WorldWideScience

Sample records for differentially balance bone

  1. Priming Equine Bone Marrow-Derived Mesenchymal Stem Cells with Proinflammatory Cytokines: Implications in Immunomodulation-Immunogenicity Balance, Cell Viability, and Differentiation Potential.

    Science.gov (United States)

    Barrachina, Laura; Remacha, Ana Rosa; Romero, Antonio; Vázquez, Francisco José; Albareda, Jorge; Prades, Marta; Gosálvez, Jaime; Roy, Rosa; Zaragoza, Pilar; Martín-Burriel, Inmaculada; Rodellar, Clementina

    2017-01-01

    Mesenchymal stem cells (MSCs) have a great potential for treating equine musculoskeletal injuries. Although their mechanisms of action are not completely known, their immunomodulatory properties appear to be key in their functions. The expression of immunoregulatory molecules by MSCs is regulated by proinflammatory cytokines; so inflammatory priming of MSCs might improve their therapeutic potential. However, inflammatory environment could also increase MSC immunogenicity and decrease MSC viability and differentiation capacity. The aim of this study was to assess the effect of cytokine priming on equine bone marrow-derived MSC (eBM-MSC) immunoregulation, immunogenicity, viability, and differentiation potential, to enhance MSC immunoregulatory properties, without impairing their immune-evasive status, viability, and plasticity. Equine BM-MSCs (n = 4) were exposed to 5 ng/mL of TNFα and IFNγ for 12 h (CK5-priming). Subsequently, expression of genes coding for immunomodulatory, immunogenic, and apoptosis-related molecules was analyzed by real-time quantitative polymerase chain reaction. Chromatin integrity and proliferation assays were assessed to evaluate cell viability. Trilineage differentiation was evaluated by specific staining and gene expression. Cells were reseeded in a basal medium for additional 7 days post-CK5 to elucidate if priming-induced changes were maintained along the time. CK5-priming led to an upregulation of immunoregulatory genes IDO, iNOS, IL-6, COX-2, and VCAM-1. MHC-II and CD40 were also upregulated, but no change in other costimulatory molecules was observed. These changes were not maintained 7 days after CK5-priming. Viability and differentiation potential were maintained after CK5-priming. These findings suggest that CK5-priming of eBM-MSCs could improve their in vivo effectiveness without affecting other eBM-MSC properties.

  2. Differential force balances during levitation

    Science.gov (United States)

    Todd, Paul

    The simplest arithmetic of inertial, buoyant, magnetic and electrokinetic levitation is explored in the context of a model living system with “acceleration-sensitive structures” in which motion, if allowed, produces a biological effect. The simple model is a finite-sized object enclosed within another finite-sized object suspended in an outer fluid (liquid or vapor) medium. The inner object has density and electrical and magnetic properties quantitatively different from those of the outer object and the medium. In inertial levitation (“weightlessness”) inertial accelerations are balanced, and the forces due to them are canceled in accordance with Newton’s third law. In the presence of inertial acceleration (gravity, centrifugal) motionlessness depends on a balance between the levitating force and the inertial force. If the inner and outer objects differ in density one or the other will be subjected to an unbalanced force when one object is levitated by any other force (buoyant, magnetic, electrokinetic). The requirements for motionlessness of the internal object in the presence of a levitating force are equality of density in the case of buoyant levitation, equality of magnetic susceptibility in the case of magnetic levitation, and equality of zeta potential and dielectric constant in the case of electrokinetic levitation. Examples of internal “acceleration-sensitive structures” are cellular organelles and the organs of advanced plants and animals. For these structures fundamental physical data are important in the interpretation of the effects of forces used for levitation.

  3. Cell Fate and Differentiation of Bone Marrow Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    Shoichiro Kokabu

    2016-01-01

    Full Text Available Osteoblasts and bone marrow adipocytes originate from bone marrow mesenchymal stem cells (BMMSCs and there appears to be a reciprocal relationship between adipogenesis and osteoblastogenesis. Alterations in the balance between adipogenesis and osteoblastogenesis in BMMSCs wherein adipogenesis is increased relative to osteoblastogenesis are associated with decreased bone quality and quantity. Several proteins have been reported to regulate this reciprocal relationship but the exact nature of the signals regulating the balance between osteoblast and adipocyte formation within the bone marrow space remains to be determined. In this review, we focus on the role of Transducin-Like Enhancer of Split 3 (TLE3, which was recently reported to regulate the balance between osteoblast and adipocyte formation from BMMSCs. We also discuss evidence implicating canonical Wnt signalling, which plays important roles in both adipogenesis and osteoblastogenesis, in regulating TLE3 expression. Currently, there is demand for new effective therapies that target the stimulation of osteoblast differentiation to enhance bone formation. We speculate that reducing TLE3 expression or activity in BMMSCs could be a useful approach towards increasing osteoblast numbers and reducing adipogenesis in the bone marrow environment.

  4. The relevance of clinical balance assessment tools to differentiate balance deficits

    OpenAIRE

    Mancini, Martina; Horak, Fay B

    2010-01-01

    Control of balance is complex and involves maintaining postures, facilitating movement, and recovering equilibrium. Balance control consists of controlling the body center of mass over its limits of stability. Clinical balance assessment can help assess fall risk and/or determine the underlying reasons for balance disorders. Most functional balance assessment scales assess fall risk and the need for balance rehabilitation but do not differentiate types of balance deficits. A system approach t...

  5. Core binding factor beta (Cbfβ) controls the balance of chondrocyte proliferation and differentiation by upregulating Indian hedgehog (Ihh) expression and inhibiting parathyroid hormone-related protein receptor (PPR) expression in postnatal cartilage and bone formation.

    Science.gov (United States)

    Tian, Fei; Wu, Mengrui; Deng, Lianfu; Zhu, Guochun; Ma, Junqing; Gao, Bo; Wang, Lin; Li, Yi-Ping; Chen, Wei

    2014-07-01

    Core binding factor beta (Cbfβ) is essential for embryonic bone morphogenesis. Yet the mechanisms by which Cbfβ regulates chondrocyte proliferation and differentiation as well as postnatal cartilage and bone formation remain unclear. Hence, using paired-related homeobox transcription factor 1-Cre (Prx1-Cre) mice, mesenchymal stem cell-specific Cbfβ-deficient (Cbfβ(f/f) Prx1-Cre) mice were generated to study the role of Cbfβ in postnatal cartilage and bone development. These mutant mice survived to adulthood but exhibited severe sternum and limb malformations. Sternum ossification was largely delayed in the Cbfβ(f/f) Prx1-Cre mice and the xiphoid process was noncalcified and enlarged. In newborn and 7-day-old Cbfβ(f/f) Prx1-Cre mice, the resting zone was dramatically elongated, the proliferation zone and hypertrophic zone of the growth plates were drastically shortened and disorganized, and trabecular bone formation was reduced. Moreover, in 1-month-old Cbfβ(f/f) Prx1-Cre mice, the growth plates were severely deformed and trabecular bone was almost absent. In addition, Cbfβ deficiency impaired intramembranous bone formation both in vivo and in vitro. Interestingly, although the expression of Indian hedgehog (Ihh) was largely reduced, the expression of parathyroid hormone-related protein (PTHrP) receptor (PPR) was dramatically increased in the Cbfβ(f/f) Prx1-Cre growth plate, indicating that that Cbfβ deficiency disrupted the Ihh-PTHrP negative regulatory loop. Chromatin immunoprecipitation (ChIP) analysis and promoter luciferase assay demonstrated that the Runx/Cbfβ complex binds putative Runx-binding sites of the Ihh promoter regions, and also the Runx/Cbfβ complex directly upregulates Ihh expression at the transcriptional level. Consistently, the expressions of Ihh target genes, including CyclinD1, Ptc, and Pthlh, were downregulated in Cbfβ-deficient chondrocytes. Taken together, our study reveals not only that Cbfβ is essential for chondrocyte

  6. Effects of ionizing radiation on bone cell differentiation in an experimental murine bone cell model

    Science.gov (United States)

    Baumstark-Khan, Christa; Lau, Patrick; Hellweg, Christine; Reitz, Guenther

    During long-term space travel astronauts are exposed to a complex mixture of different radiation types under conditions of dramatically reduced weight-bearing activity. It has been validated that astronauts loose a considerable amount of bone mass at a rate up to one to two percent each month in space. Therapeutic doses of ionizing radiation cause bone damage and increase fracture risks after treatment for head-and-neck cancer and in pelvic irradiation. For low radiation doses, the possibility of a disturbed healing potential of bone was described. Radiation induced damage has been discussed to inflict mainly on immature and healing bone. Little is known about radiation effects on bone remodelling and even less on the combined action of microgravity and radiation. Bone remodelling is a life-long process performed by balanced action of cells from the osteoblast and osteoclast lineages. While osteoblasts differentiate either into bone-lining cells or into osteocytes and play a crucial role in bone matrix synthesis, osteoclasts are responsible for bone resorption. We hypothesize that the balance between bone matrix assembly by osteocytes and bone degradation by osteoclasts is modulated by microgravity as well as by ionizing radiation. To address this, a cell model consisting of murine cell lines with the potential to differentiate into bone-forming osteoblasts (OCT-1, MC3T3-E1 S24, and MC3T3-E1 S4) was used for studying radiation response after exposure to simulated components of cosmic radiation. Cells were exposed to graded doses of 150 kV X-rays, α particles (0.525 MeV/u, 160 keV/µm; PTB, Braunschweig, Germany) and accelerated heavy ions (75 MeV/u carbon, 29 keV/µm; 95 MeV/u argon, 230 keV/µm; GANIL, Caen, France). Cell survival was measured as colony forming ability; cell cycle progression was analyzed via fluorescence-activated cell scanning (FACS) by measurement of the content of propidium iodide-stained DNA, DNA damage was visualized by γH2AX

  7. Recent progress in the differentiation of bone marrow derived ...

    African Journals Online (AJOL)

    Bone marrow mesenchymal stem cells (BMMSCs) are one of the cells found in bone marrow stromal. A large number of studies have shown that BMMSCs cannot only differentiate into hematopoietic stromal cells, but can migrate and position themselves in multiple non-hematopoietic organizations and differentiate into the ...

  8. Astronaut Bones: Stable Calcium Isotopes in Urine as a Biomarker of Bone Mineral Balance

    Science.gov (United States)

    Skulan, J.; Gordon, G. W.; Romaniello, S. J.; Anbar, A. D.; Smith, S. M.; Zwart, S.

    2016-12-01

    Bone loss is a common health concern, in conditions ranging from osteoporosis to cancer. Bone loss due to unloading is also an important health issue for astronauts. We demonstrate stable calcium isotopes, a tool developed in geochemistry, are capable of detecting real-time quantitative changes in net bone mineral balance (BMB) using serum and urine [1]. We validated this technique by comparing with DEXA and biomarker data in subjects during bed rest, a ground-based analog of space flight effects [2-4]. We now apply this tool to assess changes in astronauts' BMB before, during and after 4-6 month space missions. There is stable isotope fractionation asymmetry between bone formation and resorption. During bone formation there is a mass-dependent preference for "lighter" calcium isotopes to be removed from serum and incorporated into bone mineral. During bone resorption, there is no measurable isotopic discrimination between serum and bone. Hence, when bone formation rates exceed that of resorption, serum and urine become isotopically "heavy" due to the sequestration of "light" calcium in bone. Conversely, when bone resorption exceeds bone formation, serum and urine become isotopically "light" due to the release of the sequestered light calcium from bone. We measured Ca isotopes in urine of thirty International Space Station astronauts. Average Ca isotope values in astronauts' urine shift isotopically lighter during microgravity, consistent with negative net BMB. Within a month of return to Earth, astronauts returned to within error of their δ44Ca value prior to departure. Urine samples from astronauts testing bone loss countermeasures showed bisphosphonates provide a viable pharmacological countermeasure. Some, but not all, individuals appear able to resist bone loss through diet and intensive resistive exercise alone. This is a promising new technique for monitoring BMB in astronauts, and hopefully someday on the way to/from Mars, this also has important clinical

  9. Differentiation of bone marrow cells with irradiated bone in vitro

    International Nuclear Information System (INIS)

    Toshiyuki Tominaga; Moritoshi Itoman; Izumi, T.; Wakita, R.; Uchino, M.

    1999-01-01

    Disease transmission or infection is an important issue in bone allograft, and irradiation is used for sterilization of graft bones. One of the advantages of bone allograft over biomaterials is that graft bones have osteoinductive factors such as growth factors. Irradiation is reported to decrease the osteoinductive activity in vivo. We investigated the osteoinductive activity of irradiated bone by alkaline phosphatase (ALP) activity in rat bone marrow cell culture. Bones (tibias and femurs of 12-week-old Wistar rats) were cleaned of adhering soft tissue, and the marrow was removed by washing. The bones were defatted, lyophilized, and cut into uniform 70 mg fragments. Then the Bone fragments were irradiated at either 10, 20, 25, 30, 40, or 50 kGy at JAERI. Bone marrow cells were isolated from tibias and femurs of 4-week-old Wistar rats. Cells were plated in tissue culture flask. When primary cultures reached confluence, cells were passaged (4 x 103 cell / cm2) to 6 wells plates. The culture medium consisted of minimum essential medium, 10% fetal bovine serum, ascorbic acid, and antibiotics. At confluence, a cell culture insert was set in the well, and an irradiated bone fragment was placed in it. Then, medium was supplemented with 10 mM ?-glycerophosphate and 1 x 10-8 M dexamethasone. Culture wells were stained by naphthol AS-MX phosphate, N,N-dimethyl formamide, Red violet LB salt on day 0, 7, 14. The density of ALP staining was analyzed by a personal computer. Without bones, ALP staining increased by 50% on day 7 and by 100% on day 14, compared with that on day 0. The other side, with bones irradiated at 30 kGy or lower, ALP staining increased by 150% on day 7, and by 180% on day 14, compared with that on day 0. In the groups of irradiated bones of 40 kGy or higher, the increase in ALP staining was less prominent compared with the groups of irradiated bones of 30 kGy or lower. In the groups of 0-30 kGy irradiation, ALP staining increased in the early period

  10. Surface primary bone tumors: Systematic approach and differential diagnosis

    Energy Technology Data Exchange (ETDEWEB)

    Mendez Diaz, Cristina; Soler Fernandez, Rafaela; Rodriguez Garcia, Esther; Fernandez Armendariz, Pablo; Diaz Angulo, Carolina [Complejo Hospitalario Universitario A Coruna, Department of Radiology, A Coruna (Spain)

    2015-09-15

    Surface primary bone tumors may appear similar to their intramedullary counterpart, but because they are rare, they may pose diagnostic challenges when showing different characteristics compared to their intramedullary counterpart. It is important for radiologists to recognize the imaging findings for various uncommon surface primary bone tumors, which may help to reduce the differential diagnosis or to lead to a specific diagnosis. Radiography is typically used for first-line imaging. If necessary, it is followed by CT or MRI for evaluation and characterization of surface bone tumors. The aim of this article is to review the imaging findings and differential diagnosis for surface primary bone tumors. (orig.)

  11. Coupling organelle inheritance with mitosis to balance growth and differentiation.

    Science.gov (United States)

    Asare, Amma; Levorse, John; Fuchs, Elaine

    2017-02-03

    Balancing growth and differentiation is essential to tissue morphogenesis and homeostasis. How imbalances arise in disease states is poorly understood. To address this issue, we identified transcripts differentially expressed in mouse basal epidermal progenitors versus their differentiating progeny and those altered in cancers. We used an in vivo RNA interference screen to unveil candidates that altered the equilibrium between the basal proliferative layer and suprabasal differentiating layers forming the skin barrier. We found that epidermal progenitors deficient in the peroxisome-associated protein Pex11b failed to segregate peroxisomes properly and entered a mitotic delay that perturbed polarized divisions and skewed daughter fates. Together, our findings unveil a role for organelle inheritance in mitosis, spindle alignment, and the choice of daughter progenitors to differentiate or remain stem-like. Copyright © 2017, American Association for the Advancement of Science.

  12. The effect of autologous bone marrow stromal cells differentiated on scaffolds for canine tibial bone reconstruction.

    Science.gov (United States)

    Özdal-Kurt, F; Tuğlu, I; Vatansever, H S; Tong, S; Deliloğlu-Gürhan, S I

    2015-01-01

    Bone marrow contains mesenchymal stem cells that form many tissues. Various scaffolds are available for bone reconstruction by tissue engineering. Osteoblastic differentiated bone marrow stromal cells (BMSC) promote osteogenesis on scaffolds and stimulate bone regeneration. We investigated the use of cultured autologous BMSC on different scaffolds for healing defects in tibias of adult male canines. BMSC were isolated from canine humerus bone marrow, differentiated into osteoblasts in culture and loaded onto porous ceramic scaffolds including hydroxyapatite 1, hydroxyapatite gel and calcium phosphate. Osteoblast differentiation was verified by osteonectine and osteocalcine immunocytochemistry. The scaffolds with stromal cells were implanted in the tibial defect. Scaffolds without stromal cells were used as controls. Sections from the defects were processed for histological, ultrastructural, immunohistochemical and histomorphometric analyses to analyze the healing of the defects. BMSC were spread, allowed to proliferate and differentiate to osteoblasts as shown by alizarin red histochemistry, and osteocalcine and osteonectine immunostaining. Scanning electron microscopy showed that BMSC on the scaffolds were more active and adhesive to the calcium phosphate scaffold compared to the others. Macroscopic bone formation was observed in all groups, but scaffolds with stromal cells produced significantly better results. Bone healing occurred earlier and faster with stromal cells on the calcium phosphate scaffold and produced more callus compared to other scaffolds. Tissue healing and osteoblastic marker expression also were better with stromal cells on the scaffolds. Increased trabecula formation, cell density and decreased fibrosis were observed in the calcium phosphate scaffold with stromal cells. Autologous cultured stromal cells on the scaffolds were useful for healing of canine tibial bone defects. The calcium phosphate scaffold was the best for both cell

  13. Natural variations in calcium isotope composition as a monitor of bone mineral balance in humans.

    Science.gov (United States)

    Skulan, J.; Anbar, A.; Thomas, B.; Smith, S.

    2004-12-01

    The skeleton is the largest reservoir of calcium in the human body and is responsible for the short term control of blood levels of this element. Accurate measurement of changes in bone calcium balance is critical to understanding how calcium metabolism responds to physiological and environmental changes and, more specifically, to diagnosing and evaluating the effectiveness of treatments for osteoporosis and other serious calcium-related disorders. It is very difficult to measure bone calcium balance using current techniques, however, because these techniques rely either on separate estimates of bone resorption and formation that are not quantitatively comparable, or on complex and expensive studies of calcium kinetics using administered isotopic tracers. This difficulty is even more apparent and more severe for measurements of short-term changes in bone calcium balance that do not produce detectable changes in bone mineral density. Calcium isotopes may provide a novel means of addressing this problem. The foundation of this isotope application is the ca. 1.3 per mil fractionation of calcium during bone formation, favoring light calcium in the bone. This fractionation results in a steady-state isotopic offset between calcium in bone and calcium in soft tissues, blood and urine. Perturbations to this steady state due to changes in the net formation or resorption of bone should be reflected in changes in the isotopic composition of soft tissues and fluids. Here we present evidence that easily detectable shifts in the natural calcium isotope composition of human urine rapidly reflect changes in bone calcium balance. Urine from subjects in a 17-week bed rest study was analyzed for calcium isotopic composition. Bed rest promotes net resorption of bone, shifting calcium from bone to soft tissues, blood and urine. The calcium isotope composition of patients in this study shifted toward lighter values during bed rest, consistent with net resorption of isotopically

  14. Cell cycle-dependent differentiation dynamics balances growth and endocrine differentiation in the pancreas

    DEFF Research Database (Denmark)

    Kim, Yung Hae; Larsen, Hjalte List; Rué, Paul

    2015-01-01

    Organogenesis relies on the spatiotemporal balancing of differentiation and proliferation driven by an expanding pool of progenitor cells. In the mouse pancreas, lineage tracing at the population level has shown that the expanding pancreas progenitors can initially give rise to all endocrine...... differentiation process is consistent with a simple model of cell cycle-dependent stochastic priming of progenitors to endocrine fate. The findings provide insights to define control parameters to optimize the generation of β-cells in vitro....

  15. Body/bone-marrow differential-temperature sensor

    Science.gov (United States)

    Anselmo, V. J.; Berdahl, C. M.

    1978-01-01

    Differential-temperature sensor developed to compare bone-marrow and body temperature in leukemia patients uses single stable amplifier to monitor temperature difference recorded by thermocouples. Errors are reduced by referencing temperatures to each other, not to separate calibration points.

  16. Stable Calcium Isotopes in Urine as a Biomarker of Bone Mineral Balance in Spaceflight

    Data.gov (United States)

    National Aeronautics and Space Administration — The primary goal of this project was to demonstrate whether the relationship between bone mineral balance (BMB) and changes in the natural isotope composition of...

  17. Methionine restriction alters bone morphology and affects osteoblast differentiation

    Directory of Open Access Journals (Sweden)

    Amadou Ouattara

    2016-12-01

    Full Text Available Methionine restriction (MR extends the lifespan of a wide variety of species, including rodents, drosophila, nematodes, and yeasts. MR has also been demonstrated to affect the overall growth of mice and rats. The objective of this study was to evaluate the effect of MR on bone structure in young and aged male and female C57BL/6J mice. This study indicated that MR affected the growth rates of males and young females, but not aged females. MR reduced volumetric bone mass density (vBMD and bone mineral content (BMC, while bone microarchitecture parameters were decreased in males and young females, but not in aged females compared to control-fed (CF mice. However, when adjusted for bodyweight, the effect of MR in reducing vBMD, BMC and microarchitecture measurements was either attenuated or reversed suggesting that the smaller bones in MR mice is appropriate for its body size. In addition, CF and MR mice had similar intrinsic strength properties as measured by nanoindentation. Plasma biomarkers suggested that the low bone mass in MR mice could be due to increased collagen degradation, which may be influenced by leptin, IGF-1, adiponectin and FGF21 hormone levels. Mouse preosteoblast cell line cultured under low sulfur amino acid growth media attenuated gene expression levels of Col1al, Runx2, Bglap, Alpl and Spp1 suggesting delayed collagen formation and bone differentiation. Collectively, our studies revealed that MR altered bone morphology which could be mediated by delays in osteoblast differentiation. Keywords: Methionine restriction, Aged mice, Micro-computed tomography, Nanoindentation, MC3T3-E1 subclone 4

  18. Hyaluronan scaffold supports osteogenic differentiation of bone marrow concentrate cells.

    Science.gov (United States)

    Cavallo, C; Desando, G; Ferrari, A; Zini, N; Mariani, E; Grigolo, B

    2016-01-01

    Osteochondral lesions are considered a challenge for orthopedic surgeons. Currently, the treatments available are often unsatisfactory and unable to stimulate tissue regeneration. Tissue engineering offers a new therapeutic strategy, taking into account the role exerted by cells, biomaterial and growth factors in restoring tissue damage. In this light, Mesenchymal Stem Cells (MSCs) have been indicated as a fascinating tool for regenerative medicine thanks to their ability to differentiate into bone, cartilage and adipose tissue. However, in vitro-cultivation of MSCs could be associated with some risks such as de-differentiation/reprogramming, infection and contaminations of the cells. To overcome these shortcomings, a new approach is represented by the use of Bone Marrow Concentrate (BMC), that could allow the delivery of cells surrounded by their microenvironment in injured tissue. For this purpose, cells require a tridimensional scaffold that can support their adhesion, proliferation and differentiation. This study is focused on the potentiality of BMC seeded onto a hyaluronan-based scaffold (Hyaff-11) to differentiate into osteogenic lineage. This process depends on the specific interaction between cells derived from bone marrow (surrounded by their niche) and scaffold, that create an environment able to support the regeneration of damaged tissue. The data obtained from the present study demonstrate that BMC grown onto Hyaff-11 are able to differentiate toward osteogenic sense, producing specific osteogenic genes and matrix proteins.

  19. Nanoceramics on osteoblast proliferation and differentiation in bone tissue engineering.

    Science.gov (United States)

    Sethu, Sai Nievethitha; Namashivayam, Subhapradha; Devendran, Saravanan; Nagarajan, Selvamurugan; Tsai, Wei-Bor; Narashiman, Srinivasan; Ramachandran, Murugesan; Ambigapathi, Moorthi

    2017-05-01

    Bone, a highly dynamic connective tissue, consist of a bioorganic phase comprising osteogenic cells and proteins which lies over an inorganic phase predominantly made of CaPO 4 (biological apatite). Injury to bone can be due to mechanical, metabolic or inflammatory agents also owing pathological conditions like fractures, osteomyelitis, osteolysis or cysts may arise in enameloid, chondroid, cementum, or chondroid bone which forms the intermediate tissues of the body. Bone tissue engineering (BTE) applies bioactive scaffolds, host cells and osteogenic signals for restoring damaged or diseased tissues. Various bioceramics used in BTE can be bioactive (like glass ceramics and hydroxyapatite bioactive glass), bioresorbable (like tricalcium phosphates) or bioinert (like zirconia and alumina). Limiting the size of these materials to nano-scale has resulted in a higher surface area to volume ratio thereby improving multi-functionality, solubility, surface catalytic activity, high heat and electrical conductivity. Nanoceramics have been found to induce osteoconduction, osteointegration, osteogenesis and osteoinduction. The present review aims at summarizing the interactions of nanoceramics and osteoblast/stem cells for promoting the proliferation and differentiation of the osteoblast cells by nanoceramics as superior bone substitutes in bone tissue engineering applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Rapidly Assessing Changes in Bone Mineral Balance Using Natural Stable Calcium Isotopes

    Science.gov (United States)

    Morgan, J. L. L.; Gordon, G. W.; Romaniello, S. J.; Skulan, J. L.; Smith, S. M.; Anbar, A. D.

    2011-01-01

    We demonstrate that variations in the Ca isotope ratios in urine rapidly and quantitatively reflect changes in bone mineral balance. This variation occurs because bone formation depletes soft tissue of light Ca isotopes, while bone resorption releases that isotopically light Ca back into soft tissue. In a study of 12 individuals confined to bed rest, a condition known to induce bone resorption, we show that Ca isotope ratios shift in a direction consistent with net bone loss after just 7 days, long before detectible changes in bone density occur. Consistent with this interpretation, the Ca isotope variations track changes observed in N-teleopeptide, a bone resorption biomarker, while bone-specific alkaline phosphatase, a bone formation biomarker, is unchanged. Ca isotopes can in principle be used to quantify net changes in bone mass. Ca isotopes indicate an average loss of 0.62 +/- 0.16 % in bone mass over the course of this 30-day study. The Ca isotope technique should accelerate the pace of discovery of new treatments for bone disease and provide novel insights into the dynamics of bone metabolism.

  1. Role of Galectin-3 in Bone Cell Differentiation, Bone Pathophysiology and Vascular Osteogenesis

    Directory of Open Access Journals (Sweden)

    Carla Iacobini

    2017-11-01

    Full Text Available Galectin-3 is expressed in various tissues, including the bone, where it is considered a marker of chondrogenic and osteogenic cell lineages. Galectin-3 protein was found to be increased in the differentiated chondrocytes of the metaphyseal plate cartilage, where it favors chondrocyte survival and cartilage matrix mineralization. It was also shown to be highly expressed in differentiating osteoblasts and osteoclasts, in concomitance with expression of osteogenic markers and Runt-related transcription factor 2 and with the appearance of a mature phenotype. Galectin-3 is expressed also by osteocytes, though its function in these cells has not been fully elucidated. The effects of galectin-3 on bone cells were also investigated in galectin-3 null mice, further supporting its role in all stages of bone biology, from development to remodeling. Galectin-3 was also shown to act as a receptor for advanced glycation endproducts, which have been implicated in age-dependent and diabetes-associated bone fragility. Moreover, its regulatory role in inflammatory bone and joint disorders entitles galectin-3 as a possible therapeutic target. Finally, galectin-3 capacity to commit mesenchymal stem cells to the osteoblastic lineage and to favor transdifferentiation of vascular smooth muscle cells into an osteoblast-like phenotype open a new area of interest in bone and vascular pathologies.

  2. Differential diagnosis of cystic bone tumors in childhood

    Energy Technology Data Exchange (ETDEWEB)

    Refior, H.J.; Stuerz, H.

    1982-09-01

    Skeletal changes leading to a suspicion of the presence of a tumour frequently occur in childhood with the roentgenological manifestation of a cyst. X-ray morphology can differ depending upon the localisation and the course. In childhood, however such findings are mainly classified as tumour-like bone lesions. This group comprises, inter alia, the juvenile bone cyst, the aneurysmatic bone cyst and fibrous dysplasia. However, it is necessary to exclude by differential diagnosis - even though the main age of manifestation is after completion of growth - genuine bone tumours with cystic phenomena, such as the giant cell tumour, chondroma or chondroblastoma. Verification of the diagnosis can be effected via radiologic-diagnostic methods such as tomography and angiography as well as computerized tomography. The use of scintigraphy of the skeleton can likewise be indicated. Numerous laboratory parameters can be used in individual cases to exclude certain diagnoses. Taking these aspects into consideration, the article reviews differential diagnosis of the most frequent skeletal affections in childhood. Great emphasis is given to the ranking and importance of the individual diagnostic methods.

  3. Glycosylation of immunoglobulin G determines osteoclast differentiation and bone loss.

    Science.gov (United States)

    Harre, Ulrike; Lang, Stefanie C; Pfeifle, René; Rombouts, Yoann; Frühbeißer, Sabine; Amara, Khaled; Bang, Holger; Lux, Anja; Koeleman, Carolien A; Baum, Wolfgang; Dietel, Katharina; Gröhn, Franziska; Malmström, Vivianne; Klareskog, Lars; Krönke, Gerhard; Kocijan, Roland; Nimmerjahn, Falk; Toes, René E M; Herrmann, Martin; Scherer, Hans Ulrich; Schett, Georg

    2015-03-31

    Immunglobulin G (IgG) sialylation represents a key checkpoint that determines the engagement of pro- or anti-inflammatory Fcγ receptors (FcγR) and the direction of the immune response. Whether IgG sialylation influences osteoclast differentiation and subsequently bone architecture has not been determined yet, but may represent an important link between immune activation and bone loss. Here we demonstrate that desialylated, but not sialylated, immune complexes enhance osteoclastogenesis in vitro and in vivo. Furthermore, we find that the Fc sialylation state of random IgG and specific IgG autoantibodies determines bone architecture in patients with rheumatoid arthritis. In accordance with these findings, mice treated with the sialic acid precursor N-acetylmannosamine (ManNAc), which results in increased IgG sialylation, are less susceptible to inflammatory bone loss. Taken together, our findings provide a novel mechanism by which immune responses influence the human skeleton and an innovative treatment approach to inhibit immune-mediated bone loss.

  4. Marked changes in iliac crest bone structure in postmenopausal osteoporotic patients without any signs of disturbed bone remodeling or balance.

    Science.gov (United States)

    Steiniche, T; Christiansen, P; Vesterby, A; Hasling, C; Ullerup, R; Mosekilde, L; Melsen, F

    1994-01-01

    Successful iliac crest bone biopsies were obtained from 63 women with postmenopausal vertebral crush fracture osteoporosis. Structural and static histomorphometric parameters were compared with 25 age-matched normal females, who had suffered an unexpected and sudden death. The control group for dynamic parameters comprised 13 younger normal females. Marked structural changes were observed in the osteoporotic patients in cortical as well as cancellous bone. Cortical width, trabecular volume, trabecular bone surface density and trabecular number were all reduced, whereas trabecular separation and star volume were increased. On the other hand trabecular thickness was normal in the patients. These structural changes in cancellous bone indicate that extensive perforations of trabecular plates have occurred or that whole trabecular elements have been removed. The remodeling cycles of cancellous bone surface and the frequency by which they were repeated (activation frequency) did not differ significantly between osteoporotic patients and normal younger women. The bone balance per remodeling cycle in osteoporotic patients and controls was not significantly different. No subset of individuals in the group of osteoporotic patients could be identified regarding extent of resorptive and formative surfaces, bone formation rate or activation frequency. In the present osteoporotic patients nothing in the ongoing remodeling process could explain the marked changes in bone structure. The pathophysiological changes leading to osteoporosis may therefore occur earlier in life, maybe long before the manifestation of the disease.

  5. Imbalance Between Bone Morphogenetic Protein 2 and Noggin Induces Abnormal Osteogenic Differentiation of Mesenchymal Stem Cells in Ankylosing Spondylitis.

    Science.gov (United States)

    Xie, Zhongyu; Wang, Peng; Li, Yuxi; Deng, Wen; Zhang, Xin; Su, Hongjun; Li, Deng; Wu, Yanfeng; Shen, Huiyong

    2016-02-01

    To study the osteogenic differentiation capacity of bone marrow-derived mesenchymal stem cells (BM-MSCs) from patients with ankylosing spondylitis (AS) and to investigate the mechanisms of abnormal osteogenic differentiation of BM-MSCs in AS. BM-MSCs from healthy donors (HD-MSCs) and patients with AS (AS-MSCs) were cultured in osteogenic differentiation medium for 0-21 days, after which their osteogenic differentiation capacity was determined using alizarin red S and alkaline phosphatase assays. Gene expression levels of osteoblastic markers and related cytokines were detected by high-throughput quantitative reverse transcription-polymerase chain reaction. Enzyme-linked immunosorbent assay was performed to detect protein levels of bone morphogenetic protein 2 (BMP-2) and Noggin in the cell culture supernatant. The activation of Smad1/5/8 and MAPK signaling pathways was measured by Western blotting. The balance between BMP-2 and Noggin expression was regulated using lentiviruses encoding short hairpin RNA and exogenous Noggin, respectively, which enabled evaluation of how this balance affected osteogenic differentiation of AS-MSCs. AS-MSCs outperformed HD-MSCs in osteogenic differentiation capacity. During osteogenic differentiation, AS-MSCs secreted more BMP-2 but less Noggin, accompanied by an overactivation of Smad1/5/8 and ERK-1/2. When the Noggin concentration was increased or BMP-2 expression was inhibited, the abnormal osteogenic differentiation of AS-MSCs was rectified. In addition, the balance between BMP-2 and Noggin secretion was restored. The results of this study demonstrate that an imbalance between BMP-2 and Noggin secretion induces abnormal osteogenic differentiation of AS-MSCs. These findings reveal a mechanism of pathologic osteogenesis in AS and provide a new perspective on inhibiting pathologic osteogenesis by regulating the balance between BMP-2 and Noggin. © 2016, American College of Rheumatology.

  6. Rhus javanica Gall Extract Inhibits the Differentiation of Bone Marrow-Derived Osteoclasts and Ovariectomy-Induced Bone Loss

    Directory of Open Access Journals (Sweden)

    Tae-Ho Kim

    2016-01-01

    Full Text Available Inhibition of osteoclast differentiation and bone resorption is a therapeutic strategy for the management of postmenopausal bone loss. This study investigated the effects of Rhus javanica (R. javanica extracts on bone marrow cultures to develop agents from natural sources that may prevent osteoclastogenesis. Extracts of R. javanica (eGr cocoons spun by Rhus javanica (Bell. Baker inhibited the osteoclast differentiation and bone resorption. The effects of aqueous extract (aeGr or 100% ethanolic extract (eeGr on ovariectomy- (OVX- induced bone loss were investigated by various biochemical assays. Furthermore, microcomputed tomography (µCT was performed to study bone remodeling. Oral administration of eGr (30 mg or 100 mg/kg/day for 6 weeks augmented the inhibition of femoral bone mineral density (BMD, bone mineral content (BMC, and other factors involved in bone remodeling when compared to OVX controls. Additionally, eGr slightly decreased bone turnover markers that were increased by OVX. Therefore, it may be suggested that the protective effects of eGr could have originated from the suppression of OVX-induced increase in bone turnover. Collectively, the findings of this study indicate that eGr has potential to activate bone remodeling by inhibiting osteoclast differentiation and bone loss.

  7. Rapidly assessing changes in bone mineral balance using natural stable calcium isotopes

    Science.gov (United States)

    Morgan, Jennifer L. L.; Skulan, Joseph L.; Gordon, Gwyneth W.; Romaniello, Stephen J.; Smith, Scott M.; Anbar, Ariel D.

    2012-01-01

    The ability to rapidly detect changes in bone mineral balance (BMB) would be of great value in the early diagnosis and evaluation of therapies for metabolic bone diseases such as osteoporosis and some cancers. However, measurements of BMB are hampered by difficulties with using biochemical markers to quantify the relative rates of bone resorption and formation and the need to wait months to years for altered BMB to produce changes in bone mineral density large enough to resolve by X-ray densitometry. We show here that, in humans, the natural abundances of Ca isotopes in urine change rapidly in response to changes in BMB. In a bed rest experiment, use of high-precision isotope ratio MS allowed the onset of bone loss to be detected in Ca isotope data after about 1 wk, long before bone mineral density has changed enough to be detectable with densitometry. The physiological basis of the relationship between Ca isotopes and BMB is sufficiently understood to allow quantitative translation of changes in Ca isotope abundances to changes in bone mineral density using a simple model. The rate of change of bone mineral density inferred from Ca isotopes is consistent with the rate observed by densitometry in long-term bed rest studies. Ca isotopic analysis provides a powerful way to monitor bone loss, potentially making it possible to diagnose metabolic bone disease and track the impact of treatments more effectively than is currently possible. PMID:22652567

  8. Osteoblast Differentiation and Bone Formation Gene Expression in Strontium-inducing Bone Marrow Mesenchymal Stem Cell

    OpenAIRE

    SILA-ASNA, MONNIPHA; BUNYARATVEJ, AHNOND; Maeda, Sakan; Kitaguchi, Hiromichi; BUNYARATAVEJ, NARONG

    2007-01-01

    Osteoblastic differentiation from human mesenchymal stem cell (hMSCs) is animportant step of bone formation. We studied the in vitro induction of hMSCs byusing strontium ranelate, a natural trace amount in water, food and human skeleton.The mRNA synthesis of various osteoblast specific genes was assessed by means ofreverse transcription polymerase chain reaction (RT-PCR). In the hMSCs culture,strontium ranelate could enhance the induction of hMSCs to differentiate intoosteoblasts. Cbfa1 gene ...

  9. Differentiation of malignant and degenerative bone lesions using dexamethasone interventional 3- and 24-hour bone scintigraphy

    International Nuclear Information System (INIS)

    Bhatnagar, A.; Mondal, A.; Kashyap, R.; Sharma, R.K.; Sharma, R.; Chakravarty, S.K.; Bihari, V.; Sawroop, K.; Chopra, M.K.; Soni, N.L.

    1994-01-01

    Seventy-seven adult patients with suspected skeletal metastases were divided into two groups. In group A (n=30), following intravenous administration of 20 mCi (740 MBq) of technetium-99m methylene diphosphonate ( 99m Tc-MDP), 3- and 24-h scintigraphy of bone lesions was performed. The 24/3 h lesion to bone background radiouptake ratio (RUR) was calculated for each lesion. In group B (n=47), the same procedure was followed with dexamethasone intervention (10 mg in 24 h) following the 3-h acquisition. In group A, after determination of the critical point, malignant and degenerative bone lesions could be separated with a sensitivity, specificity and accuracy of 0.76, 0.72 and 0.73, respectively. The mean RUR of the malignant lesions was 1.20± 0.23, and that of the benign lesions, 0.95± 0.15. In group B cases, significantly increased sensitivity, specificity and accuracy of 0.87, 0.94 and 0.92, respectively, were found (P<0.001). The mean RUR of the malignant lesions was 1.48± 0.34, and that of degenerative lesions, 0.88± 0.19. Dexamethasone interventional bone scintigraphy seems to be a new cost-effective method for differentiating malignant from degenerative bone lesions using the RUR. (orig.)

  10. Low bone mineral density is associated with balance and hearing impairments.

    Science.gov (United States)

    Mendy, Angelico; Vieira, Edgar R; Albatineh, Ahmed N; Nnadi, Augustine K; Lowry, Dana; Gasana, Janvier

    2014-01-01

    Bone demineralization affects the skeletal system, including the temporal bone, which contains the cochlea and the vestibular labyrinth. However, research on the association of bone mineral density (BMD) with balance and hearing sensitivity is limited with conflicting results. Therefore, we examined the relationship in a population representative sample. We analyzed 8863 participants to the National Health and Nutrition Examination Survey (1999-2004) aged 40 years and older. Total and head BMD were measured by dual energy x-ray absorptiometry. Balance was evaluated using the Romberg Test of Standing Balance on Firm and Compliant Support Surfaces condition 4, also indicative of vestibular dysfunction. Hearing condition was self-reported. The associations of total and head BMD with balance and hearing were assessed using multiple and multinomial logistic regressions adjusting for covariates. On multiple logistic regression, low total BMD was associated with balance impairment (odds ratio [OR], 2.21; 95% confidence interval [CI], 1.43-4.75), especially in older adults (≥65 years old; OR, 3.72; 95% CI, 1.07-12.85). In multinomial regression, low total BMD was associated with report of significant hearing impairment in older adults (OR, 5.30; 95% CI, 1.20-23.26). Low BMD is associated with balance and hearing impairments, especially in older adults. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Natural Ca Isotope Composition of Urine as a Rapid Measure of Bone Mineral Balance

    Science.gov (United States)

    Skulan, J.; Gordon, G. W.; Morgan, J.; Romaniello, S. J.; Smith, S. M.; Anbar, A. D.

    2011-12-01

    Naturally occurring stable Ca isotope variations in urine are emerging as a powerful tool to detect changes in bone mineral balance. Bone formation depletes soft tissue of light Ca isotopes while bone resorption releases isotopically light Ca into soft tissue. Previously published work found that variations in Ca isotope composition could be detected at 4 weeks of bed rest in a 90-day bed rest study (data collected at 4, 8 and 12 weeks). A new 30-day bed rest study involved 12 patients on a controlled diet, monitored for 7 days prior to bed rest and 7 days post bed rest. Samples of urine, blood and food were collected throughout the study. Four times daily blood samples and per void urine samples were collected to monitor diurnal or high frequency variations. An improved chemical purification protocol, followed by measurement using multiple collector inductively coupled plasma mass spectrometry (MC-ICP-MS) allowed accurate and precise determinations of mass-dependent Ca isotope variations in these biological samples to better than ±0.2% (δ44/42Ca) on biomarker. Bone-specific alkaline phosphatase, a bone formation biomarker, is unchanged over this period. Ca isotopes can in principle be used to quantify net changes in bone mass. Using a mass-balance model, our results indicate an average loss of 0.62 ± 0.16 % in bone mass over the course of this 30-day study. This is consistent with the rate of bone loss in longer-term studies as seen by X-ray measurements. This Ca isotope technique should accelerate the pace of discovery of new treatments for bone disease and provide novel insights into the dynamics of bone metabolism.

  12. Donepezil prevents RANK-induced bone loss via inhibition of osteoclast differentiation by downregulating acetylcholinesterase

    Directory of Open Access Journals (Sweden)

    Tsuyoshi Sato

    2015-09-01

    Conclusions: AChE promotes osteoclast differentiation in vitro. Donepezil inhibits osteoclast function in vitro and prevents bone loss by suppressing bone resorption in vivo, suggesting the possibility that donepezil reduces fracture risk in patients with Alzheimer's disease.

  13. MicroRNA-4739 regulates osteogenic and adipocytic differentiation of immortalized human bone marrow stromal cells via targeting LRP3

    DEFF Research Database (Denmark)

    Elsafadi, Mona; Manikandan, Muthurangan; Alajez, Nehad M

    2017-01-01

    Understanding the regulatory networks underlying lineage differentiation and fate determination of human bone marrow stromal cells (hBMSC) is a prerequisite for their therapeutic use. The goal of the current study was to unravel the novel role of the low-density lipoprotein receptor-related prote...... time a novel biological role for the LRP3/hsa-miR-4739 axis in balancing osteogenic and adipocytic differentiation of hBMSCs. Our data support the potential utilization of miRNA-based therapies in regenerative medicine.......Understanding the regulatory networks underlying lineage differentiation and fate determination of human bone marrow stromal cells (hBMSC) is a prerequisite for their therapeutic use. The goal of the current study was to unravel the novel role of the low-density lipoprotein receptor-related protein...

  14. Specific Biomimetic Hydroxyapatite Nanotopographies Enhance Osteoblastic Differentiation and Bone Graft Osteointegration

    Science.gov (United States)

    Loiselle, Alayna E.; Wei, Lai; Faryad, Muhammad; Paul, Emmanuel M.; Lewis, Gregory S.; Gao, Jun; Lakhtakia, Akhlesh

    2013-01-01

    Impaired healing of cortical bone grafts represents a significant clinical problem. Cadaveric bone grafts undergo extensive chemical processing to decrease the risk of disease transmission; however, these processing techniques alter the bone surface and decrease the osteogenic potential of cells at the healing site. Extensive work has been done to optimize the surface of bone grafts, and hydroxyapatite (HAP) and nanotopography both increase osteoblastic differentiation. HAP is the main mineral component of bone and can enhance osteoblastic differentiation and bone implant healing in vivo, while nanotopography can enhance osteoblastic differentiation, adhesion, and proliferation. This is the first study to test the combined effects of HAP and nanotopographies on bone graft healing. With the goal of identifying the optimized surface features to improve bone graft healing, we tested the hypothesis that HAP-based nanotopographic resurfacing of bone grafts improves integration of cortical bone grafts by enhancing osteoblastic differentiation. Here we show that osteoblastic cells cultured on processed bones coated with specific-scale (50–60 nm) HAP nanotopographies display increased osteoblastic differentiation compared to cells on uncoated bone, bones coated with poly-l-lactic acid nanotopographies, or other HAP nanotopographies. Further, bone grafts coated with 50–60-nm HAP exhibited increased formation of new bone and improved healing, with mechanical properties equivalent to live autografts. These data indicate the potential for specific HAP nanotopographies to not only increase osteoblastic differentiation but also improve bone graft incorporation, which could significantly increase patient quality of life after traumatic bone injuries or resection of an osteosarcoma. PMID:23510012

  15. Isometric Scaling in Developing Long Bones Is Achieved by an Optimal Epiphyseal Growth Balance.

    Science.gov (United States)

    Stern, Tomer; Aviram, Rona; Rot, Chagai; Galili, Tal; Sharir, Amnon; Kalish Achrai, Noga; Keller, Yosi; Shahar, Ron; Zelzer, Elazar

    2015-08-01

    One of the major challenges that developing organs face is scaling, that is, the adjustment of physical proportions during the massive increase in size. Although organ scaling is fundamental for development and function, little is known about the mechanisms that regulate it. Bone superstructures are projections that typically serve for tendon and ligament insertion or articulation and, therefore, their position along the bone is crucial for musculoskeletal functionality. As bones are rigid structures that elongate only from their ends, it is unclear how superstructure positions are regulated during growth to end up in the right locations. Here, we document the process of longitudinal scaling in developing mouse long bones and uncover the mechanism that regulates it. To that end, we performed a computational analysis of hundreds of three-dimensional micro-CT images, using a newly developed method for recovering the morphogenetic sequence of developing bones. Strikingly, analysis revealed that the relative position of all superstructures along the bone is highly preserved during more than a 5-fold increase in length, indicating isometric scaling. It has been suggested that during development, bone superstructures are continuously reconstructed and relocated along the shaft, a process known as drift. Surprisingly, our results showed that most superstructures did not drift at all. Instead, we identified a novel mechanism for bone scaling, whereby each bone exhibits a specific and unique balance between proximal and distal growth rates, which accurately maintains the relative position of its superstructures. Moreover, we show mathematically that this mechanism minimizes the cumulative drift of all superstructures, thereby optimizing the scaling process. Our study reveals a general mechanism for the scaling of developing bones. More broadly, these findings suggest an evolutionary mechanism that facilitates variability in bone morphology by controlling the activity of

  16. Decreased bone turnover with balanced resorption and formation prevent cortical bone loss during disuse (hibernation) in grizzly bears (Ursus arctos horribilis).

    Science.gov (United States)

    McGee, Meghan E; Maki, Aaron J; Johnson, Steven E; Nelson, O Lynne; Robbins, Charles T; Donahue, Seth W

    2008-02-01

    Disuse uncouples bone formation from resorption, leading to increased porosity, decreased bone geometrical properties, and decreased bone mineral content which compromises bone mechanical properties and increases fracture risk. However, black bear bone properties are not adversely affected by aging despite annual periods of disuse (i.e., hibernation), which suggests that bears either prevent bone loss during disuse or lose bone and subsequently recover it at a faster rate than other animals. Here we show decreased cortical bone turnover during hibernation with balanced formation and resorption in grizzly bear femurs. Hibernating grizzly bear femurs were less porous and more mineralized, and did not demonstrate any changes in cortical bone geometry or whole bone mechanical properties compared to active grizzly bear femurs. The activation frequency of intracortical remodeling was 75% lower during hibernation than during periods of physical activity, but the normalized mineral apposition rate was unchanged. These data indicate that bone turnover decreases during hibernation, but osteons continue to refill at normal rates. There were no changes in regional variation of porosity, geometry, or remodeling indices in femurs from hibernating bears, indicating that hibernation did not preferentially affect one region of the cortex. Thus, grizzly bears prevent bone loss during disuse by decreasing bone turnover and maintaining balanced formation and resorption, which preserves bone structure and strength. These results support the idea that bears possess a biological mechanism to prevent disuse osteoporosis.

  17. Using Natural Stable Calcium Isotopes to Rapidly Assess Changes in Bone Mineral Balance Using a Bed Rest Model to Induce Bone Loss

    Science.gov (United States)

    Morgan, J. L. L.; Skulan, J. L.; Gordon, G. E.; Smith, Scott M.; Romaniello, S. J.; Anbar, A. D.

    2012-01-01

    Metabolic bone diseases like osteoporosis result from the disruption of normal bone mineral balance (BMB) resulting in bone loss. During spaceflight astronauts lose substantial bone. Bed rest provides an analog to simulate some of the effects of spaceflight; including bone and calcium loss and provides the opportunity to evaluate new methods to monitor BMB in healthy individuals undergoing environmentally induced-bone loss. Previous research showed that natural variations in the Ca isotope ratio occur because bone formation depletes soft tissue of light Ca isotopes while bone resorption releases that isotopically light Ca back into soft tissue (Skulan et al, 2007). Using a bed rest model, we demonstrate that the Ca isotope ratio of urine shifts in a direction consistent with bone loss after just 7 days of bed rest, long before detectable changes in bone mineral density (BMD) occur. The Ca isotope variations tracks changes observed in urinary N-teleopeptide, a bone resorption biomarker. Bone specific alkaline phosphatase, a bone formation biomarker, is unchanged. The established relationship between Ca isotopes and BMB can be used to quantitatively translate the changes in the Ca isotope ratio to changes in BMD using a simple mathematical model. This model predicts that subjects lost 0.25 0.07% ( SD) of their bone mass from day 7 to day 30 of bed rest. Given the rapid signal observed using Ca isotope measurements and the potential to quantitatively assess bone loss; this technique is well suited to study the short-term dynamics of bone metabolism.

  18. Low-dose hydrocortisone (HC) replacement therapy is associated with improved bone remodeling balance in hypopituitary subjects

    LENUS (Irish Health Repository)

    Behan, L A

    2011-06-01

    The effect of commonly used glucocorticoid replacement regimens on bone health in hypopituitary subjects is not well known. We aimed to assess the effect of 3 hydrocortisone (HC) replacement dose regimens on bone turnover in this group.10 hypopituitary men with severe ACTH deficiency were randomised in a crossover design to 3 HC dose regimens, Dose A (20mg mane, 10mg tarde), Dose B (10mg twice daily) and Dose C (10mg mane, 5mg tarde). Following 6 weeks of each regimen participants underwent fasting sampling of bone turnover markers.Data from matched controls were used to produce a Z score for subject bone formation and resorption markers and to calculate the bone remodeling balance (formation Z score-resorption Z score) and turnover index ((formation Z + resorption Z)\\/2). A positive bone remodeling balance with increased turnover is consistent with a favourable bone cycle. Data are expressed as median (range).The Pro Collagen Type 1 Peptide (PINP) bone formation Z-score was significantly increased in Dose C, (1.805 (-0.6-10.24)) compared to Dose A (0.035 (-1.0-8.1)) p<0.05 while there was no difference in the C-terminal crosslinking telopeptide (CTx) resorption Z score. The bone remodeling balance was significantly lower for dose A -0.02 (-1.05-4.12) compared to dose C 1.13 (0.13-6.4) (p<0.05). Although there was a trend to an increased bone turnover index with the lower dose regimen, this was not statistically significant.Low dose HC replacement (10mg mane\\/5 mg tarde) was associated with increased bone formation and improved bone remodeling balance which is associated with a more favourable bone cycle. This may have a long term beneficial effect on bone health.

  19. Legumain Regulates Differentiation Fate of Human Bone Marrow Stromal Cells and Is Altered in Postmenopausal Osteoporosis

    Directory of Open Access Journals (Sweden)

    Abbas Jafari

    2017-02-01

    Full Text Available Secreted factors are a key component of stem cell niche and their dysregulation compromises stem cell function. Legumain is a secreted cysteine protease involved in diverse biological processes. Here, we demonstrate that legumain regulates lineage commitment of human bone marrow stromal cells and that its expression level and cellular localization are altered in postmenopausal osteoporotic patients. As shown by genetic and pharmacological manipulation, legumain inhibited osteoblast (OB differentiation and in vivo bone formation through degradation of the bone matrix protein fibronectin. In addition, genetic ablation or pharmacological inhibition of legumain activity led to precocious OB differentiation and increased vertebral mineralization in zebrafish. Finally, we show that localized increased expression of legumain in bone marrow adipocytes was inversely correlated with adjacent trabecular bone mass in a cohort of patients with postmenopausal osteoporosis. Our data suggest that altered proteolytic activity of legumain in the bone microenvironment contributes to decreased bone mass in postmenopausal osteoporosis.

  20. Recent progress in the differentiation of bone marrow derived ...

    African Journals Online (AJOL)

    ONOS

    2010-08-09

    Aug 9, 2010 ... Bone marrow mesenchymal stem cells (BMMSCs) are one of the cells found in bone marrow stromal. A large number of ..... Bone marrow stromal cell: Nature, Biology, and potential application. Stem cell,. 19(3): 180-192. Cao F, Sun DD, Li CX, Narsinh K, Zhao L, Li X Feng XY, Zhang J,. Duan YY, Wang J, ...

  1. sup(99m)Tc-MDP bone scintigraphy: kinetics of captation and differential diagnosis

    International Nuclear Information System (INIS)

    Slosman, D.; Frey, P.; Donath, A.

    1983-01-01

    The differential diagnosis of bone pathology is approached by the study of local MDP kinetics during the first two hours after intravenous injection. The value of the ratio between the pathological and the contralateral side is constant in normal cases (flat curve), it decreases in infectious bone diseases, it passes through a maximum after 1 to 1 1/2 hour in inflammatory non-infectious involvement of bone and it keeps increasing in primary bone pathological conditions. This technique has become a very useful tool in approaching differential diagnosis

  2. Thy1 is a positive regulator of osteoblast differentiation and modulates bone homeostasis in obese mice.

    Science.gov (United States)

    Paine, Ananta; Woeller, Collynn F; Zhang, Hengwei; de la Luz Garcia-Hernandez, Maria; Huertas, Nelson; Xing, Lianping; Phipps, Richard P; Ritchlin, Christopher T

    2018-01-17

    Thy1 (CD90), a glycosylated, glycophosphatidylinositol-anchored membrane protein highly expressed by subsets of mesenchymal stem cells and fibroblasts, inhibits adipogenesis. The role of Thy1 on bone structure and function has been poorly studied and represents a major knowledge gap. Therefore, we analyzed the long bones of wild-type (WT) and Thy1 knockout (KO) mice with micro-computed tomography (CT) and histomorphometry to compare changes in bone architecture and overall bone structure. micro-CT analysis of long bones revealed Thy1 KO and WT mice fed a high-fat diet demonstrated bone structural parameters at 4 mo that differed significantly between WT and KO mice. A significant reduction in trabecular bone volume was noted in Thy1 KO mice. The most prominent differences were observed in trabecular bone volume ratio and trabecular bone connectivity density. Consistent with micro-CT measurements, histomorphometric analysis also showed decreased bone volume in the obese Thy1 KO mice compared to obese WT mice. In vitro assays revealed that osteogenic conditions increased Thy1 expression during OB differentiation and absence of Thy1 attenuated osteoblastogenesis. Together, these findings support the concept that Thy1 serves as a major mechanistic link to regulate bone formation and negatively regulate adipogenesis.-Paine, A., Woeller, C. F., Zhang, H., Garcia-Hernandez, M. L., Huertas, N., Xing, L., Phipps, R. P., Ritchlin, C. T. Thy1 is a positive regulator of osteoblast differentiation and modulates bone homeostasis in obese mice.

  3. Bone Mineral Density, Balance Performance, Balance Self-Efficacy, and Falls in Breast Cancer Survivors With and Without Qigong Training: An Observational Study.

    Science.gov (United States)

    Fong, Shirley S M; Choi, Anna W M; Luk, W S; Yam, Timothy T T; Leung, Joyce C Y; Chung, Joanne W Y

    2018-03-01

    A deterioration in bone strength and balance performance after breast cancer treatment can result in injurious falls. Therefore, interventions need to be developed to improve the bone strength and balance ability of breast cancer survivors. This cross-sectional exploratory study aimed to compare the bone mineral density (BMD), balance performance, balance self-efficacy, and number of falls between breast cancer survivors who practiced qigong, breast cancer survivors who did not practice qigong, and healthy individuals. The study included 40 breast cancer survivors with more than 3 months of qigong experience, 17 breast cancer survivors with no qigong experience, and 36 healthy controls. All the participants underwent dual-energy X-ray absorptiometry scans to measure their lumbar spine, total hip, femoral neck, and total radius BMDs. The participants also underwent a timed one-leg stand test to measure their single-leg standing balance. The participants' balance self-efficacy was assessed using the activities-specific balance confidence scale, and the number of falls experienced by each participant was assessed in a face-to-face interview. The lumbar spine, total hip, femoral neck, and total radius BMDs were similar between the 3 groups ( P > .05). The breast cancer-qigong group outperformed the breast cancer-control group by 27.3% when they performed the one-leg stand test on a foam surface ( P = .025), and they also had a higher balance self-efficacy score ( P = .006). Nevertheless, the numbers of falls were comparable between the 3 groups ( P > .05). Qigong may be a suitable exercise for improving the balance performance and balance self-efficacy of breast cancer survivors.

  4. T-Stability of the Heun Method and Balanced Method for Solving Stochastic Differential Delay Equations

    Directory of Open Access Journals (Sweden)

    Xiaolin Zhu

    2014-01-01

    Full Text Available This paper studies the T-stability of the Heun method and balanced method for solving stochastic differential delay equations (SDDEs. Two T-stable conditions of the Heun method are obtained for two kinds of linear SDDEs. Moreover, two conditions under which the balanced method is T-stable are obtained for two kinds of linear SDDEs. Some numerical examples verify the theoretical results proposed.

  5. Acid Balance, Dietary Acid Load, and Bone Effects—A Controversial Subject

    Directory of Open Access Journals (Sweden)

    Lynda Frassetto

    2018-04-01

    Full Text Available Modern Western diets, with higher contents of animal compared to fruits and vegetable products, have a greater content of acid precursors vs. base precursors, which results in a net acid load to the body. To prevent inexorable accumulation of acid in the body and progressively increasing degrees of metabolic acidosis, the body has multiple systems to buffer and titrate acid, including bone which contains large quantities of alkaline salts of calcium. Both in vitro and in vivo studies in animals and humans suggest that bone base helps neutralize part of the dietary net acid load. This raises the question of whether decades of eating a high acid diet might contribute to the loss of bone mass in osteoporosis. If this idea is true, then additional alkali ingestion in the form of net base-producing foods or alkalinizing salts could potentially prevent this acid-related loss of bone. Presently, data exists that support both the proponents as well as the opponents of this hypothesis. Recent literature reviews have tended to support either one side or the other. Assuming that the data cited by both sides is correct, we suggest a way to reconcile the discordant findings. This overview will first discuss dietary acids and bases and the idea of changes in acid balance with increasing age, then review the evidence for and against the usefulness of alkali therapy as a treatment for osteoporosis, and finally suggest a way of reconciling these two opposing points of view.

  6. The importance of assessing the rate of bone turnover and the balance between bone formation and bone resorption during daily teriparatide administration for osteoporosis: a pilot study.

    Science.gov (United States)

    Nakatoh, Shinichi

    2016-03-01

    This study aimed to examine the importance of simultaneously measuring bone formation and resorption markers during daily teriparatide administration. In 135 women with osteoporosis, bone mineral density (BMD) was measured at 0, 24, and 48 weeks after teriparatide administration. Bone-specific alkaline phosphatase and tartrate-resistant acid phosphatase 5b were measured at 0, 4, 12, 24, 36, and 48 weeks. Subanalyses were performed in groups divided according to the BMD change at 48 weeks (increased and decreased groups), history of fragility fracture (acute and chronic groups), and treatment prior to teriparatide administration (alendronate, raloxifene, and naïve groups). The scatter diagram of multiple of median formation (MoMf) and multiple of median resorption (MoMr) showed that the distribution gradually spread to a high turnover by week 24. A significant correlation was observed between the rate of change in BMD at week 48 and the turnover rate [√(MoMf(2) + MoMr(2))] at week 0. Significant differences were observed in the turnover rate between the acute and chronic groups at weeks 0 and 4 and between the groups divided according to prior treatment from week 0 to 24. Because the assessment of either bone formation markers or bone resorption markers may result in erroneous data, it is necessary to assess them together during teriparatide treatment. The turnover rate at treatment initiation is a useful indicator to predict changes in BMD. When evaluating the turnover rate and balance (MoMf/MoMr), one should consider patient characteristics, including history of fragility fracture and prior treatment.

  7. Effects of ionizing radiation on differentiation of murine bone marrow cells into mast cells

    International Nuclear Information System (INIS)

    Murakami, Sho; Yoshino, Hironori; Ishikawa, Junya; Yamaguchi, Masaru; Tsujiguchi, Takakiyo; Nishiyama, Ayaka; Yokoyama, Kouki; Kashiwakura, Ikuo

    2015-01-01

    Mast cells, immune effector cells produced from bone marrow cells, play a major role in immunoglobulin E–mediated allergic responses. Ionizing radiation affects the functions of mast cells, which are involved in radiation-induced tissue damage. However, whether ionizing radiation affects the differential induction of mast cells is unknown. Here we investigated whether bone marrow cells of X-irradiated mice differentiated into mast cells. To induce mast cells, bone marrow cells from X-irradiated and unirradiated mice were cultured in the presence of cytokines required for mast cell induction. Although irradiation at 0.5 Gy and 2 Gy decreased the number of bone marrow cells 1 day post-irradiation, the cultured bone marrow cells of X-irradiated and unirradiated mice both expressed mast cell–related cell-surface antigens. However, the percentage of mast cells in the irradiated group was lower than in the unirradiated group. Similar decreases in the percentage of mast cells induced in the presence of X-irradiation were observed 10 days post irradiation, although the number of bone marrow cells in irradiated mice had recovered by this time. Analysis of mast cell function showed that degranulation of mast cells after immunoglobulin E–mediated allergen recognition was significantly higher in the X-irradiated group compared with in the unirradiated group. In conclusion, bone marrow cells of X-irradiated mice differentiated into mast cells, but ionizing radiation affected the differentiation efficiency and function of mast cells. (author)

  8. BALANCE

    Science.gov (United States)

    Carmichael, H.

    1953-01-01

    A torsional-type analytical balance designed to arrive at its equilibrium point more quickly than previous balances is described. In order to prevent external heat sources creating air currents inside the balance casing that would reiard the attainment of equilibrium conditions, a relatively thick casing shaped as an inverted U is placed over the load support arms and the balance beam. This casing is of a metal of good thernnal conductivity characteristics, such as copper or aluminum, in order that heat applied to one portion of the balance is quickly conducted to all other sensitive areas, thus effectively preventing the fornnation of air currents caused by unequal heating of the balance.

  9. MicroRNA Regulation in Osteogenic and Adipogenic Differentiation of Bone Mesenchymal Stem Cells and its Application in Bone Regeneration.

    Science.gov (United States)

    Li, Binbin

    2018-01-01

    Bone mesenchymal stem cells (BMSCs) are multipotent stromal cells providing a useful cell source for treating bone diseases and metabolic disorders. BMSCs fate determination and lineage progression are controlled by multiple cytokines, transcriptional factors, signaling pathways, and microRNAs (miRNAs). MiRNAs are small non-coding RNAs that inhibit the posttranscriptional gene expression or degrade their targets. They are closely involved in controlling the key steps of osteogenesis and adipogenesis of BMSCs. We aim to summarize the roles of miRNAs and their pathways in regulating osteogenic and adipogenic differentiation of BMSCs, and sketch its preliminary applications in bone regeneration. We reviewed the published literature about the microRNA regulation in osteogenic and adipogenic differentiation of BMSCs. Most of miRNAs are expressed in BMSCs, perform as negative regulators of osteogenesis and have bidirectional effects on adipogenesis. Runx2 and PPARγ are two key transcriptional factors in osteogenesis and adipogenesis, respectively. Anti-miRNAs or miRNA mimics is potential therapeutic strategy to repress pathological miRNAs for cellular therapies to bone diseases. The preliminary applications of miRNAs in BMSCs strongly suggested their bright future in bone regeneration. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  10. Our stolen figures: the interface of sexual differentiation, endocrine disruptors, maternal programming, and energy balance.

    Science.gov (United States)

    Schneider, Jill E; Brozek, Jeremy M; Keen-Rhinehart, Erin

    2014-06-01

    This article is part of a Special Issue "Energy Balance". The prevalence of adult obesity has risen markedly in the last quarter of the 20th century and has not been reversed in this century. Less well known is the fact that obesity prevalence has risen in domestic, laboratory, and feral animals, suggesting that all of these species have been exposed to obesogenic factors present in the environment. This review emphasizes interactions among three biological processes known to influence energy balance: Sexual differentiation, endocrine disruption, and maternal programming. Sexual dimorphisms include differences between males and females in body weight, adiposity, adipose tissue distribution, ingestive behavior, and the underlying neural circuits. These sexual dimorphisms are controlled by sex chromosomes, hormones that masculinize or feminize adult body weight during perinatal development, and hormones that act during later periods of development, such as puberty. Endocrine disruptors are natural and synthetic molecules that attenuate or block normal hormonal action during these same developmental periods. A growing body of research documents effects of endocrine disruptors on the differentiation of adipocytes and the central nervous system circuits that control food intake, energy expenditure, and adipose tissue storage. In parallel, interest has grown in epigenetic influences, including maternal programming, the process by which the mother's experience has permanent effects on energy-balancing traits in the offspring. This review highlights the points at which maternal programming, sexual differentiation, and endocrine disruption might dovetail to influence global changes in energy balancing traits. Copyright © 2014. Published by Elsevier Inc.

  11. Gene expression profiling of bone marrow mesenchymal stem cells from Osteogenesis Imperfecta patients during osteoblast differentiation.

    Science.gov (United States)

    Kaneto, Carla Martins; Pereira Lima, Patrícia S; Prata, Karen Lima; Dos Santos, Jane Lima; de Pina Neto, João Monteiro; Panepucci, Rodrigo Alexandre; Noushmehr, Houtan; Covas, Dimas Tadeu; de Paula, Francisco José Alburquerque; Silva, Wilson Araújo

    2017-06-01

    Mesenchymal stem cells (MSCs) are precursors present in adult bone marrow that are able to differentiate into osteoblasts, adipocytes and chondroblasts that have gained great importance as a source for cell therapy. Recently, a number of studies involving the analysis of gene expression of undifferentiated MSCs and of MSCs in the differentiation into multiple lineage processes were observed but there is no information concerning the gene expression of MSCs from Osteogenesis Imperfecta (OI) patients. Osteogenesis Imperfecta is characterized as a genetic disorder in which a generalized osteopenia leads to excessive bone fragility and severe bone deformities. The aim of this study was to analyze gene expression profile during osteogenic differentiation from BMMSCs (Bone Marrow Mesenchymal Stem Cells) obtained from patients with Osteogenesis Imperfecta and from control subjects. Bone marrow samples were collected from three normal subjects and five patients with OI. Mononuclear cells were isolated for obtaining mesenchymal cells that had been expanded until osteogenic differentiation was induced. RNA was harvested at seven time points during the osteogenic differentiation period (D0, D+1, D+2, D+7, D+12, D+17 and D+21). Gene expression analysis was performed by the microarray technique and identified several differentially expressed genes. Some important genes for osteoblast differentiation had lower expression in OI patients, suggesting a smaller commitment of these patient's MSCs with the osteogenic lineage. Other genes also had their differential expression confirmed by RT-qPCR. An increase in the expression of genes related to adipocytes was observed, suggesting an increase of adipogenic differentiation at the expense osteogenic differentiation. Copyright © 2017. Published by Elsevier Masson SAS.

  12. Multilineage differentiation of porcine bone marrow stromal cells associated with specific gene expression pattern

    DEFF Research Database (Denmark)

    Zou, Lijin; Zou, Xuenong; Chen, Li

    2008-01-01

    genes. However, it is not fully clear whether multilineage differentiation (osteogenesis, chondrogenesis, and adipogenesis) of BMSC is associated with a specific gene expression pattern. In the present study, we investigated the gene expression pattern of representative transcription factors and marker......There are increasing reports regarding differentiation of bone marrow stromal cells (BMSC) from human and various species of animals including pigs. The phenotype and function of BMSC along a mesenchymal lineage differentiation are well characterized by specific transcription factors and marker...

  13. Genetic architecture and balancing selection: the life and death of differentiated variants.

    Science.gov (United States)

    Llaurens, Violaine; Whibley, Annabel; Joron, Mathieu

    2017-05-01

    Balancing selection describes any form of natural selection, which results in the persistence of multiple variants of a trait at intermediate frequencies within populations. By offering up a snapshot of multiple co-occurring functional variants and their interactions, systems under balancing selection can reveal the evolutionary mechanisms favouring the emergence and persistence of adaptive variation in natural populations. We here focus on the mechanisms by which several functional variants for a given trait can arise, a process typically requiring multiple epistatic mutations. We highlight how balancing selection can favour specific features in the genetic architecture and review the evolutionary and molecular mechanisms shaping this architecture. First, balancing selection affects the number of loci underlying differentiated traits and their respective effects. Control by one or few loci favours the persistence of differentiated functional variants by limiting intergenic recombination, or its impact, and may sometimes lead to the evolution of supergenes. Chromosomal rearrangements, particularly inversions, preventing adaptive combinations from being dissociated are increasingly being noted as features of such systems. Similarly, due to the frequency of heterozygotes maintained by balancing selection, dominance may be a key property of adaptive variants. High heterozygosity and limited recombination also influence associated genetic load, as linked recessive deleterious mutations may be sheltered. The capture of deleterious elements in a locus under balancing selection may reinforce polymorphism by further promoting heterozygotes. Finally, according to recent genomewide scans, balanced polymorphism might be more pervasive than generally thought. We stress the need for both functional and ecological studies to characterize the evolutionary mechanisms operating in these systems. © 2017 John Wiley & Sons Ltd.

  14. Activation of GLP-1 Receptor Promotes Bone Marrow Stromal Cell Osteogenic Differentiation through β-Catenin

    Directory of Open Access Journals (Sweden)

    Jingru Meng

    2016-04-01

    Full Text Available Glucagon-like peptide 1 (GLP-1 plays an important role in regulating bone remodeling, and GLP-1 receptor agonist shows a positive relationship with osteoblast activity. However, GLP-1 receptor is not found in osteoblast, and the mechanism of GLP-1 receptor agonist on regulating bone remodeling is unclear. Here, we show that the GLP-1 receptor agonist exendin-4 (Ex-4 promoted bone formation and increased bone mass and quality in a rat unloading-induced bone loss model. These functions were accompanied by an increase in osteoblast number and serum bone formation markers, while the adipocyte number was decreased. Furthermore, GLP-1 receptor was detected in bone marrow stromal cells (BMSCs, but not in osteoblast. Activation of GLP-1 receptor by Ex-4 promoted the osteogenic differentiation and inhibited BMSC adipogenic differentiation through regulating PKA/β-catenin and PKA/PI3K/AKT/GSK3β signaling. These findings reveal that GLP-1 receptor regulates BMSC osteogenic differentiation and provide a molecular basis for therapeutic potential of GLP-1 against osteoporosis.

  15. Differential effects of intermittent and continuous administration of parathyroid hormone on bone histomorphometry and gene expression

    Science.gov (United States)

    Lotinun, Sutada; Sibonga, Jean D.; Turner, Russell T.

    2002-01-01

    A mechanism explaining the differential skeletal effects of intermittent and continuous elevation of serum parathyroid hormone (PTH) remains elusive. Intermittent PTH increases bone formation and bone mass and is being investigated as a therapy for osteoporosis. By contrast, chronic hyperparathyroidism results in the metabolic bone disease osteitis fibrosa characterized by osteomalacia, focal bone resorption, and peritrabecular bone marrow fibrosis. Intermittent and continuous PTH have similar effects on the number of osteoblasts and bone-forming activity. Many of the beneficial as well as detrimental effects of the hormone appear to be mediated by osteoblast-derived growth factors. This hypothesis was tested using cDNA microgene arrays to compare gene expression in tibia of rats treated with continuous and pulsatile administration of PTH. These treatments result in differential expression of many genes, including growth factors. One of the genes whose steady-state mRNA levels was increased by continuous but not pulsatile administration was platelet-derived growth factor-A (PDGF-A). Administration of a PDGF-A antagonist greatly reduced bone resorption, osteomalacia, and bone marrow fibrosis in a rat model for hyperparathyroidism, suggesting that PDGF-A is a causative agent for this disease. These findings suggest that profiling changes in gene expression can help identify the metabolic pathways responsible for the skeletal responses to the hormone.

  16. Schwann cells promote neuronal differentiation of bone marrow ...

    African Journals Online (AJOL)

    It has been suggested that the BMSCs have the capacity to differentiate into neurons under specific experimental conditions, using chemical factors. In this study, we showed that BMSCs can be induced to differentiate into neuron-like cells when they are co-cultured with Schwann cells by Brdu pulse label technology.

  17. Legumain Regulates Differentiation Fate of Human Bone Marrow Stromal Cells and Is Altered in Postmenopausal Osteoporosis

    DEFF Research Database (Denmark)

    Jafari Kermani, Abbas; Qanie, Diyako; Andersen, Thomas L

    2017-01-01

    and that its expression level and cellular localization are altered in postmenopausal osteoporotic patients. As shown by genetic and pharmacological manipulation, legumain inhibited osteoblast (OB) differentiation and in vivo bone formation through degradation of the bone matrix protein fibronectin....... In addition, genetic ablation or pharmacological inhibition of legumain activity led to precocious OB differentiation and increased vertebral mineralization in zebrafish. Finally, we show that localized increased expression of legumain in bone marrow adipocytes was inversely correlated with adjacent......Secreted factors are a key component of stem cell niche and their dysregulation compromises stem cell function. Legumain is a secreted cysteine protease involved in diverse biological processes. Here, we demonstrate that legumain regulates lineage commitment of human bone marrow stromal cells...

  18. Benign bone-forming lesions: osteoma, osteoid osteoma, and osteoblastoma; Clinical, imaging, pathologic, and differential considerations

    Energy Technology Data Exchange (ETDEWEB)

    Greenspan, A. (Depts. of Radiology and Orthopedic Surgery, California Univ., Davis School of Medicine, Sacramento, CA (United States) Section of Musculoskeletal Radiology, UC Davis Medical Center, Sacramento, CA (United States))

    1993-10-01

    The benign bone lesions - osteoma, osteoid osteoma, and osteoblastoma - are characterized as bone-forming because tumor cells produce osteoid or mature bone. Osteoma is a slow-growing lesion most commonly seen in the paranasal sinuses and in the calvaria. When it occurs in the long bones, it is invariably juxtacortical and may need to be differentiated from, among others, parosteal osteosarcoma, sessile osteochondroma, and a matured juxtacortical focus of myositis ossificans. Osteoid osteoma and osteoblastoma appear histologically very similar. Their clinical presentations and distribution in the skeleton, however, are distinct: osteoid osteoma is usually accompanied by nocturnal pain promptly relieved by salicylates; osteoblastoma arises predominantly in the axial skeleton, spinal lesions constituting one-third of reported cases. This review focuses on the application of the various imaging modalities in the diagnosis, differential diagnosis, and evaluation of these lesions. Their histopathology also is discussed, and their treatment briefly outlined. (orig.)

  19. MRI of spinal bone marrow: part 2, T1-weighted imaging-based differential diagnosis.

    Science.gov (United States)

    Hanrahan, Christopher J; Shah, Lubdha M

    2011-12-01

    The purpose of this article is to review the structure of bone marrow and the differential diagnosis of bone marrow pathology on the basis of T1-weighted MRI patterns. Bone marrow is an organ that is evaluated routinely during MRI of the spine, particularly lumbar spine evaluation. Thus, it is one of the most commonly performed MRI examinations. T1-weighted MRI is a fundamental sequence in evaluating spinal marrow, and an understanding of T1-weighted MR signal abnormalities is important for the practicing radiologist.

  20. Constitutive β-catenin activation in osteoblasts impairs terminal osteoblast differentiation and bone quality

    International Nuclear Information System (INIS)

    Bao, Quanwei; Chen, Sixu; Qin, Hao; Feng, Jianquan; Liu, Huayu; Liu, Daocheng; Li, Ang; Shen, Yue; Zhong, Xiaozheng; Li, Junfeng; Zong, Zhaowen

    2017-01-01

    Accumulating evidence suggests that Wnt/β-catenin signaling plays a central role in controlling bone mass. We previously reported that constitutive activation of β-catenin (CA-β-catenin) in osteoblasts potentially has side effects on the bone growth and bone remodeling process, although it could increase bone mass. The present study aimed to observe the effects of osteoblastic CA-β-catenin on bone quality and to investigate possible mechanisms of these effects. It was found that CA-β-catenin mice exhibited lower mineralization levels and disorganized collagen in long bones as confirmed by von Kossa staining and sirius red staining, respectively. Also, bone strength decreased significantly in CA-β-catenin mice. Then the effect of CA-β-catenin on biological functions of osteoblasts were investigated and it was found that the expression levels of osteocalcin, a marker for the late differentiation of osteoblasts, decreased in CA-β-catenin mice, while the expression levels of osterix and alkaline phosphatase, two markers for the early differentiation of osteoblasts, increased in CA-β-catenin mice. Furthermore, higher proliferation rate were revealed in osteoblasts that were isolated from CA-β-catenin mice. The Real-time PCR and western blot examination found that the expression level of c-myc and cyclin D1, two G1 progression-related molecules, increased in osteoblasts that were isolated from the CA-β-catenin mice, and the expression levels of CDK14 and cyclin Y, two mitotic-related molecules that can accelerate cells entering into S and G2/M phases, increased in osteoblasts that were isolated from the CA-β-catenin mice. In summary, osteoblastic CA-β-catenin kept osteoblasts in high proliferative state and impaired the terminal osteoblast differentiation, and this led to changed bone structure and decreased bone strength. - Highlights: • Wnt/β-catenin signaling plays a central role in controlling bone mass. • CA-β-catenin has side effects on the bone

  1. Activation of Cannabinoid Receptor 2 Enhances Osteogenic Differentiation of Bone Marrow Derived Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    Yong-Xin Sun

    2015-01-01

    Full Text Available Bone marrow derived mesenchymal stem cells (BM-MSCs are considered as the most promising cells source for bone engineering. Cannabinoid (CB receptors play important roles in bone mass turnover. The aim of this study is to test if activation of CB2 receptor by chemical agonist could enhance the osteogenic differentiation and mineralization in bone BM-MSCs. Alkaline phosphatase (ALP activity staining and real time PCR were performed to test the osteogenic differentiation. Alizarin red staining was carried out to examine the mineralization. Small interference RNA (siRNA was used to study the role of CB2 receptor in osteogenic differentiation. Results showed activation of CB2 receptor increased ALP activity, promoted expression of osteogenic genes, and enhanced deposition of calcium in extracellular matrix. Knockdown of CB2 receptor by siRNA inhibited ALP activity and mineralization. Results of immunofluorescent staining showed that phosphorylation of p38 MAP kinase is reduced by knocking down of CB2 receptor. Finally, bone marrow samples demonstrated that expression of CB2 receptor is much lower in osteoporotic patients than in healthy donors. Taken together, data from this study suggested that activation of CB2 receptor plays important role in osteogenic differentiation of BM-MSCs. Lack of CB2 receptor may be related to osteoporosis.

  2. Legumain Regulates Differentiation Fate of Human Bone Marrow Stromal Cells and Is Altered in Postmenopausal Osteoporosis.

    Science.gov (United States)

    Jafari, Abbas; Qanie, Diyako; Andersen, Thomas L; Zhang, Yuxi; Chen, Li; Postert, Benno; Parsons, Stuart; Ditzel, Nicholas; Khosla, Sundeep; Johansen, Harald Thidemann; Kjærsgaard-Andersen, Per; Delaisse, Jean-Marie; Abdallah, Basem M; Hesselson, Daniel; Solberg, Rigmor; Kassem, Moustapha

    2017-02-14

    Secreted factors are a key component of stem cell niche and their dysregulation compromises stem cell function. Legumain is a secreted cysteine protease involved in diverse biological processes. Here, we demonstrate that legumain regulates lineage commitment of human bone marrow stromal cells and that its expression level and cellular localization are altered in postmenopausal osteoporotic patients. As shown by genetic and pharmacological manipulation, legumain inhibited osteoblast (OB) differentiation and in vivo bone formation through degradation of the bone matrix protein fibronectin. In addition, genetic ablation or pharmacological inhibition of legumain activity led to precocious OB differentiation and increased vertebral mineralization in zebrafish. Finally, we show that localized increased expression of legumain in bone marrow adipocytes was inversely correlated with adjacent trabecular bone mass in a cohort of patients with postmenopausal osteoporosis. Our data suggest that altered proteolytic activity of legumain in the bone microenvironment contributes to decreased bone mass in postmenopausal osteoporosis. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  3. Differential roles of MAPK kinases MKK3 and MKK6 in osteoclastogenesis and bone loss.

    Directory of Open Access Journals (Sweden)

    David L Boyle

    Full Text Available Bone mass is maintained by osteoclasts that resorb bone and osteoblasts that promote matrix deposition and mineralization. Bone homeostasis is altered in chronic inflammation as well as in post-menopausal loss of estrogen, which favors osteoclast activity that leads to osteoporosis. The MAPK p38α is a key regulator of bone loss and p38 inhibitors preserve bone mass by inhibiting osteoclastogenesis. p38 function is regulated by two upstream MAPK kinases, namely MKK3 and MKK6. The goal of this study was to assess the effect of MKK3- or MKK6-deficiency on osteoclastogenesis in vitro and on bone loss in ovariectomy-induced osteoporosis in mice. We demonstrated that MKK3 but not MKK6, regulates osteoclast differentiation from bone marrow cells in vitro. Expression of NFATc1, a master transcription factor in osteoclastogenesis, is decreased in cells lacking MKK3 but not MKK6. Expression of osteoclast-specific genes Cathepsin K, osteoclast-associated receptor and MMP9, was inhibited in MKK3-/- cells. The effect of MKK-deficiency on ovariectomy-induced bone loss was then evaluated in female WT, MKK3-/- and MKK6-/- mice by micro-CT analysis. Bone loss was partially inhibited in MKK3-/- as well as MKK6-/- mice, despite normal osteoclastogenesis in MKK6-/- cells. This correlated with the lower osteoclast numbers in the MKK-deficient ovariectomized mice. These studies suggest that MKK3 and MKK6 differentially regulate bone loss due to estrogen withdrawal. MKK3 directly mediates osteoclastogenesis while MKK6 likely contributes to pro-inflammatory cytokine production that promotes osteoclast formation.

  4. The effects and mechanisms of clinorotation on proliferation and differentiation in bone marrow mesenchymal stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Ming [Department of Orthopaedic Surgery, XiJing Hospital, The Fourth Military Medical University, Xi' an 710032 (China); Wang, Yongchun [Department of Aerospace Biodynamics, School of Aerospace Medicine, Fourth Military Medical University, Xi' an 710032 (China); Yang, Min; Liu, Yanwu [Department of Orthopaedic Surgery, XiJing Hospital, The Fourth Military Medical University, Xi' an 710032 (China); Qu, Bo [Chengdu Military General Hospital, Chengdu, 610083 (China); Ye, Zhengxu; Liang, Wei [Department of Orthopaedic Surgery, XiJing Hospital, The Fourth Military Medical University, Xi' an 710032 (China); Sun, Xiqing, E-mail: sunxiqing@fmmu.edu.cn [Department of Aerospace Biodynamics, School of Aerospace Medicine, Fourth Military Medical University, Xi' an 710032 (China); Luo, Zhuojing, E-mail: zjluo@fmmu.edu.cn [Department of Orthopaedic Surgery, XiJing Hospital, The Fourth Military Medical University, Xi' an 710032 (China)

    2015-05-01

    Data from human and rodent studies have demonstrated that microgravity induces observed bone loss in real spaceflight or simulated experiments. The decrease of bone formation and block of maturation may play important roles in bone loss induced by microgravity. The aim of this study was to investigate the changes of proliferation and differentiation in bone marrow mesenchymal stem cells (BMSCs) induced by simulated microgravity and the mechanisms underlying it. We report here that clinorotation, a simulated model of microgravity, decreased proliferation and differentiation in BMSCs after exposure to 48 h simulated microgravity. The inhibited proliferation are related with blocking the cell cycle in G2/M and enhancing the apoptosis. While alterations of the osteoblast differentiation due to the decreased SATB2 expression induced by simulated microgravity in BMSCs. - Highlights: • Simulated microgravity inhibited proliferation and differentiation in BMSCs. • The decreased proliferation due to blocked cell cycle and enhanced the apoptosis. • The inhibited differentiation accounts for alteration of SATB2, Hoxa2 and Cbfa1.

  5. Polycomb Cbx family members mediate the balance between haematopoietic stem cell self-renewal and differentiation

    DEFF Research Database (Denmark)

    Klauke, Karin; Radulović, Višnja; Broekhuis, Mathilde

    2013-01-01

    The balance between self-renewal and differentiation of adult stem cells is essential for tissue homeostasis. Here we show that in the haematopoietic system this process is governed by polycomb chromobox (Cbx) proteins. Cbx7 is specifically expressed in haematopoietic stem cells (HSCs), and its...... overexpression enhances self-renewal and induces leukaemia. This effect is dependent on integration into polycomb repressive complex-1 (PRC1) and requires H3K27me3 binding. In contrast, overexpression of Cbx2, Cbx4 or Cbx8 results in differentiation and exhaustion of HSCs. ChIP-sequencing analysis shows that Cbx......7 and Cbx8 share most of their targets; we identified approximately 200 differential targets. Whereas genes targeted by Cbx8 are highly expressed in HSCs and become repressed in progenitors, Cbx7 targets show the opposite expression pattern. Thus, Cbx7 preserves HSC self-renewal by repressing...

  6. Donepezil prevents RANK-induced bone loss via inhibition of osteoclast differentiation by downregulating acetylcholinesterase.

    Science.gov (United States)

    Sato, Tsuyoshi; Enoki, Yuichiro; Sakamoto, Yasushi; Yokota, Kazuhiro; Okubo, Masahiko; Matsumoto, Masahito; Hayashi, Naoki; Usui, Michihiko; Kokabu, Shoichiro; Mimura, Toshihide; Nakazato, Yoshihiko; Araki, Nobuo; Fukuda, Toru; Okazaki, Yasushi; Suda, Tatsuo; Takeda, Shu; Yoda, Tetsuya

    2015-09-01

    Donepezil, an inhibitor of acetylcholinesterase (AChE) targeting the brain, is a common medication for Alzheimer's disease. Interestingly, a recent clinical study found that administration of this agent is associated with lower risk of hip fracture independently of falling, suggesting its direct effect on bone tissues as well. AChE has been reported to be involved in osteoblast function, but the role of AChE on osteoclastogenesis still remains unclear. We analyzed the effect of AChE and donepezil on osteoclastogenesis in vivo and in vitro. Cell-based assays were conducted using osteoclasts generated in cultures of murine bone marrow macrophages (BMMs) with receptor activator of nuclear factor-kappa B ligand (RANKL). The effect of donepezil was also determined in vivo using a mouse model of RANKL-induced bone loss. Recombinant AChE in BMMs cultured with RANKL further promoted RANKL-induced tartrate-resistant acid phosphatase (TRAP)-positive osteoclast differentiation. RANKL also upregulated AChE expression in BMMs. RNA interference-mediated knockdown of AChE significantly inhibited RANKL-induced osteoclast differentiation and suppressed gene expression specific for osteoclasts. AChE upregulated expression of RANK, the receptor of RANKL, in BMMs. Donepezil decreased cathepsin K expression in BMMs and the resorptive function of osteoclasts on dentine slices. Donepezil decreased RANK expression in BMMs, resulting in the inhibition of osteoclast differentiation with downregulation of c-Fos and upregulation of Id2. Moreover, administration of donepezil prevented RANKL-induced bone loss in vivo, which was associated with the inhibition of bone resorption by osteoclasts. AChE promotes osteoclast differentiation in vitro. Donepezil inhibits osteoclast function in vitro and prevents bone loss by suppressing bone resorption in vivo, suggesting the possibility that donepezil reduces fracture risk in patients with Alzheimer's disease.

  7. Transgenic Expression of Osteoactivin/gpnmb Enhances Bone Formation In Vivo and Osteoprogenitor Differentiation Ex Vivo.

    Science.gov (United States)

    Frara, Nagat; Abdelmagid, Samir M; Sondag, Gregory R; Moussa, Fouad M; Yingling, Vanessa R; Owen, Thomas A; Popoff, Steven N; Barbe, Mary F; Safadi, Fayez F

    2016-01-01

    Initial identification of osteoactivin (OA)/glycoprotein non-melanoma clone B (gpnmb) was demonstrated in an osteopetrotic rat model, where OA expression was increased threefold in mutant bones, compared to normal. OA mRNA and protein expression increase during active bone regeneration post-fracture, and primary rat osteoblasts show increased OA expression during differentiation in vitro. To further examine OA/gpnmb as an osteoinductive agent, we characterized the skeletal phenotype of transgenic mouse overexpressing OA/gpnmb under the CMV-promoter (OA-Tg). Western blot analysis showed increased OA/gpnmb in OA-Tg osteoblasts, compared to wild-type (WT). In OA-Tg mouse femurs versus WT littermates, micro-CT analysis showed increased trabecular bone volume and thickness, and cortical bone thickness; histomorphometry showed increased osteoblast numbers, bone formation and mineral apposition rates in OA-Tg mice; and biomechanical testing showed higher peak moment and stiffness. Given that OA/gpnmb is also over-expressed in osteoclasts in OA-Tg mice, we evaluated bone resorption by ELISA and histomorphometry, and observed decreased serum CTX-1 and RANK-L, and decreased osteoclast numbers in OA-Tg, compared to WT mice, indicating decreased bone remodeling in OA-Tg mice. The proliferation rate of OA-Tg osteoblasts in vitro was higher, compared to WT, as was alkaline phosphatase staining and activity, the latter indicating enhanced differentiation of OA-Tg osteoprogenitors. Quantitative RT-PCR analysis showed increased TGF-β1 and TGF-β receptors I and II expression in OA-Tg osteoblasts, compared to WT. Together, these data suggest that OA overexpression has an osteoinductive effect on bone mass in vivo and stimulates osteoprogenitor differentiation ex vivo. © 2015 Wiley Periodicals, Inc.

  8. Dioscin inhibits osteoclast differentiation and bone resorption though down-regulating the Akt signaling cascades

    International Nuclear Information System (INIS)

    Qu, Xinhua; Zhai, Zanjing; Liu, Xuqiang; Li, Haowei; Ouyang, Zhengxiao; Wu, Chuanlong; Liu, Guangwang; Fan, Qiming; Tang, Tingting; Qin, An; Dai, Kerong

    2014-01-01

    Highlights: •A natural-derived compound, dioscin, suppresses osteoclast formation and bone resorption. •Dioscin inhibits osteolytic bone loss in vivo. •Dioscin impairs the Akt signaling cascades pathways during osteoclastogenesis. •Dioscin have therapeutic value in treating osteoclast-related diseases. -- Abstract: Bone resorption is the unique function of osteoclasts (OCs) and is critical for both bone homeostasis and pathologic bone diseases including osteoporosis, rheumatoid arthritis and tumor bone metastasis. Thus, searching for natural compounds that may suppress osteoclast formation and/or function is promising for the treatment of osteoclast-related diseases. In this study, we for the first time demonstrated that dioscin suppressed RANKL-mediated osteoclast differentiation and bone resorption in vitro in a dose-dependent manner. The suppressive effect of dioscin is supported by the reduced expression of osteoclast-specific markers. Further molecular analysis revealed that dioscin abrogated AKT phosphorylation, which subsequently impaired RANKL-induced nuclear factor-kappaB (NF-κB) signaling pathway and inhibited NFATc1 transcriptional activity. Moreover, in vivo studies further verified the bone protection activity of dioscin in osteolytic animal model. Together our data demonstrate that dioscin suppressed RANKL-induced osteoclast formation and function through Akt signaling cascades. Therefore, dioscin is a potential natural agent for the treatment of osteoclast-related diseases

  9. Dioscin inhibits osteoclast differentiation and bone resorption though down-regulating the Akt signaling cascades

    Energy Technology Data Exchange (ETDEWEB)

    Qu, Xinhua; Zhai, Zanjing; Liu, Xuqiang; Li, Haowei [Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedics, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai (China); Ouyang, Zhengxiao [Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedics, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai (China); Department of Orthopaedics, Hunan Provincial Tumor Hospital and Tumor Hospital of Xiangya School of Medicine, Central South University, Changsha (China); Wu, Chuanlong [Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedics, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai (China); Liu, Guangwang [Department of Orthopaedic Surgery, The Central Hospital of Xuzhou, Affiliated Hospital of Medical Collage of Southeast University, Xuzhou (China); Fan, Qiming; Tang, Tingting [Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedics, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai (China); Qin, An, E-mail: dr.qinan@gmail.com [Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedics, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai (China); Dai, Kerong, E-mail: krdai@163.com [Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedics, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai (China)

    2014-01-10

    Highlights: •A natural-derived compound, dioscin, suppresses osteoclast formation and bone resorption. •Dioscin inhibits osteolytic bone loss in vivo. •Dioscin impairs the Akt signaling cascades pathways during osteoclastogenesis. •Dioscin have therapeutic value in treating osteoclast-related diseases. -- Abstract: Bone resorption is the unique function of osteoclasts (OCs) and is critical for both bone homeostasis and pathologic bone diseases including osteoporosis, rheumatoid arthritis and tumor bone metastasis. Thus, searching for natural compounds that may suppress osteoclast formation and/or function is promising for the treatment of osteoclast-related diseases. In this study, we for the first time demonstrated that dioscin suppressed RANKL-mediated osteoclast differentiation and bone resorption in vitro in a dose-dependent manner. The suppressive effect of dioscin is supported by the reduced expression of osteoclast-specific markers. Further molecular analysis revealed that dioscin abrogated AKT phosphorylation, which subsequently impaired RANKL-induced nuclear factor-kappaB (NF-κB) signaling pathway and inhibited NFATc1 transcriptional activity. Moreover, in vivo studies further verified the bone protection activity of dioscin in osteolytic animal model. Together our data demonstrate that dioscin suppressed RANKL-induced osteoclast formation and function through Akt signaling cascades. Therefore, dioscin is a potential natural agent for the treatment of osteoclast-related diseases.

  10. Bone Marrow Mononuclear Cell Transplantation Restores Inflammatory Balance of Cytokines after ST Segment Elevation Myocardial Infarction.

    Directory of Open Access Journals (Sweden)

    Kirsi Alestalo

    Full Text Available Acute myocardial infarction (AMI launches an inflammatory response and a repair process to compensate cardiac function. During this process, the balance between proinflammatory and anti-inflammatory cytokines is important for optimal cardiac repair. Stem cell transplantation after AMI improves tissue repair and increases the ventricular ejection fraction. Here, we studied in detail the acute effect of bone marrow mononuclear cell (BMMNC transplantation on proinflammatory and anti-inflammatory cytokines in patients with ST segment elevation myocardial infarction (STEMI.Patients with STEMI treated with thrombolysis followed by percutaneous coronary intervention (PCI were randomly assigned to receive either BMMNC or saline as an intracoronary injection. Cardiac function was evaluated by left ventricle angiogram during the PCI and again after 6 months. The concentrations of 27 cytokines were measured from plasma samples up to 4 days after the PCI and the intracoronary injection.Twenty-six patients (control group, n = 12; BMMNC group, n = 14 from the previously reported FINCELL study (n = 80 were included to this study. At day 2, the change in the proinflammatory cytokines correlated with the change in the anti-inflammatory cytokines in both groups (Kendall's tau, control 0.6; BMMNC 0.7. At day 4, the correlation had completely disappeared in the control group but was preserved in the BMMNC group (Kendall's tau, control 0.3; BMMNC 0.7.BMMNC transplantation is associated with preserved balance between pro- and anti-inflammatory cytokines after STEMI in PCI-treated patients. This may partly explain the favorable effect of stem cell transplantation after AMI.

  11. Modulation of cell differentiation in bone tissue engineering constructs cultured in a bioreactor.

    NARCIS (Netherlands)

    Holtorf, H.L.; Jansen, J.A.; Mikos, A.G.

    2006-01-01

    In summary, many factors can influence the osteoblastic differentiation of marrow stromal cells when cultivated on three-dimensional tissue engineering scaffolds. In creating ideal bone tissue engineering constructs consisting of a combination of a scaffold, cells, and bioactive factors; a flow

  12. Ethanol Extract of Atractylodes macrocephala Protects Bone Loss by Inhibiting Osteoclast Differentiation

    Directory of Open Access Journals (Sweden)

    Youn-Hwan Hwang

    2013-06-01

    Full Text Available The rhizome of Atractylodes macrocephala has been used mainly in Traditional Chinese Medicine for invigorating the functions of the stomach and spleen. In the present study, we investigated the inhibitory effect of the 70% ethanol extract of the rhizome of Atractylodes macrocephala (AMEE on osteoclast differentiation. We found that AMEE inhibits osteoclast differentiation from its precursors induced by receptor activator of nuclear factor-κB ligand (RANKL, an essential cytokine required for osteoclast differentiation. AMEE attenuated RANKL-induced activation of NF-κB signaling pathway, subsequently inhibiting the induction of osteoclastogenic transcription factors, c-Fos and nuclear factor of activated T cells cytoplasmic 1. Consistent with the in vitro results, administration of AMEE protected RANKL-induced bone loss in mice. We also identified atractylenolide I and II as active constituents contributing to the anti-osteoclastogenic effect of AMEE. Taken together, our results demonstrate that AMEE has a protective effect on bone loss via inhibiting osteoclast differentiation and suggest that AMEE may be useful in preventing and treating various bone diseases associated with excessive bone resorption.

  13. Enhanced adipogenic differentiation of bovine bone marrow-derived mesenchymal stem cells

    Science.gov (United States)

    Until now, the isolation and characterization of bovine bone marrow-derived mesenchymal stem cells (bBM-MSCs) have not been established, which prompted us to optimize the differentiation protocol for bBM-MSCs. In this study, bBM-MSCs were freshly isolated from three 6-month-old cattle and used for p...

  14. Differential diagnosis of metastatic bone disease and benign bone disease on spine SPECT in patients with low back pain

    International Nuclear Information System (INIS)

    Lee, Seung Hun; Choi, Yun Young; Cho, Suk Shin

    2001-01-01

    One or more abnormal vertebrae detected on bone scintigraphy is a common finding in clinical practice, and it could pose a diagnostic dilemma especially in cancer patients, as either metastasis or benign disease may cause scintigraphic abnormality. The purpose of this study was to determine whether additional spine SPECT has a role in differentiating malignant from benign lesions in patients with back pain. We reviewed spine SPECT studies obtained over a three-year period in 108 patients. Among them, forty-five patients with abnormal SPECT and clinically followed records were evaluated (20 cancer patients were included). Uptake patterns were classified as follows: 1. Body: diffusely increased uptake, linear increased uptake of end plate, segmental increased uptake, and cold defect, 2 Posterior element; posterior to body (pedicle), posterior to intervertebral disc space (facet joint), and spinous process. Lesions were correlated with radiological findings and with final diagnosis. Sixty-nine bone lesions were detected on SPECT images, including 18 metastases, 28 degenerative diseases and 21 compression fractures. Cold defect (6) and segmental increased uptake (5) were dominant findings in metastasis: linear increased uptake (12), and facet joint uptake (15) were in degenerative change; and diffuse increased uptake (9), and linear increased uptake (9) were in compression fracture. Cold defect and segmental increased uptake of body were characteristic findings of metastasis, but care should be taken because compression fracture also shows segmental increased uptake in some cases. Degenerative disease was easily diagnosed because of the typical finding of linear increased uptake of end plate and facet joint. Therefore, additional bone SPECT after planar bone scan would be helpful for differentiating metastasis from benign condition in cancer patients

  15. Leishmania donovani infection induces anemia in hamsters by differentially altering erythropoiesis in bone marrow and spleen.

    Directory of Open Access Journals (Sweden)

    William P Lafuse

    Full Text Available Leishmania donovani is a parasite that causes visceral leishmaniasis by infecting and replicating in macrophages of the bone marrow, spleen, and liver. Severe anemia and leucopenia is associated with the disease. Although immune defense mechanisms against the parasite have been studied, we have a limited understanding of how L. donovani alters hematopoiesis. In this study, we used Syrian golden hamsters to investigate effects of L. donovani infection on erythropoiesis. Infection resulted in severe anemia and leucopenia by 8 weeks post-infection. Anemia was associated with increased levels of serum erythropoietin, which indicates the hamsters respond to the anemia by producing erythropoietin. We found that infection also increased numbers of BFU-E and CFU-E progenitor populations in the spleen and bone marrow and differentially altered erythroid gene expression in these organs. In the bone marrow, the mRNA expression of erythroid differentiation genes (α-globin, β-globin, ALAS2 were inhibited by 50%, but mRNA levels of erythroid receptor (c-kit, EpoR and transcription factors (GATA1, GATA2, FOG1 were not affected by the infection. This suggests that infection has a negative effect on differentiation of erythroblasts. In the spleen, erythroid gene expression was enhanced by infection, indicating that the anemia activates a stress erythropoiesis response in the spleen. Analysis of cytokine mRNA levels in spleen and bone marrow found that IFN-γ mRNA is highly increased by L. donovani infection. Expression of the IFN-γ inducible cytokine, TNF-related apoptosis-inducing ligand (TRAIL, was also up-regulated. Since TRAIL induces erythroblasts apoptosis, apoptosis of bone marrow erythroblasts from infected hamsters was examined by flow cytometry. Percentage of erythroblasts that were apoptotic was significantly increased by L. donovani infection. Together, our results suggest that L. donovani infection inhibits erythropoiesis in the bone marrow by

  16. Differentiating benign from malignant bone tumors using fluid-fluid level features on magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Hong; Cui, Jian Ling; Cui, Sheng Jie; Sun, Ying Cal; Cui, Feng Zhen [Dept. of Radiology, The Third Hospital of Hebei Medical University, Hebei Province Biomechanical Key Laborary of Orthopedics, Shijiazhuang, Hebei (China)

    2014-12-15

    To analyze different fluid-fluid level features between benign and malignant bone tumors on magnetic resonance imaging (MRI). This study was approved by the hospital ethics committee. We retrospectively analyzed 47 patients diagnosed with benign (n = 29) or malignant (n = 18) bone tumors demonstrated by biopsy/surgical resection and who showed the intratumoral fluid-fluid level on pre-surgical MRI. The maximum length of the largest fluid-fluid level and the ratio of the maximum length of the largest fluid-fluid level to the maximum length of a bone tumor in the sagittal plane were investigated for use in distinguishing benign from malignant tumors using the Mann-Whitney U-test and a receiver operating characteristic (ROC) analysis. Fluid-fluid level was categorized by quantity (multiple vs. single fluid-fluid level) and by T1-weighted image signal pattern (high/low, low/high, and undifferentiated), and the findings were compared between the benign and malignant groups using the chi2 test. The ratio of the maximum length of the largest fluid-fluid level to the maximum length of bone tumors in the sagittal plane that allowed statistically significant differentiation between benign and malignant bone tumors had an area under the ROC curve of 0.758 (95% confidence interval, 0.616-0.899). A cutoff value of 41.5% (higher value suggests a benign tumor) had sensitivity of 73% and specificity of 83%. The ratio of the maximum length of the largest fluid-fluid level to the maximum length of a bone tumor in the sagittal plane may be useful to differentiate benign from malignant bone tumors.

  17. Magnetic resonance imaging and bone scintigraphy in the differential diagnosis of unclassified arthritis

    DEFF Research Database (Denmark)

    Duer, Anne; Østergaard, M; Hørslev-Petersen, K

    2008-01-01

    OBJECTIVES: To investigate the value in clinical practice of hand magnetic resonance imaging (MRI) and whole body bone scintigraphy in the differential diagnosis of patients with unclassified arthritis. METHODS: 41 patients with arthritis (> or = 2 swollen joints, > 6 months' duration) which...... to psoriatic arthritis (RF negative + psoriasis); one to non-specific self-limiting arthritis). No patients classified as non-RA at baseline had fulfilled the ACR criteria after 2 years. The presence of MRI synovitis, MRI erosion and bone scintigraphic pattern compatible with RA showed 100% specificity...

  18. Lack of galectin-3 modifies differentially Notch ligands in bone marrow and spleen stromal cells interfering with B cell differentiation.

    Science.gov (United States)

    de Oliveira, Felipe Leite; Dos Santos, Sofia Nascimento; Ricon, Lauremilia; da Costa, Thayse Pinheiro; Pereira, Jonathas Xavier; Brand, Camila; Fermino, Marise Lopes; Chammas, Roger; Bernardes, Emerson Soares; El-Cheikh, Márcia Cury

    2018-02-22

    Galectin-3 (Gal-3) is a β-galactoside binding protein that controls cell-cell and cell-extracellular matrix interactions. In lymphoid organs, gal-3 inhibits B cell differentiation by mechanisms poorly understood. The B cell development is dependent on tissue organization and stromal cell signaling, including IL-7 and Notch pathways. Here, we investigate possible mechanisms that gal-3 interferes during B lymphocyte differentiation in the bone marrow (BM) and spleen. The BM of gal-3-deficient mice (Lgals3 -/- mice) was evidenced by elevated numbers of B220 + CD19 + c-Kit + IL-7R + progenitor B cells. In parallel, CD45 - bone marrow stromal cells expressed high levels of mRNA IL-7, Notch ligands (Jagged-1 and Delta-like 4), and transcription factors (Hes-1, Hey-1, Hey-2 and Hey-L). The spleen of Lgals3 -/- mice was hallmarked by marginal zone disorganization, high number of IgM + IgD + B cells and CD138 + plasma cells, overexpression of Notch ligands (Jagged-1, Delta-like 1 and Delta-like 4) by stromal cells and Hey-1. Morever, IgM + IgD + B cells and B220 + CD138 + CXCR4 + plasmablasts were significantly increased in the BM and blood of Lgals3 -/- mice. For the first time, we demonstrated that gal-3 inhibits Notch signaling activation in lymphoid organs regulating earlier and terminal events of B cell differentiation.

  19. Modulation of osteoblast differentiation and bone mass by 5-HT2A receptor signaling in mice.

    Science.gov (United States)

    Tanaka, Kenjiro; Hirai, Takao; Ishibashi, Yukiko; Izumo, Nobuo; Togari, Akifumi

    2015-09-05

    Recent studies reported that serotonin (5-hydroxytryptamine, 5-HT) may be an endogenous paracrine and/or autocrine factor that is used for intercellular communication in bone cells and between multiple organs regulating bone homeostasis. In the present study, we showed that the administration of MDL11939, a selective 5-HT2A receptor antagonist, reduced bone mass in mice. The loss of bone mass in MDL11939-treated mice was associated with impaired bone formation in vivo, as demonstrated by the lower expression of osterix (Osx) and osteocalcin than that in vehicle-treated mice. On the other hand, no significant differences were observed in osteoclast numbers between MDL11939- and vehicle-treated mice. The pharmacological blockade of 5-HT2A receptor signaling significantly decreased alkaline phosphatase activity in osteoblastic cells. In addition, the knockdown of the 5-HT2A receptor by a siRNA treatment decreased Osx, but not Runx2 gene expression in MC3T3-E1 cells. These results suggest that 5-HT2A receptor signaling mediated bone mass by regulating osteoblast differentiation. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Hypoxia inhibits the growth, differentiation and bone-forming capacity of rat osteoblasts

    International Nuclear Information System (INIS)

    Utting, J.C.; Robins, S.P.; Brandao-Burch, A.; Orriss, I.R.; Behar, J.; Arnett, T.R.

    2006-01-01

    We investigated the effect of hypoxia on rat osteoblast function in long-term primary cultures. Reduction of pO 2 from 20% to 5% and 2% decreased formation of mineralized bone nodules 1.7-fold and 11-fold, respectively. When pO 2 was reduced further to 0.2%, bone nodule formation was almost abolished. The inhibitory effect of hypoxia on bone formation was partly due to decreased osteoblast proliferation, as measured by 3 H-thymidine incorporation. Hypoxia also sharply reduced osteoblast alkaline phosphatase (ALP) activity and expression of mRNAs for ALP and osteocalcin, suggesting inhibition of differentiation to the osteogenic phenotype. Hypoxia did not increase the apoptosis of osteoblasts but induced a reversible state of quiescence. Transmission electron microscopy revealed that collagen fibrils deposited by osteoblasts cultured in 2% O 2 were less organized and much less abundant than in 20% O 2 cultures. Furthermore, collagen produced by hypoxic osteoblasts contained a lower percentage of hydroxylysine residues and exhibited an increased sensitivity to pepsin degradation. These data demonstrate the absolute oxygen requirement of osteoblasts for successful bone formation and emphasize the importance of the vasculature in maintaining bone health. We recently showed that hypoxia also acts in a reciprocal manner as a powerful stimulator of osteoclast formation. Considered together, our results help to explain the bone loss that occurs at the sites of fracture, tumors, inflammation and infection, and in individuals with vascular disease or anemia

  1. Bone-forming peptide-3 induces osteogenic differentiation of bone marrow stromal cells via regulation of the ERK1/2 and Smad1/5/8 pathways

    Directory of Open Access Journals (Sweden)

    Jun Sik Lee

    2018-01-01

    Full Text Available A bone-remodeling imbalance induced by increased bone resorption and osteoclast formation causes skeletal diseases such as osteoporosis. Induction of osteogenic differentiation of bone marrow stromal cells (BMSCs leads to bone regeneration. Many researchers have tried to develop new adjuvants as specific stimulators of bone regeneration for therapeutic use in patients with bone resorption. We tried to develop a new adjuvant that has stronger osteogenic differentiation-promoting activity than bone morphogenetic proteins (BMPs. In this study, we identified a new peptide, which we called bone-forming peptide (BFP-3, derived from the immature precursor of BMP-7. Upon osteogenic differentiation, BMSCs treated with BFP-3 exhibited higher alkaline phosphatase (ALP activity and mineralization ability and significantly up-regulated expression of osteogenic genes such as ALP, osteocalcin (OC, Osterix, and Runx2 compared with control BMSCs. Furthermore, fluorescence-activated cell sorting (FACS and immunofluorescence analyses demonstrated that BFP-3 treatment up-regulated CD44 expression. Interestingly, extracellular signal-regulated kinase 1/2 (ERK1/2 and Smad1/5/8 phosphorylation was increased by BFP-3 treatment during osteogenic differentiation. Furthermore, BFP-3-induced osteogenic differentiation was significantly decreased by treatment with ERK1/2- and Smad-specific inhibitors. These results suggest that BFP-3 plays an important role in regulating osteogenic differentiation of BMSCs through increasing levels of osteogenic-inducing factors and regulating the ERK1/2 and Smad1/5/8 signaling pathways. Our finding indicates that BFP-3 may be a potential new therapeutic target for promoting bone formation.

  2. Role of RHEB in Regulating Differentiation Fate of Mesenchymal Stem Cells for Cartilage and Bone Regeneration

    Directory of Open Access Journals (Sweden)

    Sajjad Ashraf

    2017-04-01

    Full Text Available Advances in mesenchymal stem cells (MSCs and cell replacement therapies are promising approaches to treat cartilage and bone defects since substantial differentiation capacities of MSCs match the demands of tissue regeneration. Our understanding of the dynamic process requiring indispensable differentiation of MSCs remains limited. Herein, we describe the role of RHEB (Ras homolog enriched in brain regulating gene signature for differentiation of human adipose derived mesenchymal stem cells (ASCs into chondrogenic, osteogenic, and adipogenic lineages. RHEB-overexpression increases the proliferation of the ASCs. RHEB enhances the chondrogenic differentiation of ASCs in 3D culture via upregulation of SOX9 with concomitant increase in glycosaminoglycans (GAGs, and type II collagen (COL2. RHEB increases the osteogenesis via upregulation of runt related transcription factor 2 (RUNX2 with an increase in the calcium and phosphate contents. RHEB also increases the expression of osteogenic markers, osteonectin and osteopontin. RHEB knockdown ASCs were incapable of expressing sufficient SRY (Sex determining region Y-box 9 (SOX9 and RUNX2, and therefore had decreased chondrogenic and osteogenic differentiation. RHEB-overexpression impaired ASCs differentiation into adipogenic lineage, through downregulation of CCAAT/enhancer binding protein beta (C/EBPβ. Conversely, RHEB knockdown abolished the negative regulation of adipogenesis. We demonstrate that RHEB is a novel regulator, with a critical role in ASCs lineage determination, and RHEB-modulated ASCs may be useful as a cell therapy for cartilage and bone defect treatments.

  3. Receptor activator of nuclear factor-κB ligand and osteoprotegerin: maintaining the balance to prevent bone loss

    Directory of Open Access Journals (Sweden)

    Anne-Priscille Trouvin

    2010-11-01

    Full Text Available Anne-Priscille Trouvin, Vincent GoëbDepartment of Rheumatology, Rouen University Hospital, Rouen, FranceAbstract: Bone remodeling requires a precise balance between resorption and formation. It is a complex process that involves numerous factors: hormones, growth factors, vitamins, and cytokines, and notably osteoprotegerin (OPG and receptor activator for nuclear factor-κB (RANK ligand. The signaling pathway OPG/RANK/RANKL is key to regulation for maintaining the balance between the activity of osteoblasts and osteoclasts in order to prevent bone loss and ensure a normal bone turnover. In this review, the RANK/RANKL/OPG pathway is described. The multiple interactions of various factors (hormones, cytokines, growth factors, and vitamins with the OPG/RANK/RANKL pathway are also commented on. Finally, the effects of denosumab, a human monoclonal antibody that binds to RANKL and thereby inhibits the activation of osteoclasts, and of strontium ranelate are also described. Indeed, these two new drugs afford appreciable assistance in daily care practice, helping to prevent bone loss in patients with osteoporosis.Keywords: osteoprotegerin, OPG, RANK, RANKL, denosumab, strontium ranelate, osteoporosis

  4. Calcium-containing scaffolds induce bone regeneration by regulating mesenchymal stem cell differentiation and migration

    Directory of Open Access Journals (Sweden)

    Rubén Aquino-Martínez

    2017-11-01

    Full Text Available Abstract Background Osteoinduction and subsequent bone formation rely on efficient mesenchymal stem cell (MSC recruitment. It is also known that migration is induced by gradients of growth factors and cytokines. Degradation of Ca2+-containing biomaterials mimics the bone remodeling compartment producing a localized calcium-rich osteoinductive microenvironment. The aim of our study was to determine the effect of calcium sulfate (CaSO4 on MSC migration. In addition, to evaluate the influence of CaSO4 on MSC differentiation and the potential molecular mechanisms involved. Methods A circular calvarial bone defect (5 mm diameter was created in the parietal bone of 35 Balb-C mice. We prepared and implanted a cell-free agarose/gelatin scaffold alone or in combination with different CaSO4 concentrations into the bone defects. After 7 weeks, we determined the new bone regenerated by micro-CT and histological analysis. In vitro, we evaluated the CaSO4 effects on MSC migration by both wound healing and agarose spot assays. Osteoblastic gene expression after BMP-2 and CaSO4 treatment was also evaluated by qPCR. Results CaSO4 increased MSC migration and bone formation in a concentration-dependent manner. Micro-CT analysis showed that the addition of CaSO4 significantly enhanced bone regeneration compared to the scaffold alone. The histological evaluation confirmed an increased number of endogenous cells recruited into the cell-free CaSO4-containing scaffolds. Furthermore, MSC migration in vitro and active AKT levels were attenuated when CaSO4 and BMP-2 were in combination. Addition of LY294002 and Wortmannin abrogated the CaSO4 effects on MSC migration. Conclusions Specific CaSO4 concentrations induce bone regeneration of calvarial defects in part by acting on the host’s undifferentiated MSCs and promoting their migration. Progenitor cell recruitment is followed by a gradual increment in osteoblast gene expression. Moreover, CaSO4 regulates BMP-2-induced

  5. Calcium-containing scaffolds induce bone regeneration by regulating mesenchymal stem cell differentiation and migration.

    Science.gov (United States)

    Aquino-Martínez, Rubén; Angelo, Alcira P; Pujol, Francesc Ventura

    2017-11-16

    Osteoinduction and subsequent bone formation rely on efficient mesenchymal stem cell (MSC) recruitment. It is also known that migration is induced by gradients of growth factors and cytokines. Degradation of Ca 2+ -containing biomaterials mimics the bone remodeling compartment producing a localized calcium-rich osteoinductive microenvironment. The aim of our study was to determine the effect of calcium sulfate (CaSO 4 ) on MSC migration. In addition, to evaluate the influence of CaSO 4 on MSC differentiation and the potential molecular mechanisms involved. A circular calvarial bone defect (5 mm diameter) was created in the parietal bone of 35 Balb-C mice. We prepared and implanted a cell-free agarose/gelatin scaffold alone or in combination with different CaSO 4 concentrations into the bone defects. After 7 weeks, we determined the new bone regenerated by micro-CT and histological analysis. In vitro, we evaluated the CaSO 4 effects on MSC migration by both wound healing and agarose spot assays. Osteoblastic gene expression after BMP-2 and CaSO 4 treatment was also evaluated by qPCR. CaSO 4 increased MSC migration and bone formation in a concentration-dependent manner. Micro-CT analysis showed that the addition of CaSO 4 significantly enhanced bone regeneration compared to the scaffold alone. The histological evaluation confirmed an increased number of endogenous cells recruited into the cell-free CaSO 4 -containing scaffolds. Furthermore, MSC migration in vitro and active AKT levels were attenuated when CaSO 4 and BMP-2 were in combination. Addition of LY294002 and Wortmannin abrogated the CaSO 4 effects on MSC migration. Specific CaSO 4 concentrations induce bone regeneration of calvarial defects in part by acting on the host's undifferentiated MSCs and promoting their migration. Progenitor cell recruitment is followed by a gradual increment in osteoblast gene expression. Moreover, CaSO 4 regulates BMP-2-induced MSC migration by differentially activating the PI3

  6. Differentiation kinetics of osteoclasts in the periosteum of embryonic bones in vivo and in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Scheven, B.A.; Kawilarang-De Haas, E.W.; Wassenaar, A.M.; Nijweide, P.J.

    1986-04-01

    Osteoclast progenitors are seeded via the blood stream in the mesenchyme surrounding embryonic long bone models long before the appearance of multinucleated osteoclasts. The proliferation and differentiation of these progenitors in embryonic mouse metatarsal bones was studied with acid phosphatase (AcP) histochemistry and /sup 3/H-thymidine autoradiography. In vivo, tartrate-resistant, acid phosphatase-positive, mononuclear cells appear in the periosteum (AcPP-P cells) at the age of 17 days (after conception). On day 18, AcP-positive, multinucleated osteoclasts invade the bone rudiment and start resorbing the calcified cartilage matrix, resulting in the formation of the marrow cavity. The kinetics of osteoclast formation in vitro was studied in metatarsal bones of embryonic mice of different ages cultured in the continuous presence of /sup 3/H-thymidine. In young bones (15 days), mainly proliferating, /sup 3/H-thymidine-incorporating progenitors gave rise to AcPP-P cell and osteoclast formation. In older bones (16 and 17 days) osteoclasts were progressively more derived from postmitotic, unlabeled precursors. Irradiation of the metatarsal bones with a radiation dose of 5.0 Gy prior to culture resulted in a selective elimination of the proliferating progenitors, whereas the contribution of postmitotic precursors in AcPP-P cell and osteoclast formation remained unchanged. The results demonstrate that in the periosteum of embryonic metatarsal bones a shift occurs from a population composed of proliferating osteoclast progenitors (15 days) to a population composed of postmitotic precursors (17 days) before multinucleated osteoclasts are formed (18 days).

  7. Differentiating Functional Roles of Gene Expression from Immune and Non-immune Cells in Mouse Colitis by Bone Marrow Transplantation

    Science.gov (United States)

    Koon, Hon Wai; Ho, Samantha; Cheng, Michelle; Ichikawa, Ryan; Pothoulakis, Charalabos

    2012-01-01

    To understand the role of a gene in the development of colitis, we compared the responses of wild-type mice and gene-of-interest deficient knockout mice to colitis. If the gene-of-interest is expressed in both bone marrow derived cells and non-bone marrow derived cells of the host; however, it is possible to differentiate the role of a gene of interest in bone marrow derived cells and non- bone marrow derived cells by bone marrow transplantation technique. To change the bone marrow derived cell genotype of mice, the original bone marrow of recipient mice were destroyed by irradiation and then replaced by new donor bone marrow of different genotype. When wild-type mice donor bone marrow was transplanted to knockout mice, we could generate knockout mice with wild-type gene expression in bone marrow derived cells. Alternatively, when knockout mice donor bone marrow was transplanted to wild-type recipient mice, wild-type mice without gene-of-interest expressing from bone marrow derived cells were produced. However, bone marrow transplantation may not be 100% complete. Therefore, we utilized cluster of differentiation (CD) molecules (CD45.1 and CD45.2) as markers of donor and recipient cells to track the proportion of donor bone marrow derived cells in recipient mice and success of bone marrow transplantation. Wild-type mice with CD45.1 genotype and knockout mice with CD45.2 genotype were used. After irradiation of recipient mice, the donor bone marrow cells of different genotypes were infused into the recipient mice. When the new bone marrow regenerated to take over its immunity, the mice were challenged by chemical agent (dextran sodium sulfate, DSS 5%) to induce colitis. Here we also showed the method to induce colitis in mice and evaluate the role of the gene of interest expressed from bone-marrow derived cells. If the gene-of-interest from the bone derived cells plays an important role in the development of the disease (such as colitis), the phenotype of the

  8. Inhibiting actin depolymerization enhances osteoblast differentiation and bone formation in human stromal stem cells

    DEFF Research Database (Denmark)

    Chen, Li; Shi, Kaikai; Frary, Charles

    2015-01-01

    Remodeling of the actin cytoskeleton through actin dynamics is involved in a number of biological processes, but its role in human stromal (skeletal) stem cells (hMSCs) differentiation is poorly understood. In the present study, we demonstrated that stabilizing actin filaments by inhibiting gene...... expression of the two main actin depolymerizing factors (ADFs): Cofilin 1 (CFL1) and Destrin (DSTN) in hMSCs, enhanced cell viability and differentiation into osteoblastic cells (OB) in vitro, as well as heterotopic bone formation in vivo. Similarly, treating hMSC with Phalloidin, which is known to stabilize...... polymerized actin filaments, increased hMSCs viability and OB differentiation. Conversely, Cytocholasin D, an inhibitor of actin polymerization, reduced cell viability and inhibited OB differentiation of hMSC. At a molecular level, preventing Cofilin phosphorylation through inhibition of LIM domain kinase 1...

  9. Low oxygen tension maintains multipotency, whereas normoxia increases differentiation of mouse bone marrow stromal cells.

    Science.gov (United States)

    Berniakovich, Ina; Giorgio, Marco

    2013-01-22

    Optimization of mesenchymal stem cells (MSC) culture conditions is of great importance for their more successful application in regenerative medicine. O(2) regulates various aspects of cellular biology and, in vivo, MSC are exposed to different O(2) concentrations spanning from very low tension in the bone marrow niche, to higher amounts in wounds. In our present work, we isolated mouse bone marrow stromal cells (BMSC) and showed that they contained a population meeting requirements for MSC definition. In order to establish the effect of low O(2) on cellular properties, we examined BSMC cultured under hypoxic (3% O(2)) conditions. Our results demonstrate that 3% O(2) augmented proliferation of BMSC, as well as the formation of colonies in the colony-forming unit assay (CFU-A), the percentage of quiescent cells, and the expression of stemness markers Rex-1 and Oct-4, thereby suggesting an increase in the stemness of culture when exposed to hypoxia. In contrast, intrinsic differentiation processes were inhibited by 3% O(2). Overall yield of differentiation was dependent on the adjustment of O(2) tension to the specific stage of BMSC culture. Thus, we established a strategy for efficient BMSC in vitro differentiation using an initial phase of cell propagation at 3% O(2), followed by differentiation stage at 21% O(2). We also demonstrated that 3% O(2) affected BMSC differentiation in p53 and reactive oxygen species (ROS) independent pathways. Our findings can significantly contribute to the obtaining of high-quality MSC for effective cell therapy.

  10. Surface topography of hydroxyapatite promotes osteogenic differentiation of human bone marrow mesenchymal stem cells.

    Science.gov (United States)

    Yang, Wanlei; Han, Weiqi; He, Wei; Li, Jianlei; Wang, Jirong; Feng, Haotian; Qian, Yu

    2016-03-01

    Effective and safe induction of osteogenic differentiation is one of the key elements of bone tissue engineering. Surface topography of scaffold materials was recently found to promote osteogenic differentiation. Utilization of this topography may be a safer approach than traditional induction by growth factors or chemicals. The aim of this study is to investigate the enhancement of osteogenic differentiation by surface topography and its mechanism of action. Hydroxyapatite (HA) discs with average roughness (Ra) of surface topography ranging from 0.2 to 1.65 μm and mean distance between peaks (RSm) ranging from 89.7 to 18.6 μm were prepared, and human bone-marrow mesenchymal stem cells (hBMSCs) were cultured on these discs. Optimal osteogenic differentiation was observed on discs with surface topography characterized by Ra ranging from 0.77 to 1.09 μm and RSm ranging from 53.9 to 39.3 μm. On this surface configuration of HA, hBMSCs showed oriented attachment, F-actin arrangement, and a peak in the expression of Yes-associated protein (YAP) and PDZ binding motif (TAZ) (YAP/TAZ). These results indicated that the surface topography of HA promoted osteogenic differentiation of hBMSCs, possibly by increasing cell attachment and promoting the YAP/TAZ signaling pathway. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Ciliary neurotrophic factor has intrinsic and extrinsic roles in regulating B cell differentiation and bone structure.

    Science.gov (United States)

    Askmyr, Maria; White, Kirby E; Jovic, Tanja; King, Hannah A; Quach, Julie M; Maluenda, Ana C; Baker, Emma K; Smeets, Monique F; Walkley, Carl R; Purton, Louise E

    2015-10-21

    The gp130 receptor and its binding partners play a central role in cytokine signalling. Ciliary neurotrophic factor (CNTF) is one of the cytokines that signals through the gp130 receptor complex. CNTF has previously been shown to be a negative regulator of trabecular bone remodelling and important for motor neuron development. Since haematopoietic cell maintenance and differentiation is dependent on the bone marrow (BM) microenvironment, where cells of the osteoblastic lineage are important regulators, we hypothesised that CNTF may also have important roles in regulating haematopoiesis. Analysis of haematopoietic parameters in male and female Cntf(-/-) mice at 12 and 24 weeks of age revealed altered B lymphopoiesis. Strikingly, the B lymphocyte phenotype differed based on sex, age and also the BM microenvironment in which the B cells develop. When BM cells from wildtype mice were transplanted into Cntf(-/-) mice, there were minimal effects on B lymphopoiesis or bone parameters. However, when Cntf(-/-) BM cells were transplanted into a wildtype BM microenvironment, there were changes in both haematopoiesis and bone parameters. Our data reveal that haematopoietic cell-derived CNTF has roles in regulating BM B cell lymphopoiesis and both trabecular and cortical bone, the latter in a sex-dependent manner.

  12. The effect of Emdogain on the growth and differentiation of rat bone marrow cells.

    Science.gov (United States)

    van den Dolder, J; Vloon, A P G; Jansen, J A

    2006-10-01

    The major extracellular matrix (ECM) proteins in developing enamel can induce and maintain the formation and mineralization of other skeletal hard tissue, such as bone. Therefore, dental matrix proteins are ideal therapeutic agents when direct formation of functional bone is required for a successful clinical outcome. Emdogain (EMD) consists of enamel matrix proteins which are known to stimulate bone formation. However, only a few studies in the literature have reported the effect of EMD on osteoblast-like cells in vitro. In this study, rat bone marrow cells, obtained from the femora of Wistar rats, were precultured for 7 d in osteogenic medium. Then, the cells were harvested and seeded in 24-well plates at a concentration of 20,000 cells/well. The wells were either precoated with 100 microg/ml EMD, or left uncoated. The seeded cells were cultured in osteogenic medium for 32 d and analysed for cell attachment (by using the Live and Dead assay), cell growth (by determining DNA content) and cell differentiation (by measuring alkaline phosphatase activity and calcium content, and by using scanning electron microscopy and the reverse transcription-polymerase chain reaction). The results showed that at the 4-h time point of the experiment, more cells were attached to EMD-negative wells, but this effect was no longer apparent at 24 h. DNA analysis revealed that both groups showed a similar linear trend of cell growth. No differences in alkaline phosphatase activity or calcium content were observed, and no differences in gene expression (osteocalcin, alkaline phosphatase and collagen type I) were found between the groups. Based on our results, we conclude that EMD had no significant effect on the cell growth and differentiation of rat bone marrow cells.

  13. Lysophosphatidic acid mediates myeloid differentiation within the human bone marrow microenvironment.

    Directory of Open Access Journals (Sweden)

    Denis Evseenko

    Full Text Available Lysophosphatidic acid (LPA is a pleiotropic phospholipid present in the blood and certain tissues at high concentrations; its diverse effects are mediated through differential, tissue specific expression of LPA receptors. Our goal was to determine if LPA exerts lineage-specific effects during normal human hematopoiesis. In vitro stimulation of CD34+ human hematopoietic progenitors by LPA induced myeloid differentiation but had no effect on lymphoid differentiation. LPA receptors were expressed at significantly higher levels on Common Myeloid Progenitors (CMP than either multipotent Hematopoietic Stem/Progenitor Cells (HSPC or Common Lymphoid Progenitors (CLP suggesting that LPA acts on committed myeloid progenitors. Functional studies demonstrated that LPA enhanced migration, induced cell proliferation and reduced apoptosis of isolated CMP, but had no effect on either HSPC or CLP. Analysis of adult and fetal human bone marrow sections showed that PPAP2A, (the enzyme which degrades LPA was highly expressed in the osteoblastic niche but not in the perivascular regions, whereas Autotaxin (the enzyme that synthesizes LPA was expressed in perivascular regions of the marrow. We propose that a gradient of LPA with the highest levels in peri-sinusoidal regions and lowest near the endosteal zone, regulates the localization, proliferation and differentiation of myeloid progenitors within the bone marrow marrow.

  14. Differential gene expression from microarray analysis distinguishes woven and lamellar bone formation in the rat ulna following mechanical loading.

    Directory of Open Access Journals (Sweden)

    Jennifer A McKenzie

    Full Text Available Formation of woven and lamellar bone in the adult skeleton can be induced through mechanical loading. Although much is known about the morphological appearance and structural properties of the newly formed bone, the molecular responses to loading are still not well understood. The objective of our study was to use a microarray to distinguish the molecular responses between woven and lamellar bone formation induced through mechanical loading. Rat forelimb loading was completed in a single bout to induce the formation of woven bone (WBF loading or lamellar bone (LBF loading. A set of normal (non-loaded rats were used as controls. Microarrays were performed at three timepoints after loading: 1 hr, 1 day and 3 days. Confirmation of microarray results was done for a select group of genes using quantitative real-time PCR (qRT-PCR. The micorarray identified numerous genes and pathways that were differentially regulated for woven, but not lamellar bone formation. Few changes in gene expression were evident comparing lamellar bone formation to normal controls. A total of 395 genes were differentially expressed between formation of woven and lamellar bone 1 hr after loading, while 5883 and 5974 genes were differentially expressed on days 1 and 3, respectively. Results suggest that not only are the levels of expression different for each type of bone formation, but that distinct pathways are activated only for woven bone formation. A strong early inflammatory response preceded an increase in angiogenic and osteogenic gene expression for woven bone formation. Furthermore, at later timepoints there was evidence of bone resorption after WBF loading. In summary, the vast coverage of the microarray offers a comprehensive characterization of the early differences in expression between woven and lamellar bone formation.

  15. The differentiation directions of the bone marrow stromal cells under modeling microgravity

    Science.gov (United States)

    Nesterenko, Olga; Rodionova, Natalia; Katkova, Olena

    metabolism disorder. In differentiated cells, disorganization and a cytoskeleton destruction was observed. Results showed that under microgravity conditions proliferative and differentiation (including osteogenic) potentialities of low-differentiated marrow stromal cells decreased, induction of their adipocytic differentiation was observes as well. Obtained results make a new contribution into gravitation sensitivity mechanisms understanding for stromal cells of the bone marrow which contain osteogenic cells- predecessors, features of the osteoporosis development.

  16. Effects of strontium on proliferation and differentiation of rat bone marrow mesenchymal stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yunfeng; Li, Jihua; Zhu, Songsong; Luo, En; Feng, Ge; Chen, Qianming [State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University, No. 14, Section 3, Southern Renmin Road, Chengdu 610041 (China); Hu, Jing, E-mail: drhu@vip.sohu.com [State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University, No. 14, Section 3, Southern Renmin Road, Chengdu 610041 (China)

    2012-02-24

    Highlights: Black-Right-Pointing-Pointer Strontium ranelate (SrR) inhibits proliferation of BMMSCs. Black-Right-Pointing-Pointer SrR increases osteoblastic but decreases adipocytic differentiation of BMMSCs. Black-Right-Pointing-Pointer SrR increases expression of Runx2, BSP and OCN by BMMSCs in osteogenic medium. Black-Right-Pointing-Pointer SrR decreases expression of PPAR{gamma}, aP2/ALBP and LPL by BMMSCs in adipogenic medium. -- Abstract: Strontium ranelate (SrR) was an effective anti-osteoporotic drug to increase bone formation and decrease bone resorption. However, reports about the effect of SR on osteoblastic and adipocytic differentiation from bone marrow mesenchymal stem cells (BMMSCs) are limited. The purpose of this study is to evaluate whether SrR affects the ability of BMMSCs to differentiate into osteoblasts or adipocytes. Rat BMMSCs were identified by flow cytometry and exposed to SR (0.1 and 1.0 mM Sr{sup 2+}) under osteogenic or adipogenic medium for 1 and 2 weeks. The proliferation and differentiation of BMMSCs were analyzed by MTT, alkaline phosphatase (ALP), Oil red O staining, quantitative real-time RT-PCR and Western blot assays. SrR significantly inhibited the proliferation, increased osteoblastic but decreased adipocytic differentiation of rat BMMSCs dose-dependently. In osteogenic medium, SrR increased the expression of ALP, the mRNA levels of Cbfa1/Runx2, bone sialoprotein, and osteocalcin by RT-PCR, and the protein levels of Cbfa1/Runx2 by Western blot. In adipogenic medium, SrR decreased the mRNA levels of PPAR{gamma}2, adipocyte lipid-binding protein 2 (aP2/ALBP), and lipoprotein lipase (LPL) by RT-PCR, and the protein expression of PPAR{gamma} in Western blot analysis. These results indicated that the effects of SrR to promote osteoblastic but inhibit adipocytic differentiation of BMMSCs might contribute to its effect on osteoporosis treatment.

  17. In vitro evaluation of cardiomyogenic differentiation of bone marrow derived mesenchymal stem cells (MSCs)

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Min Hwan; Lee, Yong Jin; Kang, Joo Hyun [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)

    2010-10-15

    Bone marrow derived mesenchymal stem cells (MSCs) are excellent candidate as therapeutic agent for cell therapy. MSCs can be expanded in vitro rapidly (more than 3-5 fold in a weeks), and maintained their stem cell properties for a long culture period. Recently, many investigators have suggested that MSCs have ability to differentiate into cardiomyocytes by given appropriate condition in vitro or in vivo. Although, MSCs may be useful cell therapeutic agents in heart disease, there are still exist major barriers to track their capacity to differentiate into functional cardiomyocytes. In our previous study, the transgenic mouse model expressing sodium iodide symporter (NIS) driven by {alpha}-myosin heavy chain ({alpha}-MHC) promoter was developed to image cardiomyocyte with {gamma}-camera and microPET in vivo. In this study, we investigate the monitoring availability of {alpha}-MHC driven NIS gene of MSCs from the transgenic mouse during cardiomyogenic differentiation in vitro

  18. Bone Marrow-Derived Mesenchymal Cell Differentiation toward Myogenic Lineages: Facts and Perspectives

    Directory of Open Access Journals (Sweden)

    Daniela Galli

    2014-01-01

    Full Text Available Bone marrow-derived mesenchymal stem cells (BM-MSCs are valuable platforms for new therapies based on regenerative medicine. BM-MSCs era is coming of age since the potential of these cells is increasingly demonstrated. In fact, these cells give origin to osteoblasts, chondroblasts, and adipocyte precursors in vitro, and they can also differentiate versus other mesodermal cell types like skeletal muscle precursors and cardiomyocytes. In our short review, we focus on the more recent manipulations of BM-MSCs toward skeletal and heart muscle differentiation, a growing field of obvious relevance considering the toll of muscle disease (i.e., muscular dystrophies, the heavier toll of heart disease in developed countries, and the still not completely understood mechanisms of muscle differentiation and repair.

  19. Bone marrow-derived cells are differentially involved in pathological and physiological retinal angiogenesis in mice

    International Nuclear Information System (INIS)

    Zou, He; Otani, Atsushi; Oishi, Akio; Yodoi, Yuko; Kameda, Takanori; Kojima, Hiroshi; Yoshimura, Nagahisa

    2010-01-01

    Purpose: Bone marrow-derived cells have been shown to play roles in angiogenesis. Although these cells have been shown to promote angiogenesis, it is not yet clear whether these cells affect all types of angiogenesis. This study investigated the involvement of bone marrow-derived cells in pathological and physiological angiogenesis in the murine retina. Materials and methods: The oxygen-induced retinopathy (OIR) model was used as a retinal angiogenesis model in newborn mice. To block the influence of bone marrow-derived cells, the mice were irradiated with a 4-Gy dose of radiation from a 137 Cs source. Irradiation was performed in four different conditions with radio dense 2-cm thick lead disks; (1) H group, the head were covered with these discs to protect the eyes from radiation; (2) A group, all of the body was covered with these discs; (3) N group, mice were completely unshielded; (4) C group, mice were put in the irradiator but were not irradiated. On P17, the retinal areas showing pathological and physiological retinal angiogenesis were measured and compared to the retinas of nonirradiated mice. Results: Although irradiation induced leukocyte depletion, it did not affect the number of other cell types or body weight. Retinal nonperfusion areas were significantly larger in irradiated mice than in control mice (P < 0.05), indicating that physiological angiogenesis was impaired. However, the formation of tuft-like angiogenesis processes was more prominent in the irradiated mice (P < 0.05), indicating that pathological angiogenesis was intact. Conclusions: Bone marrow-derived cells seem to be differentially involved in the formation of physiological and pathological retinal vessels. Pathological angiogenesis in the murine retina does not require functional bone marrow-derived cells, but these cells are important for the formation of physiological vessels. Our results add a new insight into the pathology of retinal angiogenesis and bolster the hypothesis that bone

  20. Protein malnutrition induces bone marrow mesenchymal stem cells commitment to adipogenic differentiation leading to hematopoietic failure.

    Science.gov (United States)

    Cunha, Mayara Caldas Ramos; Lima, Fabiana da Silva; Vinolo, Marco Aurélio Ramirez; Hastreiter, Araceli; Curi, Rui; Borelli, Primavera; Fock, Ricardo Ambrósio

    2013-01-01

    Protein malnutrition (PM) results in pathological changes that are associated with peripheral leukopenia, bone marrow (BM) hypoplasia and alterations in the BM microenvironment leading to hematopoietic failure; however, the mechanisms involved are poorly understood. In this context, the BM mesenchymal stem cells (MSCs) are cells intimately related to the formation of the BM microenvironment, and their differentiation into adipocytes is important because adipocytes are cells that have the capability to negatively modulate hematopoiesis. Two-month-old male Balb/c mice were subjected to protein-energy malnutrition with a low-protein diet containing 2% protein, whereas control animals were fed a diet containing 12% protein. The hematopoietic parameters and the expression of CD45 and CD117 positive cells in the BM were evaluated. MSCs were isolated from BM, and their capability to produce SCF, IL-3, G-CSF and GM-CSF were analyzed. The expression of PPAR-γ and C/EBP-α as well as the expression of PPAR-γ and SREBP mRNAs were evaluated in MSCs together with their capability to differentiate into adipocytes in vitro. The malnourished animals had anemia and leukopenia as well as spleen and bone marrow hypoplasia and a reduction in the expression of CD45 and CD117 positive cells from BM. The MSCs of the malnourished mice presented an increased capability to produce SCF and reduced production of G-CSF and GM-CSF. The MSCs from the malnourished animals showed increased expression of PPAR-γ protein and PPAR-γ mRNA associated with an increased capability to differentiate into adipocytes. The alterations found in the malnourished animals allowed us to conclude that malnutrition committed MSC differentiation leading to adipocyte decision and compromised their capacity for cytokine production, contributing to an impaired hematopoietic microenvironment and inducing the bone marrow failure commonly observed in protein malnutrition states.

  1. Restoration of Respiratory Gases and Acid-base Balance of Blood of Gamma Irradiated Rats Through Bone Marrow Transplantation

    International Nuclear Information System (INIS)

    Eissa, S.M.; Roushdy, H.M.; Khamis, F. I.; Abu-Zeid, N.M.

    2000-01-01

    The present investigation aimed at elucidating the role played by bone marrow transplantation as a biological treatment against the deleterious effect of ionizing radiation. The parameters tested were PO2; PCO2; TCO2 and acid base balance encountering pH and (HCO3) in blood. Investigations were conducted 1,3,7,14 and 21 days post whole body gamma exposure at the dose levels 2 and 6 Gy. The data obtained showed highly significant changes in all tested parameters after whole body gamma irradiation. A higher depressant effect was more pronounced after exposure to higher radiation dose. Bone marrow transplantation to irradiated rats resulted in partial restoration or the radiation induced changes in both PO2 and PCO2 as recorded on the first week post treatment and succeeded to ameliorate the radiation induced changes in pH values and (HCO3) in blood

  2. Proliferation and differentiation of bone marrow stromal cells under hypoxic conditions

    International Nuclear Information System (INIS)

    Ren Hongying; Cao Ying; Zhao, Qinjun; Li Jing; Zhou Cixiang; Liao Lianming; Jia Mingyue; Zhao Qian; Cai Huiguo; Han Zhongchao; Yang Renchi; Chen Guoqiang; Zhao, R.C.

    2006-01-01

    Low oxygen tension is a potent differentiation inducer of numerous cell types and an effective stimulus of many gene expressions. Here, we described that under 8% O 2 , bone marrow stromal cells (MSCs) exhibited proliferative and morphologic changes. The level of differentiated antigen H-2Dd and the number of G 2 /S/M phase cells increased evidently under 8% O 2 condition. Also, the proportion of wide, flattened, and epithelial-like cells (which were alkaline phosphatase staining positive) in MSCs increased significantly. When cultured in adipogenic medium, there was a 5- to 6-fold increase in the number of lipid droplets under hypoxic conditions compared with that in normoxic culture. We also demonstrated the existence of MSC differentiation under hypoxic conditions by electron microscopy. Expression of Oct4 was inhibited under 8% O 2 condition, but after adipocyte differentiation in normoxic culture and hypoxia-mimicking agents cobalt chloride (CoCl 2 ) and deferoxamine mesylate (DFX) treatments, Oct4 was still expressed in MSCs. These results indicate hypoxia accelerates MSC differentiation and hypoxia and hypoxia-mimicking agents exert different effects on MSC differentiation

  3. Influence of bone marrow-derived mesenchymal stem cells pre-implantation differentiation approach on periodontal regeneration in vivo.

    Science.gov (United States)

    Cai, Xinjie; Yang, Fang; Yan, Xiangzhen; Yang, Wanxun; Yu, Na; Oortgiesen, Daniel A W; Wang, Yining; Jansen, John A; Walboomers, X Frank

    2015-04-01

    The implantation of bone marrow-derived mesenchymal stem cells (MSCs) has previously been shown successful to achieve periodontal regeneration. However, the preferred pre-implantation differentiation strategy (e.g. maintenance of stemness, osteogenic or chondrogenic induction) to obtain optimal periodontal regeneration is still unknown. This in vivo study explored which differentiation approach is most suitable for periodontal regeneration. Mesenchymal stem cells were obtained from Fischer rats and seeded onto poly(lactic-co-glycolic acid)/poly(ɛ-caprolactone) electrospun scaffolds, and then pre-cultured under different in vitro conditions: (i) retention of multilineage differentiation potential; (ii) osteogenic differentiation approach; and (iii) chondrogenic differentiation approach. Subsequently, the cell-scaffold constructs were implanted into experimental periodontal defects of Fischer rats, with empty scaffolds as controls. After 6 weeks of implantation, histomorphometrical analyses were applied to evaluate the regenerated periodontal tissues. The chondrogenic differentiation approach showed regeneration of alveolar bone and ligament tissues. The retention of multilineage differentiation potential supported only ligament regeneration, while the osteogenic differentiation approach boosted alveolar bone regeneration. Chondrogenic differentiation of MSCs before implantation is a useful strategy for regeneration of alveolar bone and periodontal ligament, in the currently used rat model. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Clinical and biologic behavior of bone metastases from differentiated thyroid carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Marcocci, C.; Pacini, F.; Elisei, R.; Schipani, E.; Ceccarelli, C.; Miccoli, P.; Arganini, M.; Pinchera, A. (Univ. of Pisa (Italy))

    1989-12-01

    Thirty (3.8%) of 780 patients with differentiated thyroid cancer seen between 1970 and 1987 had bone metastases. The primary tumor was follicular in 26 patients and papillary in four. Mean age at diagnosis was 61 years. The manifestation of bone metastases was the presenting symptom in 18 patients (60%). Treatment included total thyroidectomy, levothyroxine sodium therapy, and radioactive iodine treatments. Twenty-seven patients had bone metastases from the initial observation, with 44 sites involved. Of the sites, 27 (61%) were shown both on iodine 131 whole-body scan (WBS) and on x-ray film, 11 (25%) only on WBS, and six (14%) only on x-ray film. Multiple involvement was observed in 11 patients. The radiologic appearance was invariably osteolytic. Serum thyroglobulin was elevated in all patients. After radioactive iodine, no WBS+/X-ray+ metastases showed a complete response, although a sclerotic border was noted in several cases, whereas six WBS+/X-ray- lesions were no longer detectable by WBS. Treatment with radioactive iodine and bone surgery resulted in a complete cure in three patients and in a reduction of tumor mass in three. Twenty-one (70%) of the patients died of thyroid cancer after a mean survival of 86 months. Of the nine patients still alive, two are free of disease, three have a good quality of life, and four have severe disability.

  5. Value of inflammation scintigraphy and bone scan in differential diagnosis of painful affections of small joints

    International Nuclear Information System (INIS)

    Warchol, O.; Dworak, E.; Koenig, B.; Koehn, H.; Dunky, A.; Mostbeck, A.

    1998-01-01

    It was the aim of this study to evaluate different markers of inflammation such as 99m-Tc-labelled human immunoglobulin G and 99m-Tc-nanocolloid with respect to their ability to detect inflammatory or degenerative affections of small joints of hand and fingers. While conventional bone scanning reveals good agreement with clinical findings it is not well suited for screening of inflammatory processes due to its poor specificity. In small joints conventional three-phase bone scan with information of perfusion, blood pool and accumulation is not suitable due to the small ROI, low count rate with high statistics. Therefore we used inflammatory markers to overcome this problem. Immunoglobulin G was true positive in case of inflammatory lesions in 69%, and false positive in case of degenerative lesions in 24%, while nanocolloid was true positive in 72% and false positive in 14%, respectively. Significant differences were found between markers of inflammation and the bone scanning agent while both inflammatory markers, immunoglobulin G and nanocolloid demonstrated significant correlation. While bone scanning tracers detect all kinds of joint affections, immunoglobulin G and nanocolloid accumulate preferentially in inflammatory joints and therefore might be useful to differentiate between inflammatory and degenerative lesions. (author)

  6. Polyamines affect histamine synthesis during early stages of IL-3-induced bone marrow cell differentiation.

    Science.gov (United States)

    García-Faroldi, Gianni; Correa-Fiz, Florencia; Abrighach, Hicham; Berdasco, María; Fraga, Mario F; Esteller, Manel; Urdiales, José L; Sánchez-Jiménez, Francisca; Fajardo, Ignacio

    2009-09-01

    Mast cells synthesize and store histamine, a key immunomodulatory mediator. Polyamines are essential for every living cell. Previously, we detected an antagonistic relationship between the metabolisms of these amines in established mast cell and basophilic cell lines. Here, we used the IL-3-driven mouse bone marrow-derived mast cell (BMMC) culture system to further investigate this antagonism in a mast cell model of deeper physiological significance. Polyamines and histamine levels followed opposite profiles along the bone marrow cell cultures leading to BMMCs. alpha-Difluoromethylornithine (DFMO)-induced polyamine depletion resulted in an upregulation of histidine decarboxylase (HDC, the histamine-synthesizing enzyme) expression and activity, accompanied by increased histamine levels, specifically during early stages of these cell cultures, where an active histamine synthesis process occurs. In contrast, DFMO did not induce any effect in either HDC activity or histamine levels of differentiated BMMCs or C57.1 mast cells, that exhibit a nearly inactive histamine synthesis rate. Sequence-specific DNA methylation analysis revealed that the DFMO-induced HDC mRNA upregulation observed in early bone marrow cell cultures is not attributable to a demethylation of the gene promoter caused by the pharmacological polyamine depletion. Taken together, the results support an inverse relationship between histamine and polyamine metabolisms during the bone marrow cell cultures leading to BMMCs and, moreover, suggest that the regulation of the histamine synthesis occurring during the early stages of these cultures depends on the concentrations of polyamines. (c) 2009 Wiley-Liss, Inc.

  7. Onset of apoprotein E secretion during differentiation of mouse bone marrow-derived mononuclear phagocytes

    International Nuclear Information System (INIS)

    Werb, Z.; Chin, J.R.

    1983-01-01

    A number of macrophage functions were sequentially expressed when the bone marrow precursors of mononuclear phagocytes differentiated in culture in the presence of a specific growth factor, colony-stimulating factor-1. The authors defined the expression of apoprotein E (ApoE), a major secreted protein of resident peritoneal macrophages, during maturation of adherent bone marrow-derived mononuclear phagocytes into macrophages. By 5 d the bone marrow macrophages were active secretory cells, but few cells contained intracellular immunoreactive ApoE, and little, if any, ApoE was secreted. ApoE secretion was initiated at 9 d, and this correlated with an increase in the percentage of macrophages containing intracellular ApoE. The onset of ApoE secretion was selective, and little change occurred in the other major secreted proteins detected by [ 35 S]methionine incorporation. In parallel, the high rate of plasminogen activator secretion, which peaked at 7 d, decreased markedly. ApoE secretion was not associated with altered expression of the macrophage surface antigen, la, or with secretion of fibronectin. Virtually all cells in independent colonies of bone marrow-derived macrophages eventually expressed ApoE. The proliferating monocyte/macrophage-like cell lines P388D1, J774.2, WHEI-3, RAW 264.1, and MGI.D + secreted little or no ApoE. These data establish that ApoE secretion is developmentally regulated

  8. Bone Marrow Cells in Acute Lymphoblastic Leukemia Create a Proinflammatory Microenvironment Influencing Normal Hematopoietic Differentiation Fates

    Directory of Open Access Journals (Sweden)

    Armando Vilchis-Ordoñez

    2015-01-01

    Full Text Available B-cell acute lymphoblastic leukemia (B-ALL is a serious public health problem in the pediatric population worldwide, contributing to 85% of deaths from childhood cancers. Understanding the biology of the disease is crucial for its clinical management and the development of therapeutic strategies. In line with that observed in other malignancies, chronic inflammation may contribute to a tumor microenvironment resulting in the damage of normal processes, concomitant to development and maintenance of neoplastic cells. We report here that hematopoietic cells from bone marrow B-ALL have the ability to produce proinflammatory and growth factors, including TNFα, IL-1β, IL-12, and GM-CSF that stimulate proliferation and differentiation of normal stem and progenitor cells. Our findings suggest an apparently distinct CD13+CD33+ population of leukemic cells contributing to a proinflammatory microenvironment that may be detrimental to long-term normal hematopoiesis within B-ALL bone marrow.

  9. Latexin is involved in bone morphogenetic protein-2-induced chondrocyte differentiation

    International Nuclear Information System (INIS)

    Kadouchi, Ichiro; Sakamoto, Kei; Tangjiao, Liu; Murakami, Takashi; Kobayashi, Eiji; Hoshino, Yuichi; Yamaguchi, Akira

    2009-01-01

    Latexin is the only known carboxypeptidase A inhibitor in mammals. We previously demonstrated that BMP-2 significantly induced latexin expression in Runx2-deficient mesenchymal cells (RD-C6 cells), during chondrocyte and osteoblast differentiation. In this study, we investigated latexin expression in the skeleton and its role in chondrocyte differentiation. Immunohistochemical studies revealed that proliferating and prehypertrophic chondrocytes expressed latexin during skeletogenesis and bone fracture repair. In the early phase of bone fracture, latexin mRNA expression was dramatically upregulated. BMP-2 upregulated the expression of the mRNAs of latexin, Col2a1, and the gene encoding aggrecan (Agc1) in a micromass culture of C3H10T1/2 cells. Overexpression of latexin additively stimulated the BMP-2-induced expression of the mRNAs of Col2a, Agc1, and Col10a1. BMP-2 treatment upregulated Sox9 expression, and Sox9 stimulated the promoter activity of latexin. These results indicate that latexin is involved in BMP-2-induced chondrocyte differentiation and plays an important role in skeletogenesis and skeletal regeneration.

  10. Treatment with at Homeopathic Complex Medication Modulates Mononuclear Bone Marrow Cell Differentiation

    Directory of Open Access Journals (Sweden)

    Beatriz Cesar

    2011-01-01

    Full Text Available A homeopathic complex medication (HCM, with immunomodulatory properties, is recommended for patients with depressed immune systems. Previous studies demonstrated that the medication induces an increase in leukocyte number. The bone marrow microenvironment is composed of growth factors, stromal cells, an extracellular matrix and progenitor cells that differentiate into mature blood cells. Mice were our biological model used in this research. We now report in vivo immunophenotyping of total bone marrow cells and ex vivo effects of the medication on mononuclear cell differentiation at different times. Cells were examined by light microscopy and cytokine levels were measured in vitro. After in vivo treatment with HCM, a pool of cells from the new marrow microenvironment was analyzed by flow cytometry to detect any trend in cell alteration. The results showed decreases, mainly, in CD11b and TER-119 markers compared with controls. Mononuclear cells were used to analyze the effects of ex vivo HCM treatment and the number of cells showing ring nuclei, niche cells and activated macrophages increased in culture, even in the absence of macrophage colony-stimulating factor. Cytokines favoring stromal cell survival and differentiation in culture were induced in vitro. Thus, we observe that HCM is immunomodulatory, either alone or in association with other products.

  11. Effects of Na/K-ATPase and its ligands on bone marrow stromal cell differentiation

    Directory of Open Access Journals (Sweden)

    Moustafa Sayed

    2014-07-01

    Full Text Available Endogenous ligands of Na/K-ATPase have been demonstrated to increase in kidney dysfunction and heart failure. It is also reported that Na/K-ATPase signaling function effects stem cell differentiation. This study evaluated whether Na/K-ATPase activation through its ligands and associated signaling functions affect bone marrow stromal cells (BMSCs, also known as bone marrow-derived mesenchymal stem cells differentiation capacity. BMSCs were isolated from male Sprague–Dawley rats and cultured in minimal essential medium alpha (MEM-α supplemented with 15% Fetal Bovine serum (FBS. The results showed that marinobufagenin (MBG, a specific Na/K-ATPase ligand, potentiated rosiglitazone-induced adipogenesis in these BMSCs. Meanwhile, it attenuated BMSC osteogenesis. Mechanistically, MBG increased CCAAT/enhancer binding protein alpha (C/EBPα protein expression through activation of an extracellular regulated kinase (ERK signaling pathway, which leads to enhanced rosiglitazone-induced adipogenesis. Inhibition of ERK activation by U0126 blocks the effect of MBG on C/EBPα expression and on rosiglitazone-induced adipogenesis. Reciprocally, MBG reduced runt-related transcription factor 2 (RunX2 expression, which resulted in the inhibition of osteogenesis induced by β-glycerophosphate/ascorbic acid. MBG also potentiated rosiglitazone-induced adipogenesis in 3T3-L1 cells and in mouse BMSCs. These results suggest that Na/K-ATPase and its signaling functions are involved in the regulation of BMSCs differentiation.

  12. Differentiation of malignant and degenerative benign bone disease using 99mTc-citrate scintigraphy

    International Nuclear Information System (INIS)

    Guo Rui; Jin Jianhua; Li Sijin; Li Xianfeng; Zhang Xiaojuan; Ren Yuan

    2008-01-01

    Objective: To differentiate malignant and degenerative benign bone disease using 99m Tc- citrate scintigraphy. Methods: Thirty-nine patients (92 lesions) with confirmed malignant bone disease or degenerative benign bone disease were studied, for which the results of 99m Te-methylene diphosphonate( 99m Tc- MDP) scintigraphy were positive. 99m Tc-citrate scintigraphy was performed within a time interval of 2-7 days after 99m Tc-MDP scintigraphy. Visual analysis and semiquantitative analysis were applied. Each lesion was scored as malignant or benign, which was independently verified, using conventional techniques (histopathology, X-ray, CT, MRI and clinical follow up). Results: In visual analysis of 99m Tc-citrate imaging, most malignant lesions (35/48, 72.92%) clearly showed high radioactivity accumulation, while most benign lesions (39/44, 88.64%) had not obviously visible uptake of 99m Tc-citrate. In semiquantitative analysis of 99m Tc- citrate image, malignant lesions demonstrated a higher lesion-to-background radioisotope uptake ratio (RUR) than that of benign degenerative lesions (1.47 ± 0.42 vs. 1.09 ± 0.38, t=2.887, P 99m Tc-MDP in the two groups is of the same (1.96 ± 0.25 vs. 1.87 ± 0.21, t=1.178, P>0.20). Conclusion: 99m Tc- citrate scintigraphy is a promising method to differentiate malignant from benign degenerative lesions seen as areas of increased activity on 99m Tc-MDP bone scintigraphy. (authors)

  13. Diagnostic value of apparent diffusion coefficients to differentiate benign from malignant vertebral bone marrow lesions

    Energy Technology Data Exchange (ETDEWEB)

    Balliu, E. [Department of Magnetic Resonance, IDI Girona, Hospital Universitari de Girona Dr Josep Trueta, Girona (Spain)], E-mail: eballiu@gmail.com; Vilanova, J.C. [Department of Magnetic Resonance, Clinica Girona, Girona (Spain)], E-mail: Kvilanova@comg.es; Pelaez, I. [Department of Magnetic Resonance, IDI Girona, Hospital Universitari de Girona Dr Josep Trueta, Girona (Spain)], E-mail: isapelaezrx@yahoo.es; Puig, J. [Department of Magnetic Resonance, IDI Girona, Hospital Universitari de Girona Dr Josep Trueta, Girona (Spain)], E-mail: jpuigalcantara@yahoo.es; Remollo, S. [Department of Magnetic Resonance, IDI Girona, Hospital Universitari de Girona Dr Josep Trueta, Girona (Spain)], E-mail: sremollo@gmail.com; Barcelo, C. [Department of Computer Science and Applied Mathematics, University of Girona (Spain)], E-mail: carles.barcelo@udg.es; Barcelo, J. [Department of Magnetic Resonance, Clinica Girona, Girona (Spain)], E-mail: rmgirona@comg.es; Pedraza, S. [Department of Magnetic Resonance, IDI Girona, Hospital Universitari de Girona Dr Josep Trueta, Girona (Spain)], E-mail: sapedraza@gmail.com

    2009-03-15

    Aim: The aim of this study is to evaluate the value of the apparent diffusion coefficient (ADC) obtained in diffusion-weighted (DW) MR sequences for the differentiation between malignant and benign bone marrow lesions. Method: Forty-five patients with altered signal intensity vertebral bodies on conventional MR sequences were included. The cause of altered signal intensity was benign osteoporotic collapse in 16, acute neoplastic infiltration in 15, and infectious processes in 14; based on plain-film, CT, bone scintigraphy, conventional MR studies, biopsy or follow-up. All patients underwent isotropic DW MR images (multi-shot EPI, b values of 0 and 500 s/mm{sup 2}). Signal intensity at DW MR images was evaluated and ADC values were calculated and compared between malignancy, benign edema and infectious spondylitis. Results: Acute malignant fractures were hyperintense compared to normal vertebral bodies on the diffusion-weighted sequence, except in one patient with sclerotic metastases. Mean ADC value from benign edema (1.9 {+-} 0.39 x 10{sup -3} mm{sup 2}/s) was significantly (p < 0.0001) higher than untreated metastasic lesions (0.9 {+-} 1.3 x 10{sup -3} mm{sup 2}/s). Mean ADC value of infectious spondilytis (0.96 {+-} 0.49 x 10{sup -3} mm{sup 2}/s) was not statistically (p > 0.05) different from untreated metastasic lesions. ADC value was low (0.75 x 10{sup -3} mm{sup 2}/s) in one case of subacute benign fracture. Conclusions: ADC values are a useful complementary tool to characterize bone marrow lesions, in order to distinguish acute benign fractures from malignant or infectious bone lesions. However, ADC values are not valuable in order to differentiate malignancy from infection.

  14. Low Oxygen Tension Maintains Multipotency, Whereas Normoxia Increases Differentiation of Mouse Bone Marrow Stromal Cells

    Directory of Open Access Journals (Sweden)

    Marco Giorgio

    2013-01-01

    Full Text Available Optimization of mesenchymal stem cells (MSC culture conditions is of great importance for their more successful application in regenerative medicine. O2 regulates various aspects of cellular biology and, in vivo, MSC are exposed to different O2 concentrations spanning from very low tension in the bone marrow niche, to higher amounts in wounds. In our present work, we isolated mouse bone marrow stromal cells (BMSC and showed that they contained a population meeting requirements for MSC definition. In order to establish the effect of low O2 on cellular properties, we examined BSMC cultured under hypoxic (3% O2 conditions. Our results demonstrate that 3% O2 augmented proliferation of BMSC, as well as the formation of colonies in the colony-forming unit assay (CFU-A, the percentage of quiescent cells, and the expression of stemness markers Rex-1 and Oct-4, thereby suggesting an increase in the stemness of culture when exposed to hypoxia. In contrast, intrinsic differentiation processes were inhibited by 3% O2. Overall yield of differentiation was dependent on the adjustment of O2 tension to the specific stage of BMSC culture. Thus, we established a strategy for efficient BMSC in vitro differentiation using an initial phase of cell propagation at 3% O2, followed by differentiation stage at 21% O2. We also demonstrated that 3% O2 affected BMSC differentiation in p53 and reactive oxygen species (ROS independent pathways. Our findings can significantly contribute to the obtaining of high-quality MSC for effective cell therapy.

  15. Does size difference in allogeneic cancellous bone granules loaded with differentiated autologous cultured osteoblasts affect osteogenic potential?

    Science.gov (United States)

    Lee, Sang-Uk; Chung, Yang-Guk; Kim, Seok-Jung; Oh, Il-Hoan; Kim, Yong-Sik; Ju, Sung-Hun

    2014-02-01

    We study the efficacy of bone regeneration by using two differently sized allogeneic cancellous bone granules loaded with autologous cultured osteoblasts in a rabbit model. Critical-sized bone defects of the radial shaft were made in 40 New Zealand White rabbits. Small allogeneic bone granules (150-300 μm in diameter) loaded with cultured differentiated autologous osteoblasts were implanted into one forearm (SBG group) and large bone granules (500-710 μm) loaded with osteoblasts were implanted into the forearm of the other side (LBG group). Radiographic evaluations were performed at 3, 6, 9 and 12 weeks and histology and micro-CT image analysis were carried out at 6 and 12 weeks post-implantation. On radiographic evaluation, the LBG group showed a higher bone quantity index at 3 and 6 weeks post-implantation (P bone volume and surface area than the SBG group at 6 weeks (P bone formation and maturation in the SBG group. Thus, the two differently sized allogeneic bone granules loaded with co-cultured autologous osteoblasts show no differences in the amount of bone regeneration, although the SBG group exhibits faster progression of bone regeneration and remodeling. This method might therefore provide benefits, such as a short healing time and easy application in an injectable form, in a clinical setting.

  16. Method for achieving hydraulic balance in typical Chinese building heating systems by managing differential pressure and flow

    DEFF Research Database (Denmark)

    Zhang, Lipeng; Xia, Jianjun; Thorsen, Jan Eric

    2017-01-01

    to a lack of pressure and flow control. This study investigated using pre-set radiator valves combined with differential pressure (DP) controllers to achieve hydraulic balance in building distribution systems, and consequently save energy and reduce the emissions. We considered a multi-storey building...

  17. Bone marrow mesenchymal stem cells stimulate proliferation and neuronal differentiation of retinal progenitor cells.

    Directory of Open Access Journals (Sweden)

    Jing Xia

    Full Text Available During retina development, retinal progenitor cell (RPC proliferation and differentiation are regulated by complex inter- and intracellular interactions. Bone marrow mesenchymal stem cells (BMSCs are reported to express a variety of cytokines and neurotrophic factors, which have powerful trophic and protective functions for neural tissue-derived cells. Here, we show that the expanded RPC cultures treated with BMSC-derived conditioned medium (CM which was substantially enriched for bFGF and CNTF, expressed clearly increased levels of nuclear receptor TLX, an essential regulator of neural stem cell (NSC self-renewal, as well as betacellulin (BTC, an EGF-like protein described as supporting NSC expansion. The BMSC CM- or bFGF-treated RPCs also displayed an obviously enhanced proliferation capability, while BMSC CM-derived bFGF knocked down by anti-bFGF, the effect of BMSC CM on enhancing RPC proliferation was partly reversed. Under differentiation conditions, treatment with BMSC CM or CNTF markedly favoured RPC differentiation towards retinal neurons, including Brn3a-positive retinal ganglion cells (RGCs and rhodopsin-positive photoreceptors, and clearly diminished retinal glial cell differentiation. These findings demonstrate that BMSCs supported RPC proliferation and neuronal differentiation which may be partly mediated by BMSC CM-derived bFGF and CNTF, reveal potential limitations of RPC culture systems, and suggest a means for optimizing RPC cell fate determination in vitro.

  18. Effects of Dendrobium officinale polysaccharide on adipogenic differentiation of rat bone marrow mesenchymal stem cells

    Directory of Open Access Journals (Sweden)

    Yinjuan ZHAO

    Full Text Available Abstract This study investigated the effect of Dendrobium officinale polysaccharide (DOP on the adipogenic differentiation of rat bone marrow mesenchymal stem cells (BMSCs. DOP was extracted fresh Dendrobium officinale. Rat BMSCs were prepared, and then were treated with 0 (control, 50, 100, 200, 400, 800 μg/mL DOP, respectively. The cell viability was determined by MTT assay. The adipogenic differentiation was quantitatively analyzed by oil red O staining assay. The mRNA expressions of adipogenic differentiation related gene peroxisome proliferator-activated receptor gamma (PPARG, lipoprotein lipase (LPL and fatty acid binding protein 4 (FABP4 were detected by RT-PCR. Results showed that, DOP with 0-800 μg/mL concentration had no significant toxicity to BMSCs. 200-800 μg/mL DOP could obviously inhibit the adipogenic differentiation of BMSCs. Compared with control group, the expression levels of PPARG, LPL and FABP4 mRNA 200, 400 and 800 μg/mL DOP groups were significantly decreased (P < 0.05 or P < 0.01. DOP can inhibit the adipogenic differentiation of BMSCs, which may be related with its down-regulation of PPARG, LPL and FABP4 expressions in BMSCs.

  19. Keeping Your Balance

    Science.gov (United States)

    ... Exercise/Safe Movement › Keeping Your Balance Keeping Your Balance Balance is very important for people with osteoporosis. Your ... all play an important role in maintaining your balance and preventing broken bones. Medical conditions and medicines ...

  20. Kaempferol-immobilized titanium dioxide promotes formation of new bone: effects of loading methods on bone marrow stromal cell differentiation in vivo and in vitro.

    Science.gov (United States)

    Tsuchiya, Shuhei; Sugimoto, Keisuke; Kamio, Hisanobu; Okabe, Kazuto; Kuroda, Kensuke; Okido, Masazumi; Hibi, Hideharu

    2018-01-01

    Surface modification of titanium dioxide (TiO 2 ) implants promotes bone formation and shortens the osseointegration period. Kaempferol is a flavonoid that has the capacity to promote osteogenic differentiation in bone marrow stromal cells. The aim of this study was to promote bone formation around kaempferol immobilized on TiO 2 implants. There were four experimental groups. Alkali-treated TiO 2 samples (implants and discs) were used as a control and immersed in Dulbecco's phosphate-buffered saline (DPBS) (Al-Ti). For the coprecipitation sample (Al-cK), the control samples were immersed in DPBS containing 50 µg kaempferol/100% ethanol. For the adsorption sample (Al-aK), 50 µg kaempferol/100% ethanol was dropped onto control samples. The surface topography of the TiO 2 implants was observed by scanning electron microscopy with energy-dispersive X-ray spectroscopy, and a release assay was performed. For in vitro experiments, rat bone marrow stromal cells (rBMSCs) were cultured on each of the TiO 2 samples to analyze cell proliferation, alkaline phosphatase activity, calcium deposition, and osteogenic differentiation. For in vivo experiments, TiO 2 implants placed on rat femur bones were analyzed for bone-implant contact by histological methods. Kaempferol was detected on the surface of Al-cK and Al-aK. The results of the in vitro study showed that rBMSCs cultured on Al-cK and Al-aK promoted alkaline phosphatase activity, calcium deposition, and osteogenic differentiation. The in vivo histological analysis revealed that Al-cK and Al-aK stimulated new bone formation around implants. TiO 2 implant-immobilized kaempferol may be an effective tool for bone regeneration around dental implants.

  1. Differentiation potential of menstrual blood- versus bone marrow-stem cells into glial-like cells.

    Science.gov (United States)

    Azedi, Fereshteh; Kazemnejad, Somaieh; Zarnani, Amir Hassan; Behzadi, Gila; Vasei, Mohammad; Khanmohammadi, Manijeh; Khanjani, Sayeh; Edalatkhah, Haleh; Lakpour, Niknam

    2014-05-01

    Menstrual blood is easily accessible, renewable, and inexpensive source of stem cells that have been interested for cell therapy of neurodegenerative diseases. In this study, we showed conversion of menstrual blood stem cells (MenSCs) into clonogenic neurosphere- like cells (NSCs), which can be differentiated into glial-like cells. Moreover, differentiation potential of MenSCs into glial lineage was compared with bone marrow stem cells (BMSCs). Differentiation potential of individual converted NSCs derived from MenSCs or BMSCs into glial-like cells was investigated using immunofluorescence staining and real-time polymerase chain reaction.The fibroblastic morphology of both MenSCs and BMSCs was turned into NSCs shape during first step of differentiation. NSCs derived from both BMSCs and MenSCs expressed higher levels of Olig-2 and Nestin markers compared to undifferentiated cells. The expression levels of myelin basic protein (MBP) mRNA up regulated only in BMSCs-NSCs no in MenSCs-NSCs. However, outgrowth of individual NSCs derived from both MenSCs and BMSCs into glial-like cells led to significant up regulation of glial fibrillary acidic protein,Olig-2 and MBP at mRNA and protein level accompanied with down regulation of Nestin protein.This is the first study demonstrating that MenSCs can be converted to NSCs with differentiation ability into glial-like cells. Accumulative data show different expression pattern of glial markers in differentiated MenSCs compared to BMSCs. The comparable differentiation potential, more accessibility and no invasive technique for sample collection of MenSCs in comparison with BMSCs introduce MenSCs as an apt, consistent and safe alternative to BMSCs for cell therapy of neurodegenerative diseases. © 2014 International Federation for Cell Biology.

  2. Slit/Robo1 signaling regulates neural tube development by balancing neuroepithelial cell proliferation and differentiation

    International Nuclear Information System (INIS)

    Wang, Guang; Li, Yan; Wang, Xiao-yu; Han, Zhe; Chuai, Manli; Wang, Li-jing; Ho Lee, Kenneth Ka; Geng, Jian-guo; Yang, Xuesong

    2013-01-01

    coordinating cell proliferation and differentiation during neurulation. - Highlights: ► The role of Slit/Robo1 signaling was investigated with chick and mouse models. ► Disturbance of Slit/Robo1 signaling resulted in neural tube defects. ► Slit/Robo1 signaling regulated the proliferation of neural tube cells. ► Slit/Robo1 signaling modulated the differentiation of neural tube cells. ► Slit/Robo1 signaling balanced the proliferation and differentiation of neural tube

  3. Slit/Robo1 signaling regulates neural tube development by balancing neuroepithelial cell proliferation and differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Guang; Li, Yan; Wang, Xiao-yu [Key Laboratory for Regenerative Medicine of The Ministry of Education, Department of Histology and Embryology, School of Medicine, Jinan University, Guangzhou 510632 (China); Han, Zhe [Institute of Vascular Biological Sciences, Guangdong Pharmaceutical University, Guangzhou 510224 (China); Chuai, Manli [College of Life Sciences Biocentre, University of Dundee, Dundee DD1 5EH (United Kingdom); Wang, Li-jing [Institute of Vascular Biological Sciences, Guangdong Pharmaceutical University, Guangzhou 510224 (China); Ho Lee, Kenneth Ka [Stem Cell and Regeneration Thematic Research Programme, School of Biomedical Sciences, Chinese University of Hong Kong, Shatin (Hong Kong); Geng, Jian-guo, E-mail: jgeng@umich.edu [Institute of Vascular Biological Sciences, Guangdong Pharmaceutical University, Guangzhou 510224 (China); Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, MI 48109 (United States); Yang, Xuesong, E-mail: yang_xuesong@126.com [Key Laboratory for Regenerative Medicine of The Ministry of Education, Department of Histology and Embryology, School of Medicine, Jinan University, Guangzhou 510632 (China)

    2013-05-01

    development by tightly coordinating cell proliferation and differentiation during neurulation. - Highlights: ► The role of Slit/Robo1 signaling was investigated with chick and mouse models. ► Disturbance of Slit/Robo1 signaling resulted in neural tube defects. ► Slit/Robo1 signaling regulated the proliferation of neural tube cells. ► Slit/Robo1 signaling modulated the differentiation of neural tube cells. ► Slit/Robo1 signaling balanced the proliferation and differentiation of neural tube.

  4. Manganese Supplementation in Deer under Balanced Diet Increases Impact Energy and Contents in Minerals of Antler Bone Tissue.

    Science.gov (United States)

    Cappelli, Jamil; Garcia, Andrés; Ceacero, Francisco; Gomez, Santiago; Luna, Salvador; Gallego, Laureano; Gambin, Pablo; Landete-Castillejos, Tomás

    2015-01-01

    Bone ash, collagen, Ca and P composition, are considered the main factors affecting mechanical properties in bones. However, a series of studies in bone and antler have shown that some trace minerals, such as manganese, may play a role whose importance exceeds what may be expected considering their low content. A previous study showed that a reduction in manganese in antlers during a year of late winter frosts led to generalized antler breakage in Spain, which included a reduction of 30% of cortical thickness, 27% reduction in impact energy, and 10% reduction in work to peak force. Starting for this observation, we experimentally studied the effects of manganese supplementation in adults and yearling (yearlings) red deer under a balanced diet. Subjects were 29 deer of different age classes (adult n = 19, yearlings n = 10) that were divided in a manganese injected group (n = 14) and a control group (n = 15). Antler content in ashes and minerals, intrinsic mechanical properties and cross section structure were examined at 4 points along the antler beam. A one way ANOVA (mean per antler) showed that in yearlings, manganese supplementation only increased its content and that of Fe. However, in adults, Mn supplementation increased the mean content per antler of Ca, Na, P, B, Co, Cu, K, Mn, Ni, Se (while Si content was reduced), and impact work but not Young's modulus of elasticity, bending strength or work to peak force. A GLM series on characteristics in the uppermost part examined in the antler, often showing physiological exhaustion and depletion of body stores, showed also a 16% increase in work to peak force in the antlers of the treated group. Thus, manganese supplementation altered mineral composition of antler and improved structure and some mechanical properties despite animals having a balanced diet.

  5. Manganese Supplementation in Deer under Balanced Diet Increases Impact Energy and Contents in Minerals of Antler Bone Tissue.

    Directory of Open Access Journals (Sweden)

    Jamil Cappelli

    Full Text Available Bone ash, collagen, Ca and P composition, are considered the main factors affecting mechanical properties in bones. However, a series of studies in bone and antler have shown that some trace minerals, such as manganese, may play a role whose importance exceeds what may be expected considering their low content. A previous study showed that a reduction in manganese in antlers during a year of late winter frosts led to generalized antler breakage in Spain, which included a reduction of 30% of cortical thickness, 27% reduction in impact energy, and 10% reduction in work to peak force. Starting for this observation, we experimentally studied the effects of manganese supplementation in adults and yearling (yearlings red deer under a balanced diet. Subjects were 29 deer of different age classes (adult n = 19, yearlings n = 10 that were divided in a manganese injected group (n = 14 and a control group (n = 15. Antler content in ashes and minerals, intrinsic mechanical properties and cross section structure were examined at 4 points along the antler beam. A one way ANOVA (mean per antler showed that in yearlings, manganese supplementation only increased its content and that of Fe. However, in adults, Mn supplementation increased the mean content per antler of Ca, Na, P, B, Co, Cu, K, Mn, Ni, Se (while Si content was reduced, and impact work but not Young's modulus of elasticity, bending strength or work to peak force. A GLM series on characteristics in the uppermost part examined in the antler, often showing physiological exhaustion and depletion of body stores, showed also a 16% increase in work to peak force in the antlers of the treated group. Thus, manganese supplementation altered mineral composition of antler and improved structure and some mechanical properties despite animals having a balanced diet.

  6. Suppressive effects of the leaf of Terminalia catappa L. on osteoclast differentiation in vitro and bone weight loss in vivo.

    Science.gov (United States)

    Koyama, Tomoyuki; Nakajima, Chie; Nishimoto, Sogo; Takami, Masamichi; Woo, Je-Tae; Yazawa, Kazunaga

    2012-01-01

    Oral administration of Terminalia catappa extract (TCE; 1,000 mg/kg) for 5 wk suppressed bone weight loss and trabecular bone loss in ovariectomized mice. An in vitro experiment showed that TCE (1.3-20 µg/mL) did not increase alkaline phosphatase activity, which would indicate osteoclast formation, in osteoblast-like 3T3-L1 cells. On the other hand, TCE (12.5 µg/mL) markedly decreased the number of tartrate resistant acid phosphatase (TRAP)-positive multinucleated cells, which would indicate osteoclast formation, in a co-culture system (bone marrow cells/osteoblastic UAMS-32 cells). A detailed analysis of the stages of osteoclast differentiation revealed that TCE mainly suppressed the differentiation of bone marrow mononuclear cells into osteoclast progenitor cells in the presence of M-CSF and TGF-β. An additional experiment using fractionated TCE revealed that the water-soluble fraction suppressed the bone weight loss in OVX-mice and osteoclast differentiation in vitro. Therefore, the suppressive effects of TCE on bone weight loss in mice might be due to the suppressive effects of highly polar components on the early stage of osteoclast differentiation.

  7. Street football is a feasible health-enhancing activity for homeless men: biochemical bone marker profile and balance improved.

    Science.gov (United States)

    Helge, E W; Randers, M B; Hornstrup, T; Nielsen, J J; Blackwell, J; Jackman, S R; Krustrup, P

    2014-08-01

    This case-control study investigated the feasibility of street football as a health-enhancing activity for homeless men, specifically the musculoskeletal effects of 12 weeks of training. Twenty-two homeless men participated in the football group (FG) and 10 served as controls (C). Plasma osteocalcin, TRACP5b, leptin, and postural balance were measured, and whole-body DXA scanning was performed. The attendance rate was 75% (2.2 ± 0.7 sessions per week). During 60 min of training, the total distance covered was 5534 ± 610 m, with 1040 ± 353, 2744 ± 671, and 864 ± 224 m covered by high-intensity, low-intensity, and backwards/sideways running, respectively. In FG, osteocalcin increased by 27% from 20.1 ± 11.1 to 25.6 ± 11.8 ng/mL (P = 0.007). Postural balance increased by 39% (P = 0.004) and 46% (P = 0.006) in right and left leg. Trunk bone mineral density increased by 1.0% from 0.959 ± 0.095 to 0.969 ± 0.090 g/cm(2) (P = 0.02). No effects were observed in C. In conclusion, street football appears to be a feasible training activity with musculoskeletal health benefits for homeless men. The attendance rate and the training intensity were high, and 12 weeks of training resulted in a substantial anabolic response in bone metabolism. Postural balance improved markedly, and the overall risk of falling, and hospitalization due to sudden trauma, could be reduced by street football for homeless men. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Germline deletion of AMP-activated protein kinase β subunits reduces bone mass without altering osteoclast differentiation or function

    Science.gov (United States)

    Quinn, Julian M. W.; Tam, Shanna; Sims, Natalie A.; Saleh, Hasnawati; McGregor, Narelle E.; Poulton, Ingrid J.; Scott, John W.; Gillespie, Matthew T.; Kemp, Bruce E.; van Denderen, B. J. W.

    2010-01-01

    Since AMP-activated protein kinase (AMPK) plays important roles in modulating metabolism in response to diet and exercise, both of which influence bone mass, we examined the influence of AMPK on bone mass in mice. AMPK is an αβγ heterotrimer where the β subunit anchors the α catalytic and γ regulatory subunits. Germline deletion of either AMPK β1 or β2 subunit isoforms resulted in reduced trabecular bone density and mass, but without effects on osteoclast (OC) or osteoblast (OB) numbers, as compared to wild-type littermate controls. We tested whether activating AMPK in vivo would enhance bone density but found AICA-riboside treatment caused a profound loss of trabecular bone volume (49.5%) and density and associated increased OC numbers. Consistent with this, AICA-riboside strongly stimulated OC differentiation in vitro, in an adenosine kinase-dependent manner. OCs and macrophages (unlike OBs) lacked AMPK β2 subunit expression, and when generated from AMPK β1−/− mice displayed no detectable AMPK activity. Nevertheless, AICA-riboside was equally effective at stimulating OC differentiation from wild-type or β1−/− progenitors, indicating that AMPK is not essential for OC differentiation or the stimulatory action of AICA-riboside. These results show that AMPK is required to maintain normal bone density, but not through bone cell differentiation, and does not mediate powerful osteolytic effects of AICA-riboside.—Quinn, J. M. W., Tam, S., Sims, N. A., Saleh, H., McGregor, N. E., Poulton, I. J., Scott, J. W., Gillespie, M. T., Kemp, B. E., van Denderen, B. J. W. Germline deletion of AMP-activated protein kinase β subunits reduces bone mass without altering osteoclast differentiation or function. PMID:19723702

  9. Effects of hypoxia on osteogenic differentiation of rat bone marrow mesenchymal stem cells.

    Science.gov (United States)

    Wang, Yating; Li, Juan; Wang, Yanmin; Lei, Lei; Jiang, Chunmiao; An, Shu; Zhan, Yuxiang; Cheng, Qian; Zhao, Zhihe; Wang, Jun; Jiang, Lingyong

    2012-03-01

    Bone reconstruction is essential in orthodontic treatment that caters to the correction of malocclusion by bone reconstruction. Mesenchymal stem cells (MSCs) have been demonstrated a great potency of osteogenesis. The aim of this study was to investigate the effect of hypoxia on the rat bone marrow MSCs (rBMSCs) in vitro during osteogenesis. In this study, we found that temporary exposure of rBMSCs after osteogenic induction for 7 days to hypoxia (2% oxygen) led to a marked decrease in ALPase activity and the expression of osteocalcin and Runt related transcription factor 2/core binding factor a1 (Runx2/Cbfa1). Meanwhile, we found that exposure to hypoxia led to an early and transient increase in the level of phosphorylated ERK1/2 but had no obvious effects on mitogen-activated protein kinase (p38 MAPK) level. Based on these results, we concluded that hypoxia could inhibit osteogenic differentiation of rBMSCs possibly through MEK-ERK 1/2, while p38 MAPK may not participate in this regulation. Further exploration into the mechanisms of hypoxia on osteogenesis would surely provide reliable evidence for clinical practice.

  10. CT diagnosis and differential diagnosis of otodystrophic lesions of the temporal bone

    Energy Technology Data Exchange (ETDEWEB)

    D' Archambeau, O.; Parizel, P.M.; Schepper, A.M. De (Antwerp University Hospital (Belgium). Department of Radiology); Koekelkoren, E.; Van De Heyning, P. (Antwerp University Hospital (Belgium). Department of E.N.T.)

    The purpose of this study was to assess the diagnostic and differential diagnostic value of high-resolution computed tomography in the evaluation of temporal-bone dystrophies. The study group included 55 patients with osseous abnormalities of the temporal bone in general, and the labyrinthine capsule in particular. In 27 patients the CT scan revealed evidence of otodystrophic lesions. The CT findings in patients with otosclerosis (21 patients), osteogenesis imperfecta (two patients), fibrous dysplasia (one patient). Paget's disease (one patient) and osteoporosis (two patients) are described. The CT scans of 17 patients revealed secondary osseous lesions due to metastasis (five patients), post-inflammatory changes (10 patients) or labyrinthitis ossificans (two patients). Normal variants and congenital mineralization defects were diagnosed in nine patients, Down's syndrome in two. Our results indicate the importance of high-resolution computed tomography as the primary imaging modality in evaluating osseous lesions of the temporal bone and labyrinth. (author). 14 refs.; 13 figs; 2 tabs.

  11. Hepatogenic and neurogenic differentiation of bone marrow mesenchymal stem cells from abattoir-derived bovine fetuses.

    Science.gov (United States)

    Dueñas, Fernando; Becerra, Víctor; Cortes, Yennifer; Vidal, Sonia; Sáenz, Leonardo; Palomino, Jaime; De Los Reyes, Mónica; Peralta, Oscar A

    2014-07-10

    Mesenchymal stem cells (MSC) are multipotent progenitor cells characterized by their ability to both self-renew and differentiate into tissues of mesodermal origin. The plasticity or transdifferentiation potential of MSC is not limited to mesodermal derivatives, since under appropriate cell culture conditions and stimulation by bioactive factors, MSC have also been differentiated into endodermal (hepatocytes) and neuroectodermal (neurons) cells. The potential of MSC for hepatogenic and neurogenic differentiation has been well documented in different animal models; however, few reports are currently available on large animal models. In the present study we sought to characterize the hepatogenic and neurogenic differentiation and multipotent potential of bovine MSC (bMSC) isolated from bone marrow (BM) of abattoir-derived fetuses. Plastic-adherent bMSC isolated from fetal BM maintained a fibroblast-like morphology under monolayer culture conditions. Flow cytometric analysis demonstrated that bMSC populations were positive for MSC markers CD29 and CD73 and pluripotency markers OCT4 and NANOG; whereas, were negative for hematopoietic markers CD34 and CD45. Levels of mRNA of hepatic genes α-fetoprotein (AFP), albumin (ALB), alpha1 antitrypsin (α1AT), connexin 32 (CNX32), tyrosine aminotransferase (TAT) and cytochrome P450 (CYP3A4) were up-regulated in bMSC during a 28-Day period of hepatogenic differentiation. Functional analyses in differentiated bMSC cultures evidenced an increase (P < 0.05) in albumin and urea production and glycogen storage. bMSC cultured under neurogenic conditions expressed NESTIN and MAP2 proteins at 24 h of culture; whereas, at 144 h also expressed TRKA and PrPC. Levels of MAP2 and TRKA mRNA were up-regulated at the end of the differentiation period. Conversely, bMSC expressed lower levels of NANOG mRNA during both hepatogenic and neurogenic differentiation processes. The expression patterns of linage-specific markers and the production of

  12. Antiosteoporotic Activity of Dioscorea alata L. cv. Phyto through Driving Mesenchymal Stem Cells Differentiation for Bone Formation

    Directory of Open Access Journals (Sweden)

    Kang-Yung Peng

    2011-01-01

    Full Text Available The aim of this study was to evaluate the effect of an ethanol extract of the rhizomes of Dioscorea alata L. cv. Phyto, Dispo85E, on bone formation and to investigate the mechanisms involved. Our results showed that Dispo85E increased the activity of alkaline phosphatase (ALP and bone nodule formation in primary bone marrow cultures. In addition, Dispo85E stimulated pluripotent C3H10T1/2 stem cells to differentiate into osteoblasts rather than adipocytes. Our in vivo data indicated that Dispo85E promotes osteoblastogenesis by increasing ALP activity and bone nodule formation in both intact and ovariectomized (OVX mice. Microcomputed tomography (μCT analysis also showed that Dispo85E ameliorates the deterioration of trabecular bone mineral density (tBMD, trabecular bone volume/total volume (BV/TV, and trabecular bone number (Tb.N in OVX mice. Our results suggested that Dispo85E is a botanical drug with a novel mechanism that drives the lineage-specific differentiation of bone marrow stromal cells and is a candidate drug for osteoporosis therapy.

  13. Nitro-oleic acid regulates growth factor-induced differentiation of bone marrow-derived macrophages.

    Science.gov (United States)

    Verescakova, Hana; Ambrozova, Gabriela; Kubala, Lukas; Perecko, Tomas; Koudelka, Adolf; Vasicek, Ondrej; Rudolph, Tanja K; Klinke, Anna; Woodcock, Steven R; Freeman, Bruce A; Pekarova, Michaela

    2017-03-01

    Many diseases accompanied by chronic inflammation are connected with dysregulated activation of macrophage subpopulations. Recently, we reported that nitro-fatty acids (NO 2 -FAs), products of metabolic and inflammatory reactions of nitric oxide and nitrite, modulate macrophage and other immune cell functions. Bone marrow cell suspensions were isolated from mice and supplemented with macrophage colony-stimulating factor (M-CSF) or granulocyte-macrophage colony-stimulating factor (GM-CSF) in combination with NO 2 -OA for different times. RAW 264.7 macrophages were used for short-term (1-5min) experiments. We discovered that NO 2 -OA reduces cell numbers, cell colony formation, and proliferation of macrophages differentiated with colony-stimulating factors (CSFs), all in the absence of toxicity. In a case of GM-CSF-induced bone marrow-derived macrophages (BMMs), NO 2 -OA acts via downregulation of signal transducer and activator of transcription 5 and extracellular signal-regulated kinase (ERK) activation. In the case of M-CSF-induced BMMs, NO 2 -OA decreases activation of M-CSFR and activation of related PI3K and ERK. Additionally, NO 2 -OA also attenuates activation of BMMs. In aggregate, we demonstrate that NO 2 -OA regulates the process of macrophage differentiation and that NO 2 -FAs represent a promising therapeutic tool in the treatment of inflammatory pathologies linked with increased accumulation of macrophages in inflamed tissues. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Micro/Nano Structural Tantalum Coating for Enhanced Osteogenic Differentiation of Human Bone Marrow Stem Cells

    Directory of Open Access Journals (Sweden)

    Ding Ding

    2018-04-01

    Full Text Available Recently, tantalum has been attracting much attention for its anticorrosion resistance and biocompatibility, and it has been widely used in surface modification for implant applications. To improve its osteogenic differentiation of human bone marrow stem cells (hBMSCs, a micro/nano structure has been fabricated on the tantalum coating surface through the combination of anodic oxidation and plasma spraying method. The morphology, composition, and microstructure of the modified coating were comprehensively studied by employing scanning electron microscopy (SEM, X-ray diffraction (XRD as well as transmission electron microscopy (TEM. The effects of hierarchical structures as well as micro-porous structure of tantalum coating on the behavior for human bone marrow stem cells (hBMSCs were evaluated and compared at both cellular and molecular levels in vitro. The experimental results show that a hierarchical micro/nano structure with Ta2O5 nanotubes spread onto a micro-scale tantalum coating has been fabricated successfully, which is confirmed to promote cell adhesion and spreading. Besides, the hierarchical micro/nano tantalum coating can provide 1.5~2.1 times improvement in gene expression, compared with the micro-porous tantalum coating. It demonstrates that it can effectively enhance the proliferation and differentiation of hBMSCs in vitro.

  15. Novel Vanadium-Loaded Ordered Collagen Scaffold Promotes Osteochondral Differentiation of Bone Marrow Progenitor Cells

    Directory of Open Access Journals (Sweden)

    Ana M. Cortizo

    2016-01-01

    Full Text Available Bone and cartilage regeneration can be improved by designing a functionalized biomaterial that includes bioactive drugs in a biocompatible and biodegradable scaffold. Based on our previous studies, we designed a vanadium-loaded collagen scaffold for osteochondral tissue engineering. Collagen-vanadium loaded scaffolds were characterized by SEM, FTIR, and permeability studies. Rat bone marrow progenitor cells were plated on collagen or vanadium-loaded membranes to evaluate differences in cell attachment, growth and osteogenic or chondrocytic differentiation. The potential cytotoxicity of the scaffolds was assessed by the MTT assay and by evaluation of morphological changes in cultured RAW 264.7 macrophages. Our results show that loading of VOAsc did not alter the grooved ordered structure of the collagen membrane although it increased membrane permeability, suggesting a more open structure. The VOAsc was released to the media, suggesting diffusion-controlled drug release. Vanadium-loaded membranes proved to be a better substratum than C0 for all evaluated aspects of BMPC biocompatibility (adhesion, growth, and osteoblastic and chondrocytic differentiation. In addition, there was no detectable effect of collagen or vanadium-loaded scaffolds on macrophage viability or cytotoxicity. Based on these findings, we have developed a new ordered collagen scaffold loaded with VOAsc that shows potential for osteochondral tissue engineering.

  16. Micro/Nano Structural Tantalum Coating for Enhanced Osteogenic Differentiation of Human Bone Marrow Stem Cells.

    Science.gov (United States)

    Ding, Ding; Xie, Youtao; Li, Kai; Huang, Liping; Zheng, Xuebin

    2018-04-03

    Recently, tantalum has been attracting much attention for its anticorrosion resistance and biocompatibility, and it has been widely used in surface modification for implant applications. To improve its osteogenic differentiation of human bone marrow stem cells (hBMSCs), a micro/nano structure has been fabricated on the tantalum coating surface through the combination of anodic oxidation and plasma spraying method. The morphology, composition, and microstructure of the modified coating were comprehensively studied by employing scanning electron microscopy (SEM), X-ray diffraction (XRD) as well as transmission electron microscopy (TEM). The effects of hierarchical structures as well as micro-porous structure of tantalum coating on the behavior for human bone marrow stem cells (hBMSCs) were evaluated and compared at both cellular and molecular levels in vitro. The experimental results show that a hierarchical micro/nano structure with Ta₂O₅ nanotubes spread onto a micro-scale tantalum coating has been fabricated successfully, which is confirmed to promote cell adhesion and spreading. Besides, the hierarchical micro/nano tantalum coating can provide 1.5~2.1 times improvement in gene expression, compared with the micro-porous tantalum coating. It demonstrates that it can effectively enhance the proliferation and differentiation of hBMSCs in vitro.

  17. The tropism of neurally differentiated bone marrow stromal cells towards C6 glioma.

    Science.gov (United States)

    Long, Qianfa; Liu, Weiping; Zhong, Jun; Yi, Xicai; Liu, Yang; Liu, Yuanyang; Yang, Yang; Han, Rui; Fei, Zhou

    2011-10-24

    Recent studies have indicated that bone marrow stromal cells (BMSCs) have significant tropism towards glioma which makes them play an important role in carrying genes/drugs to inhibit the growth of glioma as cell vehicles. But BMSCs may differentiate into neural cells under entocranial environment and few researches support the idea that neurally differentiated bone marrow stromal cells (N-D-BMSCs) still hold the capacity of migrating to the tumor sites. The aim of our study was to investigate the tropism of N-D-BMSCs towards C6 glioma. In vitro migration assay was employed by transwell co-culture system and Student's t-test analysis indicated that N-D-BMSCs had the significant tropism towards C6 glioma-conditioned medium (GCM) (Ptropism of N-D-BMSCs towards C6 glioma sites presented time variation (P-value=2.9E-20). Moreover, multiple comparisons for the time variables with the Student's t-test and the results suggested that the migration capacity of N-D-BMSCs towards C6 glioma sites reach the peak on the 7th day after transplantation. These results demonstrate that N-D-BMSCs as well as BMSCs have significant tropism towards C6 glioma. Published by Elsevier Ireland Ltd.

  18. Monitoring Bone Tissue Engineered (BTE) Constructs Based on the Shifting Metabolism of Differentiating Stem Cells.

    Science.gov (United States)

    Simmons, Aaron D; Sikavitsas, Vassilios I

    2018-01-01

    Ever-increasing demand for bone grafts necessitates the realization of clinical implementation of bone tissue engineered constructs. The predominant hurdle to implementation remains to be securing FDA approval, based on the lack of viable methods for the rigorous monitoring of said constructs. The study presented herein details a method for such monitoring based on the shifting metabolism of mesenchymal stem cells (MSCs) as they differentiate into osteoblasts. To that end, rat MSCs seeded on 85% porous spunbonded poly(L-lactic acid) scaffolds were cultured in flow perfusion bioreactors with baseline or osteoinductive media, and levels of key physio-metabolic markers (oxygen, glucose, osteoprotegerin, and osteocalcin) were monitored throughout culture. Comparison of these non-destructively obtained values and current standard destructive analyses demonstrated key trends useful for the concurrent real-time monitoring of construct cellularity and maturation. Principle among these is the elucidation of the ratio of the rates of oxygen uptake to glucose consumption as a powerful quality marker. This ratio, supported on a physiological basis, has been shown herein to be reliable in the determination of both construct maturation (defined as osteoblastic differentiation and accompanying mineralization) and construct cellularity. Supplementary monitoring of OPG and OCN are shown to provide further validation of such metrics.

  19. Bone marrow mesenchymal stem cells differentiation and proliferation on the surface of coral implant

    International Nuclear Information System (INIS)

    Al-Salihi, K.A.; Samsudin, A.R.

    2004-01-01

    This study was designed to evaluate the ability of natural coral implant to provide an environment for marrow cells to differentiate into osteoblasts and function suitable for mineralized tissue formation. DNA content, alkaline phosptatase (ALP) activity, calcium (Ca) content and mineralized nodules, were measured at day 3, day 7 and day 14, in rat bone marrow stromal cells cultured with coral discs glass discs, while cells alone and coral disc alone cultured as control. DNA content, ALP activity, Ca content measurements showed no difference between coral, glass and cells groups at 3 day which were higher than control (coral disc alone), but there were higher asurement at day 7 and 14 in the cell cultured on coral than on glass discs, control cells and control coral discs. Mineralized nodules formation (both in area and number) was more predominant on the coral surface than in control groups. These results showed that natural coral implant provided excellent and favorable situation for marrow cell to differentiate to osteoblasts, lead to large amount of mineralized tissue formation on coral surface. This in vitro result could explain the rapid bone bonding of coral in vivo. (Author)

  20. The effect of long-term acidifying feeding on digesta organic acids, mineral balance, and bone mineralization in growing pigs

    DEFF Research Database (Denmark)

    Nørgaard, Jan Værum; Højberg, Ole; Sørensen, Kristina Ulrich

    2014-01-01

    Acidification of slurry through dietary manipulation of urinary pH is a means of mitigating nitrogen emission from pig production, but long-term effects of diet acidification on bone mineralization and mineral balance is less investigated. The objective was therefore to study the long-term effects...... of feeding benzoic acid (BA) and calcium chloride (CaCl2) on the mineral balance and microbial activity in the gastrointestinal tract of pigs. Four diets containing the combinations of 0 or 10 g/kg BA and 0 or 20 g/kg CaCl2 were fed to 24 pigs in a factorial design. For the diets without CaCl2, calcium...... carbonate (CaCO3) was added to provide equimolar levels of Ca. The pigs were fed the diets from 36 kg until slaughter at 113 kg BW, and they were housed in balance cages for 12 d from 60 to 66 kg BW. Supplementation of BA and/or CaCl2 had only minor effect on accumulation of digesta organic acids (acetate...

  1. Decreased bone turnover with balanced resorption and formation prevent cortical bone loss during disuse (hibernation) in grizzly bears (Ursus arctos horribilis)

    OpenAIRE

    McGee, Meghan E.; Maki, Aaron J.; Johnson, Steven E.; Lynne Nelson, O.; Robbins, Charles T.; Donahue, Seth W.

    2007-01-01

    Disuse uncouples bone formation from resorption, leading to increased porosity, decreased bone geometrical properties, and decreased bone mineral content which compromises bone mechanical properties and increases fracture risk. However, black bear bone properties are not adversely affected by aging despite annual periods of disuse (i.e., hibernation), which suggests that bears either prevent bone loss during disuse or lose bone and subsequently recover it at a faster rate than other animals. ...

  2. Gravity, a regulation factor in the differentiation of rat bone marrow mesenchymal stem cells

    Directory of Open Access Journals (Sweden)

    Wan Yu-Min

    2009-09-01

    Full Text Available Abstract Background Stem cell therapy has emerged as a potential therapeutic option for tissue engineering and regenerative medicine, but many issues remain to be resolved, such as the amount of seed cells, committed differentiation and the efficiency. Several previous studies have focused on the study of chemical inducement microenvironments. In the present study, we investigated the effects of gravity on the differentiation of bone marrow mesenchymal stem cells (BMSCs into force-sensitive or force-insensitive cells. Methods and results Rat BMSCs (rBMSCs were cultured under hypergravity or simulated microgravity (SMG conditions with or without inducement medium. The expression levels of the characteristic proteins were measured and analyzed using immunocytochemical, RT-PCR and Western-blot analyses. After treatment with 5-azacytidine and hypergravity, rBMSCs expressed more characteristic proteins of cardiomyocytes such as cTnT, GATA4 and β-MHC; however, fewer such proteins were seen with SMG. After treating rBMSCs with osteogenic inducer and hypergravity, there were marked increases in the expression levels of ColIA1, Cbfa1 and ALP. Reverse results were obtained with SMG. rBMSCs treated with adipogenic inducer and SMG expressed greater levels of PPARgamma. Greater levels of Cbfa1- or cTnT-positive cells were observed under hypergravity without inducer, as shown by FACS analysis. These results indicate that hypergravity induces differentiation of rBMSCs into force-sensitive cells (cardiomyocytes and osteoblasts, whereas SMG induces force-insensitive cells (adipocytes. Conclusion Taken together, we conclude that gravity is an important factor affecting the differentiation of rBMSCs; this provides a new avenue for mechanistic studies of stem cell differentiation and a new approach to obtain more committed differentiated or undifferentiated cells.

  3. Acute bone crises in sickle cell disease: the T1 fat-saturated sequence in differentiation of acute bone infarcts from acute osteomyelitis

    Energy Technology Data Exchange (ETDEWEB)

    Jain, R. [Department of Radiology, College of Medicine, Sultan Qaboos University, Muscat (Oman)], E-mail: rajeevjn@yahoo.com; Sawhney, S. [Department of Radiology, College of Medicine, Sultan Qaboos University, Muscat (Oman); Rizvi, S.G. [Department of Community Medicine and Public Health, College of Medicine, Sultan Qaboos University, Muscat (Oman)

    2008-01-15

    Aim: To prove the hypothesis that acute bone infarcts in sickle cell disease are caused by sequestration of red blood cells (RBCs) in bone marrow, and to evaluate the unenhanced T1 fat-saturated (fs) sequence in the differentiation of acute bone infarction from acute osteomyelitis in patients with sickle-cell disease. Materials and methods: Two studies were undertaken: an experimental study using in-vitro packed red blood cells and normal volunteers, and a retrospective clinical study of 86 magnetic resonance imaging (MRI) studies. For the experimental study containers of packed RBCs were placed between the knees of four healthy volunteers with a saline bag under the containers as an additional control, and were scanned with the pre-contrast T1-fs sequence. Signal intensity (SI) ratios were obtained for packed RBCs:skeletal muscle and packed RBCs:saline. For the clinical study, the SIs of normal bone marrow, packed RBCs, bone and/or soft-tissue lesions, and normal skeletal muscle of 74 patients (86 MRI studies) were measured using unenhanced, T1 fat-saturated MRI. The ratios of the above SIs to normal skeletal muscle were calculated and subjected to statistical analysis. Results: Fifty-one of 86 MRI studies were included in the final analysis. The ratios of SIs for normal bone marrow, packed red cells, bone infarction, acute osteomyelitis, and soft-tissue lesions associated with bone infarct, compared with normal skeletal muscle were (mean {+-} SD) 0.9 {+-} 0.2, 2.1 {+-} 0.7, 1.7 {+-} 0.5, 1.0 {+-} 0.3, and 2.2 {+-} 0.7, respectively. The difference in the ratio of SIs of bone infarcts and osteomyelitis was significant (p = 0.003). The final diagnoses were bone infarction (n = 50), acute osteomyelitis (n = 1), and co-existent bone infarction and osteomyelitis (n = 2). Seven patients who had suspected osteomyelitis underwent image-guided aspiration. Conclusion: Acute bone infarcts in sickle cell disease are caused by sequestration of red blood cells in the bone

  4. Effects of autologous stromal cells and cytokines on differentiation of equine bone marrow-derived progenitor cells.

    Science.gov (United States)

    Schwab, Ute E; Tallmadge, Rebecca L; Matychak, Mary Beth; Felippe, M Julia B

    2017-10-01

    OBJECTIVE To develop an in vitro system for differentiation of equine B cells from bone marrow hematopoietic progenitor cells on the basis of protocols for other species. SAMPLE Bone marrow aspirates aseptically obtained from 12 research horses. PROCEDURES Equine bone marrow CD34 + cells were sorted by use of magnetic beads and cultured in medium supplemented with cytokines (recombinant human interleukin-7, equine interleukin-7, stem cell factor, and Fms-like tyrosine kinase-3), murine OP9 stromal cell preconditioned medium, and equine fetal bone marrow mesenchymal stromal cell preconditioned medium. Cells in culture were characterized by use of flow cytometry, immunocytofluorescence microscopy, and quantitative reverse-transcriptase PCR assay. RESULTS For these culture conditions, bone marrow-derived equine CD34 + cells differentiated into CD19 + IgM + B cells that expressed the signature transcription factors early B-cell factor and transcription factor 3. These conditions also supported the concomitant development of autologous stromal cells, and their presence was supportive of B-cell development. CONCLUSIONS AND CLINICAL RELEVANCE Equine B cells were generated from bone marrow aspirates by use of supportive culture conditions. In vitro generation of equine autologous B cells should be of use in studies on regulation of cell differentiation and therapeutic transplantation.

  5. A minimal common osteochondrocytic differentiation medium for the osteogenic and chondrogenic differentiation of bone marrow stromal cells in the construction of osteochondral graft.

    Science.gov (United States)

    Li, Jian; Mareddy, Shobha; Tan, Dawn Meifang; Crawford, Ross; Long, Xing; Miao, Xigeng; Xiao, Yin

    2009-09-01

    To regenerate the complex tissue such as bone-cartilage construct using tissue engineering approach, controllable differentiation of bone marrow stromal cells (BMSCs) into chondrogenic and osteogenic lineages is crucially important. This study proposes to test a minimum common osteochondrocytic differentiation medium (MCDM) formulated by including common soluble supplements (dexamethasone and ascorbic acid) used to induce chondrogenic and osteogenic differentiation. The MCDM coupled with supplemented growth factors was tested for its ability to differentiate BMSCs into osteogenic and chondrogenic lineages in both two-dimensional and three-dimensional culture systems. When transforming growth factor beta3 was added to MCDM, BMSCs differentiated to chondrocyte-like cells, evidenced by the expression of glycosaminoglycans and type II collagen, whereas osteogenic differentiation was induced by supplementing osteogenic protein-1, resulting in detectable expression of osteopontin and osteocalcin. These chondrogenic and osteogenic differentiation markers were significantly enhanced in the three-dimensional cultures compared to the two-dimensional monolayer cultures. The results achieved in this study lay a foundation for future development of osteochondral graft, which could be engineered from bilayered scaffold with spatially loaded growth factors to control BMSC differentiation.

  6. Climbing exercise enhances osteoblast differentiation and inhibits adipogenic differentiation with high expression of PTH/PTHrP receptor in bone marrow cells.

    Science.gov (United States)

    Menuki, Kunitaka; Mori, Toshiharu; Sakai, Akinori; Sakuma, Miyuki; Okimoto, Nobukazu; Shimizu, Yuki; Kunugita, Naoki; Nakamura, Toshitaka

    2008-09-01

    We developed previously a mouse voluntary climbing exercise model as a physiological mechanical loading model and reported that climbing exercise increased bone formation, but its effect on adipogenesis is unknown. We assessed the effects of loading and PTH/PTHrP receptor (PTHR1) on bone marrow adipocyte differentiation in relation with osteoblast differentiation. 8-week-old C57BL/6J male mice were divided into ground control (GC) and climbing exercise (EX) group. Mice were housed in 100-cm towers and climbed up toward a bottle placed at the top of the cage to drink water. The values of bone volume and osteoblast number were significantly higher while those of marrow adipocyte volume and number were significantly lower in the 28dayEX group than 28dayGC group. The mRNA expression levels of adipocyte differentiation genes CCAAT/enhancer-binding proteins (C/EBP) beta and delta were lower in 4dayEX mice, while the adipocyte specific genes fatty acid binding protein (aP2) and phosphoenolpyruvate carboxykinase (PEPCK) expressions were lower in 7dayEX mice. In primary bone marrow cell cultures, the number of alkaline phosphatase-positive colony forming units-fibroblastic (ALP+ CFU-f) and Oil-red-O-positive cells were both increased in the 4dayEX group. Climbing exercise transiently increases both osteogenic and adipogenic potential in bone marrow stromal cells, and inhibits terminal adipocyte differentiation and promotes osteoblast differentiation. Immunoreactivity for the PTHR1 was intense on osteoblastic cell lineage in the endosteal tibial metaphysis. PTHR1 mRNA expression was increased in 4dayEX mice and PTHR1-positive cells were increased after 7 days in the experimental group. Ex vivo addition of PTHR1 antibody decreased and that of PTHrP(1-34) increased the number of ALP+ CFU-f in bone marrow cell cultures obtained at 4 days after the exercise, while the addition of PTHR1 antibody increased and PTHrP(1-34) decreased the number of Oil-red-O-positive cells. Our

  7. Lung cancer-derived Dickkopf1 is associated with bone metastasis and the mechanism involves the inhibition of osteoblast differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Chu, Tianqing; Teng, Jiajun; Jiang, Liyan; Zhong, Hua; Han, Baohui, E-mail: baohuihan1@163.com

    2014-01-17

    Highlights: •DKK1 level was associated with NSCLC bone metastases. •Lung tumor cells derived DKK1 inhibited osteoblast differentiation. •Lung tumor cells derived DKK1 modulates β-catenin and RUNX2. -- Abstract: Wnt/β-catenin signaling and Dickkopf1 (DKK1) play important roles in the progression of lung cancer, which preferably metastasizes to skeleton. But the role of them in bone dissemination is poorly understood. This study aims to define the role of DKK1 in lung cancer bone metastases and investigate the underlying mechanism. Our results demonstrated that DKK1 over-expression was a frequent event in non-small-cell lung cancer (NSCLC) blood samples, and serous DKK1 level was much higher in bone metastatic NSCLC compared to non-bone metastatic NSCLC. We also found that conditioned medium from DKK1 over-expressing lung cancer cells inhibited the differentiation of osteoblast, determined by alkaline phosphatase activity and osteocalcin secretion, whereas the conditioned medium from DKK1 silencing lung cancer cells exhibited the opposite effects. Mechanistically, DKK1 reduced the level of β-catenin and RUNX2, as well as inhibiting the nuclear translocation of β-catenin. Taken together, these results suggested that lung cancer-produced DKK1 may be an important mechanistic link between NSCLC and bone metastases, and targeting DKK1 may be an effective method to treat bone metastase of NSCLC.

  8. TBTC induces adipocyte differentiation in human bone marrow long term culture

    International Nuclear Information System (INIS)

    Carfi, M.; Croera, C.; Ferrario, D.; Campi, V.; Bowe, G.; Pieters, R.; Gribaldo, L.

    2008-01-01

    Organotins are widely used in agriculture and the chemical industry, causing persistent and widespread pollution. Organotins may affect the brain, liver and immune system and eventually human health. Recently, it has been shown that tri-butyltin (TBT) interacts with nuclear receptors PPARγ (peroxisome proliferator-activated receptor γ) and RXR (retinoid x receptor) leading to adipocyte differentiation in the 3T3 cell line. Since adipocytes are known to influence haematopoiesis, for instance through the expression of cytokines and adhesion molecules, it was considered of interest to further study the adipocyte-stimulating effect of TBTC in human bone marrow cultures. Nile Red spectrofluorimetric analysis showed a significant increase of adipocytes in TBTC-treated cultures after 14 days of long term culture. Real-time PCR and Western blot analysis confirmed the high expression of the specific adipocyte differentiation marker aP2 (adipocyte-specific fatty acid binding protein). PPARγ, but not RXR, mRNA was increased after 24 h and 48 h exposure. TBTC also induced a decrease in a number of chemokines, interleukins, and growth factors. Also the expression of leptin, a hormone involved in haematopoiesis, was down regulated by TBTC treatment. It therefore appears that TBTC induced adipocyte differentiation, whilst reducing a number of haematopoietic factors. This study indicates that TBTC may interfere in the haematopoietic process through an alteration of the stromal layer and cytokine homeostasis

  9. A pilot study of the feasibility of long-term human bone balance during perimenopause using a {sup 41}Ca tracer

    Energy Technology Data Exchange (ETDEWEB)

    Hui, S.K. [Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel) and Department of Therapeutic Radiology-Radiation Oncology, University of Minnesota, 420 Delaware Street SE, Mayo Mail Code 494, Minneapolis, MN 55455 (United States)]. E-mail: huixx019@umn.edu; Prior, J. [Deparment of Medicine/Endocrinology, University of British Columbia, Vancouver, B.C., V5Z 1C6 (Canada); Gelbart, Z. [TRIUMF, Vancouver, B.C., V6T2A3 (Canada); Johnson, R.R. [TRIUMF, Vancouver, B.C., V6T2A3 (Canada); Lentle, B.C. [Department of Radiology, University of British Columbia, British Columbia, V8M 1V4 (Canada); Paul, M. [Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel)

    2007-06-15

    The mechanisms governing calcium fluxes during bone remodeling processes in perimenopausal women are poorly known. Despite higher, albeit erratic, estradiol levels in perimenopause, spine bone loss is greater than during the first five years past the final menstrual flow when estradiol becomes low. Understanding changes during this dynamic transition are important to prevent fragility fractures in midlife and older women. The exploration of long-lived {sup 41}Ca (T {sub 1/2} = 1.04 x 10{sup 5} yrs) tracer measurements using accelerator mass spectrometry (AMS) leads to the possibility of monitoring bone remodeling balance. With this new technology, we explored a pilot long-term feasibility study of bone health by measuring the {sup 41}Ca trace element in urine for six years from premenopausal to later perimenopausal phases in one midlife woman. We measured bone mineral density in parallel.

  10. Costs of defense and a test of the carbon-nutrient balance and growth-differentiation balance hypotheses for two co-occurring classes of plant defense.

    Directory of Open Access Journals (Sweden)

    Tara Joy Massad

    Full Text Available One of the goals of chemical ecology is to assess costs of plant defenses. Intraspecific trade-offs between growth and defense are traditionally viewed in the context of the carbon-nutrient balance hypothesis (CNBH and the growth-differentiation balance hypothesis (GDBH. Broadly, these hypotheses suggest that growth is limited by deficiencies in carbon or nitrogen while rates of photosynthesis remain unchanged, and the subsequent reduced growth results in the more abundant resource being invested in increased defense (mass-balance based allocation. The GDBH further predicts trade-offs in growth and defense should only be observed when resources are abundant. Most support for these hypotheses comes from work with phenolics. We examined trade-offs related to production of two classes of defenses, saponins (triterpenoids and flavans (phenolics, in Pentaclethra macroloba (Fabaceae, an abundant tree in Costa Rican wet forests. We quantified physiological costs of plant defenses by measuring photosynthetic parameters (which are often assumed to be stable in addition to biomass. Pentaclethra macroloba were grown in full sunlight or shade under three levels of nitrogen alone or with conspecific neighbors that could potentially alter nutrient availability via competition or facilitation. Biomass and photosynthesis were not affected by nitrogen or competition for seedlings in full sunlight, but they responded positively to nitrogen in shade-grown plants. The trade-off predicted by the GDBH between growth and metabolite production was only present between flavans and biomass in sun-grown plants (abundant resource conditions. Support was also only partial for the CNBH as flavans declined with nitrogen but saponins increased. This suggests saponin production should be considered in terms of detailed biosynthetic pathway models while phenolic production fits mass-balance based allocation models (such as the CNBH. Contrary to expectations based on the two

  11. Acoustic-Frequency Vibratory Stimulation Regulates the Balance between Osteogenesis and Adipogenesis of Human Bone Marrow-Derived Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    Xi Chen

    2015-01-01

    Full Text Available Osteoporosis can be associated with the disordered balance between osteogenesis and adipogenesis of bone marrow-derived mesenchymal stem cells (BM-MSCs. Although low-frequency mechanical vibration has been demonstrated to promote osteogenesis, little is known about the influence of acoustic-frequency vibratory stimulation (AFVS. BM-MSCs were subjected to AFVS at frequencies of 0, 30, 400, and 800 Hz and induced toward osteogenic or adipogenic-specific lineage. Extracellular matrix mineralization was determined by Alizarin Red S staining and lipid accumulation was assessed by Oil Red O staining. Transcript levels of osteogenic and adipogenic marker genes were evaluated by real-time reverse transcription-polymerase chain reaction. Cell proliferation of BM-MSCs was promoted following exposure to AFVS at 800 Hz. Vibration at 800 Hz induced the highest level of calcium deposition and significantly increased mRNA expression of COL1A1, ALP, RUNX2, and SPP1. The 800 Hz group downregulated lipid accumulation and levels of adipogenic genes, including FABP4, CEBPA, PPARG, and LEP, while vibration at 30 Hz supported adipogenesis. BM-MSCs showed a frequency-dependent response to acoustic vibration. AFVS at 800 Hz was the most favorable for osteogenic differentiation and simultaneously suppressed adipogenesis. Thus, acoustic vibration could potentially become a novel means to prevent and treat osteoporosis.

  12. MRI of bone and soft tissue tumors and tumorlike lesions. Differential diagnosis and atlas

    Energy Technology Data Exchange (ETDEWEB)

    Meyers, S.P. [Rochester Univ., NY (United States). School of Medicine and Dentistry

    2008-07-01

    The book is devided into three main sections: the introduction presents a detailed overview of magnetic resonance imaging (MRI) of muscoskeletal tumors and tumorlike lesions and includes multiple tables regarding teh WHO classification of bone and soft tissue tumors, their relative frequencies and pertinent immunohistochemical and genetic data. The second part contains 20 tables of differential diagnosis of lesions based on anatomic locations and/or specific MRI features. Pertinent radiographic and CT findings and key clinical data are summarized. The third part contains 77 Atlas chapters organized into a routine format that enables the efficient acquisition of specific information regarding each lesion. For the majority of the Atlas chapters multiple MRI images are provided to demonstrate the range of imaging findings and locations associated with the lesions.

  13. Differential response of risedronate on tibial and mandibular bone quality in glucocorticoid-treated growing rats

    International Nuclear Information System (INIS)

    Fujita, Yuko

    2008-01-01

    Glucocorticoids induce bone loss and retard bone growth in children. In this study we investigated the effect of treatment with risedronate on glucocorticoid -prednisolone-induced decreases in bone density, quality, strength and growth of the tibia and mandible in growing rats. Trabecular and cortical bone structure was measured by peripheral quantitative computed tomography (pQCT) and three-dimensional (3D) micro-computed tomography (micro-CT). Indicators of bone strength were calculated from cortical bone density and the modulus of sections obtained from pQCT analysis. Tibial and mandibular bone sizes were also measured. Prednisolone decreased the bone growth of both tibia and mandible. It also caused deterioration of trabecular and cortical bone structure and strength in the mandible, and in cortical bone in the tibia, but had no effect on trabecular bone in the tibia. Risedronate inhibited the prednisolone-induced decreases in tibial width and mandibular length and height but did not improve the retardation of longitudinal bone growth. Risedronate prevented prednisolone-induced deterioration of trabecular and cortical bone architecture. In the mandible, this protective effect of risedronate was accompanied by an increase in cortical bone density and in bone strength. These findings show that risedronate inhibits prednisolone-induced loss of bone density, structure, decrease in bone strength, and retardation of bone growth in the mandible in young growing rats. (author)

  14. Identification of genes differentially regulated in rat alveolar bone wound healing by subtractive hybridization.

    Science.gov (United States)

    Ohira, T; Myokai, F; Shiomi, N; Yamashiro, K; Yamamoto, T; Murayama, Y; Arai, H; Nishimura, F; Takashiba, S

    2004-07-01

    Periodontal healing requires the participation of regulatory molecules, cells, and scaffold or matrix. Here, we hypothesized that a certain set of genes is expressed in alveolar bone wound healing. Reciprocal subtraction gave 400 clones from the injured alveolar bone of Wistar rats. Identification of 34 genes and analysis of their expression in injured tissue revealed several clusters of unique gene regulation patterns, including the up-regulation at 1 wk of cytochrome c oxidase regulating electron transfer and energy metabolism, presumably occurring at the site of inflammation; up-regulation at 2.5 wks of pro-alpha-2 type I collagen involving the formation of a connective tissue structure; and up-regulation at 1 and 2 wks and down-regulation at 2.5 and 4 wks of ubiquitin carboxyl-terminal hydrolase l3 involving cell cycle, DNA repair, and stress response. The differential expression of genes may be associated with the processes of inflammation, wound contraction, and formation of a connective tissue structure.

  15. TLR Stimulation of Bone Marrow Lymphoid Precursors from Childhood Acute Leukemia Modifies Their Differentiation Potentials

    Directory of Open Access Journals (Sweden)

    Elisa Dorantes-Acosta

    2013-01-01

    Full Text Available Acute leukemias are the most frequent childhood malignancies worldwide and remain a leading cause of morbidity and mortality of relapsed patients. While remarkable progress has been made in characterizing genetic aberrations that may control these hematological disorders, it has also become clear that abnormalities in the bone marrow microenvironment might hit precursor cells and contribute to disease. However, responses of leukemic precursor cells to inflammatory conditions or microbial components upon infection are yet unexplored. Our previous work and increasing evidence indicate that Toll-like receptors (TLRs in the earliest stages of lymphoid development in mice and humans provide an important mechanism for producing cells of the innate immune system. Using highly controlled co-culture systems, we now show that lymphoid precursors from leukemic bone marrow express TLRs and respond to their ligation by changing cell differentiation patterns. While no apparent contribution of TLR signals to tumor progression was recorded for any of the investigated diseases, the replenishment of innate cells was consistently promoted upon in vitro TLR exposure, suggesting that early recognition of pathogen-associated molecules might be implicated in the regulation of hematopoietic cell fate decisions in childhood acute leukemia.

  16. Isolation, expansion and differentiation of mesenchymal stromal cells from rabbits' bone marrow

    Directory of Open Access Journals (Sweden)

    Renato B. Eleotério

    2016-05-01

    Full Text Available Abstract: Tissue engineering has been a fundamental technique in the regenerative medicine field, once it permits to build tri-dimensional tissue constructs associating undifferentiated mesenchymal cells (or mesenchymal stromal cells - MSCs and scaffolds in vitro. Therefore, many studies have been carried out using these cells from different animal species, and rabbits are often used as animal model for in vivo tissue repair studies. However, most of the information available about MSCs harvesting and characterization is about human and murine cells, which brings some doubts to researchers who desire to work with a rabbit model in tissue repair studies based on MSCs. In this context, this study aimed to add and improve the information available in the scientific literature providing a complete technique for isolation, expansion and differentiation of MSCs from rabbits. Bone marrow mononuclear cells (BMMCs from humerus and femur of rabbits were obtained and to evaluate their proliferation rate, three different culture media were tested, here referred as DMEM-P, DMEM´S and α-MEM. The BMMCs were also cultured in osteogenic, chondrogenic and adipogenic induction media to prove their multipotentiality. It was concluded that the techniques suggested in this study can provide a guideline to harvest and isolate MSCs from bone marrow of rabbits in enough amount to allow their expansion and, based on the laboratory experience where the study was developed, it is also suggested a culture media formulation to provide a better cell proliferation rate with multipotentiality preservation.

  17. Bone marrow stromal cells as an inducer for cardiomyocyte differentiation from mouse embryonic stem cells.

    Science.gov (United States)

    Yue, Fengming; Johkura, Kohei; Tomotsune, Daihachiro; Shirasawa, Sakiko; Yokoyama, Tadayuki; Nagai, Mika; Sasaki, Katsunori

    2010-09-20

    Bone marrow stromal cells (BMSCs) secrete soluble factors and display varied cell-biological functions. To confirm the ability and efficiency of BMSCs to induce embryonic stem cells (ESCs) into cardiomyocytes, mouse embryoid bodies (EBs) were co-cultured with rat BMSCs. After about 10 days, areas of rhythmically contracting cells in more solid aggregates became evident with bundle-like structures formed along borders between EB outgrowth and BMSC layer. ESC-derived cardiomyocytes exhibited sarcomeric striations when stained with troponin I (Trop I), organized in separated bundles. Besides, the staining for connexin 43 was detected in cell-cell junctions, which demonstrated that ESC-derived cardiomyocytes were coupled by gap junction in culture. The related genes of cardiomyocytes were found in these beating and no-beating EBs co-cultured with BMSCs. In addition, an improved efficiency of cardiomyocyte differentiation from ESC-BMSC co-culture was found in the serum-free medium: 5-fold up-regulation in the number of beating area compared with the serum medium. Effective cardiac differentiation was also recognized in transfer filter assay and in condition medium obtained from BMSC culture. A clear increase in the expression of cardiac genes and TropI protein confirmed further cardiac differentiation by BMP4 and Retinoic Acid (RA) treatment. These results demonstrate that BMSCs can induce cardiomyocyte differentiation from ESCs through soluble factors and enhance it with BMP4 or RA treatment. Serum-free ESC-BMSC co-culture represents a defined in vitro model for identifying the cardiomyocyte-inducing activity from BMSCs and, in addition, a straightforward experimental system for assessing clinical applications. Copyright © 2010 Elsevier GmbH. All rights reserved.

  18. Intrinsic Sex-Linked Variations in Osteogenic and Adipogenic Differentiation Potential of Bone Marrow Multipotent Stromal Cells.

    Science.gov (United States)

    Bragdon, Beth; Burns, Robert; Baker, Amelia H; Belkina, Anna C; Morgan, Elise F; Denis, Gerald V; Gerstenfeld, Louis C; Schlezinger, Jennifer J

    2015-02-01

    Bone formation and aging are sexually dimorphic. Yet, definition of the intrinsic molecular differences between male and female multipotent mesenchymal stromal cells (MSCs) in bone is lacking. This study assessed sex-linked differences in MSC differentiation in 3-, 6-, and 9-month-old C57BL/6J mice. Analysis of tibiae showed that female mice had lower bone volume fraction and higher adipocyte content in the bone marrow compared to age-matched males. While both males and females lost bone mass in early aging, the rate of loss was higher in males. Similar expression of bone- and adipocyte-related genes was seen in males and females at 3 and 9 months, while at 6 months, females exhibited a twofold greater expression of these genes. Under osteogenic culture conditions, bone marrow MSCs from female 3- and 6-month-old mice expressed similar levels of bone-related genes, but significantly greater levels of adipocyte-related genes, than male MSCs. Female MSCs also responded to rosiglitazone-induced suppression of osteogenesis at a 5-fold lower (10 nM) concentration than male MSCs. Female MSCs grown in estrogen-stripped medium showed similar responses to rosiglitazone as MSCs grown in serum containing estrogen. MSCs from female mice that had undergone ovariectomy before sexual maturity also were sensitive to rosiglitazone-induced effects on osteogenesis. These results suggest that female MSCs are more sensitive to modulation of differentiation by PPARγ and that these differences are intrinsic to the sex of the animal from which the MSCs came. These results also may explain the sensitivity of women to the deleterious effects of rosiglitazone on bone. © 2014 Wiley Periodicals, Inc.

  19. VSTM-v1, a potential myeloid differentiation antigen that is downregulated in bone marrow cells from myeloid leukemia patients

    OpenAIRE

    Xie, Min; Li, Ting; Li, Ning; Li, Jinlan; Yao, Qiumei; Han, Wenling; Ruan, Guorui

    2015-01-01

    Leukocyte differentiation antigens often represent important markers for the diagnosis, classification, prognosis, and therapeutic targeting of myeloid leukemia. Herein, we report a potential leukocyte differentiation antigen gene VSTM1 (V-set and transmembrane domain-containing 1) that was downregulated in bone marrow cells from leukemia patients and exhibited a higher degree of promoter methylation. The expression level of its predominant encoded product, VSTM1-v1, was positively correlated...

  20. Omega 3 fatty acids reduce myeloid progenitor cell frequency in the bone marrow of mice and promote progenitor cell differentiation

    Directory of Open Access Journals (Sweden)

    Sollars Vincent E

    2009-03-01

    Full Text Available Abstract Background Omega 3 fatty acids have been found to inhibit proliferation, induce apoptosis, and promote differentiation in various cell types. The processes of cell survival, expansion, and differentiation are of key importance in the regulation of hematopoiesis. We investigated the role of omega 3 fatty acids in controlling the frequency of various myeloid progenitor cells in the bone marrow of mice. Increased progenitor cell frequency and blocked differentiation are characteristics of hematopoietic disorders of the myeloid lineage, such as myeloproliferative diseases and myeloid leukemias. Results We found that increasing the proportion of omega 3 fatty acids relative to the proportion of omega 6 fatty acids in the diet caused increased differentiation and reduced the frequency of myeloid progenitor cells in the bone marrow of mice. Furthermore, this had no adverse effect on peripheral white blood cell counts. Conclusion Our results indicate that omega 3 fatty acids impact hematopoietic differentiation by reducing myeloid progenitor cell frequency in the bone marrow and promoting progenitor cell differentiation. Further exploration of this discovery could lead to the use of omega 3 fatty acids as a therapeutic option for patients that have various disorders of hematopoiesis.

  1. Development of a rapid culture method to induce adipocyte differentiation of human bone marrow-derived mesenchymal stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Ninomiya, Yuichi [Translational Research Center, Saitama International Medical, Saitama Medical University, 1397-1 Yamane, Hidaka, Saitama 350-1298 (Japan); Sugahara-Yamashita, Yzumi; Nakachi, Yutaka; Tokuzawa, Yoshimi; Okazaki, Yasushi [Division of Functional Genomics and Systems Medicine, Research Center for Genomic Medicine, Saitama Medical University, Saitama 350-1241 (Japan); Nishiyama, Masahiko, E-mail: yamacho@saitama-med.ac.jp [Translational Research Center, Saitama International Medical, Saitama Medical University, 1397-1 Yamane, Hidaka, Saitama 350-1298 (Japan)

    2010-04-02

    Human mesenchymal stem cells (hMSCs) derived from bone marrow are multipotent stem cells that can regenerate mesenchymal tissues such as adipose, bone or muscle. It is thought that hMSCs can be utilized as a cell resource for tissue engineering and as human models to study cell differentiation mechanisms, such as adipogenesis, osteoblastogenesis and so on. Since it takes 2-3 weeks for hMSCs to differentiate into adipocytes using conventional culture methods, the development of methods to induce faster differentiation into adipocytes is required. In this study we optimized the culture conditions for adipocyte induction to achieve a shorter cultivation time for the induction of adipocyte differentiation in bone marrow-derived hMSCs. Briefly, we used a cocktail of dexamethasone, insulin, methylisobutylxanthine (DIM) plus a peroxisome proliferator-activated receptor {gamma} agonist, rosiglitazone (DIMRo) as a new adipogenic differentiation medium. We successfully shortened the period of cultivation to 7-8 days from 2-3 weeks. We also found that rosiglitazone alone was unable to induce adipocyte differentiation from hMSCs in vitro. However, rosiglitazone appears to enhance hMSC adipogenesis in the presence of other hormones and/or compounds, such as DIM. Furthermore, the inhibitory activity of TGF-{beta}1 on adipogenesis could be investigated using DIMRo-treated hMSCs. We conclude that our rapid new culture method is very useful in measuring the effect of molecules that affect adipogenesis in hMSCs.

  2. Capacitively-coupled differential position detection in the development of a high-sensitivity torsion balance

    Science.gov (United States)

    Rackson, Charles; Watt, Alex; Kim, Woo-Joong; Seattle University Team

    2015-03-01

    We report on the development of a high-sensitivity torsion balance using a capacitively-coupled Wheatstone Bridge. The torsion balance will be employed to measure the Casimir Force, with a particular emphasis on the surface patch effects that are ubiquitous on metallic surfaces. We will show that these effects also play a significant role in another class of experiments involving quantum-point contacts between two metal wires.

  3. Investigation of gene expressions in differentiated cell derived bone marrow stem cells during bone morphogenetic protein-4 treatments with Fourier transform infrared spectroscopy

    Science.gov (United States)

    Zafari, Jaber; Jouni, Fatemeh Javani; Ahmadvand, Ali; Abdolmaleki, Parviz; Soodi, Malihe; Zendehdel, Rezvan

    2017-02-01

    A model was set up to predict the differentiation patterns based on the data extracted from FTIR spectroscopy. For this reason, bone marrow stem cells (BMSCs) were differentiated to primordial germ cells (PGCs). Changes in cellular macromolecules in the time of 0, 24, 48, 72, and 96 h of differentiation, as different steps of the differentiation procedure were investigated by using FTIR spectroscopy. Also, the expression of pluripotency (Oct-4, Nanog and c-Myc) and specific genes (Mvh, Stella and Fragilis) were investigated by real-time PCR. However, the expression of genes in five steps of differentiation was predicted by FTIR spectroscopy. FTIR spectra showed changes in the template of band intensities at different differentiation steps. There are increasing changes in the stepwise differentiation procedure for the ratio area of CH2, which is symmetric to CH2 asymmetric stretching. An ensemble of expert methods, including regression tree (RT), boosting algorithm (BA), and generalized regression neural network (GRNN), was the best method to predict the gene expression by FTIR spectroscopy. In conclusion, the model was able to distinguish the pattern of different steps from cell differentiation by using some useful features extracted from FTIR spectra.

  4. Influence of bone marrow-derived mesenchymal stem cells pre-implantation differentiation approach on periodontal regeneration in vivo.

    NARCIS (Netherlands)

    Cai, X; Yang, F.; Yan, X.; Yang, W; Yu, N.; Oortgiesen, D.A.; Wang, Y.; Jansen, J.A.; Walboomers, X.F.

    2015-01-01

    AIM: The implantation of bone marrow-derived mesenchymal stem cells (MSCs) has previously been shown successful to achieve periodontal regeneration. However, the preferred pre-implantation differentiation strategy (e.g. maintenance of stemness, osteogenic or chondrogenic induction) to obtain optimal

  5. Chitosan/β-1,3-glucan/hydroxyapatite bone scaffold enhances osteogenic differentiation through TNF-α-mediated mechanism.

    Science.gov (United States)

    Przekora, Agata; Ginalska, Grazyna

    2017-04-01

    The role of TNF-α in bone healing process is still unclear and controversial. Although it is commonly believed that TNF-α inhibits osteogenic differentiation, there are few reports that identified a crucial role of TNF-α in enhancing bone regeneration process. The aim of this study was to prove that novel chitosan/β-1,3-glucan/HA scaffold (chit/glu/HA) may promote osteogenic differentiation via TNF-α-mediated mechanism and an autocrine stimulation of osteoblasts. It was demonstrated that normal human fetal osteoblasts (hFOB 1.19) maintained in conditioned medium containing increased level of TNF-α and harvested from hFOB 1.19 cells cultured on the chit/glu/HA scaffold (CM-chit/glu/HA) were in more advanced phase of osteogenic differentiation compared to the osteoblasts cultured in non-conditioned osteogenic medium and conditioned medium harvested from hFOB 1.19 cells cultured on the polystyrene plate. Cells cultured in CM-chit/glu/HA produced significantly more Col I protein, revealed 2-fold higher bALP activity, deposited 3-fold more calcium phosphate, and formed mineralized nodules. Thus, it was demonstrated that novel chit/glu/HA scaffold is promising material for bone regeneration applications to stimulate accelerated new bone formation as it enhances osteogenic differentiation via increasing TNF-α production by osteoblasts. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Differential Intracochlear Sound Pressure Measurements in Human Temporal Bones with an Off-the-Shelf Sensor

    Directory of Open Access Journals (Sweden)

    Martin Grossöhmichen

    2016-01-01

    Full Text Available The standard method to determine the output level of acoustic and mechanical stimulation to the inner ear is measurement of vibration response of the stapes in human cadaveric temporal bones (TBs by laser Doppler vibrometry. However, this method is reliable only if the intact ossicular chain is stimulated. For other stimulation modes an alternative method is needed. The differential intracochlear sound pressure between scala vestibuli (SV and scala tympani (ST is assumed to correlate with excitation. Using a custom-made pressure sensor it has been successfully measured and used to determine the output level of acoustic and mechanical stimulation. To make this method generally accessible, an off-the-shelf pressure sensor (Samba Preclin 420 LP, Samba Sensors was tested here for intracochlear sound pressure measurements. During acoustic stimulation, intracochlear sound pressures were simultaneously measurable in SV and ST between 0.1 and 8 kHz with sufficient signal-to-noise ratios with this sensor. The pressure differences were comparable to results obtained with custom-made sensors. Our results demonstrated that the pressure sensor Samba Preclin 420 LP is usable for measurements of intracochlear sound pressures in SV and ST and for the determination of differential intracochlear sound pressures.

  7. Differential Intracochlear Sound Pressure Measurements in Human Temporal Bones with an Off-the-Shelf Sensor

    Science.gov (United States)

    Salcher, Rolf; Püschel, Klaus; Lenarz, Thomas; Maier, Hannes

    2016-01-01

    The standard method to determine the output level of acoustic and mechanical stimulation to the inner ear is measurement of vibration response of the stapes in human cadaveric temporal bones (TBs) by laser Doppler vibrometry. However, this method is reliable only if the intact ossicular chain is stimulated. For other stimulation modes an alternative method is needed. The differential intracochlear sound pressure between scala vestibuli (SV) and scala tympani (ST) is assumed to correlate with excitation. Using a custom-made pressure sensor it has been successfully measured and used to determine the output level of acoustic and mechanical stimulation. To make this method generally accessible, an off-the-shelf pressure sensor (Samba Preclin 420 LP, Samba Sensors) was tested here for intracochlear sound pressure measurements. During acoustic stimulation, intracochlear sound pressures were simultaneously measurable in SV and ST between 0.1 and 8 kHz with sufficient signal-to-noise ratios with this sensor. The pressure differences were comparable to results obtained with custom-made sensors. Our results demonstrated that the pressure sensor Samba Preclin 420 LP is usable for measurements of intracochlear sound pressures in SV and ST and for the determination of differential intracochlear sound pressures. PMID:27610377

  8. Gene expression patterns related to osteogenic differentiation of bone marrow-derived mesenchymal stem cells during ex vivo expansion.

    Science.gov (United States)

    Granchi, Donatella; Ochoa, Gorka; Leonardi, Elisa; Devescovi, Valentina; Baglìo, Serena Rubina; Osaba, Lourdes; Baldini, Nicola; Ciapetti, Gabriela

    2010-06-01

    Bone marrow is commonly used as a source of adult multipotent mesenchymal stem cells (MSCs), defined for their ability to differentiate in vitro into multiple lineages. The ex vivo-expanded MSCs are currently being evaluated as a strategy for the restoration of function in damaged skeletal tissue, both in cell therapy and tissue engineering applications. The aim of this study was to define gene expression patterns underlying the differentiation of MSCs into mature osteoblasts during the expansion in vitro, and to explore a variety of cell functions that cannot be easily evaluated using morphological, cytochemical, and biochemical assays. Cell cultures were obtained from bone marrow samples of six individuals undergoing total hip replacement, and a large-scale transcriptome analysis, using Affymetrix HG-U133A Plus 2.0 array (Affymetrix((R)), Santa Clara, CA), was performed at the occurrence of specific events, including the appearance of MSC surface markers, formation of colonies, and deposition of mineral nodules. We focused our attention on 213 differentially upregulated genes, some belonging to well-known pathways and some having one or more Gene Ontology annotations related to bone cell biology, including angiogenesis, bone-related genes, cell communication, development and morphogenesis, transforming growth factor-beta signaling, and Wnt signaling. Twenty-nine genes, whose role in bone cell pathophysiology has not been described yet, were found. In conclusion, gene expression patterns that characterize the early, intermediate, and late phases of the osteogenic differentiation process of ex vivo-expanded MSCs were defined. These signatures represent a useful tool to monitor the osteogenic process, and to analyze a broad spectrum of functions of MSCs cultured on scaffolds, especially when the constructs are conceived for releasing growth factors or other signals to promote bone regeneration.

  9. Subpopulations of Bone Marrow Mesenchymal Stem Cells Exhibit Differential Effects in Delaying Retinal Degeneration.

    Science.gov (United States)

    Li, P; Tian, H; Li, Z; Wang, L; Gao, F; Ou, Q; Lian, C; Li, W; Jin, C; Zhang, J; Xu, J-Y; Wang, J; Zhang, J; Wang, F; Lu, L; Xu, G-T

    2016-01-01

    Bone marrow mesenchymal stem cells (BMSCs) have a therapeutic role in retinal degeneration (RD). However, heterogeneity of BMSCs may be associated with differential therapeutic effects in RD. In order to confirm this hypothesis, two subsets of rat BMSCs, termed rBMSC1 and rBMSC2, were obtained, characterized and functionally evaluated in the treatment of RD of Royal College of Surgeons (RCS) rats. Both subpopulations expressed mesenchymal stem cells (MSC) markers CD29 and CD90, but were negative for hemacyte antigen CD11b and CD45 expression. In comparison with rBMSC2, rBMSC1 showed higher rate of proliferation, stronger colony formation, and increased adipogenic potential, whereas rBMSC2 exhibited higher osteogenic potential. Microarray analysis showed differential gene expression patterns between rBMSC1 and rBMSC2, including functions related to proliferation, differentiation, immunoregulation, stem cell maintenance and division, survival and antiapoptosis. After subretinal transplantation in RCS rats, rBMSC1 showed stronger rescue effect than rBMSC2, including increased b-wave amplitude, restored retinal nuclear layer thickness, and decreased number of apoptotic photoreceptors, whereas the rescue function of rBMSC2 was essentially not better than the control. Histological analysis also demonstrated that rBMSC1 possessed a higher survival rate than rBMSC2 in subretinal space. In addition, treatment of basic fibroblast growth factor, an accompanying event in subretinal injection, triggered more robust increase in secretion of growth factors by rBMSC1 as compared to rBMSC2. Taken together, these results have suggested that the different therapeutic functions of BMSC subpopulations are attributed to their distinct survival capabilities and paracrine functions. The underlying mechanisms responsible for the different functions of BMSC subpopulation may lead to a new strategy for the treatment of RD.

  10. Myogenic Differentiation Potential of Mesenchymal Stem Cells Derived from Fetal Bovine Bone Marrow.

    Science.gov (United States)

    Okamura, Lucas Hidenori; Cordero, Paloma; Palomino, Jaime; Parraguez, Victor Hugo; Torres, Cristian Gabriel; Peralta, Oscar Alejandro

    2018-01-02

    The myogenic potential of bovine fetal MSC (bfMSC) derived from bone marrow (BM) remains unknown; despite its potential application for the study of myogenesis and its implications for livestock production. In the present study, three protocols for in vitro myogenic differentiation of bfMSC based on the use of DNA methyltransferase inhibitor 5-Aza-2'-deoxycytidine (5-Aza), myoblast-secreted factor Galectin-1 (Gal-1), and myoblast culture medium SkGM-2 BulletKit were used. Plastic-adherent bfMSC were isolated from fetal BM collected from abattoir-derived fetuses. Post-thaw viability analyses detected 85.6% bfMSC negative for propidium iodine (PI). Levels of muscle regulatory factors (MRF) MYF5, MYF6, MYOD, and DES mRNA were higher (P < 0.05) in bfMSC cultured under 100 µM of 5-Aza compared to 1 and 10 µM. Treatment of bfMSC with 10 µM of 5-Aza resulted in down-regulation of MYOD mRNA (Days 7 to 21) and up-regulation of MYF6 (Day 7), MYF5, and DES mRNA (Day 21). Gal-1 and SkGM-2 BulletKit induced sequential down-regulation of early MRF (MYF5) and up-regulation of intermediate (MYOD) and late MRF (DES) mRNA. Moreover, DES and MYF5 were immunodetected in differentiated bfMSC. In conclusion, protocols evaluated in bfMSC induced progress into myogenic differentiation until certain extent evidenced by changes in MRF gene expression.

  11. Porous tantalum coatings prepared by vacuum plasma spraying enhance bmscs osteogenic differentiation and bone regeneration in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    Ze Tang

    Full Text Available Tantalum, as a potential metallic implant biomaterial, is attracting more and more attention because of its excellent anticorrosion and biocompatibility. However, its significantly high elastic modulus and large mechanical incompatibility with bone tissue make it unsuitable for load-bearing implants. In this study, porous tantalum coatings were first successfully fabricated on titanium substrates by vacuum plasma spraying (VPS, which would exert the excellent biocompatibility of tantalum and alleviate the elastic modulus of tantalum for bone tissue. We evaluated cytocompatibility and osteogenesis activity of the porous tantalum coatings using human bone marrow stromal cells (hBMSCs and its ability to repair rabbit femur bone defects. The morphology and actin cytoskeletons of hBMSCs were observed via electron microscopy and confocal, and the cell viability, proliferation and osteogenic differentiation potential of hBMSCs were examined quantitatively by PrestoBlue assay, Ki67 immunofluorescence assay, real-time PCR technology and ALP staining. For in vivo detection, the repaired femur were evaluated by histomorphology and double fluorescence labeling 3 months postoperation. Porous tantalum coating surfaces promoted hBMSCs adhesion, proliferation, osteogenesis activity and had better osseointegration and faster new bone formation rate than titanium coating control. Our observation suggested that the porous tantalum coatings had good biocompatibility and could enhance osseoinductivity in vitro and promote new bone formation in vivo. The porous tantalum coatings prepared by VPS is a promising strategy for bone regeneration.

  12. Neural differentiation potential of human bone marrow-derived mesenchymal stromal cells: misleading marker gene expression

    Directory of Open Access Journals (Sweden)

    Montzka Katrin

    2009-03-01

    Full Text Available Abstract Background In contrast to pluripotent embryonic stem cells, adult stem cells have been considered to be multipotent, being somewhat more restricted in their differentiation capacity and only giving rise to cell types related to their tissue of origin. Several studies, however, have reported that bone marrow-derived mesenchymal stromal cells (MSCs are capable of transdifferentiating to neural cell types, effectively crossing normal lineage restriction boundaries. Such reports have been based on the detection of neural-related proteins by the differentiated MSCs. In order to assess the potential of human adult MSCs to undergo true differentiation to a neural lineage and to determine the degree of homogeneity between donor samples, we have used RT-PCR and immunocytochemistry to investigate the basal expression of a range of neural related mRNAs and proteins in populations of non-differentiated MSCs obtained from 4 donors. Results The expression analysis revealed that several of the commonly used marker genes from other studies like nestin, Enolase2 and microtubule associated protein 1b (MAP1b are already expressed by undifferentiated human MSCs. Furthermore, mRNA for some of the neural-related transcription factors, e.g. Engrailed-1 and Nurr1 were also strongly expressed. However, several other neural-related mRNAs (e.g. DRD2, enolase2, NFL and MBP could be identified, but not in all donor samples. Similarly, synaptic vesicle-related mRNA, STX1A could only be detected in 2 of the 4 undifferentiated donor hMSC samples. More significantly, each donor sample revealed a unique expression pattern, demonstrating a significant variation of marker expression. Conclusion The present study highlights the existence of an inter-donor variability of expression of neural-related markers in human MSC samples that has not previously been described. This donor-related heterogeneity might influence the reproducibility of transdifferentiation protocols as

  13. White blood cell differential count of maturation stages in bone marrow smear using dual-stage convolutional neural networks.

    Directory of Open Access Journals (Sweden)

    Jin Woo Choi

    Full Text Available The white blood cell differential count of the bone marrow provides information concerning the distribution of immature and mature cells within maturation stages. The results of such examinations are important for the diagnosis of various diseases and for follow-up care after chemotherapy. However, manual, labor-intensive methods to determine the differential count lead to inter- and intra-variations among the results obtained by hematologists. Therefore, an automated system to conduct the white blood cell differential count is highly desirable, but several difficulties hinder progress. There are variations in the white blood cells of each maturation stage, small inter-class differences within each stage, and variations in images because of the different acquisition and staining processes. Moreover, a large number of classes need to be classified for bone marrow smear analysis, and the high density of touching cells in bone marrow smears renders difficult the segmentation of single cells, which is crucial to traditional image processing and machine learning. Few studies have attempted to discriminate bone marrow cells, and even these have either discriminated only a few classes or yielded insufficient performance. In this study, we propose an automated white blood cell differential counting system from bone marrow smear images using a dual-stage convolutional neural network (CNN. A total of 2,174 patch images were collected for training and testing. The dual-stage CNN classified images into 10 classes of the myeloid and erythroid maturation series, and achieved an accuracy of 97.06%, a precision of 97.13%, a recall of 97.06%, and an F-1 score of 97.1%. The proposed method not only showed high classification performance, but also successfully classified raw images without single cell segmentation and manual feature extraction by implementing CNN. Moreover, it demonstrated rotation and location invariance. These results highlight the promise of

  14. White blood cell differential count of maturation stages in bone marrow smear using dual-stage convolutional neural networks.

    Science.gov (United States)

    Choi, Jin Woo; Ku, Yunseo; Yoo, Byeong Wook; Kim, Jung-Ah; Lee, Dong Soon; Chai, Young Jun; Kong, Hyoun-Joong; Kim, Hee Chan

    2017-01-01

    The white blood cell differential count of the bone marrow provides information concerning the distribution of immature and mature cells within maturation stages. The results of such examinations are important for the diagnosis of various diseases and for follow-up care after chemotherapy. However, manual, labor-intensive methods to determine the differential count lead to inter- and intra-variations among the results obtained by hematologists. Therefore, an automated system to conduct the white blood cell differential count is highly desirable, but several difficulties hinder progress. There are variations in the white blood cells of each maturation stage, small inter-class differences within each stage, and variations in images because of the different acquisition and staining processes. Moreover, a large number of classes need to be classified for bone marrow smear analysis, and the high density of touching cells in bone marrow smears renders difficult the segmentation of single cells, which is crucial to traditional image processing and machine learning. Few studies have attempted to discriminate bone marrow cells, and even these have either discriminated only a few classes or yielded insufficient performance. In this study, we propose an automated white blood cell differential counting system from bone marrow smear images using a dual-stage convolutional neural network (CNN). A total of 2,174 patch images were collected for training and testing. The dual-stage CNN classified images into 10 classes of the myeloid and erythroid maturation series, and achieved an accuracy of 97.06%, a precision of 97.13%, a recall of 97.06%, and an F-1 score of 97.1%. The proposed method not only showed high classification performance, but also successfully classified raw images without single cell segmentation and manual feature extraction by implementing CNN. Moreover, it demonstrated rotation and location invariance. These results highlight the promise of the proposed method

  15. MicroRNA-34a inhibits osteoblast differentiation and in vivo bone formation of human stromal stem cells

    DEFF Research Database (Denmark)

    Chen, Li; Holmstrøm, Kim; Qiu, Weimin

    2014-01-01

    of miR-34a. siRNA-mediated reduction of JAG1 expression inhibited OB differentiation. Moreover, a number of known cell cycle regulator and cell proliferation proteins, such as cyclin D1, cyclin-dependent kinase 4 and 6 (CDK4 and CDK6), E2F transcription factor three, and cell division cycle 25 homolog......Osteoblast differentiation and bone formation (osteogenesis) are regulated by transcriptional and post-transcriptional mechanisms. Recently, microRNAs (miRNAs) were identified as novel key regulators of human stromal (skeletal, mesenchymal) stem cells (hMSC) differentiation. Here, we identified mi...

  16. Platelet-Poor and Platelet-Rich Plasma Stimulate Bone Lineage Differentiation in Periodontal Ligament Stem Cells.

    Science.gov (United States)

    Martínez, Constanza E; González, Sergio A; Palma, Verónica; Smith, Patricio C

    2016-02-01

    Plasma-derived fractions have been used as an autologous source of growth factors; however, limited knowledge concerning their biologic effects has hampered their clinical application. In this study, the authors analyze the content and specific effect of both platelet-rich plasma (PRP) and platelet-poor plasma (PPP) on osteoblastic differentiation using primary cultures of human periodontal ligament stem cells (HPLSCs). The authors evaluated the growth factor content of PRP and PPP using a proteome profiler array and enzyme-linked immunosorbent assay. HPLSCs were characterized by flow cytometry and differentiation assays. The effect of PRP and PPP on HPLSC bone differentiation was analyzed by quantifying calcium deposition after 14 and 21 days of treatment. Albeit at different concentrations, the two fractions had similar profiles of growth factors, the most representative being platelet-derived growth factor (PDGF) isoforms (PDGF-AA, -BB, and -AB), insulin-like growth factor binding protein (IGFBP)-2, and IGFBP-6. Both formulations exerted a comparable stimulus on osteoblastic differentiation even at low doses (2.5%), increasing calcium deposits in HPLSCs. PRP and PPP showed a similar protein profile and exerted comparable effects on bone differentiation. Further studies are needed to characterize and compare the effects of PPP and PRP on bone healing in vivo.

  17. Nonpulsed sinusoidal electromagnetic fields as a noninvasive strategy in bone repair: the effect on human mesenchymal stem cell osteogenic differentiation.

    Science.gov (United States)

    Ledda, Mario; D'Emilia, Enrico; Giuliani, Livio; Marchese, Rodolfo; Foletti, Alberto; Grimaldi, Settimio; Lisi, Antonella

    2015-02-01

    In vivo control of osteoblast differentiation is an important process needed to maintain the continuous supply of mature osteoblast cells for growth, repair, and remodeling of bones. The regulation of this process has also an important and significant impact on the clinical strategies and future applications of cell therapy. In this article, we studied the effect of nonpulsed sinusoidal electromagnetic field radiation tuned at calcium-ion cyclotron frequency of 50 Hz exposure treatment for bone differentiation of human mesenchymal stem cells (hMSCs) alone or in synergy with dexamethasone, their canonical chemical differentiation agent. Five days of continuous exposure to calcium-ion cyclotron resonance affect hMSC proliferation, morphology, and cytoskeletal actin reorganization. By quantitative real-time polymerase chain reaction, we also observed an increase of osteoblast differentiation marker expression such as Runx2, alkaline phosphatase (ALP), osteocalcin (OC), and osteopontin (OPN) together with the osteoprotegerin mRNA modulation. Moreover, in these cells, the increase of the protein expression of OPN and ALP was also demonstrated. These results demonstrate bone commitment of hMSCs through a noninvasive and biocompatible differentiating physical agent treatment and highlight possible applications in new regenerative medicine protocols.

  18. MicroRNA-9 promotes the neuronal differentiation of rat bone marrow mesenchymal stem cells by activating autophagy

    Directory of Open Access Journals (Sweden)

    Guang-yu Zhang

    2015-01-01

    Full Text Available MicroRNA-9 (miR-9 has been shown to promote the differentiation of bone marrow mesenchymal stem cells into neuronal cells, but the precise mechanism is unclear. Our previous study confirmed that increased autophagic activity improved the efficiency of neuronal differentiation in bone marrow mesenchymal stem cells. Accumulating evidence reveals that miRNAs adjust the autophagic pathways. This study used miR-9-1 lentiviral vector and miR-9-1 inhibitor to modulate the expression level of miR-9. Autophagic activity and neuronal differentiation were measured by the number of light chain-3 (LC3-positive dots, the ratio of LC3-II/LC3, and the expression levels of the neuronal markers enolase and microtubule-associated protein 2. Results showed that LC3-positive dots, the ratio of LC3-II/LC3, and expression of neuron specific enolase and microtubule-associated protein 2 increased in the miR-9 + group. The above results suggest that autophagic activity increased and bone marrow mesenchymal stem cells were prone to differentiate into neuronal cells when miR-9 was overexpressed, demonstrating that miR-9 can promote neuronal differentiation by increasing autophagic activity.

  19. [Glucocorticoid and Bone. The effect of glucocorticoid and PTH in osteoblast apoptosis and differentiation via interleukin 11 expression].

    Science.gov (United States)

    Endo, Itsuro

    2014-09-01

    Intermittent PTH administration stimulates bone formation and counteracts the inhibition of bone formation by glucocorticoid excess. We have previously demonstrated that PTH enhances interleukin (IL) -11 gene transcription by a rapid induction of delta-fosB expression and Smad1/5 phosphorylation. On the other hand, glucocorticoid can suppress osteoblast differentiation and enhance apoptosis of osteoblast cells via down-regulation of IL-11 expression. PTH could reverse glucocorticoid-induced these damage of osteoblast via stimulation of IL-11 expression. Our data also suggested that IL-11 mediates stimulatory and inhibitory signals of osteoblast differentiation by affecting Wnt signaling. These data demonstrates that PTH and glucocorticoid may regulate osteoblast differentiation and apoptosis via their effect on IL-11 expression.

  20. Increased microRNA-93-5p inhibits osteogenic differentiation by targeting bone morphogenetic protein-2.

    Directory of Open Access Journals (Sweden)

    Ying Zhang

    Full Text Available Trauma-induced osteonecrosis of the femoral head (TIONFH is a major complication of femoral neck fractures. Degeneration and necrosis of subchondral bone can cause collapse, which results in hip joint dysfunction in patients. The destruction of bone metabolism homeostasis is an important factor for osteonecrosis. MicroRNAs (miRNAs have an important role in regulating osteogenic differentiation, but the mechanisms underlying abnormal bone metabolism of TIONFH are poorly understood. In this study, we screened specific miRNAs in TIONFH by microarray and further explored the mechanism of osteogenic differentiation.Blood samples from patients with TIONFH and patients without necrosis after trauma were compared by microarray, and bone collapse of necrotic bone tissue was evaluated by micro-CT and immunohistochemistry. To confirm the relationship between miRNA and osteogenic differentiation, we conducted cell culture experiments. We found that many miRNAs were significantly different, including miR-93-5p; the increase in this miRNA was verified by Q-PCR. Comparison of the tissue samples showed that miR-93-5p expression increased, and alkaline phosphatase (ALP and osteopontin (OPN levels decreased, suggesting miR-93-5p may be involved in osteogenic differentiation. Further bioinformatics analysis indicated that miR-93-5p can target bone morphogenetic protein 2 (BMP-2. A luciferase gene reporter assay was performed to confirm these findings. By simulating and/or inhibiting miR-93-5p expression in human bone marrow mesenchymal stem cells, we confirmed that osteogenic differentiation-related indictors, including BMP-2, Osterix, Runt-related transcription factor, ALP and OPN, were decreased by miR-93-5p.Our study showed that increased miR-93-5p in TIONFH patients inhibited osteogenic differentiation, which may be associated with BMP-2 reduction. Therefore, miR-93-5p may be a potential target for prevention of TIONFH.

  1. Postural threat differentially affects the feedforward and feedback components of the vestibular-evoked balance response.

    Science.gov (United States)

    Osler, Callum J; Tersteeg, M C A; Reynolds, Raymond F; Loram, Ian D

    2013-10-01

    Circumstances may render the consequence of falling quite severe, thus maximising the motivation to control postural sway. This commonly occurs when exposed to height and may result from the interaction of many factors, including fear, arousal, sensory information and perception. Here, we examined human vestibular-evoked balance responses during exposure to a highly threatening postural context. Nine subjects stood with eyes closed on a narrow walkway elevated 3.85 m above ground level. This evoked an altered psycho-physiological state, demonstrated by a twofold increase in skin conductance. Balance responses were then evoked by galvanic vestibular stimulation. The sway response, which comprised a whole-body lean in the direction of the edge of the walkway, was significantly and substantially attenuated after ~800 ms. This demonstrates that a strong reason to modify the balance control strategy was created and subjects were highly motivated to minimise sway. Despite this, the initial response remained unchanged. This suggests little effect on the feedforward settings of the nervous system responsible for coupling pure vestibular input to functional motor output. The much stronger, later effect can be attributed to an integration of balance-relevant sensory feedback once the body was in motion. These results demonstrate that the feedforward and feedback components of a vestibular-evoked balance response are differently affected by postural threat. Although a fear of falling has previously been linked with instability and even falling itself, our findings suggest that this relationship is not attributable to changes in the feedforward vestibular control of balance. © 2013 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  2. Prostaglandin E2 acts via bone marrow macrophages to block PTH-stimulated osteoblast differentiation in vitro

    Science.gov (United States)

    Choudhary, Shilpa; Blackwell, Katherine; Voznesensky, Olga; Roy, Abhijit Deb; Pilbeam, Carol

    2014-01-01

    Intermittent PTH is the major anabolic therapy for osteoporosis while continuous PTH causes bone loss. PTH acts on the osteoblast (OB) lineage to regulate bone resorption and formation. PTH also induces cyclooxygenase-2 (COX-2), producing prostaglandin E2 (PGE2) that can act on both OBs and osteoclasts (OCs). Because intermittent PTH is more anabolic in Cox-2 knockout (KO) than wild type (WT) mice, we hypothesized COX-2 might contribute to the effects of continuous PTH by suppressing PTH-stimulated differentiation of mesenchymal stem cells into OBs. We compared effects of continuous PTH on bone marrow stromal cells (BMSCs) and primary OBs (POBs) from Cox-2 KO mice, mice with deletion of PGE2 receptors (Ptger4 and Ptger2 KO mice), and WT controls. PTH increased OB differentiation in BMSCs only in the absence of COX-2 expression or activity. In the absence of COX-2, PTH stimulated differentiation if added during the first week of culture. In Cox-2 KO BMSCs, PTH-stimulated differentiation was prevented by adding PGE2 to cultures. Co-culture of POBs with M-CSF-expanded bone marrow macrophages (BMMs) showed that the inhibition of PTH-stimulated OB differentiation required not only COX-2 or PGE2 but also BMMs. Sufficient PGE2 to mediate the inhibitory effect was made by either WT POBs or WT BMMs. The inhibitory effect mediated by COX-2/PGE2 was transferred by conditioned media from RANKL-treated BMMs and could be blocked by osteoprotegerin, which interferes with RANKL binding to its receptor on OC lineage cells. Deletion of Ptger4, but not Ptger2, in BMMs prevented the inhibition of PTH-stimulated OB differentiation. As expected, PGE2 also stimulated OB differentiation, but when given in combination with PTH, the stimulatory effects of both were abrogated. These data suggest that PGE2, acting via EP4R on BMMs committed to the OC lineage, stimulated secretion of a factor or factors that acted to suppress PTH-stimulated OB differentiation. This suppression of OB

  3. Utility of unenhanced fat-suppressed T1-weighted MRI in children with sickle cell disease - can it differentiate bone infarcts from acute osteomyelitis?

    Energy Technology Data Exchange (ETDEWEB)

    Delgado, Jorge; Bedoya, Maria A. [The Children' s Hospital of Philadelphia, Department of Radiology, Philadelphia, PA (United States); Green, Abby M. [The Children' s Hospital of Philadelphia, Division of Oncology, Philadelphia, PA (United States); Jaramillo, Diego; Ho-Fung, Victor [The Children' s Hospital of Philadelphia, Department of Radiology, Philadelphia, PA (United States); The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA (United States)

    2015-12-15

    Children with sickle cell disease (SCD) are at risk of bone infarcts and acute osteomyelitis. The clinical differentiation between a bone infarct and acute osteomyelitis is a diagnostic challenge. Unenhanced T1-W fat-saturated MR images have been proposed as a potential tool to differentiate bone infarcts from osteomyelitis. To evaluate the reliability of unenhanced T1-W fat-saturated MRI for differentiation between bone infarcts and acute osteomyelitis in children with SCD. We retrospectively reviewed the records of 31 children (20 boys, 11 girls; mean age 10.6 years, range 1.1-17.9 years) with SCD and acute bone pain who underwent MR imaging including unenhanced T1-W fat-saturated images from 2005 to 2010. Complete clinical charts were reviewed by a pediatric hematologist with training in infectious diseases to determine a clinical standard to define the presence or absence of osteomyelitis. A pediatric radiologist reviewed all MR imaging and was blinded to clinical information. Based on the signal intensity in T1-W fat-saturated images, the children were further classified as positive for osteomyelitis (low bone marrow signal intensity) or positive for bone infarct (high bone marrow signal intensity). Based on the clinical standard, 5 children were classified as positive for osteomyelitis and 26 children as positive for bone infarct (negative for osteomyelitis). The bone marrow signal intensity on T1-W fat-saturated imaging was not significant for the differentiation between bone infarct and osteomyelitis (P = 0.56). None of the additional evaluated imaging parameters on unenhanced MRI proved reliable in differentiating these diagnoses. The bone marrow signal intensity on unenhanced T1-W fat-saturated MR images is not a reliable criterion to differentiate bone infarcts from osteomyelitis in children. (orig.)

  4. Osteoblast CFTR inactivation reduces differentiation and osteoprotegerin expression in a mouse model of cystic fibrosis-related bone disease.

    Directory of Open Access Journals (Sweden)

    Michael S Stalvey

    Full Text Available Low bone mass and increased fracture risk are recognized complications of cystic fibrosis (CF. CF-related bone disease (CFBD is characterized by uncoupled bone turnover--impaired osteoblastic bone formation and enhanced osteoclastic bone resorption. Intestinal malabsorption, vitamin D deficiency and inflammatory cytokines contribute to CFBD. However, epidemiological investigations and animal models also support a direct causal link between inactivation of skeletal cystic fibrosis transmembrane regulator (CFTR, the gene that when mutated causes CF, and CFBD. The objective of this study was to examine the direct actions of CFTR on bone. Expression analyses revealed that CFTR mRNA and protein were expressed in murine osteoblasts, but not in osteoclasts. Functional studies were then performed to investigate the direct actions of CFTR on osteoblasts using a CFTR knockout (Cftr-/- mouse model. In the murine calvarial organ culture assay, Cftr-/- calvariae displayed significantly less bone formation and osteoblast numbers than calvariae harvested from wildtype (Cftr+/+ littermates. CFTR inactivation also reduced alkaline phosphatase expression in cultured murine calvarial osteoblasts. Although CFTR was not expressed in murine osteoclasts, significantly more osteoclasts formed in Cftr-/- compared to Cftr+/+ bone marrow cultures. Indirect regulation of osteoclastogenesis by the osteoblast through RANK/RANKL/OPG signaling was next examined. Although no difference in receptor activator of NF-κB ligand (Rankl mRNA was detected, significantly less osteoprotegerin (Opg was expressed in Cftr-/- compared to Cftr+/+ osteoblasts. Together, the Rankl:Opg ratio was significantly higher in Cftr-/- murine calvarial osteoblasts contributing to a higher osteoclastogenesis potential. The combined findings of reduced osteoblast differentiation and lower Opg expression suggested a possible defect in canonical Wnt signaling. In fact, Wnt3a and PTH-stimulated canonical Wnt

  5. Clinical features of bone metastasis for differentiated thyroid carcinoma: A study of 21 patients from a Tunisian center

    Directory of Open Access Journals (Sweden)

    Faouzi Kallel

    2014-01-01

    Full Text Available Introduction: The differentiated thyroid cancers have a good prognosis unless the presence of metastasis. These distant metastases, especially in bone, are a major cause of impaired quality of life and death requiring intensive management. The aim of our work was to study the patients′ data, the disease characteristics and to analyze the therapeutic management of these patients. Results: This study concerned a cohort of 21 patients treated for differentiated thyroid cancer during the period from 1995 to 2011. Eighteen of our patients were aged over 45 years. A majority of them had follicular carcinoma. Bone metastases were often multiple and located at the axial skeleton. They were associated with other types of metastases, especially lung metastasis. A majority of patients received 131I treatment, following surgery or external beam radiotherapy for a palliative purpose. Overall survival was 65% at 5 years and 49% at 10 years. A long-term survival was achieved in 10% of the patients benefiting from a multidisciplinary care adapted to each case. Conclusion: Bone metastases often have a pejorative turning in the natural history of differentiated thyroid cancers. The right selection of individuals with better prognosis, for whom more aggressive curative treatment was indicated, requires a better understanding of the features of bone involvement.

  6. A well-balanced diet combined or not with exercise induces fat mass loss without any decrease of bone mass despite bone micro-architecture alterations in obese rat.

    Science.gov (United States)

    Gerbaix, Maude; Metz, Lore; Mac-Way, Fabrice; Lavet, Cédric; Guillet, Christelle; Walrand, Stéphane; Masgrau, Aurélie; Vico, Laurence; Courteix, Daniel

    2013-04-01

    The association of a well-balanced diet with exercise is a key strategy to treat obesity. However, weight loss is linked to an accelerated bone loss. Furthermore, exercise is known to induce beneficial effects on bone. We investigated the impact of a well-balanced isoenergetic reducing diet (WBR) and exercise on bone tissue in obese rats. Sixty male rats had previously been fed with a high fat/high sucrose diet (HF/HS) for 4months to induce obesity. Then, 4 regimens were initiated for 2months: HF/HS diet plus exercise (treadmill: 50min/day, 5days/week), WBR diet plus exercise, HF/HS diet plus inactivity and WBR diet plus inactivity. Body composition and total BMD were assessed using DXA and visceral fat mass was weighed. Tibia densitometry was assessed by Piximus. Bone histomorphometry was performed on the proximal metaphysis of tibia and on L2 vertebrae (L2). Trabecular micro-architectural parameters were measured on tibia and L2 by 3D microtomography. Plasma concentration of osteocalcin and CTX were measured. Both WBR diet and exercise had decreased global weight, global fat and visceral fat mass (pdiet alone failed to alter total and tibia bone mass and BMD. However, Tb.Th, bone volume density and degree of anisotropy of tibia were decreased by the WBR diet (pdiet had involved a significant lower MS/BS and BFR/BS in L2 (pdiet inducing weight and fat mass losses did not affected bone mass and BMD of obese rats despite alterations of their bone micro-architecture. The moderate intensity exercise performed had improved the tibia BMD of obese rats without any trabecular and cortical adaptation. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Multiple intracellular signaling pathways orchestrate adipocytic differentiation of human bone marrow stromal stem cells

    DEFF Research Database (Denmark)

    Ayesh Hafez Ali, Dalia; Abuelreich, Sarah; Alkeraishan, Nora

    2018-01-01

    Bone marrow adipocyte formation plays a role in bone homeostasis and whole body energy metabolism. However, the transcriptional landscape and signaling pathways associated with adipocyte lineage commitment and maturation are not fully delineated. Thus, we performed global gene expression profilin...

  8. Berberine promotes bone marrow-derived mesenchymal stem cells osteogenic differentiation via canonical Wnt/β-catenin signaling pathway.

    Science.gov (United States)

    Tao, Ke; Xiao, Deming; Weng, Jian; Xiong, Ao; Kang, Bin; Zeng, Hui

    2016-01-05

    Berberine (BBR) has recently been reported to be extensively used for musculoskeletal disorders such as osteoporosis through enhancing osteogenic differentiation, inhibiting osteoclastogenesis and bone resorption and repressing adipogenesis. Although canonical Wnt signaling plays a crucial role in suppressing bone marrow-derived mesenchymal stem cells (MSCs) commitment to the chondrogenic and adipogenic lineage and enhancing osteogenic differentiation, no previous reports have shown an association between BBR-induced osteogenesis and Wnt/β-catenin signaling pathway. In this study, we aimed to investigate the stimulatory effect and the mechanism of BBR on osteogenic differentiation of human bone marrow-derived MSCs. MSCs were isolated from bone marrow specimens and treated with different concentration of BBR. Cell viability was measured by the WST-8 assay. Effects of BBR on osteogenic differentiation of MSCs were assessed by von Kossa staining, ALP staining and ALP activity. Osteogenic specific genes, chondrogenic and adipogenic related marker genes were determined by quantitative real-time polymerase chain reaction analysis. Western blot and Immunofluorescence staining were performed to analyze OCN and OPN, and β-catenin expression in the presence or absence of BBR combined with DKK-1 or β-catenin siRNA transfection. Increasing concentration of BBR (3, 10 and 30 μM) promoted osteogenic differentiation and osteogenic genes expression after incubation for various days compared with DMSO group, whereas expression levels of chondrogenic and adipogenic related marker genes were dramatically suppressed. After treated with 10μM BBR for 7 days, β-catenin, OPN and OCN expression were significantly induced, which could be effectively suppressed by the addition of DKK-1 or β-catenin siRNA β-catenin. Interestingly, the expression level of Runx2 gene was also decreased by inhibiting the transduction of Wnt/β-catenin signaling. These findings suggest that BBR can

  9. Differentiation of malignant and degenerative benign bone disease using Tc-99m Citrate and Tc-99m MDP scintigraphy

    International Nuclear Information System (INIS)

    Jin, J.; Guo, R.; Li, S.-J.; Ren, Y.; Zhang, C.; Zhang, X.

    2007-01-01

    Full text: For the evaluation of bone metastases in patients (pts) with cancer, 99mTcMDP bone scintigraphy is an important tool, but some limitations exist. One of these is the differential diagnosis of malignant and degenerative benign bone disease. The aim of this study was to differentiate them using 99mTcCitrate and 99mTcMDP scintigraphy. Methods: 39 pts (92 lesions) with known malignant or degenerative benign bone disease were studied. 23 pts had malignant bone disease (48 lesions, group 1), the other 16 pts had degenerative benign bone disease (44 lesions, group2), for which the results of 99mTcMDP scintigraphy were positive. In both groups, 99mTcCitrate scintigraphy was performed within a time interval of 2-7 days after 99mTcMDP scintigraphy (555∼740MBq. static, 3hr, planar or SPECT i m a g e s w h e n r e q u i r e d ) . The 99mTccitrate/99mTcMDP lesion-to-background radioisotope uptake ratio (RUR) was calculated for each lesion. Conventional techniques (histopathology, X-ray, CT, MRI and clinical follow up) were considered to be proof of the presence of bone metastases and degenerative benign bone disease. Results: Uptake of 99mTcMDP in the two groups is the same (1.96±0.25 vs. 1.87±0.21; t=1.178, P>0.20), while in 99mTcCitrate image, malignant lesions demonstrated a higher uptake of lesion activity than that of benign degenerative lesions (1.47±0.42 vs. 1.09±0.38; t=2.887, P<0.01). The mean 99mTccitrate/99mTcMDP RUR in the malignant group was significantly higher than the mean in the benign group (0.78±0.21 vs. 0.54±0.19; t=3.646, P<0.001). Conclusions: The preliminary results of the study confirm the usefulness and feasibility of 99mTcCitrate scintigraphy for differentiating malignant from benign degenerative lesions seen as areas of increased activity on 99mTcMDP bone scintigraphy. (author)

  10. Pomegranate Peel Extract Prevents Bone Loss in a Preclinical Model of Osteoporosis and Stimulates Osteoblastic Differentiation in Vitro.

    Science.gov (United States)

    Spilmont, Mélanie; Léotoing, Laurent; Davicco, Marie-Jeanne; Lebecque, Patrice; Miot-Noirault, Elisabeth; Pilet, Paul; Rios, Laurent; Wittrant, Yohann; Coxam, Véronique

    2015-11-11

    The nutritional benefits of pomegranate have attracted great scientific interest. The pomegranate, including the pomegranate peel, has been used worldwide for many years as a fruit with medicinal activity, mostly antioxidant properties. Among chronic diseases, osteoporosis, which is associated with bone remodelling impairment leading to progressive bone loss, could eventually benefit from antioxidant compounds because of the involvement of oxidative stress in the pathogenesis of osteopenia. In this study, with in vivo and ex vivo experiments, we investigated whether the consumption of pomegranate peel extract (PGPE) could limit the process of osteopenia. We demonstrated that in ovariectomized (OVX) C57BL/6J mice, PGPE consumption was able to significantly prevent the decrease in bone mineral density (-31.9%; p < 0.001 vs. OVX mice) and bone microarchitecture impairment. Moreover, the exposure of RAW264.7 cells to serum harvested from mice that had been given a PGPE-enriched diet elicited reduced osteoclast differentiation and bone resorption, as shown by the inhibition of the major osteoclast markers. In addition, PGPE appeared to substantially stimulate osteoblastic MC3T3-E1 alkaline phosphatase (ALP) activity at day 7, mineralization at day 21 and the transcription level of osteogenic markers. PGPE may be effective in preventing the bone loss associated with ovariectomy in mice, and offers a promising alternative for the nutritional management of this disease.

  11. Pomegranate Peel Extract Prevents Bone Loss in a Preclinical Model of Osteoporosis and Stimulates Osteoblastic Differentiation in Vitro

    Directory of Open Access Journals (Sweden)

    Mélanie Spilmont

    2015-11-01

    Full Text Available The nutritional benefits of pomegranate have attracted great scientific interest. The pomegranate, including the pomegranate peel, has been used worldwide for many years as a fruit with medicinal activity, mostly antioxidant properties. Among chronic diseases, osteoporosis, which is associated with bone remodelling impairment leading to progressive bone loss, could eventually benefit from antioxidant compounds because of the involvement of oxidative stress in the pathogenesis of osteopenia. In this study, with in vivo and ex vivo experiments, we investigated whether the consumption of pomegranate peel extract (PGPE could limit the process of osteopenia. We demonstrated that in ovariectomized (OVX C57BL/6J mice, PGPE consumption was able to significantly prevent the decrease in bone mineral density (−31.9%; p < 0.001 vs. OVX mice and bone microarchitecture impairment. Moreover, the exposure of RAW264.7 cells to serum harvested from mice that had been given a PGPE-enriched diet elicited reduced osteoclast differentiation and bone resorption, as shown by the inhibition of the major osteoclast markers. In addition, PGPE appeared to substantially stimulate osteoblastic MC3T3-E1 alkaline phosphatase (ALP activity at day 7, mineralization at day 21 and the transcription level of osteogenic markers. PGPE may be effective in preventing the bone loss associated with ovariectomy in mice, and offers a promising alternative for the nutritional management of this disease.

  12. Bioactive borate glass promotes the repair of radius segmental bone defects by enhancing the osteogenic differentiation of BMSCs.

    Science.gov (United States)

    Zhang, Jieyuan; Guan, Junjie; Zhang, Changqing; Wang, Hui; Huang, Wenhai; Guo, Shangchun; Niu, Xin; Xie, Zongping; Wang, Yang

    2015-11-20

    Bioactive borate glass (BG) has emerged as a promising alternative for bone regeneration due to its high osteoinductivity, osteoconductivity, compressive strength, and biocompatibility. However, the role of BG in large segmental bone repair is unclear and little is known about the underlying mechanism of BG's osteoinductivity. In this study, we demonstrated that BG possessed pro-osteogenic effects in an experimental model of critical-sized radius defects. Transplanting BG to radius defects resulted in better repair of bone defects as compared to widely used β-TCP. Histological and morphological analysis indicated that BG significantly enhanced new bone formation. Furthermore, the degradation rate of the BG was faster than that of β-TCP, which matched the higher bone regeneration rate. In addition, ions from BG enhanced cell viability, ALP activity, and osteogenic-related genes expression. Mechanistically, the critical genes Smad1/5 and Dlx5 in the BMP pathway and p-Smad1/5 proteins were significantly elevated after BG transplantation, and these effects could be blocked by the BMP/Smad specific inhibitor. Taken together, our findings suggest that BG could repair large segmental bone defects through activating the BMP/Smad pathway and osteogenic differentiation in BMSCs.

  13. The added value of SPECT/CT fusion imaging for differential diagnosis of bone metastases in patients with hepatocellular carcinoma

    International Nuclear Information System (INIS)

    Zhang Yiqiu; Shi Hongcheng; Gu Yushen; Chen Shuguang; Zhu Weimin; Cai Liang; Xiu Yan; Li Beilei

    2011-01-01

    In this paper,the value of differentiating metastases from benign of bone lesions in patients with hepatocellular carcinoma using SPECT/ CT fusion imaging is evaluated. From patients with hepatocellular carcinoma (HCC) confirmed by pathology underwent bone scintigraphy, 97 patients were selected to undergo SPECT/CT scanning. The bone scintigraphy and SPECT/CT fusion images were analyzed by two experienced nuclear medicine physicians together. Each patient was rated using a 3-point diagnostic confidence scale: metastasis, benign and uncertainty. The analyzed items were divided into two groups, i.e. certainty to diagnose (metastasis and benign) and uncertainty to diagnose. The percentage and its 95% confidence intervals of each group were calculated. The coincidence rate of bone metastases compared with the final diagnosis and its 95% confidence interval were calculated. The degree of certainty to diagnose on bone scintigraphy was 36.1% (35/97), its 95% confidence intervals range from 26.5% to 45.6%. The degree of uncertainty to diagnose on bone scintigraphy was 63.9% (62/97), its 95% confidence intervals range from 54.4% to 73.5%. The coincidence rate of bone metastases was 50.0% (24/48), its 95% confidence intervals range from 35.9% to 64.1%. The degree of certainty to diagnose on SPECT/CT fusion images was 81.4% (79/97), its 95% confidence intervals range from 73.7 % to 89.1%. The degree of uncertainty to diagnose on SPECT/CT fusion images was 18.6% (18/97), its 95% confidence intervals range from 10.9% to 26.3%. The coincidence rate of bone metastases was 95.8% (46/48), its 95% confidence intervals range from 90.1% to 100%. SPECT/CT fusion images provide more information than bone scintigraphy in differentiating metastases from benign lesions in patients with HCC, increase the degree of certainty to diagnose, especially increase the diagnostic accuracy in some false-negative cases diagnosed by bone scintigraphy. (authors)

  14. Differentiation of Wharton's jelly primitive stromal cells into insulin-producing cells in comparison with bone marrow mesenchymal stem cells.

    Science.gov (United States)

    Wu, Li-Fang; Wang, Ni-Na; Liu, Yuan-Sheng; Wei, Xing

    2009-10-01

    Primitive stromal cells can be isolated from umbilical cord Wharton's jelly (UC-PSCs). Umbilical cord can be easily obtained without causing pain to donors, and the procedure avoids ethical and technical issues. UC-PSCs are more primitive than mesenchymal stem cells (MSCs) isolated from some other tissue sources. In this study, UC-PSCs were induced to differentiate into insulin-producing cells, and compared with bone marrow-derived MSCs (BM-MSCs) for their pancreatic differentiation potential. UC-PSCs showed significantly higher proliferation than BM-MSCs. During pancreatic induction, UC-PSCs formed larger islet-like cell clusters than BM-MSCs. Immunocytochemical analysis showed that higher expression of the pancreatic-specific transcription factor PDX-1 was detected in differentiated UC-PSCs than in differentiated BM-MSCs. Flow cytometry analysis demonstrated that the percentage of differentiated UC-PSCs expressing pancreatic-specific marker C-peptide was 72% higher than differentiated BM-MSCs. Radioimmunoassay revealed that differentiated UC-PSCs secreted significantly more insulin than differentiated BM-MSCs. These results demonstrated that UC-PSCs had higher pancreatic differentiation potential than BM-MSCs. Therefore, UC-PSCs are more suitable for pancreatic tissue engineering in the treatment of type I diabetes than BM-MSCs.

  15. Brain metastasis from differentiated thyroid cancer in patients treated with radioiodine for bone and lung lesions

    International Nuclear Information System (INIS)

    Misaki, Takashi; Iwata, Masahiro; Kasagi, Kanji; Konishi, Junji

    2000-01-01

    Brain metastasis of differentiated thyroid cancer (DTC) often is detected during treatment of other remote lesions. We examined the prevalence, risk factors and treatment outcome of this disease encountered during nuclear medicine practice. Of the 167 patients with metastasis to lung or bone treated 1-14 times with radioactive iodine (RAI), 9 (5.4%) also had lesions in the brain. Five were males and 4 females, aged 49-84, out of the original population of 49 males and 118 females aged 10-84 (mean 54.7) years. Three of them underwent removal of their brain tumors, 5 received conventional external beam irradiation, and 2 had stereotactic radiosurgery with supervoltage X-ray. None of the brain lesions showed significant uptake of RAI despite demonstrable accumulation in most extracerebral lesions. Seven patients died 4-23 (mean 9.4) months after the discovery of cerebral metastasis, brain damage being the primary or at least a contributing cause. The 8th and 9th patients remained relatively well for more than 42 and 3 months, respectively, without any evidence of intracranial recurrence. Our results confirmed that the brain is a major site of secondary metastasis from DTC. No statistically significant demographic risk factor was detected. Any suspicious neurological symptoms in the course of RAI treatment warrant cerebral computed tomography. As for therapy, from out initial experience, radiosurgery seemed promising as an effective and less invasive alternative to surgical removal. (author)

  16. Fall-related self-efficacy, not balance and mobility performance, is related to accidental falls in chronic stroke survivors with low bone mineral density.

    Science.gov (United States)

    Pang, M Y C; Eng, J J

    2008-07-01

    Chronic stroke survivors with low hip bone density are particularly prone to fractures. This study shows that fear of falling is independently associated with falls in this population. Thus, fear of falling should not be overlooked in the prevention of fragility fractures in these patients. Chronic stroke survivors with low bone mineral density (BMD) are particularly prone to fragility fractures. The purpose of this study was to identify the determinants of balance, mobility and falls in this sub-group of stroke patients. Thirty-nine chronic stroke survivors with low hip BMD (T-score fall-related self-efficacy. Any falls in the past 12 months were also recorded. Multiple regression analysis was used to identify the determinants of balance and mobility performance, whereas logistic regression was used to identify the determinants of falls. Multiple regression analysis revealed that after adjusting for basic demographics, fall-related self-efficacy remained independently associated with balance/mobility performance (R2 = 0.494, P fall-related self-efficacy, but not balance and mobility performance, was a significant determinant of falls (odds ratio: 0.18, P = 0.04). Fall-related self-efficacy, but not mobility and balance performance, was the most important determinant of accidental falls. This psychological factor should not be overlooked in the prevention of fragility fractures among chronic stroke survivors with low hip BMD.

  17. Primary root protophloem differentiation requires balanced phosphatidylinositol-4,5-biphosphate levels and systemically affects root branching.

    Science.gov (United States)

    Rodriguez-Villalon, Antia; Gujas, Bojan; van Wijk, Ringo; Munnik, Teun; Hardtke, Christian S

    2015-04-15

    Protophloem is a specialized vascular tissue in growing plant organs, such as root meristems. In Arabidopsis mutants with impaired primary root protophloem differentiation, brevis radix (brx) and octopus (ops), meristematic activity and consequently overall root growth are strongly reduced. Second site mutation in the protophloem-specific presumed phosphoinositide 5-phosphatase cotyledon vascular pattern 2 (CVP2), but not in its homolog CVP2-like 1 (CVL1), partially rescues brx defects. Consistent with this finding, CVP2 hyperactivity in a wild-type background recreates a brx phenotype. Paradoxically, however, while cvp2 or cvl1 single mutants display no apparent root defects, the root phenotype of cvp2 cvl1 double mutants is similar to brx or ops, although, as expected, cvp2 cvl1 seedlings contain more phosphatidylinositol-4,5-biphosphate. Thus, tightly balanced phosphatidylinositol-4,5-biphosphate levels appear essential for proper protophloem differentiation. Genetically, OPS acts downstream of phosphatidylinositol-4,5-biphosphate levels, as cvp2 mutation cannot rescue ops defects, whereas increased OPS dose rescues cvp2 cvl1 defects. Finally, all three mutants display higher density and accelerated emergence of lateral roots, which correlates with increased auxin response in the root differentiation zone. This phenotype is also created by application of peptides that suppress protophloem differentiation, clavata3/embryo surrounding region 26 (CLE26) and CLE45. Thus, local changes in the primary root protophloem systemically shape overall root system architecture. © 2015. Published by The Company of Biologists Ltd.

  18. Antiseptic solutions modulate the paracrine-like activity of bone chips: differential impact of chlorhexidine and sodium hypochlorite.

    Science.gov (United States)

    Sawada, Kosaku; Caballé-Serrano, Jordi; Bosshardt, Dieter D; Schaller, Benoit; Miron, Richard J; Buser, Daniel; Gruber, Reinhard

    2015-09-01

    Chemical decontamination increases the availability of bone grafts; however, it remains unclear whether antiseptic processing changes the biological activity of bone. Bone chips were incubated with four different antiseptic solutions including (1) povidone-iodine (0.5%), (2) chlorhexidine diguluconate (0.2%), (3) hydrogen peroxide (1%) and (4) sodium hypochlorite (0.25%). After 10 min. of incubation, changes in the capacity of the bone-conditioned medium (BCM) to modulate gene expression of gingival fibroblasts was investigated. Conditioned medium obtained from freshly prepared bone chips increased the expression of TGF-β target genes interleukin 11 (IL11), proteoglycan4 (PRG4), NADPH oxidase 4 (NOX4), and decreased the expression of adrenomedullin (ADM), and pentraxin 3 (PTX3) in gingival fibroblasts. Incubation of bone chips with 0.2% chlorhexidine, followed by vigorously washing resulted in a BCM with even higher expression of IL11, PRG4 and NOX4. These findings were also detected with a decrease in cell viability and an activation of apoptosis signalling. Chlorhexidine alone, at low concentrations, increased IL11, PRG4 and NOX4 expression, independent of the TGF-β receptor I kinase activity. In contrast, 0.25% sodium hypochlorite almost entirely abolished the activity of BCM, whereas the other two antiseptic solutions, 1% hydrogen peroxide and 0.5% povidone-iodine, had relatively no impact respectively. These in vitro findings demonstrate that incubation of bone chips with chlorhexidine differentially affects the activity of the respective BCM compared to the other antiseptic solutions. The data further suggest that the main effects are caused by chlorhexidine remaining in the BCM after repeated washing of the bone chips. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Differentiation of Adipose-derived Stem Cells into Schwann Cell Phenotype in Comparison with Bone Marrow Stem Cells

    Directory of Open Access Journals (Sweden)

    Zolikha Golipoor

    2010-06-01

    Full Text Available Objective(sBone marrow is the traditional source of human multipotent mesenchymal stem cells (MSCs, but adipose tissue appears to be an alternative and more readily available source. In this study, rat adipose-derived stem cells (ADSCs were induced to differentiate into Schwann-like cells and compared with rat bone marrow stem cells (BMSCs for their Schwann-like cells differentiation potential. Materials and MethodsBMSCs and ADSCs were characterized for expression of MSCs-specific markers, osteogenic and adipogenic differentiation. They were induced to differentiate into Schwann-like cells and analyzed for expression of the Schwann specific markers. The immunocytochemical differentiation markers were S-100 and real time quantitative Real-time polymerase chain reaction (RT-PCR markers were S100, P75 and glial fibrillary acidic protein (GFAP. 3-(4, 5-Dimethylthiazol- 2-yl-2, 5-diphenyltetrazolium bromide (MTT assay and Annexin V-Fluorescein isothiocyanate (FITC/ Propidium iodide (PI double labeling method were employed to detect early stage cell apoptosis.ResultsBMSCs and ADSCs showed similarities in expression of the MSC-specific markers, osteogenic and adipogenic differentiation. Both quantitative RT-PCR and immunocytochemical analysis demonstrated that BMSCs and ADSCs had equal expression of the Schwann-specific markers following Schwann-like cells differentiation. However, gene expression of P75 was higher in BMSCs compared with ADSCs. MTT assay and flow cytometry found that of the total BMSCs and ADSCs in the culture medium, 20% to 30% of the cells died, but the remaining cell population remained strongly attached to the substrate and differentiated.ConclusionComparative analysis showed that Schwann-like cell differentiation potential of ADSCs was slightly decreased in comparison with BMSCs. Therefore, BMSCs are more favorable choice than ADSCs for tissue engineering.

  20. Activation of GLP-1 Receptor Promotes Bone Marrow Stromal Cell Osteogenic Differentiation through β-Catenin

    OpenAIRE

    Jingru Meng; Xue Ma; Ning Wang; Min Jia; Long Bi; Yunying Wang; Mingkai Li; Huinan Zhang; Xiaoyan Xue; Zheng Hou; Ying Zhou; Zhibin Yu; Gonghao He; Xiaoxing Luo

    2016-01-01

    Summary Glucagon-like peptide 1 (GLP-1) plays an important role in regulating bone remodeling, and GLP-1 receptor agonist shows a positive relationship with osteoblast activity. However, GLP-1 receptor is not found in osteoblast, and the mechanism of GLP-1 receptor agonist on regulating bone remodeling is unclear. Here, we show that the GLP-1 receptor agonist exendin-4 (Ex-4) promoted bone formation and increased bone mass and quality in a rat unloading-induced bone loss model. These function...

  1. The ability of modified star excursion balance test to differentiate between women athletes with and without chronic ankle instability

    Directory of Open Access Journals (Sweden)

    Asma Razeghi

    2016-05-01

    Full Text Available The Star Excursion Balance Test (SEBT is one functional clinical test that widely used to assess dynamic balance in patients with ankle injuries. Since the ability of this test to detect impairments between athletes with and without chronic ankle instability(CAI is not clear, the aim of present study was to determine if the modified SEBT could detect reach deficits in patients with unilateral CAI. A convenience sample of thirty elite and sub elite women athletes were selected and assigned into two groups: CAI group (Mean ± SD: age: 25±3.5 years; height: 1.68±0.09 m; weight: 62.7±7.3kg, and healthy controls (Mean ± SD: age: 26±4.2 years; height: 1.69±0.05 m; weigh t: 62.7±7.3 kg.The dynamic balance test was obtained using modified SEBT from both limbs of each participant. The independent sample t-test was used for both between group and within group inter-limb comparisons. There was no significant difference in any directions of modified SEBT between two groups in both limbs. No significant interlimb differences were also observed within both groups. The modified SEBT may not enough sensitive to differentiate between athletes with and without CAI. Other factors such as ankle range of motion, muscle strength and pain intensity should be considered for better interpretation of the SEBT results.

  2. Interleukin-6: a bone marrow stromal cell paracrine signal that induces neuroendocrine differentiation and modulates autophagy in bone metastatic PCa cells.

    Science.gov (United States)

    Delk, Nikki A; Farach-Carson, Mary C

    2012-04-01

    Autophagy reallocates nutrients and clears normal cells of damaged proteins and organelles. In the context of metastatic disease, invading cancer cells hijack autophagic processes to survive and adapt in the host microenvironment. We sought to understand how autophagy is regulated in the metastatic niche for prostate cancer (PCa) cells where bone marrow stromal cell (BMSC) paracrine signaling induces PCa neuroendocrine differentiation (NED). In PCa, this transdifferentiation of metastatic PCa cells to neuronal-like cells correlates with advanced disease. Because autophagy provides a survival advantage for cancer cells and promotes cell differentiation, we hypothesized that autophagy mediates PCa NED in the bone. Thus, we determined the ability of paracrine factors in conditioned media (CM) from two separate BMSC subtypes, HS5 and HS27a, to induce autophagy in C4-2 and C4-2B bone metastatic PCa cells by characterizing the autophagy marker, LC3. Unlike HS27a CM, HS5 CM induced LC3 accumulation in PCa cells, suggesting autophagy was induced and indicating that HS5 and HS27a secrete a different milieu of paracrine factors that influence PCa autophagy. We identified interleukin-6 (IL-6), a cytokine more highly expressed in HS5 cells than in HS27a cells, as a paracrine factor that regulates PCa autophagy. Pharmacological inhibition of STAT3 activity did not attenuate LC3 accumulation, implying that IL-6 regulates NED and autophagy through different pathways. Finally, chloroquine inhibition of autophagic flux blocked PCa NED; hence autophagic flux maintains NED. Our studies imply that autophagy is cytoprotective for PCa cells in the bone, thus targeting autophagy is a potential therapeutic strategy.

  3. Novel nanocomposite biomaterial to differentiate bone marrow mesenchymal stem cells to the osteogenic lineage for bone restoration

    OpenAIRE

    Kumar, Arun; Young, Chelsea; Farina, Juliana; Witzl, Ashley; Marks, Edward D.

    2015-01-01

    Background/Objective: As the bone engineering field moves away from nonviable implants to more biocompatible and natural structures, nanomedicine has emerged as a superior tool for developing implantable materials. Methods: Here, we describe the fabrication and testing of a nanocomposite structure composed of chitosan and a biocompatible thermoplastic (PMMA). Results: Our nanocomposite material displayed morphologically similar characteristics to an extracted murine femur during microsc...

  4. Gene expression profiling of human mesenchymal stem cells derived from bone marrow during expansion and osteoblast differentiation

    Directory of Open Access Journals (Sweden)

    Windhager Reinhard

    2007-03-01

    Full Text Available Abstract Background Human mesenchymal stem cells (MSC with the capacity to differentiate into osteoblasts provide potential for the development of novel treatment strategies, such as improved healing of large bone defects. However, their low frequency in bone marrow necessitate ex vivo expansion for further clinical application. In this study we asked if MSC are developing in an aberrant or unwanted way during ex vivo long-term cultivation and if artificial cultivation conditions exert any influence on their stem cell maintenance. To address this question we first developed human oligonucleotide microarrays with 30.000 elements and then performed large-scale expression profiling of long-term expanded MSC and MSC during differentiation into osteoblasts. Results The results showed that MSC did not alter their osteogenic differentiation capacity, surface marker profile, and the expression profiles of MSC during expansion. Microarray analysis of MSC during osteogenic differentiation identified three candidate genes for further examination and functional analysis: ID4, CRYAB, and SORT1. Additionally, we were able to reconstruct the three developmental phases during osteoblast differentiation: proliferation, matrix maturation, and mineralization, and illustrate the activation of the SMAD signaling pathways by TGF-β2 and BMPs. Conclusion With a variety of assays we could show that MSC represent a cell population which can be expanded for therapeutic applications.

  5. The Cannabinoid Receptor Type 1 Is Essential for Mesenchymal Stem Cell Survival and Differentiation: Implications for Bone Health

    Directory of Open Access Journals (Sweden)

    Aoife Gowran

    2013-01-01

    Full Text Available Significant loss of bone due to trauma, underlying metabolic disease, or lack of repair due to old age surpasses the body’s endogenous bone repair mechanisms. Mesenchymal stem cells (MSCs are adult stem cells which may represent an ideal cell type for use in cell-based tissue engineered bone regeneration strategies. The body’s endocannabinoid system has been identified as a central regulator of bone metabolism. The aim of the study was to elucidate the role of the cannabinoid receptor type 1 in the differentiation and survival of MSCs. We show that the cannabinoid receptor type 1 has a prosurvival function during acute cell stress. Additionally, we show that the phytocannabinoid, Δ9-Tetrahydrocannabinol, has a negative impact on MSC survival and osteogenesis. Overall, these results show the potential for the modulation of the cannabinoid system in cell-based tissue engineered bone regeneration strategies whilst highlighting cannabis use as a potential cause for concern in the management of orthopaedic patients.

  6. Novel nano-composite biomimetic biomaterial allows chondrogenic and osteogenic differentiation of bone marrow concentrate derived cells.

    Science.gov (United States)

    Grigolo, Brunella; Cavallo, Carola; Desando, Giovanna; Manferdini, Cristina; Lisignoli, Gina; Ferrari, Andrea; Zini, Nicoletta; Facchini, Andrea

    2015-04-01

    In clinical orthopedics suitable materials that induce and restore biological functions together with the right mechanical properties are particularly needed for the regeneration of osteochondral lesions. For this purpose, the ideal scaffold should possess the right properties with respect to degradation, cell binding, cellular uptake, non-immunogenicity, mechanical strength, and flexibility. In addition, it should be easy to handle and serve as a template for chondrocyte and bone cells guiding both cartilage and bone formation. The aim of the present study was to estimate the chondrogenic and osteogenic capability of bone marrow concentrated derived cells seeded onto a novel nano-composite biomimetic material. These properties have been evaluated by means of histological, immunohistochemical and electron microscopy analyses. The data obtained demonstrated that freshly harvested cells obtained from bone marrow were able, once seeded onto the biomaterial, to differentiate either down the chondrogenic and osteogenic pathways as evaluated by the expression and production of specific matrix molecules. These findings support the use, for the repair of osteochondral lesions, of this new nano-composite biomimetic material together with bone marrow derived cells in a "one step" transplantation procedure.

  7. The Satellite Cell Niche Regulates the Balance between Myoblast Differentiation and Self-Renewal via p53.

    Science.gov (United States)

    Flamini, Valentina; Ghadiali, Rachel S; Antczak, Philipp; Rothwell, Amy; Turnbull, Jeremy E; Pisconti, Addolorata

    2018-03-13

    Satellite cells are adult muscle stem cells residing in a specialized niche that regulates their homeostasis. How niche-generated signals integrate to regulate gene expression in satellite cell-derived myoblasts is poorly understood. We undertook an unbiased approach to study the effect of the satellite cell niche on satellite cell-derived myoblast transcriptional regulation and identified the tumor suppressor p53 as a key player in the regulation of myoblast quiescence. After activation and proliferation, a subpopulation of myoblasts cultured in the presence of the niche upregulates p53 and fails to differentiate. When satellite cell self-renewal is modeled ex vivo in a reserve cell assay, myoblasts treated with Nutlin-3, which increases p53 levels in the cell, fail to differentiate and instead become quiescent. Since both these Nutlin-3 effects are rescued by small interfering RNA-mediated p53 knockdown, we conclude that a tight control of p53 levels in myoblasts regulates the balance between differentiation and return to quiescence. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  8. The effect of low-frequency electromagnetic field on human bone marrow stem/progenitor cell differentiation

    Science.gov (United States)

    Ross, Christina L.; Siriwardane, Mevan; Almeida-Porada, Graça; Porada, Christopher D.; Brink, Peter; Christ, George J.; Harrison, Benjamin S.

    2015-01-01

    Human bone marrow stromal cells (hBMSCs, also known as bone marrow-derived mesenchymal stem cells) are a population of progenitor cells that contain a subset of skeletal stem cells (hSSCs), able to recreate cartilage, bone, stroma that supports hematopoiesis and marrow adipocytes. As such, they have become an important resource in developing strategies for regenerative medicine and tissue engineering due to their self-renewal and differentiation capabilities. The differentiation of SSCs/BMSCs is dependent on exposure to biophysical and biochemical stimuli that favor early and rapid activation of the in vivo tissue repair process. Exposure to exogenous stimuli such as an electromagnetic field (EMF) can promote differentiation of SSCs/BMSCs via ion dynamics and small signaling molecules. The plasma membrane is often considered to be the main target for EMF signals and most results point to an effect on the rate of ion or ligand binding due to a receptor site acting as a modulator of signaling cascades. Ion fluxes are closely involved in differentiation control as stem cells move and grow in specific directions to form tissues and organs. EMF affects numerous biological functions such as gene expression, cell fate, and cell differentiation, but will only induce these effects within a certain range of low frequencies as well as low amplitudes. EMF has been reported to be effective in the enhancement of osteogenesis and chondrogenesis of hSSCs/BMSCs with no documented negative effects. Studies show specific EMF frequencies enhance hSSC/BMSC adherence, proliferation, differentiation, and viability, all of which play a key role in the use of hSSCs/BMSCs for tissue engineering. While many EMF studies report significant enhancement of the differentiation process, results differ depending on the experimental and environmental conditions. Here we review how specific EMF parameters (frequency, intensity, and time of exposure) significantly regulate hSSC/BMSC differentiation in

  9. Culture conditions for equine bone marrow mesenchymal stem cells and expression of key transcription factors during their differentiation into osteoblasts

    Science.gov (United States)

    2013-01-01

    Background The use of equine bone marrow mesenchymal stem cells (BMSC) is a novel method to improve fracture healing in horses. However, additional research is needed to identify optimal culture conditions and to determine the mechanisms involved in regulating BMSC differentiation into osteoblasts. The objectives of the experiments were to determine: 1) if autologous or commercial serum is better for proliferation and differentiation of equine BMSC into osteoblasts, and 2) the expression of key transcription factors during the differentiation of equine BMSC into osteoblasts. Equine BMSC were isolated from the sterna of 3 horses, treated with purchased fetal bovine serum (FBS) or autologous horse serum (HS), and cell proliferation determined. To induce osteoblast differentiation, cells were incubated with L-ascorbic acid-2-phosphate and glycerol-2-phosphate in the presence or absence of human bone morphogenetic protein2 (BMP2), dexamethasone (DEX), or combination of the two. Alkaline phosphatase (ALP) activity, a marker of osteoblast differentiation, was determined by ELISA. Total RNA was isolated from differentiating BMSC between d 0 to 18 to determine expression of runt-related transcription factor2 (Runx2), osterix (Osx), and T-box3 (Tbx3). Data were analyzed by ANOVA. Results Relative to control, FBS and HS increased cell number (133 ± 5 and 116 ± 5%, respectively; P  0.8). Runt-related transcription factor2 expression increased 3-fold (P equine BMSC into osteoblasts. In addition, expression of Runx2 and osterix increased and expression of Tbx3 is reduced during differentiation. PMID:24169030

  10. Naringin enhances osteogenic differentiation through the activation of ERK signaling in human bone marrow mesenchymal stem cells

    Directory of Open Access Journals (Sweden)

    Huichao Wang

    2017-04-01

    Full Text Available Objective(s: Naringin has been reported to regulate bone metabolism. However, its effect on osteogenesis remains unclear. The aim was to investigate the effect of naringin on osteogenic differentiation of human bone marrow mesenchymal stem cells (hBMSCs through the activation of the ERK signaling pathway in osteogenic differentiation. Materials and Methods: Annexin V-FITC assay and MTT assay were used to measure the effect of naringin on cytotoxicity and proliferation of hBMSCs, respectively. Alkaline phosphatase activity analysis, Alizarin Red S staining, Western blotting, and real-time PCR assay were used to evaluate both the potential effect of naringin on osteogenic differentiation and the role of ERK signaling pathway in osteogenic differentiation. Results: Our results showed that naringin had no obvious toxicity on hBMSCs, and could significantly promote the proliferation of hBMSCs. Naringin also enhanced the osteogenic differentiation of hBMSCs and increased the protein and mRNA expression levels of osteogenic markers such as Runx-2, OXS, OCN, and Col1 in a dose-dependent manner. In addition, we found that the enhancing effect of naringin on osteogenic differentiation was related to the activation of phosphor-ERK, with an increase in duration of activity from 30 min to 120 min. More importantly, both the enhancing effect of naringin on osteogenic differentiation and the activity effect of naringin on ERK signaling pathway were reversed by U0126 addition. Conclusion: Our findings demonstrated that naringin promoted proliferation and osteogenesis of hBMSCs by activating the ERK signaling pathway and it might be a potential therapeutic agent for treating or preventing osteoporosis.

  11. Redox balance influences differentiation status of neuroblastoma in the presence of all-trans retinoic acid

    Directory of Open Access Journals (Sweden)

    Anne M. Silvis

    2016-04-01

    Full Text Available Neuroblastoma is the most common extra-cranial solid tumor in childhood; and patients in stage IV of the disease have a high propensity for tumor recurrence. Retinoid therapy has been utilized as a means to induce differentiation of tumor cells and to inhibit relapse. In this study, the expression of a common neuronal differentiation marker [neurofilament M (NF-M] in human SK-N-SH neuroblastoma cells treated with 10 μM all-trans retinoic acid (ATRA showed significantly increased expression in accordance with reduced cell number. This was accompanied by an increase in MitoSOX and DCFH2 oxidation that could be indicative of increased steady-state levels of reactive oxygen species (ROS such as O2•− and H2O2, which correlated with increased levels of MnSOD activity and immuno-reactive protein. Furthermore PEG-catalase inhibited the DCFH2 oxidation signal to a greater extent in the ATRA-treated cells (relative to controls at 96 h indicating that as the cells became more differentiated, steady-state levels of H2O2 increased in the absence of increases in peroxide-scavenging antioxidants (i.e., glutathione, glutathione peroxidase, and catalase. In addition, ATRA-induced stimulation of NF-M at 48 and 72 h was enhanced by decreasing SOD activity using siRNA directed at MnSOD. Finally, treatment with ATRA for 96 h in the presence of MnSOD siRNA or PEG-catalase inhibited ATRA induced increases in NF-M expression. These results provide strong support for the hypothesis that changes in steady-state levels of O2•− and H2O2 significantly contribute to the process of ATRA-induced differentiation in neuroblastoma, and suggest that retinoid therapy for neuroblastoma could potentially be enhanced by redox-based manipulations of superoxide metabolism to improve patient outcome.

  12. Differential effects of calorie restriction and involuntary wheel running on body composition and bone structure in diet-induced obese rats

    Science.gov (United States)

    Weight reduction is recommended to reduce obesity-related health disorders. This study investigated the differential effects of weight reduction through caloric restriction and/or physical activity on bone structure and molecular characteristics of bone metabolism in an obese rat model. We tested th...

  13. Differential Cell Count of Bone Marrow Aspirates in Steady-state ...

    African Journals Online (AJOL)

    Bone marrow was aspirated from the posterior superior iliac spine. Slides were stained with MayGrünwald-Giemsa stain. Proportions of erythroid, myeloid, lymphoid and megakaryocytic cells out of 250 nucleated bone marrow cells were determined. Results: Steady state mean packed cell volume (PCV) was 0.2 ± 0.017 L/L.

  14. The effect of Emdogain on the growth and differentiation of rat bone marrow cells.

    NARCIS (Netherlands)

    Dolder, J. van den; Vloon, A.P.; Jansen, J.A.

    2006-01-01

    BACKGROUND AND OBJECTIVE: The major extracellular matrix (ECM) proteins in developing enamel can induce and maintain the formation and mineralization of other skeletal hard tissue, such as bone. Therefore, dental matrix proteins are ideal therapeutic agents when direct formation of functional bone

  15. C/ebpα controls osteoclast terminal differentiation, activation, function, and postnatal bone homeostasis through direct regulation of Nfatc1.

    Science.gov (United States)

    Chen, Wei; Zhu, Guochun; Tang, Jun; Zhou, Hou-De; Li, Yi-Ping

    2018-03-01

    Osteoclast lineage commitment and differentiation have been studied extensively, although the mechanism by which transcription factor(s) control osteoclast terminal differentiation, activation, and function remains unclear. CCAAT/enhancer-binding protein α (C/ebpα) has been reported to be a key regulator of osteoclast cell lineage commitment, yet C/ebpα's roles in osteoclast terminal differentiation, activation and function, and bone homeostasis, under physiological or pathological conditions, have not been studied because newborn C/ebpα-null mice die within several hours after birth. Furthermore, the function of C/ebpα in osteoclast terminal differentiation, activation, and function is largely unknown. Herein, we generated and analyzed an osteoclast-specific C/ebpα conditional knockout (CKO) mouse model via Ctsk-Cre mice and found that C/ebpα-deficient mice exhibited a severe osteopetrosis phenotype due to impaired osteoclast terminal differentiation, activation, and function, including mildly reduced osteoclast number, impaired osteoclast polarization, actin formation, and bone resorption, which demonstrated the novel function of C/ebpα in cell function and terminal differentiation. Interestingly, C/ebpα deficiency did not affect bone formation or monocyte/macrophage development. Our results further demonstrated that C/ebpα deficiency suppressed the expression of osteoclast functional genes, e.g. encoding cathepsin K (Ctsk), Atp6i (Tcirg1), and osteoclast regulator genes, e.g. encoding c-fos (Fos), and nuclear factor of activated T-cells 1 (Nfatc1), while having no effect on Pu.1 (Spi1) expression. Promoter activity mapping and ChIP assay defined the critical cis-regulatory element (CCRE) in the promoter region of Nfatc1, and also showed that the CCREs were directly associated with C/ebpα, which enhanced the promoter's activity. The deficiency of C/ebpα in osteoclasts completely blocked ovariectomy-induced bone loss, indicating that C/ebpα is a

  16. TGF1-Induced Differentiation of Human Bone Marrow-Derived MSCs Is Mediated by Changes to the Actin Cytoskeleton

    DEFF Research Database (Denmark)

    Elsafadi, Mona; Manikandan, Muthurangan; Almalki, Sami

    2018-01-01

    TGFβis a potent regulator of several biological functions in many cell types, but its role in the differentiation of human bone marrow-derived skeletal stem cells (hMSCs) is currently poorly understood. In the present study, we demonstrate that a single dose of TGFβ1 prior to induction......MSC cultures using DNA microarrays. In total, 1932 genes were upregulated, and 1298 genes were downregulated. Bioinformatics analysis revealed that TGFβl treatment was associated with an enrichment of genes in the skeletal and extracellular matrix categories and the regulation of the actin cytoskeleton....... To investigate further, we examined the actin cytoskeleton following treatment with TGFβ1 and/or cytochalasin D. Interestingly, cytochalasin D treatment of hMSCs enhanced adipogenic differentiation but inhibited osteogenic differentiation. Global gene expression profiling revealed a significant enrichment...

  17. Recent mass balance of the Purogangri Ice Cap, central Tibetan Plateau, by means of differential X-band SAR interferometry

    Directory of Open Access Journals (Sweden)

    N. Neckel

    2013-10-01

    Full Text Available Due to their remoteness, altitude and harsh climatic conditions, little is known about the glaciological parameters of ice caps on the Tibetan Plateau. This study presents a geodetic mass balance estimate of the Purogangri Ice Cap, Tibet's largest ice field between 2000 and 2012. We utilized data from the actual TerraSAR-X mission and its add-on for digital elevation measurements and compared it with elevation data from the Shuttle Radar Topography Mission. The employed data sets are ideal for this approach as both data sets were acquired at X-band at nearly the same time of the year and are available at a fine grid spacing. In order to derive surface elevation changes we employed two different methods. The first method is based on differential synthetic radar interferometry while the second method uses common DEM differencing. Both approaches revealed a slightly negative mass budget of −44 ± 15 and −38 ± 23 mm w.eq. a−1 (millimeter water equivalent respectively. A slightly negative trend of −0.15 ± 0.01 km2 a−1 in glacier extent was found for the same time period employing a time series of Landsat data. Overall, our results show an almost balanced mass budget for the studied time period. Additionally, we detected one continuously advancing glacier tongue in the eastern part of the ice cap.

  18. Manganese supplementation in deer under balanced diet increases impact energy and contents in minerals of antler bone tissue

    OpenAIRE

    Cappelli, Jamil; García, Andrés J.; Ceacero, Francisco; Gómez, Santiago; Luna, Salvador; Gallego, Laureano; Gambin, Pablo; Landete-Castillejos, Tomás

    2015-01-01

    Bone ash, collagen, Ca and P composition, are considered the main factors affecting mechanical properties in bones. However, a series of studies in bone and antler have shown that some trace minerals, such as manganese, may play a role whose importance exceeds what may be expected considering their low content. A previous study showed that a reduction in manganese in antlers during a year of late winter frosts led to generalized antler breakage in Spain, which included a reduction of 30% of c...

  19. Optical CDMA with Embedded Spectral-Polarization Coding over Double Balanced Differential-Detector

    Science.gov (United States)

    Huang, Jen-Fa; Yen, Chih-Ta; Chen, Bo-Hau

    A spectral-polarization coding (SPC) optical code-division multiple-access (OCDMA) configuration structured over arrayed-waveguide grating (AWG) router is proposed. The polarization-division double balanced detector is adopted to execute difference detection and enhances system performance. The signal-to-noise ratio (SNR) is derived by taking the effect of PIIN into account. The result indicates that there would be up to 9-dB SNR improvement than the conventional spectral-amplitude coding (SAC) structures with Walsh-Hadamard codes. Mathematical deriving results of the SNR demonstrate the system embedded with the orthogonal state of polarization (SOP) will suppress effectively phase-induced intensity noise (PIIN). In addition, we will analyze the relations about bit error rate (BER) vs. the number of active users under the different encoding schemes and compare them with our proposed scheme. The BER vs. the effective power under the different encoding scheme with the same number of simultaneous active user conditions are also revealed. Finally, the polarization-matched factor and the difference between simulated and experimental values are discussed.

  20. Adhesive and mechanical regulation of mesenchymal stem cell differentiation in human bone marrow and periosteum-derived progenitor cells

    Directory of Open Access Journals (Sweden)

    Jeroen Eyckmans

    2012-08-01

    It has previously been demonstrated that cell shape can influence commitment of human bone marrow-derived mesenchymal stem cells (hBMCs to adipogenic, osteogenic, chondrogenic, and other lineages. Human periosteum-derived cells (hPDCs exhibit multipotency similar to hBMCs, but hPDCs may offer enhanced potential for osteogenesis and chondrogenesis given their apparent endogenous role in bone and cartilage repair in vivo. Here, we examined whether hPDC differentiation is regulated by adhesive and mechanical cues comparable to that reported for hBMC differentiation. When cultured in the appropriate induction media, hPDCs at high cell seeding density demonstrated enhanced levels of adipogenic or chondrogenic markers as compared with hPDCs at low cell seeding density. Cell seeding density correlated inversely with projected area of cell spreading, and directly limiting cell spreading with micropatterned substrates promoted adipogenesis or chondrogenesis while substrates promoting cell spreading supported osteogenesis. Interestingly, cell seeding density influenced differentiation through both changes in cell shape and non-shape-mediated effects: density-dependent adipogenesis and chondrogenesis were regulated primarily by cell shape whereas non-shape effects strongly influenced osteogenic potential. Inhibition of cytoskeletal contractility by adding the Rho kinase inhibitor Y27632 further enhanced adipogenic differentiation and discouraged osteogenic differentiation of hPDCs. Together, our results suggest that multipotent lineage decisions of hPDCs are impacted by cell adhesive and mechanical cues, though to different extents than hBMCs. Thus, future studies of hPDCs and other primary stem cell populations with clinical potential should consider varying biophysical metrics for more thorough optimization of stem cell differentiation.

  1. Differentiating human versus non-human bone by exploring the nutrient foramen: implications for forensic anthropology.

    Science.gov (United States)

    Johnson, Vail; Beckett, Sophie; Márquez-Grant, Nicholas

    2017-11-01

    One of the roles of a forensic anthropologist is to assist medico-legal investigations in the identification of human skeletal remains. In some instances, only small fragments of bone may be present. In this study, a non-destructive novel technique is presented to distinguish between human and non-human long bones. This technique is based on the macroscopic and computed tomography (CT) analysis of nutrient foramina. The nutrient foramen of long bone diaphyses transmits the nutrient artery which provides much of the oxygen and nutrients to the bone. The nutrient foramen and its canal were analysed in six femora and humeri of human, sheep (Ovies aries) and pig (Sus scrofa) species. The location, position and direction of the nutrient foramina were measured macroscopically. The length of the canal, angle of the canal, circumference and area of the entrance of the foramen were measured from CT images. Macroscopic analysis revealed the femora nutrient foramina are more proximal, whereas humeri foramina are more distal. The human bones and sheep humerus conform to the perceived directionality, but the pig bones and sheep femur do not. Amongst the parameters measured in the CT analysis, the angle of the canal had a discriminatory power. This study shows the potential of this technique to be used independently or complementary to other methods in distinguishing between human and non-human bone in forensic anthropology.

  2. Differential gene expression profile associated with the abnormality of bone marrow mesenchymal stem cells in aplastic anemia.

    Directory of Open Access Journals (Sweden)

    Jianping Li

    Full Text Available Aplastic anemia (AA is generally considered as an immune-mediated bone marrow failure syndrome with defective hematopoietic stem cells (HSCs and marrow microenvironment. Previous studies have demonstrated the defective HSCs and aberrant T cellular-immunity in AA using a microarray approach. However, little is known about the overall specialty of bone marrow mesenchymal stem cells (BM-MSCs. In the present study, we comprehensively compared the biological features and gene expression profile of BM-MSCs between AA patients and healthy volunteers. In comparison with healthy controls, BM-MSCs from AA patients showed aberrant morphology, decreased proliferation and clonogenic potential and increased apoptosis. BM-MSCs from AA patients were susceptible to be induced to differentiate into adipocytes but more difficult to differentiate into osteoblasts. Consistent with abnormal biological features, a large number of genes implicated in cell cycle, cell division, proliferation, chemotaxis and hematopoietic cell lineage showed markedly decreased expression in BM-MSCs from AA patients. Conversely, more related genes with apoptosis, adipogenesis and immune response showed increased expression in BM-MSCs from AA patients. The gene expression profile of BM-MSCs further confirmed the abnormal biological properties and provided significant evidence for the possible mechanism of the destruction of the bone marrow microenvironment in AA.

  3. Er-Xian Decoction Stimulates Osteoblastic Differentiation of Bone Mesenchymal Stem Cells in Ovariectomized Mice and Its Gene Profile Analysis

    Directory of Open Access Journals (Sweden)

    Shufen Liu

    2016-01-01

    Full Text Available We studied the bone mesenchymal stem cells (bMSCs and gene profiles regulated by Er-Xian Decoction (EXD, a traditional Chinese herbal formula widely used for postmenopausal osteoporosis treatment. Six-month-old female Imprinting Control Region mice that underwent ovariectomy were treated with EXD. After 3 months, bone mass was evaluated by μCT and histological and immunohistochemical detection. The self-renewal and differentiation capacities of bMSCs were evaluated by colony-forming unit-fibroblastic, colony-forming unit-adipocyte, and alkaline phosphatase staining. In addition, the expression of 26991 genes of bMSCs ex vivo at 2 weeks after EXD-treatment or of bMSCs in vitro after exposure to conditioned serum from EXD-treated rats was measured and analyzed using NimbleGen Gene Expression Profiling and Cluster and pathway analysis. EXD treatment increased bone mass, elevating osteocalcin protein levels in vivo and facilitating the self-renewal and osteoblastic differentiation of bMSCs ex vivo. EXD rescued several gene expressions that were dysregulated by OVX. These genes overlapped and their functions were involved in ten pathways between ex vivo and in vitro experiments. EXD exerts an osteogenic effect on bMSCs in OVX induced osteoporotic mice. Our results contribute to further study of its molecular mechanism and traditional use in the treatment of postmenopausal osteoporosis.

  4. Generation of Insulin-Producing Cells from Human Bone Marrow-Derived Mesenchymal Stem Cells: Comparison of Three Differentiation Protocols

    Directory of Open Access Journals (Sweden)

    Mahmoud M. Gabr

    2014-01-01

    Full Text Available Introduction. Many protocols were utilized for directed differentiation of mesenchymal stem cells (MSCs to form insulin-producing cells (IPCs. We compared the relative efficiency of three differentiation protocols. Methods. Human bone marrow-derived MSCs (HBM-MSCs were obtained from three insulin-dependent type 2 diabetic patients. Differentiation into IPCs was carried out by three protocols: conophylline-based (one-step protocol, trichostatin-A-based (two-step protocol, and β-mercaptoethanol-based (three-step protocol. At the end of differentiation, cells were evaluated by immunolabeling for insulin production, expression of pancreatic endocrine genes, and release of insulin and c-peptide in response to increasing glucose concentrations. Results. By immunolabeling, the proportion of generated IPCs was modest (≃3% in all the three protocols. All relevant pancreatic endocrine genes, insulin, glucagon, and somatostatin, were expressed. There was a stepwise increase in insulin and c-peptide release in response to glucose challenge, but the released amounts were low when compared with those of pancreatic islets. Conclusion. The yield of functional IPCs following directed differentiation of HBM-MSCs was modest and was comparable among the three tested protocols. Protocols for directed differentiation of MSCs need further optimization in order to be clinically meaningful. To this end, addition of an extracellular matrix and/or a suitable template should be attempted.

  5. Role of Hmbox1 in endothelial differentiation of bone-marrow stromal cells by a small molecule.

    Science.gov (United States)

    Su, Le; Zhao, HongLing; Sun, ChunHui; Zhao, BaoXiang; Zhao, Jing; Zhang, ShangLi; Su, Hua; Miao, JunYing

    2010-11-19

    Bone marrow stromal cells (BMSCs) play critical roles in repairing endothelium damage. However, the mechanisms underlying BMSC differentiation into vascular endothelial cells (VECs) is not well understood. We aimed to find new factors involved in this process by exploiting a novel chemical inducer in a gene microarray assay. We first identified a novel benzoxazine derivative (6-amino-2,3-dihydro-3-hydroxymethyl-1,4-benzoxazine; ABO) that can induce BMSC differentiation to VECs in a capillary-like tube formation assay, promote analysis of endothelial cell-specific marker expression, and facilitate uptake of 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate-acetylated low-density lipoprotein (Dil-Ac-LDL). Microarray analysis of BMSCs treated with ABO for 4 h revealed changes in only a handful of genes. The only one upregulated was homeobox-containing 1 (Hmbox1) gene, whereas six genes, including IP-10 and others, were downregulated. The upregulation of Hmbox1 and downregulation of IP-10 were confirmed by RT-PCR, quantitative PCR (qPCR), and Western blot analysis. It is reported that IP-10 could suppresse EC differentiation into capillary structures. In this study ABO could not induce BMSC differentiation to VECs in the presence of IP-10. Small interfering RNA knockdown of Hmbox1 blocked ABO-induced BMSC differentiation and increased the level of IP-10 but decreased Ets-1. Thus, ABO is a novel inducer for BMSC differentiation to VECs, and Hmbox1 is a key factor in the differentiation. IP-10 and Ets-1 might be relevant targets of Hmbox1 in BMSC differentiation to VECs. These findings provide information on a novel target and a new platform for further investigating the gene control of BMSC differentiation to VECs.

  6. Differential Effects of Teriparatide and Denosumab on Intact PTH and Bone Formation Indices: AVA Osteoporosis Study

    Science.gov (United States)

    Zhou, Hua; Recker, Robert R.; Brown, Jacques P.; Recknor, Christopher P.; Lewiecki, E. Michael; Miller, Paul D.; Rao, Sudhaker D.; Kendler, David L.; Lindsay, Robert; Krege, John H.; Alam, Jahangir; Taylor, Kathleen A.; Janos, Boris; Ruff, Valerie A.

    2016-01-01

    Context: Denosumab-induced PTH elevation may stimulate early bone formation. Objective: Our objective was to evaluate whether denosumab-induced changes of intact PTH (iPTH) result in early anabolic effects according to histomorphometry and bone turnover markers (BTMs) compared with teriparatide, an established anabolic agent. Design: This open-label, randomized study used quadruple labeling to label bone before/after treatment, with a transiliac bone biopsy at 3 months. Setting: This study took both in both US and Canadian sites. Participants: Sixty-nine postmenopausal women with osteoporosis were included. Interventions: Teriparatide (20 μg/day) for 6 months and denosumab (60 mg once) were used in this study. Main Outcome Measure: Between-treatment comparison of change from baseline to month 3 in cancellous mineralizing surface/bone surface, histomorphometric indices in four bone envelopes, and BTM and iPTH at baseline, 1, 3, and 6 months was undertaken. Results: After denosumab, iPTH peaked at month 1 (P teriparatide, iPTH declined at all time points (P teriparatide and decreased with denosumab and at month 3, was higher with teriparatide. Similar results were observed in other bone envelopes. BTMs increased from baseline in teriparatide-treated subjects (procollagen type 1 N-terminal propeptide at month 1 and carboxyterminal cross-linking telopeptide of type 1 collagen at month 3); procollagen type 1 N-terminal propeptide and carboxyterminal cross-linking telopeptide of type 1 collagen decreased from baseline at all time points in denosumab-treated subjects. Conclusions: Denosumab treatment increased iPTH but inhibited bone formation indices. In contrast, teriparatide treatment decreased iPTH but stimulated bone formation indices. These findings are not consistent with the hypothesis of early indirect anabolic effect with denosumab. PMID:26859106

  7. Bone Marrow-Derived Stem Cell Populations Are Differentially Regulated by Thyroid or/and Ovarian Hormone Loss

    Directory of Open Access Journals (Sweden)

    Bassam F. Mogharbel

    2017-10-01

    Full Text Available Bone marrow-derived stem cells (BMDSCs play an essential role in organ repair and regeneration. The molecular mechanisms by which hormones control BMDSCs proliferation and differentiation are unclear. Our aim in this study was to investigate how a lack of ovarian or/and thyroid hormones affects stem cell number in bone marrow lineage. To examine the effect of thyroid or/and ovarian hormones on the proliferative activity of BMDSCs, we removed the thyroid or/and the ovaries of adult female rats. An absence of ovarian and thyroid hormones was confirmed by Pap staining and Thyroid Stimulating Hormone (TSH measurement, respectively. To obtain the stem cells from the bone marrow, we punctured the iliac crest, and aspirated and isolated cells by using a density gradient. Specific markers were used by cytometry to identify the different BMDSCs types: endothelial progenitor cells (EPCs, precursor B cells/pro-B cells, and mesenchymal stem cells (MSCs. Interestingly, our results showed that hypothyroidism caused a significant increase in the percentage of EPCs, whereas a lack of ovarian hormones significantly increased the precursor B cells/pro-B cells. Moreover, the removal of both glands led to increased MSCs. In conclusion, both ovarian and thyroid hormones appear to have key and diverse roles in regulating the proliferation of cells populations of the bone marrow.

  8. In vitro differentiation of bone marrow stromal cells into neurons and glial cells and differential protein expression in a two-compartment bone marrow stromal cell/neuron co-culture system.

    Science.gov (United States)

    Qi, Xu; Shao, Ming; Peng, Haisheng; Bi, Zhenggang; Su, Zhiqiang; Li, Hulun

    2010-07-01

    This study was performed to establish a bone marrow stromal cell (BMSC)/neuron two-compartment co-culture model in which differentiation of BMSCs into neurons could occur without direct contact between the two cell types, and to investigate protein expression changes during differentiation of this entirely BMSC-derived population. Cultured BMSCs isolated from Wistar rats were divided into three groups: BMSC culture, BMSC/neuron co-culture and BMSC/neuron two-compartment co-culture. Cells were examined for neuron-specific enolase (NSE) and glial fibrillary acidic protein (GFAP) expression. The electrophysiological behavior of the BMSCs was examined using patch clamping. Proteins that had significantly different expression levels in BMSCs cultured alone and co-cultured with neurons were studied using a protein chip-mass spectroscopy technique. Expression of NSE and GFAP were significantly higher in co-culture cells than in two-compartment co-culture cells, and significantly higher in both co-culture groups than in BMSCs cultured alone. Five proteins showed significant changes in expression during differentiation: TIP39_RAT and CALC_RAT underwent increases, and INSL6_RAT, PNOC_RAT and PCSK1_RAT underwent decreases in expression. We conclude that BMSCs can differentiate into neurons during both contact co-culture with neurons and two-compartment co-culture with neurons. The rate at which BMSCs differentiated into neurons was higher in contact co-culture than in non-contact co-culture.

  9. Differentiation of mesenchymal stem cells derived from pancreatic islets and bone marrow into islet-like cell phenotype.

    Directory of Open Access Journals (Sweden)

    Cristina Zanini

    Full Text Available BACKGROUND: Regarding regenerative medicine for diabetes, accessible sources of Mesenchymal Stem Cells (MSCs for induction of insular beta cell differentiation may be as important as mastering the differentiation process itself. METHODOLOGY/PRINCIPAL FINDINGS: In the present work, stem cells from pancreatic islets (human islet-mesenchymal stem cells, HI-MSCs and from human bone marrow (bone marrow mesenchymal stem cells, BM-MSCs were cultured in custom-made serum-free medium, using suitable conditions in order to induce differentiation into Islet-like Cells (ILCs. HI-MSCs and BM-MSCs were positive for the MSC markers CD105, CD73, CD90, CD29. Following this induction, HI-MSC and BM-MSC formed evident islet-like structures in the culture flasks. To investigate functional modifications after induction to ILCs, ultrastructural analysis and immunofluorescence were performed. PDX1 (pancreatic duodenal homeobox gene-1, insulin, C peptide and Glut-2 were detected in HI-ILCs whereas BM-ILCs only expressed Glut-2 and insulin. Insulin was also detected in the culture medium following glucose stimulation, confirming an initial differentiation that resulted in glucose-sensitive endocrine secretion. In order to identify proteins that were modified following differentiation from basal MSC (HI-MSCs and BM-MSCs to their HI-ILCs and BM-ILCs counterparts, proteomic analysis was performed. Three new proteins (APOA1, ATL2 and SODM were present in both ILC types, while other detected proteins were verified to be unique to the single individual differentiated cells lines. Hierarchical analysis underscored the limited similarities between HI-MSCs and BM-MSCs after induction of differentiation, and the persistence of relevant differences related to cells of different origin. CONCLUSIONS/SIGNIFICANCE: Proteomic analysis highlighted differences in the MSCs according to site of origin, reflecting spontaneous differentiation and commitment. A more detailed understanding of

  10. Low Oxygen Tension Maintains Multipotency, Whereas Normoxia Increases Differentiation of Mouse Bone Marrow Stromal Cells

    OpenAIRE

    Berniakovich, Ina; Giorgio, Marco

    2013-01-01

    Optimization of mesenchymal stem cells (MSC) culture conditions is of great importance for their more successful application in regenerative medicine. O2 regulates various aspects of cellular biology and, in vivo, MSC are exposed to different O2 concentrations spanning from very low tension in the bone marrow niche, to higher amounts in wounds. In our present work, we isolated mouse bone marrow stromal cells (BMSC) and showed that they contained a population meeting requirements for MSC defin...

  11. Bone Signaling in Middle Ear Development: A Genome‐Wide Differential Expression Analysis

    DEFF Research Database (Denmark)

    Nielsen, Michelle Christine; Bertelsen, Tomas Martin; Friis, Morten

    2014-01-01

    Common middle ear diseases may affect bone behavior in the middle ear air cell system. To understand this pathologic pneumatization, the normal development of bone in the middle ear should be investigated. The objective of this study was to analyze gene expression of bone‐related signaling factor...... of the bulla wall. Anat Rec, 297:2349–2355, 2014. © 2014 Wiley Periodicals, Inc....

  12. The transcription factor Jdp2 controls bone homeostasis and antibacterial immunity by regulating osteoclast and neutrophil differentiation.

    Science.gov (United States)

    Maruyama, Kenta; Fukasaka, Masahiro; Vandenbon, Alexis; Saitoh, Tatsuya; Kawasaki, Takumi; Kondo, Takeshi; Yokoyama, Kazunari K; Kidoya, Hiroyasu; Takakura, Nobuyuki; Standley, Daron; Takeuchi, Osamu; Akira, Shizuo

    2012-12-14

    Jdp2 is an AP-1 family transcription factor that regulates the epigenetic status of histones. Previous in vitro studies revealed that Jdp2 is involved in osteoclastogenesis. However, the roles of Jdp2 in vivo and its pleiotropic functions are largely unknown. Here we generated Jdp2(-/-) mice and discovered its crucial roles not only in bone metabolism but also in differentiation of neutrophils. Jdp2(-/-) mice exhibited osteopetrosis resulting from impaired osteoclastogenesis. Jdp2(-/-) neutrophils were morphologically normal but had impaired surface expression of Ly6G, bactericidal function, and apoptosis. We also found that ATF3 was an inhibitor of neutrophil differentiation and that Jdp2 directly suppresses its expression via inhibition of histone acetylation. Strikingly, Jdp2(-/-) mice were highly susceptible to Staphylococcus aureus and Candida albicans infection. Thus, Jdp2 plays pivotal roles in in vivo bone homeostasis and host defense by regulating osteoclast and neutrophil differentiation. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. The effect of different implant biomaterials on the behavior of canine bone marrow stromal cells during their differentiation into osteoblasts.

    Science.gov (United States)

    Özdal-Kurt, F; Tuğlu, I; Vatansever, H S; Tong, S; Şen, B H; Deliloğlu-Gürhan, S I

    2016-08-01

    We investigated the effects of different implant biomaterials on cultured canine bone marrow stromal cells (BMSC) undergoing differentiation into osteoblasts (dBMSC). BMSC were isolated from canine humerus by marrow aspiration, cultured and differentiated on calcium phosphate scaffold (CPS), hydroxyapatite, hydroxyapatite in gel form and titanium mesh. We used the MTT method to determine the effects of osteogenic media on proliferation. The characteristics of dBMSC were assessed using alizarin red (AR), immunocytochemistry and osteoblastic markers including alkaline phosphatase/von Kossa (ALP/VK), osteocalcin (OC) and osteonectin (ON), and ELISA. The morphology of dBMSC on the biomaterials was investigated using inverted phase contrast microscopy and scanning electron microscopy. We detected expression of ALP/VK, AR, OC and ON by day 7 of culture; expression increased from day 14 until day 21. CPS supported the best adhesion, cell spreading, proliferation and differentiation of BMSCs. The effects of the biomaterials depended on their surface properties. Expression of osteoblastic markers showed that canine dBMSCs became functional osteoblasts. Tissue engineered stem cells can be useful clinically for autologous implants for treating bone wounds.

  14. Scaffold-cell bone engineering in a validated preclinical animal model: precursors vs differentiated cell source.

    Science.gov (United States)

    Berner, A; Henkel, J; Woodruff, M A; Saifzadeh, S; Kirby, G; Zaiss, S; Gohlke, J; Reichert, J C; Nerlich, M; Schuetz, M A; Hutmacher, D W

    2017-07-01

    The properties of osteoblasts (OBs) isolated from the axial skeleton (tOBs) differ from OBs of the orofacial skeleton (mOBs) due to the different embryological origins of the bones. The aim of the study was to assess and compare the regenerative potential of allogenic bone marrow-derived mesenchymal progenitor cells with allogenic tOBs and allogenic mOBs in combination with a mPCL-TCP scaffold in critical-sized segmental bone defects in sheep tibiae. After 6 months, the tibiae were explanted and underwent biomechanical testing, micro-computed tomography (microCT) and histological and immunohistochemical analyses. Allogenic MPCs demonstrated a trend towards a better outcome in biomechanical testing and the mean values of newly formed bone. Biomechanical, microCT and histological analysis showed no significant differences in the bone regeneration potential of tOBs and mOBs in our in vitro study, as well as in the bone regeneration potential of different cell types in vivo. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  15. Effect of in vitro chondrogenic differentiation of autologous mesenchymal stem cells on cartilage and subchondral cancellous bone repair in osteoarthritis of temporomandibular joint.

    Science.gov (United States)

    Chen, K; Man, C; Zhang, B; Hu, J; Zhu, S S

    2013-02-01

    This study investigated the effects of in vitro chondrogenic differentiated mesenchymal stem cells (MSCs) on cartilage and subchondral cancellous bone in temporomandibular joint osteoarthritis (TMJOA). Four weeks after induction of osteoarthritis (OA), the joints received hylartin solution, non-chondrogenic MSCs or in vitro chondrogenic differentiated MSCs. The changes in cartilage and subchondral cancellous bone were evaluated by histology, reverse transcription polymerase chain reaction and micro-computed tomography (CT). Implanted cells were tracked using Adeno-LacZ labelling. The differentiated MSC-treated group had better histology than the MSC-treated group at 4 and 12 weeks, but no difference at 24 weeks. Increased mRNA expression of collegan II, aggeran, Sox9 and decreased matrix metalloproteinase 13 (MMP13) were observed in differentiated MSC-treated groups compared to the undifferentiated MSC-treated group at 4 weeks. The differentiated MSC-treated group had decreased bone volume fraction, trabecular thickness and bone surface density, and increased trabecular spacing in the subchondral cancellous bone than the undifferentiated MSC-treated group. Transplanted cells were observed at cartilage, subchondral bone, and the synovial membrane lining at 4 weeks. Intra-articular injection of MSCs could delay the progression of TMJOA, and in vitro chondrogenic induction of MSCs could enhance the therapeutic effects. This provides new insights into the role of MSCs in cell-based therapies for TMJOA. Copyright © 2012 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  16. Effect of growth factors (BMP-4/7 & bFGF on proliferation & osteogenic differentiation of bone marrow stromal cells

    Directory of Open Access Journals (Sweden)

    Shaohui Yuan

    2013-01-01

    Full Text Available Background & objectives: BMP (bone morphogenetic protein-4/7 and bFGF (basic fibroblast growth factor significantly promote the osteogenic activity and the proliferation of rabbit BMSCs (bone marrow stromal cells, respectively. However, their synergistic effects on the proliferation and the differentiation of BMSCs remain unclear. In the present study, the effects of bFGF and BMP-4/7 were investigated on the proliferation and the differentiation of rat BMSCs in vitro. Methods: BMSCs were isolated from New Zealand white rabbits and cultured to the third passage. The samples were divided into five groups according to the material implanted: (A 80 ng/ml BMP-4/7; (B 80 ng/ml bFGF; (C 30 ng/ml BMP-4/7 and 30 ng/ml bFGF; (D 50 ng/ml BMP-4/7 and 50 ng/ml bFGF; and (E 80 ng/ml BMP-4/7 and 80 ng/ml bFGF. Cell proliferation was analyzed using methyl thiazolyl tetrazolium (MTT assay. Alkaline phosphatase activity and osteocalcin (OC dynamics were also measured. Results: BMP-4/7 alone significantly (P<0.05 promoted the proliferation of BMSCs. At the same time, it also promoted or inhibited the osteogenic differentiation of BMSCs. The synergistic effects of BMP-4/7 and bFGF significantly promoted both the proliferation and the osteogenic differentiation of BMSCs. The treatment of the synergistic effects was dose and time dependent. Interpretation & conclusions: A rational combination of BMP-4/7 and bFGF can promote the proliferation and the osteogenic differentiation of BMSCs. In addition, the synergistic functions are effective.

  17. Benign versus malignant osseous lesions in spine: differentiation by means of bone SPECT/CT fused image

    International Nuclear Information System (INIS)

    Yao Zhiming; Qu Wanying

    2004-01-01

    This study compared the efficiency of SPECT-CT fused image with planar bone scan, bone SPECT and CT in differentiating malignant from benign lesions and detecting metastases to the spine. Methods. Total 144 patients with spinal lesions underwent planar bone scan (WB), single photon tomography (SPECT), CT and SPECT-CT fused image by a SPECT/CT system. The malignant or benign nature of lesions was proved by radiological Methods, histological findings, 6-24 month follow-up, or all of these. The diagnostic results was divided into 4 types, i.e., normal, benign, doubtful malignant and malignant. Results. There were 137 malignant and 252 benign lesions in 144 patients, respectively. The percentages of doubtful malignant diagnosed by WB, SPECT, CT and fused image are 22.6%, 5.1%, 9.5% and 0%, respectively, p < 0.01-0.001, except for the comparison between the percentages of SPECT and CT. Sensitivities in detection of malignant lesions by WB, SPECT, CT and fused image are 75.2%, 94.2%, 96.6% and 99.3%, respectively, P < 0.001, excepting for the comparisons between those of SPECT and CT, and between those of CT and fused image. The sensitivities m detection of benign lesions by WB, SPECT, CT and fused image are, 56.7%, 86.5%, 90.1% and 96.8%, respectively, P < 0.005 - 0.001, excepting for the comparison between those of SPECT and CT. The specificities in detection of maliganant lesions by WB, SPECT, CT and fused image are 70.6%, 88.9%, 97.2% and 97.6%, respectively, P < 0.001, excepting for the comparison between those of CT and fused image. Conclusion. Bone SPECT-CT fused image has highest diagnostic and differentiating diagnostic values in detection of spinal abnormalities over the planar bone scanning and SPECT. The CT by present SPECT/CT system can complement planar bone scanning and SPECT and is clinically valuable in detection of spinal abnormalities. (authors)

  18. The Effect of Quercetin on the Osteogenesic Differentiation and Angiogenic Factor Expression of Bone Marrow-Derived Mesenchymal Stem Cells.

    Directory of Open Access Journals (Sweden)

    Yuning Zhou

    Full Text Available Bone marrow-derived mesenchymal stem cells (BMSCs are widely used in regenerative medicine in light of their ability to differentiate along the chondrogenic and osteogenic lineages. As a type of traditional Chinese medicine, quercetin has been preliminarily reported to promote osteogenic differentiation in osteoblasts. In the present study, the effects of quercetin on the proliferation, viability, cellular morphology, osteogenic differentiation and angiogenic factor secretion of rat BMSCs (rBMSCs were examined by MTT assay, fluorescence activated cell sorter (FACS analysis, real-time quantitative PCR (RT-PCR analysis, alkaline phosphatase (ALP activity and calcium deposition assays, and Enzyme-linked immunosorbent assay (ELISA. Moreover, whether mitogen-activated protein kinase (MAPK signaling pathways were involved in these processes was also explored. The results showed that quercetin significantly enhanced the cell proliferation, osteogenic differentiation and angiogenic factor secretion of rBMSCs in a dose-dependent manner, with a concentration of 2 μM achieving the greatest stimulatory effect. Moreover, the activation of the extracellular signal-regulated protein kinases (ERK and p38 pathways was observed in quercetin-treated rBMSCs. Furthermore, these induction effects could be repressed by either the ERK inhibitor PD98059 or the p38 inhibitor SB202190, respectively. These data indicated that quercetin could promote the proliferation, osteogenic differentiation and angiogenic factor secretion of rBMSCs in vitro, partially through the ERK and p38 signaling pathways.

  19. Restoration of osteogenic differentiation by overexpression of cannabinoid receptor 2 in bone marrow mesenchymal stem cells isolated from osteoporotic patients.

    Science.gov (United States)

    Wang, Bangjun; Lian, Kai; Li, Jun; Mei, Gang

    2018-01-01

    Cannabinoid receptor 2 (CNR2) has a critical role in osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs). CNR2 expression was found to be downregulated in osteoporotic patients. The present study aimed to investigate the functionality of CNR2 in restoring osteogenic differentiation and mineralization of BMSCs isolated from osteoporotic patients. CNR2 was overexpressed in osteoporotic BMSCs by a lentivirus. Alkaline phosphatase (ALP) activity staining and alizarin red S staining were performed to examine the osteogenic differentiation of osteoporotic BMSCs. Reverse-transcription quantitative polymerase chain reaction analysis was performed to examine the expression of osteogenic genes in BMSCs. Western blot analysis was used to study the activation of p38 mitogen-activated protein kinase (MAPK) during osteogenic differentiation of osteoporotic BMSCs after lentivirus-mediated overexpression of CNR2. The results demonstrated that overexpression of CNR2 in osteoporotic BMSCs increased ALP activity, promoted expression of osteogenic genes and enhanced deposition of mineralized extracellular matrix. In addition, phosphorylation of p38 MAPK was found to be increased by overexpression of CNR2. In conclusion, the present study indicated that restoration of CNR2 recovered the osteogenic differentiation of BMSCs isolated from osteoporotic patients. This finding may provide a novel strategy for a treatment approach for osteoporosis.

  20. Altered microRNA expression profile in exosomes during osteogenic differentiation of human bone marrow-derived mesenchymal stem cells.

    Directory of Open Access Journals (Sweden)

    Ji-Feng Xu

    Full Text Available The physiological role of microRNAs (miRNAs in osteoblast differentiation remains elusive. Exosomal miRNAs isolated from human bone marrow-derived mesenchymal stem cells (BMSCs culture were profiled using miRNA arrays containing probes for 894 human matured miRNAs. Seventy-nine miRNAs (∼8.84% could be detected in exosomes isolated from BMSC culture supernatants when normalized to endogenous control genes RNU44. Among them, nine exosomal miRNAs were up regulated and 4 miRNAs were under regulated significantly (Relative fold>2, p<0.05 when compared with the values at 0 day with maximum changes at 1 to 7 days. Five miRNAs (miR-199b, miR-218, miR-148a, miR-135b, and miR-221 were further validated and differentially expressed in the individual exosomal samples from hBMSCs cultured at different time points. Bioinformatic analysis by DIANA-mirPath demonstrated that RNA degradation, mRNA surveillance pathway, Wnt signaling pathway, RNA transport were the most prominent pathways enriched in quantiles with differential exosomal miRNA patterns related to osteogenic differentiation. These data demonstrated exosomal miRNA is a regulator of osteoblast differentiation.

  1. Differential expression pattern of extracellular matrix molecules during chondrogenesis of mesenchymal stem cells from bone marrow and adipose tissue

    DEFF Research Database (Denmark)

    Mehlhorn, A T; Niemeyer, P; Kaiser, S

    2006-01-01

    Adipose-derived adult stem cells (ADASCs) or bone marrow-derived mesenchymal stem cells (BMSCs) are considered as alternative cell sources for cell-based cartilage repair due to their ability to produce cartilage-specific matrix. This article addresses the differential expression pattern...... chondroinduction. TGF-beta1 induces alternative splicing of the alpha(1)-procollagen type II transcript in BMSCs, but not in ADASCs. These findings may direct the development of a cell-specific culture environment either to prevent hypertrophy in BMSCs or to promote chondrogenic maturation in ADASCs....

  2. Bone metastases of differentiated thyroid cancer: the importance of early diagnosis and 131I therapy on prognosis

    International Nuclear Information System (INIS)

    Zanotti-Fregonara, P.; Rubello, D.; Hindie, E.

    2008-01-01

    Complete text of publication follows: Distant metastases are found at diagnosis or during follow-up in 10%-15% of patients with differentiated thyroid cancer. Bone is the second most commonly involved site. Patients with bone metastases, whether isolated or associated with lung metastases, have a markedly poor prognosis. Ten-year survival rates range from 13% to 21%. Given such poor prognosis, the use of 131 I therapy has been questioned. However, it might well be that poor prognosis of bone metastases can be overcome if 131 I therapy is delivered at an early stage, when tumor burden is small, as previously demonstrated for pulmonary metastases. A review of a large series of patients showed that only rarely were bone metastases diagnosed at an early stage. Among 109 patients with bone metastases reported by Bernier et al., only 4 had both radioiodine uptake and a negative standard radiography examination. Similarly, Durante et al. reported that only 8 of 115 patients had negative radiography findings at presentation. Prognosis may improve if bone metastases are detected earlier. In a recent study, bone metastases were first detected by 131 I scanning in 8 of 16 patients, when complementary radiologic studies were negative. Six of these patients showed an excellent response to 131 I therapy. Today, the nuclear medicine community is well armed for this challenge toward earlier diagnosis. Postsurgery thyroid remnant ablation is more widely used. The 131 I whole body scan associated with thyroid remnant ablation after thyroidectomy has a major role in early diagnosis of functioning distant metastases at a time when complementary imaging techniques (CT, MRI, bone scanning) are often still showing negative findings. Early diagnosis of specific 131 I-avid bone foci will be improved with the advent and generalization of SPECT/CT. When early diagnosis is achieved, repeated 131 I therapy can be effective by targeting not only visible metastases but also those still too small

  3. Tissue source determines the differentiation potentials of mesenchymal stem cells: a comparative study of human mesenchymal stem cells from bone marrow and adipose tissue.

    Science.gov (United States)

    Xu, Liangliang; Liu, Yamei; Sun, Yuxin; Wang, Bin; Xiong, Yunpu; Lin, Weiping; Wei, Qiushi; Wang, Haibin; He, Wei; Wang, Bin; Li, Gang

    2017-12-06

    Mesenchymal stem cells (MSCs) possess intrinsic regeneration capacity as part of the repair process in response to injury, such as fracture or other tissue injury. Bone marrow and adipose tissue are the major sources of MSCs. However, which cell type is more effective and suitable for cell therapy remains to be answered. The intrinsic molecular mechanism supporting the assertion has also been lacking. Human bone marrow-derived MSCs (BMSCs) and adipose tissue-derived MSCs (ATSCs) were isolated from bone marrow and adipose tissue obtained after total hip arthroplasty. ATSCs and BMSCs were incubated in standard growth medium. Trilineage differentiation including osteogenesis, adipogenesis, and chondrogenesis was performed by addition of relevant induction mediums. The expression levels of trilineage differentiation marker genes were evaluated by quantitative RT-PCR. The methylation status of CpG sites of Runx2, PPARγ, and Sox9 promoters were checked by bisulfite sequencing. In addition, ectopic bone formation and calvarial bone critical defect models were used to evaluate the bone regeneration ability of ATSCs and BMSCs in vivo. The results showed that BMSCs possessed stronger osteogenic and lower adipogenic differentiation potentials compared to ATSCs. There was no significant difference in the chondrogenic differentiation potential. The CpG sites of Runx2 promoter in BMSCs were hypomethylated, while in ATSCs they were hypermethylated. The CpG sites of PPARγ promoter in ATSCs were hypomethylated, while in BMSCs they were hypermethylated. The methylation status of Sox9 promoter in BMSCs was only slightly lower than that in ATSCs. The epigenetic memory obtained from either bone marrow or adipose tissue favored MSC differentiation along an osteoblastic or adipocytic lineage. The methylation status of the main transcription factors controlling MSC fate contributes to the differential differentiation capacities of different source-derived MSCs.

  4. Neurospheres induced from bone marrow stromal cells are multipotent for differentiation into neuron, astrocyte, and oligodendrocyte phenotypes

    International Nuclear Information System (INIS)

    Suzuki, Hidenori; Taguchi, Toshihiko; Tanaka, Hiroshi; Kataoka, Hideo; Li Zhenglin; Muramatsu, Keiichi; Gondo, Toshikazu; Kawai, Shinya

    2004-01-01

    Bone marrow stromal cells (MSCs) can be expanded rapidly in vitro and have the potential to be differentiated into neuronal, glial and endodermal cell types. However, induction for differentiation does not always have stable result. We present a new method for efficient induction and acquisition of neural progenitors, neuronal- and glial-like cells from MSCs. We demonstrate that rat MSCs can be induced to neurospheres and most cells are positive for nestin, which is an early marker of neuronal progenitors. In addition, we had success in proliferation of these neurospheres with undifferentiated characteristics and finally we could obtain large numbers of neuronal and glial phenotypes. Many of the cells expressed β-tubulin III when they were cultivated with our method. MSCs can become a valuable cell source as an autograft for clinical application involving regeneration of the central nervous system

  5. RNA-seq analysis of differential gene expression in liver from lactating dairy cows divergent in negative energy balance

    Directory of Open Access Journals (Sweden)

    McCabe Matthew

    2012-05-01

    Full Text Available Abstract Background The liver is central to most economically important metabolic processes in cattle. However, the changes in expression of genes that drive these processes remain incompletely characterised. RNA-seq is the new gold standard for whole transcriptome analysis but so far there are no reports of its application to analysis of differential gene expression in cattle liver. We used RNA-seq to study differences in expression profiles of hepatic genes and their associated pathways in individual cattle in either mild negative energy balance (MNEB or severe negative energy balance (SNEB. NEB is an imbalance between energy intake and energy requirements for lactation and body maintenance. This aberrant metabolic state affects high-yielding dairy cows after calving and is of considerable economic importance because of its negative impact on fertility and health in dairy herds. Analysis of changes in hepatic gene expression in SNEB animals will increase our understanding of NEB and contribute to the development of strategies to circumvent it. Results RNA-seq analysis was carried out on total RNA from liver from early post partum Holstein Friesian cows in MNEB (n = 5 and SNEB (n = 6. 12,833 genes were deemed to be expressed (>4 reads per gene per animal, 413 of which were shown to be statistically significantly differentially expressed (SDE at a false discovery rate (FDR of 0.1% and 200 of which were SDE (FDR of 0.1% with a ≥2-fold change between MNEB and SNEB animals. GOseq/KEGG pathway analysis showed that SDE genes with ≥2- fold change were associated (P Conclusions RNA-seq analysis showed that the major changes at the level of transcription in the liver of SNEB cows were related to fat metabolism. 'Steroid hormone biosynthesis', a process that normally occurs in reproductive tissue, was significantly associated with changes in gene expression in the liver of SNEB cows. Changes in gene expression were found in this pathway that

  6. RNA-seq analysis of differential gene expression in liver from lactating dairy cows divergent in negative energy balance

    Science.gov (United States)

    2012-01-01

    Background The liver is central to most economically important metabolic processes in cattle. However, the changes in expression of genes that drive these processes remain incompletely characterised. RNA-seq is the new gold standard for whole transcriptome analysis but so far there are no reports of its application to analysis of differential gene expression in cattle liver. We used RNA-seq to study differences in expression profiles of hepatic genes and their associated pathways in individual cattle in either mild negative energy balance (MNEB) or severe negative energy balance (SNEB). NEB is an imbalance between energy intake and energy requirements for lactation and body maintenance. This aberrant metabolic state affects high-yielding dairy cows after calving and is of considerable economic importance because of its negative impact on fertility and health in dairy herds. Analysis of changes in hepatic gene expression in SNEB animals will increase our understanding of NEB and contribute to the development of strategies to circumvent it. Results RNA-seq analysis was carried out on total RNA from liver from early post partum Holstein Friesian cows in MNEB (n = 5) and SNEB (n = 6). 12,833 genes were deemed to be expressed (>4 reads per gene per animal), 413 of which were shown to be statistically significantly differentially expressed (SDE) at a false discovery rate (FDR) of 0.1% and 200 of which were SDE (FDR of 0.1%) with a ≥2-fold change between MNEB and SNEB animals. GOseq/KEGG pathway analysis showed that SDE genes with ≥2- fold change were associated (P metabolism and unexpectedly included ‘Steroid hormone biosynthesis’, a process which mainly occurs in the reproductive organs rather than the liver. Conclusions RNA-seq analysis showed that the major changes at the level of transcription in the liver of SNEB cows were related to fat metabolism. 'Steroid hormone biosynthesis', a process that normally occurs in reproductive tissue, was

  7. Promoting effect of small molecules in cardiomyogenic and neurogenic differentiation of rat bone marrow-derived mesenchymal stem cells

    Directory of Open Access Journals (Sweden)

    Khanabdali R

    2015-12-01

    Full Text Available Ramin Khanabdali,1 Anbarieh Saadat,1 Maizatul Fazilah,1 Khairul Fidaa’ Khairul Bazli,1 Rida-e-Maria Qazi,2 Ramla Sana Khalid,2 Durriyyah Sharifah Hasan Adli,1 Soheil Zorofchian Moghadamtousi,1 Nadia Naeem,2 Irfan Khan,2 Asmat Salim,2 ShamsulAzlin Ahmad Shamsuddin,1 Gokula Mohan1 1Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia; 2Dr Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan Abstract: Small molecules, growth factors, and cytokines have been used to induce differentiation of stem cells into different lineages. Similarly, demethylating agents can trigger differentiation in adult stem cells. Here, we investigated the in vitro differentiation of rat bone marrow mesenchymal stem cells (MSCs into cardiomyocytes by a demethylating agent, zebularine, as well as neuronal-like cells by β-mercaptoethanol in a growth factor or cytokines-free media. Isolated bone marrow-derived MSCs cultured in Dulbecco’s Modified Eagle’s Medium exhibited a fibroblast-like morphology. These cells expressed positive markers for CD29, CD44, and CD117 and were negative for CD34 and CD45. After treatment with 1 µM zebularine for 24 hours, the MSCs formed myotube-like structures after 10 days in culture. Expression of cardiac-specific genes showed that treated MSCs expressed significantly higher levels of cardiac troponin-T, Nkx2.5, and GATA-4 compared with untreated cells. Immunocytochemical analysis showed that differentiated cells also expressed cardiac proteins, GATA-4, Nkx 2.5, and cardiac troponin-T. For neuronal differentiation, MSCs were treated with 1 and 10 mM β-mercaptoethanol overnight for 3 hours in complete and serum-free Dulbecco’s Modified Eagle’s Medium, respectively. Following overnight treatment, neuron-like cells with axonal and dendritic-like projections originating from the

  8. Embryonic stem cells in scaffold-free three-dimensional cell culture: osteogenic differentiation and bone generation

    Directory of Open Access Journals (Sweden)

    Meyer Ulrich

    2011-07-01

    Full Text Available Abstract Extracorporeal formation of mineralized bone-like tissue is still an unsolved challenge in tissue engineering. Embryonic stem cells may open up new therapeutic options for the future and should be an interesting model for the analysis of fetal organogenesis. Here we describe a technique for culturing embryonic stem cells (ESCs in the absence of artificial scaffolds which generated mineralized miromasses. Embryonic stem cells were harvested and osteogenic differentiation was stimulated by the addition of dexamethasone, ascorbic acid, and ß-glycerolphosphate (DAG. After three days of cultivation microspheres were formed. These spherical three-dimensional cell units showed a peripheral zone consisting of densely packed cell layers surrounded by minerals that were embedded in the extracellular matrix. Alizarine red staining confirmed evidence of mineralization after 10 days of DAG stimulation in the stimulated but not in the control group. Transmission electron microscopy demonstrated scorching crystallites and collagenous fibrils as early indication of bone formation. These extracellular structures resembled hydroxyl apatite-like crystals as demonstrated by distinct diffraction patterns using electron diffraction analysis. The micromass culture technique is an appropriate model to form three-dimensional bone-like micro-units without the need for an underlying scaffold. Further studies will have to show whether the technique is applicable also to pluripotent stem cells of different origin.

  9. Evaluating differential nuclear DNA yield rates and osteocyte numbers among human bone tissue types: A synchrotron radiation micro-CT approach.

    Science.gov (United States)

    Andronowski, Janna M; Mundorff, Amy Z; Pratt, Isaac V; Davoren, Jon M; Cooper, David M L

    2017-05-01

    Molecular human identification has conventionally focused on DNA sampling from dense, weight-bearing cortical bone tissue, typically from femora or tibiae. A comparison of skeletal elements from three contemporary individuals demonstrated that elements with high quantities of cancellous bone yielded nuclear DNA at the highest rates, suggesting that preferentially sampling cortical bone may be suboptimal (Mundorff & Davoren, 2014). Despite these findings, the reason for the differential DNA yields between cortical and cancellous bone tissues remains unknown. The primary goal of this work is to ascertain whether differences in bone microstructure can be used to explain differential nuclear DNA yield among bone tissue types observed by Mundorff and Davoren (2014), with a focus on osteocytes and the three-dimensional (3D) quantification of their associated lacunae. Osteocytes and other bone cells are recognized to house DNA in bone tissue, thus examining the density of their lacunae may explain why nuclear DNA yield rates differ among bone tissue types. Lacunae were visualized and quantified using synchrotron radiation-based micro-Computed Tomographic imaging (SR micro-CT). Volumes of interest (VOIs) from cortical and cancellous bone tissues (n=129) were comparatively analyzed from the three skeletons sampled for Mundorff and Davoren's (2014) study. Analyses tested the primary hypothesis that the abundance and density of osteocytes (inferred from their lacunar spaces) vary between cortical and cancellous bone tissue types. Results demonstrated that osteocyte lacunar abundance and density vary between cortical and cancellous bone tissue types, with cortical bone VOIs containing a higher lacunar abundance and density. We found that the osteocyte lacunar density values are independent of nuclear DNA yield, suggesting an alternative explanation for the higher nuclear DNA yields from bones with greater quantities of cancellous bone tissue. The use of SR micro-CT allowed for

  10. Antagonistic and synergistic effects of bone morphogenetic protein 2/7 and all-trans retinoic acid on the osteogenic differentiation of rat bone marrow stromal cells

    NARCIS (Netherlands)

    Bi, W.; Gu, Z.; Zheng, Y.; Wang, L.; Guo, J.; Wu, G.

    2013-01-01

    The osteogenesis of bone marrow stromal cells (BMSCs) is of paramount importance for the repair of large-size bone defects, which may be compromised by the dietary-accumulated all-trans retinoic acid (ATRA). We have shown that heterodimeric bone morphogenetic protein 2/7 (BMP2/7) could induce bone

  11. Hydrogen gas treatment prolongs replicative lifespan of bone marrow multipotential stromal cells in vitro while preserving differentiation and paracrine potentials

    Energy Technology Data Exchange (ETDEWEB)

    Kawasaki, Haruhisa [Department of Pathology, The Ohio State University, Columbus, OH 43210 (United States); Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210 (United States); Guan, Jianjun [Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210 (United States); Tamama, Kenichi, E-mail: kenichi.tamama@osumc.edu [Department of Pathology, The Ohio State University, Columbus, OH 43210 (United States); Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210 (United States); Center for Stem Cell and Regenerative Medicine, The Ohio State University, Columbus, OH 43210 (United States)

    2010-07-02

    Cell therapy with bone marrow multipotential stromal cells/mesenchymal stem cells (MSCs) represents a promising approach in the field of regenerative medicine. Low frequency of MSCs in adult bone marrow necessitates ex vivo expansion of MSCs after harvest; however, such a manipulation causes cellular senescence with loss of differentiation, proliferative, and therapeutic potentials of MSCs. Hydrogen molecules have been shown to exert organ protective effects through selective reduction of hydroxyl radicals. As oxidative stress is one of the key insults promoting cell senescence in vivo as well as in vitro, we hypothesized that hydrogen molecules prevent senescent process during MSC expansion. Addition of 3% hydrogen gas enhanced preservation of colony forming early progenitor cells within MSC preparation and prolonged the in vitro replicative lifespan of MSCs without losing differentiation potentials and paracrine capabilities. Interestingly, 3% hydrogen gas treatment did not decrease hydroxyl radical, protein carbonyl, and 8-hydroxydeoxyguanosine, suggesting that scavenging hydroxyl radical might not be responsible for these effects of hydrogen gas in this study.

  12. Nano-scaled hydroxyapatite/silk fibroin sheets support osteogenic differentiation of rat bone marrow mesenchymal cells

    International Nuclear Information System (INIS)

    Tanaka, Toshimitsu; Hirose, Motohiro; Kotobuki, Noriko; Ohgushi, Hajime; Furuzono, Tsutomu; Sato, Junichi

    2007-01-01

    A novel biomaterial that was composed of nano-scaled sintered hydroxyapatite (HAp) and silk fibroin (SF) was fabricated. We cultured rat marrow mesenchymal cells (MMCs) on this biomaterial (nano-HAp/SF sheet), on bare SF sheets, and on tissue culture polystyrene (TCPS) dishes as controls, then evaluated cell adhesion, proliferation, and differentiation of the MMCs. After 1 h of culture, a large number of viable cells were observed on the nano-HAp/SF sheets in comparison to the controls. In addition, after 3 h of culture, the morphology of the cells on the nano-HAp/SF sheets was quite different from that on the SF sheets. MMCs extrude their cytoplasmic processes to nano-HAp particles and are well attached to the sheets. After 14 days of culture, under osteogenic conditions, the alkaline phosphatase (ALP) activity and bone-specific osteocalcin secretion of the cells on nano-HAp/SF sheets were higher than were those on the controls. These results indicated that the surface of the nano-HAp/SF sheets is covered with appropriate HAp crystal for MMC adhesion/proliferation and that the sheets effectively support the osteogenic differentiation of MMCs. Therefore, the nano-HAp/SF sheet is an effective biomaterial that is applicable in bone reconstruction surgery

  13. Effects of matrix metalloproteinase-1 on the myogenic differentiation of bone marrow-derived mesenchymal stem cells in vitro

    International Nuclear Information System (INIS)

    Zheng, Zhenyang; Leng, Yan; Zhou, Chen; Ma, Zhenyu; Zhong, Zhigang; Shi, Xing-Ming; Zhang, Weixi

    2012-01-01

    Highlights: ► MMP-1 is a member of the zinc-dependent endopeptidase family. ► MMP-1 has no cytotoxic effects on BMSCs. ► MMP-1 can promote the myogenic differentiation of BMSCs. ► MyoD and desmin were chosen as myogenic markers in this study. -- Abstract: Matrix metalloproteinase-1 (MMP-1) is a member of the family of zinc-dependent endopeptidases that are capable of degrading extracellular matrix (ECM) and certain non-matrix proteins. It has been shown that MMP-1 can enhance muscle regeneration by improving the differentiation and migration of myoblasts. However, it is still not known whether MMP-1 can promote the myogenesis of bone marrow-derived mesenchymal stem cells (BMSCs). To address this question, we isolated BMSCs from C57BL/6J mice and investigated the effects of MMP-1 on their proliferation and myogenic differentiation. Our results showed that MMP-1 treatment, which had no cytotoxic effects on BMSCs, increased the mRNA and protein levels of MyoD and desmin in a dose-dependent manner, indicating that MMP-1 promoted myogenic differentiation of BMSCs in vitro. These results suggest that BMSCs may have a therapeutic potential for treating muscular disorders.

  14. The New Role of CD163 in the Differentiation of Bone Marrow Stromal Cells into Vascular Endothelial-Like Cells

    Directory of Open Access Journals (Sweden)

    Wei Lu

    2016-01-01

    Full Text Available Bone marrow stromal cells (BMSCs can differentiate into vascular endothelial cells (VECs. It is regarded as an important solution to cure many diseases, such as ischemic diseases and diabetes. However, the mechanisms underlying BMSC differentiation into VECs are not well understood. Recent reports showed that CD163 expression was associated with angiogenesis. In this study, overexpression of CD163 in BMSCs elevated the protein level of the endothelial-associated markers CD31, Flk-1, eNOS, and VE-cadherin, significantly increased the proportion of Alexa Fluor 488-acetylated-LDL-positive VECs, and promoted angiogenesis on Matrigel. Furthermore, we demonstrated that CD163 acted downstream homeobox containing 1 (Hmbox1 and upstream fibroblast growth factor 2 (FGF-2. These data suggested that CD163 was involved in Hmbox1/CD163/FGF-2 signal pathway in BMSC differentiation into vascular endothelial-like cells. We found a new signal pathway and a novel target for further investigating the gene control of BMSC differentiation into a VEC lineage.

  15. Visceral Leishmaniasis: A Differential Diagnosis to Remember after Bone Marrow Transplantation

    Directory of Open Access Journals (Sweden)

    Margarida Dantas Brito

    2014-01-01

    Full Text Available Leishmania infection in immunocompromised hosts is reported in the literature, mostly concerning human immunodeficiency virus infected patients. It is not well characterized in the context of stem cell transplantation. We report a rare case clinical case of visceral leishmaniasis after allogeneic bone marrow transplantation. A 50-year-old Caucasian male was referred to allogeneic bone marrow transplantation with a high-risk acute lymphoblastic B leukemia in first complete remission. Allogeneic SCT was performed with peripheral blood stem cells from an unrelated Portuguese matched donor. In the following months, patient developed mild fluctuating cytopenias, mostly thrombocytopenia (between 60 and 80∗109/L. The only significant complaint was intermittent tiredness. The common causes for thrombocytopenia in this setting were excluded—no evidence of graft versus host disease, no signs of viral or bacterial infection, and no signs of relapsed disease/dysplastic changes. The bone marrow smear performed 12 months after transplantation revealed an unsuspected diagnosis: a massive bone marrow infiltration with amastigotes.

  16. Legumain Regulates Differentiation Fate of Human Bone Marrow Stromal Cells and Is Altered in Postmenopausal Osteoporosis

    DEFF Research Database (Denmark)

    Jafari, Abbas; Qanie, Diyako; Levin Andersen, Thomas

    2017-01-01

    Secreted factors are a key component of stem cell niche and their dysregulation compromises stem cell function. Legumain is a secreted cysteine protease involved in diverse biological processes. Here, we demonstrate that legumain regulates lineage commitment of human bone marrow stromal cells...

  17. Arctigenin suppresses receptor activator of nuclear factor κB ligand (RANKL)-mediated osteoclast differentiation in bone marrow-derived macrophages.

    Science.gov (United States)

    Kim, A-Ram; Kim, Hyuk Soon; Lee, Jeong Min; Choi, Jung Ho; Kim, Se Na; Kim, Do Kyun; Kim, Ji Hyung; Mun, Se Hwan; Kim, Jie Wan; Jeon, Hyun Soo; Kim, Young Mi; Choi, Wahn Soo

    2012-05-05

    Osteoclasts, multinucleated bone-resorbing cells, are closely associated with bone diseases such as rheumatoid arthritis and osteoporosis. Osteoclasts are derived from hematopoietic precursor cells, and their differentiation is mediated by two cytokines, including macrophage colony stimulating factor and receptor activator of nuclear factor κB ligand (RANKL). Previous studies have shown that arctigenin exhibits an anti-inflammatory effect. However, the effect of arctigenin on osteoclast differentiation is yet to be elucidated. In this study, we found that arctigenin inhibited RANKL-mediated osteoclast differentiation in bone marrow macrophages in a dose-dependent manner and suppressed RANKL-mediated bone resorption. Additionally, the expression of typical marker proteins, such as NFATc1, c-Fos, TRAF6, c-Src, and cathepsin K, were significantly inhibited. Arctigenin inhibited the phosphorylation of Erk1/2, but not p38 and JNK, in a dose-dependent manner. Arctigenin also dramatically suppressed immunoreceptor tyrosine-based activation motif-mediated costimulatory signaling molecules, including Syk and PLCγ2, and Gab2. Notably, arctigenin inhibited the activation of Syk through RANKL stimulation. Furthermore, arctigenin prevented osteoclast differentiation in the calvarial bone of mice following stimulation with lipopolysaccharide. Our results show that arctigenin inhibits osteoclast differentiation in vitro and in vivo. Therefore, arctigenin may be useful for treating rheumatoid arthritis and osteoporosis. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Bone morphogenic protein-2 regulates the myogenic differentiation of PMVECs in CBDL rat serum-induced pulmonary microvascular remodeling

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Chang; Chen, Lin; Zeng, Jing; Cui, Jian; Ning, Jiao-nin [Department of Anesthesia, Southwest Hospital, The Third Military Medical University, Chongqing 400038 (China); Wang, Guan-song [Institute of Respiratory Disease, Xinqiao Hospital, The Third Military Medical University, Chongqing 400037 (China); Belguise, Karine; Wang, Xiaobo [Université P. Sabatier Toulouse III and CNRS, LBCMCP, 31062 Toulouse Cedex 9 (France); Qian, Gui-sheng [Institute of Respiratory Disease, Xinqiao Hospital, The Third Military Medical University, Chongqing 400037 (China); Lu, Kai-zhi [Department of Anesthesia, Southwest Hospital, The Third Military Medical University, Chongqing 400038 (China); Yi, Bin, E-mail: yibin1974@163.com [Department of Anesthesia, Southwest Hospital, The Third Military Medical University, Chongqing 400038 (China)

    2015-08-01

    Hepatopulmonary syndrome (HPS) is characterized by an arterial oxygenation defect induced by intrapulmonary vasodilation (IPVD) that increases morbidity and mortality. In our previous study, it was determined that both the proliferation and the myogenic differentiation of pulmonary microvascular endothelial cells (PMVECs) play a key role in the development of IPVD. However, the molecular mechanism underlying the relationship between IPVD and the myogenic differentiation of PMVECs remains unknown. Additionally, it has been shown that bone morphogenic protein-2 (BMP2), via the control of protein expression, may regulate cell differentiation including cardiomyocyte differentiation, neuronal differentiation and odontoblastic differentiation. In this study, we observed that common bile duct ligation (CBDL)-rat serum induced the upregulation of the expression of several myogenic proteins (SM-α-actin, calponin, SM-MHC) and enhanced the expression levels of BMP2 mRNA and protein in PMVECs. We also observed that both the expression levels of Smad1/5 and the activation of phosphorylated Smad1/5 were significantly elevated in PMVECs following exposure to CBDL-rat serum, which was accompanied by the down-regulation of Smurf1. The blockage of the BMP2/Smad signaling pathway with Noggin inhibited the myogenic differentiation of PMVECs, a process that was associated with relatively low expression levels of both SM-α-actin and calponin in the setting of CBDL-rat serum exposure, although SM-MHC expression was not affected. These findings suggested that the BMP2/Smad signaling pathway is involved in the myogenic differentiation of the PMVECs. In conclusion, our data highlight the pivotal role of BMP2 in the CBDL-rat serum-induced myogenic differentiation of PMVECs via the activation of both Smad1 and Smad5 and the down-regulation of Smurf1, which may represent a potential therapy for HPS-induced pulmonary vascular remodeling. - Highlights: • CBDL-rat serum promotes the myogenic

  19. Role of the unfolded protein response in topography-induced osteogenic differentiation in rat bone marrow mesenchymal stem cells.

    Science.gov (United States)

    Shi, Mengqi; Song, Wen; Han, Tianxiao; Chang, Bei; Li, Guangwen; Jin, Jianfeng; Zhang, Yumei

    2017-05-01

    The topography of biomaterials can significantly influence the osteogenic differentiation of cells. Understanding topographical signal transduction is critical for developing biofunctional surfaces, but the current knowledge is insufficient. Recently, numerous reports have suggested that the unfolded protein response (UPR) and osteogenic differentiation are inter-linked. Therefore, we hypothesize that the UPR pathway may be involved in the topography-induced osteogenesis. In the present study, different surface topographies were fabricated on pure titanium foils and the endoplasmic reticulum (ER) stress and UPR pathway were systematically investigated. We found that ER stress and the PERK-eIF2α-ATF4 pathway were activated in a time- and topography-dependent manner. Additionally, the activation of the PERK-eIF2α-ATF4 pathway by different topographies was in line with their osteogenic induction capability. More specifically, the osteogenic differentiation could be enhanced or weakened when the PERK-eIF2α-ATF4 pathway was promoted or inhibited, respectively. Furthermore, tuning of the degree of ER stress with different concentrations of thapsigargin revealed that mild ER stress promotes osteogenic differentiation, whereas excessive ER stress inhibits osteogenic differentiation and causes apoptosis. Taken together, our findings suggest that the UPR may play a critical role in topography-induced osteogenic differentiation, which may help to provide new insights into topographical signal transduction. Suitable implant surface topography can effectively improve bioactivity and eventual bone affinity. However, the mechanism of topographical signaling transduction is unclear and criteria for designation of an appropriate implant surface topography is lacking. This study shows that the ER stress and PERK-eIF2α-ATF4 pathway were activated by micro- and micro/nano-topographies, which is corresponding to the osteogenic induction abilities of these topographies. Furthermore

  20. Effect of the HDAC inhibitor vorinostat on the osteogenic differentiation of mesenchymal stem cells in vitro and bone formation in vivo.

    Science.gov (United States)

    Xu, Song; De Veirman, Kim; Evans, Holly; Santini, Gaia Cecilia; Vande Broek, Isabelle; Leleu, Xavier; De Becker, Ann; Van Camp, Ben; Croucher, Peter; Vanderkerken, Karin; Van Riet, Ivan

    2013-05-01

    Vorinostat, a histone deacetylase (HDAC) inhibitor currently in a clinical phase III trial for multiple myeloma (MM) patients, has been reported to cause bone loss. The purpose of this study was to test whether, and to what extent, vorinostat influences the osteogenic differentiation of mesenchymal stem cells (MSCs) in vitro and bone formation in vivo. Bone marrow-derived MSCs were prepared from both normal donors and MM patients. The MSCs were cultured in an osteogenic differentiation induction medium to induce osteogenic differentiation, which was evaluated by alkaline phosphatase (ALP) staining, Alizarin Red S staining and the mRNA expression of osteogenic markers. Naïve mice were administered vorinostat (100 mg/kg, ip) every other day for 3 weeks. After the mice were sacrificed, bone formation was assessed based on serum osteocalcin level and histomorphometric analysis. Vorinostat inhibited the viability of hMSCs in a concentration-dependent manner (the IC50 value was 15.57 μmol/L). The low concentration of vorinostat (1 μmol/L) did not significantly increase apoptosis in hMSCs, whereas pronounced apoptosis was observed following exposure to higher concentrations of vorinostat (10 and 50 μmol/L). In bone marrow-derived hMSCs from both normal donors and MM patients, vorinostat (1 μmol/L) significantly increased ALP activity, mRNA expression of osteogenic markers, and matrix mineralization. These effects were associated with upregulation of the bone-specifying transcription factor Runx2 and with the epigenetic alterations during normal hMSCs osteogenic differentiation. Importantly, the mice treated with vorinostat did not show any bone loss in response to the optimized treatment regimen. Vorinostat, known as a potent anti-myeloma drug, stimulates MSC osteogenesis in vitro. With the optimized treatment regimen, any decrease in bone formation was not observed in vivo.

  1. Proliferation differentiation and therapeutic effect of short-term cultured murine bone marrow cells

    International Nuclear Information System (INIS)

    Zhao Zekun; Cong Jianbo

    1986-01-01

    Murine bone marrow cells were cultured in conditioned medium of muscle. After 24 hours of culture, both adherent and suspended cells appeared in the culture. The adherent cells mainly consisted of macrophages and the suspended cells were predominantly granulocytes. After 6 days, the total number of nucleated cells and CFU-C in the culture increased about 400% and 600% respectively, but CFU-S reduced to 21% approximately. Lymphocytes persisted only for 4 days. The stem cells (CFU-S) from 6-day culture were injected into the lethally irradiated syngenic mice. The 30 day survival rate of the treated mice was 89% whereas that of the controls was only 7%. The bone marrow cells in 2/8 of recipients sacrificed at 30 or 60 days were of donor type and 6/8 of the recipients were chimeras

  2. Adhesion, growth and differentiation of osteoblasts on surface-modified materials developed for bone implants

    Czech Academy of Sciences Publication Activity Database

    Vandrovcová, Marta; Bačáková, Lucie

    2011-01-01

    Roč. 60, č. 3 (2011), s. 403-417 ISSN 0862-8408 R&D Projects: GA AV ČR(CZ) KAN101120701; GA AV ČR(CZ) KAN400480701; GA ČR(CZ) GAP108/10/1858; GA ČR(CZ) GA106/09/1000 Institutional research plan: CEZ:AV0Z50110509 Keywords : osteogenic cells * bone tissue engineering Subject RIV: EI - Biotechnology ; Bionics Impact factor: 1.555, year: 2011

  3. Staphylococcus aureus Biofilms Decrease Osteoblast Viability, Inhibits Osteogenic Differentiation, and Increases Bone Resorption in vitro

    Science.gov (United States)

    2013-06-01

    subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. 1. REPORT DATE 01...iQ5 software (BioRad, Hercules, CA). The primers sets used in this study were based on optimized and validated primers from PrimerBank© (Table 1...been shown to be strong predictors of rapid and persistent bone loss in rheumatoid arthritis, osteoporosis, and periodontal disease [22,54

  4. Repression of COUP-TFI Improves Bone Marrow-Derived Mesenchymal Stem Cell Differentiation into Insulin-Producing Cells

    Directory of Open Access Journals (Sweden)

    Tao Zhang

    2017-09-01

    Full Text Available Identifying molecular mechanisms that regulate insulin expression in bone marrow-derived mesenchymal stem cells (bmMSCs can provide clues on how to stimulate the differentiation of bmMSCs into insulin-producing cells (IPCs, which can be used as a therapeutic approach against type 1 diabetes (T1D. As repression factors may inhibit differentiation, the efficiency of this process is insufficient for cell transplantation. In this study, we used the mouse insulin 2 (Ins2 promoter sequence and performed a DNA affinity precipitation assay combined with liquid chromatography-mass spectrometry to identify the transcription factor, chicken ovalbumin upstream promoter transcriptional factor I (COUP-TFI. Functionally, bmMSCs were reprogrammed into IPCs via COUP-TFI suppression and MafA overexpression. The differentiated cells expressed higher levels of genes specific for islet endocrine cells, and they released C-peptide and insulin in response to glucose stimulation. Transplantation of IPCs into streptozotocin-induced diabetic mice caused a reduction in hyperglycemia. Mechanistically, COUP-TFI bound to the DR1 (direct repeats with 1 spacer element in the Ins2 promoter, thereby negatively regulating promoter activity. Taken together, the data provide a novel mechanism by which COUP-TFI acts as a negative regulator in the Ins2 promoter. The differentiation of bmMSCs into IPCs could be improved by knockdown of COUP-TFI, which may provide a novel stem cell-based therapy for T1D. Keywords: siRNAs, differentiation, stem cell transplantation, diabetes, mesenchymal stem cells

  5. Insulin-Producing Cells Differentiated from Human Bone Marrow Mesenchymal Stem Cells In Vitro Ameliorate Streptozotocin-Induced Diabetic Hyperglycemia.

    Directory of Open Access Journals (Sweden)

    Ying Xin

    Full Text Available The two major obstacles in the successful transplantation of islets for diabetes treatment are inadequate supply of insulin-producing tissue and immune rejection. Induction of the differentiation of human bone marrow-derived mesenchymal stem cells (hMSCs into insulin-producing cells (IPCs for autologous transplantation may alleviate those limitations.hMSCs were isolated and induced to differentiate into IPCs through a three-stage differentiation protocol in a defined media with high glucose, nicotinamide, and exendin-4. The physiological characteristics and functions of IPCs were then evaluated. Next, about 3 × 10(6 differentiated cells were transplanted into the renal sub-capsular space of streptozotocin (STZ-induced diabetic nude mice. Graft survival and function were assessed by immunohistochemistry, TUNEL staining and measurements of blood glucose levels in the mice.The differentiated IPCs were characterized by Dithizone (DTZ positive staining, expression of pancreatic β-cell markers, and human insulin secretion in response to glucose stimulation. Moreover, 43% of the IPCs showed L-type Ca2+ channel activity and similar changes in intracellular Ca2+ in response to glucose stimulation as that seen in pancreatic β-cells in the process of glucose-stimulated insulin secretion. Transplantation of functional IPCs into the renal subcapsular space of STZ-induced diabetic nude mice ameliorated the hyperglycemia. Immunofluorescence staining revealed that transplanted IPCs sustainably expressed insulin, c-peptide, and PDX-1 without apparent apoptosis in vivo.IPCs derived from hMSCs in vitro can ameliorate STZ-induced diabetic hyperglycemia, which indicates that these hMSCs may be a promising approach to overcome the limitations of islet transplantation.

  6. Surface functionalization of nanoporous alumina with bone morphogenetic protein 2 for inducing osteogenic differentiation of mesenchymal stem cells

    International Nuclear Information System (INIS)

    Song, Yuanhui; Ju, Yang; Morita, Yasuyuki; Xu, Baiyao; Song, Guanbin

    2014-01-01

    Many studies have demonstrated the possibility to regulate cellular behavior by manipulating the specific characteristics of biomaterials including the physical features and chemical properties. To investigate the synergistic effect of chemical factors and surface topography on the growth behavior of mesenchymal stem cells (MSCs), bone morphorgenic protein 2 (BMP2) was immobilized onto porous alumina substrates with different pore sizes. The BMP2-immobilized alumina substrates were characterized with scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). Growth behavior and osteogenic differentiation of MSCs cultured on the different substrates were investigated. Cell adhesion and morphological changes were observed with SEM, and the results showed that the BMP2-immobilized alumina substrate was able to promote adhesion and spreading of MSCs. MTT assay and immunofluorescence staining of integrin β1 revealed that the BMP2-immobilized alumina substrates were favorable for cell growth. To evaluate the differentiation of MSCs, osteoblastic differentiation markers, such as alkaline phosphatase (ALP) activity and mineralization, were investigated. Compared with those of untreated alumina substrates, significantly higher ALP activities and mineralization were detected in cells cultured on BMP2-immobilized alumina substrates. The results suggested that surface functionalization of nanoporous alumina substrates with BMP2 was beneficial for cell growth and osteogenic differentiation. With the approach of immobilizing growth factors onto material substrates, it provided a new insight to exploit novel biofunctional materials for tissue engineering. - Highlights: • BMP2 was immobilized onto nanoporous alumina substrates with different pore sizes. • BMP2-immobilized substrates were able to promote adhesion and spreading of MSCs. • BMP2-immobilized substrates were favorable for cell growth of MSCs. • BMP2-immobilized substrates promoted osteogenic

  7. Differentiation of Murine Bone Marrow-Derived Smooth Muscle Progenitor Cells Is Regulated by PDGF-BB and Collagen.

    Directory of Open Access Journals (Sweden)

    Clifford Lin

    Full Text Available Smooth muscle cells (SMCs are key regulators of vascular disease and circulating smooth muscle progenitor cells may play important roles in vascular repair or remodelling. We developed enhanced protocols to derive smooth muscle progenitors from murine bone marrow and tested whether factors that are increased in atherosclerotic plaques, namely platelet-derived growth factor-BB (PDGF-BB and monomeric collagen, can influence the smooth muscle specific differentiation, proliferation, and survival of mouse bone marrow-derived progenitor cells. During a 21 day period of culture, bone marrow cells underwent a marked increase in expression of the SMC markers α-SMA (1.93 ± 0.15 vs. 0.0008 ± 0.0003 (ng/ng GAPDH at 0 d, SM22-α (1.50 ± 0.27 vs. 0.005 ± 0.001 (ng/ng GAPDH at 0 d and SM-MHC (0.017 ± 0.004 vs. 0.001 ± 0.001 (ng/ng GAPDH at 0 d. Bromodeoxyuridine (BrdU incorporation experiments showed that in early culture, the smooth muscle progenitor subpopulation could be identified by high proliferative rates prior to the expression of smooth muscle specific markers. Culture of fresh bone marrow or smooth muscle progenitor cells with PDGF-BB suppressed the expression of α-SMA and SM22-α, in a rapidly reversible manner requiring PDGF receptor kinase activity. Progenitors cultured on polymerized collagen gels demonstrated expression of SMC markers, rates of proliferation and apoptosis similar to that of cells on tissue culture plastic; in contrast, cells grown on monomeric collagen gels displayed lower SMC marker expression, lower growth rates (319 ± 36 vs. 635 ± 97 cells/mm2, and increased apoptosis (5.3 ± 1.6% vs. 1.0 ± 0.5% (Annexin 5 staining. Our data shows that the differentiation and survival of smooth muscle progenitors are critically affected by PDGF-BB and as well as the substrate collagen structure.

  8. Aged human mesenchymal stem cells: the duration of bone morphogenetic protein-2 stimulation determines induction or inhibition of osteogenic differentiation

    Directory of Open Access Journals (Sweden)

    Jostein Heggebö

    2014-06-01

    Full Text Available Bone morphogenetic protein 2 (BMP-2 is a potent osteoinductive cytokine and a growing number of in vitro studies analyze its effects on human mesenchymal stem cells (hMSC derived from aged or osteoporotic donors. In these studies the exact quantification of osteogenic differentiation capacity is of fundamental interest. Nevertheless, the experimental conditions for osteogenic differentiation of aged hMSC have not been evaluated systematically and vary to a considerable extend. Aim of the study was to assess the influence of cell density, osteogenic differentiation media (ODM change intervals and duration of BMP-2 stimulation on osteoinduction. Furthermore, time series were carried out for osteogenic differentiation and BMP-2 concentration in ODM/BMP-2 cell culture supernatants. The experiments were performed using hMSC isolated from femoral heads of aged patients undergoing hip joint replacement. ODM change intervals of 96 hours resulted in significantly higher calcium deposition compared to shorter intervals. A cell density of 80% prior to stimulation led to stronger osteoinduction compared to higher cell densities. In ODM, aged hMSC showed a significant induction of calcium deposition after 9 days. Added to ODM, BMP-2 showed a stable concentration in the cell culture supernatants for at least 96 hours. Addition of BMP-2 to ODM for the initial 4 days led to a significantly higher induction of osteogenic differentiation compared to ODM alone. On the other hand, addition of BMP-2 for 21 days almost abrogated the osteoinductive effect of ODM. We could demonstrate that the factors investigated have a substantial impact on the extent of osteogenic differentiation of aged hMSC. Consequently, it is of upmost importance to standardize the experimental conditions in order to enable comparability between different studies. We here define standard conditions for osteogenic differentiation in regard to the specific features of aged hMSC. The finding that

  9. Aged Human Mesenchymal Stem Cells: The Duration of Bone Morphogenetic Protein-2 Stimulation Determines Induction or Inhibition of Osteogenic Differentiation

    Science.gov (United States)

    Heggebö, Jostein; Haasters, Florian; Polzer, Hans; Schwarz, Christina; Saller, Maximilian Michael; Mutschler, Wolf; Schieker, Matthias; Prall, Wolf Christian

    2014-01-01

    Bone morphogenetic protein 2 (BMP-2) is a potent osteoinductive cytokine and a growing number of in vitro studies analyze its effects on human mesenchymal stem cells (hMSC) derived from aged or osteoporotic donors. In these studies the exact quantification of osteogenic differentiation capacity is of fundamental interest. Nevertheless, the experimental conditions for osteogenic differentiation of aged hMSC have not been evaluated systematically and vary to a considerable extend. Aim of the study was to assess the influence of cell density, osteogenic differentiation media (ODM) change intervals and duration of BMP-2 stimulation on osteoinduction. Furthermore, time series were carried out for osteogenic differentiation and BMP-2 concentration in ODM/BMP-2 cell culture supernatants. The experiments were performed using hMSC isolated from femoral heads of aged patients undergoing hip joint replacement. ODM change intervals of 96 hours resulted in significantly higher calcium deposition compared to shorter intervals. A cell density of 80% prior to stimulation led to stronger osteoinduction compared to higher cell densities. In ODM, aged hMSC showed a significant induction of calcium deposition after 9 days. Added to ODM, BMP-2 showed a stable concentration in the cell culture supernatants for at least 96 hours. Addition of BMP-2 to ODM for the initial 4 days led to a significantly higher induction of osteogenic differentiation compared to ODM alone. On the other hand, addition of BMP-2 for 21 days almost abrogated the osteoinductive effect of ODM. We could demonstrate that the factors investigated have a substantial impact on the extent of osteogenic differentiation of aged hMSC. Consequently, it is of upmost importance to standardize the experimental conditions in order to enable comparability between different studies. We here define standard conditions for osteogenic differentiation in regard to the specific features of aged hMSC. The finding that BMP-2 induces or

  10. [Differential effects on bone and mesenchymal stem cells caused by intermittent and continuous PTH administration].

    Science.gov (United States)

    Zhang, L X; Balani, Y M; Trinh, Sophia; Kronenberg, Henry M; Mu, Yiming

    2018-03-13

    Objective: To investigate the distinct effects of intermittent and continuous administration of parathyroid hormone (PTH) on bone and mesenchymal stem cell (MSC). Methods: Six weeks old mice with C57/BL6J background and SOX9-creERT/Td-tomato/Osteocalcin-GFP genotype were divided into 6 groups: intermittent administration and withdraw group (subcutaneous injection with PTH 500 μg·kg -1 ·d -1 ), continuous administration and withdraw group (subcutaneous implantation of PTH pump, 80 μg·kg -1 ·d -1, with a rate of 0.25 μl/h), control administration and withdraw group, with 8 mice in each group. Serum calcium level and bone mineral density (BMD) were measured after two weeks' treatment and two weeks after drug withdraw. Histopathology and immunofluorescence analyses were performed to assess the effects of PTH on bone and mesenchymal stem cell. Results: Serum calcium level increased transiently in intermittent group[(1.36±0.03) mmol/L]and increased gradually in continuous group[up to (2.33±0.03) mmol/L], but reduced to normal level (1.12-1.27 mmol/L) 14 days after drug withdraw. BMD of both intermittent[(0.047±0.002) g/cm 2 ]and continuous[(0.046±0.001) g/cm 2 ]PTH administration groups increased compared with control group[(0.044±0.001) g/cm 2 ], but there was no significant difference among three groups 2 weeks after drug withdraw. Femoral histopathology showed that bone mass, trabecular number and little fibrous tissue hyperplasia in intermittent PTH group increased. Osteoblasts number increased, but lining cells decreased. There was no significant difference in osteocyte and osteoclast numbers. After withdrawing of intermittent PTH, osteocyte and osteoblast number declined significantly, but there was an increased number of lining cells. Continuous PTH caused very high amount of fibrosis, and osteoclast number increased significantly, while osteoblast and osteocyte number increased slightly. After withdrawing of continuous PTH, fibrosis disappeared

  11. Mechanical induction of dentin-like differentiation by adult mouse bone marrow stromal cells using compressive scaffolds

    Directory of Open Access Journals (Sweden)

    Basma Hashmi

    2017-10-01

    Full Text Available Tooth formation during embryogenesis is controlled through a complex interplay between mechanical and chemical cues. We have previously shown that physical cell compaction of dental mesenchyme cells during mesenchymal condensation is responsible for triggering odontogenic differentiation during embryogenesis, and that expression of Collagen VI stabilizes this induction. In addition, we have shown that synthetic polymer scaffolds that artificially induce cell compaction can induce embryonic mandible mesenchymal cells to initiate tooth differentiation both in vitro and in vivo. As embryonic cells would be difficult to use for regenerative medicine applications, here we explored whether compressive scaffolds coated with Collagen VI can be used to induce adult bone marrow stromal cells (BMSCs to undergo an odontogenic lineage switch. These studies revealed that when mouse BMSCs are compressed using these scaffolds they increase expression of critical markers of tooth differentiation in vitro, including the key transcription factors Pax9 and Msx1. Implantation under the kidney capsule of contracting scaffolds bearing these cells in mice also resulted in local mineralization, calcification and production of dentin-like tissue. These findings show that these chemically-primed compressive scaffolds can be used to induce adult BMSCs to undergo a lineage switch and begin to form dentin-like tissue, thus raising the possibility of using adult BMSCs for future tooth regeneration applications.

  12. Combined effects of bone morphogenetic protein 10 and crossveinless-2 on cardiomyocyte differentiation in mouse adipocyte-derived stem cells.

    Science.gov (United States)

    Jumabay, Medet; Zhumabai, Jiayinaguli; Mansurov, Nurlan; Niklason, Katharine C; Guihard, Pierre J; Cubberly, Mark R; Fogelman, Alan M; Iruela-Arispe, Luisa; Yao, Yucheng; Saparov, Arman; Boström, Kristina I

    2018-03-01

    Bone morphogenetic protein (BMP) 10, a cardiac-restricted BMP family member, is essential in cardiomyogenesis, especially during trabeculation. Crossveinless-2 (CV2, also known as BMP endothelial cell precursor derived regulator [BMPER]) is a BMP-binding protein that modulates the activity of several BMPs. The objective of this study was to examine the combined effects of BMP10 and CV2 on cardiomyocyte differentiation using mouse dedifferentiated fat (mDFAT) cells, which spontaneously differentiate into cardiomyocyte-like cells, as a model. Our results revealed that CV2 binds directly to BMP10, as determined by co-immunoprecipitation, and inhibits BMP10 from initiating SMAD signaling, as determined by luciferase reporter gene assays. BMP10 treatment induced mDFAT cell proliferation, whereas CV2 modulated the BMP10-induced proliferation. Differentiation of cardiomyocyte-like cells proceeded in a reproducible fashion in mDFAT cells, starting with small round Nkx2.5-positive progenitor cells that progressively formed myotubes of increasing length that assembled into beating colonies and stained strongly for Troponin I and sarcomeric alpha-actinin. BMP10 enhanced proliferation of the small progenitor cells, thereby securing sufficient numbers to support formation of myotubes. CV2, on the other hand, enhanced formation and maturation of large myotubes and myotube-colonies and was expressed by endothelial-like cells in the mDFAT cultures. Thus BMP10 and CV2 have important roles in coordinating cardiomyogenesis in progenitor cells. © 2017 Wiley Periodicals, Inc.

  13. Differential diagnosis of trampoline fracture from osteomyelitis by bone scan with pinhole collimator.

    Science.gov (United States)

    Gauthé, Mathieu; Mestas, Danielle; Canavese, Federico; Samba, Antoine; Cachin, Florent

    2014-02-01

    A 2-year-old girl with recent history of trampoline fall presented to the A&E Department for complete functional impairment of the left lower extremity and fever. Blood examination revealed an inflammatory syndrome, while plain radiographs were normal. As magnetic resonance imaging was unavailable, a bone scintigraphy was performed. While standard acquisition found an intense uptake focused on the left proximal tibial metaphysis whose appearance was suggestive of acute hematogenous osteomyelitis, complementary acquisition with the pinhole collimator demonstrated that this abnormal uptake was clearly distinct from the cartilage growth plate. One month follow-up radiographs showed a fracture that confirmed the diagnosis of trampoline fracture.

  14. Biglycan deficiency increases osteoclast differentiation and activity due to defective osteoblasts

    DEFF Research Database (Denmark)

    Bi, Yanming; Nielsen, Karina L; Kilts, Tina M

    2006-01-01

    Bone mass is maintained by a fine balance between bone formation by osteoblasts and bone resorption by osteoclasts. Although osteoblasts and osteoclasts have different developmental origins, it is generally believed that the differentiation, function, and survival of osteoclasts are regulated...... the effects of Bgn on 1alpha, 25-dihydroxyvitamin D(3) (1,25-(OH)(2)D(3))-induced osteoclast differentiation and bone resorption in an co-culture of calvariae-derived pre-osteoblasts and osteoclast precursors derived from spleen or bone marrow. Time course and dose response experiments showed that tartrate...

  15. [Frontier in bone biology].

    Science.gov (United States)

    Takeda, Shu

    2015-10-01

    Bone is an active organ in which bone mass is maintained by the balance between osteoblastic bone formation and osteoclastic bone resorption, i.e., coupling of bone formation and bone resorption. Recent advances in molecular bone biology uncovered the molecular mechanism of the coupling. A fundamental role of osteocyte in the maintenance of bone mass and whole body metabolism has also been revealed recently. Moreover, neurons and neuropeptides have been shown to be intimately involved in bone homeostasis though inter-organ network, in addition to "traditional" regulators of bone metabolism such as soluble factors and cytokines

  16. Dilemma in differentiating between acute osteomyelitis and bone infarction in children with sickle cell disease: the role of ultrasound.

    Directory of Open Access Journals (Sweden)

    Baba P D Inusa

    Full Text Available BACKGROUND: Distinguishing between acute presentations of osteomyelitis (OM and vaso-occlusive crisis (VOC bone infarction in children with sickle cell disease (SCD remains challenging for clinicians, particularly in culture-negative cases. We examined the combined role of ultrasound scan (USS, C - reactive protein and White blood counts (WCC in aiding early diagnosis in children with SCD presenting acutely with non-specific symptoms such as bone pain, fever or swelling which are common in acute osteomyelitis or VOC. METHODS: We reviewed the records of all children with SCD who were discharged from our department from October 2003 to December 2010 with a diagnosis of osteomyelitis based on clinical features and the results of radiological and laboratory investigations. A case control group with VOC who were investigated for OM were identified over the same period. RESULTS: In the osteomyelitis group, USS finding of periosteal elevation and/or fluid collection was reported in 76% cases with the first scan (day 0-6. Overall 84% were diagnosed with USS (initial +repeat. 16% had negative USS. With VOC group, USS showed no evidence of fluid collection in 53/58 admissions (91%, none of the repeated USS showed any fluid collection. Mean C-reactive protein (CRP, and white cell count (WCC were significantly higher in the OM. CONCLUSION: The use of Ultrasound in combination with CRP and WCC is a reliable, cost-effective diagnostic tool for differentiating osteomyelitis from VOC bone infarction in SCD. A repeat ultrasound and/or magnetic resonance imaging (MRI scan may be is necessary to confirm the diagnosis.

  17. Naringin Stimulates Osteogenic Differentiation of Rat Bone Marrow Stromal Cells via Activation of the Notch Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Guo-yong Yu

    2016-01-01

    Full Text Available Naringin is a major flavonoid found in grapefruit and is an active compound extracted from the Chinese herbal medicine Rhizoma Drynariae. Naringin is a potent stimulator of osteogenic differentiation and has potential application in preventing bone loss. However, the signaling pathway underlying its osteogenic effect remains unclear. We hypothesized that the osteogenic activity of naringin involves the Notch signaling pathway. Rat bone marrow stromal cells (BMSCs were cultured in osteogenic medium containing-naringin, with or without DAPT (an inhibitor of Notch signaling, the effects on ALP activity, calcium deposits, osteogenic genes (ALP, BSP, and cbfa1, adipogenic maker gene PPARγ2 levels, and Notch expression were examined. We found that naringin dose-dependently increased ALP activity and Alizarin red S staining, and treatment at the optimal concentration (50 μg/mL increased mRNA levels of osteogenic genes and Notch1 expression, while decreasing PPARγ2 mRNA levels. Furthermore, treatment with DAPT partly reversed effects of naringin on BMSCs, as judged by decreases in naringin-induced ALP activity, calcium deposits, and osteogenic genes expression, as well as upregulation of PPARγ2 mRNA levels. These results suggest that the osteogenic effect of naringin partly involves the Notch signaling pathway.

  18. Human Stromal (Mesenchymal) Stem Cells from Bone Marrow, Adipose Tissue and Skin Exhibit Differences in Molecular Phenotype and Differentiation Potential

    DEFF Research Database (Denmark)

    Al-Nbaheen, May; Vishnubalaji, Radhakrishnan; Ali, Dalia

    2013-01-01

    , but the number of cells obtained is limited. Here, we compared the MSC-like cell populations, obtained from alternative sources for MSC: adipose tissue and skin, with the standard phenotype of human bone marrow MSC (BM-MSCs). MSC from human adipose tissue (human adipose stromal cells (hATSCs)) and human skin...... (human adult skin stromal cells, (hASSCs) and human new-born skin stromal cells (hNSSCs)) grew readily in culture and the growth rate was highest in hNSSCs and lowest in hATSCs. Compared with phenotype of hBM-MSC, all cell populations were CD34(-), CD45(-), CD14(-), CD31(-), HLA-DR(-), CD13(+), CD29......Human stromal (mesenchymal) stem cells (hMSCs) are multipotent stem cells with ability to differentiate into mesoderm-type cells e.g. osteoblasts and adipocytes and thus they are being introduced into clinical trials for tissue regeneration. Traditionally, hMSCs have been isolated from bone marrow...

  19. Effect of hyaluronan on osteogenic differentiation of porcine bone marrow stromal cells in vitro

    DEFF Research Database (Denmark)

    Zou, Lijin; Zou, Xuenong; Chen, Li

    2008-01-01

    Hyaluronan (HA) plays a predominant role in tissue morphogenesis, cell migration, proliferation, and cell differentiation. The aims of the present study were to investigate whether (i) prolonged presence of high concentration (4.0 mg/mL) 800 KDa HA and (ii) pretreatment with HA can modify osteoge...

  20. Atherogenic Cytokines Regulate VEGF-A-Induced Differentiation of Bone Marrow-Derived Mesenchymal Stem Cells into Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Izuagie Attairu Ikhapoh

    2015-01-01

    Full Text Available Coronary artery stenting or angioplasty procedures frequently result in long-term endothelial dysfunction or loss and complications including arterial thrombosis and myocardial infarction. Stem cell-based therapies have been proposed to support endothelial regeneration. Mesenchymal stem cells (MSCs differentiate into endothelial cells (ECs in the presence of VEGF-A in vitro. Application of VEGF-A and MSC-derived ECs at the interventional site is a complex clinical challenge. In this study, we examined the effect of atherogenic cytokines (IL-6, TNFα, and Ang II on EC differentiation and function. MSCs (CD44+, CD73+, CD90+, CD14−, and CD45− were isolated from the bone marrow of Yucatan microswine. Naïve MSCs cultured in differentiation media containing VEGF-A (50 ng/mL demonstrated increased expression of EC-specific markers (vWF, PECAM-1, and VE-cadherin, VEGFR-2 and Sox18, and enhanced endothelial tube formation. IL-6 or TNFα caused a dose-dependent attenuation of EC marker expression in VEGF-A-stimulated MSCs. In contrast, Ang II enhanced EC marker expression in VEGF-A-stimulated MSCs. Addition of Ang II to VEGF-A and IL-6 or TNFα was sufficient to rescue the EC phenotype. Thus, Ang II promotes but IL-6 and TNFα inhibit VEGF-A-induced differentiation of MSCs into ECs. These findings have important clinical implications for therapies intended to increase cardiac vascularity and reendothelialize coronary arteries following intervention.

  1. First-line treatment with bortezomib rapidly stimulates both osteoblast activity and bone matrix deposition in patients with multiple myeloma, and stimulates osteoblast proliferation and differentiation in vitro

    Science.gov (United States)

    Lund, Thomas; Søe, Kent; Abildgaard, Niels; Garnero, Patrick; Pedersen, Per T; Ormstrup, Tina; Delaissé, Jean-Marie; Plesner, Torben

    2010-01-01

    Objectives: The aim of the study was to investigate the effect of bortezomib on osteoblast proliferation and differentiation, as well as on bone matrix deposition for the first time in bisphosphonate-naïve, previously untreated patients with myeloma. Methods: Twenty newly diagnosed patients received four cycles of bortezomib treatment, initially as monotherapy and then combined with a glucocorticoid from cycle two to four. Bone remodeling markers were monitored closely during treatment. Furthermore, the effects of bortezomib and a glucocorticoid on immature and mature osteoblasts were also studied in vitro. Results: Treatment with bortezomib caused a significant increase in bone-specific alkaline phosphatase and pro-collagen type I N-terminal propeptide, a novel bone formation marker. The addition of a glucocorticoid resulted in a transient decrease in collagen deposition. In vitro bortezomib induced osteoblast proliferation and differentiation. Differentiation but not proliferation was inhibited by glucocorticoid treatment. Conclusions: Bortezomib used as first-line treatment significantly increased collagen deposition in patients with multiple myeloma and osteolytic lesions, but the addition of a glucocorticoid to the treatment transiently inhibited the positive effect of bortezomib, suggesting that bortezomib may result in better healing of osteolytic lesions when used without glucocorticoids in patients that have obtained remission with a previous therapy. The potential bone-healing properties of single-agent bortezomib are currently being explored in a clinical study in patients who have undergone high-dose therapy and autologous stem cell transplantation. PMID:20528908

  2. The value of MRI and 31P MRS in differential diagnosis of bone and soft tissue tumors

    International Nuclear Information System (INIS)

    Liu Hongwei; Yang Zhenzhen; Li Chuanting; Lv Yubo

    2006-01-01

    Objective: To explore the value of MRI and 31 P MRS in differential diagnosis of bone and soft tissue tumors. Methods: MRI and 31 P MRS were performed in 35 bone and soft tissue tumor patients and 16 healthy volunteers at 1.5 T. The areas under the peak of various metabolite in spectra were measured. The spectra were analyzed by taking peak areas relative to peak area of β-ATP and by calculating the pH from the Pi shift relative to PCr. Results: The differences of the size, signal intensity homogeneity, border and involvement of surround structure between benign and malignant lesions had no statistically significant differences (P>0.05). There was great overlap in the MR imaging characteristics of benign and malignant lesions. The mean peak area rations of PME/β-ATP, PDE/β-ATP, LEP/β-ATP, PCr/β-ATP, intracellular pH in control group were 0.33±0.21, 0.64±0.27, 1.62±0.67, 3.12±0.78, 7.08±0.16. The mean peak area rations of PME/β-ATP, PDE/β-ATP, LEP/β-ATP, PCr/β-ATP, intracellular pH in benign group were 0.55±0.31, 0.81±0.31, 2.03±0.87, 1.65±0.65, 7.18±0.23. The mean peak area rations of PME/β-ATP, PDE/β-ATP, LEP/β-ATP, PCr/β-ATP, intracellular pH in malignant group were 1.73±0.40, 1.73±0.45, 4.31±1.18, 1.44±0.54, 7.32±0.29. Compared with control group, the mean peak area rations of PME/β-ATP (P 0.05). The mean peak area rations of PME/β-ATP, PDE/β-ATP,LEP/β-ATP in malignant group were significantly higher than that in benign group (P 0.05). If we set a standard at 1.8 time of the mean of the PME/β-ATP ration in the benign group, then the sensitivity of this discrimination for diagnosing a malignancy was 88.89% and the specificity was 94.12%. Conclusion: 31 P MRS has important value in diagnosis and differential diagnosis of bone and soft tissue tumors. It should be a simple, non-invasively, effective diagnostic method. (authors)

  3. Human Endothelial-Like Differentiated Precursor Cells Maintain Their Endothelial Characteristics When Cocultured with Mesenchymal Stem Cell and Seeded onto Human Cancellous Bone

    Directory of Open Access Journals (Sweden)

    Dirk Henrich

    2013-01-01

    Full Text Available Introduction. Cancellous bone is frequently used for filling bone defects in a clinical setting. It provides favourable conditions for regenerative cells such as MSC and early EPC. The combination of MSC and EPC results in superior bone healing in experimental bone healing models. Materials and Methods. We investigated the influence of osteogenic culture conditions on the endothelial properties of early EPC and the osteogenic properties of MSC when cocultured on cancellous bone. Additionally, cell adhesion, metabolic activity, and differentiation were assessed 2, 6, and 10 days after seeding. Results. The number of adhering EPC and MSC decreased over time; however the cells remained metabolically active over the 10-day measurement period. In spite of a decline of lineage specific markers, cells maintained their differentiation to a reduced level. Osteogenic stimulation of EPC caused a decline but not abolishment of endothelial characteristics and did not induce osteogenic gene expression. Osteogenic stimulation of MSC significantly increased their metabolic activity whereas collagen-1α and alkaline phosphatase gene expressions declined. When cocultured with EPC, MSC’s collagen-1α gene expression increased significantly. Conclusion. EPC and MSC can be cocultured in vitro on cancellous bone under osteogenic conditions, and coculturing EPC with MSC stabilizes the latter’s collagen-1α gene expression.

  4. Reconstitution of bone-like matrix in osteogenically differentiated mesenchymal stem cell–collagen constructs: A three-dimensional in vitro model to study hematopoietic stem cell niche

    Directory of Open Access Journals (Sweden)

    WY Lai

    2013-10-01

    Full Text Available Mesenchymal stem/stromal cells (MSCs and osteoblasts are important niche cells for hematopoietic stem cells (HSCs in bone marrow osteoblastic niche. Here, we aim to partially reconstitute the bone marrow HSC niche in vitro using collagen microencapsulation for investigation of the interactions between HSCs and MSCs. Mouse MSCs (mMSCs microencapsulated in collagen were osteogenically differentiated to derive a bone-like matrix consisting of osteocalcin, osteopontin, and calcium deposits and secreted bone morphogenic protein 2 (BMP2. Decellularized bone-like matrix was seeded with fluorescence-labeled human MSCs and HSCs. Comparing with pure collagen scaffold, significantly more HSCs and HSC–MSC pairs per unit area were found in the decellularized bone-like matrix. Moreover, incubation with excess neutralizing antibody of BMP2 resulted in a significantly higher number of HSC per unit area than that without in the decellularized matrix. This work suggests that the osteogenic differentiated MSC–collagen microsphere is a valuable three-dimensional in vitro model to elucidate cell–cell and cell–matrix interactions in HSC niche.

  5. Differential impact of glucose administered intravenously or orally on bone turnover markers in healthy male subjects

    DEFF Research Database (Denmark)

    Westberg-Rasmussen, Sidse; Starup-Linde, Jakob; Hermansen, Kjeld

    2017-01-01

    turnover markers in healthy males. METHODS: 12 healthy males were included in a cross-over study consisting of three tests following an 8hour fast. First, an oral glucose tolerance test (OGTT) was performed. Subsequently, we carried out an isoglycemic intravenous glucose infusion (IIGI) that closely......-like peptide-1 (GLP-1) and glucagon-like peptide-2 (GLP-2). Finally, eight of the twelve participants underwent a control experiment where they fasted for 3h (Control). RESULTS: While OGTT induced a 50% reduction in s-CTX, only a ~30% reduction was seen during the IIGI and the Control. Neither intervention...... that peak p-GIP significantly predicts nadir s-CTX (p=0.03), and that peak p-GIP could explain 34% of the variability in nadir s-CTX (adjusted R(2)=0.34). CONCLUSION: This study indicates that glucose per se does not acutely affect bone turnover markers. However, gastrointestinal hormones, especially GIP...

  6. Chondrogenic differentiation of bone marrow concentrate grown onto a hylauronan scaffold: rationale for its use in the treatment of cartilage lesions.

    Science.gov (United States)

    Cavallo, Carola; Desando, Giovanna; Columbaro, Marta; Ferrari, Andrea; Zini, Nicoletta; Facchini, Andrea; Grigolo, Brunella

    2013-06-01

    Bone marrow is one of the best characterized stem cell microenvironment that contains Mesenchymal Stem Cells (MSCs). MSCs have been indicated as a new option for regenerative medicine because of their ability to differentiate into bone, cartilage and adipose tissues. However, in vitro-cultivation of MSCs could be associated with some shortcomings such as the possibility of the de-differentiation or reprogramming of the cells and the increase of the risk of infection and contaminations. To overcome these problems, a new approach is represented by the use of Bone Marrow Concentrate (BMC). This enables the implant of a cell population surrounded by its microenvironment preventing all the complications related to the in vitro-culture. Moreover, the cells within the bone marrow niche are able to regulate stem cell behavior through direct physical contact and by secreting paracrine factors. The aim of this study was to investigate the phenotype of cells within BMC and their ability to differentiate into chondrogenic lineage once seeded onto a hyaluronan-based scaffold (Hyaff-11) already used in clinic. The chondrogenic potential of BMC has been evaluated by means of morphological, histological, immunohistochemical and molecular analyses. The data obtained with the current study demonstrated that cells within BMC grown onto HYAFF-11 are able to differentiate into chondrogenic sense by the expression and production of specific extracellular molecules. These findings support the use of BMC in clinic for the repair of cartilage lesions allowing its transplantation in a "One Step" procedure. Copyright © 2012 Wiley Periodicals, Inc.

  7. Monomeric, porous type II collagen scaffolds promote chondrogenic differentiation of human bone marrow mesenchymal stem cells in vitro.

    Science.gov (United States)

    Tamaddon, M; Burrows, M; Ferreira, S A; Dazzi, F; Apperley, J F; Bradshaw, A; Brand, D D; Czernuszka, J; Gentleman, E

    2017-03-03

    Osteoarthritis (OA) is a common cause of pain and disability and is often associated with the degeneration of articular cartilage. Lesions to the articular surface, which are thought to progress to OA, have the potential to be repaired using tissue engineering strategies; however, it remains challenging to instruct cell differentiation within a scaffold to produce tissue with appropriate structural, chemical and mechanical properties. We aimed to address this by driving progenitor cells to adopt a chondrogenic phenotype through the tailoring of scaffold composition and physical properties. Monomeric type-I and type-II collagen scaffolds, which avoid potential immunogenicity associated with fibrillar collagens, were fabricated with and without chondroitin sulfate (CS) and their ability to stimulate the chondrogenic differentiation of human bone marrow-derived mesenchymal stem cells was assessed. Immunohistochemical analyses showed that cells produced abundant collagen type-II on type-II scaffolds and collagen type-I on type-I scaffolds. Gene expression analyses indicated that the addition of CS - which was released from scaffolds quickly - significantly upregulated expression of type II collagen, compared to type-I and pure type-II scaffolds. We conclude that collagen type-II and CS can be used to promote a more chondrogenic phenotype in the absence of growth factors, potentially providing an eventual therapy to prevent OA.

  8. The effect of perfusion culture on proliferation and differentiation of human mesenchymal stem cells on biocorrodible bone replacement material

    International Nuclear Information System (INIS)

    Farack, J.; Wolf-Brandstetter, C.; Glorius, S.; Nies, B.; Standke, G.; Quadbeck, P.; Worch, H.; Scharnweber, D.

    2011-01-01

    Biocorrodible iron foams were coated with different calcium phosphate phases (CPP) to obtain a bioactive surface and controlled degradation. Further adhesion, proliferation and differentiation of SaOs-2 and human mesenchymal stem cells were investigated under both static and dynamic culture conditions. Hydroxyapatite (HA; [Ca 10 (PO 4 ) 6 OH 2 ]) coated foams released 500 μg/g iron per day for Dulbecco's modified eagle medium (DMEM) and 250 μg/g iron per day for McCoys, the unmodified reference 1000 μg/g iron per day for DMEM and 500 μg/g iron per day for McCoys, while no corrosion could be detected on brushite (CaHPO 4 ) coated foams. Using a perfusion culture system with conditions closer to the in vivo situation, cells proliferated and differentiated on iron foams coated with either brushite or HA while in static cell culture cells could proliferate only on Fe-brushite. We conclude that the degradation behaviour of biocorrodible iron foams can be varied by different calcium phosphate coatings, offering opportunities for design of novel bone implants. Further studies will focus on the influence of different modifications of iron foams on the expression of oxidative stress enzymes. Additional information about in vivo reactions and remodelling behaviour are expected from testing in implantation studies.

  9. Monomeric, porous type II collagen scaffolds promote chondrogenic differentiation of human bone marrow mesenchymal stem cells in vitro

    Science.gov (United States)

    Tamaddon, M.; Burrows, M.; Ferreira, S. A.; Dazzi, F.; Apperley, J. F.; Bradshaw, A.; Brand, D. D.; Czernuszka, J.; Gentleman, E.

    2017-03-01

    Osteoarthritis (OA) is a common cause of pain and disability and is often associated with the degeneration of articular cartilage. Lesions to the articular surface, which are thought to progress to OA, have the potential to be repaired using tissue engineering strategies; however, it remains challenging to instruct cell differentiation within a scaffold to produce tissue with appropriate structural, chemical and mechanical properties. We aimed to address this by driving progenitor cells to adopt a chondrogenic phenotype through the tailoring of scaffold composition and physical properties. Monomeric type-I and type-II collagen scaffolds, which avoid potential immunogenicity associated with fibrillar collagens, were fabricated with and without chondroitin sulfate (CS) and their ability to stimulate the chondrogenic differentiation of human bone marrow-derived mesenchymal stem cells was assessed. Immunohistochemical analyses showed that cells produced abundant collagen type-II on type-II scaffolds and collagen type-I on type-I scaffolds. Gene expression analyses indicated that the addition of CS - which was released from scaffolds quickly - significantly upregulated expression of type II collagen, compared to type-I and pure type-II scaffolds. We conclude that collagen type-II and CS can be used to promote a more chondrogenic phenotype in the absence of growth factors, potentially providing an eventual therapy to prevent OA.

  10. Inverted colloidal crystal scaffolds with laminin-derived peptides for neuronal differentiation of bone marrow stromal cells.

    Science.gov (United States)

    Kuo, Yung-Chih; Chiu, Keng-Hsien

    2011-01-01

    This study presents the effect of pore regularity on the preservation and differentiation of bone marrow stromal cells (BMSCs). Scaffolds with interconnected pores of inverted colloidal crystal (ICC) geometry were prepared by infiltrating chitosan-gelatin gels into the interstices of self-assembled microspheres, which were later dissolved with a solvent. In addition, the pore surfaces were grafted with two laminin-derived peptides (LDP). The experimental results revealed that the number of BMSCs in ICC scaffolds could increase 2.7-fold after cultivation over 7 days. Moreover, the distribution of cultured BMSCs in ICC scaffolds was quite uniform as compared with freeform scaffolds. ICC scaffolds could preserve 63% phenotypic BMSCs in average and freeform scaffolds 56%. The grafted LDP enhanced the adhesion efficiency of BMSCs in ICC scaffolds (about 70-75%) and produced NeuN-positive cells. A further induction with neuron growth factor could guide the differentiation of BMSCs toward mature neurons in LDP-grafted ICC scaffolds. The controlled topography of ICC structure and surface LDP can be promising in the cultivation of BMSCs and neural regeneration. Copyright © 2010 Elsevier Ltd. All rights reserved.

  11. Longitudinal bone growth is impaired by direct involvement of caffeine with chondrocyte differentiation in the growth plate.

    Science.gov (United States)

    Choi, Hyeonhae; Choi, Yuri; Kim, Jisook; Bae, Jaeman; Roh, Jaesook

    2017-01-01

    We showed previously that caffeine adversely affects longitudinal bone growth and disrupts the histomorphometry of the growth plate during the pubertal growth spurt. However, little attention has been paid to the direct effects of caffeine on chondrocytes. Here, we investigated the direct effects of caffeine on chondrocytes of the growth plate in vivo and in vitro using a rapidly growing young rat model, and determined whether they were related to the adenosine receptor signaling pathway. A total of 15 male rats (21 days old) were divided randomly into three groups: a control group and two groups fed caffeine via gavage with 120 and 180 mg kg -1  day -1 for 4 weeks. After sacrifice, the tibia processed for the analysis of the long bone growth and proliferation of chondrocytes using tetracycline and BrdU incorporation, respectively. Caffeine-fed animals showed decreases in matrix mineralization and proliferation rate of growth plate chondrocytes compared with the control. To evaluate whether caffeine directly affects chondrocyte proliferation and chondrogenic differentiation, primary rat chondrocytes were isolated from the growth plates and cultured in either the presence or absence of caffeine at concentrations of 0.1-1 mm, followed by determination of the cellular proliferation or expression profiles of cellular differentiation markers. Caffeine caused significant decreases in extracellular matrix production, mineralization, and alkaline phosphatase activity, accompanied with decreases in gene expression of the cartilage-specific matrix proteins such as aggrecan, type II collagen and type X. Our results clearly demonstrate that caffeine is capable of interfering with cartilage induction by directly inhibiting the synthetic activity and orderly expression of marker genes relevant to chondrocyte maturation. In addition, we found that the adenosine type 1 receptor signaling pathway may be partly involved in the detrimental effects of caffeine on chondrogenic

  12. Effect of the gamma radiation and common antioxidants on some aspects of osteoblast differentiation during the formation of bone tissue in an in-vivo model

    International Nuclear Information System (INIS)

    Quinones O, M. G.

    2015-01-01

    Gamma radiation is the emission of energy through short electromagnetic waves to a higher level of frequency with respect to ultraviolet light. This type of energy in the medical application is used as a tool to kill cancer cells in humans, however, adverse damages to its exposure can produce secondary effects in the short and long term depending on the damage in cells and tissues nearby to the irradiation zone, the human body will present various injuries and conditions. In bone tissue, secondary effects that have been observed, is an alteration of the architecture and integrity of bone extracellular matrix of cortical and trabecular tissue, which causes loss of bone density. However, the reason that the bone tissue is affected is not clear, but is believed to be related to the formation of free radicals, which generate oxidative damage in biomolecules of the cells, damaging the tissue structure, organs and systems of the human body. The studies to identify the main reasons that will affect bone tissue as a result of radiotherapy have been carried out by models In-vitro and some In-vivo. In most studies in-vitro with cells with osteoblast phenotype, the results suggest alterations in proliferation and differentiation of these cells. However, the etiology and the role of these changes in disorders and bone injuries as adverse secondary effects of the radiotherapy are very poorly understood to date. In the present study an In-vivo model was used, that are ectopic bone plates which are developed by endochondral ossification, after having implanted demineralized bone particles at 16 days of development, at which time they are constituted by bone tissue. Ectopic bone plates were used with the aim of knowing as gamma radiation indirectly modifies to cellular level the osteoblast differentiation, cells that are involved in the formation and mineralization of bone extracellular matrix. One of the well known effects of gamma radiation is the generation of free radicals

  13. First-line treatment with bortezomib rapidly stimulates both osteoblast activity and bone matrix deposition in patients with multiple myeloma, and stimulates osteoblast proliferation and differentiation in vitro

    DEFF Research Database (Denmark)

    Lund, Thomas; Søe, Kent; Abildgaard, Niels

    2010-01-01

    OBJECTIVES: The aim of the study was to investigate the effect of bortezomib on osteoblast proliferation and differentiation, as well as on bone matrix deposition for the first time in bisphosphonate-naïve, previously untreated patients with myeloma. METHODS: Twenty newly diagnosed patients...... received four cycles of bortezomib treatment, initially as monotherapy and then combined with a glucocorticoid from cycle two to four. Bone remodeling markers were monitored closely during treatment. Furthermore, the effects of bortezomib and a glucocorticoid on immature and mature osteoblasts were also...... studied in vitro. RESULTS: Treatment with bortezomib caused a significant increase in bone-specific alkaline phosphatase and pro-collagen type I N-terminal propeptide, a novel bone formation marker. The addition of a glucocorticoid resulted in a transient decrease in collagen deposition. In vitro...

  14. The osteoimmunology of alveolar bone loss.

    Science.gov (United States)

    Tompkins, Kevin A

    2016-01-01

    The mineralized structure of bone undergoes constant remodeling by the balanced actions of bone-producing osteoblasts and bone-resorbing osteoclasts (OCLs). Physiologic bone remodeling occurs in response to the body's need to respond to changes in electrolyte levels, or mechanical forces on bone. There are many pathological conditions, however, that cause an imbalance between bone production and resorption due to excessive OCL action that results in net bone loss. Situations involving chronic or acute inflammation are often associated with net bone loss, and research into understanding the mechanisms regulating this bone loss has led to the development of the field of osteoimmunology. It is now evident that the skeletal and immune systems are functionally linked and share common cells and signaling molecules. This review discusses the signaling system of immune cells and cytokines regulating aberrant OCL differentiation and activity. The role of these cells and cytokines in the bone loss occurring in periodontal disease (PD) (chronic inflammation) and orthodontic tooth movement (OTM) (acute inflammation) is then described. The review finishes with an exploration of the emerging role of Notch signaling in the development of the immune cells and OCLs that are involved in osteoimmunological bone loss and the research into Notch signaling in OTM and PD.

  15. Alendronate promotes osteoblast differentiation and bone formation in ovariectomy-induced osteoporosis through interferon-β/signal transducer and activator of transcription 1 pathway

    Science.gov (United States)

    Ma, Xiaoqing; Xu, Zhongyang; Ding, Shaofeng; Yi, Guangkun; Wang, Qian

    2018-01-01

    Alendronate is commonly used for the treatment of postmenopausal osteoporosis; however, the underlying pathological molecular mechanisms of its action remain unclear. In the present study, the alendronate-treated signaling pathway in bone metabolism in rats with ovariectomy induced by osteoporosis was investigated. Rats with osteoporosis were orally administered alendronate or phosphate-buffered saline (control). In addition, the interferon-β (IFN-β)/signal transducer and activator of transcription 1 (STAT1) signaling pathway was investigated in osteoblasts following treatment with alendronate in vitro and in vivo. During the differentiation period, IFN-β (100 ng/ml) was used to treat the osteoblast cells, and the activity, viability and bone metabolism-associated gene expression levels (STAT1, p-STAT1, Fra1, TRAF6 and SOCS1) were analyzed in osteoblast cells. Histopathological changes were used to evaluate osteoblasts, osteoclasts, inflammatory phase of bone healing and osteonecrotic areas. The results demonstrated that alendronate significantly inhibited the activity of osteoporotic osteoclasts by stimulating expression of IFN-β, as well as markedly improved the viability and activity of osteoblasts compared with the control group. In addition, alendronate increased the expression and phosphorylation levels of STAT1 in osteoclasts, enhanced osteoblast differentiation, upregulated the expression levels of alkaline phosphatase and osteocalcin, and increased the expression of osteoblast differentiation-associated genes (osteocalcin, osterix and Runx2). Inhibition of IFN-β expression canceled the benefits of alendronate-mediated osteoblast differentiation. Notably, alendronate enhanced bone formation in rats with osteoporosis induced by ovariectomy. In conclusion, these findings suggest that alendronate can regulate osteoblast differentiation and bone formation in rats with osteoporosis induced by ovariectomy through upregulation of IFN-β/STAT1 signaling

  16. Differential growth responses to water balance of coexisting deciduous tree species are linked to wood density in a Bolivian tropical dry forest.

    Directory of Open Access Journals (Sweden)

    Hooz A Mendivelso

    Full Text Available A seasonal period of water deficit characterizes tropical dry forests (TDFs. There, sympatric tree species exhibit a diversity of growth rates, functional traits, and responses to drought, suggesting that each species may possess different strategies to grow under different conditions of water availability. The evaluation of the long-term growth responses to changes in the soil water balance should provide an understanding of how and when coexisting tree species respond to water deficit in TDFs. Furthermore, such differential growth responses may be linked to functional traits related to water storage and conductance. We used dendrochronology and climate data to retrospectively assess how the radial growth of seven coexisting deciduous tree species responded to the seasonal soil water balance in a Bolivian TDF. Linear mixed-effects models were used to quantify the relationships between basal area increment and seasonal water balance. We related these relationships with wood density and sapwood production to assess if they affect the growth responses to climate. The growth of all species responded positively to water balance during the wet season, but such responses differed among species as a function of their wood density. For instance, species with a strong growth response to water availability averaged a low wood density which may facilitate the storage of water in the stem. By contrast, species with very dense wood were those whose growth was less sensitive to water availability. Coexisting tree species thus show differential growth responses to changes in soil water balance during the wet season. Our findings also provide a link between wood density, a trait related to the ability of trees to store water in the stem, and wood formation in response to water availability.

  17. Effect of different levels of crude protein and electrolyte balance on performance, blood parameters and bone characteristics for broiler chickens in phase of 36 to 42 days old

    Directory of Open Access Journals (Sweden)

    Franciele Clenice Navarini Giacobbo

    2014-09-01

    Full Text Available The aim of this study was to evaluate the effect of different levels of crude protein (CP and electrolyte balance (EB of the feed of broilers. 480 male broiler of Cobb 500 strain were fed in the period 36 to 42 days of age with two basal diets, one with EB 200 and another with 240 mEq. kg-1, combined with CP levels of 18.00, 17.28, 16.56 and 15.84%. The reduction in CP levels had growing linear effect (P <0.01 on feed conversion of birds (BE 200 and 240 even with the supplementation of industrial amino acids. For weight gain, reduced levels of CP had decreasing linear effect (P <0.01 to birds consuming diets with EB of 240 mEq. kg-1 and quadratic effect (P <0.05 for those who consumed ration with EB than 200 mEq. kg-1 being the level of 17.54%, which resulted in better weight gain of birds. There was linear effect (P <0.05 of reduction in CP levels on the plasmatic values of sodium (EB200 and chlorine (EB240 and quadratic effect (P <0.05 on plasmatic concentration of potassium (EB200 of birds, being the level of 17.05%, which provided the lower potassium values. For the plasma levels of uric acid, total protein and calcium, and bone development, reduction in the levels of CP had no effect on neither one of EB levels studied. Supplementation with bicarbonate salts of sodium and potassium chloride was not effective in improving the performance characteristics the birds, in the values of electrolyte balance studied, since there were no performance improvements with increase the electrolytic balance of the diets of 200 to 240 mEq.kg-1.

  18. Thymocytes may persist and differentiate without any input from bone marrow progenitors.

    Science.gov (United States)

    Peaudecerf, Laetitia; Lemos, Sara; Galgano, Alessia; Krenn, Gerald; Vasseur, Florence; Di Santo, James P; Ezine, Sophie; Rocha, Benedita

    2012-07-30

    Thymus transplants can correct deficiencies of the thymus epithelium caused by the complete DiGeorge syndrome or FOXN1 mutations. However, thymus transplants were never used to correct T cell-intrinsic deficiencies because it is generally believed that thymocytes have short intrinsic lifespans. This notion is based on thymus transplantation experiments where it was shown that thymus-resident cells were rapidly replaced by progenitors originating in the bone marrow. In contrast, here we show that neonatal thymi transplanted into interleukin 7 receptor-deficient hosts harbor populations with extensive capacity to self-renew, and maintain continuous thymocyte generation and export. These thymus transplants reconstitute the full diversity of peripheral T cell repertoires one month after surgery, which is the earliest time point studied. Moreover, transplantation experiments performed across major histocompatibility barriers show that allogeneic transplanted thymi are not rejected, and allogeneic cells do not induce graft-versus-host disease; transplants induced partial or total protection to infection. These results challenge the current dogma that thymocytes cannot self-renew, and indicate a potential use of neonatal thymus transplants to correct T cell-intrinsic deficiencies. Finally, as found with mature T cells, they show that thymocyte survival is determined by the competition between incoming progenitors and resident cells.

  19. Cell Cycle Related Differentiation of Bone Marrow Cells into Lung Cells

    Energy Technology Data Exchange (ETDEWEB)

    Dooner, Mark; Aliotta, Jason M.; Pimental, Jeffrey; Dooner, Gerri J.; Abedi, Mehrdad; Colvin, Gerald; Liu, Qin; Weier, Heinz-Ulli; Dooner, Mark S.; Quesenberry, Peter J.

    2007-12-31

    Green-fluorescent protein (GFP) labeled marrow cells transplanted into lethally irradiated mice can be detected in the lungs of transplanted mice and have been shown to express lung specific proteins while lacking the expression of hematopoietic markers. We have studied marrow cells induced to transit cell cycle by exposure to IL-3, IL-6, IL-11 and steel factor at different times of culture corresponding to different phases of cell cycle. We have found that marrow cells at the G1/S interface have a 3-fold increase in cells which assume a lung phenotype and that this increase is no longer seen in late S/G2. These cells have been characterized as GFP{sup +} CD45{sup -} and GFP{sup +} cytokeratin{sup +}. Thus marrow cells with the capacity to convert into cells with a lung phenotype after transplantation show a reversible increase with cytokine induced cell cycle transit. Previous studies have shown the phenotype of bone marrow stem cells fluctuates reversibly as these cells traverse cell cycle, leading to a continuum model of stem cell regulation. The present studies indicate that marrow stem cell production of nonhematopoietic cells also fluctuates on a continuum.

  20. Effect of clinostat rotation on differentiation of embryonic bone in vitro

    Science.gov (United States)

    Al-Ajmi, N.; Braidman, I. P.; Moore, D.

    We have investigated the effect of changes in the gravity vector on osteoblast behaviour, using the clinostat set at 8 rpm. Two sources of osteoblasts were used: secondary cultures of fetal rat bone cells, and the rat osteosarcoma line 17/2.8 (ROS). Cell number was determined by incubation with 3-(4,dimethyl-2yl)-2,3 diphenyl) tetrazolium bromide (MTT) and measurement of optical density at 570 nm (OD). Alkaline phosphatase activity was detected by standard cytochemical methods. Dividing cells were localised by labelling dividing nuclei with Bromodeoxyuridine (BrdU), detected by immunofluorescence. Cell culture was initiated at densities between 1-4x10^4 cells ml^-1. Growth rates in all cultures during the first 48 hours exposure to clinostat rotation were less than in stationary controls. After 3 days, ROS cell numbers were 35% lower, and calvarial cells 39% lower than their respective controls. Alkaline phosphatase activity in calvarial control cultures was uniformly present in characteristically polygonal cells, but after culture in the clinostat the enzyme was present sporadically, and the cells were cuboid. There was also no BrdU uptake in nuclei, but it was present in cell cytoplasms. We conclude that the clinostat decreases cell numbers and cell division. Both cell shape and the distribution of alkaline phosphatase activity in calvarial cell cultures were also affected. This implies that changes in the gravity vector can affect osteoblasts directly, without interaction with other cell types.

  1. Bone-marrow-derived mesenchymal stem cells as a target for cytomegalovirus infection: Implications for hematopoiesis, self-renewal and differentiation potential

    International Nuclear Information System (INIS)

    Smirnov, Sergey V.; Harbacheuski, Ryhor; Lewis-Antes, Anita; Zhu Hua; Rameshwar, Pranela; Kotenko, Sergei V.

    2007-01-01

    Mesenchymal stem cells (MSCs) in bone marrow (BM) regulate the differentiation and proliferation of adjacent hematopoietic precursor cells and contribute to the regeneration of mesenchymal tissues, including bone, cartilage, fat and connective tissue. BM is an important site for the pathogenesis of human cytomegalovirus (HCMV) where the virus establishes latency in hematopoietic progenitors and can transmit after reactivation to neighboring cells. Here we demonstrate that BM-MSCs are permissive to productive HCMV infection, and that HCMV alters the function of MSCs: (i) by changing the repertoire of cell surface molecules in BM-MSCs, HCMV modifies the pattern of interaction between BM-MSCs and hematopoietic cells; (ii) HCMV infection of BM-MSCs undergoing adipogenic or osteogenic differentiation impaired the process of differentiation. Our results suggest that by altering BM-MSC biology, HCMV may contribute to the development of various diseases

  2. Factors influencing spinal sagittal balance, bone mineral density, and Oswestry Disability Index outcome measures in patients with rheumatoid arthritis.

    Science.gov (United States)

    Masamoto, Kazutaka; Otsuki, Bungo; Fujibayashi, Shunsuke; Shima, Koichiro; Ito, Hiromu; Furu, Moritoshi; Hashimoto, Motomu; Tanaka, Masao; Lyman, Stephen; Yoshitomi, Hiroyuki; Tanida, Shimei; Mimori, Tsuneyo; Matsuda, Shuichi

    2018-02-01

    To identify the factors influencing spinal sagittal alignment, bone mineral density (BMD), and Oswestry Disability Index (ODI) outcome measures in patients with rheumatoid arthritis (RA). We enrolled 272 RA patients to identify the factors influencing sagittal vertical axis (SVA). Out of this, 220 had evaluation of bone mineral density (BMD) and vertebral deformity (VD) on the sagittal plane; 183 completed the ODI questionnaire. We collected data regarding RA-associated clinical parameters and standing lateral X-ray images via an ODI questionnaire from April to December 2012 at a single center. Patients with a history of spinal surgery or any missing clinical data were excluded. Clinical parameters included age, sex, body mass index, RA disease duration, disease activity score 28 erythrocyte sedimentation rate (DAS28-ESR), serum anti-cyclic citrullinated peptide antibody, serum rheumatoid factor, serum matrix metalloproteinase-3, BMD and treatment type at survey, such as methotrexate (MTX), biological disease-modifying anti-rheumatic drugs, and glucocorticoids. We measured radiological parameters including pelvic incidence (PI), lumbar lordosis (LL), and SVA. We statistically identified the factors influencing SVA, BMD, VD, and ODI using multivariate regression analysis. Multivariate regression analysis showed that larger SVA correlated with older age, higher DAS28-ESR, MTX nonuse, and glucocorticoid use. Lower BMD was associated with female, older age, higher DAS28-ESR, and MTX nonuse. VD was associated with older age, longer disease duration, lower BMD, and glucocorticoid use. Worse ODI correlated with older age, larger PI-LL mismatch or larger SVA, higher DAS28-ESR, and glucocorticoid use. In managing low back pain and spinal sagittal alignment in RA patients, RA-related clinical factors and the treatment type should be taken into consideration.

  3. Differential diagnosis of vertical root fractures using reconstructed three-dimensional models of bone defects.

    Science.gov (United States)

    Komatsu, K; Abe, Y; Yoshioka, T; Ishimura, H; Ebihara, A; Suda, H

    2014-01-01

    The purpose of this study was to evaluate the accuracy of diagnosing vertical root fractures (VRFs) by comparing the volume of bone defects in VRFs with those in non-VRFs on reconstructed three-dimensional (3D) models (TDMs) using CBCT. 32 maxillary pre-molars and anterior teeth with radiolucent areas were evaluated on pre-operative CBCT images. Of the 32 teeth, 16 had a fractured root (VRF group) and 16 had a non-fractured root (non-VRF group). The radiolucent area of each tooth was traced in each dimension [mesiodistal, buccolingual and horizontal (the apicoincisal aspect)] by two observers, and 3D images were reconstructed with the Amira(®) software (Visage Imaging Inc., Richmond, Australia). The volume, V, of the TDM was divided into the coronal side and the periapical side at the horizontal slice through the apical foramen, and v was defined as the volume of the coronal side. The values of v/V were calculated for all cases. The Mann-Whitney U test was used to compare values between the VRF group and the non-VRF group (p < 0.05). A receiver operating characteristic (ROC) curve was constructed to select the optimal cut-point. There was a statistically significant difference in the value of v/V between the two groups (p < 0.05). With a cut-point derived from the ROC curve, and the sensitivity, specificity and accuracy of predicting the VRFs were 1.00, 0.75 and 0.88, respectively. Lesions resulting from VRFs can be distinguished from those of non-VRFs on 3D CBCT images with a high degree of accuracy, based on their different 3D shapes.

  4. Bone morphogenetic protein-2 functions as a negative regulator in the differentiation of myoblasts, but not as an inducer for the formations of cartilage and bone in mouse embryonic tongue

    Directory of Open Access Journals (Sweden)

    Suzuki Erika

    2011-07-01

    Full Text Available Abstract Background In vitro studies using the myogenic cell line C2C12 demonstrate that bone morphogenetic protein-2 (BMP-2 converts the developmental pathway of C2C12 from a myogenic cell lineage to an osteoblastic cell lineage. Further, in vivo studies using null mutation mice demonstrate that BMPs inhibit the specification of the developmental fate of myogenic progenitor cells. However, the roles of BMPs in the phases of differentiation and maturation in skeletal muscles have yet to be determined. The present study attempts to define the function of BMP-2 in the final stage of differentiation of mouse tongue myoblast. Results Recombinant BMP-2 inhibited the expressions of markers for the differentiation of skeletal muscle cells, such as myogenin, muscle creatine kinase (MCK, and fast myosin heavy chain (fMyHC, whereas BMP-2 siRNA stimulated such markers. Neither the recombinant BMP-2 nor BMP-2 siRNA altered the expressions of markers for the formation of cartilage and bone, such as osteocalcin, alkaline phosphatase (ALP, collagen II, and collagen X. Further, no formation of cartilage and bone was observed in the recombinant BMP-2-treated tongues based on Alizarin red and Alcian blue stainings. Neither recombinant BMP-2 nor BMP-2 siRNA affected the expression of inhibitor of DNA binding/differentiation 1 (Id1. The ratios of chondrogenic and osteogenic markers relative to glyceraldehyde-3-phosphate dehydrogenase (GAPDH, a house keeping gene were approximately 1000-fold lower than those of myogenic markers in the cultured tongue. Conclusions BMP-2 functions as a negative regulator for the final differentiation of tongue myoblasts, but not as an inducer for the formation of cartilage and bone in cultured tongue, probably because the genes related to myogenesis are in an activation mode, while the genes related to chondrogenesis and osteogenesis are in a silencing mode.

  5. Differential bone-forming capacity of osteogenic cells from either embryonic stem cells or bone marrow-derived mesenchymal stem cells

    NARCIS (Netherlands)

    Both, Sanne Karijn; van Apeldoorn, Aart A.; Jukes, J.M.; Englund, Mikael C.O.; Hyllner, Johan; van Blitterswijk, Clemens; de Boer, Jan

    2011-01-01

    For more than a decade, human mesenchymal stem cells (hMSCs) have been used in bone tissue-engineering research. More recently some of the focus in this field has shifted towards the use of embryonic stem cells. While it is well known that hMSCs are able to form bone when implanted subcutaneously in

  6. Inhibitory Effects of KP-A159, a Thiazolopyridine Derivative, on Osteoclast Differentiation, Function, and Inflammatory Bone Loss via Suppression of RANKL-Induced MAP Kinase Signaling Pathway.

    Directory of Open Access Journals (Sweden)

    Hye Jung Ihn

    Full Text Available Abnormally elevated formation and activation of osteoclasts are primary causes for a majority of skeletal diseases. In this study, we found that KP-A159, a newly synthesized thiazolopyridine derivative, inhibited osteoclast differentiation and function in vitro, and inflammatory bone loss in vivo. KP-A159 did not cause a cytotoxic response in bone marrow macrophages (BMMs, but significantly inhibited the formation of multinucleated tartrate-resistant acid phosphatase (TRAP-positive osteoclasts induced by macrophage colony-stimulating factor (M-CSF and receptor activator of nuclear factor-κB ligand (RANKL. KP-A159 also dramatically inhibited the expression of marker genes related to osteoclast differentiation, including TRAP (Acp5, cathepsin K (Ctsk, dendritic cell-specific transmembrane protein (Dcstamp, matrix metallopeptidase 9 (Mmp9, and nuclear factor of activated T-cells, cytoplasmic 1 (Nfatc1. Moreover, actin ring and resorption pit formation were inhibited by KP-A159. Analysis of the signaling pathway involved showed that KP-A159 inhibited RANKL-induced activation of extracellular signal-regulated kinase (ERK, c-Jun N-terminal kinase (JNK, and mitogen-activated protein kinase kinase1/2 (MEK1/2. In a mouse inflammatory bone loss model, KP-A159 significantly rescued lipopolysaccharide (LPS-induced bone loss by suppressing osteoclast numbers. Therefore, KP-A159 targets osteoclasts, and may be a potential candidate compound for prevention and/or treatment of inflammatory bone loss.

  7. Electrospun Gelatin/β-TCP Composite Nanofibers Enhance Osteogenic Differentiation of BMSCs and In Vivo Bone Formation by Activating Ca2+-Sensing Receptor Signaling

    Directory of Open Access Journals (Sweden)

    Xuehui Zhang

    2015-01-01

    Full Text Available Calcium phosphate- (CaP- based composite scaffolds have been used extensively for the bone regeneration in bone tissue engineering. Previously, we developed a biomimetic composite nanofibrous membrane of gelatin/β-tricalcium phosphate (TCP and confirmed their biological activity in vitro and bone regeneration in vivo. However, how these composite nanofibers promote the osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs is unknown. Here, gelatin/β-TCP composite nanofibers were fabricated by incorporating 20 wt% β-TCP nanoparticles into electrospun gelatin nanofibers. Electron microscopy showed that the composite β-TCP nanofibers had a nonwoven structure with a porous network and a rough surface. Spectral analyses confirmed the presence and chemical stability of the β-TCP and gelatin components. Compared with pure gelatin nanofibers, gelatin/β-TCP composite nanofibers caused increased cell attachment, proliferation, alkaline phosphatase activity, and osteogenic gene expression in rat BMSCs. Interestingly, the expression level of the calcium-sensing receptor (CaSR was significantly higher on the composite nanofibrous scaffolds than on pure gelatin. For rat calvarial critical sized defects, more extensive osteogenesis and neovascularization occurred in the composite scaffolds group compared with the gelatin group. Thus, gelatin/β-TCP composite scaffolds promote osteogenic differentiation of BMSCs in vitro and bone regeneration in vivo by activating Ca2+-sensing receptor signaling.

  8. Electrospun Gelatin/β-TCP Composite Nanofibers Enhance Osteogenic Differentiation of BMSCs and In Vivo Bone Formation by Activating Ca (2+) -Sensing Receptor Signaling.

    Science.gov (United States)

    Zhang, Xuehui; Meng, Song; Huang, Ying; Xu, Mingming; He, Ying; Lin, Hong; Han, Jianmin; Chai, Yuan; Wei, Yan; Deng, Xuliang

    2015-01-01

    Calcium phosphate- (CaP-) based composite scaffolds have been used extensively for the bone regeneration in bone tissue engineering. Previously, we developed a biomimetic composite nanofibrous membrane of gelatin/β-tricalcium phosphate (TCP) and confirmed their biological activity in vitro and bone regeneration in vivo. However, how these composite nanofibers promote the osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) is unknown. Here, gelatin/β-TCP composite nanofibers were fabricated by incorporating 20 wt% β-TCP nanoparticles into electrospun gelatin nanofibers. Electron microscopy showed that the composite β-TCP nanofibers had a nonwoven structure with a porous network and a rough surface. Spectral analyses confirmed the presence and chemical stability of the β-TCP and gelatin components. Compared with pure gelatin nanofibers, gelatin/β-TCP composite nanofibers caused increased cell attachment, proliferation, alkaline phosphatase activity, and osteogenic gene expression in rat BMSCs. Interestingly, the expression level of the calcium-sensing receptor (CaSR) was significantly higher on the composite nanofibrous scaffolds than on pure gelatin. For rat calvarial critical sized defects, more extensive osteogenesis and neovascularization occurred in the composite scaffolds group compared with the gelatin group. Thus, gelatin/β-TCP composite scaffolds promote osteogenic differentiation of BMSCs in vitro and bone regeneration in vivo by activating Ca(2+)-sensing receptor signaling.

  9. Simultaneous delivery of hydrophobic small molecules and siRNA using Sterosomes to direct mesenchymal stem cell differentiation for bone repair.

    Science.gov (United States)

    Cui, Zhong-Kai; Sun, Justin A; Baljon, Jessalyn J; Fan, Jiabing; Kim, Soyon; Wu, Benjamin M; Aghaloo, Tara; Lee, Min

    2017-08-01

    The use of small molecular drugs with gene manipulation offers synergistic therapeutic efficacy by targeting multiple signaling pathways for combined treatment. Stimulation of mesenchymal stem cells (MSCs) with osteoinductive small molecule phenamil combined with suppression of noggin is a promising therapeutic strategy that increases bone morphogenetic protein (BMP) signaling and bone repair. Our cationic Sterosome formulated with stearylamine (SA) and cholesterol (Chol) is an attractive co-delivery system that not only forms stable complexes with small interfering RNA (siRNA) molecules but also solubilizes hydrophobic small molecules in a single vehicle, for directing stem cell differentiation. Herein, we demonstrate the ability of SA/Chol Sterosomes to simultaneously deliver hydrophobic small molecule phenamil and noggin-directed siRNA to enhance osteogenic differentiation of MSCs both in in vitro two- and three-dimensional settings as well as in a mouse calvarial defect model. These results suggest a novel liposomal platform to simultaneously deliver therapeutic genes and small molecules for combined therapy. Application of phenamil, a small molecular bone morphogenetic protein (BMP) stimulator, combined with suppression of natural BMP antagonists such as noggin is a promising therapeutic strategy to enhance bone regeneration. Here, we present a novel strategy to co-deliver hydrophobic small molecule phenamil and noggin-targeted siRNA via cationic Sterosomes formed with stearylamine (SA) and high content of cholesterol (Chol) to enhance osteogenesis and bone repair. SA/Chol Sterosomes demonstrated high phenamil encapsulation efficiency, supported sustained release of encapsulated drugs, and significantly reduced drug dose requirements to induce osteogenic differentiation of mesenchymal stem cells (MSCs). Simultaneous deliver of phenamil and noggin siRNA in a single vehicle synergistically enhanced MSC osteogenesis and calvarial bone repair. This study suggests

  10. Pivotal role of Pten in the balance between proliferation and differentiation of hematopoietic stem cells in zebrafish

    NARCIS (Netherlands)

    Choorapoikayil, Suma; Kers, Rianne; Herbomel, Philippe; Kissa, Karima; den Hertog, Jeroen

    2014-01-01

    Self-renewing hematopoietic stem/progenitor cells (HSPCs) produce blood cells of all lineages throughout life. Phosphatase and tensin homolog (PTEN), a tumor suppressor that antagonizes phosphatidylinositol 3-kinase (PI3K) signaling, is frequently mutated in hematologic malignancies such as bone

  11. Promotion of osteogenic differentiation of stem cells and increase of bone-bonding ability in vivo using urease-treated titanium coated with calcium phosphate and gelatin

    Science.gov (United States)

    Huang, Zhong-Ming; Qi, Yi-Ying; Du, Shao-Hua; Feng, Gang; Unuma, Hidero; Yan, Wei-Qi

    2013-10-01

    Because of its excellent biocompatibility and low allergenicity, titanium has been widely used for bone replacement and tissue engineering. To produce a desirable composite with enhanced bone response and mechanical strength, in this study bioactive calcium phosphate (CaP) and gelatin composites were coated onto titanium (Ti) via a novel urease technique. The cellular responses to the CaP/gelatin/Ti (CaP/gel/Ti) and bone bonding ability were evaluated with proliferation and osteogenic differentiation of mesenchymal stem cells (MSCs) on CaP/gel/Ti and CaP/Ti in vitro. The results showed that the optical density values, alkaline phosphatase expression and genes expression of MSCs on CaP/gel/Ti were similar to those on CaP/Ti, yet significantly higher than those on pure Ti (p implanted into femoral shaft of rabbits and pure Ti rods served as control (n = 10). Histological examination, scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) measurements were performed at 4 and 8 weeks after the operation. The histological and SEM observations demonstrated clearly that more new bone formed on the surface of CaP/gel/Ti than in the other two groups at each time point. The CaP/gel/Ti bonded to the surrounding bone directly with no intervening soft tissue layer. An interfacial layer, containing Ti, Ca and P, was found to form at the interface between bone and the implant on all three groups by EDS analysis. However, the content of Ca, P in the surface of CaP/gel/Ti implants was more than in the other two groups at each time point. The CaP/gel/Ti modified by the urease method was not only beneficial for MSCs proliferation and osteogenic differentiation, but also favorable for bone bonding ability on Ti implants in vivo, suggesting that Ti functionalized with CaP and gelatin might have a great potential in clinical joint replacement or dental implants.

  12. A differential evolution algorithm for tooth profile optimization with respect to balancing specific sliding coefficients of involute cylindrical spur and helical gears

    Directory of Open Access Journals (Sweden)

    Hammoudi Abderazek

    2015-09-01

    Full Text Available Profile shift has an immense effect on the sliding, load capacity, and stability of involute cylindrical gears. Available standards such as ISO/DIS 6336 and BS 436 DIN/3990 currently give the recommendation for the selection of profile shift coefficients. It is, however, very approximate and usually given in the form of implicit graphs or charts. In this article, the optimal selection values of profile shift coefficients for cylindrical involute spur and helical gears are described, using a differential evolution algorithm. The optimization procedure is developed specifically for exact balancing specific sliding coefficients at extremes of contact path and account for gear design constraints. The obtained results are compared with those of standards and research of other authors. They demonstrate the effectiveness and robustness of the applied method. A substantial improvement in balancing specific sliding coefficients is found in this work.

  13. Investigation of novel bioactive rapidly resorbable bone substitute materials and their influence on osteoblastic cell differentiation in vivo

    OpenAIRE

    Jonscher, Sebastian

    2010-01-01

    Among the various techniques to reconstruct or enlarge a deficient alveolar ridge, the concept of guided bone regeneration (GBR) has become a predictable and well-documented surgical approach. At present, autogenous bone grafts are preferably combined with barrier membranes. Using synthetic biodegradable bone substitute materials, however, is advantageous, since it avoids second-site surgery for autograft harvesting. A bone substitute for alveolar ridge augmentation must be rapidly resorbable...

  14. Gonadotropins facilitate potential differentiation of human bone marrow mesenchymal stem cells into Leydig cells in vitro

    Directory of Open Access Journals (Sweden)

    Lin Hou

    2016-01-01

    Full Text Available Infertility due to low testosterone levels has increased in recent years. This has impacted the social well-being of the patients. This study was undertaken to investigate the potential of gonadotropins in facilitating differentiation of human bone marrow mesenchymal stem cells (BMSCs into Leydig cells in vitro. BMSCs were isolated, cultured, and their biological characteristics were observed. BMSCs were induced with gonadotropins in vitro and their ability to differentiate into Leydig cells was studied. The level of expression of 3-beta hydroxysteroid dehydrogenase (3β-HSD and secretion of testosterone were determined using flow cytometry and enzyme-linked immunosorbent assay, respectively, and the results were compared between the experimental and control groups. The cultured BMSCs showed a typical morphology of the fibroblast-like colony. The growth curve of cells formed an S-shape. After inducing the cells for 8–13 days, the cells in the experimental group increased in size and showed typical characteristics of Leydig cells, and the growth occurred in spindle or stellate shapes. Cells from the experimental group highly expressed 3β-HSD, and there was a gradual increase in the number of Leydig cells. The control group did not express 3β-HSD. The level of testosterone in the experimental group was higher than the control group (p < 0.05. Additionally, the cells in the experimental group secreted higher levels of testosterone with increased culture time. The expression of Leydig cell-specific markers in the experimental group was significantly higher (p < 0.05. With these findings, BMSCs can be considered a new approach for the treatment of patients with low androgen levels.

  15. Cyperenoic acid suppresses osteoclast differentiation and delays bone loss in a senile osteoporosis mouse model by inhibiting non-canonical NF-κB pathway.

    Science.gov (United States)

    Chawalitpong, Supatta; Chokchaisiri, Ratchanaporn; Suksamrarn, Apichart; Katayama, Shigeru; Mitani, Takakazu; Nakamura, Soichiro; Athamneh, Ahmad Ai; Ritprajak, Patcharee; Leelahavanichkul, Asada; Aeimlapa, Ratchaneevan; Charoenphandhu, Narattaphol; Palaga, Tanapat

    2018-04-04

    Cyperenoic acid is a terpenoid isolated from the root of a medicinal plant Croton crassifolius with a wide range of biological activities. In this study, the effects of cyperenoic acid on osteoclast differentiation were investigated both in vitro and in vivo using receptor activator of nuclear factor-κB ligand (RANKL)-induced bone marrow-derived osteoclasts and senescence-accelerated mouse prone 6 (SAMP6). Cyperenoic acid significantly suppressed RANKL-induced osteoclast differentiation at the concentrations with no apparent cytotoxicity. The half maximum inhibitory concentration (IC 50 ) for osteoclast differentiation was 36.69 μM ± 1.02. Cyperenoic acid treatment evidently reduced the expression of two key transcription factors in osteoclast differentiation, NFATc1 and c-Fos. Detailed signaling analysis revealed that cyperenoic acid did not affect MAPK pathways and canonical NF-κB pathway but impaired activation of p100/p52 in the non-canonical NF-κB pathway upon RANKL stimulation. Moreover, the expression of osteoclast-related genes, nfatc1, ctsk, irf8, acp5 and cfos were disrupted by cyperenoic acid treatment. The bone resorption activity by cyperenoic acid-treated osteoclasts were impaired. In a senile osteoporosis mouse model SAMP6, mice fed on diet supplemented with cyperenoic acid showed delay in bone loss, compared to the control. Taken together, plant-derived cyperenoic acid shows great potential as therapeutic agent for osteoporosis.

  16. Pulsed Electromagnetic Field Regulates MicroRNA 21 Expression to Activate TGF-β Signaling in Human Bone Marrow Stromal Cells to Enhance Osteoblast Differentiation.

    Science.gov (United States)

    Selvamurugan, Nagarajan; He, Zhiming; Rifkin, Daniel; Dabovic, Branka; Partridge, Nicola C

    2017-01-01

    Pulsed electromagnetic fields (PEMFs) have been documented to promote bone fracture healing in nonunions and increase lumbar spinal fusion rates. However, the molecular mechanisms by which PEMF stimulates differentiation of human bone marrow stromal cells (hBMSCs) into osteoblasts are not well understood. In this study the PEMF effects on hBMSCs were studied by microarray analysis. PEMF stimulation of hBMSCs' cell numbers mainly affected genes of cell cycle regulation, cell structure, and growth receptors or kinase pathways. In the differentiation and mineralization stages, PEMF regulated preosteoblast gene expression and notably, the transforming growth factor-beta (TGF- β ) signaling pathway and microRNA 21 (miR21) were most highly regulated. PEMF stimulated activation of Smad2 and miR21-5p expression in differentiated osteoblasts, and TGF- β signaling was essential for PEMF stimulation of alkaline phosphatase mRNA expression. Smad7, an antagonist of the TGF- β signaling pathway, was found to be miR21-5p's putative target gene and PEMF caused a decrease in Smad7 expression. Expression of Runx2 was increased by PEMF treatment and the miR21-5p inhibitor prevented the PEMF stimulation of Runx2 expression in differentiating cells. Thus, PEMF could mediate its effects on bone metabolism by activation of the TGF- β signaling pathway and stimulation of expression of miR21-5p in hBMSCs.

  17. Pulsed Electromagnetic Field Regulates MicroRNA 21 Expression to Activate TGF-β Signaling in Human Bone Marrow Stromal Cells to Enhance Osteoblast Differentiation

    Science.gov (United States)

    Rifkin, Daniel; Dabovic, Branka

    2017-01-01

    Pulsed electromagnetic fields (PEMFs) have been documented to promote bone fracture healing in nonunions and increase lumbar spinal fusion rates. However, the molecular mechanisms by which PEMF stimulates differentiation of human bone marrow stromal cells (hBMSCs) into osteoblasts are not well understood. In this study the PEMF effects on hBMSCs were studied by microarray analysis. PEMF stimulation of hBMSCs' cell numbers mainly affected genes of cell cycle regulation, cell structure, and growth receptors or kinase pathways. In the differentiation and mineralization stages, PEMF regulated preosteoblast gene expression and notably, the transforming growth factor-beta (TGF-β) signaling pathway and microRNA 21 (miR21) were most highly regulated. PEMF stimulated activation of Smad2 and miR21-5p expression in differentiated osteoblasts, and TGF-β signaling was essential for PEMF stimulation of alkaline phosphatase mRNA expression. Smad7, an antagonist of the TGF-β signaling pathway, was found to be miR21-5p's putative target gene and PEMF caused a decrease in Smad7 expression. Expression of Runx2 was increased by PEMF treatment and the miR21-5p inhibitor prevented the PEMF stimulation of Runx2 expression in differentiating cells. Thus, PEMF could mediate its effects on bone metabolism by activation of the TGF-β signaling pathway and stimulation of expression of miR21-5p in hBMSCs. PMID:28512472

  18. Differential Gene Expression in the Otic Capsule and the Middle Ear-An Annotation of Bone-Related Signaling Genes

    DEFF Research Database (Denmark)

    Nielsen, Michelle C.; Martin-Bertelsen, Tomas; Friis, Morten

    2015-01-01

    Hypothesis: A number of bone-related genes may be responsible for the unique suppression of perilabyrinthine bone remodeling. Background: Bone remodeling is highly inhibited around the inner ear space most likely because of osteoprotegerin (OPG), which is a well-known potent inhibitor of osteocla...

  19. Differential response of bone and kidney to ACEI in db/db mice: A potential effect of captopril on accelerating bone loss.

    Science.gov (United States)

    Zhang, Yan; Li, Xiao-Li; Sha, Nan-Nan; Shu, Bing; Zhao, Yong-Jian; Wang, Xin-Luan; Xiao, Hui-Hui; Shi, Qi; Wong, Man-Sau; Wang, Yong-Jun

    2017-04-01

    The components of renin-angiotensin system (RAS) are expressed in the kidney and bone. Kidney disease and bone injury are common complications associated with diabetes. This study aimed to investigate the effects of an angiotensin-converting enzyme inhibitor, captopril, on the kidney and bone of db/db mice. The db/db mice were orally administered by gavage with captopril for 8weeks with db/+ mice as the non-diabetic control. Serum and urine biochemistries were determined by standard colorimetric methods or ELISA. Histological measurements were performed on the kidney by periodic acid-schiff staining and on the tibial proximal metaphysis by safranin O and masson-trichrome staining. Trabecular bone mass and bone quality were analyzed by microcomputed tomography. Quantitative polymerase chain reaction and immunoblotting were applied for molecular analysis on mRNA and protein expression. Captopril significantly improved albuminuria and glomerulosclerosis in db/db mice, and these effects might be attributed to the down-regulation of angiotensin II expression and the expression of its down-stream profibrotic factors in the kidney, like connective tissue growth factor and vascular endothelial growth factor. Urinary excretion of calcium and phosphorus markedly increased in db/db mice in response to captopril. Treatment with captopril induced a decrease in bone mineral density and deterioration of trabecular bone at proximal metaphysis of tibia in db/db mice, as shown in the histological and reconstructed 3-dimensional images. Even though captopril effectively reversed the diabetes-induced changes in calcium-binding protein 28-k and vitamin D receptor expression in the kidney as well as the expression of RAS components and bradykinin receptor-2 in bone tissue, treatment with captopril increased the osteoclast-covered bone surface, reduced the osteoblast-covered bone surface, down-regulated the expression of type 1 collagen and transcription factor runt-related transcription

  20. Cellulose-based porous scaffold for bone tissue engineering applications: Assessment of hMSC proliferation and differentiation.

    Science.gov (United States)

    Demitri, Christian; Raucci, Maria Grazia; Giuri, Antonella; De Benedictis, Vincenzo Maria; Giugliano, Daniela; Calcagnile, Paola; Sannino, Alessandro; Ambrosio, Luigi

    2016-03-01

    Physical foaming combined with microwave-induced curing was used in this study to develop an innovative device for bone tissue regeneration. In the first step of the process, a stable physical foaming was induced using a surfactant (i.e. pluronic) as blowing agent of a homogeneous blend of Sodium salt of carboxymethylcellulose (CMCNa) and polyethylene glycol diacrylate (PEGDA700) solution. In the second step, the porous structure of the scaffold was chemically stabilized by radical polymerization induced by a homogeneous rapid heating of the sample in a microwave reactor. In this step 2,2-Azobis[2-(2-imidazolin-2 yl)propane]Dihydrochloride was used as thermoinitiator (TI). CMCNa and PEGDA were mixed with different blends to correlate the properties of final product with the composition. The chemical properties of each sample were evaluated by spectroscopy analysis ATR-IR (before and after curing) in order to maximize reaction yield, and optimize kinetic parameters (i.e. time curing, microwave power). The stability of the materials was evaluated in vitro by degradation test in Phosphate Buffered Saline. Biological analyses were performed to evaluate the effect of scaffold materials on cellular behavior in terms of proliferation and early osteogenic differentiation of human Mesenchymal Stem Cells. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 726-733, 2016. © 2015 Wiley Periodicals, Inc.

  1. Positive muscle protein net balance and differential regulation of atrogene expression after resistance exercise and milk protein supplementation

    DEFF Research Database (Denmark)

    Reitelseder, Søren; Agergaard, Jakob; Doessing, Simon

    2014-01-01

    Purpose Resistance exercise and amino acid availability are positive regulators of muscle protein net balance (NB). However, anabolic responses to resistance exercise and protein supplementation deserve further elucidation. The purpose was to compare intakes of whey, caseinate (both: 0.30 g/kg lean...

  2. Primary root protophloem differentiation requires balanced phosphatidylinositol-4,5-biphosphate levels and systemically affects root branching.

    NARCIS (Netherlands)

    Rodriguez-Villalon, A.; Gujas, B.; van Wijk, R.; Munnik, T.; Hardtke, C.S.

    2015-01-01

    Protophloem is a specialized vascular tissue in growing plant organs, such as root meristems. In Arabidopsis mutants with impaired primary root protophloem differentiation, brevis radix (brx) and octopus (ops), meristematic activity and consequently overall root growth are strongly reduced. Second

  3. Differential diagnosis of carpal and tarsal ankylosis on dry bones: Example from the catacomb of Saints Peter and Marcellinus (Rome, 1st-3rd century AD).

    Science.gov (United States)

    Kacki, S; Castex, D; Blanchard, P; Bessou, M; Giuliani, R; Dutour, O

    2013-12-01

    Bone ankylosis is a pathological feature that may occur in many chronic diseases involving joints. In paleopathology, it is therefore challenging to attribute such a change to a specific condition. Here, we illustrate the differential diagnosis by discussing the lesions observed on an incomplete skeleton from the Roman period, recovered from the catacomb of Saints Peter and Marcellinus (Rome, Italy). The skeleton exhibits several bone changes, including ankylosis on both feet and the left hand. The right tarsal fusion is accompanied by soft tissue ossifications involving the plantar aponeurosis and the tendinous structures connecting the great toe's proximal phalanx and sesamoid bones. The lesions recorded suggest that a spondyloarthropathy is the most likely cause of these extensive fusions. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Differential diagnosis between chronic otitis media with and without cholesteatoma by temporal bone CT: focus on bone change and mass effect

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Cheol Kyu; Park, Dong Woo; Seong, Jin Yong; Lee, Kak Soo; Park Choong Ki; Lee, Seung Ro; Hahm, Chang Kok [College of Medicine, Hanyang University, Seoul (Korea, Republic of)

    2000-01-01

    In order to determine specific differences, we compared the temporal bone CT findings of chronic otitis media (COM) with and without cholesteatoma, focusing on bone change. Between 1997 and 1998, 82 patients (84 cases) underwent temporal bone CT and were shown to have COM, with or without cholesteatoma after mastoidectomy and tympanoplasty. There were 36 cases of COM with cholesteatoma (26 patients, M:F =3D 11:15; age range, 16-61 (mean, 36,2) years), and 58 cases without chlesteatoma (56 patients, M:F =3D 25:31, age range, 15-61 (mean, 36.2) years). The findings of temporal bone CT were analysed at the point of bony changes including erosion and medial displacement of ossicles (malleus, incus, and stapes), erosion or destruction of the scutum, tegmen, facial canal, and lateral semicircular canal, and ballooning of the tympanic cavity and mastoid antrum. In addition, the soft tissue changes seen on temporal bone CT were analyzed at the site of lateral bulging of soft tissue in Prussak's space, perforation of the pars flaccida, tympanic membrane retraction, and tympanosclerosis. We retrospectively compared the findings of temporal bone CT with the surgical findings, and to assess statistical significance, the Chi-square test was used. Bone erosion or destruction was seen in 36.2% of COM cases without cholesteatoma, and in 96.2% of cases with cholesteatoma. Comparing COM with and without cholesteatoma, the erosion of ossicles including the malleus (81%, 24%), incus (88%, 14%), stapes (58%, 10%), scutum (88%, 10%), facial canal (8%, 0%), and lateral semicircular canal (8%, 0%), was more common in COM with cholesteatoma (p-value less than 0.05), with the exception of erosion of the tegmen (8%, 3%). Other bony changes including medial displacement of ossicles (27%, 3%), ballooning of tympanic cavity and mastoid antrum (96%, 16%), and the soft tissue changes including lateral bulging of soft tissue in Prussak's space (58%, 14%) and perforation of the pars

  5. Laser induced breakdown spectroscopy for bone and cartilage differentiation - ex vivo study as a prospect for a laser surgery feedback mechanism.

    Science.gov (United States)

    Mehari, Fanuel; Rohde, Maximilian; Knipfer, Christian; Kanawade, Rajesh; Klämpfl, Florian; Adler, Werner; Stelzle, Florian; Schmidt, Michael

    2014-11-01

    Laser surgery enables for very accurate, fast and clean modeling of tissue. The specific and controlled cutting and ablation of tissue, however, remains a central challenge in the field of clinical laser applications. The lack of information on what kind of tissue is being ablated at the bottom of the cut may lead to iatrogenic damage of structures that were meant to be preserved. One such example is the shaping or removal of diseased cartilaginous and bone tissue in the temporomandibular joint (TMJ). Diseases of the TMJ can induce deformation and perforation of the cartilaginous discus articularis, as well as alterations to the cartilaginous surface of the condyle or even the bone itself. This may result in restrictions of movement and pain. The aim of a surgical intervention ranges from specific ablation and shaping of diseased cartilage, bone or synovial tissues to extensive removal of TMJ structures. One approach to differentiate between these tissues is to use Laser Induced Breakdown Spectroscopy (LIBS). The ultimate goal is a LIBS guided feedback control system for surgical laser systems that enables real-time tissue identification for tissue specific ablation. In the presented study, the authors focused on the LIBS based differentiation between cartilage tissue and cortical bone tissue using an ex-vivo pig model.

  6. Gibberellin-to-abscisic acid balances govern development and differentiation of the nucellar projection of barley grains

    Czech Academy of Sciences Publication Activity Database

    Weier, D.; Thiel, J.; Kohl, S.; Tarkowská, Danuše; Strnad, Miroslav; Schaarschmidt, S.; Weschke, W.; Weber, H.; Hause, B.

    2014-01-01

    Roč. 65, č. 18 (2014), s. 5291-5304 ISSN 0022-0957 R&D Projects: GA MŠk LK21306 Grant - others:GA MŠk(CZ) ED0007/01/01 Program:ED Institutional support: RVO:61389030 Keywords : Assimilate transfer * barley endosperm * gibberellin-to- abscisic acid balances Subject RIV: EF - Botanics Impact factor: 5.526, year: 2014

  7. Role of human amnion-derived mesenchymal stem cells in promoting osteogenic differentiation by influencing p38 MAPK signaling in lipopolysaccharide -induced human bone marrow mesenchymal stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yuli; Wu, Hongxia; Shen, Ming; Ding, Siyang; Miao, Jing; Chen, Ning, E-mail: 2927410849@qq.com

    2017-01-01

    Periodontitis is a chronic inflammatory disease induced by bacterial pathogens, which not only affect connective tissue attachments but also cause alveolar bone loss. In this study, we investigated the anti-inflammatory effects of Human amnion-derived mesenchymal stem cells (HAMSCs) on human bone marrow mesenchymal stem cells (HBMSCs) under lipopolysaccharide (LPS)-induced inflammatory conditions. Proliferation levels were measured by flow cytometry and immunofluorescence staining of 5-ethynyl-2′-deoxyuridine (EdU). Osteoblastic differentiation and mineralization were investigated using chromogenic alkaline phosphatase activity (ALP) activity substrate assays, Alizarin red S staining, and RT-PCR analysis of HBMSCs osteogenic marker expression. Oxidative stress induced by LPS was investigated by assaying reactive oxygen species (ROS) level and superoxide dismutase (SOD) activity. Here, we demonstrated that HAMSCs increased the proliferation, osteoblastic differentiation, and SOD activity of LPS-induced HBMSCs, and down-regulated the ROS level. Moreover, our results suggested that the activation of p38 MAPK signal transduction pathway is essential for reversing the LPS-induced bone-destructive processes. SB203580, a selective inhibitor of p38 MAPK signaling, significantly suppressed the anti-inflammatory effects in HAMSCs. In conclusion, HAMSCs show a strong potential in treating inflammation-induced bone loss by influencing p38 MAPK signaling. - Highlights: • LPS inhibites osteogenic differentiation in HBMSCs via suppression of p38 MAPK signaling pathway. • HAMSCs promote LPS-induced HBMSCs osteogenic differentiation through p38 MAPK signaling pathway. • HAMSCs reverse LPS-induced oxidative stress in LPS-induced HBMSCs through p38 MAPK signaling pathway.

  8. PS1/γ-Secretase-Mediated Cadherin Cleavage Induces β-Catenin Nuclear Translocation and Osteogenic Differentiation of Human Bone Marrow Stromal Cells

    Science.gov (United States)

    Dias, Rhayra B.; Fortuna-Costa, Anneliese; Chicaybam, Leonardo; Lopes, Daiana V.; Dutra, Hélio S.; Borojevic, Radovan; Bonamino, Martin; Mermelstein, Claudia

    2016-01-01

    Bone marrow stromal cells (BMSCs) are considered a promising tool for bone bioengineering. However, the mechanisms controlling osteoblastic commitment are still unclear. Osteogenic differentiation of BMSCs requires the activation of β-catenin signaling, classically known to be regulated by the canonical Wnt pathway. However, BMSCs treatment with canonical Wnts in vitro does not always result in osteogenic differentiation and evidence indicates that a more complex signaling pathway, involving cadherins, would be required to induce β-catenin signaling in these cells. Here we showed that Wnt3a alone did not induce TCF activation in BMSCs, maintaining the cells at a proliferative state. On the other hand, we verified that, upon BMSCs osteoinduction with dexamethasone, cadherins were cleaved by the PS1/γ-secretase complex at the plasma membrane, and this event was associated with an enhanced β-catenin translocation to the nucleus and signaling. When PS1/γ-secretase activity was inhibited, the osteogenic process was impaired. Altogether, we provide evidence that PS1/γ-secretase-mediated cadherin cleavage has as an important role in controlling β-catenin signaling during the onset of BMSCs osteogenic differentiation, as part of a complex signaling pathway responsible for cell fate decision. A comprehensive map of these pathways might contribute to the development of strategies to improve bone repair. PMID:28053606

  9. PS1/γ-Secretase-Mediated Cadherin Cleavage Induces β-Catenin Nuclear Translocation and Osteogenic Differentiation of Human Bone Marrow Stromal Cells

    Directory of Open Access Journals (Sweden)

    Danielle C. Bonfim

    2016-01-01

    Full Text Available Bone marrow stromal cells (BMSCs are considered a promising tool for bone bioengineering. However, the mechanisms controlling osteoblastic commitment are still unclear. Osteogenic differentiation of BMSCs requires the activation of β-catenin signaling, classically known to be regulated by the canonical Wnt pathway. However, BMSCs treatment with canonical Wnts in vitro does not always result in osteogenic differentiation and evidence indicates that a more complex signaling pathway, involving cadherins, would be required to induce β-catenin signaling in these cells. Here we showed that Wnt3a alone did not induce TCF activation in BMSCs, maintaining the cells at a proliferative state. On the other hand, we verified that, upon BMSCs osteoinduction with dexamethasone, cadherins were cleaved by the PS1/γ-secretase complex at the plasma membrane, and this event was associated with an enhanced β-catenin translocation to the nucleus and signaling. When PS1/γ-secretase activity was inhibited, the osteogenic process was impaired. Altogether, we provide evidence that PS1/γ-secretase-mediated cadherin cleavage has as an important role in controlling β-catenin signaling during the onset of BMSCs osteogenic differentiation, as part of a complex signaling pathway responsible for cell fate decision. A comprehensive map of these pathways might contribute to the development of strategies to improve bone repair.

  10. The Effect of Vitamin E on the In Vitro Differentiation of Adult Rat Bone Marrow Mesenchymal Stem Cells to Osteoblast During Sodium Arsenite Exposure

    Directory of Open Access Journals (Sweden)

    M. Soleimani Mehranjani

    2016-01-01

    Full Text Available Introduction & Objective: Sodium arsenite disturbs the differentiation of adult rat bone marrow mesenchymal stem cells (rMSCs to Osteoblast through oxidative stress. We aimed to investigate the preventive effect of vitamin E, a strong antioxidant, in sodium arsenite toxicity on rMSCs differentiation to osteoblast. Materials & Methods: rMSCs were cultured in Dulbecco’s Modified Eagles Medium containing 15% Fetal Bovine Serum and divided into: control, sodium arsenite (20 nM, vitamin E (50 µM and sodium arsenite + vitamin E for 21 days in the osteogenic media containing 10% of fetal bovine serum. Cell viability, bone matrix mineralization, intercellular and extracellular calcium, alkaline phosphatase activity, DNA damage and cell morphological changes were evaluated. Data were analyzed using one-way ANOVA and Tukey's test and means were considered significantly different at P<0.05. Results: Cell viability, bone matrix mineralization, calcium deposition, alkaline phosphatase activity and nuclei diameter decreased significantly in the sodium arsenite group. The mentioned parameters increased significantly in cells treated with sodium arsenite + vitamin E to the control level (P<0.05. Cytoplasmic extensions were also observed in the vitamin E group. Conclusions: Vitamin E reduces sodium arsenite toxicity, increasing osteogenic differentiation in rMSCs. Sci J Hamadan Univ Med Sci . 2016; 22 (4 :276-285

  11. Differential Gene Expression from Microarray Analysis Distinguishes Woven and Lamellar Bone Formation in the Rat Ulna following Mechanical Loading

    OpenAIRE

    McKenzie, Jennifer A.; Bixby, Elise C.; Silva, Matthew J.

    2011-01-01

    Formation of woven and lamellar bone in the adult skeleton can be induced through mechanical loading. Although much is known about the morphological appearance and structural properties of the newly formed bone, the molecular responses to loading are still not well understood. The objective of our study was to use a microarray to distinguish the molecular responses between woven and lamellar bone formation induced through mechanical loading. Rat forelimb loading was completed in a single bout...

  12. Interleukin-10 Inhibits Bone Resorption: A Potential Therapeutic Strategy in Periodontitis and Other Bone Loss Diseases

    OpenAIRE

    Zhang, Qian; Chen, Bin; Yan, Fuhua; Guo, Jianbin; Zhu, Xiaofeng; Ma, Shouzhi; Yang, Wenrong

    2014-01-01

    Periodontitis and other bone loss diseases, decreasing bone volume and strength, have a significant impact on millions of people with the risk of tooth loss and bone fracture. The integrity and strength of bone are maintained through the balance between bone resorption and bone formation by osteoclasts and osteoblasts, respectively, so the loss of bone results from the disruption of such balance due to increased resorption or/and decreased formation of bone. The goal of therapies for diseases...

  13. Bone marker gene expression in calvarial bones: different bone microenvironments.

    Science.gov (United States)

    Al-Amer, Osama

    2017-12-01

    In calvarial mice, mesenchymal stem cells (MSCs) differentiate into osteoprogenitor cells and then differentiate into osteoblasts that differentiate into osteocytes, which become embedded within the bone matrix. In this case, the cells participating in bone formation include MSCs, osteoprogenitor cells, osteoblasts and osteocytes. The calvariae of C57BL/KaLwRijHsD mice consist of the following five bones: two frontal bones, two parietal bones and one interparietal bone. This study aimed to analyse some bone marker genes and bone related genes to determine whether these calvarial bones have different bone microenvironments. C57BL/KaLwRijHsD calvariae were carefully excised from five male mice that were 4-6 weeks of age. Frontal, parietal, and interparietal bones were dissected to determine the bone microenvironment in calvariae. Haematoxylin and eosin staining was used to determine the morphology of different calvarial bones under microscopy. TaqMan was used to analyse the relative expression of Runx2, OC, OSX, RANK, RANKL, OPG, N-cadherin, E-cadherin, FGF2 and FGFR1 genes in different parts of the calvariae. Histological analysis demonstrated different bone marrow (BM) areas between the different parts of the calvariae. The data show that parietal bones have the smallest BM area compared to frontal and interparietal bones. TaqMan data show a significant increase in the expression level of Runx2, OC, OSX, RANKL, OPG, FGF2 and FGFR1 genes in the parietal bones compared with the frontal and interparietal bones of calvariae. This study provides evidence that different calvarial bones, frontal, parietal and interparietal, contain different bone microenvironments.

  14. Ten-year estimated risk of bone fracture in women with differentiated thyroid cancer under TSH-suppressive levothyroxine therapy.

    Science.gov (United States)

    Vera, Lara; Gay, Stefano; Campomenosi, Claudia; Paolino, Sabrina; Pera, Giorgia; Monti, Eleonora; Mortara, Lorenzo; Seriolo, Bruno; Giusti, Massimo

    2016-01-01

    After thyroidectomy and radioiodine therapy, patients with differentiated thyroid cancer (DTC) are indefinitely treated with levothyroxine (L-T4). Osteoporosis is a debated consequence of hypothyroxinaemia. The aim of this study was to evaluate bone mineral density (BMD) and fracture risk assessed by FRAX in a cohort of DTC women. Seventy-four women with DTC (aged 56.5 ± 9.9 years) treated at the mean age of 51.9 ± 12.0 years were studied. Baseline BMD and FRAX were evaluated after 3.0 years (median). BMD and FRAX were further evaluated 5.5 years (median) after the baseline evaluation. A cohort of 120 euthyroid women, matched for age, BMI, and menopausal status, were evaluated as controls. L-T4 dosages were 813.6 ± 208.8 μg/week and 782.1 ± 184.4 μg/week at the baseline and second evaluation, respectively. The risks of major osteoporotic fracture (MOF) and hip fracture (HF) were similar in DTC patients and in controls. In DTC women, significant changes in FRAX were found, with a higher increase in the probability of HF than of MOF. A similar change was found in controls. A significant inverse correlation (P < 0.001) between L-T4 dosage and HF/MOF probability on both first and second evaluations was found. A significant inverse correlation (P = 0.05) was found between fT4, TSH and duration of therapy and HF/MOF probability only on the second evaluation. FRAX increase is a multi-factorial, age-related phenomenon. The absence of correlations between L-T4 dosage, length of therapy or fT4 levels and FRAX does not enable us to attribute an increased fracture risk to DTC women with well-controlled disease on therapy. (Endokrynol Pol 2016; 67 (4): 350-358).

  15. Coordinated Proliferation and Differentiation of Human-Induced Pluripotent Stem Cell-Derived Cardiac Progenitor Cells Depend on Bone Morphogenetic Protein Signaling Regulation by GREMLIN 2.

    Science.gov (United States)

    Bylund, Jeffery B; Trinh, Linh T; Awgulewitsch, Cassandra P; Paik, David T; Jetter, Christopher; Jha, Rajneesh; Zhang, Jianhua; Nolan, Kristof; Xu, Chunhui; Thompson, Thomas B; Kamp, Timothy J; Hatzopoulos, Antonis K

    2017-05-01

    Heart development depends on coordinated proliferation and differentiation of cardiac progenitor cells (CPCs), but how the two processes are synchronized is not well understood. Here, we show that the secreted Bone Morphogenetic Protein (BMP) antagonist GREMLIN 2 (GREM2) is induced in CPCs shortly after cardiac mesoderm specification during differentiation of human pluripotent stem cells. GREM2 expression follows cardiac lineage differentiation independently of the differentiation method used, or the origin of the pluripotent stem cells, suggesting that GREM2 is linked to cardiogenesis. Addition of GREM2 protein strongly increases cardiomyocyte output compared to established procardiogenic differentiation methods. Our data show that inhibition of canonical BMP signaling by GREM2 is necessary to promote proliferation of CPCs. However, canonical BMP signaling inhibition alone is not sufficient to induce cardiac differentiation, which depends on subsequent JNK pathway activation specifically by GREM2. These findings may have broader implications in the design of approaches to orchestrate growth and differentiation of pluripotent stem cell-derived lineages that depend on precise regulation of BMP signaling.

  16. MiR-637 maintains the balance between adipocytes and osteoblasts by directly targeting Osterix.

    Science.gov (United States)

    Zhang, Jin-fang; Fu, Wei-ming; He, Ming-liang; Wang, Hua; Wang, Wei-mao; Yu, Shi-cang; Bian, Xiu-Wu; Zhou, Jin; Lin, Marie C M; Lu, Gang; Poon, Wai-sang; Kung, Hsiang-fu

    2011-11-01

    Bone development is dynamically regulated by homeostasis, in which a balance between adipocytes and osteoblasts is maintained. Disruption of this differentiation balance leads to various bone-related metabolic diseases, including osteoporosis. In the present study, a primate-specific microRNA (miR-637) was found to be involved in the differentiation of human mesenchymal stem cells (hMSCs). Our preliminary data indicated that miR-637 suppressed the growth of hMSCs and induced S-phase arrest. Expression of miR-637 was increased during adipocyte differentiation (AD), whereas it was decreased during osteoblast differentiation (OS), which suggests miR-637 could act as a mediator of adipoosteogenic differentiation. Osterix (Osx), a significant transcription factor of osteoblasts, was shown to be a direct target of miR-637, which significantly enhanced AD and suppressed OS in hMSCs through direct suppression of Osx expression. Furthermore, miR-637 also significantly enhanced de novo adipogenesis in nude mice. In conclusion, our data indicated that the expression of miR-637 was indispensable for maintaining the balance of adipocytes and osteoblasts. Disruption of miR-637 expression patterns leads to irreversible damage to the balance of differentiation in bone marrow.

  17. A Comparison between the Effects of Aerobic Dance Training on Mini-Trampoline and Hard Wooden Surface on Bone Resorption, Health-Related Physical Fitness, Balance, and Foot Plantar Pressure in Thai Working Women.

    Science.gov (United States)

    Sukkeaw, Wittawat; Kritpet, Thanomwong; Bunyaratavej, Narong

    2015-09-01

    To compare the effects of aerobic dance training on mini-trampoline and hard wooden surface on bone resorption, health-related physical fitness, balance, and foot plantar pressure in Thai working women. Sixty-three volunteered females aged 35-45 years old participated in the study and were divided into 3 groups: A) aerobic dance on mini-trampoline (21 females), B) aerobic dance on hard wooden surface (21 females), and C) control group (21 females). All subjects in the aerobic dance groups wore heart rate monitors during exercise. Aerobic dance worked out 3 times a week, 40 minutes a day for 12 weeks. The intensity was set at 60-80% of the maximum heart rate. The control group engaged in routine physical activity. The collected data were bone formation (N-terminal propeptine of procollagen type I: P1NP) bone resorption (Telopeptide cross linked: β-CrossLaps) health-related physical fitness, balance, and foot plantar pressure. The obtained data from pre- and post trainings were compared and analyzed by paired samples t-test and one way analysis of covariance. The significant difference was at 0.05 level. After the 12-week training, the biochemical bone markers of both mini-trampoline and hard wooden surface aerobic dance training subjects decreased in bone resorption (β-CrossLaps) but increased in boneformation (P1NP). Health-related physical fitness, balance, and foot plantar pressure were not only better when comparing to the pre-test result but also significantly different when comparing to the control group (p dance on mini-trampoline showed that leg muscular strength, balance and foot plantar pressure were significantly better than the aerobic dance on hard wooden surface (p dance on mini-trampoline and hard wooden surface had positive effects on biochemical bone markers. However, the aerobic dance on mini-trampoline had more leg muscular strength and balance including less foot plantar pressure. It is considered to be an appropriate exercise programs in

  18. Differential NtcA Responsiveness to 2-Oxoglutarate Underlies the Diversity of C/N Balance Regulation in Prochlorococcus

    Directory of Open Access Journals (Sweden)

    María A. Domínguez-Martín

    2018-01-01

    Full Text Available Previous studies showed differences in the regulatory response to C/N balance in Prochlorococcus with respect to other cyanobacteria, but no information was available about its causes, or the ecological advantages conferred to thrive in oligotrophic environments. We addressed the changes in key enzymes (glutamine synthetase, isocitrate dehydrogenase and the ntcA gene (the global nitrogen regulator involved in C/N metabolism and its regulation, in three model Prochlorococcus strains: MED4, SS120, and MIT9313. We observed a remarkable level of diversity in their response to azaserine, a glutamate synthase inhibitor which increases the concentration of the key metabolite 2-oxoglutarate, used to sense the C/N balance by cyanobacteria. Besides, we studied the binding between the global nitrogen regulator (NtcA and the promoter of the glnA gene in the same Prochlorococcus strains, and its dependence on the 2-oxoglutarate concentration, by using isothermal titration calorimetry, surface plasmon resonance, and electrophoretic mobility shift. Our results show a reduction in the responsiveness of NtcA to 2-oxoglutarate in Prochlorococcus, especially in the MED4 and SS120 strains. This suggests a trend to streamline the regulation of C/N metabolism in late-branching Prochlorococcus strains (MED4 and SS120, in adaptation to the rather stable conditions found in the oligotrophic ocean gyres where this microorganism is most abundant.

  19. Forced expression of Sox2 or Nanog in human bone marrow derived mesenchymal stem cells maintains their expansion and differentiation capabilities

    International Nuclear Information System (INIS)

    Go, Masahiro J.; Takenaka, Chiemi; Ohgushi, Hajime

    2008-01-01

    Mesenchymal stem cells (MSCs) derived from human bone marrow have capability to differentiate into cells of mesenchymal lineage. The cells have already been applied in various clinical situations because of their expansion and differentiation capabilities. The cells lose their capabilities after several passages, however. With the aim of conferring higher capability on human bone marrow MSCs, we introduced the Sox2 or Nanog gene into the cells. Sox2 and Nanog are not only essential for pluripotency and self-renewal of embryonic stem cells, but also expressed in somatic stem cells that have superior expansion and differentiation potentials. We found that Sox2-expressing MSCs showed consistent proliferation and osteogenic capability in culture media containing basic fibroblast growth factor (bFGF) compared to control cells. Significantly, in the presence of bFGF in culture media, most of the Sox2-expressing cells were small, whereas the control cells were elongated in shape. We also found that Nanog-expressing cells even in the absence of bFGF had much higher capabilities for expansion and osteogenesis than control cells. These results demonstrate not only an effective way to maintain proliferation and differentiation potentials of MSCs but also an important implication about the function of bFGF for self-renewal of stem cells including MSCs

  20. Identification of Stages of Erythroid Differentiation in Bone Marrow and Erythrocyte Subpopulations in Blood Circulation that Are Preferentially Lost in Autoimmune Hemolytic Anemia in Mouse

    Science.gov (United States)

    Chatterjee, Sreoshi; Bhardwaj, Nitin; Saxena, Rajiv K.

    2016-01-01

    Repeated weekly injections of rat erythrocytes produced autoimmune hemolytic anemia (AIHA) in C57BL/6 mice after 5–6 weeks. Using the double in vivo biotinylation (DIB) technique, recently developed in our laboratory, turnover of erythrocyte cohorts of different age groups during AIHA was monitored. Results indicate a significant decline in the proportion of reticulocytes, young and intermediate age groups of erythrocytes, but a significant increase in the proportion of old erythrocytes in blood circulation. Binding of the autoantibody was relatively higher to the young erythrocytes and higher levels of intracellular reactive oxygen species (ROS) were also seen in these cells. Erythropoietic activity in the bone marrows and the spleen of AIHA induced mice was examined by monitoring the relative proportion of erythroid cells at various stages of differentiation in these organs. Cells at different stages of differentiation were enumerated flow cytometrically by double staining with anti-Ter119 and anti-transferrin receptor (CD71) monoclonal antibodies. Erythroid cells in bone marrow declined significantly in AIHA induced mice, erythroblast C being most affected (50% decline). Erythroblast C also recorded high intracellular ROS level along with increased levels of membrane-bound autoantibody. No such decline was observed in spleen. A model of AIHA has been proposed indicating that binding of autoantibodies may not be a sufficient condition for destruction of erythroid cells in bone marrow and in blood circulation. Last stage of erythropoietic differentiation in bone marrow and early stages of erythrocytes in blood circulation are specifically susceptible to removal in AIHA. PMID:27870894

  1. In Vitro Study of the Effect of Vitamin E on Viability, Morphological Changes and Induction of Osteogenic Differentiation in Adult Rat Bone Marrow Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    M Soleimani Mehranjani

    2014-10-01

    Full Text Available Introduction: Vitamin E as a strong antioxidant plays an important role in inhibiting free radicals. Therefore, this study aimed to investigate the effect of vitamin E on the viability, morphology and osteogenic differentiation in bone marrow mesenchymal stem cells of an adult rat. Methods: The bone marrow mesenchymal stem cells were extracted using the flashing-out method. At the end of the third passage, cells were divided into groups of control and experimental. Experimental cells were treated withVitamin E (5,10,15,25,50,100,150μM for a period of 21 days in the osteogenic media containing 10% of fetal bovine serum. The cell viability, bone matrix mineralization, intercellular and extracellular calcium deposition, alkaline phosphatase activity, expression of genes and synthesis of proteins of osteopontin and osteocalcin as well as morphological changes of the cells were investigated. The study data was analyzed using one-way ANOVA and T-Test setting the significant P value at P<0.05. Results: Within vitamin- E treated cells, the mean viability, mean bone matrix mineralization, calcium deposition, alkaline phosphatase activity, expression and synthesis of osteopontin and osteocalcin of the mesenchymal stem cells treated with vitamin E significantly increased in a dose dependent manner. Also cytoplasm extensions were observed in the cells treated with vitamin E. Conclusion: Since vitamin E caused a significant increase in cell viability and osteogenic differentiation in the mesenchymal stem cells, therefore it can be utilized in order to increase cell differentiation and cell survival.

  2. Identification of Stages of Erythroid Differentiation in Bone Marrow and Erythrocyte Subpopulations in Blood Circulation that Are Preferentially Lost in Autoimmune Hemolytic Anemia in Mouse.

    Directory of Open Access Journals (Sweden)

    Sreoshi Chatterjee

    Full Text Available Repeated weekly injections of rat erythrocytes produced autoimmune hemolytic anemia (AIHA in C57BL/6 mice after 5-6 weeks. Using the double in vivo biotinylation (DIB technique, recently developed in our laboratory, turnover of erythrocyte cohorts of different age groups during AIHA was monitored. Results indicate a significant decline in the proportion of reticulocytes, young and intermediate age groups of erythrocytes, but a significant increase in the proportion of old erythrocytes in blood circulation. Binding of the autoantibody was relatively higher to the young erythrocytes and higher levels of intracellular reactive oxygen species (ROS were also seen in these cells. Erythropoietic activity in the bone marrows and the spleen of AIHA induced mice was examined by monitoring the relative proportion of erythroid cells at various stages of differentiation in these organs. Cells at different stages of differentiation were enumerated flow cytometrically by double staining with anti-Ter119 and anti-transferrin receptor (CD71 monoclonal antibodies. Erythroid cells in bone marrow declined significantly in AIHA induced mice, erythroblast C being most affected (50% decline. Erythroblast C also recorded high intracellular ROS level along with increased levels of membrane-bound autoantibody. No such decline was observed in spleen. A model of AIHA has been proposed indicating that binding of autoantibodies may not be a sufficient condition for destruction of erythroid cells in bone marrow and in blood circulation. Last stage of erythropoietic differentiation in bone marrow and early stages of erythrocytes in blood circulation are specifically susceptible to removal in AIHA.

  3. Time-sequential changes of differentially expressed miRNAs during the process of anterior lumbar interbody fusion using equine bone protein extract, rhBMP-2 and autograft

    Science.gov (United States)

    Chen, Da-Fu; Zhou, Zhi-Yu; Dai, Xue-Jun; Gao, Man-Man; Huang, Bao-Ding; Liang, Tang-Zhao; Shi, Rui; Zou, Li-Jin; Li, Hai-Sheng; Bünger, Cody; Tian, Wei; Zou, Xue-Nong

    2014-03-01

    The precise mechanism of bone regeneration in different bone graft substitutes has been well studied in recent researches. However, miRNAs regulation of the bone formation has been always mysterious. We developed the anterior lumbar interbody fusion (ALIF) model in pigs using equine bone protein extract (BPE), recombinant human bone morphogenetic protein-2 (rhBMP-2) on an absorbable collagen sponge (ACS), and autograft as bone graft substitute, respectively. The miRNA and gene expression profiles of different bone graft materials were examined using microarray technology and data analysis, including self-organizing maps, KEGG pathway and Biological process GO analyses. We then jointly analyzed miRNA and mRNA profiles of the bone fusion tissue at different time points respectively. Results showed that miRNAs, including let-7, miR-129, miR-21, miR-133, miR-140, miR-146, miR-184, and miR-224, were involved in the regulation of the immune and inflammation response, which provided suitable inflammatory microenvironment for bone formation. At late stage, several miRNAs directly regulate SMAD4, Estrogen receptor 1 and 5-hydroxytryptamine (serotonin) receptor 2C for bone formation. It can be concluded that miRNAs play important roles in balancing the inflammation and bone formation.

  4. Primary root protophloem differentiation requires balanced phosphatidylinositol-4,5-biphosphate levels and systemically affects root branching.

    OpenAIRE

    Rodriguez-Villalon Antia; Gujas Bojan; van Wijk Ringo; Munnik Teun; Hardtke Christian S

    2015-01-01

    Protophloem is a specialized vascular tissue in growing plant organs, such as root meristems. In Arabidopsis mutants with impaired primary root protophloem differentiation, brevis radix (brx) and octopus (ops), meristematic activity and consequently overall root growth are strongly reduced. Second site mutation in the protophloem-specific presumed phosphoinositide 5-phosphatase cotyledon vascular pattern 2 (CVP2), but not in its homolog CVP2-like 1 (CVL1), partially rescues brx defects. Consi...

  5. Balancing spinal stability and future mobility in the cervical spine: surgical treatment of a case of osteoblastoma with secondary aneurysmal bone cyst.

    Science.gov (United States)

    Ramme, Austin J; Smucker, Joseph D

    2011-05-01

    The combination of osteoblastoma and aneurysmal bone cyst (ABC) in the cervical spine is a relatively rare occurrence in the general population. The diagnosis and surgical management of osteoblastoma and ABCs have been previously described in a small number of case reports/series and orthopedic texts. Lesions of the cervical spine pose challenges to surgeons that require preoperative planning and intraoperative decisions to ensure an appropriate patient outcome. Complete resection has been shown to be the most effective method for preventing recurrence; however, balancing spinal stability, future mobility, and complete resection is especially important in active young patients. We describe a modern approach to the surgical management of osteoblastoma with secondary ABC of the cervical spine with 4-year clinical and radiographic follow-up. Included in this report is a comprehensive review of the literature related to osteoblastoma, ABCs, and surgical issues pertinent to them. An independent retrospective case review combined with a review of current literature was performed. A single patient with a combination of osteoblastoma and secondary ABC is presented. During 4 years of follow-up, the patient has been evaluated with plain radiographs for subluxation or rotation of the cervical spine. Postoperative assessments for pain and range of motion were also collected. The medical, pathologic, and radiographic records of a case of osteoblastoma with secondary aneursymal bone cyst of the cervical spine were reviewed. A computer-based literature search of the PubMed database was used to compile a comprehensive review of the topic. The diagnosis and surgical treatment of osteoblastoma with secondary ABC in the cervical spine are discussed in the context of a literature review. The surgical management of this lesion was dictated by the size and location of the mass as well as the impact of the surgical resection on surrounding structures in terms of spinal stability and

  6. Effects of interleukin-7/interleukin-7 receptor on RANKL-mediated osteoclast differentiation and ovariectomy-induced bone loss by regulating c-Fos/c-Jun pathway.

    Science.gov (United States)

    Zhao, Ji-Jun; Wu, Zhao-Feng; Yu, Ying-Hao; Wang, Ling; Cheng, Li

    2018-04-16

    To explore the effects of IL-7/IL-7R on the RANKL-mediated osteoclast differentiation in vitro and OVX-induced bone loss in vivo. BMMs and RAW264.7 were transfected with IL-7, IL-7R siRNA, c-Fos siRNA, and c-jun siRNA and later stimulated by RANKL. TRAP and toluidine blue staining were used to observe osteoclast formation and bone resorption, respectively. HE and TRAP staining were used to detect trabecular bone microstructure and osteoclasts of mice, respectively. qRT-PCR and Western blot analysis were used to examine expression. IL-7 unregulated the expression of CTSK, NFATc1, MMP9, and the phosphorylation of p38 and Akt by activating the c-Fos/c-Jun pathway, which increased osteoclast numbers and bone resorption in RANKL-stimulated macrophages. While IL-7R siRNA and c-Fos siRNA decreased the expression, as well as and the phosphorylation of p38 and Akt.IL-7 decreased the BMD and OPG expression in OVX-induced mice and increased the TRAP positive cells, the mRNA expression of c-fos, c-jun, and RANKL, which was contradictory to IL-7R siRNA, and c-Fos siRNA. Furthermore, IL-7R siRNA and c-Fos siRNA caused thicker trabeculae, increased trabecular number, and decreased osteolysis in OVX mice. IL-7/IL-7R can promote RANKL-mediated osteoclast formation and bone resorption by activating the c-Fos/c-Jun pathway, as well as inducing bone loss in OVX mice. © 2018 Wiley Periodicals, Inc.

  7. Biomimetic nucleation of hydroxyapatite crystals mediated by Antheraea pernyi silk sericin promotes osteogenic differentiation of human bone marrow derived mesenchymal stem cells.

    Science.gov (United States)

    Yang, Mingying; Shuai, Yajun; Zhang, Can; Chen, Yuyin; Zhu, Liangjun; Mao, Chuanbin; OuYang, Hongwei

    2014-04-14

    Biomacromolecules have been used as templates to grow hydroxyapatite crystals (HAps) by biomineralization to fabricate mineralized materials for potential application in bone tissue engineering. Silk sericin is a protein with features desirable as a biomaterial, such as increased hydrophilicity and biodegradation. Mineralization of the silk sericin from Antheraea pernyi (A. pernyi) silkworm has rarely been reported. Here, for the first time, nucleation of HAps on A. pernyi silk sericin (AS) was attempted through a wet precipitation method and consequently the cell viability and osteogenic differentiation of BMSCs on mineralized AS were investigated. It was found that AS mediated the nucleation of HAps in the form of nanoneedles while self-assembling into β-sheet conformation, leading to the formation of a biomineralized protein based biomaterial. The cell viability assay of BMSCs showed that the mineralization of AS stimulated cell adhesion and proliferation, showing that the resultant AS biomaterial is biocompatible. The differentiation assay confirmed that the mineralized AS significantly promoted the osteogenic differentiation of BMSCs when compared to nonmineralized AS as well as other types of sericin (B. mori sericin), suggesting that the resultant mineralized AS biomaterial has potential in promoting bone formation. This result represented the first work proving the osteogenic differentiation of BMSCs directed by silk sericin. Therefore, the biomineralization of A. pernyi silk sericin coupled with seeding BMSCs on the resultant mineralized biomaterials is a useful strategy to develop the potential application of this unexplored silk sericin in the field of bone tissue engineering. This study lays the foundation for the use of A. pernyi silk sericin as a potential scaffold for tissue engineering.

  8. Pulsed Electromagnetic Field Regulates MicroRNA 21 Expression to Activate TGF-β Signaling in Human Bone Marrow Stromal Cells to Enhance Osteoblast Differentiation

    Directory of Open Access Journals (Sweden)

    Nagarajan Selvamurugan

    2017-01-01

    Full Text Available Pulsed electromagnetic fields (PEMFs have been documented to promote bone fracture healing in nonunions and increase lumbar spinal fusion rates. However, the molecular mechanisms by which PEMF stimulates differentiation of human bone marrow stromal cells (hBMSCs into osteoblasts are not well understood. In this study the PEMF effects on hBMSCs were studied by microarray analysis. PEMF stimulation of hBMSCs’ cell numbers mainly affected genes of cell cycle regulation, cell structure, and growth receptors or kinase pathways. In the differentiation and mineralization stages, PEMF regulated preosteoblast gene expression and notably, the transforming growth factor-beta (TGF-β signaling pathway and microRNA 21 (miR21 were most highly regulated. PEMF stimulated activation of Smad2 and miR21-5p expression in differentiated osteoblasts, and TGF-β signaling was essential for PEMF stimulation of alkaline phosphatase mRNA expression. Smad7, an antagonist of the TGF-β signaling pathway, was found to be miR21-5p’s putative target gene and PEMF caused a decrease in Smad7 expression. Expression of Runx2 was increased by PEMF treatment and the miR21-5p inhibitor prevented the PEMF stimulation of Runx2 expression in differentiating cells. Thus, PEMF could mediate its effects on bone metabolism by activation of the TGF-β signaling pathway and stimulation of expression of miR21-5p in hBMSCs.

  9. Promotion of osteogenic differentiation of stem cells and increase of bone-bonding ability in vivo using urease-treated titanium coated with calcium phosphate and gelatin

    International Nuclear Information System (INIS)

    Huang, Zhong-Ming; Qi, Yi-Ying; Du, Shao-Hua; Feng, Gang; Yan, Wei-Qi; Unuma, Hidero

    2013-01-01

    Because of its excellent biocompatibility and low allergenicity, titanium has been widely used for bone replacement and tissue engineering. To produce a desirable composite with enhanced bone response and mechanical strength, in this study bioactive calcium phosphate (CaP) and gelatin composites were coated onto titanium (Ti) via a novel urease technique. The cellular responses to the CaP/gelatin/Ti (CaP/gel/Ti) and bone bonding ability were evaluated with proliferation and osteogenic differentiation of mesenchymal stem cells (MSCs) on CaP/gel/Ti and CaP/Ti in vitro. The results showed that the optical density values, alkaline phosphatase expression and genes expression of MSCs on CaP/gel/Ti were similar to those on CaP/Ti, yet significantly higher than those on pure Ti (p < 0.05). CaP/gel/Ti and CaP/Ti rods (2 mm in diameter, 10 mm in length) were also implanted into femoral shaft of rabbits and pure Ti rods served as control (n = 10). Histological examination, scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) measurements were performed at 4 and 8 weeks after the operation. The histological and SEM observations demonstrated clearly that more new bone formed on the surface of CaP/gel/Ti than in the other two groups at each time point. The CaP/gel/Ti bonded to the surrounding bone directly with no intervening soft tissue layer. An interfacial layer, containing Ti, Ca and P, was found to form at the interface between bone and the implant on all three groups by EDS analysis. However, the content of Ca, P in the surface of CaP/gel/Ti implants was more than in the other two groups at each time point. The CaP/gel/Ti modified by the urease method was not only beneficial for MSCs proliferation and osteogenic differentiation, but also favorable for bone bonding ability on Ti implants in vivo, suggesting that Ti functionalized with CaP and gelatin might have a great potential in clinical joint replacement or dental implants. (paper)

  10. Patients With High Bone Mass Phenotype Exhibit Enhanced Osteoblast Differentiation and Inhibition of Adipogenesis of Human Mesenchymal Stem Cells

    DEFF Research Database (Denmark)

    Qiu, Weimin; Andersen, Tom; Bollerslev, Jens

    2007-01-01

    Genetic mutations in the LRP5 gene affect Wnt signaling and lead to changes in bone mass in humans. Our in vivo and in vitro results show that activated mutation T253I of LRP5 enhances osteogenesis and inhibits adipogenesis. Inactivating mutation T244M of LRP5 exerts opposite effects. Introduction......: Mutations in the Wnt co-receptor, LRP5, leading to decreased or increased canonical Wnt signaling, result in osteoporosis or a high bone mass (HBM) phenotype, respectively. However, the mechanisms whereby mutated LRP5 causes changes in bone mass are not known. Materials and Methods: We studied bone marrow composition...... to osteoporosis), or LRP5T253 (hMSC-LRP5T253, activation mutation leading to high bone mass). We characterized Wnt signaling activation using a dual luciferase assay, cell proliferation, lineage biomarkers using real-time PCR, and in vivo bone formation. Results: In bone biopsies, we found increased trabecular...

  11. A Novel Human TGF-β1 Fusion Protein in Combination with rhBMP-2 Increases Chondro-Osteogenic Differentiation of Bone Marrow Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    Silvia Claros

    2014-06-01

    Full Text Available Transforming growth factor-beta (TGF-β is involved in processes related to the differentiation and maturation of osteoprogenitor cells into osteoblasts. Rat bone marrow (BM cells were cultured in a collagen-gel containing 0.5% fetal bovine serum (FBS for 10 days in the presence of rhTGF (recombinant human TGF-β1-F2, a fusion protein engineered to include a high-affinity collagen-binding decapeptide derived from von Willebrand factor. Subsequently, cells were moderately expanded in medium with 10% FBS for 4 days and treated with a short pulse of rhBMP (recombinant human bone morphogenetic protein-2 for 4 h. During the last 2 days, dexamethasone and β-glycerophosphate were added to potentiate osteoinduction. Concomitant with an up-regulation of cell proliferation, DNA synthesis levels were determined. Polymerase chain reaction was performed to reveal the possible stemness of these cells. Osteogenic differentiation was evaluated in terms of alkaline phosphatase activity and mineralized matrix formation as well as by mRNA expression of osteogenic marker genes. Moreover, cells were placed inside diffusion chambers and implanted subcutaneously into the backs of adult rats for 4 weeks. Histological study provided evidence of cartilage and bone-like tissue formation. This experimental procedure is capable of selecting cell populations from BM that, in the presence of rhTGF-β1-F2 and rhBMP-2, achieve skeletogenic potential in vitro and in vivo.

  12. Synergetic topography and chemistry cues guiding osteogenic differentiation in bone marrow stromal cells through ERK1/2 and p38 MAPK signaling pathway.

    Science.gov (United States)

    Zhang, Xinran; Li, Haotian; Lin, Chucheng; Ning, Congqin; Lin, Kaili

    2018-01-30

    Both the topographic surface and chemical composition modification can enhance rapid osteogenic differentiation and bone formation. Till now, the synergetic effects of topography and chemistry cues guiding biological responses have been rarely reported. Herein, the ordered micro-patterned topography and classically essential trace element of strontium (Sr) ion doping were selected to imitate topography and chemistry cues, respectively. The ordered micro-patterned topography on Sr ion-doped bioceramics was successfully duplicated using the nylon sieve as the template. Biological response results revealed that the micro-patterned topography design or Sr doping could promote cell attachment, ALP activity, and osteogenic differentiation of bone marrow-derived mesenchymal stem cells (BMSCs). Most importantly, the samples both with micro-patterned topography and Sr doping showed the highest promotion effects, and could synergistically activate the ERK1/2 and p38 MAPK signaling pathways. The results suggested that the grafts with both specific topography and chemistry cues have synergetic effects on osteogenic activity of BMSCs and provide an effective approach to design functional bone grafts and cell culture substrates.

  13. Comparison of the osteogenic differentiation potential of mesenchymal cells isolated from human bone marrow, umbilical cord blood and placenta derived stem cells

    Directory of Open Access Journals (Sweden)

    Shymaa Maher

    2015-03-01

    Full Text Available Bone marrow has been considered for long time as the main source for mesenchymal stem cells. However, bone marrow aspiration is an invasive process that can be associated with morbidity as well as few numbers of obtained cells. Umbilical cord blood and placental tissues are other potential sources for the same type of cells. These sources are abundant, accessible and associated with no harm to the donor. This study aimed at determining the differentiation of the three cell types towards the osteogenic lineage in short term culture and in classical osteogenic conditions. The gene expression profile showed that bone marrow derived cells were the most responsive to the culture conditions while umbilical cord blood derived cells were next, as shown by the expression by the osteogenic key transcription factors ‘Runx-2’ and osterix. At the meantime, umbilical cord blood and placenta derived cells showed significant enhancement of the gene expression over the study course, which denoted potential response of the cells. Based on these results and the availability of these two sources, umbilical cord blood and placenta should still be considered as potential sources for mesenchymal stem cells in osteogenic research program. However their differentiation potential will need further enhancement.

  14. Modeling and Validation of Multilayer Poly(Lactide-Co-Glycolide) Scaffolds for In Vitro Directed Differentiation of Juxtaposed Cartilage and Bone.

    Science.gov (United States)

    Huang, George X; Arany, Praveen R; Mooney, David J

    2015-08-01

    Polymeric scaffolds, which release growth factors in a temporally controlled manner, have successfully directed the differentiation of stem cells into monolithic tissues of a single lineage. However, engineering precise boundaries in multilineage functional tissues, such as the juxtaposed cartilaginous and osseous tissue present in articulated joints, often remains a challenge. This work demonstrates a precise materials system for in vitro reconstruction of the three-dimensional architecture of these types of human tissues. Multilayer poly(lactide-co-glycolide) (PLG) scaffolds were used to produce spatiotemporal gradients to direct the differentiation of an initially uniform population of mesenchymal stem cells (MSCs) into juxtaposed cartilage and bone. Specifically, growth factors (chondrogenic transforming growth factor-β3 and osteogenic bone morphogenetic protein-4) and their neutralizing antibodies were incorporated within distinct layers of the PLG scaffolds to create spatially segregated morphogen fields within the scaffold volume. The multilayer PLG scaffold designs were optimized by mathematical modeling, and generation of spatially segregated morphogen gradients was validated by assessing activity of luciferase reporter cell lines responsive to each growth factor. Scaffolds seeded with MSCs demonstrated production of juxtaposed cartilage and bone, as evaluated by biochemical staining and western blotting for tissue-specific matrix proteins. This work demonstrates a significant advance for the engineering of implantable constructs comprising tissues of multiple lineages, with potential applications in orthopedic regenerative medicine.

  15. miR-203 and miR-320 Regulate Bone Morphogenetic Protein-2-Induced Osteoblast Differentiation by Targeting Distal-Less Homeobox 5 (Dlx5

    Directory of Open Access Journals (Sweden)

    Navya Laxman

    2016-12-01

    Full Text Available MicroRNAs (miRNAs are a family of small, non-coding RNAs (17–24 nucleotides, which regulate gene expression either by the degradation of the target mRNAs or inhibiting the translation of genes. Recent studies have indicated that miRNA plays an important role in regulating osteoblast differentiation. In this study, we identified miR-203 and miR-320b as important miRNAs modulating osteoblast differentiation. We identified Dlx5 as potential common target by prediction algorithms and confirmed this by knock-down and over expression of the miRNAs and assessing Dlx5 at mRNA and protein levels and specificity was verified by luciferase reporter assays. We examined the effect of miR-203 and miR-320b on osteoblast differentiation by transfecting with pre- and anti-miRs. Over-expression of miR-203 and miR-320b inhibited osteoblast differentiation, whereas inhibition of miR-203 and miR-320b stimulated alkaline phosphatase activity and matrix mineralization. We show that miR-203 and miR-320b negatively regulate BMP-2-induced osteoblast differentiation by suppressing Dlx5, which in turn suppresses the downstream osteogenic master transcription factor Runx2 and Osx and together they suppress osteoblast differentiation. Taken together, we propose a role for miR-203 and miR-320b in modulating bone metabolism.

  16. EF1α is a suitable housekeeping gene for RT-qPCR analysis during osteogenic differentiation of mouse bone marrow-derived mesenchymal stem cells.

    Science.gov (United States)

    Chen, Xingyun; Zhang, Bo; Zhao, Yan; Liu, Ping; Zhou, Yuanguo

    2013-01-01

    The expression of predominant housekeeping genes used in RT-qPCR can vary during development and differentiation. The frequently used housekeeping genes (ACTB, GAPDH, 18S rRNA, EF1α and RPL 13a) were evaluated during an early stage of the osteogenic differentiation of mouse bone marrow-derived mesenchymal stem cells (mMSCs) (under normal conditions or treated with CCG-4986) to identify housekeeping genes whose expression remained constant during osteogenic differentiation. When we used RGS4 mRNA, which was determined as copy number per μg of total RNA, to normalize gene expression, we observed that the relative EF1α expression profile was consistent with RGS4 expression after treatment with CCG-4986. All the relative expression profiles of the EF1α, 18S rRNA, and RPL13a housekeeping genes were consistent with RGS4 profiles determined by measuring mRNA copies under normal osteogenic differentiation conditions. The expression profiles calibrated by ACTB and GAPDH were not consistent with those determined using mRNA copy number in untreated cells or cells treated with CCG-4986 under osteogenic differentiation conditions. Under normal osteogenic differentiation conditions, EF1α, 18S rRNA, and RPL 13a are suitable housekeeping genes for RT-qPCR analysis. However, EF1α is the only suitable gene upon CCG-4986 treatment.

  17. [PDGFRα Participates in Basic Fibroblast Growth Factor-mediated Recovery of Human Bone Marrow Mesenchymal Stem Cell Proliferation and Osteogenic Differentiation after Irradiation].

    Science.gov (United States)

    Dai, Kai; Yang, Zhi; Xu, Shuang-Nian; Zhang, Jian-Min; Chen, Jie-Ping

    2015-12-01

    To explore the effects of basic fibroblast growth factor (bFGF) on human bone marrow mesenchymal stem cell (hBMMSC) damaged by irradiation and its underlying mechanisms. hBMMSC was irradiated with 0, 6, 12 Gy X ray, then flow cytometry, cell counting kit-8 (CCK-8), Western blot and alizarin red staining were used to detect the effects of X ray on apoptosis, proliferation and osteogenic differentiation of hBMMSC; 0, 1, 5, 10, 20 ng/ml bFGF was added to hBMMSC irradiated with X ray for selecting the suitable bFGF reaction concentration; then the Western blot was used to detect the expression of PDGFRα so as to evaluate whether the expression of PDGFRα participated in bFGF-mediated recovery of hBMMSC proliferation and osteogenic differentiation after irradiation. The proliferation and osteogenic differentiation of hBMMSC decreased remarkably after irradiation. bFGF promoted the recovery of proliferation and osteogenic differentiation of irradiated hBMMSC compared with untreated irradiated hBMMSC (P recovery of hBMMSC proliferation and osteogenic differentiation. The damage of hBMMSC proliferation and osteogenic differentiation associates with downregulation of PDGFRα expression induced by irrediation. PDGFRα involves in repairing effect of bFGF on irradiation damage of hBMMSC.

  18. Regulation of Bone Metabolism

    Directory of Open Access Journals (Sweden)

    Maryam Shahi

    2017-05-01

    Full Text Available Bone is formed through the processes of endochondral and intramembranous ossification. In endochondral ossification primary mesenchymal cells differentiate to chondrocytes and then are progressively substituted by bone, while in intramembranous ossification mesenchymal stem cells (MSCs differentiate directly into osteoblasts to form bone. The steps of osteogenic proliferation, differentiation, and bone homeostasis are controlled by various markers and signaling pathways. Bone needs to be remodeled to maintain integrity with osteoblasts, which are bone-forming cells, and osteoclasts, which are bone-degrading cells. In this review we considered the major factors and signaling pathways in bone formation; these include fibroblast growth factors (FGFs, bone morphogenetic proteins (BMPs, wingless-type (Wnt genes, runt-related transcription factor 2 (RUNX2 and osteoblast-specific transcription factor (osterix or OSX.

  19. Polycomb repression complex 2 is required for the maintenance of retinal progenitor cells and balanced retinal differentiation

    Czech Academy of Sciences Publication Activity Database

    Fujimura, Naoko; Kuželová, Andrea; Ebert, A.; Strnad, Hynek; Láchová, Jitka; Machoň, Ondřej; Busslinger, M.; Kozmik, Zbyněk

    2018-01-01

    Roč. 433, č. 1 (2018), s. 47-60 ISSN 0012-1606 R&D Projects: GA ČR GA15-23675S; GA MŠk(CZ) LQ1604; GA MŠk(CZ) LM2015040; GA MŠk ED2.1.00/19.0395 Institutional support: RVO:68378050 Keywords : Retina * Differentiation * Polycomb * Eed Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Biology (theoretical, mathematical, thermal, cryobiology, biological rhythm), Evolutionary biology Impact factor: 2.944, year: 2016

  20. Salicortin inhibits osteoclast differentiation and bone resorption by down-regulating JNK and NF-κB/NFATc1 signaling pathways

    International Nuclear Information System (INIS)

    Nie, Shaobo; Xu, Jiawei; Zhang, Chenghua; Xu, Chen; Liu, Ming; Yu, Degang

    2016-01-01

    Receptor activator of nuclear factor (NF)-κB ligand (RANKL)-activated signaling is essential for osteoclast differentiation, activation, and survival. Salicortin is a phenolic glycoside that has been isolated from many plants such as Populus and Salix species, and has been shown to have anti-amnesic and anti-adipogenic effects. In this study, we investigated the effect of salicortin on RANKL-induced osteoclasts formation, bone resorption, and activation of osteoclast-related signaling pathways. Salicortin suppressed RANKL-induced osteoclastogenesis in bone marrow macrophage cultures in a dose-dependent manner, and inhibited osteoclastic bone resorption activity without any cytotoxicity. Salicortin inhibited RANKL-induced c-Jun N-terminal kinase and NF-κB activation, concomitant with retarded IκBα phosphorylation and inhibition of p65 nuclear translocation, leading to impaired transcription of nuclear factor of activated T cells c1 (NFATc1) and expression of osteoclastic-specific genes. Taken together, our findings demonstrate that salicortin inhibits NF-κB and NFATc1 activation, leading to attenuation of osteoclastogenesis and bone resorption. Thus, salicortin may be of interest in developments of treatment for osteoclast related diseases. - Highlights: • Salicortin suppresses osteoclastogenesis in vitro. • Salicortin impairs the JNK and NF-κB/NFATc1 signaling pathway. • Salicortin may be of interest in developments of osteoporosis treatment.

  1. Salicortin inhibits osteoclast differentiation and bone resorption by down-regulating JNK and NF-κB/NFATc1 signaling pathways

    Energy Technology Data Exchange (ETDEWEB)

    Nie, Shaobo [Department of Orthopaedics, PLA General Hospital, Beijing 100853 (China); Xu, Jiawei [Department of Orthopaedics, Shanghai Ninth People' s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011 (China); Zhang, Chenghua [Department of Orthopaedics, Changle County Hospital of Traditional Chinese Medicine, Weifang 262400 (China); Xu, Chen [Department of Orthopaedics, Shanghai Ninth People' s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011 (China); Liu, Ming, E-mail: ming_li4717@sina.com [Department of Orthopaedics, Shanghai Ninth People' s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011 (China); Yu, Degang, E-mail: ydg163@126.com [Department of Orthopaedics, Shanghai Ninth People' s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011 (China)

    2016-01-29

    Receptor activator of nuclear factor (NF)-κB ligand (RANKL)-activated signaling is essential for osteoclast differentiation, activation, and survival. Salicortin is a phenolic glycoside that has been isolated from many plants such as Populus and Salix species, and has been shown to have anti-amnesic and anti-adipogenic effects. In this study, we investigated the effect of salicortin on RANKL-induced osteoclasts formation, bone resorption, and activation of osteoclast-related signaling pathways. Salicortin suppressed RANKL-induced osteoclastogenesis in bone marrow macrophage cultures in a dose-dependent manner, and inhibited osteoclastic bone resorption activity without any cytotoxicity. Salicortin inhibited RANKL-induced c-Jun N-terminal kinase and NF-κB activation, concomitant with retarded IκBα phosphorylation and inhibition of p65 nuclear translocation, leading to impaired transcription of nuclear factor of activated T cells c1 (NFATc1) and expression of osteoclastic-specific genes. Taken together, our findings demonstrate that salicortin inhibits NF-κB and NFATc1 activation, leading to attenuation of osteoclastogenesis and bone resorption. Thus, salicortin may be of interest in developments of treatment for osteoclast related diseases. - Highlights: • Salicortin suppresses osteoclastogenesis in vitro. • Salicortin impairs the JNK and NF-κB/NFATc1 signaling pathway. • Salicortin may be of interest in developments of osteoporosis treatment.

  2. Intravoxel incoherent motion diffusion-weighted magnetic resonance imaging of focal vertebral bone marrow lesions: initial experience of the differentiation of nodular hyperplastic hematopoietic bone marrow from malignant lesions

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sunghoon; Kwack, Kyu-Sung; Kim, Jae Ho [Ajou University School of Medicine, Division of Musculoskeletal Radiology, Department of Radiology, Suwon, Gyeonggi-do (Korea, Republic of); Ajou University Medical Center, Musculoskeletal Imaging Laboratory, Suwon (Korea, Republic of); Chung, Nam-Su [Ajou University School of Medicine, Department of Orthopaedic Surgery, Suwon (Korea, Republic of); Hwang, Jinwoo [Philips Healthcare, Department of Clinical Science, Seoul (Korea, Republic of); Lee, Hyun Young [Ajou University Medical Center, Regional Clinical Trial Center, Suwon (Korea, Republic of); Yonsei University College of Medicine, Department of Biostatistics, Seoul (Korea, Republic of)

    2017-05-15

    To evaluate the ability of intravoxel incoherent motion (IVIM) diffusion-weighted magnetic resonance imaging (MRI) parameters to differentiate nodular hyperplastic hematopoietic bone marrow (HHBM) from malignant vertebral bone marrow lesions (VBMLs). A total of 33 patients with 58 VBMLs, including 9 nodular HHBM lesions, 39 bone metastases, and 10 myelomas, were retrospectively assessed. All diagnoses were confirmed either pathologically or via image assessment. IVIM diffusion-weighted MRI with 11 b values (from 0 to 800 s/mm{sup 2}) were obtained using a 3.0-T MR imager. The apparent diffusion coefficient (ADC), pure diffusion coefficient (D), perfusion fraction (f), and pseudodiffusion coefficient (D*) were calculated. ADC and IVIM parameters were compared using the Mann-Whitney U test. Receiver operating characteristic (ROC) curve analysis was performed to assess the diagnostic performances of ADC, D, f, and D* in terms of VBML characterization. The diagnostic performance of morphological MR sequences was also assessed for comparison. The ADC and D values of nodular HHBM were significantly lower than those of malignant VBML (both p values < 0.001), whereas the f value was significantly higher (p < 0.001). However, there were no significant differences in D* between the two groups (p = 0.688). On ROC analysis, the area under the curve (AUC) for D was 1.000, which was significantly larger than that for ADC (AUC = 0.902). Intravoxel incoherent motion diffusion-weighted MRI can be used to differentiate between nodular HHBM and malignant VBML. The D value was significantly lower for nodular HHBM, and afforded a better diagnostic performance than the ADC, f, and D* values in terms of such differentiation. (orig.)

  3. Differentiation of osteomyelitis and infarction in sickle-cell hemoglobinopathies using combined bone-marrow and gallium scanning

    International Nuclear Information System (INIS)

    Hatfield, M.K.; Kahn, C.E.; Ryan, J.W.; Martin, W.B.

    1986-01-01

    The clinical records and scintigrams of patients with sickle cell hemoglobinopathies in whom acute symptoms developed suggestive of possible osteomyelitis and who had undergone sequential Tc-99m bone marrow scans and gallium scintigraphy of the affected sites were reviewed. Osteomyelitis was correctly diagnosed in six of 18 cases when gallium was focally increased relative to a site of decreased or absent bone marrow activity. Of 12 episodes of infarction, both studies showed focally decreased activity in a concordant manner in 11. The remaining, false-positive study indicated slightly increased gallium in 11. The remaining, false-positive indicated slightly increased gallium concentration at a site of decreased bone marrow activity. Overall, a protocol of sequential Tc-99m bone marrow scans and gallium scintigraphy is an effective means of distinguishing osteomyelitis from infarction in patients with sickle cell hemoglobinopathies

  4. Differential actions of the endocytic collagen receptor uPARAP/Endo180 and the collagenase MMP-2 in bone homeostasis

    DEFF Research Database (Denmark)

    Madsen, Daniel H; Jürgensen, Henrik J; Ingvarsen, Signe

    2013-01-01

    A well-coordinated remodeling of uncalcified collagen matrices is a pre-requisite for bone development and homeostasis. Collagen turnover proceeds through different pathways, either involving extracellular reactions exclusively, or being dependent on endocytic processes. Extracellular collagen...

  5. Comparison of immunological properties of bone marrow stromal cells and adipose tissue-derived stem cells before and after osteogenic differentiation in vitro

    DEFF Research Database (Denmark)

    Niemeyer, Philipp; Kornacker, Martin; Mehlhorn, Alexander

    2007-01-01

    T cells in vitro. Therefore, BMSCs are said to be available for allogenic cell therapy. Although the immunological characteristics of BMSCs have been the subject of various investigations, those of stem cells isolated from adipose tissue (ASCs) have not been adequately described. In addition......Mesenchymal stem cells (MSCs) can be isolated from various tissues and represent an attractive cell population for tissue-engineering purposes. MSCs from bone marrow (bone marrow stromal cells [BMSCs]) are negative for immunologically relevant surface markers and inhibit proliferation of allogenic...... were sought. The pattern of surface antigen expression of BMSCs is the same as that of ASCs. Analogous to BMSCs, undifferentiated cells isolated from adipose tissue lack expression of MHC-II; this is not lost in the course of the osteogenic differentiation process. In co-culture with allogenic PBMCs...

  6. Motor coordination and balance measurements reveal differential pathogenicity of currently spreading enterovirus 71 strains in human SCARB2 transgenic mice.

    Science.gov (United States)

    Chen, Mei-Feng; Shih, Shin-Ru

    2016-12-01

    Enterovirus 71 (EV71) has caused large-scale epidemics with neurological complications in the Asia-Pacific region. The C4a and B5 strains are the two major genotypes circulating in many countries recently. This study used a new protocol, a motor coordination task, to assess the differential pathogenicity of C4a and B5 strains in human SCARB2 transgenic mice. We found that the pathogenicity of C4a viruses was more severe than that of B5 viruses. Moreover, we discovered that an increased level of monocyte chemoattractant protein-1 was positively correlated with severely deficient motor function. This study provides a new method for evaluating EV71 infection in mice and distinguishing the severity of the symptoms caused by different clinical strains, which would contribute to studies of pathogenesis and development of vaccines and antivirals in EV71 infections.

  7. The differential effects of bisphosphonates, SERMS (selective estrogen receptor modulators, and parathyroid hormone on bone remodeling in osteoporosis

    Directory of Open Access Journals (Sweden)

    Silvia Migliaccio

    2007-04-01

    Full Text Available Silvia Migliaccio, Marina Brama, Giovanni SperaCattedra di Medicina Interna, Dipartimento di Fisiopatologia Medica, Università degli Studi di Roma “La Sapienza”, Italy Abstract: Osteoporosis is a skeletal metabolic disease characterized by a compromised bone fragility, leading to an increased risk of developing spontaneous and traumatic fractures. Osteoporosis is considered a multifactorial disease and fractures are the results of several different risk factors both extra- and intraskeletal. Thus bone fragility can be the end point of several different causes: a failure to reach an optimal peak bone mass during growth; b excessive bone resorption resulting in decreased bone mass and microarchitectural deterioration; c inadequate formation upon an increased resorption during the process of bone remodeling. The pharmacological therapeutical options, available to date, are directed on prevention of fractures. The aim of this paper is to describe the activities and the mechanisms of action, as known at present, of the most used therapies for osteoporosis and their clinical implications. Improvement of knowledge in this field will allow us to further improve therapeutical choices and pharmacological interventions.Keywords: Osteoporosis, estrogens, bisphosphonates, SERMS, teriparatide, mechanism of action, fracture

  8. Osteoclastic differentiation and resorption is modulated by bioactive metal ions Co2+, Cu2+ and Cr3+ incorporated into calcium phosphate bone cements

    Science.gov (United States)

    Bernhardt, Anne; Schamel, Martha; Gbureck, Uwe; Gelinsky, Michael

    2017-01-01

    Biologically active metal ions in low doses have the potential to accelerate bone defect healing. For successful remodelling the interaction of bone graft materials with both bone-forming osteoblasts and bone resorbing osteoclasts is crucial. In the present study brushite forming calcium phosphate cements (CPC) were doped with Co2+, Cu2+ and Cr3+ and the influence of these materials on osteoclast differentiation and activity was examined. Human osteoclasts were differentiated from human peripheral blood mononuclear cells (PBMC) both on the surface and in indirect contact to the materials on dentin discs. Release of calcium, phosphate and bioactive metal ions was determined using ICP-MS both in the presence and absence of the cells. While Co2+ and Cu2+ showed a burst release, Cr3+ was released steadily at very low concentrations (below 1 μM) and both calcium and phosphate release of the cements was considerably changed in the Cr3+ modified samples. Direct cultivation of PBMC/osteoclasts on Co2+ cements showed lower attached cell number compared to the reference but high activity of osteoclast specific enzymes tartrate resistant acid phosphatase (TRAP), carbonic anhydrase II (CAII) and cathepsin K (CTSK) and significantly increased gene expression of vitronectin receptor. Indirect cultivation with diluted Co2+ cement extracts revealed highest resorbed area compared to all other modifications and the reference. Cu2+ cements had cytotoxic effect on PBMC/osteoclasts during direct cultivation, while indirect cultivation with diluted extracts from Cu2+ cements did not provoke cytotoxic effects but a strictly inhibited resorption. Cr3+ doped cements did not show cytotoxic effects at all. Gene expression and enzyme activity of CTSK was significantly increased in direct culture. Indirect cultivation with Cr3+ doped cements revealed significantly higher resorbed area compared to the reference. In conclusion Cr3+ doped calcium phosphate cements are an innovative cement

  9. Effect of Chromatin-Remodeling Agents in Hepatic Differentiation of Rat Bone Marrow-Derived Mesenchymal Stem Cells In Vitro and In Vivo

    Directory of Open Access Journals (Sweden)

    Danna Ye

    2016-01-01

    Full Text Available Epigenetic events, including covalent histone modifications and DNA methylation, play fundamental roles in the determination of lineage-specific gene expression and cell fates. The aim of this study was to determine whether the DNA methyltransferase inhibitor (DNMTi 5-aza-2′-deoxycytidine (5-aza-dC and the histone deacetylase inhibitor (HDACi trichostatin A (TSA promote the hepatic differentiation of rat bone marrow-derived mesenchymal stem cells (rBM-MSCs and their therapeutic effect on liver damage. 1 μM TSA and 20 μM 5-aza-dC were added to standard hepatogenic medium especially at differentiation and maturation steps and their potential function on hepatic differentiation in vitro and in vivo was determined. Exposure of rBM-MSCs to 1 μM TSA at both the differentiation and maturation steps considerably improved hepatic differentiation. TSA enhanced the development of the hepatocyte shape, promoted the chronological expression of hepatocyte-specific markers, and improved hepatic functions. In contrast, treatment of rBM-MSCs with 20 μM 5-aza-dC alone or in combination with TSA was ineffective in improving hepatic differentiation in vitro. TSA and/or 5-aza-dC derived hepatocytes-like cells failed to improve the therapeutic potential in liver damage. We conclude that HDACis enhance hepatic differentiation in a time-dependent manner, while DNMTis do not induce the hepatic differentiation of rBM-MSCs in vitro. Their in vivo function needs further investigation.

  10. A Smaug2-Based Translational Repression Complex Determines the Balance between Precursor Maintenance versus Differentiation during Mammalian Neurogenesis.

    Science.gov (United States)

    Amadei, Gianluca; Zander, Mark A; Yang, Guang; Dumelie, Jason G; Vessey, John P; Lipshitz, Howard D; Smibert, Craig A; Kaplan, David R; Miller, Freda D

    2015-11-25

    Here, we have asked about post-transcriptional mechanisms regulating murine developmental neurogenesis, focusing upon the RNA-binding proteins Smaug2 and Nanos1. We identify, in embryonic neural precursors of the murine cortex, a Smaug2 protein/nanos1 mRNA complex that is present in cytoplasmic granules with the translational repression proteins Dcp1 and 4E-T. We show that Smaug2 inhibits and Nanos1 promotes neurogenesis, with Smaug2 knockdown enhancing neurogenesis and depleting precursors, and Nanos1 knockdown inhibiting neurogenesis and maintaining precursors. Moreover, we show that Smaug2 likely regulates neurogenesis by silencing nanos1 mRNA. Specifically, Smaug2 knockdown inappropriately increases Nanos1 protein, and the Smaug2 knockdown-mediated neurogenesis is rescued by preventing this increase. Thus, Smaug2 and Nanos1 function as a bimodal translational repression switch to control neurogenesis, with Smaug2 acting in transcriptionally primed precursors to silence mRNAs important for neurogenesis, including nanos1 mRNA, and Nanos1 acting during the transition to neurons to repress the precursor state. The mechanisms instructing neural stem cells to generate the appropriate progeny are still poorly understood. Here, we show that the RNA-binding proteins Smaug2 and Nanos1 are critical regulators of this balance and provide evidence supporting the idea that neural precursors are transcriptionally primed to generate neurons but translational regulation maintains these precursors in a stem cell state until the appropriate developmental time. Copyright © 2015 the authors 0270-6474/15/3515666-16$15.00/0.

  11. Can we differentiate alpine groundwater storages regarding volume and residence time by recession observations, ion composition and tracer balance?

    Science.gov (United States)

    Floriancic, Marius; Smoorenburg, Maarten; Margreth, Michael; Naef, Felix

    2015-04-01

    Research on how catchments store and release water is essential to improve flood and low flow prediction in (un)gauged watersheds. Despite their importance for catchment scale assessments on runoff generation, knowledge on storage properties and residence times is still limited. Here we present some approaches to separate different storage types regarding their residence time and a quantification of the volumes of these storages based on a dataset of winter recession observation in the alpine Poschiavino headwater area. This spatially highly resolved dataset of discharge, electric conductivity and ion composition from a watershed with strongly contrasting storage properties, allowed separating three main contributing sources: continuous discharge from bedrock cracks, strongly delayed discharge from thick sediment deposits and fractured rock and rapid discharge from shallow layers. The gradients of the recession curves, the variation of electric conductivity in the river network and calculated tracer balance were used to separate contribution from different sources. Additionally contribution from sedimentary rocks and crystalline layers could be separated based on the variation of ion composition in the water samples. We derived recession curves for a period of four months for the separated storages in different parts of the catchment allowing estimation of the contributed volumes in this time period. Finally the spatial distribution of the storage types could be mapped throughout the catchment based on information like geo(morpho)logical maps, aerial photographs, DEM and field observations. We found significant variation comparing the discharged volume and specific discharge throughout the winter season in the different subcatchments. Constant discharge from bedrock cracks is similar in all catchment parts. Storage in the shallow deposits depleted quickly. High winter discharge could be attributed to thick quaternary deposits contributing during the whole

  12. MiR-124 promotes bone marrow mesenchymal stem cells differentiation into neurogenic cells for accelerating recovery in the spinal cord injury.

    Science.gov (United States)

    Zhao, Yong; Jiang, Hui; Liu, Xin-Wei; Xiang, Liang-Bi; Zhou, Da-Peng; Chen, Jian-Ting

    2015-04-01

    In this research, mouse BMMSCs were isolated from bone marrow, induced to differentiate into neurogenic cells in vitro, and transplanted into the injured spinal cord after over-expression of miR-124. The results showed that the BMMSCs could induce the differentiation to neurogenic cells under the special condition medium, but when the miR-124 was over-expressed, the differentiation efficiency of neurogenic cells from BMMSCs could be promoted. This reason was demonstrated that polypyrimidine tract-binding protein 1 (PTBP1) showed a repressor for polypyrimidine tract-binding protein 2 (PTBP2) during neuronal differentiation, miR-124 reduces PTBP1 levels, leading to the accumulation of correctly spliced PTBP2 mRNA and a dramatic increase in PTBP2 protein. miR-124 promoted neurogenic cells from BMMSCs were successful colonized into injured spinal cord for participation in tissue-repair. In conclusion, our research shows that the miR-124 promoted the differentiation of neuronal cells from BMMSCs, and this mechanism was miR-124 reduced the expression of PTBP1, increased the expression of PTBP2. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Microparticles Carrying Peroxisome Proliferator-Activated Receptor Alpha Restore the Reduced Differentiation and Functionality of Bone Marrow-Derived Cells Induced by High-Fat Diet.

    Science.gov (United States)

    Vergori, Luisa; Lauret, Emilie; Soleti, Raffaella; Andriantsitohaina, Ramaroson; Carmen Martinez, M

    2018-01-01

    Metabolic pathologies such as diabetes and obesity are associated with decreased level of circulating and bone marrow (BM)-derived endothelial progenitor cells (EPCs). It is known that activation of peroxisome proliferator-activated receptor alpha (PPARα) may stimulate cell differentiation. In addition, microparticles (MPs), small membrane vesicles produced by activated and apoptotic cells, are able to reprogram EPCs. Here, we evaluated the role of MPs carrying PPARα on both phenotype and function of progenitor cells from mice fed with a high-fat diet (HFD). HFD reduced circulating EPCs and, after 7 days of culture, BM-derived EPCs and monocytic progenitor cells from HFD-fed mice displayed impaired differentiation. At the same time, we show that MPs bearing PPARα, MPs PPARα+/+ , increased the differentiation of EPCs and monocytic progenitors from HFD-fed mice, whereas MPs taken from PPARα knockout mice (MPs PPARα-/- ) had no effect on the differentiation of all types of progenitor cells. Furthermore, MPs PPARα+/+ increased the ability of progenitor cells to promote in vivo angiogenesis in mice fed with HFD. The in vitro and in vivo effects of MPs PPARα+/+ were abolished in presence of MK886, a specific inhibitor of PPARα. Collectively, these data highlight the ability of MPs carrying PPARα to restore the failed differentiation and functionality of BM-derived cells induced by HFD. Stem Cells Translational Medicine 2018;7:135-145. © 2017 The Authors Stem Cells Translational Medicine published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.

  14. Novel anti-cancer strategy in bone tumors by targeting molecular and cellular modulators of bone resorption.

    Science.gov (United States)

    Brounais, Bénédicte; Ruiz, Carmen; Rousseau, Julie; Lamoureux, François; Blanchard, Frédéric; Heymann, Dominique; Redini, Françoise

    2008-11-01

    Tumor cells alter the balanced process of bone formation and bone resorption mediated respectively by osteoblasts and osteoclasts, leading to the disruption of the normal equilibrium and resulting in a spectrum of osteolytic to osteoblastic lesions. This review will summarize research on molecules that play direct and essential roles in the differentiation and activity of osteoclasts, and the role of these molecules in bone destruction caused by cancer. Results from experimental models suggest that the Receptor Activator of NF-kB Ligand (RANKL), a member of the TNF superfamily is a common effector of bony lesions in osteolysis caused by primary and secondary bone tumors. Therefore, osteoclast represents an attractive target across a broad range of tumors that develop in bone. Elucidation of the mechanisms of RANKL interactions with its activator (RANK) and decoy (osteoprotegerin: OPG) receptors has enable the development of pharmacological inhibitors of RANKL (and of its signalling pathway) which have been recently patented, with potential for the treatment of cancer-induced bone disease. Blocking bone resorption by specific other drugs such as bisphosphonates, inhibitors of cathepsin K (the main enzyme involved in bone resorption mechanisms) or signalling pathways regulating osteoclast differentiation and activation is also a promising target for the treatment of osteolysis associated to bone tumors.

  15. EphA4 Regulates the Balance between Self-Renewal and Differentiation of Radial Glial Cells and Intermediate Neuronal Precursors in Cooperation with FGF Signaling.

    Directory of Open Access Journals (Sweden)

    Qingfa Chen

    Full Text Available In mouse cerebral corticogenesis, neurons are generated from radial glial cells (RGCs or from their immediate progeny, intermediate neuronal precursors (INPs. The balance between self-renewal of these neuronal precursors and specification of cell fate is critical for proper cortical development, but the signaling mechanisms that regulate this progression are poorly understood. EphA4, a member of the receptor tyrosine kinase superfamily, is expressed in RGCs during embryogenesis. To illuminate the function of EphA4 in RGC cell fate determination during early corticogenesis, we deleted Epha4 in cortical cells at E11.5 or E13.5. Loss of EphA4 at both stages led to precocious in vivo RGC differentiation toward neurogenesis. Cortical cells isolated at E14.5 and E15.5 from both deletion mutants showed reduced capacity for neurosphere formation with greater differentiation toward neurons. They also exhibited lower phosphorylation of ERK and FRS2α in the presence of FGF. The size of the cerebral cortex at P0 was smaller than that of controls when Epha4 was deleted at E11.5 but not when it was deleted at E13.5, although the cortical layers were formed normally in both mutants. The number of PAX6-positive RGCs decreased at later developmental stages only in the E11.5 Epha4 deletion mutant. These results suggest that EphA4, in cooperation with an FGF signal, contributes to the maintenance of RGC self-renewal and repression of RGC differentiation through the neuronal lineage. This function of EphA4 is especially critical and uncompensated in early stages of corticogenesis, and thus deletion at E11.5 reduces the size of the neonatal cortex.

  16. Bone substitute material composition and morphology differentially modulate calcium and phosphate release through osteoclast-like cells.

    Science.gov (United States)

    Konermann, A; Staubwasser, M; Dirk, C; Keilig, L; Bourauel, C; Götz, W; Jäger, A; Reichert, C

    2014-04-01

    The aim of this study was to determine the material composition and cell-mediated remodelling of different calcium phosphate-based bone substitutes. Osteoclasts were cultivated on bone substitutes (Cerabone, Maxresorb, and NanoBone) for up to 5 days. Bafilomycin A1 addition served as the control. To determine cellular activity, the supernatant content of calcium and phosphate was measured by inductively coupled plasma optical emission spectrometry. Cells were visualized on the materials by scanning electron microscopy. Material composition and surface characteristics were assessed by energy-dispersive X-ray spectroscopy. Osteoclast-induced calcium and phosphate release was material-specific. Maxresorb exhibited the highest ion release to the medium (P = 0.034; calcium 40.25mg/l day 5, phosphate 102.08 mg/l day 5) and NanoBone the lowest (P = 0.021; calcium 8.43 mg/l day 5, phosphate 15.15 mg/l day 5); Cerabone was intermediate (P = 0.034; calcium 16.34 mg/l day 5, phosphate 30.6 mg/l day 5). All investigated materials showed unique resorption behaviours. The presented methodology provides a new perspective on the investigation of bone substitute biodegradation, maintaining the material-specific micro- and macrostructure. Copyright © 2013 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  17. [Bone homeostasis and Mechano biology.

    Science.gov (United States)

    Nakashima, Tomoki

    The weight-bearing exercises help to build bones and to maintain them strength. Bone is constantly renewed by the balanced action of osteoblastic bone formation and osteoclastic bone resorption both of which mainly occur at the bone surface. This restructuring process called "bone remodeling" is important not only for normal bone mass and strength, but also for mineral homeostasis. Bone remodeling is stringently regulated by communication between bone component cells such as osteoclasts, osteoblasts and osteocytes. An imbalance of this process is often linked to various bone diseases. During bone remodeling, resorption by osteoclasts precedes bone formation by osteoblasts. Based on the osteocyte location within the bone matrix and the cellular morphology, it is proposed that osteocytes potentially contribute to the regulation of bone remodeling in response to mechanical and endocrine stimuli.

  18. Electro-acupuncture promotes survival, differentiation of the bone marrow mesenchymal stem cells as well as functional recovery in the spinal cord-transected rats

    Science.gov (United States)

    Ding, Ying; Yan, Qing; Ruan, Jing-Wen; Zhang, Yan-Qing; Li, Wen-Jie; Zhang, Yu-Jiao; Li, Yan; Dong, Hongxin; Zeng, Yuan-Shan

    2009-01-01

    Background Bone marrow mesenchymal stem cells (MSCs) are one of the potential tools for treatment of the spinal cord injury; however, the survival and differentiation of MSCs in an injured spinal cord still need to be improved. In the present study, we investigated whether Governor Vessel electro-acupuncture (EA) could efficiently promote bone marrow mesenchymal stem cells (MSCs) survival and differentiation, axonal regeneration and finally, functional recovery in the transected spinal cord. Results The spinal cords of adult Sprague-Dawley (SD) rats were completely transected at T10, five experimental groups were performed: 1. sham operated control (Sham-control); 2. operated control (Op-control); 3. electro-acupuncture treatment (EA); 4. MSCs transplantation (MSCs); and 5. MSCs transplantation combined with electro-acupuncture (MSCs+EA). After 2-8 weeks of MSCs transplantation plus EA treatment, we found that the neurotrophin-3 (NT-3), cAMP level, the differentiation of MSCs, the 5-HT positive and CGRP positive nerve fibers in the lesion site and nearby tissue of injured spinal cord were significantly increased in the MSCs+EA group as compared to the group of the MSCs transplantation or the EA treated alone. Furthermore, behavioral test and spinal cord evoked potentials detection demonstrated a significantly functional recovery in the MSCs +EA group. Conclusion These results suggest that EA treatment may promote grafted MSCs survival and differentiation; MSCs transplantation combined with EA treatment could promote axonal regeneration and partial locomotor functional recovery in the transected spinal cord in rats and indicate a promising avenue of treatment of spinal cord injury. PMID:19374777

  19. Accessory ossicles and sesamoid bones of the ankle and foot: imaging findings, clinical significance and differential diagnosis

    Energy Technology Data Exchange (ETDEWEB)

    Mellado, J.M.; Ramos, A.; Salvado, E.; Camins, A.; Sauri, A. [Inst. de Diagnostic per la Imatge, Hospital Universitari de Tarragona Joan XXIII, Tarragona (Spain); Danus, M. [Dept. of Nuclear Medicine, Hospital Universitari de Tarragona Joan XXIII, Tarragona (Spain)

    2003-12-01

    Accessory ossicles and sesamoid bones are frequent findings in routine radiographs of the ankle and foot. They are commonly considered fortuitous and unrelated to the patient's complaint; however, they may eventually cause painful syndromes or degenerative changes in response to overuse and trauma. They may also suffer or simulate fractures. Our aim was to review, illustrate and discuss the imaging findings of some of the more frequent accessory ossicles and sesamoid bones of the ankle and foot region, with particular emphasis on those that may be of clinical significance or simulate fractures. (orig.)

  20. Accessory ossicles and sesamoid bones of the ankle and foot: imaging findings, clinical significance and differential diagnosis

    International Nuclear Information System (INIS)

    Mellado, J.M.; Ramos, A.; Salvado, E.; Camins, A.; Sauri, A.; Danus, M.

    2003-01-01

    Accessory ossicles and sesamoid bones are frequent findings in routine radiographs of the ankle and foot. They are commonly considered fortuitous and unrelated to the patient's complaint; however, they may eventually cause painful syndromes or degenerative changes in response to overuse and trauma. They may also suffer or simulate fractures. Our aim was to review, illustrate and discuss the imaging findings of some of the more frequent accessory ossicles and sesamoid bones of the ankle and foot region, with particular emphasis on those that may be of clinical significance or simulate fractures. (orig.)

  1. Function of matrix IGF-1 in coupling bone resorption and formation.

    Science.gov (United States)

    Crane, Janet L; Cao, Xu

    2014-02-01

    Balancing bone resorption and formation is the quintessential component for the prevention of osteoporosis. Signals that determine the recruitment, replication, differentiation, function, and apoptosis of osteoblasts and osteoclasts direct bone remodeling and determine whether bone tissue is gained, lost, or balanced. Therefore, understanding the signaling pathways involved in the coupling process will help develop further targets for osteoporosis therapy, by blocking bone resorption or enhancing bone formation in a space- and time-dependent manner. Insulin-like growth factor type 1 (IGF-1) has long been known to play a role in bone strength. It is one of the most abundant substances in the bone matrix, circulates systemically and is secreted locally, and has a direct relationship with bone mineral density. Recent data has helped further our understanding of the direct role of IGF-1 signaling in coupling bone remodeling which will be discussed in this review. The bone marrow microenvironment plays a critical role in the fate of mesenchymal stem cells and hematopoietic stem cells and thus how IGF-1 interacts with other factors in the microenvironment are equally important. While previous clinical trials with IGF-1 administration have been unsuccessful at enhancing bone formation, advances in basic science studies have provided insight into further mechanisms that should be considered for future trials. Additional basic science studies dissecting the regulation and the function of matrix IGF-1 in modeling and remodeling will continue to provide further insight for future directions for anabolic therapies for osteoporosis.

  2. In vitro comparison of the efficacy of TGF-β1 and PDGF-BB in combination with freeze-dried bone allografts for induction of osteogenic differentiation in MG-63 osteoblast-like cells.

    Science.gov (United States)

    Vahabi, Surena; Torshabi, Maryam; Esmaeil Nejad, Azadeh

    2016-12-01

    Predictable regeneration of alveolar bone defects has always been a challenge in implant dentistry. Bone allografts are widely used bone substitutes with controversial osteoinductive activity. This in vitro study aimed to assess the osteogenic potential of some commercially available freeze-dried bone allografts supplemented with human recombinant platelet-derived growth factor-BB and transforming growth factor beta-1. Cell viability, mineralization, and osteogenic gene expression of MG-63 osteoblast-like cells were compared among the allograft alone, allograft/platelet-derived growth factor-BB, allograft/transforming growth factor beta-1, and allograft/platelet-derived growth factor-BB/transforming growth factor beta-1 groups. The methyl thiazol tetrazolium assay, real-time quantitative reverse transcription polymerase chain reaction and alizarin red staining were performed, respectively, for assessment of cell viability, differentiation, and mineralization at 24-72 h post treatment. The allograft with greater cytotoxic effect on MG-63 cells caused the lowest differentiation among the groups. In comparison with allograft alone, allograft/transforming growth factor beta-1, and allograft/transforming growth factor beta-1/platelet-derived growth factor-BB caused significant upregulation of bone sialoprotein and osteocalcin osteogenic mid-late marker genes, and resulted in significantly higher amounts of calcified nodules especially in mineralized non-cytotoxic allograft group. Supplementation of platelet-derived growth factor-BB alone in 5 ng/mL concentration had no significant effect on differentiation or mineralization markers. According to the results, transforming growth factor beta-1 acts synergistically with bone allografts to enhance the osteogenic differentiation potential. Therefore, this combination may be useful for rapid transformation of undifferentiated cells into bone-forming cells for bone regeneration. However, platelet-derived growth factor

  3. Effects of a hybrid micro/nanorod topography-modified titanium implant on adhesion and osteogenic differentiation in rat bone marrow mesenchymal stem cells

    Directory of Open Access Journals (Sweden)

    Zhang WJ

    2013-01-01

    Full Text Available Wenjie Zhang,1,2,* Zihui Li,3,* Qingfeng Huang,1 Ling Xu,1 Jinhua Li,3 Yuqin Jin,1,2 Guifang Wang,1,2 Xuanyong Liu,2 Xinquan Jiang11Department of Prosthodontics, 2Oral Bioengineering Laboratory, Shanghai Research Institute of Stomatology, Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, 3State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, China *These authors contributed equally to this workBackground and methods: Various methods have been used to modify titanium implant surfaces with the aim of achieving better osseointegration. In this study, we fabricated a clustered nanorod structure on an acid-etched, microstructured titanium plate surface using hydrogen peroxide. We also evaluated biofunctionalization of the hybrid micro/nanorod topography on rat bone marrow mesenchymal stem cells. Scanning electron microscopy and x-ray diffraction were used to investigate the surface topography and phase composition of the modified titanium plate. Rat bone marrow mesenchymal stem cells were cultured and seeded on the plate. The adhesion ability of the cells was then assayed by cell counting at one, 4, and 24 hours after cell seeding, and expression of adhesion-related protein integrin β1 was detected by immunofluorescence. In addition, a polymerase chain reaction assay, alkaline phosphatase and Alizarin Red S staining assays, and osteopontin and osteocalcin immunofluorescence analyses were used to evaluate the osteogenic differentiation behavior of the cells.Results: The hybrid micro/nanoscale texture formed on the titanium surface enhanced the initial adhesion activity of the rat bone marrow mesenchymal stem cells. Importantly, the hierarchical structure promoted osteogenic differentiation of these cells.Conclusion: This study suggests that a hybrid micro/nanorod topography on a titanium surface fabricated by

  4. Chromatin remodeling agent trichostatin A: a key-factor in the hepatic differentiation of human mesenchymal stem cells derived of adult bone marrow

    Directory of Open Access Journals (Sweden)

    Vinken Mathieu

    2007-04-01

    Full Text Available Abstract Background The capability of human mesenchymal stem cells (hMSC derived of adult bone marrow to undergo in vitro hepatic differentiation was investigated. Results Exposure of hMSC to a cocktail of hepatogenic factors [(fibroblast growth factor-4 (FGF-4, hepatocyte growth factor (HGF, insulin-transferrin-sodium-selenite (ITS and dexamethasone] failed to induce hepatic differentiation. Sequential exposure to these factors (FGF-4, followed by HGF, followed by HGF+ITS+dexamethasone, however, resembling the order of secretion during liver embryogenesis, induced both glycogen-storage and cytokeratin (CK18 expression. Additional exposure of the cells to trichostatin A (TSA considerably improved endodermal differentiation, as evidenced by acquisition of an epithelial morphology, chronological expression of hepatic proteins, including hepatocyte-nuclear factor (HNF-3β, alpha-fetoprotein (AFP, CK18, albumin (ALB, HNF1α, multidrug resistance-associated protein (MRP2 and CCAAT-enhancer binding protein (C/EBPα, and functional maturation, i.e. upregulated ALB secretion, urea production and inducible cytochrome P450 (CYP-dependent activity. Conclusion hMSC are able to undergo mesenchymal-to-epithelial transition. TSA is hereby essential to promote differentiation of hMSC towards functional hepatocyte-like cells.

  5. Glycinol Enhances Osteogenic Differentiation and Attenuates the Effects of Aging on Bone Marrow-derived Mesenchymal Stem Cells

    Science.gov (United States)

    Osteoporosis is characterized by decreased bone mineral density and increased risk of fractures. It is most prevalent in the elderly population, leading to significant morbidity and mortality. Recently, phytoestrogens have gained significant attention as an alternative therapy due to their structura...

  6. Differential diagnosis between secondary hyperparathyroidism and aluminum intoxication in uremic patients: Usefulness of 99mTc-pyrophosphate bone scintigraphy

    International Nuclear Information System (INIS)

    Kinnaert, P.; Van Hooff, I.; Schoutens, A.

    1989-01-01

    Forty-one patients in chronic end-stage renal failure and 4 patients with a functioning kidney transplant presented with spontaneous hypercalcemia or intolerance to vitamin D3 sterols and/or oral calcium supplements. Bone iliac crest biopsy with aluminum staining and Tc-pyrophosphate bone scintigraphy with determination of Fogelman score were performed in all cases. Two patients had aluminum-induced osteomalacia (AL O). Thirty-eight biopsies showed renal osteodystrophy (secondary hyperparathyroidism or various combinations of osteitis fibrosa and osteomalacia): 19 with positive staining for aluminum (RO + AL) and 19 without aluminum deposits (RO). The series also comprised 2 cases of pure osteomalacia (OM), 2 cases of osteoporosis (OP), and 1 case of osteoporosis with aluminum accumulation (OP + AL). Mean Fogelman score in RO patients (9.1 +/- 0.3) was significantly higher than in all other categories (5.9 +/- 0.5 for RO + AL, and scores ranging from 0 to 8 in the last 7 patients, p less than 0.01). Patients with massive aluminum accumulation in bone (greater than 75% of the total trabecular surface) showed no or very low uptake of the isotope by the skeleton. Fogelman scores of 9 or higher were always associated with histological secondary hyperparathyroidism. 99m Tc-pyrophosphate bone scintigraphy is helpful to distinguish aluminum intoxication from secondary hyperparathyroidism in uremic patients

  7. TGF-β1 is Involved in Vitamin D-Induced Chondrogenic Differentiation of Bone Marrow-Derived Mesenchymal Stem Cells by Regulating the ERK/JNK Pathway

    Directory of Open Access Journals (Sweden)

    Xiaorui Jiang

    2017-08-01

    Full Text Available Background/Aims: Osteoarthritis (OA is characterized by degradation of cartilage, sole cell type of which is chondrocytes. Bone marrow-derived mesenchymal stem cells (BMSCs possess multipotency and can be directionally differentiated into chondrocytes under stimulation. This study was aimed to explore the possible roles of vitamin D and transforming growth factor-β1 (TGF-β1 in the chondrogenic differentiation of BMSCs. Methods: BMSCs were isolated from femurs and tibias of rats and characterized by flow cytometry. After stimulation with vitamin D, BMSC proliferation and migration were measured by Cell Counting Kit-8 (CCK-8 and Transwell assays, respectively. Chondrogenic differentiation was estimated through expression levels of specific markers by qRT-PCR and Western blot analysis. After stable transfection, the effects of aberrantly expressed TGF-β1 on vitamin D-induced alterations, including BMSC viability, migration and chondrogenic differentiation, were all evaluated utilizing CCK-8 assay, Transwell assay, qRT-PCR and Western blot analysis. Finally, the phosphorylation levels of key kinases in the extracellular signal-regulated kinase (ERK and c-Jun N-terminal kinase (JNK pathways were determined by Western blot analysis. Results: Vitamin D remarkably promoted BMSC viability, migration and chondrogenic differentiation. These alterations of BMSCs induced by vitamin D were reinforced by TGF-β1 overexpression while were reversed by TGF-β1 silencing. Additionally, the phosphorylation levels of ERK, JNK and c-Jun were enhanced by TGF-β1 overexpression but were reduced by TGF-β1 knockdown. Conclusion: Vitamin D promoted BMSC proliferation, migration and chondrogenic differentiation. TGF-β1 might be implicated in the vitamin D-induced alterations of BMSCs through regulating ERK/JNK pathway.

  8. Simulating Bone Loss in Microgravity Using Mathematical Formulations of Bone Remodeling

    Science.gov (United States)

    Pennline, James A.

    2009-01-01

    Most mathematical models of bone remodeling are used to simulate a specific bone disease, by disrupting the steady state or balance in the normal remodeling process, and to simulate a therapeutic strategy. In this work, the ability of a mathematical model of bone remodeling to simulate bone loss as a function of time under the conditions of microgravity is investigated. The model is formed by combining a previously developed set of biochemical, cellular dynamics, and mechanical stimulus equations in the literature with two newly proposed equations; one governing the rate of change of the area of cortical bone tissue in a cross section of a cylindrical section of bone and one governing the rate of change of calcium in the bone fluid. The mechanical stimulus comes from a simple model of stress due to a compressive force on a cylindrical section of bone which can be reduced to zero to mimic the effects of skeletal unloading in microgravity. The complete set of equations formed is a system of first order ordinary differential equations. The results of selected simulations are displayed and discussed. Limitations and deficiencies of the model are also discussed as well as suggestions for further research.

  9. MicroRNA-214-5p/TGF-β/Smad2 signaling alters adipogenic differentiation of bone marrow stem cells in postmenopausal osteoporosis.

    Science.gov (United States)

    Qiu, Jiang; Huang, Gang; Na, Ning; Chen, Lizhong

    2018-05-01

    Postmenopausal osteoporosis (OPM) is a common type of osteoporosis in females. It is a systemic, chronic bone disease that presents as microstructure degradation of osseous tissue, decreased bone mineral density and increased osteopsathyrosis caused by hypoovarianism and reduced estrogen levels in the body following menopause. In the present study, the role of microRNA (miR)‑214‑5p in the regulation of the expression of bone marrow stem cells (BMSCs) was investigated, and its molecular mechanism of osteogenic induction in vitro was assessed. When dexamethasone‑induced adipogenic differentiation was performed, miR‑214‑5p expression was increased compared with the control group, as determined by RT‑qPCR. Furthermore, oil red O staining, RT‑qPCR and western blot analysis demonstrated that overexpression of miR‑214‑5p promoted adipogenic differentiation, inhibited alkaline phosphatase (ALP), runt‑related transcription factor 2 (Runx2), osteocalcin (OC) and collagen α‑1 (I) chain (COL1A1) mRNA expression, and suppressed transforming growth factor (TGF)‑β, phosphorylated (p)‑Smad2 and collagen type IV α1 chain (COL4A1) protein expression in BMSCs. Additionally, downregulation of miR‑214‑5p increased the ALP, Runx2, OC and COL1 mRNA expression and increased TGF‑β, Smad2 and COL4A1 protein expression in BMSCs. Furthermore, a TGF‑β inhibitor was employed to inhibit TGF‑β expression in BMSCs following miR‑214‑5p downregulation, which led to reduced Smad2, TGF‑β and COL4A1 protein expression, and ALP, Runx2, OC and COL1 mRNA expression was also reduced, compared with the miR‑214‑5p downregulation only group. It was demonstrated that miR‑214‑5p may weaken osteogenic differentiation of BMSCs through regulating COL4A1. In conclusion, the results of the present study indicated that miR‑214‑5p may promote the adipogenic differentiation of BMSCs through regulation of the TGF‑β/Smad2/COL4A1 signaling pathway, and

  10. Incorporation of Cerium Oxide into Hydroxyapatite Coating Protects Bone Marrow Stromal Cells Against H2O2-Induced Inhibition of Osteogenic Differentiation.

    Science.gov (United States)

    Li, Kai; Shen, Qingyi; Xie, Youtao; You, Mingyu; Huang, Liping; Zheng, Xuebin

    2018-03-01

    Oxidative stress exerts a key influence in osteoporosis in part by inhibiting osteogenic differentiation of bone marrow stromal cells (BMSCs). With their unique antioxidant properties and reported biocompatibility, cerium oxide (CeO 2 ) ceramics exhibit promising potential for the treatment of osteoporosis resulting from oxidative stress. In this study, protective effects of CeO 2 -incorporated hydroxyapatite coatings (HA-10Ce and HA-30Ce) on the viability and osteogenic differentiation of H 2 O 2 -treated BMSCs were examined. CeO 2 -incorporated HA coatings enhanced cell viability and attenuated cell apoptosis caused by H 2 O 2 . An increase in CeO 2 content in HA coatings better alleviated H 2 O 2 -induced inhibition of osteogenic differentiation by increasing alkaline phosphatase (ALP) activity, calcium deposition activity, and mRNA expression levels of osteogenesis markers runt-related transcription factor 2 (Runx2), ALP, and osteocalcin (OCN) in BMSCs. Furthermore, the H 2 O 2 -induced decrease of gene and protein expressions of β-catenin and cyclin D1 in the Wnt/β-catenin signaling pathway was successfully rescued by the CeO 2 incorporated HA coatings. Besides, the decreased expression of receptor activator of nuclear factor kappa-B ligand (RANKL) and the increased ratio of osteoprotegerin (OPG)/RANKL in BMSCs on the CeO 2 -modified coatings was observed, indicating the inhibition of osteoclastogenesis. The above results were mediated by the antioxidant properties of CeO 2 . The CeO 2 -incorporated HA coatings reversed the decreased superoxide dismutase (SOD) activity, reduced reactive oxygen species (ROS) generation, and suppressed the malondiadehyde (MDA) formation. The findings suggested that CeO 2 -modified HA coatings may be promising coating materials for osteoporotic bone regeneration.

  11. Malignant pleural mesothelioma with heterologous osteoblastic differentiation: case report of the characteristic CT and bone scan findings

    International Nuclear Information System (INIS)

    Cho, Young Jun; Kim, Joung Sook; Kim, Ji Young; Choi, Soo Jeon; Choi, Sang Bong

    2008-01-01

    Malignant pleural mesothelioma is an uncommon neoplasm which is accompanied extremely rarely by osteoblastic heterologous elements. The CT manifestations of this tumor have been reported in several references. And, to our knowledge, only one case report provides a description of the bone scan findings. Here, we report the case of a rapidly progressing malignant pleural mesothelioma with heterologous osteoblastic elements. A CT scan reveals diffuse irregular pleural thickening and very coarse nodular calcifications along the right pleura and major fissure. A bone scan revealed an area of extensive increased radioactivity consistent with the pleural calcifications on the CT scan in the right hemithorax. A follow-up CT scan performed 40 days later suggests the presence of rapidly progressing nodular coarse calcifications

  12. Malignant pleural mesothelioma with heterologous osteoblastic differentiation: case report of the characteristic CT and bone scan findings

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Young Jun; Kim, Joung Sook; Kim, Ji Young; Choi, Soo Jeon; Choi, Sang Bong [Sanggye Paik Hospital, Inje University College of Medicine, Seoul (Korea, Republic of)

    2008-06-15

    Malignant pleural mesothelioma is an uncommon neoplasm which is accompanied extremely rarely by osteoblastic heterologous elements. The CT manifestations of this tumor have been reported in several references. And, to our knowledge, only one case report provides a description of the bone scan findings. Here, we report the case of a rapidly progressing malignant pleural mesothelioma with heterologous osteoblastic elements. A CT scan reveals diffuse irregular pleural thickening and very coarse nodular calcifications along the right pleura and major fissure. A bone scan revealed an area of extensive increased radioactivity consistent with the pleural calcifications on the CT scan in the right hemithorax. A follow-up CT scan performed 40 days later suggests the presence of rapidly progressing nodular coarse calcifications.

  13. Sound Waves Induce Neural Differentiation of Human Bone Marrow-Derived Mesenchymal Stem Cells via Ryanodine Receptor-Induced Calcium Release and Pyk2 Activation.

    Science.gov (United States)

    Choi, Yura; Park, Jeong-Eun; Jeong, Jong Seob; Park, Jung-Keug; Kim, Jongpil; Jeon, Songhee

    2016-10-01

    Mesenchymal stem cells (MSCs) have shown considerable promise as an adaptable cell source for use in tissue engineering and other therapeutic applications. The aims of this study were to develop methods to test the hypothesis that human MSCs could be differentiated using sound wave stimulation alone and to find the underlying mechanism. Human bone marrow (hBM)-MSCs were stimulated with sound waves (1 kHz, 81 dB) for 7 days and the expression of neural markers were analyzed. Sound waves induced neural differentiation of hBM-MSC at 1 kHz and 81 dB but not at 1 kHz and 100 dB. To determine the signaling pathways involved in the neural differentiation of hBM-MSCs by sound wave stimulation, we examined the Pyk2 and CREB phosphorylation. Sound wave induced an increase in the phosphorylation of Pyk2 and CREB at 45 min and 90 min, respectively, in hBM-MSCs. To find out the upstream activator of Pyk2, we examined the intracellular calcium source that was released by sound wave stimulation. When we used ryanodine as a ryanodine receptor antagonist, sound wave-induced calcium release was suppressed. Moreover, pre-treatment with a Pyk2 inhibitor, PF431396, prevented the phosphorylation of Pyk2 and suppressed sound wave-induced neural differentiation in hBM-MSCs. These results suggest that specific sound wave stimulation could be used as a neural differentiation inducer of hBM-MSCs.

  14. Differentiation of human bone marrow precursor cells into neuronal-like cells after transplantation into canine spinal cord organotypic slice cultures.

    Science.gov (United States)

    Fei, Zhi-qiang; Xiong, Jian-yi; Chen, Lei; Shen, Hui-yong; Stephanie, Ngo; Jeffrey, Wang; Wang, Da-ping

    2012-11-01

    Treatments to regenerate different tissue involving the transplantation of bone marrow derived mesenchymal precursor cells are anticipated. Using an alternative methods, in vitro organotypic slice culture method, would be useful to transplant cells and assessing the effects. This study was to determine the possibility of differentiating human bone marrow precursor cells into cells of the neuronal lineage by transplanting into canine spinal cord organotypic slice cultures. Bone marrow aspirates were obtained from posterior superior iliac spine (PSIS) of patients that had undergone spinal fusion due to a degenerative spinal disorder. For cell imaging, mesenchymal precursor cells (MPCs) were pre-stained with PKH-26 just before transplantation to canine spinal cord slices. Canine spinal cord tissues were obtained from three adult beagle dogs. Spinal cords were cut into transverse slices of 1 mm using tissue chopper. Two slices were transferred into 6-well plate containing 3 ml DMEM with antibiotics. Prepared MPCs (1×10(4)) were transplanted into spinal cord slices. On days 0, 3, 7, 14, MPCs were observed for morphological changes and expression of neuronal markers through immunofluorescence and reverse transcription-polymerase chain reaction (RT-PCR). The morphological study showed: spherical cells in the control and experiment groups on day 0; and on day 3, cells in the control group had one or two thick, short processes and ones in the experiment group had three or four thin, long processes. On day 7, these variously-sized processes contacted each other in the experiment group, but showed typical spindle-shaped cells in the control group. Immunofluorescence showed that PKH-26(+) MPCs stained positive for NeuN(+) and GFAP(+) in experimental group only. Also RT-PCR showed weak expression of β-tubulin III and GFAP. Human bone marrow mesenchymal precursor cells (hMPCs) have the potential to differentiate into the neuronal like cells in this canine spinal cord

  15. Study of single voxel {sup 1}H MR spectroscopy of bone tumors: Differentiation of benign from malignant tumors

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jing; Cheng, Kebin [Department of Radiology, Beijing Jishuitan Hospital, Beijing (China); Ding, Yi [Department of Orthopaedic Oncology, Beijing Jishuitan Hospital, Beijing (China); Liang, Wei [Department of Radiology, Beijing Jishuitan Hospital, Beijing (China); Ding, Yi [Department of Pathology, Beijing Jishuitan Hospital, Beijing (China); Vanel, Daniel [Rizzoli Institute, Bologna (Italy); Cheng, Xiaoguang, E-mail: xiao65@263.net [Department of Radiology, Beijing Jishuitan Hospital, Beijing (China)

    2013-12-01

    Objective: To evaluate the clinical application of single voxel {sup 1}H MRS in the discrimination of benign and malignant bone tumors. Materials and methods: Eighty-three patients (64 male, 19 female), presenting with a bone tumor, were examined on a 1.5 T MRI scanner. Using pathological results as a gold standard, there were 34 benign and 49 malignant tumors. After plain MRI scans, a 3D fast SPGR sequence was used for dynamic contrast-enhanced scanning. Dynamic images were transferred to the workstation, where the region of maximal enhancement was identified for prescription of the {sup 1}H MRS sequence. Single-voxel {sup 1}H MRS was then performed with the probe-p sequence, TR/TE = 1500/110 ms, VOI ranging from 14.4 mm × 7.3 mm × 20.2 mm to 27.9 mm × 25.5 mm × 20.1 mm, automatic shimming and water suppression, 15 min post-contrast. For control purposes, the 3rd lumbar spine vertebral body of six patients having lumbar disc herniation (LDH) without systemic disease was examined with {sup 1}H MRS of normal bone marrow. The static contrast enhancement scan was used for these LDH patients. Conversion of raw MR signal to an MR spectrum was performed using SAGE 7. Cho/Lip (choline/lipids) peak height ratios were calculated. ROC curve analysis was used to determine the cut-off of Cho/Lip ratio for discrimination. Results: For malignant tumors, one resonance at 3.30–3.19 ppm attributed to choline and another at 1.14–1.55 ppm attributed to lipid were detected. With normal bone marrow and most benign tumors, no choline signal was detected. Choline was only found in six benign lesions. With a threshold for Cho/Lip peak height ratio of 0.2, the area under ROC curve was 0.819. The corresponding sensitivity and specificity of {sup 1}H MRS were 76% and 88%. Conclusions: Single voxel {sup 1}H MRS can help in discriminating benign and malignant bone tumors.

  16. Bone tumor

    Science.gov (United States)

    Tumor - bone; Bone cancer; Primary bone tumor; Secondary bone tumor; Bone tumor - benign ... The cause of bone tumors is unknown. They often occur in areas of the bone that grow rapidly. Possible causes include: Genetic defects ...

  17. The effect of daily low dose gamma irradiation on growth and differentiation of human myeloid leukaemic bone marrow in diffusion chambers

    International Nuclear Information System (INIS)

    Greenberger, J.S.; Chang, J.M.; King, V.; Fulmer, S.; Balzuno, S.; Moloney, W.C.

    1981-01-01

    Bone marrow from each of 8 untreated patients with myeloproliferative disorders was grown in diffusion chambers in 760 rad total body irradiated rats. Rats were exposed to 11.5, 57.5, or 108.5 rad daily for 14-21 and cell growth compared to that detected in unirradiated chambers. Cells from acute myelogenous leukaemia patients exposed to 11.5 rad per d grew for 11-21 d and there was no consistent stimulation of differentiation of immature granulocytic cells to mature granulocytes that was attributable to irradiation. Cells from a chronic myeloid leukaemia patient in chronic phase or blast crisis, and a polycythaemia vera patient with myeloid metaplasia showed signigicant morphologic differentiation from immature to mature granulocytes in control chambers with no additional effect of daily irradiation. Marrow specimens from 2 AML patients exposed to each of 3 daily dose fractions over 14 d revealed a dose-dependent decrease in immature granulocytes with no persistent increase in mature granulocytes. In both irradiated and control chambers, macrophages increased over 21 d. Thus, cells from patients with myeloprofilerative disorders may not necessarily differentiate to mature granulocytes following in vivo exposure to ionizing irradiation. (author)

  18. Maintenance of differentiation potential of human bone marrow mesenchymal stem cells immortalized by human telomerase reverse transcriptase gene despite of extensive proliferation

    International Nuclear Information System (INIS)

    Abdallah, Basem M.; Haack-Sorensen, Mandana; Burns, Jorge S.; Elsnab, Birgitte; Jakob, Franz; Hokland, Peter; Kassem, Moustapha

    2005-01-01

    Human bone marrow mesenchymal stem cells (hMSC) represent a population of stem cells that are capable of differentiation into multiple lineages. However, these cells exhibit senescence-associated growth arrest and phenotypic changes during long-term in vitro culture. We have recently demonstrated that overexpression of human telomerase reverse transcriptase (hTERT) in hMSC reconstitutes telomerase activity and extends life span of the cells [Nat. Biotechnol. 20 (2002) 592]. In the present study, we have performed extensive characterization of three independent cell lines derived from the parental hMSC-TERT cell line based on different plating densities during expansion in culture: 1:2 (hMSC-TERT2), 1:4 (hMSC-TERT4), and 1:20 (hMSC-TERT20). The 3 cell lines exhibited differences in morphology and growth rates but they all maintained the characteristics of self-renewing stem cells and the ability to differentiate into multiple mesoderm-type cell lineages: osteoblasts, adipocytes, chondrocytes, and endothelial-like cells over a 3-year period in culture. Also, surface marker studies using flow cytometry showed a pattern similar to that known from normal hMSC. Thus, telomerization of hMSC by hTERT overexpression maintains the stem cell phenotype of hMSC and it may be a useful tool for obtaining enough number of cells with a stable phenotype for mechanistic studies of cell differentiation and for tissue engineering protocols

  19. Nurse’s A-Phase Material Enhance Adhesion, Growth and Differentiation of Human Bone Marrow-Derived Stromal Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    Ruben Rabadan-Ros

    2017-03-01

    Full Text Available The purpose of this study was to evaluate the bioactivity and cell response of a well-characterized Nurse’s A-phase (7CaO·P2O5·2SiO2 ceramic and its effect compared to a control (tissue culture polystyrene-TCPS on the adhesion, viability, proliferation, and osteogenic differentiation of ahMSCs in vitro. Cell proliferation (Alamar Blue Assay, Alizarin Red-S (AR-s staining, alkaline phosphatase (ALP activity, osteocalcin (OCN, and collagen I (Col I were evaluated. Also, field emission scanning electron microscopy (FESEM images were acquired in order to visualise the cells and the topography of the material. The proliferation of cells growing in a direct contact with the material was slower at early stages of the study because of the new environmental conditions. However, the entire surface was colonized after 28 days of culture in growth medium (GM. Osteoblastic differentiation markers were significantly enhanced in cells growing on Nurse’s A phase ceramic and cultured with osteogenic medium (OM, probably due to the role of silica to stimulate the differentiation of ahMSCs. Moreover, calcium nodules were formed under the influence of ceramic material. Therefore, it is predicted that Nurse’s A-phase ceramic would present high biocompatibility and osteoinductive properties and would be a good candidate to be used as a biomaterial for bone tissue engineering.

  20. [Campomelic syndrome. Difficulties in early differential diagnosis from other syndromes involving deformation of the long bones using echography].

    Science.gov (United States)

    Kervran, T; Cigarme, A; Ferrier, M H; le Roux, J L; Rebour, P; Chabaud, J J; Martin, J

    1990-11-01

    One case of "campomélique" dysplasia discovered by echography at 17 weeks is reported. The details of the syndrome are recalled. In this particular case, only the histology enabled the exact diagnosis to be made. The distinction between "syndrome campomélique" and other syndromes involving deformation of long bones (imperfect osteogenesis of the foetal type and isolated curvature of the tibia) is not easy during early pregnancy using echography alone. At a later stage, the signs and symptoms become more distinct and an exact diagnosis is probably easier.

  1. The role of stromal cells in inflammatory bone loss.

    Science.gov (United States)

    Wehmeyer, C; Pap, T; Buckley, C D; Naylor, A J

    2017-07-01

    Rheumatoid arthritis (RA) is an autoimmune disease characterized by chronic inflammation, local and systemic bone loss and a lack of compensatory bone repair. Fibroblast-like synoviocytes (FLS) are the most abundant cells of the stroma and a key population in autoimmune diseases such as RA. An increasing body of evidence suggests that these cells play not only an important role in chronic inflammation and synovial hyperplasia, but also impact bone remodelling. Under inflammatory conditions FLS release inflammatory cytokines, regulate bone destruction and formation and communicate with immune cells to control bone homeostasis. Other stromal cells, such as osteoblasts and terminally differentiated osteoblasts, termed osteocytes, are also involved in the regulation of bone homeostasis and are dysregulated during inflammation. This review highlights our current understanding of how stromal cells influence the balance between bone formation and bone destruction. Increasing our understanding of these processes is critical to enable the development of novel therapeutic strategies with which to treat bone loss in RA. © 2017 British Society for Immunology.

  2. Infantile Myofibroma Eroding into the Frontal Bone: A Case Report and Review of Its Histopathologic Differential Diagnosis

    Directory of Open Access Journals (Sweden)

    Aatish Thennavan

    2012-01-01

    Full Text Available Infantile myofibroma is a rare and benign tumour of children presenting in the head and neck region. Rendering a final diagnosis of infantile myofibroma can be challenging in the light of nonspecific clinical, radiological findings and its histopathological similarities with a number of neoplasms especially spindle cell tumours. In this paper we discuss a case of infantile myofibroma in a 2-month-old infant, enumerating the various differential entities that have to be eliminated in reaching its specific diagnosis and highlighting the importance of immunopositivity to vimentin and smooth muscle actin (SMA in establishing its myofibroblastic differentiation.

  3. Selective inhibition of TNFR1 reduces osteoclast numbers and is differentiated from anti-TNF in a LPS-driven model of inflammatory bone loss.

    Science.gov (United States)

    Espirito Santo, A I; Ersek, A; Freidin, A; Feldmann, M; Stoop, A A; Horwood, N J

    2015-09-04

    The treatment of autoimmune disorders has been revolutionised by the introduction of biologics such as anti-tumour necrosis factor (anti-TNF). Although in rheumatoid arthritis patients a bone sparing effect of anti-TNF has been shown, the mechanism is not fully understood. Anti-TNF molecules block tumour necrosis factor (TNF) and prevent signalling via both TNF receptor 1 (TNFR1; p55) and TNF receptor 2 (TNFR2; p75). However, signalling via TNFR2 is reported to have protective effects in a number of cell and organ systems. Hence we set out to investigate if pharmacological inhibition of TNFR1 had differential effects compared to pan-TNF inhibition in both an in vitro cell-based model of human osteoclast activity and an in vivo mouse model of lipopolysaccharide (LPS)-induced osteolysis. For the in vitro experiments the anti-human TNFR1 domain antibody (dAb) DMS5541 was used, whereas for the in vivo mouse experiments the anti-mouse TNFR1 dAb DMS5540 was used. We show that selective blocking of TNFR1 signalling reduced osteoclast formation in the presence of TNF. Subcutaneous LPS injection over the calvaria leads to the development of osteolytic lesions within days due to inflammation driven osteoclast formation. In this model, murine TNFR2 genetically fused with mouse IgG1 Fc domain (mTNFR2.Fc), an anti-TNF, did not protect from bone loss in contrast to anti-TNFR1, which significantly reduced lesion development, inflammatory infiltrate, and osteoclast number and size. These results support further exploring the use of TNFR1-selective inhibition in inflammatory bone loss disorders such as osteomyelitis and peri-prosthetic aseptic loosening. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. The role of inhibition by phosphocitrate and its analogue in chondrocyte differentiation and subchondral bone advance in Hartley guinea pigs.

    Science.gov (United States)

    Sun, Yubo; Kiraly, Alex J; Cox, Michael; Mauerhan, David R; Hanley, Edward N

    2018-04-01

    Phosphocitrate (PC) and its analogue, PC-β ethyl ester, inhibit articular cartilage degeneration in Hartley guinea pigs. However, the underlying molecular mechanisms remain unclear. The present study aimed to investigate the hypothesis that PC exerted its disease-modifying effect on osteoarthritis (OA), in part, by inhibiting a molecular program similar to that in the endochondral pathway of ossification. The results demonstrated that severe proteoglycan loss occurred in the superficial and middle zones, as well as in the calcified zone of articular cartilage in the Hartley guinea pigs. Subchondral bone advance was greater in the control Hartley guinea pigs compared with PC- or PC analogue-treated guinea pigs. Resorption of cartilage bars or islands and vascular invasion in the growth plate were also greater in the control guinea pigs compared with the PC- or PC analogue-treated guinea pigs. The levels of matrix metalloproteinase-13 and type X collagen within the articular cartilage and growth plate were significantly increased in the control guinea pigs compared with PC-treated guinea pigs (Pguinea pigs exhibited a hypertrophic phenotype and recapitulated a developmental molecular program similar to the endochondral pathway of ossification. Activation of this molecular program resulted in resorption of calcified articular cartilage and subchondral bone advance. This suggests that PC and PC analogues exerted their OA disease-modifying activity, in part, by inhibiting this molecular program.

  5. Nanoparticle Labeling of Bone Marrow-Derived Rat Mesenchymal Stem Cells: Their Use in Differentiation and Tracking

    Directory of Open Access Journals (Sweden)

    Ece Akhan

    2015-01-01

    Full Text Available Mesenchymal stem cells (MSCs are promising candidates for cellular therapies due to their ability to migrate to damaged tissue without inducing immune reaction. Many techniques have been developed to trace MSCs and their differentiation efficacy; however, all of these methods have limitations. Conjugated polymer based water-dispersible nanoparticles (CPN represent a new class of probes because they offer high brightness, improved photostability, high fluorescent quantum yield, and noncytotoxicity comparing to conventional dyes and quantum dots. We aimed to use this tool for tracing MSCs’ fate in vitro and in vivo. MSC marker expression, survival, and differentiation capacity were assessed upon CPN treatment. Our results showed that after CPN labeling, MSC markers did not change and significant number of cells were found to be viable as revealed by MTT. Fluorescent signals were retained for 3 weeks after they were differentiated into osteocytes, adipocytes, and chondrocytes in vitro. We also showed that the labeled MSCs migrated to the site of injury and retained their labels in an in vivo liver regeneration model. The utilization of nanoparticle could be a promising tool for the tracking of MSCs in vivo and in vitro and therefore can be a useful tool to understand differentiation and homing mechanisms of MSCs.

  6. LncRNA MEG3 inhibited osteogenic differentiation of bone marrow mesenchymal stem cells from postmenopausal osteoporosis by targeting miR-133a-3p.

    Science.gov (United States)

    Wang, Qiujun; Li, Ying; Zhang, Yuanxia; Ma, Lan; Lin, Lin; Meng, Jia; Jiang, Lihong; Wang, Liping; Zhou, Ping; Zhang, Yina

    2017-05-01

    Long non-coding RNA (lncRNA) MEG3 has proven to be an important regulator involved in the pathogenesis and development of various human diseases. However, the functional involvement of MEG3 in postmenopausal osteoporosis (PMOP) and its mechanism is still unclear. Bone marrow mesenchymal stem cells (BMSCs) were isolated and cultured from mouse pathologic models and patients with PMOP, respectively. The expression of MEG3 and miR-133a-3p in BMSCs was detected using qRT-PCR. The recombinant expression vector was constructed and transfected into BMSCs to regulate the endogenous expression of MEG3 and miR-133a-3p. The mineralized nodules formation, alkaline phosphatase (ALP) activity and Runx2, OCN, OPN expressions were used as specific markers for the differentiation of osteoblasts. The expressions of MEG3 and miR-133a-3p in BMSCs from PMOP were increased, and there was a positive correlation between MEG3 and miR-133a-3p expression in BMSCs. In the differentiation process from BMSCs to osteoblasts, the expressions of MEG3 and miR-133a-3p were markedly decreased, and MEG3 overexpression reversed the osteogenic induction-mediated downregulation of miR-133a-3p, which was accompanied by significant decline in SLC39A1 expression. Furthermore, miR-133a-3p silencing or upregulation eliminated the effects of MEG3 on the osteogenic differentiation of BMSCs through direct binding. The research indicated that MEG3 regulated the expression of miR-133a-3p, and inhibited the osteogenic differentiation of BMSCs induced PMOP. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  7. Effects of Blue Light Emitting Diode Irradiation On the Proliferation, Apoptosis and Differentiation of Bone Marrow-Derived Mesenchymal Stem Cells.

    Science.gov (United States)

    Yuan, Ye; Yan, Gege; Gong, Rui; Zhang, Lai; Liu, Tianyi; Feng, Chao; Du, Weijie; Wang, Ying; Yang, Fan; Li, Yuan; Guo, Shuyuan; Ding, Fengzhi; Ma, Wenya; Idiiatullina, Elina; Pavlov, Valentin; Han, Zhenbo; Cai, Benzhi; Yang, Lei

    2017-01-01

    Blue light emitting diodes (LEDs) have been proven to affect the growth of several types of cells. The effects of blue LEDs have not been tested on bone marrow-derived mesenchymal stem cells (BMSCs), which are important for cell-based therapy in various medical fields. Therefore, the aim of this study was to determine the effects of blue LED on the proliferation, apoptosis and osteogenic differentiation of BMSCs. BMSCs were irradiated with a blue LED light at 470 nm for 1 min, 5 min, 10 min, 30 min and 60 min or not irradiated. Cell proliferation was measured by performing cell counting and EdU staining assays. Cell apoptosis was detected by TUNEL staining. Osteogenic differentiation was evaluated by ALP and ARS staining. DCFH-DA staining and γ-H2A.X immunostaining were used to measure intracellular levels of ROS production and DNA damage. Both cell counting and EdU staining assays showed that cell proliferation of BMSCs was significantly reduced upon blue LED irradiation. Furthermore, treatment of BMSCs with LED irradiation was followed by a remarkable increase in apoptosis, indicating that blue LED light induced toxic effects on BMSCs. Likewise, BMSC osteogenic differentiation was inhibited after exposure to blue LED irradiation. Further, blue LED irradiation was followed by the accumulation of ROS production and DNA damage. Taken together, our study demonstrated that blue LED light inhibited cell proliferation, inhibited osteogenic differentiation, and induced apoptosis in BMSCs, which are associated with increased ROS production and DNA damage. These findings may provide important insights for the application of LEDs in future BMSC-based therapies. © 2017 The Author(s). Published by S. Karger AG, Basel.

  8. BMP7 promotes adipogenic but not osteo-/chondrogenic differentiation of adult human bone marrow-derived stem cells in high-density micro-mass culture.

    Science.gov (United States)

    Neumann, Katja; Endres, Michaela; Ringe, Jochen; Flath, Bernd; Manz, Rudi; Häupl, Thomas; Sittinger, Michael; Kaps, Christian

    2007-10-15

    The objective of our study was to elucidate the potential of bone morphogenetic protein-7 (BMP7) to initiate distinct mesenchymal lineage development of human adult mesenchymal stem cells (MSC) in three-dimensional micro-mass culture. Expanded MSC were cultured in high-density micro-masses under serum-free conditions that favor chondrogenic differentiation and were stimulated with 50-200 ng/ml BMP7 or 10 ng/ml transforming growth factor-beta3 (TGFbeta3) as control. Histological staining of proteoglycan with alcian blue, mineralized matrix according to von Kossa, and lipids with Oil Red O, immunostaining of type II collagen as well as real-time gene expression analysis of typical chondrogenic, adipogenic, and osteogenic marker genes showed that BMP7 promoted adipogenic differentiation of MSC. Micro-masses stimulated with BMP7 developed adipocytic cells filled with lipid droplets and showed an enhanced expression of the adipocyte marker genes fatty acid binding protein 4 (FABP4) and the adipose most abundant transcript 1 (apM1). Development along the chondrogenic lineage or stimulation of osteogenic differentiation were not evident upon stimulation with BMP7 in different concentrations. In contrast, TGFbeta3 directed MSC to form a cartilaginous matrix that is rich in proteoglycan and type II collagen. Gene expression analysis of typical chondrocyte marker genes like cartilage oligomeric matrix protein (COMP), link protein, aggrecan, and types IIalpha1 and IXalpha3 collagen confirmed chondrogenic differentiation of MSC treated with TGFbeta3. These results suggest that BMP7 promotes the adipogenic and not the osteogenic or chondrogenic lineage development of human stem cells when assembled three-dimensionally in micro-masses. (c) 2007 Wiley-Liss, Inc.

  9. Comparison of the diagnostic and prognostic values of 99mTc-MDP-planar bone scintigraphy, 131I-SPECT/CT and 18F-FDG-PET/CT for the detection of bone metastases from differentiated thyroid cancer.

    Science.gov (United States)

    Qiu, Zhong-Ling; Xue, Yan-Li; Song, Hong-Jun; Luo, Quan-Yong

    2012-12-01

    The aim of this study was to compare the diagnostic and prognostic values of (99m)Tc-MDP-planar bone scintigraphy ((99m)Tc-MDP-BS), (131)I single-photon emission computed tomography/computed tomography ((131)I-SPECT/CT) and (18)F-fluorodeoxyglucose ((18)F-FDG)-PET/CT for the detection of bone metastases from differentiated thyroid cancer (DTC). Eighty patients with DTC with suspected bone metastases from DTC were retrospectively analysed. All patients were examined with (99m)(99m)Tc-MDP-BS, (131)I-SPECT/CT and (18)F-FDG-PET/CT, with a maximum interval of 2 months between scans. The diagnostic performances of (99m)Tc-MDP-BS, (131)I-SPECT/CT and (99m)F-FDG-PET/CT were investigated and compared. Univariate and multivariate analyses were carried out to evaluate the effects of variables on the survival of patients. Out of the 80 patients with 148 foci, 43 with 106 foci were diagnosed as being true positive for bone metastases from DTC. In patient-based analysis, the sensitivity, specificity, positive predictive value, negative predictive value and diagnostic accuracy of (99m)Tc-MDP-BS were 79.07, 83.78, 85.00, 77.50 and 81.25%, respectively; those of (131)I-SPECT/CT were 93.02, 97.30, 97.56, 92.31 and 95.00%, and those of (18)F-FDG-PET/CT were 86.05, 94.59, 94.87, 85.36 and 87.80%, respectively. In lesion-based analysis, the sensitivity, specificity, positive predictive value, negative predictive value and diagnostic accuracy of (99m)Tc-MDP-BS were 72.64, 73.81, 87.50, 51.67 and 72.97%, respectively; those of (131)I-SPECT/CT were 92.45, 97.62, 98.99, 83.67 and 93.92%, and those of (18)F-FDG-PET/CT were 85.85, 88.10, 94.50, 71.15 and 86.49%, respectively. Comparing the receiver-operating characteristic area using the McNemar test, both (131)I-SPECT/CT and (18)F-FDG-PET/CT were found to be superior to (99m)Tc-MDP-BS for the detection of bone metastases from DTC in patient-based and lesion-based analyses (PMDP-BS might be completely replaced by (131)I-SPECT/CT in

  10. IL-17 promotes bone erosion in murine collagen-induced arthritis through loss of the receptor activator of NF-kappa B ligand/osteoprotegerin balance.

    NARCIS (Netherlands)

    Lubberts, G.J.H.; Bersselaar, L.A.M. van den; Oppers-Walgreen, B.; Schwarzenberger, P.; Coonen-de Roo, C.J.; Kolls, J.; Joosten, L.A.B.; Berg, W.B. van den

    2003-01-01

    IL-17 is a T cell-derived proinflammatory cytokine in experimental arthritis and is a stimulator of osteoclastogenesis in vitro. In this study, we report the effects of IL-17 overexpression (AdIL-17) in the knee joint of type II collagen-immunized mice on bone erosion and synovial receptor activator

  11. Effects of Growth Hormone Therapy on Bone Mass, Metabolic Balance, and Well-Being in Young Adult Survivors of Childhood Acute Lymphoblastic Leukemia

    NARCIS (Netherlands)

    van den Heijkant, Silvia; Hoorweg-Nijman, Gera; Huisman, Jaap; Drent, Madeleine; van der Pal, Heleen; Kaspers, Gert-Jan; Delemarre-van de Waal, Henriette

    2011-01-01

    Growth hormone deficiency (GHD), mostly after cranial radiotherapy (CRT), may lead to several negative effects. Young adult survivors of acute lymphoblastic leukemia (ALL) could benefit from GH therapy in different ways. Twenty ALL survivors (17.1 +/- 4.3 y after diagnosis) with low bone mineral

  12. Uptake of 131-I in maxillary bones mimicking salivary glands. False- positive images in patients with differentiated thyroid carcinoma (DTC )

    International Nuclear Information System (INIS)

    Degrossi, Osvaldo J.; Degrossi, E.B.; Levi de Cabrejas, Mariana

    2008-01-01

    In the whole body scans (WBS) with 131-I in the follow-up or treatment of patients bearing DTC it is observed frequently fixation areas of the tracer apparently in relation with salivary glands. These areas generally belong to the salivary glands and are present during the first 48/72 hours, but others are kept during more than 3 weeks. These latter ones were considered as possible uptake in ectopic thyroid cells in the mouth floor, iodized proteins, retention of salivary glands and other assertions. Valdivieso et al. (Cong. Arg. Biol. Med. Nuclear, 1996) and Gutierrez et al. (SLAT,Chile, 1997) considered that the fixation took place also in maxillary bones probably in areas in relation with dental illness (inflammation, pulpitis, dental caries, perionditis, periapical granuloma, periapical cyst and resorption of surrounding bone seen radiologically as periapical radiolucency). This presumption was sustained for two publications (Clin. Nucl. Med. 1998;23. 747-749, and Clin. Nucl. Med. 2000; 23; 314-315). This end the review of 638 131-I WBS carried out between January 1st, 2002 and December 31st of 2007 in 502 patients that were studied for ablation, treatment of metastasis or relapses or follow up. In 31,5% of the patients were observed areas of activity in maxilla. The intensity of concentration of the tracer was 0.3 to 1.2 % of the activity administered. In 10 patients was determinate the effective T 1/2 and in 5 a panoramic Rx of the maxilla and a bone scintigraphy with 99m-Tc-MDP; there were correlation between both images, the 131-I one an the 99m-Tc-MDP with radiology. The effective T 1/2 mean value was 6,87 days ± 0,94 (S.D.) very close to the physical T 1/2 of the radioiodine tracer indicating a strongly labeled molecule. In 6 patients treated with high activities of radioiodine (5,55 to 11,1 MBq - 150 to 300 mCi) actinic lesions were observed in mouth and lingual mucous membrane, including ulcers. The intensity of the images and of the lesions correlate

  13. Differential effect of obesity on bone mineral density in White, Hispanic and African American women: a cross sectional study

    Directory of Open Access Journals (Sweden)

    Pabon Lina

    2005-04-01

    Full Text Available Abstract Osteoporosis is a major public health problem with low bone mass affecting nearly half the women aged 50 years or older. Evidence from various studies has shown that higher body mass index (BMI is a protective factor for bone mineral density (BMD. Most of the evidence, however, is from studies with Caucasian women and it is unclear to what extent ethnicity plays a role in modifying the effect of BMI on BMD. A cross sectional study was performed in which records of postmenopausal women who presented for screening for osteoporosis at 2 urban medical centres were reviewed. Using logistic regression, we examined the interaction of race and BMI after adjusting for age, family history of osteoporosis, maternal fracture, smoking, and sedentary lifestyle on BMD. Low BMD was defined as T-score at the lumbar spine Among 3,206 patients identified, the mean age of the study population was 58.3 ± 0.24 (Years ± SEM and the BMI was 30.6 kg/m2. 2,417 (75.4% were African Americans (AA, 441(13.6% were Whites and 348 (10.9% were Hispanics. The AA women had lower odds of having low BMD compared to Whites [Odds ratio (OR = 0.079 (0.03–0.24 (95% CI, p There is thus a race-dependent effect of BMI on BMD. With each unit increase in BMI, BMD increases for White women, while a slight but significant decrease in BMD occurs in African American women.

  14. Hypercalciuric Bone Disease

    Science.gov (United States)

    Favus, Murray J.

    2008-09-01

    Hypercalciuria plays an important causal role in many patients with calcium oxalate (CaOx) stones. The source of the hypercalciuria includes increased intestinal Ca absorption and decreased renal tubule Ca reabsorption. In CaOx stone formers with idiopathic hypercalciuria (IH), Ca metabolic balance studies have revealed negative Ca balance and persistent hypercalciuria in the fasting state and during low dietary Ca intake. Bone resorption may also contribute to the high urine Ca excretion and increase the risk of bone loss. Indeed, low bone mass by DEXA scanning has been discovered in many IH patients. Thiazide diuretic agents reduce urine Ca excretion and may increase bone mineral density (BMD), thereby reducing fracture risk. Dietary Ca restriction that has been used unsuccessfully in the treatment of CaOx nephrolithiasis in the past may enhance negative Ca balance and accelerate bone loss. DEXA scans may demonstrate low BMD at the spine, hip, or forearm, with no predictable pattern. The unique pattern of bone histologic changes in IH differs from other causes of low DEXA bone density including postmenopausal osteoporosis, male hypogonadal osteoporosis, and glucocorticoid-induced osteoporosis. Hypercalciuria appears to play an important pathologic role in the development of low bone mass, and therefore correction of urine Ca losses should be a primary target for treatment of the bone disease accompanying IH.

  15. Balance Problems

    Science.gov (United States)

    ... often, it could be a sign of a balance problem. Balance problems can make you feel unsteady. You may ... related injuries, such as a hip fracture. Some balance problems are due to problems in the inner ...

  16. Balanced microwave filters

    CERN Document Server

    Hong, Jiasheng; Medina, Francisco; Martiacuten, Ferran

    2018-01-01

    This book presents and discusses strategies for the design and implementation of common-mode suppressed balanced microwave filters, including, narrowband, wideband, and ultra-wideband filters This book examines differential-mode, or balanced, microwave filters by discussing several implementations of practical realizations of these passive components. Topics covered include selective mode suppression, designs based on distributed and semi-lumped approaches, multilayer technologies, defect ground structures, coupled resonators, metamaterials, interference techniques, and substrate integrated waveguides, among others. Divided into five parts, Balanced Microwave Filters begins with an introduction that presents the fundamentals of balanced lines, circuits, and networks. Part 2 covers balanced transmission lines with common-mode noise suppression, including several types of common-mode filters and the application of such filters to enhance common-mode suppression in balanced bandpass filters. Next, Part 3 exa...

  17. Effects of exercise and nutrition on postural balance and risk of falling in elderly people with decreased bone mineral density : randomized controlled trial pilot study

    NARCIS (Netherlands)

    Swanenburg, Jaap; de Bruin, Eling Douwe; Stauffacher, Marguerite; Mulder, Theo; Uebelhart, Daniel

    Objective: To compare the effect of calcium/vitamin D supplements with a combination of calcium/vitamin D supplements and exercise/protein on risk of failing and postural balance. Design: Randomized clinical trial. Setting: University hospital physiotherapy department. Subjects: Twenty-four

  18. Long-Duration Spaceflight During the Bion-M1 Spaceflight Experiment Resulted in Significant Bone Loss in the Femoral Head and Alterations in Stem Cell Differentiation Potential in Male Mice

    Science.gov (United States)

    Blaber, Elizabeth; Almeida, Eduardo; Grigoryan, Eleonora; Globus, Ruth

    Scientific understanding of the effects of microgravity on mammalian physiology has been limited to short duration spaceflight experiments (10-15 days). As long duration and inter-planetary missions are being initiated, there is a great need to understand the long-term effects of spaceflight on various physiological processes, including stem cell-based tissue regeneration. Bion-M1, for the first time, enabled the possibility of studying the effects of 30-days of microgravity exposure on a mouse model with sufficient sample size to enable statistical analysis. In this experiment, we hypothesized that microgravity negatively impacts stem cell based tissue regeneration, such as bone remodeling and regeneration from hematopoietic and mesenchymal precursors, thereby resulting in tissue degeneration in mice exposed to spaceflight. To test this hypothesis we collected the pelvis and proximal femur from space-flown mice and asynchronous ground controls and analyzed bone and bone marrow using techniques including Microcomputed Tomography (MicroCT), and in-vitro differentiation and differentiating cell motility assays. To determine the effects of 30-days spaceflight on bone tissue mass, we used MicroCT to analyze the trabecular bone of the femoral head and the cortical bone of the femoral neck and mid-shaft. We found that spaceflight caused a 45% decrease in bone volume ratio, a 17% decrease in trabecular thickness, a 25% decrease in trabecular number, and a 17% increase in trabecular spacing of trabecular bone. Furthermore, structural model index and trabecular pattern factor were increased by 32% and 82% respectively indicating that 30-days spaceflight resulted not only in a large loss of trabecular bone but also in a decrease of bone strength indicators. Analysis of the femoral neck cortical bone showed an increase in marrow area and cortical porosity indicating an overall widening of the femoral neck. Interestingly, no significant alterations were found in the cortical

  19. Improvement of the Chondrocyte-Specific Phenotype upon Equine Bone Marrow Mesenchymal Stem Cell Differentiation: Influence of Culture Time, Transforming Growth Factors and Type I Collagen siRNAs on the Differentiation Index

    Directory of Open Access Journals (Sweden)

    Thomas Branly

    2018-02-01

    Full Text Available Articular cartilage is a tissue characterized by its poor intrinsic capacity for self-repair. This tissue is frequently altered upon trauma or in osteoarthritis (OA, a degenerative disease that is currently incurable. Similar musculoskeletal disorders also affect horses and OA incurs considerable economic loss for the equine sector. In the view to develop new therapies for humans and horses, significant progress in tissue engineering has led to the emergence of new generations of cartilage therapy. Matrix-associated autologous chondrocyte implantation is an advanced 3D cell-based therapy that holds promise for cartilage repair. This study aims to improve the autologous chondrocyte implantation technique by using equine mesenchymal stem cells (MSCs from bone marrow differentiated into chondrocytes that can be implanted in the chondral lesion. The optimized protocol relies on culture under hypoxia within type I/III collagen sponges. Here, we explored three parameters that influence MSC differentiation: culture times, growth factors and RNA interference strategies. Our results suggest first that an increase in culture time from 14 to 28 or 42 days lead to a sharp increase in the expression of chondrocyte markers, notably type II collagen (especially the IIB isoform, along with a concomitant decrease in HtrA1 expression. Nevertheless, the expression of type I collagen also increased with longer culture times. Second, regarding the growth factor cocktail, TGF-β3 alone showed promising result but the previously tested association of BMP-2 and TGF-β1 better limits the expression of type I collagen. Third, RNA interference targeting Col1a2 as well as Col1a1 mRNA led to a more significant knockdown, compared with a conventional strategy targeting Col1a1 alone. This chondrogenic differentiation strategy showed a strong increase in the Col2a1:Col1a1 mRNA ratio in the chondrocytes derived from equine bone marrow MSCs, this ratio being considered as an

  20. Bone-derived mesenchymal stromal cells from HIV transgenic mice exhibit altered proliferation, differentiation capacity and paracrine functions along with impaired therapeutic potential in kidney injury

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Kang; Rai, Partab; Lan, Xiqian; Plagov, Andrei; Malhotra, Ashwani [Feinstein Institute for Medical Research, North Shore-Long Island Jewish Health System, Manhassett, NY (United States); Gupta, Sanjeev [Departments of Medicine and Pathology, Marion Bessin Liver Research Center, Diabetes Center, Cancer Center, Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Institute for Clinical and Translational Research, Albert Einstein College of Medicine, Bronx, NY (United States); Singhal, Pravin C., E-mail: psinghal@nshs.edu [Feinstein Institute for Medical Research, North Shore-Long Island Jewish Health System, Manhassett, NY (United States)

    2013-08-15

    Mesenchymal stem cells (MSCs) secrete paracrine factors that could be cytoprotective and serve roles in immunoregulation during tissue injury. Although MSCs express HIV receptors, and co-receptors, and are susceptible to HIV infection, whether HIV-1 may affect biological properties of MSCs needs more study. We evaluated cellular proliferation, differentiation and paracrine functions of MSCs isolated from compact bones of healthy control mice and Tg26 HIV-1 transgenic mice. The ability of MSCs to protect against cisplatin toxicity was studied in cultured renal tubular cells as well as in intact mice. We successfully isolated MSCs from healthy mice and Tg26 HIV-1 transgenic mice and found the latter expressed viral Nef, Vpu, NL4-3 and Vif genes. The proliferation and differentiation of Tg26 HIV-1 MSCs was inferior to MSCs from healthy mice. Moreover, transplantation of Tg26 HIV-1 MSCs less effectively improved outcomes compared with healthy MSCs in mice with acute kidney injury. Also, Tg26 HIV-1 MSCs secreted multiple cytokines, but at significantly lower levels than healthy MSCs, which resulted in failure of conditioned medium from these MSCs to protect cultured renal tubular cells from cisplatin toxicity. Therefore, HIV-1 had adverse biological effects on MSCs extending to their proliferation, differentiation, function, and therapeutic potential. These findings will help in advancing mechanistical insight in renal injury and repair in the setting of HIV-1 infection. -- Highlights: •MSCs isolated from HIV mice displayed HIV genes. •MSCs isolated from HIV mice exhibited attenuated growth and paracrine functions. •AKI mice with transplanted HIV-MSC displayed poor outcome. •HIV-1 MSC secreted multiple cytokines but at a lower level.

  1. Induction of chondro-, osteo- and adipogenesis in embryonic stem cells by bone morphogenetic protein-2: Effect of cofactors on differentiating lineages

    Directory of Open Access Journals (Sweden)

    zur Nieden Nicole I

    2005-01-01

    Full Text Available Abstract Background Recently, tissue engineering has merged with stem cell technology with interest to develop new sources of transplantable material for injury or disease treatment. Eminently interesting, are bone and joint injuries/disorders because of the low self-regenerating capacity of the matrix secreting cells, particularly chondrocytes. ES cells have the unlimited capacity to self-renew and maintain their pluripotency in culture. Upon induction of various signals they will then differentiate into distinctive cell types such as neurons, cardiomyocytes and osteoblasts. Results We present here that BMP-2 can drive ES cells to the cartilage, osteoblast or adipogenic fate depending on supplementary co-factors. TGFβ1, insulin and ascorbic acid were identified as signals that together with BMP-2 induce a chondrocytic phenotype that is characterized by increased expression of cartilage marker genes in a timely co-ordinated fashion. Expression of collagen type IIB and aggrecan, indicative of a fully mature state, continuously ascend until reaching a peak at day 32 of culture to approximately 80-fold over control values. Sox9 and scleraxis, cartilage specific transcription factors, are highly expressed at very early stages and show decreased expression over the time course of EB differentiation. Some smaller proteoglycans, such as decorin and biglycan, are expressed at earlier stages. Overall, proteoglycan biosynthesis is up-regulated 7-fold in response to the supplements added. BMP-2 induced chondrocytes undergo hypertrophy and begin to alter their expression profile towards osteoblasts. Supplying mineralization factors such as β-glycerophosphate and vitamin D3 with the culture medium can facilitate this process. Moreover, gene expression studies show that adipocytes can also differentiate from BMP-2 treated ES cells. Conclusions Ultimately, we have found that ES cells can be successfully triggered to differentiate into chondrocyte-like cells

  2. Benign chordoma of the sacral bone. Radiologic appearance and differential dignosis; Benignes Chordom des Os Sacrum. Radiologische Morphologie und differential-diagnostische Aspekte

    Energy Technology Data Exchange (ETDEWEB)

    Pegios, W. [Strahlenklinik und Poliklinik, Freie Univ. Berlin (Germany); Vogl, T.J. [Strahlenklinik und Poliklinik, Freie Univ. Berlin (Germany); Rausch, M. [Strahlenklinik und Poliklinik, Freie Univ. Berlin (Germany); Klein, U. [Strahlenklinik und Poliklinik, Freie Univ. Berlin (Germany); Balzer, J.O. [Strahlenklinik und Poliklinik, Freie Univ. Berlin (Germany); Hammerstingl, R. [Strahlenklinik und Poliklinik, Freie Univ. Berlin (Germany); Mack, M.G. [Strahlenklinik und Poliklinik, Freie Univ. Berlin (Germany); Felix, R. [Strahlenklinik und Poliklinik, Freie Univ. Berlin (Germany)

    1994-12-31

    Chordomas constitute 3-4% of all primary bony tumors [17, 20] and they arise from remnants of the notochord [4]. They can occur anywhere along the skull base and spine, where the notochord extends. 50% arise in the sacrum, 35% in the clivus and 15% in the vertebrae [17, 20]. Chordomas usually occur after the second decade with the highest incidence between the fifth and seventh decade. There is a male predominance, with roughly a 2 to 1 male-to-female ratio. Children are rarely affected [5, 25, 34]. In this article a case of a patient with a Chordoma of the sacrum is presented. After a fall on the coccyx the patient complained of recurrent and altogether increasing pain for some years. The clinical diagnosis was fracture of the coccyx with consecutive formation of callus. Finally the MRI showed a characteristically increased signal intensity in the T2-weighted spin-echo sequence (SE). With the help of MRI guided biopsy the diagnosis of a benign highly differentiated chordoma could be confirmed. (orig.) [Deutsch] Chordome stellen 3 bis 4% aller primaeren Knochentumoren dar [17, 20] und gehen von den Resten der primitiven Chorda dorsalis aus [4]. Sie koennen ueberall dort auftreten, wo embryonale Reste des Chordagewebes vorhanden sind: 50% im Sacrum, 35% im Clivus und mit 15% an den Wirbelkoepern [17, 20]. Chordome werden in der Regel nach der zweiten Lebensdekade beobachtet und erreichen ihre hoechste Inzidenz zwischen der fuenften und der siebten Lebensdekade. Sie zeigen eine Praeferenz fuer das maennliche Geschlecht mit eine Relation von ungefaehr 2:1. Kinder sind seltener betroffen [5, 25, 34]. Im folgenden soll ein Patient mit einem Chordom des Os Sacrum vorgestellt werden. Nach Sturz auf das Steissbein klagte der Patient jahrelang ueber rezidivierende und insgesamt zunehmende Schmerzsymptomatik. Die klinische Diagnose lautete Zustand nach Steissbeinfraktur mit Kallusbildung. Die schliesslich durchgefuehrte MRT zeigte eine charakteristische erhoehte

  3. Dietary Whey and Casein Differentially Affect Energy Balance, Gut Hormones, Glucose Metabolism, and Taste Preference in Diet-Induced Obese Rats.

    Science.gov (United States)

    Pezeshki, Adel; Fahim, Andrew; Chelikani, Prasanth K

    2015-10-01

    -like peptide 1 concentrations were greater in WH than in CA or WHCA rats. The improvements in glucose tolerance were greater in WH than in WHCA rats. The plasma membrane glucose transporter 4 (GLUT4)-to-total GLUT4 ratio in skeletal muscle was greater in CA and WHCA rats than in CO rats; other markers of glucose and energy metabolism in the adipose and cardiac tissues did not differ. In Expt. 2, during 4 conditioning trials, daily food intake was decreased in WH, CA, and WHCA rats by 26-37%, 30-43%, and 23-33%, respectively, compared with CO rats. Preferences for WH and CA rats were 45% and 31% lower, respectively, than those for CO rats, but that for WHCA rats did not differ. Together, these data demonstrate that in obese rats, whey, casein, and their combination improve energy balance through differential effects on food intake, taste preference, energy expenditure, glucose tolerance, and gut hormone secretion. © 2015 American Society for Nutrition.

  4. Differential expression of cell cycle and WNT pathway-related genes accounts for differences in the growth and differentiation potential of Wharton's jelly and bone marrow-derived mesenchymal stem cells.

    Science.gov (United States)

    Batsali, Aristea K; Pontikoglou, Charalampos; Koutroulakis, Dimitrios; Pavlaki, Konstantia I; Damianaki, Athina; Mavroudi, Irene; Alpantaki, Kalliopi; Kouvidi, Elisavet; Kontakis, George; Papadaki, Helen A

    2017-04-26

    In view of the current interest in exploring the clinical use of mesenchymal stem cells (MSCs) from different sources, we performed a side-by-side comparison of the biological properties of MSCs isolated from the Wharton's jelly (WJ), the most abundant MSC source in umbilical cord, with bone marrow (BM)-MSCs, the most extensively studied MSC population. MSCs were isolated and expanded from BM aspirates of hematologically healthy donors (n = 18) and from the WJ of full-term neonates (n = 18). We evaluated, in parallel experiments, the MSC immunophenotypic, survival and senescence characteristics as well as their proliferative potential and cell cycle distribution. We also assessed the expression of genes associated with the WNT- and cell cycle-signaling pathway and we performed karyotypic analysis through passages to evaluate the MSC genomic stability. The hematopoiesis-supporting capacity of MSCs from both sources was investigated by evaluating the clonogenic cells in the non-adherent fraction of MSC co-cultures with BM or umbilical cord blood-derived CD34 + cells and by measuring the hematopoietic cytokines levels in MSC culture supernatants. Finally, we evaluated the ability of MSCs to differentiate into adipocytes and osteocytes and the effect of the WNT-associated molecules WISP-1 and sFRP4 on the differentiation potential of WJ-MSCs. Both ex vivo-expanded MSC populations showed similar morphologic, immunophenotypic, survival and senescence characteristics and acquired genomic alterations at low frequency during passages. WJ-MSCs exhibited higher proliferative potential, possibly due to upregulation of genes that stimulate cell proliferation along with downregulation of genes related to cell cycle inhibition. WJ-MSCs displayed inferior lineage priming and differentiation capacity toward osteocytes and adipocytes, compared to BM-MSCs. This finding was associated with differential expression of molecules related to WNT signaling, including WISP1 and sFRP4

  5. Interaction of Substrate Mechanics with Dental Pulp Stem Cells (DPSCs) differentiation to generate a scaffold for Bone regeneration

    Science.gov (United States)

    Rafailovich, Miriam; Bhatnagar, Divya; Bherwani, Aneel; Simon, Marcia

    2012-02-01

    This work investigates the interaction of the substrate mechanics with the differentiation in the absence of chemical induction and only resulting from the stimuli of the substrate mechanics and chemistry. We chose enzymatically cross-linked gelatin hydrogels substrates of different stiffness varying from 8KPa to 100Pa. DPSCs were cultured and differentiated on the substrates for 7, 14 and 21 days with and without dexamethasone induction media. SEM and EDX analysis after 21 days indicate that cells produced a sheet of biomineralized deposits, several tenths of mm thick on the hard substrate irrespective of chemical induction. Modulli of the cells was independent of the induction and stiffness of the hydrogels. RT-PCR assays indicated that cells expressed more osteocalcin when cultured in non-induction media and harder substrate. The shape of the deposits was more uniform and in close packing on the harder substrate with a higher Ca:P ratio. On soft substrate the deposits were more flat with less Ca:P ratio. Further experiments indicated that conformational change due to the crosslinking of gelatin could be the reason for biomineralization.

  6. Metabolic, endocrine, and related bone diseases

    International Nuclear Information System (INIS)

    Rogers, L.F.

    1987-01-01

    Bone is living tissue, and old bone is constantly removed and replaced with new bone. Normally this exchange is in balance, and the mineral content remains relatively constant. This balance may be disturbed as a result of certain metabolic and endocrinologic disorders. The term dystrophy, referring to a disturbance of nutrition, is applied to metabolic and endocrine bone diseases and should be distinguished from the term dysplasia, referring to a disturbance of bone growth. The two terms are easily confused but are not interchangeable. Metabolic bone disease is caused by endocrine imbalance, vitamin deficiency or excess, and other disturbances in bone metabolism leading to osteoporosis and osteomalacia

  7. Balancing the Rates of New Bone Formation and Polymer Degradation Enhances Healing of Weight-Bearing Allograft/Polyurethane Composites in Rabbit Femoral Defects

    Science.gov (United States)

    2014-10-03

    for 24 h in PBS, and then tested using an Instron DynaMight 8841 machine equipped with a 1.7 N$m torque cell. The potted ends were gripped using the...kg intramuscularly (IM) followed by ketamine at 40 mg/kg IM. Bilateral defects of *6 mm diam- eter by 11 mm in depth were drilled in the lateral...Epub 1983/01/01. 49. Ashman, R.B., Corin, J.D., and Turner, C.H. Elastic proper ties of cancellous bone: measurement by an ultrasonic technique. J

  8. Balancing mechanical strength with bioactivity in chitosan-calcium phosphate 3D microsphere scaffolds for bone tissue engineering: air- vs. freeze-drying processes.

    Science.gov (United States)

    Nguyen, D T; McCanless, J D; Mecwan, M M; Noblett, A P; Haggard, W O; Smith, R A; Bumgardner, J D

    2013-01-01

    The objective of this study was to evaluate the potential benefit of 3D composite scaffolds composed of chitosan and calcium phosphate for bone tissue engineering. Additionally, incorporation of mechanically weak lyophilized microspheres within those air-dried (AD) was considered for enhanced bioactivity. AD microsphere, alone, and air- and freeze-dried microsphere (FDAD) 3D scaffolds were evaluated in vitro using a 28-day osteogenic culture model with the Saos-2 cell line. Mechanical testing, quantitative microscopy, and lysozyme-driven enzymatic degradation of the scaffolds were also studied. FDAD scaffold showed a higher concentration (p mechanical strength was sacrificed through introduction of the less stiff, porous FD spheres.

  9. L-type calcium channels play a crucial role in the proliferation and osteogenic differentiation of bone marrow mesenchymal stem cells

    International Nuclear Information System (INIS)

    Wen, Li; Wang, Yu; Wang, Huan; Kong, Lingmin; Zhang, Liang; Chen, Xin; Ding, Yin

    2012-01-01

    Highlights: ► We detect the functional Ca 2+ currents and mRNA expression of VDCC L in rMSCs. ► Blockage of VDCC L exert antiproliferative and apoptosis-inducing effects on rMSCs. ► Inhibiting VDCC L can suppress the ability of rMSCs to differentiate into osteoblasts. ► α1C of VDCC L may be a primary functional subunit in VDCC L -regulating rMSCs. -- Abstract: L-type voltage-dependent Ca 2+ channels (VDCC L ) play an important role in the maintenance of intracellular calcium homeostasis, and influence multiple cellular processes. They have been confirmed to contribute to the functional activities of osteoblasts. Recently, VDCC L expression was reported in mesenchymal stem cells (MSCs), but the role of VDCC L in MSCs is still undetermined. The aim of this study was to determine whether VDCC L may be regarded as a new regulator in the proliferation and osteogenic differentiation of rat MSC (rMSCs). In this study, we examined functional Ca 2+ currents (I Ca ) and mRNA expression of VDCC L in rMSCs, and then suppressed VDCC L using nifedipine (Nif), a VDCC L blocker, to investigate its role in rMSCs. The proliferation and osteogenic differentiation of MSCs were analyzed by MTT, flow cytometry, alkaline phosphatase (ALP), Alizarin Red S staining, RT-PCR, and real-time PCR assays. We found that Nif exerts antiproliferative and apoptosis-inducing effects on rMSCs. ALP activity and mineralized nodules were significantly decreased after Nif treatment. Moreover, the mRNA levels of the osteogenic markers, osteocalcin (OCN), bone sialoprotein (BSP), and runt-related transcription factor 2 (Runx2), were also down-regulated. In addition, we transfected α1C-siRNA into the cells to further confirm the role of VDCC L in rMSCs, and a similar effect on osteogenesis was found. These results suggest that VDCC L plays a crucial role in the proliferation and osteogenic differentiation of rMSCs.

  10. Bone morphogenetic protein-15 in follicle fluid combined with age may differentiate between successful and unsuccessful poor ovarian responders

    Directory of Open Access Journals (Sweden)

    Wu Yan-Ting

    2012-12-01

    Full Text Available Abstract Background The counselling of poor ovarian responders about the probability of pregnancy remains a puzzle for gynaecologists. The aim of this study was to optimise the management of poor responders by investigating the role of the oocyte-derived factor bone morphogenetic protein-15 (BMP-15 combined with chronological age in the prediction of the outcome of in-vitro fertilisation-embryo transfer (IVF-ET in poor responders. Methods A retrospective study conducted in a university hospital. A total of 207 poor ovarian responders who reached the ovum pick-up stage undergoing IVF/intracytoplasmic sperm injection (ICSI with three or fewer follicles no less than 14 mm on the day of oocyte retrieval were recruited from July 1, 2008 to December 31, 2009. Another 215 coinstantaneous cycles with normal responses were selected as controls. The BMP-15 levels in the follicular fluid (FF of the 207 poor responders were analysed by western blot. Based on the FF BMP-15 level and age, poor responders were sub-divided into four groups. The main outcome measures were the FF BMP-15 level, implantation rate, pregnancy rate, and live birth rate. Results The implantation rate (24.2% vs. 15.3%, chemical pregnancy rate (40% vs. 23.7%, clinical pregnancy rate (36.5% vs. 20.4% and live birth rate (29.4% vs. 15.1% in the high BMP-15 group were significantly higher than those in the low BMP-15 group. Furthermore, poor responders aged less than or equal to 35 years with a higher FF BMP-15 level had the best implantation, pregnancy and live birth rates, which were comparable with those of normal responders. Conclusions Our study suggests a potential role of BMP-15 in the prediction of the IVF outcome. A high FF BMP-15 combined with an age less than or equal to 35 years may be used as a potential indicator for repeating IVF cycles in poor ovarian responders.

  11. Functional differentiation of uterine stromal cells involves cross-regulation between bone morphogenetic protein 2 and Kruppel-like factor (KLF) family members KLF9 and KLF13.

    Science.gov (United States)

    Pabona, John Mark P; Zeng, Zhaoyang; Simmen, Frank A; Simmen, Rosalia C M

    2010-07-01

    The inability of the uterine epithelium to enter a state of receptivity for the embryo to implant is a significant underlying cause of early pregnancy loss. We previously showed that mice null for the progesterone receptor (PGR)-interacting protein Krüppel-like factor (KLF) 9 are subfertile and exhibit reduced uterine progesterone sensitivity. KLF9 expression is high in predecidual stroma, undetectable in decidua, and enhanced in uteri of mice with conditional ablation of bone morphogenetic protein 2 (BMP2). Given the individual importance of KLF9 and BMP2 for implantation success, we hypothesized that the establishment of uterine receptivity involves KLF9 and BMP2 functional cross-regulation. To address this, we used early pregnant wild-type and Klf9 null mice and KLF9 small interfering RNA-transfected human endometrial stromal cells (HESCs) induced to differentiate under standard conditions. Loss of KLF9 in mice and HESCs enhanced BMP2 expression, whereas recombinant BMP2 treatment of HESCs attenuated KLF9 mRNA levels. IGFBP1 and KLF9-related KLF13 expression were positively associated with BMP2 and inversely associated with KLF9. Prolonged, but not short-term, knockdown of KLF9 in HESCs reduced IGFBP1 expression. Mouse uterine Igfbp1 expression was similarly reduced with Klf9 ablation. PGR-A and PGR-B expression were positively associated with KLF9 in predecidual HESCs but not decidualizing HESCs. KLF13 knockdown attenuated BMP2 and PGR-B and abrogated BMP2-mediated inhibition of KLF9 expression. Results support cross-regulation among BMP2, KLF9, and KLF13 to maintain progesterone sensitivity in stromal cells undergoing differentiation and suggest that loss of this regulatory network compromises establishment of uterine receptivity and implantation success.

  12. Intramyocardial implantation of differentiated rat bone marrow mesenchymal stem cells enhanced by TGF-β1 improves cardiac function in heart failure rats

    Energy Technology Data Exchange (ETDEWEB)

    Lv, Y. [Department of Histology and Embryology, Hebei Medical University, Shijiazhuang, Hebei (China); Liu, B. [Department of Pathology, the First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei (China); Wang, H.P. [Department of Histology and Embryology, Hebei North University, Zhangjiakou, Hebei (China); Zhang, L. [Department of Histology and Embryology, Hebei Medical University, Shijiazhuang, Hebei (China)

    2016-05-31

    The present study tested the hypotheses that i) transforming growth factor beta 1 (TGF-β1) enhances differentiation of rat bone marrow mesenchymal stem cells (MSCs) towards the cardiomyogenic phenotype and ii) intramyocardial implantation of the TGF-β1-treated MSCs improves cardiac function in heart failure rats. MSCs were treated with different concentrations of TGF-β1 for 72 h, and then morphological characteristics, surface antigens and mRNA expression of several transcription factors were assessed. Intramyocardial implantation of these TGF-β1-treated MSCs to infarcted heart was also investigated. MSCs were initially spindle-shaped with irregular processes. On day 28 after TGF-β1 treatment, MSCs showed fusiform shape, orientating parallel with one another, and were connected with adjoining cells forming myotube-like structures. Immunofluorescence revealed the expression of cardiomyocyte-specific proteins, α-sarcomeric actin and troponin T, in these cells. The mRNA expression of GATA4 and Nkx2.5 genes was slightly increased on day 7, enhanced on day 14 and decreased on day 28 while α-MHC gene was not expressed on day 7, but expressed slightly on day 14 and enhanced on day 28. Transmission electron microscopy showed that the induced cells had myofilaments, z line-like substances, desmosomes, and gap junctions, in contrast with control cells. Furthermore, intramyocardial implantation of TGF-β1-treated MSCs to infarcted heart reduced scar area and increased the number of muscle cells. This structure regeneration was concomitant with the improvement of cardiac function, evidenced by decreased left ventricular end-diastolic pressure, increased left ventricular systolic pressure and increased maximal positive pressure development rate. Taken together, these results indicate that intramyocardial implantation of differentiated MSCs enhanced by TGF-β1 improved cardiac function in heart failure rats.

  13. Extracts of marine algae show inhibitory activity against osteoclast differentiation.

    Science.gov (United States)

    Koyama, Tomoyuki

    2011-01-01

    Osteoclasts are multinucleated cells that play a crucial role in bone resorption. The imbalance between bone resorption and bone formation results in osteoporosis. Therefore, substances that can suppress osteoclast formation are potential candidate materials for drug development or functional foods. There have been reports that extracts or purified compounds from marine micro- and macroalgae can suppress osteoclast differentiation. Symbioimine, isolated from the cultured dinoflagellate Symbiodinium sp., had suppressive effects against osteoclast differentiation in osteoclast-like cells. Norzoanthamine, isolated from the colonial zoanthid Zoanthas sp., has been shown to have antiosteoporosis activity in ovariectomized mice. With regard to marine extracts, the fucoxanthin-rich component from brown algae has been shown to have suppressive effects against osteoclast differentiation. An extract of Sargassum fusiforme has recently been shown to have antiosteoporosis activity. This extract suppressed both osteoclast differentiation and accelerated osteoblast formation in separate in vitro experiments. It also showed antiosteoporosis activity in ovariectomized mice by regulating the balance between bone resorption and bone formation. These marine algae and their extracts may be sources of marine medicinal foods for the prevention of osteoporosis. Copyright © 2011 Elsevier Inc. All rights reserved.

  14. Additively manufactured 3D porous Ti-6Al-4V constructs mimic trabecular bone structure and regulate osteoblast proliferation, differentiation and local factor production in a porosity and surface roughness dependent manner

    International Nuclear Information System (INIS)

    Cheng, Alice; Boyan, Barbara D; Humayun, Aiza; Cohen, David J; Schwartz, Zvi

    2014-01-01

    Additive manufacturing by laser sintering is able to produce high resolution metal constructs for orthopedic and dental implants. In this study, we used a human trabecular bone template to design and manufacture Ti-6Al-4V constructs with varying porosity via laser sintering. Characterization of constructs revealed interconnected porosities ranging from 15–70% with compressive moduli of 2579–3693 MPa. These constructs with macro porosity were further surface-treated to create a desirable multi-scale micro-/nano-roughness, which has been shown to enhance the osseointegration process. Osteoblasts (MG63 cells) exhibited high viability when grown on the constructs. Proliferation (DNA) and alkaline phosphatase specific activity, an early differentiation marker, decreased as porosity increased, while osteocalcin, a late differentiation marker, as well as osteoprotegerin, vascular endothelial growth factor and bone morphogenetic proteins 2 and 4 increased with increasing porosity. Three-dimensional (3D) constructs with the highest porosity and surface modification supported the greatest osteoblast differentiation and local factor production. These results indicate that additively manufactured 3D porous constructs mimicking human trabecular bone and produced with additional surface treatment can be customized for increased osteoblast response. Increased factors for osteoblast maturation and differentiation on high porosity constructs suggest the enhanced performance of these surfaces for increasing osseointegration in vivo. (paper)

  15. Bone Diseases

    Science.gov (United States)

    ... avoid smoking and drinking too much alcohol. Bone diseases can make bones easy to break. Different kinds ... break Osteogenesis imperfecta makes your bones brittle Paget's disease of bone makes them weak Bones can also ...

  16. Oxidative stress in bone remodeling: role of antioxidants.

    Science.gov (United States)

    Domazetovic, Vladana; Marcucci, Gemma; Iantomasi, Teresa; Brandi, Maria Luisa; Vincenzini, Maria Teresa

    2017-01-01

    ROS are highly reactive molecules which consist of a number of diverse chemical species, including radical and non-radical oxygen species. Oxidative stress occurs as a result of an overproduction of ROS not balanced by an adequate level of antioxidants. The natural antioxidants are: thiol compounds among which GSH is the most representative, and non-thiol compounds such as polyphenols, vitamins and also various enzymes. Many diseases have been linked to oxidative stress including bone diseases among which one of the most important is the osteoporosis. The redox state changes are also related to the