WorldWideScience

Sample records for differently structured soil

  1. Soil-borne microbial functional structure across different land uses.

    Science.gov (United States)

    Kuramae, Eiko E; Zhou, Jizhong Z; Kowalchuk, George A; van Veen, Johannes A

    2014-01-01

    Land use change alters the structure and composition of microbial communities. However, the links between environmental factors and microbial functions are not well understood. Here we interrogated the functional structure of soil microbial communities across different land uses. In a multivariate regression tree analysis of soil physicochemical properties and genes detected by functional microarrays, the main factor that explained the different microbial community functional structures was C : N ratio. C : N ratio showed a significant positive correlation with clay and soil pH. Fields with low C : N ratio had an overrepresentation of genes for carbon degradation, carbon fixation, metal reductase, and organic remediation categories, while fields with high C : N ratio had an overrepresentation of genes encoding dissimilatory sulfate reductase, methane oxidation, nitrification, and nitrogen fixation. The most abundant genes related to carbon degradation comprised bacterial and fungal cellulases; bacterial and fungal chitinases; fungal laccases; and bacterial, fungal, and oomycete polygalacturonases. The high number of genes related to organic remediation was probably driven by high phosphate content, while the high number of genes for nitrification was probably explained by high total nitrogen content. The functional gene diversity found in different soils did not group the sites accordingly to land management. Rather, the soil factors, C : N ratio, phosphate, and total N, were the main factors driving the differences in functional genes across the fields examined.

  2. Material dynamics in polluted soils with different structures - comparative investigations of general soil and aggregates

    International Nuclear Information System (INIS)

    Taubner, H.

    1992-01-01

    In structured soils, a small-scale heterogeneity of physical and chemical properties will develop which results in a reduced availability of the reaction sites of the soil matrix. In view of the lack of knowledge on the conditions within the individual aggregates were carried out for characterizing the aggregates and comparing them with the soil in, general soil samples were taken from natural structure of a podzolic soil and a podazolic brown earth from two sites in the Fichtelgebirge mountains as well as a parabraun earth from East Holstein. The horizons differed with regard to their texture and structure; silty material tends to have a subpolyhedral structure and calyey material a polyhedral structure. The general soil samples and aggregate samples from the three B horizons were subjected, with comparable experimental conditions, to percolation experiments inducing a multiple acid load. The soil solution from the secondary pore system and aggregate pore system is more heterogeneus for the higher-structured subpolyhedral texture of the perdzolic soil than for the less strongly aggregated subpolyhedral structured of the podzolic brown earth. (orig.) [de

  3. Soil-Borne Microbial Functional Structure across Different Land Uses

    Directory of Open Access Journals (Sweden)

    Eiko E. Kuramae

    2014-01-01

    Full Text Available Land use change alters the structure and composition of microbial communities. However, the links between environmental factors and microbial functions are not well understood. Here we interrogated the functional structure of soil microbial communities across different land uses. In a multivariate regression tree analysis of soil physicochemical properties and genes detected by functional microarrays, the main factor that explained the different microbial community functional structures was C : N ratio. C : N ratio showed a significant positive correlation with clay and soil pH. Fields with low C : N ratio had an overrepresentation of genes for carbon degradation, carbon fixation, metal reductase, and organic remediation categories, while fields with high C : N ratio had an overrepresentation of genes encoding dissimilatory sulfate reductase, methane oxidation, nitrification, and nitrogen fixation. The most abundant genes related to carbon degradation comprised bacterial and fungal cellulases; bacterial and fungal chitinases; fungal laccases; and bacterial, fungal, and oomycete polygalacturonases. The high number of genes related to organic remediation was probably driven by high phosphate content, while the high number of genes for nitrification was probably explained by high total nitrogen content. The functional gene diversity found in different soils did not group the sites accordingly to land management. Rather, the soil factors, C : N ratio, phosphate, and total N, were the main factors driving the differences in functional genes across the fields examined.

  4. Evaluation of soil-structure interaction for structures subjected to earthquake loading with different types of foundation

    Directory of Open Access Journals (Sweden)

    Elwi Mohammed

    2018-01-01

    Full Text Available However though the structures are supported on soil, most of the designers do not consider the soil structure interaction and its subsequent effect on structure during an earthquake. Different soil properties can affect seismic waves as they pass through a soil layer. When a structure is subjected to an earthquake excitation, it interacts the foundation and soil, and thus changes the motion of the ground. It means that the movement of the whole ground structure system is influenced by type of soil as well as by the type of structure. Tall buildings are supposed to be of engineered construction in sense that they might have been analyzed and designed to meet the provision of relevant codes of practice and building bye-laws. IS 1893: 2002 “Criteria for Earthquake Resistant Design of Structures” gives response spectrum for different types of soil such as hard, medium and soft. An attempt has been made in this paper to study the effect of Soil-structure interaction on multi storeyed buildings with various foundation systems. Also to study the response of buildings subjected to seismic forces with Rigid and Flexible foundations. Multi storeyed buildings with fixed and flexible support subjected to seismic forces were analyzed under different soil conditions like hard, medium and soft. The buildings were analyzed by Response spectrum method using software SAP2000. The response of building frames such as Lateral deflection, Story drift, Base shear, Axial force and Column moment values for all building frames were presented in this paper.

  5. Microbiomes structure and diversity in different horizons of full soil profiles

    Science.gov (United States)

    Chernov, Timofey; Tkhakakhova, Azida; Zhelezova, Alena; Semenov, Mikhail; Kutovaya, Olga

    2017-04-01

    Topsoil is a most common object for soil metagenomic studies; sometimes soil profile is being formally split in layers by depth. However, Russian Soil Science School formulated the idea of soil profile as a complex of soil horizons, which can differ in their properties and genesis. In this research we analyzed 57 genetic soil horizons of 8 different soils from European part of Russia: Albeluvisol, Greyzemic Phaeozem, three Chermozems (different land use - till, fallow, wind-protecting tree line), Rhodic Cambisol, Haplic Kastanozem and Salic Solonetz (WRB classification). Sampling was performed from all genetic horizons in each soil profile starting from topsoil until subsoil. Total DNA was extracted and 16S rRNA sequencing was provided together with chemical analysis of soil (pH measurement, C and N contents, etc.). Structure and diversity of prokaryotic community are significantly different in those soil horizons, which chemical properties and processes of origin are contrasting with nearest horizons: Na-enriched horizon of Solonetz, eluvial horizon of Albeluvisol, plough pan of Agrochernozem. Actinobacteria were abundant in top horizons of soils in warm and dry climate, while Acidobacteria had the highest frequency in soils of moist and cold regions. Concerning Archaea, Thaumarchaeota prevailed in all studied soils. Their rate was higher in microbiomes of upper horizons of steppe soils and it was reducing with depth down the profile. Prokaryotic communities in Chernozems were clustered by soil horizons types: microbiomes of A (organic topsoil) and B (mineral) horizons formed non-overlapping clusters by principal component analysis, cluster formed by prokaryotic communities of transitional soil horizons (AB) take place between clusters of A and B horizons. Moreover, prokaryotic communities of A horizons differ from each other strongly, while microbiomes of B horizons formed a narrow small cluster. It must be explaned by more diverse conditions in upper A horizons

  6. Soil-Borne Microbial Functional Structure across Different Land Uses

    NARCIS (Netherlands)

    Kuramae, E.E.; Zhou, J.Z.; Kowalchuk, G.A.; van Veen, J.A..

    2014-01-01

    Land use change alters the structure and composition of microbial communities. However, the links between environmental factors and microbial functions are not well understood. Here we interrogated the functional structure of soil microbial communities across different land uses. In a multivariate

  7. Soil-borne microbial functional structure across different land uses

    NARCIS (Netherlands)

    Kuramae, Eiko E; Zhou, Jizhong Z; Kowalchuk, George A; van Veen, Johannes A

    2014-01-01

    Land use change alters the structure and composition of microbial communities. However, the links between environmental factors and microbial functions are not well understood. Here we interrogated the functional structure of soil microbial communities across different land uses. In a multivariate

  8. Changes in the Structure of a Nigerian Soil under Different Land Management Practices

    Directory of Open Access Journals (Sweden)

    Joshua Olalekan Ogunwole

    2015-06-01

    Full Text Available Quantification of soil physical quality (SPQ and pore size distribution (PSD can assist understanding of how changes in land management practices influence dynamics of soil structure, and this understanding could greatly improve the predictability of soil physical behavior and crop yield. The objectives of this study were to measure the SPQ index under two different land management practices (the continuous arable cropping system and natural bush fallow system, and contrast the effects of these practices on the structure of PSD using soil water retention data. Soil water retention curves obtained from a pressure chamber were fitted to van Genuchten’s equation, setting m (= 1-1/n. Although values for soil bulk density were high, soils under the continuous arable cropping system had good SPQ, and maintained the capacity to support root development. However, soils under the natural bush fallow system had a worse structure than the continuous arable system, with restrictions in available water capacity. These two management systems had different PSDs. Results showed the inferiority of the natural bush fallow system with no traffic restriction (which is the common practice in relation to the continuous arable cropping system in regard to physical quality and structure.

  9. [Community structure of soil fauna in Eucalyptus grandis plantations at different slope locations].

    Science.gov (United States)

    Zhao, Yu; Zhong, Yu; Zhang, Jian; Yang, Wan-qin

    2010-09-01

    To understand the effects of slope location on the community structure of soil fauna in Eucalyptus grandis plantation, an investigation was made on the soil fauna in 3 E. grandis plantations at different slope locations in the hilly area of Sichuan Province from January to October 2009. A total of 39,2762 individuals were observed, belonging to 146 groups, 7 phyla, 16 classes, and 31 orders. The community composition, trophic group, diversity, and seasonal dynamics of soil fauna in the plantations all varied with slope. The abundance of macro-fauna, xeric meso- and micro-fauna, saprophagous macro-fauna, and omnivorous xeric meso- and micro-fauna increased with the decrease of slope, indicating that soil fauna had sensitive responses to the soil environmental factors affected by slope. Significant differences in the diversity of soil saprophagous macro-fauna and hygrophilous meso- and micro-fauna were observed at different slope locations, suggesting that these two faunal groups could be used as the indicators of the habitat heterogeneity of E. grandis plantations at different slope. Overall, slope location had definite effects on the community structure and distribution of soil fauna in the E. grandis plantations, but the effects were not statistically significant.

  10. Experimental research on the structural characteristics of high organic soft soil in different deposition ages

    Science.gov (United States)

    Liu, Fei; Lin, Guo-he

    2018-03-01

    High organic soft soil, which is distributed at Ji Lin province in China, has been studied by a lot of scholars. In the paper, structural characteristics with different deposition ages have been researched by experimental tests. Firstly, the characteristics of deposition age, degree of decompositon, high-pressure consolidation and microstructure have been measured by a series of tests. Secondly, structural strengths which were deposited in different ages, have been carried out to test the significant differences of stress-strain relations between remoulded and undisturbed high organic soft soil samples. Results showed that high organic soft soil which is deposited at different ages will influence its structural characteristics.

  11. Bacterial community structure at the microscale in two different soils

    Czech Academy of Sciences Publication Activity Database

    Michelland, R.; Thioulouse, J.; Kyselková, Martina; Grundmann, G.L.

    2016-01-01

    Roč. 72, č. 3 (2016), s. 717-724 ISSN 0095-3628 Institutional support: RVO:60077344 Keywords : abundancy-occupancy relationship * bacteria community structure * frequency-occupancy relationship * microscale in soil * soil microbial diversity * soil structure Subject RIV: EH - Ecology, Behaviour Impact factor: 3.630, year: 2016

  12. A study on soil structure

    NARCIS (Netherlands)

    Schuylenborgh, van J.

    1947-01-01

    As soils differ in capacity to form a structure, it is necessary to distinguish between intrinsic structure and actual structure. Intrinsic structure is the capacity of a soil to form a certain structure. Actual structure is the structure of the soil at a certain moment.

    Using experiments and

  13. Soil structural behaviour of flooded soils

    International Nuclear Information System (INIS)

    Taboada, M.A.

    2004-01-01

    The objectives of this presentation are to: identify factors determining of the structural behaviour of flooded soils, as compared to those acting in upland soils; analyse the influence of reductive processes on aggregate stabilising agents; discuss mechanisms of structural deterioration and recovery during the flooding-drying cycle, on the basis of a case study: cattle trampling effects in the flooding Pampa of Argentina. Flooded soils, now known as Hydric soils, are characteristic of wetlands and irrigated fields cropped to rice (paddy soils). In them, water covers the soil, or is present either at or near the surface of the soil all year or for varying periods of time during the year. Hydric soils belong to different taxa of the FAO-UNESCO Soil Map (2000). Fluvisols, Planosols and Gleysols are widespread distributed in the globe. The generation of redoximorphic features is due to different causes in each of them. Fluvisols are covered part of the year by surface water from river overflows; Planosols are soils having an impervious Bt horizon, supporting perched water during short periods; and Gleysols are soils affected by stagnant water tables during long periods

  14. [Community structure of soil meso- and micro-fauna in different habitats of urbanized region].

    Science.gov (United States)

    Qin, Zhong; Zhang, Jia-en; Li, Qing-fang

    2009-12-01

    Investigations were made in May, June, and November 2007 and January 2008 to study the structural characteristics and their seasonal variations of soil meso- and micro-fauna communities in six habitats of three land use types (forest land, constructed grassland and farmland) in Tianhe District of Guangzhou City. The horizontal spatial distribution of soil fauna differed with habitat. During the investigation periods, the Botanical Garden of South China Agricultural University had the highest individual number (1286) of soil mesa- and micro-fauna, while the farmland, especially in the Fenghuang Street area, had the lowest number of individuals and groups. The seasonal variation of the individual number was in order of autumn (1815) > spring (1623) > winter (1365) > summer (1276). Hierarchical clustering and detrended correspondence analysis also showed that the community composition of soil meso- and micro-fauna in different habitats exhibited distinct seasonal variation. In the same seasons, the community structure and composition of soil meso- and micro-fauna in different habitats were correlated to the degrees of human interferences and the properties of soil environment.

  15. Dynamical soil-structure interactions: influence of soil behaviour nonlinearities

    International Nuclear Information System (INIS)

    Gandomzadeh, Ali

    2011-01-01

    The interaction of the soil with the structure has been largely explored the assumption of material and geometrical linearity of the soil. Nevertheless, for moderate or strong seismic events, the maximum shear strain can easily reach the elastic limit of the soil behavior. Considering soil-structure interaction, the nonlinear effects may change the soil stiffness at the base of the structure and therefore energy dissipation into the soil. Consequently, ignoring the nonlinear characteristics of the dynamic soil-structure interaction (DSSI) this phenomenon could lead to erroneous predictions of structural response. The goal of this work is to implement a fully nonlinear constitutive model for soils into a numerical code in order to investigate the effect of soil nonlinearity on dynamic soil structure interaction. Moreover, different issues are taken into account such as the effect of confining stress on the shear modulus of the soil, initial static condition, contact elements in the soil-structure interface, etc. During this work, a simple absorbing layer method based on a Rayleigh/Caughey damping formulation, which is often already available in existing Finite Element softwares, is also presented. The stability conditions of the wave propagation problems are studied and it is shown that the linear and nonlinear behavior are very different when dealing with numerical dispersion. It is shown that the 10 points per wavelength rule, recommended in the literature for the elastic media is not sufficient for the nonlinear case. The implemented model is first numerically verified by comparing the results with other known numerical codes. Afterward, a parametric study is carried out for different types of structures and various soil profiles to characterize nonlinear effects. Different features of the DSSI are compared to the linear case: modification of the amplitude and frequency content of the waves propagated into the soil, fundamental frequency, energy dissipation in

  16. Methane production potential and microbial community structure for different forest soils

    Science.gov (United States)

    Matsumoto, Y.; Ueyama, M.; Kominami, Y.; Endo, R.; Tokumoto, H.; Hirano, T.; Takagi, K.; Takahashi, Y.; Iwata, H.; Harazono, Y.

    2017-12-01

    Forest soils are often considered as a methane (CH4) sink, but anaerobic microsites potentially decrease the sink at the ecosystem scale. In this study, we measured biological CH4 production potential of soils at various ecosystems, including upland forests, a lowland forest, and a bog, and analyzed microbial community structure using 16S ribosomal RNA (rRNA) genes. Three different types of soil samples (upland, bank of the stream, and center of the stream) were collected from Yamashiro forest meteorology research site (YMS) at Kyoto, Japan, on 11 May 2017. The soils were incubated at dark and anaerobic conditions under three different temperatures (37°C, 25°C, and 10°C) from 9 June 2017. The upland soils emitted CH4 with largest yields among the three soils at 37°C and 25°C, although no CH4 emission was observed at 10°C. For all temperature ranges, the emission started to increase with a 14- to 20-days lag after the start of the incubation. The lag indicates a slow transition to anaerobic conditions; as dissolved oxygen in water decreased, the number and/or activity of anaerobic bacteria like methanogens increased. The soils at the bank and center of the stream emitted CH4 with smaller yields than the upland soils in the three temperature ranges. The microbial community analyses indicate that methanogenic archaea presented at the three soils including the aerobic upland soil, but compositions of methanogenic archaea were different among the soils. In upland soils, hydrogenotrophic methanogens, such as Methanobacterium and Methanothermobacter, consisted almost all of the total methanogen detected. In the bank and center of the stream, soils contained approximately 10-25% of acetoclastic methanogens, such as Methanosarcina and Methanosaeta, among the total methanogen detected. Methanotrophs, a genus of Methanobacteriaceae, was appeared in the all types of soils. We will present results from same incubation and 16S rRNA analyses for other ecosystems, including

  17. Uncertainty in soil-structure interaction analysis arising from differences in analytical techniques

    International Nuclear Information System (INIS)

    Maslenikov, O.R.; Chen, J.C.; Johnson, J.J.

    1982-07-01

    This study addresses uncertainties arising from variations in different modeling approaches to soil-structure interaction of massive structures at a nuclear power plant. To perform a comprehensive systems analysis, it is necessary to quantify, for each phase of the traditional analysis procedure, both the realistic seismic response and the uncertainties associated with them. In this study two linear soil-structure interaction techniques were used to analyze the Zion, Illinois nuclear power plant: a direct method using the FLUSH computer program and a substructure approach using the CLASSI family of computer programs. In-structure response from two earthquakes, one real and one synthetic, was compared. Structure configurations from relatively simple to complicated multi-structure cases were analyzed. The resulting variations help quantify uncertainty in structure response due to analysis procedures

  18. Relating soil microbial activity to water content and tillage-induced differences in soil structure

    DEFF Research Database (Denmark)

    Schjønning, Per; Thomsen, Ingrid Kaag; Petersen, Søren O

    2011-01-01

    Several studies have identified optima in soil water content for aerobic microbial activity, and this has been ascribed to a balance between gas and solute diffusivity as limiting processes. We investigated the role of soil structure, as created by different tillage practices (moldboard ploughing......, MP, or shallow tillage, ST), in regulating net nitrification, applied here as an index of aerobic microbial activity. Intact soil cores were collected at 0–4 and 14–18 cm depth from a fine sandy (SAND) and a loamy (LOAM) soil. The cores were drained to one of seven matric potentials ranging from − 15...... content to a maximum and then decreased. This relationship was modelled with a second order polynomium. Model parameters did not show any tillage effect on the optimum water content, but the optimum coincided with a lower matric potential in ST (SAND: − 140 to –197 hPa; LOAM: − 37 to − 65 hPa) than in MP...

  19. Soil structural quality assessment for soil protection regulation

    Science.gov (United States)

    Johannes, Alice; Boivin, Pascal

    2017-04-01

    Soil quality assessment is rapidly developing worldwide, though mostly focused on the monitoring of arable land and soil fertility. Soil protection regulations assess soil quality differently, focusing on priority pollutants and threshold values. The soil physical properties are weakly considered, due to lack of consensus and experimental difficulties faced with characterization. Non-disputable, easy to perform and inexpensive methods should be available for environmental regulation to be applied, which is unfortunately not the case. As a consequence, quantitative soil physical protection regulation is not applied, and inexpensive soil physical quality indicators for arable soil management are not available. Overcoming these limitations was the objective of a research project funded by the Swiss federal office for environment (FOEN). The main results and the perspectives of application are given in this presentation. A first step of the research was to characterize soils in a good structural state (reference soils) under different land use. The structural quality was assessed with field expertise and Visual Evaluation of the Soil Structure (VESS), and the physical properties were assessed with Shrinkage analysis. The relationships between the physical properties and the soil constituents were linear and highly determined. They represent the reference properties of the corresponding soils. In a second step, the properties of physically degraded soils were analysed and compared to the reference properties. This allowed defining the most discriminant parameters departing the different structure qualities and their threshold limits. Equivalent properties corresponding to these parameters but inexpensive and easy to determine were defined and tested. More than 90% of the samples were correctly classed with this method, which meets, therefore, the requirements for practical application in regulation. Moreover, result-oriented agri-environmental schemes for soil quality

  20. [Population structure of soil arthropod in different age Pinus massoniana plantations].

    Science.gov (United States)

    Tan, Bo; Wu, Fu-zhong; Yang, Wan-qin; Zhang, Jian; Xu, Zhen-feng; Liu, Yang; Gou, Xiao-lin

    2013-04-01

    An investigation was conducted on the population structure of soil arthropod community in the 3-, 8-, 14-, 31-, and 40-years old Pinus massoniana plantations in the upper reaches of the Yangtze River in spring (May) and autumn (October), 2011, aimed to search for the scientific management of the plantation. A total of 4045 soil arthropods were collected, belonging to 57 families. Both the individual density and the taxonomic group number of the soil arthropod community decreased obviously with increasing soil depth, and this trend increased with increasing stand age. The dominant groups and ordinary groups of the soil arthropod community varied greatly with the stand age of P. massoniana plantation, and a significant difference (Parthropod community, and the similarity index of the soil arthropod community was lower. The individual density, taxonomic group number, and diversity of soil arthropod community were the highest in 8-years old P. massoniana plantation, and then, decreased obviously with increasing stand age. It was suggested that the land fertility of the P. massoniana plantations could be degraded with increasing stand age, and it would be appropriate to make artificial regulation and restoration in 8-years old P. massoniana plantation.

  1. Spatial structure of soil properties at different scales of Mt. Kilimanjaro, Tanzania

    Science.gov (United States)

    Kühnel, Anna; Huwe, Bernd

    2013-04-01

    Soils of tropical mountain ecosystems provide important ecosystem services like water and carbon storage, water filtration and erosion control. As these ecosystems are threatened by global warming and the conversion of natural to human-modified landscapes, it is important to understand the implications of these changes. Within the DFG Research Unit "Kilimanjaro ecosystems under global change: Linking biodiversity, biotic interactions and biogeochemical ecosystem processes", we study the spatial heterogeneity of soils and the available water capacity for different land use systems. In the savannah zone of Mt. Kilimanjaro, maize fields are compared to natural savannah ecosystems. In the lower montane forest zone, coffee plantations, traditional home gardens, grasslands and natural forests are studied. We characterize the soils with respect to soil hydrology, emphasizing on the spatial variability of soil texture and bulk density at different scales. Furthermore soil organic carbon and nitrogen, cation exchange capacity and the pH-value are measured. Vis/Nir-Spectroscopy is used to detect small scale physical and chemical heterogeneity within soil profiles, as well as to get information of soil properties on a larger scale. We aim to build a spectral database for these soil properties for the Kilimanjaro region in order to get rapid information for geostatistical analysis. Partial least square regression with leave one out cross validation is used for model calibration. Results for silt and clay content, as well as carbon and nitrogen content are promising, with adjusted R² ranging from 0.70 for silt to 0.86 for nitrogen. Furthermore models for other nutrients, cation exchange capacity and available water capacity will be calibrated. We compare heterogeneity within and across the different ecosystems and state that spatial structure characteristics and complexity patterns in soil parameters can be quantitatively related to biodiversity and functional diversity

  2. SOIL STRUCTURE INTERACTION EFFECTS ON MULTISTOREY R/C STRUCTURES

    Directory of Open Access Journals (Sweden)

    Muberra ESER AYDEMIR

    2013-01-01

    Full Text Available This paper addresses the behavior of multistorey structures considering soil structure interaction under earthquake excitation. For this purpose, sample 3, 6, 9 storey RC frames are designed based on Turkish Seismic Design Code and analyzed in time domain with incremental dynamic analysis. Strength reduction factors are investigated for generated sample plane frames for 64 different earthquake motions recorded on different site conditions such as rock, stiff soil, soft soil and very soft soil. According to the analysis result, strength reduction factors of sample buildings considering soil structure interaction are found to be almost always smaller than design strength reduction factors given in current seismic design codes, which cause an unsafe design and nonconservative design forces.

  3. A long-term soil structure observatory for post-compaction soil structure evolution: design and initial soil structure recovery observations

    Science.gov (United States)

    Keller, Thomas; Colombi, Tino; Ruiz, Siul; Grahm, Lina; Reiser, René; Rek, Jan; Oberholzer, Hans-Rudolf; Schymanski, Stanislaus; Walter, Achim; Or, Dani

    2016-04-01

    Soil compaction due to agricultural vehicular traffic alters the geometrical arrangement of soil constituents, thereby modifying mechanical properties and pore spaces that affect a range of soil hydro-ecological functions. The ecological and economic costs of soil compaction are dependent on the immediate impact on soil functions during the compaction event, and a function of the recovery time. In contrast to a wealth of soil compaction information, mechanisms and rates of soil structure recovery remain largely unknown. A long-term (>10-yr) soil structure observatory (SSO) was established in 2014 on a loamy soil in Zurich, Switzerland, to quantify rates and mechanisms of structure recovery of compacted arable soil under different post-compaction management treatments. We implemented three initial compaction treatments (using a two-axle agricultural vehicle with 8 Mg wheel load): compaction of the entire plot area (i.e. track-by-track), compaction in wheel tracks, and no compaction. After compaction, we implemented four post-compaction soil management systems: bare soil (BS), permanent grass (PG), crop rotation without mechanical loosening (NT), and crop rotation under conventional tillage (CT). BS and PG provide insights into uninterrupted natural processes of soil structure regeneration under reduced (BS) and normal biological activity (PG). The two cropping systems (NT and CT) enable insights into soil structure recovery under common agricultural practices with minimal (NT) and conventional mechanical soil disturbance (CT). Observations include periodic sampling and measurements of soil physical properties, earthworm abundance, crop measures, electrical resistivity and ground penetrating radar imaging, and continuous monitoring of state variables - soil moisture, temperature, CO2 and O2 concentrations, redox potential and oxygen diffusion rates - for which a network of sensors was installed at various depths (0-1 m). Initial compaction increased soil bulk density

  4. Uncertainty in soil-structure interaction analysis of a nuclear power plant due to different analytical techniques

    International Nuclear Information System (INIS)

    Chen, J.C.; Chun, R.C.; Goudreau, G.L.; Maslenikov, O.R.; Johnson, J.J.

    1984-01-01

    This paper summarizes the results of the dynamic response analysis of the Zion reactor containment building using three different soil-structure interaction (SSI) analytical procedures: the substructure method, CLASSI; the equivalent linear finite element approach, ALUSH and the nonlinear finite element procedure, DYNA3D. Uncertainties in analyzing a soil-structure system due to SSI analysis procedures were investigated. Responses at selected locations in the structure were compared: peak accelerations and response spectra

  5. Effects of imidacloprid on soil microbial communities in different saline soils.

    Science.gov (United States)

    Zhang, Qingming; Xue, Changhui; Wang, Caixia

    2015-12-01

    The effects of imidacloprid in the soil environment are a worldwide concern. However, the impact of imidacloprid on soil microorganisms under salt stress is almost unknown. Therefore, an indoor incubation test was performed, and the denaturing gradient gel electrophoresis (DGGE) approach was used to determine the response of different saline soil bacterial and fungal community structures to the presence of imidacloprid (0.4, 2, 10 mg kg(-1)). The results showed that the soil bacterial diversity slightly declined with increasing imidacloprid concentration in soils with low salinity. In moderately saline soils, a new band in the DGGE profile suggested that imidacloprid could improve the soil bacterial diversity to some degree. An analysis of variance indicated that the measured soil bacterial diversity parameters were significantly affected by dose and incubation time. Compared with the control, the soil fungal community structure showed no obvious changes in low and moderately saline soils treated with imidacloprid. The results of these observations provide a basic understanding of the potential ecological effects of imidacloprid on different microorganisms in saline soils.

  6. Abundance and Structure of African Baobab (Adansonia digitata across Different Soil Types in Gonarezhou National Park, Zimbabwe

    Directory of Open Access Journals (Sweden)

    Clayton Mashapa

    2013-01-01

    Full Text Available This study investigated the abundance and structure of African baobab (Adansonia digitata across soil group strata in Gonarezhou National Park, Zimbabwe. The study was based on a stratified random sampling design composed of the following soil group substrates: (i granophyres, (ii malvernia, and (iii rhyolite. Belt transects of 0.3×0.1 km were randomly laid across soil group. Baobab abundance and population structure were determined from the density and size class distribution, respectively. There were significant differences in plant height and plant density across Gonarezhou soil groups. Study sites on granophyres derived soil group indicated viable abundance and recruitment of baobab population. Whereas the study highlighted a concern over the unbalanced size structure distribution of baobab population on malvernia derived soil group, our results indicated that baobabs are in danger of extirpation on malvernia derived soil group. Baobab community in Gonarezhou tends to occur more densely along environmental gradient of soil group type as influenced by the underlying geological soil substrate of granophyres. Malvernia derived soil group is likely less ideal for baobab recruitment.

  7. Afforestation alters community structure of soil fungi.

    Science.gov (United States)

    Carson, Jennifer K; Gleeson, Deirdre B; Clipson, Nicholas; Murphy, Daniel V

    2010-07-01

    Relatively little is known about the effect of afforestation on soil fungal communities. This study demonstrated that afforestation altered fungal community structure and that changes were correlated to pools of soil C. Pasture at three locations on the same soil type was afforested with Eucalyptus globulus or Pinus pinaster. The structure of fungal communities under the three land uses was measured after 13y using automated ribosomal intergenic spacer analysis (ARISA). Afforestation significantly altered the structure of fungal communities. The effect of location on the structure of fungal communities was limited to pasture soils; although these contained the same plant species, the relative composition of each species varied between locations. Differences in the structure of fungal communities between pasture, E. globulus and P. pinaster were significantly correlated with changes in the amount of total organic C and microbial biomass-C in soil. Afforestation of patches of agricultural land may contribute to conserving soil fungi in agricultural landscapes by supporting fungal communities with different composition to agricultural soils. Copyright © 2010 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  8. Differences in microbial community structure and nitrogen cycling in natural and drained tropical peatland soils.

    Science.gov (United States)

    Espenberg, Mikk; Truu, Marika; Mander, Ülo; Kasak, Kuno; Nõlvak, Hiie; Ligi, Teele; Oopkaup, Kristjan; Maddison, Martin; Truu, Jaak

    2018-03-16

    Tropical peatlands, which play a crucial role in the maintenance of different ecosystem services, are increasingly drained for agriculture, forestry, peat extraction and human settlement purposes. The present study investigated the differences between natural and drained sites of a tropical peatland in the community structure of soil bacteria and archaea and their potential to perform nitrogen transformation processes. The results indicate significant dissimilarities in the structure of soil bacterial and archaeal communities as well as nirK, nirS, nosZ, nifH and archaeal amoA gene-possessing microbial communities. The reduced denitrification and N 2 -fixing potential was detected in the drained tropical peatland soil. In undisturbed peatland soil, the N 2 O emission was primarily related to nirS-type denitrifiers and dissimilatory nitrate reduction to ammonium, while the conversion of N 2 O to N 2 was controlled by microbes possessing nosZ clade I genes. The denitrifying microbial community of the drained site differed significantly from the natural site community. The main reducers of N 2 O were microbes harbouring nosZ clade II genes in the drained site. Additionally, the importance of DNRA process as one of the controlling mechanisms of N 2 O fluxes in the natural peatlands of the tropics revealed from the results of the study.

  9. Nonlinear seismic soil-structure interaction analysis of nuclear power plant structures

    International Nuclear Information System (INIS)

    Khanna, J.K.; Setlur, A.V.; Pathak, D.V.

    1977-01-01

    The heterogeneous and nonlinear soil medium and the detailed three-dimensional structure are synthesized to determine the seismic response to soil-structure systems. The approach is particularly attractive in a design office environment since it: a) leads to interactive motion at the soil-structure interface; b) uses existing public domain programs such as SAPIV, LUSH and FLUSH with marginal modifications; and c) meets current regulatory requirements for soil-structure interaction analysis. Past methods differ from each other depending on the approach adopted for soil and structure representations and procedures for solving the governing differential equations. Advantages and limitations of these methods are reviewed. In the current approach, the three-dimensional structure is represented by the dynamic characteristics of its fixed base condition. This representation is ideal when structures are designed to be within elastic range. An important criterion is the design of the nuclear power plant structures. Model damping coefficients are varied to reflect the damping properties of different structural component materials. The detailed structural model is systematically reduced to reflect important dynamic behavior with simultaneous storing of intermediate information for retrieval of detailed structural response. Validity of the approach has been established with simple numerical experiments. (Auth.)

  10. Feedbacks Between Soil Structure and Microbial Activities in Soil

    Science.gov (United States)

    Bailey, V. L.; Smith, A. P.; Fansler, S.; Varga, T.; Kemner, K. M.; McCue, L. A.

    2017-12-01

    Soil structure provides the physical framework for soil microbial habitats. The connectivity and size distribution of soil pores controls the microbial access to nutrient resources for growth and metabolism. Thus, a crucial component of soil research is how a soil's three-dimensional structure and organization influences its biological potential on a multitude of spatial and temporal scales. In an effort to understand microbial processes at scale more consistent with a microbial community, we have used soil aggregates as discrete units of soil microbial habitats. Our research has shown that mean pore diameter (x-ray computed tomography) of soil aggregates varies with the aggregate diameter itself. Analyzing both the bacterial composition (16S) and enzyme activities of individual aggregates showed significant differences in the relative abundances of key members the microbial communities associated with high enzyme activities compared to those with low activities, even though we observed no differences in the size of the biomass, nor in the overall richness or diversity of these communities. We hypothesize that resources and substrates have stimulated key populations in the aggregates identified as highly active, and as such, we conducted further research that explored how such key populations (i.e. fungal or bacterial dominated populations) alter pathways of C accumulation in aggregate size domains and microbial C utilization. Fungi support and stabilize soil structure through both physical and chemical effects of their hyphal networks. In contrast, bacterial-dominated communities are purported to facilitate micro- and fine aggregate stabilization. Here we quantify the direct effects fungal versus bacterial dominated communities on aggregate formation (both the rate of aggregation and the quality, quantity and distribution of SOC contained within aggregates). A quantitative understanding of the different mechanisms through which fungi or bacteria shape aggregate

  11. Soil-gas phase transport and structure parameters for soils under different management regimes and at two moisture levels

    DEFF Research Database (Denmark)

    Eden, Marie; Møldrup, Per; Schjønning, Per

    2012-01-01

    Measurements of diffusive and convective gas transport parameters can be used to describe soil functional architecture and reveal key factors for soil structure development. Undisturbed 100-cm(3) soil samples were sampled at the Long-term Research on Agricultural Systems experiment located...... displayed markedly lower D-P/D-0 values at similar air-filled porosity, illustrating soil structure effects on D-P/D-0. The Currie tortuosity-connectivity parameter, X=Log(D-P/D-0)/Log(epsilon), decreased with increasing bulk density in the intact samples at both moisture conditions, suggesting less...

  12. Community Structure of Active Aerobic Methanotrophs in Red Mangrove (Kandelia obovata) Soils Under Different Frequency of Tides.

    Science.gov (United States)

    Shiau, Yo-Jin; Cai, Yuanfeng; Lin, Yu-Te; Jia, Zhongjun; Chiu, Chih-Yu

    2018-04-01

    Methanotrophs are important microbial communities in coastal ecosystems. They reduce CH 4 emission in situ, which is influenced by soil conditions. This study aimed to understand the differences in active aerobic methanotrophic communities in mangrove forest soils experiencing different inundation frequency, i.e., in soils from tidal mangroves, distributed at lower elevations, and from dwarf mangroves, distributed at higher elevations. Labeling of pmoA gene of active methanotrophs using DNA-based stable isotope probing (DNA-SIP) revealed that methanotrophic activity was higher in the dwarf mangrove soils than in the tidal mangrove soils, possibly because of the more aerobic soil conditions. Methanotrophs affiliated with the cluster deep-sea-5 belonging to type Ib methanotrophs were the most dominant methanotrophs in the fresh mangrove soils, whereas type II methanotrophs also appeared in the fresh dwarf mangrove soils. Furthermore, Methylobacter and Methylosarcina were the most important active methanotrophs in the dwarf mangrove soils, whereas Methylomonas and Methylosarcina were more active in the tidal mangrove soils. High-throughput sequencing of the 16S ribosomal RNA (rRNA) gene also confirmed similar differences in methanotrophic communities at the different locations. However, several unclassified methanotrophic bacteria were found by 16S rRNA MiSeq sequencing in both fresh and incubated mangrove soils, implying that methanotrophic communities in mangrove forests may significantly differ from the methanotrophic communities documented in previous studies. Overall, this study showed the feasibility of 13 CH 4 DNA-SIP to study the active methanotrophic communities in mangrove forest soils and revealed differences in the methanotrophic community structure between coastal mangrove forests experiencing different tide frequencies.

  13. Effects of different agricultural managements in soil microbial community structure in a semi-arid Mediterranean region.

    Science.gov (United States)

    García-Orenes, Fuensanta; Morugan, Alicia; Mataix-Solera, Jorge; Scow, Kate

    2013-04-01

    Agriculture has been practiced in semi-arid Mediterranean regions for 10.000 years and in many cases these practices have been unsuitable causing land degradation for millennium and an important loss of soil quality. The land management can provide solutions to find the best agricultural practices in order to maintain the soil quality and get a sustainable agriculture model. Microbiological properties are the most sensitive and rapid indicators of soil perturbations and land use managements. The study of microbial community and diversity has an important interest as indicators of changes in soil quality. The main objective of this work was to asses the effect of different agricultural management practices in soil microbial community (evaluated as abundance of phospholipid fatty acids, PLFA). Four different treatments were selected, based on the most commonly practices applied by farmers in the study area, "El Teularet Experimental Station", located at the Enguera Range in the southern part of the Valencia province (eastern Spain). These treatments were: a) ploughing, b) herbicides c) mulch, using the types applied by organic farmers to develop a sustainable agriculture, such as oat straw and d) control that was established as plot where the treatment was abandonment after farming. An adjacent area with the same type of soil, but with natural vegetation was used as a standard or reference high quality soil. Soil samples were taken to evaluate the changes in microbial soil structure, analysing the abundance of PLFA. The results showed a major content of total PLFA in soils treated with oats straw, being these results similar to the content of PLFA in the soil with natural vegetation, also these soils were similar in the distribution of abundance of different PLFA studied. However, the herbicide and tillage treatments showed great differences regarding the soil used as reference (soil under natural vegetation).

  14. Applications in soil-structure interactions. Final report, June 1979

    International Nuclear Information System (INIS)

    Jhaveri, D.P.

    1979-01-01

    Complex phenomenon of soil-structure interaction was assessed. Relationships between the characteristics of the earthquake ground motions, the local soil and geologic conditions, and the response of the structures to the ground motions were studied. (I) The use of the explicit finite-difference method to study linear elastic soil-structure interaction is described. A linear two-dimensional study of different conditions that influence the dynamic compliance and scattering properties of foundations is presented. (II) The FLUSH computer code was used to compute the soil-structure interaction during SIMQUAKE 1B, an experimental underground blast excitation of a 1/12-scale model of a nuclear containment structure. Evaluation was performed using transient excitation, applied to a finite-difference grid. Dynamic foundation properties were studied. Results indicate that the orientation and location of the source relative to the site and the wave environment at the site may be important parameters to be considered. Differences between the computed and experimental recorded responses are indicated, and reasons for the discrepancy are suggested. (III) A case study that examined structural and ground response data tabulated and catalogued from tests at the Nevada Test Site for its applicability to the soil-structure interaction questions of interest is presented. Description, methods, and evaluation of data on soil-structure interaction from forced vibration tests are presented. A two-dimensional finite-difference grid representing a relatively rigid structure resting on uniform ground was analyzed and monitored. Fourier spectra of monitored time histories were also evaluated and are presented. Results show clear evidence of soil-structure interaction and significant agreement with theory. 128 figures, 18 tables

  15. Soil-structure interaction including nonlinear soil

    OpenAIRE

    Gicev, Vlado

    2008-01-01

    There are two types of models of soil-structure system depending upon the rigidity of foundation: models with rigid and models with flexible foundation. Main features of the soil-structure interaction phenomenon: -wave scattering, -radiation damping, -reduction of the system frequencies. In this presentation, the influence of interaction on the development of nonlinear zones in the soil is studied.

  16. Soil-structure interaction analysis by Green function

    International Nuclear Information System (INIS)

    Muto, Kiyoshi; Kobayashi, Toshio; Nakahara, Mitsuharu.

    1985-01-01

    Using the method of discretized Green function which had been suggested by the authors, the parametric study of the effects of base mat foundation thickness and soil stiffness were conducted. There was no upper structure effects from the response and reaction stress of the soil by employing different base mat foundation thicknesses. However, the response stress of base mat itself had considerable effect on the base mat foundation stress. The harder the soil, became larger accelerations, and smaller displacements on the upper structure. The upper structure lines of force were directed onto the soil. In the case of soft soil, the reaction soil stress were distributed evenly over the entire reactor building area. Common characteristics of all cases, in-plane shear deformation of the upper floor occured and in-plane acceleration and displacement at the center of the structure become larger. Also, the soil stresses around the shield wall of the base mat foundation became large cecause of the effect of the shield wall bending. (Kubozono, M.)

  17. Structure-soil-structure interaction of nuclear structures

    International Nuclear Information System (INIS)

    Snyder, M.D.; Shaw, D.E.; Hall, J.R. Jr.

    1975-01-01

    Structure-to-structure interaction resulting from coupling of the foundations through the soil has traditionally been neglected in the seismic analysis of nuclear power plants. This paper examines the phenomenon and available methods of analytical treatment, including finite element and lumped parameter methods. Finite element techniques have lead to the treatment of through soil coupling of structural foundations using two dimensional plane strain models owing to the difficulty of considering three dimensional finite element models. The coupling problem is treated by means of a lumped parameter model derived from elastic half-space considerations. Consequently, the method is applicable to the interaction of any number of foundations and allows the simultaneous application of tri-directional excitation. The method entails the idealization of interacting structures as lumped mass/shear beams with lumped soil springs and dampers beneath each foundation plus a coupling matrix between the interacting foundations. Utilizing classical elastic half-space methods, the individual foundation soil springs and dampers may be derived, accounting for the effects of embedment and soil layering, analogous to the methods used for single soil-structure, interaction problems. The coupling matrix is derived by generating influence coefficients based on the geometric relationship of the structures using classical half-space solutions. The influence coefficients form the coupling flexibility matrix which is inverted to yield the coupling matrix for the lumped parameter model

  18. Two stage approach to dynamic soil structure interaction

    International Nuclear Information System (INIS)

    Nelson, I.

    1981-01-01

    A two stage approach is used to reduce the effective size of soil island required to solve dynamic soil structure interaction problems. The ficticious boundaries of the conventional soil island are chosen sufficiently far from the structure so that the presence of the structure causes only a slight perturbation on the soil response near the boundaries. While the resulting finite element model of the soil structure system can be solved, it requires a formidable computational effort. Currently, a two stage approach is used to reduce this effort. The combined soil structure system has many frequencies and wavelengths. For a stiff structure, the lowest frequencies are those associated with the motion of the structure as a rigid body. In the soil, these modes have the longest wavelengths and attenuate most slowly. The higher frequency deformational modes of the structure have shorter wavelengths and their effect attenuates more rapidly with distance from the structure. The difference in soil response between a computation with a refined structural model, and one with a crude model, tends towards zero a very short distance from the structure. In the current work, the 'crude model' is a rigid structure with the same geometry and inertial properties as the refined model. Preliminary calculations indicated that a rigid structure would be a good low frequency approximation to the actual structure, provided the structure was much stiffer than the native soil. (orig./RW)

  19. Nonlinear dynamic analysis of framed structures including soil-structure interaction effects

    International Nuclear Information System (INIS)

    Mahmood, M.N.; Ahmed, S.Y.

    2008-01-01

    The role of oil-structure interaction on seismic behavior of reinforced concrete structures is investigated in this paper. A finite element approach has been adopted to model the interaction system that consists of the reinforced concrete plane frame, soil deposit and interface which represents the frictional between foundation of the structure and subsoil. The analysis is based on the elasto-plastic behavior of the frame members (beams and columns) that is defined by the ultimate axial force-bending moment interaction curve, while the cap model is adopted to govern the elasto-plastic behavior of the soil material. Mohr-Coulomb failure law is used to determine the initiation of slippage at the interface, while the separation is assumed to determine the initiation of slippage at the interface, while the separation is assumed to occur when the stresses at the interface becomes tension stresses. New-Mark's Predictor-Corrector algorithm is adopted for nonlinear dynamic analysis. The main aim of present work is to evaluate the sensitivity of structures to different behavior of the soil and interface layer when subjected to an earthquake excitation. Predicted results of the dynamic analysis of the interaction system indicate that the soil-structure interaction problem can have beneficial effects on the structural behavior when different soil models (elastic and elasto-plastic) and interface conditions (perfect bond and permitted slip)are considered. (author)

  20. Soil Respiration and Bacterial Structure and Function after 17 Years of a Reciprocal Soil Transplant Experiment.

    Science.gov (United States)

    Bond-Lamberty, Ben; Bolton, Harvey; Fansler, Sarah; Heredia-Langner, Alejandro; Liu, Chongxuan; McCue, Lee Ann; Smith, Jeffrey; Bailey, Vanessa

    2016-01-01

    The effects of climate change on soil organic matter-its structure, microbial community, carbon storage, and respiration response-remain uncertain and widely debated. In addition, the effects of climate changes on ecosystem structure and function are often modulated or delayed, meaning that short-term experiments are not sufficient to characterize ecosystem responses. This study capitalized on a long-term reciprocal soil transplant experiment to examine the response of dryland soils to climate change. The two transplant sites were separated by 500 m of elevation on the same mountain slope in eastern Washington state, USA, and had similar plant species and soil types. We resampled the original 1994 soil transplants and controls, measuring CO2 production, temperature response, enzyme activity, and bacterial community structure after 17 years. Over a laboratory incubation of 100 days, reciprocally transplanted soils respired roughly equal cumulative amounts of carbon as non-transplanted controls from the same site. Soils transplanted from the hot, dry, lower site to the cooler and wetter (difference of -5°C monthly maximum air temperature, +50 mm yr-1 precipitation) upper site exhibited almost no respiratory response to temperature (Q10 of 1.1), but soils originally from the upper, cooler site had generally higher respiration rates. The bacterial community structure of transplants did not differ significantly from that of untransplanted controls, however. Slight differences in local climate between the upper and lower Rattlesnake locations, simulated with environmental control chambers during the incubation, thus prompted significant differences in microbial activity, with no observed change to bacterial structure. These results support the idea that environmental shifts can influence soil C through metabolic changes, and suggest that microbial populations responsible for soil heterotrophic respiration may be constrained in surprising ways, even as shorter- and

  1. Structure and organic matter under different soil management conditions in the center of Argentina

    International Nuclear Information System (INIS)

    Bricchi, E.

    2004-01-01

    In Central Argentina, Cordoba Province, as in different parts of the world, the equilibrium state of soil under natural condition has been modified by both the replacement of natural vegetation and by tillage. With time, these two disturbing factors have led to a new soil state whose main characteristic is an important decrease of chemical, physical and biological soil functions. The degree of these changes is directly related to soil resistance according to soil genesis. The soil organic matter and the structure of the superficial profile of soil are suitable indicators mainly for physical functions. Recently, it became necessary to look for a combination of technologies leading to an energy input throughout conservation tillage systems, soil covering and agro-chemicals which tend to improve soil quality in order to obtain a sustainable production. The removal of natural vegetation and tillage systems have caused the following effects on the first centimetres of soils: A 77 to 80% loss of organic matter during a period of about 80 years. Changes in the water stable aggregates distribution. A 77% loss of large aggregates and a 55% gain of fine aggregates. Our results would indicate that the disturbance level was higher to the natural resistance of soil. The organic carbon content in the first centimetres of soil is increased when all crop stubble remains on the field and conservationist tillage is applied. Conservation tillages are more efficient in the lower position of relief, meaning the beginning of a change of organic matter tendency that would possibly tend to new equilibrium state. On the other hand, the percentage of water stable aggregates would also be increased as consequence of a higher organic carbon content

  2. Modelling soil-water dynamics in the rootzone of structured and water-repellent soils

    Science.gov (United States)

    Brown, Hamish; Carrick, Sam; Müller, Karin; Thomas, Steve; Sharp, Joanna; Cichota, Rogerio; Holzworth, Dean; Clothier, Brent

    2018-04-01

    In modelling the hydrology of Earth's critical zone, there are two major challenges. The first is to understand and model the processes of infiltration, runoff, redistribution and root-water uptake in structured soils that exhibit preferential flows through macropore networks. The other challenge is to parametrise and model the impact of ephemeral hydrophobicity of water-repellent soils. Here we have developed a soil-water model, which is based on physical principles, yet possesses simple functionality to enable easier parameterisation, so as to predict soil-water dynamics in structured soils displaying time-varying degrees of hydrophobicity. Our model, WEIRDO (Water Evapotranspiration Infiltration Redistribution Drainage runOff), has been developed in the APSIM Next Generation platform (Agricultural Production Systems sIMulation). The model operates on an hourly time-step. The repository for this open-source code is https://github.com/APSIMInitiative/ApsimX. We have carried out sensitivity tests to show how WEIRDO predicts infiltration, drainage, redistribution, transpiration and soil-water evaporation for three distinctly different soil textures displaying differing hydraulic properties. These three soils were drawn from the UNSODA (Unsaturated SOil hydraulic Database) soils database of the United States Department of Agriculture (USDA). We show how preferential flow process and hydrophobicity determine the spatio-temporal pattern of soil-water dynamics. Finally, we have validated WEIRDO by comparing its predictions against three years of soil-water content measurements made under an irrigated alfalfa (Medicago sativa L.) trial. The results provide validation of the model's ability to simulate soil-water dynamics in structured soils.

  3. Management-induced Soil Structure Degradation: Organic Matter Depletion and Tillage

    OpenAIRE

    Kay, B.D.; Munkholm, L.J.

    2004-01-01

    Soil structure is an important element of soil quality since changes in structural characteristics can cause changes in the ability of soil to fulfil different functions and services. Emphasis in this chapter is placed on the role of soil structure in biological productivity of agroecosystems. Combinations of management practices in which the extent of the degradation of soil structure caused by one practice is balanced or exceeded by the extent of regeneration by other practices will help su...

  4. [Influence of Different Straws Returning with Landfill on Soil Microbial Community Structure Under Dry and Water Farming].

    Science.gov (United States)

    Lan, Mu-ling; Gao, Ming

    2015-11-01

    Based on rice, wheat, corn straw and rape, broad bean green stalk as the research object, using phospholipid fatty acid (PLFA) method, combining principal component analysis method to study the soil microbial quantity, distribution of flora, community structure characteristics under dry and water farming as two different cultivated land use types. The PLFA analysis results showed that: under dry farming, total PLFA quantity ranged 8.35-25.15 nmol x g(-1), showed rape > broad bean > corn > rice > wheat, rape and broad bean significantly increased total PLFA quantity by 1.18 and 1.08 times compared to the treatment without straw; PLFA quantity of bacterial flora in treatments with straws was higher than that without straw, and fungal biomass was significantly increased, so was the species richness of microbial community. Under water faming, the treatments of different straws returning with landfill have improved the PLFA quantity of total soil microbial and flora comparing with the treatment without straw, fungi significantly increased, and species richness of microbial communities value also increased significantly. Total PLFA quantity ranged 4.04-22.19 nmol x g(-1), showed rice > corn > wheat > broad bean > rape, which in rape and broad bean treatments were lower than the treatment without straw; fungal PLFA amount in 5 kinds of straw except broad bean treatment was significantly higher than that of the treatment without straw, bacteria and total PLFA quantity in broad bean processing were significantly lower than those of other treatments, actinomycetes, G+, G- had no significant difference between all treatments; rice, wheat, corn, rape could significantly increase the soil microbial species richness index and dominance index under water faming. The results of principal component analysis showed that broad bean green stalk had the greatest impact on the microbial community structure in the dry soil, rape green stalk and wheat straw had the biggest influence on

  5. Impact of monovalent cations on soil structure. Part II. Results of two Swiss soils

    Science.gov (United States)

    Farahani, Elham; Emami, Hojat; Keller, Thomas

    2018-01-01

    In this study, we investigated the impact of adding solutions with different potassium and sodium concentrations on dispersible clay, water retention characteristics, air permeability, and soil shrinkage behaviour using two agricultural soils from Switzerland with different clay content but similar organic carbon to clay ratio. Three different solutions (including only Na, only K, and the combination of both) were added to soil samples at three different cation ratio of soil structural stability levels, and the soil samples were incubated for one month. Our findings showed that the amount of readily dispersible clay increased with increasing Na concentrations and with increasing cation ratio of soil structural stability. The treatment with the maximum Na concentration resulted in the highest water retention and in the lowest shrinkage capacity. This was was associated with high amounts of readily dispersible clay. Air permeability generally increased during incubation due to moderate wetting and drying cycles, but the increase was negatively correlated with readily dispersible clay. Readily dispersible clay decreased with increasing K, while readily dispersible clay increased with increasing K in Iranian soil (Part I of our study). This can be attributed to the different clay mineralogy of the studied soils (muscovite in Part I and illite in Part II).

  6. Microbial Community and Functional Structure Significantly Varied among Distinct Types of Paddy Soils But Responded Differently along Gradients of Soil Depth Layers

    Directory of Open Access Journals (Sweden)

    Ren Bai

    2017-05-01

    Full Text Available Paddy rice fields occupy broad agricultural area in China and cover diverse soil types. Microbial community in paddy soils is of great interest since many microorganisms are involved in soil functional processes. In the present study, Illumina Mi-Seq sequencing and functional gene array (GeoChip 4.2 techniques were combined to investigate soil microbial communities and functional gene patterns across the three soil types including an Inceptisol (Binhai, an Oxisol (Leizhou, and an Ultisol (Taoyuan along four profile depths (up to 70 cm in depth in mesocosm incubation columns. Detrended correspondence analysis revealed that distinctly differentiation in microbial community existed among soil types and profile depths, while the manifest variance in functional structure was only observed among soil types and two rice growth stages, but not across profile depths. Along the profile depth within each soil type, Acidobacteria, Chloroflexi, and Firmicutes increased whereas Cyanobacteria, β-proteobacteria, and Verrucomicrobia declined, suggesting their specific ecophysiological properties. Compared to bacterial community, the archaeal community showed a more contrasting pattern with the predominant groups within phyla Euryarchaeota, Thaumarchaeota, and Crenarchaeota largely varying among soil types and depths. Phylogenetic molecular ecological network (pMEN analysis further indicated that the pattern of bacterial and archaeal communities interactions changed with soil depth and the highest modularity of microbial community occurred in top soils, implying a relatively higher system resistance to environmental change compared to communities in deeper soil layers. Meanwhile, microbial communities had higher connectivity in deeper soils in comparison with upper soils, suggesting less microbial interaction in surface soils. Structure equation models were developed and the models indicated that pH was the most representative characteristics of soil type and

  7. Microbial Community and Functional Structure Significantly Varied among Distinct Types of Paddy Soils But Responded Differently along Gradients of Soil Depth Layers.

    Science.gov (United States)

    Bai, Ren; Wang, Jun-Tao; Deng, Ye; He, Ji-Zheng; Feng, Kai; Zhang, Li-Mei

    2017-01-01

    Paddy rice fields occupy broad agricultural area in China and cover diverse soil types. Microbial community in paddy soils is of great interest since many microorganisms are involved in soil functional processes. In the present study, Illumina Mi-Seq sequencing and functional gene array (GeoChip 4.2) techniques were combined to investigate soil microbial communities and functional gene patterns across the three soil types including an Inceptisol (Binhai), an Oxisol (Leizhou), and an Ultisol (Taoyuan) along four profile depths (up to 70 cm in depth) in mesocosm incubation columns. Detrended correspondence analysis revealed that distinctly differentiation in microbial community existed among soil types and profile depths, while the manifest variance in functional structure was only observed among soil types and two rice growth stages, but not across profile depths. Along the profile depth within each soil type, Acidobacteria , Chloroflexi , and Firmicutes increased whereas Cyanobacteria , β -proteobacteria , and Verrucomicrobia declined, suggesting their specific ecophysiological properties. Compared to bacterial community, the archaeal community showed a more contrasting pattern with the predominant groups within phyla Euryarchaeota , Thaumarchaeota , and Crenarchaeota largely varying among soil types and depths. Phylogenetic molecular ecological network (pMEN) analysis further indicated that the pattern of bacterial and archaeal communities interactions changed with soil depth and the highest modularity of microbial community occurred in top soils, implying a relatively higher system resistance to environmental change compared to communities in deeper soil layers. Meanwhile, microbial communities had higher connectivity in deeper soils in comparison with upper soils, suggesting less microbial interaction in surface soils. Structure equation models were developed and the models indicated that pH was the most representative characteristics of soil type and

  8. Changes in diversity, abundance, and structure of soil bacterial communities in Brazilian Savanna under different land use systems.

    Science.gov (United States)

    Rampelotto, Pabulo Henrique; de Siqueira Ferreira, Adão; Barboza, Anthony Diego Muller; Roesch, Luiz Fernando Wurdig

    2013-10-01

    The Brazilian Savanna, also known as "Cerrado", is the richest and most diverse savanna in the world and has been ranked as one of the main hotspots of biodiversity. The Cerrado is a representative biome in Central Brazil and the second largest biome in species diversity of South America. Nevertheless, large areas of native vegetation have been converted to agricultural land including grain production, livestock, and forestry. In this view, understanding how land use affects microbial communities is fundamental for the sustainable management of agricultural ecosystems. The aim of this work was to analyze and compare the soil bacterial communities from the Brazilian Cerrado associated with different land use systems using high throughput pyrosequencing of 16S rRNA genes. Relevant differences were observed in the abundance and structure of bacterial communities in soils under different land use systems. On the other hand, the diversity of bacterial communities was not relevantly changed among the sites studied. Land use systems had also an important impact on specific bacterial groups in soil, which might change the soil function and the ecological processes. Acidobacteria, Proteobacteria, and Actinobacteria were the most abundant groups in the Brazilian Cerrado. These findings suggest that more important than analyzing the general diversity is to analyze the composition of the communities. Since soil type was the same among the sites, we might assume that land use was the main factor defining the abundance and structure of bacterial communities.

  9. Analysing Structure Dynamics in Arable Soils using X-ray Micro-Tomography

    Science.gov (United States)

    Schlüter, S.; Weller, U.; Vogel, H.-J.

    2009-04-01

    Structure is a dynamic property of soil. It interacts with many biotic and abiotic features and controls various soil functions. We analyzed soil structure within different plots of the ''Static Fertilisation Experiment'' at the agricultural research station in Bad Lauchstaedt (Germany) using X-ray micro tomography. The aim was to investigate in how far different levels of organic carbon, increased microbial activity and enhanced plant growth affects structural properties of an arable soil. Since 106 years one plot has experienced a constant application of farmyard manure and fertilisers, whereas the other has never been fertilised in this period. Intact soil cores from the chernozem soil at the two plots were taken from a depth of 5 to 15 cm (Ap-horizon) and 35 to 45 cm (Ah-horizon) to analyse structural changes with depth and in two different seasons (spring and summer) to investigate structure dynamics. The pore structure was analysed by quantifying the mean geometrical and topological characteristics of the pore network as a function of pore size. This was done by a combination of Minkowski functionals and morphological size distibution. For small structural features close to the image resolution the results clearly depend on the applied filtering technique and segmentation thresholds. Therefore the application of different image enhancement techniques is discussed. Furthermore, a new method for an automated determination of grey value thesholds for the segmentation of CT-images into pore space and solid is developed and evaluated. We highlight the relevance of image resolution for structure analysis. Results of the structure analysis reveal that the spring samples of the ploughed layer (Ap-horizon) from the fertilised plot have significantly higher macroporosities (P connectivity of the pore network is better in the fertilised plot and the pore size distribution was found to be different, too. The differences in porosity and pore connectivity increase from

  10. Probabilistic frequency variations of structure-soil systems

    International Nuclear Information System (INIS)

    Hamilton, C.W.; Hadjian, A.H.

    1976-01-01

    During earthquakes, structure-soil systems act as filters greatly amplifying the response of equipment whose frequencies are at or near their natural frequencies. Thus, the estimation of these structure-soil system frequencies assumes significant importance both for safety and cost. Actual in-situ frequencies of structures differ from calculated frequencies due both to variations in mathematical modelling techniques and to variations of material properties. This paper studies the second source only. This variability is usually gauged by the 'worst case' analyses technique in which extreme high- and low- parameter values are assumed and the associated frequencies are used as upper and lower bounds. This approach is not entirely satisfactory because it does not provide any indication of the probability of these limits being exceeded, of the distribution between these limits, or of the level of conservation introduced into the design process. The present approach provides this additional information. The emphasis in this part is both on developing the methodology and on the results obtained. It covers both the fixed-base structure and the effects of soil-structure interaction. Empirical data on concrete proerties were obtained from previously published results. Much less is known about variability of soil properties, so the soil structure interaction coefficients are assumed to be normally distributed. As data on the variation of soil properties become available, they can be readily incorporated via the methodology developed here. (Auth.)

  11. Non-linear soil-structure interaction

    International Nuclear Information System (INIS)

    Wolf, J.P.

    1984-01-01

    The basic equation of motion to analyse the interaction of a non-linear structure and an irregular soil with the linear unbounded soil is formulated in the time domain. The contribution of the unbounded soil involves convolution integrals of the dynamic-stiffness coefficients in the time domain and the corresponding motions. As another possibility, a flexibility formulation fot the contribution of the unbounded soil using the dynamic-flexibility coefficients in the time domain, together with the direct-stiffness method for the structure and the irregular soil can be applied. As an example of a non-linear soil-structure-interaction analysis, the partial uplift of the basemat of a structure is examined. (Author) [pt

  12. Soil Retaining Structures : Development of models for structural analysis

    NARCIS (Netherlands)

    Bakker, K.J.

    2000-01-01

    The topic of this thesis is the development of models for the structural analysis of soil retaining structures. The soil retaining structures being looked at are; block revetments, flexible retaining walls and bored tunnels in soft soil. Within this context typical structural behavior of these

  13. Soil-structure Interaction in the Seismic Response of Coupled Wall-frame Structures on Pile Foundations

    International Nuclear Information System (INIS)

    Carbonari, S.; Dezi, F.; Leoni, G.

    2008-01-01

    This paper presents a study on the seismic response of coupled wall-frame structures founded on piles. A complete soil-structure interaction analysis is carried out with reference to a case study. Three different soils and seven real accelerograms are considered. Local site response analyses are performed in order to evaluate the incoming free-field motion at different depths and the ground motion amplifications. A numerical model, accounting for the pile-soil-pile interaction and for material and radiation damping, is used to evaluate the impedance matrix and the foundation input motion. The domain decomposition technique is adopted to perform time-domain seismic analyses introducing Lumped Parameter Models to take into account the impedance of the soil-structure system. Applications show that the rocking phenomena affect the behaviour of the structure by changing the base shear distribution within the wall and the frame and by increasing the structural displacements

  14. Protist community in soil: Effects of different land-use types

    DEFF Research Database (Denmark)

    Santos, Susana; Schöler, Anne; Winding, Anne

    Soil protist microorganisms represent an important part of the soil microbial community being major players in providing ecosystem services. Changes in their community structure and dynamics may influence the rate and kind of soil formation and fertility. Corroborative studies indicate that protist...... microorganisms exhibit high levels of molecular and functional diversity in soils. However, studies questioning the protist diversity in soil and their variability across different soil land-use types, have received far less attention. The purpose of our study was to obtain relative abundances of flagellate......, cilliates and amoeboid soil protists, and to relate the expected changes in community composition to space and land-use. Within the EU FP7 project EcoFINDERS, soils were collected from six long-term observatories (LTO’s) scattered around Europe, covering different climatic zones and different vegetation...

  15. Distribution of yeast complexes in the profiles of different soil types

    Science.gov (United States)

    Glushakova, A. M.; Kachalkin, A. V.; Tiunov, A. V.; Chernov, I. Yu.

    2017-07-01

    The number and taxonomic structure of the yeast complexes were investigated in the full profiles of the soddy-podzolic soil (Central Forest State Nature Biosphere Reserve), dark gray forest soil (Kaluzhskie Zaseki Reserve), and chernozem (Privolzhskaya Forest-Steppe Reserve). In all these soils, the number of yeasts was maximal (104 CFU/g) directly under the litter; it drastically decreased with the depth. However, at the depth of 120-160 cm, the number of yeasts significantly increased in all the soils; their maximum was found in the illuvial horizon of the soddy-podzolic soil. Such a statistically significant increase in the number of yeasts at a considerable depth was found for the first time. Different groups of yeasts were present in the yeast communities of different soils. The species structure of yeast communities changed little in each soil: the same species were isolated both from the soil surface and from the depth of more than 2 m. The results showed that yeasts could be used for soil bioindication on the basis of specific yeast complexes in the profiles of different soil types rather than individual indicative species.

  16. Some considerations on the dynamic structure-soil-structure interactions analysis

    International Nuclear Information System (INIS)

    Matthees, W.

    1979-01-01

    A mixed method has been developed for the approximate analysis of soil-structure or structure-soil-structure interaction problems due to earthquakes. In order to produce comparable results of interaction problems as well as for shallow and for deep soils due to the same earthquake excitation (accelerogram) situated always at the lower bedrock boundary, the analysis is performed in two steps: 1) Calculation of the complex transfer function and the response of the upper interior boundary of a layered soil-system which is connected at its top to a soil-structure-system, using the one-dimensional deconvolution. 2) By making a complete interaction analysis of the surface soil-structure-system using the interior boundary excitation of the calculated response from step 1. The depth of the soil-structure-system must be chosen large enough to exclude interaction effects down to the layered soil-system's interior boundary. (orig.)

  17. Cyanobacteria Inoculation Improves Soil Stability and Fertility on Different Textured Soils: Gaining Insights for Applicability in Soil Restoration

    Directory of Open Access Journals (Sweden)

    Sonia Chamizo

    2018-06-01

    Full Text Available Cyanobacteria are ubiquitous components of biocrust communities and the first colonizers of terrestrial ecosystems. They play multiple roles in the soil by fixing C and N and synthesizing exopolysaccharides, which increase soil fertility and water retention and improve soil structure and stability. Application of cyanobacteria as inoculants to promote biocrust development has been proposed as a novel biotechnological technique for restoring barren degraded areas and combating desertification processes in arid lands. However, previous to their widespread application under field conditions, research is needed to ensure the selection of the most suitable species. In this study, we inoculated two cyanobacterial species, Phormidium ambiguum (non N-fixing and Scytonema javanicum (N-fixing, on different textured soils (from silt loam to sandy, and analyzed cyanobacteria biocrust development and evolution of physicochemical soil properties for 3 months under laboratory conditions. Cyanobacteria inoculation led to biocrust formation in all soil types. Scanning electron microscope (SEM images showed contrasting structure of the biocrust induced by the two cyanobacteria. The one from P. ambiguum was characterized by thin filaments that enveloped soil particles and created a dense, entangled network, while the one from S. javanicum consisted of thicker filaments that grouped as bunches in between soil particles. Biocrust development, assessed by chlorophyll a content and crust spectral properties, was higher in S. javanicum-inoculated soils compared to P. ambiguum-inoculated soils. Either cyanobacteria inoculation did not increase soil hydrophobicity. S. javanicum promoted a higher increase in total organic C and total N content, while P. ambiguum was more effective in increasing total exopolysaccharide (EPS content and soil penetration resistance. The effects of cyanobacteria inoculation also differed among soil types and the highest improvement in soil

  18. Evaluation of soil structure in the framework of an overall soil quality rating

    DEFF Research Database (Denmark)

    Mueller, L; Shepherd, T G; Schindler, U

    2013-01-01

    Soil structure is an important aspect of agricultural soil quality, and its preservation and improvement are key to sustaining soil functions. Methods of overall soil quality assessment which include visual soil structure information can be useful tools for monitoring and managing the global soil...... resource. The aim of the paper is: (i) to demonstrate the role of visual quantification of soil structure within the procedure of the overall soil quality assessment by the Muencheberg Soil Quality Rating (M-SQR), (ii) to quantify the magnitude and variability of soil structure and overall M......-SQR on a number of agricultural research sites and (iii) to analyse the correlations of soil quality rating results with crop yields. We analysed visual soil structure and overall soil quality on a range of 20 experimental sites in seven countries. To assess visual soil structure we utilised the Visual Soil...

  19. [Soil meso- and micro-fauna community structures in different urban forest types in Shanghai, China.

    Science.gov (United States)

    Jin, Shi Ke; Wang, Juan Juan; Zhu, Sha; Zhang, Qi; Li, Xiang; Zheng, Wen Jing; You, Wen Hui

    2016-07-01

    Soil meso- and micro-fauna of four urban forest types in Shanghai were investigated in four months which include April 2014, July 2014, October 2014 and January 2015. A total of 2190 soil fauna individuals which belong to 6 phyla, 15 classes and 22 groups were collected. The dominant groups were Nematoda and Arcari, accounting for 56.0% and 21.8% of the total in terms of individual numbers respectively. The common groups were Enchytraeidae, Rotatoria, Collembola and Hymenoptera and they accounted for 18.7% of the total in terms of individual numbers. There was a significant difference (PMetasequoia glyptostroboides forest, the smallest in Cinnamomum camphora forest. The largest groupe number was found in near-nature forest, the smallest was found in M. glyptostroboides forest. There was obvious seasonal dynamics in each urban forest type and green space which had larger density in autumn and larger groupe number in summer and autumn. In soil profiles, the degree of surface accumulation of soil meso- and micro-fauna in C. camphora forest was higher than in other forests and the vertical distribution of soil meso- and micro-fauna in near-nature forest was relatively homogeneous in four layers. Density-group index was ranked as: near-nature forest (6.953)> C. camphora forest (6.351)> Platanus forest (6.313)>M. glyptostroboides forest (5.910). The community diversity of soil fauna in each vegetation type could be displayed preferably by this index. It could be inferred through redundancy analysis (RDA) that the soil bulk density, organic matter and total nitrogen were the main environmental factors influencing soil meso- and micro-fauna community structure in urban forest. The positive correlations occurred between the individual number of Arcari, Enchytraeidae and soil organic matter and total nitrogen, as well as between the individual number of Diptera larvae, Rotatoria and soil water content.

  20. Soil Structure - A Neglected Component of Land-Surface Models

    Science.gov (United States)

    Fatichi, S.; Or, D.; Walko, R. L.; Vereecken, H.; Kollet, S. J.; Young, M.; Ghezzehei, T. A.; Hengl, T.; Agam, N.; Avissar, R.

    2017-12-01

    Soil structure is largely absent in most standard sampling and measurements and in the subsequent parameterization of soil hydraulic properties deduced from soil maps and used in Earth System Models. The apparent omission propagates into the pedotransfer functions that deduce parameters of soil hydraulic properties primarily from soil textural information. Such simple parameterization is an essential ingredient in the practical application of any land surface model. Despite the critical role of soil structure (biopores formed by decaying roots, aggregates, etc.) in defining soil hydraulic functions, only a few studies have attempted to incorporate soil structure into models. They mostly looked at the effects on preferential flow and solute transport pathways at the soil profile scale; yet, the role of soil structure in mediating large-scale fluxes remains understudied. Here, we focus on rectifying this gap and demonstrating potential impacts on surface and subsurface fluxes and system wide eco-hydrologic responses. The study proposes a systematic way for correcting the soil water retention and hydraulic conductivity functions—accounting for soil-structure—with major implications for near saturated hydraulic conductivity. Modification to the basic soil hydraulic parameterization is assumed as a function of biological activity summarized by Gross Primary Production. A land-surface model with dynamic vegetation is used to carry out numerical simulations with and without the role of soil-structure for 20 locations characterized by different climates and biomes across the globe. Including soil structure affects considerably the partition between infiltration and runoff and consequently leakage at the base of the soil profile (recharge). In several locations characterized by wet climates, a few hundreds of mm per year of surface runoff become deep-recharge accounting for soil-structure. Changes in energy fluxes, total evapotranspiration and vegetation productivity

  1. The Vertical Structure of Urban Soils and Their Convergence Across Cities

    Science.gov (United States)

    The theoretical patterns for vertical soil structure (e.g., A-B-C ordering of horizons) are a basis for research methods and our understanding of ecosystem structure and function in general. A general understanding of how urban soils differ from non-urban soils vertically is need...

  2. Bacterial community structure and soil properties of a subarctic tundra soil in Council, Alaska.

    Science.gov (United States)

    Kim, Hye Min; Jung, Ji Young; Yergeau, Etienne; Hwang, Chung Yeon; Hinzman, Larry; Nam, Sungjin; Hong, Soon Gyu; Kim, Ok-Sun; Chun, Jongsik; Lee, Yoo Kyung

    2014-08-01

    The subarctic region is highly responsive and vulnerable to climate change. Understanding the structure of subarctic soil microbial communities is essential for predicting the response of the subarctic soil environment to climate change. To determine the composition of the bacterial community and its relationship with soil properties, we investigated the bacterial community structure and properties of surface soil from the moist acidic tussock tundra in Council, Alaska. We collected 70 soil samples with 25-m intervals between sampling points from 0-10 cm to 10-20 cm depths. The bacterial community was analyzed by pyrosequencing of 16S rRNA genes, and the following soil properties were analyzed: soil moisture content (MC), pH, total carbon (TC), total nitrogen (TN), and inorganic nitrogen (NH4+ and NO3-). The community compositions of the two different depths showed that Alphaproteobacteria decreased with soil depth. Among the soil properties measured, soil pH was the most significant factor correlating with bacterial community in both upper and lower-layer soils. Bacterial community similarity based on jackknifed unweighted unifrac distance showed greater similarity across horizontal layers than through the vertical depth. This study showed that soil depth and pH were the most important soil properties determining bacterial community structure of the subarctic tundra soil in Council, Alaska. © 2014 The Authors. FEMS Microbiology Ecology published by John Wiley & Sons Ltd on behalf of the Federation of European Microbiological Societies.

  3. Nonlinear soil-structure interaction analysis of SIMQUAKE II. Final report

    International Nuclear Information System (INIS)

    Vaughan, D.K.; Isenberg, J.

    1982-04-01

    This report describes an analytic method for modeling of soil-structure interaction (SSI) for nuclear power plants in earthquakes and discusses its application to SSI analyses of SIMQUAKE II. The method is general and can be used to simulate a three-dimensional structural geometry, nonlinear site characteristics and arbitrary input ground shaking. The analytic approach uses the soil island concept to reduce SSI models to manageable size and cost. Nonlinear constitutive behavior of the soil is represented by the nonlinear, kinematic cap model. In addition, a debonding-rebonding soil-structure interface model is utilized to represent nonlinear effects which singificantly alter structural response in the SIMQUAKE tests. STEALTH, an explicit finite difference code, is used to perform the dynamic, soil-structure interaction analyses. Several two-dimensional posttest SSI analyses of model containment structures in SIMQUAKE II are performed and results compared with measured data. These analyses qualify the analytic method. They also show the importance of including debonding-rebonding at the soil-structure interface. Sensitivity of structural response to compaction characteristics of backfill material is indicated

  4. Corrosion of Galvanized Steel Under Different Soil Moisture Contents

    OpenAIRE

    Pereira,Roseana Florentino da Costa; Oliveira,Edkarlla Sousa Dantas de; Lima,Maria Alice Gomes de Andrade; Brasil,Simone Louise Delarue Cezar

    2015-01-01

    Galvanized steel has been widely applied in different applications and the industry significantly increased its production in recent years. Some galvanized structures can be completely or partially buried, such as transmission tower footings. The corrosion of these metallic structures is related to the soil chemical and physicochemical properties, which define the aggressiveness of the environment. To assess the effect of the soil moisture on galvanized steel corrosion, a comparative study wa...

  5. Hybrid modelling of soil-structure interaction for embedded structures

    International Nuclear Information System (INIS)

    Gupta, S.; Penzien, J.

    1981-01-01

    The basic methods currently being used for the analysis of soil-structure interaction fail to properly model three-dimensional embedded structures with flexible foundations. A hybrid model for the analysis of soil-structure interaction is developed in this investigation which takes advantage of the desirable features of both the finite element and substructure methods and which minimizes their undesirable features. The hybrid model is obtained by partitioning the total soil-structure system into a nearfield and a far-field with a smooth hemispherical interface. The near-field consists of the structure and a finite region of soil immediately surrounding its base. The entire near-field may be modelled in three-dimensional form using the finite element method; thus, taking advantage of its ability to model irregular geometries, and the non-linear soil behavior in the immediate vicinity of the structure. (orig./WL)

  6. Physical-chemical and microbiological changes in Cerrado Soil under differing sugarcane harvest management systems

    Science.gov (United States)

    2012-01-01

    Background Sugarcane cultivation plays an important role in Brazilian economy, and it is expanding fast, mainly due to the increasing demand for ethanol production. In order to understand the impact of sugarcane cultivation and management, we studied sugarcane under different management regimes (pre-harvest burn and mechanical, unburnt harvest, or green cane), next to a control treatment with native vegetation. The soil bacterial community structure (including an evaluation of the diversity of the ammonia oxidizing (amoA) and denitrifying (nirK) genes), greenhouse gas flow and several soil physicochemical properties were evaluated. Results Our results indicate that sugarcane cultivation in this region resulted in changes in several soil properties. Moreover, such changes are reflected in the soil microbiota. No significant influence of soil management on greenhouse gas fluxes was found. However, we did find a relationship between the biological changes and the dynamics of soil nutrients. In particular, the burnt cane and green cane treatments had distinct modifications. There were significant differences in the structure of the total bacterial, the ammonia oxidizing and the denitrifying bacterial communities, being that these groups responded differently to the changes in the soil. A combination of physical and chemical factors was correlated to the changes in the structures of the total bacterial communities of the soil. The changes in the structures of the functional groups follow a different pattern than the physicochemical variables. The latter might indicate a strong influence of interactions among different bacterial groups in the N cycle, emphasizing the importance of biological factors in the structuring of these communities. Conclusion Sugarcane land use significantly impacted the structure of total selected soil bacterial communities and ammonia oxidizing and denitrifier gene diversities in a Cerrado field site in Central Brazil. A high impact of land use

  7. Physical-chemical and microbiological changes in Cerrado Soil under differing sugarcane harvest management systems.

    Science.gov (United States)

    Rachid, Caio T C C; Piccolo, Marisa C; Leite, Deborah Catharine A; Balieiro, Fabiano C; Coutinho, Heitor Luiz C; van Elsas, Jan Dirk; Peixoto, Raquel S; Rosado, Alexandre S

    2012-08-08

    Sugarcane cultivation plays an important role in Brazilian economy, and it is expanding fast, mainly due to the increasing demand for ethanol production. In order to understand the impact of sugarcane cultivation and management, we studied sugarcane under different management regimes (pre-harvest burn and mechanical, unburnt harvest, or green cane), next to a control treatment with native vegetation. The soil bacterial community structure (including an evaluation of the diversity of the ammonia oxidizing (amoA) and denitrifying (nirK) genes), greenhouse gas flow and several soil physicochemical properties were evaluated. Our results indicate that sugarcane cultivation in this region resulted in changes in several soil properties. Moreover, such changes are reflected in the soil microbiota. No significant influence of soil management on greenhouse gas fluxes was found. However, we did find a relationship between the biological changes and the dynamics of soil nutrients. In particular, the burnt cane and green cane treatments had distinct modifications. There were significant differences in the structure of the total bacterial, the ammonia oxidizing and the denitrifying bacterial communities, being that these groups responded differently to the changes in the soil. A combination of physical and chemical factors was correlated to the changes in the structures of the total bacterial communities of the soil. The changes in the structures of the functional groups follow a different pattern than the physicochemical variables. The latter might indicate a strong influence of interactions among different bacterial groups in the N cycle, emphasizing the importance of biological factors in the structuring of these communities. Sugarcane land use significantly impacted the structure of total selected soil bacterial communities and ammonia oxidizing and denitrifier gene diversities in a Cerrado field site in Central Brazil. A high impact of land use was observed in soil under

  8. Physical-chemical and microbiological changes in Cerrado Soil under differing sugarcane harvest management systems

    Directory of Open Access Journals (Sweden)

    Rachid Caio TCC

    2012-08-01

    Full Text Available Abstract Background Sugarcane cultivation plays an important role in Brazilian economy, and it is expanding fast, mainly due to the increasing demand for ethanol production. In order to understand the impact of sugarcane cultivation and management, we studied sugarcane under different management regimes (pre-harvest burn and mechanical, unburnt harvest, or green cane, next to a control treatment with native vegetation. The soil bacterial community structure (including an evaluation of the diversity of the ammonia oxidizing (amoA and denitrifying (nirK genes, greenhouse gas flow and several soil physicochemical properties were evaluated. Results Our results indicate that sugarcane cultivation in this region resulted in changes in several soil properties. Moreover, such changes are reflected in the soil microbiota. No significant influence of soil management on greenhouse gas fluxes was found. However, we did find a relationship between the biological changes and the dynamics of soil nutrients. In particular, the burnt cane and green cane treatments had distinct modifications. There were significant differences in the structure of the total bacterial, the ammonia oxidizing and the denitrifying bacterial communities, being that these groups responded differently to the changes in the soil. A combination of physical and chemical factors was correlated to the changes in the structures of the total bacterial communities of the soil. The changes in the structures of the functional groups follow a different pattern than the physicochemical variables. The latter might indicate a strong influence of interactions among different bacterial groups in the N cycle, emphasizing the importance of biological factors in the structuring of these communities. Conclusion Sugarcane land use significantly impacted the structure of total selected soil bacterial communities and ammonia oxidizing and denitrifier gene diversities in a Cerrado field site in Central Brazil

  9. Quantifying and modeling soil structure dynamics

    Science.gov (United States)

    Characterization of soil structure has been a topic of scientific discussions ever since soil structure has been recognized as an important factor affecting soil physical, mechanical, chemical, and biological processes. Beyond semi-quantitative soil morphology classes, it is a challenge to describe ...

  10. SSI [soil-structure interactions] and structural benchmarks

    International Nuclear Information System (INIS)

    Philippacopoulos, A.J.; Miller, C.A.; Costantino, C.J.; Graves, H.

    1986-01-01

    This paper presents the latest results of the ongoing program entitled, ''Standard Problems for Structural Computer Codes'', currently being worked on at BNL for the USNRC, Office of Nuclear Regulatory Research. During FY 1986, efforts were focussed on three tasks, namely, (1) an investigation of ground water effects on the response of Category I structures, (2) the Soil-Structure Interaction Workshop and (3) studies on structural benchmarks associated with Category I structures. The objective of the studies on ground water effects is to verify the applicability and the limitations of the SSI methods currently used by the industry in performing seismic evaluations of nuclear plants which are located at sites with high water tables. In a previous study by BNL (NUREG/CR-4588), it has been concluded that the pore water can influence significantly the soil-structure interaction process. This result, however, is based on the assumption of fully saturated soil profiles. Consequently, the work was further extended to include cases associated with variable water table depths. In this paper, results related to ''cut-off'' depths beyond which the pore water effects can be ignored in seismic calculations, are addressed. Comprehensive numerical data are given for soil configurations typical to those encountered in nuclear plant sites. These data were generated by using a modified version of the SLAM code which is capable of handling problems related to the dynamic response of saturated soils

  11. Soil aggregate and organic carbon distribution at dry land soil and paddy soil: the role of different straws returning.

    Science.gov (United States)

    Huang, Rong; Lan, Muling; Liu, Jiang; Gao, Ming

    2017-12-01

    Agriculture wastes returning to soil is one of common ways to reuse crop straws in China. The returned straws are expected to improve the fertility and structural stability of soil during the degradation of straw it selves. The in situ effect of different straw (wheat, rice, maize, rape, and broad bean) applications for soil aggregate stability and soil organic carbon (SOC) distribution were studied at both dry land soil and paddy soil in this study. Wet sieving procedures were used to separate soil aggregate sizes. Aggregate stability indicators including mean weight diameter, geometric mean diameter, mean weight of specific surface area, and the fractal dimension were used to evaluate soil aggregate stability after the incubation of straws returning. Meanwhile, the variation and distribution of SOC in different-sized aggregates were further studied. Results showed that the application of straws, especially rape straw at dry land soil and rice straw at paddy soil, increased the fractions of macro-aggregate (> 0.25 mm) and micro-aggregate (0.25-0.053 mm). Suggesting the nutrients released from straw degradation promotes the growing of soil aggregates directly and indirectly. The application of different straws increased the SOC content at both soils and the SOC mainly distributed at  0.25 and 0.25-0.053 mm aggregates with dry land soil. Rape straw in dry land and rice straw in paddy field could stabilize soil aggregates and increasing SOC contents best.

  12. Magnetic Properties of Different-Aged Chernozemic Soils

    Science.gov (United States)

    Fattakhova, Leysan; Shinkarev, Alexandr; Kosareva, Lina; Nourgaliev, Danis; Shinkarev, Aleksey; Kondrashina, Yuliya

    2016-04-01

    We investigated the magnetic properties and degree of mineral weathering in profiles of different-aged chernozemic soils derived from a uniform parent material. In this work, layer samples of virgin leached chernozem and chernozemic soils formed on the mound of archaeological earthy monument were used. The characterization of the magnetic properties was carried out on the data of the magnetometry and differential thermomagnetic analysis. The evaluation of the weathering degree was carried out on a loss on ignition, cation exchange capacity and X-ray phase analysis on the data of the original soil samples and samples of the heavy fraction of minerals. It was found that the magnetic susceptibility enhancement in humus profiles of newly formed chernozemic soils lagged significantly behind the organic matter content enhancement. This phenomenon is associated with differences in kinetic parameters of humus formation and structural and compositional transformation of the parent material. It is not enough time of 800-900 years to form a relatively "mature" magnetic profile. These findings are well consistent with the chemical kinetic model (Boyle et al., 2010) linking the formation of the soils magnetic susceptibility with the weathering of primary Fe silicate minerals. Different-aged chernozemic soils are at the first stage of formation of a magnetic profile when it is occur an active production of secondary ferrimagnetic minerals from Fe2+ released by primary minerals.

  13. Centrifuge modelling of seismic soil structure interaction effects

    International Nuclear Information System (INIS)

    Ghosh, B.; Madabhushi, S.P.G.

    2007-01-01

    Proper understanding of the role of unbounded soil in the evaluation of dynamic soil structure interaction (SSI) problem is very important for structures used in the nuclear industry. In this paper, the results from a series of dynamic centrifuge tests are reported. These tests were performed on different types of soil stratifications supporting a rigid containment structure. Test results indicate that accelerations transmitted to the structure's base are dependent on the stiffness degradation in the supporting soil. Steady build up of excess pore pressure leads to softening of the soil, which decreases the shear modulus and shear strength and subsequently changes the dynamic responses. It is also shown that the presence of the structure reduces the translational component of the input base motion and induces rocking of the structure. The test results are compared with some standard formulae used for evaluating interaction in the various building codes. It was concluded that the dynamic shear modulus values used should be representative of the site conditions and can vary dramatically due to softening. Damping values used are still very uncertain and contain many factors, which cannot be accounted in the experiments. It is emphasized that simplified design processes are important to gain an insight into the behaviour of the physical mechanism but for a complete understanding of the SSI effects sophisticated methods are necessary to account for non-linear behaviour of the soil material

  14. Soil compaction during harvest operations in five tropical soils with different textures under eucalyptus forests

    Directory of Open Access Journals (Sweden)

    Paula Cristina Caruana Martins

    Full Text Available ABSTRACT Traffic of farm machinery during harvest and logging operations has been identified as the main source of soil structure degradation in forestry activity. Soil susceptibility to compaction and the amount of compaction caused by each forest harvest operation differs according to a number of factors (such as soil strength, soil texture, kind of equipment, traffic intensity, among many others, what requires the adequate assessment of soil compaction under different traffic conditions. The objectives of this study were to determine the susceptibility to compaction of five soil classes with different textures under eucalyptus forests based on their load bearing capacity models; and to determine, from these models and the precompression stresses obtained after harvest operations, the effect of traffic intensity with different equipment in the occurrence of soil compaction. Undisturbed soil samples were collected before and after harvest operations, being then subjected to uniaxial compression tests to determine their precompression stress. The coarse-textured soils were less resistant and endured greater soil compaction. In the clayey LVd2, traffic intensity below four Forwarder passes limited compaction to a third of the samples, whereas in the sandy loam PVd all samples from the 0-3 cm layer were compacted regardless of traffic intensity. The Feller Buncher and the Clambunk presented a high potential to cause soil compaction even with only one or two passes. The use of soil load bearing capacity models and precompression stress determined after harvest and logging operations allowed insight into the soil compaction process in forestry soils.

  15. Influence of soil-structure interaction on floor response spectra

    International Nuclear Information System (INIS)

    Costantino, C.J.; Miller, C.A.; Curreri, J.R.

    1985-01-01

    A study was undertaken to investigate the influence of soil-structure interaction on floor response spectra developed in typical nuclear power plant structures. A horizontal earthquake time history, whose spectra envelops the Regulatory Guide 1.60 criteria and is scaled to a log peak acceleration, was used as input to structural models. Two different structural stick models were used, representing typical BWR and PWR facilities. By varying the structural and soil stiffness parameters, a wide range of system behaviors were investigated. Floor response spectra, required to assess equipment qualification, were of primary interest. It was found from a variation of parameter study that the interaction soil parameters, particularly radiation damping, greatly affect the nature of the calculated responses. 2 refs., 2 figs., 2 tabs

  16. Influence of soil-structure interaction on floor response spectra

    International Nuclear Information System (INIS)

    Costantino, C.J.; Miller, C.A.; Curreri, J.R.

    1985-01-01

    A study was undertaken to investigate the influence of soil-structure interaction on floor response spectra developed in typical nuclear power plant structures. A horizontal earthquake time history, whose spectra envelops the Reg. Guide 1.60 criteria and is scaled to a 1 g peak acceleration, was used as input to structural models. Two different structural stick models were used, representing typical BWR and PWR facilities. By varying the structural and soil stiffness parameters, a wide range of system behaviors were investigated. Floor response spectra, required to assess equipment qualification, were of primary interest. It was found from a variation of parameter study that the interaction soil parameters, particularly radiation damping, greatly affect the nature of the calculated responses. (orig.)

  17. Seismic sensitivity study of a generic CANDU nuclear power plant: Soil-structure interaction

    International Nuclear Information System (INIS)

    Lee, L.S.S.; Duff, C.G.

    1983-01-01

    The seismic sensitivity and capability study for a generic CANDU Plant is part of an overall development program of design standardization. The purpose of this paper is to investigate the sensitivities of structural responses and floor response spectra (FRS) to variations of structural and soil parameters. In the seismic design standardization, a wide range of soil conditions is considered and the envelopes of the resulting site spectra (soil-structure interaction effect) are then used for the design of the generic plant. The nuclear island structures considered herein have different relative stiffness and one of them has two layout/structure schemes: one is relatively flexible and the other is moderately stiff. In the preliminary phase of the seismic sensitivity study presented hereby, the soil-structure interaction seismic analysis is based on the half-space modelling (soil-spring lumped-mass) method and the response spectrum method for the seismic responses. Distinct patterns and sensitivity of the site spectrum analysis for structure schemes of different relative stiffness and for different structural elevations are observed and discussed. (orig.)

  18. Experimental and theoretical investigations of soil-structure interaction effect at HDR-reactor-building

    International Nuclear Information System (INIS)

    Wassermann, K.

    1983-01-01

    Full-scale dynamic testing on intermediate and high levels was performed at the Heissdampfreaktor (HDR) in 1979. Various types of dynamic forces were applied and response of the reactor containment structure and internal components was measured. Precalculations of dynamic behaviour and response of the structure were made through different mathematical models for the structure and the underlying soil. Soil-Structure Interaction effects are investigated and different theoretical models are compared with experimental results. In each model, the soil is represented by springs attached to the structural model. Stiffnesses of springs are calculated by different finite-element idealizations and half-space approximations. Eigenfrequencies and damping values related to interaction effects (translation, rocking, torsion) are identified from test results. The comparisons of dynamic characteristic of the soil-structure system between precalculations and test results show good agreement in general. (orig.)

  19. Analysis of Pumphouse RCC Frame Structure for Soil Structure Interaction

    OpenAIRE

    Mr A.S. Thombare; Prof. V.P. Kumbhar; Prof. A.H. Kumbhar

    2016-01-01

    When structure is built on ground some elements of structure are direct contact with soil. When loads are applied on structure internal forces are developed in both the structure as well as in soil. It results in deformation of both the components which are independent to each other. This are called soil structure interaction. The analysis is done by using (Bentley STAAD.Pro V8i Version 2007) software. The analysis carried out been pump house structure R.C.C. frame structure find ...

  20. Soil compaction: Evaluation of stress transmission and resulting soil structure

    DEFF Research Database (Denmark)

    Naveed, Muhammad; Schjønning, Per; Keller, Thomas

    strength. As soon as the applied load is lower than the aggregate strength, the mode of stress transmission is discrete as stresses were mainly transmitted through chain of aggregates. With increasing applied load soil aggregates start deforming that transformed heterogeneous soil into homogenous......, as a result stress transmission mode was shifted from discrete towards more like a continuum. Continuum-like stress transmission mode was better simulated with Boussinesq (1885) model based on theory of elasticity compared to discrete. The soil-pore structure was greatly affected by increasing applied...... and compaction-resulted soil structure at the same time. Stress transmission was quantified using both X-ray CT and Tactilus sensor mat, and soil-pore structure was quantified using X-ray CT. Our results imply that stress transmission through soil highly depends on the magnitude of applied load and aggregate...

  1. Differences in Train-induced Vibration between Hard Soil and Soft Soil

    Science.gov (United States)

    Noyori, M.; Yokoyama, H.

    2017-12-01

    Vibration and noise caused by running trains sometimes raises environmental issues. Train-induced vibration is caused by moving static and dynamic axle loads. To reduce the vibration, it is important to clarify the conditions under which the train-induced vibration increases. In this study, we clarified the differences in train-induced vibration between on hard soil and on soft soil using a numerical simulation method. The numerical simulation method we used is a combination of two analysis. The one is a coupled vibration analysis model of a running train, a track and a supporting structure. In the analysis, the excitation force of the viaduct slabs generated by a running train is computed. The other analysis is a three-dimensional vibration analysis model of a supporting structure and the ground into which the excitation force computed by the former analysis is input. As a result of the numerical simulation, the ground vibration in the area not more than 25m from the center of the viaduct is larger under the soft soil condition than that under the hard soil condition in almost all frequency ranges. On the other hand, the ground vibration of 40 and 50Hz at a point 50m from the center of the viaduct under the hard soil condition is larger than that under the soft soil condition. These are consistent with the result of the two-dimensional FEM based on a ground model alone. Thus, we concluded that these results are obtained from not the effects of the running train but the vibration characteristics of the ground.

  2. The effects of soil-structure interaction modeling techniques on in-structure response spectra

    International Nuclear Information System (INIS)

    Johnson, J.J.; Wesley, D.A.; Almajan, I.T.

    1977-01-01

    The structure considered for this investigation consisted of the reactor containment building (RCB) and prestressed concrete reactor vessel (PCRV) for a HTGR plant. A conventional lumped-mass dynamic model in three dimensions was used in the study. The horizontal and vertical response, which are uncoupled due to the symmetry of the structure, were determined for horizontal and vertical excitation. Five different site conditions ranging from competent rock to a soft soil site were considered. The simplified approach to the overall plant analysis utilized stiffness proportional composite damping with a limited amount of soil damping consistent with US NRC regulatory guidelines. Selected cases were also analyzed assuming a soil damping value approximating the theoretical value. The results from the simplified approach were compared to those determined by rigorously coupling the structure to a frequency independent half-space representation of the soil. Finally, equivalent modal damping ratios were found by matching the frequency response at a point within the coupled soil-structure system determined by solution of the coupled and uncoupled equations of motion. The basis for comparison of the aforementioned techniques was the response spectra at selected locations within the soil-structure system. Each of the five site conditions was analyzed and in-structure response spectra were generated. The response spectra were combined to form a design envelope which encompasses the entire range of site parameters. Both the design envelopes and the site-by-site results were compared

  3. Effectiveness of the GAEC cross-compliance standard Ploughing in good soil moisture conditions in soil structure protection

    Directory of Open Access Journals (Sweden)

    Maria Teresa Dell'Abate

    2011-08-01

    Full Text Available Researches have been carried out within the framework on the EFFICOND Project, focused at evaluating the effectiveness of the standards of Good Agricultural and Environmental Conditions (GAECs established for Cross Compliance implementation under EC Regulation 1782/2003. In particular the standard 3.1b deals with soil structure protection through appropriate machinery use, with particular reference to ploughing in good soil moisture conditions. The study deals with the evaluation of soil structure after tillage in tilth and no-tilth conditions at soil moisture contents other than the optimum water content for tillage. The Mean Weight Diameter (MWD of water stable aggregates was used as an indicator of tillage effectiveness. The study was carried out in the period 2008-2009 at six experimental farms belonging to Research Centres and Units of the Italian Agricultural Research Council (CRA with different pedo-climatic and cropping conditions. Farm management and data collection in the different sites were carried out by the local CRA researchers and technicians. The comparison of MWD values in tilth and no tilth theses showed statistically significant differences in most cases, depending on topsoil texture. On clay, clay loam, silty clay, and silty clay loam topsoils a general and significant increase of MWD values under no tilth conditions were observed. No significant differences were observed in silt loam and sandy loam textures, probably due to the weak soil structure of the topsoils. Moreover, ploughing in good soil moisture condition determined higher crop production and less weed development than ploughing in high soil moisture conditions.

  4. Dynamic soil-structure interactions on embedded buildings

    International Nuclear Information System (INIS)

    Kobarg, J.; Werkle, H.; Henseleit, O.

    1983-01-01

    The dynamic soil-structure interaction on the horizontal seismic excitation is investigated on two typical embedded auxiliary buildings of a nuclear power plant. The structure and the soil are modelled by various analytical and numerical methods. Under the condition of the linear viscoelastic theory, i.e. soil characteristic constant in time and independent of strain, the interaction influences between a homogenous soil layer and a structure are analysied for the following parameters: 4) mathematical soil modells; 4) mathematical structure modells; 4) shear wave velocities; 3) embedment conditions; 4) earthquake time histories. (orig.) [de

  5. Pore structure of natural and regenerated soil aggregates

    DEFF Research Database (Denmark)

    Naveed, Muhammad; Arthur, Emmanuel; de Jonge, Lis Wollesen

    2014-01-01

    Quantitative characterization of aggregate pore structure can reveal the evolution of aggregates under different land use and management practices and their effects on soil processes and functions. Advances in X-ray Computed Tomography (CT) provide powerful means to conduct such characterization....... This study examined aggregate pore structure of three differently managed same textured Danish soils (mixed forage cropping, MFC; mixed cash cropping, MCC; cereal cash cropping, CCC) for (i) natural aggregates, and (ii) aggregates regenerated after 20 months of incubation. In total, 27 aggregates (8-16 mm...... pore diameter of 200 and 170 Hm, respectively. Pore shape analysis indicated that CCC and MFC aggregates had an abundance of rounded and elongated pores, respectively, and those of MCC were in-between CCC and MFC. Aggregate pore structure development in the lysimeters was nearly similar irrespective...

  6. Soil-structure interaction in nuclear power plants: a comparison of methods

    International Nuclear Information System (INIS)

    Wight, L.H.

    1976-06-01

    We performed an extensive parametric survey to analyze the differences between two methods of calculating soil-structure interaction. One method involves discretizing the soil-structure system and solving for the complete response with the LUSH computer code. The other method solves for the lumped mass structural response with Whitman soil springs. Twelve soil-structure interaction problems are solved by each of these methods. Representative results are presented and discussed. The debate within the nuclear industry in the United States over the relative merits of various methods of calculating soil-structure interaction has intensified over the last three years. The debate is largely the result of the U.S. Nuclear Regulatory Commission's position generally favoring the finite element approach. Certain sectors of the industry claim that this ruling is without technical basis, that it requires unnecessary expense, and that it inhibits the judgment of the analyst. We have addressed each of these points through lumped mass and finite element calculations on a set of twelve soil-structure interaction problems. The results of these calculations indicate some of the consequences of the choice of method

  7. Structure of Fungal Communities in Sub-Irrigated Agricultural Soil from Cerrado Floodplains

    Directory of Open Access Journals (Sweden)

    Elainy Cristina A. M. Oliveira

    2016-05-01

    Full Text Available This study aimed to evaluate the influence of soybean cultivation on the fungal community structure in a tropical floodplain area. Soil samples were collected from two different soybean cropland sites and a control area under native vegetation. The soil samples were collected at a depth of 0–10 cm soil during the off-season in July 2013. The genetic structure of the soil fungal microbial community was analyzed using the automated ribosomal intergenic spacer analysis (ARISA technique. Among the 26 phylotypes with abundance levels higher than 1% detected in the control area, five were also detected in the area cultivated for five years, and none of them was shared between the control area and the area cultivated for eight years. Analysis of similarity (ANOSIM revealed differences in fungal community structure between the control area and the soybean cropland sites, and also between the soybean cropland sites. ANOSIM results were confirmed by multivariate statistics, which additionally revealed a nutrient-dependent relation for the fungal community structure in agricultural soil managed for eight consecutive years. The results indicated that land use affects soil chemical properties and richness and structure of the soil fungal microbial community in a tropical floodplain agricultural area, and the effects became more evident to the extent that soil was cultivated for soybean for more time.

  8. Visual assessment of soil structure quality in an agroextractivist system in Southeastern Amazonia

    Science.gov (United States)

    Fernanda Simões da Silva, Laura; Stuchi Boschi, Raquel; Ortega Gomes, Matheus; Cooper, Miguel

    2016-04-01

    Soil structure is considered a key factor in the functioning of soil, affecting its ability to support plant and animal life, and moderate environmental quality. Numerous methods are available to evaluate soil structure based on physical, chemical and biological indicators. Among the physical indicators, the attributes most commonly used are soil bulk density, porosity, soil resistance to penetration, tensile strength of aggregates, soil water infiltration, and available water. However, these methods are expensive and generally time costly for sampling and laboratorial procedures. Recently, evaluations using qualitative and semi-quantitative indicators of soil structure quality have gained importance. Among these methods, the method known as Visual Evaluation of Soil Structure (VESS) (Ball et al., 2007; Guimarães et al., 2011) can supply this necessity in temperate and tropical regions. The study area is located in the Piranheira Praialta Agroextrativist Settlement Project in the county of Nova Ipixuna, Pará, Brazil. Two toposequences were chosen, one under native forest and the other under pasture. Pits were opened in different landscape positions (upslope, midslope and downslope) for soil morphological, micromorphological and physical characterization. The use of the soil visual evaluation method (SVE) consisted in collecting an undisturbed soil sample of approximately 25 cm in length, 20 cm in width and 10 cm in depth. 12 soil samples were taken for each land use. The samples were manually fragmented, respecting the fracture planes between the aggregates. The SVE was done comparing the fragmented sample with a visual chart and scores were given to the soil structure. The categories that define the soil structure quality (Qe) vary from 1 to 5. Lower scores mean better soil structure. The final score calculation was done using the classification key of Ball et al. (2007) adapted by Guimarães (2011). A change in soil structure was observed between forest and

  9. X-ray structure analysis of soil compositions

    International Nuclear Information System (INIS)

    Tillaev, T.; Kalonov, M.; Kuziev, Sh.; Khatamov, Sh.; Suvanov, M.

    1998-01-01

    The analytic characteristics of techniques developed to analyse soil structure by means of X-ray diffraction method are presented. Presence of 8 minerals in Fergana valley soils have been established. It is shown that X-ray structure analysis of soils gives rise to new original possibilities to determine not only their structure but also quantative content and type of chemical compound of element in soil. (author)

  10. Forest canopy structural controls over throughfall affect soil microbial community structure in an epiphyte-laden maritime oak stand

    Science.gov (United States)

    Van Stan, J. T., II; Rosier, C. L.; Schrom, J. O.; Wu, T.; Reichard, J. S.; Kan, J.

    2014-12-01

    Identifying spatiotemporal influences on soil microbial community (SMC) structure is critical to understanding of patterns in nutrient cycling and related ecological services. Since forest canopy structure alters the spatiotemporal patterning of precipitation water and solute supplies to soils (via the "throughfall" mechanism), is it possible changes in SMC structure variability could arise from modifications in canopy elements? Our study investigates this question by monitoring throughfall water and dissolved ion supply to soils beneath a continuum of canopy structure: from a large gap (0% cover) to heavy Tillandsia usneoides L. (Spanish moss) canopy (>90% cover). Throughfall water supply diminished with increasing canopy cover, yet increased washoff/leaching of Na+, Cl-, PO43-, and SO42- from the canopy to the soils (p < 0.01). Presence of T. usneoides diminished throughfall NO3-, but enhanced NH4+, concentrations supplied to subcanopy soils. The mineral soil horizon (0-10 cm) from canopy gaps, bare canopy, and T. usneoides-laden canopy significantly differed (p < 0.05) in soil chemistry parameters (pH, Ca2+, Mg2+, CEC). PCR-DGGE banding patterns beneath similar canopy covers (experiencing similar throughfall dynamics) also produced high similarities per ANalyses Of SIMilarity (ANO-SIM), and clustered together when analyzed by Nonmetric Multidimensional Scaling (NMDS). Correlation analysis of DGGE banding patterns, throughfall dynamics, and soil chemistry yielded significant correlations (p < 0.05) between fungal communities and soil chemical properties significantly differing between canopy cover types (pH: r2 = 0.50; H+ %-base saturation: r2 = 0.48; Ca2+ %-base saturation: r2 = 0.43). Bacterial community structure correlated with throughfall NO3-, NH4+, and Ca2+ concentrations (r2 = 0.37, p = 0.16). These results suggest that modifications of forest canopy structures are capable of affecting mineral-soil horizon SMC structure via the throughfall mechanism when

  11. The effect of different tillage and cover crops on soil quality

    DEFF Research Database (Denmark)

    Abdollahi, Lotfollah; Munkholm, Lars Juhl

    This paper examines the effect of different tillage treatments and cover crop on soil physical, chemical and biological properties of a sandy loam soil in a long-term field trial set up in 2007 at Foulum, Denmark. The experimental design is a split plot design with different tillage practices (di...... that P improved soil quality compared to H and D, especially when combined with cover crop. We also conclude that D may benefit from cover crop to yield better soil friability and hence soil quality.......This paper examines the effect of different tillage treatments and cover crop on soil physical, chemical and biological properties of a sandy loam soil in a long-term field trial set up in 2007 at Foulum, Denmark. The experimental design is a split plot design with different tillage practices...... (direct drilling (D), harrowing (H) to a depth of 8 cm and ploughing to a depth of 20 cm (P)) as main plot. The soil was cropped with cover crop (+CC) or left without cover crop (-CC) as split plot treatments in the main plots with different tillage treatments. We assessed topsoil structural quality...

  12. Fluctuations in ammonia oxidizing communities across agricultural soils are driven by soil structure and pH

    Directory of Open Access Journals (Sweden)

    Michele C ePereira e Silva

    2012-03-01

    Full Text Available The milieu in soil in which microorganisms dwell is never constant. Conditions such as temperature, water availability, pH and nutrients frequently change, impacting the overall functioning of the soil system. To understand the effects of such factors on soil functioning, proxies (indicators of soil function are needed that, in a sensitive manner, reveal normal amplitude of variation. Thus, the so-called normal operating range (NOR of soil can be defined. In this study we determined different components of nitrification by analyzing, in eight agricultural soils, how the community structures and sizes of ammonia oxidizing bacteria and archaea (AOB and AOA, respectively, and their activity, fluctuate over spatial and temporal scales. The results indicated that soil pH and soil type are the main factors that influence the size and structure of the AOA and AOB, as well as their function. The nitrification rates varied between 0.11 ± 0.03 µgN.h-1.gdw-1 and 1.68 ± 0.11 µgN.h-1.gdw-1, being higher in soils with higher clay content (1.09 ± 0.12 µgN.h-1.gdw-1 and lower in soils with lower clay percentages (0.27 ± 0.04 µgN.h-1.gdw-1. Nitrifying activity was driven by soil pH, mostly related to its effect on AOA but not on AOB abundance. Regarding the influence of soil parameters, clay content was the main soil factor shaping the structure of both the AOA and AOB communities. Overall, the potential nitrifying activities were higher and more variable over time in the clayey than in the sandy soils. Whereas the structure of AOB fluctuated more (62.7 ± 2.10% the structure of AOA communities showed lower amplitude of variation (53.65 ± 3.37%. Similar trends were observed for the sizes of these communities. The present work represents a first step towards defining a NOR for soil nitrification. Moreover, the clear effect of soil texture established here suggests that the NOR should be defined in a soil-type-specific manner.

  13. Soil compaction: Evaluation of stress transmission and resulting soil structure

    Science.gov (United States)

    Naveed, Muhammad; Schjønning, Per; Keller, Thomas; Lamande, Mathieu

    2016-04-01

    Accurate estimation of stress transmission and resultant deformation in soil profiles is a prerequisite for the development of predictive models and decision support tools for preventing soil compaction. Numerous studies have been carried out on the effects of soil compaction, whilst relatively few studies have focused on the cause (mode of stress transmission in the soil). We have coupled both cause and effects together in the present study by carrying out partially confined compression tests on (1) wet aggregates, (2) air dry aggregates, and (3) intact soils to quantify stress transmission and compaction-resulted soil structure at the same time. Stress transmission was quantified using both X-ray CT and Tactilus sensor mat, and soil-pore structure was quantified using X-ray CT. Our results imply that stress transmission through soil highly depends on the magnitude of applied load and aggregate strength. As soon as the applied load is lower than the aggregate strength, the mode of stress transmission is discrete as stresses were mainly transmitted through chain of aggregates. With increasing applied load soil aggregates start deforming that transformed heterogeneous soil into homogenous, as a result stress transmission mode was shifted from discrete towards more like a continuum. Continuum-like stress transmission mode was better simulated with Boussinesq (1885) model based on theory of elasticity compared to discrete. The soil-pore structure was greatly affected by increasing applied stresses. Total porosity was reduced 5-16% and macroporosity 50-85% at 620 kPa applied stress for the intact soils. Similarly, significant changes in the morphological indices of the macropore space were also observed with increasing applied stresses.

  14. 3D Structure of Tillage Soils

    Science.gov (United States)

    González-Torre, Iván; Losada, Juan Carlos; Falconer, Ruth; Hapca, Simona; Tarquis, Ana M.

    2015-04-01

    Soil structure may be defined as the spatial arrangement of soil particles, aggregates and pores. The geometry of each one of these elements, as well as their spatial arrangement, has a great influence on the transport of fluids and solutes through the soil. Fractal/Multifractal methods have been increasingly applied to quantify soil structure thanks to the advances in computer technology (Tarquis et al., 2003). There is no doubt that computed tomography (CT) has provided an alternative for observing intact soil structure. These CT techniques reduce the physical impact to sampling, providing three-dimensional (3D) information and allowing rapid scanning to study sample dynamics in near real-time (Houston et al., 2013a). However, several authors have dedicated attention to the appropriate pore-solid CT threshold (Elliot and Heck, 2007; Houston et al., 2013b) and the better method to estimate the multifractal parameters (Grau et al., 2006; Tarquis et al., 2009). The aim of the present study is to evaluate the effect of the algorithm applied in the multifractal method (box counting and box gliding) and the cube size on the calculation of generalized fractal dimensions (Dq) in grey images without applying any threshold. To this end, soil samples were extracted from different areas plowed with three tools (moldboard, chissel and plow). Soil samples for each of the tillage treatment were packed into polypropylene cylinders of 8 cm diameter and 10 cm high. These were imaged using an mSIMCT at 155keV and 25 mA. An aluminium filter (0.25 mm) was applied to reduce beam hardening and later several corrections where applied during reconstruction. References Elliot, T.R. and Heck, R.J. 2007. A comparison of 2D and 3D thresholding of CT imagery. Can. J. Soil Sci., 87(4), 405-412. Grau, J, Médez, V.; Tarquis, A.M., Saa, A. and Díaz, M.C.. 2006. Comparison of gliding box and box-counting methods in soil image analysis. Geoderma, 134, 349-359. González-Torres, Iván. Theory and

  15. Soil-structure interaction analysis by finite element methods - state-of-the-art

    International Nuclear Information System (INIS)

    Seed, H.B.; Lysmer, J.

    1977-01-01

    Analyses of soil-structure interaction effects during earthquakes for nuclear power plant structures are usually made by one of two methods-either by means of an idealized complete interaction analysis involving consideration of a compatible variation of motion in the structure and the adjacent soil, or by means of an inertial interaction analysis in which the motions in the adjacent soil are assumed to be the same at all points above the foundation depth. For embedded structures, consideration of the variation of motions with depth is essential if adequate evaluations of soil and structural response are to be obtained without undue conservatism. The finite element analysis procedure is particularly well suited for evaluating the response of embedded structures since it can readily provide consideration of the variation of soil characteristics with depth, the different non-linear deformation and energy absorbing capacities of the various soil strata, the variation of motions with depth in accordance with the general principles of engineering mechanics, the three-dimensional nature of the problem and the effects of adjacent structures on each other. (Auth.)

  16. Fungal Community Structure as an Indicator of Soil Agricultural Management Effects in the Cerrado

    Directory of Open Access Journals (Sweden)

    Alana de Almeida Valadares-Pereira

    2017-11-01

    Full Text Available ABSTRACT Forest-to-agriculture conversion and soil management practices for soybean cropping are frequently performed in the Cerrado (Brazilian tropical savanna. However, the effects of these practices on the soil microbial communities are still unknown. We evaluated and compared the fungal community structure in soil from soybean cropland with soil under native Cerrado vegetation at different times of the year in the Tocantins State. Soil samples were collected in two periods after planting (December and in two periods during the soybean reproductive growth stage (February. Concomitantly, soil samples were collected from an area under native Cerrado vegetation surrounding the agricultural area. The soil DNA was analyzed using a fingerprinting method termed Automated Ribosomal Intergenic Space Analysis (ARISA to assess the fungal community structure in the soil. Differences in the fungal community structure in the soil were found when comparing soybean cropland with the native vegetation (R = 0.932 for sampling 1 and R = 0.641 for sampling 2. Changes in the fungal community structure after management practices for soybean planting in Cerrado areas were related to changes in soil properties, mainly in copper, calcium, and iron contents, cation exchange capacity, base saturation, and calcium to magnesium ratio. These results show the changes in the fungal community structure in the soil as an effect of agricultural soil management in Cerrado vegetation in the state of Tocantins.

  17. Dynamic Analysis of Partially Embedded Structures Considering Soil-Structure Interaction in Time Domain

    Directory of Open Access Journals (Sweden)

    Sanaz Mahmoudpour

    2011-01-01

    Full Text Available Analysis and design of structures subjected to arbitrary dynamic loadings especially earthquakes have been studied during past decades. In practice, the effects of soil-structure interaction on the dynamic response of structures are usually neglected. In this study, the effect of soil-structure interaction on the dynamic response of structures has been examined. The substructure method using dynamic stiffness of soil is used to analyze soil-structure system. A coupled model based on finite element method and scaled boundary finite element method is applied. Finite element method is used to analyze the structure, and scaled boundary finite element method is applied in the analysis of unbounded soil region. Due to analytical solution in the radial direction, the radiation condition is satisfied exactly. The material behavior of soil and structure is assumed to be linear. The soil region is considered as a homogeneous half-space. The analysis is performed in time domain. A computer program is prepared to analyze the soil-structure system. Comparing the results with those in literature shows the exactness and competency of the proposed method.

  18. Seismic evaluation of a cooling water reservoir facility including fluid-structure and soil-structure interaction effects

    International Nuclear Information System (INIS)

    Kabir, A.F.; Maryak, M.E.

    1991-01-01

    Seismic analyses and structural evaluations were performed for a cooling water reservoir of a nuclear reactor facility. The horizontal input seismic motion was the NRC Reg. guide 1.60 spectrum shape anchored at 0.20g zero period acceleration. Vertical input was taken as two-thirds of the horizontal input. Soil structure interaction and hydrodynamic effects were addressed in the seismic analyses. Uncertainties in the soil properties were accounted for by considering three soil profiles. Two 2-dimensional SSI models and a 3-dimensional static model. Representing different areas of the reservoir structures were developed and analyzed to obtain seismic forces and moments, and accelerations at various locations. The results included in this paper indicated that both hydrodynamic and soil-structure interaction effects are significant contributors to the seismic responses of the water-retaining walls of the reservoir

  19. EFFECTS OF DIFFERENT SOIL TILLAGE SYSTEMS ON NODULATION AND YIELD OF SOYBEAN

    OpenAIRE

    D. Jug; Mihaela Blažinkov; S. Redžepović; Irena Jug; B. Stipešević

    2005-01-01

    The primary soil tillage for different crops in Croatia is generally based on mouldboard ploughing which is the most expensive for crops production. Negative effects due to frequent passes by equipment and machines (deterioration of soil structure, soil compaction, lower biogenity and soil tilth), together with negative economical and energetical costs, can be lowered and avoided by introduction of reduced soil tillage or direct drilling (No-tillage). Accordingly, the main goal of this resear...

  20. Stiffness of Railway Soil-Steel Structures

    Science.gov (United States)

    Machelski, Czesław

    2015-12-01

    The considerable influence of the soil backfill properties and that of the method of compacting it on the stiffness of soil-steel structures is characteristic of the latter. The above factors (exhibiting randomness) become apparent in shell deformation measurements conducted during construction and proof test loading. A definition of soil-shell structure stiffness, calculated on the basis of shell deflection under the service load, is proposed in the paper. It is demonstrated that the stiffness is the inverse of the deflection influence function used in structural mechanics. The moving load methodology is shown to be useful for testing, since it makes it possible to map the shell deflection influence line also in the case of group loads (concentrated forces), as in bridges. The analyzed cases show that the shell's span, geometry (static scheme) and the height of earth fill influence the stiffness of the structure. The soil-steel structure's characteristic parameter in the form of stiffness k is more suitable for assessing the quality of construction works than the proposed in code geometric index ω applied to beam structures. As shown in the given examples, parameter k is more effective than stiffness parameter λ used to estimate the deformation of soil-steel structures under construction. Although the examples concern railway structures, the methodology proposed in the paper is suitable also for road bridges.

  1. Soil food web structure after wood ash application

    DEFF Research Database (Denmark)

    Mortensen, L. H.; Qin, J.; Krogh, Paul Henning

    with varying intervals and subsequently analyzed. The food web analysis includes several trophic levels; bacteria/fungi, protozoa, nematodes, enchytraeids, microarthropods and arthropods. The initial results indicate that bacteria and protozoa are stimulated in the uppermost soil layer (0-3 cm) two months...... can facilitate an increase in the bacteria to fungi ratio with possible cascading effects for the soil food web structure. This is tested by applying ash of different concentrations to experimental plots in a coniferous forest. During the course of the project soil samples will be collected...

  2. EPRI research on soil-structure interaction

    International Nuclear Information System (INIS)

    Tang, H.T.

    1986-01-01

    The paper briefly discusses the background of soil-structure interaction research and identifies the nuclear industry's need for a realistic, experimentally qualified soil-structure interaction analysis methodology for nuclear power plant design to reduce excessive conservatism and stabilize the licensing process. EPRI research and joint research efforts between EPRI and Niagara Mohawk Power Corporation, Taiwan Power Company, and the Japanese Century Research Institute for Electric Power Industry are outlined. As a result of these and other research efforts, improvement in soil-structure interactions methodologies is being realized

  3. Numerical Simulation for the Soil-Pile-Structure Interaction under Seismic Loading

    Directory of Open Access Journals (Sweden)

    Lifeng Luan

    2015-01-01

    Full Text Available Piles are widely used as reinforcement structures in geotechnical engineering designs. If the settlement of the soil is greater than the pile, the pile is pulled down by the soil, and negative friction force is produced. Previous studies have mainly focused on the interaction of pile-soil under static condition. However, many pile projects are located in earthquake-prone areas, which indicate the importance of determining the response of the pile-soil structure under seismic load. In this paper, the nonlinear, explicit, and finite difference program FLAC3D, which considers the mechanical behavior of soil-pile interaction, is used to establish an underconsolidated soil-pile mode. The response processes of the pile side friction force, the pile axial force, and the soil response under seismic load are also analyzed.

  4. Estimation of apparent soil resistivity for two-layer soil structure

    Energy Technology Data Exchange (ETDEWEB)

    Nassereddine, M.; Rizk, J.; Nagrial, M.; Hellany, A. [School of Computing, Engineering and Mathematics, University of Western Sydney (Australia)

    2013-07-01

    High voltage (HV) earthing design is one of the key elements when it comes to safety compliance of a system. High voltage infrastructure exposes workers and people to unsafe conditions. The soil structure plays a vital role in determining the allowable and actual step/touch voltage. This paper presents vital information when working with two-layer soil structure. It shows the process as to when it is acceptable to use a single layer instead of a two-layer structure. It also discusses the simplification of the soil structure approach depending on the reflection coefficient. It introduces the reflection coefficient K interval which determines if single layer approach is acceptable. Multiple case studies are presented to address the new approach and its accuracy.

  5. Differences in Cellulosic Supramolecular Structure of Compositionally Similar Rice Straw Affect Biomass Metabolism by Paddy Soil Microbiota.

    Directory of Open Access Journals (Sweden)

    Tatsuki Ogura

    Full Text Available Because they are strong and stable, lignocellulosic supramolecular structures in plant cell walls are resistant to decomposition. However, they can be degraded and recycled by soil microbiota. Little is known about the biomass degradation profiles of complex microbiota based on differences in cellulosic supramolecular structures without compositional variations. Here, we characterized and evaluated the cellulosic supramolecular structures and composition of rice straw biomass processed under different milling conditions. We used a range of techniques including solid- and solution-state nuclear magnetic resonance (NMR and Fourier transform infrared spectroscopy followed by thermodynamic and microbial degradability characterization using thermogravimetric analysis, solution-state NMR, and denaturing gradient gel electrophoresis. These measured data were further analyzed using an "ECOMICS" web-based toolkit. From the results, we found that physical pretreatment of rice straw alters the lignocellulosic supramolecular structure by cleaving significant molecular lignocellulose bonds. The transformation from crystalline to amorphous cellulose shifted the thermal degradation profiles to lower temperatures. In addition, pretreated rice straw samples developed different microbiota profiles with different metabolic dynamics during the biomass degradation process. This is the first report to comprehensively characterize the structure, composition, and thermal degradation and microbiota profiles using the ECOMICS toolkit. By revealing differences between lignocellulosic supramolecular structures of biomass processed under different milling conditions, our analysis revealed how the characteristic compositions of microbiota profiles develop in addition to their metabolic profiles and dynamics during biomass degradation.

  6. Dynamic Analysis of Partially Embedded Structures Considering Soil-Structure Interaction in Time Domain

    OpenAIRE

    Mahmoudpour, Sanaz; Attarnejad, Reza; Behnia, Cambyse

    2011-01-01

    Analysis and design of structures subjected to arbitrary dynamic loadings especially earthquakes have been studied during past decades. In practice, the effects of soil-structure interaction on the dynamic response of structures are usually neglected. In this study, the effect of soil-structure interaction on the dynamic response of structures has been examined. The substructure method using dynamic stiffness of soil is used to analyze soil-structure system. A coupled model based on finite el...

  7. Changes in the Bacterial Community Structure of Remediated Anthracene-Contaminated Soils

    Science.gov (United States)

    Delgado-Balbuena, Laura; Bello-López, Juan M.; Navarro-Noya, Yendi E.; Rodríguez-Valentín, Analine; Luna-Guido, Marco L.; Dendooven, Luc

    2016-01-01

    Mixing soil or adding earthworms (Eisenia fetida (Savigny, 1826)) accelerated the removal of anthracene, a polycyclic aromatic hydrocarbon, from a pasture and an arable soil, while a non-ionic surfactant (Surfynol® 485) inhibited the removal of the contaminant compared to the untreated soil. It was unclear if the treatments affected the soil bacterial community and consequently the removal of anthracene. Therefore, the bacterial community structure was monitored by means of 454 pyrosequencing of the 16S rRNA gene in the pasture and arable soil mixed weekly, amended with Surfynol® 485, E. fetida or organic material that served as food for the earthworms for 56 days. In both soils, the removal of anthracene was in the order: mixing soil weekly (100%) > earthworms applied (92%) > organic material applied (77%) > untreated soil (57%) > surfactant applied (34%) after 56 days. There was no clear link between removal of anthracene from soil and changes in the bacterial community structure. On the one hand, application of earthworms removed most of the contaminant from the arable soil and had a strong effect on the bacterial community structure, i.e. a decrease in the relative abundance of the Acidobacteria, Chloroflexi and Gemmatimonadetes, and an increase in that of the Proteobacteria compared to the unamended soil. Mixing the soil weekly removed all anthracene from the arable soil, but had little or no effect on the bacterial community structure. On the other hand, application of the surfactant inhibited the removal of anthracene from the arable soil compared to the untreated soil, but had a strong effect on the bacterial community structure, i.e. a decrease in the relative abundance of Cytophagia (Bacteroidetes), Chloroflexi, Gemmatimonadetes and Planctomycetes and an increase in that of the Flavobacteria (Bacteroidetes) and Proteobacteria. Additionally, the removal of anthracene was similar in the different treatments of both the arable and pasture soil, but the

  8. Changes in the Bacterial Community Structure of Remediated Anthracene-Contaminated Soils.

    Directory of Open Access Journals (Sweden)

    Laura Delgado-Balbuena

    Full Text Available Mixing soil or adding earthworms (Eisenia fetida (Savigny, 1826 accelerated the removal of anthracene, a polycyclic aromatic hydrocarbon, from a pasture and an arable soil, while a non-ionic surfactant (Surfynol® 485 inhibited the removal of the contaminant compared to the untreated soil. It was unclear if the treatments affected the soil bacterial community and consequently the removal of anthracene. Therefore, the bacterial community structure was monitored by means of 454 pyrosequencing of the 16S rRNA gene in the pasture and arable soil mixed weekly, amended with Surfynol® 485, E. fetida or organic material that served as food for the earthworms for 56 days. In both soils, the removal of anthracene was in the order: mixing soil weekly (100% > earthworms applied (92% > organic material applied (77% > untreated soil (57% > surfactant applied (34% after 56 days. There was no clear link between removal of anthracene from soil and changes in the bacterial community structure. On the one hand, application of earthworms removed most of the contaminant from the arable soil and had a strong effect on the bacterial community structure, i.e. a decrease in the relative abundance of the Acidobacteria, Chloroflexi and Gemmatimonadetes, and an increase in that of the Proteobacteria compared to the unamended soil. Mixing the soil weekly removed all anthracene from the arable soil, but had little or no effect on the bacterial community structure. On the other hand, application of the surfactant inhibited the removal of anthracene from the arable soil compared to the untreated soil, but had a strong effect on the bacterial community structure, i.e. a decrease in the relative abundance of Cytophagia (Bacteroidetes, Chloroflexi, Gemmatimonadetes and Planctomycetes and an increase in that of the Flavobacteria (Bacteroidetes and Proteobacteria. Additionally, the removal of anthracene was similar in the different treatments of both the arable and pasture soil

  9. Stiffness of Railway Soil-Steel Structures

    Directory of Open Access Journals (Sweden)

    Machelski Czesław

    2015-12-01

    Full Text Available The considerable influence of the soil backfill properties and that of the method of compacting it on the stiffness of soil-steel structures is characteristic of the latter. The above factors (exhibiting randomness become apparent in shell deformation measurements conducted during construction and proof test loading. A definition of soil-shell structure stiffness, calculated on the basis of shell deflection under the service load, is proposed in the paper. It is demonstrated that the stiffness is the inverse of the deflection influence function used in structural mechanics. The moving load methodology is shown to be useful for testing, since it makes it possible to map the shell deflection influence line also in the case of group loads (concentrated forces, as in bridges. The analyzed cases show that the shell’s span, geometry (static scheme and the height of earth fill influence the stiffness of the structure. The soil-steel structure’s characteristic parameter in the form of stiffness k is more suitable for assessing the quality of construction works than the proposed in code geometric index ω applied to beam structures. As shown in the given examples, parameter k is more effective than stiffness parameter λ used to estimate the deformation of soil-steel structures under construction. Although the examples concern railway structures, the methodology proposed in the paper is suitable also for road bridges.

  10. Earthquake response analysis considering structure-soil-structure interaction

    International Nuclear Information System (INIS)

    Shiomi, T.; Takahashi, K.; Oguro, E.

    1981-01-01

    This paper proposes a numerical method of earthquake response analysis considering the structure-soil-structure interaction between two adjacent buildings. In this paper an analytical study is presented in order to show some typical features of coupling effects of two reactor buildings of the BWR-type nuclear power plant. The technical approach is a kind of substructure method, which at first evaluates the compliance properties with the foundation-soil-foundation interaction and then uses the compliance in determining seismic responses of two super-structures during earthquake motions. For this purpose, it is assumed that the soil medium is an elastic half space for modeling and that the rigidity of any type of structures such as piping facilities connecting the adjacent buildings is negligible. The technical approach is mainly based on the following procedures. Supersturcture stiffness is calculated by using the method which has been developed in our laboratory based on the Thin-Wall Beam Theory. Soil stiffness is expressed by a matrix with 12 x 12 elements as a function of frequency, which is calculated using the soil compliance functions proposed in Dr. Tajimi's Theory. These stiffness values may be expressed by complex numbers for modeling the damping mechanism of superstructures. We can solve eigenvalue problems with frequency dependent stiffness and the large-scale matrix using our method which is based on condensing the matrix to the suitable size by Rayleigh-Ritz method. Earthquake responses can be solved in the frequency domain by Fourier Transform. (orig./RW)

  11. Influence of the soil-atmosphere exchange on the hydric profile induced in soil-structure system

    Directory of Open Access Journals (Sweden)

    A. Al Qadad

    2012-06-01

    Full Text Available Soil-atmosphere exchange leads to a moisture change in the soil. This can cause major damage to engineering structures due to the soil expansion and shrinkage. The soil-atmosphere exchange is related to several parameters, in particular the soil characteristics and climate conditions. The presence of an engineering structure causes a variation of the hydraulic profile in the soil, which can lead to heterogeneous soil movement and consequently to structural damage. This paper presents a coupled numerical model based on the consideration of both water flow in unsaturated soils and soil-atmosphere exchange. After the validation of the model, the paper presents its use for the analysis of the influence of the presence of structures on moisture change induced under climatic conditions recorded in a semi-arid region. Analysis shows that the presence of the structure leads to important change in the moisture distribution, in particular in the vicinity of the structure.

  12. Soil-structure interaction analysis by finite element methods state-of-the-art

    International Nuclear Information System (INIS)

    Seed, H.B.; Lysmer, J.

    1977-01-01

    Analyses of soil-structure interaction effects during earthquakes for nuclear power plant structures are usually made by one of two methods - either by means of an idealized complete interaction analysis involving consideration of a compatible variation of motions in the structure and the adjacent soil, or by means of an inertial interaction analysis in which the motions in the adjacent soil are assumed to be the same at all points above the foundation depth. For surface structures, the distribution of free-field motions with depth in the underlying soils has no influence on the structural response and thus, provided the analyses are made in accordance with good practice, good results may be obtained by either method of approach. For embedded structures, however, consideration of the variation of motions with depth is essential if adequate evaluations of soil and structural response are to be obtained without undue conservatism. The finite element analysis procedure is particularly well suited for evaluating the response of embedded structures since it can readily provide consideration of the variation of soil characteristics with depth, the different non-linear deformation and energy absorbing capacities of the various soil strata, the variation of motions with depth in accordance with the general principles of engineering mechanics, the three-dimensional nature of the problem and the effects of adjacent structures on each other

  13. Cylindrical fabric-confined soil structures

    Science.gov (United States)

    Harrison, Richard A.

    A cylindrical fabric-soil structural concept for implementation on the moon and Mars which provides many advantages is proposed. The most efficient use of fabric is to fashion it into cylindrical tubes, creating cylindrical fabric-confined soil structures. The length, diameter, and curvature of the tubes will depend on the intended application. The cylindrical hoop forces provide radial confinement while end caps provide axial confinement. One of the ends is designed to allow passage of the soil into the fabric tube before sealing. Transportation requirements are reduced due to the low mass and volume of the fabric. Construction requirements are reduced due to the self-erection capability via the pneumatic exoskeleton. Maintenance requirements are reduced due to the passive nature of the concept. The structure's natural ductility is well suited for any seismic activity.

  14. Neighborhood structure effects on the Dynamic response of soil-structure interaction by harmonic analysis

    Directory of Open Access Journals (Sweden)

    Pan Dan-guang

    2015-01-01

    Full Text Available For realizing the variation of structural dynamic characteristics due to neighbor structure in buildings group, the surface structure is idealized as an equivalent single degree of freedom system with rigid base whose site consists of a single homogeneous layer. Based on the model, a equivalent method on the equivalent seismic excitation is proposed. Then, the differences of seismic response and equivalent seismic input between soil - structure interaction (SSI system and structure -soil-structure interaction (SSSI system are investigated by harmonic analysis. The numerical results show that dynamic responses would be underestimated in SSSI system when the forcing frequencies are close to the Natural frequency if the effects of neighborhood structure were ignored. Neighborhood structure would make the translational displacement increase and rocking vibration decrease. When establishing an effective seismic input, it is necessary to consider the impact of inertia interaction.

  15. Simulation of chloride transport based description soil structure

    International Nuclear Information System (INIS)

    Mahmood-ul-Hassan, M.; Akhtar, M.S.; Gill, S.M.; Nabi, G.

    2003-01-01

    There is a need of environmental implications of rapid appearance of surface by applying chemical at depths below the vadose zone (tile line or shallow groundwater) for developing better insight into solute flow mechanism through the arable lands. Transport of chloride, a representative non-adsorbing solute, through a moderately structured silty clay loam soil (Gujranwala series, Typic Ustochrepts) and an un-structured sandy loam soil (Nabipur series, Typic Camborthid) was characterized and two existing models viz. convection dispersion equation (CDE) and preferential flow models were tested. The flux average of solute concentration in the outflow as a function of cumulative drainage was fitted to the models. The CDE fitted, relatively, better in the non-structured soil than in the moderately structured soil. Dispersivity value determined by CDE was very high for the structured soil which is physically not possible. The preferential flow model fitted well in the Gujranwala soil, but not in the Nabipur soil. The breakthrough characteristics i.e. drainage to peak concentration (Dp), symmetry coefficient (SC), skewness, and kurtosis were compared. Chloride breakthrough was earlier than expected based on piston flow. It indicated preferential flow in both the soils, yet, immediate appearance of the tracer in the Gujranwala soil demonstrated even larger magnitude of the preferential flow. Breakthrough curves' parameters indicated a large amount of the solute movement through the preferred pathways by passing the soil matrix in the Gujranwala soil. The study suggests that some soil structure parameters (size/shape and degree of aggregation) should be incorporated in the solute transport models.(author)

  16. Structural characteristic of the Eastern Plains soils of Colombia, submitted to several handling systems

    International Nuclear Information System (INIS)

    Amezquita, E; Saenz J I; Thomas, R J; Vera, R R; Hoyos, P; Molina, D L; Chavez, L F

    1997-01-01

    Soil productivity and sustainability depends on the building and/or conservation of an adequate and dynamic equilibrium between physical, chemical and biological properties and processes in the volume of soil explored by roots, so that there is no constraints in the availability of water and nutrients to plants. Soil structure is one of the soil properties that are more vulnerable to the intensity of use in tropical soils. Aggregate size distribution, aggregate stability and pore size distribution are some of the attributes that are usually used to describe structural changes and can act as indicators of structural sustainability. This paper presents and discusses the behavior of these attributes under different soil management treatments (native savanna, Brachiaria alone; Brachiaria + legume and monocrop) in the Colombian Eastern plains soil classified as Typic haplustox Kaolinitic iso-hyperthermic. These results showed highly statistical significant differences between treatments in the parameters studied and allow concluding that aggregate size distribution and stability could be indicators of susceptibility to degradation

  17. Abundance and structure of African baobab (Adansonia digitata) across different soil types in Gonarezhou National Park, Zimbabwe

    NARCIS (Netherlands)

    Mashapa, C.; Zisadza-Gandiwa, P.; Gandiwa, E.; Kativu, S.

    2013-01-01

    This study investigated the abundance and structure of African baobab (Adansonia digitata) across soil group strata in Gonarezhou National Park, Zimbabwe. The study was based on a stratified random sampling design composed of the following soil group substrates: (i) granophyres, (ii) malvernia, and

  18. Apparent soil electrical conductivity in two different soil types

    Directory of Open Access Journals (Sweden)

    Wilker Nunes Medeiros

    Full Text Available ABSTRACT Mapping the apparent soil electrical conductivity (ECa has become important for the characterization of the soil variability in precision agriculture systems. Could the ECa be used to locate the soil sampling points for mapping the chemical and physical soil attributes? The objective of this work was to examine the relations between ECa and soil attributes in two fields presenting different soil textures. In each field, 50 sampling points were chosen using a path that presented a high variability of ECa obtained from a preliminary ECa map. At each sampling point, the ECa was measured in soil depths of 0-20, 0-40 and 0-60 cm. In addition, at each point, soil samples were collected for the determination of physical and chemical attributes in the laboratory. The ECa data obtained for different soil depths was very similar. A large number of significant correlations between ECa and the soil attributes were found. In the sandy clay loam texture field there was no correlation between ECa and organic matter or between ECa and soil clay and sand content. However, a significant positive correlation was shown for the remaining phosphorus. In the sandy loam texture field the ECa had a significant positive correlation with clay content and a significant negative correlation with sand content. The results suggest that the mapping of apparent soil electrical conductivity does not replace traditional soil sampling, however, it can be used as information to delimit regions in a field that have similar soil attributes.

  19. Opportunities and future directions for visual soil evaluation methods in soil structure research

    DEFF Research Database (Denmark)

    Guimaraes, R.M.L.; Lamandé, Mathieu; Munkholm, Lars Juhl

    2017-01-01

    to provide spatial information for soil process models, e.g. compaction models. VSE could be combined with sensing techniques at the field or landscape scale for better management of fields in the context of precision farming. Further work should be done to integrate plant vigour, roots and soil fauna......As the use of visual soil evaluation (VSE) methods has spread globally, they have been exposed to different climatic and pedological scenarios, resulting in the need to elucidate limitations, encourage refinements and open up new avenues of research. The main objective of this paper is to outline...... the potential of VSE methods to develop novel soil structure research and how this potential could be developed and integrated within existing research. We provide a brief overview of VSE methods in order to summarize the soil information that is obtained by VSE. More detailed VSE methods could be developed...

  20. Faunal Drivers of Soil Flux Dynamics via Alterations in Crack Structure

    Science.gov (United States)

    DeCarlo, Keita; Caylor, Kelly

    2016-04-01

    Organismal activity, in addition to its role in ecological feedbacks, has the potential to serve as instigators or enhancers of atmospheric and hydrologic processes via alterations in soil structural regimes. We investigated the biomechanical effect of faunal activity on soil carbon dynamics via changes in soil crack structure, focusing on three dryland soil systems: bioturbated, biocompacted and undisturbed soils. Carbon fluxes were characterized using a closed-system respiration chamber, with CO2 concentration differences measured using an infrared gas analyzer (IRGA). Results show that faunal influences play a divergent biomechanics role in bulk soil cracking: bioturbation induced by belowground fauna creates "surficial" (shallow, large, well-connected) networks relative to the "systematic" (deep, moderate, poorly connected) networks created by aboveground fauna. The latter also shows a "memory" of past wetting/drying events in the consolidated soil through a crack layering effect. These morphologies further drive differences in soil carbon flux: under dry conditions, bioturbated and control soils show a persistently high and low mean carbon flux, respectively, while biocompacted soils show a large diurnal trend, with daytime lows and nighttime highs comparable to the control and bioturbated soils, respectively. Overall fluxes under wet conditions are considerably higher, but also more variable, though higher mean fluxes are observed in the biocompacted and bioturbated soils. Our results suggest that the increased surface area in the bioturbated soils create enhanced but constant diffusive processes, whereas the increased thermal gradient in the biocompacted soils create novel convective processes that create high fluxes that are diurnal in nature.

  1. An impedance function approach for soil-structure interaction analyses including structure-to-structure interaction effects

    International Nuclear Information System (INIS)

    Gantayat, A.; Kamil, H.

    1981-01-01

    The dynamic soil-structure and structure-to-structure interaction effects may be determined in one of the two ways: by modeling the entire soil-structure system by a finite-element model, or by using a frequency-dependent (or frequency-independent) impedance function approach. In seismic design of nuclear power plant structures, the normal practice is to use the first approach because of its simplicity and easy availability of computer codes to perform such analyses. However, in the finite-element approach, because of the size and cost restrictions, the three-dimensional behavior of the entire soil-structure system and the radiation damping in soil are only approximately included by using a two-dimensional finite-element mesh. In using the impedance function approach, the soil-structure analyses can be performed in four steps: (a) determination of the dynamic properties of the fixed base superstructure, (b) determination of foundation and structure impedance matrices and input motions, (c) evaluation of foundation motion, (d) analysis of the fixed base superstructure using computed foundation motion. (orig./RW)

  2. Numerical modelling of ground vibration caused by elevated high-speed railway lines considering structure-soil-structure interaction

    DEFF Research Database (Denmark)

    Bucinskas, Paulius; Andersen, Lars Vabbersgaard; Persson, Kent

    2016-01-01

    Construction of high speed railway lines has been an increasing trend in recent years. Countries like Denmark and Sweden plan to expand and upgrade their railways to accommodate high-speed traffic. To benefit from the full potential of the reduced commuting times, these lines must pass through...... densely populated urban areas with the collateral effect of increased noise and vibrations levels. This paper aims to quantify the vibrations levels in the area surrounding an elevated railway line built as a multi-span bridge structure. The proposed model employs finite-element analysis to model......-space. The paper analyses the effects of structure-soil-structure interaction on the dynamic behaviour of the surrounding soil surface. The effects of different soil stratification and material properties as well as different train speeds are assessed. Finally, the drawbacks of simplifying the numerical model...

  3. Multifractal analyis of soil invertebrates along a transect under different land uses

    Science.gov (United States)

    Machado Siqueira, Glécio; Alves Silva, Raimunda; Vidal-Vázquez, Eva; Paz-González, Antonio

    2017-04-01

    Soil fauna play a central role in many essential ecosystem processes. Land use and management can have a dramatic effect upon soil invertebrate community. Indices based on soil invertebrates abundance and diversity are fundamental for soil quality assessment. Many soil properties and attributes have been shown to exhibit spatial variabilityThe aim of this study was to analyze the scaling heterogeneity of the soil invertebrate community sampled using pitfall traps across a transect. The field study was conducted at Mata Roma municipality, Maranhão State, Brazil. Transects were marked under seven different agricultural/forestry land uses (millet, soybean, maize, eucalyptus, pasture, secondary savannah and native savannah). Native vegetation was considered as a reference, whereas the agricultural fields showed a range of soil use intensities. Along these transects 130 pitfall per land use were installed. First, differences in community assemblages and composition under different land use systems were evaluated using classical indices. Then, the spatial distribution of soil fauna trapped by pitfall techniques, characterized through generalized dimension, Dq, and singularity spectra, f(α) - α, showed a well-defined multifractal structure. Differences in scaling heterogeneity and other multifractal characteristics were examined in relation to land use intensification.

  4. The effect of row structure on soil moisture retrieval accuracy from passive microwave data.

    Science.gov (United States)

    Xingming, Zheng; Kai, Zhao; Yangyang, Li; Jianhua, Ren; Yanling, Ding

    2014-01-01

    Row structure causes the anisotropy of microwave brightness temperature (TB) of soil surface, and it also can affect soil moisture retrieval accuracy when its influence is ignored in the inversion model. To study the effect of typical row structure on the retrieved soil moisture and evaluate if there is a need to introduce this effect into the inversion model, two ground-based experiments were carried out in 2011. Based on the observed C-band TB, field soil and vegetation parameters, row structure rough surface assumption (Q p model and discrete model), including the effect of row structure, and flat rough surface assumption (Q p model), ignoring the effect of row structure, are used to model microwave TB of soil surface. Then, soil moisture can be retrieved, respectively, by minimizing the difference of the measured and modeled TB. The results show that soil moisture retrieval accuracy based on the row structure rough surface assumption is approximately 0.02 cm(3)/cm(3) better than the flat rough surface assumption for vegetated soil, as well as 0.015 cm(3)/cm(3) better for bare and wet soil. This result indicates that the effect of row structure cannot be ignored for accurately retrieving soil moisture of farmland surface when C-band is used.

  5. Soil structure characterized using computed tomographic images

    Science.gov (United States)

    Zhanqi Cheng; Stephen H. Anderson; Clark J. Gantzer; J. W. Van Sambeek

    2003-01-01

    Fractal analysis of soil structure is a relatively new method for quantifying the effects of management systems on soil properties and quality. The objective of this work was to explore several methods of studying images to describe and quantify structure of soils under forest management. This research uses computed tomography and a topological method called Multiple...

  6. 3D quantification of soil structure and functioning based on PET and CT scanning techniques

    DEFF Research Database (Denmark)

    Garbout, Amin

    This thesis explores the potential of PET and CT scanning techniques to quantify and visualize soil structure, root development, and soil/plant interactions. At the investigated scale, these non-invasive and nondestructive techniques have some obvious advantages compared with most other techniques....... The processed measurements show some expected and a few unexpected effects (or lack of effects) on different characteristics of soil structure. The combination of CT and PET scanning in an air plant soil controller system revealed some very interesting research possibilities. Interactions between soil structure...

  7. Why is the influence of soil macrofauna on soil structure only considered by soil ecologists ?

    OpenAIRE

    Bottinelli, N.; Jouquet, Pascal; Capowiez, Y.; Podwojewski, Pascal; Grimaldi, Michel; Peng, X.

    2015-01-01

    These last twenty years have seen the development of an abundant literature on the influence of soil macrofauna on soil structure. Amongst these organisms, earthworms, termites and ants are considered to play a key role in regulating the physical, chemical and microbiological properties of soils. Due to these influential impacts, soil ecologists consider these soil macro-invertebrates as ‘soil engineers’ and their diversity and abundance are nowadays considered as relevant bioindi...

  8. Nonlinear Time Domain Seismic Soil-Structure Interaction (SSI) Deep Soil Site Methodology Development

    International Nuclear Information System (INIS)

    Spears, Robert Edward; Coleman, Justin Leigh

    2015-01-01

    Currently the Department of Energy (DOE) and the nuclear industry perform seismic soil-structure interaction (SSI) analysis using equivalent linear numerical analysis tools. For lower levels of ground motion, these tools should produce reasonable in-structure response values for evaluation of existing and new facilities. For larger levels of ground motion these tools likely overestimate the in-structure response (and therefore structural demand) since they do not consider geometric nonlinearities (such as gaping and sliding between the soil and structure) and are limited in the ability to model nonlinear soil behavior. The current equivalent linear SSI (SASSI) analysis approach either joins the soil and structure together in both tension and compression or releases the soil from the structure for both tension and compression. It also makes linear approximations for material nonlinearities and generalizes energy absorption with viscous damping. This produces the potential for inaccurately establishing where the structural concerns exist and/or inaccurately establishing the amplitude of the in-structure responses. Seismic hazard curves at nuclear facilities have continued to increase over the years as more information has been developed on seismic sources (i.e. faults), additional information gathered on seismic events, and additional research performed to determine local site effects. Seismic hazard curves are used to develop design basis earthquakes (DBE) that are used to evaluate nuclear facility response. As the seismic hazard curves increase, the input ground motions (DBE's) used to numerically evaluation nuclear facility response increase causing larger in-structure response. As ground motions increase so does the importance of including nonlinear effects in numerical SSI models. To include material nonlinearity in the soil and geometric nonlinearity using contact (gaping and sliding) it is necessary to develop a nonlinear time domain methodology. This

  9. A direct method for soil-structure interaction analysis based on frequency-dependent soil masses

    International Nuclear Information System (INIS)

    Danisch, R.; Delinic, K.; Marti, J.; Trbojevic, V.M.

    1993-01-01

    In a soil-structure interaction analysis, the soil, as a subsystem of the global vibrating system, exerts a strong influence on the response of the nuclear reactor building to the earthquake excitation. The volume of resources required for dealing with the soil have led to a number of different types of frequency-domain solutions, most of them based on the impedance function approach. These procedures require coupling the soil to the lumped-mass finite-element model of the reactor building. In most practical cases, the global vibrating system is analysed in the time domain (i.e. modal time history, linear or non-linear direct time-integration). Hence, it follows that the frequency domain solution for soil must be converted to an 'equivalent' soil model in the time domain. Over the past three decades, different approaches have been developed and used for earthquake analysis of nuclear power plants. In some cases, difficulties experienced in modelling the soil have affected the methods of global analysis, thus leading to approaches like the substructuring technique, e.g. 3-step method. In the practical applications, the limitations of each specific method must be taken into account in order to avoid unrealistic results. The aim of this paper is to present the recent development on an equivalent SDOF system for soil including frequency-dependent soil masses. The method will be compared with the classical 3-step method. (author)

  10. Chromate removal as influenced by the structural changes of soil components upon carbonization at different temperatures

    International Nuclear Information System (INIS)

    Chen, K.Y.; Liu, J.C.; Chiang, P.N.; Wang, S.L.; Kuan, W.H.; Tzou, Y.M.; Deng, Y.; Tseng, K.J.; Chen, C.C.; Wang, M.K.

    2012-01-01

    Surface fire could induce heat transferring into the soil, creating a carbonized environment, which may alter the chemical compositions of soil organic matters (SOM). In the study, a surface soil was carbonized at up to 600 °C with limited air to simulate soils experiencing a surface fire, and Cr(VI) removal on the carbonized soils was investigated. NMR and FTIR analyses demonstrated a remarkable change of SOM structures at 300–400 °C. TGA-MS spectra indicated that (e.g. C 2 H 4 , CH 3 OH and C 3 H 8 ) were the major components in the evolved gases from the pyrolyzed soil. A maximum amount of Cr(VI) removal (ca. 4 mg g −1 soil) occurred for the 200 °C-carbonized soils, attributed mainly to a significant increase of Cr(VI) reduction by 0.1 M KCl extractable organic carbon (EOC) with abundant carboxylic groups. Nonetheless, the formation of aromatic C upon carbonization of the soil at >400 °C may be responsible for Cr(VI) reduction. - Highlights: ► A maximum amount of Cr(VI) removal occurred for the 200 °C-carbonized soil. ► Extractable organic carbon (EOC) was increased upon carbonization of soil. ► EOC, enriched with carboxylic groups, enhances Cr(VI) reduction by the soil. ► The formation of aromatic C on a carbonized soil may be responsible for Cr(VI) reduction. ► Reductive product of Cr(III) tends to bond on high-temperature-modified soil. - This study first addresses the importance of surface fire-induced heat transferring into the soil to the transformations of environmental pollutants, i.e. chromium.

  11. Root carbon decomposition and microbial biomass response at different soil depths

    Science.gov (United States)

    Rumpel, C.

    2012-12-01

    The relationship between root litter addition and soil organic matter (SOM) formation in top- versus subsoils is unknown. The aim of this study was to investigate root litter decomposition and stabilisation in relation to microbial parameters in different soil depths. Our conceptual approach included incubation of 13C-labelled wheat roots at 30, 60 and 90 cm soil depth for 36 months under field conditions. Quantitative root carbon contribution to SOM was assessed, changes of bulk root chemistry studied by solid-state 13C NMR spectroscopy and lignin content and composition was assessed after CuO oxidation. Compound-specific isotope analysis allowed to assess the role of root lignin for soil C storage in the different soil depths. Microbial biomass and community structure was determined after DNA extraction. After three years of incubation, O-alkyl C most likely assigned to polysaccharides decreased in all soil depth compared to the initial root material. The degree of root litter decomposition assessed by the alkyl/O-alkyl ratio decreased with increasing soil depth, while aryl/O-alkyl ratio was highest at 60 cm depth. Root-derived lignin showed depth specific concentrations (30 fungi contribution increased after root litter addition. Their community structure changed after root litter addition and showed horizon specific dynamics. Our study shows that root litter addition can contribute to C storage in subsoils but did not influence C storage in topsoil. We conclude that specific conditions of single soil horizons have to be taken into account if root C dynamics are to be fully understood.

  12. Effect of groundwater on soil-structure interaction

    International Nuclear Information System (INIS)

    Xu, J.; Bandyopadhyay, K.K.; Kassir, M.K.

    1995-01-01

    This paper presents results of a parametric study performed to investigate the effect of pore water in saturated soils on the response of nuclear containment structures to seismic motions. The technique employed uses frequency domain algorithm which incorporates impedances for both dry and saturated soils into an SSI model. A frequency domain time history analysis is carried out using the computer code CARES for a typical PWR containment structure. Structural responses presented in terms of floor response spectra indicate that considering the presence of the pore water in soils could benefit the design of massive nuclear containment structures

  13. Model structures amplify uncertainty in predicted soil carbon responses to climate change.

    Science.gov (United States)

    Shi, Zheng; Crowell, Sean; Luo, Yiqi; Moore, Berrien

    2018-06-04

    Large model uncertainty in projected future soil carbon (C) dynamics has been well documented. However, our understanding of the sources of this uncertainty is limited. Here we quantify the uncertainties arising from model parameters, structures and their interactions, and how those uncertainties propagate through different models to projections of future soil carbon stocks. Both the vertically resolved model and the microbial explicit model project much greater uncertainties to climate change than the conventional soil C model, with both positive and negative C-climate feedbacks, whereas the conventional model consistently predicts positive soil C-climate feedback. Our findings suggest that diverse model structures are necessary to increase confidence in soil C projection. However, the larger uncertainty in the complex models also suggests that we need to strike a balance between model complexity and the need to include diverse model structures in order to forecast soil C dynamics with high confidence and low uncertainty.

  14. Influence of black carbon addition on phenanthrene dissipation and microbial community structure in soil

    International Nuclear Information System (INIS)

    Wang Ping; Wang Haizhen; Wu Laosheng; Di Hongjie; He Yan; Xu Jianming

    2012-01-01

    Biodegradation processes and changes in microbial community structure were investigated in black carbon (BC) amended soils in a laboratory experiment using two soils (black soil and red soil). We applied different percentages of charcoal as BC (0%, 0.5% and 1% by weight) with 100 mg kg −1 of phenanthrene. Soil samples were collected at different incubation times (0, 7, 15, 30, 60, 120 d). The amendment with BC caused a marked decrease in the dissipation (ascribed to mainly degradation and/or sequestration) of phenanthrene residues from soil. Extracted phenanthrene in black soil with 1% BC were higher, oppositely in red soil, 0.5% BC amendments were higher. There were significant changes in the PLFA pattern in phenanthrene-spiked soils with time but BC had little effect on the microbial community structure of phenanthrene-spiked soils, as indicated by principal component analysis (PCA) of the PLFA signatures. - Highlights: ► Extracted phenanthrene increased substantially as the BC amount increased. ► Extracted phenanthrene in black soil with 1% BC were higher, oppositely in red soil. ► BC caused a marked decrease in the dissipation of phenanthrene from soil. ► PLFA pattern in phenanthrene-spiked soils with time had significant changes. - BC amendments on phenanthrene extraction were different for two soils and time was a more effective factor in microbial community changes.

  15. Earthquake analysis of structures including structure-soil interaction by a substructure method

    International Nuclear Information System (INIS)

    Chopra, A.K.; Guttierrez, J.A.

    1977-01-01

    A general substructure method for analysis of response of nuclear power plant structures to earthquake ground motion, including the effects of structure-soil interaction, is summarized. The method is applicable to complex structures idealized as finite element systems and the soil region treated as either a continuum, for example as a viscoelastic halfspace, or idealized as a finite element system. The halfspace idealization permits reliable analysis for sites where essentially similar soils extend to large depths and there is no rigid boundary such as soil-rock interface. For sites where layers of soft soil are underlain by rock at shallow depth, finite element idealization of the soil region is appropriate; in this case, the direct and substructure methods would lead to equivalent results but the latter provides the better alternative. Treating the free field motion directly as the earthquake input in the substructure method eliminates the deconvolution calculations and the related assumption -regarding type and direction of earthquake waves- required in the direct method. The substructure method is computationally efficient because the two substructures-the structure and the soil region- are analyzed separately; and, more important, it permits taking advantage of the important feature that response to earthquake ground motion is essentially contained in the lower few natural modes of vibration of the structure on fixed base. For sites where essentially similar soils extend to large depths and there is no obvious rigid boundary such as a soil-rock interface, numerical results for earthquake response of a nuclear reactor structure are presented to demonstrate that the commonly used finite element method may lead to unacceptable errors; but the substructure method leads to reliable results

  16. Soil carbon pools in different pasture systems

    Directory of Open Access Journals (Sweden)

    Francisco M. Cardozo, Jr.

    2016-03-01

    Full Text Available The aim of this study was to assess the carbon pools of a tropical soil where the native forest was replaced with different pasture systems. We studied five pasture production systems, including four monoculture systems with forage grasses such as Andropogon, Brachiaria, Panicum, and Cynodon, and an agroforestry system as well as a native vegetation plot. Greater availability of fulvic acid was detected in the agroforestry system as compared with that in the other systems. Higher lability of C was detected in the Andropogon system during the dry and rainy seasons and during the dry season in Cynodon. During the dry season, all pastures systems showed deficits in the net removal of atmospheric CO2. The structure and practices of the agroforestry system enables more carbon to be sequestered in the soil as compared with the monoculture pasture, suggesting that it is an important practice to mitigate climatic change and to improve soil quality.

  17. Physical disturbance to ecological niches created by soil structure alters community composition of methanotrophs.

    Science.gov (United States)

    Kumaresan, Deepak; Stralis-Pavese, Nancy; Abell, Guy C J; Bodrossy, Levente; Murrell, J Colin

    2011-10-01

    Aggregates of different sizes and stability in soil create a composite of ecological niches differing in terms of physico-chemical and structural characteristics. The aim of this study was to identify, using DNA-SIP and mRNA-based microarray analysis, whether shifts in activity and community composition of methanotrophs occur when ecological niches created by soil structure are physically perturbed. Landfill cover soil was subject to three treatments termed: 'control' (minimal structural disruption), 'sieved' (sieved soil using 2 mm mesh) and 'ground' (grinding using mortar and pestle). 'Sieved' and 'ground' soil treatments exhibited higher methane oxidation potentials compared with the 'control' soil treatment. Analysis of the active community composition revealed an effect of physical disruption on active methanotrophs. Type I methanotrophs were the most active methanotrophs in 'sieved' and 'ground' soil treatments, whereas both Type I and Type II methanotrophs were active in the 'control' soil treatment. The result emphasize that changes to a particular ecological niche may not result in an immediate change to the active bacterial composition and change in composition will depend on the ability of the bacterial communities to respond to the perturbation. © 2011 Society for Applied Microbiology and Blackwell Publishing Ltd.

  18. Colonization and community structure of arbuscular mycorrhizal fungi in maize roots at different depths in the soil profile respond differently to phosphorus inputs on a long-term experimental site.

    Science.gov (United States)

    Wang, Chao; White, Philip J; Li, Chunjian

    2017-05-01

    Effects of soil depth and plant growth stages on arbuscular mycorrhizal fungal (AMF) colonization and community structure in maize roots and their potential contribution to host plant phosphorus (P) nutrition under different P-fertilizer inputs were studied. Research was conducted on a long-term field experiment over 3 years. AMF colonization was assessed by AM colonization rate and arbuscule abundances and their potential contribution to host P nutrition by intensity of fungal alkaline phosphatase (ALP)/acid phosphatase (ACP) activities and expressions of ZmPht1;6 and ZmCCD8a in roots from the topsoil and subsoil layer at different growth stages. AMF community structure was determined by specific amplification of 18S rDNA. Increasing P inputs up to 75-100 kg ha -1  yr -1 increased shoot biomass and P content but decreased AMF colonization and interactions between AMF and roots. AM colonization rate, intensity of fungal ACP/ALP activities, and expression of ZmPht1;6 in roots from the subsoil were greater than those from topsoil at elongation and silking but not at the dough stage when plants received adequate or excessive P inputs. Neither P input nor soil depth influenced the number of AMF operational taxonomic units (OTUs) present in roots, but P-fertilizer input, in particular, influenced community composition and relative AMF abundance. In conclusion, although increasing P inputs reduce AMF colonization and influence AMF community structure, AMF can potentially contribute to plant P nutrition even in well-fertilized soils, depending on the soil layer in which roots are located and the growth stage of host plants.

  19. Green roof soil system affected by soil structural changes: A project initiation

    Science.gov (United States)

    Jelínková, Vladimíra; Dohnal, Michal; Šácha, Jan; Šebestová, Jana; Sněhota, Michal

    2014-05-01

    Anthropogenic soil systems and structures such as green roofs, permeable or grassed pavements comprise appreciable part of the urban watersheds and are considered to be beneficial regarding to numerous aspects (e.g. carbon dioxide cycle, microclimate, reducing solar absorbance and storm water). Expected performance of these systems is significantly affected by water and heat regimes that are primarily defined by technology and materials used for system construction, local climate condition, amount of precipitation, the orientation and type of the vegetation cover. The benefits and potencies of anthropogenic soil systems could be considerably threatened in case when exposed to structural changes of thin top soil layer in time. Extensive green roof together with experimental green roof segment was established and advanced automated monitoring system of micrometeorological variables was set-up at the experimental site of University Centre for Energy Efficient Buildings as an interdisciplinary research facility of the Czech Technical University in Prague. The key objectives of the project are (i) to characterize hydraulic and thermal properties of soil substrate studied, (ii) to establish seasonal dynamics of water and heat in selected soil systems from continuous monitoring of relevant variables, (iii) to detect structural changes with the use of X-ray Computed Tomography, (iv) to identify with the help of numerical modeling and acquired datasets how water and heat dynamics in anthropogenic soil systems are affected by soil structural changes. Achievements of the objectives will advance understanding of the anthropogenic soil systems behavior in conurbations with the temperate climate.

  20. Soil-structure interaction in fuel handling building

    International Nuclear Information System (INIS)

    Elaidi, B.M.; Eissa, M.A.

    1998-01-01

    This paper presents an accurate three-dimensional seismic soil-structure interaction analysis for large structures. The method is applied to the fuel building in nuclear power plants. The analysis is performed numerically in the frequency domain and the responses are obtained by inverse Fourier transformation. The size of the structure matrices is reduced by transforming the equation of motion to the modal coordinate system. The soil is simulated as a layered media on top of viscoelastic half space. Soil impedance matrices are calculated from the principles of continuum mechanics and account for soil stiffness and energy dissipation. Effects of embedment on the field equations is incorporated through the scattering matrices or by simply scaling the soil impedance. Finite element methods are used to discretize the concrete foundation for the generation of the soil interaction matrices. Decoupling of the sloshing water in the spent fuel pools and the free-standing spent fuel racks is simulated. The input seismic motions are defined by three artificial time history accelerations. These input motions are generated to match the ground design basis response spectra and the target power spectral density function. The methods described in this paper can handle arbitrary foundation layouts, allows for large structural models, and accurately represents the soil impedance. Time history acceleration responses were subsequently used to generate floor response spectra at applicable damping values. (orig.)

  1. Effect of metal oxide nanoparticles on microbial community structure and function in two different soil types.

    Directory of Open Access Journals (Sweden)

    Sammy Frenk

    Full Text Available Increased availability of nanoparticle-based products will, inevitably, expose the environment to these materials. Engineered nanoparticles (ENPs may thus find their way into the soil environment via wastewater, dumpsters and other anthropogenic sources; metallic oxide nanoparticles comprise one group of ENPs that could potentially be hazardous for the environment. Because the soil bacterial community is a major service provider for the ecosystem and humankind, it is critical to study the effects of ENP exposure on soil bacteria. These effects were evaluated by measuring bacterial community activity, composition and size following exposure to copper oxide (CuO and magnetite (Fe3O4 nanosized (<50 nm particles. Two different soil types were examined: a sandy loam (Bet-Dagan and a sandy clay loam (Yatir, under two ENP concentrations (1%, 0.1%. Results indicate that the bacterial community in Bet-Dagan soil was more susceptible to change due to exposure to these ENPs, relative to Yatir soil. More specifically, CuO had a strong effect on bacterial hydrolytic activity, oxidative potential, community composition and size in Bet-Dagan soil. Few effects were noted in the Yatir soil, although 1% CuO exposure did cause a significant decreased oxidative potential and changes to community composition. Fe3O4 changed the hydrolytic activity and bacterial community composition in Bet-Dagan soil but did not affect the Yatir soil bacterial community. Furthermore, in Bet-Dagan soil, abundance of bacteria annotated to OTUs from the Bacilli class decreased after addition of 0.1% CuO but increased with 1% CuO, while in Yatir soil their abundance was reduced with 1% CuO. Other important soil bacterial groups, including Rhizobiales and Sphingobacteriaceae, were negatively affected by CuO addition to soil. These results indicate that both ENPs are potentially harmful to soil environments. Furthermore, it is suggested that the clay fraction and organic matter in

  2. Rheological properties of different minerals and clay soils

    Directory of Open Access Journals (Sweden)

    Dolgor Khaydapova

    2015-07-01

    Full Text Available Rheological properties of kaolinite, montmorillonite, ferralitic soil of the humid subtropics (Norfolk island, southwest of Oceania, alluvial clay soil of arid subtropics (Konyaprovince, Turkey and carbonate loess loam of Russian forest-steppe zone were determined. A parallel plate rheometer MCR-302 (Anton Paar, Austria was used in order to conduct amplitude sweep test. Rheological properties allow to assess quantitatively structural bonds and estimate structural resistance to a mechanical impact. Measurements were carried out on samples previously pounded and capillary humidified during 24 hours. In the amplitude sweep method an analyzed sample was placed between two plates. The upper plate makes oscillating motions with gradually extending amplitude. Software of the device allows to receive several rheological parameters such as elastic modulus (G’, Pa, viscosity modulus (G", Pa, linear viscoelasticity range (G’>>G”, and point of destruction of structure at which the elastic modulus becomes equal to the viscosity modulus (G’=G”- crossover. It was found out that in the elastic behavior at G '>> G " strength of structural links of kaolinite, alluvial clay soil and loess loam constituted one order of 105 Pa. Montmorillonit had a minimum strength - 104 Pa and ferrallitic soil of Norfolk island [has] - a maximum one -106 Pa. At the same time montmorillonite and ferralitic soil were characterized by the greatest plasticity. Destruction of their structure (G '= G" took place only in the cases when strain was reaching 11-12%. Destraction of the kaolinite structure happened at 5% of deformation and of the alluvial clay soil and loess loam - at 4.5%.

  3. Microbial Community Structure of Casing Soil During Mushroom Growth

    Institute of Scientific and Technical Information of China (English)

    CAI Wei-Ming; YAO Huai-Ying; FENG Wei-Lin; JIN Qun-Li; LIU Yue-Yan; LI Nan-Yi; ZHENG Zhong

    2009-01-01

    The culturable bacterial population and phospholipid fatty acid (PLFA)profile of casing soil were investigated at different mushroom (Agaricus bisporusI cropping stages.The change in soil bacterial PLFAs was always accompanied by a change in the soil culturable bacterial population in the first flush.Comparatively higher culturable bacterial population and bacterial PLFAs were found in the casing soil at the primordia formation stage of the first flush.There was a significant increase in the ratio of fungal to bacterial PLFAs during mushroom growth.Multivariate analysis of PLFA data demonstrated that the mushroom cropping stage could considerably affect the microbial community structure of the casing soil.The bacterial population increased significantly from casing soil application to the primordia formation stage of the first flush.Casing soil application resulted in an increase in the ratio of gram-negative bacterial PLFAs to gram-positive bacterial PLFAs,suggesting that some gram-negative bacteria might play an important role in mushroom sporophore initiation.

  4. Impact of land management on soil structure and soil hydraulic properties

    Czech Academy of Sciences Publication Activity Database

    Kodešová, R.; Jirků, V.; Nikodem, A.; Mühlhanselová, M.; Žigová, Anna

    2010-01-01

    Roč. 12, - (2010) ISSN 1029-7006. [European Geosciences Union General Assembly 2010. 02.05.2010-07.05.2010, Wienna] R&D Projects: GA ČR GA526/08/0434 Institutional research plan: CEZ:AV0Z30130516 Keywords : land management * soil structure * soil hydraulic properties * micromorphology Subject RIV: DF - Soil Science

  5. [Effects of wheat root exudates on cucumber growth and soil fungal community structure].

    Science.gov (United States)

    Wu, Feng-Zhi; Li, Min; Cao, Peng; Ma, Ya-Fei; Wang, Li-Li

    2014-10-01

    With wheat as the donor plant and cucumber as the receptor plant, this study investigated the effects of root exudates from wheat cultivars with different allelopathic potentials (positive or negative) and companion cropping with wheat on soil fungal community structure by PCR-DGGE method and cucumber growth. Results showed that the wheat root exudates with positive allelopathic potential increased height and stem diameter of cucumber seedlings significantly, compared to the control seedlings (W) after 6 days and 12 days treatment, respectively. Also, wheat root exudates with both positive and negative allelopathic potential increased the seedling height of cucumber significantly after 18 days treatment. The wheat root exudates with different allelopathic potentials decreased the band number, Shannon and evenness indices of soil fungal community significantly in cucumber seedling rhizosphere, and those in the soil with the control seedlings (W) were also significantly higher than that in the control soil without seedlings (Wn) after 6 days treatment. The band number, Shannon and evenness indices in all the treatments were significantly higher than those in the control soil without seedlings (Wn) after 18 days treatment. Companion cropping with negative allelopathic potential wheat decreased the Shannon and evenness indices of soil fungi community significantly in the cucumber seedling rhizosphere, suggesting the wheat root exudates and companion cropping with wheat changed soil fungal community structure in the cucumber seedling rhizosphere. The results of DGGE map and the principal component analysis showed that companion cropping with wheat cultivars with different allelopathic potentials changed soil fungal community structure in cucumber seedling rhizosphere.

  6. Aggregates morphometry in a Latosol (Oxisol under different soil management systems

    Directory of Open Access Journals (Sweden)

    Carla Eloize Carducci

    2016-02-01

    Full Text Available Changes in soil physical properties are inherent in land use, mainly in superficial layers. Structural alterations can directly influence distribution, stability and especially morphometry of soil aggregates, which hence will affect pore system and the dynamic process of water and air in soil. Among the methods used to measure these changes, morphometry is a complementary tool to the classic methods. The aim of this study was to evaluate structural quality of a Latosol (Oxisol, under different management systems, using morphometric techniques. Treatments consisted of soil under no-tillage (NT; pasture (P, in which both had been cultivated for ten years, and an area under native vegetation (NV – Savannah like vegetation. Aggregates were sampled at depths of 0-0.10 and 0.10-0.20 m, retained on sieves with 9.52 – 4.76 mm, 4.76 – 1.0mm, 1.0 – 0.5mm diameter ranges. Aggregate morphometry was assessed by 2D images from scanner via QUANTPORO software. The analyzed variables were: area, perimeter, aspect, roughness, Ferret diameter and compactness. Moreover, disturbed samples were collected at the same depths to determine particle size, aggregate stability in water, water-dispersible clay, clay flocculation index and organic matter content. It was observed that different soil management systems have modified soil aggregate morphology as well as physical attributes; and management effects’ magnitude increased from NT to P.

  7. Soil properties impacting denitrifier community size, structure, and activity in New Zealand dairy-grazed pasture

    Science.gov (United States)

    Jha, Neha; Saggar, Surinder; Giltrap, Donna; Tillman, Russ; Deslippe, Julie

    2017-09-01

    Denitrification is an anaerobic respiration process that is the primary contributor of the nitrous oxide (N2O) produced from grassland soils. Our objective was to gain insight into the relationships between denitrifier community size, structure, and activity for a range of pasture soils. We collected 10 dairy pasture soils with contrasting soil textures, drainage classes, management strategies (effluent irrigation or non-irrigation), and geographic locations in New Zealand, and measured their physicochemical characteristics. We measured denitrifier abundance by quantitative polymerase chain reaction (qPCR) and assessed denitrifier diversity and community structure by terminal restriction fragment length polymorphism (T-RFLP) of the nitrite reductase (nirS, nirK) and N2O reductase (nosZ) genes. We quantified denitrifier enzyme activity (DEA) using an acetylene inhibition technique. We investigated whether varied soil conditions lead to different denitrifier communities in soils, and if so, whether they are associated with different denitrification activities and are likely to generate different N2O emissions. Differences in the physicochemical characteristics of the soils were driven mainly by soil mineralogy and the management practices of the farms. We found that nirS and nirK communities were strongly structured along gradients of soil water and phosphorus (P) contents. By contrast, the size and structure of the nosZ community was unrelated to any of the measured soil characteristics. In soils with high water content, the richnesses and abundances of nirS, nirK, and nosZ genes were all significantly positively correlated with DEA. Our data suggest that management strategies to limit N2O emissions through denitrification are likely to be most important for dairy farms on fertile or allophanic soils during wetter periods. Finally, our data suggest that new techniques that would selectively target nirS denitrifiers may be the most effective for limiting N2O

  8. Evaluation of seismic behavior of soils under nuclear containment structures via dynamic centrifuge test

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Jeong Gon, E-mail: jgha87@kaist.ac.kr; Kim, Dong-Soo, E-mail: dskim@kaist.ac.kr

    2014-10-01

    Highlights: • A series of dynamic centrifuge tests were performed for NPP structure to investigate the soil–foundation-structure interaction with various soil conditions from loose sand to weathered rock. • SFSI phenomena for NPP structure were observed directly using experimental method. • Effect of the soil stiffness and nonlinear characteristics on SFSI was estimated. • There are comparisons of the control motions for seismic design of a NPP structure. • Subsoil condition, earthquake intensity and control motion affected to seismic load. - Abstract: To evaluate the earthquake loads for the seismic design of a nuclear containment structure, it is necessary to consider the soil–foundation-structure interaction (SFSI) due to their interdependent behavior. Especially, understanding the effects of soil stiffness under the structure and the location of control motion to SFSI are very important. Motivated by these requirements, a series of dynamic centrifuge tests were performed with various soil conditions from loose sand to weathered rock (WR), as well as different seismic intensities for the bedrock motion. The different amplification characteristics in peak-accelerations profile and effects of soil-nonlinearity in response spectrum were observed. The dynamic behaviors were compared between surface of free-field and foundation of the structure for the evaluation of the control motion for seismic design. It was found that dynamic centrifuge test has potentials to estimate the seismic load considering SFSI.

  9. Evaluation of seismic behavior of soils under nuclear containment structures via dynamic centrifuge test

    International Nuclear Information System (INIS)

    Ha, Jeong Gon; Kim, Dong-Soo

    2014-01-01

    Highlights: • A series of dynamic centrifuge tests were performed for NPP structure to investigate the soil–foundation-structure interaction with various soil conditions from loose sand to weathered rock. • SFSI phenomena for NPP structure were observed directly using experimental method. • Effect of the soil stiffness and nonlinear characteristics on SFSI was estimated. • There are comparisons of the control motions for seismic design of a NPP structure. • Subsoil condition, earthquake intensity and control motion affected to seismic load. - Abstract: To evaluate the earthquake loads for the seismic design of a nuclear containment structure, it is necessary to consider the soil–foundation-structure interaction (SFSI) due to their interdependent behavior. Especially, understanding the effects of soil stiffness under the structure and the location of control motion to SFSI are very important. Motivated by these requirements, a series of dynamic centrifuge tests were performed with various soil conditions from loose sand to weathered rock (WR), as well as different seismic intensities for the bedrock motion. The different amplification characteristics in peak-accelerations profile and effects of soil-nonlinearity in response spectrum were observed. The dynamic behaviors were compared between surface of free-field and foundation of the structure for the evaluation of the control motion for seismic design. It was found that dynamic centrifuge test has potentials to estimate the seismic load considering SFSI

  10. Soil physical and X-ray computed tomographic measurements to investigate small-scale structural differences under strip tillage compared to mulch till and no-till

    Science.gov (United States)

    Pöhlitz, Julia; Rücknagel, Jan; Schlüter, Steffen; Vogel, Hans-Jörg

    2017-04-01

    In recent years there has been an increasing application of conservation tillage techniques where the soil is no longer turned, but only loosened or left completely untilled. Dead plant material remains on the soil surface, which provides environmental and economic benefits such as the conservation of water, preventing soil erosion and saving time during seedbed preparation. There is a variety of conservation tillage systems, e.g. mulch till, no-till and strip tillage, which is a special feature. In strip tillage, the seed bed is divided into a seed zone (strip-till within the seed row: STWS) and a soil management zone (strip-till between the seed row: STBS). However, each tillage application affects physical soil properties and processes. Here, the combined application of classical soil mechanical and computed tomographic methods is used on a Chernozem (texture 0-30 cm: silt loam) to show small-scale structural differences under strip tillage (STWS, STBS) compared to no-till (NT) and mulch till (MT). In addition to the classical soil physical parameters dry bulk density and saturated conductivity (years: 2012, 2014, 2015) at soil depths 2-8 and 12-18 cm, stress-strain tests were carried out to map mechanical behavior. The stress-strain tests were performed for a load range from 5-550 kPa at 12-18 cm depth (year 2015). Mechanical precompression stress was determined on the stress-dry bulk density curves. Further, CT image cross sections and computed tomographic examinations (average pore size, porosity, connectivity, and anisotropy) were used from the same soil samples. For STBS and NT, a significant increase in dry bulk density was observed over the course of time compared to STWS and MT, which was more pronounced at 2-8 cm than at 12-18 cm depth. Despite higher dry bulk density, STBS displayed higher saturated conductivity in contrast to STWS, which can be attributed to higher earthworm abundance. In strip tillage, structural differences were identified

  11. Reliability evaluation of containments including soil-structure interaction

    International Nuclear Information System (INIS)

    Pires, J.; Hwang, H.; Reich, M.

    1985-12-01

    Soil-structure interaction effects on the reliability assessment of containment structures are examined. The probability-based method for reliability evaluation of nuclear structures developed at Brookhaven National Laboratory is extended to include soil-structure interaction effects. In this method, reliability of structures is expressed in terms of limit state probabilities. Furthermore, random vibration theory is utilized to calculate limit state probabilities under random seismic loads. Earthquake ground motion is modeled by a segment of a zero-mean, stationary, filtered Gaussian white noise random process, represented by its power spectrum. All possible seismic hazards at a site, represented by a hazard curve, are also included in the analysis. The soil-foundation system is represented by a rigid surface foundation on an elastic halfspace. Random and other uncertainties in the strength properties of the structure, in the stiffness and internal damping of the soil, are also included in the analysis. Finally, a realistic reinforced concrete containment is analyzed to demonstrate the application of the method. For this containment, the soil-structure interaction effects on; (1) limit state probabilities, (2) structural fragility curves, (3) floor response spectra with probabilistic content, and (4) correlation coefficients for total acceleration response at specified structural locations, are examined in detail. 25 refs., 21 figs., 12 tabs

  12. Influence of amendments on soil structure and soil loss under ...

    African Journals Online (AJOL)

    Macromolecule polymers are significant types of chemical amendments because of their special structure, useful functions and low cost. Macromolecule polymers as soil amendment provide new territory for studying China's agricultural practices and for soil and water conservation, because polymers have the ability to ...

  13. Factors mediating the restoration of structurally degraded soils

    DEFF Research Database (Denmark)

    Arthur, Emmanuel; Moldrup, Per; Schjønning, Per

    with the ability of soils to perform these functions. The present study examines the roles of clay mineralogy, native organic matter, and exogenous organic material on the restoration of structurally degraded soils. Totally seven soils from Denmark and Ghana - five soils dominated by illites, one kaolinitic soil...... the incubation period, structural stability estimated as the amount of water-dispersible clay decreased with prevailing moisture content, and native organic matter. Also, microbial activity significantly increased with addition of exogenous organic matter. At the end of incubation, there was significant...... macroaggregation, decreased bulk density, and increased equivalent pore diameter and tortuosity (derived from measurements of soil-gas diffusivity and soil-air permeability) for all soils. Although aggregate friability was not affected by clay type, aggregate workability was highest for the kaolinitic soil...

  14. Time-domain soil-structure interaction analysis of nuclear facilities

    International Nuclear Information System (INIS)

    Coleman, Justin L.; Bolisetti, Chandrakanth; Whittaker, Andrew S.

    2016-01-01

    The Nuclear Regulatory Commission (NRC) regulation 10 CFR Part 50 Appendix S requires consideration of soil-structure interaction (SSI) in nuclear power plant (NPP) analysis and design. Soil-structure interaction analysis for NPPs is routinely carried out using guidance provided in the ASCE Standard 4-98 titled “Seismic Analysis of Safety-Related Nuclear Structures and Commentary”. This Standard, which is currently under revision, provides guidance on linear seismic soil-structure-interaction (SSI) analysis of nuclear facilities using deterministic and probabilistic methods. A new appendix has been added to the forthcoming edition of ASCE Standard 4 to provide guidance for time-domain, nonlinear SSI (NLSSI) analysis. Nonlinear SSI analysis will be needed to simulate material nonlinearity in soil and/or structure, static and dynamic soil pressure effects on deeply embedded structures, local soil failure at the foundation-soil interface, nonlinear coupling of soil and pore fluid, uplift or sliding of the foundation, nonlinear effects of gaps between the surrounding soil and the embedded structure and seismic isolation systems, none of which can be addressed explicitly at present. Appendix B of ASCE Standard 4 provides general guidance for NLSSI analysis but will not provide a methodology for performing the analysis. This paper provides a description of an NLSSI methodology developed for application to nuclear facilities, including NPPs. This methodology is described as series of sequential steps to produce reasonable results using any time-domain numerical code. These steps require some numerical capabilities, such as nonlinear soil constitutive models, which are also described in the paper.

  15. Soil Parameters Drive the Structure, Diversity and Metabolic Potentials of the Bacterial Communities Across Temperate Beech Forest Soil Sequences.

    Science.gov (United States)

    Jeanbille, M; Buée, M; Bach, C; Cébron, A; Frey-Klett, P; Turpault, M P; Uroz, S

    2016-02-01

    Soil and climatic conditions as well as land cover and land management have been shown to strongly impact the structure and diversity of the soil bacterial communities. Here, we addressed under a same land cover the potential effect of the edaphic parameters on the soil bacterial communities, excluding potential confounding factors as climate. To do this, we characterized two natural soil sequences occurring in the Montiers experimental site. Spatially distant soil samples were collected below Fagus sylvatica tree stands to assess the effect of soil sequences on the edaphic parameters, as well as the structure and diversity of the bacterial communities. Soil analyses revealed that the two soil sequences were characterized by higher pH and calcium and magnesium contents in the lower plots. Metabolic assays based on Biolog Ecoplates highlighted higher intensity and richness in usable carbon substrates in the lower plots than in the middle and upper plots, although no significant differences occurred in the abundance of bacterial and fungal communities along the soil sequences as assessed using quantitative PCR. Pyrosequencing analysis of 16S ribosomal RNA (rRNA) gene amplicons revealed that Proteobacteria, Acidobacteria and Bacteroidetes were the most abundantly represented phyla. Acidobacteria, Proteobacteria and Chlamydiae were significantly enriched in the most acidic and nutrient-poor soils compared to the Bacteroidetes, which were significantly enriched in the soils presenting the higher pH and nutrient contents. Interestingly, aluminium, nitrogen, calcium, nutrient availability and pH appeared to be the best predictors of the bacterial community structures along the soil sequences.

  16. Soil-structure interaction effects in seismic analysis of turbine generator building on rock-like foundation

    International Nuclear Information System (INIS)

    Park, Chi Seon; Lee, Sang Hoon; Yoo, Kwang Hoon

    2004-01-01

    Soil properties supporting structure may become criteria determining methodologies for seismic response analysis of a structure. Regulatory Guide describes that a fixed-base assumption is acceptable for structures supported on rock or rock-like materials defined by a shear wave velocity of 3,500 ft/sec or greater at a shear strain of 10 -3 percent or smaller when considering preloaded soil conditions due to the structure. Seismic analyses for the Korean nuclear power plant (NPP) structures satisfying the above site soil condition have been completed through the fixed-base analysis. However, dynamic responses for relatively stiff structures such as NPP structures still have soil-structure interaction (SSI) effects. In other words, the fixed-base analysis does not always yield conservative results to be compared with SSI analysis. The SSI effects due to different stiff soil properties for Turbine Generator Building (TGB) structure to be constructed at Kori site of South Korea are investigated in views of floor response spectra (FRS) and member forces

  17. Study of microarthopod communities to assess soil quality in different managed vineyards

    Science.gov (United States)

    Gagnarli, E.; Goggioli, D.; Tarchi, F.; Guidi, S.; Nannelli, R.; Vignozzi, N.; Valboa, G.; Lottero, M. R.; Corino, L.; Simoni, S.

    2015-01-01

    Land use influences the abundance and diversity of soil arthropods. The evaluation of the impact of different management strategies on soil quality is increasingly requested. The determination of communities' structures of edaphic fauna can represent an efficient tool. In this study, in some vineyards in Piedmont (Italy), the effects of two different management systems, organic and integrated pest management (IPM), on soil biota were evaluated. As microarthropods living in soil surface are an important component of soil ecosystem interacting with all the other system components, a multi disciplinary approach was adopted by characterizing also some soil physical and chemical characteristics (soil texture, soil pH, total organic carbon, total nitrogen, calcium carbonate). Soil samplings were carried out on Winter 2011 and Spring 2012. All specimens were counted and determined up to the order level. The biological quality of the soil was defined through the determination of ecological indices, such as QBS-ar, species richness and indices of Shannon-Weaver, Pielou, Margalef and Simpson. The mesofauna abundance was affected by both the type of management and the soil texture. The analysis of microarthropod communities by QBS-ar showed higher values in organic than in IPM managed vineyards; in particular, the values registered in organic vineyards were similar to those characteristic of preserved soils.

  18. A mixed implicit/explicit procedure for soil-structure interaction

    International Nuclear Information System (INIS)

    Kunar, R.R.

    1982-01-01

    This paper describes an efficient method for the solution of dynamic soil-structure interaction problems. The method which combines implicit and explicit time integration procedures is ideally suited to problems in which the structure is considered linear and the soil non-linear. The equations relating to the linear structures are integrated using an unconditionally stable implicit scheme while the non-linear soil is treated explicitly. The explicit method is ideally suited to non-linear calculations as there is no need for iterative techniques. The structural equations can also be integrated explicitly, but this generally requires a time step that is much smaller than that for the soil. By using an unconditionally stable implicit algorithm for the structure, the complete analysis can be performed using the time step for the soil. The proposed procedure leads to economical solutions with the soil non-linearities handled accurately and efficiently. (orig.)

  19. Which soil tillage is better in terms of the soil organic matter and soil structure changes?

    Directory of Open Access Journals (Sweden)

    VLADIMÍR ŠIMANSKÝ

    2016-06-01

    Full Text Available This study was performed to evaluate effects of minimum (MT and conventional tillage (CT on soil organic matter and soil structure in haplic Chernozems and mollic Fluvisols. The content of soil organic carbon (Corg as well as parameters of stability and vulnerability of soil structure were quantified. The results showed that soil type had statistically significant influence on Corg. In haplic Chernozems the Corg content near the surface (0–0.1 m was significantly higher under MT (by 6% compared to CT, however, in layer 0–0.3 m under CT the average Corg content was by 16% higher than under MT. In mollic Fulvisols under MT, the average Corg content (17.5 ± 5.4 g*kg-1 was significantly less for the 0–0.3 m layer than the CT (22.7 ± 0.4 g*kg-1. In Chernozems, total content of water-stable micro-aggregates (WSAmi was higher in MT (90.8% than in CT (69.5%. In mollic Fluvisols, the average content of WSAmi was higher in CT (62.5% than in MT (53.2%. The low aggregate stability and the high structure vulnerability were reflected also due to the high contents of WSAmi in both soils. The stability of aggregates was a higher in mollic Fluvisols than in haplic Chernozems. In haplic Chernozems, better soil structure stability was under CT than MT, on the other hand, in mollic Fluvisols, the average value of coefficient of aggregate stability was lower by 32% in CT than MT.

  20. Earthquake analysis of structures including structure-soil interaction by a substructure method

    International Nuclear Information System (INIS)

    Chopra, A.K.; Guttierrez, J.A.

    1977-01-01

    A general substructure method for analysis of response of nuclear power plant structures to earthquake ground motion, including the effects of structure-soil interaction, is summarized. The method is applicable to complex structures idealized as finite element systems and the soil region treated as either a continuum, for example as a viscoelastic halfspace, or idealized as a finite element system. The halfspace idealization permits reliable analysis for sites where essentially similar soils extend to large depths and there is no rigid boundary such as soil-rock interface. For sites where layers of soft soil are underlain by rock at shallow depth, finite element idealization of the soil region is appropriate; in this case, the direct and substructure methods would lead to equivalent results but the latter provides the better alternative. Treating the free field motion directly as the earthquake input in the substructure eliminates the deconvolution calculations and the related assumption-regarding type and direction of earthquake waves-required in the direct method. (Auth.)

  1. Beech cupules as keystone structures for soil fauna.

    Science.gov (United States)

    Melguizo-Ruiz, Nereida; Jiménez-Navarro, Gerardo; Moya-Laraño, Jordi

    2016-01-01

    Facilitative or positive interactions are ubiquitous in nature and play a fundamental role in the configuration of ecological communities. In particular, habitat modification and niche construction, in which one organism locally modifies abiotic conditions and favours other organisms by buffering the effects of adverse environmental factors, are among the most relevant facilitative interactions. In line with this, 'keystone structures', which provide resources, refuge, or advantageous services decisive for other species, may allow the coexistence of various species and thus considerably contribute to diversity maintenance. Beech cupules are woody husks harbouring beech fruits that remain in the forest soil for relatively long periods of time. In this study, we explored the potential role of these cupules in the distribution and maintenance of the soil fauna inhabiting the leaf litter layer. We experimentally manipulated cupule availability and soil moisture in the field to determine if such structures are limiting and can provide moist shelter to soil animals during drought periods, contributing to minimize desiccation risks. We measured invertebrate abundances inside relative to outside the cupules, total abundances in the leaf litter and animal body sizes, in both dry and wet experimental plots. We found that these structures are preferentially used by the most abundant groups of smaller soil animals-springtails, mites and enchytraeids-during droughts. Moreover, beech cupules can be limiting, as an increase in use was found with higher cupule densities, and are important resources for many small soil invertebrates, driving the spatial structure of the soil community and promoting higher densities in the leaf litter, probably through an increase in habitat heterogeneity. We propose that fruit woody structures should be considered 'keystone structures' that contribute to soil community maintenance. Therefore, beech trees may indirectly facilitate soil fauna

  2. Influence of soil surface structure on simulated infiltration and subsequent evaporation

    International Nuclear Information System (INIS)

    Verplancke, H.; Hartmann, R.; Boodt, M. de

    1983-01-01

    A laboratory rainfall and evaporation experiment was conducted to study the effectiveness of the soil surface structure on infiltration and subsequent evaporation. The stability of the surface layer was improved through the application of synthetic additives such as bituminous emulsion and a prepolymer of polyurea (Uresol). The soil column where the soil surface was treated with a bituminous emulsion shows a decrease in depth of wetting owing to the water repellency of that additive, and consequently an increased runoff. However, the application of Uresol to the surface layer improved the infiltration. The main reason for these differences is that in the untreated soils there is a greater clogging of macropores originating from aggregate breakdown under raindrop impact in the top layer. The evaporation experiment started after all columns were wetted to a similar soil-water content and was carried out in a controlled environmental tunnel. Soil-water content profiles were established during evaporation by means of a fully automatic γ-ray scanner. It appears that in both treatments the cumulative evaporation was less than in the untreated soil. This was due to the effect of an aggregated and stabilized surface layer. Under a treated soil surface the evaporation remains constant during the whole experiment. However, under an untreated soil surface different evaporation stages were recorded. From these experiments the impression is gained that the effect of aggregating the soil surface is an increase of the saturated hydraulic conductivity under conditions near saturation. On the other hand, a finely structured layer exhibits a greater hydraulic conductivity during evaporation in the lower soil-water potential range than a coarsely aggregated layer. So it may be concluded that, to obtain the maximum benefit from the available water - optimal water conservation - much attention must be given to the aggregation of the top soil and its stability. (author)

  3. Impact of regression methods on improved effects of soil structure on soil water retention estimates

    Science.gov (United States)

    Nguyen, Phuong Minh; De Pue, Jan; Le, Khoa Van; Cornelis, Wim

    2015-06-01

    Increasing the accuracy of pedotransfer functions (PTFs), an indirect method for predicting non-readily available soil features such as soil water retention characteristics (SWRC), is of crucial importance for large scale agro-hydrological modeling. Adding significant predictors (i.e., soil structure), and implementing more flexible regression algorithms are among the main strategies of PTFs improvement. The aim of this study was to investigate whether the improved effect of categorical soil structure information on estimating soil-water content at various matric potentials, which has been reported in literature, could be enduringly captured by regression techniques other than the usually applied linear regression. Two data mining techniques, i.e., Support Vector Machines (SVM), and k-Nearest Neighbors (kNN), which have been recently introduced as promising tools for PTF development, were utilized to test if the incorporation of soil structure will improve PTF's accuracy under a context of rather limited training data. The results show that incorporating descriptive soil structure information, i.e., massive, structured and structureless, as grouping criterion can improve the accuracy of PTFs derived by SVM approach in the range of matric potential of -6 to -33 kPa (average RMSE decreased up to 0.005 m3 m-3 after grouping, depending on matric potentials). The improvement was primarily attributed to the outperformance of SVM-PTFs calibrated on structureless soils. No improvement was obtained with kNN technique, at least not in our study in which the data set became limited in size after grouping. Since there is an impact of regression techniques on the improved effect of incorporating qualitative soil structure information, selecting a proper technique will help to maximize the combined influence of flexible regression algorithms and soil structure information on PTF accuracy.

  4. Nonelastic soil-structure interaction by BE- and FE-methods

    International Nuclear Information System (INIS)

    Hadjikov, L.; Dineva, P.; Rangelov, T.

    1987-01-01

    The main purpose of this paper is to study the soil-structure interaction for multilayered, nonlineary physically soil system with arbitrary geometric form of boundaries between the layers, accounting the topographic specifics on the free surface. The behaviour of the structure is described by the finite element method (FEM). For the description of the propagation of the seismic waves in the soil the boundary element method (BEM) is used. The numerical results for the behaviour of the soil-structure interaction for nuclear power plant on a real geological site are obtained. The influence of the nonelastic soil and structure properties and the influence of the topographic specifities of the geological region are investigated. (orig./HP)

  5. Gamma-ray beam attenuation to assess the influence of soil texture on structure deformation

    International Nuclear Information System (INIS)

    Pires, L.F.; Bacchi, O.O.S.; Dias, N.M.P.

    2006-01-01

    Gamma-ray beam attenuation is a non-invasive technique that permits analysis of soil porosity without disturbing the region of interest of the core sample. The technique has as additional advantage to allow measurements point by point on a millimetric scale in contrast to other methodologies that are invasive and analyze the soil properties in the bulk sample volume. Soil porosity can be used as an important parameter to quantify soil structural damages, which affect soil aeration, water movement and retention. In this study, porosities of three soils different in texture were measured at various positions in order to analyze the impact of the sampling procedure on the structure of each particular soil texture. The gamma-ray attenuation system consisted of an 241 Am radioactive source having an activity of 3.7 GBq, collimated with cylindrical lead collimators of 2 mm diameter. The results obtained show the presence of dense regions near the edges of samples and that different soil textures can suffer distinct deformations at sampling. (author)

  6. Soil structure and microbial activity dynamics in 20-month field-incubated organic-amended soils

    DEFF Research Database (Denmark)

    Arthur, Emmanuel; Schjønning, Per; Møldrup, Per

    2014-01-01

    to determine compressive strength. During incubation, the amount of WDC depended on soil carbon content while the trends correlated with moisture content. Organic amendment only yielded modest decreases (mean of 14% across all sampling times and soils) in WDC, but it was sufficient to stimulate the microbial......Soil structure formation is essential to all soil ecosystem functions and services. This study aims to quantify changes in soil structure and microbial activity during and after field incubation and examine the effect of carbon, organic amendment and clay on aggregate characteristics. Five soils...... community (65–100% increase in FDA). Incubation led to significant macroaggregate formation (>2 mm) for all soils. Friability and strength of newly-formed aggregates were negatively correlated with clay content and carbon content, respectively. Soil workability was best for the kaolinite-rich soil...

  7. A sensitivity study for soil-structure interaction

    International Nuclear Information System (INIS)

    Kunar, R.R.; White, D.C.; Ashdown, M.J.; Waker, C.H.; Daintith, D.

    1981-01-01

    This paper presents the results of a study in which the sensitivity of a containment building typical of one type of construction used in the nuclear reprocessing industry is examined for variations in soil data and seismic input. A number of dynamic soil-structure interaction analyses are performed on the structure and its foundations using parametric variations of the depth of soil layer, soil material properties, bedrock flexibility, seismic input location and time and phase characteristics of the earthquake excitation. Previous experience is combined with the results obtained to gneralise conclusions regarding the conditions under which each of the uncertainties will be significant enough to merit proper statistical treatment. (orig.)

  8. Throughfall-mediated alterations to soil microbial community structure in a forest plot of homogenous soil texture, litter, and plant species composition

    Science.gov (United States)

    Van Stan, John; Rosier, Carl; Moore, Leslie; Gay, Trent; Reichard, James; Wu, Tiehang; Kan, Jinjun

    2015-04-01

    Identifying spatiotemporal influences on soil microbial community (SMC) structure is critical to our understanding of patterns in biogeochemical cycling and related ecological services (e.g., plant community structure, water quality, response to environmental change). Since forest canopy structure alters the spatiotemporal patterning of precipitation water and solute supplies to soils (via "throughfall"), is it possible that changes in SMC structure could arise from modifications in canopy elements? Our study investigates this question by monitoring throughfall water and dissolved ion supply to soils beneath a continuum of canopy structure: from large gaps (0% cover), to bare Quercus virginiana Mill. (southern live oak) canopy (~50-70%), to heavy Tillandsia usneoides L. (Spanish moss) canopy (>90% cover). Throughfall water supply diminished with increasing canopy cover, yet increased washoff/leaching of Na+, Cl-, PO43-, and SO42- from the canopy to the soils. Presence of T. usneoides diminished throughfall NO3-, but enhanced NH4+, concentrations supplied to subcanopy soils. The mineral soil horizon (0-10 cm) sampled in triplicate from locations receiving throughfall water and solutes from canopy gaps, bare canopy, and T. usneoides-laden canopy significantly differed in soil chemistry parameters (pH, Ca2+, Mg2+, CEC). Polymerase Chain Reaction-Denaturant Gradient Gel Electrophoresis (PCR-DGGE) banding patterns beneath similar canopy covers (experiencing similar throughfall dynamics) also produced high similarities per ANalyses Of SIMilarity (ANO-SIM), and clustered together when analyzed by Nonmetric Multidimensional Scaling (NMDS). These results suggest that modifications of forest canopy structures are capable of affecting mineral-soil horizon SMC structure via throughfall when canopies' biomass distribution is highly heterogeneous. As SMC structure, in many instances, relates to functional diversity, we suggest that future research seek to identify functional

  9. Structure of the tree stratum of three swamp forest communities in southern Brazil under different soil conditions

    Directory of Open Access Journals (Sweden)

    Luciana Carla Mancino

    2015-03-01

    Full Text Available Restinga forests are commonly known to be plant communities rather poor in tree species. This study aimed to describe and explain the association between the floristic-structural similarities and the environmental conditions in three Swamp Restinga Forest communities in southern Brazil. In 13 plots of 100 m2 each, we sampled all individual trees (circumference at breast height >12 cm and height ≥3 m. We collected soil samples in each plot for chemical and textural analyses. Phytosociological parameters were calculated and different structural variables were compared between areas. The density of individuals did not differ between areas; however, the maximum height and abundance of species differed between the site with Histosols and the other two sites with Gleysols. Further, a canonical correspondence analysis based on a matrix of vegetation and that of environmental characteristics explained 31.5% of the total variation. The high floristic and environmental heterogeneity indicate that swamp-forests can shelter many species with low frequency. Most species were generalists that were not exclusive to this type of forest. Overall, our study showed that swamp-forests within the same region can show considerable differences in composition and structure and can include species-rich communities, mostly due to the presence of species with a broader distribution in the Atlantic Rainforest domain on sites with less stressful environmental conditions and without waterlogged conditions.

  10. TECHNICAL NOTES SEISMIC SOIL-STRUCTURE INTERACTION ...

    African Journals Online (AJOL)

    dell

    SEISMIC SOIL-STRUCTURE INTERACTION AS A POTENTIAL TOOL FOR. ECONOMICAL ... ground motion at the interface with the rock. The soil can .... half space have an elastic modulus of E and a mass density of ρ . .... The trial solution to.

  11. Earthquake analysis with nonlinear soil-structure interaction and nonlinear supports of components

    International Nuclear Information System (INIS)

    Hansson, V.

    1990-01-01

    For the determination of the seismic response of a structure the soil-structure interaction in most cases is modelled by a mass-spring-damper-system. Normally design concepts for components and piping are based on linear calculations and stress limitations. A concept for a reactor building for the HTR 100 consisted of a relatively high structure compared with the dimensions of the foundation. The structure was comparatively deep embedded in the soil, so here the embedment influences significantly the soil-structure interaction. The assembly of reactor vessel, heat exchanger and circulators has a height of about 37 m. Supports are arranged at different levels. Due to temperature deformations of the vessel and of the support constructions small gaps at the supports may only be avoided by complicated constructions of the supports. Nonlinear analyses were performed for soil, building and component with all supports. The finite element analyses used time histories. In order to describe the radiation damping the hysteresis of the soil with 1 percent material damping was considered. Nonlinearities in the interface of soil and foundation and due to gaps and friction at the supports were taken into account. The stiffness of the support constructions influences reactions and accelerations to a high extent. Properly chosen stiffnesses of the support constructions lead to a behaviour similar to linear elastic behaviour. 13 figs

  12. Effects of different remediation treatments on crude oil contaminated saline soil.

    Science.gov (United States)

    Gao, Yong-Chao; Guo, Shu-Hai; Wang, Jia-Ning; Li, Dan; Wang, Hui; Zeng, De-Hui

    2014-12-01

    Remediation of the petroleum contaminated soil is essential to maintain the sustainable development of soil ecosystem. Bioremediation using microorganisms and plants is a promising method for the degradation of crude oil contaminants. The effects of different remediation treatments, including nitrogen addition, Suaeda salsa planting, and arbuscular mycorrhiza (AM) fungi inoculation individually or combined, on crude oil contaminated saline soil were assessed using a microcosm experiment. The results showed that different remediation treatments significantly affected the physicochemical properties, oil contaminant degradation and bacterial community structure of the oil contaminated saline soil. Nitrogen addition stimulated the degradation of total petroleum hydrocarbon significantly at the initial 30d of remediation. Coupling of different remediation techniques was more effective in degrading crude oil contaminants. Applications of nitrogen, AM fungi and their combination enhanced the phytoremediation efficiency of S. salsa significantly. The main bacterial community composition in the crude oil contaminated saline soil shifted with the remediation processes. γ-Proteobacteria, β-Proteobacteria, and Actinobacteria were the pioneer oil-degraders at the initial stage, and Firmicutes were considered to be able to degrade the recalcitrant components at the later stage. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Associations between soil bacterial community structure and nutrient cycling functions in long-term organic farm soils following cover crop and organic fertilizer amendment.

    Science.gov (United States)

    Fernandez, Adria L; Sheaffer, Craig C; Wyse, Donald L; Staley, Christopher; Gould, Trevor J; Sadowsky, Michael J

    2016-10-01

    Agricultural management practices can produce changes in soil microbial populations whose functions are crucial to crop production and may be detectable using high-throughput sequencing of bacterial 16S rRNA. To apply sequencing-derived bacterial community structure data to on-farm decision-making will require a better understanding of the complex associations between soil microbial community structure and soil function. Here 16S rRNA sequencing was used to profile soil bacterial communities following application of cover crops and organic fertilizer treatments in certified organic field cropping systems. Amendment treatments were hairy vetch (Vicia villosa), winter rye (Secale cereale), oilseed radish (Raphanus sativus), buckwheat (Fagopyrum esculentum), beef manure, pelleted poultry manure, Sustane(®) 8-2-4, and a no-amendment control. Enzyme activities, net N mineralization, soil respiration, and soil physicochemical properties including nutrient levels, organic matter (OM) and pH were measured. Relationships between these functional and physicochemical parameters and soil bacterial community structure were assessed using multivariate methods including redundancy analysis, discriminant analysis, and Bayesian inference. Several cover crops and fertilizers affected soil functions including N-acetyl-β-d-glucosaminidase and β-glucosidase activity. Effects, however, were not consistent across locations and sampling timepoints. Correlations were observed among functional parameters and relative abundances of individual bacterial families and phyla. Bayesian analysis inferred no directional relationships between functional activities, bacterial families, and physicochemical parameters. Soil functional profiles were more strongly predicted by location than by treatment, and differences were largely explained by soil physicochemical parameters. Composition of soil bacterial communities was predictive of soil functional profiles. Differences in soil function were

  14. Soil-structure interaction analysis of ZPR6 reactor facility

    International Nuclear Information System (INIS)

    Ma, D.C.; Ahmed, H.U.

    1981-01-01

    Due to the computer storage limitation and economic concern, the current practice of soil-structure interaction analysis is limited to two dimensional analysis. The 2-D plane strain finite element program, FLUSH, is one often most used program in the analysis. Seismic response of soil and basement can be determined very well by FLUSH. The response of the structure above ground level, however, is often underestimated. This is mainly due to the three dimensional characteristics of the structures. This paper describes a detailed soil-structure interaction analysis of a rectangular embedded structure in conjunction with FLUSH program. The objective of the analysis is to derive the mean interaction motions at the structure base and the soil dynamic forces exerted on the basement lateral walls. The base motions and lateral soil dynamic forces are the specified boundary conditions for the later 3-D building response analysis. (orig./RW)

  15. Non-linear finite element analysis for prediction of seismic response of buildings considering soil-structure interaction

    Directory of Open Access Journals (Sweden)

    E. Çelebi

    2012-11-01

    Full Text Available The objective of this paper focuses primarily on the numerical approach based on two-dimensional (2-D finite element method for analysis of the seismic response of infinite soil-structure interaction (SSI system. This study is performed by a series of different scenarios that involved comprehensive parametric analyses including the effects of realistic material properties of the underlying soil on the structural response quantities. Viscous artificial boundaries, simulating the process of wave transmission along the truncated interface of the semi-infinite space, are adopted in the non-linear finite element formulation in the time domain along with Newmark's integration. The slenderness ratio of the superstructure and the local soil conditions as well as the characteristics of input excitations are important parameters for the numerical simulation in this research. The mechanical behavior of the underlying soil medium considered in this prediction model is simulated by an undrained elasto-plastic Mohr-Coulomb model under plane-strain conditions. To emphasize the important findings of this type of problems to civil engineers, systematic calculations with different controlling parameters are accomplished to evaluate directly the structural response of the vibrating soil-structure system. When the underlying soil becomes stiffer, the frequency content of the seismic motion has a major role in altering the seismic response. The sudden increase of the dynamic response is more pronounced for resonance case, when the frequency content of the seismic ground motion is close to that of the SSI system. The SSI effects under different seismic inputs are different for all considered soil conditions and structural types.

  16. Relationships between soil properties and community structure of soil macroinvertebrates in oak-history forests along an acidic deposition gradient

    Energy Technology Data Exchange (ETDEWEB)

    Kuperman, R.G. [Argonne National Lab., IL (United States). Environmental Assessment Div.

    1996-02-01

    Soil macroinvertebrate communities were studied in ecologically analogous oak-hickory forests across a three-state atmospheric pollution gradient in Illinois, Indiana, and Ohio. The goal was to investigate changes in the community structure of soil fauna in study sites receiving different amounts of acidic deposition for several decades and the possible relationships between these changes and physico-chemical properties of soil. The study revealed significant differences in the numbers of soil animals among the three study sites. The sharply differentiated pattern of soil macroinvertebrate fauna seems closely linked to soil chemistry. Significant correlations of the abundance of soil macroinvertebrates with soil parameters suggest that their populations could have been affected by acidic deposition in the region. Abundance of total soil macroinvertebrates decreased with the increased cumulative loading of acidic deposition. Among the groups most sensitive to deposition were: earthworms gastropods, dipteran larvae, termites, and predatory beetles. The results of the study support the hypothesis that chronic long-term acidic deposition could aversely affect the soil decomposer community which could cause lower organic matter turnover rates leading to an increase in soil organic matter content in high deposition sites.

  17. Exploring functional relationships between post-fire soil water repellency, soil structure and physico-chemical properties

    Science.gov (United States)

    Quarfeld, Jamie; Brook, Anna; Keestra, Saskia; Wittenberg, Lea

    2016-04-01

    Soil water repellency (WR) and aggregate stability (AS) are two soil properties that are typically modified after burning and impose significant influence on subsequent hydrological and geomorphological dynamics. The response of AS and soil WR to fire depends upon how fire has influenced other key soil properties (e.g. soil OM, mineralogy). Meanwhile, routine thinning of trees and woody vegetation may alter soil properties (e.g. structure and porosity, wettability) by use of heavy machinery and species selection. The study area is situated along a north-facing slope of Mount Carmel national park (Israel). The selected sites are presented as a continuum of management intensity and fire histories. To date, the natural baseline of soil WR has yet to be thoroughly assessed and must be investigated alongside associated soil aggregating parameters in order to understand its overall impact. This study examines (i) the natural baseline of soil WR and physical properties compared to those of disturbed sites in the immediate (controlled burn) and long-term (10-years), and (ii) the interactions of soil properties with different control factors (management, surface cover, seasonal-temporal, burn temperature, soil organic carbon (OC) and mineralogy) in Mediterranean calcareous soils. Analysis of surface soil samples before and after destruction of WR by heating (200-600°C) was implemented using a combination of traditional methods and infrared (IR) spectroscopy. Management and surface cover type conditioned the wettability, soil structure and porosity of soils in the field, although this largely did not affect the heat-induced changes observed in the lab. A positive correlation was observed along an increasing temperature gradient, with relative maxima of MWD and BD reached by most soils at the threshold of 400-500°C. Preliminary analyses of soil OC (MIR) and mineralogical composition (VIS-NIR) support existing research regarding: (i) the importance of soil OC quality and

  18. Bacterial density and community structure associated with aggregate size fractions of soil-feeding termite mounds.

    Science.gov (United States)

    Fall, S; Nazaret, S; Chotte, J L; Brauman, A

    2004-08-01

    The building and foraging activities of termites are known to modify soil characteristics such as the heterogeneity. In tropical savannas the impact of the activity of soil-feeding termites ( Cubitermes niokoloensis) has been shown to affect the properties of the soil at the aggregate level by creating new soil microenvironments (aggregate size fractions) [13]. These changes were investigated in greater depth by looking at the microbial density (AODC) and the genetic structure (automated rRNA intergenic spacer analysis: ARISA) of the communities in the different aggregate size fractions (i.e., coarse sand, fine sand, coarse silt, fine silt, and dispersible clays) separated from compartments (internal and external wall) of three Cubitermes niokoloensis mounds. The bacterial density of the mounds was significantly higher (1.5 to 3 times) than that of the surrounding soil. Within the aggregate size fractions, the termite building activity resulted in a significant increase in bacterial density within the coarser fractions (>20 mum). Multivariate analysis of the ARISA profiles revealed that the bacterial genetic structures of unfractionated soil and soil aggregate size fractions of the three mounds was noticeably different from the savanna soil used as a reference. Moreover, the microbial community associated with the different microenvironments in the three termite mounds revealed three distinct clusters formed by the aggregate size fractions of each mound. Except for the 2-20 mum fraction, these results suggest that the mound microbial genetic structure is more dependent upon microbial pool affiliation (the termite mound) than on the soil location (aggregate size fraction). The causes of the specificity of the microbial community structure of termite mound aggregate size fractions are discussed.

  19. Structural-functional concept of thermophysical condition of the soils of Altai Region

    Directory of Open Access Journals (Sweden)

    Sergey Makarychev

    2016-10-01

    Full Text Available The goal of this study was to reveal the quantitative interrelations between the thermophysical indices (thermal conductivity and thermal diffusivity and physical soil properties such as; moisture content, density and detachability. According to the research targets, the soil samples including different genesis and soil particle size distribution were taken in different soil and climatic zones of the Altai Region. These were the sod-podzolic sandy loam soils of the dry steppes, chernozems and chestnut soils of light and medium loamy particle size distribution of temperately arid zone, and the heavy loamy gray forest soils and clayey chernozems of the Altai foothills and low mountains. The samples of undisturbed structures in different soil horizons were studied. To measure the thermophysical properties in laboratory setting, a pulse method of a two-dimensional heat source was used. The method takes into account the patterns of temperature field equalization in an unbounded medium after the heat source termination. A feature of this process is the occurrence of peak temperature at the investigated point of the medium at a given instant. The knowledge of this temperature and time enables to determine the soil thermal capacity, thermal conductivity and thermal diffusivity.

  20. Effect of agricultural management regimes on Burkholderia community structure in soil

    NARCIS (Netherlands)

    Salles, Joanna; van Elsas, J.D.; Van Veen, J.A.

    2006-01-01

    The main objective of this study was to determine the Burkholderia community structure associated with areas under different agricultural management and to evaluate to which extent this community structure is affected by changes in agricultural management. Two fields with distinct soil history

  1. Effect of agricultural management regime on Burkholderia community structure in soil

    NARCIS (Netherlands)

    Salles, J.F.; Elsas, van J.D.; Veen, van J.A.

    2006-01-01

    The main objective of this study was to determine the Burkholderia community structure associated with areas under different agricultural management and to evaluate to which extent this community structure is affected by changes in agricultural management. Two fields with distinct soil history

  2. Effect of agricultural management regime on Burkholderia community structure in soil

    NARCIS (Netherlands)

    Salles, J. F.; van Elsas, J. D.; van Veen, J. A.

    The main objective of this study was to determine the Burkholderia community structure associated with areas under different agricultural management and to evaluate to which extent this community structure is affected by changes in agricultural management. Two fields with distinct soil history

  3. [Community structure and diversity of soil arthropods in naturally restored sandy grasslands after grazing].

    Science.gov (United States)

    Liu, Ren-tao; Zhao, Ha-lin; Zhao, Xue-yong

    2010-11-01

    Taking the Naiman Desertification Research Station under Chinese Academy of Sciences as a base, an investigation was conducted on the community structure of soil arthropods in the naturally restored sandy grasslands after different intensity grazing disturbance, with the effects of vegetation and soil on this community structure approached. In the non-grazing grassland, soil arthropods were rich in species and more in individuals, and had the highest diversity. In the restored grassland after light grazing, soil arthropods had the lowest evenness and diversity. In the restored grassland after moderate grazing, the individuals of soil arthropods were lesser but the major groups were more, and the evenness and diversity were higher. In the restored grassland after heavy grazing, the individuals of soil arthropods were more but the major groups were lesser, and the diversity was higher. Plant individuals' number, vegetation height and coverage, and soil alkalinity were the main factors affecting the soil arthropod community in naturally restored grasslands after different intensity grazing disturbance. It was implied that after 12-year exclosure of grassland, soil arthropod community could be recovered to some degree, while grazing disturbance had long-term negative effects on the arthropod community.

  4. Effect of aggregate structure on VOC gas adsorption onto volcanic ash soil.

    Science.gov (United States)

    Hamamoto, Shoichiro; Seki, Katsutoshi; Miyazaki, Tsuyoshi

    2009-07-15

    The understanding of the gaseous adsorption process and the parameters of volatile organic compounds such as organic solvents or fuels onto soils is very important in the analysis of the transport or fate of these chemicals in soils. Batch adsorption experiments with six different treatments were conducted to determine the adsorption of isohexane, a gaseous aliphatic, onto volcanic ash soil (Tachikawa loam). The measured gas adsorption coefficient for samples of Tachikawa loam used in the first three treatments, Control, AD (aggregate destroyed), and AD-OMR (aggregate destroyed and organic matter removed), implied that the aggregate structure of volcanic ash soil as well as organic matter strongly enhanced gas adsorption under the dry condition, whereas under the wet condition, the aggregate structure played an important role in gas adsorption regardless of the insolubility of isohexane. In the gas adsorption experiments for the last three treatments, soils were sieved in different sizes of mesh and were separated into three different aggregate or particle size fractions (2.0-1.0mm, 1.0-0.5mm, and less than 0.5mm). Tachikawa loam with a larger size fraction showed higher gas adsorption coefficient, suggesting the higher contributions of macroaggregates to isohexane gas adsorption under dry and wet conditions.

  5. Microstructure and stability of two sandy loam soils with different soil management

    NARCIS (Netherlands)

    Bouma, J.

    1969-01-01

    A practical problem initiated this study. In the Haarlemmermeer, a former lake reclaimed about 1850, several farmers had difficulties with soil structure. Land, plowed in autumn, was very wet in spring. Free water was sometimes present on the soil surface. Planting and seeding were long delayed in

  6. Stiffness and Damping related to steady state soil-structure Interaction of monopiles

    DEFF Research Database (Denmark)

    Bayat, Mehdi

    The present thesis concerns soil–structure interaction affecting the dynamic structural response of offshore wind turbines with focus on soil stiffness and seepage damping due to pore water flow generated by cyclic motion of a monopile. The thesis aims to improve modelling of the dynamic...... and dashpots. An appropriate model based on considering the effect of dynamic behaviour of soil–structure interaction has been explored. In this regard, the coupled equations for porous media have been employed in order to account for soil deformation as well as pore pressure. The effects of drained versus...... undrained behaviour of the soil and the impact of this behaviour on the stiffness and damping related to soil–structure interaction at different load frequencies have been illustrated. Based on the poroelastic and Kelvin models, more realistic dynamic properties have been presented by considering the effect...

  7. INTERACTION OF SOIL-CEMENT PILE SUPPORTING STRUCTURES WITH THE BODY OF A LANDSLIDE

    Directory of Open Access Journals (Sweden)

    D. Y. Ihnatenko

    2017-10-01

    Full Text Available Purpose. Analysis and comparison of the landslide slope finite element model calculation results of the appliance of soil-cement piles, depending on the variation of the retaining structure rigidity, makes it possible to evaluate the effectiveness of their application and the cooperative work of piles with the displacement body. It also makes it possible to make a conclusion about the advantages of using this anti-landslide protection method of the slope. Methodology. Analysis of geomorphological data obtained from the results of laboratory studies of soils on the slope section is considered. Creation of a three-dimensional finite-element slope model according to the constructed sections and depths of the soil layers. Calculation of the nonlinear problem of finite element modeling of the slope with applying of soil-cement piles of various rigidity. Findings. The obtained results of calculating the finite element model of the landslide slope, and the analysis of the stress-strain state of the construction with soil-cement piles has been carried out. Originality. Despite the widespread of using soil-cement piles as enclosing structures for the construction of foundation pits and reinforcement of foundations of emergency structures, special attention should be paid to the study of the expediency of using soil-cement retaining pile structures on landslide areas. Practical value. It is known that soil-cement retaining piles are expediently in use as a protective element, which interacts quite well with the ground environment due to its structure of the initial material. Using of modern computer programs of finite element modeling makes it possible to calculate the efficiency of the use of soil-cement piles and to determine the parameters of the necessary retaining structure according to the given geological structure of the slope, and also, depending on its shape and the physical characteristics of the soils, to compare the performance of different

  8. A review of experimental soil-structure interaction damping

    International Nuclear Information System (INIS)

    Tsai, N.C.

    1981-01-01

    In soil-structure interaction analysis, the foundation soil is usually represented by impedance springs and dampers. The impedance damping includes the effect of both the material damping and the radiation damping. Because the impedance theory normally assumes a rigid structural base and an elastic bond between the soil and structure, it is generally held that the radiation damping has been overestimated by the theory. There are some published information on the dynamic tests of footings and structures that allow direct or indirect assessments of the validity of the analytical radiation damping. An overview of such information is presented here. Based on these limited test data, it is concluded that for horizontal soil-structure interaction analysis the analytical radiation damping alone is sufficient to represent the combined material and radiation damping in the field. On the other hand, for vertical analysis it appears that the theory may have overestimated the radiation damping and certain reduction is recommended. (orig.)

  9. Reflecting on the structure of soil classification systems: insights from a proposal for integrating subsoil data into soil information systems

    Science.gov (United States)

    Dondeyne, Stefaan; Juilleret, Jérôme; Vancampenhout, Karen; Deckers, Jozef; Hissler, Christophe

    2017-04-01

    Classification of soils in both World Reference Base for soil resources (WRB) and Soil Taxonomy hinges on the identification of diagnostic horizons and characteristics. However as these features often occur within the first 100 cm, these classification systems convey little information on subsoil characteristics. An integrated knowledge of the soil, soil-to-substratum and deeper substratum continuum is required when dealing with environmental issues such as vegetation ecology, water quality or the Critical Zone in general. Therefore, we recently proposed a classification system of the subsolum complementing current soil classification systems. By reflecting on the structure of the subsoil classification system which is inspired by WRB, we aim at fostering a discussion on some potential future developments of WRB. For classifying the subsolum we define Regolite, Saprolite, Saprock and Bedrock as four Subsolum Reference Groups each corresponding to different weathering stages of the subsoil. Principal qualifiers can be used to categorize intergrades of these Subsoil Reference Groups while morphologic and lithologic characteristics can be presented with supplementary qualifiers. We argue that adopting a low hierarchical structure - akin to WRB and in contrast to a strong hierarchical structure as in Soil Taxonomy - offers the advantage of having an open classification system avoiding the need for a priori knowledge of all possible combinations which may be encountered in the field. Just as in WRB we also propose to use principal and supplementary qualifiers as a second level of classification. However, in contrast to WRB we propose to reserve the principal qualifiers for intergrades and to regroup the supplementary qualifiers into thematic categories (morphologic or lithologic). Structuring the qualifiers in this manner should facilitate the integration and handling of both soil and subsoil classification units into soil information systems and calls for paying

  10. Bacterial phylogeny structures soil resistomes across habitats

    Science.gov (United States)

    Forsberg, Kevin J.; Patel, Sanket; Gibson, Molly K.; Lauber, Christian L.; Knight, Rob; Fierer, Noah; Dantas, Gautam

    2014-05-01

    Ancient and diverse antibiotic resistance genes (ARGs) have previously been identified from soil, including genes identical to those in human pathogens. Despite the apparent overlap between soil and clinical resistomes, factors influencing ARG composition in soil and their movement between genomes and habitats remain largely unknown. General metagenome functions often correlate with the underlying structure of bacterial communities. However, ARGs are proposed to be highly mobile, prompting speculation that resistomes may not correlate with phylogenetic signatures or ecological divisions. To investigate these relationships, we performed functional metagenomic selections for resistance to 18 antibiotics from 18 agricultural and grassland soils. The 2,895 ARGs we discovered were mostly new, and represent all major resistance mechanisms. We demonstrate that distinct soil types harbour distinct resistomes, and that the addition of nitrogen fertilizer strongly influenced soil ARG content. Resistome composition also correlated with microbial phylogenetic and taxonomic structure, both across and within soil types. Consistent with this strong correlation, mobility elements (genes responsible for horizontal gene transfer between bacteria such as transposases and integrases) syntenic with ARGs were rare in soil by comparison with sequenced pathogens, suggesting that ARGs may not transfer between soil bacteria as readily as is observed between human pathogens. Together, our results indicate that bacterial community composition is the primary determinant of soil ARG content, challenging previous hypotheses that horizontal gene transfer effectively decouples resistomes from phylogeny.

  11. Dynamic Soil-Structure-Interaction

    DEFF Research Database (Denmark)

    Kellezi, Lindita

    1998-01-01

    The aim of this thesis is to investigate and develop alternative methods of analyzing problems in dynamic soil-structure-interaction. The main focus is the major difficulty posed by such an analysis - the phenomenon of waves which radiate outward from the excited structures towards infinity....... In numerical calculations, only a finite region of the foundation metium is analyzed and something is done to prevent the outgoing radiating waves to reflect from the regions's boundary. The prosent work concerns itself with the study of such effects, using the finite element method, and artificial...... transmitting boundary at the edges of the computational mesh. To start with, an investigation of the main effects of the interaction phenomena is carried out employing a widely used model, considering dynamic stiffness of the unbounded soil as frequency independent. Then a complete description...

  12. The effect of biochar and its interaction with the earthworm Pontoscolex corethrurus on soil microbial community structure in tropical soils.

    Directory of Open Access Journals (Sweden)

    Jorge Paz-Ferreiro

    Full Text Available Biochar effects on soil microbial abundance and community structure are keys for understanding the biogeochemical cycling of nutrients and organic matter turnover, but are poorly understood, in particular in tropical areas. We conducted a greenhouse experiment in which we added biochars produced from four different feedstocks [sewage sludge (B1, deinking sewage sludge (B2, Miscanthus (B3 and pine wood (B4] at a rate of 3% (w/w to two tropical soils (an Acrisol and a Ferralsol planted with proso millet (Panicum milliaceum L.. The interactive effect of the addition of earthworms was also addressed. For this purpose we utilized soil samples from pots with or without the earthworm Pontoscolex corethrurus, which is a ubiquitous earthworm in tropical soils. Phospholipid fatty acid (PLFA measurements showed that biochar type, soil type and the presence of earthworms significantly affected soil microbial community size and structure. In general, biochar addition affected fungal but not bacterial populations. Overall, biochars rich in ash (B1 and B2 resulted in a marked increase in the fungi to bacteria ratio, while this ratio was unaltered after addition of biochars with a high fixed carbon content (B3 and B4. Our study remarked the contrasting effect that both, biochar prepared from different materials and macrofauna, can have on soil microbial community. Such changes might end up with ecosystem-level effects.

  13. [Soil infiltration capacity under different vegetations in southern Ningxia Loess hilly region].

    Science.gov (United States)

    Yang, Yong-Hui; Zhao, Shi-Wei; Lei, Ting-Wu; Liu, Han

    2008-05-01

    A new apparatus for measuring the run off-on-out under simulated rainfall conditions was used to study the soil infiltration capacity under different rainfall intensities and vegetations in loess hilly region of southern Ningxia, with the relationships between soil water-stable aggregate content and soil stable infiltration rate under different vegetations analyzed. The results showed that the regression equations between rainfall duration and soil infiltration rate under different vegetations all followed y = a + be(-cx), with R2 ranged from 0.9678 to 0.9969. With the increase of rainfall intensity, the soil stable infiltration rate on slope cropland decreased, while that on Medicago lupulina land, natural grassland, and Caragana korshinskii land increased. Under the rainfall intensity of 20 mm h(-1), the rainfall infiltration translation rate (RITR) was decreased in the order of M. lupulina land > slope cropland > natural grassland > C. korshinskii land; while under the rainfall intensity of 40 mm h(-1) and 56 mm h(-1), the RITR was in the sequence of M. lupulina land > natural grassland > slope cropland > C. korshinskii land, and decreased with increasing rainfall intensity. After the reversion of cropland to grassland and forest land, and with the increase of re-vegetation, the amount of >0.25 mm soil aggregates increased, and soil infiltration capacity improved. The revegetation in study area effectively improved soil structure and soil infiltration capacity, and enhanced the utilization potential of rainfall on slope.

  14. Advanced Seismic Fragility Modeling using Nonlinear Soil-Structure Interaction Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Bolisetti, Chandu [Idaho National Lab. (INL), Idaho Falls, ID (United States); Coleman, Justin [Idaho National Lab. (INL), Idaho Falls, ID (United States); Talaat, Mohamed [Simpson-Gupertz & Heger, Waltham, MA (United States); Hashimoto, Philip [Simpson-Gupertz & Heger, Waltham, MA (United States)

    2015-09-01

    The goal of this effort is to compare the seismic fragilities of a nuclear power plant system obtained by a traditional seismic probabilistic risk assessment (SPRA) and an advanced SPRA that utilizes Nonlinear Soil-Structure Interaction (NLSSI) analysis. Soil-structure interaction (SSI) response analysis for a traditional SPRA involves the linear analysis, which ignores geometric nonlinearities (i.e., soil and structure are glued together and the soil material undergoes tension when the structure uplifts). The NLSSI analysis will consider geometric nonlinearities.

  15. The population structure of Escherichia coli isolated from subtropical and temperate soils

    Science.gov (United States)

    Byappanahalli, Muruleedhara N.; Yan, Tao; Hamilton, Matthew J.; Ishii, Satoshi; Fujioka, Roger S.; Whitman, Richard L.; Sadowsky, Michael J.

    2012-01-01

    While genotypically-distinct naturalized Escherichia coli strains have been shown to occur in riparian soils of Lake Michigan and Lake Superior watersheds, comparative analyses of E. coli populations in diverse soils across a range of geographic and climatic conditions have not been investigated. The main objectives of this study were to: (a) examine the population structure and genetic relatedness of E. coli isolates collected from different soil types on a tropical island (Hawaii), and (b) determine if E. coli populations from Hawaii and temperate soils (Indiana, Minnesota) shared similar genotypes that may be reflective of biome-related soil conditions. DNA fingerprint and multivariate statistical analyses were used to examine the population structure and genotypic characteristics of the E. coli isolates. About 33% (98 of 293) of the E. coli from different soil types and locations on the island of Oahu, Hawaii, had unique DNA fingerprints, indicating that these bacteria were relatively diverse; the Shannon diversity index for the population was 4.03. Nearly 60% (171 of 293) of the E. coli isolates from Hawaii clustered into two major groups and the rest, with two or more isolates, fell into one of 22 smaller groups, or individual lineages. Multivariate analysis of variance of 89, 21, and 106 unique E. coli DNA fingerprints for Hawaii, Indiana, and Minnesota soils, respectively, showed that isolates formed tight cohesive groups, clustering mainly by location. However, there were several instances of clonal isolates being shared between geographically different locations. Thus, while nearly identical E. coli strains were shared between disparate climatologically- and geographically-distinct locations, a vast majority of the soil E. coli strains were genotypically diverse and were likely derived from separate lineages. This supports the hypothesis that these bacteria are not unique and multiple genotypes can readily adapt to become part of the soil autochthonous

  16. Community structure analysis of soil ammonia oxidizers during vegetation restoration in southwest China.

    Science.gov (United States)

    Liang, Yueming; He, Xunyang; Liang, Shichu; Zhang, Wei; Chen, Xiangbi; Feng, Shuzheng; Su, Yirong

    2014-03-01

    Soil ammonia oxidizers play a critical role in nitrogen cycling and ecological restoration. The composition and structure of soil ammonia oxidizers and their impacting factors were studied in four typical ecosystem soils, tussock (T), shrub (S), secondary forest (SF), and primary forest (PF), during vegetation restoration in the Karst region of Southwest China. The composition and structure of the ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) communities were characterized by sequencing the amoA and arch-amoA genes, respectively. The diversity of soil ammonia oxidizers (except in S) and plant Shannon diversity index gradually increased with vegetation restoration, and the ammonia oxidizer communities differed significantly (p soils. AOB Nitrosospira cluster 3b only appeared in PF and SF soils, while Nitrosospira cluster 3a species were found in all soils. Changes in AOB paralleled the changes in soil ammonium content that occurred with vegetation restoration. Redundancy analysis showed that the distribution of dominant AOB species was linked to pH, soil urease activity, and soil C/N ratio, whereas the distribution of dominant AOA species was mainly influenced by litter nitrogen content and C/N ratio. These results suggested that the composition and structure of the AOB community were more sensitive to changes in vegetation and soil ammonium content, and may be an important indicator of nitrogen availability in Karst ecosystem soils. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Soil structure changes evaluated with computed tomography

    International Nuclear Information System (INIS)

    Pires, Luiz Fernando

    2010-01-01

    The objective of this work was to evaluate in millimetric scale changes in soil bulk density and porosity, using the gamma-ray computed tomography in soil samples with disturbed structure due to wetting and drying (W-D) cycles. Soil samples with 98.1 cm 3 were sieved using a 2 mm mesh and homogeneously packed in PVC cylinders. Soil samples were submitted to 1, 2, and 3 W-D cycles. Control samples were not submitted to W-D cycles. After repetitions of W-D cycles, soil sample porosity decreased and soil layers became denser. Computed tomography allowed a continuous analysis of soil bulk density and also soil porosity along millimetric (0.08 cm) layers, what cannot be provided by traditional methods used in soil physics. (author)

  18. Método de avaliação visual da qualidade da estrutura aplicado a Latossolo Vermelho Distroférrico sob diferentes sistemas de uso e manejo Visual assessment soil quality structure methodology applied to Oxisol under different soil use and management

    Directory of Open Access Journals (Sweden)

    Neyde Fabíola Balarezo Giarola

    2009-11-01

    Full Text Available O aumento da demanda pela avaliação da qualidade da estrutura do solo para o adequado crescimento de plantas tem motivado pesquisadores a desenvolverem técnicas visuais de avaliação, a campo, simples e confiáveis para esse fim. No Brasil, um número reduzido de estudos foi realizado empregando métodos visuais de diagnóstico do estado estrutural de solos no campo. Esse trabalho testou a hipótese de que o método de Avaliação Visual da Qualidade da Estrutura do Solo desenvolvido por BALL et al. (2007 para solos de clima temperado pode ser aplicado na identificação de campo da qualidade estrutural de um Latossolo Vermelho Distroférrico sob diferentes sistemas de uso e manejo. Para isso, foram avaliadas amostras indeformadas coletadas de mata preservada (M, sistema de integração lavoura-pecuária (ILP e sistema plantio direto (SPD. A avaliação da estrutura apoiou-se na aparência, na resistência e nas características das unidades estruturais de blocos de solo e foi definida por cinco escores visuais de classificação de qualidade. O método empregado permitiu distinguir a qualidade do solo de diferentes sistemas de uso e manejo a partir da avaliação da estrutura da camada estudada.The increasing demand for assessing soil structure for crop growth has motivated researchers to develop simple and reliable visual indicators to assess soil structure at the field. There are a few records in Brazil indicating the use of visual techniques for assessing soil physical quality. This paper tested the hypothesis that the Visual Soil Structure Quality Assessment methodology developed by BALL et al. (2007 is reliable for identifying the structural quality of tropical and subtropical soils under different soil management systems. Therefore, the overall objective of this paper was to visually identify the structural quality of an Oxisol under forest, crop-livestock rotation and no-till system. The structure evaluation was based on appearance

  19. Modeling of soil-water-structure interaction

    DEFF Research Database (Denmark)

    Tang, Tian

    as the developed nonlinear soil displacements and stresses under monotonic and cyclic loading. With the FVM nonlinear coupled soil models as a basis, multiphysics modeling of wave-seabed-structure interaction is carried out. The computations are done in an open source code environment, OpenFOAM, where FVM models...

  20. Interactions between soil texture, water, and nutrients control patterns of biocrusts abundance and structure

    Science.gov (United States)

    Young, Kristina; Bowker, Matthew; Reed, Sasha; Howell, Armin

    2017-04-01

    Heterogeneity in the abiotic environment structures biotic communities by controlling niche space and parameters. This has been widely observed and demonstrated in vascular plant and other aboveground communities. While soil organisms are presumably also strongly influenced by the physical and chemical dimensions of the edaphic environment, there are fewer studies linking the development, structure, productivity or function of surface soil communities to specific edaphic gradients. Here, we use biological soil crusts (biocrusts) as a model system to determine mechanisms regulating community structure of soil organisms. We chose soil texture to serve as an edaphic gradient because of soil texture's influence over biocrust distribution on a landscape level. We experimentally manipulated texture in constructed soil, and simultaneously manipulated two main outcomes of texture, water and nutrient availability, to determine the mechanism underlying texture's influence on biocrust abundance and structure. We grew biocrust communities from a field-sourced inoculum on four different soil textures, sieved from the same parent soil material, manipulating watering levels and nutrient additions across soil textures in a full-factorial design over a 5-month period of time. We measured abundance and structure of biocrusts over time, and measured two metrics of function, N2 fixation rates and soil stabilization, at the conclusion of the experiment. Our results showed finer soil textures resulted in faster biocrust community development and dominance by mosses, whereas coarser textures grew more slowly and had biocrust communities dominated by cyanobacteria and lichen. Additionally, coarser textured soils contained cyanobacterial filaments significantly deeper into the soil profile than fine textured soils. N2-fixation values increased with increasing moss cover and decreased with increasing cyanobacterial cover, however, the rate of change depended on soil texture and water amount

  1. Assessment of soil/structure interaction analysis procedures for nuclear power plant structures

    International Nuclear Information System (INIS)

    Young, G.A.; Wei, B.C.

    1977-01-01

    The paper presents an assessment of two state-of-the-art soil/structure interaction analysis procedures that are frequently used to provide seismic analyses of nuclear power plant structures. The advantages of large three-dimensional, elastic, discrete mass models and two-dimensional finite element models are compared. The discrete mass models can provide three-dimensional response capability with economical computer costs but only fair soil/structure interaction representation. The two-dimensional finite element models provide good soil/structure interaction representation, but cannot provide out-of-plane response. Three-dimensional finite element models would provide the most informative and complete analyses. For this model, computer costs would be much greater, but modeling costs would be approximately the same as those required for three-dimensional discrete mass models

  2. Structure soil structure interaction effects: Seismic analysis of safety related collocated concrete structures

    International Nuclear Information System (INIS)

    Joshi, J.R.

    2000-01-01

    The Process, Purification and Stack Buildings are collocated safety related concrete shear wall structures with plan dimensions in excess of 100 feet. An important aspect of their seismic analysis was the determination of structure soil structure interaction (SSSI) effects, if any. The SSSI analysis of the Process Building, with one other building at a time, was performed with the SASSI computer code for up to 50 frequencies. Each combined model had about 1500 interaction nodes. Results of the SSSI analysis were compared with those from soil structure interaction (SSI) analysis of the individual buildings, done with ABAQUS and SASSI codes, for three parameters: peak accelerations, seismic forces and the in-structure floor response spectra (FRS). The results may be of wider interest due to the model size and the potential applicability to other deep soil layered sites. Results obtained from the ABAQUS analysis were consistently higher, as expected, than those from the SSI and SSSI analyses using the SASSI. The SSSI effect between the Process and Purification Buildings was not significant. The Process and Stack Building results demonstrated that under certain conditions a massive structure can have an observable effect on the seismic response of a smaller and less stiff structure

  3. Site response - a critical problem in soil-structure interaction analyses for embedded structures

    International Nuclear Information System (INIS)

    Seed, H.B.; Lysmer, J.

    1986-01-01

    Soil-structure interaction analyses for embedded structures must necessarily be based on a knowledge of the manner in which the soil would behave in the absence of any structure - that is on a knowledge and understanding of the spatial distribution of motions in the ground within the depth of embedment of the structure. The nature of these spatial variations is discussed and illustrated by examples of recorded motions. It is shown that both the amplitude of peak acceleration and the form of the acceleration response spectrum for earthquake motions will necessarily vary with depth and failure to take these variations into account may introduce an unwarranted degree of conservatism into the soil-structure interaction analysis procedure

  4. Impact of tillage intensity on clay loam soil structure

    DEFF Research Database (Denmark)

    Daraghmeh, Omar; Petersen, Carsten; Munkholm, Lars Juhl

    Soil structure and structural stability are key parameters in sustainable soil management and optimum cropping practices. Locally and temporally adapted precision tillage may improve crop performance while at the same time reduce environmental impacts. The main objective of this study...... was to improve the knowledge of precision tillage practices through characterizing the effect of varied tillage intensities on structural properties of a clay loam soil. A field experiment was conducted using a randomized complete block design with two main factors, i.e. operational speed (OS, 2 levels......) and rotovating speed (RS, 3 levels). The tillage was conducted using a PTO-driven rotovator equipped to measure angular velocity. The effect of traffic compaction, made directly after tillage, was measured on soil taken from wheel track (WT) compared with soil outside wheel track (NWT). Soil samples from 0-3 cm...

  5. Soil factors involved in the diversity and structure of soil bacterial communities in commercial organic olive orchards in Southern Spain.

    Science.gov (United States)

    Landa, B B; Montes-Borrego, M; Aranda, S; Soriano, M A; Gómez, J A; Navas-Cortés, J A

    2014-04-01

    Nowadays, there is a tendency in olive production systems to reduce tillage or keep a vegetative cover to reduce soil erosion and degradation. However, there is scarce information on the effects of different soil management systems (SMS) in soil bacterial community composition of olive groves. In this study, we have evaluated the effects of soil type and different SMS implemented to control weeds in the structure and diversity of bacterial communities of 58 soils in the two geographic areas that best represent the organic olive production systems in Spain. Bacterial community composition assessed by frequency and intensity of occurrence of terminal restriction profiles (TRFs) derived from terminal restriction fragment length polymorphism (T-RFLP) analysis of amplified 16S ribosomal deoxyribonucleic acid were strongly correlated with soil type/field site (Eutric/Calcaric) that differed mainly in soil particle size distribution and soil pH, followed by a strong effect of SMS, in that order. Canonical discriminant (CD) analysis of TRFs properly classified all of the olive orchard soils as belonging to their respective soil type or SMS. Furthermore, only a small set of TRFs were enough to clearly and significantly differentiate soil samples according to soil type or SMS. Those specific TRFs could be used as bioindicators to assess the effect of changes in SMS aimed to enhance soil quality in olive production systems. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.

  6. Near-field soil-structure interaction analysis using nonlinear hybrid modeling

    International Nuclear Information System (INIS)

    Katayama, I.; Chen, C.; Lee, Y.J.; Jean, W.Y.; Penzien, J.

    1989-01-01

    The hybrid modeling method (Gupta and Penzien 1980) and associated analysis procedure for solving a three-dimensional soil-structure interaction problem was developed by Gupta and Penzien (1981) and Gupta et al.(1982). Subsequently, successive modifications have been made to the original modeling method and analysis procedure allowing more general treatment of the SSI problem (Penzien, 1988). Through many correlation studies of field test data obtained under forced-vibration and earthquake-excitation conditions, it has been shown that the HASSI programs can effectively predict the dynamic response of a soil-structure system, if realistic soil parameters are adopted. In the above, the entire structure-foundation system is considered to respond in a linear fashion. Since the reflected three-dimensional waves at the soil-structure interface decays very rapidly with distance away from the structure (Katayama, 1987 (a)), the response of the soil close to the base of the structure may greatly affect its response; therefore, proper modeling of the non-linear soil behavior characteristic is essential. The nonlinear behavior of near-field soil has been taken into consideration in HASSI-7 by the standard equivalent linearization procedures used in programs SHAKE and FLUSH

  7. Land-use systems affect Archaeal community structure and functional diversity in western Amazon soils

    Directory of Open Access Journals (Sweden)

    Acácio Aparecido Navarrete

    2011-10-01

    Full Text Available The study of the ecology of soil microbial communities at relevant spatial scales is primordial in the wide Amazon region due to the current land use changes. In this study, the diversity of the Archaea domain (community structure and ammonia-oxidizing Archaea (richness and community composition were investigated using molecular biology-based techniques in different land-use systems in western Amazonia, Brazil. Soil samples were collected in two periods with high precipitation (March 2008 and January 2009 from Inceptisols under primary tropical rainforest, secondary forest (5-20 year old, agricultural systems of indigenous people and cattle pasture. Denaturing gradient gel electrophoresis of polymerase chain reaction-amplified DNA (PCR-DGGE using the 16S rRNA gene as a biomarker showed that archaeal community structures in crops and pasture soils are different from those in primary forest soil, which is more similar to the community structure in secondary forest soil. Sequence analysis of excised DGGE bands indicated the presence of crenarchaeal and euryarchaeal organisms. Based on clone library analysis of the gene coding the subunit of the enzyme ammonia monooxygenase (amoA of Archaea (306 sequences, the Shannon-Wiener function and Simpson's index showed a greater ammonia-oxidizing archaeal diversity in primary forest soils (H' = 2.1486; D = 0.1366, followed by a lower diversity in soils under pasture (H' = 1.9629; D = 0.1715, crops (H' = 1.4613; D = 0.3309 and secondary forest (H' = 0.8633; D = 0.5405. All cloned inserts were similar to the Crenarchaeota amoA gene clones (identity > 95 % previously found in soils and sediments and distributed primarily in three major phylogenetic clusters. The findings indicate that agricultural systems of indigenous people and cattle pasture affect the archaeal community structure and diversity of ammonia-oxidizing Archaea in western Amazon soils.

  8. Optimization of mathematical models for soil structure interaction

    International Nuclear Information System (INIS)

    Vallenas, J.M.; Wong, C.K.; Wong, D.L.

    1993-01-01

    Accounting for soil-structure interaction in the design and analysis of major structures for DOE facilities can involve significant costs in terms of modeling and computer time. Using computer programs like SASSI for modeling major structures, especially buried structures, requires the use of models with a large number of soil-structure interaction nodes. The computer time requirements (and costs) increase as a function of the number of interaction nodes to the third power. The added computer and labor cost for data manipulation and post-processing can further increase the total cost. This paper provides a methodology to significantly reduce the number of interaction nodes. This is achieved by selectively increasing the thickness of soil layers modeled based on the need for the mathematical model to capture as input only those frequencies that can actually be transmitted by the soil media. The authors have rarely found that a model needs to capture frequencies as high as 33 Hz. Typically coarser meshes (and a lesser number of interaction nodes) are adequate

  9. Assessment the effect of homogenized soil on soil hydraulic properties and soil water transport

    Science.gov (United States)

    Mohawesh, O.; Janssen, M.; Maaitah, O.; Lennartz, B.

    2017-09-01

    Soil hydraulic properties play a crucial role in simulating water flow and contaminant transport. Soil hydraulic properties are commonly measured using homogenized soil samples. However, soil structure has a significant effect on the soil ability to retain and to conduct water, particularly in aggregated soils. In order to determine the effect of soil homogenization on soil hydraulic properties and soil water transport, undisturbed soil samples were carefully collected. Five different soil structures were identified: Angular-blocky, Crumble, Angular-blocky (different soil texture), Granular, and subangular-blocky. The soil hydraulic properties were determined for undisturbed and homogenized soil samples for each soil structure. The soil hydraulic properties were used to model soil water transport using HYDRUS-1D.The homogenized soil samples showed a significant increase in wide pores (wCP) and a decrease in narrow pores (nCP). The wCP increased by 95.6, 141.2, 391.6, 3.9, 261.3%, and nCP decreased by 69.5, 10.5, 33.8, 72.7, and 39.3% for homogenized soil samples compared to undisturbed soil samples. The soil water retention curves exhibited a significant decrease in water holding capacity for homogenized soil samples compared with the undisturbed soil samples. The homogenized soil samples showed also a decrease in soil hydraulic conductivity. The simulated results showed that water movement and distribution were affected by soil homogenizing. Moreover, soil homogenizing affected soil hydraulic properties and soil water transport. However, field studies are being needed to find the effect of these differences on water, chemical, and pollutant transport under several scenarios.

  10. Soil physico-chemical characterization in the different soil layers of National Maize Research Program, Rampur, Chitwan, Nepal

    Directory of Open Access Journals (Sweden)

    Dinesh Khadka

    2017-12-01

    Full Text Available Soil pit digging and their precise study is a decision making tool to assess history and future of soil management of a particular area. Thus, the present study was carried out to differentiate soil physico-chemical properties in the different layers of excavated pit of the National Maize Research Program, Rampur, Chitwan, Nepal. Eight pits were dug randomly from three blocks at a depth of 0 to 100 cm. The soil parameters were determined in-situ, and in laboratory for texture, pH, OM, N, P (as P2O5, K (as K2O, Ca, Mg, S, B, Fe, Zn, Cu and Mn of collected soils samples of different layers following standard analytical methods at Soil Science Division, Khumaltar. The result revealed that soil structure was sub-angular in majority of the layers, whereas bottom layer was single grained. The value and chrome of colour was increasing in order from surface to bottom in the majority pits. Similarly, the texture was sandy loam in majority layers of the pits. Moreover, four types of consistence (loose to firm were observed. Furthermore, mottles and gravels were absent in the majority layers. Likewise, soil was very to moderately acidic in observed layers of majority pits, except bottom layer of agronomy block was slightly acidic. Regarding fertility parameters (OM, macro and micronutrients, some were increasing and vice-versa, while others were intermittent also. Therefore, a single layer is not dominant for particular soil physico-chemical parameters in the farm. In overall, surface layer is more fertile than rest of the layers in all the pits.

  11. Changes in Soil Fungal Community Structure with Increasing Disturbance Frequency.

    Science.gov (United States)

    Cho, Hyunjun; Kim, Mincheol; Tripathi, Binu; Adams, Jonathan

    2017-07-01

    Although disturbance is thought to be important in many ecological processes, responses of fungal communities to soil disturbance have been little studied experimentally. We subjected a soil microcosm to physical disturbance, at a range of frequencies designed to simulate ecological disturbance events. We analyzed the fungal community structure using Illumina HiSeq sequencing of the ITS1 region. Fungal diversity was found to decline with the increasing disturbance frequencies, with no sign of the "humpback" pattern found in many studies of larger sedentary organisms. There is thus no evidence of an effect of release from competition resulting from moderate disturbance-which suggests that competition and niche overlap may not be important in limiting soil fungal diversity. Changing disturbance frequency also led to consistent differences in community composition. There were clear differences in OTU-level composition, with different disturbance treatments each having distinct fungal communities. The functional profile of fungal groups (guilds) was changed by the level of disturbance frequency. These predictable differences in community composition suggest that soil fungi can possess different niches in relation to disturbance frequency, or time since last disturbance. Fungi appear to be most abundant relative to bacteria at intermediate disturbance frequencies, on the time scale we studied here.

  12. Soil/Structure Interactions in Earthquakes

    Science.gov (United States)

    Ramey, G. W.; Moore, R. K.; Yoo, C. H.; Bush, Thomas D., Jr.; Stallings, J. M.

    1986-01-01

    In effort to improve design of Earthquake-resistant structures, mathematical study undertaken to simulate interactions among soil, foundation, and superstructure during various kinds of vibrational excitation. System modeled as three lumped masses connected vertically by springs, with lowest mass connected to horizontal vibrator (representing ground) through springs and dashpot. Behavior of springs described by elastic or elastoplastic force/deformation relationships. Relationships used to approximate nonlinear system behavior and soil/foundation-interface behavior.

  13. Impact of soil-structure interaction on the probabilistic frequency variation of concrete structures

    International Nuclear Information System (INIS)

    Hadjian, A.H.; Hamilton, C.W.

    1975-01-01

    Earthquake response of equipment in nuclear power plants is characterized by floor response spectra. Since these spectra peak at the natural frequencies of the structure, it is important, both from safety and cost standpoints, to determine the degree of the expected variability of the calculated structural frequencies. A previous work is extended on the variability of the natural frequencies of structures due to the variations of concrete properties and a rigorous approach is presented to evaluate frequency variations based on the probability distributions of both the structural and soil parameters and jointly determine the distributions of the natural frequencies. It is assumed that the soil-structure interaction coefficients are normally distributed. With the proper choice of coordinates, the simultaneous random variations of both the structural properties and the interaction coefficients can be incorporated in the eigenvalue problem. The key methodology problem is to obtain the probability distribution of eigenvalues of matrices with random variable elements. Since no analytic relation exists between the eigenvalues and the elements, a numerical procedure had to be designed. It was found that the desired accuracy can be best achieved by splitting the joint variation into two parts: the marginal distribution of soil variations and the conditional distribution of structural variations at specific soil fractiles. Then after calculating the actual eigenvalues at judiciously selected paired values of soil and structure parameters, this information is recombined to obtain the desired cumulative distribution of natural frequencies

  14. Nonlinear soil-structure interaction due to base slab uplift on the seismic response of an HTGR plant

    International Nuclear Information System (INIS)

    Kennedy, R.P.; Short, S.A.; Wesley, D.A.; Lee, T.H.

    1975-01-01

    The importance of the nonlinear soil-structure interaction effects resulting from substantial base slab uplift occurring during a seismic excitation are evaluated. The structure considered consisted of the containment building and prestressed concrete reactor vessel for a typical HTGR plant. A simplified dynamic mathematical model was utilized consisting of a conventional lumped mass structure with soil-structure interaction accounted for by translational and rotational springs whose properties are determined by elastic half space theory. Three different site soil conditions (a rock site, a moderately stiff soil and a soft soil site) and two levels of horizontal ground motion (0.3g and 0.5g earthquakes) were considered. It may be concluded that linear analysis can be used to conservatively estimate the important behavior of the base slab, even under conditions of substantial base slab uplift. For all cases investigated, linear analysis resulted in higher base overturning moments, greater toe pressures, and greater heel uplift distances than nonlinear analyses. It may also be concluded that the nonlinear effect of uplift does not result in any significant lengthening of the fundamental period of the structure. Also, except in the short period region only negligible differences exist between instructure response spectra based on linear analysis and those based on nonlinear analysis. Finally, for sites in which soil-structure interaction is not significant, as for the rock site, the peak structural response at all locations above the base mat are not significantly influenced by the nonlinear effects of base slab uplift. However, for the two soil sites, the peak shears and moments are, in a few instances, significantly different between linear and nonlinear analyses

  15. An experimental study on soil-structure interaction effects

    International Nuclear Information System (INIS)

    Mita, Akira; Kumagai, Shigeru

    1989-01-01

    The soil-structure interaction effects play an important role in the earthquake response of large scale structures such as nuclear power plants. Recent decades, many experimental and analytical studies have been conducted. Even though sophisticated analytical tools are ready to use, complicated soil-structure interaction problems such as those with a complex geometry can not be solved yet. For such problems a laboratory experiment is a powerful alternative. In the laboratory experiment, a device to absorb the reflected waves is always necessary to be attached on the boundaries of the soil model to simulate the semi-infiniteness of the actual ground. But unfortunately absorbing devices currently available are far from satisfactory. In this paper, a new experimental method is employed for soil-structure interaction problems to simulate the semi-infiniteness of the actual ground. The present method utilizes the characteristics of transient response to an impulse load so that no special treatment on the boundaries of the soil model is required. This technique is applicable to a linear elastic system whose impulse response decreases to a small enough value before observing the reflected waves. (author)

  16. Structure of bacterial communities in soil following cover crop and organic fertilizer incorporation.

    Science.gov (United States)

    Fernandez, Adria L; Sheaffer, Craig C; Wyse, Donald L; Staley, Christopher; Gould, Trevor J; Sadowsky, Michael J

    2016-11-01

    Incorporation of organic material into soils is an important element of organic farming practices that can affect the composition of the soil bacterial communities that carry out nutrient cycling and other functions crucial to crop health and growth. We conducted a field experiment to determine the effects of cover crops and fertilizers on bacterial community structure in agricultural soils under long-term organic management. Illumina sequencing of 16S rDNA revealed diverse communities comprising 45 bacterial phyla in corn rhizosphere and bulk field soil. Community structure was most affected by location and by the rhizosphere effect, followed by sampling time and amendment treatment. These effects were associated with soil physicochemical properties, including pH, moisture, organic matter, and nutrient levels. Treatment differences were apparent in bulk and rhizosphere soils at the time of peak corn growth in the season following cover crop and fertilizer application. Cover crop and fertilizer treatments tended to lower alpha diversity in early season samples. However, winter rye, oilseed radish, and buckwheat cover crop treatments increased alpha diversity in some later season samples compared to a no-amendment control. Fertilizer treatments and some cover crops decreased relative abundance of members of the ammonia-oxidizing family Nitrosomonadaceae. Pelleted poultry manure and Sustane® (a commercial fertilizer) decreased the relative abundance of Rhizobiales. Our data point to a need for future research exploring how (1) cover crops influence bacterial community structure and functions, (2) these effects differ with biomass composition and quantity, and (3) existing soil conditions and microbial community composition influence how soil microbial populations respond to agricultural management practices.

  17. Effects of foundation modeling on dynamic response of a soil- structure system

    International Nuclear Information System (INIS)

    Chen, J.C.; Tabatabaie, M.

    1996-07-01

    This paper presents the results of our investigation to evaluate the effectiveness of different foundation modeling techniques used in soil-structure interaction analyses. The study involved analysis of three different modeling techniques applied to two different foundation configurations (one with a circular and one with a square shape). The results of dynamic response of a typical nuclear power plant structure supported on such foundations are presented

  18. Numerical combination for nonlinear analysis of structures coupled to layered soils

    Directory of Open Access Journals (Sweden)

    Wagner Queiroz Silva

    Full Text Available This paper presents an alternative coupling strategy between the Boundary Element Method (BEM and the Finite Element Method (FEM in order to create a computational code for the analysis of geometrical nonlinear 2D frames coupled to layered soils. The soil is modeled via BEM, considering multiple inclusions and internal load lines, through an alternative formulation to eliminate traction variables on subregions interfaces. A total Lagrangean formulation based on positions is adopted for the consideration of the geometric nonlinear behavior of frame structures with exact kinematics. The numerical coupling is performed by an algebraic strategy that extracts and condenses the equivalent soil's stiffness matrix and contact forces to be introduced into the frame structures hessian matrix and internal force vector, respectively. The formulation covers the analysis of shallow foundation structures and piles in any direction. Furthermore, the piles can pass through different layers. Numerical examples are shown in order to illustrate and confirm the accuracy and applicability of the proposed technique.

  19. Soil Microbial Community Structure Evolution along Halophyte Succession in Bohai Bay Wetland

    Directory of Open Access Journals (Sweden)

    Mingyang Cong

    2014-01-01

    Full Text Available It is urgent to recover Bohai Bay costal wetland ecosystem because of covering a large area of severe saline-alkali soil. To explore the relationship between halophyte herbaceous succession and microbial community structure, we chose four local communities which played an important role in improving soil microenvironment. We performed phospholipid fatty acid analysis, measured soil parameters, and evaluated shifts of microbial community structure. Results showed that microbial community structure changed significantly along succession and bacteria community was dominant. Total phospholipid fatty acid content increased in different successional stages but decreased with depth, with similar variations in bacterial and fungal biomass. Soil organic carbon and especially total nitrogen were positively correlated with microbial biomass. Colonization of pioneering salt-tolerant plants Suaeda glauca in saline-alkali bare land changed total soil microorganism content and composition. These results showed that belowground processes were strongly related with aboveground halophyte succession. Fungal/bacterial ratio, Gram-negative/Gram-positive bacteria ratio, total microbial biomass, and fungi and bacteria content could indicate the degree of succession stages in Bohai Bay wetland ecosystem. And also these findings demonstrated that microbial community biomass and composition evolved along with vegetation succession environmental variables.

  20. Pedotransfer functions estimating soil hydraulic properties using different soil parameters

    DEFF Research Database (Denmark)

    Børgesen, Christen Duus; Iversen, Bo Vangsø; Jacobsen, Ole Hørbye

    2008-01-01

    Estimates of soil hydraulic properties using pedotransfer functions (PTF) are useful in many studies such as hydrochemical modelling and soil mapping. The objective of this study was to calibrate and test parametric PTFs that predict soil water retention and unsaturated hydraulic conductivity...... parameters. The PTFs are based on neural networks and the Bootstrap method using different sets of predictors and predict the van Genuchten/Mualem parameters. A Danish soil data set (152 horizons) dominated by sandy and sandy loamy soils was used in the development of PTFs to predict the Mualem hydraulic...... conductivity parameters. A larger data set (1618 horizons) with a broader textural range was used in the development of PTFs to predict the van Genuchten parameters. The PTFs using either three or seven textural classes combined with soil organic mater and bulk density gave the most reliable predictions...

  1. Treatability of volatile chlorinated hydrocarbon-contaminated soils of different textures along a vertical profile by mechanical soil aeration: A laboratory test.

    Science.gov (United States)

    Ma, Yan; Shi, Yi; Hou, Deyi; Zhang, Xi; Chen, Jiaqi; Wang, Zhifen; Xu, Zhu; Li, Fasheng; Du, Xiaoming

    2017-04-01

    Mechanical soil aeration is a simple, effective, and low-cost soil remediation technology that is suitable for sites contaminated with volatile chlorinated hydrocarbons (VCHs). Conventionally, this technique is used to treat the mixed soil of a site without considering the diversity and treatability of different soils within the site. A laboratory test was conducted to evaluate the effectiveness of mechanical soil aeration for remediating soils of different textures (silty, clayey, and sandy soils) along a vertical profile at an abandoned chloro-alkali chemical site in China. The collected soils were artificially contaminated with chloroform (TCM) and trichloroethylene (TCE). Mechanical soil aeration was effective for remediating VCHs (removal efficiency >98%). The volatilization process was described by an exponential kinetic function. In the early stage of treatment (0-7hr), rapid contaminant volatilization followed a pseudo-first order kinetic model. VCH concentrations decreased to low levels and showed a tailing phenomenon with very slow contaminant release after 8hr. Compared with silty and sandy soils, clayey soil has high organic-matter content, a large specific surface area, a high clay fraction, and a complex pore structure. These characteristics substantially influenced the removal process, making it less efficient, more time consuming, and consequently more expensive. Our findings provide a potential basis for optimizing soil remediation strategy in a cost-effective manner. Copyright © 2016. Published by Elsevier B.V.

  2. Probabilistic and deterministic soil structure interaction analysis including ground motion incoherency effects

    International Nuclear Information System (INIS)

    Elkhoraibi, T.; Hashemi, A.; Ostadan, F.

    2014-01-01

    Soil-structure interaction (SSI) is a major step for seismic design of massive and stiff structures typical of the nuclear facilities and civil infrastructures such as tunnels, underground stations, dams and lock head structures. Currently most SSI analyses are performed deterministically, incorporating limited range of variation in soil and structural properties and without consideration of the ground motion incoherency effects. This often leads to overestimation of the seismic response particularly the In-Structure-Response Spectra (ISRS) with significant impositions of design and equipment qualification costs, especially in the case of high-frequency sensitive equipment at stiff soil or rock sites. The reluctance to incorporate a more comprehensive probabilistic approach is mainly due to the fact that the computational cost of performing probabilistic SSI analysis even without incoherency function considerations has been prohibitive. As such, bounding deterministic approaches have been preferred by the industry and accepted by the regulatory agencies. However, given the recently available and growing computing capabilities, the need for a probabilistic-based approach to the SSI analysis is becoming clear with the advances in performance-based engineering and the utilization of fragility analysis in the decision making process whether by the owners or the regulatory agencies. This paper demonstrates the use of both probabilistic and deterministic SSI analysis techniques to identify important engineering demand parameters in the structure. A typical nuclear industry structure is used as an example for this study. The system is analyzed for two different site conditions: rock and deep soil. Both deterministic and probabilistic SSI analysis approaches are performed, using the program SASSI, with and without ground motion incoherency considerations. In both approaches, the analysis begins at the hard rock level using the low frequency and high frequency hard rock

  3. Probabilistic and deterministic soil structure interaction analysis including ground motion incoherency effects

    Energy Technology Data Exchange (ETDEWEB)

    Elkhoraibi, T., E-mail: telkhora@bechtel.com; Hashemi, A.; Ostadan, F.

    2014-04-01

    Soil-structure interaction (SSI) is a major step for seismic design of massive and stiff structures typical of the nuclear facilities and civil infrastructures such as tunnels, underground stations, dams and lock head structures. Currently most SSI analyses are performed deterministically, incorporating limited range of variation in soil and structural properties and without consideration of the ground motion incoherency effects. This often leads to overestimation of the seismic response particularly the In-Structure-Response Spectra (ISRS) with significant impositions of design and equipment qualification costs, especially in the case of high-frequency sensitive equipment at stiff soil or rock sites. The reluctance to incorporate a more comprehensive probabilistic approach is mainly due to the fact that the computational cost of performing probabilistic SSI analysis even without incoherency function considerations has been prohibitive. As such, bounding deterministic approaches have been preferred by the industry and accepted by the regulatory agencies. However, given the recently available and growing computing capabilities, the need for a probabilistic-based approach to the SSI analysis is becoming clear with the advances in performance-based engineering and the utilization of fragility analysis in the decision making process whether by the owners or the regulatory agencies. This paper demonstrates the use of both probabilistic and deterministic SSI analysis techniques to identify important engineering demand parameters in the structure. A typical nuclear industry structure is used as an example for this study. The system is analyzed for two different site conditions: rock and deep soil. Both deterministic and probabilistic SSI analysis approaches are performed, using the program SASSI, with and without ground motion incoherency considerations. In both approaches, the analysis begins at the hard rock level using the low frequency and high frequency hard rock

  4. A large-scale soil-structure interaction experiment: Part I design and construction

    International Nuclear Information System (INIS)

    Tang, H.T.; Tang, Y.K.; Wall, I.B.; Lin, E.

    1987-01-01

    In the simulated earthquake experiments (SIMQUAKE) sponsored by EPRI, the detonation of vertical arrays of explosives propagated wave motions through the ground to the model structures. Although such a simulation can provide information about dynamic soil-structure interaction (SSI) characteristics in a strong motion environment, it lacks seismic wave scattering characteristics for studying seismic input to the soil-structure system and the effect of different kinds of wave composition to the soil-structure response. To supplement the inadequacy of the simulated earthquake SSI experiment, the Electric Power Research Institute (EPRI) and the Taiwan Power Company (Taipower) jointly sponsored a large scale SSI experiment in the field. The objectives of the experiment are: (1) to obtain actual strong motion earthquakes induced database in a soft-soil environment which will substantiate predictive and design SSI models;and (2) to assess nuclear power plant reactor containment internal components dynamic response and margins relating to actual earthquake-induced excitation. These objectives are accomplished by recording and analyzing data from two instrumented, scaled down, (1/4- and 1/12-scale) reinforced concrete containments sited in a high seismic region in Taiwan where a strong-motion seismic array network is located

  5. Arbuscular Mycorrhizal Fungi Community Structure, Abundance and Species Richness Changes in Soil by Different Levels of Heavy Metal and Metalloid Concentration

    Science.gov (United States)

    Krishnamoorthy, Ramasamy; Kim, Chang-Gi; Subramanian, Parthiban; Kim, Ki-Yoon; Selvakumar, Gopal; Sa, Tong-Min

    2015-01-01

    Arbuscular Mycorrhizal Fungi (AMF) play major roles in ecosystem functioning such as carbon sequestration, nutrient cycling, and plant growth promotion. It is important to know how this ecologically important soil microbial player is affected by soil abiotic factors particularly heavy metal and metalloid (HMM). The objective of this study was to understand the impact of soil HMM concentration on AMF abundance and community structure in the contaminated sites of South Korea. Soil samples were collected from the vicinity of an abandoned smelter and the samples were subjected to three complementary methods such as spore morphology, terminal restriction fragment length polymorphism (T-RFLP) and denaturing gradient gel electrophoresis (DGGE) for diversity analysis. Spore density was found to be significantly higher in highly contaminated soil compared to less contaminated soil. Spore morphological study revealed that Glomeraceae family was more abundant followed by Acaulosporaceae and Gigasporaceae in the vicinity of the smelter. T-RFLP and DGGE analysis confirmed the dominance of Funneliformis mosseae and Rhizophagus intraradices in all the study sites. Claroideoglomus claroideum, Funneliformis caledonium, Rhizophagus clarus and Funneliformis constrictum were found to be sensitive to high concentration of soil HMM. Richness and diversity of Glomeraceae family increased with significant increase in soil arsenic, cadmium and zinc concentrations. Our results revealed that the soil HMM has a vital impact on AMF community structure, especially with Glomeraceae family abundance, richness and diversity. PMID:26035444

  6. Different continuous cropping spans significantly affect microbial community membership and structure in a vanilla-grown soil as revealed by deep pyrosequencing.

    Science.gov (United States)

    Xiong, Wu; Zhao, Qingyun; Zhao, Jun; Xun, Weibing; Li, Rong; Zhang, Ruifu; Wu, Huasong; Shen, Qirong

    2015-07-01

    In the present study, soil bacterial and fungal communities across vanilla continuous cropping time-series fields were assessed through deep pyrosequencing of 16S ribosomal RNA (rRNA) genes and internal transcribed spacer (ITS) regions. The results demonstrated that the long-term monoculture of vanilla significantly altered soil microbial communities. Soil fungal diversity index increased with consecutive cropping years, whereas soil bacterial diversity was relatively stable. Bray-Curtis dissimilarity cluster and UniFrac-weighted principal coordinate analysis (PCoA) revealed that monoculture time was the major determinant for fungal community structure, but not for bacterial community structure. The relative abundances (RAs) of the Firmicutes, Actinobacteria, Bacteroidetes, and Basidiomycota phyla were depleted along the years of vanilla monoculture. Pearson correlations at the phyla level demonstrated that Actinobacteria, Armatimonadetes, Bacteroidetes, Verrucomicrobia, and Firmicutes had significant negative correlations with vanilla disease index (DI), while no significant correlation for fungal phyla was observed. In addition, the amount of the pathogen Fusarium oxysporum accumulated with increasing years and was significantly positively correlated with vanilla DI. By contrast, the abundance of beneficial bacteria, including Bradyrhizobium and Bacillus, significantly decreased over time. In sum, soil weakness and vanilla stem wilt disease after long-term continuous cropping can be attributed to the alteration of the soil microbial community membership and structure, i.e., the reduction of the beneficial microbes and the accumulation of the fungal pathogen.

  7. Light structures phototroph, bacterial and fungal communities at the soil surface.

    Directory of Open Access Journals (Sweden)

    Lawrence O Davies

    Full Text Available The upper few millimeters of soil harbour photosynthetic microbial communities that are structurally distinct from those of underlying bulk soil due to the presence of light. Previous studies in arid zones have demonstrated functional importance of these communities in reducing soil erosion, and enhancing carbon and nitrogen fixation. Despite being widely distributed, comparative understanding of the biodiversity of the soil surface and underlying soil is lacking, particularly in temperate zones. We investigated the establishment of soil surface communities on pasture soil in microcosms exposed to light or dark conditions, focusing on changes in phototroph, bacterial and fungal communities at the soil surface (0-3 mm and bulk soil (3-12 mm using ribosomal marker gene analyses. Microbial community structure changed with time and structurally similar phototrophic communities were found at the soil surface and in bulk soil in the light exposed microcosms suggesting that light can influence phototroph community structure even in the underlying bulk soil. 454 pyrosequencing showed a significant selection for diazotrophic cyanobacteria such as Nostoc punctiforme and Anabaena spp., in addition to the green alga Scenedesmus obliquus. The soil surface also harboured distinct heterotrophic bacterial and fungal communities in the presence of light, in particular, the selection for the phylum Firmicutes. However, these light driven changes in bacterial community structure did not extend to the underlying soil suggesting a discrete zone of influence, analogous to the rhizosphere.

  8. Soil-structure interaction - a general method to calculate soil impedance

    International Nuclear Information System (INIS)

    Farvacque, M.; Gantenbein, F.

    1983-01-01

    A correct analysis of the seismic response of nuclear power plant buildings needs to take into account the soil structure interaction. The most classical and simple method consists in characterizing the soil by a stiffness and a damping function for each component of the translation and rotation of the foundation. In a more exact way an impedance function of the frequency may be introduced. Literature provides data to estimate these coefficients for simple soil and foundation configurations and using linear hypothesis. This paper presents a general method to calculate soil impedances which is based on the computation of the impulsive response of the soil using an axisymmetric 2D finite element Code (INCA). The Fourier transform of this response is made in the time interval before the return of the reflected waves on the boundaries of the F.E. domain. This procedure which limits the perturbing effects of the reflections is improved by introducing absorbing boundary elements. A parametric study for homogeneous and layered soils has been carried out using this method. (orig.)

  9. Computation of wave fields and soil structure interaction

    International Nuclear Information System (INIS)

    Lysmer, J.W.

    1982-01-01

    The basic message of the lecture is that the determination of the temporal and spatial variation of the free-field motions is the most important part of any soil-structure interaction analysis. Any interaction motions may be considered as small aberrations superimposed on the free-field motions. The current definition of the soil-structure interaction problem implies that superposition must be used, directly or indirectly, in any rational method of analysis of this problem. This implies that the use of nonlinear procedures in any part of a soil-structure interaction analysis must be questioned. Currently the most important part of the soil-structure interaction analysis, the free-field problem, cannot be solved by nonlinear methods. Hence, it does not seem reasonable to spend a large effort on trying to obtain nonlinear solutions for the interaction part of the problem. Even if such solutions are obtained they cannot legally be superimposed on the free-field motions to obtain the total motions of the structure. This of course does not preclude the possibility that such an illegal procedure may lead to solutions which are close enough for engineering purposes. However, further research is required to make a decision on this issue

  10. Differences between bacterial communities in the gut of a soil-feeding termite (Cubitermes niokoloensis) and its mounds.

    Science.gov (United States)

    Fall, Saliou; Hamelin, Jérôme; Ndiaye, Farma; Assigbetse, Komi; Aragno, Michel; Chotte, Jean Luc; Brauman, Alain

    2007-08-01

    In tropical ecosystems, termite mound soils constitute an important soil compartment covering around 10% of African soils. Previous studies have shown (S. Fall, S. Nazaret, J. L. Chotte, and A. Brauman, Microb. Ecol. 28:191-199, 2004) that the bacterial genetic structure of the mounds of soil-feeding termites (Cubitermes niokoloensis) is different from that of their surrounding soil. The aim of this study was to characterize the specificity of bacterial communities within mounds with respect to the digestive and soil origins of the mound. We have compared the bacterial community structures of a termite mound, termite gut sections, and surrounding soil using PCR-denaturing gradient gel electrophoresis (DGGE) analysis and cloning and sequencing of PCR-amplified 16S rRNA gene fragments. DGGE analysis revealed a drastic difference between the genetic structures of the bacterial communities of the termite gut and the mound. Analysis of 266 clones, including 54 from excised bands, revealed a high level of diversity in each biota investigated. The soil-feeding termite mound was dominated by the Actinobacteria phylum, whereas the Firmicutes and Proteobacteria phyla dominate the gut sections of termites and the surrounding soil, respectively. Phylogenetic analyses revealed a distinct clustering of Actinobacteria phylotypes between the mound and the surrounding soil. The Actinobacteria clones of the termite mound were diverse, distributed among 10 distinct families, and like those in the termite gut environment lightly dominated by the Nocardioidaceae family. Our findings confirmed that the soil-feeding termite mound (C. niokoloensis) represents a specific bacterial habitat in the tropics.

  11. [Description of the phylogenetic structure of hydrolytic prokaryotic complex in the soils].

    Science.gov (United States)

    Lukacheva, E G; Chernov, T I; Bykova, E M; Vlasenko, A N; Manucharova, N A

    2013-01-01

    With the help of the molecular-biological method of cell hybridization in situ (FISH), the abundance of a physiologically active hydrolytic prokaryotic complex in chernozem and gley-podzolic soils is determined. The total proportion of metabolically active cells, which were detected by hybridization with universal probes as representatives of the domains Bacteria and Archaea, in samples of the studied soil, was from 38% for chernozem up to 78% for gley-podzolic soil of the total number of cells. The differences in the structure of chitinolytic and pectinolytic prokaryotic soil complexes are detected. Along with the high abundance of Actinobacteria and Firmicutes in the soils with chitin, an increase in phylogenetic groups such as Alphaproteobacteria and Bacteroidetes is observed.

  12. Characterization of Soil Organic Matter in Peat Soil with Different Humification Levels using FTIR

    Science.gov (United States)

    Teong, I. T.; Felix, N. L. L.; Mohd, S.; Sulaeman, A.

    2016-07-01

    Peat soil is defined as an accumulation of the debris and vegetative under the water logging condition. Soil organic matter of peat soil was affected by the environmental, weather, types of vegetative. Peat soil was normally classified based on its level of humification. Humification can be defined as the transformation of numerous group of substances (proteins, carbohydrates, lipids, etc.) and individual molecules present in living organic matter into group of substances with similar properties (humic substances). During the peat transformation process, content of soil organic matter also will change. Hence, that is important to determine out the types of the organic compound. FTIR (Fourier Transform Infrared) is a machine which is used to differential soil organic matter by using infrared. Infrared is a types of low energy which can determine the organic minerals. Hence, FTIR can be suitable as an indicator on its level of humification. The main objective of this study is to identify an optimized method to characterization of the soil organic content in different level of humification. The case study areas which had been chosen for this study are Parit Sulong, Batu Pahat and UCTS, Sibu. Peat soil samples were taken by every 0.5 m depth until it reached the clay layer. However, the soil organic matter in different humification levels is not significant. FTIR is an indicator which is used to determine the types of soil, but it is unable to differentiate the soil organic matter in peat soil FTIR can determine different types of the soil based on different wave length. Generally, soil organic matter was found that it is not significant to the level of humification.

  13. Characterizing changes in soil bacterial community structure in response to short-term warming

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Jinbo [State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing China; School of Marine Sciences, Ningbo University, Ningbo China; Sun, Huaibo [State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing China; Peng, Fei [Key Laboratory of Desert and Desertification, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou China; Zhang, Huayong [State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing China; Xue, Xian [Key Laboratory of Desert and Desertification, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou China; Gibbons, Sean M. [Argonne National Laboratory Biosciences Division, Argonne IL USA; Graduate Program in Biophysical Sciences, University of Chicago, Chicago IL USA; Gilbert, Jack A. [Argonne National Laboratory Biosciences Division, Argonne IL USA; Department of Ecology and Evolution, University of Chicago, Chicago IL USA; Chu, Haiyan [State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing China

    2014-02-18

    High altitude alpine meadows are experiencing considerably greater than average increases in soil surface temperature, potentially as a result of ongoing climate change. The effects of warming on plant productivity and soil edaphic variables have been established previously, but the influence of warming on soil microbial community structure has not been well characterized. Here, the impact of 15 months of soil warming (both + 1 and + 2 degrees C) on bacterial community structure was examined in a field experiment on a Tibetan plateau alpine meadow using bar-coded pyrosequencing. Warming significantly changed (P < 0.05) the structure of the soil bacterial community, but the alpha diversity was not dramatically affected. Changes in the abundance of the Actinobacteria and Alphaproteobacteria were found to contribute the most to differences between ambient (AT) and artificially warmed conditions. A variance partitioning analysis (VPA) showed that warming directly explained 7.15% variation in bacterial community structure, while warming-induced changes in soil edaphic and plant phenotypic properties indirectly accounted for 28.3% and 20.6% of the community variance, respectively. Interestingly, certain taxa showed an inconsistent response to the two warming treatments, for example Deltaproteobacteria showed a decreased relative abundance at + 1 degrees C, but a return to AT control relative abundance at + 2 degrees C. This suggests complex microbial dynamics that could result from conditional dependencies between bacterial taxa.

  14. Microbial activity and community structure in two drained fen soils in the Ljubljana Marsh

    NARCIS (Netherlands)

    Kraigher, Barbara; Stres, Blaz; Hacin, Janez; Ausec, Luka; Mahne, Ivan; van Elsas, Jan D.; Mandic-Mulec, Ines

    Fen peatlands are specific wetland ecosystems containing high soil organic carbon (SOC). There is a general lack of knowledge about the microbial communities that abound in these systems. We examined the microbial activity and community structure in two fen soils differing in SOC content sampled

  15. Short Communication: Soil carbon pools in different pasture systems

    Energy Technology Data Exchange (ETDEWEB)

    Cardozo, F.M. Jr.; Carneiro, R.F.V.; Leite, L.F.C.; Araujo, A.S.F.

    2016-11-01

    The aim of this study was to assess the carbon pools of a tropical soil where the native forest was replaced with different pasture systems. We studied five pasture production systems, including four monoculture systems with forage grasses such as Andropogon, Brachiaria, Panicum, and Cynodon, and an agroforestry system as well as a native vegetation plot. Greater availability of fulvic acid was detected in the agroforestry system as compared with that in the other systems. Higher lability of C was detected in the Andropogon system during the dry and rainy seasons and during the dry season in Cynodon. During the dry season, all pastures systems showed deficits in the net removal of atmospheric CO2. The structure and practices of the agroforestry system enables more carbon to be sequestered in the soil as compared with the monoculture pasture, suggesting that it is an important practice to mitigate climatic change and to improve soil quality. (Author)

  16. X-ray microtomography in the micromorphologic characterization of soil submitted to different management

    International Nuclear Information System (INIS)

    Passoni, Sabrina

    2013-01-01

    The X-ray computed microtomography (CT) represents a non-invasive technique that can be used with success to analyze physical properties by the soil scientists without destroying the structure of the soil. The technique has as advantage over conventional methods the characterization of the soil porous system in three dimensions, which allow morphological property analyses such as connectivity and tortuosity of the pores. However, as the soil is a non-homogeneous and complex system, the CT technique needs specific methodologies for digital image processing, mainly during the segmentation procedure. The objectives of this work were: 1) to develop a methodology for microtomographic digital image processing; 2) to characterize the soil structure by using micromorphology analysis of samples submitted to non-tillage and conventional systems collected in three distinct layers (0-10, 10-20 and 20-30 cm); and 3) to identify possible changes in the porous system of the soil analyzed due to the effect of different management systems. The use of the CT technique and the procedures adopted for microtomographic digital image processing show to be efficient for the micromorphologic characterization of soil porous system. Soil under non-tillage system presented the best results from the agricultural point of view regarding porosity, total number of pores, connectivity and tortuosity in comparison to the conventional tillage. (author)

  17. Soil bacterial community response to differences in agricultural management along with seasonal changes in a Mediterranean region.

    Science.gov (United States)

    Bevivino, Annamaria; Paganin, Patrizia; Bacci, Giovanni; Florio, Alessandro; Pellicer, Maite Sampedro; Papaleo, Maria Cristiana; Mengoni, Alessio; Ledda, Luigi; Fani, Renato; Benedetti, Anna; Dalmastri, Claudia

    2014-01-01

    Land-use change is considered likely to be one of main drivers of biodiversity changes in grassland ecosystems. To gain insight into the impact of land use on the underlying soil bacterial communities, we aimed at determining the effects of agricultural management, along with seasonal variations, on soil bacterial community in a Mediterranean ecosystem where different land-use and plant cover types led to the creation of a soil and vegetation gradient. A set of soils subjected to different anthropogenic impact in a typical Mediterranean landscape, dominated by Quercus suber L., was examined in spring and autumn: a natural cork-oak forest, a pasture, a managed meadow, and two vineyards (ploughed and grass covered). Land uses affected the chemical and structural composition of the most stabilised fractions of soil organic matter and reduced soil C stocks and labile organic matter at both sampling season. A significant effect of land uses on bacterial community structure as well as an interaction effect between land uses and season was revealed by the EP index. Cluster analysis of culture-dependent DGGE patterns showed a different seasonal distribution of soil bacterial populations with subgroups associated to different land uses, in agreement with culture-independent T-RFLP results. Soils subjected to low human inputs (cork-oak forest and pasture) showed a more stable bacterial community than those with high human input (vineyards and managed meadow). Phylogenetic analysis revealed the predominance of Proteobacteria, Actinobacteria, Bacteroidetes, and Firmicutes phyla with differences in class composition across the site, suggesting that the microbial composition changes in response to land uses. Taken altogether, our data suggest that soil bacterial communities were seasonally distinct and exhibited compositional shifts that tracked with changes in land use and soil management. These findings may contribute to future searches for bacterial bio-indicators of soil

  18. Soil bacterial community response to differences in agricultural management along with seasonal changes in a Mediterranean region.

    Directory of Open Access Journals (Sweden)

    Annamaria Bevivino

    Full Text Available Land-use change is considered likely to be one of main drivers of biodiversity changes in grassland ecosystems. To gain insight into the impact of land use on the underlying soil bacterial communities, we aimed at determining the effects of agricultural management, along with seasonal variations, on soil bacterial community in a Mediterranean ecosystem where different land-use and plant cover types led to the creation of a soil and vegetation gradient. A set of soils subjected to different anthropogenic impact in a typical Mediterranean landscape, dominated by Quercus suber L., was examined in spring and autumn: a natural cork-oak forest, a pasture, a managed meadow, and two vineyards (ploughed and grass covered. Land uses affected the chemical and structural composition of the most stabilised fractions of soil organic matter and reduced soil C stocks and labile organic matter at both sampling season. A significant effect of land uses on bacterial community structure as well as an interaction effect between land uses and season was revealed by the EP index. Cluster analysis of culture-dependent DGGE patterns showed a different seasonal distribution of soil bacterial populations with subgroups associated to different land uses, in agreement with culture-independent T-RFLP results. Soils subjected to low human inputs (cork-oak forest and pasture showed a more stable bacterial community than those with high human input (vineyards and managed meadow. Phylogenetic analysis revealed the predominance of Proteobacteria, Actinobacteria, Bacteroidetes, and Firmicutes phyla with differences in class composition across the site, suggesting that the microbial composition changes in response to land uses. Taken altogether, our data suggest that soil bacterial communities were seasonally distinct and exhibited compositional shifts that tracked with changes in land use and soil management. These findings may contribute to future searches for bacterial bio

  19. Differences in the activities of eight enzymes from ten soil fungi and their possible influences on the surface structure, functional groups, and element composition of soil colloids.

    Science.gov (United States)

    Wang, Wenjie; Li, Yanhong; Wang, Huimei; Zu, Yuangang

    2014-01-01

    How soil fungi function in soil carbon and nutrient cycling is not well understood by using fungal enzymatic differences and their interactions with soil colloids. Eight extracellular enzymes, EEAs (chitinase, carboxymethyl cellulase, β-glucosidase, protease, acid phosphatase, polyphenol oxidase, laccase, and guaiacol oxidase) secreted by ten fungi were compared, and then the fungi that showed low and high enzymatic activity were co-cultured with soil colloids for the purpose of finding fungi-soil interactions. Some fungi (Gomphidius rutilus, Russula integra, Pholiota adiposa, and Geastrum mammosum) secreted 3-4 enzymes with weak activities, while others (Cyathus striatus, Suillus granulate, Phallus impudicus, Collybia dryophila, Agaricus sylvicola, and Lactarius deliciosus) could secret over 5 enzymes with high activities. The differences in these fungi contributed to the alterations of functional groups (stretching bands of O-H, N-H, C-H, C = O, COO- decreased by 11-60%, while P = O, C-O stretching, O-H bending and Si-O-Si stretching increased 9-22%), surface appearance (disappearance of adhesive organic materials), and elemental compositions (11-49% decreases in C1s) in soil colloids. Moreover, more evident changes were generally in high enzymatic fungi (C. striatus) compared with low enzymatic fungi (G. rutilus). Our findings indicate that inter-fungi differences in EEA types and activities might be responsible for physical and chemical changes in soil colloids (the most active component of soil matrix), highlighting the important roles of soil fungi in soil nutrient cycling and functional maintenance.

  20. Structural changes and degradation of Red Latosols under different management systems for 20 years

    Directory of Open Access Journals (Sweden)

    João Tavares Filho

    2014-08-01

    Full Text Available Soils are the foundation of terrestrial ecosystems and their role in food production is fundamental, although physical degradation has been observed in recent years, caused by different cultural practices that modify structures and consequently the functioning of soils. The objective of this study was to evaluate possible structural changes and degradation in an Oxisol under different managements for 20 years: no-tillage cultivation with and without crop rotation, perennial crop and conventional tillage, plus a forested area (reference. Initially, the crop profile was described and subsequently, 10 samples per management system and forest soil were collected to quantify soil organic matter, flocculation degree, bulk density, and macroporosity. The results indicated structural changes down to a soil depth of 50 cm, with predominance of structural units ∆μ (intermediate compaction level under perennial crop and no-tillage crop rotation, and of structural units ∆ (compacted under conventional tillage and no-tillage. The soil was increasingly degraded in the increasing order: forest => no-tillage crop rotation => perennial crop => no-tillage without crop rotation => conventional tillage. In all managements, the values of organic matter and macroporosity were always below and bulk density always above those of the reference area (forest and, under no-tillage crop rotation and perennial crop, the flocculation degree was proportionally equal to that of the reference area.

  1. [Effect of soil phenolic acids on soil microbe of coal-mining depressed land after afforestation restoration by different tree species].

    Science.gov (United States)

    Ji, Li; Yang, Li Xue

    2017-12-01

    Phenolic acids are one of the most important factors that influence microbial community structure. Investigating the dynamic changes of phenolic acids and their relationship with the microbial community structure in plantation soils with different tree species could contribute to better understanding and revealing the mechanisms of microbial community changes under afforestation restoration in coal-mining subsidence areas. In this study, plantations of three conifer and one deciduous species (Pinus koraiensis, Larix gmelinii, Pinus sylvestris var. mongolica, and Populus ussuriensis) were established on abandoned coal-mining subsidence areas in Baoshan District, Shuangyashan City. The contents of soil phenols, 11 types of phenolic acids, and microbial communities in all plots were determined. The results showed that the contents of soil complex phenol in plantations were significantly higher than that of abandoned land overall. Specifically, soils in larch and poplar plantations had higher contents of complex phenol, while soils in larch and Korean pine plantations had greater contents of total phenol. Moreover, soil in the P. koraiensis plantation had a higher content of water-soluble phenol compared with abandoned lands. The determination of 11 phenolic acids indicated that the contents of ferulic acid, abietic acid, β-sitosterol, oleanolic acid, shikimic acid, linoleic acid, and stearic acid were higher in plantation soils. Although soil phenol contents were not related with soil microbial biomass, the individual phenolic acids showed a significant relationship with soil microbes. Ferulic acid, abietic acid, and β-sitosterol showed significant promoting effects on soil microbial biomass, and they showed positive correlations with fungi and fungi/bacteria ratio. These three phenolic acids had higher contents in the poplar plantation, suggesting that poplar affo-restation had a beneficial effect on soil quality in coal-mining subsidence areas.

  2. The texture, structure and nutrient availability of artificial soil on cut slopes restored with OSSS - Influence of restoration time.

    Science.gov (United States)

    Huang, Zhiyu; Chen, Jiao; Ai, Xiaoyan; Li, Ruirui; Ai, Yingwei; Li, Wei

    2017-09-15

    Outside soil spray seeding (OSSS) is widely used to restore cut slopes in southwest of China, and artificial soil is often sprayed onto cut slopes to establish a soil layer for revegetation. The stability of artificial soil layer and its supply of water and nutrients for plants is crucial for successful restoration. To evaluate the long-term effectiveness of OSSS, the texture, structure and nutrient availability of artificial soil were studied, various soil samples were obtained from three cut slopes with different restoration time (restored with OSSS in 1996, 2003 and 2007 respectively) and one natural developed slope (NS). The properties measured including soil particle size distribution (PSD), texture, fractal dimension of PSD (D m ), the bias (C S ) and peak convex (C E ) coefficients of aggregate size distribution, structure failure rate, bulk density, moisture, pH, soil organic carbon (SOC), calcium carbonate content, Available nitrogen (N A ), Available phosphorus (P A ), and Available potassium (K A ). The results showed that different restoration time resulted in significant differences in soil PSD, D m , C S , C E , structure failure rate, bulk density, moisture, pH, N A , and K A . And these properties improved with increasing restoration age. However, there is still a huge disparity in soil texture, structure, and the availability of nutrients and moisture between the cut slopes and NS over a restoration period of up to 17 years, and this is caused by the little fine particles and the lack of slow release fertilizers and organic fertilizers in the artificial soil, resulting in poorer soil structure stability, retention and availability of moisture and nutrients on the cut slopes. Overall, the OSSS technique shows a long-term effectiveness in southwest of China, but there is still room for improvement. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Microflora and structural stability of soils

    International Nuclear Information System (INIS)

    Guckert, A.; Chone, Therese; Jacquin, F.; Institut National Polytechnique, 54 - Nancy; Centre National de la Recherche Scientifique, 54 - Vandoeuvre-les-Nancy

    1975-01-01

    Water stable aggregates produced during the incubation of a loamy soil amended with glucose 14 C show a quite differing evolution of their physical properties and their organic matter according to the time of incubation after which they have been isolated from the soil by water sieving. The aggregates, built up during the first week of incubation, therefore during the maximal activity stage of the microflora of the soil, present the highest stability against biodegradation induced by a second incubation process, even if this one has reached six weeks. This evolution of the physical properties of the aggregates, is essentially in relationship with the microbially synthetized organic matter and especially the polysaccharides preferentially incorporated into the humine fraction. This relatively labile microbial humine has a high aggregating effect, the polysaccharide chains forming several bonds between the neighbouring clay surfaces and building up stable structural units. The mechanical strength of these aggregates is related to the stabilization of the humine produced previously and whose evolution towards a relatively stable form seems to be the result of two mechanisms: a secundary biodegradation parallel to a higher humification process of the organic matter and a increase of the bonds between polysaccharides and clay surfaces favoured by the alternation of wetting and drying [fr

  4. Analysis of Soil Structure Turnover with Garnet Particles and X-Ray Microtomography.

    Directory of Open Access Journals (Sweden)

    Steffen Schlüter

    Full Text Available Matter turnover in soil is tightly linked to soil structure which governs the heterogeneous distribution of habitats, reaction sites and pathways in soil. Thereby, the temporal dynamics of soil structure alteration is deemed to be important for essential ecosystem functions of soil but very little is known about it. A major reason for this knowledge gap is the lack of methods to study soil structure turnover directly at microscopic scales. Here we devise a conceptual approach and an image processing workflow to study soil structure turnover by labeling some initial state of soil structure with small garnet particles and tracking their fate with X-ray microtomography. The particles adhere to aggregate boundaries at the beginning of the experiment but gradually change their position relative to the nearest pore as structure formation progresses and pores are destructed or newly formed. A new metric based on the contact distances between particles and pores is proposed that allows for a direct quantification of soil structure turnover rates. The methodology is tested for a case study about soil compaction of a silty loam soil during stepwise increase of bulk density (ρ = {1.1, 1.3, 1.5} g/cm3. We demonstrate that the analysis of mean contact distances provides genuinely new insights about changing diffusion pathways that cannot be inferred neither from conventional pore space attributes (porosity, mean pore size, pore connectivity nor from deformation analysis with digital image correlation. This structure labeling approach to quantify soil structure turnover provides a direct analogy to stable isotope labeling for the analysis of matter turnover and can be readily combined with each other.

  5. Analysis of Soil Structure Turnover with Garnet Particles and X-Ray Microtomography.

    Science.gov (United States)

    Schlüter, Steffen; Vogel, Hans-Jörg

    2016-01-01

    Matter turnover in soil is tightly linked to soil structure which governs the heterogeneous distribution of habitats, reaction sites and pathways in soil. Thereby, the temporal dynamics of soil structure alteration is deemed to be important for essential ecosystem functions of soil but very little is known about it. A major reason for this knowledge gap is the lack of methods to study soil structure turnover directly at microscopic scales. Here we devise a conceptual approach and an image processing workflow to study soil structure turnover by labeling some initial state of soil structure with small garnet particles and tracking their fate with X-ray microtomography. The particles adhere to aggregate boundaries at the beginning of the experiment but gradually change their position relative to the nearest pore as structure formation progresses and pores are destructed or newly formed. A new metric based on the contact distances between particles and pores is proposed that allows for a direct quantification of soil structure turnover rates. The methodology is tested for a case study about soil compaction of a silty loam soil during stepwise increase of bulk density (ρ = {1.1, 1.3, 1.5} g/cm3). We demonstrate that the analysis of mean contact distances provides genuinely new insights about changing diffusion pathways that cannot be inferred neither from conventional pore space attributes (porosity, mean pore size, pore connectivity) nor from deformation analysis with digital image correlation. This structure labeling approach to quantify soil structure turnover provides a direct analogy to stable isotope labeling for the analysis of matter turnover and can be readily combined with each other.

  6. Divergent Responses of Forest Soil Microbial Communities under Elevated CO2 in Different Depths of Upper Soil Layers.

    Science.gov (United States)

    Yu, Hao; He, Zhili; Wang, Aijie; Xie, Jianping; Wu, Liyou; Van Nostrand, Joy D; Jin, Decai; Shao, Zhimin; Schadt, Christopher W; Zhou, Jizhong; Deng, Ye

    2018-01-01

    Numerous studies have shown that the continuous increase of atmosphere CO 2 concentrations may have profound effects on the forest ecosystem and its functions. However, little is known about the response of belowground soil microbial communities under elevated atmospheric CO 2 (eCO 2 ) at different soil depth profiles in forest ecosystems. Here, we examined soil microbial communities at two soil depths (0 to 5 cm and 5 to 15 cm) after a 10-year eCO 2 exposure using a high-throughput functional gene microarray (GeoChip). The results showed that eCO 2 significantly shifted the compositions, including phylogenetic and functional gene structures, of soil microbial communities at both soil depths. Key functional genes, including those involved in carbon degradation and fixation, methane metabolism, denitrification, ammonification, and nitrogen fixation, were stimulated under eCO 2 at both soil depths, although the stimulation effect of eCO 2 on these functional markers was greater at the soil depth of 0 to 5 cm than of 5 to 15 cm. Moreover, a canonical correspondence analysis suggested that NO 3 -N, total nitrogen (TN), total carbon (TC), and leaf litter were significantly correlated with the composition of the whole microbial community. This study revealed a positive feedback of eCO 2 in forest soil microbial communities, which may provide new insight for a further understanding of forest ecosystem responses to global CO 2 increases. IMPORTANCE The concentration of atmospheric carbon dioxide (CO 2 ) has continuously been increasing since the industrial revolution. Understanding the response of soil microbial communities to elevated atmospheric CO 2 (eCO 2 ) is important for predicting the contribution of the forest ecosystem to global atmospheric change. This study analyzed the effect of eCO 2 on microbial communities at two soil depths (0 to 5 cm and 5 to 15 cm) in a forest ecosystem. Our findings suggest that the compositional and functional structures of microbial

  7. Assessment of seismic wave effects on soil-structure interaction

    International Nuclear Information System (INIS)

    Bernreuter, D.L.

    1977-01-01

    One of the most common hypotheses made for soil-structure interaction analyses is that the earthquake input motion is identical at all points beneath the structure. Several papers have recently shown that this assumption may be overly conservative and that the effect of wave passage is extremely important. These studies typically employ a relatively simple model, namely, the basemat is represented by a rectangular rigid foundation resting on top of the soil and connected to the soil by a continuously distributed set of soil springs. The seismic input is applied at the base of the soil springs and is assumed to be traveling at a constant wave velocity across the site. It ispossible to improve on the soil/structure model by use of finite element methods; however, little is known about how to model the input seismic energy and typically a simple travelling wave is used. In this paper, the author examines the available data to determine: (i) the appropriate wave velocity to use, and (ii) if the currently availble analytic models are adequate. (Auth.)

  8. Vertical structure and pH as factors for chitinolytic and pectinolytic microbial community of soils and terrestrial ecosystems of different climatic zones

    Science.gov (United States)

    Lukacheva, Evgeniya; Natalia, Manucharova

    2016-04-01

    Chitin is a naturally occurring fibre-forming polymer that plays a protective role in many lower animals similar to that of cellulose in plants. Also it's a compound of cell walls of fungi. Chemically it is a long-chain unbranched polysaccharide made of N-acetylglucosamine residues; it is the second most abundant organic compound in nature, after cellulose. Pectin is a structural heteropolysaccharide contained in the primary cell walls of terrestrial plants. Roots of the plants and root crops contain pectin. Chitin and pectin are widely distributed throughout the natural world. Structural and functional features of the complex microbial degradation of biopolymers one of the most important direction in microbial ecology. But there is no a lot of data concerns degradation in vertical structure of terrestrial ecosystems and detailed studies concerning certain abiotic features as pH. Microbial complexes of natural areas were analyzed only as humus horizons (A1) of the soil profile. Only small part of microbial community could be studied with this approach. It is known that ecosystems have their own structure. It is possible to allocate some vertical tiers: phylloplane, litter (soil covering), soil. We investigated chitinolytic and pectinolytic microbial communities dedicated to different layers of the ecosystems. Also it was described depending on pH dominated in certain ecosystem with certain conditions. Quantity of eukaryote and procaryote organisms increased in the test samples with chitin and pectin. Increasing of eukaryote in samples with pectin was more then in samples with chitin. Also should be noted the significant increasing of actinomycet's quantity in the samples with chitin in comparison with samples with pectin. The variety and abundance of bacteria in the litter samples increased an order of magnitude as compared to other probes. Further prokaryote community was investigated by method FISH (fluorescence in situ hybridization). FISH is a cytogenetic

  9. Relationship between soil erodibility and modeled infiltration rate in different soils

    Science.gov (United States)

    Wang, Guoqiang; Fang, Qingqing; Wu, Binbin; Yang, Huicai; Xu, Zongxue

    2015-09-01

    The relationship between soil erodibility, which is hard to measure, and modeled infiltration rate were rarely researched. Here, the soil erodibility factors (K and Ke in the USLE, Ki and K1 in the WEPP) were calculated and the infiltration rates were modeled based on the designed laboratory simulation experiments and proposed infiltration model, in order to build their relationship. The impacts of compost amendment on the soil erosion characteristics and relationship were also studied. Two contrasting agricultural soils (bare and cultivated fluvo-aquic soils) were used, and different poultry compost contents (control, low and high) were applied to both soils. The results indicated that the runoff rate, sediment yield rate and soil erodibility of the bare soil treatments were generally higher than those of the corresponding cultivated soil treatments. The application of composts generally decreased sediment yield and soil erodibility but did not always decrease runoff. The comparison of measured and modeled infiltration rates indicated that the model represented the infiltration processes well with an N-S coefficient of 0.84 for overall treatments. Significant negative logarithmic correlations have been found between final infiltration rate (FIR) and the four soil erodibility factors, and the relationship between USLE-K and FIR demonstrated the best correlation. The application of poultry composts would not influence the logarithmic relationship between FIR and soil erodibility. Our study provided a useful tool to estimate soil erodibility.

  10. Experimental study on the soil structure and permeability in aerated zone at CIRP's field test site

    International Nuclear Information System (INIS)

    Du Zhongde; Zhao Yingjie; Guo Zhiming

    2000-01-01

    Measurement of soil grain and pore size distribution, observation of soil microstructure and permeability test are used to study soil structure and permeability. The results show that soil heterogeneity in vertical soil profile is much great. The mean heterogeneity coefficient is 14.7. The eccentric rate of saturated permeability coefficient in vertical and horizontal direction is from 0.65 to 1.00. The mean coefficient is 0.93. So the soil can be considered to be isotropic from the view point of the groundwater dynamics. The permeability coefficient has more difference in different soil layers. In vertical profile, the saturated permeability coefficient is relatively great in upper and under layers. It is relatively small in middle layers

  11. Numerical investigation of soil and buried structures using finite element analysis

    Directory of Open Access Journals (Sweden)

    Meysam Shirzad Shahrivar

    2017-02-01

    Full Text Available Today the important of studying soil effect on behavior of soil  contacted structures such as foundations, piles,  retaining wall and other similar structures is so much that neglecting of soil-structure interaction effect can cause to untrue results. In this paper soil-structure interaction simulation was done by using Finite element method analysis with ABAQUS version 6.13-14.The results has been presented based on pile function in contact with soil, vertical stresses in soil and structures, pore pressure in drained and undrained condition and underground water level.Final conclusions revealed that pore pressure effect is not uniform on all parts of pile and amount of pore pressure increment in top elements is lower than down elements of  pile.Further it was proven that average amount of vertical stress on end of pile is    of this stress on top of the pile. thus it was concluded that 70% of pile bearing capacity is depend on friction of soil and pile contact surface.

  12. Differences in the Activities of Eight Enzymes from Ten Soil Fungi and Their Possible Influences on the Surface Structure, Functional Groups, and Element Composition of Soil Colloids

    Science.gov (United States)

    Wang, Wenjie; Li, Yanhong; Wang, Huimei; Zu, Yuangang

    2014-01-01

    How soil fungi function in soil carbon and nutrient cycling is not well understood by using fungal enzymatic differences and their interactions with soil colloids. Eight extracellular enzymes, EEAs (chitinase, carboxymethyl cellulase, β-glucosidase, protease, acid phosphatase, polyphenol oxidase, laccase, and guaiacol oxidase) secreted by ten fungi were compared, and then the fungi that showed low and high enzymatic activity were co-cultured with soil colloids for the purpose of finding fungi-soil interactions. Some fungi (Gomphidius rutilus, Russula integra, Pholiota adiposa, and Geastrum mammosum) secreted 3–4 enzymes with weak activities, while others (Cyathus striatus, Suillus granulate, Phallus impudicus, Collybia dryophila, Agaricus sylvicola, and Lactarius deliciosus) could secret over 5 enzymes with high activities. The differences in these fungi contributed to the alterations of functional groups (stretching bands of O-H, N-H, C-H, C = O, COO- decreased by 11–60%, while P = O, C-O stretching, O-H bending and Si-O-Si stretching increased 9–22%), surface appearance (disappearance of adhesive organic materials), and elemental compositions (11–49% decreases in C1s) in soil colloids. Moreover, more evident changes were generally in high enzymatic fungi (C. striatus) compared with low enzymatic fungi (G. rutilus). Our findings indicate that inter-fungi differences in EEA types and activities might be responsible for physical and chemical changes in soil colloids (the most active component of soil matrix), highlighting the important roles of soil fungi in soil nutrient cycling and functional maintenance. PMID:25398013

  13. [Effects of rare earth elements on soil fauna community structure and their ecotoxicity to Holotrichia parallela].

    Science.gov (United States)

    Li, Guiting; Jiang, Junqi; Chen, Jie; Zou, Yunding; Zhang, Xincai

    2006-01-01

    By the method of OECD filter paper contact, this paper studied the effects of applied rare earth elements on soil fauna community structure and their ecological toxicity to Holotrichia parallela in bean field. The results showed that there were no significant differences between the treatments and the control in soil fauna species, quantity of main species, and diversity index. Urgent and chronic toxic test showed that the differences between the treatments and the control were not significant. It was suggested that within the range of test dosages, rare earth elements had little ecological toxicity to Holotrichia parallela, and did not change the soil fauna community structure.

  14. Analysis of soil-structure interaction and floor response spectrum of reactor building for China advanced research reactor

    International Nuclear Information System (INIS)

    Rong Feng; Wang Jiachun; He Shuyan

    2006-01-01

    Analysis of Soil-Structure Interaction (SSI) and calculation of Floor Response Spectrum (FRS) is substantial for anti-seismic design for China Advanced Research Reactor (CARR) project. The article uses direct method to analyze the seismic reaction of the reactor building in considering soil-structure interaction by establishing two-dimensional soil-structure co-acting model for analyzing and inputting of seismic waves from three directions respectively. The seismic response and floor response spectrum of foundation and floors of the building under different cases have been calculated. (authors)

  15. Soil microbial community structure and nitrogen cycling responses to agroecosystem management and carbon substrate addition

    Science.gov (United States)

    Berthrong, S. T.; Buckley, D. H.; Drinkwater, L. E.

    2011-12-01

    Fertilizer application in conventional agriculture leads to N saturation and decoupled soil C and N cycling, whereas organic practices, e.g. complex rotations and legume incorporation, often results in increased SOM and tightly coupled cycles of C and N. These legacy effects of management on soils likely affect microbial community composition and microbial process rates. This project tested if agricultural management practices led to distinct microbial communities and if those communities differed in ability to utilize labile plant carbon substrates and to produce more plant available N. We addressed several specific questions in this project. 1) Do organic and conventional management legacies on similar soils produce distinct soil bacterial and fungal community structures and abundances? 2) How do these microbial community structures change in response to carbon substrate addition? 3) How do the responses of the microbial communities influence N cycling? To address these questions we conducted a laboratory incubation of organically and conventionally managed soils. We added C-13 labelled glucose either in one large dose or several smaller pulses. We extracted genomic DNA from soils before and after incubation for TRFLP community fingerprinting. We measured C in soil pools and respiration and N in soil extracts and leachates. Management led to different compositions of bacteria and fungi driven by distinct components in organic soils. Biomass did not differ across treatments indicating that differences in cycling were due to composition rather than abundance. C substrate addition led to convergence in bacterial communities; however management still strongly influenced the difference in communities. Fungal communities were very distinct between managements and plots with substrate addition not altering this pattern. Organic soils respired 3 times more of the glucose in the first week than conventional soils (1.1% vs 0.4%). Organic soils produced twice as much

  16. Soil-structure interaction - an engineering evaluation

    International Nuclear Information System (INIS)

    Hadjian, A.H.

    1976-01-01

    The two methods of analysis for structure interaction, the impedance and the finite element methods, are reviewed with regard to their present capabilities to address the significant factors of the problem. The objective of the paper is to evaluate if an adequate engineering solution to the problem is provided by either approach. Questions related to the reduction of seismic motions with depth scattering of incident waves, the three-dimensionality of the real problem, soil damping, strain dependency of soil properties and the uncertainties associated with all of the above are discussed in sufficient detail. All conclusions made are based on referenced material. It appears that both methods as presently practised have not yet completely solved the problem, the impedance approach has come closer to addressing the more significant issues. Because of this finding, in addition to its simplicity and low cost, the impedance approach is the perfect engineering method for soil-structure interaction. (Auth.)

  17. FEM validation of a double porosity elastic model for consolidation of structurally complex clayey soils

    Science.gov (United States)

    Callari, C.; Federico, F.

    2000-04-01

    Laboratory consolidation of structured clayey soils is analysed in this paper. The research is carried out by two different methods. The first one treats the soil as an isotropic homogeneous equivalent Double Porosity (DP) medium. The second method rests on the extensive application of the Finite Element Method (FEM) to combinations of different soils, composing 2D or fully 3D ordered structured media that schematically discretize the complex material. Two reference problems, representing typical situations of 1D laboratory consolidation of structured soils, are considered. For each problem, solution is obtained through integration of the equations governing the consolidation of the DP medium as well as via FEM applied to the ordered schemes composed of different materials. The presence of conventional experimental devices to ensure the drainage of the sample is taken into account through appropriate boundary conditions. Comparison of FEM results with theoretical results clearly points out the ability of the DP model to represent consolidation processes of structurally complex soils. Limits of applicability of the DP model may arise when the rate of fluid exchange between the two porous systems is represented through oversimplified relations. Results of computations, obtained having assigned reasonable values to the meso-structural and to the experimental apparatus parameters, point out that a partially efficient drainage apparatus strongly influences the distribution along the sample and the time evolution of the interstitial water pressure acting in both systems of pores. Data of consolidation tests in a Rowe's cell on samples of artificially fissured clays reported in the literature are compared with the analytical and numerical results showing a significant agreement.

  18. [Soil Microbial Respiration Under Different Soil Temperature Conditions and Its Relationship to Soil Dissolved Organic Carbon and Invertase].

    Science.gov (United States)

    Wu, Jing; Chen, Shu-tao; Hu, Zheng-hua; Zhang, Xu

    2015-04-01

    In order to investigate the soil microbial respiration under different temperature conditions and its relationship to soil dissolved organic carbon ( DOC) and invertase, an indoor incubation experiment was performed. The soil samples used for the experiment were taken from Laoshan, Zijinshan, and Baohuashan. The responses of soil microbial respiration to the increasing temperature were studied. The soil DOC content and invertase activity were also measured at the end of incubation. Results showed that relationships between cumulative microbial respiration of different soils and soil temperature could be explained by exponential functions, which had P values lower than 0.001. The coefficient of temperature sensitivity (Q10 value) varied from 1.762 to 1.895. The Q10 value of cumulative microbial respiration decreased with the increase of soil temperature for all soils. The Q10 value of microbial respiration on 27 days after incubation was close to that of 1 day after incubation, indicating that the temperature sensitivity of recalcitrant organic carbon may be similar to that of labile organic carbon. For all soils, a highly significant ( P = 0.003 ) linear relationship between cumulative soil microbial respiration and soil DOC content could be observed. Soil DOC content could explain 31.6% variances of cumulative soil microbial respiration. For the individual soil and all soils, the relationship between cumulative soil microbial respiration and invertase activity could be explained by a highly significant (P soil microbial respiration.

  19. Dynamic Analysis of Wind Turbines Including Soil-Structure Interaction

    DEFF Research Database (Denmark)

    Harte, M.; Basu, B.; Nielsen, Søren R.K.

    2012-01-01

    This paper investigates the along-wind forced vibration response of an onshore wind turbine. The study includes the dynamic interaction effects between the foundation and the underlying soil, as softer soils can influence the dynamic response of wind turbines. A Multi-Degree-of-Freedom (MDOF......) horizontal axes onshore wind turbine model is developed for dynamic analysis using an Euler–Lagrangian approach. The model is comprised of a rotor blade system, a nacelle and a flexible tower connected to a foundation system using a substructuring approach. The rotor blade system consists of three rotating...... for displacement of the turbine system are obtained and the modal frequencies of the combined turbine-foundation system are estimated. Simulations are presented for the MDOF turbine structure subjected to wind loading for different soil stiffness conditions. Steady state and turbulent wind loading, developed using...

  20. Differences between bacterial communities in the gut of a soil-feeding termite (Cubitermes niokoloensis) and its mounds

    OpenAIRE

    Fall, Saliou; Hamelin, J.; Ndiaye, Farma; Assigbetse, Komi; Aragno, M.; Chotte, Jean-Luc; Brauman, Alain

    2007-01-01

    In tropical ecosystems, termite mound soils constitute an important soil compartment covering around 10% of African soils. Previous studies have shown (S. Fall, S. Nazaret, J. L. Chotte, and A. Brauman, Microb. Ecol. 28:191-199, 2004) that the bacterial genetic structure of the mounds of soil-feeding termites (Cubitermes niokoloensis) is different from that of their surrounding soil. The aim of this study was to characterize the specificity of bacterial communities within mounds with respect ...

  1. Effects of past copper contamination and soil structure on copper leaching from soil

    DEFF Research Database (Denmark)

    Paradelo, M; Møldrup, Per; Arthur, Emmanuel

    2013-01-01

    Copper contamination affects biological, chemical, and physical soil properties and associated ecological functions. Changes in soil pore organization as a result of Cu contamination can dramatically affect flow and contaminant transport in polluted soils. This study assessed the influence of soil...... structure on the movement of water and Cu in a long-term polluted soil. Undisturbed soil cores collected along a Cu gradient (from about 20 to about 3800 mg Cu kg−1 soil) were scanned using X-ray computed tomography (CT). Leaching experiments were performed to analyze tracer transport, colloid leaching......, and dissolved organic carbon (DOC) and Cu losses. The 5% arrival time (t0.05) and apparent dispersivity (λapp) for tracer breakthrough were calculated by fitting the experimental data to a nonparametric, double-lognormal probability density function. Soil bulk density, which did not follow the Cu gradient...

  2. Soil microbial community structure and diversity are largely influenced by soil pH and nutrient quality in 78-year-old tree plantations

    Science.gov (United States)

    Zhou, Xiaoqi; Guo, Zhiying; Chen, Chengrong; Jia, Zhongjun

    2017-04-01

    Forest plantations have been recognised as a key strategy management tool for stocking carbon (C) in soils, thereby contributing to climate warming mitigation. However, long-term ecological consequences of anthropogenic forest plantations on the community structure and diversity of soil microorganisms and the underlying mechanisms in determining these patterns are poorly understood. In this study, we selected 78-year-old tree plantations that included three coniferous tree species (i.e. slash pine, hoop pine and kauri pine) and a eucalypt species in subtropical Australia. We investigated the patterns of community structure, and the diversity of soil bacteria and eukaryotes by using high-throughput sequencing of 16S rRNA and 18S rRNA genes. We also measured the potential methane oxidation capacity under different tree species. The results showed that slash pine and Eucalyptus significantly increased the dominant taxa of bacterial Acidobacteria and the dominant taxa of eukaryotic Ascomycota, and formed clusters of soil bacterial and eukaryotic communities, which were clearly different from the clusters under hoop pine and kauri pine. Soil pH and nutrient quality indicators such as C : nitrogen (N) and extractable organic C : extractable organic N were key factors in determining the patterns of soil bacterial and eukaryotic communities between the different tree species treatments. Slash pine and Eucalyptus had significantly lower soil bacterial and eukaryotic operational taxonomical unit numbers and lower diversity indices than kauri pine and hoop pine. A key factor limitation hypothesis was introduced, which gives a reasonable explanation for lower diversity indices under slash pine and Eucalyptus. In addition, slash pine and Eucalyptus had a higher soil methane oxidation capacity than the other tree species. These results suggest that significant changes in soil microbial communities may occur in response to chronic disturbance by tree plantations, and highlight

  3. Relative influence of soil chemistry and topography on soil available micronutrients by structural equation modeling

    OpenAIRE

    Zhu, Hongfen; Zhao, Ying; Nan, Feng; Duan, Yonghong; Bi, Rutian

    2016-01-01

    Soil chemical and topographic properties are two important factors influencing available micronutrient distribution of soil in the horizontal dimension. The objective of this study was to explore the relative influence of soil chemistry (including soil pH, soil organic matter, total nitrogen, available phosphorus, and available potassium) and topography (including elevation, slope, aspect, and wetness index) on the availability of micronutrients (Fe, Mn, Cu, Zn, and B) using structural equati...

  4. Development of soil-structure interaction analysis method (II) - Volume 1

    International Nuclear Information System (INIS)

    Chang, S. P.; Ko, H. M.; Park, H. K. and others

    1994-02-01

    This project includes following six items : free field analysis for the determination of site input motions, impedance analysis which simplifies the effects of soil-structure interaction by using lumped parameters, soil-structure interaction analysis including the material nonlinearity of soil depending on the level of strains, strong geometric nonlinearity due to the uplifting of the base, seismic analysis of underground structure such as varied pipes, seismic analysis of liquid storage tanks. Each item contains following contents respectively : state-of-the-art review on each item and data base construction on the past researches, theoretical review on the technology of soil-structure interaction analysis, proposing preferable technology and estimating the domestic applicability, proposing guidelines for evaluation of safety and analysis scheme

  5. Specific character of bacterial biodegradation of polyhydroxyalkanoates with different chemical structure in soil.

    Science.gov (United States)

    Prudnikova, S V; Vinogradova, O N; Trusova, M Y

    2017-03-01

    The study addresses the influence of the physicochemical properties of the reserve cellular macromolecules (polyhydroxyalkanoates, PHA) with different chemical composition on their biodegradation in the agro-transformed field soil of the Siberian region (Krasnoyarsk Territory, Russia). It was shown that the degradation of the PHA samples depends on the degree of polymer crystallinity (C x ). For the first time, it was shown that the range of PHA-degrading microorganisms differs for each of PHA types. The study defines the primary degraders specific to each PHA type and common to all types of examined polymers.

  6. Soil-structure interaction analysis of NPP containments: substructure and frequency domain methods

    International Nuclear Information System (INIS)

    Venancio-Filho, F.; Almeida, M.C.F.; Ferreira, W.G.; De Barros, F.C.P.

    1997-01-01

    Substructure and frequency domain methods for soil-structure interaction are addressed in this paper. After a brief description of mathematical models for the soil and of excitation, the equations for dynamic soil-structure interaction are developed for a rigid surface foundation and for an embedded foundation. The equations for the frequency domain analysis of MDOF systems are provided. An example of soil-structure interaction analysis with frequency-dependent soil properties is given and examples of identification of foundation impedance functions and soil properties are presented. (orig.)

  7. Influences of Different Halophyte Vegetation on Soil Microbial Community at Temperate Salt Marsh.

    Science.gov (United States)

    Chaudhary, Doongar R; Kim, Jinhyun; Kang, Hojeong

    2018-04-01

    Salt marshes are transitional zone between terrestrial and aquatic ecosystems, occupied mainly by halophytic vegetation which provides numerous ecological services to coastal ecosystem. Halophyte-associated microbial community plays an important role in the adaptation of plants to adverse condition and also affected habitat characteristics. To explore the relationship between halophytes and soil microbial community, we studied the soil enzyme activities, soil microbial community structure, and functional gene abundance in halophytes- (Carex scabrifolia, Phragmites australis, and Suaeda japonica) covered and un-vegetated (mud flat) soils at Suncheon Bay, South Korea. Higher concentrations of total, Gram-positive, Gram-negative, total bacterial, and actinomycetes PLFAs (phospholipid fatty acids) were observed in the soil underneath the halophytes compared with mud flat soil and were highest in Carex soil. Halophyte-covered soils had different microbial community composition due to higher abundance of Gram-negative bacteria than mud flat soil. Similar to PLFA concentrations, the increased activities of β-glucosidase, cellulase, phosphatase, and sulfatase enzymes were observed under halophyte soil compared to mud flat soil and Carex exhibited highest activities. The abundance of archaeal 16S rRNA, fungal ITS, and denitrifying genes (nirK, nirS, and nosZ) were not influenced by the halophytes. Abundance bacterial 16S rRNA and dissimilatory (bi)sulfite (dsrA) genes were highest in Carex-covered soil. The abundance of functional genes involved in methane cycle (mcrA and pmoA) was not affected by the halophytes. However, the ratios of mcrA/pmoA and mcrA/dsrA increased in halophyte-covered soils which indicate higher methanogenesis activities. The finding of the study also suggests that halophytes had increased the microbial and enzyme activities, and played a pivotal role in shaping microbial community structure.

  8. Soil organic phosphorus in soils under different land use systems in northeast Germany

    Science.gov (United States)

    Slazak, Anna; Freese, Dirk; Hüttl, Reinhard F.

    2010-05-01

    Phosphorus (P) is commonly known as a major plant nutrient, which can act as a limiting factor for plant growth in many ecosystems, including different land use systems. Organic P (Po), transformations in soil are important in determining the overall biological availability of P and additionally Po depletion is caused by land cultivation. It is expected that changes of land use modifies the distribution of soil P among the various P-pools (Ptotal, Plabile, Po), where the Plabile forms are considered to be readily available to plants and Po plays an important role with P nutrition supply for plants. The aim of the study was to measure the different soil P pools under different land use systems. The study was carried out in northeast of Brandenburg in Germany. Different land use systems were studied: i) different in age pine-oak mixed forest stands, ii) silvopastoral land, iii) arable lands. Samples were taken from two mineral soil layers: 0-10 and 10-20 cm. Recently, a variety of analytical methods are available to determine specific Po compounds in soils. The different P forms in the soil were obtained by a sequential P fractionation by using acid and alkaline extractants, which mean that single samples were subjected to increasingly stronger extractants, consequently separating the soil P into fractions based on P solubility. The soil Ptotal for the forest stands ranged from 100 to 183 mg kg -1 whereas Po from 77 to 148 mg kg -1. The Po and Plabile in both soil layers increased significantly with increase of age-old oak trees. The most available-P fraction was Plabile predominate in the oldest pine-oak forest stand, accounting for 29% of soil Ptotal. For the silvopasture and arable study sites the Ptotal content was comparable. However, the highest value of Ptotal was measured in the 30 years old silvopastoral system with 685 mg kg-1 and 728 mg kg-1 at 0-10 cm and 10-20 cm depth, respectively than in arable lands. The results have shown that the 30 years old

  9. Effect of different soil washing solutions on bioavailability of residual arsenic in soils and soil properties.

    Science.gov (United States)

    Im, Jinwoo; Yang, Kyung; Jho, Eun Hea; Nam, Kyoungphile

    2015-11-01

    The effect of soil washing used for arsenic (As)-contaminated soil remediation on soil properties and bioavailability of residual As in soil is receiving increasing attention due to increasing interest in conserving soil qualities after remediation. This study investigates the effect of different washing solutions on bioavailability of residual As in soils and soil properties after soil washing. Regardless of washing solutions, the sequential extraction revealed that the residual As concentrations and the amount of readily labile As in soils were reduced after soil washing. However, the bioassay tests showed that the washed soils exhibited ecotoxicological effects - lower seed germination, shoot growth, and enzyme activities - and this could largely be attributed to the acidic pH and/or excessive nutrient contents of the washed soils depending on washing solutions. Overall, this study showed that treated soils having lower levels of contaminants could still exhibit toxic effects due to changes in soil properties, which highly depended on washing solutions. This study also emphasizes that data on the As concentrations, the soil properties, and the ecotoxicological effects are necessary to properly manage the washed soils for reuses. The results of this study can, thus, be utilized to select proper post-treatment techniques for the washed soils. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Influence of soil type, cultivar and Verticillium dahliae on the structure of the root and rhizosphere soil fungal microbiome of strawberry.

    Science.gov (United States)

    Nallanchakravarthula, Srivathsa; Mahmood, Shahid; Alström, Sadhna; Finlay, Roger D

    2014-01-01

    Sustainable management of crop productivity and health necessitates improved understanding of the ways in which rhizosphere microbial populations interact with each other, with plant roots and their abiotic environment. In this study we examined the effects of different soils and cultivars, and the presence of a soil-borne fungal pathogen, Verticillium dahliae, on the fungal microbiome of the rhizosphere soil and roots of strawberry plants, using high-throughput pyrosequencing. Fungal communities of the roots of two cultivars, Honeoye and Florence, were statistically distinct from those in the rhizosphere soil of the same plants, with little overlap. Roots of plants growing in two contrasting field soils had high relative abundance of Leptodontidium sp. C2 BESC 319 g whereas rhizosphere soil was characterised by high relative abundance of Trichosporon dulcitum or Cryptococcus terreus, depending upon the soil type. Differences between different cultivars were not as clear. Inoculation with the pathogen V. dahliae had a significant influence on community structure, generally decreasing the number of rhizosphere soil- and root-inhabiting fungi. Leptodontidium sp. C2 BESC 319 g was the dominant fungus responding positively to inoculation with V. dahliae. The results suggest that 1) plant roots select microorganisms from the wider rhizosphere pool, 2) that both rhizosphere soil and root inhabiting fungal communities are influenced by V. dahliae and 3) that soil type has a stronger influence on both of these communities than cultivar.

  11. Unravelling the importance of forest age stand and forest structure driving microbiological soil properties, enzymatic activities and soil nutrients content in Mediterranean Spanish black pine(Pinus nigra Ar. ssp. salzmannii) Forest.

    Science.gov (United States)

    Lucas-Borja, M E; Hedo, J; Cerdá, A; Candel-Pérez, D; Viñegla, B

    2016-08-15

    This study aimed to investigate the effects that stand age and forest structure have on microbiological soil properties, enzymatic activities and nutrient content. Thirty forest compartments were randomly selected at the Palancares y Agregados managed forest area (Spain), supporting forest stands of five ages; from 100 to 80years old to compartments with trees that were 19-1years old. Forest area ranging from 80 to 120years old and without forest intervention was selected as the control. We measured different soil enzymatic activities, soil respiration and nutrient content (P, K, Na, Mg, Cr, Mn, Fe, Co, Ni, Cu, Zn, Pb and Ca) in the top cm of 10 mineral soils in each compartment. Results showed that the lowest forest stand age and the forest structure created by management presented lower values of organic matter, soil moisture, water holding capacity and litterfall and higher values of C/N ratio in comparison with the highest forest stand age and the related forest structure, which generated differences in soil respiration and soil enzyme activities. The forest structure created by no forest management (control plot) presented the highest enzymatic activities, soil respiration, NH4(+) and NO3(-). Results did not show a clear trend in nutrient content comparing all the experimental areas. Finally, the multivariate PCA analysis clearly clustered three differentiated groups: Control plot; from 100 to 40years old and from 39 to 1year old. Our results suggest that the control plot has better soil quality and that extreme forest stand ages (100-80 and 19-1years old) and the associated forest structure generates differences in soil parameters but not in soil nutrient content. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Priming Effect Induced by the Use of Different Fertilizers on Soil Functional Diversity

    Directory of Open Access Journals (Sweden)

    Bogdan Mihai ONICA

    2017-11-01

    Full Text Available Agricultural practices, such as the use of fertilizers, can change the structure and function of soil microbial community. Monitoring and assessing the soil microbiota and its dynamics related to different factors can be a powerful tool for understanding basic and applied ecological contexts. The main objective of this paper was to assess the changes of carbon turnover rate and the microbial metabolic activity, when different types of fertilizers were used, process called priming effect. A microcosm experiment was designed and performed under controlled temperature and humidity and the soil samples were analyzed using the MicroResp technique. Results show that the integration in soil of different carbon sources, such as green manure, can lead to a positive priming effect and integration of mineral fertilizers can lead to negative priming effect. The carbon sources with the highest respiratory activity were α-ketoglutaric acid, malic acid, oxalic acid, citric acid, while the lowest respiratory activity was obtained in case of arginine.

  13. Field assessment of soil structural quality - a development of the Peerlkamp test

    DEFF Research Database (Denmark)

    Ball, B C; Batey, T; Munkholm, Lars Juhl

    2007-01-01

    properties (bulk density, penetration resistance and porosity) and crop growth. Indicative thresholds of soil management are suggested. The assessment should be viewed as complementary to conventional laboratory assessments of soil structure. Visual soil structure assessment can indicate to the soil......Increased awareness of the role of soil structure in defining the physical fertility or quality of soil has led to the need for a simple assessment relevant to the environmental and economic sustainability of soil productivity. A test is required that is usable by farmer, consultant and researcher...... alike. Here an assessment of soil structure quality (Sq) is described which is based on a visual key linked to criteria chosen to be as objective as possible. The influences of operator, tillage and crop type on Sq value were tested. The test takes 5-15 min per location and enough replicates were...

  14. Water content differences have stronger effects than plant functional groups on soil bacteria in a steppe ecosystem.

    Directory of Open Access Journals (Sweden)

    Ximei Zhang

    Full Text Available Many investigations across natural and artificial plant diversity gradients have reported that both soil physicochemical factors and plant community composition affect soil microbial communities. To test the effect of plant diversity loss on soil bacterial communities, we conducted a five-year plant functional group removal experiment in a steppe ecosystem in Inner Mongolia (China. We found that the number and composition type of plant functional groups had no effect on bacterial diversity and community composition, or on the relative abundance of major taxa. In contrast, bacterial community patterns were significantly structured by soil water content differences among plots. Our results support researches that suggest that water availability is the key factor structuring soil bacterial communities in this semi-arid ecosystem.

  15. Community structure of grassland ground-dwelling arthropods along increasing soil salinities.

    Science.gov (United States)

    Pan, Chengchen; Feng, Qi; Liu, Jiliang; Li, Yulin; Li, Yuqiang; Yu, Xiaoya

    2018-03-01

    Ground-dwelling arthropod communities are influenced by numerous biotic and abiotic factors. Little is known, however, about the relative importance of vegetation structure and abiotic environmental factors on the patterns of ground-dwelling arthropod community across a wide range of soil salinities. Here, a field survey was conducted to assess the driving forces controlling ground-dwelling arthropod community in the salinized grasslands in the Hexi Corridor, Gansu Province, China. The data were analyzed by variance partitioning with canonical correspondence analysis (CCA). We found that vegetation structure and edaphic factors were at least of similar importance to the pattern of the whole ground-dwelling arthropod community. However, when all collected ground-dwelling arthropods were categorized into three trophic guilds (predators, herbivores, and decomposers), as these groups use different food sources, their populations were controlled by different driving forces. Predators and decomposers were mainly determined by biotic factors such as vegetation cover and aboveground plant biomass and herbivores by plant density and vegetation cover. Abiotic factors were also major determinants for the variation occurring in these guilds, with predators strongly affected by soil electrical conductivity (EC) and the content of fine particles (silt + clay, CS), herbivores by soil N:P, EC, and CS, and decomposers by soil EC and organic matter content (SOM). Since plant cover, density, and aboveground biomass can indicate resource availability, which are mainly constrained by soil N:P, EC, CS, and SOM, we consider that the ground-dwelling arthropod community in the salinized grasslands was mainly influenced by resource availability.

  16. Colloid Release From Differently Managed Loess Soil

    DEFF Research Database (Denmark)

    Vendelboe, Anders Lindblad; Schjønning, Per; Møldrup, Per

    2012-01-01

    The content of water-dispersible colloids (WDC) in a soil can have a major impact on soil functions, such as permeability to water and air, and on soil strength, which can impair soil fertility and workability. In addition, the content of WDC in the soil may increase the risk of nutrient loss...... and of colloid-facilitated transport of strongly sorbing compounds. In the present study, soils from the Bad Lauchsta¨dt longterm static fertilizer experiment with different management histories were investigated to relate basic soil properties to the content of WDC, the content of water-stable aggregates (WSA......), and aggregate tensile strength. Our studies were carried out on soils on identical parent material under controlled management conditions, enabling us to study the long-term effects on soil physical properties with few explanatory variables in play. The content of WDC and the amount of WSA were measured...

  17. Soil shrinkage characteristics in swelling soils

    International Nuclear Information System (INIS)

    Taboada, M.A.

    2004-01-01

    The objectives of this presentation are to understand soil swelling and shrinkage mechanisms, and the development of desiccation cracks, to distinguish between soils having different magnitude of swelling, as well as the consequences on soil structural behaviour, to know methods to characterize soil swell/shrink potential and to construct soil shrinkage curves, and derive shrinkage indices, as well to apply them to assess soil management effects

  18. Assessment of soil-structure interaction effects based on simple modes

    International Nuclear Information System (INIS)

    Philippacopoulos, A.J.; Miller, C.A.

    1983-01-01

    Soil-structure interaction effects are investigated using a simple mathematical model which employs three degrees-of-freedom. The foundation is approximated by a homogeneous, isotropic, elastic half-space. Harmonic functions and a recorded earthquake are used to represent the free-field input motion. Variations of the response characteristics due to structural and interaction parameters are demonstrated. Response spectra are presented that display the magnitude of the maximum structural response for a range of fixed-base structural frequencies, interaction frequencies and damping. Conclusions are obtained regarding the behavior of the response of the soil-structure system. The findings reported herein can be used for the interpretation of the results of soil-structure interaction analyses of nuclear plant structures that are performed with available computer codes

  19. Reappraisal of soil C storage processes. The controversy on structural diversity of humic substances as biogeochemical driver for soil C fluxes

    Science.gov (United States)

    Almendros, Gonzalo; Gonzalez-Vila, Francisco J.; Gonzalez-Perez, Jose Antonio; Knicker, Heike

    2016-04-01

    The functional relationships between the macromolecular structure of the humic substances (HS) and a series of biogeochemical processes related with the C sequestration performance in soils have been recently questioned. In this communication we collect recent data from a wide array of different ecosystems where the C storage in soils has been studied and explained as a possible cause-to-effect relationship or has been found significantly correlated (multivariate statistical models) with a series of structural characteristics of humic materials. The study of humic materials has methodological analytical limitations that are derived from its complex, chaotic and not completely understood structure, that reflects its manifold precursors as well as the local impact of environmental/depositional factors. In this work we attempt to design an exploratory, multiomic approach based on the information provided by the molecular characterization of the soil organic matter (SOM). Massive data harvesting was carried out of statistical variables, to infer biogeochemical proxies (spectroscopic, chromatographic, mass spectrometric quantitative descriptors). The experimental data were acquired from advanced instrumental methodologies, viz, analytical pyrolysis, compound-specific stable isotope analysis (CSIA), derivative infrared (FTIR) spectroscopy, solid-state C-13 and N-15 nuclear magnetic resonance (NMR) and mass spectrometry (MS) data after direct injection (thermoevaporation), previous pyrolysis, or ion averaging of specific m/z ranges from classical GC/MS chromatograms. In the transversal exploratory analysis of the multianalytical information, the data were coded for on-line processing in a stage in which there is no need for interpretation, in molecular or structural terms, of the quantitative data consisting of e.g., peak intensities, signal areas, chromatographic (GC) total abundances, etc. A series of forecasting chemometric approaches (aiming to express SOM

  20. Basin-wide variations in Amazon forest structure and function are mediated by both soils and climate

    Science.gov (United States)

    Quesada, C. A.; Phillips, O. L.; Schwarz, M.; Czimczik, C. I.; Baker, T. R.; Patiño, S.; Fyllas, N. M.; Hodnett, M. G.; Herrera, R.; Almeida, S.; Alvarez Dávila, E.; Arneth, A.; Arroyo, L.; Chao, K. J.; Dezzeo, N.; Erwin, T.; di Fiore, A.; Higuchi, N.; Honorio Coronado, E.; Jimenez, E. M.; Killeen, T.; Lezama, A. T.; Lloyd, G.; López-González, G.; Luizão, F. J.; Malhi, Y.; Monteagudo, A.; Neill, D. A.; Núñez Vargas, P.; Paiva, R.; Peacock, J.; Peñuela, M. C.; Peña Cruz, A.; Pitman, N.; Priante Filho, N.; Prieto, A.; Ramírez, H.; Rudas, A.; Salomão, R.; Santos, A. J. B.; Schmerler, J.; Silva, N.; Silveira, M.; Vásquez, R.; Vieira, I.; Terborgh, J.; Lloyd, J.

    2012-06-01

    Forest structure and dynamics vary across the Amazon Basin in an east-west gradient coincident with variations in soil fertility and geology. This has resulted in the hypothesis that soil fertility may play an important role in explaining Basin-wide variations in forest biomass, growth and stem turnover rates. Soil samples were collected in a total of 59 different forest plots across the Amazon Basin and analysed for exchangeable cations, carbon, nitrogen and pH, with several phosphorus fractions of likely different plant availability also quantified. Physical properties were additionally examined and an index of soil physical quality developed. Bivariate relationships of soil and climatic properties with above-ground wood productivity, stand-level tree turnover rates, above-ground wood biomass and wood density were first examined with multivariate regression models then applied. Both forms of analysis were undertaken with and without considerations regarding the underlying spatial structure of the dataset. Despite the presence of autocorrelated spatial structures complicating many analyses, forest structure and dynamics were found to be strongly and quantitatively related to edaphic as well as climatic conditions. Basin-wide differences in stand-level turnover rates are mostly influenced by soil physical properties with variations in rates of coarse wood production mostly related to soil phosphorus status. Total soil P was a better predictor of wood production rates than any of the fractionated organic- or inorganic-P pools. This suggests that it is not only the immediately available P forms, but probably the entire soil phosphorus pool that is interacting with forest growth on longer timescales. A role for soil potassium in modulating Amazon forest dynamics through its effects on stand-level wood density was also detected. Taking this into account, otherwise enigmatic variations in stand-level biomass across the Basin were then accounted for through the

  1. Electrodialytic remediation of suspended soil – Comparison of two different soil fractions

    DEFF Research Database (Denmark)

    Sun, Tian Ran; Ottosen, Lisbeth M.; Jensen, Pernille Erland

    2012-01-01

    Electrodialytic remediation (EDR) can be used for removal of heavy metals from suspended soil, which allows for the soil remediation to be a continuous process. The present paper focused on the processing parameters for remediation of a soil polluted with Cu and As from wood preservation. Six...... electrodialytic treatments lasting from 5 to 22 days with different liquid to solid ratio (L/S) and current intensity were conducted. Among treatments, the highest removal was obtained from the soil fines with 5mA current at L/S 3.5 after 22 days where 96% of Cu and 64% of As were removed. Comparing the removal...... from the original soil and the soil fines in experiments with identical charge transportation, higher removal efficiency was observed from the soil fines. Constant current with 5mA could be maintained at L/S 3.5 for the soil fines while not for the original soil. Doubling current to 10mA could...

  2. Intrinsic factors of Peltigera lichens influence the structure of the associated soil bacterial microbiota.

    Science.gov (United States)

    Leiva, Diego; Clavero-León, Claudia; Carú, Margarita; Orlando, Julieta

    2016-11-01

    Definition of lichens has evolved from bi(tri)partite associations to multi-species symbioses, where bacteria would play essential roles. Besides, although soil bacterial communities are known to be affected by edaphic factors, when lichens grow upon them these could become less preponderant. We hypothesized that the structure of both the lichen microbiota and the microbiota in the soil underneath lichens is shaped by lichen intrinsic and extrinsic factors. In this work, intrinsic factors corresponded to mycobiont and cyanobiont identities of Peltigera lichens, metabolite diversity and phenoloxidase activity and extrinsic factors involved the site of the forest where lichens grow. Likewise, the genetic and metabolic structure of the lichen and soil bacterial communities were analyzed by fingerprinting. Among the results, metabolite diversity was inversely related to the genetic structure of bacterial communities of lichens and soils, highlighting the far-reaching effect of these substances; while phenoloxidase activity was inversely related to the metabolic structure only of the lichen bacterial microbiota, presuming a more limited effect of the products of these enzymes. Soil bacterial microbiota was different depending on the site and, strikingly, according to the cyanobiont present in the lichen over them, which could indicate an influence of the photobiont metabolism on the availability of soil nutrients. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  3. Prokaryotic communities differ along a geothermal soil photic gradient.

    Science.gov (United States)

    Meadow, James F; Zabinski, Catherine A

    2013-01-01

    Geothermal influenced soils exert unique physical and chemical limitations on resident microbial communities but have received little attention in microbial ecology research. These environments offer a model system in which to investigate microbial community heterogeneity and a range of soil ecological concepts. We conducted a 16S bar-coded pyrosequencing survey of the prokaryotic communities in a diatomaceous geothermal soil system and compared communities across soil types and along a conspicuous photic depth gradient. We found significant differences between the communities of the two different soils and also predictable differences between samples taken at different depths. Additionally, we targeted three ecologically relevant bacterial phyla, Cyanobacteria, Planctomycetes, and Verrucomicrobia, for clade-wise comparisons with these variables and found strong differences in their abundances, consistent with the autecology of these groups.

  4. Changes in soil microbial community structure influenced by agricultural management practices in a mediterranean agro-ecosystem.

    Science.gov (United States)

    García-Orenes, Fuensanta; Morugán-Coronado, Alicia; Zornoza, Raul; Cerdà, Artemi; Scow, Kate

    2013-01-01

    Agricultural practices have proven to be unsuitable in many cases, causing considerable reductions in soil quality. Land management practices can provide solutions to this problem and contribute to get a sustainable agriculture model. The main objective of this work was to assess the effect of different agricultural management practices on soil microbial community structure (evaluated as abundance of phospholipid fatty acids, PLFA). Five different treatments were selected, based on the most common practices used by farmers in the study area (eastern Spain): residual herbicides, tillage, tillage with oats and oats straw mulching; these agricultural practices were evaluated against an abandoned land after farming and an adjacent long term wild forest coverage. The results showed a substantial level of differentiation in the microbial community structure, in terms of management practices, which was highly associated with soil organic matter content. Addition of oats straw led to a microbial community structure closer to wild forest coverage soil, associated with increases in organic carbon, microbial biomass and fungal abundances. The microbial community composition of the abandoned agricultural soil was characterised by increases in both fungal abundances and the metabolic quotient (soil respiration per unit of microbial biomass), suggesting an increase in the stability of organic carbon. The ratio of bacteria:fungi was higher in wild forest coverage and land abandoned systems, as well as in the soil treated with oat straw. The most intensively managed soils showed higher abundances of bacteria and actinobacteria. Thus, the application of organic matter, such as oats straw, appears to be a sustainable management practice that enhances organic carbon, microbial biomass and activity and fungal abundances, thereby changing the microbial community structure to one more similar to those observed in soils under wild forest coverage.

  5. Calificación visual a campo de la calidad estructural de argiudoles bajo diferentes sistemas de manejo Field visual analysis of soil structural quality in argiudolls under different managements

    Directory of Open Access Journals (Sweden)

    Silvia Imhoff

    2009-12-01

    Full Text Available El método de Calificación Visual a Campo de la estructura (Cvc, que permite obtener un indicador semi-cuantitativo de la calidad estructural del suelo, se caracteriza por ser simple de realizar, efectivo y de bajo costo. El objetivo de este trabajo fue aplicar la metodología Cvc y verificar su eficacia para identificar diferentes condiciones estructurales en relación a indicadores acreditados de calidad de suelo. El método fue aplicado en un Argiudol, en lotes que se encuentran con agricultura continua en siembra directa y con rotación ganadera-agrícola en labranza tradicional. Al momento del muestreo los lotes estaban con trigo y alfalfa. En cada lote se obtuvieron 10 muestras de suelo con pala plana (bloques y se les determinó la calidad estructural. A partir de estos datos se obtuvo el indicador Cvc para cada sistema. Simultáneamente, se efectuaron a campo medidas de resistencia a la penetración (RP y de humedad volumétrica del suelo (θ. Los resultados de Cvc y RP corregida por la covariable q indicaron la existencia de diferencias significativas entre sistemas en la calidad estructural del suelo a favor de la rotación ganadera-agrícola. Esas diferencias fueron ocasionadas por la presencia de capas con diferentes tipos de estructura, espesor y presencia de raíces. El método Cvc demostró serútil para evaluar rápidamente la calidad estructural del suelo.The Field Visual Analysis of soil structure (Fva allows obtaining a semi-quantitative indicator of the soil structural quality. It is simple to be determined, effective and inexpensive. In this study we applied the Fva method and verified its suitability to identify different soil qualities compared to conventional soil indicators. The analysis was carried out in an Argiudoll under a continuous cropping no-till system and under a crop-pasture rotation conventional tillage system. The plots were cropped with wheat and Lucerne at the sampling times. The Fva was performed on ten

  6. Effects of flexibility and soil-structure interaction on a completely buried structure with a heavily loaded roof system

    International Nuclear Information System (INIS)

    Chen, R.C.; Maryak, M.E.; Mulliken, J.S.

    1993-01-01

    A completely buried structure with a heavily loaded roof system has been analyzed for seismic forces. The seismic input was a site-specific spectrum shape anchored at 0.2g zero period acceleration in the horizontal directions, and the vertical input was prescribed at two thirds of the horizontal input. Models of the structure were developed to account for the flexibility of the base mat, walls, and roof, and were analyzed for the above seismic input with uncertainties in the soil properties considered. The results indicate that horizontal rigid body soil-structure interaction effects are negligible and the seismic amplifications are dominated by the soil-structure system natural frequencies. In addition, the analysis shows that the flexibility of the structure and soil-structure interaction cause considerable amplification of the vertical structural response of the facility's roof system. Finally it was shown that the computer program SASSI can be used to predict the soil-structure interaction responses of a completely buried structure

  7. Studies on Pounding Response Considering Structure-Soil-Structure Interaction under Seismic Loads

    Directory of Open Access Journals (Sweden)

    Peizhen Li

    2017-12-01

    Full Text Available Pounding phenomena considering structure–soil–structure interaction (SSSI under seismic loads are investigated in this paper. Based on a practical engineering project, this work presents a three-dimensional finite element numerical simulation method using ANSYS software. According to Chinese design code, the models of adjacent shear wall structures on Shanghai soft soil with the rigid foundation, box foundation and pile foundation are built respectively. In the simulation, the Davidenkov model of the soil skeleton curve is assumed for soil behavior, and the contact elements with Kelvin model are adopted to simulate pounding phenomena between adjacent structures. Finally, the dynamic responses of adjacent structures considering the pounding and SSSI effects are analyzed. The results show that pounding phenomena may occur, indicating that the seismic separation requirement for adjacent buildings of Chinese design code may not be enough to avoid pounding effect. Pounding and SSSI effects worsen the adjacent buildings’ conditions because their acceleration and shear responses are amplified after pounding considering SSSI. These results are significant for studying the effect of pounding and SSSI phenomena on seismic responses of structures and national sustainable development, especially in earthquake prevention and disaster reduction.

  8. Shrinkage Module of Soil Samples with Different Cement Content

    Directory of Open Access Journals (Sweden)

    Mohannad Sabry

    2017-12-01

    Full Text Available The differences in soil's body mass during shrinkage over time have changes in soil physical properties which provide an important reason to check the design of underground foundations in expansive soils. In this paper, a state-of-art of the soil heat stress-strain relationship prediction methods is checked using soil engineering laboratory experiments and Matlab R2013b numerical modelling. The shrinkage of soils with different cement content of (0%, 2%, 4%, 6% and 8% with the same water content of 20 percent in room temperature for 24 hours, are critically reviewed in terms of their predictive shrinkage along with their strengths and flexural behaviour. The review highlights the prediction methods present to determine the effect of heat stress on the shrinkage of soil samples with different cement content after classifying the soils into clay, silt and sand depending on their particle size using sieve and hydrometer experiments. The results of the soil engineering laboratory experiments showed that as the cement content increases, the shrinkage of soil decreases as a result of increased elasticity in soil. The numerical analysis using finite element method in Matlab R2013b shows that as the cement content increases the displacement in the soil sample decreases and that the soil sample with 8% cement content has more resistance to shrinkage and less displacement than the soil with 6% cement, which has less resistance to heat stresses and more displacement.

  9. Seismic soil structure interaction: analysis and centrifuge model studies

    International Nuclear Information System (INIS)

    Finn, W.D.L.; Ledbetter, R.H.; Beratan, L.L.

    1985-01-01

    A method for non-linear dynamic effective stress analysis is introduced which is applicable to soil-structure interaction problems. Full interaction including slip between structure and foundation is taken into account and the major factors are included which must be considered when computing dynamic soil response. An experimental investigation was conducted using simulated earthquake tests on centrifuged geotechnical models in order to obtain prototype response data of foundation soils carrying both surface and embedded structures and to validate the dynamic effective stress analysis. Horizontal and vertical accelerations were measured at various points on structures and in the sand foundation. Seismically-induced pore water pressure changes were also measured at various locations in the foundation. Computer plots of the data were obtained while the centrifuge was in flight and representative samples are presented. The results show clearly the pronounced effect that increasing pore water pressures have on dynamic response. It is demonstrated that a coherent picture of dynamic response of soil-structure systems is provided by dynamic effective stress non-linear analysis. Based on preliminary results, it appears that the pore water pressure effects can be predicted

  10. Seismic soil-structure interaction: Analysis and centrifuge model studies

    International Nuclear Information System (INIS)

    Finn, W.D.L.; Ledbetter, R.H.; Beratan, L.L.

    1986-01-01

    A method for nonlinear dynamic effective stress analysis applicable to soil-structure interaction problems is introduced. Full interaction including slip between structure and foundation is taken into account and the major factors that must be considered when computing dynamic soil response are included. An experimental investigation using simulated earthquake tests on centrifuged geotechnical models was conducted to obtain prototype response data of foundation soils carrying both surface and embedded structures and to validate the dynamic effective stress analysis. The centrifuge tests were conducted in the Geotechnical Centrifuge at Cambridge University, England. Horizontal and vertical accelerations were measured at various points on structures and in the sand foundation. Seismically induced pore water pressure changes were also measured at various locations in the foundation. Computer plots of the data were obtained while the centrifuge was in flight and representative samples are presented. The results clearly show the pronounced effect of increasing pore water pressures on dynamic response. It is demonstrated that a coherent picture of dynamic response of soil-structure systems is provided by dynamic effective stress nonlinear analysis. On the basis of preliminary results, it appears that the effects of pore water pressure can be predicted. (orig.)

  11. Study of microarthropod communities to assess soil quality in different managed vineyards

    Science.gov (United States)

    Gagnarli, Elena; Vignozzi, Nadia; Valboa, Giuseppe; Bouneb, Mabrouk; Corino, Lorenzo; Goggioli, Donatella; Guidi, Silvia; Lottero, Mariarosa; Tarchi, Franca; Simoni, Sauro

    2014-05-01

    Land use type influences the abundance and diversity of soil arthropods. The evaluation of the effects of different crop managements on soil quality is commonly requested; it can be pursued by means of the determination of communities' structure of edaphic fauna. The development and application of biological indices may represent an efficient mean to assess soil quality. We evaluated the effect of crop managements (organic and Integrated Pest Management-IPM) in some vineyards in Piedmont (Italy) on soil biota in relation to some physical and chemical characteristics of the soil. The study was performed in eleven sites, including seven organic and four IPM managed vineyards located in the Costigliole d'Asti area. Samplings were carried out during the winter 2011 and the spring 2012. Soil samples were collected using a cylindrical soil core sampler (3cm diameter x 30cm height): each sample was a cylindrical soil core which was equally subdivided to study arthropod communities at different depth ranges. Additional samples were collected and analyzed for the following soil physical and chemical properties: texture (sedigraph method), pH (1:2.5 soil/water), total organic carbon (TOC), total nitrogen (NT) and calcium carbonate (dry combustion by CN analyzer). The extraction of microarthropods was performed using the selector Berlese-Tullgren. All specimens were counted and determined up to the order level. The influence of soil properties and of agronomic practices on the abundance of mesofauna was evaluated by multivariate analysis (MANOVA). The biological soil quality was also defined through the determination of biotic indices such as the qualitative and quantitative QBSar (Quality Biological Soil - arthropods), and biodiversity indices such as species richness and indices of Shannon-Wiener (H') and Simpson (D). Overall, more than four thousands arthropods were collected and the highest abundance was in biological management with about 2:1 ratio (biological vs

  12. Substructure method of soil-structure interaction analysis for earthquake loadings

    Energy Technology Data Exchange (ETDEWEB)

    Park, H. G.; Joe, Y. H. [Industrial Development Research Center, Univ. of Incheon, Incheon (Korea, Republic of)

    1997-07-15

    Substructure method has been preferably adopted for soil-structure interaction analysis because of its simplicity and economy in practical application. However, substructure method has some limitation in application and does not always give reliable results especially for embedded structures or layered soil conditions. The objective of this study to validate the reliability of the soil-structure interaction analysis results by the proposed substructure method using lumped-parameter model and suggest a method of seismic design of nuclear power plant structures with specific design conditions. In this study, theoretic background and modeling technique of soil-structure interaction phenomenon have been reviewed and an analysis technique based on substructure method using lumped-parameter model has been suggested. The practicality and reliability of the proposed method have been validated through the application of the method to the seismic analysis of the large-scale seismic test models. A technical guide for practical application and evaluation of the proposed method have been also provided through the various type parametric.

  13. Nonlinear soil-structure interaction calculations simulating the SIMQUAKE experiment using STEALTH 2D

    Science.gov (United States)

    Tang, H. T.; Hofmann, R.; Yee, G.; Vaughan, D. K.

    1980-01-01

    Transient, nonlinear soil-structure interaction simulations of an Electric Power Research Institute, SIMQUAKE experiment were performed using the large strain, time domain STEALTH 2D code and a cyclic, kinematically hardening cap soil model. Results from the STEALTH simulations were compared to identical simulations performed with the TRANAL code and indicate relatively good agreement between all the STEALTH and TRANAL calculations. The differences that are seen can probably be attributed to: (1) large (STEALTH) vs. small (TRANAL) strain formulation and/or (2) grid discretization differences.

  14. EFFECTS OF DIFFERENT SOIL TILLAGE SYSTEMS ON NODULATION AND YIELD OF SOYBEAN

    Directory of Open Access Journals (Sweden)

    D. Jug

    2005-12-01

    Full Text Available The primary soil tillage for different crops in Croatia is generally based on mouldboard ploughing which is the most expensive for crops production. Negative effects due to frequent passes by equipment and machines (deterioration of soil structure, soil compaction, lower biogenity and soil tilth, together with negative economical and energetical costs, can be lowered and avoided by introduction of reduced soil tillage or direct drilling (No-tillage. Accordingly, the main goal of this research was to determine effects of conventional and reduced soil tillage systems on yield components and nodulation ability of nitrogen fixing bacteria in soybean crop. The research was established at chernozem soil type of northern Baranja as monofactorial completely randomized block design in four repetitions. The soil tillage variants were as follows: CT Conventional Tillage (primary soil tillage by moldboard ploughing at 25-30 cm depth, DH Multiple Diskharrowing at 10-15 cm as primary tillage, and NT No-tillage system. Results show significantly lower plant density, mass of 1000 grains and grain yield at variants with reduced soil tillage in both investigation years. However, reduced tillage systems had positive trend on nitrogen-fixing bacteria nodulation, since the highest values of number and mass of nodules per plant were recorded. This research was run during the years 2002 and 2003, the last one extremely droughty, thus it requires continuation.

  15. Fertilization Shapes Bacterial Community Structure by Alteration of Soil pH

    Directory of Open Access Journals (Sweden)

    Yuting Zhang

    2017-07-01

    Full Text Available Application of chemical fertilizer or manure can affect soil microorganisms directly by supplying nutrients and indirectly by altering soil pH. However, it remains uncertain which effect mostly shapes microbial community structure. We determined soil bacterial diversity and community structure by 454 pyrosequencing the V1-V3 regions of 16S rRNA genes after 7-years (2007–2014 of applying chemical nitrogen, phosphorus and potassium (NPK fertilizers, composted manure or their combination to acidic (pH 5.8, near-neutral (pH 6.8 or alkaline (pH 8.4 Eutric Regosol soil in a maize-vegetable rotation in southwest China. In alkaline soil, nutrient sources did not affect bacterial Operational Taxonomic Unit (OTU richness or Shannon diversity index, despite higher available N, P, K, and soil organic carbon in fertilized than in unfertilized soil. In contrast, bacterial OTU richness and Shannon diversity index were significantly lower in acidic and near-neutral soils under NPK than under manure or their combination, which corresponded with changes in soil pH. Permutational multivariate analysis of variance showed that bacterial community structure was significantly affected across these three soils, but the PCoA ordination patterns indicated the effect was less distinct among nutrient sources in alkaline than in acidic and near-neural soils. Distance-based redundancy analysis showed that bacterial community structures were significantly altered by soil pH in acidic and near-neutral soils, but not by any soil chemical properties in alkaline soil. The relative abundance (% of most bacterial phyla was higher in near-neutral than in acidic or alkaline soils. The most dominant phyla were Proteobacteria (24.6%, Actinobacteria (19.7%, Chloroflexi (15.3% and Acidobacteria (12.6%; the medium dominant phyla were Bacterioidetes (5.3%, Planctomycetes (4.8%, Gemmatimonadetes (4.5%, Firmicutes (3.4%, Cyanobacteria (2.1%, Nitrospirae (1.8%, and candidate division TM7 (1

  16. Fertilization Shapes Bacterial Community Structure by Alteration of Soil pH.

    Science.gov (United States)

    Zhang, Yuting; Shen, Hong; He, Xinhua; Thomas, Ben W; Lupwayi, Newton Z; Hao, Xiying; Thomas, Matthew C; Shi, Xiaojun

    2017-01-01

    Application of chemical fertilizer or manure can affect soil microorganisms directly by supplying nutrients and indirectly by altering soil pH. However, it remains uncertain which effect mostly shapes microbial community structure. We determined soil bacterial diversity and community structure by 454 pyrosequencing the V1-V3 regions of 16S rRNA genes after 7-years (2007-2014) of applying chemical nitrogen, phosphorus and potassium (NPK) fertilizers, composted manure or their combination to acidic (pH 5.8), near-neutral (pH 6.8) or alkaline (pH 8.4) Eutric Regosol soil in a maize-vegetable rotation in southwest China. In alkaline soil, nutrient sources did not affect bacterial Operational Taxonomic Unit (OTU) richness or Shannon diversity index, despite higher available N, P, K, and soil organic carbon in fertilized than in unfertilized soil. In contrast, bacterial OTU richness and Shannon diversity index were significantly lower in acidic and near-neutral soils under NPK than under manure or their combination, which corresponded with changes in soil pH. Permutational multivariate analysis of variance showed that bacterial community structure was significantly affected across these three soils, but the PCoA ordination patterns indicated the effect was less distinct among nutrient sources in alkaline than in acidic and near-neural soils. Distance-based redundancy analysis showed that bacterial community structures were significantly altered by soil pH in acidic and near-neutral soils, but not by any soil chemical properties in alkaline soil. The relative abundance (%) of most bacterial phyla was higher in near-neutral than in acidic or alkaline soils. The most dominant phyla were Proteobacteria (24.6%), Actinobacteria (19.7%), Chloroflexi (15.3%) and Acidobacteria (12.6%); the medium dominant phyla were Bacterioidetes (5.3%), Planctomycetes (4.8%), Gemmatimonadetes (4.5%), Firmicutes (3.4%), Cyanobacteria (2.1%), Nitrospirae (1.8%), and candidate division TM7 (1

  17. Ectomycorrhizal fungal diversity and community structure associated with cork oak in different landscapes.

    Science.gov (United States)

    Reis, Francisca; Valdiviesso, Teresa; Varela, Carolina; Tavares, Rui M; Baptista, Paula; Lino-Neto, Teresa

    2018-05-01

    Cork oak (Quercus suber L.) forests play an important ecological and economic role. Ectomycorrhizal fungi (ECMF) are key components for the sustainability and functioning of these ecosystems. The community structure and composition of ECMF associated with Q. suber in different landscapes of distinct Mediterranean bioclimate regions have not previously been compared. In this work, soil samples from cork oak forests residing in different bioclimates (arid, semi-arid, sub-humid, and humid) were collected and surveyed for ectomycorrhizal (ECM) root tips. A global analysis performed on 3565 ECM root tips revealed that the ECMF community is highly enriched in Russula, Tomentella, and Cenoccocum, which correspond to the ECMF genera that mainly contribute to community differences. The ECMF communities from the rainiest and the driest cork oak forests were distinct, with soils from the rainiest climates being more heterogeneous than those from the driest climates. The analyses of several abiotic factors on the ECMF communities revealed that bioclimate, precipitation, soil texture, and forest management strongly influenced ECMF structure. Shifts in ECMF with different hyphal exploration types were also detected among forests, with precipitation, forest system, and soil texture being the main drivers controlling their composition. Understanding the effects of environmental factors on the structuring of ECM communities could be the first step for promoting the sustainability of this threatened ecosystem.

  18. On the structural factors of soil humic matter related to soil water repellence in fire-affected soils

    Science.gov (United States)

    Almendros, G.; González-Vila, F. J.; González-Pérez, J. A.; Knicker, H.; De la Rosa, J. M.; Dettweiler, C.; Hernández, Z.

    2012-04-01

    In order to elucidate the impact of forest fires on physical and chemical properties of the soils as well as on the chemical composition of the soil organic matter, samples from two Mediterranean soils with contrasted characteristics and vegetation (O horizon, Lithic Leptosols under Quercus ilex and Pinus pinaster) and one agricultural soil (Ap horizon, Luvisol) were heated at 350 °C in laboratory conditions for three successive steps up to 600 s. The C- and N-depletion in the course of the heating showed small changes up to an oxidation time of 300 s. On the other side, and after 600 s, considerable C-losses (between 21% in the Luvisol and 50% in the Leptosols) were observed. The relatively low N-depletion ca. 4% (Luvisol) and 21% (Leptosol under pine) suggested preferential loss of C and the subsequent relative enrichment of nitrogen. Paralleling the progressive depletion of organic matter, the Leptosols showed a significant increase of both pH and electrical conductivity. The former change paralleled the rapid loss of carboxyl groups, whereas the latter point to the relative enrichment of ash with a bearing on the concentration of inorganic ions, which could be considered a positive effect for the post-fire vegetation. The quantitative and qualitative analyses by solid-state 13C NMR spectra of the humic fractions in the samples subjected to successive heating times indicate significant concentration of aromatic structures newly-formed in the course of the dehydration and cyclization of carbohydrates (accumulation of black carbon-type polycyclic aromatic structures), and probably lipids and peptides. The early decarboxylation, in addition to the depletion of O-alkyl hydrophilic constituents and further accumulation of secondary aromatic structures resulted in the dramatic increase in the soil water drop penetration time. It was confirmed that this enhancement of the soil hydrophobicity is not related to an increased concentration of soil free lipid, but is

  19. Spatial changes in the prokaryotic community structure across a soil catena

    Science.gov (United States)

    Semenov, Mikhail; Zhuravleva, Anna; Tkhakakhova, Azida

    2017-04-01

    Mesorelief is a complex biogeochemical factor regulating hydrothermal regimes of the surface soil layer, the type of plant cover, etc., and, therefore, influences on soil microbial community structure. A natural model of soil sequence across the slope is a soil catena. Soils forming on various mesorelief positions significantly differ in physicochemical and biological properties, leading to the changes in spatial distribution of various bacterial and archaeal taxa across the soil catena. The aim of this study was to determine soil microbial community structure of different ecosystems corresponding to three mesorelief positions within the soil catena. The catena was located at the right bank of the Oka River (Moscow region, Russian Federation). Soil samples were taken at depths of 0-20 cm, 20-40 cm, and 40-60 cm from three sites within the transect of 960 m with elevation of 80 m, corresponding to the autonomous (AU), transitional (TR) (both Luvisols), and accumulative (AC) (Fluvisol Umbric) positions of the landscape. The dominant vegetation of studied sites were rootstock- and loose bunchgrasses of the fallow ecosystem (AU), a secondary small-leaved forest of the forest ecosystem (TR), and a meadow-bog association of the meadow-bog ecosystem (AC). The distances between the sites were 680 m (AU and TR), and 280 m (TR and AC). The soil samples were homogenized, and the total community DNA of three replicates was extracted using the FastDNA® SPIN kit for Soil. All DNA replicates were combined in a pooled sample and the DNA was used for PCR with specific primers for the 16S V3 and V4 regions. The products were purified and submitted to Illumina MiSeq sequencing. Obtained sequence data were evaluated using the MiSeq Reporter Metagenomics Workflow and QIIME. Quantification of the bacterial and archaeal metabolically active cells was quantified by the FISH-method. Verrucomicrobia, Proteobacteria, Firmictutes and Actinobacteria were the major phyla in autonomous site

  20. Role of experiments in soil-structure interaction methodology verification

    International Nuclear Information System (INIS)

    Srinivasan, M.G.; Kot, C.A.; Hsieh, B.J.

    1986-01-01

    Different kinds of experimental data may be useful for partial or full verification of SSI analysis methods. The great bulk of existing data comes from earthquake records and dynamic testing of as-built structures. However, much of this data may not be suitable for the present purpose as the measurement locations were not selected with the verification of SSI analysis in mind and hence are too few in number or inappropriate in character. Data from scale model testing that include the soil in the model - both in-situ and laboratory - are relatively scarce. If the difficulty in satisfying the requirements of similitude laws on the one hand and simulating realistic soil behavior on the other can be resolved, scale model testing may generate very useful data for relatively low cost. The current NRC sponsored programs are expected to generate data very useful for verifying analysis methods for SSI. A systematic effort to inventory, evaluate and classify existing data is first necessary. This effort would probably show that more data is needed for the better understanding of SSI aspects such as spatial variation of ground motion and the related issue of foundation input motion, and soil stiffness. Collection of response data from in-structure and free field (surface and downhole) through instrumentation of selected as-built structures in seismically active regions may be the most efficient way to obtain the needed data. Augmentation of this data from properly designed scale model tests should also be considered

  1. Arbuscular mycorrhiza and their effect on the soil structure in farms with agroecological and intensive management

    Directory of Open Access Journals (Sweden)

    Juan David Lozano Sánchez

    2015-10-01

    Full Text Available Arbuscular mycorrhizal fungi help to reduce the damage caused by erosion and maintain soil structure through the production of mycelium and adhering substances. This study evaluated the structural stability; estimated the diversity and density of mycorrhizal spores present in three systems of soil (eroded, forest and coffee plantations in the rural area of Dagua, Valle del Cauca, Colombia. The systems evaluated were classified as farms with intensive or agroecological management. There were 25 morphospecies of mycorrhiza grouped in 13 genera, being Glomus and Entrophospora the most representative. The mean index values of mean weight (DPM and geometric (DGM diameters and diversity of mycorrhizal spores were statistically higher in farms with agroecological management than in farms with intensive management. The aggregate stability analysis revealed that eroded soils have significantly lower stability than forest and crop soils. A statistically significant correlation was found between diversity (r = 0.579 and spore density (r = 0.66 regarding DGM, and DPM with Shannon diversity (r = 0.54. Differences in practices, use and soil management affect mycorrhizal diversity found on farms and its effect such as particle aggregation agent generates remarkable changes in the stability and soil structure of evaluated areas. It is concluded, that agroecological management tends to favour both mycorrhizae and the structure of soils.

  2. Influence of physical and chemical properties of different soil types on optimal soil moisture for tillage

    Directory of Open Access Journals (Sweden)

    Vladimir Zebec

    2017-01-01

    Full Text Available Soil plasticity is the area of soil consistency, i.e. it represents a change in soil condition due to different soil moisture influenced by external forces activity. Consistency determines soil resistance in tillage, therefore, the aim of the research was to determine the optimum soil moisture condition for tillage and the influence of the chemical and physical properties of the arable land horizons on the soil plasticity on three different types of soil (fluvisol, luvisol and humic glaysol. Statistically significant differences were found between all examined soil types, such as the content of clay particles, the density of packaging and the actual and substitution acidity, the cation exchange capacity and the content of calcium. There were also statistically significant differences between the examined types of soil for the plasticity limit, liquid limit and the plasticity index. The average established value of plasticity limit as an important element for determining the optimal moment of soil tillage was 18.9% mass on fluvisol, 24.0% mass on luvisol and 28.6% mass on humic glaysol. Very significant positive direction correlation with plasticity limits was shown by organic matter, clay, fine silt, magnesium, sodium and calcium, while very significant negative direction correlation was shown by hydrolytic acidity, coarse sand, fine sand and coarse silt. Created regression models can estimate the optimal soil moisture condition for soil cultivation based on the basic soil properties. The model precision is significantly increased by introducing a greater number of agrochemical and agrophysical soil properties, and the additional precision of the model can be increased by soil type data.

  3. Influence of pore structure on carbon retention/loss in soil macro-aggregates

    Science.gov (United States)

    Quigley, Michelle; Kravchenko, Alexandra; Rivers, Mark

    2017-04-01

    Carbon protection within soil macro-aggregates is an important component of soil carbon sequestration. Pores, as the transportation network for microorganisms, water, air and nutrients within macro-aggregates, are among the factors controlling carbon protection through restricting physical accessibility of carbon to microorganisms. The understanding of how the intra-aggregate pore structure relates to the degree of carbon physical protection, however, is currently lacking. This knowledge gap can lead to potentially inaccurate models and predictions of soil carbon's fate and storage in future changing climates. This study utilized the natural isotopic difference between C3 and C4 plants to trace the location of newly added carbon within macro-aggregates before and after decomposition and explored how location of this carbon relates to characteristics of intra-aggregate pores. To mimic the effect of decomposition, aggregates were incubated at 23˚ C for 28 days. Computed micro-tomographic images were used to determine pore characteristics at 6 μm resolution before and after incubation. Soil (0-10 cm depth) from a 20 year continuous corn (C4 plant) experiment was used. Two soil treatments were considered: 1) "destroyed-structure", where 1 mm sieved soil was used and 2) "intact-structure", where intact blocks of soil were used. Cereal rye (Secale cereale L.) (C3 plant) was grown in the planting boxes (2 intact, 3 destroyed, and one control) for three months in a greenhouse. From each box, ˜5 macro-aggregates of ˜5 mm size were collected for a total of 27 macro-aggregates. Half of the aggregates were cut into 5-11 sections, with relative positions of the sections within the aggregate recorded, and analyzed for δ13C. The remaining aggregates were incubated and then subjected to cutting and δ13C analysis. While there were no significant differences between the aggregate pore size distributions of the two treatments, the roles that specific pores sizes played in

  4. Earthquake response analysis of embedded reactor building considering soil-structure separation and nonlinearity of soil

    International Nuclear Information System (INIS)

    Ichikawa, T.; Hayashi, Y.; Nakai, S.

    1987-01-01

    In the earthquake response analysis for a rigid and massive structure as a nuclear reactor building, it is important to estimate the effect of soil-structure interaction (SSI) appropriately. In case of strong earthquakes, the nonlinearity, such as the wall-ground separation, the base mat uplift of sliding, makes the behavior of the soil-structure system complex. But, if the nuclear reactor building is embedded in a relatively soft ground with surface layer, the wall-ground separation plays the most important role in the response of soil-structure system. Because, it is expected that the base uplift and slide would be less significant due to the effect of the embedment, and the wall-ground friction is usually neglected in design. But, the nonlinearity of ground may have some effect on the wall-ground separation and the response of the structure. These problems have been studied by use of FEM. Others used joint elements between the ground and the structure which does not resist tensile force. Others studied the effect of wall-ground separation with non-tension springs. But the relationship between the ground condition and the effect of the separation has not been clarified yet. To clarify the effect the analyses by FE model and lumped mass model (sway-rocking model) are performed and compared. The key parameter is the ground profile, namely the stiffness of the side soil

  5. Earthquake simulation, actual earthquake monitoring and analytical methods for soil-structure interaction investigation

    Energy Technology Data Exchange (ETDEWEB)

    Tang, H T [Seismic Center, Electric Power Research Institute, Palo Alto, CA (United States)

    1988-07-01

    Approaches for conducting in-situ soil-structure interaction experiments are discussed. High explosives detonated under the ground can generate strong ground motion to induce soil-structure interaction (SSI). The explosive induced data are useful in studying the dynamic characteristics of the soil-structure system associated with the inertial aspect of the SSI problem. The plane waves generated by the explosives cannot adequately address the kinematic interaction associated with actual earthquakes because of he difference in wave fields and their effects. Earthquake monitoring is ideal for obtaining SSI data that can address all aspects of the SSI problem. The only limitation is the level of excitation that can be obtained. Neither the simulated earthquake experiments nor the earthquake monitoring experiments can have exact similitude if reduced scale test structures are used. If gravity effects are small, reasonable correlations between the scaled model and the prototype can be obtained provided that input motion can be scaled appropriately. The key product of the in-situ experiments is the data base that can be used to qualify analytical methods for prototypical applications. (author)

  6. Impact of monovalent cations on soil structure. Part I. Results of an Iranian soil

    Science.gov (United States)

    Farahani, Elham; Emami, Hojat; Keller, Thomas; Fotovat, Amir; Khorassani, Reza

    2018-01-01

    This study investigated the impact of monovalent cations on clay dispersion, aggregate stability, soil pore size distribution, and saturated hydraulic conductivity on agricultural soil in Iran. The soil was incubated with treatment solutions containing different concentrations (0-54.4 mmol l-1) of potassium and sodium cations. The treatment solutions included two levels of electrical conductivity (EC=3 or 6 dS m-1) and six K:Na ratios per electrical conductivity level. At both electrical conductivity levels, spontaneously dispersible clay increased with increasing K concentration, and with increasing K:Na ratio. A negative linear relationship between percentage of water-stable aggregates and spontaneously dispersible clay was observed. Clay dispersion generally reduced the mean pore size, presumably due to clogging of pores, resulting in increased water retention. At both electrical conductivity levels, hydraulic conductivity increased with increasing exchangeable potassium percentage at low exchangeable potassium percentage values, but decreased with further increases in exchangeable potassium percentage at higher exchangeable potassium percentage. This is in agreement with earlier studies, but seems in conflict with our data showing increasing spontaneously dispersible clay with increasing exchangeable potassium percentage. Our findings show that clay dispersion increased with increasing K concentration and increasing K:Na ratio, demonstrating that K can have negative impacts on soil structure.

  7. Microbial Indicators of Soil Quality under Different Land Use Systems in Subtropical Soils

    Science.gov (United States)

    Maharjan, M.

    2016-12-01

    Land-use change from native forest to intensive agricultural systems can negatively impact numerous soil parameters. Understanding the effects of forest ecosystem transformations on markers of long-term soil health is particularly important in rapidly developing regions such as Nepal, where unprecedented levels of agriculturally-driven deforestation have occurred in recent decades. However, the effects of widespread land use changes on soil quality in this region have yet to be properly characterized. Microbial indicators (soil microbial biomass, metabolic quotient and enzymes activities) are particularly suited to assessing the consequences of such ecosystem disturbances, as microbial communities are especially sensitive to environmental change. Thus, the aim of this study was to assess the effect of land use system; i.e. forest, organic and conventional farming, on soil quality in Chitwan, Nepal using markers of microbial community size and activity. Total organic C and N contents were higher in organic farming compared with conventional farming and forest, suggesting higher nutrient retention and soil preservation with organic farming practices compared to conventional. These differences in soil composition were reflected in the health of the soil microbial communities: Organic farm soil exhibited higher microbial biomass C, elevated β-glucosidase and chitinase activities, and a lower metabolic quotient relative to other soils, indicating a larger, more active, and less stressed microbial community, respectively. These results collectively demonstrate that application of organic fertilizers and organic residues positively influence nutrient availability, with subsequent improvements in soil quality and productivity. Furthermore, the sensitivity of microbial indicators to different management practices demonstrated in this study supports their use as effective markers of ecosystem disturbance in subtropical soils.

  8. Slow reaction of soil structure to conservation agriculture practices in Veneto silty soils (North-Easter Italy)

    Science.gov (United States)

    Piccoli, Ilaria; Camarotto, Carlo; Lazzaro, Barbara; Furlan, Lorenzo; Morari, Francesco

    2017-04-01

    Soil structure plays a pivotal role in soil functioning and can inform of the degradation of the soil ecosystem. Intensive and repeated tillage operations have been known to negatively affect the soil structure characteristics while conservation agriculture (CA) practices were demonstrated to improve soil structure and related ecosystem services. The aim of this study is to evaluate the effect of conservation agriculture practices on total porosity, pore size distribution, pore architecture and morphology on silty soils of Veneto low-lying plain (North-Eastern Italy). Experimental design was established in 2010 on 4 farms in North-Eastern Italy to compare conventional intensive tillage system "IT" versus conservation agriculture "CA" (no-tillage, cover-crop and residue retention). 96 samples were collected in 2015 at four depths down to 50 cm depth, and investigated for porosity from micro to macro by coupling mercury intrusion porosimetry (MIP) (0.0074-100 µm) and x-ray computed microtomography (µCT) (>26 µm). Pore morphology and architecture were studied from 3D images analysis and MIP pore size curve. Ultramicroporosity class (0.1-5 μm) positively responded to CA after 5-yr of practices adoption while no significant effects were observed in the x-ray µCT domain (> 26 µm). Silty soils of Veneto plain showed a slow reaction to conservation agriculture because of the low soil organic carbon content and poor aggregate stability. Nevertheless the positive influence of CA on ultramicroporosity, which is strictly linked to soil organic carbon (SOC) stabilization, indicated that a virtuous cycle was initiated between SOC and porosity, hopefully leading to well-developed macropore systems and, in turn, enhanced soil functions and ecosystem services.

  9. Soil microbial communities and glyphosate decay in soils with different herbicide application history.

    Science.gov (United States)

    Guijarro, Keren Hernández; Aparicio, Virginia; De Gerónimo, Eduardo; Castellote, Martín; Figuerola, Eva L; Costa, José Luis; Erijman, Leonardo

    2018-04-11

    This study evaluates the glyphosate dissipation under field conditions in three types of soil, and aims to determine the importance of the following factors in the environmental persistence of herbicide: i) soil bacterial communities, ii) soil physicochemical properties, iii) previous exposure to the herbicide. A soil without previous record of GP application (P0) and two agricultural soils, with 5 and >10years of GP exposure (A5 and A10) were subjected to the application of glyphosate at doses of 3mg·kg -1 . The concentration of GP and AMPA was determined over time and the dynamics of soil bacterial communities was evaluated using 16S ARN ribosomal gene amplicon-sequencing. The GP exposure history affected the rate but not the extent of GP biodegradation. The herbicide was degraded rapidly, but P0 soil showed a dissipation rate significantly lower than soils with agricultural history. In P0 soil, a significant increase in the relative abundance of Bacteroidetes was observed in response to herbicide application. More generally, all soils displayed shifts in bacterial community structure, which nevertheless could not be clearly associated to glyphosate dissipation, suggesting the presence of redundant bacteria populations of potential degraders. Yet the application of the herbicide prompted a partial disruption of the bacterial association network of unexposed soil. On the other hand, higher values of linear (Kd) and nonlinear (Kf) sorption coefficient in P0 point to the relevance of cation exchange capacity (CEC), clay and organic matter to the capacity of soil to adsorb the herbicide, suggesting that bioavailability was a key factor for the persistence of GP and AMPA. These results contribute to understand the relationship between bacterial taxa exposed to the herbicide, and the importance of soil properties as predictors of the possible rate of degradation and persistence of glyphosate in soil. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Relationship between land use pattern and the structure and diversity of soil meso-micro arthropod community.

    Science.gov (United States)

    Zhang, Limin; Zhang, Xueping; Cui, Wei

    2014-05-01

    Soil arthropod communities can provide valuable information regarding the impacts of human disturbances on ecosystem structure. Our study evaluated the structure, composition and diversity of soil meso-micro arthropod communities, in six different vegetation types and assessed the impacts of human activity. A completely randomized design, including 3 replicates from 6 sites (mowing steppe, natural grassland, severe degradation grassland, farmland, artificial shelter forest, and wetland) was used. Soil samples from the depth of 0 to 20 cm were collected during May, July, and September 2007. Soil meso-micro arthropod were separated using the Tullgren funnels method, and were identified and counted. Soil pH value, organic matter, and total nitrogen were measured in topsoil (0-20 cm) from each site. A total of 5,602 soil meso-micro arthropod individuals were collected, representing 4 classes, 14 orders, and 57 families. Most soil arthropods were widely distributed; however, some species appeared to be influenced by environment variables, and might serve as bioindicators of adverse human impacts. Canonical correspondence analysis indicated the soil arthropod distribution in the severely degraded grassland, mowing steppe, farmland, and shelter forest differed from the natural grassland. Arthropod density and diversity were greatest in May, and the forestland community was the most stable. Because of the vital role soil arthropods have in maintaining a healthy ecosystem, mechanisms to maintain their abundance and diversity should be further evaluated.

  11. Effect of pH and soil structure on transport of sulfonamide antibiotics in agricultural soils.

    Science.gov (United States)

    Park, Jong Yol; Huwe, Bernd

    2016-06-01

    We investigated the effect of solution pH and soil structure on transport of sulfonamide antibiotics (sulfamethoxazole, sulfadimethoxine and sulfamethazine) in combination with batch sorption tests and column experiments. Sorption isotherms properly conformed to Freundlich model, and sorption potential of the antibiotics is as follows; sulfadimethoxine > sulfamethoxazole > sulfamethazine. Decreasing pH values led to increased sorption potential of the antibiotics on soil material in pH range of 4.0-8.0. This likely resulted from abundance of neutral and positive-charged sulfonamides species at low pH, which electrostatically bind to sorption sites on soil surface. Due to destruction of macropore channels, lower hydraulic conductivities of mobile zone were estimated in the disturbed soil columns than in the undisturbed soil columns, and eventually led to lower mobility of the antibiotics in disturbed column. The results suggest that knowledge of soil structure and solution condition is required to predict fate and distribution of sulfonamide antibiotics in environmental matrix. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Carbon stabilization and microbial growth in acidic mine soils after addition of different amendments for soil reclamation

    Science.gov (United States)

    Zornoza, Raúl; Acosta, Jose; Ángeles Muñoz, María; Martínez-Martínez, Silvia; Faz, Ángel; Bååth, Erland

    2016-04-01

    The extreme soil conditions in metalliferous mine soils have a negative influence on soil biological activity and therefore on soil carbon estabilization. Therefore, amendments are used to increase organic carbon content and activate microbial communities. In order to elucidate some of the factors controlling soil organic carbon stabilization in reclaimed acidic mine soils and its interrelationship with microbial growth and community structure, we performed an incubation experiment with four amendments: pig slurry (PS), pig manure (PM) and biochar (BC), applied with and without marble waste (MW; CaCO3). Results showed that PM and BC (alone or together with MW) contributed to an important increment in recalcitrant organic C, C/N ratio and aggregate stability. Bacterial and fungal growths were highly dependent on pH and labile organic C. PS supported the highest microbial growth; applied alone it stimulated fungal growth, and applied with MW it stimulated bacterial growth. BC promoted the lowest microbial growth, especially for fungi, with no significant increase in fungal biomass. MW+BC increased bacterial growth up to values similar to PM and MW+PM, suggesting that part of the biochar was degraded, at least in short-term mainly by bacteria rather than fungi. PM, MW+PS and MW+PM supported the highest microbial biomass and a similar community structure, related with the presence of high organic C and high pH, with immobilization of metals and increased soil quality. BC contributed to improved soil structure, increased recalcitrant organic C, and decreased metal mobility, with low stimulation of microbial growth.

  13. Volatile-mediated interactions between phylogenetically different soil bacteria

    NARCIS (Netherlands)

    Garbeva, P.; Hordijk, C.; Gerards, S.; Boer, de W.

    2014-01-01

    There is increasing evidence that organic volatiles play an important role in interactions between micro-organisms in the porous soil matrix. Here we report that volatile compounds emitted by different soil bacteria can affect the growth, antibiotic production and gene expression of the soil

  14. Mercury alters the bacterial community structure and diversity in soil even at concentrations lower than the guideline values.

    Science.gov (United States)

    Mahbub, Khandaker Rayhan; Subashchandrabose, Suresh Ramraj; Krishnan, Kannan; Naidu, Ravi; Megharaj, Mallavarapu

    2017-03-01

    This study evaluated the effect of inorganic mercury (Hg) on bacterial community and diversity in different soils. Three soils-neutral, alkaline and acidic-were spiked with six different concentrations of Hg ranging from 0 to 200 mg kg -1 and aged for 90 days. At the end of the ageing period, 18 samples from three different soils were investigated for bacterial community structure and soil physicochemical properties. Illumina MiSeq-based 16s ribosomal RNA (rRNA) amplicon sequencing revealed the alteration in the bacterial community between un-spiked control soils and Hg-spiked soils. Among the bacterial groups, Actinobacteria (22.65%) were the most abundant phyla in all samples followed by Proteobacteria (21.95%), Bacteroidetes (4.15%), Firmicutes (2.9%) and Acidobacteria (2.04%). However, the largest group showing increased abundance with higher Hg doses was the unclassified group (45.86%), followed by Proteobacteria. Mercury had a considerable negative impact on key soil functional bacteria such as ammonium oxidizers and nitrifiers. Canonical correspondence analysis (CCA) indicated that among the measured soil properties, Hg had a major influence on bacterial community structure. Furthermore, nonlinear regression analysis confirmed that Hg significantly decreased soil bacterial alpha diversity in lower organic carbon containing neutral and alkaline soils, whereas in acidic soil with higher organic carbon there was no significant correlation. EC 20 values obtained by a nonlinear regression analysis indicated that Hg significantly decreased soil bacterial diversity in concentrations lower than several guideline values.

  15. Three Dimensional Response Spectrum Soil Structure Modeling Versus Conceptual Understanding To Illustrate Seismic Response Of Structures

    International Nuclear Information System (INIS)

    Touqan, Abdul Razzaq

    2008-01-01

    Present methods of analysis and mathematical modeling contain so many assumptions that separate them from reality and thus represent a defect in design which makes it difficult to analyze reasons of failure. Three dimensional (3D) modeling is so superior to 1D or 2D modeling, static analysis deviates from the true nature of earthquake load which is ''a dynamic punch'', and conflicting assumptions exist between structural engineers (who assume flexible structures on rigid block foundations) and geotechnical engineers (who assume flexible foundations supporting rigid structures). Thus a 3D dynamic soil-structure interaction is a step that removes many of the assumptions and thus clears reality to a greater extent. However such a model cannot be analytically analyzed. We need to anatomize and analogize it. The paper will represent a conceptual (analogical) 1D model for soil structure interaction and clarifies it by comparing its outcome with 3D dynamic soil-structure finite element analysis of two structures. The aim is to focus on how to calculate the period of the structure and to investigate effect of variation of stiffness on soil-structure interaction

  16. Continuum soil modeling in the static analysis of buried structures

    International Nuclear Information System (INIS)

    Julyk, L.J.; Marlow, R.S.; Moore, C.J.; Day, J.P.; Dyrness, A.D.

    1993-10-01

    Soil loading traditionally has been modeled as a hydrostatic pressure, a practice acceptable for many design applications. In the analyses of buried structure with predictive goals, soil compliance and load redistribution in the presence of soil plasticity are important factors to consider in determining the appropriate response of the structure. In the analysis of existing buried waste-storage tanks at the US Department of Energy's Hanford Site, three soil-tank interaction modeling considerations are addressed. First, the soil interacts with the tank as the tank expands and contracts during thermal cycles associated with changes in the heat generated by the waste material as a result of additions and subtractions of the waste. Second, the soil transfers loads from the surface to the tank and provides support by resisting radial displacement of the tank haunch. Third, conventional finite-element mesh development causes artificial stress concentrations in the soil associated with differential settlement

  17. An evaluation of different soil washing solutions for remediating arsenic-contaminated soils.

    Science.gov (United States)

    Wang, Yiwen; Ma, Fujun; Zhang, Qian; Peng, Changsheng; Wu, Bin; Li, Fasheng; Gu, Qingbao

    2017-04-01

    Soil washing is a promising way to remediate arsenic-contaminated soils. Most research has mostly focused on seeking efficient extractants for removing arsenic, but not concerned with any changes in soil properties when using this technique. In this study, the removal of arsenic from a heavily contaminated soil employing different washing solutions including H 3 PO 4 , NaOH and dithionite in EDTA was conducted. Subsequently, the changes in soil physicochemical properties and phytotoxicity of each washing technique were evaluated. After washing with 2 M H 3 PO 4 , 2 M NaOH or 0.1 M dithionite in 0.1 M EDTA, the soil samples' arsenic content met the clean-up levels stipulated in China's environmental regulations. H 3 PO 4 washing decreased soil pH, Ca, Mg, Al, Fe, and Mn concentrations but increased TN and TP contents. NaOH washing increased soil pH but decreased soil TOC, TN and TP contents. Dithionite in EDTA washing reduced soil TOC, Ca, Mg, Al, Fe, Mn and TP contents. A drastic color change was observed when the soil sample was washed with H 3 PO 4 or 0.1 M dithionite in 0.1 M EDTA. After adjusting the soil pH to neutral, wheat planted in the soil sample washed by NaOH evidenced the best growth of all three treated soil samples. These results will help with selecting the best washing solution when remediating arsenic-contaminated soils in future engineering applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. A discrete element model for soil-sweep interaction in three different soils

    DEFF Research Database (Denmark)

    Chen, Y; Munkholm, Lars Juhl; Nyord, Tavs

    2013-01-01

    . To serve the model development, the sweep was tested in three different soils (coarse sand, loamy sand, and sandy loam). In the tests, soil cutting forces (draught and vertical forces) and soil disturbance characteristics (soil cross-section disturbance and surface deformation) resulting from the sweep...... were measured. The measured draught and vertical forces were used in calibrations of the most sensitive model parameter, particle stiffness. The calibrated particle stiffness was 0.75 × 103 N m−1 for the coarse sand, 2.75 × 103 N m−1 for the loamy sand, and 6 × 103 N m−1 for the sandy loam...

  19. Optimum Design of Braced Steel Space Frames including Soil-Structure Interaction via Teaching-Learning-Based Optimization and Harmony Search Algorithms

    OpenAIRE

    Ayse T. Daloglu; Musa Artar; Korhan Ozgan; Ali İ. Karakas

    2018-01-01

    Optimum design of braced steel space frames including soil-structure interaction is studied by using harmony search (HS) and teaching-learning-based optimization (TLBO) algorithms. A three-parameter elastic foundation model is used to incorporate the soil-structure interaction effect. A 10-storey braced steel space frame example taken from literature is investigated according to four different bracing types for the cases with/without soil-structure interaction. X, V, Z, and eccentric V-shaped...

  20. Differentiate responses of soil structure to natural vegetation and artificial plantation in landslide hazard region of the West Qinling Mountains, China

    Science.gov (United States)

    Wang, X.; Huang, Z.; Zhao, Y.; Hong, M.

    2017-12-01

    Natural vegetation and artificial plantation are the most important measures for ecological restoration in soil erosion and landslide hazard-prone regions of China. Previous studies have demonstrated that both measures can significantly change the soil structure and decrease soil and water erosion. Few reports have compared the effects of the two contrasting measures on mechanical and hydrological properties and further tested the differentiate responses of soil structure. In the study areas, two vegetation restoration measures-natural vegetation restoration (NVR) and artificial plantation restoration (APR) compared with control site, with similar topographical and geological backgrounds were selected to investigate the different effects on soil structure based on eight-year ecological restoration projects. The results showed that the surface vegetation played an important role in releasing soil erosion and enhance soil structure stability through change the soil aggregates (SA) and total soil porosity (TSP). The SArestoration and conservation in geological hazard-prone regions.

  1. Analytical study on model tests of soil-structure interaction

    International Nuclear Information System (INIS)

    Odajima, M.; Suzuki, S.; Akino, K.

    1987-01-01

    Since nuclear power plant (NPP) structures are stiff, heavy and partly-embedded, the behavior of those structures during an earthquake depends on the vibrational characteristics of not only the structure but also the soil. Accordingly, seismic response analyses considering the effects of soil-structure interaction (SSI) are extremely important for seismic design of NPP structures. Many studies have been conducted on analytical techniques concerning SSI and various analytical models and approaches have been proposed. Based on the studies, SSI analytical codes (computer programs) for NPP structures have been improved at JINS (Japan Institute of Nuclear Safety), one of the departments of NUPEC (Nuclear Power Engineering Test Center) in Japan. These codes are soil-spring lumped-mass code (SANLUM), finite element code (SANSSI), thin layered element code (SANSOL). In proceeding with the improvement of the analytical codes, in-situ large-scale forced vibration SSI tests were performed using models simulating light water reactor buildings, and simulation analyses were performed to verify the codes. This paper presents an analytical study to demonstrate the usefulness of the codes

  2. Endophytic fungi and soil microbial community characteristics over different years of phytoremediation in a copper tailings dam of Shanxi, China.

    Science.gov (United States)

    Tong, Jia; Miaowen, Cao; Juhui, Jing; Jinxian, Liu; Baofeng, Chai

    2017-01-01

    We conducted a survey of native grass species infected by endophytic fungi in a copper tailings dam over progressive years of phytoremediation. We investigated how endophytic fungi, soil microbial community structure and soil physiochemical properties and enzymatic activity varied in responses to heavy metal pollution over different stages of phytoremediation. endophyte infection frequency increased with years of phytoremediation. Rates of endophyte infection varied among different natural grass species in each sub-dam. Soil carbon content and soil enzymatic activity gradually increased through the years of phytoremediation. endophyte infection rates of Bothriochloa ischaemum and Festuca rubra were positively related to levels of cadmium (Cd) pollution levels, and fungal endophytes associated with Imperata cylindrical and Elymus dahuricus developed tolerance to lead (Pb). The structure and relative abundance of bacterial communities varied little over years of phytoremediation, but there was a pronounced variation in soil fungi types. Leotiomycetes were the dominant class of resident fungi during the initial phytoremediation period, but Pezizomycetes gradually became dominant as the phytoremediation period progressed. Fungal endophytes in native grasses as well as soil fungi and soil bacteria play different ecological roles during phytoremediation processes. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Influence of ground water on soil-structure interaction

    International Nuclear Information System (INIS)

    Costantino, C.J.; Graves, H.L.

    1987-01-01

    The basic problem consists of a liner flexible structure situated at or near the surface of a soil half-space. In keeping with typical small strain seismic analyses, the soil skeleton is represented as a linear medium in which all potential nonlinearities are at most lumped together into an equivalent hysteretic damping modulus. In addition, the ground water level is located at some depth relatively close to the structure, and in a position to impact on the seismic response of the facility. In order to estimate the response of this oil-water system, the two-phased medium formulation of Biot was used to treat the response of the solids and water as two separate linear media, coupled together through soil permeability and volume effects. (orig./HP)

  4. Soil macrofauna in a Cerrado/Caatinga ecotone under different crops in Southwestern Piauí State, Brazil

    Directory of Open Access Journals (Sweden)

    Djavan Pinheiro Santos

    2017-09-01

    Full Text Available ABSTRACT: The aim of this study was to characterize the soil macrofauna under different crop systems and compare them to the macrofauna under the native vegetation of a Cerrado/Caatinga ecotone in southwestern Piauí State, Brazil. The areas studied included areas under sweetsop cultivation (Annona squamosa L., andropogon grass with three years of use, andropogon grass with six years of use, pivot-irrigated corn, Napier grass, and native vegetation. In each area, soil layers of 0-0.1, 0.1-0.2, and 0.2-0.3m, including the surface litter, were evaluated following the Tropical Soil Biology and Fertility Program (TSBF recommendations. The soil macrofauna from the different land-use systems were identified to the family level, and the mean density of each taxon was calculated for each soil-management type and layer. The structure of the soil macrofauna was negatively altered under the different crops in comparison to the native Cerrado/Caatinga vegetation, with macrofaunal occurrence varying in the different soil layers. A correlation existed between the functional groups and the soil grain-size distribution and moisture. Napier grass cultivation favored greater soil macrofaunal abundance, with a predominance of families belonging to the orders Isoptera and Hymenoptera. Number of soil macrofaunal families under pivot-irrigated corn was more like the number observed with the native vegetation, and corn also had greater family diversity compared to the other crops studied. Therefore, pivot-irrigated corn can reduce the impact of anthropogenic land use on the diversity of soil macrofauna.

  5. Comparing of Normal Stress Distribution in Static and Dynamic Soil-Structure Interaction Analyses

    International Nuclear Information System (INIS)

    Kholdebarin, Alireza; Massumi, Ali; Davoodi, Mohammad; Tabatabaiefar, Hamid Reza

    2008-01-01

    It is important to consider the vertical component of earthquake loading and inertia force in soil-structure interaction analyses. In most circumstances, design engineers are primarily concerned about the analysis of behavior of foundations subjected to earthquake-induced forces transmitted from the bedrock. In this research, a single rigid foundation with designated geometrical parameters located on sandy-clay soil has been modeled in FLAC software with Finite Different Method and subjected to three different vertical components of earthquake records. In these cases, it is important to evaluate effect of footing on underlying soil and to consider normal stress in soil with and without footing. The distribution of normal stress under the footing in static and dynamic states has been studied and compared. This Comparison indicated that, increasing in normal stress under the footing caused by vertical component of ground excitations, has decreased dynamic vertical settlement in comparison with static state

  6. Effects of different soil management practices on soil properties and microbial diversity

    Science.gov (United States)

    Gajda, Anna M.; Czyż, Ewa A.; Dexter, Anthony R.; Furtak, Karolina M.; Grządziel, Jarosław; Stanek-Tarkowska, Jadwiga

    2018-01-01

    The effects of different tillage systems on the properties and microbial diversity of an agricultural soil was investigated. In doing so, soil physical, chemical and biological properties were analysed in 2013-2015, on a long-term field experiment on a loamy sand at the IUNG-PIB Experimental Station in Grabów, Poland. Winter wheat was grown under two tillage treatments: conventional tillage using a mouldboard plough and traditional soil tillage equipment, and reduced tillage based on soil crushing-loosening equipment and a rigid-tine cultivator. Chopped wheat straw was used as a mulch on both treatments. Reduced tillage resulted in increased water content throughout the whole soil profile, in comparison with conventional tillage. Under reduced tillage, the content of readily dispersible clay was also reduced, and, therefore, soil stability was increased in the toplayers, compared with conventional tillage. In addition, the beneficial effects of reduced tillage were reflected in higher soil microbial activity as measured with dehydrogenases and hydrolysis of fluorescein diacetate, compared with conventional tillage. Moreover, the polimerase chain reaction - denaturing gradient gel electrophoresis analysis showed that soil under reduced till-age had greater diversity of microbial communities, compared with conventionally-tilled soil. Finally, reduced tillage increased organic matter content, stability in water and microbial diversity in the top layer of the soil.

  7. Cryptogamic community structure as a bioindicator of soil condition along a pollution gradient.

    Science.gov (United States)

    Rola, Kaja; Osyczka, Piotr

    2014-09-01

    This study aims to determine changes in the structure of cryptogamic vegetation of poor psammophilous grassland along a pollution gradient near a zinc smelter to evaluate the potential of species assemblages as bioindicators of soil condition. Lichens and bryophytes were examined in study plots along six transects in four distance zones, and the physicochemical properties of corresponding soil samples were analysed. Four different responses of species to substrate contamination were identified, with a distinct group of species resistant to and favoured by metal contamination. Although species richness decreases as one approaches the smelter, the gradual replacement of certain sensitive species by resistant ones was observed along the pollution gradient. The results enabled us to develop a useful tool to diagnose strongly polluted sites. Two different cryptogamic assemblages of well-recognised key species characteristic for strongly polluted and lightly polluted sites were distinguished. We conclude that cryptogamic community structure clearly corresponds to the degree of soil contamination, thus demonstrating high bioindicative value. The study confirmed the high relevance of the community approach in metal pollution biomonitoring.

  8. The effect of tillage intensity on soil structure and winter wheat root/shoot growth

    DEFF Research Database (Denmark)

    Munkholm, Lars Juhl; Hansen, Elly Møller; Olesen, Jørgen E

    2008-01-01

    was followed during the growing seasons using spectral reflectance and mini-rhizotron measurements, respectively. A range of soil physical properties were measured. We found decreased early season shoot and root growth with decreasing tillage intensity. Differences diminished later in the growing season...... of this study was to investigate the effect of tillage intensity on crop growth dynamics and soil structure. A tillage experiment was established in autumn 2002 on two Danish sandy loams (Foulum and Flakkebjerg) in a cereal-based crop rotation. The tillage systems included in this study were direct drilling (D...... with decreasing tillage intensity for the first year winter wheat at Foulum. In general ploughing resulted in the highest grain yields. This study highlights the important interaction between soil structure and crop growth dynamics....

  9. Tillage-induced changes to soil structure and organic carbon fractions in New Zealand soils

    International Nuclear Information System (INIS)

    Shepherd, T. G.; Saggar, S.; Ross, C. W.; Dando, J. L.; Newman, R. H.

    2001-01-01

    The effects of increasing cropping and soil compaction on aggregate stability and dry-sieved aggregate-size distribution, and their relationship to total organic C (TOC) and the major functional groups of soil organic carbon, were investigated on 5 soils of contrasting mineralogy. All soils except the allophanic soil showed a significant decline in aggregate stability under medium- to long-term cropping. Mica-rich, fine-textured mineral and humic soils showed the greatest increase in the mean weight diameter (MWD) of dry aggregates, while the oxide-rich soils, and particularly the allophanic soils, showed only a slight increase in the MWD after long-term cropping. On conversion back to pasture, the aggregate stability of the mica-rich soils increased and the MWD of the aggregate-size distribution decreased, with the humic soil showing the greatest recovery. Aggregate stability and dry aggregate-size distribution patterns show that soil resistance to structural degradation and soil resilience increased from fine-textured to coarse-textured to humic mica-rich soils to oxide-rich soils to allophanic soils. Coarse- and fine-textured mica-rich and oxide-rich soils under pasture contained medium amounts of TOC, hot-water soluble carbohydrate (WSC), and acid hydrolysable carbohydrate (AHC), all of which declined significantly under cropping. The rate of decline varied with soil type in the initial years of cropping, but was similar under medium- and long-term cropping. TOC was high in the humic mica-rich and allophanic soils, and levels did not decline appreciably under medium- and long-term cropping. 13 C-nuclear magnetic resonance evidence also indicates that all major functional groups of soil organic carbon declined under cropping, with O-alkyl C and alkyl C showing the fastest and slowest rate of decline, respectively. On conversion back to pasture, both WSC and AHC returned to levels originally present under long-term pasture. TOC recovered to original pasture

  10. Coupling of impedance functions to nuclear reactor building for soil-structure interaction analysis

    International Nuclear Information System (INIS)

    Danisch, R.; Delinic, K.; Trbojevic, V.M.

    1991-01-01

    Finite element model of a nuclear reactor building is coupled to complex soil impedance functions and soil-structure-interaction analysis is carried out in frequency domain. In the second type of analysis applied in this paper, soil impedance functions are used to evaluate equivalent soil springs and dashpots of soil. These are coupled to the structure model in order to carry out the time marching analysis. Three types of soil profiles are considered: hard, medium and soft. Results of two analyzes are compared on the same structural model. Equivalent soil springs and dashpots are determined using new method based on the least square approximation. (author)

  11. Self-organizing biochemical cycle in dynamic feedback with soil structure

    Science.gov (United States)

    Vasilyeva, Nadezda; Vladimirov, Artem; Smirnov, Alexander; Matveev, Sergey; Tyrtyshnikov, Evgeniy; Yudina, Anna; Milanovskiy, Evgeniy; Shein, Evgeniy

    2016-04-01

    In the present study we perform bifurcation analysis of a physically-based mathematical model of self-organized structures in soil (Vasilyeva et al., 2015). The state variables in this model included microbial biomass, two organic matter types, oxygen, carbon dioxide, water content and capillary pore size. According to our previous experimental studies, organic matter affinity to water is an important property affecting soil structure. Therefore, organic matter wettability was taken as principle distinction between organic matter types in this model. It considers general known biological feedbacks with soil physical properties formulated as a system of parabolic type non-linear partial differential equations with elements of discrete modeling for water and pore formation. The model shows complex behavior, involving emergence of temporal and spatial irregular auto-oscillations from initially homogeneous distributions. The energy of external impact on a system was defined by a constant oxygen level on the boundary. Non-linear as opposed to linear oxygen diffusion gives possibility of modeling anaerobic micro-zones formation (organic matter conservation mechanism). For the current study we also introduced population competition of three different types of microorganisms according to their mobility/feeding (diffusive, moving and fungal growth). The strongly non-linear system was solved and parameterized by time-optimized algorithm combining explicit and implicit (matrix form of Thomas algorithm) methods considering the time for execution of the evaluated time-step according to accuracy control. The integral flux of the CO2 state variable was used as a macroscopic parameter to describe system as a whole and validation was carried out on temperature series of moisture dependence for soil heterotrophic respiration data. Thus, soil heterotrophic respiration can be naturally modeled as an integral result of complex dynamics on microscale, arising from biological processes

  12. [Effect of the soil contamination with a potato cyst-forming nematode on the community structure of soil-inhabiting nematodes].

    Science.gov (United States)

    Gruzdeva, L I; Suzhchuk, A A

    2008-01-01

    Nematode community structure of the potato fields with different infection levels of potato cyst-forming nematode (PCN) such as 10, 30 and 214 cysts per 100 g of soil has been investigated. The influence of specialized parasite on nematode fauna and dominance character of different ecological-trophic groups were described. Parasitic nematode genera in natural meadow biocenosis and agrocenoses without PCN are Paratylenchus, Tylenchorhynchus, and Helicotylenchus. It is established, that Paratylenchus nanus was the prevalent species among plant parasites at low infection level. Larvae of Globodera prevailed in the soil with middle and high infection levels and substituted individuals of other genera of parasitic nematodes. The fact of increase in number of hyphal-feeding nematode Aphelenchus avenae was revealed.

  13. Small scale variability of soil parameters in different land uses on the southern slopes of Mount Kilimanjaro

    Science.gov (United States)

    Bogner, Christina; Kühnel, Anna; Hepp, Johannes; Huwe, Bernd

    2016-04-01

    The Kilimanjaro region in Tanzania constitutes a particularity compared to other areas in the country. Because enough water is available the population grows rapidly and large areas are converted from natural ecosystems to agricultural areas. Therefore, the southern slopes of Mt. Kilimanjaro encompass a complex mosaic of different land uses like coffee plantations, maize, agroforestry or natural savannah. Coffee is an important cash crop in the region and is owned mostly by large companies. In contrast, the agroforestry is a traditional way of agriculture and has been sustained by the Chagga tribe for centuries. These so called homegardens are organised as multi-level systems and contain a mixture of different crops. Correlations in soil and vegetation data may serve as indicators for crop and management impacts associated to different types of land use. We hypothesize that Chagga homegardens, for example, show a more pronounced spatial autocorrelation compared to coffee plantations due to manifold above and belowground crop structures, whereas the degree of anisotropy is assumed to be higher in the coffee sites due to linear elements in management. Furthermore, we hypothesize that the overall diversity of soil parameters in homegardens on a larger scale is higher, as individual owners manage their field differently, whereas coffee plantation management often follows general rules. From these general hypotheses we derive two specific research questions: a) Are there characteristic differences in the spatial organisation of soil physical parameters of different land uses? b) Is there a recognizable relationship between vegetation structure and soil physical parameters of topsoils? We measured soil physical parameters in the topsoil (bulk density, stone content, texture, soil moisture and penetration resistance). Additionally, we took spectra of soil samples with a portable VIS-NIR spectrometer to determine C and N and measured leaf area index and troughfall as an

  14. Role of model structure on the response of soil biogeochemistry to hydro-climatic fluctuations

    Science.gov (United States)

    Manzoni, S.; Porporato, A.

    2005-05-01

    Soil carbon and nutrient cycles are strongly affected by hydro-climatic variability, which interacts with the internal ecosystem structure. Here we test the implications of biogeochemical model structure on such dynamics by extending an existing model by the authors and coworkers. When forced by hydro-climatic fluctuations, the different model structures induce specific preferential nutrient paths among the soil pools, which in turn affect nutrient distribution and availability to microbes and plants. In particular, if it is assumed that microbes can directly assimilate organic nitrogen, plants tend to be inferior competitors for nutrients even in well-watered conditions, while if a certain amount of organic nitrogen is assumed to be mineralized without being first incorporated into microbial cells, vegetation can be advantaged over a wide range of soil moisture values. We also investigate the intensification of competition for nutrients (e.g., nitrogen) between plant and soil microbial communities under extreme hydrologic conditions, such as droughts and intense storms. Frequent rainfall events may determine ideal soil moisture conditions for plant uptake, enhancing nitrogen leaching while lowering oxygen concentration and inhibiting microbial activity. During droughts, the soil water potential often drops to the point of hampering the plant nutrient uptake while still remaining high enough for microbial decomposition and nitrogen immobilization. The interplay of microbe and vegetation water stress is investigated in depth as it controls the ability of one community (e.g., plants or soil microbes) to establish competitive advantage on the other. The long-term effects of these dynamics of competition and nutrient allocation are explored under steady-state and stochastic soil moisture conditions to analyze the feedbacks between soil organic matter and vegetation dynamics.

  15. Soil-structure interaction effects on the reliability evaluation of reactor containments

    International Nuclear Information System (INIS)

    Pires, J.; Hwang, H.; Reich, M.

    1986-01-01

    The probability-based method for the seismic reliability assessment of nuclear structures, which has been developed at Brookhaven National Laboratory (BNL), is extended to include the effects of soil-structure interaction. A reinforced concrete containment building is analyzed in order to examine soil-structure interaction effects on: (1) structural fragilities; (2) floor response spectra statistics; and (3) correlation coefficients for total acceleration responses at specified structural locations

  16. Key Process Uncertainties in Soil Carbon Dynamics: Comparing Multiple Model Structures and Observational Meta-analysis

    Science.gov (United States)

    Sulman, B. N.; Moore, J.; Averill, C.; Abramoff, R. Z.; Bradford, M.; Classen, A. T.; Hartman, M. D.; Kivlin, S. N.; Luo, Y.; Mayes, M. A.; Morrison, E. W.; Riley, W. J.; Salazar, A.; Schimel, J.; Sridhar, B.; Tang, J.; Wang, G.; Wieder, W. R.

    2016-12-01

    Soil carbon (C) dynamics are crucial to understanding and predicting C cycle responses to global change and soil C modeling is a key tool for understanding these dynamics. While first order model structures have historically dominated this area, a recent proliferation of alternative model structures representing different assumptions about microbial activity and mineral protection is providing new opportunities to explore process uncertainties related to soil C dynamics. We conducted idealized simulations of soil C responses to warming and litter addition using models from five research groups that incorporated different sets of assumptions about processes governing soil C decomposition and stabilization. We conducted a meta-analysis of published warming and C addition experiments for comparison with simulations. Assumptions related to mineral protection and microbial dynamics drove strong differences among models. In response to C additions, some models predicted long-term C accumulation while others predicted transient increases that were counteracted by accelerating decomposition. In experimental manipulations, doubling litter addition did not change soil C stocks in studies spanning as long as two decades. This result agreed with simulations from models with strong microbial growth responses and limited mineral sorption capacity. In observations, warming initially drove soil C loss via increased CO2 production, but in some studies soil C rebounded and increased over decadal time scales. In contrast, all models predicted sustained C losses under warming. The disagreement with experimental results could be explained by physiological or community-level acclimation, or by warming-related changes in plant growth. In addition to the role of microbial activity, assumptions related to mineral sorption and protected C played a key role in driving long-term model responses. In general, simulations were similar in their initial responses to perturbations but diverged over

  17. An innovative bio-engineering retaining structure for supporting unstable soil

    Directory of Open Access Journals (Sweden)

    Gianluca Bella

    2017-04-01

    Full Text Available The paper presents a new prefabricated bio-engineering structure for the support of unstable soil. This prefabricated structure is made of a steel frame which is completely filled with soil and a face made of tree trunks among which scions or autochthonous bushes are planted. Due to the difficulties in interpreting the complex interaction between soil and structure during the installation and lifetime, an in situ test was carried out in order to evaluate the state of stress in the steel frame and to understand the global behavior of the structure under service loads. On the basis of the obtained results, a procedure for checking the structure safety was proposed and discussed. An easy design method was developed during the research. Moreover, the use of this type of prefabricated structure shows several advantages, such as good performances in terms of stabilizing effects, and easy assembly and transport.

  18. Evaluating the effect of tillage on soil structural properties using the pedostructure concept

    Science.gov (United States)

    The pedostructure (PS) concept is a physically-based method of soil characterization that defines a soil based on its structure and the relationship between structure and soil water behavior. There are fifteen unique pedostructure parameters that define the macropore and micropore soil water behavio...

  19. Assessing soil quality indicator under different land use and soil erosion using multivariate statistical techniques.

    Science.gov (United States)

    Nosrati, Kazem

    2013-04-01

    Soil degradation associated with soil erosion and land use is a critical problem in Iran and there is little or insufficient scientific information in assessing soil quality indicator. In this study, factor analysis (FA) and discriminant analysis (DA) were used to identify the most sensitive indicators of soil quality for evaluating land use and soil erosion within the Hiv catchment in Iran and subsequently compare soil quality assessment using expert opinion based on soil surface factors (SSF) form of Bureau of Land Management (BLM) method. Therefore, 19 soil physical, chemical, and biochemical properties were measured from 56 different sampling sites covering three land use/soil erosion categories (rangeland/surface erosion, orchard/surface erosion, and rangeland/stream bank erosion). FA identified four factors that explained for 82 % of the variation in soil properties. Three factors showed significant differences among the three land use/soil erosion categories. The results indicated that based upon backward-mode DA, dehydrogenase, silt, and manganese allowed more than 80 % of the samples to be correctly assigned to their land use and erosional status. Canonical scores of discriminant functions were significantly correlated to the six soil surface indices derived of BLM method. Stepwise linear regression revealed that soil surface indices: soil movement, surface litter, pedestalling, and sum of SSF were also positively related to the dehydrogenase and silt. This suggests that dehydrogenase and silt are most sensitive to land use and soil erosion.

  20. Effects of heavy metals and soil physicochemical properties on wetland soil microbial biomass and bacterial community structure.

    Science.gov (United States)

    Zhang, Chang; Nie, Shuang; Liang, Jie; Zeng, Guangming; Wu, Haipeng; Hua, Shanshan; Liu, Jiayu; Yuan, Yujie; Xiao, Haibing; Deng, Linjing; Xiang, Hongyu

    2016-07-01

    Heavy metals (HMs) contamination is a serious environmental issue in wetland soil. Understanding the micro ecological characteristic of HMs polluted wetland soil has become a public concern. The goal of this study was to identify the effects of HMs and soil physicochemical properties on soil microorganisms and prioritize some parameters that contributed significantly to soil microbial biomass (SMB) and bacterial community structure. Bacterial community structure was analyzed by polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE). Relationships between soil environment and microorganisms were analyzed by correlation analysis and redundancy analysis (RDA). The result indicated relationship between SMB and HMs was weaker than SMB and physicochemical properties. The RDA showed all eight parameters explained 74.9% of the variation in the bacterial DGGE profiles. 43.4% (contain the variation shared by Cr, Cd, Pb and Cu) of the variation for bacteria was explained by the four kinds of HMs, demonstrating HMs contamination had a significant influence on the changes of bacterial community structure. Cr solely explained 19.4% (pstructure, and Cd explained 17.5% (pstructure changes. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. General Relationships between Abiotic Soil Properties and Soil Biota across Spatial Scales and Different Land-Use Types

    Science.gov (United States)

    Birkhofer, Klaus; Schöning, Ingo; Alt, Fabian; Herold, Nadine; Klarner, Bernhard; Maraun, Mark; Marhan, Sven; Oelmann, Yvonne; Wubet, Tesfaye; Yurkov, Andrey; Begerow, Dominik; Berner, Doreen; Buscot, François; Daniel, Rolf; Diekötter, Tim; Ehnes, Roswitha B.; Erdmann, Georgia; Fischer, Christiane; Foesel, Bärbel; Groh, Janine; Gutknecht, Jessica; Kandeler, Ellen; Lang, Christa; Lohaus, Gertrud; Meyer, Annabel; Nacke, Heiko; Näther, Astrid; Overmann, Jörg; Polle, Andrea; Pollierer, Melanie M.; Scheu, Stefan; Schloter, Michael; Schulze, Ernst-Detlef; Schulze, Waltraud; Weinert, Jan; Weisser, Wolfgang W.; Wolters, Volkmar; Schrumpf, Marion

    2012-01-01

    Very few principles have been unraveled that explain the relationship between soil properties and soil biota across large spatial scales and different land-use types. Here, we seek these general relationships using data from 52 differently managed grassland and forest soils in three study regions spanning a latitudinal gradient in Germany. We hypothesize that, after extraction of variation that is explained by location and land-use type, soil properties still explain significant proportions of variation in the abundance and diversity of soil biota. If the relationships between predictors and soil organisms were analyzed individually for each predictor group, soil properties explained the highest amount of variation in soil biota abundance and diversity, followed by land-use type and sampling location. After extraction of variation that originated from location or land-use, abiotic soil properties explained significant amounts of variation in fungal, meso- and macrofauna, but not in yeast or bacterial biomass or diversity. Nitrate or nitrogen concentration and fungal biomass were positively related, but nitrate concentration was negatively related to the abundances of Collembola and mites and to the myriapod species richness across a range of forest and grassland soils. The species richness of earthworms was positively correlated with clay content of soils independent of sample location and land-use type. Our study indicates that after accounting for heterogeneity resulting from large scale differences among sampling locations and land-use types, soil properties still explain significant proportions of variation in fungal and soil fauna abundance or diversity. However, soil biota was also related to processes that act at larger spatial scales and bacteria or soil yeasts only showed weak relationships to soil properties. We therefore argue that more general relationships between soil properties and soil biota can only be derived from future studies that consider

  2. Calcium Stabilized And Geogrid Reinforced Soil Structures In Seismic Areas

    International Nuclear Information System (INIS)

    Rimoldi, Pietro; Intra, Edoardo

    2008-01-01

    In many areas of Italy, and particularly in high seismic areas, there is no or very little availability of granular soils: hence embankments and retaining structures are often built using the locally available fine soil. For improving the geotechnical characteristics of such soils and/or for building steep faced structures, there are three possible techniques: calcium stabilization, geogrid reinforcement, and the combination of both ones, that is calcium stabilized and reinforced soil. The present paper aims to evaluate these three techniques in terms of performance, design and construction, by carrying out FEM modeling and stability analyses of the same reference embankments, made up of soil improved with each one of the three techniques, both in static and dynamic conditions. Finally two case histories are illustrated, showing the practical application of the above outlined techniques

  3. Soil structure restoration by wet/dry cycles assessed by computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Pires, L.F. [Univ. of Sao Paulo, Center for Nuclear Energy in Agriculture, Piracicaba, Sao Paulo (Brazil)

    2005-07-01

    Some studies have shown that soil structures can be restored through the sequence of wetting and drying cycles. These cycles causes changes in the soil pore system, which is very important to agriculture, because directly affect plant growth by root penetration, retention and movement of water and gases. The aim of this study was to follow by gamma-ray computed tomography (CT) the effect of soil wetting/drying process on the soil structure repairing of samples collected in cylinders. A first-generation tomograph with an {sup 241}Am source and a 7.62 x 7.62 cm NaI(Tl) scintillation crystal detector coupled to a photomultiplier tube was employed. Image analysis and tomographic unit profiles show that CT can provide an insight to sample structure restoration, which helps to have a better comprehension of soil physical hydraulic phenomena. (author)

  4. Soil structure restoration by wet/dry cycles assessed by computed tomography

    International Nuclear Information System (INIS)

    Pires, L.F.

    2005-01-01

    Some studies have shown that soil structures can be restored through the sequence of wetting and drying cycles. These cycles causes changes in the soil pore system, which is very important to agriculture, because directly affect plant growth by root penetration, retention and movement of water and gases. The aim of this study was to follow by gamma-ray computed tomography (CT) the effect of soil wetting/drying process on the soil structure repairing of samples collected in cylinders. A first-generation tomograph with an 241 Am source and a 7.62 x 7.62 cm NaI(Tl) scintillation crystal detector coupled to a photomultiplier tube was employed. Image analysis and tomographic unit profiles show that CT can provide an insight to sample structure restoration, which helps to have a better comprehension of soil physical hydraulic phenomena. (author)

  5. Jatropha curcas L. Root Structure and Growth in Diverse Soils

    Science.gov (United States)

    Valdés-Rodríguez, Ofelia Andrea; Sánchez-Sánchez, Odilón; Pérez-Vázquez, Arturo; Caplan, Joshua S.; Danjon, Frédéric

    2013-01-01

    Unlike most biofuel species, Jatropha curcas has promise for use in marginal lands, but it may serve an additional role by stabilizing soils. We evaluated the growth and structural responsiveness of young J. curcas plants to diverse soil conditions. Soils included a sand, a sandy-loam, and a clay-loam from eastern Mexico. Growth and structural parameters were analyzed for shoots and roots, although the focus was the plasticity of the primary root system architecture (the taproot and four lateral roots). The sandy soil reduced the growth of both shoot and root systems significantly more than sandy-loam or clay-loam soils; there was particularly high plasticity in root and shoot thickness, as well as shoot length. However, the architecture of the primary root system did not vary with soil type; the departure of the primary root system from an index of perfect symmetry was 14 ± 5% (mean ± standard deviation). Although J. curcas developed more extensively in the sandy-loam and clay-loam soils than in sandy soil, it maintained a consistent root to shoot ratio and root system architecture across all types of soil. This strong genetic determination would make the species useful for soil stabilization purposes, even while being cultivated primarily for seed oil. PMID:23844412

  6. Jatropha curcas L. root structure and growth in diverse soils.

    Science.gov (United States)

    Valdés-Rodríguez, Ofelia Andrea; Sánchez-Sánchez, Odilón; Pérez-Vázquez, Arturo; Caplan, Joshua S; Danjon, Frédéric

    2013-01-01

    Unlike most biofuel species, Jatropha curcas has promise for use in marginal lands, but it may serve an additional role by stabilizing soils. We evaluated the growth and structural responsiveness of young J. curcas plants to diverse soil conditions. Soils included a sand, a sandy-loam, and a clay-loam from eastern Mexico. Growth and structural parameters were analyzed for shoots and roots, although the focus was the plasticity of the primary root system architecture (the taproot and four lateral roots). The sandy soil reduced the growth of both shoot and root systems significantly more than sandy-loam or clay-loam soils; there was particularly high plasticity in root and shoot thickness, as well as shoot length. However, the architecture of the primary root system did not vary with soil type; the departure of the primary root system from an index of perfect symmetry was 14 ± 5% (mean ± standard deviation). Although J. curcas developed more extensively in the sandy-loam and clay-loam soils than in sandy soil, it maintained a consistent root to shoot ratio and root system architecture across all types of soil. This strong genetic determination would make the species useful for soil stabilization purposes, even while being cultivated primarily for seed oil.

  7. Jatropha curcas L. Root Structure and Growth in Diverse Soils

    Directory of Open Access Journals (Sweden)

    Ofelia Andrea Valdés-Rodríguez

    2013-01-01

    Full Text Available Unlike most biofuel species, Jatropha curcas has promise for use in marginal lands, but it may serve an additional role by stabilizing soils. We evaluated the growth and structural responsiveness of young J. curcas plants to diverse soil conditions. Soils included a sand, a sandy-loam, and a clay-loam from eastern Mexico. Growth and structural parameters were analyzed for shoots and roots, although the focus was the plasticity of the primary root system architecture (the taproot and four lateral roots. The sandy soil reduced the growth of both shoot and root systems significantly more than sandy-loam or clay-loam soils; there was particularly high plasticity in root and shoot thickness, as well as shoot length. However, the architecture of the primary root system did not vary with soil type; the departure of the primary root system from an index of perfect symmetry was 14±5% (mean ± standard deviation. Although J. curcas developed more extensively in the sandy-loam and clay-loam soils than in sandy soil, it maintained a consistent root to shoot ratio and root system architecture across all types of soil. This strong genetic determination would make the species useful for soil stabilization purposes, even while being cultivated primarily for seed oil.

  8. Terrestrial exposure of oilfield flowline additives diminish soil structural stability and remediative microbial function

    International Nuclear Information System (INIS)

    George, S.J.; Sherbone, J.; Hinz, C.; Tibbett, M.

    2011-01-01

    Onshore oil production pipelines are major installations in the petroleum industry, stretching many thousands of kilometres worldwide which also contain flowline additives. The current study focuses on the effect of the flowline additives on soil physico-chemical and biological properties and quantified the impact using resilience and resistance indices. Our findings are the first to highlight deleterious effect of flowline additives by altering some fundamental soil properties, including a complete loss of structural integrity of the impacted soil and a reduced capacity to degrade hydrocarbons mainly due to: (i) phosphonate salts (in scale inhibitor) prevented accumulation of scale in pipelines but also disrupted soil physical structure; (ii) glutaraldehyde (in biocides) which repressed microbial activity in the pipeline and reduced hydrocarbon degradation in soil upon environmental exposure; (iii) the combinatory effects of these two chemicals synergistically caused severe soil structural collapse and disruption of microbial degradation of petroleum hydrocarbons. - Highlights: → Effects of flowline additives on soil structure and microbial function highlighted. → Phosphonate salts (in scale inhibitor) were found to disrupt soil physical structure. → Glutaraldehyde (in biocides) caused significant reduction of hydrocarbon degradation in soil. → Flowline additive chemicals synergistically affects soil structure and remediative microbial function. - Scale inhibitor and biocide oilfield flowline additives interactively affect soil physical and microbial properties

  9. Soil microbial community responses to antibiotic-contaminated manure under different soil moisture regimes.

    Science.gov (United States)

    Reichel, Rüdiger; Radl, Viviane; Rosendahl, Ingrid; Albert, Andreas; Amelung, Wulf; Schloter, Michael; Thiele-Bruhn, Sören

    2014-01-01

    Sulfadiazine (SDZ) is an antibiotic frequently administered to livestock, and it alters microbial communities when entering soils with animal manure, but understanding the interactions of these effects to the prevailing climatic regime has eluded researchers. A climatic factor that strongly controls microbial activity is soil moisture. Here, we hypothesized that the effects of SDZ on soil microbial communities will be modulated depending on the soil moisture conditions. To test this hypothesis, we performed a 49-day fully controlled climate chamber pot experiments with soil grown with Dactylis glomerata (L.). Manure-amended pots without or with SDZ contamination were incubated under a dynamic moisture regime (DMR) with repeated drying and rewetting changes of >20 % maximum water holding capacity (WHCmax) in comparison to a control moisture regime (CMR) at an average soil moisture of 38 % WHCmax. We then monitored changes in SDZ concentration as well as in the phenotypic phospholipid fatty acid and genotypic 16S rRNA gene fragment patterns of the microbial community after 7, 20, 27, 34, and 49 days of incubation. The results showed that strongly changing water supply made SDZ accessible to mild extraction in the short term. As a result, and despite rather small SDZ effects on community structures, the PLFA-derived microbial biomass was suppressed in the SDZ-contaminated DMR soils relative to the CMR ones, indicating that dynamic moisture changes accelerate the susceptibility of the soil microbial community to antibiotics.

  10. Effects of different fertilizers on the abundance and community structure of ammonia oxidizers in a yellow clay soil.

    Science.gov (United States)

    Yao, Huaiying; Huang, Sha; Qiu, Qiongfen; Li, Yaying; Wu, Lianghuan; Mi, Wenhai; Dai, Feng

    2016-08-01

    Yellow clay paddy soil (Oxisols) is a typical soil with low productivity in southern China. Nitrification inhibitors and slow release fertilizers have been used to improve nitrogen fertilizer utilization and reduce environmental impaction of the paddy soil. However, their effects on ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) in paddy soil have rarely been investigated. In the present work, we compared the influences of several slow release fertilizers and nitrification inhibitors on the community structure and activities of the ammonia oxidizers in yellow clay soil. The abundances and community compositions of AOA and AOB were determined with qPCR, terminal restriction fragment length polymorphism (T-RFLP), and clone library approaches. Our results indicated that the potential nitrification rate (PNR) of the soil was significantly related to the abundances of both AOA and AOB. Nitrogen fertilizer application stimulated the growth of AOA and AOB, and the combinations of nitrapyrin with urea (NPU) and urea-formaldehyde (UF) inhibited the growth of AOA and AOB, respectively. Compared with other treatments, the applications of NPU and UF also led to significant shifts in the community compositions of AOA and AOB, respectively. NPU showed an inhibitory effect on AOA T-RF 166 bp that belonged to Nitrosotalea. UF had a negative effect on AOB T-RF 62 bp that was assigned to Nitrosospira. These results suggested that NPU inhibited PNR and increased nitrogen use efficiency (NUE) by inhibiting the growth of AOA and altering AOA community. UF showed no effect on NUE but decreased AOB abundance and shifted AOB community.

  11. Engineering characterization of ground motion. Task II: Soil structure interaction effects on structural response

    Energy Technology Data Exchange (ETDEWEB)

    Luco, J E; Wong, H L [Structural and Earthquake Engineering Consultants, Inc., Sierra Madre, CA (United States); Chang, C -Y; Power, M S; Idriss, I M [Woodward-Clyde Consultants, Walnut Creek, CA (United States)

    1986-08-01

    This report presents the results of part of a two-task study on the engineering characterization of earthquake ground motion for nuclear power plant design. The overall objective of this research program sponsored by the U.S. Nuclear Regulatory Commission (USNRC) is to develop recommendations for methods for selecting design response spectra or acceleration time histories to be used to characterize motion at the foundation level of nuclear power plants. Task I of the study, which is presented in Vol. 1 of NUREG/CR-3805, developed a basis for selecting design response spectra taking into account the characteristics of free-field ground motion found to be significant in causing structural damage. Task II incorporates additional considerations of effects of spatial variations of ground motions and soil-structure interaction on foundation motions and structural response. The results of Task II are presented in Vols. 2 through of NUREG/CR-3805 as follows: Vol. 2 effects of ground motion characteristics on structural response considering localized structural nonlinearities and soil-structure interaction effects; Vol. 3 observational data on spatial variations of earthquake ground motions; Vol. 4 soil-structure interaction effects on structural response; and Vol. 5, summary based on Tasks I and II studies. This report presents the results of the Vol. 4 studies.

  12. EFFECT OF DIFFERENT LEVELS AGROECOLOGICAL LOADS ON BIOCHEMICAL CHARACTERISTICS OF SOIL

    OpenAIRE

    A. V. Shchur; D. V. Vinogradov; V. P. Valckho

    2016-01-01

    Aim. To study the effect of different levels of agri-environmental loads on the enzymatic activity of the soil.Methods. Isolation of soil fauna was conducted by thermogradient. Ecological characteristics of soil biota community was determined by ecological indices. The enzymatic activity of soil under different crops and at different levels of agri-environmental loads in our experiments was determined by methods proven in the laboratory soil enzymology Institute of Experimental Botany name V....

  13. Urease activity in different soils of Egypt.

    Science.gov (United States)

    el-Shinnawi, M M

    1978-01-01

    Samples from two depths (0--15 and 15--30 cm) of five Egyptian soils: sandy, calcareous, fertile alluvial, saline alluvial, and alkali alluvial were tested for urease activity. Samples were treated with farmyard manure at rates of 0 and 0.5% C, and moisture at levels of 50, 65, and 80% of the water holding capacity. The studied Egyptian soils showed different activities of urease. Decreases in the values were shown by depth of sampling and varied in their intensities according to soil type, except for saline soil which revealed an opposite trend by the higher activity of its sub-surface layer. Order of activity was the following: fertile, saline, alkali, calcareous, and sandy soil. Farmyard manure slightly increased the activity of the enzyme. Incubation of moistened samples revealed that the optimum moisture content was 50% of W.H.C. for the tested soils, except for saline which showed best results at 65% of W.H.C.

  14. Using dye tracer for visualizing roots impact on soil structure and soil porous system

    Czech Academy of Sciences Publication Activity Database

    Kodešová, R.; Němeček, K.; Žigová, Anna; Nikodem, A.; Fér, M.

    2015-01-01

    Roč. 70, č. 11 (2015), s. 1439-1443 ISSN 0006-3088 R&D Projects: GA ČR GA526/08/0434 Institutional support: RVO:67985831 Keywords : field sections * macro-scale * micro-scale, * micromorphological images * plant * ponding dye infiltration * roots * soil structure Subject RIV: DF - Soil Science Impact factor: 0.719, year: 2015

  15. The parameters controlling the strength of soil-steel structures

    International Nuclear Information System (INIS)

    Barkhordari, M. A.; Abdel-Sayed, G.

    2001-01-01

    The present paper examines the ultimate load carrying capacity of soil-steel structures taking into consideration the sequence of the developments of plastic hinges, their location, and their sustained plastic moment. Non-linear analysis has been conducted using a micro-computer program in which a structural model is applied with the soil replaced by normal and tangential springs acting at the nodal points of a polygon representing the conduit wall. A comparative study has been conducted for the parameters which affect the load carrying capacity of soil-steel structure, leading to the following conclusions: (1) the load carrying capacity of the composite structure is significantly affected by the shear stiffness (or friction) of the surrounding soil; (2) the conduit span may be used when calculating the buckling load rather than the local radius of the conduit wall; (3) circular arches with sector angle of less than 180 d eg have higher load carrying capacity than equivalent re-entrant arches, i.e. arches with sector angle of more than 180 d eg; (4) the buckling load of the conduit is slightly affected by the rigidity of the lower zone of the conduit wall; (5) eccentric application of the load has practically little effect on its load carrying capacity

  16. Influence of ground water on soil-structure interaction

    International Nuclear Information System (INIS)

    Costantino, C.J.; Lung, R.H.; Graves, H.L.

    1987-01-01

    The study of structural response to seismic inputs has been extensively studied and, particularly with the advent of the growth of digital computer capability, has lead to the development of numerical methods of analysis which are used as standard tools for the design of structures. One aspect of the soil-structure interaction (SSI) process which has not been developed to the same degree of sophistication is the impact of ground water (or pure water) on the response of the soil-structure system. There are very good reasons for his state of affairs, however, not the least of which is the difficulty of incorporating the true constitutive behavior of saturated soils into the analysis. At the large strain end of the spectrum, the engineer is concerned with the potential development of failure conditions under the structure, and is typically interested in the onset of liquefaction conditions. The current state of the art in this area is to a great extent based on empirical methods of analysis which were developed from investigations of limited failure data from specific sites around the world. Since it is known that analytic solutions are available for only the simplest of configurations, a numerical finite element solution process was developed. Again, in keeping with typical SSI analyses, in order to make the finite element approach yield resonable results, a comparable transmitting boundary formulation was included in the development. The purpose of the transmitting boundary is, of course, to allow for the treatment of extended soil/water half-space problems. For the calculations presented herein, a simple one dimensional transmitting boundary model was developed and utilized

  17. Comparison of Chemical Extraction Methods for Determination of Soil Potassium in Different Soil Types

    Science.gov (United States)

    Zebec, V.; Rastija, D.; Lončarić, Z.; Bensa, A.; Popović, B.; Ivezić, V.

    2017-12-01

    Determining potassium supply of soil plays an important role in intensive crop production, since it is the basis for balancing nutrients and issuing fertilizer recommendations for achieving high and stable yields within economic feasibility. The aim of this study was to compare the different extraction methods of soil potassium from arable horizon of different types of soils with ammonium lactate method (KAL), which is frequently used as analytical method for determining the accessibility of nutrients and it is a common method used for issuing fertilizer recommendations in many Europe countries. In addition to the ammonium lactate method (KAL, pH 3.75), potassium was extracted with ammonium acetate (KAA, pH 7), ammonium acetate ethylenediaminetetraacetic acid (KAAEDTA, pH 4.6), Bray (KBRAY, pH 2.6) and with barium chloride (K_{BaCl_2 }, pH 8.1). The analyzed soils were extremely heterogeneous with a wide range of determined values. Soil pH reaction ( {pH_{H_2 O} } ) ranged from 4.77 to 8.75, organic matter content ranged from 1.87 to 4.94% and clay content from 8.03 to 37.07%. In relation to KAL method as the standard method, K_{BaCl_2 } method extracts 12.9% more on average of soil potassium, while in relation to standard method, on average KAA extracts 5.3%, KAAEDTA 10.3%, and KBRAY 27.5% less of potassium. Comparison of analyzed extraction methods of potassium from the soil is of high precision, and most reliable comparison was KAL method with KAAEDTA, followed by a: KAA, K_{BaCl_2 } and KBRAY method. Extremely significant statistical correlation between different extractive methods for determining potassium in the soil indicates that any of the methods can be used to accurately predict the concentration of potassium in the soil, and that carried out research can be used to create prediction model for concentration of potassium based on different methods of extraction.

  18. Assessing different agricultural managements with the use of soil quality indices in a Mediteranean calcareous soil

    Science.gov (United States)

    Morugán-Coronado, Alicia; García-Orenes, Fuensanta; Mataix-Solera, Jorge; Arcenegui, Vicky; Cerdà, Artemi

    2013-04-01

    Soil erosion is a major problem in the Mediterranean region due to the arid conditions and torrential rainfalls, which contribute to the degradation of agricultural land. New strategies must be developed to reduce soil losses and recover or maintain soil functionality in order to achieve a sustainable agriculture. An experiment was designed to evaluate the effect of different agricultural management on soil properties and soil quality. Ten different treatments (contact herbicide, systemic herbicide, ploughing, Oat mulch non-plough, Oats mulch plough, leguminous plant, straw rice mulch, chipped pruned branches, residual-herbicide and agro geo-textile, and three control plots including no tillage or control and long agricultural abandonment (shrub on marls and shrub on limestone) were established in 'El Teularet experimental station' located in the Sierra de Enguera (Valencia, Spain). The soil is a Typic Xerorthent developed over Cretaceous marls in an old agricultural terrace. The agricultural management can modify the soil equilibrium and affect its quality. In this work two soil quality indices (models) developed by Zornoza et al. (2007) are used to evaluate the effects of the different agricultural management along 4 years. The models were developed studying different soil properties in undisturbed forest soils in SE Spain, and the relationships between soil parameters were established using multiple linear regressions. Model 1, that explained 92% of the variance in soil organic carbon (SOC) showed that the SOC can be calculated by the linear combination of 6 physical, chemical and biochemical properties (acid phosphatase, water holding capacity (WHC), electrical conductivity (EC), available phosphorus (P), cation exchange capacity (CEC) and aggregate stability (AS). Model 2 explains 89% of the SOC variance, which can be calculated by means of 7 chemical and biochemical properties (urease, phosphatase, and ß-glucosidase activities, pH, EC, P and CEC). We use the

  19. Soil-fluid-structure interaction applied to the Oued Taht dam (taking into account the membrane effect.

    Directory of Open Access Journals (Sweden)

    Nasreddine Krenich

    2018-01-01

    Full Text Available The objective of this work is to analyze the dynamic behavior (modal behavior of the "Oued Taht" arch dam located at MASCARA, taking into consideration the effect of soil-fluid-structure interaction. The finite element code "Ansys" was chosen for the dynamic modeling of the dam that is the subject of this study. Three hypotheses were used for soil-structure interaction modeling; model with embedded base which corresponds to the case where the phenomenon of interactions soil-structure is neglected, model with ground of foundation without mass which consists in taking into account the kinematic component of interaction soil structure and neglecting the inertial component and the model with foundation soil with mass where the two components of soil-structure interaction are taken into account. For the fluid, the model of added masses (equivalent to the westergaard approach using the SURF element available in the Ansys code library was used. A comparison between the different models of the "Oued Taht" dam was made; it has been found that the taking into account of the soil-fluid-structure interaction phenomenon modifies the period of the system and that the modeling of the dam with and without fluid gives a very important difference of the periods. The results obtained were compared with those of the "Brezina" dam, which is a gravity dam located in BAYADH. The work has shown that the periods of the "Oued Taht" dam with soil-fluid-structure interaction modeling are very out of phase with the periods without fluid modeling (taking into account only the soilstructure interaction phenomenon. which is not the case for the Brezina dam where the periods for the two models are getting closer. The periods between the two models mentioned before are close to the dam of Brézina because the latter is a dam which participates much more by its own weight than by its vault (thickness of the vault varies between 36.3 m at the base and 5m in crest which is the

  20. Soil structure interaction analysis for the Hanford Site 241-SY-101 double-shell waste storage tanks

    International Nuclear Information System (INIS)

    Giller, R.A.; Weiner, E.O.

    1991-09-01

    The 241-SY-101 tank is a double-shell waste storage tank buried in the 241-SY tank farm in the 200 West Area of the Hanford Site. This analysis addresses the effects of seismic soil-structure interaction on the tank structure and includes a parametric soil-structure interaction study addressing three configurations: two-dimensional soil structure, a two-dimensional structure-soil-structure, and a three-dimensional soil-structure interaction. This study was designed to determine an optimal method for addressing seismic-soil effects on underground storage tanks. The computer programs calculate seismic-soil pressures on the double-shell tank walls and and seismic acceleration response spectra in the tank. The results of this soil-structure interaction parametric study as produced by the computer programs are given in terms of seismic soil pressures and response spectra. The conclusions of this soil-structure interaction evaluation are that dynamically calculated soil pressures in the 241-SY-101 tank are significantly reduce from those using standard hand calculation methods and that seismic evaluation of underground double-shell waste storage tanks must consider soil-structure interaction effects in order to predict conservative structural response. Appendixes supporting this study are available in Volume 2 of this report

  1. Embedment Effect test on soil-structure interaction

    International Nuclear Information System (INIS)

    Nasuda, Toshiaki; Akino, Kinji; Izumi, Masanori.

    1991-01-01

    A project consisting of laboratory test and field test has been conducted to clarify the embedment effect on soil-structure interaction. The objective of this project is to obtain the data for improving and preparing seismic analysis codes regarding the behavior of embedded reactor buildings during earthquakes. This project was planned to study the effect of soil-structure interaction using small size soil-structure models as well as the large scale models. The project was started in April, 1986, and is scheduled to end in March, 1994. The laboratory test models and field test models, and the measurement with accelerometers and others are described. As the interim results, the natural frequency and damping factor increased, and the amplitude decreased by the embedment of the test models. Some earthquakes were recorded in a soft rock site. The epicenters of the earthquakes occurred in 1989 are shown. The field tests were carried out in three sites. Two sites were used for the dynamic test with four test models having 8 m x 8 m plane size and 10 m height. One site was used for the static test with one concrete block as a specimen. Two models represent BWR type reactor buildings, and two models represent PWR type buildings. (K.I.)

  2. Response characteristics of soil fractal features to different land uses in typical purple soil watershed.

    Directory of Open Access Journals (Sweden)

    Bang-lin Luo

    Full Text Available As a fundamental characteristic of soil physical properties, the soil Particle Size Distribution (PSD is important in the research on soil moisture migration, solution transformation, and soil erosion. In this research, the PSD characteristics with distinct methods in different land uses are analyzed. The results show that the upper bound of the volume domain of the clay domain ranges from 5.743 μm to 5.749 μm for all land-use types. For the silt domain of purple soil, the value ranges among 286.852~286.966 μm. For all purple soil land-use types, the order of the volume domain fractal dimensions is D clayD silt(U>D sand (U>D sand and D silt>D silt(U>D sand>D sand(U, respectively. As it is compared with all Dvi, the D silt has the most significant correlativity to the soil texture and organic matter in different land uses of the typical purple soil watersheds. Therefore, Dsilt will be a potential indictor for evaluating the proportion of fine particles in the PSD, as well as a key measurement in soil quality and productivity studies.

  3. Impacts of soil moisture content on visual soil evaluation

    Science.gov (United States)

    Emmet-Booth, Jeremy; Forristal, Dermot; Fenton, Owen; Bondi, Giulia; Creamer, Rachel; Holden, Nick

    2017-04-01

    Visual Soil Examination and Evaluation (VSE) techniques offer tools for soil quality assessment. They involve the visual and tactile assessment of soil properties such as aggregate size and shape, porosity, redox morphology, soil colour and smell. An increasing body of research has demonstrated the reliability and utility of VSE techniques. However a number of limitations have been identified, including the potential impact of soil moisture variation during sampling. As part of a national survey of grassland soil quality in Ireland, an evaluation of the impact of soil moisture on two widely used VSE techniques was conducted. The techniques were Visual Evaluation of Soil Structure (VESS) (Guimarães et al., 2011) and Visual Soil Assessment (VSA) (Shepherd, 2009). Both generate summarising numeric scores that indicate soil structural quality, though employ different scoring mechanisms. The former requires the assessment of properties concurrently and the latter separately. Both methods were deployed on 20 sites across Ireland representing a range of soils. Additional samples were taken for soil volumetric water (θ) determination at 5-10 and 10-20 cm depth. No significant correlation was observed between θ 5-10 cm and either VSE technique. However, VESS scores were significantly related to θ 10-20 cm (rs = 0.40, sig = 0.02) while VSA scores were not (rs = -0.33, sig = 0.06). VESS and VSA scores can be grouped into quality classifications (good, moderate and poor). No significant mean difference was observed between θ 5-10 cm or θ 10-20 cm according to quality classification by either method. It was concluded that VESS scores may be affected by soil moisture variation while VSA appear unaffected. The different scoring mechanisms, where the separate assessment and scoring of individual properties employed by VSA, may limit soil moisture effects. However, moisture content appears not to affect overall structural quality classification by either method. References

  4. Relationship between chemical structure of soil organic matter and intra-aggregate pore structure: evidence from X-ray computed micro-tomography

    Science.gov (United States)

    Kravchenko, Alexandra; Grandy, Stuart A.

    2014-05-01

    between SOM chemical structure and pore characteristics differed in the aggregates of the two treatments. For example, in the agricultural treatment, the aggregate sections with prevalence of small pores had lower relative lignin abundance, while higher lignin abundances occurred in aggregate sections with more large pores. This relationship could be reflecting the low accessibility of the sections dominated by small pores to plant roots. It is interesting to note that no relationship between pores and lignin were observed in the aggregate from the native succession treatment. In the native succession aggregate we found that a larger presence of protein and N-bearing compounds was associated with sections with greater presence of 35-90 µm pores. This could be a result of fungal activities, as pores of this size constitute a primary fungal habitat and fungi are known for secreting proteins. Fewer fungi in the soil under agricultural management are likely the reason that no such relationship was observed in the aggregate from the agricultural treatment. Our preliminary results indicate that substantial spatial variability patterns in SOM chemical structure can exist even within a single macro-aggregate and that pores are likely a main driver of intra-aggregate SOM chemistry.

  5. Microbiological and faunal soil attributes of coffee cultivation under different management systems in Brazil

    Directory of Open Access Journals (Sweden)

    D. R. Lammel

    Full Text Available Abstract Brazil is the biggest coffee producer in the world and different plantation management systems have been applied to improve sustainability and soil quality. Little is known about the environmental effects of these different management systems, therefore, the goal of this study was to use soil biological parameters as indicators of changes. Soils from plantations in Southeastern Brazil with conventional (CC, organic (OC and integrated management systems containing intercropping of Brachiaria decumbens (IB or Arachis pintoi (IA were sampled. Total organic carbon (TOC, microbial biomass carbon (MBC and nitrogen (MBN, microbial activity (C-CO2, metabolic quotient (qCO2, the enzymes dehydrogenase, urease, acid phosphatase and arylsulphatase, arbuscular mycorrhizal fungi (AMF colonization and number of spores and soil fauna were evaluated. The greatest difference between the management systems was seen in soil organic matter content. The largest quantity of TOC was found in the OC, and the smallest was found in IA. TOC content influenced soil biological parameters. The use of all combined attributes was necessary to distinguish the four systems. Each management presented distinct faunal structure, and the data obtained with the trap method was more reliable than the TSBF (Tropical Soils method. A canonic correlation analysis showed that Isopoda was correlated with TOC and the most abundant order with OC. Isoptera was the most abundant faunal order in IA and correlated with MBC. Overall, OC had higher values for most of the biological measurements and higher populations of Oligochaeta and Isopoda, corroborating with the concept that the OC is a more sustainable system.

  6. Microbiological and faunal soil attributes of coffee cultivation under different management systems in Brazil.

    Science.gov (United States)

    Lammel, D R; Azevedo, L C B; Paula, A M; Armas, R D; Baretta, D; Cardoso, E J B N

    2015-11-01

    Brazil is the biggest coffee producer in the world and different plantation management systems have been applied to improve sustainability and soil quality. Little is known about the environmental effects of these different management systems, therefore, the goal of this study was to use soil biological parameters as indicators of changes. Soils from plantations in Southeastern Brazil with conventional (CC), organic (OC) and integrated management systems containing intercropping of Brachiaria decumbens (IB) or Arachis pintoi (IA) were sampled. Total organic carbon (TOC), microbial biomass carbon (MBC) and nitrogen (MBN), microbial activity (C-CO2), metabolic quotient (qCO2), the enzymes dehydrogenase, urease, acid phosphatase and arylsulphatase, arbuscular mycorrhizal fungi (AMF) colonization and number of spores and soil fauna were evaluated. The greatest difference between the management systems was seen in soil organic matter content. The largest quantity of TOC was found in the OC, and the smallest was found in IA. TOC content influenced soil biological parameters. The use of all combined attributes was necessary to distinguish the four systems. Each management presented distinct faunal structure, and the data obtained with the trap method was more reliable than the TSBF (Tropical Soils) method. A canonic correlation analysis showed that Isopoda was correlated with TOC and the most abundant order with OC. Isoptera was the most abundant faunal order in IA and correlated with MBC. Overall, OC had higher values for most of the biological measurements and higher populations of Oligochaeta and Isopoda, corroborating with the concept that the OC is a more sustainable system.

  7. Soil-structure interaction Vol.2. Influence of lift-off

    International Nuclear Information System (INIS)

    Miller, C.A.

    1986-04-01

    This study has been performed for the Nuclear Regulatory Commission (NRC) by the Structural Analysis Division of Brookhaven National Laboratory (BNL). The study was conducted during the fiscal year 1985 on the program entitled 'Benchmarking of Structural Engineering Problems' sponsored by NRC. The program considered three separate but complementary problems, each associated with the soil-structure interaction (SSI) phase of the seismic response analysis of nuclear plant facilities. The reports are presented in three separate volumes. The general title for the reports is 'Soil Structure Interaction' with the following subtitles: Vol. 1 Influence of Layering by A.J. Philippacopoulos, Vol. 2 Influence of Lift-Off by C.A. Miller, Vol. 3 Influence of Ground Water by C.J. Costantino. The two problems presented in Volumes 2 and 3 were conducted at the City University of New York (CUNY) under subcontract to BNL. This report, Volume 2 of the report, presents a summary of the work performed defining the influence liftoff has on the seismic response of nuclear power plant structures. The standard lumped parameter analysis method was modified by representing the lumped soil/structure interaction horizontal and rocking dampers with distributed (over the foundation area) springs and dampers. The distributed springs and dampers are then modified so that they can only transmit compressive stresses. Additional interaction damping is included to account for the energy dissipated as a portion of the foundation which has separated comes back into contact with the soil. The validity of the model is evaluated by comparing predictions made with it to data measured during the SIMQUAKE II experiment. The predictions were found to correlate quite well with the measured data except for some discrepancies at the higher frequencies (greater than 10 cps). This discrepancy was attributed to the relatively crude model used for impact effects. Data is presented which identifies the peak

  8. Earthquake response analyses of soil-structure system considering kinematic interaction

    International Nuclear Information System (INIS)

    Murakami, H.; Yokono, K.; Miura, S.; Ishii, K.

    1985-01-01

    Improvement of soil-structure interaction analysis has been one of major concerns in earthquake engineering field, especially in nuclear industries, to evaluate the safety of structure accurately under earthquake events. This research aims to develop a rational analytical tool which considers effect of the 'kinematic interaction' satisfactory with a proposed simple low-pass filter. In this paper, first the effect of the kinematic interaction is investigated based on earthquake response analysis of a reactor building using the practical design models: the spring-mass-dashpot system and the 'lattice model', in which a building and soil medium are modeled by a system of lumped masses. Next, the filter is developed based on parametrical studies with various sizes of depth and width of foundations embedded in two-layers soil, which represents more general soil condition in practical designs compared with a homogeneous soil medium. (orig.)

  9. Hazardous E-waste and its impact on soil structure

    Science.gov (United States)

    Dharini, K.; Cynthia, J. Bernadette; Kamalambikai, B.; Sudar Celestina, J. P. Arul; Muthu, D.

    2017-07-01

    E-waste disposal has been a significant issue over the past few decades with the development of technology and the plethora of electronic products produced. The inclusive term E-Waste encapsulates various forms of electrical and electronical equipment which provides no value to the current owners and it is one among the fastest growing waste streams. E-Waste is a complex, non-biodegradable waste which is generally dumped in mountain like heaps. These wastes are said to have a large quantities of lead, cadmium, arsenic etc.it is mandatory to dispose such scrupulously since they have the ability to affect the soil and water parameters. Solid waste management is a blooming field which strives to reduce the accumulation of used electronic gadgets. Rainwater gets infiltrated through the e-waste landfill and it leaches through the soil which in turn reaches the groundwater directly thereby affecting the water intended for drinking and domestic purposes. This study focuses on the consequences of toxic waste by comparing the difference in properties of the soil structure prior to and after the e-waste landfill at various concentrations.

  10. Organic matter composition of soil macropore surfaces under different agricultural management practices

    Science.gov (United States)

    Glæsner, Nadia; Leue, Marin; Magid, Jacob; Gerke, Horst H.

    2016-04-01

    Understanding the heterogeneous nature of soil, i.e. properties and processes occurring specifically at local scales is essential for best managing our soil resources for agricultural production. Examination of intact soil structures in order to obtain an increased understanding of how soil systems operate from small to large scale represents a large gap within soil science research. Dissolved chemicals, nutrients and particles are transported through the disturbed plow layer of agricultural soil, where after flow through the lower soil layers occur by preferential flow via macropores. Rapid movement of water through macropores limit the contact between the preferentially moving water and the surrounding soil matrix, therefore contact and exchange of solutes in the water is largely restricted to the surface area of the macropores. Organomineral complex coated surfaces control sorption and exchange properties of solutes, as well as availability of essential nutrients to plant roots and to the preferentially flowing water. DRIFT (Diffuse Reflectance infrared Fourier Transform) Mapping has been developed to examine composition of organic matter coated macropores. In this study macropore surfaces structures will be determined for organic matter composition using DRIFT from a long-term field experiment on waste application to agricultural soil (CRUCIAL, close to Copenhagen, Denmark). Parcels with 5 treatments; accelerated household waste, accelerated sewage sludge, accelerated cattle manure, NPK and unfertilized, will be examined in order to study whether agricultural management have an impact on the organic matter composition of intact structures.

  11. Soil-structure interaction Vol.3. Influence of ground water

    Energy Technology Data Exchange (ETDEWEB)

    Costantino, C J

    1986-04-01

    This study has been performed for the Nuclear Regulatory Commission (NRC) by the Structural Analysis Division of Brookhaven National Laboratory (BNL). The study was conducted during the fiscal year 1965 on the program entitled 'Benchmarking of Structural Engineering Problems' sponsored by NRC. The program considered three separate but complementary problems, each associated with the soil-structure interaction (551) phase of the seismic response analysis of nuclear plant facilities. The reports, all entitled Soil-Structure Interaction, are presented in three separate volumes, namely: Vol. 1 Influence of Layering by AJ Philippacopoulos, Vol. 2 Influence of Lift-Off by C.A. Miller, Vol. 3 Influence of Ground Water by C.J. Costantino. The two problems presented in Volumes 2 and 3 were conducted at the City University of New York (CUNY) under subcontract to BNL. This report, Volume 3 of the report, presents a summary of the first year's effort on the subject of the influence of foundation ground water on the SSI phenomenon. A finite element computer program was developed for the two-phased formulation of the combined soil-water problem. This formulation is based on the Biot dynamic equations of motion for both the solid and fluid phases of a typical soil. Frequency dependent interaction coefficients were generated for the two-dimensional plane problem of a rigid surface footing moving against a saturated linear soil. The results indicate that interaction coefficients are significantly modified as compared to the comparable values for a dry soil, particularly for the rocking mode of response. Calculations were made to study the impact of the modified interaction coefficients on the response of a typical nuclear reactor building. The amplification factors for a stick model placed atop a dry and saturated soil were computed. It was found that pore water caused the rocking response to decrease and translational response to increase over the frequency range of interest, as

  12. Soil respiration in different agricultural and natural ecosystems in an arid region.

    Science.gov (United States)

    Lai, Liming; Zhao, Xuechun; Jiang, Lianhe; Wang, Yongji; Luo, Liangguo; Zheng, Yuanrun; Chen, Xi; Rimmington, Glyn M

    2012-01-01

    The variation of different ecosystems on the terrestrial carbon balance is predicted to be large. We investigated a typical arid region with widespread saline/alkaline soils, and evaluated soil respiration of different agricultural and natural ecosystems. Soil respiration for five ecosystems together with soil temperature, soil moisture, soil pH, soil electric conductivity and soil organic carbon content were investigated in the field. Comparing with the natural ecosystems, the mean seasonal soil respiration rates of the agricultural ecosystems were 96%-386% higher and agricultural ecosystems exhibited lower CO(2) absorption by the saline/alkaline soil. Soil temperature and moisture together explained 48%, 86%, 84%, 54% and 54% of the seasonal variations of soil respiration in the five ecosystems, respectively. There was a significant negative relationship between soil respiration and soil electrical conductivity, but a weak correlation between soil respiration and soil pH or soil organic carbon content. Our results showed that soil CO(2) emissions were significantly different among different agricultural and natural ecosystems, although we caution that this was an observational, not manipulative, study. Temperature at the soil surface and electric conductivity were the main driving factors of soil respiration across the five ecosystems. Care should be taken when converting native vegetation into cropland from the point of view of greenhouse gas emissions.

  13. Volatile-mediated interactions between phylogenetically different soil bacteria

    Directory of Open Access Journals (Sweden)

    Paolina eGarbeva

    2014-06-01

    Full Text Available There is increasing evidence that organic volatiles play an important role in interactions between micro-organisms in the porous soil matrix. Here we report that volatile compounds emitted by different soil bacteria can affect the growth, antibiotic production and gene expression of the soil bacterium Pseudomonas fluorescens Pf0-1. We applied a novel cultivation approach that mimics the natural nutritional heterogeneity in soil in which P. fluorescens grown on nutrient-limited agar was exposed to volatiles produced by 4 phylogenetically different bacterial isolates (Collimonas pratensis, Serratia plymuthica, Paenibacillus sp. and Pedobacter sp. growing in sand containing artificial root exudates. Contrary to our expectation, the produced volatiles stimulated rather than inhibited the growth of P. fluorescens. A genome-wide, microarray-based analysis revealed that volatiles of all 4 bacterial strains affected gene expression of P. fluorescens, but with a different pattern of gene expression for each strain. Based on the annotation of the differently expressed genes, bacterial volatiles appear to induce a chemotactic motility response in P. fluorescens, but also an oxidative stress response. A more detailed study revealed that volatiles produced by C. pratensis triggered, antimicrobial secondary metabolite production in P. fluorescens. Our results indicate that bacterial volatiles can have an important role in communication, trophic - and antagonistic interactions within the soil bacterial community.

  14. Generation of Earthquake Ground Motion Considering Local Site Effects and Soil-Structure Interaction Analysis of Ancient Structures

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Kwan; Lee, J. S.; Yang, T. S.; Cho, J. R.; R, H. [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1997-09-01

    In order to establish a correct correlation between them, mechanical characteristics of the ancient structures need to be investigated. Since sedimentary basins are preferred dwelling sites in ancient times, it is necessary to perform SSI analysis to derive correct correlation between the damage and ground motion intensity. Contents of Project are as follows: (1) Generation of stochastic earthquake ground motion considering source mechanism and site effects. (2) Analysis of seismic response of sedimentary basin. (3) Soil-structure interaction analysis of ancient structures (4) Investigation of dynamic response characteristics of ancient structure considering soil-structure interaction effects. A procedure is presented for generation of stochastic earthquake ground motion considering source mechanism and site effects. The simulation method proposed by Boore is used to generate the outcropping rock motion. The free field motion at the soil site is obtained by a convolution analysis. And for the study of wood structures, a nonlinear SDOF model is developed. The effects of soil-structure interaction on the behavior of the wood structures are found to be very minor. But the response can be significantly affected due to the intensity and frequency contents of the input motion. 13 refs., 6 tabs., 31 figs. (author)

  15. Effects of non-structural components and soil-structure interaction on the seismic response of framed structures

    Science.gov (United States)

    Ditommaso, Rocco; Auletta, Gianluca; Iacovino, Chiara; Nigro, Antonella; Carlo Ponzo, Felice

    2017-04-01

    In this paper, several nonlinear numerical models of reinforced concrete framed structures have been defined in order to evaluate the effects of non-structural elements and soil-structure interaction on the elastic dynamic behaviour of buildings. In the last few years, many and various studies have highlighted the significant effects derived from the interaction between structural and non-structural components on the main dynamic characteristics of a building. Usually, structural and non-structural elements act together, adding both masses and stiffness. The presence of infill panels is generally neglected in the design process of structural elements, although these elements can significantly increase the lateral stiffness of a structure leading to a modification in the dynamic properties. Particularly, at the Damage Limit State (where an elastic behaviour is expected), soil-structure interaction effects and non-structural elements may further affect the elastic natural period of buildings, changing the spectral accelerations compared with those provided by seismic codes in case of static analyses. In this work, a parametric study has been performed in order to evaluate the elastic fundamental period of vibration of buildings as a function of structural morphology (height, plan area, ratio between plan dimensions), infills presence and distribution and soil characteristics. Acknowledgements This study was partially funded by the Italian Department of Civil Protection within the project DPC-RELUIS 2016 - RS4 ''Seismic observatory of structures and health monitoring'' and by the "Centre of Integrated Geomorphology for the Mediterranean Area - CGIAM" within the Framework Agreement with the University of Basilicata "Study, Research and Experimentation in the Field of Analysis and Monitoring of Seismic Vulnerability of Strategic and Relevant Buildings for the purposes of Civil Protection and Development of Innovative Strategies of Seismic Reinforcement".

  16. Community structure and soil pH determine chemoautotrophic carbon dioxide fixation in drained paddy soils.

    Science.gov (United States)

    Long, Xi-En; Yao, Huaiying; Wang, Juan; Huang, Ying; Singh, Brajesh K; Zhu, Yong-Guan

    2015-06-16

    Previous studies suggested that microbial photosynthesis plays a potential role in paddy fields, but little is known about chemoautotrophic carbon fixers in drained paddy soils. We conducted a microcosm study using soil samples from five paddy fields to determine the environmental factors and quantify key functional microbial taxa involved in chemoautotrophic carbon fixation. We used stable isotope probing in combination with phospholipid fatty acid (PLFA) and molecular approaches. The amount of microbial (13)CO2 fixation was determined by quantification of (13)C-enriched fatty acid methyl esters and ranged from 21.28 to 72.48 ng of (13)C (g of dry soil)(-1), and the corresponding ratio (labeled PLFA-C:total PLFA-C) ranged from 0.06 to 0.49%. The amount of incorporationof (13)CO2 into PLFAs significantly increased with soil pH except at pH 7.8. PLFA and high-throughput sequencing results indicated a dominant role of Gram-negative bacteria or proteobacteria in (13)CO2 fixation. Correlation analysis indicated a significant association between microbial community structure and carbon fixation. We provide direct evidence of chemoautotrophic C fixation in soils with statistical evidence of microbial community structure regulation of inorganic carbon fixation in the paddy soil ecosystem.

  17. Soil-Framed Structure Interaction Analysis - A New Interface Element

    Directory of Open Access Journals (Sweden)

    M. Dalili Shoaei

    Full Text Available AbstractInterfacial behavior between soil and shallow foundation has been found so influential to combined soil-footing performance and redistribution of forces in the superstructure. This study introduces a new thin-layer interface element formulated within the context of finite element method to idealize interfacial behavior of soil-framed structure interaction with new combination of degrees of freedom at top and bottom sides of the interface element, compatible with both isoparametric beam and quadrilateral element. This research also tends to conduct a parametric study on respective parameters of the new joint element. Presence of interface element showed considerable changes in the performance of the framed structure under quasi-static loading.

  18. [Effect of ground mulch managements on soil bacterial community structure and diversity in the non-irrigated apple orchard in Weibei Loess Plateau].

    Science.gov (United States)

    Chen, Yuexing; Wen, Xiaoxia; Sun, Yulin; Zhang, Junli; Lin, Xiaoli; Liao, Yuncheng

    2015-07-04

    We studied the changes in soil bacterial communities induced by ground mulch managements at different apple growth periods. We adopted the denaturing gradient gel electrophoresis (DGGE) with PCR-amplified 16S rRNA fragments to determine soil bacterial community structure and diversity. Soil bacterial community structure with different ground mulch managements were significantly different. Both the mulch management strategies and apple growth periods affected the predominant groups and their abundance in soil bacterial communities. Grass mulch and cornstalk mulch treatments had higher bacterial diversity and richness than the control at young fruit period and fruit expanding period, whereas film mulch treatment had no significant difference compared with the control. During mature period, bacterial diversity in the control reached its maximum, which may be ascribed to the rapid growth and reproduction of the r-selection bacteria. The clustering and detrended correspondence analysis revealed that differences in soil bacterial communities were closely correlated to apple growth periods and ground mulch managements. Soil samples from the grass mulch and cornstalk mulch treatments clustered together while those mulched with plastic film treatment were similar to the control. The most abundant phylum in soil bacterial community was Proteobacteria followed by Bacteroidetes. Some other phyla were also detected, such as Acidobacteria, Firmicutes, Actinobacteria and Chloroflexi. Mulching with plant (Grass/Cornstalk) had great effects on soil bacterial community structure and enhanced the diversity while film mulch management had no significant effects.

  19. Structure, Variation, and Co-occurrence of Soil Microbial Communities in Abandoned Sites of a Rare Earth Elements Mine.

    Science.gov (United States)

    Chao, Yuanqing; Liu, Wenshen; Chen, Yanmei; Chen, Wenhui; Zhao, Lihua; Ding, Qiaobei; Wang, Shizhong; Tang, Ye-Tao; Zhang, Tong; Qiu, Rong-Liang

    2016-11-01

    Mining activity for rare earth elements (REEs) has caused serious environmental pollution, particularly for soil ecosystems. However, the effects of REEs on soil microbiota are still poorly understood. In this study, soils were collected from abandoned sites of a REEs mine, and the structure, diversity, and co-occurrence patterns of soil microbiota were evaluated by Illumina high-throughput sequencing targeting 16S rRNA genes. Although microbiota developed significantly along with the natural restoration, the microbial structure on the site abandoned for 10 years still significantly differed from that on the unmined site. Potential plant growth promoting bacteria (PGPB) were identified by comparing 16S sequences against a self-constructed PGPB database via BLAST, and it was found that siderophore-producing and phosphorus-solubilizing bacteria were more abundant in the studied soils than in reference soils. Canonical correspondence analysis indicated that species richness of plant community was the prime factor affecting microbial structure, followed by limiting nutrients (total carbon and total nitrogen) and REEs content. Further co-occurring network analysis revealed nonrandom assembly patterns of microbiota in the studied soils. These results increase our understanding of microbial variation and assembly pattern during natural restoration in REE contaminated soils.

  20. Microbiology Meets Archaeology: Soil Microbial Communities Reveal Different Human Activities at Archaic Monte Iato (Sixth Century BC).

    Science.gov (United States)

    Margesin, Rosa; Siles, José A; Cajthaml, Tomas; Öhlinger, Birgit; Kistler, Erich

    2017-05-01

    Microbial ecology has been recognized as useful in archaeological studies. At Archaic Monte Iato in Western Sicily, a native (indigenous) building was discovered. The objective of this study was the first examination of soil microbial communities related to this building. Soil samples were collected from archaeological layers at a ritual deposit (food waste disposal) in the main room and above the fireplace in the annex. Microbial soil characterization included abundance (cellular phospholipid fatty acids (PLFA), viable bacterial counts), activity (physiological profiles, enzyme activities of viable bacteria), diversity, and community structure (bacterial and fungal Illumina amplicon sequencing, identification of viable bacteria). PLFA-derived microbial abundance was lower in soils from the fireplace than in soils from the deposit; the opposite was observed with culturable bacteria. Microbial communities in soils from the fireplace had a higher ability to metabolize carboxylic and acetic acids, while those in soils from the deposit metabolized preferentially carbohydrates. The lower deposit layer was characterized by higher total microbial and bacterial abundance and bacterial richness and by a different carbohydrate metabolization profile compared to the upper deposit layer. Microbial community structures in the fireplace were similar and could be distinguished from those in the two deposit layers, which had different microbial communities. Our data confirmed our hypothesis that human consumption habits left traces on microbiota in the archaeological evidence; therefore, microbiological residues as part of the so-called ecofacts are, like artifacts, key indicators of consumer behavior in the past.

  1. Kinetics of Cs adsorption on soils with different mineralogical composition

    International Nuclear Information System (INIS)

    Nakao, Atsushi; Funakawa, Shinya; Kosaki, Takashi

    2004-01-01

    137 Cs is one of the main radioisotopes released into the environment by nuclear powerstation accidents (e.g. Chernobyl) and nuclear weapons tests. Many studies have shown that Cs tends to remain at surface soils due to the high adsorption selectivity of clay minerals for this element. This behavior of the Cs + ion is, however, assumed to vary significantly depending on the mineralogical composition of the soil. The main objective of this study is to analyze the kinetics of Cs adsorption on soils with different mineralogical composition. Soil samples used in this study were Mollisols (Um) and Alfisols (Ua) from Ukraine, Ultisols (Tu) from Thailand and Spodosols (Js) from Japan. The dominant clay species of these soils are montmorillonite (Um, Ua), kaolinite and mica (Tu) and beidellite (Js). The rates of Cs adsorption and Ca or K desorption were measured using a continuous flow method. Soil samples that were previously saturated with Ca 2+ were leached with a 0.75 mmol/l Cs + solution at a constant rate of 2.0 ml/min. The leachate was collected every 10 minutes and the concentrations of Cs + , Ca 2+ and K + of each aliquot were measured by atomic adsorption spectrophotometry (Cs + , Ca 2+ ) and flame spectrophotometry (K + ). The datasets obtained were simulated using the first order kinetic model: y = a(1 - exp(-kt)), where a is the adsorption (desorption) maximum and k the rate constant. It is here assumed that Ca 2+ is desorbed from cation exchange sites and K + desorbed from the frayed edges of micaceous minerals. The values of a obtained for both Cs adsorption and Ca desorption was in the order Js>Um>Tu>Ua, whereas the values of k were in the order Tu>Ua>Um>Js. This result reflects the values of permanent negative charge of clays which are originated from the substitution of cations in the structure of 2:1 clay minerals. The value of a for K + desorption was, however, highest in Tu, suggesting that the values of Cs + -exchangeable K + correspond to the amount

  2. Effect of biochar on soil structural characteristics: water retention and gas transport

    DEFF Research Database (Denmark)

    Sun, Zhencai; Møldrup, Per; Vendelboe, Anders Lindblad

    Biochar addition to agricultural soil has been reported to reduce climate gas emission, as well as improve soil fertility and crop productivity. Little, however, is known about biochar effects on soil structural characteristics. This study investigates if biochar-application changes soil structural...... characteristics, as indicated from water retention and gas transport measurements on intact soil samples. Soil was sampled from a field experiment on a sandy loam with four control plots (C) without biochar and four plots (B) with incorporated biochar at a rate of 20 tons per hectare (plot size, 6 x 8 m). The C......-gas diffusivity on intact 100cm3 soil samples (5 replicates in each plot). We found that biochar application significantly decreased soil bulk density, hereby creating higher porosity. At the same soil-water matric potential, all the soil-gas phase parameters (air-filled porosity, air permeability and gas...

  3. Response of rhizosphere microbial community structure and diversity to heavy metal co-pollution in arable soil.

    Science.gov (United States)

    Deng, Linjing; Zeng, Guangming; Fan, Changzheng; Lu, Lunhui; Chen, Xunfeng; Chen, Ming; Wu, Haipeng; He, Xiaoxiao; He, Yan

    2015-10-01

    Due to the emerging environmental issues related to heavy metals, concern about the soil quality of farming lands near manufacturing district is increasing. Investigating the function of soil microorganisms exposed to long-term heavy metal contamination is meaningful and important for agricultural soil utilization. This article studied the potential influence of several heavy metals on microbial biomass, activity, abundance, and community composition in arable soil near industrial estate in Zhuzhou, Hunan province, China. The results showed that soil organic contents (SOC) were significantly positive correlated with heavy metals, whereas dehydrogenase activity (DHA) was greatly depressed by the heavy metal stress. Negative correlation was found between heavy metals and basal soil respiration (BSR), and no correlation was found between heavy metals and microbial biomass content (MBC). The quantitative PCR (QPCR) and polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) analysis could suggest that heavy metal pollution has significantly decreased abundance of bacteria and fungi and also changed their community structure. The results could contribute to evaluate heavy metal pollution level in soil. By combining different environmental parameters, it would promote the better understanding of heavy metal effect on the size, structure, and activity of microbial community in arable soil.

  4. Soil Physical Characteristics and Biological Indicators of Soil Quality Under Different Biodegradable Mulches

    Science.gov (United States)

    Schaeffer, S. M.; Flury, M.; Sintim, H.; Bandopadhyay, S.; Ghimire, S.; Bary, A.; DeBruyn, J.

    2015-12-01

    Application of conventional polyethylene (PE) mulch in crop production offers benefits of increased water use efficiency, weed control, management of certain plant diseases, and maintenance of a micro-climate conducive for plant growth. These factors improve crop yield and quality, but PE must be retrieved and safely disposed of after usage. Substituting PE with biodegradable plastic mulches (BDM) would alleviate disposal needs, and is potentially a more sustainable practice. However, knowledge of potential impacts of BDMs on agricultural soil ecosystems is needed to evaluate sustainability. We (a) monitored soil moisture and temperature dynamics, and (b) assessed soil quality upon usage of different mulches, with pie pumpkin (Cucurbita pepo) as the test crop. Experimental field trials are ongoing at two sites, one at Northwestern Washington Research and Extension Center, Mount Vernon, WA, and the other at East Tennessee Research and Education Center, Knoxville, TN. The treatments constitute four different commercial BDM products, one experimental BDM; no mulch and PE served as the controls. Soil quality parameters being examined include: organic matter content, aggregate stability, water infiltration rate, CO2 flux, pH, and extracellular enzyme activity. In addition, lysimeters were installed to examine the soil water and heat flow dynamics. We present baseline and the first field season results from this study. Mulch cover appeared to moderate soil temperatures, but biodegradable mulches also appeared to lose water more quickly than PE. All mulch types, with the exception of cellulose, reduced the diurnal fluctuations in soil temperature at 10cm depth from 1 to 4ºC. However, volumetric water content ranged from 0.10 to 0.22 m3 m-3 under the five biodegradable mulches compared to 0.22 to 0.28 m3 m-3 under conventional PE. Results from the study will be useful for management practices by providing knowledge on how different mulches impact soil physical and

  5. Comparing different commercial zero valent iron nanoparticles to immobilize As and Hg in brownfield soil.

    Science.gov (United States)

    Gil-Díaz, M; Alonso, J; Rodríguez-Valdés, E; Gallego, J R; Lobo, M C

    2017-04-15

    Nanoscale zero valent iron (nZVI) particles obtained by different methods differ in their structure, which lead to different reactivity, and therefore a likely difference in the remediation efficiency. The present study compares the effectiveness of three commercial ZVI nanoparticles to immobilize As and Hg in two soils (A and B) collected from a brownfield highly contaminated by mining and metallurgy activities. Scarce data are available on the effectiveness of nZVI for Hg immobilization in soil. Two commercial nZVI slurries from Toda (RNIP and RNIP-D) and one from Nano Iron (25S) were used at different doses (1, 5 and 10%). The metal(loid) availability and mobility was evaluated with the TCLP test and Tessier extraction procedure. The influence of nZVI application on As and Hg speciation was also evaluated as well as its impact on soil pH, electrical conductivity and soil phytotoxicity to vetch germination. The three commercial nZVI particles significantly reduced As and Hg availability in the two soils studied, which led to a decrease in soil phytotoxicity. At the dose of 5% of nZVI a decrease of exchangeable-As higher than 70% was observed for both soils, whereas in the case of Hg, a higher dose of nZVI (10%) was necessary to achieve reductions of exchangeable-Hg between 63 and 90% depending on the type of nZVI and soil. No impact on soil pH and electrical conductivity was observed. The effectiveness of metal(loid) immobilization depended on type of nZVI, soil properties and metal(loid) characteristics. Nanoparticles from Nano Iron showed better results for As immobilization whereas RNIP nanoparticles were more effective for Hg. Overall, 25S at the dose of 5% resulted more effective than RNIP nanoparticles for the reduction of exchangeable-As (in the range of 6-14%), whereas RNIP and RNIP-D were 10 and 13% more effective, respectively, for the reduction of exchangeable-Hg at the dose of 10% in soil B. Thus, nZVI can be used for the remediation of highly As and

  6. A soil mechanics approach to study soil compaction and traffic effect on the preconsolidation pressure of tropical soils

    International Nuclear Information System (INIS)

    Dias Junior, Moacir de Souza

    2004-01-01

    Several researchers have already demonstrated the causes and the effects of soil compaction. These studies showed that the soil compaction is a limiting factor in the agricultural production. The attributes of the soil conventionally monitored has not been capable to quantify the load support capacity of the soil, not allowing to foresee the levels of pressures that can be applied to the soils at different moisture conditions without additional soil compaction (structure degradation) happens. The researches done in the soil compressive behaviour of some tropical soils indicate that the pre-compression stress may be used as an alternative measure of the load support capacity and as a quantitative indicator of the structure sustainability of the tropical soils

  7. Soil respiration in different agricultural and natural ecosystems in an arid region.

    Directory of Open Access Journals (Sweden)

    Liming Lai

    Full Text Available The variation of different ecosystems on the terrestrial carbon balance is predicted to be large. We investigated a typical arid region with widespread saline/alkaline soils, and evaluated soil respiration of different agricultural and natural ecosystems. Soil respiration for five ecosystems together with soil temperature, soil moisture, soil pH, soil electric conductivity and soil organic carbon content were investigated in the field. Comparing with the natural ecosystems, the mean seasonal soil respiration rates of the agricultural ecosystems were 96%-386% higher and agricultural ecosystems exhibited lower CO(2 absorption by the saline/alkaline soil. Soil temperature and moisture together explained 48%, 86%, 84%, 54% and 54% of the seasonal variations of soil respiration in the five ecosystems, respectively. There was a significant negative relationship between soil respiration and soil electrical conductivity, but a weak correlation between soil respiration and soil pH or soil organic carbon content. Our results showed that soil CO(2 emissions were significantly different among different agricultural and natural ecosystems, although we caution that this was an observational, not manipulative, study. Temperature at the soil surface and electric conductivity were the main driving factors of soil respiration across the five ecosystems. Care should be taken when converting native vegetation into cropland from the point of view of greenhouse gas emissions.

  8. Behaviour of radioactive and stable isotopes of calcium in the soil-solution-plant system at different soil humidity

    International Nuclear Information System (INIS)

    Karavaeva, E.N.; Molchanova, I.V.

    1976-01-01

    The results of experiments performed to study the behaviour of radioactive and stable isotopes of Ca in soil - solution - plant system at different soil moistening are given. The experiments have been conducted in culture pans with two soils: soddy-meadow and soddy-podzolic differing in a number of physico-chemical properties. The solution of radioactive Ca( 45 CaCl 2 ) has been applied to soddy-meadow soil at the rate of 0.2 μcurie/kg, and to soddy-podzolic soil - at the rate of 0.1 μcurie/kg. The distribution and accumulation coefficients are estimated by the ratio to the total content of stable Ca and 45 Ca in soil. A direct relationship between distribution coefficients and the rate of soil moistening is observed. It has been established that 45 Ca and the natural stable isotopes of Ca applied to the soil differ in the type of distribution in soil - soil solution system and in accumulation by plants. However, a great similarity has been observed in behaviour of radioactive and stable isotopes of Ca depending on soil moistening

  9. Influence of plant genotype on the cultivable fungi associated to tomato rhizosphere and roots in different soils.

    Science.gov (United States)

    Poli, Anna; Lazzari, Alexandra; Prigione, Valeria; Voyron, Samuele; Spadaro, Davide; Varese, Giovanna Cristina

    2016-01-01

    Rhizosphere and root-associated microbiota are crucial in determining plant health and in increasing productivity of agricultural crops. To date, research has mainly focused on the bacterial dimension of the microbiota. However, interest in the mycobiota is increasing, since fungi play a key role in soil ecosystems. We examined the effect of plant genotype, soil, and of Fusarium oxysporum f. sp. lycopersici (Fol) on the cultivable component of rhizosphere and root-associated mycobiota of tomato. Resistant and susceptible varieties were cultivated on two different soils (A and B), under glasshouse conditions. Isolated fungi were identified by morphological and molecular approaches. Differences were found between the rhizosphere and the roots, which in general displayed a lower number of species. The structure of the mycobiota was significantly affected by the soil type in the rhizosphere as well as by the plant genotype within the roots (NPERMANOVA, p fungi. Overall, the results indicated that i) soil type and plant genotype affect the fungal communities; ii) plant roots select few species from the rhizosphere; and iii) the fungal community structure is influenced by Fol. Copyright © 2016 British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  10. Structural changes in latosols of the cerrado region: II - soil compressive behavior and modeling of additional compaction

    Directory of Open Access Journals (Sweden)

    Eduardo da Costa Severiano

    2011-06-01

    Full Text Available Currently in Brazil, as in other parts of the world, the concern is great with the increase of degraded agricultural soil, which is mostly related to the occurrence of soil compaction. Although soil texture is recognized as a very important component in the soil compressive behaviors, there are few studies that quantify its influence on the structural changes of Latosols in the Brazilian Cerrado region. This study aimed to evaluate structural changes and the compressive behavior of Latosols in Rio Verde, Goiás, through the modeling of additional soil compaction. The study was carried out using five Latosols with very different textures, under different soil compaction levels. Water retention and soil compression curves, and bearing capacity models were determined from undisturbed samples collected on the B horizons. Results indicated that clayey and very clayey Latosols were more susceptible to compression than medium-textured soils. Soil compression curves at density values associate with edaphic functions were used to determine the beneficial pressure (σ b , i.e., pressure with optimal water retention, and critical pressure (σcrMAC, i.e., pressure with macroporosity below critical levels. These pressure values were higher than the preconsolidation pressure (σp, and therefore characterized as additional compaction. Based on the compressive behavior of these Latosols, it can be concluded that the combined preconsolidation pressure, beneficial pressure and critical pressure allow a better understanding of compression processes of Latosols.

  11. High Energy Moisture Characteristics: Linking Between Soil Physical Processes and Structure Stability

    Science.gov (United States)

    Water storage and flow in soils is usually complicated by the intricate nature of and changes in soil pore size distribution (PSD) due to modifications in soil structure following changes in agricultural management. The paper presents the Soil High Energy Moisture Characteristic (Soil-HEMC) method f...

  12. 40 CFR 267.116 - What must I do with contaminated equipment, structure, and soils?

    Science.gov (United States)

    2010-07-01

    ... equipment, structure, and soils? 267.116 Section 267.116 Protection of Environment ENVIRONMENTAL PROTECTION..., structure, and soils? You must properly dispose of or decontaminate all contaminated equipment, structures, and soils during the partial and final closure periods. By removing any hazardous wastes or hazardous...

  13. Clay minerals and metal oxides strongly influence the structure of alkane-degrading microbial communities during soil maturation.

    Science.gov (United States)

    Steinbach, Annelie; Schulz, Stefanie; Giebler, Julia; Schulz, Stephan; Pronk, Geertje J; Kögel-Knabner, Ingrid; Harms, Hauke; Wick, Lukas Y; Schloter, Michael

    2015-07-01

    Clay minerals, charcoal and metal oxides are essential parts of the soil matrix and strongly influence the formation of biogeochemical interfaces in soil. We investigated the role of these parental materials for the development of functional microbial guilds using the example of alkane-degrading bacteria harbouring the alkane monooxygenase gene (alkB) in artificial mixtures composed of different minerals and charcoal, sterile manure and a microbial inoculum extracted from an agricultural soil. We followed changes in abundance and community structure of alkane-degrading microbial communities after 3 and 12 months of soil maturation and in response to a subsequent 2-week plant litter addition. During maturation we observed an overall increasing divergence in community composition. The impact of metal oxides on alkane-degrading community structure increased during soil maturation, whereas the charcoal impact decreased from 3 to 12 months. Among the clay minerals illite influenced the community structure of alkB-harbouring bacteria significantly, but not montmorillonite. The litter application induced strong community shifts in soils, maturated for 12 months, towards functional guilds typical for younger maturation stages pointing to a resilience of the alkane-degradation function potentially fostered by an extant 'seed bank'.

  14. Effects of application of corn straw on soil microbial community structure during the maize growing season.

    Science.gov (United States)

    Lu, Ping; Lin, Yin-Hua; Yang, Zhong-Qi; Xu, Yan-Peng; Tan, Fei; Jia, Xu-Dong; Wang, Miao; Xu, De-Rong; Wang, Xi-Zhuo

    2015-01-01

    This study investigated the influence of corn straw application on soil microbial communities and the relationship between such communities and soil properties in black soil. The crop used in this study was maize (Zea mays L.). The five treatments consisted of applying a gradient (50, 100, 150, and 200%) of shattered corn straw residue to the soil. Soil samples were taken from May through September during the 2012 maize growing season. The microbial community structure was determined using phospholipid fatty acid (PLFA) analysis. Our results revealed that the application of corn straw influenced the soil properties and increased the soil organic carbon and total nitrogen. Applying corn straw to fields also influenced the variation in soil microbial biomass and community composition, which is consistent with the variations found in soil total nitrogen (TN) and soil respiration (SR). However, the soil carbon-to-nitrogen ratio had no effect on soil microbial communities. The abundance of PLFAs, TN, and SR was higher in C1.5 than those in other treatments, suggesting that the soil properties and soil microbial community composition were affected positively by the application of corn straw to black soil. A Principal Component Analysis indicated that soil microbial communities were different in the straw decomposition processes. Moreover, the soil microbial communities from C1.5 were significantly different from those of CK (p soil and significant variations in the ratio of monounsaturated-to-branched fatty acids with different straw treatments that correlated with SR (p soil properties and soil microbial communities and that these properties affect these communities. The individual PLFA signatures were sensitive indicators that reflected the changes in the soil environment condition. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Case study of microarthropod communities to assess soil quality in different managed vineyards

    Science.gov (United States)

    Gagnarli, E.; Goggioli, D.; Tarchi, F.; Guidi, S.; Nannelli, R.; Vignozzi, N.; Valboa, G.; Lottero, M. R.; Corino, L.; Simoni, S.

    2015-07-01

    Land use influences the abundance and diversity of soil arthropods. The evaluation of the impact of different management strategies on soil quality is increasingly sought, and the determination of community structures of edaphic fauna can represent an efficient tool. In the area of Langhe (Piedmont, Italy), eight vineyards characterized for physical and chemical properties (soil texture, soil pH, total organic carbon, total nitrogen, calcium carbonate) were selected. We evaluated the effect of two types of crop management, organic and integrated pest management (IPM), on abundance and biodiversity of microarthropods living at the soil surface. Soil sampling was carried out in winter 2011 and spring 2012. All specimens were counted and determined up to the order level. The biodiversity analysis was performed using ecological indexes (taxa richness, dominance, Shannon-Wiener, Buzas and Gibson's evenness, Margalef, equitability, Berger-Parker), and the biological soil quality was assessed with the BSQ-ar index. The mesofauna abundance was affected by both the type of management and sampling time. On the whole, a higher abundance was in organic vineyards (N = 1981) than in IPM ones (N = 1062). The analysis performed by ecological indexes showed quite a high level of biodiversity in this environment, particularly in May 2012. Furthermore, the BSQ-ar values registered were similar to those obtained in preserved soils.

  16. Evaluation of different field methods for measuring soil water infiltration

    Science.gov (United States)

    Pla-Sentís, Ildefonso; Fonseca, Francisco

    2010-05-01

    Soil infiltrability, together with rainfall characteristics, is the most important hydrological parameter for the evaluation and diagnosis of the soil water balance and soil moisture regime. Those balances and regimes are the main regulating factors of the on site water supply to plants and other soil organisms and of other important processes like runoff, surface and mass erosion, drainage, etc, affecting sedimentation, flooding, soil and water pollution, water supply for different purposes (population, agriculture, industries, hydroelectricity), etc. Therefore the direct measurement of water infiltration rates or its indirect deduction from other soil characteristics or properties has become indispensable for the evaluation and modelling of the previously mentioned processes. Indirect deductions from other soil characteristics measured under laboratory conditions in the same soils, or in other soils, through the so called "pedo-transfer" functions, have demonstrated to be of limited value in most of the cases. Direct "in situ" field evaluations have to be preferred in any case. In this contribution we present the results of past experiences in the measurement of soil water infiltration rates in many different soils and land conditions, and their use for deducing soil water balances under variable climates. There are also presented and discussed recent results obtained in comparing different methods, using double and single ring infiltrometers, rainfall simulators, and disc permeameters, of different sizes, in soils with very contrasting surface and profile characteristics and conditions, including stony soils and very sloping lands. It is concluded that there are not methods universally applicable to any soil and land condition, and that in many cases the results are significantly influenced by the way we use a particular method or instrument, and by the alterations in the soil conditions by the land management, but also due to the manipulation of the surface

  17. Evaluation of the ecotoxicological impact of the organochlorine chlordecone on soil microbial community structure, abundance, and function.

    Science.gov (United States)

    Merlin, Chloé; Devers, Marion; Béguet, Jérémie; Boggio, Baptiste; Rouard, Nadine; Martin-Laurent, Fabrice

    2016-03-01

    The insecticide chlordecone applied for decades in banana plantations currently contaminates 20,000 ha of arable land in the French West Indies. Although the impact of various pesticides on soil microorganisms has been studied, chlordecone toxicity to the soil microbial community has never been assessed. We investigated in two different soils (sandy loam and silty loam) exposed to different concentrations of CLD (D0, control; D1 and D10, 1 and 10 times the agronomical dose) over different periods of time (3, 7, and 32 days): (i) the fate of chlordecone by measuring (14)C-chlordecone mass balance and (ii) the impact of chlordecone on microbial community structure, abundance, and function, using standardized methods (-A-RISA, taxon-specific quantitative PCR (qPCR), and (14)C-compounds mineralizing activity). Mineralization of (14)C-chlordecone was inferior below 1 % of initial (14)C-activity. Less than 2 % of (14)C-activity was retrieved from the water-soluble fraction, while most of it remained in the organic-solvent-extractable fraction (75 % of initial (14)C-activity). Only 23 % of the remaining (14)C-activity was measured in nonextractable fraction. The fate of chlordecone significantly differed between the two soils. The soluble and nonextractable fractions were significantly higher in sandy loam soil than in silty loam soil. All the measured microbiological parameters allowed discriminating statistically the two soils and showed a variation over time. The genetic structure of the bacterial community remained insensitive to chlordecone exposure in silty loam soil. In response to chlordecone exposure, the abundance of Gram-negative bacterial groups (β-, γ-Proteobacteria, Planctomycetes, and Bacteroidetes) was significantly modified only in sandy loam soil. The mineralization of (14)C-sodium acetate and (14)C-2,4-D was insensitive to chlordecone exposure in silty loam soil. However, mineralization of (14)C-sodium acetate was significantly reduced in soil

  18. Plants Rather than Mineral Fertilization Shape Microbial Community Structure and Functional Potential in Legacy Contaminated Soil.

    Science.gov (United States)

    Ridl, Jakub; Kolar, Michal; Strejcek, Michal; Strnad, Hynek; Stursa, Petr; Paces, Jan; Macek, Tomas; Uhlik, Ondrej

    2016-01-01

    Plant-microbe interactions are of particular importance in polluted soils. This study sought to determine how selected plants (horseradish, black nightshade and tobacco) and NPK mineral fertilization shape the structure of soil microbial communities in legacy contaminated soil and the resultant impact of treatment on the soil microbial community functional potential. To explore these objectives, we combined shotgun metagenomics and 16S rRNA gene amplicon high throughput sequencing with data analysis approaches developed for RNA-seq. We observed that the presence of any of the selected plants rather than fertilization shaped the microbial community structure, and the microbial populations of the root zone of each plant significantly differed from one another and/or from the bulk soil, whereas the effect of the fertilizer proved to be insignificant. When we compared microbial diversity in root zones versus bulk soil, we observed an increase in the relative abundance of Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria or Bacteroidetes, taxa which are commonly considered copiotrophic. Our results thus align with the theory that fast-growing, copiotrophic, microorganisms which are adapted to ephemeral carbon inputs are enriched in the vegetated soil. Microbial functional potential indicated that some genetic determinants associated with signal transduction mechanisms, defense mechanisms or amino acid transport and metabolism differed significantly among treatments. Genetic determinants of these categories tend to be overrepresented in copiotrophic organisms. The results of our study further elucidate plant-microbe relationships in a contaminated environment with possible implications for the phyto/rhizoremediation of contaminated areas.

  19. Use of Microtremor Array Recordings for Mapping Subsurface Soil Structure, Singapore

    Science.gov (United States)

    Walling, M.

    2012-12-01

    Microtremor array recordings are carried out in Singapore, for different geology, to study the influence of each site in modeling the subsurface structure. The Spatial Autocorrelation (SPAC) method is utilized for the computation of the soil profiles. The array configuration of the recording consists of 7 seismometers, recording the vertical component of the ground motion, and the recording at each site is carried out for 30 minutes. The results from the analysis show that the soil structure modeled for the young alluvial of Kallang Formation (KF), in terms of shear wave velocity (Vs), gives a good correlation with borehole information, while for the older geological formation of Jurong Formation (JF) (sedimentary rock sequence) and Old Alluvial (OA) (dense alluvium formation), the correlation is not very clear due to the lack of impedance contrast. The older formation of Bukit Timah Granite (BTG) show contrasting results within the formation, with the northern BTG suggesting a low Vs upper layer of about 20m - 30m while the southern BTG reveals a dense formation. The discrepancy in the variation within BTG is confirmed from borehole data that reveals the northern BTG to have undergone intense weathering while the southern BTG have not undergone noticeable weathering. Few sites with bad recording quality could not resolve the soil structure. Microtremor array recording is good for mapping sites with soft soil formation and weathered rock formation but can be limited in the absence of subsurface velocity contrast and bad quality of microtremor records.; The correlation between the Vs30 estimated from SPAC method and borehole data for the four major geological formations of Singapore. The encircled sites are the sites with recording error.

  20. X-ray CT Scanning Reveals Long-Term Copper Pollution Effects on Functional Soil Structure

    DEFF Research Database (Denmark)

    Naveed, Muhammad; Møldrup, Per; Homstrup, Martin

    Soil structure plays the main role in the ability of the soil to fulfill essential soil functions such as the root growth, rate of water infiltration and retention, transport of gaseous and chemicals/pollutants through the soil. Soil structure is a dynamic soil property and affected by various...... factors such as soil type, land use, and soil contamination. In this study, we quantified the soil structure using X-ray CT scanning and revealed the effect of a long history of Copper (Cu) pollution on it. A fallow field at Hygum Denmark provides this opportunity as it had a long history of Copper...... sulphate contamination in a gradient with Cu content varies from 21 mg kg-1 to 3837 mg kg-1. Total 20 intact soil columns (diameter of 10 cm and height of 8 cm) were sampled at five locations along the Cu-gradient from a depth of 5 to 15 cm below surface level. The soil columns were scanned at a voxel...

  1. Soil Respiration under Different Land Uses in Eastern China

    Science.gov (United States)

    Fan, Li-Chao; Yang, Ming-Zhen; Han, Wen-Yan

    2015-01-01

    Land-use change has a crucial influence on soil respiration, which further affects soil nutrient availability and carbon stock. We monitored soil respiration rates under different land-use types (tea gardens with three production levels, adjacent woodland, and a vegetable field) in Eastern China at weekly intervals over a year using the dynamic closed chamber method. The relationship between soil respiration and environmental factors was also evaluated. The soil respiration rate exhibited a remarkable single peak that was highest in July/August and lowest in January. The annual cumulative respiration flux increased by 25.6% and 20.9% in the tea garden with high production (HP) and the vegetable field (VF), respectively, relative to woodland (WL). However, no significant differences were observed between tea gardens with medium production (MP), low production (LP), WL, and VF. Soil respiration rates were significantly and positively correlated with organic carbon, total nitrogen, and available phosphorous content. Each site displayed a significant exponential relationship between soil respiration and soil temperature measured at 5 cm depth, which explained 84–98% of the variation in soil respiration. The model with a combination of soil temperature and moisture was better at predicting the temporal variation of soil respiration rate than the single temperature model for all sites. Q10 was 2.40, 2.00, and 1.86–1.98 for VF, WL, and tea gardens, respectively, indicating that converting WL to VF increased and converting to tea gardens decreased the sensitivity of soil respiration to temperature. The equation of the multiple linear regression showed that identical factors, including soil organic carbon (SOC), soil water content (SWC), pH, and water soluble aluminum (WSAl), drove the changes in soil respiration and Q10 after conversion of land use. Temporal variations of soil respiration were mainly controlled by soil temperature, whereas spatial variations were

  2. Soil-structure interaction effects on containment fragilities and floor response spectra statistics

    International Nuclear Information System (INIS)

    Pires, J.; Reich, M.; Chokshi, N.C.

    1987-01-01

    The probability-based method for the reliability evaluation of nuclear structures developed at Brookhaven National Laboratory (BNL) is extended to include soil-structure interaction effects. A reinforced concrete containment is analyzed in order to investigate the soil-structure interaction effects on: structural fragilities; floor response spectra statistics and acceleration response correlations. To include the effect of soil flexibility on the reliability assessment the following two step approach is used. In the first step, the lumped parameter method for soil-structure interaction analysis is used together with a stick model representation of the structure in order to obtain the motions of the foundation plate. These motions, which include both translations and rotations of the foundation plate, are expressed in terms of the power-spectral density of the free-field ground excitation and the transfer function of the total acceleration response of the foundation. The second step involves a detailed finite element model of the structure subjected to the interaction motions computed from step one. Making use of the structural model and interaction motion the reliability analysis method yields the limit stat probabilities and fragility data for the structure

  3. Runoff and Sediment Production under the Similar Rainfall Events in Different Aggregate Sizes of an Agricultural Soil

    Directory of Open Access Journals (Sweden)

    S. F. Eslami

    2016-09-01

    Full Text Available Introduction: Soil erosion by water is the most serious form of land degradation throughout the world, particularly in arid and semi-arid regions. In these areas, soils are weakly structured and are easily disrupted by raindrop impacts. Soil erosion is strongly affected by different factors such as rainfall characteristics, slope properties, vegetation cover, conservation practices, and soil erodibility. Different physicochemical soil properties such texture, structure, infiltration rate, organic matter, lime and exchangeable sodium percentage can affect the soil erodibility as well as soil erosion. Soil structure is one of the most important properties influencing runoff and soil loss because it determines the susceptibility of the aggregates to detach by either raindrop impacts or runoff shear stress. Many soil properties such as particle size distribution, organic matter, lime, gypsum, and exchangeable sodium percentage (ESP can affect the soil aggregation and the stability. Aggregates size distribution and their stability can be changed considerably because of agricultural practices. Information about variations of runoff and sediment in the rainfall events can be effective in modeling runoff as well as sediment. Thus, the study was conducted to determine runoff and sediment production of different aggregate sizes in the rainfall event scales. Materials and Methods: Toward the objective of the study, five aggregate classes consist of 0.25-2, 2-4.75, 4.75-5.6, 5.6-9.75, and 9.75-12.7 mm were collected from an agricultural sandy clay loam (0-30 cm using the related sieves in the field. Physicochemical soil analyses were performed in the aggregate samples using conventional methods in the lab. The aggregate samples were separately filed into fifteen flumes with a dimension of 50 cm × 100 cm and 15-cm in depth. The aggregate flumes were fixed on a steel plate with 9% slope and were exposed to the simulated rainfalls for investigating runoff and

  4. Microbial quality of soil from the Pampa biome in response to different grazing pressures

    Directory of Open Access Journals (Sweden)

    Rafael S. Vargas

    2015-06-01

    Full Text Available The aim of this study was to evaluate the impact of different grazing pressures on the activity and diversity of soil bacteria. We performed a long-term experiment in Eldorado do Sul, southern Brazil, that assessed three levels of grazing pressure: high pressure (HP, with 4% herbage allowance (HA, moderate pressure (MP, with 12% HA, and low pressure (LP, with 16% HA. Two reference areas were also assessed, one of never-grazed native vegetation (NG and another of regenerated vegetation after two years of grazing (RG. Soil samples were evaluated for microbial biomass and enzymatic (β-glucosidase, arylsulfatase and urease activities. The structure of the bacterial community and the population of diazotrophic bacteria were evaluated by RFLP of the 16S rRNA and nifH genes, respectively. The diversity of diazotrophic bacteria was assessed by partial sequencing of the 16S rDNA gene. The presence of grazing animals increased soil microbial biomass in MP and HP. The structures of the bacterial community and the populations of diazotrophic bacteria were altered by the different grazing managements, with a greater diversity of diazotrophic bacteria in the LP treatment. Based on the characteristics evaluated, the MP treatment was the most appropriate for animal production and conservation of the Pampa biome.

  5. Build your own soil: exploring microfluidics to create microbial habitat structures

    Science.gov (United States)

    Aleklett, Kristin; Kiers, E Toby; Ohlsson, Pelle; Shimizu, Thomas S; Caldas, Victor EA; Hammer, Edith C

    2018-01-01

    Soil is likely the most complex ecosystem on earth. Despite the global importance and extraordinary diversity of soils, they have been notoriously challenging to study. We show how pioneering microfluidic techniques provide new ways of studying soil microbial ecology by allowing simulation and manipulation of chemical conditions and physical structures at the microscale in soil model habitats. PMID:29135971

  6. Differences in Bacterial Diversity and Communities Between Glacial Snow and Glacial Soil on the Chongce Ice Cap, West Kunlun Mountains.

    Science.gov (United States)

    Yang, Guang Li; Hou, Shu Gui; Le Baoge, Ri; Li, Zhi Guo; Xu, Hao; Liu, Ya Ping; Du, Wen Tao; Liu, Yong Qin

    2016-11-04

    A detailed understanding of microbial ecology in different supraglacial habitats is important due to the unprecedented speed of glacier retreat. Differences in bacterial diversity and community structure between glacial snow and glacial soil on the Chongce Ice Cap were assessed using 454 pyrosequencing. Based on rarefaction curves, Chao1, ACE, and Shannon indices, we found that bacterial diversity in glacial snow was lower than that in glacial soil. Principal coordinate analysis (PCoA) and heatmap analysis indicated that there were major differences in bacterial communities between glacial snow and glacial soil. Most bacteria were different between the two habitats; however, there were some common bacteria shared between glacial snow and glacial soil. Some rare or functional bacterial resources were also present in the Chongce Ice Cap. These findings provide a preliminary understanding of the shifts in bacterial diversity and communities from glacial snow to glacial soil after the melting and inflow of glacial snow into glacial soil.

  7. Soil seal development under simulated rainfall: Structural, physical and hydrological dynamics

    Science.gov (United States)

    Armenise, Elena; Simmons, Robert W.; Ahn, Sujung; Garbout, Amin; Doerr, Stefan H.; Mooney, Sacha J.; Sturrock, Craig J.; Ritz, Karl

    2018-01-01

    contrasting behaviour was related to different dynamics and processes of seal formation which depended on the soil properties. The impact of rainfall-induced surface sealing on the hydrological behaviour of soil (as represented by WDTP and Kun) was rapid and substantial: an average 60% reduction in Kun occurred for all soils between 2 and 9 min rainfall, and water repellent surfaces were identified for SZL and ZCL. This highlights that the condition of the immediate surface of agricultural soils involving rainfall-induced structural seals has a strong impact in the overall ability of soil to function as water reservoir.

  8. Chemical evaluation of soil organic matter structure in diverse cropping systems

    Science.gov (United States)

    Soil organic matter (SOM) improves soil structure, nutrient and water retention, and biodiversity while reducing susceptibility to soil erosion. SOM also represents an important pool of C that can be increased to help mitigate global climate change. Our understanding of how agricultural management ...

  9. [Soil quality assessment of forest stand in different plantation esosystems].

    Science.gov (United States)

    Huang, Yu; Wang, Silong; Feng, Zongwei; Gao, Hong; Wang, Qingkui; Hu, Yalin; Yan, Shaokui

    2004-12-01

    After a clear-cutting of the first generation Cunninghamia lanceolata plantation in 1982, three plantation ecosystems, pure Michelia macclurei stand (PMS), pure Chinese-fir stand (PCS) and their mixed stand, were established in spring 1983, and their effects on soil characteristics were evaluated by measuring some soil physical, chemical, microbiological and biochemical parameters. After 20 years' plantation, all test indices showed differences among different forest management models. Both PMS and MCM had a favorable effect on soil fertility maintenance. Soil quality assessment showed that some soil functions, e.g., water availability, nutrient availability, root suitability and soil quality index were all in a moderate level under the mixed and pure PMS stands, whereas in a relatively lower level under successive PCS stand. The results also showed that there existed close correlations between soil total organic C (TOC), cation exchange capacity (CEC), microbial biomass-C (Cmic) and other soil physical, chemical and biological indices. Therefore, TOC, CEC and Cmic could be used as the indicators in assessing soil quality in this study area. In addition, there were also positive correlations between soil microbial biomass-C and TOC, soil microbial biomass-N and total N, and soil microbial biomass-P and total P in the present study.

  10. Effects of organic versus conventional arable farming on soil structure and organic matter dynamics in a marine loam in the Netherlands

    NARCIS (Netherlands)

    Pulleman, M.M.; Jongmans, A.G.; Marinissen, J.C.Y.; Bouma, J.

    2003-01-01

    We compared the effects of conventional and organic arable farming on soil organic matter (SOM) content, soil structure, aggregate stability and C and N mineralization, which are considered important factors in defining sustainable land management. Within one soil series, three different farming

  11. Seismic response and fragility evaluation for an Eastern US NPP including soil-structure interaction effects

    International Nuclear Information System (INIS)

    Ghiocel, Dan M.; Wilson, Paul R.; Thomas, Gary G.; Stevenson, John D.

    1998-01-01

    The paper discusses methodological aspects involved in a probabilistic seismic soil-structure interaction (SSI) analysis for a Seismic Probabilistic Risk Assessment (SPRA) review. An example of an Eastern US nuclear power plant (NPP) is presented. The approach presented herein follows the current practice of the Individual Plant Examination for External Events (IPEEE) program in the US. The NPP is founded on a relatively soft soil deposit, and thus the SSI effects on seismic responses are significant. Probabilistic models used for the idealization of the seismic excitation and the surrounding soil deposit are described. Using a lognormal format, computed random variability effects were combined with those proposed in the SPRA methodology guidelines. Probabilistic floor response spectra and structural fragilities for different NPP buildings were computed. Structural capacities were determined following the current practice which assumes independent median safety factors for strength and inelastic absorption. Limitations of the IPEEE practice for performing SPRA are discussed and alternate procedures, more rigorous and simple to implement, are suggested

  12. Effect of bovine manure on fecal coliform attachment to soil and soil particles of different sizes.

    Science.gov (United States)

    Guber, Andrey K; Pachepsky, Yakov A; Shelton, Daniel R; Yu, Olivia

    2007-05-01

    Manure-borne bacteria can be transported in runoff as free cells, cells attached to soil particles, and cells attached to manure particles. The objectives of this work were to compare the attachment of fecal coliforms (FC) to different soils and soil fractions and to assess the effect of bovine manure on FC attachment to soil and soil fractions. Three sand fractions of different sizes, the silt fraction, and the clay fraction of loam and sandy clay loam soils were separated and used along with soil samples in batch attachment experiments with water-FC suspensions and water-manure-FC suspensions. In the absence of manure colloids, bacterial attachment to soil, silt, and clay particles was much higher than the attachment to sand particles having no organic coating. The attachment to the coated sand particles was similar to the attachment to silt and clay. Manure colloids in suspensions decreased bacterial attachment to soils, clay and silt fractions, and coated sand fractions, but did not decrease the attachment to sand fractions without the coating. The low attachment of bacteria to silt and clay particles in the presence of manure colloids may cause predominantly free-cell transport of manure-borne FC in runoff.

  13. EFFECT OF DIFFERENT LEVELS AGROECOLOGICAL LOADS ON BIOCHEMICAL CHARACTERISTICS OF SOIL

    Directory of Open Access Journals (Sweden)

    A. V. Shchur

    2016-01-01

    Full Text Available Aim. To study the effect of different levels of agri-environmental loads on the enzymatic activity of the soil.Methods. Isolation of soil fauna was conducted by thermogradient. Ecological characteristics of soil biota community was determined by ecological indices. The enzymatic activity of soil under different crops and at different levels of agri-environmental loads in our experiments was determined by methods proven in the laboratory soil enzymology Institute of Experimental Botany name V.F. Kuprevich and Belorussian Research Institute for Soil Science and Agricultural Chemistry.Results. Community soil biota is polydominant character, as evidenced by the values of environmental indices. It does not set a significant impact on the community agrotechnological loads of soil micro and mesofauna. Absolute figures soil phosphatase activity averaged over all embodiments without recourse formation were higher by 63% compared with plowing. Invertase and catalase activity was much higher in stubble on all variants of the experiment and selection of terms. The content of peroxidase lower under pure steam. The laws have taken place in respect of peroxidase activity, marked for polifenoloksidase activity.Main conclusion. There was no major change in the ecological characteristics of soil biota. In the enzymatic activity of soil influenced by sampling time, fertilizer system, soil tillage methods and cultivated crops.

  14. Physical, Mineralogical, and Micromorphological Properities of Expansive Soil Treated at Different Temperature

    Directory of Open Access Journals (Sweden)

    Jian Li

    2014-01-01

    Full Text Available Different characterizations were carried out on unheated expansive soil and samples heated at different temperature. The samples are taken from the western outskirts of Nanning of Guangxi Province, China. In the present paper, the mineral and chemical composition and several essential physical parameters of unheated expansive soil are indicated by XRD and EDX analysis. Moreover, the structural transition and change of mechanical properties of samples heated in the range of room temperature to 140°C are proved by TG-DTA and SEM observation. The mean particle diameter, density, hydraulic behaviors, and bond strength also have been investigated. The results indicate that, along with the loss of free water, physical absorbed water, and chemically bound water, the microstructure experiences some obvious change. In addition, the particle size and density both will increase rapidly before 100°C and undertake a slow growth or decline when higher than 100°C. The hydraulic behaviors and strength performance of unheated samples and the one heated at 100°C are given out as well. All these researches play fundamental role in the pollution prevention, modification, and engineering application of expansive soil.

  15. The dependence of the content of Cs137 forms in sod-podzolic sabulous soil of different degree of humidification on the basic soil tillage

    International Nuclear Information System (INIS)

    Tsybulko, N.N.; Ermolenko, A.V.; Lazarevich, S.S.

    2011-01-01

    The dependence of the content of 137 Cs-forms in sod-podzolic sabulous soils of different degree of humidification on the basic soil tillage is presented. Structure (in %) of plant available 137Cs in automorphic and semi-hydromorphic soils is shown. The influence of soil tillage type on 137Cs content is analyzed per 2007-2008. Content (in %) of plant available 137Cs in automorphic and semi-hydromorphic soils during moldboard plowing, beardless plowing, surface disc plowing and minimum tillage is evaluated. In sod-podzolic sabulous soils with 137 Cs pollution density which equals to 13-15 Cu/km2 the content of the accessible for plants forms (water-soluble, exchangeable, mobile forms) makes in average 9-11%; of those inaccessible (not exchangeable, fixed) 89-91%. It is established, that the degree of the hydromorphic feature in sod-podzolic sabolous soil influence the content of accessible forms of 1376cs in its top layer. The chisel tillage and the minimum tillage make it possible to decrease the accessible 137Cs connections by 2-4%

  16. Seismic response of nuclear reactors in layered liquefiable soil deposits including nonlinear soil-structure interaction

    International Nuclear Information System (INIS)

    Zaman, M.; Mamoon, S.M.

    1989-01-01

    Analysis of seismic response of structures located at a site with potential for soil liquefaction has drawn attention of many researchers. The topic is particularly important in the design of critical facilities like nuclear reactors and defense installations. This paper presents the results of a study involving evaluation of coupled seismic response of structures (model nuclear reactors) and characteristics of soil liquefaction at a site. The analysis procedure employed is based on the nonlinear finite element (FE) technique and accounts for the interaction effects due to a neighboring structure. Emphasis is given to the following features: prediction of spatial and temporal variation of pore water pressure; identification of the on-set of liquefaction based on the effective stress approach, and tracing the propagation of the liquefied zones with time and resulting response of the structures

  17. The Role of Teak Leaves (Tectona grandis), Rhizobium, and Vesicular-Arbuscular Mycorrhizae on Improving Soil Structure and Soil Nutrition

    Science.gov (United States)

    Yuliani; Rahayu, Y. S.

    2018-01-01

    Calcium is the largest mineral in calcareous soils. High levels of calcium carbonate lead to phosphate deposition. Nutrient deficiencies in calcareous soil (mainly Phosphate and Nitrogen) resulted only certain crops with a wide range of tolerances that can grow. Meanwhile, dynamics nutrient in calcareous soils also depend on the topography and decomposition of the litter in the growing vegetation. The purpose of this study was to describe the pattern of nutrient enhancement and soil-texture structures on calcareous soils after littering the teak leaves, Rhizobium and Vesicular Arbuscular Mycorrhiza. The research parameters were the concentration of N, P, K; C/N ratio, humid acid content, and soil structure, which measured at days 30, 60, and 85 of soil decomposition process. The results showed that at days 30, the texture and structure of the soil tend to be stable (porosity 31.2, DMR 1.93, moisture content 0.36, sandy clay) while at days 85 has been very stable (porosity 49.8; Water content 0.28, sandy clay). While C and N organic, N and K concentration at days 30 showed low value (C organic 1.03, N 0.12, K 0.49, C / N ratio 9). This condition is almost unchanged at days 85. While the P value shows very high value (60.53) at days 30 although after 60 days the P content showed a decrease.

  18. Soil Structure Interaction Effect on High Rise and Low Rise Buildings

    OpenAIRE

    Divya Pathak; PAresh H. SHAH

    2000-01-01

    Effect of supporting soil on the response of structure has been analyzed in the present study. A low rise (G+ 5 storey) and a high rise (G+12 storey) building has been taken for the analysis. For both type of buildings, the response of building with and without consideration of soil structure interaction effect has been compared.Without interaction case is the case in which ends of the structure are assumed to be fixed while in interaction case, structure is assumed to be...

  19. Uncertainty in dual permeability model parameters for structured soils

    Science.gov (United States)

    Arora, B.; Mohanty, B. P.; McGuire, J. T.

    2012-01-01

    Successful application of dual permeability models (DPM) to predict contaminant transport is contingent upon measured or inversely estimated soil hydraulic and solute transport parameters. The difficulty in unique identification of parameters for the additional macropore- and matrix-macropore interface regions, and knowledge about requisite experimental data for DPM has not been resolved to date. Therefore, this study quantifies uncertainty in dual permeability model parameters of experimental soil columns with different macropore distributions (single macropore, and low- and high-density multiple macropores). Uncertainty evaluation is conducted using adaptive Markov chain Monte Carlo (AMCMC) and conventional Metropolis-Hastings (MH) algorithms while assuming 10 out of 17 parameters to be uncertain or random. Results indicate that AMCMC resolves parameter correlations and exhibits fast convergence for all DPM parameters while MH displays large posterior correlations for various parameters. This study demonstrates that the choice of parameter sampling algorithms is paramount in obtaining unique DPM parameters when information on covariance structure is lacking, or else additional information on parameter correlations must be supplied to resolve the problem of equifinality of DPM parameters. This study also highlights the placement and significance of matrix-macropore interface in flow experiments of soil columns with different macropore densities. Histograms for certain soil hydraulic parameters display tri-modal characteristics implying that macropores are drained first followed by the interface region and then by pores of the matrix domain in drainage experiments. Results indicate that hydraulic properties and behavior of the matrix-macropore interface is not only a function of saturated hydraulic conductivity of the macroporematrix interface (Ksa) and macropore tortuosity (lf) but also of other parameters of the matrix and macropore domains.

  20. Aspect has a greater impact on alpine soil bacterial community structure than elevation.

    Science.gov (United States)

    Wu, Jieyun; Anderson, Barbara J; Buckley, Hannah L; Lewis, Gillian; Lear, Gavin

    2017-03-01

    Gradients in environmental conditions, including climate factors and resource availability, occur along mountain inclines, providing a 'natural laboratory' to explore their combined impacts on microbial distributions. Conflicting spatial patterns observed across elevation gradients in soil bacterial community structure suggest that they are driven by various interacting factors at different spatial scales. Here, we investigated the relative impacts of non-resource (e.g. soil temperature, pH) and resource conditions (e.g. soil carbon and nitrogen) on the biogeography of soil bacterial communities across broad (i.e. along a 1500 m mountain elevation gradient) and fine sampling scales (i.e. along sunny and shady aspects of a mountain ridge). Our analysis of 16S rRNA gene data confirmed that when sampling across distances of soil pH. These findings highlight the need to incorporate knowledge of multiple factors, including site aspect and soil pH for the appropriate use of elevation gradients as a proxy to explore the impacts of climate change on microbial community composition. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  1. Contact angles of wetting and water stability of soil structure

    Science.gov (United States)

    Kholodov, V. A.; Yaroslavtseva, N. V.; Yashin, M. A.; Frid, A. S.; Lazarev, V. I.; Tyugai, Z. N.; Milanovskiy, E. Yu.

    2015-06-01

    From the soddy-podzolic soils and typical chernozems of different texture and land use, dry 3-1 mm aggregates were isolated and sieved in water. As a result, water-stable aggregates and water-unstable particles composing dry 3-1 mm aggregates were obtained. These preparations were ground, and contact angles of wetting were determined by the static sessile drop method. The angles varied from 11° to 85°. In most cases, the values of the angles for the water-stable aggregates significantly exceeded those for the water-unstable components. In terms of carbon content in structural units, there was no correlation between these parameters. When analyzing the soil varieties separately, the significant positive correlation between the carbon content and contact angle of aggregates was revealed only for the loamy-clayey typical chernozem. Based on the multivariate analysis of variance, the value of contact wetting angle was shown to be determined by the structural units belonging to water-stable or water-unstable components of macroaggregates and by the land use type. In addition, along with these parameters, the texture has an indirect effect.

  2. Secondary successions of biota in oil-polluted peat soil upon different biological remediation methods

    Science.gov (United States)

    Melekhina, E. N.; Markarova, M. Yu.; Shchemelinina, T. N.; Anchugova, E. M.; Kanev, V. A.

    2015-06-01

    The effects of different bioremediation methods on restoration of the oil-polluted peat soil (Histosol) in the northernmost taiga subzone of European Russia was studied. The population dynamics of microorganisms belonging to different trophic groups (hydrocarbon-oxidizing, ammonifying, nitrifying, and oligonitrophilic) were analyzed together with data on the soil enzyme (catalase and dehydrogenase) activities, population densities of soil microfauna groups, their structures, and states of phytocenoses during a sevenyear-long succession. The remediation with biopreparations Roder composed of oil-oxidizing microorganisms-Roder with Rhodococcus rubber and R. erythropolis and Universal with Rhodotorula glutinis and Rhodococcus sp.-was more efficient than the agrochemical and technical remediation. It was concluded that the biopreparations activate microbiological oil destruction, thereby accelerating restoration succession of phytocenosis and zoocenosis. The succession of dominant microfauna groups was observed: the dipteran larvae and Mesostigmata mites predominant at the early stages were replaced by collembolans at later stages. The pioneer oribatid mite species were Tectocepheus velatus, Oppiella nova, Liochthonius sellnicki, Oribatula tibialis, and Eupelops sp.

  3. Terminal Restriction Fragment Length Polymorphism Analysis of Soil Bacterial Communities under Different Vegetation Types in Subtropical Area.

    Directory of Open Access Journals (Sweden)

    Zeyan Wu

    Full Text Available Soil microbes are active players in energy flow and material exchange of the forest ecosystems, but the research on the relationship between the microbial diversity and the vegetation types is less conducted, especially in the subtropical area of China. In this present study, the rhizosphere soils of evergreen broad-leaf forest (EBF, coniferous forest (CF, subalpine dwarf forest (SDF and alpine meadow (AM were chosen as test sites. Terminal-restriction fragment length polymorphisms (T-RFLP analysis was used to detect the composition and diversity of soil bacterial communities under different vegetation types in the National Natural Reserve of Wuyi Mountains. Our results revealed distinct differences in soil microbial composition under different vegetation types. Total 73 microbes were identified in soil samples of the four vegetation types, and 56, 49, 46 and 36 clones were obtained from the soils of EBF, CF, SDF and AM, respectively, and subsequently sequenced. The Actinobacteria, Fusobacterium, Bacteroidetes and Proteobacteria were the most predominant in all soil samples. The order of Shannon-Wiener index (H of all soil samples was in the order of EBF>CF>SDF>AM, whereas bacterial species richness as estimated by four restriction enzymes indicated no significant difference. Principal component analysis (PCA revealed that the soil bacterial communities' structures of EBF, CF, SDF and AM were clearly separated along the first and second principal components, which explained 62.17% and 31.58% of the total variance, respectively. The soil physical-chemical properties such as total organic carbon (TOC, total nitrogen (TN, total phosphorus (TP and total potassium (TK were positively correlated with the diversity of bacterial communities.

  4. Study on soil-pile-structure-TMD interaction system by shaking table model test

    Science.gov (United States)

    Lou, Menglin; Wang, Wenjian

    2004-06-01

    The success of the tuned mass damper (TMD) in reducing wind-induced structural vibrations has been well established. However, from most of the recent numerical studies, it appears that for a structure situated on very soft soil, soil-structure interaction (SSI) could render a damper on the structure totally ineffective. In order to experimentally verify the SSI effect on the seismic performance of TMD, a series of shaking table model tests have been conducted and the results are presented in this paper. It has been shown that the TMD is not as effective in controlling the seismic responses of structures built on soft soil sites due to the SSI effect. Some test results also show that a TMD device might have a negative impact if the SSI effect is neglected and the structure is built on a soft soil site. For structures constructed on a soil foundation, this research verifies that the SSI effect must be carefully understood before a TMD control system is designed to determine if the control is necessary and if the SSI effect must be considered when choosing the optimal parameters of the TMD device.

  5. Response of soil microbial activities and microbial community structure to vanadium stress.

    Science.gov (United States)

    Xiao, Xi-Yuan; Wang, Ming-Wei; Zhu, Hui-Wen; Guo, Zhao-Hui; Han, Xiao-Qing; Zeng, Peng

    2017-08-01

    High levels of vanadium (V) have long-term, hazardous impacts on soil ecosystems and biological processes. In the present study, the effects of V on soil enzymatic activities, basal respiration (BR), microbial biomass carbon (MBC), and the microbial community structure were investigated through 12-week greenhouse incubation experiments. The results showed that V content affected soil dehydrogenase activity (DHA), BR, and MBC, while urease activity (UA) was less sensitive to V stress. The average median effective concentration (EC 50 ) thresholds of V were predicted using a log-logistic dose-response model, and they were 362mgV/kg soil for BR and 417mgV/kg soil for DHA. BR and DHA were more sensitive to V addition and could be used as biological indicators for soil V pollution. According to a polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) analysis, the structural diversity of the microbial community decreased for soil V contents ranged between 254 and 1104mg/kg after 1 week of incubation. As the incubation time increased, the diversity of the soil microbial community structure increased for V contents ranged between 354 and 1104mg/kg, indicating that some new V-tolerant bacterial species might have replicated under these conditions. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. [Heidaigou Opencast Coal Mine: Soil Enzyme Activities and Soil Physical and Chemical Properties Under Different Vegetation Restoration].

    Science.gov (United States)

    Fang, Ying; Ma, Ren-tian; An, Shao-shan; Zhao, Jun-feng; Xiao, Li

    2016-03-15

    Choosing the soils under different vegetation recovery of Heidaigou dump as the research objects, we mainly analyzed their basic physical and chemical properties and enzyme activities with the method of Analysis of Variance as well as their relations using Pearson correlation analysis and path analysis hoping to uncover the driving factors of the differences between soil enzyme activities under different vegetation restoration, and provide scientific suggestions for the plant selection as well as make a better evaluation to the reclamation effect. The results showed that: (1) Although the artificial vegetation restoration improved the basic physical and chemical properties of the soils while increasing their enzyme activities to a certain extent, the soil conditions still did not reach the level of the natural grassland; (2) Contents of soil organic carbon (SOC) and soil total nitrogen (TN) of the seabuckthorns were the nearest to those of the grassland, which reached 54. 22% and 70. 00% of those of the grassland. In addition, the soil bulk density of the seabuckthorns stand was 17. 09% lower than the maximum value of the amorpha fruitcosa land. The SOC and TN contents as well as the bulk density showed that seabuckthorns had advantages as the species for land reclamation of this dump; Compared with the seabuckthorn, the pure poplar forest had lower contents of SOC and TN respectively by 35.64% and 32.14% and displayed a 16.79% higher value of soil bulk density; (3) The activities of alkaline phosphotase under different types of vegetation rehabilitation had little variation. But soil urease activities was more sensitive to reflect the effects of vegetation restoration on soil properties; (4) Elevation of the SOC and TN turned out to be the main cause for soil fertility restoration and increased biological activities of the dump.

  7. Calculation methods of Structure-Soil-Structure Interaction (3SI) for embedded buildings: Application to NUPEC tests

    International Nuclear Information System (INIS)

    Clouteau, D.; Broc, D.; Devesa, G.; Guyonvarh, V.; Massin, P.

    2012-01-01

    This work aims at improving and validating methods coupling Finite Element (FE) and Boundary Element (BE) Methods in the context of Soil-Structure Interaction (SSI) and Structure-Soil-Structure Interaction (3SI) tests performed by NUPEC on mock-up structures built on an unmade ground. Several cases have been tested: single and juxtaposed buildings, shallow and embedded foundations, with various loading conditions: forced and natural seismic loadings. The numerical simulations of forced vibration tests are in good agreement with the results of the NUPEC experiments in the case of two embedded buildings either in terms of amplitude and resonance. The numerical simulation of seismic response tests by FEM and BEM allows for a proper choice of the 'reference point' where the computed and the experimental displacements coincide. A parametric analysis of Structure-Soil-Structure Interaction carried out by the FEM has allowed to determine the influence of some parameters on SSI. Most of them like the position of the building in the excavation, the direction of the load, the quality of the contact between the sidewalls of the buildings and the soil for embedded foundations, do not show to have a strong influence on the dynamic system behaviour, which is mainly governed by the stiffness of the first soil layer. As far as 3SI is concerned, this paper shows that when the cross interaction has a small effect on the building response in the case of surface foundations, it has a strong influence in the case of embedded foundations with an important decrease of the response at the top of the buildings. (authors)

  8. Seismic behavior of NPP structures subjected to realistic 3D, inclined seismic motions, in variable layered soil/rock, on surface or embedded foundations

    International Nuclear Information System (INIS)

    Jeremić, B.; Tafazzoli, N.; Ancheta, T.; Orbović, N.; Blahoianu, A.

    2013-01-01

    Highlights: • Full 3D, inclined, incoherent seismic motions used for modeling SSI of an NPP. • Analyzed effects of variable and uniform soil/rock layering profiles on SSI. • Surface and embedded foundations were modeled and differences analyzed. - Abstract: Presented here is an investigation of the seismic response of a massive NPP structures due to full 3D, inclined, un-correlated input motions for different soil and rock profiles. Of particular interest are the effects of soil and rock layering on the response and the changes of input motions (frequency characteristics) due to such layering. In addition to rock/soil layering effects, investigated are also effects of foundation embedment on dynamic response. Significant differences were observed in dynamic response of containment and internal structure founded on surface and on embedded foundations. These differences were observed for both rock and soil profiles. Select results are used to present most interesting findings

  9. Crossing Phenomena in Overhead Line Equipment (OHLE) Structure in 3D Space Considering Soil-Structure Interaction

    Science.gov (United States)

    Ngamkhanong, Chayut; Kaewunruen, Sakdirat; Baniotopoulos, Charalampos; Papaelias, Mayorkinos

    2017-10-01

    Nowadays, the electric train becomes one of the efficient railway systems that are lighter, cleaner, quieter, cheaper and faster than a conventional train. Overhead line equipment (OHLE), which supplies electric power to the trains, is designed on the principle of overhead wires placed over the railway track. The OHLE is supported by mast structure which located at the lineside along the track. Normally, mast structure is a steel column or truss structure which supports the overhead wire carrying the power. Due to the running train and severe periodic force, such as an earthquake, in surrounding area may cause damage to the OHLE structure especially mast structure which leads to the failure of the electrical system. The mast structure needs to be discussed in order to resist the random forces. Due to the vibration effect, the natural frequencies of the structure are necessary. This is because when the external applied force occurs within a range of frequency of the structure, resonance effect can be expected which lead to the large oscillations and deflections. The natural frequency of a system is dependent only on the stiffness of the structure and the mass which participates with the structure, including self-weight. The modal analysis is used in order to calculate the mode shapes and natural frequencies of the mast structure during free vibration. A mast structure with varying rotational soil stiffness is used to observe the influence of soil-structure action. It is common to use finite element analysis to perform a modal analysis. This paper presents the fundamental mode shapes, natural frequencies and crossing phenomena of three-dimensional mast structure considering soil-structure interaction. The sensitivity of mode shapes to the variation of soil-structure interaction is discussed. The outcome of this study will improve the understanding of the fundamental dynamic behaviour of the mast structure which supports the OHLE. Moreover, this study will be a

  10. Evidence for the functional significance of diazotroph community structure in soil.

    Science.gov (United States)

    Hsu, Shi-Fang; Buckley, Daniel H

    2009-01-01

    Microbial ecologists continue to seek a greater understanding of the factors that govern the ecological significance of microbial community structure. Changes in community structure have been shown to have functional significance for processes that are mediated by a narrow spectrum of organisms, such as nitrification and denitrification, but in some cases, functional redundancy in the community seems to buffer microbial ecosystem processes. The functional significance of microbial community structure is frequently obscured by environmental variation and is hard to detect in short-term experiments. We examine the functional significance of free-living diazotrophs in a replicated long-term tillage experiment in which extraneous variation is minimized and N-fixation rates can be related to soil characteristics and diazotroph community structure. Soil characteristics were found to be primarily impacted by tillage management, whereas N-fixation rates and diazotroph community structure were impacted by both biomass management practices and interactions between tillage and biomass management. The data suggest that the variation in diazotroph community structure has a greater impact on N-fixation rates than do soil characteristics at the site. N-fixation rates displayed a saturating response to increases in diazotroph community diversity. These results show that the changes in the community structure of free-living diazotrophs in soils can have ecological significance and suggest that this response is related to a change in community diversity.

  11. The November 23, 1980 Irpinia earthquake (Terremoto Campano Lucano) observations of soil and soil-structure interaction effects

    International Nuclear Information System (INIS)

    Guerpinar, A.; Vardanega, C.; Ries, E.R.

    1981-01-01

    A catastrophe of major dimensions such as the November 23, 1980 Irpinia Earthquake (Terremoto Campano Lucano) should be examined from different points of view, e.g. geological engineering, architectural, rural and urban planning, socio-economical, so that the effects of future events can be mitigated to a certain extent. This paper covers a portion of the engineering lessons to be drawn from this event. These efforts have been directed to bring out cases and observations which may have significance in the siting and design of nuclear power plants. The Irpinia Earthquake caused widespread damage in a region of southern Italy which is developing in terms of industrial and transportation facilities. It was, therefore, possible to observe damage (or the lack of it) on a wide variety of structures, such as buildings, bridges, tunnels, roads and chimneys ranging in age from very old to very new. The seven-day field trip took place at the end of January 1981, about two months after the earthquake. With few sporadic exceptions, such as the hospital building in S. Angelo dei Lombardi, the damaged structures were untouched and reliable engineering observations on the damage patterns were possible. One of the most striking aspects of the earthquake was the extent of the damage caused to structures by soil failures or soil-structure interaction effects. This aspect, in particular, is addressed in this paper. (orig.)

  12. [Effects of heavy machinery operation on the structural characters of cultivated soils in black soil region of Northeast China].

    Science.gov (United States)

    Wang, En-Heng; Chai, Ya-Fan; Chen, Xiang-Wei

    2008-02-01

    With the cultivated soils in black soil region of Northeast China as test objects, this paper measured their structural characters such as soil strength, bulk density, and non-capillary porosity/capillary porosity (NCP/CP) ratio before and after heavy and medium-sized machinery operation, aimed to study the effects of machinery operation on the physical properties of test soils. The results showed that after machinery operation, there existed three distinct layers from top to bottom in the soil profiles, i.e., plowed layer, cumulative compacted layer, and non-affected layer, according to the changes of soil strength. Under medium-sized machinery operation, these three layers were shallower, and there was a new plow pan at the depth between 17.5 and 30 cm. Heavy machinery operation had significant positive effects on the improvement of topsoil structure (P heavy machinery, the bulk density of topsoil decreased by 7.2% and 3.5%, respectively, and NCP/CP increased by 556.6% after subsoiling, which would benefit water infiltration, reinforce water storage, and weaken the threat of soil erosion. The main action of heavy machinery operation was soil loosening, while that of medium-sized machinery operation was soil compacting.

  13. Vertical and horizontal differences of soil parameters and radiocaesium contents in soil profiles (dystric cambisol) under spruce

    International Nuclear Information System (INIS)

    Strebl, F.; Gerzabek, M.

    1997-05-01

    In a spruce forest stand 9 pooled soil profiles (ten auger cores each, 4 layers) were collected within a homogeneous area of 200 ha. This sampling technique provides sufficient accuracy for the determination of most physico-chemical soil characteristics as well as for the assessment of vertical gradients and horizontal variability within the investigation area. The results reveal the soils' tendency for podsolization and acidification processes. In spite of the small sample sizes cation wash-out (Ca, Mg) due to differences in the orographic situation was determined with high significance. 86 % of 137 Cs-contamination derived from the Chernobyl-fallout in 1986 are still found in the top-soil (10 cm). Nutrient-cycling and the high binding capacity of soil organic matter retard vertical migration of 137 Cs in forest soils effectively. From the present data sets for different soil parameters the minimum number of soil samples ensuring maximum admissible errors of 10 and 20 % were calculated. (author)

  14. Soil arthropod fauna from natural ecosites and reclaimed oil sands soils in northern Alberta

    Energy Technology Data Exchange (ETDEWEB)

    Battigelli, J.P.; Leskiw, L.A. [Paragon Soil and Environmental Consulting Inc., Edmonton, AB (Canada)

    2006-07-01

    An understanding of soil invertebrates may facilitate current reclamation activities in the oil sands region of Alberta. This paper presented the results of a study investigating the density, diversity, and structure of soil arthropod assemblages in natural habitats and reclaimed sites. The purpose of the study was to establish a baseline inventory of soil arthropod assemblages in order to enable long-term monitoring of soil arthropod recolonization in disturbed sites. Nine natural ecosites were sampled for the study, including peat mix over secondary material over tailing sand; direct placement over tailing sand; peat mix over secondary over overburden; direct placement over overburden; peat mix over tailing sand; and peat mix over overburden. Samples were collected from previously established long-term soil and vegetation treatment plots in both natural ecosites and reclaimed soil sites located near Fort McMurray, Alberta. Results showed that densities of mesofauna were significantly higher in samples collected from natural ecosites. Acari and Collembola represented approximately 97 to 98 per cent of the fauna collected. It was also noted that the overall structure of the soil mesofauna community differed between natural soils and reclaimed soils. A significant reduction in the abundance of oribatid mites was observed in soils that had been reclaimed for over 34 years. Changes in the soil mesofauna community structure suggested that reclaimed soils continue to represent disturbed ecosites, as was indicated by higher proportions of prostigmatid mites and some collembolan families. Differences in community structure may influence soil ecosystem functions, including decomposition rates; nutrient recycling; soil structure; and fungal and bacterial biomass. It was concluded that further research is needed to examine oribatid mites and collembolan species diversity and community structure in reclaimed soils. 18 refs., 6 figs.

  15. Soil physical properties affecting soil erosion in tropical soils

    International Nuclear Information System (INIS)

    Lobo Lujan, D.

    2004-01-01

    The total vegetated land area of the earth is about 11,500 hectare. Of this, about 12% is in South America. Of this, about 14% is degraded area. Water erosion, chemical degradation, wind erosion, and physical degradation have been reported as main types of degradation. In South America water erosion is a major process for soil degradation. Nevertheless, water erosion can be a consequence of degradation of the soil structure, especially the functional attributes of soil pores to transmit and retain water, and to facilitate root growth. Climate, soil and topographic characteristics determine runoff and erosion potential from agricultural lands. The main factors causing soil erosion can be divided into three groups: Energy factors: rainfall erosivity, runoff volume, wind strength, relief, slope angle, slope length; Protection factors: population density, plant cover, amenity value (pressure for use) and land management; and resistance factors: soil erodibility, infiltration capacity and soil management. The degree of soil erosion in a particular climatic zone, with particular soils, land use and socioeconomic conditions, will always result from a combination of the above mentioned factors. It is not easy to isolate a single factor. However, the soil physical properties that determine the soil erosion process, because the deterioration of soil physical properties is manifested through interrelated problems of surface sealing, crusting, soil compaction, poor drainage, impeded root growth, excessive runoff and accelerated erosion. When an unprotected soil surface is exposed to the direct impact of raindrops it can produce different responses: Production of smaller aggregates, dispersed particles, particles in suspension and translocation and deposition of particles. When this has occurred, the material is reorganized at the location into a surface seal. Aggregate breakdown under rainfall depends on soil strength and a certain threshold kinetic energy is needed to start

  16. The Frequency and Damping of Soil-Structure Systems with Embedded Foundation

    International Nuclear Information System (INIS)

    Ghannad, M. Ali; Rahmani, Mohammad T.; Jahankhah, Hossein

    2008-01-01

    The effect of foundation embedment on fundamental period and damping of buildings has been the title of several researches in three past decades. A review of the literature reveals some discrepancies between proposed formulations for dynamic characteristics of soil-embedded foundation-structure systems that raise the necessity of more investigation on this issue. Here, first a set of approximate polynomial equations for soil impedances, based on numerical data calculated from well known cone models, are presented. Then a simplified approach is suggested to calculate period and damping of the whole system considering soil medium as a viscoelastic half space. The procedure includes both material and radiation damping while frequency dependency of soil impedance functions is not ignored. Results show that soil-structure interaction can highly affect dynamic properties of system. Finally the results are compared with one of the commonly referred researches

  17. Specific impacts of beech and Norway spruce on the structure and diversity of the rhizosphere and soil microbial communities.

    Science.gov (United States)

    Uroz, S; Oger, P; Tisserand, E; Cébron, A; Turpault, M-P; Buée, M; De Boer, W; Leveau, J H J; Frey-Klett, P

    2016-06-15

    The impacts of plant species on the microbial communities and physico-chemical characteristics of soil are well documented for many herbs, grasses and legumes but much less so for tree species. Here, we investigate by rRNA and ITS amplicon sequencing the diversity of microorganisms from the three domains of life (Archaea, Bacteria and Eukaryota:Fungi) in soil samples taken from the forest experimental site of Breuil-Chenue (France). We discovered significant differences in the abundance, composition and structure of the microbial communities associated with two phylogenetically distant tree species of the same age, deciduous European beech (Fagus sylvatica) and coniferous Norway spruce (Picea abies Karst), planted in the same soil. Our results suggest a significant effect of tree species on soil microbiota though in different ways for each of the three microbial groups. Fungal and archaeal community structures and compositions are mainly determined according to tree species, whereas bacterial communities differ to a great degree between rhizosphere and bulk soils, regardless of the tree species. These results were confirmed by quantitative PCR, which revealed significant enrichment of specific bacterial genera, such as Burkholderia and Collimonas, known for their ability to weather minerals within the tree root vicinity.

  18. Tungstate adsorption onto Italian soils with different characteristics.

    Science.gov (United States)

    Petruzzelli, Gianniantonio; Pedron, Francesca

    2017-08-01

    The study of tungsten in the environment is currently of considerable interest because of the growing concerns resulting from its possible toxicity and carcinogenicity. Adsorption reactions are some of the fundamental processes governing the fate and transport of tungsten compounds in soil. This paper reports data on the adsorption of tungstate ions in three different Italian soils, which are characteristic of the Mediterranean region. The results show that pH is the most important factor governing the adsorption of tungstate in these soils. The data interpreted according to the Langmuir equation show that the maximum value of adsorption is approximately 30 mmol kg -1 for the most acidic soil (pH = 4.50) and approximately 9 mmol kg -1 for the most basic soil (pH = 7.40). In addition, soil organic matter is shown to play a fundamental role in adsorption processes, which are favored in soils with a higher organic matter content. The data could contribute to a better understanding of the behavior of tungsten compounds in Italian soils for which current knowledge is very scarce, also in view of environmental regulations, which are currently lacking.

  19. Dynamic soil-structure interaction analysis based on discretized Green function

    International Nuclear Information System (INIS)

    Muto, K.; Kobayashi, T.; Nakahara, M.

    1983-01-01

    In the seismic design of massive and rigid structure such as a nuclear reactor building, it is important to evaluate the dynamic interaction effect between soil and structure. The authors developed an advanced and practical method to evaluate the interaction effect between the soil which is considered to be semi-infinite elastic medium, and the structure in which flexibility is considered. In this report, this method is applied to a seismic analysis of the full size BWR Mark I type reactor building. For horizontal input earthquake, the vibrational degrees of freedom shall be considered both horizontal and vertical as the rocking response occurs because of the overturning moment caused by the building's horizontal response. The results of earthquake response analysis show that the floors deform in-place and the response acceleration at the center of the floor is larger than that of at the side wall. The response spectra also differ each other even if on the same floor because of the in-place deformation of the floor slab. It means that in analytical modeling of the reactor building, multi-stick model considering deformation of floor slab is required instead of single-stick model. The ratio of the peak acceleration response of the roof floor to the input earthquake is about 2.5. (orig./HP)

  20. Agriculturization in the Argentinean Northern Humid Pampas: the Impact on Soil Structure and Runoff

    Science.gov (United States)

    Sasal, M. C.; Léonard, J.; Andriulo, A.; Wilson, M. G.

    2012-04-01

    Argentina is among the countries with the largest cropped area under no-tillage (NT). No tillage was adopted in the northern Humid Pampas to reduce the widespread soil degradation by water erosion. With the advent of genetically modified soybean varieties, NT has developed exponentially. This evolution, combined with the influence of the international market trend, has resulted in large changes in crop sequence composition toward the disappearance of pastures and the expansion of soybean monoculture. The aim of this work was to evaluate the long-term consequences of these changes on the topsoil structure and the way in which the evolution of soil structure relates to the simplification of the crop sequence and to runoff at a regional scale. We analyzed the topsoil structure of 25 sites with Argiudolls having 4 to 29 consecutive years of NT using the cultural profile approach. An intensification sequence index (ISI) was calculated as the ratio between the length of the growth period and the length of the year. Fifteen natural-rainfall runoff plots (100 m2) with 3.5% slope were used to analyze the relationship between soil structural state, crop sequence and runoff for four years. Four types of soil structures were identified and a general pattern of vertical soil structure organization was revealed. The top centimeters of 72% of the sites were dominated by a granular structure. Platy soil structure development was omnipresent: all sites exhibited a horizontal platy structure (wheat/soybean double crop (ISI=0.83) could limit soil structure degradation and reduce runoff and the associated environmental risks.

  1. Transformation-Dissolution Reactions Partially Explain Adverse Effects of Metallic Silver Nanoparticles to Soil Nitrification in Different Soils.

    Science.gov (United States)

    Bollyn, Jessica; Willaert, Bernd; Kerré, Bart; Moens, Claudia; Arijs, Katrien; Mertens, Jelle; Leverett, Dean; Oorts, Koen; Smolders, Erik

    2018-04-25

    Risk assessment of metallic nanoparticles (NP) is critically affected by the concern that toxicity goes beyond that of the metallic ion. This study addressed this concern for soils with silver (Ag)-NP using the Ag-sensitive nitrification assay. Three agricultural soils (A,B,C) were spiked with equivalent Ag doses of either Ag-NP (d = 13 nm) or AgNO 3 . Soil solution was isolated and monitored over 97 days with due attention to accurate Ag fractionation at low (∼10 µg L -1 ) Ag concentrations. Truly dissolved (soils decreased with reaction half-lives of 4 to 22 days depending on the soil, denoting important Ag-ageing reactions. In contrast, truly dissolved Ag in Ag-NP-amended soils first increased by dissolution and subsequently decreased by ageing; the concentration never exceeding that in the AgNO 3 -amended soils. The half-lives of Ag-NP transformation-dissolution were about 4 days (soils A&B) and 36 days (soil C). The Ag toxic thresholds (EC10, mg Ag kg -1 soil) of nitrification, either evaluated at 21 or 35 days after spiking, were similar between the two Ag forms (soils A&B) but were factors 3 to 8 lower for AgNO 3 than for Ag-NP (soil C), largely corroborating with dissolution differences. This fate and bio-assay showed that Ag-NPs are not more toxic than AgNO 3 at equivalent total soil Ag concentrations and that differences in Ag-dissolution at least partially explain toxicity differences between the forms and among soils. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  2. The activity and community structure of total bacteria and denitrifying bacteria across soil depths and biological gradients in estuary ecosystem.

    Science.gov (United States)

    Lee, Seung-Hoon; Kang, Hojeong

    2016-02-01

    The distribution of soil microorganisms often shows variations along soil depth, and even in the same soil layer, each microbial group has a specific niche. In particular, the estuary soil is intermittently flooded, and the characteristics of the surface soil layer are different from those of other terrestrial soils. We investigated the microbial community structure and activity across soil depths and biological gradients composed of invasive and native plants in the shallow surface layer of an estuary ecosystem by using molecular approaches. Our results showed that the total and denitrifying bacterial community structures of the estuarine wetland soil differed according to the short depth gradient. In growing season, gene copy number of 16S rRNA were 1.52(±0.23) × 10(11), 1.10(±0.06) × 10(11), and 4.33(±0.16) × 10(10) g(-1) soil; nirS were 5.41(±1.25) × 10(8), 4.93(±0.94) × 10(8), and 2.61(±0.28) × 10(8) g(-1) soil; and nirK were 9.67(±2.37) × 10(6), 3.42(±0.55) × 10(6), and 2.12(±0.19) × 10(6) g(-1) soil in 0 cm, 5 cm, and 10 cm depth layer, respectively. The depth-based difference was distinct in the vegetated sample and in the growing season, evidencing the important role of plants in structuring the microbial community. In comparison with other studies, we observed differences in the microbial community and functions even across very short depth gradients. In conclusion, our results suggested that (i) in the estuary ecosystem, the denitrifying bacterial community could maintain its abundance and function within shallow surface soil layers through facultative anaerobiosis, while the total bacterial community would be both quantitatively and qualitatively affected by the soil depth, (ii) the nirS gene community, rather than the nirK one, should be the first candidate used as an indicator of the microbial denitrification process in the estuary system, and (iii) as the microbial community is distributed and plays a certain niche role according to

  3. Development and assessment of transparent soil and particle image velocimetry in dynamic soil-structure interaction

    Science.gov (United States)

    2007-02-01

    This research combines Particle Image Velocimetry (PIV) and transparent soil to investigate the dynamic rigid block and soil interaction. In order to get a low viscosity pore fluid for the transparent soil, 12 different types of chemical solvents wer...

  4. Soil sampling strategies: Evaluation of different approaches

    Energy Technology Data Exchange (ETDEWEB)

    De Zorzi, Paolo [Agenzia per la Protezione dell' Ambiente e per i Servizi Tecnici (APAT), Servizio Metrologia Ambientale, Via di Castel Romano, 100-00128 Roma (Italy)], E-mail: paolo.dezorzi@apat.it; Barbizzi, Sabrina; Belli, Maria [Agenzia per la Protezione dell' Ambiente e per i Servizi Tecnici (APAT), Servizio Metrologia Ambientale, Via di Castel Romano, 100-00128 Roma (Italy); Mufato, Renzo; Sartori, Giuseppe; Stocchero, Giulia [Agenzia Regionale per la Prevenzione e Protezione dell' Ambiente del Veneto, ARPA Veneto, U.O. Centro Qualita Dati, Via Spalato, 14-36045 Vicenza (Italy)

    2008-11-15

    The National Environmental Protection Agency of Italy (APAT) performed a soil sampling intercomparison, inviting 14 regional agencies to test their own soil sampling strategies. The intercomparison was carried out at a reference site, previously characterised for metal mass fraction distribution. A wide range of sampling strategies, in terms of sampling patterns, type and number of samples collected, were used to assess the mean mass fraction values of some selected elements. The different strategies led in general to acceptable bias values (D) less than 2{sigma}, calculated according to ISO 13258. Sampling on arable land was relatively easy, with comparable results between different sampling strategies.

  5. Soil sampling strategies: Evaluation of different approaches

    International Nuclear Information System (INIS)

    De Zorzi, Paolo; Barbizzi, Sabrina; Belli, Maria; Mufato, Renzo; Sartori, Giuseppe; Stocchero, Giulia

    2008-01-01

    The National Environmental Protection Agency of Italy (APAT) performed a soil sampling intercomparison, inviting 14 regional agencies to test their own soil sampling strategies. The intercomparison was carried out at a reference site, previously characterised for metal mass fraction distribution. A wide range of sampling strategies, in terms of sampling patterns, type and number of samples collected, were used to assess the mean mass fraction values of some selected elements. The different strategies led in general to acceptable bias values (D) less than 2σ, calculated according to ISO 13258. Sampling on arable land was relatively easy, with comparable results between different sampling strategies

  6. Soil sampling strategies: evaluation of different approaches.

    Science.gov (United States)

    de Zorzi, Paolo; Barbizzi, Sabrina; Belli, Maria; Mufato, Renzo; Sartori, Giuseppe; Stocchero, Giulia

    2008-11-01

    The National Environmental Protection Agency of Italy (APAT) performed a soil sampling intercomparison, inviting 14 regional agencies to test their own soil sampling strategies. The intercomparison was carried out at a reference site, previously characterised for metal mass fraction distribution. A wide range of sampling strategies, in terms of sampling patterns, type and number of samples collected, were used to assess the mean mass fraction values of some selected elements. The different strategies led in general to acceptable bias values (D) less than 2sigma, calculated according to ISO 13258. Sampling on arable land was relatively easy, with comparable results between different sampling strategies.

  7. 40 CFR 265.114 - Disposal or decontamination of equipment, structures and soils.

    Science.gov (United States)

    2010-07-01

    ... decontamination of equipment, structures and soils. During the partial and final closure periods, all contaminated... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Disposal or decontamination of equipment, structures and soils. 265.114 Section 265.114 Protection of Environment ENVIRONMENTAL PROTECTION...

  8. Parental material and cultivation determine soil bacterial community structure and fertility.

    Science.gov (United States)

    Sun, Li; Gao, Jusheng; Huang, Ting; Kendall, Joshua R A; Shen, Qirong; Zhang, Ruifu

    2015-01-01

    Microbes are the key components of the soil environment, playing important roles during soil development. Soil parent material provides the foundation elements that comprise the basic nutritional environment for the development of microbial community. After 30 years artificial maturation of cultivation, the soil developments of three different parental materials were evaluated and bacterial community compositions were investigated using the high-throughput sequencing approach. Thirty years of cultivation increased the soil fertility and soil microbial biomass, richness and diversity, greatly changed the soil bacterial communities, the proportion of phylum Actinobacteria decreased significantly, while the relative abundances of the phyla Acidobacteria, Chloroflexi, Gemmatimonadetes, Armatimonadetes and Nitrospira were significantly increased. Soil bacterial communities of parental materials were separated with the cultivated ones, and comparisons of different soil types, granite soil and quaternary red clay soil were similar and different with purple sandy shale soil in both parental materials and cultivated treatments. Bacterial community variations in the three soil types were affected by different factors, and their alteration patterns in the soil development also varied with soil type. Soil properties (except total potassium) had a significant effect on the soil bacterial communities in all three soil types and a close relationship with abundant bacterial phyla. The amounts of nitrogen-fixing bacteria as well as the abundances of the nifH gene in all cultivated soils were higher than those in the parental materials; Burkholderia and Rhizobacte were enriched significantly with long-term cultivation. The results suggested that crop system would not deplete the nutrients of soil parental materials in early stage of soil maturation, instead it increased soil fertility and changed bacterial community, specially enriched the nitrogen-fixing bacteria to accumulate

  9. An explicit method in non-linear soil-structure interaction

    International Nuclear Information System (INIS)

    Kunar, R.R.

    1981-01-01

    The explicit method of analysis in the time domain is ideally suited for the solution of transient dynamic non-linear problems. Though the method is not new, its application to seismic soil-structure interaction is relatively new and deserving of public discussion. This paper describes the principles of the explicit approach in soil-structure interaction and it presents a simple algorithm that can be used in the development of explicit computer codes. The paper also discusses some of the practical considerations like non-reflecting boundaries and time steps. The practicality of the method is demonstrated using a computer code, PRESS, which is used to compare the treatment of strain-dependent properties using average strain levels over the whole time history (the equivalent linear method) and using the actual strain levels at every time step to modify the soil properties (non-linear method). (orig.)

  10. Soil structure interaction analysis for the US NRC seismic safety margins research program

    International Nuclear Information System (INIS)

    Johnson, J.J.

    1979-01-01

    The soil structure interaction project is described. The initial portion of this task concentrates on defining the state-of-the-art in the analysis of the soil structure interaction phenomenon, an assessment of those aspects of the phenomenon which significantly affect structural response, and recommendations for future development of analytical techniques and their verification. A series of benchmark analytical and test problems for which analytical techniques may be evaluated are also sought. This assessment is to be performed in the context of nuclear power plant structures; i.e., massive stiff structures arranged functionally on a particular site. The best estimate methodology will be utilized to develop transfer functions for the overall systems model. These transfer functions will operate on the free-field ground motion yielding the structural base mat response and selected in-structure response quantities for the particular site being analyzed. The transfer functions will depend on a number of parameters, e.g., soil configuration, soil material properties, frequency of the excitation, structural properties, etc. A limited comparison of alternative methods of analysis including a nonlinear analysis will be performed

  11. Networks of soil biota in a secondary succession gradient: Is it biodiversity or network structure that determines soil function?

    Science.gov (United States)

    Morriën, Elly; Hannula, Emilia; Snoek, Basten; Hol, Gera; van Veen, Hans; van der Putten, Wim

    2017-04-01

    Land abandonment is considered an effective tool for restoring biodiversity and ecosystem functions. However, thus far little attention is given to the role of soil biodiversity. Here, we present results of a soil biodiversity development and ecosystem functioning from a chonosequence of ex-arable fields in The Netherlands. These fields are typically managed by low-intensive grazing while undergoing a transition from an arable system into a species-rich grassland. We manipulated soil biodiversity to be able to couple biodiversity loss to loss of soil functions. We hypothesized that biodiversity loss would lead to less N uptake by plants and slower C transfer to microbes. A greenhouse mesocosm experiment was performed in which sterilized soils from the chronosequence were re-inoculated with a dilution series of soil suspensions (filtered to include only bacteria, fungi and protozoa) to manipulate soil diversity. These mesocosms were planted with a community of plants that naturally occur in all of the grasslands along the chronosequence. We measured microbial community development with TRFLP and sequencing, plant C, N and biomass and using dual labelled 15N ammonium nitrate (15NH415NO3) and 13C in the form of 13CO2 fed to the plants to assess the short term fate, turnover and retention of recent plant assimilated carbon and nitrogen in soil. The faith of the C and N were followed by sequential sampling of aboveground and belowground plant tissues and soil bacterial and fungal PLFA and NLFA biomarkers. With the first method the role of microbial diversity and soil on plant carbon assimilation and nitrogen uptake was evaluated. This was further related to the amount of recently photosynthesized carbon plants allocated to different microbial groups in soils. Microbial end-communities were pyrosequenced to evaluate the end diversity. In this study we showed the effects of the loss of soil biodiversity to C and N cycling in plants and microbes. Next to this manipulative

  12. Soil bacterial and fungal diversity differently correlated with soil biochemistry in alpine grassland ecosystems in response to environmental changes

    Science.gov (United States)

    Zhang, Yong; Dong, Shikui; Gao, Qingzhu; Liu, Shiliang; Ganjurjav, Hasbagan; Wang, Xuexia; Su, Xukun; Wu, Xiaoyu

    2017-03-01

    To understand effects of soil microbes on soil biochemistry in alpine grassland ecosystems under environmental changes, we explored relationships between soil microbial diversity and soil total nitrogen, organic carbon, available nitrogen and phosphorus, soil microbial biomass and soil enzyme activities in alpine meadow, alpine steppe and cultivated grassland on the Qinghai-Tibetan plateau under three-year warming, enhanced precipitation and yak overgrazing. Soil total nitrogen, organic carbon and NH4-N were little affected by overgrazing, warming or enhanced precipitation in three types of alpine grasslands. Soil microbial biomass carbon and phosphorus along with the sucrase and phosphatase activities were generally stable under different treatments. Soil NO3-N, available phosphorus, urease activity and microbial biomass nitrogen were increased by overgrazing in the cultivated grassland. Soil bacterial diversity was positively correlated with, while soil fungal diversity negatively with soil microbial biomass and enzyme activities. Soil bacterial diversity was negatively correlated with, while soil fungal diversity positively with soil available nutrients. Our findings indicated soil bacteria and fungi played different roles in affecting soil nutrients and microbiological activities that might provide an important implication to understand why soil biochemistry was generally stable under environmental changes in alpine grassland ecosystems.

  13. Measurement of structured purple soil porosity by using gamma ray transmission technique

    International Nuclear Information System (INIS)

    Costa, Elizabeth Cristina S. da; Rocha, Wilson Roberto Dejato da; Oliveira, Ricardo M. de; Silva, Luzeli Moreira da; Moreira, Anderson Camargo; Portezan, Otaio Portezan; Appoloni, Carlos Roberto; Coimbra, Melayne Martins

    2002-01-01

    The soil structure defines the particle arrangement which in turn largely determines the pore size distribution. In this work, we present the measurements of total, macro and microporosity for TRe soil with clayey texture. Soil samples were collected from a trench located at University of Londrina. The deformed and undeformed soil samples were collected from soil surface down to the depth of 0,50 m in 0,10 m intervals and separated into six aggregate size classes: 0.053; 0.125; 0.30; 0.71; 2 e 4 mm. We also prepared samples mixing different size classes, like as: (4+0.125), (2+0.125), (4+2+0.71), (4+2+0.30) e (4+0.30+0.125)mm. Measurements of particle density and aggregate bulk density using conventional method were performed to all depths. The linear soil attenuation coefficients and aggregate soil attenuation coefficients were measured with gamma-ray transmission system using an 241 Am (59,53 keV and 100 mCi) radiation source, a (2 x 2) in NaI scintillation detector, cylindric collimators (2 mm diameter to the source and 5 mm diameter to the detector) and gamma spectrometry standard electronics, connected to a multichannel. The obtained results for total, macro and microporosity are in a good agreement with the ones using the convention method, showing the applicability of the gamma-ray transmission method. (author)

  14. [Soil anti-erodibility of abandoned lands during different succession stages of plant community in hilly-gullied region of the Loess Plateau: Take Fangta small watershed as an example].

    Science.gov (United States)

    Yan, Fang-chen; Jiao, Ju-ying; Cao, Bin-ting; Yu, Wei-jie; Wei, Yan-hong; Kou, Meng; Hu, Shu

    2016-01-01

    Field survey and laboratory experiment were conducted to study the soil anti-erodibility of abandoned croplands during different vegetation succession stages in hilly-gullied region of the Loess Plateau, based on the analysis of soil particle composition, size distribution and group characteristics, soil aggregate fractal dimensions and stability. The results showed that in the earlier stages of succession from annual to perennial herbs in abandoned croplands, soil size distribution changed a little bit, the fractal dimension of soil particle increased, soil structure improved, fractal dimension and damage percent of soil aggregate structure decreased, soil stability increased, thus soil anti-erodibility increased. Therefore, natural restoration of vegetation is of great significance to improve the soil structure, increase soil erosion resistance, reduce soil erosion and promote sustainable development of regional ecological environment.

  15. Improvements of the Profil Cultural Method for a better Low-tech Field Assessment of Soil Structure under no-till

    Science.gov (United States)

    Roger-Estrade, Jean; Boizard, Hubert; Peigné, Josephine; Sasal, Maria Carolina; Guimaraes, Rachel; Piron, Denis; Tomis, Vincent; Vian, Jean-François; Cadoux, Stephane; Ralisch, Ricardo; Filho, Tavares; Heddadj, Djilali; de Battista, Juan; Duparque, Annie

    2016-04-01

    In France, agronomists have studied the effects of cropping systems on soil structure, using a field method based on a visual description of soil structure. The "profil cultural" method (Manichon and Gautronneau, 1987) has been designed to perform a field diagnostic of the effects of tillage and compaction on soil structure dynamics. This method is of great use to agronomists improving crop management for a better preservation of soil structure. However, this method was developed and mainly used in conventional tillage systems, with ploughing. As several forms of reduced, minimum and no tillage systems are expanding in many parts of the world, it is necessary to re-evaluate the ability of this method to describe and interpret soil macrostructure in unploughed situations. In unploughed fields, soil structure dynamics of untilled layers is mainly driven by compaction and regeneration by natural agents (climatic conditions, root growth and macrofauna) and it is of major importance to evaluate the importance of these natural processes on soil structure regeneration. These concerns have led us to adapt the standard method and to propose amendments based on a series of field observations and experimental work in different situations of cropping systems, soil types and climatic conditions. We improved the description of crack type and we introduced an index of biological activity, based on the visual examination of clods. To test the improved method, a comparison with the reference method was carried out and the ability of the "profil cultural" method to make a diagnosis was tested on five experiments in France, Brazil and Argentina. Using the improved method, the impact of cropping systems on soil functioning was better assessed when natural processes were integrated into the description.

  16. Impact of Cropping Systems, Soil Inoculum, and Plant Species Identity on Soil Bacterial Community Structure.

    Science.gov (United States)

    Ishaq, Suzanne L; Johnson, Stephen P; Miller, Zach J; Lehnhoff, Erik A; Olivo, Sarah; Yeoman, Carl J; Menalled, Fabian D

    2017-02-01

    Farming practices affect the soil microbial community, which in turn impacts crop growth and crop-weed interactions. This study assessed the modification of soil bacterial community structure by organic or conventional cropping systems, weed species identity [Amaranthus retroflexus L. (redroot pigweed) or Avena fatua L. (wild oat)], and living or sterilized inoculum. Soil from eight paired USDA-certified organic and conventional farms in north-central Montana was used as living or autoclave-sterilized inoculant into steam-pasteurized potting soil, planted with Am. retroflexus or Av. fatua and grown for two consecutive 8-week periods to condition soil nutrients and biota. Subsequently, the V3-V4 regions of the microbial 16S rRNA gene were sequenced by Illumina MiSeq. Treatments clustered significantly, with living or sterilized inoculum being the strongest delineating factor, followed by organic or conventional cropping system, then individual farm. Living inoculum-treated soil had greater species richness and was more diverse than sterile inoculum-treated soil (observed OTUs, Chao, inverse Simpson, Shannon, P soil contained more Chloroflexi and Acidobacteria, while the sterile inoculum soil had more Bacteroidetes, Firmicutes, Gemmatimonadetes, and Verrucomicrobia. Organically farmed inoculum-treated soil had greater species richness, more diversity (observed OTUs, Chao, Shannon, P soil. Cyanobacteria were higher in pots growing Am. retroflexus, regardless of inoculum type, for three of the four organic farms. Results highlight the potential of cropping systems and species identity to modify soil bacterial communities, subsequently modifying plant growth and crop-weed competition.

  17. Electrodialytic Remediation of Different Heavy Metal-Polluted Soils in Suspension

    DEFF Research Database (Denmark)

    Ottosen, Lisbeth M.; Jensen, Pernille Erland; Kirkelund, Gunvor Marie

    2013-01-01

    Electrokinetic remediation of heavy metal-polluted soil faces different challenges in relation to implementation. One challenge is to cope with the nonlinear and transient geochemical changes in the soil and another is to increase the remediation rate. Both these challenges are met when treating...... the soil in a suspension in an electrodialytic cell. The soil suspension is stirred and uniform during treatment. Previously, it has been shown that a faster remediation can be obtained when remediating a stirred soil suspension compared to a stationary water saturated soil (all other parameters the same...

  18. Temporal changes of soil physic-chemical properties at different soil depths during larch afforestation by multivariate analysis of covariance.

    Science.gov (United States)

    Wang, Hui-Mei; Wang, Wen-Jie; Chen, Huanfeng; Zhang, Zhonghua; Mao, Zijun; Zu, Yuan-Gang

    2014-04-01

    Soil physic-chemical properties differ at different depths; however, differences in afforestation-induced temporal changes at different soil depths are seldom reported. By examining 19 parameters, the temporal changes and their interactions with soil depth in a large chronosequence dataset (159 plots; 636 profiles; 2544 samples) of larch plantations were checked by multivariate analysis of covariance (MANCOVA). No linear temporal changes were found in 9 parameters (N, K, N:P, available forms of N, P, K and ratios of N: available N, P: available P and K: available K), while marked linear changes were found in the rest 10 parameters. Four of them showed divergent temporal changes between surface and deep soils. At surface soils, changing rates were 262.1 g·kg(-1)·year(-1) for SOM, 438.9 mg·g(-1)·year(-1) for C:P, 5.3 mg·g(-1)·year(-1) for C:K, and -3.23 mg·cm(-3)·year(-1) for bulk density, while contrary tendencies were found in deeper soils. These divergences resulted in much moderated or no changes in the overall 80-cm soil profile. The other six parameters showed significant temporal changes for overall 0-80-cm soil profile (P: -4.10 mg·kg(-1)·year(-1); pH: -0.0061 unit·year(-1); C:N: 167.1 mg·g(-1)·year(-1); K:P: 371.5 mg·g(-1) year(-1); N:K: -0.242 mg·g(-1)·year(-1); EC: 0.169 μS·cm(-1)·year(-1)), but without significant differences at different soil depths (P > 0.05). Our findings highlight the importance of deep soils in studying physic-chemical changes of soil properties, and the temporal changes occurred in both surface and deep soils should be fully considered for forest management and soil nutrient balance.

  19. Estimating Soil Organic Carbon of Cropland Soil at Different Levels of Soil Moisture Using VIS-NIR Spectroscopy

    Directory of Open Access Journals (Sweden)

    Qinghu Jiang

    2016-09-01

    Full Text Available Soil organic carbon (SOC is an essential property for soil function, fertility and sustainability of agricultural systems. It can be measured with visible and near-infrared reflectance (VIS-NIR spectroscopy efficiently based on empirical equations and spectra data for air/oven-dried samples. However, the spectral signal is interfered with by soil moisture content (MC under in situ conditions, which will affect the accuracy of measurements and calibration transfer among different areas. This study aimed to (1 quantify the influences of MC on SOC prediction by VIS-NIR spectroscopy; and (2 explore the potentials of orthogonal signal correction (OSC and generalized least squares weighting (GLSW methods in the removal of moisture interference. Ninety-eight samples were collected from the Jianghan plain, China, and eight MCs were obtained for each sample by a rewetting process. The VIS-NIR spectra of the rewetted soil samples were measured in the laboratory. Partial least squares regression (PLSR was used to develop SOC prediction models. Specifically, three validation strategies, namely moisture level validation, transferability validation and mixed-moisture validation, were designed to test the potentials of OSC and GLSW in removing the MC effect. Results showed that all of the PLSR models generated at different moisture levels (e.g., 50–100, 250–300 g·kg−1 were moderately successful in SOC predictions (r2pre = 0.58–0.85, RPD = 1.55–2.55. These models, however, could not be transferred to soil samples with different moisture levels. OSC and GLSW methods are useful filter transformations improving model transferability. The GLSW-PLSR model (mean of r2pre = 0.77, root mean square error for prediction (RMSEP = 3.08 g·kg−1, and residual prediction deviations (RPD = 2.09 outperforms the OSC-PLSR model (mean of r2pre = 0.67, RMSEP = 3.67 g·kg−1, and RPD = 1.76 when the moisture-mixed protocol is used. Results demonstrated the use of OSC

  20. Root exudation and root development of lettuce (Lactuca sativa L. cv. Tizian) as affected by different soils.

    Science.gov (United States)

    Neumann, G; Bott, S; Ohler, M A; Mock, H-P; Lippmann, R; Grosch, R; Smalla, K

    2014-01-01

    Development and activity of plant roots exhibit high adaptive variability. Although it is well-documented, that physicochemical soil properties can strongly influence root morphology and root exudation, particularly under field conditions, a comparative assessment is complicated by the impact of additional factors, such as climate and cropping history. To overcome these limitations, in this study, field soils originating from an unique experimental plot system with three different soil types, which were stored at the same field site for 10 years and exposed to the same agricultural management practice, were used for an investigation on effects of soil type on root development and root exudation. Lettuce (Lactuca sativa L. cv. Tizian) was grown as a model plant under controlled environmental conditions in a minirhizotrone system equipped with root observation windows (rhizoboxes). Root exudates were collected by placing sorption filters onto the root surface followed by subsequent extraction and GC-MS profiling of the trapped compounds. Surprisingly, even in absence of external stress factors with known impact on root exudation, such as pH extremes, water and nutrient limitations/toxicities or soil structure effects (use of sieved soils), root growth characteristics (root length, fine root development) as well as profiles of root exudates were strongly influenced by the soil type used for plant cultivation. The results coincided well with differences in rhizosphere bacterial communities, detected in field-grown lettuce plants cultivated on the same soils (Schreiter et al., this issue). The findings suggest that the observed differences may be the result of plant interactions with the soil-specific microbiomes.

  1. Root exudation and root development of lettuce (Lactuca sativa L.cv. Tizian as affected by different soils

    Directory of Open Access Journals (Sweden)

    Günter eNeumann

    2014-01-01

    Full Text Available Development and activity of plant roots exhibits high adaptive variability. Although it is well-documented, that physicochemical soil properties can strongly influence root morphology and root exudation, particularly under field conditions, a comparative assessment is complicated by the impact of additional factors, such as climate and cropping history. To overcome these limitations, in this study, field soils originating from an unique experimental plot system with three different soil types, which were stored at the same field site for ten years and exposed to the same agricultural management practice, were used for an investigation on effects of soil type on root development and root exudation. Lettuce (Lactuca sativa L. cv. Tizian was used as a model plant, grown under controlled environmental conditions in a minirhizotrone system equipped with root observation windows (rhizoboxes. Root exudates were collected by placing sorption filters onto the root surface followed by subsequent extraction and GC-MS profiling of the trapped compounds. Surprisingly, even in absence of external stress factors with known impact on root exudation, such as pH extremes, water and nutrient limitations/toxicities or soil structure effects (use of sieved soils, root growth characteristics (root length, fine root development as well as profiles of root exudates were strongly influenced by the soil type used for plant cultivation. The results coincided well with differences in rhizosphere bacterial communities, detected in field-grown lettuce plants cultivated on the same soils (Schreiter et al., this issue. The findings suggest that the observed differences may be the result of plant interactions with the soil-specific microbiomes.

  2. Root exudation and root development of lettuce (Lactuca sativa L. cv. Tizian) as affected by different soils

    Science.gov (United States)

    Neumann, G.; Bott, S.; Ohler, M. A.; Mock, H.-P.; Lippmann, R.; Grosch, R.; Smalla, K.

    2014-01-01

    Development and activity of plant roots exhibit high adaptive variability. Although it is well-documented, that physicochemical soil properties can strongly influence root morphology and root exudation, particularly under field conditions, a comparative assessment is complicated by the impact of additional factors, such as climate and cropping history. To overcome these limitations, in this study, field soils originating from an unique experimental plot system with three different soil types, which were stored at the same field site for 10 years and exposed to the same agricultural management practice, were used for an investigation on effects of soil type on root development and root exudation. Lettuce (Lactuca sativa L. cv. Tizian) was grown as a model plant under controlled environmental conditions in a minirhizotrone system equipped with root observation windows (rhizoboxes). Root exudates were collected by placing sorption filters onto the root surface followed by subsequent extraction and GC-MS profiling of the trapped compounds. Surprisingly, even in absence of external stress factors with known impact on root exudation, such as pH extremes, water and nutrient limitations/toxicities or soil structure effects (use of sieved soils), root growth characteristics (root length, fine root development) as well as profiles of root exudates were strongly influenced by the soil type used for plant cultivation. The results coincided well with differences in rhizosphere bacterial communities, detected in field-grown lettuce plants cultivated on the same soils (Schreiter et al., this issue). The findings suggest that the observed differences may be the result of plant interactions with the soil-specific microbiomes. PMID:24478764

  3. Plant-induced changes in soil chemistry do not explain differences in uranium transfer

    International Nuclear Information System (INIS)

    Duquene, L.; Vandenhove, H.; Tack, F.; Avoort, E. van der; Hees, M. van; Wannijn, J.

    2006-01-01

    A greenhouse experiment was set up with maize, ryegrass, Indian mustard, wheat and pea to evaluate to what extent differences in uranium (U) transfer factors can be explained by root-mediated changes in selected soil properties. The experiment involved an acid and an alkaline soil contaminated with 238 U. U soil-to-shoot transfer factors (TFs) ranged between 0.0005 and 0.021 on the acid soil and between 0.007 and 0.179 on the alkaline soil. Indian mustard showed the highest U uptake in shoots and maize the lowest. The root TFs, only available for the acid soil, ranged from 0.58 for maize and Indian mustard to 1.38 for ryegrass. The difference in U uptake between the two soils and the five plants was only partially explained by the different initial U concentrations in soil solution or differences in soil properties in the two soils. However, we obtained a significant relation for differences in shoot TFs observed between the two soils when relating shoot TFs with concentration of UO 2 2+ and uranyl carbonate complexes in soil solution (R 2 = 0.88). The physiological mechanisms by which root-to-shoot U transfer is inhibited or promoted seemed at least as important as the plant-induced changes in soil characteristics in determining soil-to-shoot TFs

  4. Nonlinear dynamic soil-structure interaction in earthquake engineering

    International Nuclear Information System (INIS)

    Nieto-Ferro, Alex

    2013-01-01

    The present work addresses a computational methodology to solve dynamic problems coupling time and Laplace domain discretizations within a domain decomposition approach. In particular, the proposed methodology aims at meeting the industrial need of performing more accurate seismic risk assessments by accounting for three-dimensional dynamic soil-structure interaction (DSSI) in nonlinear analysis. Two subdomains are considered in this problem. On the one hand, the linear and unbounded domain of soil which is modelled by an impedance operator computed in the Laplace domain using a Boundary Element (BE) method; and, on the other hand, the superstructure which refers not only to the structure and its foundations but also to a region of soil that possibly exhibits nonlinear behaviour. The latter sub-domain is formulated in the time domain and discretized using a Finite Element (FE) method. In this framework, the DSSI forces are expressed as a time convolution integral whose kernel is the inverse Laplace transform of the soil impedance matrix. In order to evaluate this convolution in the time domain by means of the soil impedance matrix (available in the Laplace domain), a Convolution Quadrature-based approach called the Hybrid Laplace-Time domain Approach (HLTA), is thus introduced. Its numerical stability when coupled to Newmark time integration schemes is subsequently investigated through several numerical examples of DSSI applications in linear and nonlinear analyses. The HLTA is finally tested on a more complex numerical model, closer to that of an industrial seismic application, and good results are obtained when compared to the reference solutions. (author)

  5. The effect of different tillage methods and organic fertilizers on soil physical state and crop yield

    OpenAIRE

    Ožeraitienė, Danutė; Čiuberkis, Steponas

    2006-01-01

    The present paper summarises the data of field and laboratory trials conducted in Lithuania (Vežaiciai Branch of the Lithuanian Institute of Agriculture) during the period 2003-2006. The effects of primary soil tillage: 1) deep (22-25 cm) ploughing; 2) shallow (10-12 cm) ploughing; 3) shallow (8-10 cm) tillage with a disc harrow as well as the effects of different organic fertilizers (farmyard manure, green manure and straw) on the main physical indicators of moraine loam soil (structure, bul...

  6. Effect of structure and hydrophobicity of soil on the accessibility of diuron

    Science.gov (United States)

    Chaplain, V.; Défossez, P.; Brault, A.; Breuil, S.; Tessier, D.

    2009-04-01

    Effect of structure and hydropbicity of soil on the accessibility of diuron V. Chaplain1, P. Desfossez2, A. Brault1, S. Breuil1 and D. Tessier1. 1 UR INRA PESSAC, RD 10, Versailles F-78026 2 UMR INRA/URCA FARE, 2 Esplanade Roland Garros, BP 224 F-51686 Reims cedex 2 Corresponding author: chaplain@versailles.inra.fr Retention process plays a major role in the fate and impact of organic contaminants in soils. We studied the global talk of accessibility by measuring the influence of soil hydrophobic properties and soil structure on the retention of diuron. We selected seven plots with pH 3.4 to 8.2 of the long-term experiment of 42 plots in Versailles. Textural properties and composition were similar. The organic content was low. Sorption isotherms were obtained on soil slurries and kinetic measurements of diuron sorption were performed on undisturbed soil samples built up using sieved air-dried soil. The results showed that the Freundlich coefficient kf deduced from isotherm curves decreased as pH increased. For a given density, (i) the Koc coefficient, kf/TOC, was linearly related to the contact angle measured on the clay fraction over a wide range of pH (ii) kinetics slightly increased when pH decreased. On the contrary, when a compact structure was involved, a low initial adsorption rate and low adsorption equilibrium were observed. In this case, the structure in micro-aggregates due to the dispersion of fine particles induced by repeated treatment of soil with NaNO3, was assumed to limit the accessibility of adsorption sites.

  7. Below the disappearing marshes of an urban estuary: historic nitrogen trends and soil structure

    Science.gov (United States)

    Wigand, Cathleen; Roman, Charles T.; Davey, Earl; Stolt, Mark; Johnson, Roxanne; Hanson, Alana; Watson, Elizabeth B.; Moran, S. Bradley; Cahoon, Donald R.; Lynch, James C.; Rafferty, Patricia

    2014-01-01

    Marshes in the urban Jamaica Bay Estuary, New York, USA are disappearing at an average rate of 13 ha/yr, and multiple stressors (e.g., wastewater inputs, dredging activities, groundwater removal, and global warming) may be contributing to marsh losses. Among these stressors, wastewater nutrients are suspected to be an important contributing cause of marsh deterioration. We used census data, radiometric dating, stable nitrogen isotopes, and soil surveys to examine the temporal relationships between human population growth and soil nitrogen; and we evaluated soil structure with computer-aided tomography, surface elevation and sediment accretion trends, carbon dioxide emissions, and soil shear strength to examine differences among disappearing (Black Bank and Big Egg) and stable marshes (JoCo). Radiometric dating and nitrogen isotope analyses suggested a rapid increase in human wastewater nutrients beginning in the late 1840s, and a tapering off beginning in the 1930s when wastewater treatment plants (WWTPs) were first installed. Current WWTPs nutrient loads to Jamaica Bay are approximately 13 995 kg N/d and 2767 kg P/d. At Black Bank, the biomass and abundance of roots and rhizomes and percentage of organic matter on soil were significantly lower, rhizomes larger in diameter, carbon dioxide emission rates and peat particle density significantly greater, and soil strength significantly lower compared to the stable JoCo Marsh, suggesting Black Bank has elevated decomposition rates, more decomposed peat, and highly waterlogged peat. Despite these differences, the rates of accretion and surface elevation change were similar for both marshes, and the rates of elevation change approximated the long term relative rate of sea level rise estimated from tide gauge data at nearby Sandy Hook, New Jersey. We hypothesize that Black Bank marsh kept pace with sea level rise by the accretion of material on the marsh surface, and the maintenance of soil volume through production of

  8. Elevated CO2 shifts the functional structure and metabolic potentials of soil microbial communities in a C4 agroecosystem.

    Science.gov (United States)

    Xiong, Jinbo; He, Zhili; Shi, Shengjing; Kent, Angela; Deng, Ye; Wu, Liyou; Van Nostrand, Joy D; Zhou, Jizhong

    2015-03-20

    Atmospheric CO2 concentration is continuously increasing, and previous studies have shown that elevated CO2 (eCO2) significantly impacts C3 plants and their soil microbial communities. However, little is known about effects of eCO2 on the compositional and functional structure, and metabolic potential of soil microbial communities under C4 plants. Here we showed that a C4 maize agroecosystem exposed to eCO2 for eight years shifted the functional and phylogenetic structure of soil microbial communities at both soil depths (0-5 cm and 5-15 cm) using EcoPlate and functional gene array (GeoChip 3.0) analyses. The abundances of key genes involved in carbon (C), nitrogen (N) and phosphorus (P) cycling were significantly stimulated under eCO2 at both soil depths, although some differences in carbon utilization patterns were observed between the two soil depths. Consistently, CO2 was found to be the dominant factor explaining 11.9% of the structural variation of functional genes, while depth and the interaction of depth and CO2 explained 5.2% and 3.8%, respectively. This study implies that eCO2 has profound effects on the functional structure and metabolic potential/activity of soil microbial communities associated with C4 plants, possibly leading to changes in ecosystem functioning and feedbacks to global change in C4 agroecosystems.

  9. 3D Bearing Capacity of Structured Cells Supported on Cohesive Soil: Simplified Analysis Method

    Directory of Open Access Journals (Sweden)

    Martínez-Galván Sergio Antonio

    2013-06-01

    Full Text Available In this paper a simplified analysis method to compute the bearing capacity of structured cell foundations subjected to vertical loading and supported in soft cohesive soil is proposed. A structured cell is comprised by a top concrete slab structurally connected to concrete external walls that enclose the natural soil. Contrary to a box foundation it does not include a bottom slab and hence, the soil within the walls becomes an important component of the structured cell. This simplified method considers the three-dimensional geometry of the cell, the undrained shear strength of cohesive soils and the existence of structural continuity between the top concrete slab and the surrounding walls, along the walls themselves and the walls structural joints. The method was developed from results of numerical-parametric analyses, from which it was found that structured cells fail according to a punching-type mechanism.

  10. Organic matter and soil structure in the Everglades Agricultural Area

    Energy Technology Data Exchange (ETDEWEB)

    Wright, Alan L. [Univ. of Florida, Gainesville, FL (United States); Hanlon, Edward A. [Univ. of Florida, Gainesville, FL (United States)

    2013-01-01

    This publication pertains to management of organic soils (Histosols) in the Everglades Agricultural Area (EAA). These former wetland soils are a major resource for efficient agricultural production and are important globally for their high organic matter content. Recognition of global warming has led to considerable interest in soils as a repository for carbon. Soils rich in organic matter essentially sequester or retain carbon in the profile and can contribute directly to keeping that sequestered carbon from entering the atmosphere. Identification and utilization of management practices that minimize the loss of carbon from organic soils to the atmosphere can minimize effects on global warming and increase the longevity of subsiding Histosols for agricultural use. Understanding and predicting how these muck soils will respond to current and changing land uses will help to manage soil carbon. The objectives of this document are to: a. Discuss organic soil oxidation relative to storing or releasing carbon and nitrogen b. Evaluate effects of cultivation (compare structure for sugarcane vs. uncultivated soil) Based upon the findings from the land-use comparison (sugarcane or uncultivated), organic carbon was higher with cultivation in the lower depths. There is considerable potential for minimum tillage and residue management to further enhance carbon sequestration in the sugarcane system. Carbon sequestration is improved and soil subsidence is slowed with sugarcane production, and both of these are positive outcomes. Taking action to increase or maintain carbon sequestration appears to be appropriate but may introduce some risk to farming operations. Additional management methods are needed to reduce this risk. For both the longevity of these organic soils and from a global perspective, slowing subsidence through BMP implementation makes sense. Since these BMPs also have considerable societal benefit, it remains to be seen if society will help to offset a part or all

  11. Changing redox potential by controlling soil moisture and addition of inorganic oxidants to dissipate pentachlorophenol in different soils

    International Nuclear Information System (INIS)

    Lin Jiajiang; He Yan; Xu Jianming

    2012-01-01

    The potential for dissipation of pentachlorophenol (PCP) was investigated in soils from four different sites in China. These were an umbraqualf (Soil 1), a Plinthudult (Soil 2), a Haplustalf (Soil 3) and an Argiustoll (Soil 4) which were either flooded, to produce anaerobic conditions, or incubated aerobically at 60% water-holding capacity (WHC). The dissipation of PCP in Soil 1 at 60% WHC was higher than under flooded condition, while the opposite occurred in the other three soils. Under flooded conditions, the redox potential decreased significantly in Soil 1 and Soil 4, where sulphate reduction was occurred and the dissipation of PCP was statistically significant (about 96% and 98%, respectively) at the end of incubation. After addition of inorganic oxidants, dissipation of PCP was significantly inhibited by FeCl 3 , while Na 2 SO 4 and NaNO 3 had different effects, depending upon the soil type. - Highlights: ► The extent of the aerobic/anaerobic interface depends upon the soil properties. ► The dissipation of PCP was accelerated in some soils due to the soil-water interface. ► The addition of oxidants inhibited the decrease in soil redox potential. ► Most external oxidants added under flooded condition inhibited PCP dechlorination. - The addition of inorganic oxidants limited the decrease in redox potential and inhibited the reductive dechlorination of pentachlorophenol.

  12. Development of advanced earthquake resistant performance verification on reinforced concrete underground structure. Pt. 2. Verification of the ground modeling methods applied to non-linear soil-structure interaction analysis

    International Nuclear Information System (INIS)

    Kawai, Tadashi; Kanatani, Mamoru; Ohtomo, Keizo; Matsui, Jun; Matsuo, Toyofumi

    2003-01-01

    In order to develop an advanced verification method for earthquake resistant performance on reinforced concrete underground structures, the applicability of two different types of soil modeling methods in numerical analysis were verified through non-linear dynamic numerical simulations of the large shaking table tests conducted using the model comprised of free-field ground or soils and a reinforced concrete two-box culvert structure system. In these simulations, the structure was modeled by a beam type element having a tri-linear curve of the relations between curvature and flexural moment. The soil was modeled by the Ramberg-Osgood model as well as an elasto-plastic constitutive model. The former model only employs non-linearity of shear modulus regarding strain and initial stress conditions, whereas the latter can express non-linearity of shear modulus caused by changes of mean effective stress during ground excitation and dilatancy of ground soil. Therefore the elasto-plastic constitutive model could precisely simulate the vertical acceleration and displacement response on ground surface, which were produced by the soil dilations during a shaking event of a horizontal base input in the model tests. In addition, the model can explain distinctive dynamic earth pressure acting on the vertical walls of the structure which was also confirmed to be related to the soil dilations. However, since both these modeling methods could express the shear force on the upper slab surface of the model structure, which plays the predominant role on structural deformation, these modeling methods were applicable equally to the evaluation of seismic performance similar to the model structure of this study. (author)

  13. Relating microbial community structure to functioning in forest soil organic carbon transformation and turnover.

    Science.gov (United States)

    You, Yeming; Wang, Juan; Huang, Xueman; Tang, Zuoxin; Liu, Shirong; Sun, Osbert J

    2014-03-01

    Forest soils store vast amounts of terrestrial carbon, but we are still limited in mechanistic understanding on how soil organic carbon (SOC) stabilization or turnover is controlled by biotic and abiotic factors in forest ecosystems. We used phospholipid fatty acids (PLFAs) as biomarker to study soil microbial community structure and measured activities of five extracellular enzymes involved in the degradation of cellulose (i.e., β-1,4-glucosidase and cellobiohydrolase), chitin (i.e., β-1,4-N-acetylglucosaminidase), and lignin (i.e., phenol oxidase and peroxidase) as indicators of soil microbial functioning in carbon transformation or turnover across varying biotic and abiotic conditions in a typical temperate forest ecosystem in central China. Redundancy analysis (RDA) was performed to determine the interrelationship between individual PFLAs and biotic and abiotic site factors as well as the linkage between soil microbial structure and function. Path analysis was further conducted to examine the controls of site factors on soil microbial community structure and the regulatory pathway of changes in SOC relating to microbial community structure and function. We found that soil microbial community structure is strongly influenced by water, temperature, SOC, fine root mass, clay content, and C/N ratio in soils and that the relative abundance of Gram-negative bacteria, saprophytic fungi, and actinomycetes explained most of the variations in the specific activities of soil enzymes involved in SOC transformation or turnover. The abundance of soil bacterial communities is strongly linked with the extracellular enzymes involved in carbon transformation, whereas the abundance of saprophytic fungi is associated with activities of extracellular enzymes driving carbon oxidation. Findings in this study demonstrate the complex interactions and linkage among plant traits, microenvironment, and soil physiochemical properties in affecting SOC via microbial regulations.

  14. Epigeic soil arthropod abundance under different agricultural land uses

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Bote, J. L.; Romero, A. J.

    2012-11-01

    The study of soil arthropods can provide valuable information how ecosystems respond to different management practices. The objective was to assess the total abundance, richness, and composition of epiedaphic arthropods in different agrosystems from southwestern Spain. Six sites with different agricultural uses were selected: olive grove, vineyards, olive grove with vineyards, wheat fields, fallows (150-300 m long), and abandoned vineyards. Crops were managed in extensive. Field margins were used as reference habitats. At the seven sites a total of 30 pitfall traps were arranged in a 10 × 3 grid. Traps were arranged to short (SD, 1 m), medium (MD, 6 m) and large (LD, 11 m) distance to the field margins in the middle of selected plots. Pitfall traps captured a total of 11,992 edaphic arthropods belonging to 11 different taxa. Soil fauna was numerically dominated by Formicidae (26.60%), Coleoptera (19.77%), and Aranae (16.76%). The higher number of soil arthropods were captured in the field margins followed by the abandoned vineyard. Significant differences were found between sites for total abundance, and zones. However, no significant differences for total abundance were found between months (April-July). Richness and diversity was highest in field margins and abandoned vineyards. Significant differences were found for these variables between sites. Our results suggest that agricultural intensification affects soil arthropods in Tierra de Barros area, a taxonomic group with an important role in the functioning of agricultural ecosystems. (Author) 32 refs.

  15. Assessment of soil quality in different ecosystems (with soils of Podolsk and Serpukhov districts of Moscow oblast as examples)

    Science.gov (United States)

    Gavrilenko, E. G.; Ananyeva, N. D.; Makarov, O. A.

    2013-12-01

    The values of the soil-ecological index and microbiological parameters (the carbon of microbial biomass Cmic, its ratio to the total organic carbon Cmic/Corg, and basal respiration) were determined for the soddy-podzolic, soddy-gley, bog-podzolic, meadow alluvial, and gray forest soils under different land uses (forest, fallow, cropland, and urban areas) in the Podolsk and Serpukhov districts of Moscow oblast (237 and 45 sampling points, respectively). The soil sampling from the upper 10 cm (without the litter horizon) was performed in September and October. To calculate the soil-ecological index, both soil (physicochemical and agrochemical) and climatic characteristics were taken into account. Its values for fallow, cropland, and urban ecosystems averaged 70.2, 72.8, and 64.2 points ( n = 90, 17, and 24, respectively). For the soils of forest ecosystems, the average value of the soil-ecological index was lower (54.4; n = 151). At the same time, the micro-biological characteristics of the studied forest soils were generally higher than those in the soils of fallow, cropland, and urban ecosystems. In this context, to estimate the soil quality in different ecosystems on the basis of the soil-ecological index, the use of a correction coefficient for the biological properties of the soils (the Cmic content) was suggested. The ecological substantiation of this approach for assessing the quality of soils in different ecosystems is presented in the paper.

  16. High-resolution synchrotron imaging shows that root hairs influence rhizosphere soil structure formation.

    Science.gov (United States)

    Koebernick, Nicolai; Daly, Keith R; Keyes, Samuel D; George, Timothy S; Brown, Lawrie K; Raffan, Annette; Cooper, Laura J; Naveed, Muhammad; Bengough, Anthony G; Sinclair, Ian; Hallett, Paul D; Roose, Tiina

    2017-10-01

    In this paper, we provide direct evidence of the importance of root hairs on pore structure development at the root-soil interface during the early stage of crop establishment. This was achieved by use of high-resolution (c. 5 μm) synchrotron radiation computed tomography (SRCT) to visualise both the structure of root hairs and the soil pore structure in plant-soil microcosms. Two contrasting genotypes of barley (Hordeum vulgare), with and without root hairs, were grown for 8 d in microcosms packed with sandy loam soil at 1.2 g cm -3 dry bulk density. Root hairs were visualised within air-filled pore spaces, but not in the fine-textured soil regions. We found that the genotype with root hairs significantly altered the porosity and connectivity of the detectable pore space (> 5 μm) in the rhizosphere, as compared with the no-hair mutants. Both genotypes showed decreasing pore space between 0.8 and 0.1 mm from the root surface. Interestingly the root-hair-bearing genotype had a significantly greater soil pore volume-fraction at the root-soil interface. Effects of pore structure on diffusion and permeability were estimated to be functionally insignificant under saturated conditions when simulated using image-based modelling. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  17. Responses of Soil Microbial Community Structure and Diversity to Agricultural Deintensification

    Institute of Scientific and Technical Information of China (English)

    ZHANG Wei-Jian; S.HU; RUI Wen-Yi; C.TU; H.G.DIAB; F.J.LOUWS; J.P.MUELLER; N.CREAMER; M.BELL; M.G.WAGGER

    2005-01-01

    Using a scheme of agricultural fields with progressively less intensive management (deintensification), different management practices in six agroecosystems located near Goldsboro, NC, USA were tested in a large-scale experiment, including two cash-grain cropping systems employing either tillage (CT) or no-tillage (NT), an organic farming system (OR), an integrated cropping system with animals (IN), a successional field (SU), and a plantation woodlot (WO). Microbial phospholipid fatty acid (PLFA) profiles and substrate utilization patterns (BIOLOG ECO plates) were measured to examine the effects of deintensification on the structure and diversity of soil microbial communities. Principle component analyses of PLFA and BIOLOG data showed that the microbial community structure diverged among the soils of the six systems.Lower microbial diversity was found in lowly managed ecosystem than that in intensive and moderately managed agroecosystems, and both fungal contribution to the total identified PLFAs and the ratio of microbial biomass C/N increased along with agricultural deintensification. Significantly higher ratios of C/N (P < 0.05) were found in the WO and SU systems, and for fungal/bacterial PLFAs in the WO system (P < 0.05). There were also significant decreases (P < 0.05)along with agricultural deintensification for contributions of total bacterial and gram positive (G+) bacterial PLFAs.Agricultural deintensification could facilitate the development of microbial communities that favor soil fungi over bacteria.

  18. Infinite elements for soil-structure interaction analysis in multi-layered halfspaces

    International Nuclear Information System (INIS)

    Yun, Chung Bang; Kim, Jae Min; Yang, Shin Chu

    1994-01-01

    This paper presents the theoretical aspects of a computer code (KIESSI) for soil-structure interaction analysis in a multi-layered halfspace using infinite elements. The shape functions of the infinite elements are derived from approximate expressions of the analytical solutions. Three different infinite elements are developed. They are the horizontal, the vertical and the comer infinite elements (HIE, VIE and CIE). Numerical example analyses are presented for demonstrating the effectiveness of the proposed infinite elements

  19. Effect of sugarcane burning or green harvest methods on the Brazilian Cerrado soil bacterial community structure.

    Science.gov (United States)

    Rachid, Caio T C C; Santos, Adriana L; Piccolo, Marisa C; Balieiro, Fabiano C; Coutinho, Heitor L C; Peixoto, Raquel S; Tiedje, James M; Rosado, Alexandre S

    2013-01-01

    The Brazilian Cerrado is one of the most important biodiversity reservoirs in the world. The sugarcane cultivation is expanding in this biome and necessitates the study of how it may impact the soil properties of the Cerrado. There is a lack of information especially about the impacts of different sugarcane management on the native bacterial communities of Cerrado soil. Therefore, our objective was to evaluate and compare the soil bacterial community structure of the Cerrado vegetation with two sugarcane systems. We evaluated samples under native vegetation and the impact of the two most commonly used management strategies for sugarcane cultivation (burnt cane and green cane) on this diversity using pyrosequencing and quantitative PCR of the rrs gene (16S rRNA). Nineteen different phyla were identified, with Acidobacteria (≈35%), Proteobacteria (≈24%) and Actinobacteria (≈21%) being the most abundant. Many of the sequences were represented by few operational taxonomic units (OTUs, 3% of dissimilarity), which were found in all treatments. In contrast, there were very strong patterns of local selection, with many OTUs occurring only in one sample. Our results reveal a complex bacterial diversity, with a large fraction of microorganisms not yet described, reinforcing the importance of this biome. As possible sign of threat, the qPCR detected a reduction of the bacterial population in agricultural soils compared with native Cerrado soil communities. We conclude that sugarcane cultivation promoted significant structural changes in the soil bacterial community, with Firmicutes phylum and Acidobacteria classes being the groups most affected.

  20. Pine Harvest Impact on Soil Structure of a Dystric Cambisol (Humic

    Directory of Open Access Journals (Sweden)

    Adriano da Costa

    2016-01-01

    Full Text Available ABSTRACT Traffic of heavy machinery at harvest and log extraction causes structural degradation of the soil, but studies on the effects of forest harvesting on soils with high organic matter content and exchangeable Al are scarce. The objective of this study was to evaluate the effect of mechanized forest harvesting operations on a Dystric Cambisol (Humic with high organic matter (more 50 g kg1 content and exchangeable Al (more 6,0 cmolc kg-1, reforested with Pinus taeda L. The evaluated harvesting system were the whole-tree, in which the feller-buncher cuts and lays the trees down in bundles; the skidder drags the tree bundles up near a road; and the harvester delimbs and cuts the trees into short logs, stacking them on the roadside to be loaded onto trucks. The areas were evaluated for soil conditions at pre-harvest, prior to harvest, and at post-harvest, consisting of areas of low disturbance, high disturbance, forest residues and log yards. The effects of compaction after forest harvesting are observed by the decrease in total porosity (especially biopores and macropores, soil saturated hydraulic conductivity, and stability of aggregates. After forest harvesting, soil compaction was observed in all evaluated situations, but with different depths depending on operation type and the intensity of traffic carried in each area.

  1. CHEMICAL AND MICROBIOLOGICAL ATTRIBUTES UNDER DIFFERENT SOIL COVER

    Directory of Open Access Journals (Sweden)

    Elaine Novak

    2017-03-01

    Full Text Available A challenge for the environmental recovery of degraded areas is the search for soil data. In this process, the microbiological parameters and soil chemicals are potential indicators of soil quality. This study aimed to evaluate soil quality based on microbiological and chemical soil attributes in different areas involving environmental recovery, sugarcane cultivation and remnants of native vegetation located in a rural private property farm in State of Mato Grosso do Sul, Brazil, in Hapludox Eutrophic soil. The microbiological (microbial biomass carbon, basal respiration, microbial quotient and metabolic quotient and chemical parameters (organic matter, carbon, pH, cationic exchange capacity, sum of bases, potassium, phosphorus, magnesium, calcium, saturation base and potential acidity were assessed. Data were assessed by variance and multivariate analysis (Principal Component Analysis and cluster analysis. Overall, the results showed highest alteration in the chemical and microbiological characteristics of the soil in sugarcane cultivation area in comparison with other areas. Considering the studied recovery areas, REC1, REC5 and REC7 show chemical and microbiological conditions with most similarity to native vegetation. Despite the short period of the resilience enhancement of environmental recovery areas, the development of vegetation cover and establishment of the microbial community were determined to be important factors for improving soil quality and environmental recovery in several of the areas studied.

  2. X-ray CT and laboratory measurements on glacial till subsoil cores – assessment of inherent and compaction-affected soil structure characteristics

    DEFF Research Database (Denmark)

    Lamandé, Mathieu; Wildenschild, Dorthe; Berisso, Feto Esimo

    2013-01-01

    The aim of this study was to articulate the potential of medical computed tomographic (CT) scanning for analyzing soil structure (macroporosity, soil matrix density, number of macropores) and how these estimates compare with, and complement, traditional laboratory measurements (bulk density, total...... of visualization and traditional laboratory measurements proved valuable in identifying the persistent effects of subsoil compaction and the differences in soil structure among the two investigated subsoil layers. However, we recommend to systematically perform a sensitivity analysis to the segmentation threshold...... porosity, effective air-filled porosity, and air permeability). Undisturbed soil cores were sampled at two depths (0.35 and 0.7 m) in a long-term soil compaction experiment in southern Sweden 14 years after its establishment. Persistence of subsoil compaction was detectable by CT-estimated soil matrix...

  3. Phosphorus fertilization in sugarcane cultivation under different soil managements

    OpenAIRE

    Sousa Junior, Paulo R. de; Brunharo, Caio A. C. G.; Furlani, Carlos E. A.; Prado, Renato de M.; Maldonado Júnior, Walter; Zerbato, Cristiano

    2017-01-01

    ABSTRACT Soil preparation along with its chemical adjustment is the most important step in sugarcane plantation, especially because it provides proper conditions for plant development. The objective of the present research was to evaluate sugarcane response to the application of different phosphorus doses and their location, associated with both minimum soil tillage and conventional soil tillage. The experiment was conducted in a split-split-plot randomized block design, where the main plots ...

  4. Assessment of tillage systems in organic farming: influence of soil structure on microbial biomass. First results

    OpenAIRE

    Vian, Jean François; Peigné, Joséphine; Chaussod, Rémi; Roger-Estrade, Jean

    2007-01-01

    Soil tillage modifies environmental conditions of soil microorganisms and their ability to release nitrogen. We compare the influence of reduced tillage (RT) and mouldboard ploughing (MP) on the soil microbial functioning in organic farming. In order to connect soil structure generated by these tillage systems on the soil microbial biomass we adopt a particular sampling scheme based on the morphological characterisation of the soil structure by the description of the soil profile. This method...

  5. Living part on soil bioengineering structures in Appennino Tosco-emiliano

    Science.gov (United States)

    Guastini, Enrico; Preti, Federico; Dani, Andrea

    2014-05-01

    From analisys headed up in soil bioengineered areas in different parts of Tuscany, the suitest root systems in slope stabilization turn out to be those spreading from seed-born plants, while adventitious roots from cuttings are often absent in the part more distant from the neck, and in some cases are insufficient to grant life support just in case of minor stress conditions. Genus Alnus shows it's adaptation capability to restore initial restoration steps and to create renovation prerequisites for other species through ammending litter production and symbiosis for nitrogen fixation with Frankia genus bacteria; other similar symbiosis (with Rhizobium and fungi) are carried out by Robinia pseudacacia. Soil fecundity increase is confirmed by the following entrance of more demanding species, as Ostrya carpinifolia and Acer pseudoplatanus at the tree level, Urtica dioica and Rubus Ulmifolius (nitrophilouses) at grass level. In the project phase it ought to imagine a well-structured implant, including rooted plants, cuttings and posibly a seed mix of colonising species aiming to form a germplasm on the structure itself in order to sprout whenever the local conditions allow it. Verifying that many after developed species came from ornithocore dissemination (Ficus carica, Pinus spp., Rosa canina, Sambucus nigra), lead to toughts about bedding out bird-attracting species on structures in order to realise a faster (and maybe more complex) succession development. This higher velocity could grant in a shorter period the production of a root mass spread in a more disomogeneous and complex pattern than that deriving from cuttings disposed in the traditional way; such a variability could allow a better interaction with other biological factors in the soil (bacteria, fungi, nematodes, ...) that are important for the plant nutrient cicle (Ohsowski et al., 2012) and then the constituion of an articulate, long-term system.

  6. Composition and structure of aggregates from compacted soil horizons in the southern steppe zone of European Russia

    Science.gov (United States)

    Sorokin, A. S.; Abrosimov, K. N.; Lebedeva, M. P.; Kust, G. S.

    2016-03-01

    The composition and structure of aggregates from different agrogenic soils in the southern steppe zone of European Russia have been studied. It is shown that the multi-level study (from the macro- to microlevel) of these horizons makes it possible to identify soil compaction caused by different elementary soil processes: solonetz-forming, vertisol-forming, and mechanical (wheel) compaction in the rainfed and irrigated soils. The understanding of the genesis of the compaction of soil horizons (natural or anthropogenic) is important for the economic evaluation of soil degradation. It should enable us to make more exact predictions of the rates of degradation processes and undertake adequate mitigation measures. The combined tomographic and micromorphological studies of aggregates of 1-2 and 3-5 mm in diameter from compacted horizons of different soils have been performed for the first time. Additional diagnostic features of negative solonetz- forming processes (low open porosity of aggregates seen on tomograms and filling of a considerable part of the intraped pores with mobile substance) and the vertisol-forming processes (large amount of fine intraaggregate pores seen on tomograms and a virtual absence of humus-clay plasma in the intraped zone)—have been identified. It is shown that the combination of microtomographic and micromorphological methods is helpful for studying the pore space of compacted horizons in cultivated soils.

  7. Assessment of soil organic matter persistence under different land uses applying a physical fractionation procedure

    Science.gov (United States)

    Giannetta, Beatrice; Plaza, César; López-de-Sá, Esther G.; Vischetti, Costantino; Zaccone, Claudio

    2017-04-01

    The understanding of the mechanisms involved in the build-up of soil organic matter (SOM) pools with long residence time is tightly linked to the comprehension of C dynamics. Organo-mineral associations are known to be strongly correlated with the accumulation of selective preserved C forms. Adsorption to minerals, as well as occlusion within aggregates, may affect SOM protection in different ways depending on its molecular structure and pedo-climatic conditions. In this research, we investigated changes in quantity and quality of SOM pools characterized by different protection mechanisms in coniferous and broadleaved forest soils, grassland soils, technosols and an agricultural soil with different organic amendments, in order to evaluate the influence of both land use and organic matter nature on physical and/or chemical stabilization of SOM. In particular, free (FR), intra-macroaggregate (MA), intra-microaggregate (MI), and mineral-associated (Min) fractions were separated in order to define physical and chemical mechanisms responsible for the SOM protection against degradation. All these SOM fractions were analyzed for organic C and total N concentration, and their stability assessed by thermogravimetric analysis (TD-TGA). Preliminary data show that, for all land uses, most of the organic C (40-60%) is found in the Min pool, followed by FR (20-40%)>MI MA. With the only exception of the FR, no significant correlations were found between the C/N ratio and a thermal stability index (H550-400/400-250) of each fraction; at the same time, a highly significant and positive correlation was found between these two parameters in all fractions isolated from agricultural soils. In particular, the thermal stability index measured in all Min fractions may be related to the more marked presence of labile compounds in this pool relative to recalcitrant compounds. Conversely, FR OM could not always represent a fresh and readily decomposable fraction.Furthermore, OM associated

  8. Evaporational losses under different soil moisture regimes and atmospheric evaporativities using tritium

    International Nuclear Information System (INIS)

    Saxena, P.; Chaudhary, T.N.; Mookerji, P.

    1991-01-01

    Tritium as tracer was used in a laboratory study to estimate the contribution of moisture from different soil depths towards actual soil water evaporation. Results indicated that for comparable amounts of free water evaporation (5 cm), contribution of moisture from 70-80 cm soil layer towards total soil moisture loss through evaporation increased nearly 1.5 to 3 folds for soils with water table at 90 cm than without water table. Identical initial soil moistures were exposed to different atmospheric evaporativities. Similarly, for a given initial soil moisture status, upward movement of moisture from 70-80 cm soil layer under low evaporativity was nearly 8 to 12 times that of under high evaporativity at 5 cm free water evaporation value. (author). 6 refs., 4 tabs., 2 figs

  9. THE STRUCTURE OF SOIL MESOFAUNA AND MACROFAUNA IN GRODA CAVE, GUNUNGKIDUL

    Directory of Open Access Journals (Sweden)

    Andri Prasetyo

    2016-10-01

      The number of soil macrofauna and mesofauna in Groda Cave can be used as an indicator of bats abundance since bat droppings are food for macrofauna and mesofauna soils. The purpose of this study are to determine the community structure of Groda Cave soil macrofauna and mesofauna  and its correlation with the content of N, P, K. The method used is the observation, taking of macrofauna and mesofauna soils using pit fall traps and tool green technique. Testing the N, P, K of the soil was conducted in Balai Pengkajian Teknologi Pertanian (BPTP Yogyakarta. The analysis technique used Shannon diversity index-Wienner, Margaleff wealth index, frequency of attendance of  macrofauna and mesofauna soils and its correlation with N, P, K of the land in Groda Cave. The results obtained are that six families mesofauna and 20 families macrofauna soils with moderate diversity index, the highest wealth index was in the Margaleff lit zone, the frequency of the highest attendance in the light zone is Formicidae (0.12, ie dim zones Isotomidae and Diptera (a brown (0.04 and the dark zone is Gryllacididae (0.05. The correlation showed the more the content of N, P, K, the fewer mesofauna and macrofauna soils were found. The uniqueness found in this study is the discovery of one species of Isotomidae in Groda Cave, which has been considered spreading only in Sulawesi, Sumatera, Bali, Lombok, Ternate and Papua.   Keywords: community structure, mesofauna soil, macrofauna soil, Groda Cave

  10. Production efficiency and economic potential of different soil fertility ...

    African Journals Online (AJOL)

    This paper provides the economic evaluation of different soil fertility replenishing technologies (use of inorganic fertilizers, organic manure, and rhizobium inoculant) that were tested during field studies and recommended to groundnut farmers. Data on soil fertility technologies used by households, groundnut yields, and ...

  11. Role of radiation damping in the impedance function approach to soil-structure interaction analysis

    International Nuclear Information System (INIS)

    1980-05-01

    This report was prepared at the request of the Lawrence Livermore Laboratory (LLL) to provide background information for analyzing soil-structure interaction by the frequency-independent impedance function approach. LLL is conducting such analyses as part of its seismic review of selected operating plants under the Systematic Evaluation Program for the US Nuclear Regulatory Commission. The analytical background and basic assumptionsof the impedance function theory are briefly reviewed, and the role of radiation damping in soil-structure interaction analysis is discussed. The validity of modeling soil-structure interaction by using frequency-independent functions is evaluated based on data from several field tests. Finally, the recommended procedures for performing soil-structure interaction analyses are discussed with emphasis on the modal superposition method

  12. Changes in soil bacterial community structure as a result of incorporation of Brassica plants compared with continuous planting eggplant and chemical disinfection in greenhouses.

    Science.gov (United States)

    Li, Tianzhu; Liu, Tongtong; Zheng, Chengyu; Kang, Chunsheng; Yang, Zichao; Yao, Xiaotong; Song, Fengbin; Zhang, Runzhi; Wang, Xuerong; Xu, Ning; Zhang, Chunyi; Li, Wei; Li, Shumin

    2017-01-01

    Greenhouse eggplant monocropping in China has contributed to the aggravation of soil-borne diseases, reductions in crop quality and yield, and the degradation of physical and chemical soil properties. Crop rotation is one effective way of alleviating the problems of continuous cropping worldwide; however, few studies have reported changes in soil bacterial community structures and physical and chemical soil properties after Brassica vegetables had been rotated with eggplant in greenhouses. In this experiment, mustard-eggplant (BFN) and oilseed rape-eggplant (BFC) rotations were studied to identify changes in the physicochemical properties and bacterial community structure in soil that was previously subject to monocropping. Samples were taken after two types of Brassica plants incorporated into soil for 15 days to compare with continually planted eggplant (control, CN) and chemical disinfection of soil (CF) in greenhouses. MiSeq pyrosequencing was used to analyze soil bacterial diversity and structure in the four different treatments. A total of 55,129 reads were identified, and rarefaction analysis showed that the soil treatments were equally sampled. The bacterial richness of the BFC treatment and the diversity of the BFN treatment were significantly higher than those of the other treatments. Further comparison showed that the bacterial community structures of BFC and BFN treatments were also different from CN and CF treatments. The relative abundance of several dominant bacterial genera in the BFC and BFN treatments (such as Flavobacteria, Stenotrophomonas, Massilia and Cellvibrio, which played different roles in improving soil fertility and advancing plant growth) was distinctly higher than the CN or CF treatments. Additionally, the total organic matter and Olsen-P content of the BFC and BFN treatments were significantly greater than the CN treatment. We conclude that Brassica vegetables-eggplant crop rotations could provide a more effective means of solving

  13. Heavy metals contamination characteristics in soil of different mining activity zones

    Institute of Scientific and Technical Information of China (English)

    LIAO Guo-li; LIAO Da-xue; LI Quan-ming

    2008-01-01

    Depending upon the polluted features of various mining activities in a typical nonferrous metal mine, the contaminated soil area was divided into four zones which were polluted by tailings, mine drainage, dust deposition in wind and spreading minerals during vehicle transportation, respectively. In each zone, soil samples were collected. Total 28 soil samples were dug and analyzed by ICP-AES and other relevant methods. The results indicate that the average contents of Zn, Pb, Cd, Cu and As in soils are 508.6, 384.8, 7.53, 356 and 44.6 mg/kg, respectively. But the contents of heavy metals in different zone have distinct differences. The proportion of oxidizing association with organic substance is small. Difference of the association of heavy metals is small in different polluted zones.

  14. Structure and Composition of Leachfield Bacterial Communities: Role of Soil Texture, Depth and Septic Tank Effluent Inputs

    Directory of Open Access Journals (Sweden)

    Janet A. Atoyan

    2012-09-01

    Full Text Available Although groundwater quality depends on microbial processes in the soil treatment area (STA of onsite wastewater treatment systems (OWTS, our understanding of the development of these microbial communities is limited. We examined the bacterial communities of sand, sandy loam, and clay STAs at different depths in response to septic tank effluent (STE addition using mesocosms. Terminal restriction fragment length polymorphism (TRFLP analysis was used to compare the bacterial community structure and composition of STE, native soil prior to STE addition (UNX and soil exposed to STE (EXP. Principal component analysis separated communities with depth in sand but not in sandy loam or clay. Indices of richness, diversity, and evenness followed the order: sandy loam > sand > clay. Analysis of TRF peaks indicated that STE contributed least to the composition of STA bacterial communities (5%–16%, followed by UNX soil (18%–48%, with the highest proportion of the community made up of TRFs not detected previously in either UNX or STE (50%–82% for all three soils. Soil type and depth can have a marked effect on the structure and composition of STA bacterial communities, and on the relative contribution of native soil and STE to these communities.

  15. Direct methods of soil-structure interaction analysis for earthquake loadings

    International Nuclear Information System (INIS)

    Yun, J. B.; Kim, J. M.; Kim, Y. S. and others

    1993-07-01

    The objectives of this study are to review the methods of soil- structure interaction system analysis, particularly the direct method, and to carry out the blind prediction analysis of the Forced Vibration Test(FVT) before backfill in the course of Hualien LSST project. The scope and contents of this study are as follows : theoretical review on soil-structure interaction analysis methods, free-field response analysis methods, modelling methods of unbounded exterior region, hualien LSST FVT blind prediction analysis before backfill. The analysis results are found to be very well compared with the field test results

  16. EXPERIMENTAL SETUP FOR THE STUDY OF INFRARED SIGNALS OF DIFFERENT SOIL MOISTURE

    Directory of Open Access Journals (Sweden)

    A. N. Popov

    2013-01-01

    Full Text Available The article presents: structural scheme of the installation for measuring the infrared radiation of the soil in the range of 6-14 um; technical characteristics device ИКВП-01. The opportunities of use of pyroelectric sensors type MLX90614ESF were researched. Dependence of the temperature of soil from its humidity and dependence of the signal IR instrument of soil temperature and humidity are presented.

  17. Evaluation of the dynamic responses of high rise buildings with respect to the direct methods for soil-foundation-structure interaction effects and comparison with the approximate methods

    Directory of Open Access Journals (Sweden)

    Jahangir Khazaei

    2017-08-01

    Full Text Available In dynamic analysis, modeling of soil medium is ignored because of the infinity and complexity of the soil behavior and so the important effects of these terms are neglected, while the behavior of the soil under the structure plays an important role in the response of the structure during an earthquake. In fact, the soil layers and soil foundation structure interaction phenomena can increase the applied seismic forces during earthquakes that has been examined with different methods. In this paper, effects of soil foundation structure interaction on a steel high rise building has been modeled using Abaqus software for nonlinear dynamic analysis with finite element direct method and simulation of infinite boundary condition for soil medium and also approximate Cone model. In the direct method, soil, structure and foundation are modeled altogether. In other hand, for using Cone model as a simple model, dynamic stiffness coefficients have been employed to simulate soil with considering springs and dashpots in all degree of freedom. The results show that considering soil foundation structure interaction cause increase in maximum lateral displacement of structure and the friction coefficient of soil-foundation interface can alter the responses of structure. It was also observed that the results of the approximate methods have good agreement for engineering demands.

  18. EPRI's on-site soil-structure interaction research and its application to design/analysis verification

    Energy Technology Data Exchange (ETDEWEB)

    Stepp, J C; Tang, H T [Seismic Center, Electric Power Research Institute, Palo Alto, CA (United States)

    1988-07-01

    Soil structure, interaction (SSI) research at the Electric Power Research Institute (EPRI) is focused on validating modeling and computational procedures. A data base has been obtained with instrumented scale models of stiff structures founded both on unsaturated alluvial soils and on rock. Explosives were used to induce strong ground-motion for two experiments, one on rock and the other on alluvium. A third experiment, a one-fourth scale containment structure on saturated alluvium, relies on earthquakes as the energy source. Analysis of the explosion-induced SSI data shows a marked shift in the fundamental frequency of the soil-structure system to a lower frequency. The magnitude of the shift is a function of foundation conditions and level of excitation. Analytical simulation was found to require more sophisticated soil constitutive models and computer codes than are used in current practice. The current phase of the program concentrates on evaluating SSI models used in current design practice by comparing predicted with recorded data at points in the soil-structure system. (author)

  19. EPRI's on-site soil-structure interaction research and its application to design/analysis verification

    International Nuclear Information System (INIS)

    Stepp, J.C.; Tang, H.T.

    1988-01-01

    Soil structure, interaction (SSI) research at the Electric Power Research Institute (EPRI) is focused on validating modeling and computational procedures. A data base has been obtained with instrumented scale models of stiff structures founded both on unsaturated alluvial soils and on rock. Explosives were used to induce strong ground-motion for two experiments, one on rock and the other on alluvium. A third experiment, a one-fourth scale containment structure on saturated alluvium, relies on earthquakes as the energy source. Analysis of the explosion-induced SSI data shows a marked shift in the fundamental frequency of the soil-structure system to a lower frequency. The magnitude of the shift is a function of foundation conditions and level of excitation. Analytical simulation was found to require more sophisticated soil constitutive models and computer codes than are used in current practice. The current phase of the program concentrates on evaluating SSI models used in current design practice by comparing predicted with recorded data at points in the soil-structure system. (author)

  20. Assessment of structural model and parameter uncertainty with a multi-model system for soil water balance models

    Science.gov (United States)

    Michalik, Thomas; Multsch, Sebastian; Frede, Hans-Georg; Breuer, Lutz

    2016-04-01

    Water for agriculture is strongly limited in arid and semi-arid regions and often of low quality in terms of salinity. The application of saline waters for irrigation increases the salt load in the rooting zone and has to be managed by leaching to maintain a healthy soil, i.e. to wash out salts by additional irrigation. Dynamic simulation models are helpful tools to calculate the root zone water fluxes and soil salinity content in order to investigate best management practices. However, there is little information on structural and parameter uncertainty for simulations regarding the water and salt balance of saline irrigation. Hence, we established a multi-model system with four different models (AquaCrop, RZWQM, SWAP, Hydrus1D/UNSATCHEM) to analyze the structural and parameter uncertainty by using the Global Likelihood and Uncertainty Estimation (GLUE) method. Hydrus1D/UNSATCHEM and SWAP were set up with multiple sets of different implemented functions (e.g. matric and osmotic stress for root water uptake) which results in a broad range of different model structures. The simulations were evaluated against soil water and salinity content observations. The posterior distribution of the GLUE analysis gives behavioral parameters sets and reveals uncertainty intervals for parameter uncertainty. Throughout all of the model sets, most parameters accounting for the soil water balance show a low uncertainty, only one or two out of five to six parameters in each model set displays a high uncertainty (e.g. pore-size distribution index in SWAP and Hydrus1D/UNSATCHEM). The differences between the models and model setups reveal the structural uncertainty. The highest structural uncertainty is observed for deep percolation fluxes between the model sets of Hydrus1D/UNSATCHEM (~200 mm) and RZWQM (~500 mm) that are more than twice as high for the latter. The model sets show a high variation in uncertainty intervals for deep percolation as well, with an interquartile range (IQR) of