /Perugia U. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Montpellier U. /Sonoma State U. /Stockholm U., OKC /Royal Inst. Tech., Stockholm /Stockholm U. /DAPNIA, Saclay /NASA, Goddard /CSST, Baltimore /ASDC, Frascati /Naval Research Lab, Wash., D.C. /INFN, Trieste /Pavia U. /Bari U. /INFN, Bari /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /UC, Santa Cruz /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /SLAC /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Grenoble, CEN; /more authors..

    2012-04-02

    This Letter presents the first results from the observations of LS I +61{sup o}303 using Large Area Telescope data from the Fermi Gamma-Ray Space Telescope between 2008 August and 2009 March. Our results indicate variability that is consistent with the binary period, with the emission being modulated at 26.6 {+-} 0.5 days. This constitutes the first detection of orbital periodicity in high-energy gamma rays (20 MeV-100 GeV, HE). The light curve is characterized by a broad peak after periastron, as well as a smaller peak just before apastron. The spectrum is best represented by a power law with an exponential cutoff, yielding an overall flux above 100 MeV of 0.82 {+-} 0.03(stat) {+-} 0.07(syst) 10{sup -6} ph cm{sup -2} s{sup -1}, with a cutoff at 6.3 {+-} 1.1(stat) {+-} 0.4(syst) GeV and photon index {Gamma} = 2.21 {+-} 0.04(stat) {+-} 0.06(syst). There is no significant spectral change with orbital phase. The phase of maximum emission, close to periastron, hints at inverse Compton scattering as the main radiation mechanism. However, previous very high-energy gamma ray (>100 GeV, VHE) observations by MAGIC and VERITAS show peak emission close to apastron. This and the energy cutoff seen with Fermi suggest that the link between HE and VHE gamma rays is nontrivial.

  12. High-Resolution Timing Observations of Spin-Powered Pulsars with the AGILE Gamma-Ray Telescope

    CERN Document Server

    Pellizzoni, A; Possenti, A; Fornari, F; Caraveo, P; Del Monte, E; Mereghetti, S; Tavani, M; Argan, A; Trois, A; Burgay, M; Chen, A; Cognard, I; Costa, E; D'Amico, N; Esposito, P; Evangelista, Y; Feroci, M; Fuschino, F; Giuliani, A; Halpern, J; Hobbs, G; Hotan, A; Johnston, S; Krämer, M; Longo, F; Manchester, R N; Marisaldi, M; Palfreyman, J; Weltevrede, P; Barbiellini, G; Boffelli, F; Bulgarelli, A; Cattaneo, P W; Cocco, V; D'Ammando, F; De Paris, G; Di Cocco, G; Donnarumma, I; Fiorini, M; Froysland, T; Galli, M; Gianotti, F; Harding, A; Labanti, C; Lapshov, I; Lazzarotto, F; Lipari, P; Mauri, F; Morselli, A; Pacciani, L; Perotti, F; Picozza, P; Prest, M; Pucella, G; Rapisarda, M; Rappoldi, A; Soffitta, P; Trifoglio, M; Vallazza, E; Vercellone, S; Vittorini, V; Zambra, A; Zanello, D; Pittori, C; Verrecchia, F; Preger, B; Santolamazza, P; Giommi, P; Salotti, L

    2008-01-01

    AGILE is a small gamma-ray astronomy satellite mission of the Italian Space Agency dedicated to high-energy astrophysics launched in 2007 April. Its 1 microsecond absolute time tagging capability coupled with a good sensitivity in the 30 MeV-30 GeV range, with simultaneous X-ray monitoring in the 18-60 keV band, makes it perfectly suited for the study of gamma-ray pulsars following up on the CGRO/EGRET heritage. In this paper we present the first AGILE timing results on the known gamma-ray pulsars Vela, Crab, Geminga and B 1706-44. The data were collected from 2007 July to 2008 April, exploiting the mission Science Verification Phase, the Instrument Timing Calibration and the early Observing Pointing Program. Thanks to its large field of view, AGILE collected a large number of gamma-ray photons from these pulsars (about 10,000 pulsed counts for Vela) in only few months of observations. The coupling of AGILE timing capabilities, simultaneous radio/X-ray monitoring and new tools aimed at precise photon phasing,...

  13. The Katzman Automatic Imaging Telescope Gamma-Ray Burst Alert System, and Observations of GRB 020813

    CERN Document Server

    Li, W; Chornock, R; Jha, S; Li, Weidong; Filippenko, Alexei V.; Chornock, Ryan; Jha, Saurabh

    2003-01-01

    We present the technical details of the gamma-ray burst (GRB) alert system of the Katzman Automatic Imaging Telescope (KAIT) at Lick Observatory, and the successful observations of the GRB 020813 optical afterglow with this system. KAIT responds to GRB alerts robotically, interrupts its pre-arranged program, and takes a sequence of images for each GRB alert. A grid-imaging procedure is used to increase the efficiency of the early-time observations. Different sequences of images have been developed for different types of GRB alerts. With relatively fast telescope slew and CCD readout speed, KAIT can typically complete the first observation within 60 s after receiving a GRB alert, reaching a limiting magnitude of $\\sim 19$. Our reduction of the GRB 020813 data taken with KAIT shows that unfiltered magnitudes can be reliably transformed to a standard passband with a precision of $\\sim$5%, given that the color of the object is known. The GRB 020813 optical afterglow has an exceptionally slow early-time power-law ...

  14. The Observer's Guide to the Gamma-Ray Burst-Supernova Connection

    CERN Document Server

    Cano, Zach; Dai, Zi-Gao; Wu, Xue-Feng

    2016-01-01

    In this review we present a progress report of the connection between long-duration gamma-ray bursts (GRBs) and their accompanying supernovae (SNe). The analysis is from the point of view of an observer, with much of the emphasis placed on how observations, and the modelling of observations, have constrained what we known about GRB-SNe. We discuss their photometric and spectroscopic properties, their role as cosmological probes, including their measured luminosity$-$decline relationships, and how they can be used to measure the Hubble constant. We present a statistical analysis of their bolometric properties, and use this to determine the properties of the "average" GRB-SNe: which has a kinetic energy of $E_{\\rm K} \\approx 2.5\\times10^{52}$ erg, an ejecta mass of $M_{\\rm ej} \\approx 6$ M$_{\\odot}$, a nickel mass of $M_{\\rm Ni} \\approx 0.4$ M$_{\\odot}$, a peak photospheric velocity of $v_{\\rm ph} \\approx 21,000$ km s$^{-1}$, a peak bolometric luminosity of $L_{\\rm p} \\approx 1\\times10^{43}$ erg s$^{-1}$, and i...

  15. Two years of gamma-ray burst follow up observations with BOOTES-1

    Science.gov (United States)

    Castro Cerón, José María; Castro-Tirado, Alberto J.; Soldán, Jan; Hudec, René; Bernas, Martin; Páta, Petr; Mateo Sanguino, Tomás De Jesús; de Ugarte Postigo, Antonio; Berná, José Angel; Nekola, Martin; Gorosabel, Javier; de La Morena, Benito A.; Más-Hesse, J. Miguel; Giménez, Alvaro; Torres Riera, José

    2001-09-01

    The Burst Observer and Optical Transient Exploring System exeriment (BOOTES) is designed to provide a real time observing response to the detection of Gamma Ray bursts (GRBs) using wide field cameras imaging in the I, R and V bands and, later on, deeper imaging with small robotic telescopes. It is part, within the framework of a Spanish-Czech collaboration, of a wide ongoing effort to prepare for ESA's satellite INTEGRAL. We provide a brief technical description of BOOTES. Furthermore, a table listing the results for the BOOTES 1B-Narrow Field Camera (1B-NFC), of near simultaneous observations and others, starting 5 minutes after the events, is given since first light (July 98). Additionally we discuss other scientific objectives (regular monitoring of selected objects like variable stars, nearby galaxies and bright QSOs/AGNs for flaring behaviour) and results. To date we have obtained images for about 30 events with the 1B-NFC. In one of the last searches we detected an optical transient, candidate to be the optical counterpart of the GRB 000313, although such relation has not been established to absolute certainty yet.

  16. The ECLAIRs micro-satellite mission for gamma-ray burst multi-wavelength observations

    Science.gov (United States)

    Schanne, S.; Atteia, J.-L.; Barret, D.; Basa, S.; Boer, M.; Casse, F.; Cordier, B.; Daigne, F.; Klotz, A.; Limousin, O.; Manchanda, R.; Mandrou, P.; Mereghetti, S.; Mochkovitch, R.; Paltani, S.; Paul, J.; Petitjean, P.; Pons, R.; Ricker, G.; Skinner, G.

    2006-11-01

    Gamma-ray bursts (GRB)—at least those with a duration longer than a few seconds—are the most energetic events in the Universe and occur at cosmological distances. The ECLAIRs micro-satellite, to be launched in 2009, will provide multi-wavelength observations of GRB, to study their astrophysics and to use them as cosmological probes. Furthermore, in 2009 ECLAIRs is expected to be the only space-borne instrument capable of providing a GRB trigger in near real-time with sufficient localization accuracy for GRB follow-up observations with the powerful ground-based spectroscopic telescopes available by then. A “Phase A study” of the ECLAIRs project has recently been launched by the French Space Agency CNES, aiming at a detailed mission design and selection for flight in 2006. The ECLAIRs mission is based on a CNES micro-satellite of the “Myriade” family and dedicated ground-based optical telescopes. The satellite payload combines a 2 sr field-of-view coded aperture mask gamma-camera using 6400 CdTe pixels for GRB detection and localization with 10 arcmin precision in the 4 50 keV energy band, together with a soft X-ray camera for onboard position refinement to 1 arcmin. The ground-based optical robotic telescopes will detect the GRB prompt/early afterglow emission and localize the event to arcsec accuracy, for spectroscopic follow-up observations.

  17. The Large Aperture Gamma Ray Observatory as an Observational Alternative at High Altitude

    Science.gov (United States)

    Rosales, M.

    2011-10-01

    Although satellite observations have revealed some mysteries about the origin and location of cosmic rays at low energies, questions remain to be resolved in higher energy ranges (>1 GeV). However, the flow of particles at high energies is very low, large sensitive areas are necessary, so that the detection of secondary particles from observatories on the surface of the earth is a technically viable solution. While the Pierre Auger Observatory has such capacity given its 16000 m^2 of detectors, low height above sea level greatly reduces its detection capability. The Large Aperture Gamma Ray Observatory (LAGO) is an observational alternative that attempts to overcome this limitation. This project was started in 2005, placing water Cherenkov Detectors at high altitude. Observation sites have been selected with some basic requirements: altitude, academic and technical infrastructure, existence of a research group responsible for assembly and maintenance of the detectors and the analysis, visualization, divulgation and data storage. This paper presents the general status of the observatories of Sierra Negra-México, Chacaltaya-Bolívia, Marcapomacocha-Perú, Mérida-Venezuela and Bucaramanga-Colombia.

  18. The 2010 very high energy gamma-ray flare & 10 years of multi-wavelength observations of M 87

    CERN Document Server

    Abramowski, A; Aharonian, F; Akhperjanian, A G; Anton, G; Balzer, A; Barnacka, A; de Almeida, U Barres; Becherini, Y; Becker, J; Behera, B; Bernlöhr, K; Birsin, E; Biteau, J; Bochow, A; Boisson, C; Bolmont, J; Bordas, P; Brucker, J; Brun, F; Brun, P; Bulik, T; Büsching, I; Carrigan, S; Casanova, S; Cerruti, M; Chadwick, P M; Charbonnier, A; Chaves, R C G; Cheesebrough, A; Clapson, A C; Coignet, G; Cologna, G; Conrad, J; Dalton, M; Daniel, M K; Davids, I D; Degrange, B; Deil, C; Dickinson, H J; Djannati-Ataï, A; Domainko, W; Drury, L O'C; Dubus, G; Dutson, K; Dyks, J; Dyrda, M; Egberts, K; Eger, P; Espigat, P; Fallon, L; Farnier, C; Fegan, S; Feinstein, F; Fernandes, M V; Fiasson, A; Fontaine, G; Förster, A; Füßling, M; Gallant, Y A; Gast, H; Gérard, L; Gerbig, D; Giebels, B; Glicenstein, J F; Glück, B; Goret, P; Göring, D; Häffner, S; Hague, J D; Hampf, D; Hauser, M; Heinz, S; Heinzelmann, G; Henri, G; Hermann, G; Hinton, J A; Hoffmann, A; Hofmann, W; Hofverberg, P; Holler, M; Horns, D; Jacholkowska, A; de Jager, O C; Jahn, C; Jamrozy, M; Jung, I; Kastendieck, M A; Katarzyński, K; Katz, U; Kaufmann, S; Keogh, D; Khangulyan, D; Khélifi, B; Klochkov, D; Kluźniak, W; Kneiske, T; Komin, Nu; Kosack, K; Kossakowski, R; Laffon, H; Lamanna, G; Lennarz, D; Lohse, T; Lopatin, A; Lu, C -C; Marandon, V; Marcowith, A; Masbou, J; Maurin, D; Maxted, N; Mayer, M; McComb, T J L; Medina, M C; Méhault, J; Moderski, R; Moulin, E; Naumann, C L; Naumann-Godo, M; de Naurois, M; Nedbal, D; Nekrassov, D; Nguyen, N; Nicholas, B; Niemiec, J; Nolan, S J; Ohm, S; Wilhelmi, E de Oña; Opitz, B; Ostrowski, M; Oya, I; Panter, M; Arribas, M Paz; Pedaletti, G; Pelletier, G; Petrucci, P -O; Pita, S; Pühlhofer, G; Punch, M; Quirrenbach, A; Raue, M; Rayner, S M; Reimer, A; Reimer, O; Renaud, M; Reyes, R de los; Rieger, F; Ripken, J; Rob, L; Rosier-Lees, S; Rowell, G; Rudak, B; Rulten, C B; Ruppel, J; Sahakian, V; Sanchez, D A; Santangelo, A; Schlickeiser, R; Schöck, F M; Schulz, A; Schwanke, U; Schwarzburg, S; Schwemmer, S; Sheidaei, F; Skilton, J L; Sol, H; Spengler, G; Stawarz, Ł; Steenkamp, R; Stegmann, C; Stinzing, F; Stycz, K; Sushch, I; Szostek, A; Tavernet, J -P; Terrier, R; Tluczykont, M; Valerius, K; van Eldik, C; Vasileiadis, G; Venter, C; Vialle, J P; Viana, A; Vincent, P; Völk, H J; Volpe, F; Vorobiov, S; Vorster, M; Wagner, S J; Ward, M; White, R; Wierzcholska, A; Zacharias, M; Zajczyk, A; Zdziarski, A A; Zech, A; Zechlin, H -S; Aleksić, J; Antonelli, L A; Antoranz, P; Backes, M; Barrio, J A; Bastieri, D; González, J Becerra; Bednarek, W; Berdyugin, A; Berger, K; Bernardini, E; Biland, A; Blanch, O; Bock, R K; Boller, A; Bonnoli, G; Tridon, D Borla; Braun, I; Bretz, T; Cañellas, A; Carmona, E; Carosi, A; Colin, P; Colombo, E; Contreras, J L; Cortina, J; Cossio, L; Covino, S; Dazzi, F; De Angelis, A; del Pozo, E De Cea; De Lotto, B; Mendez, C Delgado; Ortega, A Diago; Doert, M; Domínguez, A; Prester, D Dominis; Dorner, D; Doro, M; Elsaesser, D; Ferenc, D; Fonseca, M V; Font, L; Fruck, C; López, R J García; Garczarczyk, M; Garrido, D; Giavitto, G; Godinović, N; Hadasch, D; Häfner, D; Herrero, A; Hildebrand, D; Höhne-Mönch, D; Hose, J; Hrupec, D; Huber, B; Jogler, T; Klepser, S; Krähenbühl, T; Krause, J; La Barbera, A; Lelas, D; Leonardo, E; Lindfors, E; Lombardi, S; López, M; Lorenz, E; Makariev, M; Maneva, G; Mankuzhiyil, N; Mannheim, K; Maraschi, L; Mariotti, M; Martínez, M; Mazin, D; Meucci, M; Miranda, J M; Mirzoyan, R; Miyamoto, H; Moldón, J; Moralejo, A; Munar, P; Nieto, D; Nilsson, K; Orito, R; Oya, I; Paneque, D; Paoletti, R; Pardo, S; Paredes, J M; Partini, S; Pasanen, M; Pauss, F; Perez-Torres, M A; Persic, M; Peruzzo, L; Pilia, M; Pochon, J; Prada, F; Moroni, P G Prada; Prandini, E; Puljak, I; Reichardt, I; Reinthal, R; Rhode, W; Ribó, M; Rico, J; Rügamer, S; Saggion, A; Saito, K; Saito, T Y; Salvati, M; Satalecka, K; Scalzotto, V; Scapin, V; Schultz, C; Schweizer, T; Shayduk, M; Shore, S N; Sillanpää, A; Sitarek, J; Sobczynska, D; Spanier, F; Spiro, S; Stamerra, A; Steinke, B; Storz, J; Strah, N; Surić, T; Takalo, L; Takami, H; Tavecchio, F; Temnikov, P; Terzić, T; Tescaro, D; Teshima, M; Thom, M; Tibolla, O; Torres, D F; Treves, A; Vankov, H; Vogler, P; Wagner, R M; Weitzel, Q; Zabalza, V; Zandanel, F; Zanin, R; Arlen, T; Aune, T; Beilicke, M; Benbow, W; Bouvier, A; Bradbury, S M; Buckley, J H; Bugaev, V; Byrum, K; Cannon, A; Cesarini, A; Ciupik, L; Connolly, M P; Cui, W; Dickherber, R; Duke, C; Errando, M; Falcone, A; Finley, J P; Finnegan, G; Fortson, L; Furniss, A; Galante, N; Gall, D; Godambe, S; Griffin, S; Grube, J; Gyuk, G; Hanna, D; Holder, J; Huan, H; Hui, C M; Kaaret, P; Karlsson, N; Kertzman, M; Khassen, Y; Kieda, D; Krawczynski, H; Krennrich, F; Lang, M J; LeBohec, S; Maier, G; McArthur, S; McCann, A; Moriarty, P; Mukherjee, R; Nuñez, P D; Ong, R A; Orr, M; Otte, A N; Park, N; Perkins, J S; Pichel, A; Pohl, M; Prokoph, H; Ragan, K; Reyes, L C; Reynolds, P T; Roache, E; Rose, H J; Ruppel, J; Schroedter, M; Sembroski, G H; Şentürk, G D; Telezhinsky, I; Tešić, G; Theiling, M; Thibadeau, S; Varlotta, A; Vassiliev, V V; Vivier, M; Wakely, S P; Weekes, T C; Williams, D A; Zitzer, B; de Almeida, U Barres; Cara, M; Casadio, C; Cheung, C C; McConville, W; Davies, F; Doi, A; Giovannini, G; Giroletti, M; Hada, K; Hardee, P; Harris, D E; Junor, W; Kino, M; Lee, N P; Ly, C; Madrid, J; Massaro, F; Mundell, C G; Nagai, H; Perlman, E S; Steele, I A; Walker, R C; Wood, D L

    2011-01-01

    Abridged: The giant radio galaxy M 87 with its proximity, famous jet, and very massive black hole provides a unique opportunity to investigate the origin of very high energy (VHE; E>100 GeV) gamma-ray emission generated in relativistic outflows and the surroundings of super-massive black holes. M 87 has been established as a VHE gamma-ray emitter since 2006. The VHE gamma-ray emission displays strong variability on timescales as short as a day. In this paper, results from a joint VHE monitoring campaign on M 87 by the MAGIC and VERITAS instruments in 2010 are reported. During the campaign, a flare at VHE was detected triggering further observations at VHE (H.E.S.S.), X-rays (Chandra), and radio (43 GHz VLBA). The excellent sampling of the VHE gamma-ray light curve enables one to derive a precise temporal characterization of the flare: the single, isolated flare is well described by a two-sided exponential function with significantly different flux rise and decay times. While the overall variability pattern of...

  19. Optical spectroscopic observations of gamma-ray blazar candidates III. The 2013/2014 campaign in the Southern Hemisphere

    CERN Document Server

    Landoni, M; Paggi, A; D'Abrusco, R; Milisavljevic, D; Masetti, N; Smith, Howard A; Tosti, G; Chomiuk, L; Strader, J; Cheung, C C

    2015-01-01

    We report the results of our exploratory program carried out with the Southern Astrophysical Research (SOAR) telescope aimed at associating counterparts and establishing the nature of the Fermi Unidentified gamma-ray Sources (UGS). We selected the optical counterparts of 6 UGSs from the Fermi catalog on the basis of our recently discovered tight connection between infrared and gamma-ray emission found for the gamma-ray blazars detected by the Wide-Field Infrared Survey Explorer (WISE) in its the all-sky survey. We perform for the first time a spectroscopic study of the low-energy counterparts of Fermi UGS, in the optical band, confirming the blazar-like nature for the whole sample. We also present new spectroscopic observations of 6 Active Galaxies of Uncertain type associated with Fermi sources (AGUs) that appear to be BL Lac objects. Finally, we report the spectra collected for 6 known gamma-ray blazars belonging to the Roma BZCAT that were obtained to establish their nature or better estimate their redshif...

  20. The ECLAIRs micro-satellite mission for gamma-ray burst multi-wavelength observations

    CERN Document Server

    Schanne, S; Barret, D; Basa, S; Boër, M; Casse, F; Cordier, B; Daigne, F; Klotz, A; Limousin, O; Manchanda, R; Mandrou, P; Mereghetti, S; Mochkovitch, R; Paltani, S; Paul, J; Petitjean, P; Pons, R; Ricker, G; Skinner, G K

    2006-01-01

    Gamma-ray bursts (GRB), at least those with a duration longer than a few seconds are the most energetic events in the Universe and occur at cosmological distances. The ECLAIRs micro-satellite, to be launched in 2009, will provide multi-wavelength observations of GRB, to study their astrophysics and to use them as cosmological probes. Furthermore in 2009 ECLAIRs is expected to be the only space borne instrument capable of providing a GRB trigger in near real-time with sufficient localization accuracy for GRB follow-up observations with the powerful ground based spectroscopic telescopes available by then. A "Phase A study" of the ECLAIRs project has recently been launched by the French Space Agency CNES, aiming at a detailed mission design and selection for flight in 2006. The ECLAIRs mission is based on a CNES micro-satellite of the "Myriade" family and dedicated ground-based optical telescopes. The satellite payload combines a 2 sr field-of-view coded aperture mask gamma-camera using 6400 CdTe pixels for GRB ...

  1. Observation of Markarian 421 in TeV Gamma Rays Over a 14-Year Time Span

    Science.gov (United States)

    Acciari, V. A.; Arlen, T.; Aune, T.; Benbow, W.; Bird, R.; Bouvier, A.; Bradbury, S. M.; Buckley, J. H.; Bugaev, V.; McEnery, Julie E.

    2013-01-01

    The variability of the blazar Markarian 421 in TeV gamma rays over a 14-year time period has been explored with theWhipple 10 m telescope. It is shown that the dynamic range of its flux variations is large and similar to that in X-rays. A correlation between the X-ray and TeV energy bands is observed during some bright flares and when the complete data sets are binned on long timescales. The main database consists of 878.4 hours of observation with theWhipple telescope, spread over 783 nights. The peak energy response of the telescope was 400 GeV with 20% uncertainty. This is the largest database of any TeV-emitting active galactic nucleus (AGN) and hence was used to explore the variability profile of Markarian 421. The time-averaged flux from Markarian 421 over this period was 0.446+/-0.008 Crab flux units. The flux exceeded 10 Crab flux units on three separate occasions. For the 2000-2001 season the average flux reached 1.86 Crab units, while in the 1996-1997 season the average flux was only 0.23 Crab units.

  2. Observation of Markarian 421 in TeV gamma rays over a 14-year time span

    CERN Document Server

    Acciari, V A; Aune, T; Benbow, W; Bird, R; Bouvier, A; Bradbury, S M; Buckley, J H; Bugaev, V; Perez, I de la Calle; Carter-Lewis, D A; Cesarini, A; Ciupik, L; Collins-Hughes, E; Connolly, M P; Cui, W; Duke, C; Dumm, J; Falcone, A; Federici, S; Fegan, D J; Fegan, S J; Finley, J P; Finnegan, G; Fortson, L; Gaidos, J; Galante, N; Gall, D; Gibbs, K; Gillanders, G H; Griffin, S; Grube, J; Gyuk, G; Hanna, D; Horan, D; Humensky, T B; Kaaret, P; Kertzman, M; Khassen, Y; Kieda, D; Krawczynski, H; Krennrich, F; Lang, M J; McEnery, J E; Madhavan, A S; Moriarty, P; Nelson, T; de Bhróithe, A O'Faoláin; Ong, R A; Orr, M; Otte, A N; Perkins, J S; Petry, D; Pichel, A; Pohl, M; Quinn, J; Ragan, K; Reynolds, P T; Roache, E; Rovero, A; Schroedter, M; Sembroski, G H; Smith, A; Telezhinsky, I; Theiling, M; Toner, J; Tyler, J; Varlotta, A; Vivier, M; Wakely, S P; Ward, J E; Weekes, T C; Weinstein, A; Welsing, R; Williams, D A; Wissel, S

    2013-01-01

    The variability of the blazar Markarian 421 in TeV gamma rays over a 14-year time period has been explored with the Whipple 10 m telescope. It is shown that the dynamic range of its flux variations is large and similar to that in X-rays. A correlation between the X-ray and TeV energy bands is observed during some bright flares and when the complete data sets are binned on long timescales. The main database consists of 878.4 hours of observation with the Whipple telescope, spread over 783 nights. The peak energy response of the telescope was 400 GeV with 20% uncertainty. This is the largest database of any TeV-emitting active galactic nucleus (AGN) and hence was used to explore the variability profile of Markarian 421. The time-averaged flux from Markarian 421 over this period was 0.446$\\pm$0.008 Crab flux units. The flux exceeded 10 Crab flux units on three separate occasions. For the 2000-2001 season the average flux reached 1.86 Crab units, while in the 1996-1997 season the average flux was only 0.23 Crab u...

  3. Chandra Observations of the Gamma-ray Binary LSI+61303: Extended X-ray Structure?

    CERN Document Server

    Paredes, J M; Bosch-Ramon, V; West, J R; Butt, Y M; Torres, D F; Martí, J

    2007-01-01

    We present a 50 ks observation of the gamma-ray binary LSI+61303 carried out with the ACIS-I array aboard the Chandra X-ray Observatory. This is the highest resolution X-ray observation of the source conducted so far. Possible evidence of an extended structure at a distance between 5 and 12 arcsec towards the North of LSI+61303 have been found at a significance level of 3.2 sigma. The asymmetry of the extended emission excludes an interpretation in the context of a dust-scattered halo, suggesting an intrinsic nature. On the other hand, while the obtained source flux, of F_{0.3-10 keV}=7.1^{+1.8}_{-1.4} x 10^{-12} ergs/cm^2/s, and hydrogen column density, N_{H}=0.70+/-0.06 x 10^{22} cm^{-2}, are compatible with previous results, the photon index Gamma=1.25+/-0.09 is the hardest ever found. In light of these new results, we briefly discuss the physics behind the X-ray emission, the location of the emitter, and the possible origin of the extended emission ~0.1 pc away from LSI+61303.

  4. XMM-Newton observations of a sample of gamma-ray loud active galactic nuclei

    CERN Document Server

    Foschini, L; Raiteri, C M; Tavecchio, F; Villata, M; Maraschi, L; Pian, E; Tagliaferri, G; Cocco, G D; Malaguti, G

    2006-01-01

    (abridged) We performed a homogeneous and systematic analysis of simultaneous X-ray and optical/UV properties of a group of 15 gamma-ray loud AGN, using observations performed with XMM-Newton. The sample is composed of 13 blazars (6 BL Lac and 7 Flat-Spectrum Radio Quasar) and 2 radio galaxies, that are associated with detections at energies >100 MeV. The data for 7 of them are analyzed here for the first time, including the first X-ray observation of PKS 1406-706. Then, the spectral characteristics of the sources in the present sample have been compared with those in previous catalogs of blazars and other AGN, in order to search for any difference or long term change. All the selected sources appear to follow the classic "blazar sequence" and the spectral energy distributions (SED) built with the present X-ray and optical/UV data and completed with historical data, confirm the findings of previous studies on this type of sources. Some sources display interesting features worth noting: four of them, namely AO...

  5. Cosmography: Supernovae Union2, Baryon Acoustic Oscillation, observational Hubble data and Gamma ray bursts

    Energy Technology Data Exchange (ETDEWEB)

    Xu Lixin, E-mail: lxxu@dlut.edu.cn [Institute of Theoretical Physics, School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China); College of Advanced Science and Technology, Dalian University of Technology, Dalian 116024 (China); Korea Astronomy and Space Science Institute, Yuseong Daedeokdaero 776, Daejeon 305-348 (Korea, Republic of); Wang Yuting [Institute of Theoretical Physics, School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China)

    2011-08-11

    In this Letter, a parametrization describing the kinematical state of the universe via cosmographic approach is considered, where the minimum input is the assumption of the cosmological principle, i.e. the Friedmann-Robertson-Walker metric. A distinguished feature is that the result does not depend on any gravity theory and dark energy models. As a result, a series of cosmographic parameters (deceleration parameter q{sub 0}, jerk parameter j{sub 0} and snap parameter s{sub 0}) are constrained from the cosmic observations which include type Ia supernovae (SN) Union2, the Baryon Acoustic Oscillation (BAO), the observational Hubble data (OHD), the high redshift Gamma ray bursts (GRBs). By using Markov Chain Monte Carlo (MCMC) method, we find the best fit values of cosmographic parameters in 1{sigma} regions: H{sub 0}=74.299{sub -4.287}{sup +4.932}, q{sub 0}=-0.386{sub -0.618}{sup +0.655}, j{sub 0}=-4.925{sub -7.297}{sup +6.658} and s{sub 0}=-26.404{sub -9.097}{sup +20.964} which are improved remarkably. The values of q{sub 0} and j{sub 0} are consistent with flat {Lambda}CDM model in 1{sigma} region. But the value of s{sub 0} of flat {Lambda}CDM model will go beyond the 1{sigma} region.

  6. Deep optical observations of the gamma-ray pulsar J0357+3205

    CERN Document Server

    Kirichenko, Aida; Shibanov, Yury; Shternin, Peter; Zharikov, Sergey; Zyuzin, Dmitry

    2014-01-01

    A middle-aged radio-quiet pulsar J0357+3205 was discovered in gamma-rays with $Fermi$ and later in X-rays with $Chandra$ and $XMM$-$Newton$ observatories. It produces an unusual thermally-emitting pulsar wind nebula observed in X-rays. Deep optical observations were obtained to search for the pulsar optical counterpart and its nebula using the Gran Telescopio Canarias (GTC). The direct imaging mode in the Sloan $g'$ band was used. Archival X-ray data were reanalysed and compared with the optical data. No pulsar optical counterpart was detected down to $g'\\geq~28_{\\cdotp}^{\\text{m}}1$. No pulsar nebula was either identified in the optical. We confirm early results that the X-ray spectrum of the pulsar consists of a nonthermal power-law component of the pulsar magnetospheric origin dominating at high energies and a soft thermal component from the neutron star surface. Using magnetised partially ionised hydrogen atmosphere models in X-ray spectral fits we found that the thermal component can come from entire sur...

  7. Deep Broadband Observations of the Distant Gamma-ray Blazar PKS 1424+240

    CERN Document Server

    Archambault, S; Behera, B; Beilicke, M; Benbow, W; Berger, K; Bird, R; Biteau, J; Bugaev, V; Byrum, K; Cardenzana, J V; Cerruti, M; Chen, X; Ciupik, L; Connolly, M P; Cui, W; Dumm, J; Errando, M; Falcone, A; Federici, S; Feng, Q; Finley, J P; Fleischhack, H; Fortson, L; Furniss, A; Galante, N; Gillanders, G H; Griffin, S; Griffiths, S T; Grube, J; Gyuk, G; Hanna, D; Holder, J; Hughes, G; Humensky, T B; Johnson, C A; Kaaret, P; Kertzman, M; Khassen, Y; Kieda, D; Krawczynski, H; Krennrich, F; Kumar, S; Lang, M J; Madhavan, A S; Maier, G; McCann, A; Meagher, K; Moriarty, P; Mukherjee, R; Nieto, D; de Bhroithe, A O'Faolain; Ong, R A; Otte, A N; Park, N; Pohl, M; Popkow, A; Prokoph, H; Quinn, J; Ragan, K; Rajotte, J; Reyes, L C; Reynolds, P T; Richards, G T; Roache, E; Sembroski, G H; Shahinyan, K; Staszak, D; Telezhinsky, I; Tucci, J V; Tyler, J; Varlotta, A; Vassiliev, V V; Vincent, S; Wakely, S P; Weinstein, A; Welsing, R; Wilhelm, A; Williams, D A; Ackermann, M; Ajello, M; Albert, A; Baldini, L; Bastieri, D; Bellazzini, R; Bissaldi, E; Bregeon, J; Buehler, R; Buson, S; Caliandro, G A; Cameron, R A; Caraveo, P A; Cavazzuti, E; Charles, E; Chiang, J; Ciprini, S; Claus, R; Cutini, S; D'Ammando, F; de Angelis, A; de Palma, F; Dermer, C D; Digel, S W; Di Venere, L; Drell, P S; Favuzzi, C; Franckowiak, A; Fusco, P; Gargano, F; Gasparrini, D; Giglietto, N; Giordano, F; Giroletti, M; Grenier, I A; Guiriec, S; Jogler, T; Kuss, M; Larsson, S; Latronico, L; Longo, F; Loparco, F; Lubrano, P; Madejski, G M; Mayer, M; Mazziotta, M N; Michelson, P F; Mizuno, T; Monzani, M E; Morselli, A; Murgia, S; Nuss, E; Ohsugi, T; Ormes, J F; Perkins, J S; Piron, F; Pivato, G; Raino, S; Razzano, M; Reimer, A; Reimer, O; Ritz, S; Schaal, M; Sgro, C; Siskind, E J; Spinelli, P; Takahashi, H; Tibaldo, L; Tinivella, M; Troja, E; Vianello, G; Werner, M; Wood, M

    2014-01-01

    We present deep VERITAS observations of the blazar PKS 1424+240, along with contemporaneous Fermi Large Area Telescope, Swift X-ray Telescope and Swift UV Optical Telescope data between 2009 February 19 and 2013 June 8. This blazar resides at a redshift of $z\\ge0.6035$, displaying a significantly attenuated gamma-ray flux above 100 GeV due to photon absorption via pair-production with the extragalactic background light. We present more than 100 hours of VERITAS observations from three years, a multiwavelength light curve and the contemporaneous spectral energy distributions. The source shows a higher flux of (2.1$\\pm0.3$)$\\times10^{-7}$ ph m$^{-2}$s$^{-1}$ above 120 GeV in 2009 and 2011 as compared to the flux measured in 2013, corresponding to (1.02$\\pm0.08$)$\\times10^{-7}$ ph m$^{-2}$s$^{-1}$ above 120 GeV. The measured differential very high energy (VHE; $E\\ge100$ GeV) spectral indices are $\\Gamma=$3.8$\\pm$0.3, 4.3$\\pm$0.6 and 4.5$\\pm$0.2 in 2009, 2011 and 2013, respectively. No significant spectral change...

  8. INTEGRAL observations of the gamma-ray binary 1FGL J1018.6-5856

    CERN Document Server

    Li, Jian; Chen, Yupeng; Götz, Diego; Rea, Nanda; Zhang, Shu; Caliandro, G Andrea; Wang, Jianmin

    2011-01-01

    The Fermi-LAT collaboration has recently reported that one of their detected sources, namely, 1FGL J1018.6-5856, is a new gamma-ray binary similar to LS 5039. This has prompted efforts to study its multi-frequency behavior. In this report, we present the results from 5.78-Ms INTEGRAL IBIS/ISGRI observations on the source 1FGL J1018.6-5856. By combining all the available INTEGRAL data, a detection is made at a significance level of 5.4 sigma in the 18-40 keV band, with an average intensity of 0.074 counts/s . However, we find that, there is non-statistical noise in the image that effectively reduces the significance to about 4 sigma and a significant part of the signal appears to be located in a 0.2-wide phase region, at phases 0.4-0.6 (where even the corrected significance amounts to 90% of the total signal found). Given the scarcity of counts, a variability is hinted at about 3 sigma at the hard X-rays, with an anti-correlation with the Fermi-LAT periodicity. Should this behavior be true, it would be similar...

  9. Massive stars formed in atomic hydrogen reservoirs: HI observations of gamma-ray burst host galaxies

    CERN Document Server

    Michałowski, Michał J; Hjorth, J; Krumholz, M R; Tanvir, N R; Kamphuis, P; Burlon, D; Baes, M; Basa, S; Berta, S; Ceron, J M Castro; Crosby, D; D'Elia, V; Elliott, J; Greiner, J; Hunt, L K; Klose, S; Koprowski, M P; Floc'h, E Le; Malesani, D; Murphy, T; Guelbenzu, A Nicuesa; Palazzi, E; Rasmussen, J; Rossi, A; Savaglio, S; Schady, P; Sollerman, J; Postigo, A de Ugarte; Watson, D; van der Werf, P; Vergani, S D; Xu, D

    2015-01-01

    Long gamma-ray bursts (GRBs), among the most energetic events in the Universe, are explosions of massive and short-lived stars, so they pinpoint locations of recent star formation. However, several GRB host galaxies have recently been found to be deficient in molecular gas (H2), believed to be the fuel of star formation. Moreover, optical spectroscopy of GRB afterglows implies that the molecular phase constitutes only a small fraction of the gas along the GRB line-of-sight. Here we report the first ever 21 cm line observations of GRB host galaxies, using the Australia Telescope Compact Array, implying high levels of atomic hydrogen (HI), which suggests that the connection between atomic gas and star formation is stronger than previously thought, with star formation being potentially directly fuelled by atomic gas (or with very efficient HI-to-H2 conversion and rapid exhaustion of molecular gas), as has been theoretically shown to be possible. This can happen in low metallicity gas near the onset of star forma...

  10. Observation of intrinsically bright terrestrial gamma ray flashes from the Mediterranean basin

    CERN Document Server

    Gjesteland, T; Laviola, S; Maglietta, M M; Arnone, E; Marisaldi, M; Fuschino, F; Collier, A B; Fabró, F; Montanya, J

    2016-01-01

    We present three terrestrial gamma ray flashes (TGFs) observed over the Mediterranean basin by the Reuven Ramaty High Energy Solar Spectroscope Imager (RHESSI) satellite. Since the occurrence of these events in the Mediterranean region is quite rare, the characterisation of the events was optimised by combining different approaches in order to better define the cloud of origin. The TGFs on 7 November 2004 and 16 October 2006 came from clouds with cloud top higher than 10-12 km where often a strong penetration into the stratosphere is found. This kind of cloud is usually associated with heavy precipitation and intense lightning activity. Nevertheless, the analysis of the cloud type based on satellite retrievals shows that the TGF on 27 May 2004 was produced by an unusual shallow convection. This result appears to be supported by the model simulation of the particle distribution and phase in the upper troposphere. The TGF on 7 November 2004 is among the brightest ever measured by RHESSI. The analysis of the ene...

  11. The optical luminosity function of gamma-ray bursts deduced from ROTSE-III observations

    Energy Technology Data Exchange (ETDEWEB)

    Cui, X. H.; Wu, X. F.; Wei, J. J. [Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008 (China); Yuan, F. [Research School of Astronomy and Astrophysics, The Australian National University, Weston Creek, ACT 2611 (Australia); Zheng, W. K. [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Liang, E. W. [National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China); Akerlof, C. W.; McKay, T. A. [Department of Physics, University of Michigan, Ann Arbor, MI 48109 (United States); Ashley, M. C. B. [School of Physics, University of New South Wales, Sydney, NSW 2052 (Australia); Flewelling, H. A. [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Göǧüş, E. [Sabancı University, Orhanlı-Tuzla, 34956 İstanbul (Turkey); Güver, T. [Department of Astronomy and Space Sciences, Istanbul University Science Faculty, 34119 Istanbul (Turkey); Kızıloǧlu, Ü. [Middle East Technical University, 06531 Ankara (Turkey); Pandey, S. B. [ARIES, Manora Peak, Nainital 263129, Uttarakhand (India); Rykoff, E. S. [SLAC National Accelerator Laboratory, Menlo Park, CA 94025 (United States); Rujopakarn, W. [Department of Physics, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok 10330 (Thailand); Schaefer, B. E. [Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803 (United States); Wheeler, J. C. [Department of Astronomy, University of Texas at Austin, Austin, TX 78712 (United States); Yost, S. A., E-mail: xhcui@bao.ac.cn, E-mail: xfwu@pmo.ac.cn, E-mail: jjwei@pmo.ac.cn, E-mail: fang.yuan@anu.edu.au, E-mail: zwk@astro.berkeley.edu, E-mail: lew@gxu.edu.cn [Department of Physics, College of St. Benedict, St. John' s University, Collegeville, MN 56321 (United States)

    2014-11-10

    We present the optical luminosity function (LF) of gamma-ray bursts (GRBs) estimated from a uniform sample of 58 GRBs from observations with the Robotic Optical Transient Search Experiment III (ROTSE-III). Our GRB sample is divided into two sub-samples: detected afterglows (18 GRBs) and those with upper limits (40 GRBs). We derive R-band fluxes for these two sub-samples 100 s after the onset of the burst. The optical LFs at 100 s are fitted by assuming that the co-moving GRB rate traces the star formation rate. While fitting the optical LFs using Monte Carlo simulations, we take into account the detection function of ROTSE-III. We find that the cumulative distribution of optical emission at 100 s is well described by an exponential rise and power-law decay, a broken power law,and Schechter LFs. A single power-law (SPL) LF, on the other hand, is ruled out with high confidence.

  12. The Optical Luminosity Function of Gamma-ray Bursts deduced from ROTSE-III Observations

    CERN Document Server

    Cui, X H; Wei, J J; Yuan, F; Zheng, W K; Liang, E W; Akerlof, C W; Ashley, M C B; Flewelling, H A; Gogus, E; Guver, T; Kiziloglu, U; McKay, T A; Pandey, S B; Rykoff, E S; Rujopakarn, W; Schaefer, B E; Wheeler, J C; Yost, S A

    2014-01-01

    We present the optical luminosity function (LF) of gamma-ray bursts (GRBs) estimated from a uniform sample of 58 GRBs from observations with the Robotic Optical Transient Search Experiment III (ROTSE-III). Our GRB sample is divided into two sub-samples: detected afterglows (18 GRBs), and those with upper limits (40 GRBs). The $R$ band fluxes 100s after the onset of the burst for these two sub-samples are derived. The optical LFs at 100s are fitted by assuming that the co-moving GRB rate traces the star-formation rate. The detection function of ROTSE-III is taken into account during the fitting of the optical LFs by using Monte Carlo simulations. We find that the cumulative distribution of optical emission at 100s is well-described with an exponential rise and power-law decay (ERPLD), broken power-law (BPL), and Schechter LFs. A single power-law (SPL) LF, on the other hand, is ruled out with high confidence.

  13. Comprehensive study of the X-ray flares from gamma-ray bursts observed by Swift

    CERN Document Server

    Yi, Shuang-Xi; Yu, Hai; Wang, F Y; Mu, Hui-Jun; Lv, Lian-Zhong; Liang, En-Wei

    2016-01-01

    X-ray flares are generally supposed to be produced by the later central engine activities, and may share the similar physical origin with prompt emission of gamma-ray bursts (GRBs). In this paper, we have analyzed all significant X-ray flares from the GRBs observed by {\\em Swift} from April 2005 to March 2015. The catalog contains 468 bright X-ray flares, including 200 flares with redshifts. We obtain the fitting results of X-ray flares, such as start time, peak time, duration, peak flux, fluence, peak luminosity, and mean luminosity. The peak luminosity decreases with peak time, following a power-law behavior $L_p \\propto T_{peak,z}^{-1.27}$. The flare duration increases with peak time. The 0.3-10 keV isotropic energy of X-ray flares distribution is a lognormal peaked at $10^{51.2}$ erg. We also study the frequency distributions of flare parameters, including energies, durations, peak fluxes, rise times, decay times and waiting times. Power-law distributions of energies, durations, peak fluxes, and waiting t...

  14. Spectral Evolutions in Gamma-Ray Burst Exponential Decays Observed with Suzaku WAM

    CERN Document Server

    Tashiro, Makoto S; Yamaoka, Kazutaka; Ohno, Masahiro; Sugita, Satoshi; Uehara, Takeshi; Seta, Hiromi

    2011-01-01

    This paper presents a study on the spectral evolution of gamma-ray burst (GRB) prompt emissions observed with the Suzaku Wide-band All-sky Monitor (WAM). By making use of the WAM data archive, 6 bright GRBs exhibiting 7 well-separated fast-rise-exponential-decay (FRED) shaped light curves are presented and the evaluated exponential decay time constants of the energy-resolved light curves from these FRED peak light curves are shown to indicate significant spectral evolution. The energy dependence of the time constants is well described with a power-law function tau(E) ~ E^gamma, where gamma ~ -(0.34 +/- 0.12) in average, although 5 FRED peaks show consistent value of gamma = -1/2 which is expected in synchrotron or inverse-Compton cooling models. In particular, 2 of the GRBs were located with accuracy sufficient to evaluate the time-resolved spectra with precise energy response matrices. Their behavior in spectral evolution suggests two different origins of emissions. In the case of GRB081224, the derived 1-s ...

  15. Thorium distribution on the lunar surface observed by Chang'E-2 gamma-ray spectrometer

    Science.gov (United States)

    Wang, Xianmin; Zhang, Xubing; Wu, Ke

    2016-07-01

    The thorium distribution on the lunar surface is critical for understanding the lunar evolution. This work reports a global map of the thorium distribution on the lunar surface observed by Chang'E-2 gamma-ray spectrometer (GRS). Our work exhibits an interesting symmetrical structure of thorium distribution along the two sides of the belt of Th hot spots. Some potential positions of KREEP volcanism are suggested, which are the Fra Mauro region, Montes Carpatus, Aristarchus Plateau and the adjacent regions of Copernicus Crater. Based on the lunar map of thorium distribution, we draw some conclusions on two critical links of lunar evolution: (1) the thorium abundance within the lunar crust and mantle, in the last stage of Lunar Magma Ocean (LMO) crystallization, may have a positive correlation with the depth in the crust, reaches a peak when coming through the transitional zone between the crust and mantle, and decreases sharply toward the inside of the mantle; thus, the Th-enhanced materials originated from the lower crust and the layer between the crust and mantle, (2) in PKT, KREEP volcanism might be the primary mechanism of Th-elevated components to the lunar surface, whereas the Imbrium impact acted as a relatively minor role.

  16. Exploring the Edge of the Stellar Universe with Gamma-Ray Observations

    CERN Document Server

    Stecker, F W

    2006-01-01

    The determination of the densities of intergalactic photons from the FIR to the UV produced by stellar emission and dust reradiation at various redshifts can provide an independent measure of the star formation history of the universe. High energy gamma-rays can annihilate with FIR-UV photons to produce electron-positron pairs which result in high-end absorption cutoffs in the gamma-ray spectra of extragalactic sources. Future measurements of such absorption in the spectra of extragalactic high energy gamma-ray sources at higher redshifts from detectors such as the (soon to be launched) GLAST space telescope can be used to determine intergalactic photon densities in the distant past, thereby shedding light on the history of star formation and galaxy evolution. (abridged),

  17. Constraints on Cosmic Rays, Magnetic Fields, and Dark Matter from Gamma-ray Observations of the Coma Cluster of Galaxies with VERITAS and FERMI

    Science.gov (United States)

    Arlen, T.; Aune, T.; Beilicke, M.; Benbow, W.; Bouvier, A.; Buckley, J. H.; Bugaev, V.; Byrum, K.; Cannon, A.; Cesarini, A.; Ciupik, L.; Collins-Hughes, E.; Connolly, M. P.; Cui, W.; Dickherber, R.; Dumm, J.; Falcone, A.; Federici, S.; Feng, Q.; Finley, J. P.; Finnegan, G.; Fortson, L.; Furniss, A.; Galante, N.; Perkins, J. S.

    2012-01-01

    Observations of radio halos and relics in galaxy clusters indicate efficient electron acceleration. Protons should likewise be accelerated and, on account of weak energy losses, can accumulate, suggesting that clusters may also be sources of very high energy (VHE; E greater than100 GeV) gamma-ray emission. We report here on VHE gamma-ray observations of the Coma galaxy cluster with the VERITAS array of imaging Cerenkov telescopes, with complementing Fermi Large Area Telescope observations at GeV energies. No significant gamma-ray emission from the Coma Cluster was detected. Integral flux upper limits at the 99 confidence level were measured to be on the order of (2-5) x 10(sup -8) photons m(sup -2) s(sup -1) (VERITAS,greater than 220 GeV) and approximately 2 x 10(sup -6) photons m(sup -2) s(sup -1) (Fermi, 1-3 GeV), respectively. We use the gamma-ray upper limits to constrain cosmic rays (CRs) and magnetic fields in Coma. Using an analytical approach, the CR-to-thermal pressure ratio is constrained to be less than 16% from VERITAS data and less than 1.7% from Fermi data (averaged within the virial radius). These upper limits are starting to constrain the CR physics in self-consistent cosmological cluster simulations and cap the maximum CR acceleration efficiency at structure formation shocks to be 50. Alternatively, this may argue for non-negligible CR transport processes such as CR streaming and diffusion into the outer cluster regions. Assuming that the radio-emitting electrons of the Coma halo result from hadronic CR interactions, the observations imply a lower limit on the central magnetic field in Coma of approximately (2-5.5)microG, depending on the radial magnetic field profile and on the gamma-ray spectral index. Since these values are below those inferred by Faraday rotation measurements in Coma (for most of the parameter space), this renders the hadronic model a very plausible explanation of the Coma radio halo. Finally, since galaxy clusters are dark

  18. Constraining gamma-ray propagation on cosmic distances

    CERN Document Server

    Biteau, Jonathan

    2013-01-01

    Studying the propagation of gamma rays on cosmological distances encompasses a variety of scientific fields, focusing on diffuse radiation fields such as the extragalactic background light, on the probe of the magnetism of the Universe on large scales, and on physics beyond the standard models of cosmology and particle physics. The measurements, constraints and hints from observations of gamma-ray blazars by airborne and ground-based instruments are briefly reviewed. These observations point to gamma-ray cosmology as one of the major science cases of the Cherenkov Telescope Array, CTA.

  19. Ultra-Fast Flash Observatory (uffo) for Observation of Early Photons from Gamma Ray Bursts

    DEFF Research Database (Denmark)

    Park, I. H.; Ahmad, S.; Barrillon, P.

    2013-01-01

    One of the least documented and understood aspects of gamma-ray bursts (GRB) is the rise phase of the optical light curve. The Ultra-Fast Flash Observatory (UFFO) is an effort to address this question through extraordinary opportunities presented by a series of space missions including a small sp......-observatory for rapid optical response to bright gamma-ray bursts, the first part of our GRB and rapid-response long-term program. We describe the early photon science, the space mission of UFFO-pathfinder, and our plan for the next step....

  20. Instrumental and atmospheric background lines observed by the SMM gamma-ray spectrometer

    Science.gov (United States)

    Share, G. H.; Kinzer, R. L.; Strickman, M. S.; Letaw, J. R.; Chupp, E. L.

    1989-01-01

    Preliminary identifications of instrumental and atmospheric background lines detected by the gamma-ray spectrometer on NASA's Solar Maximum Mission satellite (SMM) are presented. The long-term and stable operation of this experiment has provided data of high quality for use in this analysis. Methods are described for identifying radioactive isotopes which use their different decay times. Temporal evolution of the features are revealed by spectral comparisons, subtractions, and fits. An understanding of these temporal variations has enabled the data to be used for detecting celestial gamma-ray sources.

  1. New insights from cosmic gamma rays

    Science.gov (United States)

    Roland, Diehl

    2016-04-01

    The measurement of gamma rays from cosmic sources at ~MeV energies is one of the key tools for nuclear astrophysics, in its study of nuclear reactions and their impacts on objects and phenomena throughout the universe. Gamma rays trace nuclear processes most directly, as they originate from nuclear transitions following radioactive decays or high-energy collisions with excitation of nuclei. Additionally, the unique gamma-ray signature from the annihilation of positrons falls into this astronomical window and is discussed here: Cosmic positrons are often produced from β-decays, thus also of nuclear physics origins. The nuclear reactions leading to radioactive isotopes occur inside stars and stellar explosions, which therefore constitute the main objects of such studies. In recent years, both thermonuclear and core-collapse supernova radioactivities have been measured though 56Ni, 56Co, and 44Ti lines, and a beginning has thus been made to complement conventional supernova observations with such measurements of the prime energy sources of supernova light created in their deep interiors. The diffuse radioactive afterglow of massive-star nucleosynthesis in gamma rays is now being exploited towards astrophysical studies on how massive stars feed back their energy and ejecta into interstellar gas, as part of the cosmic cycle of matter through generations of stars enriching the interstellar gas and stars with metals. Large interstellar cavities and superbubbles have been recognised to be the dominating structures where new massive-star ejecta are injected, from 26Al gamma-ray spectroscopy. Also, constraints on the complex interiors of stars derive from the ratio of 60Fe/26Al gamma rays. Finally, the puzzling bulge-dominated intensity distribution of positron annihilation gamma rays is measured in greater detail, but still not understood; a recent microquasar flare provided evidence that such objects may be prime sources for positrons in interstellar space, rather than

  2. Gamma-ray observations of SN 1987A with an array of high-purity germanium detectors

    Science.gov (United States)

    Sandie, W. G.; Nakano, G. H.; Chase, L. F., Jr.; Fishman, G. J.; Meegan, C. A.; Wilson, R. B.; Paciesas, W.

    A balloonborne gamma-ray spectrometer comprising an array of high-purity n-type germanium detectors was flown from Alice Springs, Northern Territory, Australia, on May 29 - 30, 1987, 96 days after the observed neutrino pulse. SN 1987A was within the 22-deg field of view for about 3300 s during May 29.9 - 30.3 UT. No excess gamma rays were observed at energies appropriate to the Ni(56) - Co(56) decay chain or from other lines in the energy region from 0.1 to 3.0 MeV. The data imply that there was less than 2.5×10-4 solar masses of Co(56) exposed to the Earth at the time of the observation. Additional balloon-borne observations are planned.

  3. The Observer's Guide to the Gamma-Ray Burst-Supernova Connection

    Science.gov (United States)

    Cano, Z.; Wang, S.-Q.; Dai, Z.-G.; Wu, X.-F.

    2016-10-01

    In this review we present a progress report of the connection between long-duration gamma-ray bursts (GRBs) and their accompanying supernovae (SNe). The analysis is from the point of view of an observer, with much of the emphasis placed on how observations, and the modelling of observations, have constrained what we known about GRB-SNe. We discuss their photometric and spectroscopic properties, their role as cosmological probes, including their measured luminosity-decline relationships, and how they can be used to measure the Hubble constant. We present a statistical analysis of their bolometric properties, and use this to determine the properties of the "average" GRB-SNe: which has a kinetic energy of EK≈2.5×10^52 erg, an ejecta mass of Mej≈6 M⊙, a nickel mass of MNi≈0.4 M⊙, a peak photospheric velocity of vph≈21,000 km s-1, a peak bolometric luminosity of Lp≈1×10^43 erg s-1, and it reaches peak bolometric light in tp≈13 days. We discuss their geometry, consider the various physical processes that are thought to power the luminosity of GRB-SNe, and whether differences exist between GRB-SNe and the SNe associated with ultra-long duration GRBs. We discuss how observations of the environments of GRB-SNe further constrain the physical properties of their progenitor stars, and give an overview of the current theoretical paradigms of their suspected central engines. We also present an overview of the radioactively powered transients that have been photometrically associated with short-duration GRBs. We conclude the review by discussing what additional research is needed to further our understanding of GRB-SNe, in particular the role of binary-formation channels and the connection of GRB-SNe with superluminous SNe (abridged).

  4. Constraining gamma-ray propagation on cosmic distances

    OpenAIRE

    Biteau, Jonathan

    2013-01-01

    Studying the propagation of gamma rays on cosmological distances encompasses a variety of scientific fields, focusing on diffuse radiation fields such as the extragalactic background light, on the probe of the magnetism of the Universe on large scales, and on physics beyond the standard models of cosmology and particle physics. The measurements, constraints and hints from observations of gamma-ray blazars by airborne and ground-based instruments are briefly reviewed. These observations point ...

  5. New insights from cosmic gamma rays

    CERN Document Server

    Diehl, Roland

    2016-01-01

    The measurement of gamma rays from cosmic sources at MeV energies is one of the key tools for nuclear astrophysics, in its study of nuclear reactions and their impacts on objects and phenomena throughout the universe. Gamma rays trace nuclear processes most directly, as they originate from nuclear transitions following radioactive decays or high-energy collisions with excitation of nuclei. Additionally, the unique gamma-ray signature from the annihilation of positrons falls into this astronomical window and is discussed here: Cosmic positrons are often produced from beta-decays, thus also of nuclear physics origins. The nuclear reactions leading to radioactive isotopes occur inside stars and stellar explosions, which therefore constitute the main objects of such studies. In recent years, both thermonuclear and core-collapse supernova radioactivities have been measured, and complement conventional supernova observations with measurements of their prime energy sources. The diffuse radioactive afterglow of massi...

  6. SVOM Gamma Ray Monitor

    CERN Document Server

    Dong, Yongwei; Li, Yanguo; Zhang, Yongjie; Zhang, Shuangnan

    2009-01-01

    The Space-based multi-band astronomical Variable Object Monitor (SVOM) mission is dedicated to the detection, localization and broad-band study of Gamma-Ray Bursts (GRBs) and other high-energy transient phenomena. The Gamma Ray Monitor (GRM) onboard is designed to observe the GRBs up to 5 MeV. With this instrument one of the key GRB parameter, Epeak, can be easily measured in the hard x-ray band. It can achieve a detection rate of 100 GRBs per year which ensures the scientific output of SVOM.

  7. SVOM gamma ray monitor

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The space-based multi-band astronomical Variable Object Monitor(SVOM) mission is dedicated to the detection,localization and broad-band study of gamma-ray bursts(GRBs) and other high-energy transient phenomena.The gamma ray monitor(GRM) onboard is designed to observe GRBs up to 5 MeV.With this instrument,one of the key GRB parameters,Epeak,can be easily measured in the hard X-ray band.It can achieve a detection rate of 100 GRBs per year which ensures the scientific output of SVOM.

  8. Optical flare observed in the flaring gamma-ray blazar S5 1044+71

    Science.gov (United States)

    Pursimo, Tapio; Blay, Pere; Telting, John; Ojha, Roopesh

    2017-01-01

    We report optical photometry of the blazar S5 1044+71, obtained with the 2.56m Nordic Optical Telescope in La Palma, to look for any enhanced optical activity associated with a recent flare in the daily averaged gamma-ray flux (ATel#9928).

  9. COS-B observations of localised sources of gamma-ray emission

    Science.gov (United States)

    Mayer-Hasselwander, H.

    1976-01-01

    In October 1975 the high energy gamma ray flux from the Vela pulsar was measured by COS-B to be 1.6 to 2.1 times higher than the flux measured by SAS-2 in 1973. The existence is confirmed of a second region of enhanced radiation in the galactic anticenter in addition to that from the Crab pulsar.

  10. International spring school observing the X-and gamma-ray sky

    Energy Technology Data Exchange (ETDEWEB)

    Paul, J.; Longair, M.; Von Ballmoos, P.; Daigne, F.; Baring, M.; Gudel, M.; King, A.; Dotani, T.; Arnaud, M.; Gudel, M.; Malzac, J.; Servillat, M.; Soldi, S.; Corbel, S.; Beckmann, V.; Rodriguez, J.; Erlund, M.; Bodaghee, A.; Graham, J.; Ruiz, A.; Corbel, S.; Fabian, A.; Tagger, M.; Grenier, I.; Bernard, R.; Jackson, N.; Eckart, A.; Grenier, I.; Belloni, T.; Stella, L.; Vink, J.; KnodLseder, J.; Hermsen, W.; Ferrando, Ph.; Ibragimov, A

    2006-07-01

    This school, dedicated to young researchers, will clarify our present knowledge of the X-ray sky and give the opportunity to learn about the observatories and tools which are available. The contributions have been organized into 3 issues: -) fundamental physics, -) X-ray and Gamma-ray instruments and analysis techniques, and -) astrophysical objects. This document gathers only the slides of the presentations.

  11. SAS-2 High energy gamma-ray observations of the Vela pulsar

    Science.gov (United States)

    Thompson, D. J.; Fichtel, C. E.; Kniffen, D. A.; Oegelman, H. B.

    1975-01-01

    The second Small Astronomy Satellite high-energy (35 MeV) gamma-ray telescope detected pulsed gamma-ray emission at the radio period from PSR 0833-45, the Vela pulsar, as well as an unpulsed flux from the Vela region. The pulsed emission consists of two peaks, one following the radio peak by about 13 msec, and the other 0.4 period after the first. The luminosity of the pulsed emission above 100 MeV from Vela is about 0.1 that of the pulsar NP0532 in the Crab nebula, whereas the pulsed emission from Vela at optical wavelengths is less than 0.0004 that from the Crab. The relatively high intensity of the pulsed gamma-ray emission and the double peak structure, compared to the single pulse in the radio emission, suggests that the high energy gamma-ray pulsar emission may be produced under different conditions from those found at lower energies.

  12. SAS-2 high-energy gamma-ray observations of the Vela pulsar. II

    Science.gov (United States)

    Thompson, D. J.; Fichtel, C. E.; Kniffen, D. A.; Ogelman, H. B.

    1977-01-01

    Analysis of additional data from SAS-2 experiment and improvements in the orbit-attitude data and analysis procedures have produced revised values for the flux from the Vela gamma-ray source. The pulsar phase plot shows two peaks, neither of which is in phase with the single radio pulse.

  13. Fermi Large Area Telescope observations of high-energy gamma-ray emission from behind-the-limb solar flares

    CERN Document Server

    Pesce-Rollins, Melissa; Petrosian, Vahe'; Liu, Wei; da Costa, Fatima Rubio; Allafort, Alice

    2015-01-01

    Fermi-LAT >30 MeV observations have increased the number of detected solar flares by almost a factor of 10 with respect to previous space observations. These sample both the impulsive and long duration phases of GOES M and X class flares. Of particular interest is the recent detections of three solar flares whose position behind the limb was confirmed by the STEREO-B spacecraft. While gamma-ray emission up to tens of MeV resulting from proton interactions has been detected before from occulted solar flares, the significance of these particular events lies in the fact that these are the first detections of >100 MeV gamma-ray emission from footpoint-occulted flares. We will present the Fermi-LAT, RHESSI and STEREO observations of these flares and discuss the various emission scenarios for these sources and implications for the particle acceleration mechanisms.

  14. The Multiwavelength View of Gamma-Ray Loud AGN

    Science.gov (United States)

    Venters, Tonia

    2011-01-01

    The gamma-ray sky observed by the Fermi Large Area Telescope (Fermi-LAT) encodes much information about the high-energy processes in the universe. Of the extragalactic sources sources resolved by the Fermi-LAT, blazars comprise the class of gamma-ray emitters with the largest number of identified members. Unresolved blazars are expected to contribute significantly to the diffuse extragalactic gamma-ray emission. However, blazars are also broadband emitters (from radio to TeV energies), and as such the multiwavelength study of blazars can provide insight into the high-energy processes of the universe.

  15. Determination of late-time Gamma-Ray (60Co) sensitivity of single diffusion Lot 2N2222A transistors.

    Energy Technology Data Exchange (ETDEWEB)

    DePriest, Kendall Russell; Kajder, Karen C.; Peters, Curtis D. (American Staff Augmentation Providers, LLC, Albuquerque, NM)

    2008-08-01

    Sandia National Laboratories (SNL) has embarked on a program to develop a methodology to use damage relations techniques (alternative experimental facilities, modeling, and simulation) to understand the time-dependent effects in transistors (and integrated circuits) caused by neutron irradiations in the Sandia Pulse Reactor-III (SPR-III) facility. The development of these damage equivalence techniques is necessary since SPR-III was shutdown in late 2006. As part of this effort, the late time {gamma}-ray sensitivity of a single diffusion lot of 2N2222A transistors has been characterized using one of the {sup 60}Co irradiation cells at the SNL Gamma Irradiation Facility (GIF). This report summarizes the results of the experiments performed at the GIF.

  16. Constraints on Lorentz Invariance Violation from Fermi -Large Area Telescope Observations of Gamma-Ray Bursts

    Science.gov (United States)

    Vasileiou, V.; Jacholkowska, A.; Piron, F.; Bolmont, J.; Courturier, C.; Granot, J.; Stecker, Floyd William; Cohen-Tanugi, J.; Longo, F.

    2013-01-01

    We analyze the MeV/GeV emission from four bright Gamma-Ray Bursts (GRBs) observed by the Fermi-Large Area Telescope to produce robust, stringent constraints on a dependence of the speed of light in vacuo on the photon energy (vacuum dispersion), a form of Lorentz invariance violation (LIV) allowed by some Quantum Gravity (QG) theories. First, we use three different and complementary techniques to constrain the total degree of dispersion observed in the data. Additionally, using a maximally conservative set of assumptions on possible source-intrinsic spectral-evolution effects, we constrain any vacuum dispersion solely attributed to LIV. We then derive limits on the "QG energy scale" (the energy scale that LIV-inducing QG effects become important, E(sub QG)) and the coefficients of the Standard Model Extension. For the subluminal case (where high energy photons propagate more slowly than lower energy photons) and without taking into account any source-intrinsic dispersion, our most stringent limits (at 95% CL) are obtained from GRB 090510 and are E(sub QG,1) > 7.6 times the Planck energy (E(sub Pl)) and E(sub QG,2) > 1.3×10(exp 11) GeV for linear and quadratic leading order LIV-induced vacuum dispersion, respectively. These limits improve the latest constraints by Fermi and H.E.S.S. by a factor of approx. 2. Our results disfavor any class of models requiring E(sub QG,1) < or approx. E(sub Pl)

  17. Constraints on dark matter annihilations from diffuse gamma-ray emission in the Galaxy

    Energy Technology Data Exchange (ETDEWEB)

    Tavakoli, Maryam; Evoli, Carmelo [II. Institut für Theoretische Physik, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg (Germany); Cholis, Ilias [Fermi National Accelerator Laboratory, Center for Particle Astrophysics, Batavia, IL 60510 (United States); Ullio, Piero, E-mail: maryam.tavakoli@desy.de, E-mail: cholis@fnal.gov, E-mail: carmelo.evoli@desy.de, E-mail: ullio@sissa.it [SISSA, Via Bonomea 265, 34136 Trieste (Italy)

    2014-01-01

    Recent advances in γ-ray cosmic ray, infrared and radio astronomy have allowed us to develop a significantly better understanding of the galactic medium properties in the last few years. In this work using the DRAGON code, that numerically solves the CR propagation equation and calculating γ-ray emissivities in a 2-dimensional grid enclosing the Galaxy, we study in a self consistent manner models for the galactic diffuse γ-ray emission. Our models are cross-checked to both the available CR and γ-ray data. We address the extend to which dark matter annihilations in the Galaxy can contribute to the diffuse γ-ray flux towards different directions on the sky. Moreover we discuss the impact that astrophysical uncertainties of non DM nature, have on the derived γ-ray limits. Such uncertainties are related to the diffusion properties on the Galaxy, the interstellar gas and the interstellar radiation field energy densities. Light ∼ 10 GeV dark matter annihilating dominantly to hadrons is more strongly constrained by γ-ray observations towards the inner parts of the Galaxy and influenced the most by assumptions of the gas distribution; while TeV scale DM annihilating dominantly to leptons has its tightest constraints from observations towards the galactic center avoiding the galactic disk plane, with the main astrophysical uncertainty being the radiation field energy density. In addition, we present a method of deriving constraints on the dark matter distribution profile from the diffuse γ-ray spectra. These results critically depend on the assumed mass of the dark matter particles and the type of its end annihilation products.

  18. Gamma Ray and Very Low Frequency Radio Observations from a Balloon-Borne Platform

    Science.gov (United States)

    Quinn, C.; Sheldon, A.; Cully, C. M.; Davalos, A.; Osakwe, C.; Galts, D.; Delfin, J.; Duffin, C.; Mansell, J.; Russel, M.; Bootsma, M.; Williams, R.; Patrick, M.; Mazzino, M. L.; Knudsen, D. J.

    2015-12-01

    The University of Calgary's Student Organization for Aerospace Research (SOAR) built an instrument to participate in the High Altitude Student Platform (HASP) initiative organized by Louisiana State University and supported by the NASA Balloon Program Office (BPO) and the Louisiana Space Consortium (LaSPACE). The HASP platform will be launched in early September 2015 from Fort Sumner, New Mexico and will reach heights of 36 kilometers with a flight duration of 15 to 20 hours. The instrument, Atmospheric Phenomenon Observer Gamma/VLF Emissions Experiment (APOGEE), measures Terrestrial Gamma-Ray Flashes (TGF) and sferics from lightning strikes with the use of Geiger tubes and a VLF detector. TGFs, which are quick bursts of high energy radiation that can occur alongside lightning, are believed to be the result of Relativistic Runaway Electron Avalanche (RREA). RREA occurs when a large number of relativistic electrons overcome atmospheric frictional forces and accelerate to relativistic velocities which excite secondary electrons that collide with the atmosphere causing bremsstrahlung radiation. Lightning strikes also produce sferics within the Extremely Low Frequency (ELF) and Very Low Frequency (VLF) bands which can be detected and used to locate the strikes. The goal of APOGEE is to further investigate the link between TGFs and RREA. These phenomena are very difficult to measure together as Bremsstrahlung radiation is easily detected from space but ionospheric reflection facilitates surface detection of sferics. A high altitude balloon provides a unique opportunity to study both phenomena using one instrument because both phenomena can easily be detected from its altitude. APOGEE has been designed and built by undergraduate students at the University of Calgary with faculty assistance and funding, and is equipped with three devices for data collection: a camera to have visual conformation of events, a series of Geiger Tubes to obtain directional gamma readings, and

  19. Constraints on diffuse gamma-ray emission from structure formation processes in the Coma cluster

    CERN Document Server

    Zandanel, Fabio

    2013-01-01

    We analyze the 5-year (63 months) data of Large Area Telescope on board Fermi satellite from the Coma galaxy cluster in the energy range between 100 MeV and 100 GeV. The likelihood analyses are performed with several model templates. We consider (1) a point source; (2) models motivated by cosmological hydrodynamical simulations that predict a dominant pion-decay-induced gamma-ray emission from cosmic ray proton-proton interaction with the cluster ambient gas; (3) a phenomenological template based on the cluster radio relic to test the possible associated inverse-Compton scattering of the relic electrons off the cosmic microwave background; and (4) both a disk and ring-like emission profiles to test the inverse-Compton emission from primary electrons accelerated at accreting shocks. We find no excess emission for any of these models, and derive the most stringent constraints to date on the Coma cluster above 100 MeV, and on the tested scenarios in general. The upper limits on the integral flux range from 10^-1...

  20. Exploring binary-neutron-star-merger scenario of short-gamma-ray bursts by gravitational-wave observation.

    Science.gov (United States)

    Kiuchi, Kenta; Sekiguchi, Yuichiro; Shibata, Masaru; Taniguchi, Keisuke

    2010-04-09

    We elucidate the feature of gravitational waves (GWs) from a binary-neutron-star merger collapsing to a black hole by general relativistic simulation. We show that GW spectrum imprints the coalescence dynamics, formation process of disk, equation of state for neutron stars, total masses, and mass ratio. A formation mechanism of the central engine of short-gamma-ray bursts, which are likely to be composed of a black hole and surrounding disk, therefore could be constrained by GW observation.

  1. Very-high-energy gamma-ray observations of the Type Ia Supernova SN 2014J with the MAGIC telescopes

    Science.gov (United States)

    Ahnen, M. L.; Ansoldi, S.; Antonelli, L. A.; Antoranz, P.; Arcaro, C.; Babic, A.; Banerjee, B.; Bangale, P.; Barres de Almeida, U.; Barrio, J. A.; Becerra González, J.; Bednarek, W.; Bernardini, E.; Berti, A.; Biasuzzi, B.; Biland, A.; Blanch, O.; Bonnefoy, S.; Bonnoli, G.; Borracci, F.; Bretz, T.; Carosi, R.; Carosi, A.; Chatterjee, A.; Colin, P.; Colombo, E.; Contreras, J. L.; Cortina, J.; Covino, S.; Cumani, P.; Da Vela, P.; Dazzi, F.; De Angelis, A.; De Lotto, B.; de Oña Wilhelmi, E.; Di Pierro, F.; Doert, M.; Domínguez, A.; Dominis Prester, D.; Dorner, D.; Doro, M.; Einecke, S.; Eisenacher Glawion, D.; Elsaesser, D.; Engelkemeier, M.; Fallah Ramazani, V.; Fernández-Barral, A.; Fidalgo, D.; Fonseca, M. V.; Font, L.; Frantzen, K.; Fruck, C.; Galindo, D.; García López, R. J.; Garczarczyk, M.; Garrido Terrats, D.; Gaug, M.; Giammaria, P.; Godinović, N.; Gora, D.; Guberman, D.; Hadasch, D.; Hahn, A.; Hayashida, M.; Herrera, J.; Hose, J.; Hrupec, D.; Hughes, G.; Idec, W.; Kodani, K.; Konno, Y.; Kubo, H.; Kushida, J.; La Barbera, A.; Lelas, D.; Lindfors, E.; Lombardi, S.; Longo, F.; López, M.; López-Coto, R.; Majumdar, P.; Makariev, M.; Mallot, K.; Maneva, G.; Manganaro, M.; Mannheim, K.; Maraschi, L.; Marcote, B.; Mariotti, M.; Martínez, M.; Mazin, D.; Menzel, U.; Miranda, J. M.; Mirzoyan, R.; Moralejo, A.; Moretti, E.; Nakajima, D.; Neustroev, V.; Niedzwiecki, A.; Nievas Rosillo, M.; Nilsson, K.; Nishijima, K.; Noda, K.; Nogués, L.; Paiano, S.; Palacio, J.; Palatiello, M.; Paneque, D.; Paoletti, R.; Paredes, J. M.; Paredes-Fortuny, X.; Pedaletti, G.; Peresano, M.; Perri, L.; Persic, M.; Poutanen, J.; Prada Moroni, P. G.; Prandini, E.; Puljak, I.; Garcia, J. R.; Reichardt, I.; Rhode, W.; Ribó, M.; Rico, J.; Saito, T.; Satalecka, K.; Schroeder, S.; Schweizer, T.; Sillanpää, A.; Sitarek, J.; Snidaric, I.; Sobczynska, D.; Stamerra, A.; Strzys, M.; Surić, T.; Takalo, L.; Tavecchio, F.; Temnikov, P.; Terzić, T.; Tescaro, D.; Teshima, M.; Torres, D. F.; Toyama, T.; Treves, A.; Vanzo, G.; Vazquez Acosta, M.; Vovk, I.; Ward, J. E.; Will, M.; Wu, M. H.; Zanin, R.

    2017-06-01

    Context. In this work we present data from observations with the MAGIC telescopes of SN 2014J detected on January 21 2014, the closest Type Ia supernova since Imaging Air Cherenkov Telescopes started to operate. Aims: We aim to probe the possibility of very-high-energy (VHE; E ≥ 100 GeV) gamma rays produced in the early stages of Type Ia supernova explosions. Methods: We performed follow-up observations after this supernova (SN) explosion for five days, between January 27 and February 2 2014. We searched for gamma-ray signals in the energy range between 100 GeV and several TeV from the location of SN 2014J using data from a total of 5.5 h of observations. Prospects for observing gamma rays of hadronic origin from SN 2014J in the near future are also being addressed. Results: No significant excess was detected from the direction of SN 2014J. Upper limits at 95% confidence level on the integral flux, assuming a power-law spectrum, dF/dE ∝ E- Γ, with a spectral index of Γ = 2.6, for energies higher than 300 GeV and 700 GeV, are established at 1.3 × 10-12 and 4.1 × 10-13 photons cm-2 s-1, respectively. Conclusions: For the first time, upper limits on the VHE emission of a Type Ia supernova are established. The energy fraction isotropically emitted into TeV gamma rays during the first 10 days after the supernova explosion for energies greater than 300 GeV is limited to 10-6 of the total available energy budget ( 1051 erg). Within the assumed theoretical scenario, the MAGIC upper limits on the VHE emission suggest that SN 2014J will not be detectable in the future by any current or planned generation of Imaging Atmospheric Cherenkov Telescopes.

  2. Tomography of the Fermi-LAT gamma-ray diffuse extragalactic signal via cross-correlations with galaxy catalogs

    CERN Document Server

    Xia, Jun-Qing; Branchini, Enzo; Viel, Matteo

    2015-01-01

    Building on our previous cross-correlation analysis (Xia et al. 2011) between the isotropic gamma-ray background (IGRB) and different tracers of the large-scale structure of the universe, we update our results using 60-months of data from the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope. We perform a cross-correlation analysis between the IGRB and objects that may trace the astrophysical sources of the IGRB: SDSS-DR6 QSOs, the SDSS-DR8 Main Galaxy Sample, Luminous Red Galaxies (LRGs) in the SDSS catalog, 2MASS galaxies, and radio NVSS galaxies. The benefit of correlating the Fermi-LAT signal with catalogs of objects at various redshifts is to provide tomographic information on the IGRB which is crucial to separate the various contributions and to clarify its origin. We observe a significant (>3.5 sigma) cross-correlation signal on angular scales smaller than 1 deg in the NVSS, 2MASS and QSO cases and, at lower statistical significance (~3.0 sigma), with SDSS galaxies. These results ...

  3. Time-resolved multiwavelength observations of the blazar VER J0521+211 from radio to gamma-ray energies

    CERN Document Server

    Prokoph, Heike; Schultz, Cornelia

    2015-01-01

    VER J0521+211 (RGB J0521.8+2112) is one of the brightest and most powerful blazars detected in the TeV gamma-ray regime. It is located at a redshift of z=0.108 and since its discovery in 2009, VER J0521+211 has exhibited an average TeV flux exceeding 0.1 times that of the Crab Nebula, corresponding to an isotropic luminosity of $3\\times10^{44}$ erg s$^{-1}$. We present data from a comprehensive multiwavelength campaign on this object extending between November 2012 and February 2014, including single-dish radio observations, optical photometry and polarimetry, UV, X-ray, GeV and TeV gamma-ray data (VERITAS, MAGIC). Significant flux variability was observed at all wavelengths, including a long-lasting high state at gamma-ray energies in Fall 2013. Nightly-resolved spectra at X-ray and TeV energies are be presented, and emission mechanisms explaining the observed flux and spectral variability are discussed.

  4. Observations of the Crab Nebula and pulsar in the optical and gamma-ray bands with STACEE

    Science.gov (United States)

    Fortin, Pascal

    The Solar Tower Atmospheric Cherenkov Effect Experiment (STACEE) is an atmospheric Cherenkov telescope that detects cosmic gamma-rays using the wavefront-sampling technique. STACEE uses the large mirror area of the National Solar Thermal Test Facility (NSTTF) to achieve an energy threshold below 200 GeV. This telescope was used to search for high-energy gamma-ray emission from the Crab Nebula and pulsar. A statistical excess of 4.07sigma in the number of on-source events compared to off-source events was detected in 15 hours of on-source observing time, corresponding to an integral flux above the energy threshold (Ethr = 185 +/- 35 GeV) of I(E > Ethr) = (2.5 +/- 0.6) x 10-10 photons cm -2 s-1. The observed flux is in agreement with the previous result obtained by STACEE-32 and consistent with the power law spectrum seen at higher energies. A special instrument was developed to make simultaneous observations of the Crab in the optical and gamma-ray bands. Pulsed emission was detected in the optical band, demonstrating the accuracy of the barycentering and epoch folding analysis tools. After barycentering the arrival times and calculating the rotational phases of gamma-ray events, no evidence for pulsed emission from the Crab pulsar was found. The upper limit on the pulsed fraction of the signal was 16.4% at the 99.9% confidence level. Unfortunately, neither the polar cap model, nor the outer gap model is excluded by this new upper limit.

  5. On forbidden high-energy electrons as a source of background in X-ray and gamma-ray observations

    CERN Document Server

    Suvorova, Alla V

    2014-01-01

    The study is devoted to a problem of electron-induced contaminant to X-ray and gamma-ray astrophysical measurements on board low-orbiting satellites. We analyzed enhancements of electron fluxes in energy range 100 - 300 keV observed at equatorial and low latitudes by a fleet of NOAA/POES low-orbiting satellites over the time period from 2003 to 2005. It was found that 100-300 keV electron fluxes in the forbidden zone below the inner radiation belt enhanced by several orders of magnitude during geomagnetic storms and/or under strong compressions of the magnetosphere. The enhancements are related to high substorm activity and occurred at any local time. Intense fluxes of the energetic electrons in the forbidden zone can be considered as an essential contaminant to X-ray and gamma-ray measurements at low-latitude and low-altitude orbits.

  6. Lateral distribution of high energy hadrons and gamma ray in air shower cores observed with emulsion chambers

    Science.gov (United States)

    Matano, T.; Machida, M.; Kawasumi, N.; Tsushima, I.; Honda, K.; Hashimoto, K.; Navia, C. E.; Matinic, N.; Aquirre, C.

    1985-01-01

    A high energy event of a bundle of electrons, gamma rays and hadronic gamma rays in an air shower core were observed. The bundles were detected with an emulsion chamber with thickness of 15 cm lead. This air shower is estimated to be initiated with a proton with energy around 10 to the 17th power to 10 to the 18th power eV at an altitude of around 100 gmc/2. Lateral distributions of the electromagnetic component with energy above 2 TeV and also the hadronic component of energy above 6 TeV of this air shower core were determined. Particles in the bundle are produced with process of the development of the nuclear cascade, the primary energy of each interaction in the cascade which produces these particles is unknown. To know the primary energy dependence of transverse momentum, the average products of energy and distance for various average energies of secondary particles are studied.

  7. First observation of gamma-rays from the proton emitter sup 1 sup 7 sup 1 Au

    CERN Document Server

    Baeck, T; Lagergren, K; Wyss, R; Johnson, A; Karlgren, D; Greenlees, P T; Jones, P; Julin, R; Juutinen, S; Keenan, A; Kettunen, H; Kuusiniemi, P; Leino, M; Leppaenen, A P; Nieminen, P; Pakarinen, J; Jenkins, D; Joss, D T; Muikku, M; Rahkila, P; Uusitalo, J

    2003-01-01

    Gamma-rays from the alpha- and proton-unstable nuclide sup 1 sup 7 sup 1 Au have been observed for the first time. The gamma-rays were correlated with both a proton- and an alpha-particle decay branch, confirming that the nucleus decays by alpha and proton emission from a single (11/2 sup -) state. The measurement confirms the previously determined half-lives for these particle decays but the present values are of higher precision. In addition, a longer half-life than determined in previous work was measured for the proton-unstable tentative ground state. The results are discussed in relation to structures in neighbouring nuclei and compared with a Strutinsky-type TRS calculation. (orig.)

  8. Cosmic Rays: What Gamma Rays Can Say

    OpenAIRE

    2014-01-01

    We will review the main channels of gamma ray emission due to the acceleration and propagation of cosmic rays, discussing the cases of both galactic and extra-galactic cosmic rays and their connection with gamma rays observations.

  9. Constraints on the annihilation cross section of dark matter particles from anisotropies in the diffuse gamma-ray background measured with Fermi-LAT

    NARCIS (Netherlands)

    Ando, S.; Komatsu, E.

    2013-01-01

    Annihilation of dark matter particles in cosmological halos (including the halo of the Milky Way) contributes to the diffuse gamma-ray background (DGRB). As this contribution will appear anisotropic in the sky, one can use the angular power spectrum of anisotropies in the DGRB to constrain the prope

  10. Revisiting the Correlations of Peak Luminosity with Spectral Lag and Peak Energy of the Observed Gamma-ray Bursts

    Science.gov (United States)

    Jo, Yun-A.; Chang, Heon-Young

    2016-12-01

    An analysis of light curves and spectra of observed gamma-ray bursts in gamma-ray ranges is frequently demanded because the prompt emission contains immediate details regarding the central engine of gamma-ray bursts (GRBs). We have revisited the relationship between the collimation-corrected peak luminosity and the spectral lag, investigating the lag-luminosity relationships in great detail by focusing on spectral lags resulting from all possible combinations of channels. Firstly, we compiled the opening angle data and demonstrated that the distribution of opening angles of 205 long GRBs is represented by a double Gaussian function having maxima at 0.1 and 0.3 radians. We confirmed that the peak luminosity and the spectral lag are anti-correlated, both in the observer frame and in the source frame. We found that, in agreement with our previous conclusion, the correlation coefficient improves significantly in the source frame. It should be noted that spectral lags involving channel 2 (25-50 keV) yield high correlation coefficients, where Swift/Burst Alert Telescope (BAT) has four energy channels (channel 1: 15-25 keV, channel 2: 25-50 keV, channel 3: 50-100 keV, channel 4: 100-200 keV). We also found that peak luminosity is positively correlated with peak energy.

  11. Early-time observations of gamma-ray burst error boxes with the Livermore optical transient imaging system

    Energy Technology Data Exchange (ETDEWEB)

    Williams, G G

    2000-08-01

    Despite the enormous wealth of gamma-ray burst (GRB) data collected over the past several years the physical mechanism which causes these extremely powerful phenomena is still unknown. Simultaneous and early time optical observations of GRBs will likely make an great contribution t o our understanding. LOTIS is a robotic wide field-of-view telescope dedicated to the search for prompt and early-time optical afterglows from gamma-ray bursts. LOTIS began routine operations in October 1996 and since that time has responded to over 145 gamma-ray burst triggers. Although LOTIS has not yet detected prompt optical emission from a GRB its upper limits have provided constraints on the theoretical emission mechanisms. Super-LOTIS, also a robotic wide field-of-view telescope, can detect emission 100 times fainter than LOTIS is capable of detecting. Routine observations from Steward Observatory's Kitt Peak Station will begin in the immediate future. During engineering test runs under bright skies from the grounds of Lawrence Livermore National Laboratory Super-LOTIS provided its first upper limits on the early-time optical afterglow of GRBs. This dissertation provides a summary of the results from LOTIS and Super-LOTIS through the time of writing. Plans for future studies with both systems are also presented.

  12. How far are the sources of IceCube neutrinos? Constraints from the diffuse TeV gamma-ray background

    CERN Document Server

    Chang, Xiao-Chuan; Wang, Xiang-Yu

    2016-01-01

    The nearly isotropic distribution of the TeV-PeV neutrinos recently detected by IceCube suggests that they come from sources at distance beyond our Galaxy, but how far they are is unknown due to lack of any associations with known sources. In this paper, we propose that the cumulative TeV gamma-ray emission accompanying with the neutrinos can be used to constrain the distance of these neutrinos, since the opacity of TeV gamma rays due to absorption by the extragalactic background light (EBL) depends on the distance that TeV gamma rays have travelled. As the diffuse extragalactic TeV background measured by \\emph{Fermi} is much weaker than the expected cumulative flux associated with IceCube neutrinos, the majority of IceCube neutrinos, if their sources are transparent to TeV gamma rays, must come from distances larger than the horizon of TeV gamma rays. We find that above 80% of the IceCube neutrinos should come from distances at redshift $z>0.5$. Thus, any search for nearby sources correlated with IceCube neu...

  13. Revised Upper Limits of the Diffuse Tev Gamma Rays from the Galactic Planes with the Tibet II and III Air Shower Arrays

    CERN Document Server

    Amenomori, M; Bi, X J; Chen, D; Cui, S W; Danzengluobu; Ding, L K; Ding, X H; Feng Cun Feng; Zhaoyang Feng; Feng, Z Y; Gao, X Y; Geng, Q X; Guo, H W; He, H H; He, M; Hibino, K; Hotta, N; Haibing, H; Hu, H B; Huang, J; Huang, Q; Jia, H Y; Kajino, F; Kasahara, K; Katayose, Y; Kato, C; Kawata, K; Labaciren; Le, G M; Li, A F; Li, J Y; Lou, Y Q; Lü, H; Lu, S L; Meng, X R; Mizutani, K; Mu, J; Munakata, K; Nagai, A; Nanjo, H; Nishizawa, M; Ohnishi, M; Ohta, I; Onuma, H; Ouchi, T; Ozawa, S; Ren, J R; Saitô, T; Saito, T Y; Sakata, M; Sako, T K; Sasaki, T; Shibata, M; Shiomi, A; Shirai, T; Sugimoto, H; Takita, M; Tan, Y H; Tateyama, N; Torii, S; Tsuchiya, H; Udo, S; Wang, B; Wang, H; Wang, X; Wang, Y G; Wu, H R; Xue Liang; Yamamoto, Y; Yan, C T; Yang, X C; Yasue, S; Ye, Z H; Yu, G C; Yuan, A F; Yuda, T; Zhang, H M; Zhang, J L; Zhang, N J; Zhang, X Y; Zhang, Y; Yi Zhang Zhaxisangzhu; Zhou, X X; al, et

    2006-01-01

    The flux upper limits of the diffuse gamma rays, from the inner and outer Galactic planes, are revised by factors of 4.0$\\sim$3.7 for mode energies 3$\\sim$10 TeV, respectively, by using the simulation results of the effective area ratios for gamma-ray induced showers and cosmic-ray induced ones in the Tibet air shower array. In our previous work, (Amenomori et al., ApJ, 580, 887, 2002) the flux upper limits were deduced only from the flux ratio of air showers generated by gamma rays versus cosmic rays. The details of the simulation are given in the paper (Amenomori et al., Advances in Space Research, 37, 1932, 2006). The present result using the same data as in ApJ suggests that the spectral index of source electrons is steeper than 2.2 and 2.1 for the inner and outer Galactic planes, respectively.

  14. TeV Gamma-Ray Observations of the Galactic Center

    CERN Document Server

    Kosack, K; Bond, I H; Boyle, P J; Bradbury, S M; Buckley, J H; Carter-Lewis, A D; Catanese, M; Celik, O; Connaughton, V; Cui, W; Daniel, M; D'Vali, M; dela Calle Perez, I; Duke, C; Falcone, A; Fegan, D J; Fegan, S J; Finley, J P; Fortson, F L; Gaidos, J A; Gammell, S; Gibbs, K; Gillanders, G H; Grube, J; Hall, J; Hall, A; Hanna, D; Hillas, A M; Holder, J; Horan, D; Jarvis, A; Jordan, M; Kenny, E G; Kertzman, M; Kieda, D; Kildea, J; Knapp, J; Krawczynski, H; Krennrich, F; Lang, J; Le Bohec, S; Lessard, R W; Linton, E T; Lloyd-Evans, J; Milovanovic, A; McEnery, J; Moriarty, P; Müller, D; Nagai, T; Nolan, S J; Ong, R A; Pallassini, R; Petry, D; Power-Mooney, B; Quinn, J; Quinn, M; Ragan, K; Rebillot, P; Reynolds, P T; Rose, H J; Schroedter, M; Sembroski, G H; Swordy, S P; Syson, A; Vasilev, V V; Wakely, S P; Walker, G; Weekes, T C; Zweerink, J

    2004-01-01

    We report a possible detection of TeV gamma-rays from the Galactic Center by the Whipple 10m gamma-ray telescope. Twenty-six hours of data were taken over an extended period from 1995 through 2003 resulting in a total significance of 3.7 standard deviations. The measured excess corresponds to an integral flux of \\Flux above an energy of $2.8 \\mathrm{TeV}$, roughly 40% of the flux from the Crab Nebula at this energy. The 95% confidence region has an angular extent of about 15 arcmin and includes the position of Sgr A*. The detection is consistent with a point source and shows no evidence for variability.

  15. SMM hard X-ray observations of the soft gamma-ray repeater 1806-20

    Science.gov (United States)

    Kouveliotou, C.; Norris, J. P.; Cline, T. L.; Dennis, B. R.; Desai, U. D.; Orwig, L. E.

    1987-01-01

    Six bursts from the soft gamma-ray repeater (SGR) 1806-20 have been recorded with the SMM Hard X-ray Burst Spectrometer during a highly active phase in 1983. Rise and decay times of less than 5 ns have been detected. Time profiles of these events indicate low-level emission prior to and after the main peaks. The results suggest that SGRs are distinguished from classical gamma-ray bursts by repetition, softer nonvarying spectra, short durations, simple temporal profiles, and a tendency for source locations to correlate with Population I objects. SGR characteristics differ from those of type I X-ray bursts, but they appear to have similarities with the type II bursts from the Rapid Burster.

  16. Observations of supernova remnants and pulsar wind nebulae at gamma-ray energies

    CERN Document Server

    Hewitt, John W

    2015-01-01

    In the past few years, gamma-ray astronomy has entered a golden age thanks to two major breakthroughs: Cherenkov telescopes on the ground and the Large Area Telescope (LAT) onboard the Fermi satellite. The sample of supernova remnants (SNRs) detected at gamma-ray energies is now much larger: it goes from evolved supernova remnants interacting with molecular clouds up to young shell-type supernova remnants and historical supernova remnants. Studies of SNRs are of great interest, as these analyses are directly linked to the long standing issue of the origin of the Galactic cosmic rays. In this context, pulsar wind nebulae (PWNe) need also to be considered since they evolve in conjunction with SNRs. As a result, they frequently complicate interpretation of the gamma-ray emission seen from SNRs and they could also contribute directly to the local cosmic ray spectrum, particularly the leptonic component. This paper reviews the current results and thinking on SNRs and PWNe and their connection to cosmic ray product...

  17. Experiments to Observe the Weibel Instability: The Origin of Gamma Ray Burst Afterglow

    Science.gov (United States)

    Huntington, Channing; Matsuoka, T.; Maksimchuk, A.; Yanovsky, V.; Krushelnick, K.; Katsouleas, T.; Medvedev, M. V.; Silva, L. O.; Mori, W. B.; Bingham, R.; Drake, R. P.

    2008-05-01

    Recent theories suggest that the radiation signature of gamma ray bursts may be the result of the interaction of ultrarelativistic electrons, ejected from supernova shocks, with small-scale magnetic fields.a These tiny "tangled" magnetic fields are thought to be created by the two-stream filamentation instability, or Weibel Instability, of the beaming electrons. As the charged particles propagate, local density perturbations form lines of current, which create magnetic fields within the beam. These fields act to pinch the areas of higher electron density, forming filaments of characteristic diameter c/ωp, where c is the speed of light and ωp is the electron plasma frequency. Using the Hercules laser facility at the University of Michigan, we are conducting an experiment to create an electron beam by the laser wakefield technique, produce such filaments by passing the electron beam through another plasma, and image the resulting structure. Analysis of the beam structure will be compared with theory and simulation and will provide direction for future investigation of gamma ray burst signatures. a. Medvedev MV., Loeb A. Generation of Magnetic Fields in the Relativistic Shock of Gamma-Ray-Burst Sources. Astrophys.J. 526 (1999) 697-706 This research was sponsored by the National Science Foundation through Grant PHY-0114336 and by NNSA Stewardship Sciences Academic Alliances through DOE Research Grant DE-FG52-04NA00064.

  18. High-energy gamma-ray observations of the accreting black hole V404 Cygni during its June 2015 outburst

    CERN Document Server

    Loh, A; Dubus, G; Rodriguez, J; Grenier, I; Hovatta, T; Pearson, T; Readhead, A; Fender, R; Mooley, K

    2016-01-01

    We report on Fermi/Large Area Telescope observations of the accreting black hole low-mass X-ray binary V404 Cygni during its outburst in June-July 2015. Detailed analyses reveal a possible excess of $\\gamma$-ray emission on 26 June 2015, with a very soft spectrum above $100$ MeV, at a position consistent with the direction of V404 Cyg (within the $95\\%$ confidence region and a chance probability of $4 \\times 10^{-4}$). This emission cannot be associated with any previously-known Fermi source. Its temporal coincidence with the brightest radio and hard X-ray flare in the lightcurve of V404 Cyg, at the end of the main active phase of its outburst, strengthens the association with V404 Cyg. If the $\\gamma$-ray emission is associated with V404 Cyg, the simultaneous detection of $511\\,$keV annihilation emission by INTEGRAL requires that the high-energy $\\gamma$ rays originate away from the corona, possibly in a Blandford-Znajek jet. The data give support to models involving a magnetically-arrested disk where a brig...

  19. First Results from Fermi GBM Earth Occultation Monitoring: Observations of Soft Gamma-Ray Sources Above 100 keV

    CERN Document Server

    Case, Gary L; Rodi, James C; Jenke, Peter; Wilson-Hodge, Colleen A; Finger, Mark H; Meegan, Charles A; Camero-Arranz, Ascencion; Beklen, Elif; Bhat, P Narayan; Briggs, Michael S; Chaplin, Vandiver; Connaughton, Valerie; Paciesas, William S; Preece, Robert; Kippen, R Marc; von Kienlin, Andreas; Griener, Jochen

    2010-01-01

    The NaI and BGO detectors on the Gamma-ray Burst Monitor (GBM) on Fermi are now being used for long-term monitoring of the hard X-ray/low energy gamma-ray sky. Using the Earth occultation technique as demonstrated previously by the BATSE instrument on the Compton Gamma-Ray Observatory, GBM can be used to produce multiband light curves and spectra for known sources and transient outbursts in the 8 keV to 1 MeV energy range with its NaI detectors and up to 40 MeV with its BGO detectors. Over 85% of the sky is viewed every orbit, and the precession of the Fermi orbit allows the entire sky to be viewed every ~26 days with sensitivity exceeding that of BATSE at energies below ~25 keV and above ~1.5 MeV. We briefly describe the technique and present preliminary results using the NaI detectors after the first two years of observations at energies above 100 keV. Eight sources are detected with a significance greater than 7 sigma: the Crab, Cyg X-1, SWIFT J1753.5-0127, 1E 1740-29, Cen A, GRS 1915+105, and the transien...

  20. On The {\\it Fermi} -Lat Surplus of the Diffuse Galactic Gamma-Ray Emission

    CERN Document Server

    Voelk, Heinrich J

    2013-01-01

    Recent observations of the diffuse Galactic \\gr emission (DGE) by the {\\it Fermi} Large Area Telescope ({\\it Fermi}-LAT) have shown significant deviations, above a few GeV until about 100 GeV, from DGE models that use the GALPROP code for the propagation of cosmic ray (CR) particles outside their sources in the Galaxy and their interaction with the target distributions of the interstellar gas and radiation fields. The surplus of radiation observed is most pronounced in the inner Galaxy, where the concentration of CR sources is strongest. The present study investigates this "{\\it Fermi}-LAT Galactic Plane Surplus" by estimating the \\gr emission from the sources themselves, which is disregarded in the above DGE models. It is shown that indeed the expected hard spectrum of CRs, still confined in their sources (SCRs), can explain this surplus. The method is based on earlier studies regarding the so-called EGRET GeV excess which by now is generally interpreted as an instrumental effect. The contribution from SCRs ...

  1. A Decade of TeV Observations of the Gamma-ray Binary HESSJ0632+057 with VERITAS

    CERN Document Server

    ,

    2016-01-01

    The gamma-ray binary HESSJ0632+057 (VERJ0633+057) has been observed at very-high energies for a decade by all major systems of imaging atmospheric Cherenkov telescopes. We present here new observations taken by the VERITAS observatory during the season 2015-2016. The observations cover now all phases of the binary orbit (with its period of about 315 days), showing clearly enhancements around phases 0.35 and 0.75. The results are discussed along with simultaneous observations with Swift's X-Ray Telescope.

  2. On the Fermi Large Area Telescope Surplus of Diffuse Galactic Gamma-Ray Emission

    Science.gov (United States)

    Völk, H. J.; Berezhko, E. G.

    2013-11-01

    Recent observations of diffuse Galactic γ-ray emission (DGE) by the Fermi Large Area Telescope (Fermi-LAT) have shown significant deviations, above a few GeV to about 100 GeV, from DGE models that use the GALPROP code for the propagation of cosmic ray (CR) particles outside their sources in the Galaxy and their interaction with the target distributions of the interstellar gas and radiation fields. The surplus of radiation observed is most pronounced in the inner Galaxy, where the concentration of CR sources is strongest. The present study investigates this "Fermi-LAT Galactic Plane Surplus" by estimating the γ-ray emission from the sources themselves, which is disregarded in the above DGE models. It is shown that the expected hard spectrum of CRs, still confined in their sources (source cosmic rays, SCRs), can indeed explain this surplus. The method is based on earlier studies regarding the so-called EGRET GeV excess, which by now is generally interpreted as an instrumental effect. The contribution from SCRs is also predicted to increasingly exceed the DGE models above 100 GeV, up to γ-ray energies of about 10 TeV, where the corresponding surplus exceeds the hadronic part of the DGE by about one order of magnitude. Above such energies, the emission surplus should decrease again with energy due to the finite lifetime of the assumed supernova remnant sources. Observations of the DGE in the inner Galaxy at 15 TeV with the ground-based Milagro γ-ray detector and, at TeV energies, with the ARGO-YBJ detector are interpreted to provide confirmation of a significant SCR contribution to the DGE.

  3. ON THE FERMI LARGE AREA TELESCOPE SURPLUS OF DIFFUSE GALACTIC GAMMA-RAY EMISSION

    Energy Technology Data Exchange (ETDEWEB)

    Völk, H. J. [Max-Planck-Institut für Kernphysik, P.O. Box 103980, D-69029 Heidelberg (Germany); Berezhko, E. G., E-mail: Heinrich.Voelk@mpi-hd.mpg.de [Yu. G. Shafer Institute of Cosmophysical Research and Aeronomy, 31 Lenin Avenue, 677980 Yakutsk (Russian Federation)

    2013-11-10

    Recent observations of diffuse Galactic γ-ray emission (DGE) by the Fermi Large Area Telescope (Fermi-LAT) have shown significant deviations, above a few GeV to about 100 GeV, from DGE models that use the GALPROP code for the propagation of cosmic ray (CR) particles outside their sources in the Galaxy and their interaction with the target distributions of the interstellar gas and radiation fields. The surplus of radiation observed is most pronounced in the inner Galaxy, where the concentration of CR sources is strongest. The present study investigates this 'Fermi-LAT Galactic Plane Surplus' by estimating the γ-ray emission from the sources themselves, which is disregarded in the above DGE models. It is shown that the expected hard spectrum of CRs, still confined in their sources (source cosmic rays, SCRs), can indeed explain this surplus. The method is based on earlier studies regarding the so-called EGRET GeV excess, which by now is generally interpreted as an instrumental effect. The contribution from SCRs is also predicted to increasingly exceed the DGE models above 100 GeV, up to γ-ray energies of about 10 TeV, where the corresponding surplus exceeds the hadronic part of the DGE by about one order of magnitude. Above such energies, the emission surplus should decrease again with energy due to the finite lifetime of the assumed supernova remnant sources. Observations of the DGE in the inner Galaxy at 15 TeV with the ground-based Milagro γ-ray detector and, at TeV energies, with the ARGO-YBJ detector are interpreted to provide confirmation of a significant SCR contribution to the DGE.

  4. SMM observations of gamma-ray transients. 2: A search for gamma-ray lines between 400 and 600 keV from the Crab Nebula

    Science.gov (United States)

    Harris, Michael J.; Share, Gerald H.; Leising, Mark D.

    1994-01-01

    We have search spectra obtained by the Solar Maximum Mission Gamma-Ray Spectrometer during 1981-1988 for evidence of transient gamma-ray lines from the Crab Nebula which have been reported by previous experiments at energies 400-460 keV and 539 keV. We find no evidence for significant emission in any of these lines on time scales between aproximately 1 day and approximately 1 yr. Our 3 sigma upper limits on the transient flux during 1 d intervals are approximately equal to 2.2 x 10(exp -3) photons/sq cm/s for narrow lines at any energy, and approximately equal to 2.9 x 10(exp -3) photons/sq cm/s for the 539 keV line if it is as broad as 42 keV Full Width at Half Maximum (FWHM). We also searched our data during the approximately 5 hr period on 1981 June 6 during which Owens, Myers, & Thompson (1985) reported a strong line at 405 keV. We detected no line down to a 3 upper sigma limit of 3.3 x 10(exp -3) photons/sq cm/s in disagreement with the flux 7.2 +/- 2.1 x 10(exp -3) photos/sq cm/s measured by Owens et al.

  5. Constraints on cosmic ray electrons and diffuse gamma rays with AMS-02 and HESS data

    CERN Document Server

    Chen, Ding; Jin, Hong-Bo

    2014-01-01

    Lately, AMS-02 and HAWC have reported their observations of cosmic rays(CRs), which promote the further exploration of CR origins. We choose some experimental data of CRs to focus the origins of CR electrons and estimate the spectrum of CR electrons. Based on the conventional diffusion model of CRs, we perform a global analysis on the spectrum feature of CR electrons with the data of AMS-02, HESS and Milagro. The results verify that the spectrum of CR electrons has the apparent structure beyond a simple power law. The difference between the power indices above and below the reference rigidity is greater than 0.2, which is near the momentum loss rate of CR electrons. The data of HESS electrons matches the TeV extension of AMS-02 electrons and the relevant spectrum of CR electrons does not have TeV breaks. By use of the difference between the CR electrons and primary electrons constrained by AMS-02 and HESS, the TeV bounds of positron excess are predicted. In the bounds, the flux relevant to the up-limit is bey...

  6. Search for diffuse cosmic gamma-ray flux using Fractal and Wavelet analysis from Galactic region using single imaging Cerenkov telescopes

    CERN Document Server

    Bhat, C K

    2010-01-01

    We show from a simulations-based study of the TACTIC telescope that fractal and wavelet analysis of Cerenkov images, recorded in a single imaging Cerenkov telescope, enables almost complete segregation of isotropic gamma-ray initiated events from the overwhelming background of cosmic-ray hadron-initiated events. This presents a new method for measuring galactic and extragalactic gamma-ray background above 1 TeV energy. Preliminary results based on this method are reported here. Primary aim is to explore the possibility of using data recorded by a single imaging atmospheric Cerenkov telescope(IACT) for making accurate measurements of diffuse galactic and extragalactic gamma-ray flux above ~1 TeV energy. Using simulated data of atmospheric Cerenkov images recorded in an IACT, initiated both by cosmic ray protons and diffuse gamma-rays with energies above 4 TeV and 2 TeV respectively, we identify the most efficient fractal /wavelet parameters of the recorded images for primary identification. The method is based...

  7. Design and Performance of the GAMMA-400 Gamma-Ray Telescope for the Dark Matter Searches

    CERN Document Server

    Galper, A M; Aptekar, R L; Arkhangelskaja, I V; Arkhangelskiy, A I; Boezio, M; Bonvicini, V; Boyarchuk, K A; Fradkin, M I; Gusakov, Yu V; Kaplin, V A; Kachanov, V A; Kheymits, M D; Leonov, A A; Longo, F; Mazets, E P; Maestro, P; Marrocchesi, P; Mereminskiy, I A; Mikhailov, V V; Moiseev, A A; Mocchiutti, E; Mori, N; Moskalenko, I V; Naumov, P Yu; Papini, P; Picozza, P; Rodin, V G; Runtso, M F; Sparvoli, R; Spillantini, P; Suchkov, S I; Tavani, M; Topchiev, N P; Vacchi, A; Vannuccini, E; Yurkin, Yu T; Zampa, N; Zverev, V G; Zirakashvili, V N

    2012-01-01

    The GAMMA-400 gamma-ray telescope is designed to measure the fluxes of gamma rays and cosmic-ray electrons + positrons, which can be produced by annihilation or decay of the dark matter particles, as well as to survey the celestial sphere in order to study point and extended sources of gamma rays, measure energy spectra of Galactic and extragalactic diffuse gamma-ray emission, gamma-ray bursts, and gamma-ray emission from the Sun. The GAMMA-400 covers the energy range from 100 MeV to 3000 GeV. Its angular resolution is ~0.01 deg (E{\\gamma} > 100 GeV), the energy resolution ~1% (E{\\gamma} > 10 GeV), and the proton rejection factor ~10E6. GAMMA-400 will be installed on the Russian space platform Navigator. The beginning of observations is planned for 2018.

  8. Design and Performance of the GAMMA-400 Gamma-Ray Telescope for Dark Matter Searches

    Science.gov (United States)

    Galper, A. M.; Adriani, O.; Aptekar, R. L.; Arkhangelskaja, I. V.; Arkhangelskiy, A. I.; Boezio, M.; Bonvicini, V.; Boyarchuk, K. A.; Fradkin, M. I.; Gusakov, Yu V.; Kaplin, V. A.; Kachanov, V. A.; Kheymits, M. D.; Leonov, A. A.; Longo, F.; Mazets, E. P.; Maestro, P.; Marrocchesi, P.; Mereminskiy, I. A.; Mikhailov, V. V.; Mocchiutti, E.; Moiseev, A. A.; Mori, N.; Moskalenko, I. V.; Naumov, P. Yu

    2012-01-01

    The GAMMA-400 gamma-ray telescope is designed to measure the fluxes of gamma-rays and cosmic-ray electrons (+) positrons, which can be produced by annihilation or decay of the dark matter particles, as well as to survey the celestial sphere in order to study point and extended sources of gamma-rays, measure energy spectra of Galactic and extragalactic diffuse gamma-ray emission, gamma-ray bursts, and gamma-ray emission from the Sun. GAMMA-400 covers the energy range from 100 MeV to 3000 GeV. Its angular resolution is approximately 0.01deg (E(sub gamma) greater than 100 GeV), the energy resolution approximately 1% (E(sub gamma) greater than 10 GeV), and the proton rejection factor approximately 10(exp 6). GAMMA-400 will be installed on the Russian space platform Navigator. The beginning of observations is planned for 2018.

  9. Gamma-ray and neutrino diffuse emissions of the Galaxy above the TeV

    Science.gov (United States)

    Gaggero, D.; Grasso, D.; Marinelli, A.; Urbano, A.; Valli, M.

    2016-05-01

    Conventional cosmic ray propagation models face problems reproducing the diffuse 7-ray spectrum measured by Fermi-LAT over the entire sky. Those models also fail to smoothly connect Fermi-LAT results with data above the TeV as those taken by Milagro in the inner Galactic plane. In this contribution we show that a representative model adopting a spatial dependent rigidity scaling of the diffusion coefficient can reproduce all those experimental results without spoiling the consistency with local cosmic-ray measurements. We use the same model to compute the diffuse neutrino emission of the Galaxy and compare it with IceCube and ANTARES results.

  10. Observations on micronuclei ultrastructure within broad bean (Vicia faba) meristem after. gamma. ray radiation

    Energy Technology Data Exchange (ETDEWEB)

    Soran, V.; Sparchez, C.; Craciun, C.; Uray, Z. (Center for Biological Research, Cluj-Napoca (Roumania))

    1981-06-01

    The root meristem of broad bean (Vicia faba) fourth day old was irradiated with ..gamma.. ray in doses of 50, 100, 200, 300 and 500 rad. After 24 hours the root tip was fixed with glutaraldehyde and osmic acid and after that embedded in W vestopal. On several sections micronuclei were present and their ultrastructure could be studied. From ultrastructural point of view the heterochromatinic micronuclei are acentric chromosomal fragments and the euchromatinic ones probably not. A clear separation between micronuclei and other fragments of the normal nucleus was proved.

  11. Radioactivity observed in the sodium iodide gamma-ray spectrometer returned on the Apollo 17 mission

    Science.gov (United States)

    Dyer, C. S.; Trombka, J. I.; Schmadebeck, R. L.; Eller, E.; Bielefeld, M. J.; Okelley, G. D.; Eldridge, J. S.; Northcutt, K. J.; Metzger, A. E.; Reedy, R. C.

    1975-01-01

    In order to obtain information on radioactive background induced in the Apollo 15 and 16 gamma-ray spectrometers (7 cm x 7 cm NaI) by particle irradiation during spaceflight, and identical detector was flown and returned to earth on the Apollo 17 mission. The induced radioactivity was monitored both internally and externally from one and a half hours after splashdown. When used in conjunction with a computation scheme for estimating induced activation from calculated trapped proton and cosmic-ray fluences, these results show an important contribution resulting from both thermal and energetic neutrons produced in the heavy spacecraft by cosmic-ray interactions.

  12. Constraints on the Extragalactic Background Light from Very High Energy Gamma-Ray Observations of Blazars

    OpenAIRE

    Finke, Justin D.; Razzaque, Soebur

    2009-01-01

    The extragalactic background light (EBL) from the infrared to the ultraviolet is difficult to measure directly, but can be constrained with a variety of methods. EBL photons absorb gamma-rays from distant blazars, allowing one to use blazar spectra from atmospheric Cherenkov telescopes (ACTs) to put upper limits on the EBL by assuming a blazar source spectrum. Here we apply a simple technique, similar to the one developed by Schroedter (2005), to the most recent very-high energy (VHE) gamma-r...

  13. Constraining a Galactic Origin of the IceCube Neutrinos with HAWC All-Sky Gamma-Ray Observations

    Science.gov (United States)

    Pretz, John; HAWC Collaboration

    2017-01-01

    The origin of the TeV-PeV high-energy astrophysical neutrino events seen in IceCube data is hotly debated. If the events are not due to dark matter, the relative isotropy of the signal points to a dominant extra-Galactic population. Nevertheless sub-dominant Galactic scenarios have not been ruled out. We expect the production of Galactic TeV-PeV neutrinos (via charged pion decay) to be accompanied by high-energy gamma rays (from neutral pion decay). Data from the High Altitude Water Cherenkov Observatory (HAWC) reveal a strong detection of emission from the plane of the galaxy, providing a constraint on the fraction of the IceCube flux that can be of Galactic origin. A search for large-scale isotropic photon emission has the potential to provide analogous constraints. I will present HAWC's measurement of the total TeV emission in the Northern half of the Galactic plane along with current limits on isotropic diffuse gamma-ray emission and discuss the implications for the origin of the IceCube neutrinos. National Science Foundation.

  14. CORONAS-F observation of gamma-ray emission from the solar flare on 2003 October 29

    Science.gov (United States)

    Kurt, Victoria G.; Yushkov, Boris Yu.; Galkin, Vladimir I.; Kudela, Karel; Kashapova, Larisa K.

    2017-10-01

    Appreciable hard X-ray (HXR) and gamma-ray emissions in the 0.04-150 MeV energy range associated with the 2003 October 29 solar flare (X10/3B) were observed at 20:38-20:58 UT by the SONG instrument onboard the CORONAS-F mission. To restore flare gamma-ray spectra we fitted the SONG energy loss spectra with a three-component model of the incident spectrum: (1) a power law in energy, assumed to be due to electron bremsstrahlung; (2) a broad continuum produced by prompt nuclear de-excitation gamma-lines; and (3) a broad gamma-line generated from pion-decay. We also restored spectra from the RHESSI data, compared them with the SONG spectra and found a reasonable agreement between these spectra in the 0.1-10 MeV energy range. The pion-decay emission was observed from 20:44:20 UT and had its maximum at 20:48-20:51 UT. The power-law spectral index of accelerated protons estimated from the ratio between intensities of different components of gamma rays changed with time. The hardest spectrum with a power-law index S = -3.5 - 3.6 was observed at 20:48-20:51 UT. Time histories of the pion-decay emission and proton spectrum were compared with changes of the locations of flare energy release as shown by RHESSI hard X-ray images and remote and remote Hα brightenings. An apparent temporal correlation between processes of particle acceleration and restructuring of flare magnetic field was found. In particular, the protons were accelerated to subrelativistic energies after radical change of the character of footpoint motion from a converging motion to a separation motion.

  15. Applied gamma-ray spectrometry

    CERN Document Server

    Dams, R; Crouthamel, Carl E

    1970-01-01

    Applied Gamma-Ray Spectrometry covers real life application of the gamma-ray and the devices used in their experimental studies. This book is organized into 9 chapters, and starts with discussions of the various decay processes, the possible interaction mechanisms of gamma radiation with matter, and the intrinsic and extrinsic variables, which affect the observed gamma-ray and X-ray spectra. The subsequent chapters deal with the properties and fabrication of scintillation detectors, semiconductor detectors, and proportional gas counters. These chapters present some of the most widely utilized

  16. VLBI OBSERVATIONS OF THE JET IN M 87 DURING THE VERY HIGH ENERGY {gamma}-RAY FLARE IN 2010 APRIL

    Energy Technology Data Exchange (ETDEWEB)

    Hada, Kazuhiro; Giroletti, Marcello; Giovannini, Gabriele [INAF Istituto di Radioastronomia, via Gobetti 101, I-40129 Bologna (Italy); Kino, Motoki; Nagai, Hiroshi [National Astronomical Observatory of Japan, Osawa, Mitaka, Tokyo 181-8588 (Japan); Doi, Akihiro [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuo, Sagamihara 252-5210 (Japan); Hagiwara, Yoshiaki; Honma, Mareki; Kawaguchi, Noriyuki [Department of Astronomical Science, Graduate University for Advanced Studies (SOKENDAI), 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan)

    2012-11-20

    We report on the detailed radio status of the M 87 jet during the very high energy (VHE) {gamma}-ray flaring event in 2010 April, obtained from high-resolution, multi-frequency, phase-referencing Very Long Baseline Array observations. We especially focus on the properties of the jet base (the radio core) and the peculiar knot HST-1, which are currently favored as the {gamma}-ray emitting sites. During the VHE flaring event, the HST-1 region remains stable in terms of its structure and flux density in the optically thin regime above 2 GHz, being consistent with no signs of enhanced activities reported at X-ray for this feature. The radio core shows an inverted spectrum at least up to 43 GHz during this event. Astrometry of the core position, which is specified as {approx}20 R {sub s} from the central engine in our previous study, shows that the core position is stable on a level of 4 R {sub s}. The core at 43 and 22 GHz tends to show slightly ({approx}10%) higher flux level near the date of the VHE flux peak compared with the epochs before/after the event. The size of the 43 GHz core is estimated to be {approx}17 R {sub s}, which is close to the size of the emitting region suggested from the observed timescale of rapid variability at VHE. These results tend to favor the scenario that the VHE {gamma}-ray flare in 2010 April is associated with the radio core.

  17. Gravitational-wave Observations May Constrain Gamma-Ray Burst Models: The Case of GW150914-GBM

    Science.gov (United States)

    Veres, P.; Preece, R. D.; Goldstein, A.; Mészáros, P.; Burns, E.; Connaughton, V.

    2016-08-01

    The possible short gamma-ray burst (GRB) observed by Fermi/GBM in coincidence with the first gravitational-wave (GW) detection offers new ways to test GRB prompt emission models. GW observations provide previously inaccessible physical parameters for the black hole central engine such as its horizon radius and rotation parameter. Using a minimum jet launching radius from the Advanced LIGO measurement of GW 150914, we calculate photospheric and internal shock models and find that they are marginally inconsistent with the GBM data, but cannot be definitely ruled out. Dissipative photosphere models, however, have no problem explaining the observations. Based on the peak energy and the observed flux, we find that the external shock model gives a natural explanation, suggesting a low interstellar density (˜10-3 cm-3) and a high Lorentz factor (˜2000). We only speculate on the exact nature of the system producing the gamma-rays, and study the parameter space of a generic Blandford-Znajek model. If future joint observations confirm the GW-short-GRB association we can provide similar but more detailed tests for prompt emission models.

  18. About cosmic gamma ray lines

    Science.gov (United States)

    Diehl, Roland

    2017-06-01

    Gamma ray lines from cosmic sources convey the action of nuclear reactions in cosmic sites and their impacts on astrophysical objects. Gamma rays at characteristic energies result from nuclear transitions following radioactive decays or high-energy collisions with excitation of nuclei. The gamma-ray line from the annihilation of positrons at 511 keV falls into the same energy window, although of different origin. We present here the concepts of cosmic gamma ray spectrometry and the corresponding instruments and missions, followed by a discussion of recent results and the challenges and open issues for the future. Among the lessons learned are the diffuse radioactive afterglow of massive-star nucleosynthesis in 26Al and 60Fe gamma rays, which is now being exploited towards the cycle of matter driven by massive stars and their supernovae; large interstellar cavities and superbubbles have been recognised to be of key importance here. Also, constraints on the complex processes making stars explode as either thermonuclear or core-collapse supernovae are being illuminated by gamma-ray lines, in this case from shortlived radioactivities from 56Ni and 44Ti decays. In particular, the three-dimensionality and asphericities that have recently been recognised as important are enlightened in different ways through such gamma-ray line spectroscopy. Finally, the distribution of positron annihilation gamma ray emission with its puzzling bulge-dominated intensity disctribution is measured through spatially-resolved spectra, which indicate that annihilation conditions may differ in different parts of our Galaxy. But it is now understood that a variety of sources may feed positrons into the interstellar medium, and their characteristics largely get lost during slowing down and propagation of positrons before annihilation; a recent microquasar flare was caught as an opportunity to see positrons annihilate at a source.

  19. Observation of the TeV gamma-ray source MGRO J1908+06 with ARGO-YBJ

    CERN Document Server

    ,

    2012-01-01

    The extended gamma ray source MGRO J1908+06, discovered by the Milagro air shower detector in 2007, has been observed for \\sim 4 years by the ARGO-YBJ experiment at TeV energies, with a statistical significance of 6.2 standard deviations. The peak of the signal is found at a position consistent with the pulsar PSR J1907+0602. Parametrizing the source shape with a two-dimensional Gauss function we estimate an extension \\sigma = 0.49 \\pm 0.22 degrees, consistent with a previous measurement by the Cherenkov Array H.E.S.S.. The observed energy spectrum is dN/dE = 6.1 \\pm 1.4 \\times 10^-13 (E/4 TeV)^{-2.54 \\pm 0.36} photons cm^-2 s^-1 TeV^-1, in the energy range \\sim 1-20 TeV. The measured gamma ray flux is consistent with the results of the Milagro detector, but is \\sim 2-3 times larger than the flux previously derived by H.E.S.S. at energies of a few TeV. The continuity of the Milagro and ARGO-YBJ observations and the stable excess rate observed by ARGO-YBJ along 4 years of data taking support the identification...

  20. Fermi Large Area Telescope Observations of High-Energy Gamma-ray Emission From Behind-the-limb Solar Flares

    Science.gov (United States)

    Omodei, Nicola; Pesce-Rollins, Melissa; Petrosian, Vahe; Liu, Wei; Rubio da Costa, Fatima; Golenetskii, Sergei; Kashapova, Larisa; Krucker, Sam; Palshin, Valentin; Fermi Large Area Telescope Collaboration

    2017-01-01

    Fermi LAT >30 MeV observations of the active Sun have increased the number of detected solar flares by almost a factor of 10 with respect to previous space observations. Of particular interest are the recent detections of three solar flares whose position behind the limb was confirmed by the STEREO-B spacecraft. These observations sample flares from active regions originating from behind both the eastern and western limbs and include an event associated with the second ground level enhancement event (GLE) of the 24th Solar Cycle. While gamma-ray emission up to tens of MeV resulting from proton interactions has been detected before from occulted solar flares, the significance of these particular events lies in the fact that these are the first detections of >100 MeV gamma-ray emission from footpoint-occulted flares. These detections present an unique opportunity to diagnose the mechanisms of high-energy emission and particle acceleration and transport in solar flares. We will present the Fermi-LAT, RHESSI and STEREO observations of these flares and discuss the various emission scenarios for these sources.

  1. High Energy Gamma-Ray Observations of the Crab Nebula and Pulsar with the Solar Tower Atmospheric Cherenkov Effect Experiment

    CERN Document Server

    Oser, S; Boone, L M; Chantell, M C; Conner, Z; Covault, C E; Dragovan, M; Fortin, P; Gregorich, D T; Hanna, D S; Mukherjee, R; Ong, R A; Ragan, K; Scalzo, R A; Schuette, D R; Theoret, C G; Tumer, T O; Williams, D A; Zweerink, J A

    2015-01-01

    The Solar Tower Atmospheric Cherenkov Effect Experiment (STACEE) is a new ground-based atmospheric Cherenkov telescope for gamma-ray astronomy. STACEE uses the large mirror area of a solar heliostat facility to achieve a low energy threshold. A prototype experiment which uses 32 heliostat mirrors with a total mirror area of ~ 1200\\unit{m^2} has been constructed. This prototype, called STACEE-32, was used to search for high energy gamma-ray emission from the Crab Nebula and Pulsar. Observations taken between November 1998 and February 1999 yield a strong statistical excess of gamma-like events from the Crab, with a significance of $+6.75\\sigma$ in 43 hours of on-source observing time. No evidence for pulsed emission from the Crab Pulsar was found, and the upper limit on the pulsed fraction of the observed excess was E_{th}) = (2.2 \\pm 0.6 \\pm 0.2) \\times 10^{-10}\\unit{photons cm^{-2} s^{-1}}. The observed flux is in agreement with a continuation to lower energies of the power law spectrum seen at TeV energies...

  2. Multi-Epoch VLBA Observations of EGRET-Detected Quasars and BL Lac Objects Connection between Superluminal Ejections and Gamma-Ray Flares in Blazars

    CERN Document Server

    Jorstad, S G; Mattox, J R; Aller, M F; Aller, H D; Wehrle, A E; Bloom, S D; Jorstad, Svetlana G; Marscher, Alan P; Mattox, John R; Aller, Margo F; Aller, Hugh D; Wehrle, Ann E; Bloom, Steven D

    2001-01-01

    We examine the coincidence of times of high $\\gamma$-ray flux and ejections of superluminal components from the core in EGRET blazars based on a VLBA monitoring program at 22 and 43 GHz from November 1993 to July 1997. In 23 cases of $\\gamma$-ray flares for which sufficient VLBA data exist, 16 of the flares (in 14 objects) fall within 3$\\sigma$ and 9 of these within 1$\\sigma$ uncertainties of the extrapolated epoch of zero separation from the core of a superluminal radio component. In each of two sources (0528+134 and 1730-130) two successive $\\gamma$-ray flares were followed by the appearance of new superluminal components. We carried out statistical simulations which show that if the number of coincidences $\\ge$ 7 the radio and $\\gamma$-ray events are associated with each other at >99.999% confidence. Our analysis of the observed behavior, including variability of the polarized radio flux, of the sources before, during, and after the $\\gamma$-ray flares suggests that the $\\gamma$-ray events occur in the sup...

  3. Ultra-Fast Flash Observatory (uffo) for Observation of Early Photons from Gamma Ray Bursts

    Science.gov (United States)

    Park, I. H.; Ahmad, S.; Barrillon, P.; Brandt, S.; Budtz-Jorgensen, C.; Castro-Tirado, A. J.; Chen, P.; Choi, Y. J.; Connell, P.; Dagoret-Campagne, S.; Eyles, C.; Grossan, B.; Huang, M.-H. A.; Jung, A.; Jeong, S.; Kim, J. E.; Kim, M. B.; Kim, S.-W.; Kim, Y. W.; Krasnov, A. S.; Lee1, J.; Lim, H.; Linder, E. V.; Liu, T.-C.; Lund, N.; Min, K. W.; Na, G. W.; Nam, J. W.; Panasyuk, M. I.; Ripa, J.; Reglero, V.; Rodrigo, J. M.; Smoot, G. F.; Suh, J. E.; Svertilov, S.; Vedenkin, N.; Wang, M.-Z.; Yashin, I.

    2013-12-01

    One of the least documented and understood aspects of gamma-ray bursts (GRB) is the rise phase of the optical light curve. The Ultra-Fast Flash Observatory (UFFO) is an effort to address this question through extraordinary opportunities presented by a series of space missions including a small spacecraft observatory. The UFFO is equipped with a fast-response Slewing Mirror Telescope (SMT) which uses rapidly moving mirror or mirror arrays to redirect the optical beam rather than slewing the entire spacecraft to aim the optical instrument at the GRB position. The UFFO will probe the early optical rise of GRBs with a sub-second response, for the first time, opening a completely new frontier in GRB and transient studies, the only GRB system which can point and measure on these time scales. Its fast response measurements of the optical emission of dozens of GRB each year will provide unique probes of the burst mechanism, shock breakouts in core-collapse supernovae, tidal disruptions around black holes, test Lorentz violation, be the electromagnetic counterpart to neutrino and gravitational wave signatures of the violent universe, and verify the prospect of GRB as a new standard candle potentially opening up the z>10 universe. As a first step, we employ a motorized slewing stage in SMT which can point to the event within 1s after X-ray trigger, in the UFFO-pathfinder payload onboard the Lomonosov satellite to be launched in 2012. The pathfinder was a small and limited, yet remarkably powerful micro-observatory for rapid optical response to bright gamma-ray bursts, the first part of our GRB and rapid-response long-term program. We describe the early photon science, the space mission of UFFO-pathfinder, and our plan for the next step.

  4. VERITAS and Fermi-LAT observations of new TeV gamma-ray sources discovered by HAWC

    Science.gov (United States)

    Hewitt, John W.; Holder, Jamie; Park, Nahee; Taboada, Ignacio F.

    2017-08-01

    The HAWC (High Altitude Water Cherenkov) observatory recently published their second source catalog (2HWC) with over a year of observations at full sensitivity to gamma rays with energies between hundreds of GeV and tens of TeV. Sixteen of the 39 HAWC sources were found to be at least one degree away from any previously known TeV source, representing exciting targets for further study. Here we report on 12 of these unassociated HAWC sources using observations at higher spatial resolution with both VERITAS and Fermi-LAT. We use 8 years of LAT data at energies above 10 GeV and varying exposures with VERITAS. In the case of 2HWC J1953+294, VERITAS finds weak gamma-ray emission from the region and there is no LAT detection. This new TeV source is associated with the supernova remnant DA 495. For the other unassociated HAWC sources no VERITAS or LAT counterpart is found, but the upper limits from our observations can help to constrain the spectrum and spatial extension of the HAWC sources. Additionally, we studied 2HWC J1930+188 for which VERITAS had previously detected a TeV counterpart associated with the remnant G54.1+0.3. Our updated Fermi-LAT analysis also detects emission from this region, consistent with previous models of a pulsar wind nebula origin. Future multi-instrument studies of new HAWC sources promise to uncover the origins of additional cosmic accelerators.

  5. MAGIC observation of an exceptional TeV gamma-ray flare in the active galaxy IC 310

    Energy Technology Data Exchange (ETDEWEB)

    Glawion, Dorit; Mannheim, Karl; Elsaesser, Dominik; Kadler, Matthias; Schulz, Robert [ITPA Wuerzburg (Germany); Sitarek, Julian [IFAE Barcelona (Spain); Ros, Eduardo; Bach, Uwe [Max-Planck-Institut fuer Radioastronomie, Bonn (Germany); Krauss, Felicia; Wilms, Joern [ECAP Erlangen, Dr. Karl Remeis-Sternwarte, Bamberg (Germany); Collaboration: MAGIC-Collaboration

    2015-07-01

    The AGN IC 310 has been identified as a gamma-ray emitter based on observations at very high energies (VHE,E>100 GeV) with the MAGIC telescopes. Despite IC 310 having been classified as a radio galaxy with the jet observed at an angle>10 degrees, it exhibits a mixture of multiwavelength properties of a radio galaxy and a blazar, possibly making it a transitional object. On the night of 12/13th of November 2012 the MAGIC telescopes observed a series of strong outbursts from the direction of IC 310 with flux-doubling time scales faster than 5 min and a peculiar spectrum spreading over two orders of magnitude. Such fast variability constrains the size of the emission region to be smaller than 20% of the gravitational radius of its central black hole. In fact, the measurement challenges the shock acceleration models, commonly used in explanation of gamma-ray radiation from active galaxies. We show that this emission can be associated with pulsar-like particle acceleration by the electric field across a magnetospheric gap at the base of the jet.

  6. VHE observations of the gamma-ray binary system LS 5039 with H.E.S.S

    CERN Document Server

    Mariaud, C; Aharonian, F; Boettcher, M; Dubus, G; de Naurois, M; Romoli, C

    2015-01-01

    LS 5039 is a gamma-ray binary system observed in a broad energy range, from radio to TeV energies. The binary system exhibits both flux and spectral modulation as a function of its orbital period. The X-ray and very-high-energy (VHE, E > 100 GeV) gamma-ray fluxes display a maximum/minimum at inferior/superior conjunction, with spectra becoming respectively harder/softer, a behaviour that is completely reversed in the high-energy domain (HE, 0.1 10 GeV that is compatible with the low-energy tail of the TeV emission. The low 10 - 100 GeV flux, however, makes the HE and VHE components difficult to reconcile with a scenario including emission from only a single particle population. We report on new observations of LS 5039 conducted with the High Energy Stereoscopic System (H.E.S.S.) telescopes from 2006 to 2015. This new data set enables for an unprecedentedly-deep phase-folded coverage of the source at TeV energies, as well as an extension of the VHE spectral range down to ~120 GeV, which makes LS 5039 the firs...

  7. Observation of TeV Gamma Rays from the Fermi Bright Galactic Sources with the Tibet Air Shower Array

    CERN Document Server

    Amenomori, M; Chen, D; Cui, S W; Danzengluobu,; Ding, L K; Ding, X H; Fan, C; Feng, C F; Feng, Zhaoyang; Feng, Z Y; Gao, X Y; Geng, Q X; Gou, Q B; Guo, H W; He, H H; He, M; Hibino, K; Hotta, N; Hu, Haibing; Hu, H B; Huang, J; Huang, Q; Jia, H Y; Jiang, L; Kajino, F; Kasahara, K; Katayose, Y; Kato, C; Kawata, K; Labaciren,; Le, G M; Li, A F; Li, H C; Li, J Y; Liu, C; Lou, Y -Q; Lu, H; Meng, X R; Mizutani, K; Mu, J; Munakata, K; Nanjo, H; Nishizawa, M; Ohnishi, M; Ohta, I; Ozawa, S; Saito, T; Saito, T Y; Sakata, M; Sako, T K; Shibata, M; Shiomi, A; Shirai, T; Sugimoto, H; Takita, M; Tan, Y H; Tateyama, N; Torii, S; Tsuchiya, H; Udo, S; Wang, B; Wang, H; Wang, Y; Wang, Y G; Wu, H R; Xue, L; Yamamoto, Y; Yan, C T; Yang, X C; Yasue, S; Ye, Z H; Yu, G C; Yuan, A F; Yuda, T; Zhang, H M; Zhang, J L; Zhang, N J; Zhang, X Y; Zhang, Y; Zhang, Yi; Zhang, Ying; Zhaxisangzhu,; Zhou, X X

    2009-01-01

    Using the Tibet-III air shower array, we search for TeV gamma-rays from 27 potential Galactic sources in the early list of bright sources obtained by the Fermi Large Area Telescope at energies above 100 MeV. Among them, we observe 7 sources instead of the expected 0.61 sources at a significance of 2 sigma or more excess. The chance probability from Poisson statistics would be estimated to be 3.8 x 10^-6. If the excess distribution observed by the Tibet-III array has a density gradient toward the Galactic plane, the expected number of sources may be enhanced in chance association. Then, the chance probability rises slightly, to 1.2 x 10^-5, based on a simple Monte Carlo simulation. These low chance probabilities clearly show that the Fermi bright Galactic sources have statistically significant correlations with TeV gamma-ray excesses. We also find that all 7 sources are associated with pulsars, and 6 of them are coincident with sources detected by the Milagro experiment at a significance of 3 sigma or more at ...

  8. Contemporaneous observations of the radio galaxy NGC 1275 from radio to very high energy gamma-rays

    CERN Document Server

    Aleksić, J; Antonelli, L A; Antoranz, P; Babic, A; Bangale, P; de Almeida, U Barres; Barrio, J A; González, J Becerra; Bednarek, W; Berger, K; Bernardini, E; Biland, A; Blanch, O; Bock, R K; Bonnefoy, S; Bonnoli, G; Borracci, F; Bretz, T; Carmona, E; Carosi, A; Fidalgo, D Carreto; Colin, P; Colombo, E; Contreras, J L; Cortina, J; Covino, S; Da Vela, P; Dazzi, F; De Angelis, A; De Caneva, G; De Lotto, B; Mendez, C Delgado; Doert, M; Domínguez, A; Prester, D Dominis; Dorner, D; Doro, M; Einecke, S; Eisenacher, D; Elsaesser, D; Farina, E; Ferenc, D; Fonseca, M V; Font, L; Frantzen, K; Fruck, C; López, R J García; Garczarczyk, M; Terrats, D Garrido; Gaug, M; Giavitto, G; Godinović, N; Muñoz, A González; Gozzini, S R; Hadamek, A; Hadasch, D; Herrero, A; Hildebrand, D; Hose, J; Hrupec, D; Idec, W; Kadenius, V; Kellermann, H; Knoetig, M L; Krause, J; Kushida, J; La Barbera, A; Lelas, D; Lewandowska, N; Lindfors, E; Lombardi, S; López, M; López-Coto, R; López-Oramas, A; Lorenz, E; Lozano, I; Makariev, M; Mallot, K; Maneva, G; Mankuzhiyil, N; Mannheim, K; Maraschi, L; Marcote, B; Mariotti, M; Martínez, M; Mazin, D; Menzel, U; Meucci, M; Miranda, J M; Mirzoyan, R; Moralejo, A; Munar-Adrover, P; Nakajima, D; Niedzwiecki, A; Nilsson, K; Nowak, N; Orito, R; Overkemping, A; Paiano, S; Palatiello, M; Paneque, D; Paoletti, R; Paredes, J M; Paredes-Fortuny, X; Partini, S; Persic, M; Prada, F; Moroni, P G Prada; Prandini, E; Preziuso, S; Puljak, I; Reinthal, R; Rhode, W; Ribó, M; Rico, J; Garcia, J Rodriguez; Rügamer, S; Saggion, A; Saito, K; Salvati, M; Satalecka, K; Scalzotto, V; Scapin, V; Schultz, C; Schweizer, T; Shore, S N; Sillanpää, A; Sitarek, J; Snidaric, I; Sobczynska, D; Spanier, F; Stamatescu, V; Stamerra, A; Steinbring, T; Storz, J; Sun, S; Surić, T; Takalo, L; Tavecchio, F; Temnikov, P; Terzić, T; Tescaro, D; Teshima, M; Thaele, J; Tibolla, O; Torres, D F; Toyama, T; Treves, A; Uellenbeck, M; Vogler, P; Wagner, R M; Zandanel, F; Zanin, R; Balmaverde, B; Kataoka, J; Rekola, R; Takahashi, Y; .,

    2013-01-01

    The radio galaxy NGC 1275, recently identified as a very high energy (VHE, >100 GeV) gamma-ray emitter by MAGIC, is one of the few non-blazar AGN detected in the VHE regime. In order to better understand the origin of the gamma-ray emission and locate it within the galaxy, we study contemporaneous multi-frequency observations of NGC 1275 and model the overall spectral energy distribution (SED). We analyze unpublished MAGIC observations carried out between Oct. 2009 and Feb. 2010, and the already published ones taken between Aug. 2010 and Feb. 2011. We study the multi-band variability and correlations analyzing data of Fermi-LAT (0.1 - 100 GeV), Chandra (X-ray), KVA (optical) and MOJAVE (radio) taken during the same period. Using custom Monte Carlo simulations corresponding to early MAGIC stereo data, we detect NGC 1275 also in the earlier MAGIC campaign. The flux level and energy spectra are similar to the results of the second campaign. The monthly light curve above 100 GeV shows a hint of variability at the...

  9. Observation and Simulation of the Variable Gamma-ray Emission from PSR~J2021+4026

    CERN Document Server

    Ng, C W; Cheng, K S

    2016-01-01

    Pulsars are rapidly spinning and highly magnetized neutron stars, with highly stable rotational period and gradual spin-down over a long timescale due to the loss of radiation. Glitches refer to the events that suddenly increase the rotational speed of a pulsar. The exact causes of glitches and the resulting processes are not fully understood. It is generally believed that couplings between the normal matter and the superfluid components, and the starquakes, are the common causes of glitches. In this study, one famous glitching pulsar, PSR~J2021+4026, is investigated. PSR~J2021+4026 is the first variable gamma-ray pulsar observed by Fermi. From the gamma-ray observations, it is found that the pulsar experienced a significant flux drop, an increase in the spin-down rate, a change in the pulse profile and a shift in the spectral cut-off to a lower energy, simultaneously around 2011 October 16. To explain these effects on the high-energy emissions by the glitch of PSR~J2021+4026, we hypothesized the glitch to be...

  10. Gamma-ray-selected AGN

    Science.gov (United States)

    Giommi, Paolo

    2016-08-01

    The gamma-ray band is the most energetic part of the electromagnetic spectrum. As such it is also where selection effects are most severe, as it can only be reached by the most extreme non-thermal AGN. Blazars, with their emission dominated by non-thermal blue-shifted radiation arising in a relativistic jet pointed in the direction of the observer, naturally satisfy this though requirement. For this reason, albeit these sources are intrisically very rare (orders of magnitude less abundant than radio quiet AGN of the same optical magnitude) they almost completely dominate the extragalactic gamma-ray and very high energy sky. I will discuss the emission of different types of blazars and the selection effects that are at play in the gamma-ray band based on recent results from the current generation of gamma-ray astronomy satellites, ground-based Cherenkov telescopes, and Monte Carlo simulations.

  11. OBSERVATION OF TeV GAMMA RAYS FROM THE CYGNUS REGION WITH THE ARGO-YBJ EXPERIMENT

    Energy Technology Data Exchange (ETDEWEB)

    Bartoli, B.; Catalanotti, S. [Dipartimento di Fisica dell' Universita di Napoli ' Federico II' , Complesso Universitario di Monte Sant' Angelo, via Cinthia, 80126 Napoli (Italy); Bernardini, P.; Bleve, C. [Dipartimento di Fisica dell' Universita del Salento, via per Arnesano, 73100 Lecce (Italy); Bi, X. J.; Cao, Z.; Chen, S. Z.; Chen, Y. [Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, P.O. Box 918, 100049 Beijing (China); Bolognino, I. [Dipartimento di Fisica Nucleare e Teorica dell' Universita di Pavia, via Bassi 6, 27100 Pavia (Italy); Branchini, P.; Budano, A. [Istituto Nazionale di Fisica Nucleare, Sezione di Roma Tre, via della Vasca Navale 84, 00146 Roma (Italy); Calabrese Melcarne, A. K. [Istituto Nazionale di Fisica Nucleare-CNAF, Viale Berti-Pichat 6/2, 40127 Bologna (Italy); Camarri, P. [Dipartimento di Fisica dell' Universita di Roma ' Tor Vergata' , via della Ricerca Scientifica 1, 00133 Roma (Italy); Cardarelli, R. [Istituto Nazionale di Fisica Nucleare, Sezione di Roma Tor Vergata, via della Ricerca Scientifica 1, 00133 Roma (Italy); Cattaneo, C. [Istituto Nazionale di Fisica Nucleare, Sezione di Pavia, via Bassi 6, 27100 Pavia (Italy); Chen, T. L. [Tibet University, 850000 Lhasa, Xizang (China); Creti, P. [Istituto Nazionale di Fisica Nucleare, Sezione di Lecce, via per Arnesano, 73100 Lecce (Italy); Cui, S. W. [Hebei Normal University, Shijiazhuang 050016, Hebei (China); Dai, B. Z. [Yunnan University, 2 North Cuihu Road, 650091 Kunming, Yunnan (China); D' Ali Staiti, G., E-mail: chensz@ihep.ac.cn [Dipartimento di Fisica e Tecnologie Relative, Universita degli Studi di Palermo, Viale delle Scienze, Edificio 18, 90128 Palermo (Italy); Collaboration: ARGO-YBJ Collaboration; and others

    2012-02-15

    We report the observation of TeV {gamma}-rays from the Cygnus region using the ARGO-YBJ data collected from 2007 November to 2011 August. Several TeV sources are located in this region including the two bright extended MGRO J2019+37 and MGRO J2031+41. According to the Milagro data set, at 20 TeV MGRO J2019+37 is the most significant source apart from the Crab Nebula. No signal from MGRO J2019+37 is detected by the ARGO-YBJ experiment, and the derived flux upper limits at the 90% confidence level for all the events above 600 GeV with medium energy of 3 TeV are lower than the Milagro flux, implying that the source might be variable and hard to be identified as a pulsar wind nebula. The only statistically significant (6.4 standard deviations) {gamma}-ray signal is found from MGRO J2031+41, with a flux consistent with the measurement by Milagro.

  12. Observation of TeV gamma rays from the Cygnus region with the ARGO-YBJ experiment

    CERN Document Server

    Bartoli, B; Bi, X J; Bleve, C; Bolognino, I; Branchini, P; Budano, A; Melcarne, A K Calabrese; Camarri, P; Cao, Z; Cardarelli, R; Catalanotti, S; Cattaneo, C; Chen, S Z; Chen, T L; Chen, Y; Creti, P; Cui, S W; Dai, B Z; Staiti, G D'Alí; Danzengluobu,; Dattoli, M; De Mitri, I; Piazzoli, B D'Ettorre; Di Girolamo, T; Ding, X H; Di Sciascio, G; Feng, C F; Feng, Zhaoyang; Feng, Zhenyong; Galeazzi, F; Giroletti, E; Gou, Q B; Guo, Y Q; He, H H; Hu, Haibing; Hu, Hongbo; Huang, Q; Iacovacci, M; Iuppa, R; James, I; Jia, H Y; Labaciren,; Li, H J; Li, J Y; Li, X X; Liguori, G; Liu, C; Liu, C Q; Liu, J; Liu, M Y; Lu, H; Ma, L L; Ma, X H; Mancarella, G; Mari, S M; Marsella, G; Martello, D; Mastroianni, S; Montini, P; Ning, C C; Pagliaro, A; Panareo, M; Panico, B; Perrone, L; Pistilli, P; Ruggieri, F; Salvini, P; Santonico, R; Shen, P R; Sheng, X D; Shi, F; Stanescu, C; Surdo, A; Tan, Y H; Vallania, P; Vernetto, S; Vigorito, C; Wang, B; Wang, H; Wu, C Y; Wu, H R; Xu, B; Xue, L; Yang, Q Y; Yang, X C; Yao, Z G; Yuan, A F; Zha, M; Zhang, H M; Zhang, Jilong; Zhang, Jianli; Zhang, L; Zhang, P; Zhang, X Y; Zhang, Y; Zhao, J; Zhaxiciren,; Zhaxisangzhu,; Zhou, X X; Zhu, F R; Zhu, Q Q; Zizzi, G

    2012-01-01

    We report the observation of TeV gamma-rays from the Cygnus region using the ARGO-YBJ data collected from 2007 November to 2011 August. Several TeV sources are located in this region including the two bright extended MGRO J2019+37 and MGRO J2031+41. According to the Milagro data set, at 20 TeV MGRO J2019+37 is the most significant source apart from the Crab Nebula. No signal from MGRO J2019+37 is detected by the ARGO-YBJ experiment, and the derived flux upper limits at 90% confidence level for all the events above 600 GeV with medium energy of 3 TeV are lower than the Milagro flux, implying that the source might be variable and hard to be identified as a pulsar wind nebula. The only statistically significant (6.4 standard deviations) gamma-ray signal is found from MGRO J2031+41, with a flux consistent with the measurement by Milagro.

  13. The contribution of unresolved radio-loud AGN to the extragalactic diffuse gamma-ray background

    DEFF Research Database (Denmark)

    Mucke, A.; Pohl, M.

    2000-01-01

    , and on the unification scheme of radio-loud AGN. According to this picture, blazars represent the beamed fraction of the Fanaroff-Riley radio galaxies (FR galaxies). The observed log N-log S distribution and redshift distribution of both FSRQs and BL Lacs constrain our model. Depending slightly on the evolutionary...

  14. OPTICAL SPECTROSCOPIC OBSERVATIONS OF GAMMA-RAY BLAZAR CANDIDATES. VI. FURTHER OBSERVATIONS FROM TNG, WHT, OAN, SOAR, AND MAGELLAN TELESCOPES

    Energy Technology Data Exchange (ETDEWEB)

    Álvarez Crespo, N.; Massaro, F. [Dipartimento di Fisica, Università degli Studi di Torino, via Pietro Giuria 1, I-10125 Torino (Italy); Milisavljevic, D.; Paggi, A.; Smith, Howard A. [Harvard—Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Landoni, M. [INAF-Osservatorio Astronomico di Brera, Via Emilio Bianchi 46, I-23807 Merate (Italy); Chavushyan, V.; Patiño-Álvarez, V. [Instituto Nacional de Astrofísica, Óptica y Electrónica, Apartado Postal 51-216, 72000 Puebla, México (Mexico); Masetti, N. [INAF—Istituto di Astrofisica Spaziale e Fisica Cosmica di Bologna, via Gobetti 101, I-40129, Bologna (Italy); Jiménez-Bailón, E. [Instituto de Astronomía, Universidad Nacional Autónoma de México, Apdo. Postal 877, Ensenada, 22800 Baja California, México (Mexico); Strader, J.; Chomiuk, L. [Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States); Katagiri, H.; Kagaya, M. [College of Science, Ibaraki University, 2-1-1, Bunkyo, Mito 310-8512 (Japan); Cheung, C. C. [Space Science Division, Naval Research Laboratory, Washington, DC 20375 (United States); D’Abrusco, R. [Department of Physical Sciences, University of Napoli Federico II, via Cinthia 9, I-80126 Napoli (Italy); Ricci, F.; La Franca, F. [Dipartimento di Matematica e Fisica, Università Roma Tre, via della Vasca Navale 84, I-00146, Roma (Italy); and others

    2016-04-15

    Blazars, one of the most extreme classes of active galaxies, constitute so far the largest known population of γ-ray sources, and their number is continuously growing in the Fermi catalogs. However, in the latest release of the Fermi catalog there is still a large fraction of sources that are classified as blazar candidates of uncertain type (BCUs) for which optical spectroscopic observations are necessary to confirm their nature and their associations. In addition, about one-third of the γ-ray point sources listed in the Third Fermi-LAT Source Catalog (3FGL) are still unassociated and lacking an assigned lower-energy counterpart. Since 2012 we have been carrying out an optical spectroscopic campaign to observe blazar candidates to confirm their nature. In this paper, the sixth of the series, we present optical spectroscopic observations for 30 γ-ray blazar candidates from different observing programs we carried out with the Telescopio Nazionale Galileo, William Herschel Telescope, Observatorio Astronómico Nacional, Southern Astrophysical Research Telescope, and Magellan Telescopes. We found that 21 out of 30 sources investigated are BL Lac objects, while the remaining targets are classified as flat-spectrum radio quasars showing the typical broad emission lines of normal quasi-stellar objects. We conclude that our selection of γ-ray blazar candidates based on their multifrequency properties continues to be a successful way to discover potential low-energy counterparts of the Fermi unidentified gamma-ray sources and to confirm the nature of BCUs.

  15. Fermi: The Gamma-Ray Large Area Telescope

    Science.gov (United States)

    McEnery, Julie

    2015-01-01

    Following its launch in June 2008, high-energy gamma-ray observations by the Fermi Gamma-ray Space Telescope have unveiled over 1000 new sources and opened an important and previously unexplored window on a wide variety of phenomena. These have included the discovery of an population of pulsars pulsing only in gamma rays; the detection of photons up to 10s of GeV from gamma-ray bursts, enhancing our understanding of the astrophysics of these powerful explosions; the detection of hundreds of active galaxies; a measurement of the high energy cosmic-ray electron spectrum which may imply the presence of nearby astrophysical particle accelerators; the determination of the diffuse gamma-ray emission with unprecedented accuracy and the constraints on phenomena such as supersymmetric dark-matter annihilations and exotic relics from the Big Bang. Continuous monitoring of the high-energy gamma-ray sky has uncovered numerous outbursts from active galaxies and the discovery of transient sources in our galaxy. In this talk I will describe the current status of the Fermi observatory and review the science highlights from Fermi.

  16. Fermi: The Gamma-Ray Large Area Telescope Mission Status

    Science.gov (United States)

    McEnery, Julie

    2014-01-01

    Following its launch in June 2008, high-energy gamma-ray observations by the Fermi Gamma-ray Space Telescope have unveiled over 1000 new sources and opened an important and previously unexplored window on a wide variety of phenomena. These have included the discovery of an population of pulsars pulsing only in gamma rays; the detection of photons up to 10s of GeV from gamma-ray bursts, enhancing our understanding of the astrophysics of these powerful explosions; the detection of hundreds of active galaxies; a measurement of the high energy cosmic-ray electron spectrum which may imply the presence of nearby astrophysical particle accelerators; the determination of the diffuse gamma-ray emission with unprecedented accuracy and the constraints on phenomena such as supersymmetric dark-matter annihilations and exotic relics from the Big Bang. Continuous monitoring of the high-energy gamma-ray sky has uncovered numerous outbursts from active galaxies and the discovery of transient sources in our galaxy. In this talk I will describe the current status of the Fermi observatory and review the science highlights from Fermi.

  17. Fermi: The Gamma-Ray Large Area Space Telescope

    Science.gov (United States)

    McEnery, Julie

    2014-01-01

    Following its launch in June 2008, high-energy gamma-ray observations by the Fermi Gamma-ray Space Telescope have unveiled over 1000 new sources and opened an important and previously unexplored window on a wide variety of phenomena. These have included the discovery of an population of pulsars pulsing only in gamma rays; the detection of photons up to 10s of GeV from gamma-ray bursts, enhancing our understanding of the astrophysics of these powerful explosions; the detection of hundreds of active galaxies; a measurement of the high energy cosmic-ray electron spectrum which may imply the presence of nearby astrophysical particle accelerators; the determination of the diffuse gamma-ray emission with unprecedented accuracy and the constraints on phenomena such as supersymmetric dark-matter annihilations and exotic relics from the Big Bang. Continuous monitoring of the high-energy gamma-ray sky has uncovered numerous outbursts from active galaxies and the discovery of transient sources in our galaxy. In this talk I will describe the current status of the Fermi observatory and review the science highlights from Fermi.

  18. Gamma-Ray Observations of a Giant Flare From the Magnetar Sgr 1806-20

    Energy Technology Data Exchange (ETDEWEB)

    Palmer, D.

    2005-03-09

    Magnetars comprise two classes of rotating neutron stars (Soft Gamma Repeaters (SGRs) and Anomalous X-ray Pulsars), whose X-ray emission is powered by an ultrastrong magnetic field, B {approx} 10{sup 15} G. Occasionally SGRs enter into active episodes producing many short X-ray bursts; extremely rarely (about once per 50 years per source), SGRs emit a giant flare, an event with total energy at least 103 higher than their typical bursts. Here we report that, on 2004 December 27, SGR 1806-20 emitted the brightest extra-solar transient event ever recorded, even surpassing the full moon brightness for 0.2 seconds. The total (isotropic) flare energy is 2 x 10{sup 46} erg, {approx}100 times higher than the only two previous events, making this flare a once in a century event. This colossal energy release likely occurred during a catastrophic reconfiguration of the magnetar's magnetic field. Such an event would have resembled a short, hard Gamma Ray Burst (GRB) if it had occurred within 40 Mpc, suggesting that extragalactic SGR flares may indeed form a subclass of GRBs.

  19. Intergalactic Magnetic Fields and Gamma Ray Observations of Extreme TeV Blazars

    CERN Document Server

    Arlen, Timothy C; Weisgarber, Thomas; Wakely, Scott P; Shafi, S Yusef

    2012-01-01

    The intergalactic magnetic field (IGMF) can be indirectly probed through its effect on electromagnetic cascades initiated by a source of TeV gamma-rays, such as active galactic nuclei (AGN). AGN that are sufficiently luminous at TeV energies, extreme TeV blazars, can produce detectable levels of secondary radiation from Inverse Compton (IC) scattering of the electrons in the cascade, provided that the IGMF is not too large. We review recent work in the literature which utilizes this idea to derive constraints on the IGMF for three TeV-detected blazars-1ES 0229+200, 1ES 1218+304, and RGB J0710+591, and we also investigate four other hard-spectrum TeV blazars in the same context. Through a recently developed detailed Monte Carlo code, incorporating all major effects of QED and cosmological expansion, we research effects of major uncertainties such as the spectral properties of the source, uncertainty in the UV - far IR extragalactic background light (EBL), undersampled Very High Energy (VHE; energy > 100 GeV) c...

  20. Testing Models for the Shallow Decay Phase of Gamma-Ray Burst Afterglows with Polarization Observations

    CERN Document Server

    Lan, Mi-Xiang; Dai, Zi-Gao

    2016-01-01

    The X-ray afterglows of almost one half of gamma-ray bursts (GRBs) have been discovered to have a shallow decay phase by the {\\em Swift} satellite, whose origin remains mysterious. Two main models have been proposed to explain this phase, relativistic wind bubbles (RWBs) and structured ejecta, which could originate from millisecond magnetars and rapidly-rotating black holes, respectively. Based on these models, we here investigate polarization evolution in the shallow decay phase of X-ray and optical afterglows. We find that in the RWB model, a significant bump of the polarization degree evolution curve appears during the shallow decay phase of both optical and X-ray afterglows, while the polarization position angle changes its direction by $90^\\circ$ abruptly. In the structured ejecta model, however, the polarization degree does not evolve significantly during the shallow decay phase of afterglows, no matter whether the magnetic field configuration in the ejecta is random or globally large-scale. Therefore, ...

  1. Observational constraints from SNe Ia and Gamma-Ray Bursts on a clumpy universe

    CERN Document Server

    Bretón, Nora

    2013-01-01

    The luminosity distance describing the effect of local inhomogeneities in the propagation of light proposed by Zeldovich-Kantowski-Dyer-Roeder (ZKDR) is tested with two probes for two distinct ranges of redshifts: supernovae Ia (SNe Ia) in 0.015 < z < 1.414 and gamma-ray bursts (GRBs) in 1.547 < z < 3.57. Our analysis is performed by a Markov Chain Monte Carlo (MCMC) code that allows us to constrain the matter density parameter \\Omega_m as well as the smoothness parameter $\\alpha$ that measures the inhomogeneous-homogeneous rate of the cosmic fluid in a flat \\LambdaCDM model. The obtained best fits are (\\Omega_m=0.285^{+0.019}_{-0.018}, \\alpha= 0.856^{+0.106}_{-0.176}) from SNe Ia and (\\Omega_m=0.259^{+0.028}_{-0.028}, \\alpha=0.587^{+0.201}_{-0.202}) from GRBs, while from the joint analysis the best fits are (\\Omega_m=0.284^{+0.021}_{-0.020}, \\alpha= 0.685^{+0.164}_{-0.171}) with a \\chi^2_{\\rm red}=0.975. The value of the smoothness parameter $\\alpha$ indicates a clumped universe however it does n...

  2. Far-infrared observations of an unbiased sample of gamma-ray burst host galaxies

    CERN Document Server

    Kohn, Saul A; Bourne, Nathan; Baes, Maarten; Fritz, Jacopo; Cooray, Asantha; De Looze, Ilse; De Zotti, Gianfranco; Dannerbauer, Helmut; Dunne, Loretta; Dye, Simon; Eales, Stephen; Furlanetto, Cristina; Gonzalez-Nuevo, Joaquin; Ibar, Edo; Ivison, Rob J; Maddox, Steve J; Scott, Douglas; Smith, Daniel J B; Smith, Matthew W L; Symeonidis, Myrto; Valiante, Elisabetta

    2015-01-01

    Gamma-ray bursts (GRBs) are the most energetic phenomena in the Universe; believed to result from the collapse and subsequent explosion of massive stars. Even though it has profound consequences for our understanding of their nature and selection biases, little is known about the dust properties of the galaxies hosting GRBs. We present analysis of the far-infrared properties of an unbiased sample of 21 GRB host galaxies (at an average redshift of $z\\,=\\,3.1$) located in the {\\it Herschel} Astrophysical Terahertz Large Area Survey (H-ATLAS), the {\\it Herschel} Virgo Cluster Survey (HeViCS), the {\\it Herschel} Fornax Cluster Survey (HeFoCS), the {\\it Herschel} Stripe 82 Survey (HerS) and the {\\it Herschel} Multi-tiered Extragalactic Survey (HerMES), totalling $880$ deg$^2$, or $\\sim 3$\\% of the sky in total. Our sample selection is serendipitous, based only on whether the X-ray position of a GRB lies within a large-scale {\\it Herschel} survey -- therefore our sample can be considered completely unbiased. Using ...

  3. HETE-2 Localization and Observations of the Gamma-Ray Burst GRB 020813

    CERN Document Server

    Sato, R

    2005-01-01

    A bright, long gamma-ray burst (GRB) was detected and localized by the instruments on board the High Energy Transient Explorer 2 satellite (HETE-2) at 02:44:19.17 UTC (9859.17 s UT) on 2002 August 13. The location was reported to the GRB Coordinates Network (GCN) about 4 min after the burst. In the prompt emission, the burst had a duration of approximately 125 s, and more than four peaks. We analyzed the time-resolved 2-400 keV energy spectra of the prompt emission of GRB 020813 using the Wide Field X-Ray Monitor (WXM) and the French Gamma Telescope (FREGATE) in detail. We found that the early part of the burst (17-52 s after the burst trigger) shows a depletion of low-energy photons below about 50 keV. It is difficult to explain the depletion with by either synchrotron self-absorption or Comptonization. One possibility is that the low-energy depletion may be understood as a mixture of ``jitter'' radiation the usual synchrotron radiation component.

  4. Constraints on Lorentz Invariance Violating Quantum Gravity and Large Extra Dimensions Models using High Energy Gamma Ray Observations

    CERN Document Server

    Stecker, F W

    2003-01-01

    Observations of the multi-TeV spectra of the nearby BL objects Mkn 421 and Mkn 501 exhibit the high energy cutoffs predicted to be the result of intergalactic annihilation interactions, primarily with infrared photons having a flux level as determined by various astronomical observations. After correction for this absorption effect, the derived intrinsic spectra of these multi-TeV sources can be explained within the framework of simple synchrotron self-Compton emission models. Stecker and Glashow have shown that the existence of such annihilations via electron-positron pair production interactions up to an energy of 20 TeV puts strong constraints on Lorentz invariance violation. Such constraints have important implications for Lorentz invariance violating (LIV) quantum gravity models as well as LIV models involving large extra dimensions. We also discuss the implications of observations of high energy gamma-rays from the Crab Nebula on constraining quantum gravity models.

  5. The gamma ray background from large scale structure formation

    CERN Document Server

    Gabici, S; Gabici, Stefano; Blasi, Pasquale

    2003-01-01

    Hierarchical clustering of dark matter halos is thought to describe well the large scale structure of the universe. The baryonic component of the halos is shock heated to the virial temperature while a small fraction of the energy flux through the shocks may be energized through the first order Fermi process to relativistic energy per particle. It has been proposed that the electrons accelerated in this way may upscatter the photons of the universal microwave background to gamma ray energies and indeed generate a diffuse background of gamma rays that compares well to the observations. In this paper we calculate the spectra of the particles accelerated at the merger shocks and re-evaluate the contribution of structure formation to the extragalactic diffuse gamma ray background (EDGRB), concluding that this contribution adds up to at most 10% of the observed EDGRB.

  6. VERITAS Observations of a Very High Energy Gamma-ray Flare from the Blazar 3C 66A

    CERN Document Server

    Acciari, V A; Arlen, T; Beilicke, M; Benbow, W; Böttcher, M; Bradbury, S M; Buckley, J H; Bugaev, V; Butt, Y; Byrum, K; Cannon, A; Celik, O; Cesarini, A; Chow, Y C; Ciupik, L; Cogan, P; Cui, W; Daniel, M K; Dickherber, R; Ergin, T; Falcone, A; Fegan, S J; Finley, J P; Fortin, P; Fortson, L; Furniss, A; Gall, D; Gibbs, K; Gillanders, G H; Godambe, S; Grube, J; Guenette, R; Gyuk, G; Hanna, D; Hays, E; Holder, J; Horan, D; Hui, C M; Humensky, T B; Imran, A; Kaaret, Philip; Karlsson, N; Kertzman, M; Kieda, D; Kildea, J; Konopelko, A; Krawczynski, H; Krennrich, F; Lang, M J; Le Bohec, S; Maier, G; McCann, A; McCutcheon, M; Millis, J; Moriarty, P; Mukherjee, R; Nagai, T; Ong, R A; Otte, A N; Pandel, D; Perkins, J S; Petry, D; Pizlo, F; Pohl, M; Quinn, J; Ragan, K; Reyes, L C; Reynolds, P T; Roache, E; Rose, H J; Schroedter, M; Sembroski, G H; Smith, A W; Steele, D; Swordy, S P; Theiling, M; Toner, J A; Varlotta, A; Vasilev, V V; Wagner, R G; Wakely, S P; Ward, J E; Weekes, T C; Weinstein, A; Williams, D A; Wissel, S; Wood, M; Zitzer, B

    2009-01-01

    The intermediate-frequency peaked BL Lacertae (IBL) object 3C 66A is detected during 2007 - 2008 in VHE (very high energy: E > 100 GeV) gamma-rays with the VERITAS stereoscopic array of imaging atmospheric Cherenkov telescopes. An excess of 1791 events is detected, corresponding to a significance of 21.2 standard deviations (sigma), in these observations (32.8 hours live time). The observed integral flux above 200 GeV is 6% of the Crab Nebula's flux and shows evidence for variability on the time-scale of days. The measured energy spectrum is characterized by a soft power law with photon index Gamma = 4.1 +- 0.4_stat +- 0.6_sys. The radio galaxy 3C 66B is excluded as a possible source of the VHE emission.

  7. New constraints on quantum foam models from X-ray and gamma-ray observations of distant quasars

    CERN Document Server

    Perlman, Eric S; Ng, Y Jack; Christiansen, Wayne A; DeVore, John; Pooley, David

    2016-01-01

    Astronomical observations of distant quasars may be important to test models for quantum gravity, which posit Planck-scale spatial uncertainties ('spacetime foam') that would produce phase fluctuations in the wavefront of radiation emitted by a source, which may accumulate over large path lengths. We show explicitly how wavefront distortions cause the image intensity to decay to the point where distant objects become undetectable if the accumulated path-length fluctuations become comparable to the wavelength of the radiation. We also reassess previous efforts in this area. We use X-ray and gamma-ray observations to rule out several models of spacetime foam, including the interesting random-walk and holographic models.

  8. Dual isotope notch observer for isotope identification, assay and imaging with mono-energetic gamma-ray sources

    Science.gov (United States)

    Barty, Christopher P.J.

    2013-02-05

    A dual isotope notch observer for isotope identification, assay and imaging with mono-energetic gamma-ray sources includes a detector arrangement consists of three detectors downstream from the object under observation. The latter detector, which operates as a beam monitor, is an integrating detector that monitors the total beam power arriving at its surface. The first detector and the middle detector each include an integrating detector surrounding a foil. The foils of these two detectors are made of the same atomic material, but each foil is a different isotope, e.g., the first foil may comprise U235 and second foil may comprise U238. The integrating detectors surrounding these pieces of foil measure the total power scattered from the foil and can be similar in composition to the final beam monitor. Non-resonant photons will, after calibration, scatter equally from both foils.

  9. First limits on the very-high energy gamma-ray afterglow emission of a fast radio burst. H.E.S.S. observations of FRB 150418

    Science.gov (United States)

    H. E. S. S. Collaboration; Abdalla, H.; Abramowski, A.; Aharonian, F.; Ait Benkhali, F.; Akhperjanian, A. G.; Andersson, T.; Angüner, E. O.; Arakawa, M.; Arrieta, M.; Aubert, P.; Backes, M.; Balzer, A.; Barnard, M.; Becherini, Y.; Becker Tjus, J.; Berge, D.; Bernhard, S.; Bernlöhr, K.; Blackwell, R.; Böttcher, M.; Boisson, C.; Bolmont, J.; Bordas, P.; Bregeon, J.; Brun, F.; Brun, P.; Bryan, M.; Büchele, M.; Bulik, T.; Capasso, M.; Carr, J.; Casanova, S.; Cerruti, M.; Chakraborty, N.; Chalme-Calvet, R.; Chaves, R. C. G.; Chen, A.; Chevalier, J.; Chrétien, M.; Coffaro, M.; Colafrancesco, S.; Cologna, G.; Condon, B.; Conrad, J.; Cui, Y.; Davids, I. D.; Decock, J.; Degrange, B.; Deil, C.; Devin, J.; Dewilt, P.; Dirson, L.; Djannati-Ataï, A.; Domainko, W.; Donath, A.; Drury, L. O.'c.; Dutson, K.; Dyks, J.; Edwards, T.; Egberts, K.; Eger, P.; Ernenwein, J.-P.; Eschbach, S.; Farnier, C.; Fegan, S.; Fernandes, M. V.; Fiasson, A.; Fontaine, G.; Förster, A.; Funk, S.; Füßling, M.; Gabici, S.; Gajdus, M.; Gallant, Y. A.; Garrigoux, T.; Giavitto, G.; Giebels, B.; Glicenstein, J. F.; Gottschall, D.; Goyal, A.; Grondin, M.-H.; Hahn, J.; Haupt, M.; Hawkes, J.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hervet, O.; Hinton, J. A.; Hofmann, W.; Hoischen, C.; Holler, M.; Horns, D.; Ivascenko, A.; Iwasaki, H.; Jacholkowska, A.; Jamrozy, M.; Janiak, M.; Jankowsky, D.; Jankowsky, F.; Jingo, M.; Jogler, T.; Jouvin, L.; Jung-Richardt, I.; Kastendieck, M. A.; Katarzyński, K.; Katsuragawa, M.; Katz, U.; Kerszberg, D.; Khangulyan, D.; Khélifi, B.; Kieffer, M.; King, J.; Klepser, S.; Klochkov, D.; Kluźniak, W.; Kolitzus, D.; Komin, Nu.; Kosack, K.; Krakau, S.; Kraus, M.; Krüger, P. P.; Laffon, H.; Lamanna, G.; Lau, J.; Lees, J.-P.; Lefaucheur, J.; Lefranc, V.; Lemière, A.; Lemoine-Goumard, M.; Lenain, J.-P.; Leser, E.; Lohse, T.; Lorentz, M.; Liu, R.; López-Coto, R.; Lypova, I.; Marandon, V.; Marcowith, A.; Mariaud, C.; Marx, R.; Maurin, G.; Maxted, N.; Mayer, M.; Meintjes, P. J.; Meyer, M.; Mitchell, A. M. W.; Moderski, R.; Mohamed, M.; Mohrmann, L.; Morå, K.; Moulin, E.; Murach, T.; Nakashima, S.; de Naurois, M.; Niederwanger, F.; Niemiec, J.; Oakes, L.; O'Brien, P.; Odaka, H.; Öttl, S.; Ohm, S.; Ostrowski, M.; Oya, I.; Padovani, M.; Panter, M.; Parsons, R. D.; Pekeur, N. W.; Pelletier, G.; Perennes, C.; Petrucci, P.-O.; Peyaud, B.; Piel, Q.; Pita, S.; Poon, H.; Prokhorov, D.; Prokoph, H.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raab, S.; Reimer, A.; Reimer, O.; Renaud, M.; de Los Reyes, R.; Richter, S.; Rieger, F.; Romoli, C.; Rowell, G.; Rudak, B.; Rulten, C. B.; Sahakian, V.; Saito, S.; Salek, D.; Sanchez, D. A.; Santangelo, A.; Sasaki, M.; Schlickeiser, R.; Schüssler, F.; Schulz, A.; Schwanke, U.; Schwemmer, S.; Seglar-Arroyo, M.; Settimo, M.; Seyffert, A. S.; Shafi, N.; Shilon, I.; Simoni, R.; Sol, H.; Spanier, F.; Spengler, G.; Spies, F.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Stycz, K.; Sushch, I.; Takahashi, T.; Tavernet, J.-P.; Tavernier, T.; Taylor, A. M.; Terrier, R.; Tibaldo, L.; Tiziani, D.; Tluczykont, M.; Trichard, C.; Tsuji, N.; Tuffs, R.; Uchiyama, Y.; van der Walt, D. J.; van Eldik, C.; van Rensburg, C.; van Soelen, B.; Vasileiadis, G.; Veh, J.; Venter, C.; Viana, A.; Vincent, P.; Vink, J.; Voisin, F.; Völk, H. J.; Vuillaume, T.; Wadiasingh, Z.; Wagner, S. J.; Wagner, P.; Wagner, R. M.; White, R.; Wierzcholska, A.; Willmann, P.; Wörnlein, A.; Wouters, D.; Yang, R.; Zabalza, V.; Zaborov, D.; Zacharias, M.; Zanin, R.; Zdziarski, A. A.; Zech, A.; Zefi, F.; Ziegler, A.; Żywucka, N.; Superb Collaboration; Jankowski, F.; Keane, E. F.; Petroff, E.

    2017-01-01

    Aims: Following the detection of the fast radio burst FRB150418 by the SUPERB project at the Parkes radio telescope, we aim to search for very-high energy gamma-ray afterglow emission. Methods: Follow-up observations in the very-high energy gamma-ray domain were obtained with the H.E.S.S. imaging atmospheric Cherenkov telescope system within 14.5 h of the radio burst. Results: The obtained 1.4 h of gamma-ray observations are presented and discussed. At the 99% C.L. we obtained an integral upper limit on the gamma-ray flux of Φγ(E > 350 GeV) energy were derived and used to constrain the intrinsic high-energy afterglow emission of FRB 150418. Conclusions: No hints for high-energy afterglow emission of FRB 150418 were found. Taking absorption on the extragalactic background light into account and assuming a distance of z = 0.492 based on radio and optical counterpart studies and consistent with the FRB dispersion, we constrain the gamma-ray luminosity at 1 TeV to L < 5.1 × 1047 erg/s at 99% C.L.

  10. OBSERVATION OF THE TeV GAMMA-RAY SOURCE MGRO J1908+06 WITH ARGO-YBJ

    Energy Technology Data Exchange (ETDEWEB)

    Bartoli, B.; Catalanotti, S. [Dipartimento di Fisica dell' Universita di Napoli ' Federico II' , Complesso Universitario di Monte Sant' Angelo, via Cinthia, 80126 Napoli (Italy); Bernardini, P.; Bleve, C. [Dipartimento di Matematica e Fisica ' Ennio De Giorgi' , Universita del Salento, via per Arnesano, 73100 Lecce (Italy); Bi, X. J.; Cao, Z.; Chen, S. Z.; Chen, Y. [Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, P.O. Box 918, 100049 Beijing (China); Bolognino, I. [Dipartimento di Fisica Nucleare e Teorica dell' Universita di Pavia, via Bassi 6, 27100 Pavia (Italy); Branchini, P.; Budano, A. [Istituto Nazionale di Fisica Nucleare, Sezione di Roma Tre, via della Vasca Navale 84, 00146 Roma (Italy); Melcarne, A. K. Calabrese [Istituto Nazionale di Fisica Nucleare-CNAF, Viale Berti-Pichat 6/2, 40127 Bologna (Italy); Camarri, P. [Dipartimento di Fisica dell' Universita di Roma ' Tor Vergata' , via della Ricerca Scientifica 1, 00133 Roma (Italy); Cardarelli, R. [Istituto Nazionale di Fisica Nucleare, Sezione di Roma Tor Vergata, via della Ricerca Scientifica 1, 00133 Roma (Italy); Cattaneo, C. [Istituto Nazionale di Fisica Nucleare, Sezione di Pavia, via Bassi 6, 27100 Pavia (Italy); Chen, T. L. [Tibet University, 850000 Lhasa, Xizang (China); Creti, P. [Istituto Nazionale di Fisica Nucleare, Sezione di Lecce, via per Arnesano, 73100 Lecce (Italy); Cui, S. W. [Hebei Normal University, Shijiazhuang 050016, Hebei (China); Dai, B. Z. [Yunnan University, 2 North Cuihu Rd., 650091 Kunming, Yunnan (China); Staiti, G. D' Ali [Dipartimento di Fisica, Universita degli Studi di Palermo, Viale delle Scienze, Edificio 18, 90128 Palermo (Italy); Collaboration: Argo-YBJ Collaboration; and others

    2012-12-01

    The extended gamma-ray source MGRO J1908+06, discovered by the Milagro air shower detector in 2007, has been observed for {approx}4 years by the ARGO-YBJ experiment at TeV energies, with a statistical significance of 6.2 standard deviations. The peak of the signal is found at a position consistent with the pulsar PSR J1907+0602. Parameterizing the source shape with a two-dimensional Gauss function, we estimate an extension of {sigma}{sub ext} = 0.{sup 0}49 {+-} 0.{sup 0}22, which is consistent with a previous measurement by the Cherenkov Array H.E.S.S. The observed energy spectrum is dN/dE = 6.1 {+-} 1.4 Multiplication-Sign 10{sup -13} (E/4 TeV){sup -2.54{+-}0.36} photons cm{sup -2} s{sup -1} TeV{sup -1}, in the energy range of {approx}1-20 TeV. The measured gamma-ray flux is consistent with the results of the Milagro detector, but is {approx}2-3 times larger than the flux previously derived by H.E.S.S. at energies of a few TeV. The continuity of the Milagro and ARGO-YBJ observations and the stable excess rate observed by ARGO-YBJ and recorded in four years of data support the identification of MGRO J1908+06 as the steady powerful TeV pulsar wind nebula of PSR J1907+0602, with an integrated luminosity over 1 TeV {approx} 1.8 times the luminosity of the Crab Nebula.

  11. BLAZARS AS ULTRA-HIGH-ENERGY COSMIC-RAY SOURCES: IMPLICATIONS FOR TeV GAMMA-RAY OBSERVATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Murase, Kohta [Department of Physics, Center for Cosmology and Astro-Particle Physics, Ohio State University, Columbus, OH 43210 (United States); Dermer, Charles D. [Space Science Division, Naval Research Laboratory, Washington, DC 20375 (United States); Takami, Hajime [Max Planck Institute for Physics, Foehringer Ring 6, 80805 Munich (Germany); Migliori, Giulia [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2012-04-10

    The spectra of BL Lac objects and Fanaroff-Riley I radio galaxies are commonly explained by the one-zone leptonic synchrotron self-Compton (SSC) model. Spectral modeling of correlated multiwavelength data gives the comoving magnetic field strength, the bulk outflow Lorentz factor, and the emission region size. Assuming the validity of the SSC model, the Hillas condition shows that only in rare cases such sources accelerate protons to much above 10{sup 19} eV, so {approx}> 10{sup 20} eV ultra-high-energy cosmic rays (UHECRs) are likely to be heavy ions if powered by this type of radio-loud active galactic nuclei (AGNs). Survival of nuclei is shown to be possible in TeV BL Lacs and misaligned counterparts with weak photohadronic emissions. Another signature of hadronic production is intergalactic UHECR-induced cascade emission, which is an alternative explanation of the TeV spectra of some extreme non-variable blazars such as 1ES 0229+200 or 1ES 1101-232. We study this kind of cascade signal, taking into account effects of the structured extragalactic magnetic fields in which the sources should be embedded. We demonstrate the importance of cosmic-ray deflections on the {gamma}-ray flux, and show that required absolute cosmic-ray luminosities are larger than the average UHECR luminosity inferred from UHECR observations and can even be comparable to the Eddington luminosity of supermassive black holes. Future TeV {gamma}-ray observations using the Cerenkov Telescope Array and the High Altitude Water Cerenkov detector array can test for UHECR acceleration by observing >25 TeV photons from relatively low redshift sources such as 1ES 0229+200, and {approx}>TeV photons from more distant radio-loud AGNs.

  12. Perspectives of observing the color indices of optical afterglows of gamma-ray bursts with ESA Gaia

    Science.gov (United States)

    Šimon, Vojtěch; Hudec, René; Pizzichini, Graziella

    2017-08-01

    We propose a strategy for detecting and analyzing optical afterglows (OAs) of long gamma-ray bursts (GRBs) without the need to obtain their light curves. This approach is useful for the Gaia satellite, which provides sampled optical ultra-low-dispersion spectroscopic observations of the sky. For this purpose, we show that most OAs of long GRBs display specific values of some of their color indices, representing synchrotron emission of the jet. They are stable in time during the event. These indices, which can be determined from the spectra, are very similar for the ensemble of OAs with redshift z sources (host galaxies of OAs detectable later by the large ground-based telescopes at the co-ordinates of the OA determined by Gaia) would tell us which one, among transients detected by Gaia, is a GRB OA.

  13. Japanese VLBI Network Observations of a Gamma-Ray Narrow-Line Seyfert 1 Galaxy 1H 0323+342

    Indian Academy of Sciences (India)

    Kiyoaki Wajima; Kenta Fujisawa; Masaaki Hayashida; Naoki Isobe

    2014-09-01

    We made simultaneous single-dish and VLBI observations of a gamma-ray narrow-line Seyfert 1 (NLS1) galaxy 1H 0323+342. We found significant flux variation at 8 GHz on a time scale of one month. The total flux density varied by 5.5% in 32 days, corresponding to a variability brightness temperature of 7.0 × 1011 K. We also obtained brightness temperatures of greater than 5.2 × 1010 K from the VLBI images. These high brightness temperatures suggest that the source has nonthermal processes in the central engine. The source structure could be modelled by two elliptical Gaussian components on the parsec scales. The flux of the central component decreases in the same way as the total flux density, showing that the short-term variability is mainly associated with this component.

  14. NON-THERMAL EMISSION FROM GALAXY CLUSTERS AND FUTURE OBSERVATIONS WITH THE FERMI GAMMA-RAY TELESCOPE AND LOFAR

    Directory of Open Access Journals (Sweden)

    G. Brunetti

    2009-01-01

    Full Text Available FERMI (formely GLAST and LOFAR will shortly provide crucial information on the non-thermal components (relativistic particles and magnetic eld in galaxy clusters. After discussing relevant observational facts that already put important constraints on the properties and origin of non-thermal components, I will report on the emission spectrum from galaxy clusters as expected in the context of general calculations in which relativistic particles (protons and secondary electrons due to proton-proton collisions interact with MHD turbulence generated in the cluster volume during cluster-cluster mergers. In this scenario (known as re-acceleration scenario di use cluster-scale radio emission is produced in massive clusters during merging events, while gamma ray emission, at some level, is expected to be common in clusters. Expectations of interest for LOFAR and FERMI are also brie y discussed.

  15. Observations of the Crab Nebula with the Chandra X-Ray Observatory During the Gamma-Ray Flare of 2011 April

    Science.gov (United States)

    Weisskopf, Martin C.

    2012-01-01

    Recently, using the AGILE and Fermi satellites, gamma-ray flares have been discovered from the direction of the Crab Nebula (Tavani et al. 2011, Abdo et al. 2011). We have been using the Chandra X-Ray observatory to monitor the Crab on a monthly cadence since just after the 2010 September gamma-ray flare. We were fortunate to trigger series of pre-planned target of opportunity observations during the 2011 April flare. We present the results of these observations and address some implications both for now and for the future.

  16. The HAWC Gamma-Ray Observatory: Sensitivity to Steady and Transient Sources of Gamma Rays

    CERN Document Server

    Abeysekara, A U; Alvarez, C; Álvarez, J D; Arceo, R; Arteaga-Velázquez, J C; Solares, H A Ayala; Barber, A S; Baughman, B M; Bautista-Elivar, N; Belmont, E; BenZvi, S Y; Berley, D; Rosales, M Bonilla; Braun, J; Caballero-Lopez, R A; Caballero-Mora, K S; Carramiñana, A; Castillo, M; Cotti, U; Cotzomi, J; de la Fuente, E; De León, C; DeYoung, T; Hernandez, R Diaz; Díaz-Vélez, J C; Dingus, B L; DuVernois, M A; Ellsworth, R W; Fernandez, A; Fiorino, D W; Fraija, N; Galindo, A; Garfias, F; González, L X; González, M M; Goodman, J A; Grabski, V; Gussert, M; Hampel-Arias, Z; Hui, C M; Hüntemeyer, P; Imran, A; Iriarte, A; Karn, P; Kieda, D; Kunde, G J; Lara, A; Lauer, R J; Lee, W H; Lennarz, D; Vargas, H León; Linares, E C; Linnemann, J T; Longo, M; Luna-GarcIa, R; Marinelli, A; Martinez, H; Martinez, O; Martínez-Castro, J; Matthews, J A J; Miranda-Romagnoli, P; Moreno, E; Mostafá, M; Nava, J; Nellen, L; Newbold, M; Noriega-Papaqui, R; Oceguera-Becerra, T; Patricelli, B; Pelayo, R; Pérez-Pérez, E G; Pretz, J; Rivière, C; Rosa-González, D; Salazar, H; Salesa, F; Sanchez, F E; Sandoval, A; Santos, E; Schneider, M; Silich, S; Sinnis, G; Smith, A J; Sparks, K; Springer, R W; Taboada, I; Toale, P A; Tollefson, K; Torres, I; Ukwatta, T N; Villaseñor, L; Weisgarber, T; Westerhoff, S; Wisher, I G; Wood, J; Yodh, G B; Younk, P W; Zaborov, D; Zepeda, A; Zhou, H

    2013-01-01

    The High-Altitude Water Cherenkov (HAWC) Gamma-Ray Observatory is designed to record air showers produced by cosmic rays and gamma rays between 100 GeV and 100 TeV. Because of its large field of view and high livetime, HAWC is well-suited to measure gamma rays from extended sources, diffuse emission, and transient sources. We describe the sensitivity of HAWC to emission from the extended Cygnus region as well as other types of galactic diffuse emission; searches for flares from gamma-ray bursts and active galactic nuclei; and the first measurement of the Crab Nebula with HAWC-30.

  17. A performance study of an electron-tracking Compton camera with a compact system for environmental gamma-ray observation

    CERN Document Server

    Mizumoto, Tetsuya; Takada, Atsushi; Tanimori, Toru; Komura, Shotaro; Kubo, Hidetoshi; Matsuoka, Yoshihiro; Mizumura, Yoshitaka; Nakamura, Kiseki; Nakamura, Shogo; Oda, Makoto; Parker, Joseph D; Sawano, Tatsuya; Bando, Naoto; Nabetani, Akira

    2015-01-01

    An electron-tracking Compton camera (ETCC) is a detector that can determine the arrival direction and energy of incident sub-MeV/MeV gamma-ray events on an event-by-event basis. It is a hybrid detector consisting of a gaseous time projection chamber (TPC), that is the Compton-scattering target and the tracker of recoil electrons, and a position-sensitive scintillation camera that absorbs of the scattered gamma rays, to measure gamma rays in the environment from contaminated soil. To measure of environmental gamma rays from soil contaminated with radioactive cesium (Cs), we developed a portable battery-powered ETCC system with a compact readout circuit and data-acquisition system for the SMILE-II experiment. We checked the gamma-ray imaging ability and ETCC performance in the laboratory by using several gamma-ray point sources. The performance test indicates that the field of view (FoV) of the detector is about 1$\\;$sr and that the detection efficiency and angular resolution for 662$\\;$keV gamma rays from the ...

  18. Gamma-Ray Astronomy Technology Needs

    Science.gov (United States)

    Gehrels, N.; Cannizzo, J. K.

    2012-01-01

    In recent decades gamma-ray observations have become a valuable tool for studying the universe. Progress made in diverse 8re1lS such as gamma-ray bursts (GRBs), nucleosynthesis, and active galactic nuclei (AGNs) has complimented and enriched our astrophysical understanding in many ways. We present an overview of current and future planned space y-ray missions and discussion technology needs for- the next generation of space gamma-ray instruments.

  19. Extragalactic Gamma-Ray Astrophysics

    CERN Document Server

    CERN. Geneva

    2016-01-01

    During the last decades, various classes of radio-loud active galactic nuclei have been established as sources of high-energy radiation extending over a very broad range from soft gamma-rays (photon energies E~MeV) up to very-high-energy gamma-rays (E>100 GeV). These include blazars of different types, as well as young and evolved radio galaxies. The observed gamma-ray emission from such implies efficient particle acceleration processes taking place in highly magnetized and relativistic jets produced by supermassive black holes, processes that have yet to be identified and properly understood. In addition, nearby starforming and starburst galaxies, some of which host radio-quiet Seyfert-type nuclei, have been detected in the gamma-ray range as well. In their cases, the observed gamma-ray emission is due to non-thermal activity in the interstellar medium, possibly including also a contribution from accretion disks and nuclear outflows. Finally, the high-energy emission from clusters of galaxies remains elusive...

  20. Optical Spectroscopic Observations of Gamma-ray Blazar Candidates. V. TNG, KPNO, and OAN Observations of Blazar Candidates of Uncertain Type in the Northern Hemisphere

    CERN Document Server

    Crespo, N Álvarez; Ricci, F; Landoni, M; Patiño-Álvarez, V; Massaro, F; D'Abrusco, R; Paggi, A; Chavushyan, V; Jiménez-Bailón, E; Torrealba, J; Latronico, L; La Franca, F; Smith, Howard A; Tosti, G

    2016-01-01

    The extragalactic $\\gamma$-ray sky is dominated by emission from blazars, a peculiar class of active galactic nuclei (AGNs). Many of the $\\gamma$-ray sources included in Fermi -Large Area Telescope Third Source catalog (3FGL) are classified as a blazar candidate of uncertain type (BCU) because there is no optical spectra available in the literature to confirm their nature. In 2013 we started a spectroscopic campaign to look for the optical counterparts of the BCUs and of the Unidentified $\\gamma$-ray Sources. The main goal of our investigation is to confirm the blazar nature of these sources having peculiar properties as compact radio emission and/or selected on the basis of their infrared (IR) colors. Whenever possible we also determine their redshifts. Here we present the results of the observations carried out in the Northern hemisphere in 2013 and 2014 at Telescopio Nazionale Galilleo (TNG), Kitt Peak National Observatory (KPNO) and Observatorio Astron\\'omico Nacional (OAN) in San Pedro M\\'artir. In this ...

  1. [Comparative analysis of two diffusion methods for radon Rn-222 estimation in atmospheric air by means of gamma ray spectrometry and liquid scintillation counting].

    Science.gov (United States)

    Gorzkowski, B; Pachocki, K; Peńsko, J; Majle, T; Rózycki, Z

    1995-01-01

    The comparative measurements of radon Rn-222 concentration in indoor air of some buildings and in radon labour chamber have been conducted using two different diffusions methods. The results of parallel measurements using radon charcoal detectors and gamma-rays spectrometry with liquid alpha scintillation counting (Pico-Rad) have been presented. It was concluded that both methods offer the similar measurements possibilities of radon concentrations in the air from about 30 Bq/m3 to about 600 Bq/m3 with the real average divergence between both methods of about +/- 11%.

  2. High Resolution X-ray Observations of the Pulsar Wind Nebula Associated with the Gamma-ray Source HESS$ $J1640-465

    CERN Document Server

    Lemiere, A; Gaensler, B M; Murray, S

    2009-01-01

    We present a Chandra X-ray observation of the very high energy $\\gamma$-ray source HESS$ $J1640-465. We identify a point source surrounded by a diffuse emission that fills the extended object previously detected by XMM Newton at the centroid of the HESS source, within the shell of the radio supernova remnant (SNR) G338.3-0.0. The morphology of the diffuse emission strongly resembles that of a pulsar wind nebula (PWN) and extends asymmetrically to the South-West of a point-source presented as a potential pulsar. The spectrum of the putative pulsar and compact nebula are well-characterized by an absorbed power-law model which, for a reasonable $N_{\\rm H}$ value of $14\\times 10^{22} \\rm cm^{-2}$, exhibit an index of 1.1 and 2.5 respectively, typical of Vela-like PWNe. We demonstrate that, given the H$ $I absorption features observed along the line of sight, the SNR and the H$ $II surrounding region are probably connected and lie between 8 kpc and 13 kpc. The resulting age of the system is between 10 and 30 kyr. ...

  3. The effect of magnetic fields on gamma-ray bursts inferred from multi-wavelength observations of the burst of 23 January 1999

    NARCIS (Netherlands)

    Galama, TJ; Briggs, MS; Wijers, RAMJ; Rol, E; Band, D; van Paradijs, J; Kouveliotou, C; Preece, RD; Smith, IA; Tilanus, RPJ; de Bruyn, AG; Strom, RG; Pooley, G; Castro-Tirado, AJ; Tanvir, N; Robinson, C; Hurley, K; Heise, J; Telting, J; Rutten, RGM; Packham, C; Swaters, R; Fassia, A; Green, SF; Foster, MJ; Sagar, R; Pandey, AK; Nilakshi, [No Value; Yadav, RKS; Ofek, EO; Leibowitz, E; Ibbetson, P; Rhoads, J; Falco, E; Petry, C; Impey, C; Geballe, TR; Bhattacharya, D

    1999-01-01

    Gamma-ray bursts (GRBs) are thought to arise when an extremely relativistic outflow of particles from a massive explosion (the nature of which is still unclear) Interacts with material surrounding the site of the explosion. observations of the evolving changes in emission at many wavelengths allow u

  4. GAMMA-400 gamma-ray observatory

    CERN Document Server

    Topchiev, N P; Bonvicini, V; Adriani, O; Aptekar, R L; Arkhangelskaja, I V; Arkhangelskiy, A I; Bakaldin, A V; Bergstrom, L; Berti, E; Bigongiari, G; Bobkov, S G; Boezio, M; Bogomolov, E A; Bonechi, L; Bongi, M; Bottai, S; Castellini, G; Cattaneo, P W; Cumani, P; Dalkarov, O D; Dedenko, G L; De Donato, C; Dogiel, V A; Finetti, N; Gascon, D; Gorbunov, M S; Gusakov, Yu V; Hnatyk, B I; Kadilin, V V; Kaplin, V A; Kaplun, A A; Kheymits, M D; Korepanov, V E; Larsson, J; Leonov, A A; Loginov, V A; Longo, F; Maestro, P; Marrocchesi, P S; Martinez, M; Menshenin, A L; Mikhailov, V V; Mocchiutti, E; Moiseev, A A; Mori, N; Moskalenko, I V; Naumov, P Yu; Papini, P; Paredes, J M; Pearce, M; Picozza, P; Rappoldi, A; Ricciarini, S; Runtso, M F; Ryde, F; Serdin, O V; Sparvoli, R; Spillantini, P; Stozhkov, Yu I; Suchkov, S I; Taraskin, A A; Tavani, M; Tiberio, A; Tyurin, E M; Ulanov, M V; Vacchi, A; Vannuccini, E; Vasilyev, G I; Ward, J E; Yurkin, Yu T; Zampa, N; Zirakashvili, V N; Zverev, V G

    2015-01-01

    The GAMMA-400 gamma-ray telescope with excellent angular and energy resolutions is designed to search for signatures of dark matter in the fluxes of gamma-ray emission and electrons + positrons. Precision investigations of gamma-ray emission from Galactic Center, Crab, Vela, Cygnus, Geminga, and other regions will be performed, as well as diffuse gamma-ray emission, along with measurements of high-energy electron + positron and nuclei fluxes. Furthermore, it will study gamma-ray bursts and gamma-ray emission from the Sun during periods of solar activity. The energy range of GAMMA-400 is expected to be from ~20 MeV up to TeV energies for gamma rays, up to 20 TeV for electrons + positrons, and up to 10E15 eV for cosmic-ray nuclei. For high-energy gamma rays with energy from 10 to 100 GeV, the GAMMA-400 angular resolution improves from 0.1{\\deg} to ~0.01{\\deg} and energy resolution from 3% to ~1%; the proton rejection factor is ~5x10E5. GAMMA-400 will be installed onboard the Russian space observatory.

  5. First limits on the very-high energy gamma-ray afterglow emission of a fast radio burst: H.E.S.S. observations of FRB 150418

    CERN Document Server

    :,; Abramowski, A; Aharonian, F; Benkhali, F Ait; Akhperjanian, A G; Andersson, T; Angüner, E O; Arakawa, M; Arrieta, M; Aubert, P; Backes, M; Balzer, A; Barnard, M; Becherini, Y; Tjus, J Becker; Berge, D; Bernhard, S; Bernlöhr, K; Blackwell, R; Böttcher, M; Boisson, C; Bolmont, J; Bordas, P; Bregeon, J; Brun, F; Brun, P; Bryan, M; Büchele, M; Bulik, T; Capasso, M; Carr, J; Casanova, S; Cerruti, M; Chakraborty, N; Chalme-Calvet, R; Chaves, R C G; Chen, A; Chevalier, J; Chrétien, M; Coffaro, M; Colafrancesco, S; Cologna, G; Condon, B; Conrad, J; Cui, Y; Davids, I D; Decock, J; Degrange, B; Deil, C; Devin, J; deWilt, P; Dirson, L; Djannati-Ataï, A; Domainko, W; Donath, A; Drury, L O'C; Dutson, K; Dyks, J; Edwards, T; Egberts, K; Eger, P; Ernenwein, J -P; Eschbach, S; Farnier, C; Fegan, S; Fern, M V; Fiasson, A; Fontaine, G; Förster, A; Funk, S; Füßling, M; Gabici, S; Gajdus, M; Gallant, Y A; Garrigoux, T; Giavitto, G; Giebels, B; Glicenstein, J F; Gottschall, D; Goyal, A; Grondin, M -H; Hahn, J; Haupt, M; Hawkes, J; Heinzelmann, G; Henri, G; Hermann, G; Hervet, O; Hinton, J A; Hofmann, W; Hoischen, C; Holler, M; Horns, D; Ivascenko, A; Iwasaki, H; Jacholkowska, A; Jamrozy, M; Janiak, M; Jankowsky, D; Jankowsky, F; Jingo, M; Jogler, T; Jouvin, L; Jung-Richardt, I; Kastendieck, M A; Katarzyński, K; Katsuragawa, M; Katz, U; Kerszberg, D; Khangulyan, D; Khélifi, B; Kieffer, M; King, J; Klepser, S; Klochkov, D; Kluźniak, W; Kolitzus, D; Komin, Nu; Kosack, K; Krakau, S; Kraus, M; Krüger, P P; Laffon, H; Lamanna, G; Lau, J; Lees, J -P; Lefaucheur, J; Lefranc, V; Lemière, A; Lemoine-Goumard, M; Lenain, J -P; Leser, E; Lohse, T; Lorentz, M; Liu, R; López-Coto, R; Lypova, I; Mar, V; Marcowith, A; Mariaud, C; Marx, R; Maurin, G; Maxted, N; Mayer, M; Meintjes, P J; Meyer, M; Mitchell, A M W; Moderski, R; Mohamed, M; Mohrmann, L; Morå, K; Moulin, E; Murach, T; Nakashima, S; de Naurois, M; Niederwanger, F; Niemiec, J; Oakes, L; O'Brien, P; Odaka, H; Öttl, S; Ohm, S; Ostrowski, M; Oya, I; Padovani, M; Panter, M; Parsons, R D; Arribas, M Paz; Pekeur, N W; Pelletier, G; Perennes, C; Petrucci, P -O; Peyaud, B; Piel, Q; Pita, S; Poon, H; Prokhorov, D; Prokoph, H; Pühlhofer, G; Punch, M; Quirrenbach, A; Raab, S; Reimer, A; Reimer, O; Renaud, M; Reyes, R de los; Richter, S; Rieger, F; Romoli, C; Rowell, G; Rudak, B; Rulten, C B; Sahakian, V; Saito, S; Salek, D; Sanchez, D A; Santangelo, A; Sasaki, M; Schlickeiser, R; Schüssler, F; Schulz, A; Schwanke, U; Schwemmer, S; Seglar-Arroyo, M; Settimo, M; Seyffert, A S; Shafi, N; Shilon, I; Simoni, R; Sol, H; Spanier, F; Spengler, G; Spies, F; Stawarz, Ł; Steenkamp, R; Stegmann, C; Stycz, K; Sushch, I; Takahashi, T; Tavernet, J -P; Tavernier, T; Taylor, A M; Terrier, R; Tibaldo, L; Tiziani, D; Tluczykont, M; Trichard, C; Tsuji, N; Tuffs, R; Uchiyama, Y; van der Walt, D J; van Eldik, C; van Rensburg, C; van Soelen, B; Vasileiadis, G; Veh, J; Venter, C; Viana, A; Vincent, P; Vink, J; Voisin, F; Völk, H J; Vuillaume, T; Wadiasingh, Z; Wagner, S J; Wagner, P; Wagner, R M; White, R; Wierzcholska, A; Willmann, P; Wörnlein, A; Wouters, D; Yang, R; Zabalza, V; Zaborov, D; Zacharias, M; Zanin, R; Zdziarski, A A; Zech, A; Zefi, F; Ziegler, A; Żywucka, N; :,; Jankowski, F; Keane, E F; Petroff, E

    2016-01-01

    Aims: Following the detection of the fast radio burst FRB150418 by the SUPERB project at the Parkes radio telescope, we aim to search for very-high energy gamma-ray afterglow emission. Methods: Follow-up observations in the very-high energy gamma-ray domain were obtained with the H.E.S.S. imaging atmospheric Cherenkov telescope system within 14.5 hours of the radio burst. Results: The obtained 1.4 hours of gamma-ray observations are presented and discussed. At the 99 % C.L. we obtained an integral upper limit on the gamma-ray flux of (E>350 GeV) < 1.33 x 10^-8 m^-2s^-1. Differential flux upper limits as function of the photon energy were derived and used to constrain the intrinsic high-energy afterglow emission of FRB 150418. Conclusions: No hints for high-energy afterglow emission of FRB 150418 were found. Taking absorption on the extragalactic background light into account and assuming a distance of z = 0.492 based on radio and optical counterpart studies and consistent with the FRB dispersion, we constr...

  6. Gamma-ray burst spectra

    Science.gov (United States)

    Teegarden, B. J.

    1982-01-01

    A review of recent results in gamma-ray burst spectroscopy is given. Particular attention is paid to the recent discovery of emission and absorption features in the burst spectra. These lines represent the strongest evidence to date that gamma-ray bursts originate on or near neutron stars. Line parameters give information on the temperature, magnetic field and possibly the gravitational potential of the neutron star. The behavior of the continuum spectrum is also discussed. A remarkably good fit to nearly all bursts is obtained with a thermal-bremsstrahlung-like continuum. Significant evolution is observed of both the continuum and line features within most events.

  7. Air shower detectors in gamma-ray astronomy

    Energy Technology Data Exchange (ETDEWEB)

    Sinnis, Gus [Los Alamos National Laboratory

    2008-01-01

    Extensive air shower (EAS) arrays directly detect the particles in an EAS that reach the observation altitude. This detection technique effectively makes air shower arrays synoptic telescopes -- they are capable of simultaneously and continuously viewing the entire overhead sky. Typical air shower detectors have an effective field-of-view of 2 sr and operate nearly 100% of the time. These two characteristics make them ideal instruments for studying the highest energy gamma rays, extended sources and transient phenomena. Until recently air shower arrays have had insufficient sensitivity to detect gamma-ray sources. Over the past decade, the situation has changed markedly. Milagro, in the US, and the Tibet AS{gamma} array in Tibet, have detected very-high-energy gamma-ray emission from the Crab Nebula and the active galaxy Markarian 421 (both previously known sources). Milagro has discovered TeV diffuse emission from the Milky Way, three unidentified sources of TeV gamma rays, and several candidate sources of TeV gamma rays. Given these successes and the suite of existing and planned instruments in the GeV and TeV regime (AGILE, GLAST, HESS, VERITAS, CTA, AGIS and IceCube) there are strong reasons for pursuing a next generation of EAS detectors. In conjunction with these other instruments the next generation of EAS instruments could answer long-standing problems in astrophysics.

  8. Observations of the unidentified gamma-ray source TeV J2032+4130 by Veritas

    Energy Technology Data Exchange (ETDEWEB)

    Aliu, E.; Errando, M. [Department of Physics and Astronomy, Barnard College, Columbia University, NY 10027 (United States); Aune, T. [Department of Physics and Astronomy, University of California, Los Angeles, CA 90095 (United States); Behera, B.; Chen, X.; Federici, S. [DESY, Platanenallee 6, D-15738 Zeuthen (Germany); Beilicke, M.; Buckley, J. H.; Bugaev, V. [Department of Physics, Washington University, St. Louis, MO 63130 (United States); Benbow, W.; Cerruti, M. [Fred Lawrence Whipple Observatory, Harvard-Smithsonian Center for Astrophysics, Amado, AZ 85645 (United States); Berger, K. [Department of Physics and Astronomy and the Bartol Research Institute, University of Delaware, Newark, DE 19716 (United States); Bird, R. [School of Physics, University College Dublin, Belfield, Dublin 4 (Ireland); Cardenzana, J. V. [Department of Physics and Astronomy, Iowa State University, Ames, IA 50011 (United States); Ciupik, L. [Astronomy Department, Adler Planetarium and Astronomy Museum, Chicago, IL 60605 (United States); Connolly, M. P. [School of Physics, National University of Ireland Galway, University Road, Galway (Ireland); Cui, W. [Department of Physics, Purdue University, West Lafayette, IN 47907 (United States); Duke, C. [Department of Physics, Grinnell College, Grinnell, IA 50112-1690 (United States); Dumm, J. [School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455 (United States); Falcone, A., E-mail: pratik.majumdar@saha.ac.in, E-mail: gareth.hughes@desy.de [Department of Astronomy and Astrophysics, 525 Davey Lab, Pennsylvania State University, University Park, PA 16802 (United States); and others

    2014-03-01

    TeV J2032+4130 was the first unidentified source discovered at very high energies (VHEs; E > 100 GeV), with no obvious counterpart in any other wavelength. It is also the first extended source to be observed in VHE gamma rays. Following its discovery, intensive observational campaigns have been carried out in all wavelengths in order to understand the nature of the object, which have met with limited success. We report here on a deep observation of TeV J2032+4130 based on 48.2 hr of data taken from 2009 to 2012 by the Very Energetic Radiation Imaging Telescope Array System experiment. The source is detected at 8.7 standard deviations (σ) and is found to be extended and asymmetric with a width of 9.'5 ± 1.'2 along the major axis and 4.'0 ± 0.'5 along the minor axis. The spectrum is well described by a differential power law with an index of 2.10 ± 0.14{sub stat} ± 0.21{sub sys} and a normalization of (9.5 ± 1.6{sub stat} ± 2.2{sub sys}) × 10{sup –13} TeV{sup –1} cm{sup –2} s{sup –1} at 1 TeV. We interpret these results in the context of multiwavelength scenarios which particularly favor the pulsar wind nebula interpretation.

  9. Observations of the unidentified gamma-ray source TeV J2032+4130 by VERITAS

    CERN Document Server

    Aliu, E; Behera, B; Beilicke, M; Benbow, W; Berger, K; Bird, R; Buckley, J H; Bugaev, V; Cardenzana, J V; Cerruti, M; Chen, X; Ciupik, L; Connolly, M P; Cui, W; Duke, C; Dumm, J; Errando, M; Falcone, A; Federici, S; Feng, Q; Finley, J P; Fortin, P; Fortson, L; Furniss, A; Galante, N; Gillanders, G H; Griffin, S; Griffiths, S T; Grube, J; Gyuk, G; Hanna, D; Holder, J; Hughes, G; Humensky, T B; Kaaret, P; Kertzman, M; Khassen, Y; Kieda, D; Krawczynski, H; Lang, M J; Madhavan, A S; Maier, G; Majumdar, P; McCann, A; Moriarty, P; Mukherjee, R; Nieto, D; de Bhroithe, A O'Faolain; Ong, R A; Otte, A N; Pandel, D; Perkins, J S; Pohl, M; Popkow, A; Prokoph, H; Quinn, J; Ragan, K; Rajotte, J; Reyes, L C; Reynolds, P T; Richards, G T; Roache, E; Sembroski, G H; Skole, C; Staszak, D; Telezhinsky, I; Theiling, M; Tucci, J V; Tyler, J; Varlotta, A; Vincent, S; Wakely, S P; Weekes, T C; Weinstein, A; Welsing, R; Williams, D A; Zitzer, B

    2014-01-01

    TeV J2032+4130 was the first unidentified source discovered at very high energies (VHE; E $>$ 100 GeV), with no obvious counterpart in any other wavelength. It is also the first extended source to be observed in VHE gamma rays. Following its discovery, intensive observational campaigns have been carried out in all wavelengths in order to understand the nature of the object, which have met with limited success. We report here on a deep observation of TeV J2032+4130, based on 48.2 hours of data taken from 2009 to 2012 by the VERITAS (Very Energetic Radiation Imaging Telescope Array System) experiment. The source is detected at 8.7 standard deviations ($\\sigma$) and is found to be extended and asymmetric with a width of 9.5$^{\\prime}$$\\pm$1.2$^{\\prime}$ along the major axis and 4.0$^{\\prime}$$\\pm$0.5$^{\\prime}$ along the minor axis. The spectrum is well described by a differential power law with an index of 2.10 $\\pm$ 0.14$_{stat}$ $\\pm$ 0.21$_{sys}$ and a normalization of (9.5 $\\pm$ 1.6$_{stat}$ $\\pm$ 2.2$_{sys...

  10. Gamma-ray triangles

    DEFF Research Database (Denmark)

    Ibarra, Alejandro; Lopez-Gehler, Sergio; Molinaro, Emiliano

    2016-01-01

    We introduce a new type of gamma-ray spectral feature, which we denominate gamma-ray triangle. This spectral feature arises in scenarios where dark matter self-annihilates via a chiral interaction into two Dirac fermions, which subsequently decay in flight into another fermion and a photon. The r...

  11. Measuring Ambient Densities and Lorentz Factors of Gamma-Ray Bursts from GeV and Optical Observations

    CERN Document Server

    Hascoët, Romain; Beloborodov, Andrei M

    2015-01-01

    Fermi satellite discovered that cosmological gamma-ray bursts (GRBs) are accompanied by long GeV flashes. In two GRBs, an optical counterpart of the GeV flash has been detected. Recent work suggests that the GeV+optical flash is emitted by the external blast wave from the explosion in a medium loaded with copious $e^\\pm$ pairs. The full light curve of the flash is predicted by a first-principle radiative transfer simulation and can be tested against observations. Here we examine a sample of 7 bursts with best GeV+optical data and test the model. We find that the observed light curves are in agreement with the theoretical predictions and allow us to measure three parameters for each burst: the Lorentz factor of the explosion, its isotropic kinetic energy, and the external density. With one possible exception of GRB 090510 (which is the only short burst in the sample) the ambient medium is consistent with a wind from a Wolf-Rayet progenitor. The wind density parameter $A=\\rho r^2$ varies in the sample around $1...

  12. RAPTOR observations of delayed explosive activity in the high-redshift gamma-ray burst GRB 060206

    CERN Document Server

    Wozniak, P R; Evans, S M; Vestrand, W T; White, R R; Wren, J A

    2006-01-01

    The RAPid Telescopes for Optical Response (RAPTOR) system at Los Alamos National Laboratory observed GRB 060206 starting 48.1 minutes after gamma-ray emission triggered the Burst Alert Telescope (BAT) on-board the Swift satellite. The afterglow light curve measured by RAPTOR shows a spectacular re-brightening by ~1 mag about 1 h after the trigger and peaks at R ~ 16.4 mag. Shortly after the onset of the explosive re-brightening the OT doubled its flux on a time-scale of about 4 minutes. The total R-band fluence received from GRB 060206 during this episode is 2.3e-9 erg/cm2. In the rest frame of the burst (z = 4.045) this yields an isotropic equivalent energy release of ~0.7e50 erg in just a narrow UV band 130 +/- 22 nm. We discuss the implications of RAPTOR observations for untriggered searches for fast optical transients and studies of GRB environments at high redshift.

  13. Extragalactic Backgrounds in the Far UV and Exploring Star Formation at High Redshifts with Gamma-ray Observations

    Science.gov (United States)

    Stecker, Floyd W.

    2006-01-01

    The determination of the intergalactic photon densities from the FIR to the UV which is produced by stellar emission and dust reradiation at various redshifts can provide an independent measure of the star formation history of the universe. Using recent Spitzer and GALEX data in conjunction with other observational inputs, Stecker, Malkan and Scully have calculated the intergalactic photon density as a function of both energy and redshift for 0 < zeta < 6 for photon energies from 0.003 eV to the Lyman limit cutoff at 13.6 eV in a ACDM universe with Omega(sub Lambda) = 0.7 and Omega(sub m) = 0.3. Their results are based on backwards evolution models for galaxies which were developed by Malkan and Stecker previously. The calculated background SEDs at zeta = 0 are in good agreement with the present observational data and limits. The calculated intergalactic photon densities as a function of redshift were used to predict to extend the absorption of high energy 7-rays in intergalactic space from sources such as blazars and quasars, this absorption being produced by interactions the y-rays with the intergalactic FIR-UV photons having the calculated densities. The results are in excellent agreement with absorption features found in the low gamma-ray spectra of Mkn 421, Mkn 501 at, zeta = 0.03 and PKS

  14. Physical properties of the gamma-ray binary LS 5039 through low and high frequency radio observations

    CERN Document Server

    Marcote, B; Paredes, J M; Ishwara-Chandra, C H

    2015-01-01

    We have studied in detail the 0.15-15 GHz radio spectrum of the gamma-ray binary LS 5039 to look for a possible turnover and absorption mechanisms at low frequencies, and to constrain the physical properties of its emission. We have analysed two archival VLA monitorings, all the available archival GMRT data and a coordinated quasi-simultaneous observational campaign conducted in 2013 with GMRT and WSRT. The data show that the radio emission of LS 5039 is persistent on day, week and year timescales, with a variability $\\lesssim 25~\\%$ at all frequencies, and no signature of orbital modulation. The obtained spectra reveal a power-law shape with a curvature below 5 GHz and a turnover at $\\sim0.5$ GHz, which can be reproduced by a one-zone model with synchrotron self-absorption plus Razin effect. We obtain a coherent picture for a size of the emitting region of $\\sim0.85~\\mathrm{mas}$, setting a magnetic field of $B\\sim20~\\mathrm{mG}$, an electron density of $n_{\\rm e}\\sim4\\times10^5~{\\rm cm^{-3}}$ and a mass-los...

  15. Inferred cosmic-ray spectrum from ${\\it Fermi}$-LAT $\\gamma$-ray observations of the Earth's limb

    CERN Document Server

    :,; Ajello, M; Albert, A; Allafort, A; Baldini, L; Barbiellini, G; Bastieri, D; Bechtol, K; Bellazzini, R; Blandford, R D; Bloom, E D; Bonamente, E; Bottacini, E; Bouvier, A; Brandt, T J; Brigida, M; Bruel, P; Buehler, R; Buson, S; Caliandro, G A; Cameron, R A; Caraveo, P A; Cecchi, C; Charles, E; Chaves, R C G; Chekhtman, A; Chiang, J; Chiaro, G; Ciprini, S; Claus, R; Cohen-Tanugi, J; Conrad, J; Cutini, S; Dalton, M; D'Ammando, F; de Angelis, A; de Palma, F; Dermer, C D; Digel, S W; Di Venere, L; Silva, E do Couto e; Drell, P S; Drlica-Wagner, A; Favuzzi, C; Fegan, S J; Ferrara, E C; Focke, W B; Franckowiak, A; Fukazawa, Y; Funk, S; Fusco, P; Gargano, F; Gasparrini, D; Germani, S; Giglietto, N; Giordano, F; Giroletti, M; Glanzman, T; Godfrey, G; Gomez-Vargas, G A; Grenier, I A; Grove, J E; Guiriec, S; Gustafsson, M; Hadasch, D; Hanabata, Y; Harding, A K; Hayashida, M; Hayashi, K; Hewitt, J W; Horan, D; Hou, X; Hughes, R E; Inoue, Y; Jackson, M S; Jogler, T; Jóhannesson, G; Johnson, A S; Kamae, T; Kawano, T; Knödlseder, J; Kuss, M; Lande, J; Larsson, S; Latronico, L; Longo, F; Loparco, F; Lovellette, M N; Lubrano, P; Mayer, M; Mazziotta, M N; McEnery, J E; Mehault, J; Michelson, P F; Mitthumsiri, W; Mizuno, T; Moiseev, A A; Monte, C; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Nemmen, R; Nuss, E; Ohsugi, T; Okumura, A; Orienti, M; Orlando, E; Ormes, J F; Paneque, D; Panetta, J H; Perkins, J S; Pesce-Rollins, M; Piron, F; Pivato, G; Porter, T A; Rainò, S; Rando, R; Razzano, M; Razzaque, S; Reimer, A; Reimer, O; Ritz, S; Roth, M; Schaal, M; Schulz, A; Sgrò, C; Siskind, E J; Spandre, G; Spinelli, P; Strong, A W; Takahashi, H; Takeuchi, Y; Thayer, J G; Thayer, J B; Thompson, D J; Tibaldo, L; Tinivella, M; Torres, D F; Tosti, G; Troja, E; Tronconi, V; Usher, T L; Vandenbroucke, J; Vasileiou, V; Vianello, G; Vitale, V; Werner, M; Winer, B L; Wood, K S; Wood, M; Yang, Z

    2014-01-01

    Recent accurate measurements of cosmic-ray (CR) species by ATIC-2, CREAM, and PAMELA reveal an unexpected hardening in the proton and He spectra above a few hundred GeV, a gradual softening of the spectra just below a few hundred GeV, and a harder spectrum of He compared to that of protons. These newly-discovered features may offer a clue to the origin of high-energy CRs. We use the ${\\it Fermi}$ Large Area Telescope observations of the $\\gamma$-ray emission from the Earth's limb for an indirect measurement of the local spectrum of CR protons in the energy range $\\sim 90~$GeV-$6~$TeV (derived from a photon energy range $15~$GeV-$1~$TeV). Our analysis shows that single power law and broken power law spectra fit the data equally well and yield a proton spectrum with index $2.68 \\pm 0.04$ and $2.61 \\pm 0.08$ above $\\sim 200~$GeV, respectively.

  16. A new method for determining the Hubble constant from sub-TeV gamma-ray observations

    Science.gov (United States)

    Salamon, M. H.; Stecker, F. W.; De Jager, O. C.

    1994-01-01

    The present uncertainty in the Hubble constant leaves unresolved questions regarding the age of the universe and related matters involving the amount and nature of the dark matter in the universe, consistency with the inflationary model of the universe, and the need for a cosmological constant. It is clear that a significantly precise determination of the Hubble constant by as many different methods as possible is crucial to our knowledge and understanding of the character of the universe. We propose here an entirely new method for determining the Hubble constant, based on measuring the extinction of high-energy gamma-rays emitted by detectable gamma-ray emitting blazars at various redshifts.

  17. Probing the gamma-ray variability in 3C 279 using broad-band observations

    Science.gov (United States)

    Rani, B.; Krichbaum, T. P.; Lee, S.-S.; Sokolovsky, K.; Kang, S.; Byun, D.-Y.; Mosunova, D.; Zensus, J. A.

    2017-01-01

    We present the results of a broad-band radio-to-GeV observing campaign organized to get a better understanding of the radiation processes responsible for the γ-ray flares observed in 3C 279. The total intensity and polarization observations of the source were carried out between 2013 December 28 and 2014 January 03 using the Fermi-Large Area Telescope, Swift-XRT, Swift-UVOT, and Korean VLBI Network telescopes. A prominent flare observed in the optical/near-UV passbands was found to be correlated with a concurrent γ-ray flare at a confidence level >95 per cent, which suggests a co-spatial origin of the two. Moreover, the flaring activity in the two regimes was accompanied by no significant spectral variations. A peak in the X-ray light curve coincides with the peaks of the fractional polarization curves at 43 and 86 GHz radio bands. No prominent variation was noticed for the total intensity and the electric vector position angle observations at radio bands during this period. We noticed a possible hint of steepening of the radio spectrum with an increase in percentage polarization, which suggests that the radio polarization variations could be simply due to a spectral change. In a simple scenario, the correlated optical/γ-ray flares could be caused by the same population of emitting particles. The coincidence of the increase in radio polarization with the X-ray flux supports the picture that X-rays are produced via inverse-Compton scattering of radio photons. The observed fractional variability for the γ-ray flare ˜0.23 does not exceed that in the optical regime, which is inconsistent with what we usually observe for 3C 279; it could be due to different dependencies of the magnetic field and the external radiation field energy density profiles along the jet.

  18. Ultra-Fast Flash Observatory for the observation of early photons from gamma-ray bursts

    DEFF Research Database (Denmark)

    Park, I H; Brandt, Søren; Budtz-Jørgensen, Carl

    2013-01-01

    -pathfinder payload, which will be placed onboard the Lomonosov satellite and launched in 2013. The UFFO-pathfinder is the first step of our long-term program of space instruments for rapid-response GRB observations. We describe early photon science, our soon-to-be-launched UFFO-pathfinder hardware and mission...

  19. Analysis of the observed and intrinsic durations of $Swift$/BAT gamma-ray bursts

    CERN Document Server

    Tarnopolski, Mariusz

    2016-01-01

    The duration distribution of 947 GRBs observed by $Swift$/BAT, as well as its subsample of 347 events with measured redshift, allowing to examine the durations in both the observer and rest frames, are examined. Using a maximum log-likelihood method, mixtures of two and three standard Gaussians are fitted to each sample, and the adequate model is chosen based on the value of the difference in the log-likelihoods, Akaike information criterion and Bayesian information criterion. It is found that a two-Gaussian is a better description than a three-Gaussian, and that the presumed intermediate-duration class is unlikely to be present in the $Swift$ duration data.

  20. Analysis of the observed and intrinsic durations of Swift/BAT gamma-ray bursts

    Science.gov (United States)

    Tarnopolski, Mariusz

    2016-07-01

    The duration distribution of 947 GRBs observed by Swift/BAT, as well as its subsample of 347 events with measured redshift, allowing to examine the durations in both the observer and rest frames, are examined. Using a maximum log-likelihood method, mixtures of two and three standard Gaussians are fitted to each sample, and the adequate model is chosen based on the value of the difference in the log-likelihoods, Akaike information criterion and Bayesian information criterion. It is found that a two-Gaussian is a better description than a three-Gaussian, and that the presumed intermediate-duration class is unlikely to be present in the Swift duration data.

  1. Velocity variation of internal shock waves in gamma ray bursts: Observational properties

    Institute of Scientific and Technical Information of China (English)

    WU; Mei; CHEN; Li; QU; Jinlu; Poon; Helen; WU; Bobing; SONG; Liming

    2006-01-01

    The work uses the data in the TTS mode of BATSE to analyze the time lags and pulse widths of GRB960113 and GRB960722 in high as well as low energy bands. The results show that their time lags increase monotonously. This phenomenon can reasonably be interpreted with the model of internal shock waves of γ-ray bursts (GRB). Perhaps we obtain the direct observational evidence for the fireball model of GRBs for the first time.

  2. Analysis of the observed and intrinsic durations of gamma-ray bursts with known redshift

    CERN Document Server

    Tarnopolski, Mariusz

    2016-01-01

    The duration distribution of 408 GRBs with measured both duration $T_{90}$ and redshift $z$ is examined. Mixtures of a number of distributions (standard normal, skew-normal, sinh-arcsinh, and alpha-skew-normal) are fitted to the observed and intrinsic durations using the maximum log-likelihood method. The best fit is chosen via the Akaike information critetion. The aim of this work is to assess the presence of the presumed intermediate GRB class, and to provide a phenomenological model more appropriate than the common mixture of standard Gaussians. While $\\log T^{obs}_{90}$ are well described by a truly trimodal fit, after moving to the rest frame the statistically most significant fit is unimodal. To trace the source of this discrepancy, 334 GRBs observed only by $Swift$/BAT are examined in the same way. In the observer frame, this results in a number of statistically plausible descriptions, being uni- and bimodal, and with the number of components ranging from one to three. After moving to the rest frame, n...

  3. Gamma-ray observations of blazars and the intergalactic magnetic field spectrum

    CERN Document Server

    Caprini, Chiara

    2015-01-01

    Very-high energy observations of blazars can be used to constrain the strength of the intergalactic magnetic field. A simplifying assumption which is often made is that of a magnetic field of constant strength composed by randomly oriented and identical cells. In this paper, we demonstrate that a more realistic description of the structure of the intergalactic magnetic field is indeed needed. If such a description is adopted, the observational bounds on the field strength are significantly affected in the limit of short field correlation lengths: in particular, they acquire a dependence on the magnetic field power spectrum. In the case of intergalactic magnetic fields which are generated causally, for which the magnetic field large scale spectral index is $n_B\\geq 2$ and even, the observational lower bound becomes more constraining by about a factor 3. If instead $-3

  4. Gamma ray astronomy from satellites and balloons

    Science.gov (United States)

    Schoenfelder, V.

    1986-01-01

    A survey is given of gamma ray astronomy topics presented at the Cosmic Ray Conference. The major conclusions at the Cosmic Ray Conference in the field of gamma ray astronomy are given. (1) MeV-emission of gamma-ray bursts is a common feature. Variations in duration and energy spectra from burst to burst may explain the discrepancy between the measured log N - log S dependence and the observed isotropy of bursts. (2) The gamma-ray line at 1.809 MeV from Al(26) is the first detected line from a radioactive nucleosynthesis product. In order to understand its origin it will be necessary to measure its longitude distribution in the Milky Way. (3) The indications of a gamma-ray excess found from the direction of Loop I is consistent with the picture that the bulk of cosmic rays below 100 GeV is produced in galactic supernova remnants. (4) The interpretation of the large scale distribution of gamma rays in the Milky Way is controversial. At present an extragalactic origin of the cosmic ray nuclei in the GeV-range cannot be excluded from the gamma ray data. (5) The detection of MeV-emission from Cen A is a promising step towards the interesting field of extragalactic gamma ray astronomy.

  5. GAMMA-RAY FLARING ACTIVITY FROM THE GRAVITATIONALLY LENSED BLAZAR PKS 1830–211 OBSERVED BY Fermi LAT

    Energy Technology Data Exchange (ETDEWEB)

    Abdo, A. A. [Center for Earth Observing and Space Research, College of Science, George Mason University, Fairfax, VA 22030 (United States); Ackermann, M.; Buehler, R. [Deutsches Elektronen Synchrotron DESY, D-15738 Zeuthen (Germany); Ajello, M. [Space Sciences Laboratory, 7 Gauss Way, University of California, Berkeley, CA 94720-7450 (United States); Allafort, A.; Bechtol, K.; Blandford, R. D.; Borgland, A. W.; Caliandro, G. A.; Cameron, R. A. [W. W. Hansen Experimental Physics Laboratory, Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics and SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94305 (United States); Amin, M. A. [Kavli Institute for Cosmology and Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom); Baldini, L.; Bellazzini, R. [Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, I-56127 Pisa (Italy); Barbiellini, G. [Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, I-34127 Trieste (Italy); Bastieri, D.; Buson, S. [Istituto Nazionale di Fisica Nucleare, Sezione di Padova, I-35131 Padova (Italy); Bonamente, E. [Istituto Nazionale di Fisica Nucleare, Sezione di Perugia, I-06123 Perugia (Italy); Bregeon, J. [Laboratoire Univers et Particules de Montpellier, Université Montpellier 2, CNRS/IN2P3, Montpellier (France); Brigida, M. [Dipartimento di Fisica " M. Merlin" dell' Università e del Politecnico di Bari, I-70126 Bari (Italy); Bulmash, D., E-mail: sara.buson@pd.infn.it, E-mail: stefano.ciprini@asdc.asi.it, E-mail: justin.finke@nrl.navy.mil, E-mail: dammando@ira.inaf.it, E-mail: stefano.ciprini@asdc.asi.it, E-mail: sara.buson@pd.infn.it, E-mail: justin.finke@nrl.navy.mil, E-mail: dammando@ira.inaf.it [Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02138 (United States); and others

    2015-02-01

    The Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope routinely detects the MeV-peaked flat-spectrum radio quasar PKS 1830–211 (z = 2.507). Its apparent isotropic γ-ray luminosity (E > 100 MeV), averaged over ∼3 years of observations and peaking on 2010 October 14/15 at 2.9 × 10{sup 50} erg s{sup –1}, makes it among the brightest high-redshift Fermi blazars. No published model with a single lens can account for all of the observed characteristics of this complex system. Based on radio observations, one expects time-delayed variability to follow about 25 days after a primary flare, with flux about a factor of 1.5 less. Two large γ-ray flares of PKS 1830–211 have been detected by the LAT in the considered period, and no substantial evidence for such a delayed activity was found. This allows us to place a lower limit of about 6 on the γ-ray flux ratio between the two lensed images. Swift XRT observations from a dedicated Target of Opportunity program indicate a hard spectrum with no significant correlation of X-ray flux with the γ-ray variability. The spectral energy distribution can be modeled with inverse Compton scattering of thermal photons from the dusty torus. The implications of the LAT data in terms of variability, the lack of evident delayed flare events, and different radio and γ-ray flux ratios are discussed. Microlensing effects, absorption, size and location of the emitting regions, the complex mass distribution of the system, an energy-dependent inner structure of the source, and flux suppression by the lens galaxy for one image path may be considered as hypotheses for understanding our results.

  6. Gamma-Ray Flaring Activity from the Gravitationally Lensed Blazar PKS 1830-211 Observed by Fermi LAT

    Energy Technology Data Exchange (ETDEWEB)

    Abdo, A. A.; et al.

    2015-01-23

    The Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope routinely detects the MeV-peaked flat-spectrum radio quasar PKS 1830–211 (z = 2.507). Its apparent isotropic γ-ray luminosity (E > 100 MeV), averaged over ~3 years of observations and peaking on 2010 October 14/15 at 2.9 × 10(50) erg s(–)(1), makes it among the brightest high-redshift Fermi blazars. No published model with a single lens can account for all of the observed characteristics of this complex system. Based on radio observations, one expects time-delayed variability to follow about 25 days after a primary flare, with flux about a factor of 1.5 less. Two large γ-ray flares of PKS 1830–211 have been detected by the LAT in the considered period, and no substantial evidence for such a delayed activity was found. This allows us to place a lower limit of about 6 on the γ-ray flux ratio between the two lensed images. Swift XRT observations from a dedicated Target of Opportunity program indicate a hard spectrum with no significant correlation of X-ray flux with the γ-ray variability. The spectral energy distribution can be modeled with inverse Compton scattering of thermal photons from the dusty torus. The implications of the LAT data in terms of variability, the lack of evident delayed flare events, and different radio and γ-ray flux ratios are discussed. Microlensing effects, absorption, size and location of the emitting regions, the complex mass distribution of the system, an energy-dependent inner structure of the source, and flux suppression by the lens galaxy for one image path may be considered as hypotheses for understanding our results.

  7. An observational overview of the millisecond magnetar scenario for long and short gamma-ray bursts

    Science.gov (United States)

    O'Brien, Paul; Gompertz, Ben

    2016-07-01

    The standard model for GRBs involves either the collapse of a massive star or the merger of a compact binary system resulting in a black hole which accretes for a brief period of time. An alternative model is to form a magnetar, which survives for a while at least powering the emission. I will discuss some recent attempts to fit a magnetar model, including the effects of spindown and propellering, to the high-energy data for some GRBs. I will also show how energy injection from a magnetar could be tested using radio observations

  8. The UFFO slewing mirror telescope for early optical observation from gamma ray bursts

    DEFF Research Database (Denmark)

    NAM, JIWOO; AHMAD, S.; AHN, K.;

    2013-01-01

    While some space born observatories, such as SWIFT and FERMI, have been operating, early observation of optical after grow of GRBs is still remained as an unexplored region. The Ultra-Fast Flash Observatory (UFFO) project is a space observatory for optical follow-ups of GRBs, aiming to explore...... the first 60 seconds of GRBs optical emission. Using fast moving mirrors to redirect our optical path rather than slewing the entire spacecraft, UFFO is utilized to catch early optical emissions from GRB within 1 sec. We have developed the UFFO Pathfinder Telescope which is going to be on board...

  9. The Uffo Slewing Mirror Telescope for Early Optical Observation from Gamma Ray Bursts

    DEFF Research Database (Denmark)

    Nam, Jiwoo; Ahmad, S.; Ahn, K.;

    2013-01-01

    While some space born observatories, such as SWIFT and FERMI, have been operating, early observation of optical after grow of GRBs is still remained as an unexplored region. The Ultra-Fast Flash Observatory (UFFO) project is a space observatory for optical follow-ups of GRBs, aiming to explore...... the first 60 seconds of GRBs optical emission. Using fast moving mirrors to redirect our optical path rather than slewing the entire spacecraft, UFFO is utilized to catch early optical emissions from GRB within 1 sec. We have developed the UFFO Pathfinder Telescope which is going to be on board...

  10. Production of keV Sterile Neutrinos in Supernovae: New Constraints and Gamma Ray Observables

    CERN Document Server

    Argüelles, Carlos A; Kopp, Joachim

    2016-01-01

    We study the production of sterile neutrinos in supernovae, focusing in particular on the keV--MeV mass range, which is the most interesting range if sterile neutrinos are to account for the dark matter in the Universe. We argue that in this mass range, the production of sterile neutrinos can be strongly enhanced by a Mikheyev--Smirnov--Wolfenstein (MSW) resonance, so that a substantial flux is expected to emerge from a supernova, even if vacuum mixing angles between active and sterile neutrinos are tiny. Using energetics arguments, this yields limits on the sterile neutrino parameter space that reach down to mixing angles on the order of $\\sin^2 2\\theta \\lesssim 10^{-14}$ and are up to several orders of magnitude stronger than those from X-ray observations. We also compute the flux of $\\mathcal{O}(\\text{MeV})$ photons expected from the decay of sterile neutrinos produced in supernovae, but find that it is beyond current observational reach even for a nearby supernova.

  11. Observation of gamma ray bursts at ground level under the thunderclouds

    Science.gov (United States)

    Kuroda, Y.; Oguri, S.; Kato, Y.; Nakata, R.; Inoue, Y.; Ito, C.; Minowa, M.

    2016-07-01

    We observed three γ-ray bursts related to thunderclouds in winter using the prototype of anti-neutrino detector PANDA made of 360-kg plastic scintillator deployed at Ohi Power Station at the coastal area of the Japan Sea. The maximum rate of the events which deposited the energy higher than 3 MeV was (5.5 ± 0.1) ×102 /s. Monte Carlo simulation showed that electrons with approximately monochromatic energy falling downwards from altitudes of order 100 m roughly produced the observed total energy spectra of the bursts. It is supposed that secondary cosmic-ray electrons, which act as seed, were accelerated in electric field of thunderclouds and multiplied by relativistic runaway electron avalanche. We actually found that the γ-rays of the bursts entered into the detector from the direction close to the zenith. The direction stayed constant during the burst within the detector resolution. In addition, taking advantage of the delayed coincidence detection of the detector, we found neutron events in one of the bursts at the maximum rate of ∼ 14 ± 5 /s.

  12. New Constraints on Quantum Gravity from X-ray and Gamma-Ray Observations

    CERN Document Server

    Perlman, Eric S; Christensen, Wayne A; Ng, Y Jack; DeVore, John; Pooley, David

    2014-01-01

    One aspect of the quantum nature of spacetime is its "foaminess" at very small scales. We reassess previous proposals to use astronomical observations of distant quasars and AGN to test models of spacetime foam. We show explicitly how wavefront distortions on small scales cause the image intensity to decay to the point where distant objects become undetectable when the path-length fluctuations become comparable to the wavelength of the radiation. We use X-ray observations from {\\em Chandra} to constrain on the parameter $\\alpha$ in the expression for cosmic phase shifts to be $\\gtrsim 0.58$, which rules out the random walk model (with $\\alpha = 1/2$). Here $\\alpha$ is defined by the expression for the path-length fluctuations, $\\delta \\ell$, of a source at distance $\\ell$, wherein $\\delta \\ell \\simeq \\ell^{1 - \\alpha} \\ell_P^{\\alpha}$, with $\\ell_P$ being the Planck length. Much firmer constraints can be set utilizing detections of quasars at GeV energies with {\\em Fermi}, and at TeV energies with ground-base...

  13. Fermi LAT gamma-ray observations of the supernova remnant HB21

    CERN Document Server

    Pivato, G; Tibaldo, L

    2013-01-01

    We present the analysis of Fermi Large Area Telescope (LAT) \\g-ray observations of HB 21, a mixed-morphology supernova remnant. Such supernova remnants are characterized by an interior thermal X-ray plasma, surrounded by a wider nonthermal shell emitting at radio frequencies. HB 21 has a large angular size, making it a good candidate for detailed morphological and spectral studies with the LAT. The radio extension is $2^\\circ\\times1^\\circ$, compared to the LAT 68% containment angle of $\\sim1^\\circ$ at 1 GeV. To understand the origin of \\g-ray emission, we compare LAT observations with other wavelengths that trace non-thermal radio synchrotron, nearby molecular clouds, shocked molecular clumps, and the central X-ray plasma. Finally, we model possible hadronic and leptonic emission mechanisms. We conclude that \\g-rays from HB 21 are likely the result of electron bremsstrahlung or proton-proton collisions with dense material due to interaction with the nearby clouds.

  14. CONSTRAINTS ON THE INTERGALACTIC MAGNETIC FIELD WITH GAMMA-RAY OBSERVATIONS OF BLAZARS

    Energy Technology Data Exchange (ETDEWEB)

    Finke, Justin D. [U.S. Naval Research Laboratory, Code 7653, 4555 Overlook Ave. SW, Washington, DC 20375-5352 (United States); Reyes, Luis C.; Reynolds, Kaeleigh [Department of Physics, California Polytechnic State University, San Luis Obispo, CA 93401 (United States); Georganopoulos, Markos; McCann, Kevin [Department of Physics and Center for Space Sciences and Technology, University of Maryland Baltimore County, Baltimore, MD 21250 (United States); Ajello, Marco [Department of Physics and Astronomy, Clemson University, Kinard Lab of Physics, Clemson, SC 29634-0978 (United States); Fegan, Stephen J., E-mail: justin.finke@nrl.navy.mil, E-mail: lreyes04@calpoly.edu, E-mail: georgano@umbc.edu [Laboratoire Leprince-Ringuet, École polytechnique, CNRS/IN2P3, Palaiseau (France)

    2015-11-20

    Distant BL Lacertae objects emit γ-rays that interact with the extragalactic background light (EBL), creating electron–positron pairs, and reducing the flux measured by ground-based imaging atmospheric Cherenkov telescopes (IACTs) at very-high energies (VHE). These pairs can Compton-scatter the cosmic microwave background, creating a γ-ray signature at slightly lower energies that is observable by the Fermi Large Area Telescope (LAT). This signal is strongly dependent on the intergalactic magnetic field (IGMF) strength (B) and its coherence length (L{sub B}). We use IACT spectra taken from the literature for 5 VHE-detected BL Lac objects and combine them with LAT spectra for these sources to constrain these IGMF parameters. Low B values can be ruled out by the constraint that the cascade flux cannot exceed that observed by the LAT. High values of B can be ruled out from the constraint that the EBL-deabsorbed IACT spectrum cannot be greater than the LAT spectrum extrapolated into the VHE band, unless the cascade spectrum contributes a sizable fraction of the LAT flux. We rule out low B values (B ≲ 10{sup −19} G for L{sub B} ≥ 1 Mpc) at >5σ in all trials with different EBL models and data selection, except when using >1 GeV spectra and the lowest EBL models. We were not able to constrain high values of B.

  15. Instrumentation for gamma-ray astronomy

    Science.gov (United States)

    Bertsch, David L.; Fichtel, Carl E.; Trombka, Jacob I.

    1988-01-01

    The current status of gamma-ray-telescope technology for ground, airborne, and space observations is surveyed and illustrated with drawings, diagrams, and graphs and tables of typical data. For the low- and medium-energy ranges, consideration is given to detectors and detector cooling systems, background-rejection methods, radiation damage, large-area detectors, gamma-ray imaging, data analysis, and the Compton-interaction region. Also discussed are the gamma-ray interaction process at high energies; multilevel automated spark-chamber gamma-ray telescopes; the Soviet Gamma-1 telescope; the EGRET instrument for the NASA Gamma-Ray Observatory; and Cerenkov, air-shower, and particle-detector instruments for the TeV and PeV ranges. Significant improvements in resolution and sensitivity are predicted for the near future.

  16. Gamma-ray pulsars: a gold mine

    CERN Document Server

    Grenier, Isabelle A

    2015-01-01

    The most energetic neutron stars, powered by their rotation, are capable of producing pulsed radiation from the radio up to gamma rays with nearly TeV energies. These pulsars are part of the universe of energetic and powerful particle accelerators, using their uniquely fast rotation and formidable magnetic fields to accelerate particles to ultra-relativistic speed. The extreme properties of these stars provide an excellent testing ground, beyond Earth experience, for nuclear, gravitational, and quantum-electrodynamical physics. A wealth of gamma-ray pulsars has recently been discovered with the Fermi Gamma-Ray Space Telescope. The energetic gamma rays enable us to probe the magnetospheres of neutron stars and particle acceleration in this exotic environment. We review the latest developments in this field, beginning with a brief overview of the properties and mysteries of rotation-powered pulsars, and then discussing gamma-ray observations and magnetospheric models in more detail.

  17. BL Lacertae Objects and the Extragalactic Gamma-Ray Background

    CERN Document Server

    Li, Fan

    2011-01-01

    A tight correlation between gamma-ray and radio emission is found for a sample of BL Lacertae (BL Lac) objects detected by Fermi Gamma-ray Space Telescope (Fermi) and the Energetic Gamma-Ray Experiment Telescope (EGRET). The gamma-ray emission of BL Lac objects exhibits strong variability, and the detection rate of gamma-ray BL Lac objects is low, which may be related to the gamma-ray duty cycle of BL Lac objects. We estimate the gamma-ray duty cycle ~ 0.11, for BL Lac objects detected by EGRET and Fermi. Using the empirical relation of gamma-ray emission with radio emission and the estimated gamma-ray duty cycle, we derive the gamma-ray luminosity function (LF) of BL Lac objects from their radio LF. Our derived gamma-ray LF of BL Lac objects can almost reproduce that calculated with the recently released Fermi bright active galactic nuclei (AGN) sample. We find that about 45% of the extragalactic diffuse gamma-ray background (EGRB) is contributed by BL Lac objects. Combining the estimate of the quasar contri...

  18. Fermi Large Area Telescope observations of high-energy gamma-ray emission from Solar flares

    Science.gov (United States)

    Pesce Rollins, Melissa

    2017-01-01

    The Fermi Large Area Telescope (LAT) observations of the active Sun provide the largest sample of detected solar flares with emission greater than 30 MeV to date. These include detections of impulsive and sustained emission, extending up to 20 hours in the case of the 2012 March 7 X-class flares. These high-energy flares are coincident with GOES X-ray flares of X, M and C classes as well as very fast Coronal Mass Ejections (CME). We will present results from the First Fermi-LAT solar flare catalog covering the majority of Solar Cycle 24 including correlation studies with the associated Solar Energetic Particles (SEP) and CMEs.

  19. Discerning the location of the gamma-ray emission region in blazars from multi-messenger observations

    CERN Document Server

    Agudo, Ivan; Jorstad, Svetlana G; Gomez, Jose L

    2012-01-01

    Relativistic jets in AGN in general, and in blazars in particular, are the most energetic and among the most powerful astrophysical objects known so far. Their relativistic nature provides them with the ability to emit profusely at all spectral ranges from radio wavelengths to gamma-rays, as well as to vary extremely at time scales from hours to years. Since the birth of gamma-ray astronomy, locating the origin of gamma-ray emission has been a fundamental problem for the knowledge of the emission processes involved. Deep and densely time sampled monitoring programs with the Fermi Gamma-ray Space Telescope and other facilities at most of the available spectral ranges (including millimeter interferometric imaging and polarization measurements wherever possible) are starting to shed light for the case of blazars. After a short review of the status of the problem, we summarize two of our latest results -obtained from the comprehensive monitoring data compiled by the Boston University Blazar monitoring program - t...

  20. Slewing Mirror Telescope optics for the early observation of UV/optical photons from Gamma-Ray Bursts

    DEFF Research Database (Denmark)

    Jeong, S.; Nam, J. W.; Ahn, K. B.

    2013-01-01

    We report on design, manufacture, and testing of a Slewing Mirror Telescope (SMT), the first of its kind and a part of Ultra-Fast Flash Observatory-pathfinder (UFFO-p) for space-based prompt measurement of early UV/optical light curves from Gamma-Ray Bursts (GRBs). Using a fast slewing mirror of ...

  1. The observed radio/gamma-ray emission correlation for blazars with the Fermi-LAT and the RATAN-600 data

    CERN Document Server

    Mufakharov, T; Sotnikova, Yu; Naiden, Ya; Erkenov, A

    2015-01-01

    We study the correlation between gamma-ray and radio band radiation for 123 blazars, using the Fermi-LAT first source catalog (1FGL) and the RATAN-600 data obtained at the same period of time (within a few months). We found an apparent positive correlation for BL Lac and flat-spectrum radio quasar (FSRQ) sources from our sample through testing the value of the Pearson product-moment correlation coefficient. The BL Lac objects show higher values of the correlation coefficient than FSRQs at all frequencies, except 21.7 GHz, and at all bands, except $10-100$ GeV, typically at high confidence level (> 99%). At higher gamma-ray energies the correlation weakens and even becomes negative for BL Lacs and FSRQs. For BL Lac blazars, the correlation of the fluxes appeared to be more sensitive to the considered gamma-ray energy band, than to the frequency, while for FSRQ sources the correlation changed notably both with the considered radio frequency and gamma-ray energy band. We used a data randomization method to quant...

  2. Very high-energy gamma-ray observations of the Crab nebula and other potential sources with the GRAAL experiment

    CERN Document Server

    Arqueros, F; Berenguel, M; Borque, D M; Camacho, E F; Díaz, M; Gebauer, H J; Enriquez, R P; Plaga, R

    2001-01-01

    The ``Gamma Ray Astronomy at ALmeria'' (GRAAL) experiment uses 63 heliostat-mirrors with a total mirror area of ~ 2500 m2 from the CESA-1 field at the ``Plataforma Solar de Almeria'' (PSA) to collect Cherenkov light from air showers. The detector is located in a central solar tower and detects photon-induced showers with an energy threshold of 250 +- 110 GeV and an asymptotic effective detection area of about 15000 m2. A comparison between the results of detailed Monte-Carlo simulations and data is presented. Data sets taken in the period September 1999 - September 2000 in the direction of the Crab pulsar, the active galaxy 3C 454.3, the unidentified gamma-ray source 3EG 1835+35 and a ``pseudo source'' were analyzed for high energy gamma-ray emission.Evidence for a gamma-ray flux from the Crab pulsar with an integral flux of 2.2 +- 0.4 (stat) ^+1.7_-1.3 (syst) x 10^-9 cm^-2 sec^-1 above threshold and a significance of 4.5 sigma in a total measuring time of 7 hours and 10 minutes on source was found. No eviden...

  3. Quiet but still bright: XMM-Newton observations of the soft gamma-ray repeater SGR 0526-66

    NARCIS (Netherlands)

    A. Tiengo; P. Esposito; S. Mereghetti; G.L. Israel; L. Stella; R. Turolla; S. Zane; N. Rea; D. Götz; M. Feroci

    2009-01-01

    SGR 0526-66 was the first soft gamma-ray repeater (SGR) from which a giant flare was detected in March 1979, suggesting the existence of magnetars, i.e. neutron stars powered by the decay of their extremely strong magnetic field. Since then, very little information has been obtained on this object,

  4. Implications on the X-ray emission of evolved pulsar wind nebulae based on VHE gamma-ray observations

    CERN Document Server

    Mayer, Michael J; Jung, Ira; Valerius, Kathrin; Stegmann, Christian

    2012-01-01

    Energetic pulsars power winds of relativistic leptons which produce photon nebulae (so-called pulsar wind nebulae, PWNe) detectable across the electromagnetic spectrum up to energies of several TeV. The spectral energy distribution has a double-humped structure: the first hump lies in the X-ray regime, the second in the gamma-ray range. The X-ray emission is generally understood as synchrotron radiation by highly energetic electrons, the gamma-ray emission as Inverse Compton scattering of energetic electrons with ambient photon fields. The evolution of the spectral energy distribution is influenced by the time-dependent spin-down of the pulsar and the decrease of the magnetic field strength with time. Thus, the present spectral appearance of a PWN depends on the age of the pulsar: while young PWNe are bright in X-rays and gamma-rays, the X-ray emission of evolved PWNe is suppressed. Hence, evolved PWNe may offer an explanation of the nature of some of the unidentified VHE gamma-ray sources not yet associated ...

  5. Infrared observations of the possible X-ray counterpart to the 1992 May 1 gamma-ray burst

    NARCIS (Netherlands)

    Blaes, O; Hurt, T; Antonucci, R; Hurley, K; Smette, A

    1997-01-01

    We present the results of deep infrared imaging in J, H, and K of the quiescent X-ray source located within the 1992 May 1 gamma-ray burst error box. The field is crowded, containing both stars and galaxies, and we discuss the Likelihood that they are associated with the X-ray source. Two objects (o

  6. Multi-Frequency Observations of Gamma-Ray Blazar 1633+382

    Indian Academy of Sciences (India)

    S. G. Jorstad; A. P. Marscher; I. Agudo; P. S. Smith; V. M. Larionov; A. Lähteenmäki

    2011-03-01

    We perform monthly monitoring of the quasar 1633+382 (4C+38.41) within a sample of -ray blazars with the VLBA at 43 GHz along with optical photometric and polarimetric observations. We construct the -ray light curve of 1633+382 using data obtained by the Fermi LAT. We find that a high -ray state of the quasar starting in 2009 September is simultaneous with an increase of the flux in the mm-wave VLBI core. We resolve a superluminal feature on the VLBA images that appears to be responsible for the mm-wave flux increase. We find a strong correlation between optical and -ray light curves with a delay of -ray variations of 5 ± 3 days, as well as a strong correlation between optical flux and degree of polarization during the high -ray state. Comparison between the optical polarization position angle and that in the VLBI core supports the idea that in the quasar 1633+382 a high -ray state is connected with processes originating near the mm-VLBI core.

  7. The dark connection between the EGRET excess of diffuse Galactic gamma rays, the Canis Major dwarf, the Monoceros ring, the INTEGRAL 511 keV annihilation line, the gas flaring and the Galactic rotation curve

    CERN Document Server

    de Boer, Wim

    2007-01-01

    The EGRET excess of diffuse Galactic gamma rays shows all the key features of dark matter annihilation (DMA) for a WIMP mass in the range 50-100 GeV, especially the distribution of the excess is compatible with a standard halo profile with some additional ringlike substructures at 4 and 13 kpc from the Galactic centre. These substructures coincide with the gravitational potential well expected from the ring of dust at 4 kpc and the tidal stream of dark matter from the Canis Major satellite galaxy at 13 kpc, as deduced from N-body simulations fitting to the Monoceros ring of stars. Strong independent support for this substructure is given by the gas flaring in our Galaxy. The gamma rays from DMA are originating predominantly from the hadronization of mono-energetic quarks, which should produce also a small, but known fraction of protons and antiprotons. Bergstrom et al. an antiproton flux far above the observed antiproton flux and they conclude that the DMA interpretation of the EGRET excess can therefore be e...

  8. A search for spectral hysteresis and energy-dependent time lags from X-ray and TeV gamma-ray observations of Mrk 421

    CERN Document Server

    Abeysekara, A U; Archer, A; Benbow, W; Bird, R; Buchovecky, M; Buckley, J H; Bugaev, V; Cardenzana, J V; Cerruti, M; Chen, X; Ciupik, L; Connolly, M P; Cui, W; Eisch, J D; Falcone, A; Feng, Q; Finley, J P; Fleischhack, H; Flinders, A; Fortson, L; Furniss, A; Griffin, S; Hütten, M; Håkansson, N; Hanna, D; Hervet, O; Holder, J; Humensky, T B; Kaaret, P; Kar, P; Kertzman, M; Kieda, D; Krause, M; Kumar, S; Lang, M J; Maier, G; McArthur, S; McCann, A; Meagher, K; Moriarty, P; Mukherjee, R; Nieto, D; O'Brien, S; Ong, R A; Otte, A N; Park, N; Pelassa, V; Pohl, M; Popkow, A; Pueschel, E; Ragan, K; Reynolds, P T; Richards, G T; Roache, E; Sadeh, I; Santander, M; Sembroski, G H; Shahinyan, K; Staszak, D; Telezhinsky, I; Tucci, J V; Tyler, J; Wakely, S P; Weinstein, A; Wilhelm, A; Williams, D A; Ahnen, M L; Ansoldi, S; Antonelli, L A; Antoranz, P; Arcaro, C; Babic, A; Banerjee, B; Bangale, P; de Almeida, U Barres; Barrio, J A; González, J Becerra; Bednarek, W; Bernardini, E; Berti, A; Biasuzzi, B; Biland, A; Blanch, O; Bonnefoy, S; Bonnoli, G; Borracci, F; Bretz, T; Carosi, R; Carosi, A; Chatterjee, A; Colin, P; Colombo, E; Contreras, J L; Cortina, J; Covino, S; Cumani, P; Da Vela, P; Dazzi, F; De Angelis, A; De Lotto, B; Wilhelmi, E de Oña; Di Pierro, F; Doert, M; Domínguez, A; Prester, D Dominis; Dorner, D; Doro, M; Einecke, S; Glawion, D Eisenacher; Elsaesser, D; Engelkemeier, M; Ramazani, V Fallah; Fernández-Barral, A; Fidalgo, D; Fonseca, M V; Font, L; Fruck, C; Galindo, D; López, R J García; Garczarczyk, M; Gaug, M; Giammaria, P; Godinović, N; Gora, D; Guberman, D; Hadasch, D; Hahn, A; Hassan, T; Hayashida, M; Herrera, J; Hose, J; Hrupec, D; Hughes, G; Idec, W; Kodani, K; Konno, Y; Kubo, H; Kushida, J; Lelas, D; Lindfors, E; Lombardi, S; Longo, F; López, M; López-Coto, R; Majumdar, P; Makariev, M; Mallot, K; Maneva, G; Manganaro, M; Mannheim, K; Maraschi, L; Marcote, B; Mariotti, M; Martínez, M; Mazin, D; Menzel, U; Mirzoyan, R; Moralejo, A; Moretti, E; Nakajima, D; Neustroev, V; Niedzwiecki, A; Rosillo, M Nievas; Nilsson, K; Nishijima, K; Noda, K; Nogués, L; Nöthe, M; Paiano, S; Palacio, J; Palatiello, M; Paneque, D; Paoletti, R; Paredes, J M; Paredes-Fortuny, X; Pedaletti, G; Peresano, M; Perri, L; Persic, M; Poutanen, J; Moroni, P G Prada; Prandini, E; Puljak, I; Garcia, J R; Reichardt, I; Rhode, W; Ribó, M; Rico, J; Saito, T; Satalecka, K; Schroeder, S; Schweizer, T; Shore, S N; Sillanpää, A; Sitarek, J; Snidaric, I; Sobczynska, D; Stamerra, A; Strzys, M; Surić, T; Takalo, L; Tavecchio, F; Temnikov, P; Terzić, T; Tescaro, D; Teshima, M; Torres, D F; Torres-Albà, N; Toyama, T; Treves, A; Vanzo, G; Acosta, M Vazquez; Vovk, I; Ward, J E; Will, M; Wu, M H; Zanin, R; Hovatta, T; Perez, I de la Calle; Smith, P S; Racero, E; Baloković, M

    2016-01-01

    Blazars are variable emitters across all wavelengths over a wide range of timescales, from months down to minutes. It is therefore essential to observe blazars simultaneously at different wavelengths, especially in the X-ray and gamma-ray bands, where the broadband spectral energy distributions usually peak. In this work, we report on three "target-of-opportunity" (ToO) observations of Mrk 421, one of the brightest TeV blazars, triggered by a strong flaring event at TeV energies in 2014. These observations feature long, continuous, and simultaneous exposures with XMM-Newton (covering X-ray and optical/ultraviolet bands) and VERITAS (covering TeV gamma-ray band), along with contemporaneous observations from other gamma-ray facilities (MAGIC and Fermi-LAT) and a number of radio and optical facilities. Although neither rapid flares nor significant X-ray/TeV correlation are detected, these observations reveal subtle changes in the X-ray spectrum of the source over the course of a few days. We search the simultane...

  9. Very-high-energy gamma rays from a distant quasar: how transparent is the universe?

    Science.gov (United States)

    Albert, J; Aliu, E; Anderhub, H; Antonelli, L A; Antoranz, P; Backes, M; Baixeras, C; Barrio, J A; Bartko, H; Bastieri, D; Becker, J K; Bednarek, W; Berger, K; Bernardini, E; Bigongiari, C; Biland, A; Bock, R K; Bonnoli, G; Bordas, P; Bosch-Ramon, V; Bretz, T; Britvitch, I; Camara, M; Carmona, E; Chilingarian, A; Commichau, S; Contreras, J L; Cortina, J; Costado, M T; Covino, S; Curtef, V; Dazzi, F; De Angelis, A; De Cea Del Pozo, E; de Los Reyes, R; De Lotto, B; De Maria, M; De Sabata, F; Mendez, C Delgado; Dominguez, A; Dorner, D; Doro, M; Errando, M; Fagiolini, M; Ferenc, D; Fernández, E; Firpo, R; Fonseca, M V; Font, L; Galante, N; López, R J García; Garczarczyk, M; Gaug, M; Goebel, F; Hayashida, M; Herrero, A; Höhne, D; Hose, J; Hsu, C C; Huber, S; Jogler, T; Kneiske, T M; Kranich, D; La Barbera, A; Laille, A; Leonardo, E; Lindfors, E; Lombardi, S; Longo, F; López, M; Lorenz, E; Majumdar, P; Maneva, G; Mankuzhiyil, N; Mannheim, K; Maraschi, L; Mariotti, M; Martínez, M; Mazin, D; Meucci, M; Meyer, M; Miranda, J M; Mirzoyan, R; Mizobuchi, S; Moles, M; Moralejo, A; Nieto, D; Nilsson, K; Ninkovic, J; Otte, N; Oya, I; Panniello, M; Paoletti, R; Paredes, J M; Pasanen, M; Pascoli, D; Pauss, F; Pegna, R G; Perez-Torres, M A; Persic, M; Peruzzo, L; Piccioli, A; Prada, F; Prandini, E; Puchades, N; Raymers, A; Rhode, W; Ribó, M; Rico, J; Rissi, M; Robert, A; Rügamer, S; Saggion, A; Saito, T Y; Salvati, M; Sanchez-Conde, M; Sartori, P; Satalecka, K; Scalzotto, V; Scapin, V; Schmitt, R; Schweizer, T; Shayduk, M; Shinozaki, K; Shore, S N; Sidro, N; Sierpowska-Bartosik, A; Sillanpää, A; Sobczynska, D; Spanier, F; Stamerra, A; Stark, L S; Takalo, L; Tavecchio, F; Temnikov, P; Tescaro, D; Teshima, M; Tluczykont, M; Torres, D F; Turini, N; Vankov, H; Venturini, A; Vitale, V; Wagner, R M; Wittek, W; Zabalza, V; Zandanel, F; Zanin, R; Zapatero, J

    2008-06-27

    The atmospheric Cherenkov gamma-ray telescope MAGIC, designed for a low-energy threshold, has detected very-high-energy gamma rays from a giant flare of the distant Quasi-Stellar Radio Source (in short: radio quasar) 3C 279, at a distance of more than 5 billion light-years (a redshift of 0.536). No quasar has been observed previously in very-high-energy gamma radiation, and this is also the most distant object detected emitting gamma rays above 50 gigaelectron volts. Because high-energy gamma rays may be stopped by interacting with the diffuse background light in the universe, the observations by MAGIC imply a low amount for such light, consistent with that known from galaxy counts.

  10. New stage in high-energy gamma-ray studies with GAMMA-400 after Fermi-LAT

    Directory of Open Access Journals (Sweden)

    Topchiev N.P.

    2017-01-01

    Full Text Available Fermi-LAT has made a significant contribution to the study of high-energy gamma-ray diffuse emission and the observations of 3000 discrete sources. However, one third of all gamma-ray sources (both galactic and extragalactic are unidentified, the data on the diffuse gamma-ray emission should be clarified, and signatures of dark matter particles in the high-energy gamma-ray range are not observed up to now. GAMMA-400, the currently developing gamma-ray telescope, will have angular (∼0.01∘ at 100 GeV and energy (∼1% at 100 GeV resolutions in the energy range of 10–1000 GeV which are better than Fermi-LAT (as well as ground gamma-ray telescopes by a factor of 5–10. It will observe some regions of the Universe (such as the Galactic Center, Fermi Bubbles, Crab, Cygnus, etc. in a highly elliptic orbit (without shading the telescope by the Earth continuously for a long time. It will allow us to identify many discrete sources, to clarify the structure of extended sources, to specify the data on the diffuse emission, and to resolve gamma rays from dark matter particles.

  11. Probing the gamma-ray emission from HESS J1834-087 using H.E.S.S. and Fermi LAT observations

    CERN Document Server

    :,; Aharonian, F; Benkhali, F Ait; Akhperjanian, A G; Angüner, E; Anton, G; Backes, M; Balenderan, S; Balzer, A; Barnacka, A; Becherini, Y; Tjus, J Becker; Bernlöhr, K; Birsin, E; Bissaldi, E; Biteau, J; Böttcher, M; Boisson, C; Bolmont, J; Bordas, P; Brucker, J; Brun, F; Brun, P; Bulik, T; Carrigan, S; Casanova, S; Chadwick, P M; Chalme-Calvet, R; Chaves, R C G; Cheesebrough, A; Chrétien, M; Colafrancesco, S; Cologna, G; Conrad, J; Couturier, C; Cui, Y; Dalton, M; Daniel, M K; Davids, I D; Degrange, B; Deil, C; deWilt, P; Dickinson, H J; Djannati-Ataï, A; Domainko, W; Drury, L O'C; Dubus, G; Dutson, K; Dyks, J; Dyrda, M; Edwards, T; Egberts, K; Eger, P; Espigat, P; Farnier, C; Fegan, S; Feinstein, F; Fernandes, M V; Fernandez, D; Fiasson, A; Fontaine, G; Förster, A; Füßling, M; Gajdus, M; Gallant, Y A; Garrigoux, T; Giavitto, G; Giebels, B; Glicenstein, J F; Grondin, M -H; Grudzińska, M; Häffner, S; Hahn, J; Harris, J; Heinzelmann, G; Henri, G; Hermann, G; Hervet, O; Hillert, A; Hinton, J A; Hofmann, W; Hofverberg, P; Holler, M; Horns, D; Jacholkowska, A; Jahn, C; Jamrozy, M; Janiak, M; Jankowsky, F; Jung, I; Kastendieck, M A; Katarzyński, K; Katz, U; Kaufmann, S; Khélifi, B; Kieffer, M; Klepser, S; Klochkov, D; Kluźniak, W; Kneiske, T; Kolitzus, D; Komin, Nu; Kosack, K; Krakau, S; Krayzel, F; Krüger, P P; Laffon, H; Lamanna, G; Lefaucheur, J; Lemière, A; Lemoine-Goumard, M; Lenain, J -P; Lohse, T; Lopatin, A; Lu, C -C; Marandon, V; Marcowith, A; Marx, R; Maurin, G; Maxted, N; Mayer, M; McComb, T J L; Méhault, J; Meintjes, P J; Menzler, U; Meyer, M; Moderski, R; Mohamed, M; Moulin, E; Murach, T; Naumann, C L; de Naurois, M; Niemiec, J; Nolan, S J; Oakes, L; Odaka, H; Ohm, S; Wilhelmi, E de Oña; Opitz, B; Ostrowski, M; Oya, I; Panter, M; Parsons, R D; Arribas, M Paz; Pekeur, N W; Pelletier, G; Perez, J; Petrucci, P -O; Peyaud, B; Pita, S; Poon, H; Pühlhofer, G; Punch, M; Quirrenbach, A; Raab, S; Raue, M; Reichardt, I; Reimer, A; Reimer, O; Renaud, M; Reyes, R de los; Rieger, F; Rob, L; Romoli, C; Rosier-Lees, S; Rowell, G; Rudak, B; Rulten, C B; Sahakian, V; Sanchez, D A; Santangelo, A; Schlickeiser, R; Schüssler, F; Schulz, A; Schwanke, U; Schwarzburg, S; Schwemmer, S; Sol, H; Spengler, G; Spies, F; Stawarz, Ł; Steenkamp, R; Stegmann, C; Stinzing, F; Stycz, K; Sushch, I; Tavernet, J -P; Tavernier, T; Taylor, A M; Terrier, R; Tluczykont, M; Trichard, C; Valerius, K; van Eldik, C; van Soelen, B; Vasileiadis, G; Venter, C; Viana, A; Vincent, P; Völk, H J; Volpe, F; Vorster, M; Vuillaume, T; Wagner, S J; Wagner, P; Wagner, R M; Ward, M; Weidinger, M; Weitzel, Q; White, R; Wierzcholska, A; Willmann, P; Wörnlein, A; Wouters, D; Yang, R; Zabalza, V; Zacharias, M; Zdziarski, A A; Zech, A; Zechlin, H -S; Acero, F; Casandjian, J M; Cohen-Tanugi, J; Giordano, F; Guillemot, L; Lande, J; Pletsch, H; Uchiyama, Y

    2014-01-01

    Previous observations with HESS have revealed the existence of an extended very-high-energy (VHE; E>100 GeV) gamma-ray source, HESS J1834-087, coincident with the SNR W41. The origin of the gamma-ray emission has been further investigated with HESS and the Fermi-LAT. The gamma-ray data provided by 61h (HESS) and 4 yrs (Fermi LAT) of observations cover over 5 decades in energy (1.8GeV - 30TeV). The morphology and spectrum of the TeV and GeV sources have been studied and multi-wavelength data have been used to investigate the origin of the observed emission. The TeV source can be modeled with a sum of two components: one point-like and one significantly extended (sig_TeV = 0.17{\\deg}), both centered on SNR W41 and exhibiting spectra described by a power law of index 2.6. The GeV source detected with Fermi is extended (sig_GeV =0.15{\\deg}) and morphologically matches the VHE emission. Its spectrum can be described by a power-law with index 2.15 and joins smoothly the one of the whole TeV source. A break appears ...

  12. Discovery of VHE gamma-rays from the blazar 1ES 1215+303 with the MAGIC Telescopes and simultaneous multi-wavelength observations

    CERN Document Server

    Aleksić, J; Antonelli, L A; Antoranz, P; Asensio, M; Backes, M; de Almeida, U Barres; Barrio, J A; Bastieri, D; González, J Becerra; Bednarek, W; Berger, K; Bernardini, E; Biland, A; Blanch, O; Bock, R K; Boller, A; Bonnoli, G; Tridon, D Borla; Bretz, T; Cañellas, A; Carmona, E; Carosi, A; Colin, P; Colombo, E; Contreras, J L; Cortina, J; Cossio, L; Covino, S; Da Vela, P; Dazzi, F; De Angelis, A; De Caneva, G; del Pozo, E De Cea; De Lotto, B; Mendez, C Delgado; Ortega, A Diago; Doert, M; Domínguez, A; Prester, D Dominis; Dorner, D; Doro, M; Eisenacher, D; Elsaesser, D; Ferenc, D; Fonseca, M V; Font, L; Fruck, C; López, R J García; Garczarczyk, M; Terrats, D Garrido; Giavitto, G; Godinović, N; Muñoz, A González; Gozzini, S R; Hadasch, D; Häfner, D; Herrero, A; Hildebrand, D; Hose, J; Hrupec, D; Huber, B; Jankowski, F; Jogler, T; Kadenius, V; Kellermann, H; Klepser, S; Krähenbühl, T; Krause, J; La Barbera, A; Lelas, D; Leonardo, E; Lewandowska, N; Lindfors, E; Lombardi, S; López, M; López-Coto, R; López-Oramas, A; Lorenz, E; Makariev, M; Maneva, G; Mankuzhiyil, N; Mannheim, K; Maraschi, L; Mariotti, M; Martínez, M; Mazin, D; Meucci, M; Miranda, J M; Mirzoyan, R; Moldón, J; Moralejo, A; Munar-Adrover, P; Niedzwiecki, A; Nieto, D; Nilsson, K; Nowak, N; Orito, R; Paiano, S; Paneque, D; Paoletti, R; Pardo, S; Paredes, J M; Partini, S; Perez-Torres, M A; Persic, M; Pilia, M; Pochon, J; Prada, F; Moroni, P G Prada; Prandini, E; Gimenez, I Puerto; Puljak, I; Reichardt, I; Reinthal, R; Rhode, W; Ribó, M; Rico, J; Rügamer, S; Saggion, A; Saito, K; Saito, T Y; Salvati, M; Satalecka, K; Scalzotto, V; Scapin, V; Schultz, C; Schweizer, T; Shore, S N; Sillanpää, A; Sitarek, J; Snidaric, I; Sobczynska, D; Spanier, F; Spiro, S; Stamatescu, V; Stamerra, A; Steinke, B; Storz, J; Strah, N; Sun, S; Surić, T; Takalo, L; Takami, H; Tavecchio, F; Temnikov, P; Terzić, T; Tescaro, D; Teshima, M; Tibolla, O; Torres, D F; Treves, A; Uellenbeck, M; Vogler, P; Wagner, R M; Weitzel, Q; Zabalza, V; Zandanel, F; Zanin, R; Berdyugin, A; Buson, S; Järvelä, E; Larsson, S; Lähteenmäki, A; Tammi, J; de Lausanne, now at: Ecole polytechnique fédérale; Lausanne,; Switzerland,; Padova, supported by INFN; Energéticas, now at: Centro de Investigaciones; Tecnológicas, Medioambientales y; Madrid,; Spain,; KIPAC, now at:; Laboratory, SLAC National Accelerator; USA,; ESO, now at: Finnish Centre for Astronomy with; Turku, University of; Finland,; Observatory, Aalto University Metsähovi Radio; Metsähovintie,; Finland,; Physics, Department of; University, Stockholm; Stockholm,; Sweden,; Physics, The Oskar Klein Centre for Cosmoparticle; Stockholm,; Sweden,; Astronomy, Department of; University, Stockholm; Stockholm,; Sweden),

    2012-01-01

    Context. We present the discovery of very high energy (VHE, E > 100GeV) gamma-ray emission from the BL Lac object 1ES 1215+303 by the MAGIC telescopes and simultaneous multi-wavelength data in a broad energy range from radio to gamma-rays. Aims. We study the VHE gamma-ray emission from 1ES 1215+303 and its relation to the emissions in other wavelengths. Methods. Triggered by an optical outburst, MAGIC observed the source in January-February 2011 for 20.3 hrs. The target was monitored in the optical R-band by the KVA telescope that also performed optical polarization measurements. We triggered target of opportunity observations with the Swift satellite and obtained simultaneous and quasi-simultaneous data from the Fermi Large Area Telescope and from the Mets\\"ahovi radio telescope. We also present the analysis of older MAGIC data taken in 2010. Results. The MAGIC observations of 1ES 1215+303 carried out in January-February 2011 resulted in the first detection of the source at VHE with a statistical significanc...

  13. Bounds on Cross-sections and Lifetimes for Dark Matter Annihilation and Decay into Charged Leptons from Gamma-ray Observations of Dwarf Galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Essig, Rouven; /SLAC; Sehgal, Neelima; Strigari, Louis E.; /KIPAC, Menlo Park

    2009-06-19

    We provide conservative bounds on the dark matter cross-section and lifetime from final state radiation produced by annihilation or decay into charged leptons, either directly or via an intermediate particle {phi}. Our analysis utilizes the experimental gamma-ray flux upper limits from four Milky Way dwarf satellites: HESS observations of Sagittarius and VERITAS observations of Draco, Ursa Minor, and Willman 1. Using 90% confidence level lower limits on the integrals over the dark matter distributions, we find that these constraints are largely unable to rule out dark matter annihilations or decays as an explanation of the PAMELA and ATIC/PPB-BETS excesses. However, if there is an additional Sommerfeld enhancement in dwarfs, which have a velocity dispersion {approx} 10 to 20 times lower than that of the local Galactic halo, then the cross-sections for dark matter annihilating through {phi}'s required to explain the excesses are very close to the cross-section upper bounds from Willman 1. Dark matter annihilation directly into {tau}'s is also marginally ruled out by Willman 1 as an explanation of the excesses, and the required cross-section is only a factor of a few below the upper bound from Draco. Finally, we make predictions for the gamma-ray flux expected from the dwarf galaxy Segue 1 for the Fermi Gamma-ray Space Telescope. We find that for a sizeable fraction of the parameter space in which dark matter annihilation into charged leptons explains the PAMELA excess, Fermi has good prospects for detecting a gamma-ray signal from Segue 1 after one year of observation.

  14. Future plan for observation of cosmic gamma rays in the 100 TeV energy region with the Tibet air shower array : physics goal and overview

    CERN Document Server

    Amenomori, M; Chen, D; Cui, S W; Danzengluobu,; Ding, L K; Ding, X H; Fan, C; Feng, C F; Feng, Zhaoyang; Feng, Z Y; Gao, X Y; Geng, Q X; Guo, H W; He, H H; He, M; Hibino, K; Hotta, N; Hu, Haibing; Hu, H B; Huang, J; Huang, Q; Jia, H Y; Kajino, F; Kasahara, K; Katayose, Y; Kato, C; Kawata, K; Labaciren,; Le, G M; Li, A F; Li, J Y; Lou, Y -Q; Lü, H; Lu, S L; Meng, X R; Mizutani, K; Mu, J; Munakata, K; Nagai, A; Nanjo, H; Nishizawa, M; Ohnishi, M; Ohta, I; Onuma, H; Ouchi, T; Ozawa, S; Ren, J R; Saitô, T; Saito, T Y; Sakata, M; Sako, T K; Shibata, M; Shiomi, A; Shirai, T; Sugimoto, H; Takita, M; Tan, Y H; Tateyama, N; Torii, S; Tsuchiya, H; Udo, S; Wang, B; Wang, H; Wang, X; Wang, Y; Wang, Y G; Wu, H R; Xue, L; Yamamoto, Y; Yan, C T; Yang, X C; Yasue, S; Ye, Z H; Yu, G C; Yuan, A F; Yuda, T; Zhang, H M; Zhang, J L; Zhang, N J; Zhang, X Y; Zhang, Y; Zhang, Yi; Zhaxisangzhu,; Zhou, X X

    2007-01-01

    The Tibet air shower array, which has an effective area of 37,000 square meters and is located at 4300 m in altitude, has been observing air showers induced by cosmic rays with energies above a few TeV. We are planning to add a large muon detector array to it for the purpose of increasing its sensitivity to cosmic gamma rays in the 100 TeV (10 - 1000 TeV) energy region by discriminating them from cosmic-ray hadrons. We report on the possibility of detection of gamma rays in the 100 TeV energy region in our field of view, based on the improved sensitivity of our air shower array deduced from the full Monte Carlo simulation.

  15. Observations of the Unidentified TeV Gamma-Ray Source TeV J2032+4130 with the Whipple Observatory 10 m Telescope

    CERN Document Server

    Konopelko, A; Blaylock, G; Buckley, J H; Butt, Y; Carter-Lewis, D A; Celik, O; Cogan, P; Chow, Y C K; Cui, W; Dowdall, C; Ergin, T; Falcone, A D; Fegan, D J; Fegan, S J; Finley, J P; Fortin, P; Gillanders, G H; Gutíerrez, K J; Hall, J; Hanna, D; Horan, D; Hughes, S B; Humensky, T B; Imran, A; Jung, I; Kaaret, Philip; Kenny, G E; Kertzman, M; Kieda, D B; Kildea, J; Knapp, J; Kosack, K; Krawczynski, H; Krennrich, F; Lang, M J; Le Bohec, S; Moriarty, P; Mukherjee, R; Nagai, T; Ong, R A; Perkins, J S; Pohl, M; Ragan, K; Reynolds, P T; Rose, H J; Sembroski, G H; Schroedter, M; Smith, A W; Steele, D; Syson, A; Swordy, S P; Toner, J A; Valcarcel, L; Vasilev, V V; Wagner, R G; Wakely, S P; Weekes, T C; White, R J; Williams, D A; Zitzer, B

    2006-01-01

    We report on observations of the sky region around the unidentified TeV gamma-ray source TeV J2032+4130 carried out with the Whipple Observatory 10 m atmospheric Cherenkov telescope for a total of 65.5 hrs between 2003 and 2005. The standard two-dimensional analysis developed by the Whipple collaboration for a stand-alone telescope reveals an excess in the field of view at a pre-trials significance level of 6.1 standard deviations. The measured position of this excess is alpha(2000) =20 h 32 m 27 s, delta(2000) = 41 deg 39 min 17 s. The estimated integral flux for this gamma-ray source is about 8% of the Crab-Nebula flux. The data are consistent with a point-like source. Here we present a detailed description of the standard two-dimensional analysis technique used for the analysis of data taken with the Whipple Observatory 10 m telescope and the results for the TeV J2032+4130 campaign. We include a short discussion of the physical mechanisms that may be responsible for the observed gamma-ray emission, based o...

  16. Gamma rays and the origin of Galactic Cosmic Rays

    Science.gov (United States)

    de Ona Wilhelmi, Emma

    2015-08-01

    Cosmic rays (CRs) are highly energetic nuclei (plus a small fraction of electrons) which fill the Galaxy and carry on average as much energy per unit volume as the energy density of starlight, the interstellar magnetic fields, or the kinetic energy density of interstellar gas. The CR spectrum extends as a featureless power-law up to ~2 PeV (the 'knee') and it is believed to be the result of acceleration of those CRs in Galactic Sources and later diffusion and convection in galactic magnetic fields. Those energetic CRs can interact with the surrounding medium via proton-proton collision resulting in secondary gamma-ray photons, observed from 100 MeV to a few tens of TeV. The results obtained by the current Cherenkov telescopes and gamma-ray satellites with the support of X-ray observations have discovered and identified more than 50 Galactic gamma-ray sources. Among them, the number of Supernova remnants (SNRs) and very-high-energy hard-spectrum sources (natural candidates to originate CRs) are steadily increasing. We expect to increase by a factor 10 at least this population of source with the future CTA experiment. I will review our current knowledge of Galactic gamma-ray sources and their connection with energetic CRs and the scientific prospects for CTA in this field. Those observations, together with a strong multi-wavelenght support from radio to hard X-rays, will finally allow us to establish the origin of the Galactic CRs.

  17. Disentangling the gamma-ray emission of NGC 1275 and that of the Perseus cluster

    Science.gov (United States)

    Colafrancesco, S.; Marchegiani, P.; Giommi, P.

    2010-09-01

    Context. The Gamma-ray emission from galaxy clusters hosting active galaxies is a complex combination of diffuse and point-like emission features with different spectral and spatial properties. Aims: We discuss in details the case of the Perseus cluster containing the radio-galaxy NGC 1275 that has been recently detected as a bright gamma-ray source by the Fermi-LAT experiment, in order to disentangle the sources of emission. Methods: We provide a detailed study of the gamma-ray emission coming from the core of Perseus by modeling the central AGN emission with a multiple plasma blob model, and the emission from the extended cluster atmosphere with both a warming ray (WR) model and dark matter (DM) neutralino annihilation models. We set constraints on both the central galaxy and cluster SED models by using both archival multi-frequency data and the recent very high energy observations obtained by Fermi and MAGIC. Results: We find that: i) in all the viable models for the cluster gamma-ray emission, the emission detected recently by Fermi from the center of the Perseus cluster is dominated by the active galaxy NGC 1275, that is found in a high-emission state; ii) the diffuse gamma-ray emission of the cluster, in the WR model and in the DM models with the highest allowed normalization, could be detected by Fermi if the central emission from NGC 1275 is in a low-emission state; iii) Fermi can have the possibility to resolve and detect the diffuse gamma-ray flux (predicted by the WR model) coming from the outer corona of the Perseus cluster atmosphere at distances r ⪆ 800 kpc. These results are consistent with the evidence that in the other frequency bands, the diffuse cluster emission dominates on the central galaxy one at low radio frequencies with ν ⪉ 1 GHz and at X-ray energies of order of E~ keV. Conclusions: Our results show that a simultaneous study of the various emission mechanisms that produce diffuse gamma-rays from galaxy clusters and the study of the

  18. Extragalactic Gamma Ray Excess from Coma Supercluster Direction

    Indian Academy of Sciences (India)

    Pantea Davoudifar; S. Jalil Fatemi

    2011-09-01

    The origin of extragalactic diffuse gamma ray is not accurately known, especially because our suggestions are related to many models that need to be considered either to compute the galactic diffuse gamma ray intensity or to consider the contribution of other extragalactic structures while surveying a specific portion of the sky. More precise analysis of EGRET data however, makes it possible to estimate the diffuse gamma ray in Coma supercluster (i.e., Coma\\A1367 supercluster) direction with a value of ( > 30MeV) ≃ 1.9 × 10-6 cm-2 s-1, which is considered to be an upper limit for the diffuse gamma ray due to Coma supercluster. The related total intensity (on average) is calculated to be ∼ 5% of the actual diffuse extragalactic background. The calculated intensity makes it possible to estimate the origin of extragalactic diffuse gamma ray.

  19. Gamma ray camera

    Science.gov (United States)

    Perez-Mendez, V.

    1997-01-21

    A gamma ray camera is disclosed for detecting rays emanating from a radiation source such as an isotope. The gamma ray camera includes a sensor array formed of a visible light crystal for converting incident gamma rays to a plurality of corresponding visible light photons, and a photosensor array responsive to the visible light photons in order to form an electronic image of the radiation therefrom. The photosensor array is adapted to record an integrated amount of charge proportional to the incident gamma rays closest to it, and includes a transparent metallic layer, photodiode consisting of a p-i-n structure formed on one side of the transparent metallic layer, and comprising an upper p-type layer, an intermediate layer and a lower n-type layer. In the preferred mode, the scintillator crystal is composed essentially of a cesium iodide (CsI) crystal preferably doped with a predetermined amount impurity, and the p-type upper intermediate layers and said n-type layer are essentially composed of hydrogenated amorphous silicon (a-Si:H). The gamma ray camera further includes a collimator interposed between the radiation source and the sensor array, and a readout circuit formed on one side of the photosensor array. 6 figs.

  20. Gamma ray camera

    Science.gov (United States)

    Perez-Mendez, Victor

    1997-01-01

    A gamma ray camera for detecting rays emanating from a radiation source such as an isotope. The gamma ray camera includes a sensor array formed of a visible light crystal for converting incident gamma rays to a plurality of corresponding visible light photons, and a photosensor array responsive to the visible light photons in order to form an electronic image of the radiation therefrom. The photosensor array is adapted to record an integrated amount of charge proportional to the incident gamma rays closest to it, and includes a transparent metallic layer, photodiode consisting of a p-i-n structure formed on one side of the transparent metallic layer, and comprising an upper p-type layer, an intermediate layer and a lower n-type layer. In the preferred mode, the scintillator crystal is composed essentially of a cesium iodide (CsI) crystal preferably doped with a predetermined amount impurity, and the p-type upper intermediate layers and said n-type layer are essentially composed of hydrogenated amorphous silicon (a-Si:H). The gamma ray camera further includes a collimator interposed between the radiation source and the sensor array, and a readout circuit formed on one side of the photosensor array.

  1. Spectral Gamma-ray Signatures of Cosmological Dark Matter Annihilation

    CERN Document Server

    Bergström, L; Ullio, P; Bergstrom, Lars; Edsjo, Joakim; Ullio, Piero

    2001-01-01

    We propose a new signature for weakly interacting massive particle (WIMP) dark matter, a spectral feature in the diffuse extragalactic gamma-ray radiation. This feature, a sudden drop of the gamma-ray intensity at an energy corresponding to the WIMP mass, comes from the asymmetric distortion of the line due to WIMP annihilation into two gamma-rays caused by the cosmological redshift. Unlike other proposed searches for a line signal, this method is not very sensitive to the exact dark matter density distribution in halos and subhalos. The only requirement is that the mass distribution of substructure on small scales follows approximately the Press-Schechter law, and that smaller halos are on the average denser than large halos, which is a generic outcome of N-body simulations of Cold Dark Matter, and which has observational support. The upcoming Gamma-ray Large Area Space Telescope (GLAST) will be eminently suited to search for these spectral features. For numerical examples, we use rates computed for supersym...

  2. Supernova remnants and gamma-ray sources

    CERN Document Server

    Torres, D F; Dame, T M; Combi, J A; Butt, Y M; Torres, Diego F.; Romero, Gustavo E.; Dame, Thomas M.; Combi, Jorge A.; Butt, Yousaf M.

    2003-01-01

    A review of the possible relationship between $\\gamma$-ray sources and supernova remnants (SNRs) is presented. Particular emphasis is given to the analysis of the observational status of the problem of cosmic ray acceleration at SNR shock fronts. All positional coincidences between SNRs and unidentified $\\gamma$-ray sources listed in the Third EGRET Catalog at low Galactic latitudes are discussed on a case by case basis. For several coincidences of particular interest, new CO(J=1-0) and radio continuum maps are shown, and the mass content of the SNR surroundings is determined. The contribution to the $\\gamma$-ray flux observed that might come from cosmic ray particles (particularly nuclei) locally accelerated at the SNR shock fronts is evaluated. We discuss the prospects for future research in this field and remark on the possibilities for observations with forthcoming $\\gamma$-ray instruments.

  3. The TeV {gamma}-ray binary PSR B1259-63. Observations with the high energy stereoscopic system in the years 2005-2007

    Energy Technology Data Exchange (ETDEWEB)

    Kerschhaggl, Matthias

    2010-04-06

    PSR B1259-63/SS2883 is a binary system where a 48 ms pulsar orbits a massive Be star with a period of 3.4 years. The system exhibits variable, non-thermal radiation around periastron on the highly eccentric orbit (e=0.87) visible from radio to very high energies (VHE; E>100 GeV). When being detected in TeV {gamma}-rays with the High Energy Stereoscopic System (H.E.S.S.) in 2004 it became known as the first variable galactic VHE source. This thesis presents VHE data from PSR B1259-63 as taken during the years 2005, 2006 and before as well as shortly after the 2007 periastron passage. These data extend the knowledge of the lightcurve of this object to all phases of the binary orbit. The lightcurve constrains physical mechanisms present in this TeV source. Observations of VHE {gamma}-rays with the H.E.S.S. telescope array using the Imaging Atmospheric Cherenkov Technique were performed. The H.E.S.S. instrument features an angular resolution of < 0.1 and an energy resolution of < 20%. Gamma-ray events in an energy range of 0.5-70 TeV were recorded. From these data, energy spectra and lightcurve with a monthly time sampling were extracted. VHE {gamma}-ray emission from PSRB1259-63 was detected with an overall significance of 9.5 standard deviations using 55 h of exposure, obtained from April to August 2007. The monthly flux of -rays during the observation period was measured, yielding VHE lightcurve data for the early pre-periastron phase of the system for the first time. No spectral variability was found on timescales of months. The spectrum is described by a power law with a photon index of {gamma}=2.8{+-}0.2{sub stat}{+-}0.2{sub sys} and flux normalisation {phi}{sub 0}=(1.1{+-}0.1{sub stat}{+-}0.2{sub sys}) x 10{sup -12} TeV{sup -1}cm{sup -2}s{sup -1}. PSR B1259-63 was also monitored in 2005 and 2006, far from periastron passage, comprising 8.9 h and 7.5 h of exposure, respectively. No significant excess of {gamma}-rays is seen in those observations. PSR B1259-63 has

  4. Gamma rays from dark matter

    CERN Document Server

    Bringmann, Torsten

    2011-01-01

    A leading hypothesis for the nature of the elusive dark matter are thermally produced, weakly interacting massive particles that arise in many theories beyond the standard model of particle physics. Their self-annihilation in astrophysical regions of high density provides a potential means of indirectly detecting dark matter through the annihilation products, which nicely complements direct and collider searches. Here, I review the case of gamma rays which are particularly promising in this respect: distinct and unambiguous spectral signatures would not only allow a clear discrimination from astrophysical backgrounds but also to extract important properties of the dark matter particles; powerful observational facilities like the Fermi Gamma-ray Space Telescope or upcoming large, ground-based Cherenkov telescope arrays will be able to probe a considerable part of the underlying, e.g. supersymmetric, parameter space. I conclude with a more detailed comparison of indirect and direct dark matter searches, showing...

  5. Gamma-Ray Lenses for Astrophysics-and the Gamma-Ray Imager Mission GRI

    DEFF Research Database (Denmark)

    Wunderer, C. B.; Ballmoos, P. V.; Barriere, N.

    2009-01-01

    Observations of the gamma-ray sky reveal the most powerful sources and the most violent events in the Universe. While at lower wavebands the observed emission is generally dominated by thermal processes, the gamma-ray sky provides us with a view on the non-thermal Universe. Here particles...... are accelerated to extreme relativistic energies by mechanisms which are still poorly understood, and nuclear reactions are synthesizing the basic constituents of our world. Cosmic accelerators and cosmic explosions are major science themes that are addressed in the gamma-ray regime. While Fermi will take......, albeit at much more modest sensitivities. There will be clearly a growing need to perform deeper, more focused investigations of gamma-ray sources in the 100-keV to MeV regime. Recent technological advances in the domain of gamma-ray focusing using Lane diffraction and multilayer-coated mirror techniques...

  6. SAS-2 observations of celestial diffuse gamma radiation above 30 MeV

    Science.gov (United States)

    Thompson, D. J.; Fichtel, C. E.; Kniffen, D. A.; Hartman, R. C.

    1974-01-01

    The small astronomy satellite, SAS-2, used a 32-deck magnetic core digitized spark chamber to study gamma rays with energies above 30 MeV. Data for four regions of the sky away from the galactic plane were analyzed. These regions show a finite, diffuse flux of gamma rays with a steep energy spectrum, and the flux is uniform over all the regions. Represented by a power law, the differential energy spectrum shows an index of 2.5 + or - 0.4. The steep SAS-2 spectrum and the lower energy data are reasonably consistent with a neutral pion gamma-ray spectrum which was red-shifted (such as that proposed by some cosmological theories). It is concluded that the diffuse celestial gamma ray spectrum observed presents the possibility of cosmological studies and possible evidence for a residual cosmic ray density, and supports the galactic superclusters of matter and antimatter remaining from baryon-symmetric big bang.

  7. Gamma ray tests of Minimal Dark Matter

    Energy Technology Data Exchange (ETDEWEB)

    Cirelli, Marco [Institut de Physique Théorique, Université Paris Saclay, CNRS, CEA, Orme des Merisiers, F-91191 Gif-sur-Yvette (France); Hambye, Thomas [Service de Physique Theórique, Université Libre de Bruxelles, Boulevard du Triomphe, CP225, 1050 Brussels (Belgium); Panci, Paolo [Institut d’Astrophysique de Paris, UMR 7095 CNRS, Université Pierre et Marie Curie, 98 bis Boulevard Arago, Paris 75014 (France); Sala, Filippo; Taoso, Marco [Institut de Physique Théorique, Université Paris Saclay, CNRS, CEA, Orme des Merisiers, F-91191 Gif-sur-Yvette (France)

    2015-10-12

    We reconsider the model of Minimal Dark Matter (a fermionic, hypercharge-less quintuplet of the EW interactions) and compute its gamma ray signatures. We compare them with a number of gamma ray probes: the galactic halo diffuse measurements, the galactic center line searches and recent dwarf galaxies observations. We find that the original minimal model, whose mass is fixed at 9.4 TeV by the relic abundance requirement, is constrained by the line searches from the Galactic Center: it is ruled out if the Milky Way possesses a cuspy profile such as NFW but it is still allowed if it has a cored one. Observations of dwarf spheroidal galaxies are also relevant (in particular searches for lines), and ongoing astrophysical progresses on these systems have the potential to eventually rule out the model. We also explore a wider mass range, which applies to the case in which the relic abundance requirement is relaxed. Most of our results can be safely extended to the larger class of multi-TeV WIMP DM annihilating into massive gauge bosons.

  8. DUAL Gamma-Ray Mission

    CERN Document Server

    Boggs, S; von Ballmoos, P; Takahashi, T; Gehrels, N; Tueller, J; Baring, M; Beacom, J; Diehl, R; Greiner, J; Grove, E; Hartmann, D; Hernanz, M; Jean, P; Johnson, N; Kanbach, G; Kippen, M; Knödlseder, J; Leising, M; Madejski, G; McConnell, M; Milne, P; Motohide, K; Nakazawa, K; Oberlack, U; Phlips, B; Ryan, J; Skinner, G; Starrfield, S; Tajima, H; Wulf, E; Zoglauer, A; Zych, A

    2010-01-01

    Gamma-ray astronomy presents an extraordinary scientific potential for the study of the most powerful sources and the most violent events in the Universe. In order to take full advantage of this potential, the next generation of instrumentation for this domain will have to achieve an improvement in sensitivity over present technologies of at least an order of magnitude. The DUAL mission concept takes up this challenge in two complementary ways: a very long observation of the entire sky, combined with a large collection area for simultaneous observations of Type Ia SNe. While the Wide-Field Compton Telescope (WCT) accumulates data from the full gamma-ray sky (0.1-10 MeV) over the entire mission lifetime, the Laue-Lens Telescope (LLT) focuses on 56Co emission from SNe Ia (0.8-0.9 MeV), collecting gamma-rays from its large area crystal lens onto the WCT. Two separated spacecraft flying in formation will maintain the DUAL payloads at the lens' focal distance.

  9. On the difference between gamma-ray-detected and non-gamma-ray-detected pulsars

    CERN Document Server

    Rookyard, Simon C; Johnston, Simon; Kerr, Matthew

    2016-01-01

    We compare radio profile widths of young, energetic gamma-ray-detected and non-gamma-ray-detected pulsars. We find that the latter typically have wider radio profiles, with the boundary between the two samples exhibiting a dependence on the rate of rotational energy loss. We also find that within the sample of gamma-ray-detected pulsars, radio profile width is correlated with both the separation of the main gamma-ray peaks and the presence of narrow gamma-ray components. These findings lead us to propose that these pulsars form a single population where the main factors determining gamma ray detectability are the rate of rotational energy loss and the proximity of the line of sight to the rotation axis. The expected magnetic inclination angle distribution will be different for radio pulsars with and without detectable gamma rays, naturally leading to the observed differences. Our results also suggest that the geometry of existing radio and outer-magnetosphere gamma-ray emission models are at least qualitative...

  10. Observe gamma rays to find out how the universe works; Observar rayos gamma para saber como funciona El universo

    Energy Technology Data Exchange (ETDEWEB)

    Tapia, R.

    2015-07-01

    Each hemisphere of the Earth will host one of the two venues of the future network of telescopes Cherenkov (cta, Cherenkov telescope array) designed with the aim of covering all outer space and in stereo, a technique that allows us to reconstruct efficiently the properties of spatial events. Thanks to telescopes with which will be equipped with - greater sensitivity than the current - will be possible to study in detail one of the most powerful radiation of the Universe, gamma rays. Spain has been chosen to host the North Observatory on roque of the boys, on the island of Palma, facilities that will be form das by 20 telescopes. (Author)

  11. Multifrequency Observations of the Gamma-Ray Blazar 3C 279 in Low-State during Integral AO-1

    CERN Document Server

    Collmar, W; Burwitz, V; Courvoisier, Thierry J L; Komossa, S; Kretschmar, P; Nieppola, E; Nilsson, K; Ojala, T; Pottschmidt, K; Pasanen, M; Pursimo, T; Sillanpää, A; Takalo, L; Tornikoski, M; Ungerechts, H; Valtaoja, E; Walter, R; Webster, R; Whiting, M; Wiik, K; Wong, I

    2004-01-01

    We report first results of a multifrequency campaign from radio to hard X-ray energies of the prominent gamma-ray blazar 3C 279 during the first year of the INTEGRAL mission. The variable blazar was found at a low activity level, but was detected by all participating instruments. Subsequently a multifrequency spectrum could be compiled. The individual measurements as well as the compiled multifrequency spectrum are presented. In addition, this 2003 broadband spectrum is compared to one measured in 1999 during a high activity period of 3C 279.

  12. A Search for Spectral Hysteresis and Energy-dependent Time Lags from X-Ray and TeV Gamma-Ray Observations of Mrk 421

    Science.gov (United States)

    Abeysekara, A. U.; Archambault, S.; Archer, A.; Benbow, W.; Bird, R.; Buchovecky, M.; Buckley, J. H.; Bugaev, V.; Cardenzana, J. V.; Cerruti, M.; Chen, X.; Ciupik, L.; Connolly, M. P.; Cui, W.; Eisch, J. D.; Falcone, A.; Feng, Q.; Finley, J. P.; Fleischhack, H.; Flinders, A.; Fortson, L.; Furniss, A.; Griffin, S.; Håkansson, M. HN.; Hanna, D.; Hervet, O.; Holder, J.; Humensky, T. B.; Kaaret, P.; Kar, P.; Kertzman, M.; Kieda, D.; Krause, M.; Kumar, S.; Lang, M. J.; Maier, G.; McArthur, S.; McCann, A.; Meagher, K.; Moriarty, P.; Mukherjee, R.; Nieto, D.; Ong, S. OR. A.; Otte, A. N.; Park, N.; Pelassa, V.; Pohl, M.; Popkow, A.; Pueschel, E.; Ragan, K.; Reynolds, P. T.; Richards, G. T.; Roache, E.; Sadeh, I.; Santander, M.; Sembroski, G. H.; Shahinyan, K.; Staszak, D.; Telezhinsky, I.; Tucci, J. V.; Tyler, J.; Wakely, S. P.; Weinstein, A.; Wilhelm, A.; Williams, D. A.; the VERITAS Collaboration; Ahnen, M. L.; Ansoldi, S.; Antonelli, L. A.; Antoranz, P.; Arcaro, C.; Babic, A.; Banerjee, B.; Bangale, P.; Barres de Almeida, U.; Barrio, J. A.; Becerra González, J.; Bednarek, W.; Bernardini, E.; Berti, A.; Biasuzzi, B.; Biland, A.; Blanch, O.; Bonnefoy, S.; Bonnoli, G.; Borracci, F.; Bretz, T.; Carosi, R.; Carosi, A.; Chatterjee, A.; Colin, P.; Colombo, E.; Contreras, J. L.; Cortina, J.; Covino, S.; Cumani, P.; Da Vela, P.; Dazzi, F.; De Angelis, A.; De Lotto, B.; de Oña Wilhelmi, E.; Di Pierro, F.; Doert, M.; Domínguez, A.; Dominis Prester, D.; Dorner, D.; Doro, M.; Einecke, S.; Eisenacher Glawion, D.; Elsaesser, D.; Engelkemeier, M.; Fallah Ramazani, V.; Fernández-Barral, A.; Fidalgo, D.; Fonseca, M. V.; Font, L.; Fruck, C.; Galindo, D.; García López, R. J.; Garczarczyk, M.; Gaug, M.; Giammaria, P.; Godinović, N.; Gora, D.; Guberman, D.; Hadasch, D.; Hahn, A.; Hassan, T.; Hayashida, M.; Herrera, J.; Hose, J.; Hrupec, D.; Hughes, G.; Idec, W.; Kodani, K.; Konno, Y.; Kubo, H.; Kushida, J.; Lelas, D.; Lindfors, E.; Lombardi, S.; Longo, F.; López, M.; López-Coto, R.; Majumdar, P.; Makariev, M.; Mallot, K.; Maneva, G.; Manganaro, M.; Mannheim, K.; Maraschi, L.; Marcote, B.; Mariotti, M.; Martínez, M.; Mazin, D.; Menzel, U.; Mirzoyan, R.; Moralejo, A.; Moretti, E.; Nakajima, D.; Neustroev, V.; Niedzwiecki, A.; Nievas Rosillo, M.; Nilsson, K.; Nishijima, K.; Noda, K.; Nogués, L.; Nöthe, M.; Paiano, S.; Palacio, J.; Palatiello, M.; Paneque, D.; Paoletti, R.; Paredes, J. M.; Paredes-Fortuny, X.; Pedaletti, G.; Peresano, M.; Perri, L.; Persic, M.; Poutanen, J.; Prada Moroni, P. G.; Prandini, E.; Puljak, I.; Garcia, J. R.; Reichardt, I.; Rhode, W.; Ribó, M.; Rico, J.; Saito, T.; Satalecka, K.; Schroeder, S.; Schweizer, T.; Shore, S. N.; Sillanpää, A.; Sitarek, J.; Snidaric, I.; Sobczynska, D.; Stamerra, A.; Strzys, M.; Surić, T.; Takalo, L.; Tavecchio, F.; Temnikov, P.; Terzić, T.; Tescaro, D.; Teshima, M.; Torres, D. F.; Torres-Albà, N.; Toyama, T.; Treves, A.; Vanzo, G.; Vazquez Acosta, M.; Vovk, I.; Ward, J. E.; Will, M.; Wu, M. H.; Zanin, R.; the MAGIC Collaboration; Hovatta, T.; de la Calle Perez, I.; Smith, P. S.; Racero, E.; Baloković, M.

    2017-01-01

    Blazars are variable emitters across all wavelengths over a wide range of timescales, from months down to minutes. It is therefore essential to observe blazars simultaneously at different wavelengths, especially in the X-ray and gamma-ray bands, where the broadband spectral energy distributions usually peak. In this work, we report on three “target-of-opportunity” observations of Mrk 421, one of the brightest TeV blazars, triggered by a strong flaring event at TeV energies in 2014. These observations feature long, continuous, and simultaneous exposures with XMM-Newton (covering the X-ray and optical/ultraviolet bands) and VERITAS (covering the TeV gamma-ray band), along with contemporaneous observations from other gamma-ray facilities (MAGIC and Fermi-Large Area Telescope) and a number of radio and optical facilities. Although neither rapid flares nor significant X-ray/TeV correlation are detected, these observations reveal subtle changes in the X-ray spectrum of the source over the course of a few days. We search the simultaneous X-ray and TeV data for spectral hysteresis patterns and time delays, which could provide insight into the emission mechanisms and the source properties (e.g., the radius of the emitting region, the strength of the magnetic field, and related timescales). The observed broadband spectra are consistent with a one-zone synchrotron self-Compton model. We find that the power spectral density distribution at ≳4 × 10‑4 Hz from the X-ray data can be described by a power-law model with an index value between 1.2 and 1.8, and do not find evidence for a steepening of the power spectral index (often associated with a characteristic length scale) compared to the previously reported values at lower frequencies.

  13. Gamma-ray Output Spectra from 239Pu Fission

    Directory of Open Access Journals (Sweden)

    Ullmann John

    2015-01-01

    Full Text Available Gamma-ray multiplicities, individual gamma-ray energy spectra, and total gamma energy spectra following neutron-induced fission of 239Pu were measured using the DANCE detector at Los Alamos. Corrections for detector response were made using a forward-modeling technique based on propagating sets of gamma rays generated from a paramaterized model through a GEANT model of the DANCE array and adjusting the parameters for best fit to the measured spectra. The results for the gamma-ray spectrum and multiplicity are in general agreement with previous results, but the measured total gamma-ray energy is about 10% higher. A dependence of the gamma-ray spectrum on the gamma-ray multplicity was also observed. Global model calculations of the multiplicity and gamma energy distributions are in good agreement with the data, but predict a slightly softer total-energy distribution.

  14. Theoretical Modelling of the Diffuse Emission of (gamma)-rays From Extreme Regions of Star Formation: The Case of Arp 220

    Energy Technology Data Exchange (ETDEWEB)

    Torres, D F

    2004-07-09

    Our current understanding of ultraluminous infrared galaxies suggest that they are recent galaxy mergers in which much of the gas in the former spiral disks, particularly that located at distances less than 5 kpc from each of the pre-merger nuclei, has fallen into a common center, triggering a huge starburst phenomenon. This large nuclear concentration of molecular gas has been detected by many groups, and estimates of molecular mass and density have been made. Not surprisingly, these estimates were found to be orders of magnitude larger than the corresponding values found in our Galaxy. In this paper, a self-consistent model of the high energy emission of the super-starburst galaxy Arp 220 is presented. The model also provides an estimate of the radio emission from each of the components of the central region of the galaxy (western and eastern extreme starbursts, and molecular disk). The predicted radio spectrum is found as a result of the synchrotron and free-free emission, and absorption, of the primary and secondary steady population of electrons and positrons. The latter is output of charged pion decay and knock-on leptonic production, subject to a full set of losses in the interstellar medium. The resulting radio spectrum is in agreement with sub-arcsec radio observations, what allows to estimate the magnetic field. In addition, the FIR emission is modeled with dust emissivity, and the computed FIR photon density is used as a target for inverse Compton process as well as to give account of losses in the {gamma}-ray scape. Bremsstrahlung emission and neutral pion decay are also computed, and the {gamma}-ray spectrum is finally predicted. Future possible observations with GLAST, and the ground based Cherenkov telescopes are discussed.

  15. THE SPECTRUM OF ISOTROPIC DIFFUSE GAMMA-RAY EMISSION BETWEEN 100 MeV AND 820 GeV

    Energy Technology Data Exchange (ETDEWEB)

    Ackermann, M.; Buehler, R. [Deutsches Elektronen Synchrotron DESY, D-15738 Zeuthen (Germany); Ajello, M. [Department of Physics and Astronomy, Clemson University, Kinard Lab of Physics, Clemson, SC 29634-0978 (United States); Albert, A.; Blandford, R. D.; Bloom, E. D.; Bottacini, E.; Caliandro, G. A. [W. W. Hansen Experimental Physics Laboratory, Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics and SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94305 (United States); Atwood, W. B. [Santa Cruz Institute for Particle Physics, Department of Physics and Department of Astronomy and Astrophysics, University of California at Santa Cruz, Santa Cruz, CA 95064 (United States); Baldini, L.; Bellazzini, R. [Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, I-56127 Pisa (Italy); Ballet, J. [Laboratoire AIM, CEA-IRFU/CNRS/Université Paris Diderot, Service d' Astrophysique, CEA Saclay, F-91191 Gif sur Yvette (France); Barbiellini, G. [Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, I-34127 Trieste (Italy); Bastieri, D.; Buson, S. [Istituto Nazionale di Fisica Nucleare, Sezione di Padova, I-35131 Padova (Italy); Bechtol, K. [Kavli Institute for Cosmological Physics, University of Chicago, Chicago, IL 60637 (United States); Bissaldi, E. [Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, and Università di Trieste, I-34127 Trieste (Italy); Brandt, T. J. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Bregeon, J. [Laboratoire Univers et Particules de Montpellier, Université Montpellier 2, CNRS/IN2P3, F-34095 Montpellier (France); Bruel, P., E-mail: markus.ackermann@desy.de, E-mail: bechtol@kicp.uchicago.edu [Laboratoire Leprince-Ringuet, École Polytechnique, CNRS/IN2P3, F-91128 Palaiseau (France); and others

    2015-01-20

    The γ-ray sky can be decomposed into individually detected sources, diffuse emission attributed to the interactions of Galactic cosmic rays with gas and radiation fields, and a residual all-sky emission component commonly called the isotropic diffuse γ-ray background (IGRB). The IGRB comprises all extragalactic emissions too faint or too diffuse to be resolved in a given survey, as well as any residual Galactic foregrounds that are approximately isotropic. The first IGRB measurement with the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope (Fermi) used 10 months of sky-survey data and considered an energy range between 200 MeV and 100 GeV. Improvements in event selection and characterization of cosmic-ray backgrounds, better understanding of the diffuse Galactic emission (DGE), and a longer data accumulation of 50 months allow for a refinement and extension of the IGRB measurement with the LAT, now covering the energy range from 100 MeV to 820 GeV. The IGRB spectrum shows a significant high-energy cutoff feature and can be well described over nearly four decades in energy by a power law with exponential cutoff having a spectral index of 2.32 ± 0.02 and a break energy of (279 ± 52) GeV using our baseline DGE model. The total intensity attributed to the IGRB is (7.2 ± 0.6) × 10{sup –6} cm{sup –2} s{sup –1} sr{sup –1} above 100 MeV, with an additional +15%/–30% systematic uncertainty due to the Galactic diffuse foregrounds.

  16. Gamma Ray Astronomy

    Science.gov (United States)

    Wu, S. T.

    2000-01-01

    The project has progressed successfully during this period of performance. The highlights of the Gamma Ray Astronomy teams efforts are: (1) Support daily BATSE data operations, including receipt, archival and dissemination of data, quick-look science analysis, rapid gamma-ray burst and transient monitoring and response efforts, instrument state-of-health monitoring, and instrument commanding and configuration; (2) On-going scientific analysis, including production and maintenance of gamma-ray burst, pulsed source and occultation source catalogs, gamma-ray burst spectroscopy, studies of the properties of pulsars and black holes, and long-term monitoring of hard x-ray sources; (3) Maintenance and continuous improvement of BATSE instrument response and calibration data bases; (4) Investigation of the use of solid state detectors for eventual application and instrument to perform all sky monitoring of X-Ray and Gamma sources with high sensitivity; and (5) Support of BATSE outreach activities, including seminars, colloquia and World Wide Web pages. The highlights of this efforts can be summarized in the publications and presentation list.

  17. Afterglow Observations of Fermi-LAT Gamma-Ray Bursts and the Emerging Class of Hyper-Energetic Events

    CERN Document Server

    Cenko, S B; Harrison, F A; Haislip, J B; Reichart, D E; Butler, N R; Cobb, B E; Cucchiara, A; Berger, E; Bloom, J S; Chandra, P; Fox, D B; Perley, D A; Prochaska, J X; Filippenko, A V; Glazebrook, K; Ivarsen, K M; Kasliwal, M M; Kulkarni, S R; LaCluyze, A P; Lopez, S; Morgan, A N; Pettini, M; Rana, V R

    2010-01-01

    We present broadband (radio, optical, and X-ray) light curves and spectra of the afterglows of four long-duration gamma-ray bursts (GRBs 090323, 090328, 090902B, and 090926A) detected by the Gamma-Ray Burst Monitor (GBM) and Large Area Telescope (LAT) instruments on the Fermi satellite. With its wide spectral bandpass, extending to GeV energies, Fermi is sensitive to GRBs with very large isotropic energy releases (10e54 erg). Although rare, these events are particularly important for testing GRB central-engine models. When combined with spectroscopic redshifts, our afterglow data for these four events are able to constrain jet collimation angles, the density structure of the circumburst medium, and both the true radiated energy release and the kinetic energy of the outflows. In agreement with our earlier work, we find that the relativistic energy budget of at least one of these events (GRB 090926A) exceeds the canonical value of 10e51 erg by an order of magnitude. Such energies pose a severe challenge for mod...

  18. Gamma-ray emission from PSR J0007+7303 using 7 years of Fermi Large Area Telescope observations

    CERN Document Server

    Li, Jian; Wilhelmi, Emma de Ona; Rea, Nanda; Martin, Jonatan

    2016-01-01

    Based on more than seven years of Fermi Large Area Telescope (LAT) Pass 8 data, we report on a detailed analysis of the bright gamma-ray pulsar (PSR) J0007+7303. We confirm that PSR J0007+7303 is significantly detected as a point source also during the off-peak phases with a TS value of 262 ($\\sim$ 16 $\\sigma$). In the description of PSR J0007+7303 off-peak spectrum, a power law with an exponential cutoff at 2.7$\\pm$1.2$\\pm$1.3 GeV (the first/second uncertainties correspond to statistical/systematic errors) is preferred over a single power law at a level of 3.5 $\\sigma$. The possible existence of a cutoff hints at a magnetospheric origin of the emission. In addition, no extended gamma-ray emission is detected compatible with either the supernova remnant (CTA 1) or the very high energy (> 100 GeV) pulsar wind nebula. A flux upper limit of 6.5$\\times$10$^{-12}$ erg cm$^{-2}$ s$^{-1}$ in the 10-300 GeV energy range is reported, for an extended source assuming the morphology of the VERITAS detection. During on-pe...

  19. Three years of Fermi GBM Earth Occultation Monitoring: Observations of Hard X-ray/Soft Gamma-Ray Sources

    CERN Document Server

    Jenke, P; Case, Gary L; Cherry, Michael L; Rodi, James; Camero-Arranz, Ascension; Chaplin, Vandiver; Beklen, Elif; Finger, Mark H; Bhat, Narayana; Briggs, Michael S; Connaughto, Valerie; Greiner, Jochen; Kippen, R Marc; Meegan, Charles A; Paciesas, William S; Preece, Robert; von Kienlin, Andreas

    2013-01-01

    The Gamma ray Burst Monitor (GBM) on board Fermi Gamma-ray Space Telescope has been providing continuous data to the astronomical community since 2008 August 12. We will present the results of the analysis of the first three years of these continuous data using the Earth occultation technique to monitor a catalog of 209 sources. Although the occultation technique is in principle quite simple, in practice there are many complications including the dynamic instrument response, source confusion, and scattering in the Earth's atmosphere, which will be described. We detect 99 sources, including 40 low-mass X-ray binary/neutron star systems, 31 high-mass X-ray binary/neutron star systems, 12 black hole binaries, 12 active galaxies, 2 other sources, plus the Crab Nebula and the Sun. Nine of these sources are detected in the 100-300 keV band, including seven black-hole binaries, the active galaxy Cen A, and the Crab. The Crab and Cyg X-1 are also detected in the 300-500 keV band. GBM provides complementary data to ot...

  20. Fermi: The Gamma-Ray Large Area Space Telescope Mission Status

    Science.gov (United States)

    McEnery, Julie E

    2014-01-01

    Following its launch in June 2008, high-energy gamma-ray observations by the Fermi Gamma-ray Space Telescope have unveiled over 1000 new sources and opened an important and previously unexplored window on a wide variety of phenomena. These have included the discovery of a population of pulsars pulsing only in gamma rays; the detection of photons up to 10s of gigaelectronvolts from gamma-ray bursts, enhancing our understanding of the astrophysics of these powerful explosions; the detection of hundreds of active galaxies; a measurement of the high energy cosmic-ray electron spectrum which may imply the presence of nearby astrophysical particle accelerators; the determination of the diffuse gamma-ray emission with unprecedented accuracy and the constraints on phenomena such as super-symmetric dark-matter annihilations and exotic relics from the Big Bang. Continuous monitoring of the high-energy gamma-ray sky has uncovered numerous outbursts from active galaxies and the discovery of transient sources in our galaxy. In this talk I will describe the current status of the Fermi observatory and review the science highlights from Fermi.

  1. Future plan for observation of cosmic gamma rays in the 100 TeV energy region with the Tibet air shower array : simulation and sensitivity

    CERN Document Server

    Amenomori, M; Chen, D; Cui, S W; Danzengluobu,; Ding, L K; Ding, X H; Fan, C; Feng, C F; Feng, Zhaoyang; Feng, Z Y; Gao, X Y; Geng, Q X; Guo, H W; He, H H; He, M; Hibino, K; Hotta, N; Hu, Haibing; Hu, H B; Huang, J; Huang, Q; Jia, H Y; Kajino, F; Kasahara, K; Katayose, Y; Kato, C; Kawata, K; Labaciren,; Le, G M; Li, A F; Li, J Y; Lou, Y -Q; Lü, H; Lu, S L; Meng, X R; Mizutani, K; Mu, J; Munakata, K; Nagai, A; Nanjo, H; Nishizawa, M; Ohnishi, M; Ohta, I; Onuma, H; Ouchi, T; Ozawa, S; Ren, J R; Saitô, T; Saito, T Y; Sakata, M; Sako, T K; Shibata, M; Shiomi, A; Shirai, T; Sugimoto, H; Takita, M; Tan, Y H; Tateyama, N; Torii, S; Tsuchiya, H; Udo, S; Wang, B; Wang, H; Wang, X; Wang, Y; Wang, Y G; Wu, H R; Xue, L; Yamamoto, Y; Yan, C T; Yang, X C; Yasue, S; Ye, Z H; Yu, G C; Yuan, A F; Yuda, T; Zhang, H M; Zhang, J L; Zhang, N J; Zhang, X Y; Zhang, Y; Zhang, Yi; Zhaxisangzhu,; Zhou, X X

    2007-01-01

    The Tibet air shower array, which has an effective area of 37,000 square meters and is located at 4300 m in altitude, has been observing air showers induced by cosmic rays with energies above a few TeV. We have a plan to add a large muon detector array to it for the purpose of increasing its sensitivity to cosmic gamma rays in the 100 TeV energy region by discriminating them from cosmic-ray hadrons. We have deduced the attainable sensitivity of the muon detector array using our Monte Carlo simulation. We report here on the detailed procedure of our Monte Carlo simulation.

  2. Observations of $\\gamma$-ray emission from the blazar Markarian 421 above 250 GeV with the CAT Cherenkov imaging telescope

    CERN Document Server

    Piron, Frédéric

    1999-01-01

    The gamma-ray emission of the blazar Markarian 421 above 250 GeV has been observed by the CAT Cherenkov imaging telescope since December, 1996. We report here results on the source variability up to April, 1998, with emphasis on the 1998 campaign. For the flaring periods of this year, the energy spectrum was derived from 330 GeV up to 5.2 TeV: it is very well represented by a simple power law, with a differential spectral index of 2.96 +/- 0.13.

  3. Highlights of GeV Gamma-Ray Astronomy

    Science.gov (United States)

    Thompson, David J.

    2010-01-01

    Because high-energy gamma rays are primarily produced by high-energy particle interactions, the gamma-ray survey of the sky by the Fermi Gamma-ray Space Telescope offers a view of sites of cosmic ray production and interactions. Gamma-ray bursts, pulsars, pulsar wind nebulae, binary sources, and Active Galactic Nuclei are all phenomena that reveal particle acceleration through their gamma-ray emission. Diffuse Galactic gamma radiation, Solar System gamma-ray sources, and energetic radiation from supernova remnants are likely tracers of high-energy particle interactions with matter and photon fields. This paper will present a broad overview of the constantly changing sky seen with the Large Area Telescope (LAT) on the Fermi spacecraft.

  4. SAS-2 galactic gamma ray results, 1

    Science.gov (United States)

    Thompson, D. J.; Fichtel, C. E.; Hartman, R. C.; Kniffen, D. A.; Bignami, G. F.; Lamb, R. C.; Oegelman, H.; Oezel, M. E.; Tuemer, T.

    1976-01-01

    Continuing analysis of the data from the SAS-2 high energy gamma-ray experiment has produced an improved picture of the sky at photon energies above 35 MeV. On a large scale, the diffuse emission from the galactic plane is the dominant feature observed by SAS-2. This galactic plane emission is most intense between galactic longitude 310 and 45 deg, corresponding to a region within 7kpc of the galactic center. Within the high-intensity region, SAS-2 observes peaks around galactic longitudes 315 deg, 330 deg, 345 deg, 0 deg, and 35 deg. These peaks appear to be correlated with such galactic features and components as molecular hydrogen, atomic hydrogen, magnetic fields, cosmic ray concentrations, and photon fields.

  5. Long-term TeV and X-ray observations of the gamma-ray binary HESS J0632+057

    Energy Technology Data Exchange (ETDEWEB)

    Aliu, E.; Errando, M. [Department of Physics and Astronomy, Barnard College, Columbia University, New York, NY 10027 (United States); Archambault, S. [Physics Department, McGill University, Montreal, QC H3A 2T8 (Canada); Aune, T. [Department of Physics and Astronomy, University of California, Los Angeles, CA 90095 (United States); Behera, B.; Chen, X. [DESY, Platanenallee 6, D-15738 Zeuthen (Germany); Beilicke, M.; Buckley, J. H.; Bugaev, V. [Department of Physics, Washington University, St. Louis, MO 63130 (United States); Benbow, W.; Cerruti, M. [Fred Lawrence Whipple Observatory, Harvard-Smithsonian Center for Astrophysics, Amado, AZ 85645 (United States); Berger, K. [Department of Physics and Astronomy and the Bartol Research Institute, University of Delaware, Newark, DE 19716 (United States); Bird, R. [School of Physics, University College Dublin, Belfield, Dublin 4 (Ireland); Bouvier, A. [Santa Cruz Institute for Particle Physics and Department of Physics, University of California, Santa Cruz, CA 95064 (United States); Byrum, K. [Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439 (United States); Ciupik, L. [Astronomy Department, Adler Planetarium and Astronomy Museum, Chicago, IL 60605 (United States); Connolly, M. P. [School of Physics, National University of Ireland Galway, University Road, Galway (Ireland); Cui, W. [Department of Physics, Purdue University, West Lafayette, IN 47907 (United States); Duke, C. [Department of Physics, Grinnell College, Grinnell, IA 50112-1690 (United States); Dumm, J., E-mail: gernot.maier@desy.de, E-mail: afalcone@astro.psu.edu, E-mail: pol.bordas@uni-tuebingen.de [School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455 (United States); Collaboration: VERITAS Collaboration; H.E.S.S. Collaboration; and others

    2014-01-10

    HESS J0632+057 is the only gamma-ray binary known so far whose position in the sky allows observations with ground-based observatories in both the northern and southern hemispheres. Here we report on long-term observations of HESS J0632+057 conducted with the Very Energetic Radiation Imaging Telescope Array System and High Energy Stereoscopic System Cherenkov telescopes and the X-ray satellite Swift, spanning a time range from 2004 to 2012 and covering most of the system's orbit. The very-high-energy (VHE) emission is found to be variable and is correlated with that at X-ray energies. An orbital period of 315{sub −4}{sup +6} days is derived from the X-ray data set, which is compatible with previous results, P = (321 ± 5) days. The VHE light curve shows a distinct maximum at orbital phases close to 0.3, or about 100 days after periastron passage, which coincides with the periodic enhancement of the X-ray emission. Furthermore, the analysis of the TeV data shows for the first time a statistically significant (>6.5σ) detection at orbital phases 0.6-0.9. The obtained gamma-ray and X-ray light curves and the correlation of the source emission at these two energy bands are discussed in the context of the recent ephemeris obtained for the system. Our results are compared to those reported for other gamma-ray binaries.

  6. Minute-Timescale >100 MeV gamma-ray variability during the giant outburst of quasar 3C 279 observed by Fermi-LAT in 2015 June

    CERN Document Server

    ,

    2016-01-01

    On 2015 June 16, Fermi-LAT observed a giant outburst from the flat spectrum radio quasar 3C 279 with a peak $>100$ MeV flux of $\\sim3.6\\times10^{-5}\\;{\\rm photons}\\;{\\rm cm}^{-2}\\;{\\rm s}^{-1}$ averaged over orbital period intervals. It is the historically highest $\\gamma$-ray flux observed from the source including past EGRET observations, with the $\\gamma$-ray isotropic luminosity reaching $\\sim10^{49}\\;{\\rm erg}\\;{\\rm s}^{-1}$. During the outburst, the Fermi spacecraft, which has an orbital period of 95.4 min, was operated in a special pointing mode to optimize the exposure for 3C 279. For the first time, significant flux variability at sub-orbital timescales was found in blazar observations by Fermi-LAT. The source flux variability was resolved down to 2-min binned timescales, with flux doubling times less than 5 min. The observed minute-scale variability suggests a very compact emission region at hundreds of Schwarzschild radii from the central engine in conical jet models. A minimum bulk jet Lorentz fac...

  7. Multiwavelength observation from radio through very-high-energy Gamma-ray of OJ 287 during the 12-year cycle flare in 2007

    CERN Document Server

    Seta, H; Tashiro, M S; Nakanishi, K; Sasada, M; Shimajiri, Y; Uemura, M

    2009-01-01

    We performed simultaneous multiwavelength observations of OJ 287 with the Nobeyama Millimeter Array for radio, the KANATA telescope and the KVA telescope for optical, the Suzaku satellite for X-ray and the MAGIC telescope for very high energy (VHE) gamma-ray in 2007. The observations were conducted for a quiescent state in April and in a flaring state in November-December. We clearly observed increase of fluxes from radio to X-ray bands during the flaring state while MAGIC could not detect significant VHE gamma-ray emission from the source. We could derive an upper limit (95% confidence level) of 1.7% of the Crab Nebula flux above 150 GeV from about 41.2 hours of the MAGIC observation. A simple SSC model suggests that the observed flaring activity could be caused by evolutions in the distribution of the electron population rather than changes of the magnetic field strength or Doppler beaming factor in the jet.

  8. Observations of the gamma-ray emission from the Quiescent Sun with Fermi Large Area Telescope during the first 7 years in orbit

    Directory of Open Access Journals (Sweden)

    Rainó S.

    2017-01-01

    Full Text Available The high energy gamma-ray emission from the quiescent Sun is due to the interactions of cosmic ray (CR protons and electrons with matter and photons in the solar environment. Such interactions lead to two component gamma-ray emission: a disk-like emission due to the nuclear interactions of CR protons and nuclei in the solar atmosphere and a space extended emission due to the inverse Compton (IC scattering of CR electrons off solar photons in the whole heliosphere. The observation of these two solar emission components may give useful information about the evolution of the solar cycle by probing two different CR components (proton and electrons in regions not directly accessible by direct observations. We present the results of the observations of the Sun with Fermi-LAT in the first 7 years on orbit, with the exception of the flaring periods. Significantly large photon statistics and improved processing performance with respect to previous analysis allow us to explore both components of the emission in greater details and perform better comparisons of data with current models of the IC component. This allows us to probe CR electrons in the inner heliosphere which is not possible by other methods. Moreover, the longer period of observations allows us to study the variations of the emission between the maximum and the minimum of the solar cycle.

  9. Relativistic feedback models of terrestrial gamma-ray flashes and gamma-ray glows

    Science.gov (United States)

    Dwyer, J. R.

    2015-12-01

    Relativistic feedback discharges, also known as dark lightning, are capable of explaining many of the observed properties of terrestrial gamma-ray flashes (TGFs) and gamma-ray glows, both created within thunderstorms. During relativistic feedback discharges, the generation of energetic electrons is self-sustained via the production of backward propagating positrons and back-scattered x-rays, resulting in very larges fluxes of energetic radiation. In addition, ionization produces large electric currents that generate LF/VLF radio emissions and eventually discharge the electric field, terminating the gamma-ray production. In this presentation, new relativistic feedback model results will be presented and compared to recent observations.

  10. Observation of a muon excess following a gamma-ray burst event detected at the International Space Station

    Science.gov (United States)

    Augusto, C. R. A.; Kopenkin, V.; Navia, C. E.; de Oliveira, M.; Tsui, K. H.; Fauth, A. C.; Sinzi, T.

    2013-05-01

    On April 24, 2012, at 16:47:14 UT, the Gas Slit Camera (GSC) of the Japanese Monitor of All-sky X-ray Image (MAXI) instrument on the International Space Station detected a short x-ray transient lasting about 34 seconds. The MAXI/GSC transient was most likely a gamma-ray burst (GRB), because of the high Galactic latitude, spectral hardness ratio, and the absence of known bright x-ray sources at the detected position. In addition, the MAXI/GSC transient GRB 120424A coordinates were in the field of view of the inclined Tupi muon telescope located at ground level (3 m above sea level) at (22.9°W, 43.2°S) in the South Atlantic Anomaly region. We report here that the Tupi telescope registered a muon excess with a signal significance 6.2σ within the MAXI/GSC transient time period. Assuming a power law function with a spectral index of γ=-1.54 in the tail of the primary gamma-ray energy spectrum, we can conclude that the fluence obtained from the muon excess detected by the Tupi telescope is consistent with the preliminary value obtained by the MAXI team. This result agrees with an assumption that the muons were produced in photonuclear reactions in the Earth’s atmosphere. In addition, we show also that the South Atlantic Anomaly region can be a favorable place at ground for the detection of the tail of the energy spectrum (the GeV counterpart) of some GRBs.

  11. "Discrepant hardenings" in cosmic ray spectra: a first estimate of the effects on secondary antiproton and diffuse gamma-ray yields

    CERN Document Server

    Donato, Fiorenza

    2010-01-01

    Recent data from CREAM seem to confirm early suggestions that primary cosmic ray spectra at few TeV/nucleon are harder than in the 10-100 GeV range. Also, helium and heavier nuclei spectra appear systematically harder than the proton fluxes at corresponding energies. We note here that if the measurements reflect intrinsic features in the interstellar fluxes, appreciable modifications are expected in the sub-TeV range for the secondary yields, such as antiprotons and diffuse gamma-rays. Presently, this effect represents a systematic error in the extraction of astrophysical parameters as well as for background estimates for indirect dark matter searches. We find that the spectral modifications are appreciable above 100 GeV, and can be responsible for ~30% effects for antiprotons at energies close to 1 TeV or for gamma's at energies close to 300 GeV, compared to currently considered predictions based on simple extrapolation of input fluxes from low energy data.

  12. Analysis of hard X-ray emission from selected very high energy {gamma}-ray sources observed with INTEGRAL

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, Agnes Irene Dorothee

    2009-11-13

    A few years ago, the era of very high energy {gamma}-ray astronomy started, when the latest generation of Imaging Atmospheric Cherenkov Telescopes (IACT) like H.E.S.S. began to operate and to resolve the sources of TeV emission. Identifications via multi-wavelength studies reveal that the detected sources are supernova remnants and active galactic nuclei, but also pulsar wind nebulae and a few binaries. One widely discussed open question is, how these sources are able to accelerate particles to such high energies. The understanding of the underlying particle distribution, the acceleration processes taking place, and the knowledge of the radiation processes which produce the observed emission, is, therefore, of crucial interest. Observations in the hard X-ray domain can be a key to get information on these particle distributions and processes. Important for this thesis are the TeV and the hard X-ray range. The two instruments, H.E.S.S. and INTEGRAL, whose data were used, are, therefore, described in detail. The main part of this thesis is focused on the X-ray binary system LS 5039/RX J1826.2-1450. It was observed in several energy ranges. The nature of the compact object is still not known, and it was proposed either to be a microquasar system or a non-accreting pulsar system. The observed TeV emission is modulated with the orbital cycle. Several explanations for this variability have been discussed in recent years. The observations with INTEGRAL presented in this thesis have provided new information to solve this question. Therefore, a search for a detection in the hard X-ray range and for its orbital dependence was worthwhile. Since LS 5039 is a faint source and the sky region where it is located is crowded, a very careful, non-standard handling of the INTEGRAL data was necessary, and a cross-checking with other analysis methods was essential to provide reliable results. We found that LS 5039 is emitting in the hard X-ray energy range. A flux rate and an upper

  13. OBSERVATION OF TeV GAMMA RAYS FROM THE UNIDENTIFIED SOURCE HESS J1841-055 WITH THE ARGO-YBJ EXPERIMENT

    Energy Technology Data Exchange (ETDEWEB)

    Bartoli, B.; Catalanotti, S. [Dipartimento di Fisica dell' Universita di Napoli ' ' Federico II' ' , Complesso Universitario di Monte Sant' Angelo, via Cinthia, I-80126 Napoli (Italy); Bernardini, P.; D' Amone, A. [Dipartimento Matematica e Fisica ' ' Ennio De Giorgi' ' , Universita del Salento, via per Arnesano, I-73100 Lecce (Italy); Bi, X. J.; Cao, Z.; Chen, S. Z.; Chen, Y. [Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, P.O. Box 918, 100049 Beijing (China); Bolognino, I. [Dipartimento di Fisica dell' Universita di Pavia, via Bassi 6, I-27100 Pavia (Italy); Branchini, P.; Budano, A. [Istituto Nazionale di Fisica Nucleare, Sezione di Roma Tre, via della Vasca Navale 84, I-00146 Roma (Italy); Calabrese Melcarne, A. K. [Istituto Nazionale di Fisica Nucleare-CNAF, Viale Berti-Pichat 6/2, I-40127 Bologna (Italy); Camarri, P. [Dipartimento di Fisica dell' Universita di Roma ' ' Tor Vergata' ' , via della Ricerca Scientifica 1, I-00133 Roma (Italy); Cardarelli, R. [Istituto Nazionale di Fisica Nucleare, Sezione di Roma Tor Vergata, via della Ricerca Scientifica 1, I-00133 Roma (Italy); Cattaneo, C. [Istituto Nazionale di Fisica Nucleare, Sezione di Pavia, via Bassi 6, I-27100 Pavia (Italy); Chen, T. L. [Tibet University, 850000 Lhasa, Xizang (China); Creti, P. [Istituto Nazionale di Fisica Nucleare, Sezione di Lecce, via per Arnesano, I-73100 Lecce (Italy); Cui, S. W. [Hebei Normal University, Shijiazhuang 050016, Hebei (China); Dai, B. Z. [Yunnan University, 2 North Cuihu Road, 650091 Kunming, Yunnan (China); D' Ali Staiti, G., E-mail: chensz@ihep.ac.cn [Dipartimento di Fisica, Universita degli Studi di Palermo, Viale delle Scienze, Edificio 18, I-90128 Palermo (Italy); Collaboration: ARGO-YBJ Collaboration; and others

    2013-04-20

    We report the observation of a very high energy {gamma}-ray source whose position is coincident with HESS J1841-055. This source has been observed for 4.5 years by the ARGO-YBJ experiment from 2007 November to 2012 July. Its emission is detected with a statistical significance of 5.3 standard deviations. Parameterizing the source shape with a two-dimensional Gaussian function, we estimate an extension {sigma}=(0.40{sup +0.32}{sub -0.22}){sup o}, which is consistent with the HESS measurement. The observed energy spectrum is dN/dE = (9.0 {+-} 1.6) Multiplication-Sign 10{sup -13}(E/5 TeV){sup -2.32{+-}0.23} photons cm{sup -2} s{sup -1} TeV{sup -1}, in the energy range 0.9-50 TeV. The integral {gamma}-ray flux above 1 TeV is 1.3 {+-} 0.4 Crab, which is 3.2 {+-} 1.0 times the flux derived by HESS. The differences in the flux determination between HESS and ARGO-YBJ and possible counterparts at other wavelengths are discussed.

  14. Cosmic Ray e +/(e- + e+), p-bar/p Ratios Explained by an Injection Model Based on 2 Gamma-ray Observations

    Energy Technology Data Exchange (ETDEWEB)

    Kamae, T.; /KIPAC, Menlo Park /SLAC; Lee, S.-H.; /KIPAC, Menlo Park; Baldini, L.; /INFN, Pisa; Giordano, F.; /Bari Polytechnic /INFN, Bari; Grondin, M.-H.; /Bordeaux U.; Latronico, L.; /INFN, Pisa; Lemoine-Goumard, M.; /Bordeaux U.; Sgro, C.; /INFN, Pisa; Tanaka, T.; Uchiyama, Y.; /KIPAC, Menlo Park

    2010-12-16

    We present a model of cosmic ray (CR) injection into the Galactic space based on recent {gamma}-ray observations of supernova remnants (SNRs) and pulsar wind nebulae (PWNe) by the Fermi Large Area Telescope (Fermi) and atmospheric Cherenkov telescopes (ACTs). Steady-state (SS) injection of nuclear particles and electrons (e{sup -}) from the Galactic ensemble of SNRs, and electrons and positrons (e{sup +}) from the Galactic ensemble of PWNe are assumed, with their spectra deduced from {gamma}-ray observations and recent evolution models. The ensembles of SNRs and PWNe are assumed to share the same spatial distributions and the secondary CR production in dense molecular clouds interacting with SNRs is incorporated in the model. Propagation of CRs to Earth is calculated using GALPROP with 2 source distributions and 2 Galaxy halo sizes. We show that this observation-based model reproduces the positron fraction e{sup +}/(e{sup -} + e{sup +}) and antiproton-to-proton ratio ({bar p}/p) reported by PAMELA reasonably well without calling for new sources. Significant discrepancy is found, however, between our model and the e{sup -} + e{sup +} spectrum measured by Fermi below {approx} 20 GeV. Important quantities for Galactic CRs, including their energy injection, average lifetime, and mean gas density along their typical propagation path are also presented.

  15. Cosmic Ray e^+/(e^- + e^+) and pbar/p Ratios Explained by an Injection Model Based on Gamma-ray Observations

    CERN Document Server

    Kamae, T; Baldini, L; Giordano, F; Grondin, M -H; Latronico, L; Lemoine-Goumard, M; Sgró, C; Tanaka, T; Uchiyama, Y

    2010-01-01

    We present a model of cosmic ray injection into the Galactic space based on recent gamma-ray observations of supernova remnants (SNRs) and pulsar wind nebulae (PWNe) by the Fermi Large Area Telescope and atmospheric Cherenkov telescopes. Steady-state (SS) injection of nuclear particles and electrons (e^-) from the Galactic ensemble of SNRs, and electrons and positrons (e^+) from the Galactic ensemble of PWNe are assumed, with their spectra deduced from gamma-ray observations and recent evolution models. The ensembles of SNRs and PWNe are assumed to share the same spatial distributions and the secondary CR production in dense molecular clouds interacting with SNRs is incorporated in the model. Propagation of CRs to Earth is calculated using GALPROP with 2 source distributions and 2 Galaxy halo sizes. We show that this observation-based model reproduces the positron fraction e^+/(e^- + e^+) and antiproton-to-proton ratio reported by PAMELA reasonably well without calling for new sources. Significant discrepancy...

  16. Observation of TeV gamma-rays from the unidentified source HESS J1841-055 with the ARGO-YBJ experiment

    CERN Document Server

    Bartoli, B; Bi, X J; Bolognino, I; Branchini, P; Budano, A; Melcarne, A K Calabrese; Camarri, P; Cao, Z; Cardarelli, R; Catalanotti, S; Cattaneo, C; Chen, S Z; Chen, T L; Chen, Y; Creti, P; Cui, S W; Dai, B Z; Staiti, G DAli; DAmone, A; Danzengluobu,; De Mitri, I; Piazzoli, B DEttorre; Di Girolamo, T; Ding, X H; Di Sciascio, G; Feng, C F; Feng, Zhaoyang; Feng, Zhenyong; Galeazzi, F; Giroletti, E; Gou, Q B; Guo, Y Q; He, H H; Hu, Haibing; Hu, Hongbo; Huang, Q; Iacovacci, M; Iuppa, R; James, I; Jia, H Y; Labaciren,; Li, H J; Li, J Y; Li, X X; Liguori, G; Liu, C; Liu, C Q; Liu, J; Liu, M Y; Lu, H; Ma, L L; Ma, X H; Mancarella, G; Mari, S M; Marsella, G; Martello, D; Mastroianni, S; Montini, P; Ning, C C; Pagliaro, A; Panareo, M; Panico, B; Perrone, L; Pistilli, P; Ruggieri, F; Salvini, P; Santonico, R; Sbano, S N; Shen, P R; Sheng, X D; Shi, F; Surdo, A; Tan, Y H; Vallania, P; Vernetto, S; Vigorito, C; Wang, B; Wang, H; Wu, C Y; Wu, H R; Xu, B; Xue, L; Yang, Q Y; Yang, X C; Yao, Z G; Yuan, A F; Zha, M; Zhang, H M; Zhang, Jilong; Zhang, Jianli; Zhang, L; Zhang, P; Zhang, X Y; Zhang, Y; Zhao, J; Zhaxiciren,; Zhaxisangzhu,; Zhou, X X; Zhu, F R; Zhu, Q Q; Zizzi, G

    2013-01-01

    We report the observation of a very high energy \\gamma-ray source, whose position is coincident with HESS J1841-055. This source has been observed for 4.5 years by the ARGO-YBJ experiment from November 2007 to July 2012. Its emission is detected with a statistical significance of 5.3 standard deviations. Parameterizing the source shape with a two-dimensional Gaussian function we estimate an extension \\sigma=(0.40(+0.32,-0.22}) degree, consistent with the HESS measurement. The observed energy spectrum is dN/dE =(9.0-+1.6) x 10^{-13}(E/5 TeV)^{-2.32-+0.23} photons cm^{-2} s^{-1} TeV^{-1}, in the energy range 0.9-50 TeV. The integral \\gamma-ray flux above 1 TeV is 1.3-+0.4 Crab units, which is 3.2-+1.0 times the flux derived by HESS. The differences in the flux determination between HESS and ARGO-YBJ, and possible counterparts at other wavelengths are discussed.

  17. Prompt, early, and afterglow optical observations of five gamma-ray bursts (GRBs 100901A, 100902A, 100905A, 100906A, and 101020A)

    CERN Document Server

    Gorbovskoy, E S; Lipunov, V M; Kornilov, V G; Belinski, A A; Shatskiy, N I; Tyurina, N V; Kuvshinov, D A; Balanutsa, P V; Chazov, V V; Kuznetsov, A; Zimnukhov, D S; Kornilov, M V; Sankovich, A V; Krylov, A; Ivanov, K I; Chvalaev, O; Poleschuk, V A; Konstantinov, E N; Gress, O A; Yazev, S A; Budnev, N M; Krushinski, V V; Zalozhnich, I S; Popov, A A; Tlatov, A G; Parhomenko, A V; Dormidontov, D V; Sennik, V; Yurkov, V V; Sergienko, Yu P; Varda, D; Kudelina, I P; Castro-Tirado, A J; Gorosabel, J; Sánchez--Ramírez, R; Jelinek, M; Tello, J C

    2011-01-01

    We present results of the prompt, early, and afterglow optical observations of five gamma-ray bursts, GRBs 100901A, 100902A, 100905A, 100906A, and 101020A, made with the Mobile Astronomical System of TElescope-Robots in Russia (MASTER-II net), the 1.5-m telescope of Sierra-Nevada Observatory, and the 2.56-m Nordic Optical Telescope. For two sources, GRB 100901A and GRB 100906A, we detected optical counterparts and obtained light curves starting before cessation of gamma-ray emission, at 113 s and 48 s after the trigger, respectively. Observations of GRB 100906A were conducted with two polarizing filters. Observations of the other three bursts gave the upper limits on the optical flux; their properties are briefly discussed. More detailed analysis of GRB 100901A and GRB 100906A supplemented by Swift data provides the following results and indicates different origins of the prompt optical radiation in the two bursts. The light curves patterns and spectral distributions suggest a common production site of the pr...

  18. Analysis of hard X-ray emission from selected very high energy {gamma}-ray sources observed with INTEGRAL

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, Agnes Irene Dorothee

    2009-11-13

    A few years ago, the era of very high energy {gamma}-ray astronomy started, when the latest generation of Imaging Atmospheric Cherenkov Telescopes (IACT) like H.E.S.S. began to operate and to resolve the sources of TeV emission. Identifications via multi-wavelength studies reveal that the detected sources are supernova remnants and active galactic nuclei, but also pulsar wind nebulae and a few binaries. One widely discussed open question is, how these sources are able to accelerate particles to such high energies. The understanding of the underlying particle distribution, the acceleration processes taking place, and the knowledge of the radiation processes which produce the observed emission, is, therefore, of crucial interest. Observations in the hard X-ray domain can be a key to get information on these particle distributions and processes. Important for this thesis are the TeV and the hard X-ray range. The two instruments, H.E.S.S. and INTEGRAL, whose data were used, are, therefore, described in detail. The main part of this thesis is focused on the X-ray binary system LS 5039/RX J1826.2-1450. It was observed in several energy ranges. The nature of the compact object is still not known, and it was proposed either to be a microquasar system or a non-accreting pulsar system. The observed TeV emission is modulated with the orbital cycle. Several explanations for this variability have been discussed in recent years. The observations with INTEGRAL presented in this thesis have provided new information to solve this question. Therefore, a search for a detection in the hard X-ray range and for its orbital dependence was worthwhile. Since LS 5039 is a faint source and the sky region where it is located is crowded, a very careful, non-standard handling of the INTEGRAL data was necessary, and a cross-checking with other analysis methods was essential to provide reliable results. We found that LS 5039 is emitting in the hard X-ray energy range. A flux rate and an upper

  19. Gamma-ray Production in Supernova Remnants

    CERN Document Server

    Baring, M G

    1997-01-01

    Supernova remnants are widely believed to be a principal source of galactic cosmic rays, produced by diffusive shock acceleration in the environs of the remnant's expanding shock. This review discusses recent modelling of how such energetic particles can produce gamma-rays via interactions with the remnants' ambient interstellar medium, specifically via neutral pion decay, bremsstrahlung and inverse Compton emission. Predictions that relate to the handful of associations between EGRET unidentified sources and known radio/optical/X-ray emitting remnants are summarized. The cessation of acceleration above 1 TeV - 10 TeV energies in young shell-type remnants is critical to model consistency with Whipple's TeV upper limits; these observations provide important diagnostics for theoretical models.

  20. Insights Into the High-Energy Gamma-ray Emission of Markarian 501 from Extensive Multifrequency Observations in the Fermi Era

    CERN Document Server

    :,; :,; al., J Aleksić et; :,; al., V A Acciari et; partners, multi-wavelength

    2012-01-01

    We report on the gamma-ray activity of the blazar Mrk 501 during the first 480 days of Fermi operation. We find that the average LAT gamma-ray spectrum of Mrk 501 can be well described by a single power-law function with a photon index of 1.78 +/- 0.03. While we observe relatively mild flux variations with the Fermi-LAT (within less than a factor of 2), we detect remarkable spectral variability where the hardest observed spectral index within the LAT energy range is 1.52 +/- 0.14, and the softest one is 2.51 +/- 0.20. These unexpected spectral changes do not correlate with the measured flux variations above 0.3GeV. In this paper, we also present the first results from the 4.5-month-long multifrequency campaign (2009 March 15 - August 1) on Mrk 501, which included the VLBA, Swift, RXTE, MAGIC and VERITAS, the F-GAMMA, GASP-WEBT, and other collaborations and instruments which provided excellent temporal and energy coverage of the source throughout the entire campaign. The average spectral energy distribution of...

  1. Temporal Evolution of the Gamma-ray Burst Afterglow Spectrum for an Observer: GeV-TeV Synchrotron Self-Compton Light Curve

    Science.gov (United States)

    Fukushima, Takuma; To, Sho; Asano, Katsuaki; Fujita, Yutaka

    2017-08-01

    We numerically simulate the gamma-ray burst (GRB) afterglow emission with a one-zone time-dependent code. The temporal evolutions of the decelerating shocked shell and energy distributions of electrons and photons are consistently calculated. The photon spectrum and light curves for an observer are obtained taking into account the relativistic propagation of the shocked shell and the curvature of the emission surface. We find that the onset time of the afterglow is significantly earlier than the previous analytical estimate. The analytical formulae of the shock propagation and light curve for the radiative case are also different from our results. Our results show that even if the emission mechanism is switching from synchrotron to synchrotron self-Compton, the gamma-ray light curves can be a smooth power law, which agrees with the observed light curve and the late detection of a 32 GeV photon in GRB 130427A. The uncertainty of the model parameters obtained with the analytical formula is discussed, especially in connection with the closure relation between spectral index and decay index.

  2. Long-term TeV and X-ray Observations of the Gamma-ray Binary HESS J0632+057

    CERN Document Server

    Aliu, E; Aune, T; Behera, B; Beilicke, M; Benbow, W; Berger, K; Bird, R; Bouvier, A; Buckley, J H; Bugaev, V; Byrum, K; Cerruti, M; Chen, X; Ciupik, L; Connolly, M P; Cui, W; Duke, C; Dumm, J; Errando, M; Falcone, A; Federici, S; Feng, Q; Finley, J P; Fortin, P; Fortson, L; Furniss, A; Galante, N; Gillanders, G H; Griffin, S; Griffiths, S T; Grube, J; Gyuk, G; Hanna, D; Holder, J; Hughes, G; Humensky, T B; Kaaret, P; Kertzman, M; Khassen, Y; Kieda, D; Krawczynski, H; Krennrich, F; Lang, M J; Madhavan, A S; Maier, G; Majumdar, P; McCann, A; Moriarty, P; Mukherjee, R; Nieto, D; de Bhróithe, A O'Faoláin; Ong, R A; Otte, A N; Park, N; Perkins, J S; Pohl, M; Popkow, A; Prokoph, H; Quinn, J; Ragan, K; Rajotte, J; Reyes, L C; Reynolds, P T; Richards, G T; Roache, E; Rousselle, J; Sembroski, G H; Sheidaei, F; Skole, C; Smith, A W; Staszak, D; Stroh, M; Telezhinsky, I; Theiling, M; Tucci, J V; Tyler, J; Varlotta, A; Vincent, S; Wakely, S P; Weinstein, A; Welsing, R; Williams, D A; Zajczyk, A; Zitzer, B; :,; Abramowski, A; Aharonian, F; Benkhali, F Ait; Akhperjanian, A G; Angüner, E; Anton, G; Balenderan, S; Balzer, A; Barnacka, A; Becherini, Y; Tjus, J Becker; Bernlöhr, K; Birsin, E; Bissaldi, E; Biteau, J; Böttcher, M; Boisson, C; Bolmont, J; Bordas, P; Brucker, J; Brun, F; Brun, P; Bulik, T; Carrigan, S; Casanova, S; Chadwick, P M; Chalme-Calvet, R; Chaves, R C G; Cheesebrough, A; Chrétien, M; Colafrancesco, S; Cologna, G; Conrad, J; Couturier, C; Dalton, M; Daniel, M K; Davids, I D; Degrange, B; Deil, C; deWilt, P; Dickinson, H J; Djannati-Ataï, A; Domainko, W; Drury, L O'C; Dubus, G; Dutson, K; Dyks, J; Dyrda, M; Edwards, T; Egberts, K; Eger, P; Espigat, P; Farnier, C; Fegan, S; Feinstein, F; Fernandes, M V; Fernandez, D; Fiasson, A; Fontaine, G; Forster, A; Füßling, M; Gajdus, M; Gallant, Y A; Garrigoux, T; Giavitto, G; Giebels, B; Glicenstein, J F; Grondin, M -H; Grudzińska, M; Häffner, S; Hahn, J; Harris, J; Heinzelmann, G; Henri, G; Hermann, G; Hervet, O; Hillert, A; Hinton, J A; Hofmann, W; Hofverberg, P; Holler, M; Horns, D; Jacholkowska, A; Jahn, C; Jamrozy, M; Janiak, M; Jankowsky, F; Jung, I; Kastendieck, M A; Katarzyński, K; Katz, U; Kaufmann, S; Khélifi, B; Kieffer, M; Klepser, S; Klochkov, D; Kluźniak, W; Kneiske, T; Kolitzus, D; Komin, Nu; Kosack, K; Krakau, S; Krayzel, F; Krüger, P P; Laffon, H; Lamanna, G; Lefaucheur, J; Lemiére, A; Lemoine-Goumard, M; Lenain, J -P; Lennarz, D; Lohse, T; Lopatin, A; Lu, C -C; Marandon, V; Marcowith, A; Marx, R; Maurin, G; Maxted, N; Mayer, M; McComb, T J L; Méhault, J; Menzler, U; Meyer, M; Moderski, R; Mohamed, M; Moulin, E; Murach, T; Naumann, C L; de Naurois, M; Niemiec, J; Nolan, S J; Oakes, L; Ohm, S; Wilhelmi, E de Onña; Opitz, B; Ostrowski, M; Oya, I; Panter, M; Parsons, R D; Arribas, M Paz; Pekeur, N W; Pelletier, G; Perez, J; Petrucci, P -O; Peyaud, B; Pita, S; Poon, H; Pühlhofer, G; Punch, M; Quirrenbach, A; Raab, S; Raue, M; Reimer, A; Reimer, O; Renaud, M; Reyes, R de los; Rieger, F; Rob, L; Romoli, C; Rosier-Lees, S; Rowell, G; Rudak, B; Rulten, C B; Sahakian, V; Sanchez, D A; Santangelo, A; Schlickeiser, R; Schüssler, F; Schulz, A; Schwanke, U; Schwarzburg, S; Schwemmer, S; Sol, H; Spengler, G; Spies, F; Stawarz, Ł; Steenkamp, R; Stegmann, C; Stinzing, F; Stycz, K; Sushch, I; Szostek, A; Tavernet, J -P; Tavernier, T; Taylor, A M; Terrier, R; Tluczykont, M; Trichard, C; Valerius, K; van Eldik, C; Vasileiadis, G; Venter, C; Viana, A; Vincent, P; Völk, H J; Volpe, F; Vorster, M; Wagner, S J; Wagner, P; Ward, M; Weidinger, M; Weitzel, Q; White, R; Wierzcholska, A; Willmann, P; Wörnlein, A; Wouters, D; Zacharias, M; Zdziarski, A A; Zech, A; Zechlin, H -S

    2013-01-01

    HESS J0632+057 is the only gamma-ray binary known so far whose position in the sky allows observations with ground-based observatories both in the northern and southern hemispheres. Here we report on long-term observations of HESS J0632+057 conducted with the VERITAS and H.E.S.S. Cherenkov Telescopes and the X-ray Satellite Swift, spanning a time range from 2004 to 2012 and covering most of the system's orbit. The VHE emission is found to be variable, and is correlated with that at X-ray energies. An orbital period of $315 ^{+6}_{-4}$ days is derived from the X-ray data set, which is compatible with previous results, $P = (321 \\pm 5$) days. The VHE light curve shows a distinct maximum at orbital phases close to 0.3, or about 100 days after periastron passage, which coincides with the periodic enhancement of the X-ray emission. Furthermore, the analysis of the TeV data shows for the first time a statistically significant ($> 6.5 \\sigma$) detection at orbital phases 0.6--0.9. The obtained gamma-ray and X-ray li...

  3. Supernovae and Gamma-Ray Bursts

    Science.gov (United States)

    Livio, Mario; Panagia, Nino; Sahu, Kailash

    2001-07-01

    Participants; Preface; Gamma-ray burst-supernova relation B. Paczynski; Observations of gamma-ray bursts G. Fishman; Fireballs T. Piran; Gamma-ray mechanisms M. Rees; Prompt optical emission from gamma-ray bursts R. Kehoe, C. Akerlof, R. Balsano, S. Barthelmy, J. Bloch, P. Butterworth, D. Casperson, T. Cline, S. Fletcher, F. Frontera, G. Gisler, J. Heise, J. Hills, K. Hurley, B. Lee, S. Marshall, T. McKay, A. Pawl, L. Piro, B. Priedhorsky, J. Szymanski and J. Wren; X-ray afterglows of gamma-ray bursts L. Piro; The first year of optical-IR observations of SN1998bw I. Danziger, T. Augusteijn, J. Brewer, E. Cappellaro, V. Doublier, T. Galama, J. Gonzalez, O. Hainaut, B. Leibundgut, C. Lidman, P. Mazzali, K. Nomoto, F. Patat, J. Spyromilio, M. Turatto, J. Van Paradijs, P. Vreeswijk and J. Walsh; X-ray emission of Supernova 1998bw in the error box of GRB980425 E. Pian; Direct analysis of spectra of type Ic supernovae D. Branch; The interaction of supernovae and gamma-ray bursts with their surroundings R. Chevalier; Magnetars, soft gamma-ray repeaters and gamma-ray bursts A. Harding; Super-luminous supernova remnants Y. -H. Chu, C. -H. Chen and S. -P. Lai; The properties of hypernovae: SNe Ic 1998bw, 1997ef, and SN IIn 1997cy K. Nomoto, P. Mazzali, T. Nakamura, K. Iwanmoto, K. Maeda, T. Suzuki, M. Turatto, I. Danziger and F. Patat; Collapsars, Gamma-Ray Bursts, and Supernovae S. Woosley, A. MacFadyen and A. Heger; Pre-supernova evolution of massive stars N. Panagia and G. Bono; Radio supernovae and GRB 980425 K. Weiler, N. Panagia, R. Sramek, S. Van Dyk, M. Montes and C. Lacey; Models for Ia supernovae and evolutionary effects P. Hoflich and I. Dominguez; Deflagration to detonation A. Khokhlov; Universality in SN Iae and the Phillips relation D. Arnett; Abundances from supernovae F. -K. Thielemann, F. Brachwitz, C. Freiburghaus, S. Rosswog, K. Iwamoto, T. Nakamura, K. Nomoto, H. Umeda, K. Langanke, G. Martinez-Pinedo, D. Dean, W. Hix and M. Strayer; Sne, GRBs, and the

  4. GAMMA RAYS FROM STAR FORMATION IN CLUSTERS OF GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Storm, Emma M.; Jeltema, Tesla E.; Profumo, Stefano [Department of Physics, University of California, 1156 High Street, Santa Cruz, CA 95064 (United States)

    2012-08-20

    Star formation in galaxies is observed to be associated with gamma-ray emission, presumably from non-thermal processes connected to the acceleration of cosmic-ray nuclei and electrons. The detection of gamma rays from starburst galaxies by the Fermi Large Area Telescope (LAT) has allowed the determination of a functional relationship between star formation rate and gamma-ray luminosity. Since star formation is known to scale with total infrared (8-1000 {mu}m) and radio (1.4 GHz) luminosity, the observed infrared and radio emission from a star-forming galaxy can be used to quantitatively infer the galaxy's gamma-ray luminosity. Similarly, star-forming galaxies within galaxy clusters allow us to derive lower limits on the gamma-ray emission from clusters, which have not yet been conclusively detected in gamma rays. In this study, we apply the functional relationships between gamma-ray luminosity and radio and IR luminosities of galaxies derived by the Fermi Collaboration to a sample of the best candidate galaxy clusters for detection in gamma rays in order to place lower limits on the gamma-ray emission associated with star formation in galaxy clusters. We find that several clusters have predicted gamma-ray emission from star formation that are within an order of magnitude of the upper limits derived in Ackermann et al. based on non-detection by Fermi-LAT. Given the current gamma-ray limits, star formation likely plays a significant role in the gamma-ray emission in some clusters, especially those with cool cores. We predict that both Fermi-LAT over the course of its lifetime and the future Cerenkov Telescope Array will be able to detect gamma-ray emission from star-forming galaxies in clusters.

  5. Contemporaneous multi-wavelength observations of the gamma-ray emitting active galaxy IC 310. New clues on particle acceleration in extragalactic jets

    Energy Technology Data Exchange (ETDEWEB)

    Glawion, Dorit

    2015-05-08

    In this thesis, the broad band emission, especially in the gamma-ray and radio band, of the active galaxy IC 310 located in the Perseus cluster of galaxies was investigated. The main experimental methods were Cherenkov astronomy using the MAGIC telescopes and high resolution very long baseline interferometry (VLBI) at radio frequencies (MOJAVE, EVN). Additionally, data of the object in different energy bands were studied and a multi-wavelength campaign has been organized and conducted. During the campaign, an exceptional bright gamma-ray flare at TeV energies was found with the MAGIC telescopes. The results were compared to theoretical acceleration and emission models for explaining the high energy radiation of active galactic nuclei. Many open questions regarding the particle acceleration to very high energies in the jets of active galactic nuclei, the particle content of the jets, or how the jets are launched, were addressed in this thesis by investigating the variability of IC 310 in the very high energy band. It is argued that IC310 was originally mis-classified as a head-tail radio galaxy. Instead, it shows a variability behavior in the radio, X-ray, and gamma-ray band similar to the one found for blazars. These are active galactic nuclei that are characterized by flux variability in all observed energy bands and at all observed time scales. They are viewed at a small angle between the jet axis and the line-of-sight. Thus, strong relativistic beaming influences the variability properties of blazars. Observations of IC 310 with the European VLBI Network helped to find limits for the angle between the jet axis and the line-of-sight, namely 10 - 20 . This places IC 310 at the borderline between radio galaxies (larger angles) and blazars (smaller angles). During the gamma-ray outburst detected at the beginning of the multi-wavelength campaign, flux variability as short as minutes was measured. The spectrum during the flare can be described by a simple power

  6. Spectral and spatial variations of the diffuse gamma-ray background in the vicinity of the Galactic plane and possible nature of the feature at 130 GeV

    CERN Document Server

    Boyarsky, Alexey; Ruchayskiy, Oleg

    2013-01-01

    We study the properties of the diffuse gamma-ray background around the Galactic plane at energies 60 - 200 GeV. We find that the spectrum of this emission possesses spacial variations having significant features (excesses and dips) as compared to the average smooth (power law) component. The positions and shapes of these spectral features change with direction on the sky. We therefore argue, that the spectral feature around 130 GeV, found in several regions around the Galactic Center and the Galactic plane in [1204.2797,1205.1045], can not be interpreted with confidence as a gamma-ray line, but may be a component of the diffuse background and can be of instrumental or astrophysical origin. Therefore, the dark matter origin of this spectral feature becomes dubious.

  7. Gamma-ray emission from the galactic anticenter at MeV energies

    Energy Technology Data Exchange (ETDEWEB)

    Graser, U.; Schoenfelder, V.

    1982-12-15

    An image of the anticenter region of the Galaxy between right ascension 50/sup 0/ and 110/sup 0/ and between declination +10/sup 0/ and +50/sup 0/ in the energy range 1.1--10 MeV is derived from data obtained during a balloon flight with the MPI Compton telescope. The telescope has a field of view of 40/sup 0/--50/sup 0/ (FWHM) and a 1 sigma angular resolution of about 4/sup 0/ within this field. A significantly enhanced ..gamma..-ray emission is observed along the galactic plane from l/sup II/ = 160/sup 0/ to l/sup II/ = 197/sup 0/. Part of the emission is due to the Crab Nebula. The energy spectrum of the pulsed and total Crab emission is determined. Because of the limited angular resolution of the telescope it is not possible to decide whether the remainder of the emission is diffuse in nature or due to unresolved sources. No significantly enhanced ..gamma..-ray emission is observed from the direction of the high-energy ..gamma..-ray source Geminga (2CG 195+04) or from the Seyfert galaxy MCG 8--11--11, which recently was reported to be a soft ..gamma..-ray source. An upper limit to the diffuse galactic ..gamma..-ray emission is determined, which leads to restrictions of the spectrum of interstellar cosmic ray electrons at MeV energies.

  8. Exploring the potential X-ray counterpart of the puzzling TeV gamma-ray source HESS J1507-622 with new Suzaku observations

    CERN Document Server

    Eger, P; Hahn, J

    2014-01-01

    The unidentified VHE (E>100 GeV) gamma-ray source HESS J1507-622 seems to not fit into standard models for sources related to young supernova remnants, pulsar wind nebulae, or young stellar populations in general. This is due to its intrinsically extended, but yet compact morphology, coupled with a relative large offset (~3.5 deg) from the Galactic plane. Therefore, it has been suggested that this object may be the first representative of a new distinct class of extended off-plane gamma-ray sources. The distance to HESS J1507-622 is the key parameter to constrain the source's most important properties, such as age and energetics of the relativistic particle population. In this article we report on results of follow-up observations of the potential X-ray counterpart with Suzaku. We present detailed measurements of its spectral parameters and find a high absorbing hydrogen column density, compatible with the total amount of Galactic gas in this direction. In comparisons to measurements and models of the Galacti...

  9. Multi-Tev Gamma-Ray Observation from the Crab Nebula Using the Tibet-III Air Shower Array Finely Tuned by the Cosmic-Ray Moon's Shadow

    CERN Document Server

    Amenomori, M

    2008-01-01

    The Tibet-III air shower array, consisting of 533 scintillation detectors, has been operating successfully at Yangbajing in Tibet, China since 1999. Using the dataset collected by this array from 1999 November through 2005 November, we obtained the energy spectrum of $\\gamma$-rays from the Crab Nebula, expressed by a power law as $(dJ/dE) = (2.09\\pm0.32)\\times10^{-12} (E/{\\rm 3 TeV})^{-2.96\\pm0.14} {\\rm cm}^{-2} {\\rm s}^{-1} {\\rm TeV}^{-1}$ in the energy range of 1.7 to 40 TeV. This result is consistent with other independent $\\gamma$-ray observations by imaging air Cherenkov telescopes. In this paper, we carefully checked and tuned the performance of the Tibet-III array using data on the moon's shadow in comparison with a detailed Monte Carlo simulation. The shadow is shifted to the west of the moon's apparent position as an effect of the geomagnetic field, although the extent of this displacement depends on the primary energy positively charged cosmic rays. This finding enables us to estimate the systematic...

  10. H-alpha observations of the gamma-ray-emitting Be/X-ray binary LSI+61303: orbital modulation, disk truncation, and long-term variability

    CERN Document Server

    Zamanov, R; Marti, J; Tomov, N A; Belcheva, G; Luque-Escamilla, P L; Latev, G

    2013-01-01

    We report 138 spectral observations of the H-alpha emission line of the radio- and gamma-ray-emitting Be/X-ray binary LSI+61303 obtained during the period of September 1998 -- January 2013. From measuring various H-alpha parameters, we found that the orbital modulation of the H-alpha is best visible in the equivalent width ratio EW(B)/EW(R), the equivalent width of the blue hump, and in the radial velocity of the central dip. The periodogram analysis confirmed that the H-alpha emission is modulated with the orbital and superorbital periods. For the past 20 years the radius of the circumstellar disk is similar to the Roche lobe size at the periastron. It is probably truncated by a 6:1 resonance. The orbital maximum of the equivalent width of H-alpha emission peaks after the periastron and coincides on average with the X-ray and gamma-ray maxima. All the spectra are available upon request from the authors and through the CDS.

  11. VLBI Observations of the Jet in M87 During the Very-High-Energy Gamma-ray Flare in April 2010

    CERN Document Server

    Hada, Kazuhiro; Nagai, Hiroshi; Doi, Akihiro; Hagiwara, Yoshiaki; Honma, Mareki; Giroletti, Marcello; Giovannini, Gabriele; Kawaguchi, Noriyuki

    2012-01-01

    We report on the detailed radio status of the M87 jet during the Very-High-Energy (VHE) gamma-ray flaring event in April 2010, obtained from high-resolution, multi-frequency, phase-referencing VLBA observations. We especially focus on the properties for the jet base (the radio core) and the peculiar knot HST-1, which are currently favored as the gamma-ray emitting sites. During the VHE flaring event, the HST-1 region remains stable in terms of its structure and flux density in the optically thin regime above 2GHz, being consistent with no signs of enhanced activities reported at X-ray for this feature. The radio core shows an inverted spectrum at least up to 43GHz during this event. Astrometry of the core position, which is specified as ~20Rs from the central engine in our previous study, shows that the core position is stable on a level of 4Rs. The core at 43 and 22GHz tends to show slightly (~10%) higher flux level near the date of the VHE flux peak compared with the epochs before/after the event. The size ...

  12. High Redshift Gamma Ray Bursts

    Science.gov (United States)

    Gehrels, Neil

    2012-01-01

    The Swift Observatory has been detecting 100 gamma-ray bursts per year for 7 years and has greatly stimulated the field with new findings. Observations are made of the X-ray and optical afterglow from 1 minute after the burst, continuing for days. GRBs are providing a new tool to study the high redshift universe. Swift has detected several events at z>5 and one at z=9.4 giving information on metallicity, star formation rate and reionization. The talk will present the latest results.

  13. VERITAS detection of $\\gamma$-ray flaring activity from the BL Lac object 1ES 1727+502 during bright moonlight observations

    CERN Document Server

    Archambault, S; Beilicke, M; Benbow, W; Bird, R; Biteau, J; Bouvier, A; Bugaev, V; Cardenzana, J V; Cerruti, M; Chen, X; Ciupik, L; Connolly, M P; Cui, W; Dickinson, H J; Dumm, J; Eisch, J D; Errando, M; Falcone, A; Feng, Q; Finley, J P; Fleischhack, H; Fortin, P; Fortson, L; Furniss, A; Gillanders, G H; Griffin, S; Griffiths, S T; Grube, J; Gyuk, G; Håkansson, N; Hanna, D; Holder, J; Humensky, T B; Johnson, C A; Kaaret, P; Kar, P; Kertzman, M; Khassen, Y; Kieda, D; Krause, M; Krennrich, F; Kumar, S; Lang, M J; Maier, G; McArthur, S; McCann, A; Meagher, K; Millis, J; Moriarty, P; Mukherjee, R; Nieto, D; de Bhróithe, A O'Faoláin; Ong, R A; Otte, A N; Park, N; Pohl, M; Popkow, A; Prokoph, H; Pueschel, E; Quinn, J; Ragan, K; Reyes, L C; Reynolds, P T; Richards, G T; Roache, E; Santander, M; Sembroski, G H; Shahinyan, K; Smith, A W; Staszak, D; Telezhinsky, I; Tucci, J V; Tyler, J; Varlotta, A; Vincent, S; Wakely, S P; Weinstein, A; Welsing, R; Wilhelm, A; Williams, D A; Zitzer, B; Hughes, Z D

    2015-01-01

    During moonlit nights, observations with ground-based Cherenkov telescopes at very high energies (VHE, $E>100$ GeV) are constrained since the photomultiplier tubes (PMTs) in the telescope camera are extremely sensitive to the background moonlight. Observations with the VERITAS telescopes in the standard configuration are performed only with a moon illumination less than 35$\\%$ of full moon. Since 2012, the VERITAS collaboration has implemented a new observing mode under bright moonlight, by either reducing the voltage applied to the PMTs (reduced-high-voltage configuration, RHV), or by utilizing UV-transparent filters. While these operating modes result in lower sensitivity and increased energy thresholds, the extension of the available observing time is useful for monitoring variable sources such as blazars and sources requiring spectral measurements at the highest energies. In this paper we report the detection of $\\gamma$-ray flaring activity from the BL Lac object 1ES 1727+502 during RHV observations. Thi...

  14. Gamma-rays as probes of the Universe

    CERN Document Server

    Horns, Dieter

    2016-01-01

    The propagation of $\\gamma$ rays over very large distances provides new insights on the intergalactic medium and on fundamental physics. On their path to the Earth, $\\gamma$ rays can annihilate with diffuse infrared or optical photons of the intergalactic medium, producing $e^+ \\, e^-$ pairs. The density of these photons is poorly determined by direct measurements due to significant galactic foregrounds. Studying the absorption of $\\gamma$ rays from extragalactic sources at different distances allows the density of low-energy diffuse photons to be measured. Gamma-ray propagation may also be affected by new phenomena predicted by extensions of the Standard Model of particle physics. Lorentz Invariance is violated in some models of Quantum Gravity, leading to an energy-dependent speed of light in vacuum. From differential time-of-flight measurements of the most distant $\\gamma$-ray bursts and of flaring active galactic nuclei, lower bounds have been set on the energy scale of Quantum Gravity. Another effect tha...

  15. SAS-2 galactic gamma ray results. 2. Localized sources

    Science.gov (United States)

    Hartman, R. C.; Fichtel, C. E.; Kniffen, D. A.; Lamb, R. C.; Thompson, D. J.; Bignami, G. F.; Oegelman, H.; Oezel, M. E.; Tuemer, T.

    1976-01-01

    Gamma-ray emission was detected from the radio pulsars PSR1818-04 and PSR1747-46, in addition to the previously reported gamma-ray emission from the Crab and Vela pulsars. Since the Crab pulsar is the only one observed in the optical and X-ray bands, these gamma-ray observations suggest a uniquely gamma-ray phenomenon occurring in a fraction of the radio pulsars. Using distance estimates it is found that PSR1818-04 has a gamma-ray luminosity comparable to that of the Crab pulsar, while the luminosities of PSR1747-46 and the Vela pulsar are approximately an order of magnitude lower. This survey of SAS-2 data for pulsar correlations has also yielded upper limits to gamma-ray luminosity for 71 other radio pulsars.

  16. Star-forming galaxies as the origin of IceCube neutrinos: Reconciliation with Fermi-LAT gamma rays

    CERN Document Server

    Chakraborty, Sovan

    2016-01-01

    Cosmic ray accelerators like supernova and hypernova remnants in star forming galaxies are one of the most plausible sources of the IceCube observed diffuse astrophysical neutrinos. The neutrino producing hadronic processes will also produce a diffuse gamma ray flux, constrained by the Fermi-LAT bounds. The fact that point sources like blazars also contribute to the diffuse gamma ray flux implies large gamma opacity of the neutrino sources. Indeed, for these high redshift star forming galaxies the gamma absorption during the intergalactic propagation can be significant. In addition, large gamma attenuation inside these extreme source galaxies can reduce the cascade component of the diffuse flux. Under the current astrophysical uncertainties affecting these absorptions processes, we find the associated diffuse gamma ray flux can remain compatible with the current Fermi-LAT bounds.

  17. The Structure and Emission Model of the Relativistic Jet in the Quasar 3C 279 Inferred From Radio To High-Energy Gamma-Ray Observations in 2008-2010

    Science.gov (United States)

    2012-01-01

    We present time-resolved broad-band observations of the quasar 3C 279 obtained from multiwavelength campaigns conducted during the first two years of the Fermi Gamma-ray Space Telescope mission. While investigating the previously reported gamma-ray/optical flare accompanied by a change in optical polarization, we found that the optical emission appears delayed with respect to the gamma-ray emission by about 10 days. X-ray observations reveal a pair of 'isolated' flares separated. by approx. 90 days, with only weak gamma-ray/optical counterparts. The spectral structure measured by Spitzer reveals a synchrotron component peaking in the mid-infrared band with a sharp break at the far-infrared band during the gamma-ray flare, while the peak appears in the mm/sub-mm band in the low state. Selected spectral energy distributions are fitted with leptonic models including Comptonization of external radiation produced in a dusty torus or the broad-line region. Adopting the interpretation of the polarization swing involving propagation of the emitting region along a curved trajectory, we can explain the evolution of the broad-band spectra during the gamma-ray flaring event by a shift of its location from approx. 1 pc to approx. 4 pc from the central black hole. On the other hand, if the gamma-ray flare is generated instead at sub-pc distance from the central black hole, the far-infrared break can be explained by synchrotron self-absorption. We also model the low spectral state, dominated by the mm/sub-mm peaking synchrotron component, and suggest that the corresponding inverse-Compton component explains the steady X-ray emission.

  18. THE STRUCTURE AND EMISSION MODEL OF THE RELATIVISTIC JET IN THE QUASAR 3C 279 INFERRED FROM RADIO TO HIGH-ENERGY {gamma}-RAY OBSERVATIONS IN 2008-2010

    Energy Technology Data Exchange (ETDEWEB)

    Hayashida, M.; Madejski, G. M.; Chiang, J.; Blandford, R. D.; Buehler, R. [Kavli Institute for Particle Astrophysics and Cosmology, SLAC National Accelerator Laboratory, Stanford University, 2575 Sand Hill Road M/S 29, Menlo Park, CA 94025 (United States); Nalewajko, K. [University of Colorado, UCB 440, Boulder, CO 80309 (United States); Sikora, M. [Nicolaus Copernicus Astronomical Center, 00-716 Warsaw (Poland); Wehrle, A. E. [Space Science Institute, Boulder, CO 80301 (United States); Ogle, P. [Infrared Processing and Analysis Center, California Institute of Technology Pasadena, CA 91125 (United States); Collmar, W. [Max-Planck Institut fuer Extraterrestrische Physik, 85748 Garching (Germany); Larsson, S. [Department of Physics, Stockholm University, AlbaNova, SE-106 91 Stockholm (Sweden); Fukazawa, Y.; Itoh, R. [Department of Physical Sciences, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526 (Japan); Stawarz, L. [Institute of Space and Astronautical Science, JAXA, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan); Richards, J. L.; Max-Moerbeck, W.; Readhead, A. [Cahill Center for Astronomy and Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States); Cavazzuti, E.; Ciprini, S. [Agenzia Spaziale Italiana (ASI) Science Data Center, I-00044 Frascati (Roma) (Italy); Gehrels, N., E-mail: mahaya@slac.stanford.edu, E-mail: madejski@slac.stanford.edu, E-mail: knalew@Colorado.edu, E-mail: sikora@camk.edu.pl [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); and others

    2012-08-01

    We present time-resolved broadband observations of the quasar 3C 279 obtained from multi-wavelength campaigns conducted during the first two years of the Fermi Gamma-ray Space Telescope mission. While investigating the previously reported {gamma}-ray/optical flare accompanied by a change in optical polarization, we found that the optical emission appears to be delayed with respect to the {gamma}-ray emission by about 10 days. X-ray observations reveal a pair of 'isolated' flares separated by {approx}90 days, with only weak {gamma}-ray/optical counterparts. The spectral structure measured by Spitzer reveals a synchrotron component peaking in the mid-infrared band with a sharp break at the far-infrared band during the {gamma}-ray flare, while the peak appears in the millimeter (mm)/submillimeter (sub-mm) band in the low state. Selected spectral energy distributions are fitted with leptonic models including Comptonization of external radiation produced in a dusty torus or the broad-line region. Adopting the interpretation of the polarization swing involving propagation of the emitting region along a curved trajectory, we can explain the evolution of the broadband spectra during the {gamma}-ray flaring event by a shift of its location from {approx}1 pc to {approx}4 pc from the central black hole. On the other hand, if the {gamma}-ray flare is generated instead at sub-pc distance from the central black hole, the far-infrared break can be explained by synchrotron self-absorption. We also model the low spectral state, dominated by the mm/sub-mm peaking synchrotron component, and suggest that the corresponding inverse-Compton component explains the steady X-ray emission.

  19. Detecting gamma-ray anisotropies from decaying dark matter. Prospects for Fermi LAT

    Energy Technology Data Exchange (ETDEWEB)

    Ibarra, Alejandro; Tran, David [Technische Univ. Muenchen, Garching (Germany). Physik-Department; Weniger, Christoph [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2009-09-15

    Decaying dark matter particles could be indirectly detected as an excess over a simple power law in the energy spectrum of the diffuse extragalactic gamma-ray background. Furthermore, since the Earth is not located at the center of the Galactic dark matter halo, the exotic contribution from dark matter decay to the diffuse gamma-ray flux is expected to be anisotropic, offering a complementary method for the indirect search for decaying dark matter particles. In this paper we discuss in detail the expected dipole-like anisotropies in the dark matter signal, taking also into account the radiation from inverse Compton scattering of electrons and positrons from dark matter decay. A different source for anisotropies in the gamma-ray flux are the dark matter density fluctuations on cosmic scales. We calculate the corresponding angular power spectrum of the gamma-ray flux and comment on observational prospects. Finally, we calculate the expected anisotropies for the decaying dark matter scenarios that can reproduce the electron/positron excesses reported by PAMELA and the Fermi LAT, and we estimate the prospects for detecting the predicted gamma-ray anisotropy in the near future. (orig.)

  20. Gamma-Ray Localization of Terrestrial Gamma-Ray Flashes

    CERN Document Server

    Marisaldi, M; Trois, A; Giuliani, A; Tavani, M; Labanti, C; Fuschino, F; Bulgarelli, A; Longo, F; Barbiellini, G; Del Monte, E; Moretti, E; Trifoglio, M; Costa, E; Caraveo, P; Cattaneo, P W; Chen, A; D'Ammando, F; De Paris, G; Di Cocco, G; Di Persio, G; Donnarumma, I; Evangelista, Y; Feroci, M; Ferrari, A; Fiorini, M; Froysland, T; Galli, M; Gianotti, F; Lapshov, I; Lazzarotto, F; Lipari, P; Mereghetti, S; Morselli, A; Pacciani, L; Pellizzoni, A; Perotti, F; Picozza, P; Piano, G; Pilia, M; Prest, M; Pucella, G; Rapisarda, M; Rappoldi, A; Rubini, A; Sabatini, S; Soffitta, P; Striani, E; Vallazza, E; Vercellone, S; Vittorini, V; Zambra, A; Zanello, D; Antonelli, L A; Colafrancesco, S; Cutini, S; Giommi, P; Lucarelli, F; Pittori, C; Santolamazza, P; Verrecchia, F; Salotti, L; 10.1103/PhysRevLett.105.128501

    2010-01-01

    Terrestrial Gamma-Ray Flashes (TGFs) are very short bursts of high energy photons and electrons originating in Earth's atmosphere. We present here a localization study of TGFs carried out at gamma-ray energies above 20 MeV based on an innovative event selection method. We use the AGILE satellite Silicon Tracker data that for the first time have been correlated with TGFs detected by the AGILE Mini-Calorimeter. We detect 8 TGFs with gamma-ray photons of energies above 20 MeV localized by the AGILE gamma-ray imager with an accuracy of 5-10 degrees at 50 MeV. Remarkably, all TGF-associated gamma rays are compatible with a terrestrial production site closer to the sub-satellite point than 400 km. Considering that our gamma rays reach the AGILE satellite at 540 km altitude with limited scattering or attenuation, our measurements provide the first precise direct localization of TGFs from space.

  1. THREE YEARS OF FERMI GBM EARTH OCCULTATION MONITORING: OBSERVATIONS OF HARD X-RAY/SOFT GAMMA-RAY SOURCES

    Energy Technology Data Exchange (ETDEWEB)

    Wilson-Hodge, Colleen A.; Jenke, Peter [ZP 12 Astrophysics Office, NASA Marshall Space Flight Center, Huntsville, AL 35812 (United States); Case, Gary L.; Cherry, Michael L.; Rodi, James [Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803 (United States); Camero-Arranz, Ascension [Instituto de Ciencias del Espacio (IEEC-CSIC), Campus UAB, Torre C5, 2a planta, 08193 Barcelona (Spain); Chaplin, Vandiver; Bhat, Narayan; Briggs, Michael S.; Connaughton, Valerie; Preece, Robert [Physics Department, University of Alabama in Huntsville, Huntsville, AL 35899 (United States); Beklen, Elif [Physics Department, Suleyman Demirel University, 32260 Isparta (Turkey); Finger, Mark; Paciesas, William S. [Universities Space Research Association, Huntsville, AL 35805 (United States); Greiner, Jochen; Meegan, Charles A.; Von Kienlin, Andreas [Max-Planck Institut fuer Extraterrestische Physik, D-85748 Garching (Germany); Kippen, R. Marc [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2012-08-01

    The Gamma-ray Burst Monitor (GBM) on board Fermi has been providing continuous data to the astronomical community since 2008 August 12. In this paper, we present the results of the analysis of the first three years of these continuous data using the Earth occultation technique to monitor a catalog of 209 sources. From this catalog, we detect 99 sources, including 40 low-mass X-ray binary/neutron star systems, 31 high-mass X-ray binary/neutron star systems, 12 black hole binaries, 12 active galaxies, and 2 other sources, plus the Crab Nebula, and the Sun. Nine of these sources are detected in the 100-300 keV band, including seven black hole binaries, the active galaxy Cen A, and the Crab. The Crab and Cyg X-1 are also detected in the 300-500 keV band. GBM provides complementary data to other sky-monitors below 100 keV and is the only all-sky monitor above 100 keV. Up-to-date light curves for all of the catalog sources can be found online.

  2. Average power density spectrum of Swift long gamma-ray bursts in the observer and in the source rest frames

    CERN Document Server

    Guidorzi, C; Amati, L; Campana, S; Orlandini, M; Romano, P; Stamatikos, M; Tagliaferri, G

    2012-01-01

    We calculate the average power density spectra (PDS) of 244 long gamma-ray bursts detected with the Swift Burst Alert Telescope in the 15-150 keV band from January 2005 to August 2011. For the first time we derived the average PDS in the source rest frame of 97 GRBs with known redshift. For 49 of them an average PDS was also obtained in a common source-frame energy band to account for the dependence of time profiles on energy. Previous results obtained on BATSE GRBs with unknown redshift showed that the average spectrum in the 25-2000 keV band could be modelled with a power-law with a 5/3 index over nearly two decades of frequency with a break at ~1 Hz. Depending on the normalisation and on the subset of GRBs considered, our results show analogous to steeper slopes (between 1.7 and 2.0) of the power-law. However, no clear evidence for the break at ~1 Hz was found, although the softer energy band of BAT compared with BATSE might account for that. We instead find a break at lower frequency corresponding to a ty...

  3. Three years of Fermi GBM Earth Occultation Monitoring: Observations of Hard X-ray/Soft Gamma-Ray Sources

    CERN Document Server

    Wilson-Hodge, Colleen A; Cherry, Michael L; Rodi, James; Camero-Arranz, Ascension; Jenke, Peter; Chaplin, Vandiver; Beklen, Elif; Finger, Mark; Bhat, Narayan; Briggs, Michael S; Connaughton, Valerie; Greiner, Jochen; Kippen, R Marc; Meegan, Charles A; Paciesas, William S; Preece, Robert; von Kienlin, Andreas

    2012-01-01

    The Gamma ray Burst Monitor (GBM) on board Fermi has been providing continuous data to the astronomical community since 2008 August 12. In this paper we present the results of the analysis of the first three years of these continuous data using the Earth occultation technique to monitor a catalog of 209 sources. From this catalog, we detect 102 sources, including 41 low-mass X-ray binary/neutron star systems, 33 high-mass X-ray binary neutron star systems, 12 black hole binaries, 12 active galaxies, 2 other sources, plus the Crab Nebula, and the Sun. Nine of these sources are detected in the 100-300 keV band, including seven black-hole binaries, the active galaxy Cen A, and the Crab. The Crab and Cyg X-1 are also detected in the 300-500 keV band. GBM provides complementary data to other sky-monitors below 100 keV and is the only all-sky monitor above 100 keV. Up-to-date light curves for all of the catalog sources can be found at http://heastro.phys.lsu.edu/gbm/.

  4. Gamma-Ray Astronomy from the Ground

    CERN Document Server

    Horns, D

    2016-01-01

    The observation of cosmic gamma-rays from the ground is based upon the detection of gamma-ray initiated air showers. At energies between approximately $10^{11}$ eV and $10^{13}$ eV, the imaging air Cherenkov technique is a particularly successful approach to observe gamma-ray sources with energy fluxes as low as $\\approx 10^{-13}$ erg\\,cm$^{-2}\\,$s$^{-1}$. The observations of gamma-rays in this energy band probe particle acceleration in astrophysical plasma conditions and are sensitive to high energy phenomena beyond the standard model of particle physics (e.g., self-annihilating or decaying dark matter, violation of Lorentz invariance, mixing of photons with light pseudo-scalars). The current standing of the field and its major instruments are summarised briefly by presenting selected highlights. A new generation of ground based gamma-ray instruments is currently under development. The perspectives and opportunities of these future facilities will be discussed.

  5. Gamma ray bursts, neutron star quakes, and the Casimir effect

    CERN Document Server

    Carlson, C; Pérez-Mercader, J; Carlson, C; Goldman, T; Perez-Mercader, J

    1994-01-01

    We propose that the dynamic Casimir effect is a mechanism that converts the energy of neutron starquakes into \\gamma--rays. This mechanism efficiently produces photons from electromagnetic Casimir energy released by the rapid motion of a dielectric medium into a vacuum. Estimates based on the cutoff energy of the gamma ray bursts and the volume involved in a starquake indicate that the total gamma ray energy emission is consonant with observational requirements.

  6. How promising is the search for gamma-ray pulsars

    Energy Technology Data Exchange (ETDEWEB)

    Schoenfelder, V.

    1985-03-01

    Radiopulsars are rotating neutron stars. At present more than 330 of these objects are known. From two of them (Crab and Vela) pulsed emission has been observed at ..gamma..-ray energies, too. Because both of these pulsars have their maximum of luminosity at ..gamma..-ray energies and not in the radio range, it is supposed that the key for an understanding of the pulsar phenomenon will be found in the ..gamma..-ray range. In spite of intensive searches in the ..