WorldWideScience

Sample records for differential pressure transducer

  1. Pressure transducers

    International Nuclear Information System (INIS)

    Gomes, A.V.

    1975-01-01

    Strain gauges pressure transducers types are presented. Models, characteristics and calibration procedures were also analysed. Initially, a theoretical study was accomplished to evaluate metallic alloys behavior on sensing elements manufacturing, and diaphragm was used as deflecting elements. Electrical models for potenciometric transducers were proposed at the beginning and subsequently comproved according our experiments. Concerning bridge transducers, existing models confirmed the conditions of linearity and sensitivity related to the electrical signal. All the work done was of help on the calibration field and pressure measurements employing unbounded strain gauge pressure transducers

  2. Radiation-resistant pressure transducers

    International Nuclear Information System (INIS)

    Abbasov, Sh.M.; Kerimova, T.I.

    2005-01-01

    Full text : The sensitive element of vibrofrequency tensor converter (VTC) is an electromechanical resonator of string type with electrostatic excitation of longitudinal mechanical vibrations. The string is made from tensosensitive thread-like monocrystal n-Ge1-x Six (length 1-5 mm, diameter 8-12 mcm) with current outlet and strictly fixed by ends at plate or deformable surface (in elastic element) at 50 mcm apartheid. With increasing Si atomic percent in n-Ge1-x Six the converter tens sensitivity increases. There has been shown the scheme of pressure transducer which contains monocrystalline silicon membrane and string tens converter from thread-like monocrystal Ge-Si. Using method, when crystal position on membrane while it deforms by pressure, corresponds to free (uptight) state, allowed to obtain the maximum sensitivity in measurement of pressure fluctuation. The transducers of absolute and pressure differential of this type can be used in automated systems of life activity. The high sensitivity of string transducers to pressure exceeding 100 hertz/mm (water column) permits to use them in devices for measuring gas concentration. The combination of optical and deformation methods of measurements forms the basis of their operation. The pressure change occurs due to the fact that gas molecules absorbing the quanta of incident light, become at excited state and then excitation energy of their vibrational-rotatory degrees of freedom converts to the energy of translational motion of molecules, i.e. to heat appropriate to pressure increase. Using these tens converters of high pressure one can prevent the possible accidents on oil pipe-like Baku-Tibilisi-Ceyhan

  3. LAVA Pressure Transducer Trade Study

    Science.gov (United States)

    Oltman, Samuel B.

    2016-01-01

    The Regolith and Environment Science and Oxygen and Lunar Volatile Extraction (RESOLVE) payload will transport the (LAVA) subsystem to hydrogen-rich locations on the moon supporting NASA's in-situ resource utilization (ISRU) programs. There, the LAVA subsystem will analyze volatiles that evolve from heated regolith samples in order to quantify how much water is present. To do this, the system needs resilient pressure transducers (PTs) to calculate the moles in the gas samples. The PT trade study includes a comparison of newly-procured models to a baseline unit with prior flight history in order to determine the PT model with the best survivability in flight-forward conditions.

  4. Performance of Honeywell silicon pressure transducers

    Digital Repository Service at National Institute of Oceanography (India)

    VijayKumar, K.; Joseph, A.; Desai, R.G.P.; Nagvekar, S.; Prabhudesai, S.; Damodaran, V.

    pressure. The precision pressure transducer – ruggedized (PPTR) manufactured by Honeywell is provided with a special “Hastelloy” material isolation-diaphragm to protect the transducer port against corrosive effects during its prolonged exposure...-scale output (an intelligent technique anufacturers to hide the non-linearity of the product at all data points below ore realistic estimate of linearity is obtained by ean of a few samples) based on the corresponding true ethod employed by performance...

  5. Silicon pressure transducers: a review

    International Nuclear Information System (INIS)

    Aceves M, M.; Sandoval I, F.

    1994-01-01

    We present a review of the pressure sensors, which use the silicon piezo resistive effect and micro machining technique. Typical pressure sensors, applications, design and other different structures are presented. (Author)

  6. Fiber-optic coupled pressure transducer

    International Nuclear Information System (INIS)

    Tallman, C.R.; Wingate, F.P.; Ballard, E.O.

    1979-01-01

    A fiber-optic coupled pressure transducer was developed for measurement of pressure transients produced by fast electrical discharges in laser cavities. A detailed description of the design and performance will be given. Shock tube performance and measurements in direct electrical discharge regions will be presented

  7. Line pressure effects on differential pressure measurements

    International Nuclear Information System (INIS)

    Neff, G.G.; Evans, R.P.

    1982-01-01

    The performance of differential pressure transducers in experimental pressurized water reactor (PWR) systems was evaluated. Transient differential pressure measurements made using a simple calibration proportionality relating differential pressure to output voltage could have large measurement uncertainties. A more sophisticated calibration equation was derived to incorporate the effects of zero shifts and sensitivity shifts as pressure in the pressure sensing line changes with time. A comparison made between the original calibration proportionality equation and the derived compensation equation indicates that potential measurement uncertainties can be reduced

  8. Capacitive pressure transducer using flexible films. Junan film wo mochiita seiden yoryoshiki atsukaku transducer

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, Y.; Tsuchida, N.; Imai, K. (Toyota Technological Institute, Aichi (Japan)); Fujita, K. (Nitto Denko Corp., Osaka (Japan)): Tsuboi, O. (Fujitsu Corp., Tokyo (Japan))

    1992-12-20

    This paper describes the design, manufacture, and evaluation of a capacitive pressure transducer made of polyimide films. The structure of a pressure transducer cell was first determined, and then, the deflection-stress and capacitance-load characteristics of the surface film were analyzed using finite element methods. For the practical stage of manufacture, a polyimide film was emboss processed and electrodes were deposited on the film to construct a pressure transducer cell to which a Schmidt-trigger detecting circuit was connected. As a consequence of the examination of operational characteristics of the cell, it was found that the actual relation between the deflection and load approximately agreed with the linear analyses, and that the capacitance depended with little hysteresis on the gap regardless of the native visco-elasticity of the film. Furthermore, small stick-slip vibration of a contact rubber surface was detected by the transducer to verify its high sensitivity. 17 refs., 18 figs.

  9. Performance Evaluation of Pressure Transducers for Water Impacts

    Science.gov (United States)

    Vassilakos, Gregory J.; Stegall, David E.; Treadway, Sean

    2012-01-01

    The Orion Multi-Purpose Crew Vehicle is being designed for water landings. In order to benchmark the ability of engineering tools to predict water landing loads, test programs are underway for scale model and full-scale water impacts. These test programs are predicated on the reliable measurement of impact pressure histories. Tests have been performed with a variety of pressure transducers from various manufacturers. Both piezoelectric and piezoresistive devices have been tested. Effects such as thermal shock, pinching of the transducer head, and flushness of the transducer mounting have been studied. Data acquisition issues such as sampling rate and anti-aliasing filtering also have been studied. The response of pressure transducers have been compared side-by-side on an impulse test rig and on a 20-inch diameter hemisphere dropped into a pool of water. The results have identified a range of viable configurations for pressure measurement dependent on the objectives of the test program.

  10. An overview of the dynamic calibration of piezoelectric pressure transducers

    Science.gov (United States)

    Theodoro, F. R. F.; Reis, M. L. C. C.; d’ Souto, C.

    2018-03-01

    Dynamic calibration is a research area that is still under development and is of great interest to aerospace and automotive industries. This study discusses some concepts regarding dynamic measurements of pressure quantities and presents an overview of dynamic calibration of pressure transducers. Studies conducted by the Institute of Aeronautics and Space focusing on research regarding piezoelectric pressure transducer calibration in shock tube are presented. We employed the Guide to the Expression of Uncertainty and a Monte Carlo Method in the methodology. The results show that both device and methodology employed are adequate to calibrate the piezoelectric sensor.

  11. Neutron Irradiation Tests of Pressure Transducers in Liquid Helium

    CERN Document Server

    Amand, J F; Casas-Cubillos, J; Thermeau, J P

    1999-01-01

    The superconducting magnets of the future Large Hadron Collider (LHC) at CERN will operate in pressurised superfluid helium (1 bar, 1.9 K). About 500 pressure transducers will be placed in the liquid helium bath for monitoring the filling and the pressure transients after resistive transitions. Their precision must remain better than 100 mbar at pressures below 2 bar and better than 5% for higher pressures (up to 20 bar), with temperatures ranging from 1.8 K to 300 K. All the tested transducers are based on the same principle: the fluid or gas is separated from a sealed reference vacuum by an elastic membrane; its deformation indicates the pressure. The transducers will be exposed to high neutron fluence (2 kGy, 1014 n/cm2 per year) during the 20 years of machine operation. This irradiation may induce changes both on the membranes characteristics (leakage, modification of elasticity) and on gauges which measure their deformations. To investigate these effects and select the transducer to be used in the LHC, a...

  12. Power doppler 'blanching' after the application of transducer pressure

    International Nuclear Information System (INIS)

    Joshua, F.; Edmonds, J.; Lassere, M.; De Carle, R.; Rayment, M.; Bryant, C.; Shnier, R.

    2005-01-01

    The aim of this study was to determine if transducer pressure modifies power Doppler assessments of rheumatoid arthritis synovium at the metacarpophalangeal joints and metatarsophalangeal joints. Five rheumatoid arthritis patients of varying degrees of 'disease activity' and damage were assessed with power Doppler ultrasound scanning of the dominant hand second to fifth metacarpophalangeal joints. Two rheumatoid arthritis patients had their dominant foot first to fifth metatarsophalangeal joints assessed with power Doppler ultrasound. Ultrasonography was performed with a high frequency transducer (14 MHz) with a colour mode frequency of 10 Mhz, and a standard colour box and gain. In the joint that showed the highest power Doppler signal, an image was made. A further image was taken after transducer pressure was applied. In all patients, there was increased flow to at least one joint. After pressure was applied, power Doppler signal intensity markedly reduced in all images and in some there was no recordable power Doppler signal. Increased transducer pressure can result in a marked reduction or obliteration in power Doppler signal. This power Doppler 'blanching' shows the need for further studies to evaluate sources of error and standardization before power Doppler ultrasound becomes a routine measure of 'disease activity' in rheumatoid arthritis. Copyright (2005) Blackwell Science Pty Ltd

  13. Determination of the response time of pressure transducers using the direct method

    International Nuclear Information System (INIS)

    Perillo, S.R.P.

    1994-01-01

    The available methods to determine the response time of nuclear safety related pressure transducers are discussed, with emphasis to the direct method. In order to perform the experiments, a Hydraulic Ramp Generator was built. The equipment produces ramp pressure transients simultaneously to a reference transducer and to the transducer under test. The time lag between the output of the two transducers, when they reach a predetermined setpoint, is measured as the time delay of the transducer under test. Some results using the direct method to determine the time delay of pressure transducers (1 E Class Conventional) are presented. (author). 18 refs, 35 figs, 12 tabs

  14. Sensing line effects on PWR-based differential pressure measurements

    International Nuclear Information System (INIS)

    Evans, R.P.; Neff, G.G.

    1982-01-01

    An incorrrect configuration of the fluid-filled pressure sensing lines connecting differential pressure transducers to the pressure taps in a pressurized water reactor system can cause errors in the measurement and, during rapid pressure transients, could cause the transducer to fail. Testing was performed in both static and dynamic modes to experimentally determine the effects of sensing lines of various lengths, diameters, and materials. Testing was performed at ambient temperature with absolute line pressures at about 17 MPa using water as the pressure transmission fluid

  15. Measurement of the differential pressure of liquid metals

    Science.gov (United States)

    Metz, H.J.

    1975-09-01

    This patent relates to an improved means for measuring the differential pressure between any two points in a process liquid metal coolant loop, wherein the flow of liquid metal in a pipe is opposed by a permanent magnet liquid metal pump until there is almost zero flow shown by a magnetic type flowmeter. The pressure producing the liquid metal flow is inferred from the rate of rotation of the permanent magnet pump. In an alternate embodiment, a differential pressure transducer is coupled to a process pipeline by means of high-temperature bellows or diaphragm seals, and a permanent magnet liquid metal pump in the high-pressure transmission line to the pressure transducer can be utilized either for calibration of the transducer or for determining the process differential pressure as a function of the magnet pump speed. (auth)

  16. Measurement of the differential pressure of liquid metals

    International Nuclear Information System (INIS)

    Metz, H.J.

    1975-01-01

    This patent relates to an improved means for measuring the differential pressure between any two points in a process liquid metal coolant loop, wherein the flow of liquid metal in a pipe is opposed by a permanent magnet liquid metal pump until there is almost zero flow shown by a magnetic type flowmeter. The pressure producing the liquid metal flow is inferred from the rate of rotation of the permanent magnet pump. In an alternate embodiment, a differential pressure transducer is coupled to a process pipeline by means of high-temperature bellows or diaphragm seals, and a permanent magnet liquid metal pump in the high-pressure transmission line to the pressure transducer can be utilized either for calibration of the transducer or for determining the process differential pressure as a function of the magnet pump speed

  17. Modeling transducer impulse responses for predicting calibrated pressure pulses with the ultrasound simulation program Field II

    DEFF Research Database (Denmark)

    Bæk, David; Jensen, Jørgen Arendt; Willatzen, Morten

    2010-01-01

    FIELD II is a simulation software capable of predicting the field pressure in front of transducers having any complicated geometry. A calibrated prediction with this program is, however, dependent on an exact voltage-to-surface acceleration impulse response of the transducer. Such impulse response...... is not calculated by FIELD II. This work investigates the usability of combining a one-dimensional multilayer transducer modeling principle with the FIELD II software. Multilayer here refers to a transducer composed of several material layers. Measurements of pressure and current from Pz27 piezoceramic disks...... transducer model and the FIELD II software in combination give good agreement with measurements....

  18. Full-scale Mark II CRT program: dynamic response evaluation test of pressure transducers

    International Nuclear Information System (INIS)

    Kukita, Yutaka; Namatame, Ken; Takeshita, Isao; Shiba, Masayoshi

    1982-12-01

    A dynamic response evaluation test of pressure transducers was conducted in support of the JAERI Full-Scale Mark II CRT (Containment Response Test) Program. The test results indicated that certain of the cavity-type transducers used in the early blowdown test had undesirable response characteristics. The transducer mounting scheme was modified to avoid trapping of air bubbles in the pressure transmission tubing attached to the transducers. The dynamic response of the modified transducers was acceptable within the frequency range of 200 Hz. (author)

  19. Effect of planecta and ROSE? on the frequency characteristics of blood pressure-transducer kits

    OpenAIRE

    Fujiwara, Shigeki; Kawakubo, Yoshifumi; Mori, Satoshi; Tachihara, Keiichi; Toyoguchi, Izumi; Yokoyama, Takeshi

    2014-01-01

    Pressure-transducer kits have frequency characteristics such as natural frequency and damping coefficient, which affect the monitoring accuracy. The aim of the present study was to investigate the effect of planecta ports and a damping device (ROSE?, Argon Medical Devices, TX, USA) on the frequency characteristics of pressure-transducer kits. The FloTrac sensor kit (Edwards Lifesciences, CA, USA) and the DTXplus transducer kit (Argon Medical Devices) were prepared with planecta ports, and the...

  20. Lunar Advanced Volatile Analysis Subsystem: Pressure Transducer Trade Study

    Science.gov (United States)

    Kang, Edward Shinuk

    2017-01-01

    In Situ Resource Utilization (ISRU) is a key factor in paving the way for the future of human space exploration. The ability to harvest resources on foreign astronomical objects to produce consumables and propellant offers potential reduction in mission cost and risk. Through previous missions, the existence of water ice at the poles of the moon has been identified, however the feasibility of water extraction for resources remains unanswered. The Resource Prospector (RP) mission is currently in development to provide ground truth, and will enable us to characterize the distribution of water at one of the lunar poles. Regolith & Environment Science and Oxygen & Lunar Volatile Extraction (RESOLVE) is the primary payload on RP that will be used in conjunction with a rover. RESOLVE contains multiple instruments for systematically identifying the presence of water. The main process involves the use of two systems within RESOLVE: the Oxygen Volatile Extraction Node (OVEN) and Lunar Advanced Volatile Analysis (LAVA). Within the LAVA subsystem, there are multiple calculations that depend on accurate pressure readings. One of the most important instances where pressure transducers (PT) are used is for calculating the number of moles in a gas transfer from the OVEN subsystem. As a critical component of the main process, a mixture of custom and commercial off the shelf (COTS) PTs are currently being tested in the expected operating environment to eventually down select an option for integrated testing in the LAVA engineering test unit (ETU).

  1. Implications of Dynamic Pressure Transducer Mounting Variations on Measurements in Pyrotechnic Test Apparatus

    Science.gov (United States)

    Dibbern, Andreas; Crisafulli, Jeffrey; Hagopia, Michael; McDougle, Stephen H.; Saulsberry, Regor L.

    2009-01-01

    Accurate dynamic pressure measurements are often difficult to make within small pyrotechnic devices, and transducer mounting difficulties can cause data anomalies that lead to erroneous conclusions. Delayed initial pressure response followed by data ringing has been observed when using miniaturized pressure transducer mounting adapters required to interface transducers to small test chambers. This delayed pressure response and ringing, combined with a high data acquisition rate, has complicated data analysis. This paper compares the output signal characteristics from different pressure transducer mounting options, where the passage distance from the transducer face to the pyrotechnic chamber is varied in length and diameter. By analyzing the data and understating the associated system dynamics, a more realistic understanding of the actual dynamic pressure variations is achieved. Three pressure transducer mounting configurations (elongated, standard, and face/flush mount) were simultaneously tested using NASA standard initiators in closed volume pressure bombs. This paper also presents results of these pressure transducer mounting configurations as a result of a larger NASA Engineering and Safety Center pyrovalve test project. Results from these tests indicate the improved performance of using face/flush mounted pressure transducers in this application. This type of mounting improved initial pressure measurement response time by approximately 19 s over standard adapter mounting, eliminating most of the lag time; provided a near step-function type initial pressure increase; and greatly reduced data ringing in high data acquisition rate systems. The paper goes on to discuss other issues associated with the firing and instrumentation that are important for the tester to understand.

  2. Effects of pressurization procedures on calibration results for precise pressure transducers

    International Nuclear Information System (INIS)

    Kajikawa, Hiroaki; Kobata, Tokihiko

    2010-01-01

    The output of electromechanical pressure gauges depends on not only the currently applied pressure, but also the pressurization history. Thus, the calibration results of gauges are affected by the pressurization procedure. In this paper, among several important factors influencing the results, we report the effects of the interval between the calibration cycles and the effects of the preliminary pressurizations. In order to quantitatively evaluate these effects, we developed a fully automated system that uses a pressure balance to calibrate pressure gauges. Subsequently, gauges containing quartz Bourdon-type pressure transducers were calibrated in a stepwise manner for pressures between 10 MPa and 100 MPa. The typical standard deviation of the data over three cycles was reduced to a few parts per million (ppm). The interval between the calibration cycles, which ranges from zero to more than 12 h, exerts a strong influence on the results in the process of increasing the pressure, where at 10 MPa the maximum difference between the results was approximately 40 ppm. The preliminary pressurization immediately before the calibration cycle reduces the effects of the interval on the results in certain cases. However, in turn, the influence of the waiting time between the preliminary pressurization and the main calibration cycle becomes strong. In the present paper, we outline several possible measures for obtaining calibration results with high reproducibility

  3. Evaluation of pressure transducers to measure surface level in the waste storage tanks

    International Nuclear Information System (INIS)

    Peters, T.J.; Colson, J.B.

    1994-06-01

    This report describes the results of tests conducted at the Pacific Northwest Laboratory (PNL) to determine if pressure transducers can be used to measure the surface level in the waste tanks. A survey was first conducted to evaluate which, if any, commercially available pressure transducers were available that could meet the requirements for use in the waste tanks. More than 35 companies were contacted to determine if they manufactured a pressure transducer that could be used in the 101-SY waste tank. The three basic requirements for a pressure transducer for this application were that they were radiation-hardened, could withstand a caustic environment, and were certified to be intrinsically safe. No manufacturer was able to meet all three of these requirements with a commercially available product. Seven companies were able to meet the requirements for being radiation-hardened and being able to withstand the caustic environment. However, only two of the nine companies were willing to supply a pressure transducer for laboratory testing. The two pressure transducers that were tested in this program were the VEGA D36-38 from HiTech Technologies, Inc., and the KP-1911-A from Kaman Instrumentation Corporation. Pressure transducers operate on the principle that the pressure at the location of a sensor increases directly with the depth of the liquid above it. A liquid is required in order for these devices to operate. For these tests, water was first used to determine the ideal operation of the devices, then the devices were placed in a 101-SY waste tank simulant. The simulant had a specific gravity of 1.96 and had the consistency similar to the convective layer in the 101-SY waste tank. In order to determine the surface level with pressure transducers, the density of the material needs to be known

  4. Development of a commercial Transducer for Measuring Pressure and Friction on the Model Die Surface

    DEFF Research Database (Denmark)

    Andersen, Claus Bo; Ravn, Bjarne Gottlieb; Wanheim, Tarras

    2001-01-01

    deflection in the tool causes incorrect shape of the final component. The dinemsions of the die-cavity have to be corrected taking into account die deflection due to the high internal pressure. The modelling material technique is suitable for measuring internal pressure, but so far only a transducer...... to measure normal pressure has been available....

  5. EPMT: a portable transfer standard for telemetry system pressure-transducer calibration

    International Nuclear Information System (INIS)

    Hasbrouck, R.T.

    1977-01-01

    The LLL developed electronic pressure meter (EPMT) is a portable static-pressure calibration instrument for use with the LLL telemetry transducer system at the Nevada Test Site (NTS). It is significantly more accurate and rugged than the bourdon-tube pressure gauge it replaces, and can be incorporated into a field-use, semi-automatic, pressure calibration system. The process by which a transducer is selected for EPMT use from the inventory of field-service-certified transducers and subjected to an extensive preconditioning and calibration procedure is described. By combining this unusual calibration procedure with a unique, statistically based data-reduction routine, the total uncertainty of the measuring process at each calibration point can be determined with high accuracy

  6. LOFT differential pressure uncertainty analysis

    International Nuclear Information System (INIS)

    Evans, R.P.; Biladeau, G.L.; Quinn, P.A.

    1977-03-01

    A performance analysis of the LOFT differential pressure (ΔP) measurement is presented. Along with completed descriptions of test programs and theoretical studies that have been conducted on the ΔP, specific sources of measurement uncertainty are identified, quantified, and combined to provide an assessment of the ability of this measurement to satisfy the SDD 1.4.1C (June 1975) requirement of measurement of differential pressure

  7. A novel high pressure, high temperature vessel used to conduct long-term stability measurements of silicon MEMS pressure transducers

    Science.gov (United States)

    Wisniewiski, David

    2014-03-01

    The need to quantify and to improve long-term stability of pressure transducers is a persistent requirement from the aerospace sector. Specifically, the incorporation of real-time pressure monitoring in aircraft landing gear, as exemplified in Tire Pressure Monitoring Systems (TPMS), has placed greater demand on the pressure transducer for improved performance and increased reliability which is manifested in low lifecycle cost and minimal maintenance downtime through fuel savings and increased life of the tire. Piezoresistive (PR) silicon MEMS pressure transducers are the primary choice as a transduction method for this measurement owing to their ability to be designed for the harsh environment seen in aircraft landing gear. However, these pressure transducers are only as valuable as the long-term stability they possess to ensure reliable, real-time monitoring over tens of years. The "heart" of the pressure transducer is the silicon MEMS element, and it is at this basic level where the long-term stability is established and needs to be quantified. A novel High Pressure, High Temperature (HPHT) vessel has been designed and constructed to facilitate this critical measurement of the silicon MEMS element directly through a process of mechanically "floating" the silicon MEMS element while being subjected to the extreme environments of pressure and temperature, simultaneously. Furthermore, the HPHT vessel is scalable to permit up to fifty specimens to be tested at one time to provide a statistically significant data population on which to draw reasonable conclusions on long-term stability. With the knowledge gained on the silicon MEMS element, higher level assembly to the pressure transducer envelope package can also be quantified as to the build-effects contribution to long-term stability in the same HPHT vessel due to its accommodating size. Accordingly, a HPHT vessel offering multiple levels of configurability and robustness in data measurement is presented, along

  8. Computer subroutines to aid analysis of experimental data from thermocouples and pressure transducers

    International Nuclear Information System (INIS)

    Durham, M.E.

    1976-08-01

    Three subroutines (CALSET, CALBR8 and PTRCAL) have been written to provide a convenient system for converting experimental measurements obtained from thermocouples and pressure transducers to temperatures and pressures. The method of operation and the application of the subroutines are described. (author)

  9. Medium- and high-pressure gauges and transducers produced by laser welding technology

    Science.gov (United States)

    Daurelio, Giuseppe; Nenci, Fabio; Cinquepalmi, Massimo; Chita, Giuseppe

    1998-07-01

    Industrial manufacturers produce many types of pressure gauges and transducers according to the applications, for gas or liquid, for high-medium and low pressure ranges. Nowadays the current production technology generally prefers to weld by micro TIG source the metallic corrugated membranes to the gauge or transducer bodies for the products, operating on the low pressure or medium pressure ranges. For the other ones, operating to high pressure range, generally the two components of the transducers are both threaded only and threaded and then circularly welded by micro TIG for the other higher range, till to 1000 bar. In this work the products, operating on the approximately equals 30 divided by 200 bar, are considered. These, when assembled on industrial plants, as an outcome of a non-correct operating sequence, give a 'shifted' electrical signal. This is due to a shift of the 'zero electrical signal' that unbalances the electrical bridge - thin layer sensor - that is the sensitive part of the product. Moreover, for the same problem, often some mechanical settlings of the transducer happen during the first pressure semi-components, with an increasing of the product manufacturing costs. In light of all this, the above referred, in this work the whole transducer has been re-designed according to the specific laser welding technology requirements. On the new product no threaded parts exist but only a circular laser welding with a full penetration depth about 2.5 divided by 3 mm high. Three different alloys have been tested according to the applications and the mechanical properties requested to the transducer. By using a 1.5 KW CO2 laser system many different working parameters have been evaluated for correlating laser parameters to the penetration depths, crown wides, interaction laser-materia times, mechanical and metallurgical properties. Moreover during the laser welding process the measurements of the maximum temperature, reached by the transducer top, has been

  10. A new transducer for local load measurements of friction and roll pressure in cold flat rolling

    DEFF Research Database (Denmark)

    Lagergren, J.; Wanheim, Tarras; Precz, W.

    2006-01-01

    The only way to establish the true rolling pressure and the true friction condition in cold rolling is to conduct measurements in the roll bite. A new transducer design is therefore proposed, in order to overcome problems in previous measurements in the past 70 years. The new idea is to increase ...... and able to avoid signal disturbance. The pressure and friction stress distribution results was as expected by the authors and showed good reproducibility, together with a proven agreement between recorded and simulated signals....... selected from a steady state with no disturbance from the material flow. The transducer was able to simultaneously measure both the normal pressure and the friction stress. An estimation of the coefficient of friction was accordingly performed. The new transducer works very well, it was seen to be robust...

  11. Self adaptive internal combustion engine control for hydrogen mixtures based on piezoelectric dynamic cylinder pressure transducers

    Energy Technology Data Exchange (ETDEWEB)

    Courteau, R.; Bose, T. K. [Universite du Quebec a Trois-Rivieres, Hydrogen Research Institute, Trois-Rivieres, PQ (Canada)

    2004-07-01

    An algorithm for self-adaptive tuning of an internal combustion engine is proposed, based on a Kalman filter operating on a few selected metrics of the dynamic pressure curve. Piezoelectric transducers are devices to monitor dynamic cylinder pressure; spark plugs with embedded piezo elements are now available to provide diagnostic engine functions. Such transducers are also capable of providing signals to the engine controller to perform auto tuning, a function that is considered very useful particularly in vehicles using alternative fuels whose characteristics frequently show variations between fill-ups. 2 refs., 2 figs.

  12. Assessing the accuracy of Greenland ice sheet ice ablation measurements by pressure transducer

    Science.gov (United States)

    Fausto, R. S.; van As, D.; Ahlstrøm, A. P.

    2012-04-01

    In the glaciological community there is a need for reliable mass balance measurements of glaciers and ice sheets, ranging from daily to yearly time scales. Here we present a method to measure ice ablation using a pressure transducer. The pressure transducer is drilled into the ice, en-closed in a hose filled with a liquid that is non-freezable at common Greenlandic temperatures. The pressure signal registered by the transducer is that of the vertical column of liquid over the sensor, which can be translated in depth knowing the density of the liquid. As the free-standing AWS moves down with the ablating surface and the hose melts out of the ice, an increasingly large part of the hose will lay flat on the ice surface, and the hydrostatic pressure from the vertical column of liquid in the hose will get smaller. This reduction in pressure provides us with the ablation rate. By measuring at (sub-) daily timescales this assembly is well-suited to monitor ice ablation in remote regions, with clear advantages over other well-established methods of measuring ice ablation in the field. The pressure transducer system has the potential to monitor ice ablation for several years without re-drilling and the system is suitable for high ablation areas. A routine to transform raw measurements into ablation values will also be presented, including a physically based method to remove air pressure variability from the signal. The pressure transducer time-series is compared to that recorded by a sonic ranger for the climatically hostile setting on the Greenland ice sheet.

  13. Evaluation of pressure transducers under turbid natural waters

    Digital Repository Service at National Institute of Oceanography (India)

    Joseph, A.; Desa, E.; Desa, E.; Smith, D.; Peshwe, V.B.; VijayKumar, K.; Desa, J.A.E.

    , the use of rho sub(eff) in contrast to the bulk density, significantly improves the measurement accuracy. For celar waters, precision density measurements made on discrete water samples agreed with rho sub(eff) values derived from pressure measurements...

  14. Measuring systolic arterial blood pressure. Possible errors from extension tubes or disposable transducer domes.

    Science.gov (United States)

    Rothe, C F; Kim, K C

    1980-11-01

    The purpose of this study was to evaluate the magnitude of possible error in the measurement of systolic blood pressure if disposable, built-in diaphragm, transducer domes or long extension tubes between the patient and pressure transducer are used. Sinusoidal or arterial pressure patterns were generated with specially designed equipment. With a long extension tube or trapped air bubbles, the resonant frequency of the catheter system was reduced so that the arterial pulse was amplified as it acted on the transducer and, thus, gave an erroneously high systolic pressure measurement. The authors found this error to be as much as 20 mm Hg. Trapped air bubbles, not stopcocks or connections, per se, lead to poor fidelity. The utility of a continuous catheter flush system (Sorenson, Intraflow) to estimate the resonant frequency and degree of damping of a catheter-transducer system is described, as are possibly erroneous conclusions. Given a rough estimate of the resonant frequency of a catheter-transducer system and the magnitude of overshoot in response to a pulse, the authors present a table to predict the magnitude of probable error. These studies confirm the variability and unreliability of static calibration that may occur using some safety diaphragm domes and show that the system frequency response is decreased if air bubbles are trapped between the diaphragms. The authors conclude that regular procedures should be established to evaluate the accuracy of the pressure measuring systems in use, the transducer should be placed as close to the patient as possible, the air bubbles should be assiduously eliminated from the system.

  15. 40 CFR 1065.215 - Pressure transducers, temperature sensors, and dewpoint sensors.

    Science.gov (United States)

    2010-07-01

    ... sensors, and dewpoint sensors. 1065.215 Section 1065.215 Protection of Environment ENVIRONMENTAL... Measurement of Engine Parameters and Ambient Conditions § 1065.215 Pressure transducers, temperature sensors, and dewpoint sensors. (a) Application. Use instruments as specified in this section to measure...

  16. Data quality assurance in pressure transducer-based automatic water level monitoring

    Science.gov (United States)

    Submersible pressure transducers integrated with data loggers have become relatively common water-level measuring devices used in flow or well water elevation measurements. However, drift, linearity, hysteresis and other problems can lead to erroneous data. Researchers at the USDA-ARS in Watkinsvill...

  17. Evaluating piezo-electric transducer response to thermal shock from in-cilinder pressure data

    NARCIS (Netherlands)

    Baert, R.S.G.; Rosseel, E.; Sierens, R.

    1999-01-01

    One of the major effects limiting the accuracy of piezoelectric transducers for performing in-cylinder pressure measurements is their sensitivity to the cyclic thermal loading effects of the intermittent combustion process. This paper compares five different methods for evaluating the effect of this

  18. Calibration and use of a rugged new piezoresistive pressure transducer

    Energy Technology Data Exchange (ETDEWEB)

    Lucht, R.A.; Charest, J.A.

    1995-09-01

    A new 50-ohm piezoresistive pressure gauge has been developed and calibrated in the range 0 to 4.0 GPa. This ``pinducer`` consists of one half of 100 ohm, one quarter watt, carbon composition resistor mounted coaxially at the end of a small brass tube. Three techniques have been used to calibrate this new gauge. Good agreement is found between all calibration data, and a smooth curve is fit through all resistance change versus pressure data up to 1.5 GPa. The gauges exhibit rise times of about 0.5 {mu}s. They offer advantages in raggedness, cost, and flexibility of application. The pinducer can be successfully used in divergent flows, harsh environments, and positions where lead protection would be impossible with thin-film gauges. A unique application is demonstrated.

  19. Self adaptive internal combustion engine control for hydrogen mixtures based on piezoelectric dynamic cylinder pressure transducers

    International Nuclear Information System (INIS)

    Courteau, R.; Bose, T.K.

    2004-01-01

    Piezoelectric transducers offer an effective, non-intrusive way to monitor dynamic cylinder pressure in internal combustion engines. Devices dedicated to this purpose are appearing on the market, often in the form of spark plugs with embedded piezo elements. Dynamic cylinder pressure is typically used to provide diagnostic functions, or to help map an engine after it is designed. With the advent of powerful signal processor chips, it is now possible to embed enough computing power in the engine controller to perform auto tuning based on the signals provided by such transducers. Such functionality is very useful if the fuel characteristics vary between fill ups, as is often the case with alternative fuels. We propose here an algorithm for self-adaptive tuning based on a Kalman filter operating on a few selected metrics of the dynamic pressure curve. (author)

  20. Comparison Of Vented And Absolute Pressure Transducers For Water-Level Monitoring In Hanford Site Central Plateau Wells

    International Nuclear Information System (INIS)

    Mcdonald, J.P.

    2011-01-01

    Automated water-level data collected using vented pressure transducers deployed in Hanford Site Central Plateau wells commonly display more variability than manual tape measurements in response to barometric pressure fluctuations. To explain this difference, it was hypothesized that vented pressure transducers installed in some wells are subject to barometric pressure effects that reduce water-level measurement accuracy. Vented pressure transducers use a vent tube, which is open to the atmosphere at land surface, to supply air pressure to the transducer housing for barometric compensation so the transducer measurements will represent only the water pressure. When using vented transducers, the assumption is made that the air pressure between land surface and the well bore is in equilibrium. By comparison, absolute pressure transducers directly measure the air pressure within the wellbore. Barometric compensation is achieved by subtracting the well bore air pressure measurement from the total pressure measured by a second transducer submerged in the water. Thus, no assumption of air pressure equilibrium is needed. In this study, water-level measurements were collected from the same Central Plateau wells using both vented and absolute pressure transducers to evaluate the different methods of barometric compensation. Manual tape measurements were also collected to evaluate the transducers. Measurements collected during this study demonstrated that the vented pressure transducers over-responded to barometric pressure fluctuations due to a pressure disequilibrium between the air within the wellbores and the atmosphere at land surface. The disequilibrium is thought to be caused by the relatively long time required for barometric pressure changes to equilibrate between land surface and the deep vadose zone and may be exacerbated by the restriction of air flow between the well bore and the atmosphere due to the presence of sample pump landing plates and well caps. The

  1. Calculation of pressure fields from arbitrarily shaped, apodized, and excited ultrasound transducers

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt; Svendsen, Niels Bruun

    1992-01-01

    A method for simulation of pulsed pressure fields from arbitrarily shaped, apodized and excited ultrasound transducers is suggested. It relies on the Tupholme-Stepanishen method for calculating pulsed pressure fields, and can also handle the continuous wave and pulse-echo case. The field...... is calculated by dividing the surface into small rectangles and then Summing their response. A fast calculation is obtained by using the far-field approximation. Examples of the accuracy of the approach and actual calculation times are given...

  2. Use of inexpensive pressure transducers for measuring water levels in wells

    Science.gov (United States)

    Keeland, B.D.; Dowd, J.F.; Hardegree, W.S.

    1997-01-01

    Frequent measurement of below ground water levels at multiple locations is an important component of many wetland ecosystem studies. These measurements, however, are usually time consuming, labor intensive, and expensive. This paper describes a water-level sensor that is inexpensive and easy to construct. The sensor is placed below the expected low water level in a shallow well and, when connected to a datalogger, uses a pressure transducer to detect groundwater or surface water elevations. Details of pressure transducer theory, sensor construction, calibration, and examples of field installations are presented. Although the transducers must be individually calibrated, the sensors have a linear response to changing water levels (r2 ??? .999). Measurement errors resulting from temperature fluctuations are shown to be about 4 cm over a 35??C temperature range, but are minimal when the sensors are installed in groundwater wells where temperatures are less variable. Greater accuracy may be obtained by incorporating water temperature data into the initial calibration (0.14 cm error over a 35??C temperature range). Examples of the utility of these sensors in studies of groundwater/surface water interactions and the effects of water level fluctuations on tree growth are provided. ?? 1997 Kluwer Academic Publishers.

  3. Resonant frequency detection and adjustment method for a capacitive transducer with differential transformer bridge

    International Nuclear Information System (INIS)

    Hu, M.; Bai, Y. Z.; Zhou, Z. B.; Li, Z. X.; Luo, J.

    2014-01-01

    The capacitive transducer with differential transformer bridge is widely used in ultra-sensitive space accelerometers due to their simple structure and high resolution. In this paper, the front-end electronics of an inductive-capacitive resonant bridge transducer is analyzed. The analysis result shows that the performance of this transducer depends upon the case that the AC pumping frequency operates at the resonance point of the inductive-capacitive bridge. The effect of possible mismatch between the AC pumping frequency and the actual resonant frequency is discussed, and the theoretical analysis indicates that the output voltage noise of the front-end electronics will deteriorate by a factor of about 3 due to either a 5% variation of the AC pumping frequency or a 10% variation of the tuning capacitance. A pre-scanning method to determine the actual resonant frequency is proposed followed by the adjustment of the operating frequency or the change of the tuning capacitance in order to maintain expected high resolution level. An experiment to verify the mismatching effect and the adjustment method is provided

  4. Resonant frequency detection and adjustment method for a capacitive transducer with differential transformer bridge

    Energy Technology Data Exchange (ETDEWEB)

    Hu, M.; Bai, Y. Z., E-mail: abai@mail.hust.edu.cn; Zhou, Z. B., E-mail: zhouzb@mail.hust.edu.cn; Li, Z. X.; Luo, J. [MOE Key Laboratory of Fundamental Physical Quantities Measurement, School of Physics, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2014-05-15

    The capacitive transducer with differential transformer bridge is widely used in ultra-sensitive space accelerometers due to their simple structure and high resolution. In this paper, the front-end electronics of an inductive-capacitive resonant bridge transducer is analyzed. The analysis result shows that the performance of this transducer depends upon the case that the AC pumping frequency operates at the resonance point of the inductive-capacitive bridge. The effect of possible mismatch between the AC pumping frequency and the actual resonant frequency is discussed, and the theoretical analysis indicates that the output voltage noise of the front-end electronics will deteriorate by a factor of about 3 due to either a 5% variation of the AC pumping frequency or a 10% variation of the tuning capacitance. A pre-scanning method to determine the actual resonant frequency is proposed followed by the adjustment of the operating frequency or the change of the tuning capacitance in order to maintain expected high resolution level. An experiment to verify the mismatching effect and the adjustment method is provided.

  5. Determination of the response time of pressure transducers using the direct method; Determinacao do tempo de resposta de transdutores de pressao utilizando o metodo de medida direta

    Energy Technology Data Exchange (ETDEWEB)

    Perillo, S R.P.

    1994-12-31

    The available methods to determine the response time of nuclear safety related pressure transducers are discussed, with emphasis to the direct method. In order to perform the experiments, a Hydraulic Ramp Generator was built. The equipment produces ramp pressure transients simultaneously to a reference transducer and to the transducer under test. The time lag between the output of the two transducers, when they reach a predetermined setpoint, is measured as the time delay of the transducer under test. Some results using the direct method to determine the time delay of pressure transducers (1 E Class Conventional) are presented. (author). 18 refs, 35 figs, 12 tabs.

  6. Evaluation and performance enhancement of a pressure transducer under flows, waves, and a combination of flows and waves

    Digital Repository Service at National Institute of Oceanography (India)

    Joseph, A.; Desa, J.A.E.; Foden, P.; Taylor, K.; McKeown, J.; Desa, E.

    plate. This enhancement is likely to have been achieved because of the isolation of the pressure inlet from the separated flows and vortices generated by the transducer housing. Flow disturbances, generated by nearby solid structures, deteriorated...

  7. Effect of planecta and ROSE™ on the frequency characteristics of blood pressure-transducer kits.

    Science.gov (United States)

    Fujiwara, Shigeki; Kawakubo, Yoshifumi; Mori, Satoshi; Tachihara, Keiichi; Toyoguchi, Izumi; Yokoyama, Takeshi

    2015-12-01

    Pressure-transducer kits have frequency characteristics such as natural frequency and damping coefficient, which affect the monitoring accuracy. The aim of the present study was to investigate the effect of planecta ports and a damping device (ROSE™, Argon Medical Devices, TX, USA) on the frequency characteristics of pressure-transducer kits. The FloTrac sensor kit (Edwards Lifesciences, CA, USA) and the DTXplus transducer kit (Argon Medical Devices) were prepared with planecta ports, and their frequency characteristics were tested with or without ROSE™. The natural frequency and damping coefficient of each kit were obtained using frequency characteristics analysis software and evaluated by plotting them on the Gardner's chart. By inserting a planecta port, the natural frequency markedly decreased in both the FloTrac sensor kit (from 40 to 22 Hz) and the DTXplus transducer kit (from 35 to 22 Hz). In both kits with one planecta port, the damping coefficient markedly increased by insertion of ROSE™ from 0.2 to 0.5, optimising frequency characteristics. In both kits with two planecta ports, however, the natural frequency decreased from 22 to 12 Hz. The damping coefficient increased from 0.2 to 0.8 by insertion of ROSE™; however, optimisation was not achieved even by ROSE™ insertion. Planecta ports decrease the natural frequency of the kit. ROSE™ is useful to optimise the frequency characteristics in the kits without or with one planecta port. However, optimisation is difficult with two or more planecta ports, even with the ROSE™ device.

  8. Instance Analysis for the Error of Three-pivot Pressure Transducer Static Balancing Method for Hydraulic Turbine Runner

    Science.gov (United States)

    Weng, Hanli; Li, Youping

    2017-04-01

    The working principle, process device and test procedure of runner static balancing test method by weighting with three-pivot pressure transducers are introduced in this paper. Based on an actual instance of a V hydraulic turbine runner, the error and sensitivity of the three-pivot pressure transducer static balancing method are analysed. Suggestions about improving the accuracy and the application of the method are also proposed.

  9. Innovating the differential pressure switch

    International Nuclear Information System (INIS)

    Ostrelich, M.

    2010-01-01

    When Barton Jones filed for patent 2, 400, 048 in 1943 for his liquid filled dual-bellows differential pressure unit, he initiated an engineering concept that has endured and has been validated for rugged, reliable and accurate measurement and control. Although based on established engineering principles the execution of the concept to instrumentation products has resisted innovation until present time. With the objective of preserving the established engineering principles and maintaining the same form fit and function of the original instrumentation, it was necessary to apply present day component availability and manufacturing techniques to construct instrumentation that has improved reliability and facilitates assembly and calibration. The original component design is presented and is compared with the improved equivalent. The application of this instrumentation utilized for the control of Nuclear Power Plants has provided the initiative for component innovation. (authors)

  10. Pneumatic pressure wave generator provides economical, simple testing of pressure transducers

    Science.gov (United States)

    Gaal, A. E.; Weldon, T. P.

    1967-01-01

    Testing device utilizes the change in pressure about a bias or reference pressure level produced by displacement of a center-driven piston in a closed cylinder. Closely controlled pneumatic pressure waves allow testing under dynamic conditions.

  11. Model Robust Calibration: Method and Application to Electronically-Scanned Pressure Transducers

    Science.gov (United States)

    Walker, Eric L.; Starnes, B. Alden; Birch, Jeffery B.; Mays, James E.

    2010-01-01

    This article presents the application of a recently developed statistical regression method to the controlled instrument calibration problem. The statistical method of Model Robust Regression (MRR), developed by Mays, Birch, and Starnes, is shown to improve instrument calibration by reducing the reliance of the calibration on a predetermined parametric (e.g. polynomial, exponential, logarithmic) model. This is accomplished by allowing fits from the predetermined parametric model to be augmented by a certain portion of a fit to the residuals from the initial regression using a nonparametric (locally parametric) regression technique. The method is demonstrated for the absolute scale calibration of silicon-based pressure transducers.

  12. Comparison of the Effects of using Tygon Tubing in Rocket Propulsion Ground Test Pressure Transducer Measurements

    Science.gov (United States)

    Farr, Rebecca A.; Wiley, John T.; Vitarius, Patrick

    2005-01-01

    This paper documents acoustics environments data collected during liquid oxygen- ethanol hot-fire rocket testing at NASA Marshall Space Flight Center in November- December 2003. The test program was conducted during development testing of the RS-88 development engine thrust chamber assembly in support of the Orbital Space Plane Crew Escape System Propulsion Program Pad Abort Demonstrator. In addition to induced environments analysis support, coincident data collected using other sensors and methods has allowed benchmarking of specific acoustics test measurement methodologies during propulsion tests. Qualitative effects on data characteristics caused by using tygon sense lines of various lengths in pressure transducer measurements is discussed here.

  13. The role of signal transducer and activator of transcription 5 in the inhibitory effects of GH on adipocyte differentiation

    DEFF Research Database (Denmark)

    Richter, H E; Albrektsen, T; Billestrup, Nils

    2003-01-01

    GH inhibits primary rat preadipocyte differentiation and expression of late genes required for terminal differentiation. Here we show that GH-mediated inhibition of fatty acid-binding protein aP2 gene expression correlates with the activation of the Janus kinase-2/signal transducer and activator ...

  14. Development and research of in-core transducers at IAE (Institute of Atomic Energy)

    International Nuclear Information System (INIS)

    Huang Yucai; Qian Shunfa; Jia Guozhen

    1989-10-01

    The development of in-core transducers at IAE (Institute of Atomic Energy) and their applications in in-pile fuel assembly test are mentioned. These transducers include mainly tubed tungsten-rhenium thermocouple assembly, displacement transducer of linear variable differential transformer, pressure transducer of membrane type, gamma thermometer, turbine flow meter, self-powered neutron detector etc

  15. Dynamic calibration of piezoelectric transducers for ballistic high-pressure measurement

    Directory of Open Access Journals (Sweden)

    Elkarous Lamine

    2016-01-01

    Full Text Available The development of a dynamic calibration standard for high-amplitude pressure piezoelectric transducers implies the implementation of a system which can provide reference pressure values with known characteristics and uncertainty. The reference pressure must be issued by a sensor, as a part of a measuring chain, with a guaranteed traceability to an international standard. However, this operation has not been completely addressed yet until today and is still calling further investigations. In this paper, we introduce an experimental study carried out in order to contribute to current efforts for the establishment of a reference dynamic calibration method. A suitable practical calibration method based on the calculation of the reference pressure by measurement of the displacement of the piston in contact with an oil-filled cylindrical chamber is presented. This measurement was achieved thanks to a high speed camera and an accelerometer. Both measurements are then compared. In the first way, pressure was generated by impacting the piston with a free falling weight and, in the second way, with strikers of known weights and accelerated to the impact velocities with an air gun. The aim of the experimental setup is to work out a system which may generate known hydraulic pressure pulses with high-accuracy and known uncertainty. Moreover, physical models were also introduced to consolidate the experimental study. The change of striker’s velocities and masses allows tuning the reference pressure pulses with different shapes and, therefore, permits to sweep a wide range of magnitudes and frequencies.

  16. A Newly Designed Fiber-Optic Based Earth Pressure Transducer with Adjustable Measurement Range

    Directory of Open Access Journals (Sweden)

    Hou-Zhen Wei

    2018-03-01

    Full Text Available A novel fiber-optic based earth pressure sensor (FPS with an adjustable measurement range and high sensitivity is developed to measure earth pressures for civil infrastructures. The new FPS combines a cantilever beam with fiber Bragg grating (FBG sensors and a flexible membrane. Compared with a traditional pressure transducer with a dual diaphragm design, the proposed FPS has a larger measurement range and shows high accuracy. The working principles, parameter design, fabrication methods, and laboratory calibration tests are explained in this paper. A theoretical solution is derived to obtain the relationship between the applied pressure and strain of the FBG sensors. In addition, a finite element model is established to analyze the mechanical behavior of the membrane and the cantilever beam and thereby obtain optimal parameters. The cantilever beam is 40 mm long, 15 mm wide, and 1 mm thick. The whole FPS has a diameter of 100 mm and a thickness of 30 mm. The sensitivity of the FPS is 0.104 kPa/με. In addition, automatic temperature compensation can be achieved. The FPS’s sensitivity, physical properties, and response to applied pressure are extensively examined through modeling and experiments. The results show that the proposed FPS has numerous potential applications in soil pressure measurement.

  17. Brachial artery vasomotion and transducer pressure effect on measurements by active contour segmentation on ultrasound

    Energy Technology Data Exchange (ETDEWEB)

    Cary, Theodore W.; Sultan, Laith R.; Sehgal, Chandra M., E-mail: sehgalc@uphs.upenn.edu [Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104 (United States); Reamer, Courtney B.; Mohler, Emile R. [Department of Medicine, Division of Cardiovascular Medicine, Section of Vascular Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104 (United States)

    2014-02-15

    Purpose: To use feed-forward active contours (snakes) to track and measure brachial artery vasomotion on ultrasound images recorded in both transverse and longitudinal views; and to compare the algorithm's performance in each view. Methods: Longitudinal and transverse view ultrasound image sequences of 45 brachial arteries were segmented by feed-forward active contour (FFAC). The segmented regions were used to measure vasomotion artery diameter, cross-sectional area, and distention both as peak-to-peak diameter and as area. ECG waveforms were also simultaneously extracted frame-by-frame by thresholding a running finite-difference image between consecutive images. The arterial and ECG waveforms were compared as they traced each phase of the cardiac cycle. Results: FFAC successfully segmented arteries in longitudinal and transverse views in all 45 cases. The automated analysis took significantly less time than manual tracing, but produced superior, well-behaved arterial waveforms. Automated arterial measurements also had lower interobserver variability as measured by correlation, difference in mean values, and coefficient of variation. Although FFAC successfully segmented both the longitudinal and transverse images, transverse measurements were less variable. The cross-sectional area computed from the longitudinal images was 27% lower than the area measured from transverse images, possibly due to the compression of the artery along the image depth by transducer pressure. Conclusions: FFAC is a robust and sensitive vasomotion segmentation algorithm in both transverse and longitudinal views. Transverse imaging may offer advantages over longitudinal imaging: transverse measurements are more consistent, possibly because the method is less sensitive to variations in transducer pressure during imaging.

  18. Validation of a protocol to evaluate maximal expiratory pressure using a pressure transducer and a signal conditioner

    Directory of Open Access Journals (Sweden)

    Viviane Soares

    2011-09-01

    Full Text Available The respiratory muscles can present fatigue and even chronic inability to generate force. So, reliable devices are necessary to their evaluation. The aim of this study is to evaluate the MEP (Maximal Expiratory Pressure values of individuals between 20 and 25 years old and to validate a protocol using a pressure transducer and a signal conditioner comparing it with the digital manometer. We evaluated the MEP of 10 participants. They remained seated and made six respiratory maneuvers from Total Lung Capacity (TLC to Residual Volume (RV. The results in the study showed no statistically significant differences when compared to values reported in the literature, and that the pressure transducer provides reliable values for MEP.Os músculos respiratórios podem apresentar fadiga e até mesmo a incapacidade crônica na geração de força, sendo necessários dispositivos confiáveis para sua avaliação. O objetivo deste estudo foi avaliar a pressão expiratória máxima (PeMáx de indivíduos entre 20 e 25 anos e validar um protocolo que utiliza um transdutor de pressão e um condicionador de sinais comparando-o com a manovacuometria. Foram avaliadas a PeMáx de 10 participantes. Estes permaneceram sentados e realizaram seis manobras respiratórias a partir da capacidade pulmonar total (CPT até o volume residual (VR. Os resultados do estudo não apresentaram diferenças estatisticamente significativas quando comparados com os valores de normalidade descritos na literatura e mostraram que o transdutor de pressão fornece valores confiáveis para Pe máx.

  19. Response characteristics of probe-transducer systems for pressure measurements in gas-solid fluidized beds: how to prevent pitfalls in dynamic pressure measurements

    NARCIS (Netherlands)

    Ommen, van J.R.; Schouten, J.C.; Stappen, van der M.L.M.; Bleek, van den C.M.

    1999-01-01

    It is long known already that the pressure probe–transducer systems applied in gas–solid fluidized beds can distort the measured pressure fluctuations. Several rules of thumb have been proposed to determine probe length and internal diameter required to prevent this. Recently, Xie and Geldart [H.-Y.

  20. [The influence of joining central venous catheter and pressure transducer with T-junctions on central venous pressure].

    Science.gov (United States)

    Cheng, Xiuling; Yang, Wanjie; An, Youzhong; Teng, Hongyun; Zhang, Rumei; Wang, Yumei; Gao, Hailing; Hua, Ning; Song, Yan

    2015-08-01

    To investigate the influence of the number of T-junctions between central venous catheter and pressure transducer on measurement of central venous pressure ( CVP ) in patients. A prospective controlled study was conducted. The patients with CVP monitoring in Department of Critical Care Medicine of the Fifth Center Hospital in Tianjin from February to October in 2014 were enrolled. The patients were divided into three groups according to the number of T-junction between central venous catheter and pressure transducer: without T-junction control group and 1, 2, 3 T-junctions groups. In each patient, corresponding CVP values with different number of T-junctions placed between the central venous catheter and pressure sensors were determined within a certain period, and a square-wave graphic was obtained and preserved on the monitor. The own frequency ( fn ) and the attenuation coefficient ( D ) of the system of pressure measurement were calculated after measurement of the shock wave following a square-wave to obtain the distance between two vibrations and the amplitude of the shock wave. The difference in CVP, fn and D were compared among the groups. A total of 20 cases were enrolled, and 150 groups of data were collected. (1) With the increase in the number of T-junction, CVP showed a tendency of gradual reduction. The CVP of the groups of control and 1, 2, 3 T-junctions was ( 7.00±1.60 ), ( 7.00±3.00 ), ( 5.00±2.00 ), and ( 4.00±1.00 ) mmHg ( 1 mmHg = 0.133 kPa ), respectively. The CVP of 3 T-junctions group was significantly lower than that of the control group ( F = 9.333, P = 0.015 ). (2) With an increase in the number of T-junction, fn showed a tendency of gradual increase. The fn of groups control and 1, 2, 3 T-junctions was ( 12.30±0.79 ), ( 16.00±0.91 ), ( 18.10±1.75 ), ( 20.90±2.69 ) Hz, respectively. The fn of 1, 2, 3 T-junctions group was significantly higher than that of the control group ( F1 = 45.962, F2 = 45.414, F3 = 46.830, all P = 0

  1. Coalgebraising subsequential transducers

    NARCIS (Netherlands)

    H.H. Hansen (Helle); J. Adamek; C.A. Kupke (Clemens)

    2008-01-01

    htmlabstractSubsequential transducers generalise both classic deterministic automata and Mealy/Moore type state machines by combining (input) language recognition with transduction. In this paper we show that normalisation and taking differentials of subsequential transducers and their underlying

  2. Coalgebraising Subsequential Transducers

    NARCIS (Netherlands)

    Hansen, H.H.

    2008-01-01

    Subsequential transducers generalise both classic deterministic automata and Mealy/Moore type state machines by combining (input) language recognition with transduction. In this paper we show that normalisation and taking differentials of subsequential transducers and their underlying structures can

  3. High-pressure differential scanning microcalorimeter.

    Science.gov (United States)

    Senin, A A; Dzhavadov, L N; Potekhin, S A

    2016-03-01

    A differential scanning microcalorimeter for studying thermotropic conformational transitions of biopolymers at high pressure has been designed. The calorimeter allows taking measurements of partial heat capacity of biopolymer solutions vs. temperature at pressures up to 3000 atm. The principles of operation of the device, methods of its calibration, as well as possible applications are discussed.

  4. Blade Surface Pressure Distributions in a Rocket Engine Turbine: Experimental Work With On-Blade Pressure Transducers

    Science.gov (United States)

    Hudson, Susan T.; Zoladz, Thomas F.; Griffin, Lisa W.; Turner, James E. (Technical Monitor)

    2000-01-01

    Understanding the unsteady aspects of turbine rotor flowfields is critical to successful future turbine designs. A technology program was conducted at NASA's Marshall Space Flight Center to increase the understanding of unsteady environments for rocket engine turbines. The experimental program involved instrumenting turbine rotor blades with surface-mounted high frequency response pressure transducers. The turbine model was then tested to measure the unsteady pressures on the rotor blades. The data obtained from the experimental program is unique in three respects. First, much more unsteady data was obtained (several minutes per set point) than has been possible in the past. Also, two independent unsteady data acquisition systems and fundamental signal processing approaches were used. Finally, an extensive steady performance database existed for the turbine model. This allowed an evaluation of the effect of the on-blade instrumentation on the turbine's performance. This unique data set, the lessons learned for acquiring this type of data, and the improvements made to the data analysis and prediction tools will contribute to future turbine programs such as those for reusable launch vehicles.

  5. Commentary on differential-pressure measurements at high reference pressures

    International Nuclear Information System (INIS)

    Hasbrouck, R.T.; Noyes, R.P.

    1981-01-01

    Some practical approaches to the difficult problems in calibrating and implementing differential-pressure measurements are discussed. The data presented were gathered several years ago in separate investigations. An attempt is made to compare the results of these investigations to the common mode concept as described by Peter K. Stein in his publication, The Measurement of Differential Quantities - Problems and Approaches. Although one of these investigations involed a 10,000- to 20,000-psi reference-pressure gas measured at an ambient temperature and the other a classic /sup Δ/P flow measurement of cryogenic temperature, the problems encountered were the same

  6. Evaluation of adherence to ambulatory liquid oxygen treatment: are commercialized dual-pressure transducers helpful?

    Science.gov (United States)

    van Zeller, Mafalda; Eusébio, Ermelinda; Almeida, João; Winck, João Carlos

    2014-09-01

    Treatment adherence is widely recognized as a critical problem in long-term oxygen therapy, particularly in ambulatory liquid oxygen (LOX) systems. Adherence-monitoring strategies may be helpful in managing patients. We evaluated subjects' adherence to LOX using VisionOx and compared these results with the subjects' own adherence diaries and self-reported perceptions of use. Patients using LOX were recruited for a clinical interview; the number of days/week and the mean time of use according to subjects' perceptions were recorded. A 14-day diary was provided for every subject while VisionOx was attached to the LOX. VisionOx is a small device that uses pressure transducers to detect oxygen flow and the subject's breathing frequency. Information is stored and downloaded using dedicated software. Nineteen subjects were included (57.9% male with a median age of 63 years). When asked about the perception of LOX use, subjects self-reported using the device for a median of 100.0% of days (78.9% reported to have used it every day) for a median time of 180 min/day. According to data from VisionOx and subjects' diaries during the 14-day evaluation period, the median use was 92.8% of days for 210 min/day. No difference was found between the diaries and VisionOx data. Regarding subjects' perceptions of use, the declared use of LOX percent was significantly higher than reported in the diaries (P = .045) and VisionOx monitoring (P = .045) even though both underestimated the median use per day. Subjects overestimated adherence to LOX therapy (when measuring percent of days of use) compared to adherence diary and objective adherence monitoring. Because no significant difference was found comparing the diaries and VisionOx use, either may be helpful in clinical practice. Copyright © 2014 by Daedalus Enterprises.

  7. Numerical Simulation of Pressure Fluctuations in the Thermo-acoustic Transducer

    Directory of Open Access Journals (Sweden)

    D. A. Uglanov

    2015-01-01

    Full Text Available The article describes the features of numerical simulation of acoustic oscillation excitation in the resonators with a foam insert (regenerator to study the excitation of thermo-acoustic oscillations in the circuit of small-sized engine model on the pulse tube.The aim of this work is the numerical simulation of the emerging oscillations in thermoacoustic engine resonator at the standing wave. As a basis, the work takes a thermo-acoustic resonator model with the open end (without piston developed in DeltaEC software. The precalculated operation frequency of the given resonator model, as a quarter of the wave resonator, is ν = 560 Hz.The paper offers a simplified finite element resonator model and defines the harmonic law of the temperature distribution on regenerator. The time dependences of the speed and pressure amplitude for the open end of the resonator are given; the calculated value of the process operating frequency is approximately equal to the value of the frequency for a given length of the resonator. Key findings, as a result of study, are as follows:1. The paper shows a potential for using this ESI-CFD Advanced software to simulate the processes of thermal excitation of acoustic oscillations.2. Visualization of turbulent flow fluctuations in the regenerator zone extends the analysis capability of gas-dynamic processes.3. Difference between operating frequency of the process simulated by ESI-CFD Advanced and frequency value obtained by analytical methods is about 4%, which is evidence of the model applicability to study the acoustic parameters of thermo-acoustic transducers. Experimental results have proved these data.

  8. Differential pressures on building walls during tornados

    International Nuclear Information System (INIS)

    Yeh, G.C.K.

    1975-01-01

    In the United States, containment structures and some auxiliary structures (control building, auxiliary building, spent fuel building, etc.) in nuclear power plants are required to be designed to withstand the effects of the design basis tornado. In addition to velocity pressures and missile impact a tornado also gives rise to a rapid change in atmospheric pressure, which can, in cases of closed or partially vented structures, produce direct differential pressure loading. In this paper a digital computer program is described which applies a tornado-induced, time-dependent atmospheric pressure change to a building and calculates the differential pressure histories across the interior and exterior walls of the building. Laws for quasi-steady, one-dimensional motion of an ideal compressible gas are used to calculate the pressures due to the flow of air through ports, doors and windows in the building. Numerical examples show that for each assumed atmospheric pressure change history a vent area to compartment volume ratio may be specified as the criterion for a building to be considered fully vented. (orig.) [de

  9. Proposal for the Award of a Contract for the Supply of Industrial Pressure Transducers for the LHC

    CERN Document Server

    2002-01-01

    This document concerns the award of a contract for the supply of industrial pressure transducers for the LHC. Following a market survey carried out among 47 firms in eight Member States and a price enquiry (DO-19000/LHC/LHC) for qualifying prototypes sent to 12 firms in three Member States, a call for tenders (IT-2815/LHC/LHC) was sent on 19 September 2002 to two firms in one Member State. By the closing date, CERN had received two tenders from two firms. The Finance Committee is invited to agree to the negotiation of a contract with BAUMER ELECTRIC (CH), the lowest bidder, for the supply of 594 pressure transducers for a total amount of 343 028 Swiss francs, not subject to revision, with options for up to 60 additional pressure transducers, for an additional amount of 34 649 Swiss francs, not subject to revision, bringing the total amount to 377 677 Swiss francs, not subject to revision. The firm has indicated the following distribution by country of the contract value covered by this adjudication proposal: ...

  10. Fast response, 2.5K psi (17.24 MPa) transducer for measurement of gas pressure in PWR fuel rods

    International Nuclear Information System (INIS)

    Piper, T.C.

    1976-09-01

    A strain gage pressure transducer of 2,500 psi (17.24 MPa) range for operation in a 650 0 F environment is described. Specific design parameters are given along with the calibration results obtained from typical transducers. Appendices delineate the bridge output to be expected and the actual open circuit value of a strain gage calculated from measurements taken with the bridge completed

  11. Onset of nucleate boiling and onset of fully developed subcooled boiling detection using pressure transducers signals spectral analysis

    International Nuclear Information System (INIS)

    Maprelian, Eduardo; Castro, Alvaro Alvim de; Ting, Daniel Kao Sun

    1999-01-01

    The experimental technique used for detection of subcooled boiling through analysis of the fluctuation contained in pressure transducers signals is presented. The experimental part of this work was conducted at the Institut fuer Kerntechnik und zertoerungsfreie Pruefverfahren von Hannover (IKPH, Germany) in a thermal-hydraulic circuit with one electrically heated rod with annular geometry test section. Piezo resistive pressure sensors are used for onset of nucleate boiling (ONB) and onset of fully developed boiling (OFDB) detection using spectral analysis/signal correlation techniques. Experimental results are interpreted by phenomenological analysis of these two points and compared with existing correlation. The results allows us to conclude that this technique is adequate for the detection and monitoring of the ONB and OFDB. (author)

  12. Development of instrumentation systems for severe accidents. 4. New accident tolerant in-containment pressure transducer for containment pressure monitoring system

    International Nuclear Information System (INIS)

    Oba, Masato; Teruya, Kuniyuki; Yoshitsugu, Makoto; Ikeuchi, Takeshi

    2015-01-01

    The accident at Tokyo Electric Power Company's Fukushima Dai-ichi Nuclear Power Plant (TF-1 accident) caused severe situations and resulted in a difficulty in measuring important parameters for monitoring plant conditions. Therefore, we have studied the TF-1 accident to select the important parameters that should be monitored at the severe accident and are developing the Severe Accident Instrumentations and Monitoring Systems that could measure the parameters in severe accident conditions. Mitsubishi Heavy Industries, LTD (MHI) developed a new accident tolerant containment pressure monitoring system and demonstrated that the monitoring system could endure extremely harsh environmental conditions that envelop severe accident environmental conditions inside a containment such as maximum operating temperature of up to 300degC and total integrated dose (TID) of 1 MGy gamma. The new containment pressure monitoring system comprises of a strain gage type pressure transducer and a mineral insulated (MI) cable with ceramic connectors, which are located in the containment, and a strain measuring amplifier located outside the containment. Less thermal and radiation degradation is achieved because of minimizing use of organic materials for in-containment equipment such as the transducer and connectors. Several tests were performed to demonstrate the performance and capability of the in-containment equipment under severe accident environmental conditions and the major steps in this testing were run in the following test sequences: (1) the baseline functional tests (e.g., repeatability, non-linearity, hysteresis, and so on) under normal conditions, (2) accident radiation testing, (3) seismic testing, and (4) steam/temperature test exposed to simulated severe accident environmental conditions. The test results demonstrate that the new pressure transducer can endure the simulated severe accident conditions. (author)

  13. Application of spectral analysis for differentiation between metals using signals from eddy-current transducers

    OpenAIRE

    Abramovych, Anton; Poddubny, Volodymyr

    2017-01-01

    The authors theoretically and experimentally substantiated the use of the spectral method for processing a signal of the vortex-current metal detector for dichotomous differentiation between metals. Results of experimental research that prove the possibility of using spectral analysis for differentiation between metals were presented. The vortex-current method for detection of hidden metal objects was analyzed. It was indicated that amplitude of output VCD signal is determined by electric con...

  14. Performance evaluation of Honeywell silicon piezoresistive pressure transducers for oceanographic and limnological measurements

    Digital Repository Service at National Institute of Oceanography (India)

    VijayKumar, K.; Joseph, A.; Desai, R.G.P.; Prabhudesai, S.; Nagvekar, S.; Damodaran, V.

    results have indicated that a suitably calibrated temperature-compensated Honeywell PPTR provides an alternate cost-effective means for pressure measurements for coastal oceanographic and limnological studies....

  15. [Recording of ventricular pressure by conventional catheter manometer systems. Efficiency of several combinations of conventional catheters, modern transducers and catheter-flush systems (author's transl)].

    Science.gov (United States)

    Hellige, G

    1976-01-01

    The experimentally in vitro determined dynamic response characteristics of 38 catheter manometer systems were uniform in the worst case to 5 c.p.s. and optimally to 26 c.p.s. Accordingly, some systems are only satisfactory for ordinary pressure recording in cardiac rest, while better systems record dp/dt correct up to moderate inotropic stimulation of the heart. In the frequency range of uniform response (amplitude error less +/- 5%) the phase distortion is also negligible. In clinical application the investigator is often restricted to special type of cardiac catheter. In this case a low compliant transducer yields superior results. In all examined systems the combination with MSD 10 transducers is best, whereas the combination with P 23 Db transducers leads to minimal results. An inadequate system for recording ventricular pressure pulses leads in most cases to overestimations of dp/dtmax. The use of low frequency pass filters to attenuate higher frequency artefacts is, under clinical conditions, not suitable for extending the range of uniform frequency response. The dynamic response of 14 catheter manometer systems with two types of continuous self flush units was determined. The use of the P 37 flush unit in combination with small internal diameter catheters leads to serious error in ordinary pressure recording, due to amplitude distortion of the lower harmonics. The frequency response characteristics of the combination of an Intraflow flush system and MSD 10 transducer was similar to the non-flushing P 23 Db transducer feature.

  16. Near field acoustic holography based on the equivalent source method and pressure-velocity transducers

    DEFF Research Database (Denmark)

    Zhang, Y.-B.; Chen, X.-Z.; Jacobsen, Finn

    2009-01-01

    The advantage of using the normal component of the particle velocity rather than the sound pressure in the hologram plane as the input of conventional spatial Fourier transform based near field acoustic holography (NAH) and also as the input of the statistically optimized variant of NAH has recen...... generated by sources on the two sides of the hologram plane is also examined....

  17. Three dimensional contact stresses under the LINTRACK wide base single tyres, measured with the Vehicle-Road Surface Pressure Transducer Array (VRSPTA) system in South Africa

    CSIR Research Space (South Africa)

    De Beer, Morris

    1996-11-01

    Full Text Available testing. The vertical, transverse (or lateral) and longitudinal contact stresses between the tyres and the pavement were measured with the Vehicle-Road Surface Pressure Transducer Array (VRSPTA), developed in South Africa as part of the ongoing Accelerated...

  18. Characterization of Pressure Fields of Focused Transducers at TÜBİTAK UME

    Science.gov (United States)

    Karaböce, B.; Şahin, A.; İnce, A. T.; Skarlatos, Y.

    Field radiated by HIFU (High Intensity Focused Ultrasound) has been investigated by measuring its pressure field and mapping in 2-D and 3-D. A new ultrasound pressure measurement system has been designed and constructed at TÜBİTAK UME (The Scientific and Technological Research Council of Turkey, the National Metrology Institute). System consists of a water tank, positioning system, measurement devices and a controlling program. The hydrophone was attached to a 3-axis, computer-controlled positioning system for alignment with the ultrasound source. The signal was captured and analyzed by the commercially available LabVIEW 8.1 software. The measurements of the ultrasound field were carried out with a needle hydrophone. For each waveform, p, p+ and p-pressures have been calculated. Wave behaviors produced by the KZK model and from experiments look like similar in general. In p, p+, p- the focal point, zero point after the primary peak (focus) and extremum points in the near field well match.

  19. Differential Intracochlear Sound Pressure Measurements in Normal Human Temporal Bones

    Science.gov (United States)

    Nakajima, Hideko Heidi; Dong, Wei; Olson, Elizabeth S.; Merchant, Saumil N.; Ravicz, Michael E.; Rosowski, John J.

    2009-02-01

    We present the first simultaneous sound pressure measurements in scala vestibuli and scala tympani of the cochlea in human cadaveric temporal bones. Micro-scale fiberoptic pressure sensors enabled the study of differential sound pressure at the cochlear base. This differential pressure is the input to the cochlear partition, driving cochlear waves and auditory transduction. Results showed that: pressure of scala vestibuli was much greater than scala tympani except at low and high frequencies where scala tympani pressure affects the input to the cochlea; the differential pressure proved to be an excellent measure of normal ossicular transduction of sound (shown to decrease 30-50 dB with ossicular disarticulation, whereas the individual scala pressures were significantly affected by non-ossicular conduction of sound at high frequencies); the middle-ear gain and differential pressure were generally bandpass in frequency dependence; and the middle-ear delay in the human was over twice that of the gerbil. Concurrent stapes velocity measurements allowed determination of the differential impedance across the partition and round-window impedance. The differential impedance was generally resistive, while the round-window impedance was consistent with a compliance in conjunction with distributed inertia and damping. Our techniques can be used to study inner-ear conductive pathologies (e.g., semicircular dehiscence), as well as non-ossicular cochlear stimulation (e.g., round-window stimulation) - situations that cannot be completely quantified by measurements of stapes velocity or scala-vestibuli pressure by themselves.

  20. Modeling of ultrasound transducers

    DEFF Research Database (Denmark)

    Bæk, David

    This Ph.D. dissertation addresses ultrasound transducer modeling for medical ultrasound imaging and combines the modeling with the ultrasound simulation program Field II. The project firstly presents two new models for spatial impulse responses (SIR)s to a rectangular elevation focused transducer...... (REFT) and to a convex rectangular elevation focused transducer (CREFT). These models are solvable on an analog time scale and give exact smooth solutions to the Rayleigh integral. The REFT model exhibits a root mean square (RMS) error relative to Field II predictions of 0.41 % at 3400 MHz, and 1.......37 % at 100MHz. The CREFT model exhibits a RMS deviation of 0.01 % relative to the exact numerical solution on a CREFT transducer. A convex non-elevation focused, a REFT, and a linear flat transducer are shown to be covered with the CREFT model as well. Pressure pulses calculated with a one...

  1. Effect of using a Planecta™ port with a three-way stopcock on the natural frequency of blood pressure transducer kits.

    Science.gov (United States)

    Fujiwara, Shigeki; Tachihara, Keiichi; Mori, Satoshi; Ouchi, Kentaro; Yokoe, Chizuko; Imaizumi, Uno; Morimoto, Yoshinari; Miki, Yoichiro; Toyoguchi, Izumi; Yoshida, Kazu-Ichi; Yokoyama, Takeshi

    2016-12-01

    Blood pressure transducer kits are equipped with two types of Planecta™ ports-the flat-type Planecta™ port (FTP) and the Planecta™ port with a three-way stopcock (PTS). We reported that FTP application decreased the natural frequency of the kits. However, Planecta™ is an invaluable tool as it prevents infection, ensures technical simplicity, and excludes air. Hence, an ideal Planecta™ port that does not decrease the frequency characteristics is required. As a first step in this direction, we aimed to assess the influence of PTSs on the natural frequency of blood transducer kits. A DTXplus transducer kit (DT4812J; Argon Medical Devices, TX, USA) was used along with ≥1 PTSs (JMS, Hiroshima, Japan), and the frequency characteristics were assessed. The natural frequency and damping coefficient of each kit were obtained by using frequency characteristics analysis software, and these parameters were evaluated by plotting them on Gardner's chart. Regardless of whether one or two PTSs were inserted, the natural frequency of the kits only slightly decreased (from 42.5 to 41.1 Hz, when 2 PTSs were used). Thus, the frequency characteristics of the kits with PTSs were adequate for pressure monitoring. The insertion of ≥2 FTPs in pressure transducer kits should be avoided, as they markedly decrease the natural frequency and lead to underdamping. However, the effect of PTS insertion in pressure transducer kits on the frequency characteristics is minimal. Thus, we found that the use of PTS markedly improved the frequency characteristics as compared to the use of FTP.

  2. PIG's Speed Estimated with Pressure Transducers and Hall Effect Sensor: An Industrial Application of Sensors to Validate a Testing Laboratory.

    Science.gov (United States)

    Lima, Gustavo F; Freitas, Victor C G; Araújo, Renan P; Maitelli, André L; Salazar, Andrés O

    2017-09-15

    The pipeline inspection using a device called Pipeline Inspection Gauge (PIG) is safe and reliable when the PIG is at low speeds during inspection. We built a Testing Laboratory, containing a testing loop and supervisory system to study speed control techniques for PIGs. The objective of this work is to present and validate the Testing Laboratory, which will allow development of a speed controller for PIGs and solve an existing problem in the oil industry. The experimental methodology used throughout the project is also presented. We installed pressure transducers on pipeline outer walls to detect the PIG's movement and, with data from supervisory, calculated an average speed of 0.43 m/s. At the same time, the electronic board inside the PIG received data from odometer and calculated an average speed of 0.45 m/s. We found an error of 4.44%, which is experimentally acceptable. The results showed that it is possible to successfully build a Testing Laboratory to detect the PIG's passage and estimate its speed. The validation of the Testing Laboratory using data from the odometer and its auxiliary electronic was very successful. Lastly, we hope to develop more research in the oil industry area using this Testing Laboratory.

  3. Apparatus to measure vapor pressure, differential vapor pressure, liquid molar volume, and compressibility of liquids and solutions to the critical point. Vapor pressures, molar volumes, and compressibilities of protiobenzene and deuteriobenzene at elevated temperatures

    International Nuclear Information System (INIS)

    Kooner, Z.S.; Van Hook, W.A.

    1986-01-01

    An apparatus designed to measure vapor pressure differences between two similar liquids, such as isotopic isomers, or between a solution and its reference solvent at temperatures and pressures extending to the critical point is described. Vapor-phase volume is minimized and pressure is transmitted to the transducer through the liquid, thereby avoiding several experimental difficulties. Liquid can be injected into the heated part of the system by volumetrically calibrated screw injectors, thus permitting measurements of liquid molar volume, compressibility, and expansivity. The addition of a high-pressure circulating pump and injection valve allows the apparatus to be employed as a continuous dilution differential vapor pressure apparatus for determining partial molar free energies of solution. In the second part of the paper data on the vapor pressure, molar volume, compressibility, and expansivity and their isotope effects for C 6 H 6 and C 6 D 6 from room temperature to near the critical temperature are reported

  4. DEVELOPMENTAL STUDIES OF NUCLEAR DIGITAL TRANSDUCERS

    Energy Technology Data Exchange (ETDEWEB)

    Hyde, James L.

    1963-09-15

    A pressure transducer based on mechanical modulation of a beam of alpha particles is described. This type of transducer is capable of direct digital pressure measurexnent with corresponding telemetry advantages. Any variable that is sensed through a mechanical displacement is measurable by means of a corresponding member of this transducer family. Preliminary tests of an experimental pressure transducer show an overall accuracy within a few tenths of one percent, with promise of substantial improvement. General characteristics of nuclear digital transducers include exceptional long-term calibration stability and accuracy, independent of ambient environmental effects. Three concepts of systems enipioying these transducers are discussed. (auth)

  5. Hydrogen Adsorption on Activated Carbon an Carbon Nanotubes Using Volumetric Differential Pressure Technique

    Science.gov (United States)

    Sanip, S. M.; Saidin, M. A. R.; Aziz, M.; Ismail, A. F.

    2010-03-01

    A simple hydrogen adsorption measurement system utilizing the volumetri differential pressure technique has been designed, fabricated and calibrated. Hydroge adsorption measurements have been carried out at temperatures 298 K and 77 K on activate carbon and carbon nanotubes with different surface areas. The adsorption data obtained will b helpful in understanding the adsorption property of the studied carbon materials using th fundamentals of adsorption theory. The principle of the system follows the Sievert-type metho The system measures a change in pressure between the reference cell, R1 and the sample cell S1, S2, S3 over a certain temperature range. R1, S1, S2, and S3 having known fixed volume The sample temperatures will be monitored by thermocouple TC while the pressures in R1 an S1, S2, S3 will be measured using a digital pressure transducer. The maximum operatin pressure of the pressure transducer is 20 bar and calibrated with an accuracy of ±0.01 bar. Hig purity hydrogen is being used in the system and the amount of samples for the study is betwee 1.0-2.0 grams. The system was calibrated using helium gas without any samples in S1, S2 an S3. This will provide a correction factor during the adsorption process providing an adsorption free reference point when using hydrogen gas resulting in a more accurate reading of th adsorption process by eliminating the errors caused by temperature expansion effects and oth non-adsorption related phenomena. The ideal gas equation of state is applied to calculate th hydrogen adsorption capacity based on the differential pressure measurements. Activated carbo with a surface area of 644.87 m2/g showed a larger amount of adsorption as compared to multiwalled nanotubes (commercial) with a surface area of 119.68 m2/g. This study als indicated that there is a direct correlation between the amounts of hydrogen adsorbed an surface area of the carbon materials under the conditions studied and that the adsorption significant at 77

  6. Hydrogen Adsorption on Activated Carbon an Carbon Nanotubes Using Volumetric Differential Pressure Technique

    International Nuclear Information System (INIS)

    Sanip, S. M.; Saidin, M. A. R.; Aziz, M.; Ismail, A. F.

    2010-01-01

    A simple hydrogen adsorption measurement system utilizing the volumetric differential pressure technique has been designed, fabricated and calibrated. Hydrogen adsorption measurements have been carried out at temperatures 298 K and 77 K on activate carbon and carbon nanotubes with different surface areas. The adsorption data obtained will be helpful in understanding the adsorption property of the studied carbon materials using the fundamentals of adsorption theory. The principle of the system follows the Sievert-type method. The system measures a change in pressure between the reference cell, R1 and the sample cell S1, S2, S3 over a certain temperature range, R1, S1, S2, and S3 having known fixed volume. The sample temperatures will be monitored by thermocouple TC while the pressures in R1 an S1, S2, S3 will be measured using a digital pressure transducer. The maximum operating pressure of the pressure transducer is 20 bar and calibrated with an accuracy of ±0.01 bar. High purity hydrogen is being used in the system and the amount of samples for the study is between 1.0-2.0 grams. The system was calibrated using helium gas without any samples in S1, S2 an S3. This will provide a correction factor during the adsorption process providing an adsorption free reference point when using hydrogen gas resulting in a more accurate reading of the adsorption process by eliminating the errors caused by temperature expansion effects and other non-adsorption related phenomena. The ideal gas equation of state is applied to calculate the hydrogen adsorption capacity based on the differential pressure measurements. Activated carbon with a surface area of 644.87 m 2 /g showed a larger amount of adsorption as compared to multiwalled nanotubes (commercial) with a surface area of 119.68 m 2 /g. This study als indicated that there is a direct correlation between the amounts of hydrogen adsorbed an surface area of the carbon materials under the conditions studied and that the adsorption

  7. Acoustic transducer

    Science.gov (United States)

    Drumheller, Douglas S.

    2000-01-01

    An active acoustic transducer tool for use down-hole applications. The tool includes a single cylindrical mandrel including a shoulder defining the boundary of a narrowed portion over which is placed a sandwich-style piezoelectric tranducer assembly. The piezoelectric transducer assembly is prestressed by being placed in a thermal interference fit between the shoulder of the mandrel and the base of an anvil which is likewise positioned over the narrower portion of the mandrel. In the preferred embodiment, assembly of the tool is accomplished using a hydraulic jack to stretch the mandrel prior to emplacement of the cylindrical sandwich-style piezoelectric transducer assembly and anvil. After those elements are positioned and secured, the stretched mandrel is allowed to return substantially to its original (pre-stretch) dimensions with the result that the piezoelectric transducer elements are compressed between the anvil and the shoulder of the mandrel.

  8. Coaxial Transducer

    National Research Council Canada - National Science Library

    Ruffa, Anthony A

    2008-01-01

    The invention as disclosed is of a coaxial transducer that uses lead zirconate titanate ceramic or other suitable material as an isolator between the conductors in a coaxial cable to transmit acoustic...

  9. Transducer selection and application in magnetoacoustic tomography with magnetic induction

    International Nuclear Information System (INIS)

    Zhou, Yuqi; Wang, Jiawei; Ma, Qingyu; Sun, Xiaodong; Zhang, Dong

    2016-01-01

    As an acoustic receiver, transducer plays a vital role in signal acquisition and image reconstruction for magnetoacoustic tomography with magnetic induction (MAT-MI). In order to optimize signal acquisition, the expressions of acoustic pressure detection and waveform collection are theoretically studied based on the radiation theory of acoustic dipole and the reception pattern of transducer. Pressure distributions are simulated for a cylindrical phantom model using a planar piston transducer with different radii and bandwidths. The proposed theory is also verified by the experimental measurements of acoustic waveform detection for an aluminum foil cylinder. It is proved that acoustic pressure with sharp and clear boundary peaks can be detected by the large-radius transducer with wide bandwidth, reflecting the differential of the induced Lorentz force accurately, which is helpful for precise conductivity reconstruction. To detect acoustic pressure with acceptable pressure amplitude, peak pressure ratio, amplitude ratio, and improved signal to noise ratio, the scanning radius of 5–10 times the radius of the object should be selected to improve the accuracy of image reconstruction. This study provides a theoretical and experimental basis for transducer selection and application in MAT-MI to obtain reconstructed images with improved resolution and definition.

  10. Transducer selection and application in magnetoacoustic tomography with magnetic induction

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Yuqi; Wang, Jiawei; Ma, Qingyu, E-mail: maqingyu@njnu.edu.cn [Key Laboratory of Optoelectronics of Jiangsu Province, School of Physics and Technology, Nanjing Normal University, Nanjing 210023 (China); Sun, Xiaodong [China Key System & Integrated Circuit Co., Ltd., Wuxi 214072 (China); Zhang, Dong [Laboratory of Modern Acoustics of MOE, Institute of Acoustics, Nanjing University, Nanjing 210093 (China)

    2016-03-07

    As an acoustic receiver, transducer plays a vital role in signal acquisition and image reconstruction for magnetoacoustic tomography with magnetic induction (MAT-MI). In order to optimize signal acquisition, the expressions of acoustic pressure detection and waveform collection are theoretically studied based on the radiation theory of acoustic dipole and the reception pattern of transducer. Pressure distributions are simulated for a cylindrical phantom model using a planar piston transducer with different radii and bandwidths. The proposed theory is also verified by the experimental measurements of acoustic waveform detection for an aluminum foil cylinder. It is proved that acoustic pressure with sharp and clear boundary peaks can be detected by the large-radius transducer with wide bandwidth, reflecting the differential of the induced Lorentz force accurately, which is helpful for precise conductivity reconstruction. To detect acoustic pressure with acceptable pressure amplitude, peak pressure ratio, amplitude ratio, and improved signal to noise ratio, the scanning radius of 5–10 times the radius of the object should be selected to improve the accuracy of image reconstruction. This study provides a theoretical and experimental basis for transducer selection and application in MAT-MI to obtain reconstructed images with improved resolution and definition.

  11. A study of response time of pitot pressure probes designed for rapid response and protection of transducer

    Science.gov (United States)

    Moore, J. A.

    1979-01-01

    An eight orifice probe, designed to protect the transducer without the use of a baffle, was compared to a standard orifice-baffle probe in the small shock tube and in the expansion tube under normal run conditions. In both facilities, the response time of eight orifice probe was considerable better than the standard probe design.

  12. Temperature effect compensation for fast differential pressure decay testing

    International Nuclear Information System (INIS)

    Shi, Yan; Tong, Xiaomeng; Cai, Maolin

    2014-01-01

    To avoid the long temperature recovery period with differential pressure decay for leak detection, a novel method with temperature effect compensation is proposed to improve the testing efficiency without full stabilization of temperature. The mathematical model of conventional differential pressure decay testing is established to analyze the changes of temperature and pressure during the measuring period. Then the differential pressure is divided into two parts: the exponential part caused by temperature recovery and the linear part caused by leak. With prior information obtained from samples, parameters of the exponential part can be identified precisely, and the temperature effect will be compensated before it fully recovers. To verify the effect of the temperature compensated method, chambers with different volumes are tested under various pressures and the experiments show that the improved method is faster with satisfactory precision, and an accuracy less than 0.25 cc min −1  can be achieved when the compensation time is proportional to four times the theoretical thermal-time constant. (paper)

  13. Effects of the imposed pressure differential conditions on duoplasmatron performance

    International Nuclear Information System (INIS)

    Oztarhan, A.

    1988-01-01

    The duoplasmatron plasma source (D.P.T.) was modified to allow access to the arc discharge (to measure the discharge properties) and to vary independently the pressures in different volumes of the arc with the aim of seeing if this freedom would help in optimising the output. The duoplasmatron plasma source was operated under normal running condition (N.R.C.), positive imposed pressure differential condition (P.I.P.D.C.) and negative imposed pressure differential condition (N.I.P.D.C.) and the corresponding properties of the plasma output were measured. Running the duoplasmatron under P.I.P.D. condition did not seem to improve the output as compared to that under N.R.C. However, running the duoplasmatron under N.I.P.D. condition seemed to be advantageous as the output increased by about 30%. It was observed that the back pressure was critical in maintaining the arc and the gap pressure could be lowered much below the normal minimum (while the arc was on) if back pressure was kept above a critical value. The results showed that the effects of varying the dimensions of the intermediate electrode nozzle on the output could be understood in terms of the effect of changes in these dimensions on the relative pressures. An empirical expression for the effect of the pressure ratio was developed from the observations and compared with the experimental results. The reasons for various results can be related to the plasma emission mechanism. (author). 8 refs, 6 figs, 1 tab

  14. Nano-optomechanical transducer

    Science.gov (United States)

    Rakich, Peter T; El-Kady, Ihab F; Olsson, Roy H; Su, Mehmet Fatih; Reinke, Charles; Camacho, Ryan; Wang, Zheng; Davids, Paul

    2013-12-03

    A nano-optomechanical transducer provides ultrabroadband coherent optomechanical transduction based on Mach-wave emission that uses enhanced photon-phonon coupling efficiencies by low impedance effective phononic medium, both electrostriction and radiation pressure to boost and tailor optomechanical forces, and highly dispersive electromagnetic modes that amplify both electrostriction and radiation pressure. The optomechanical transducer provides a large operating bandwidth and high efficiency while simultaneously having a small size and minimal power consumption, enabling a host of transformative phonon and signal processing capabilities. These capabilities include optomechanical transduction via pulsed phonon emission and up-conversion, broadband stimulated phonon emission and amplification, picosecond pulsed phonon lasers, broadband phononic modulators, and ultrahigh bandwidth true time delay and signal processing technologies.

  15. Cuffless differential blood pressure estimation using smart phones.

    Science.gov (United States)

    Chandrasekaran, Vikram; Dantu, Ram; Jonnada, Srikanth; Thiyagaraja, Shanti; Subbu, Kalyan Pathapati

    2013-04-01

    Smart phones today have become increasingly popular with the general public for their diverse functionalities such as navigation, social networking, and multimedia facilities. These phones are equipped with high-end processors, high-resolution cameras, and built-in sensors such as accelerometer, orientation-sensor, and light-sensor. According to comScore survey, 26.2% of U.S. adults use smart phones in their daily lives. Motivated by this statistic and the diverse capability of smart phones, we focus on utilizing them for biomedical applications. We present a new application of the smart phone with its built-in camera and microphone replacing the traditional stethoscope and cuff-based measurement technique, to quantify vital signs such as heart rate and blood pressure. We propose two differential blood pressure estimating techniques using the heartbeat and pulse data. The first method uses two smart phones whereas the second method replaces one of the phones with a customized external microphone. We estimate the systolic and diastolic pressure in the two techniques by computing the pulse pressure and the stroke volume from the data recorded. By comparing the estimated blood pressure values with those measured using a commercial blood pressure meter, we obtained encouraging results of 95-100% accuracy.

  16. Design of a PC Based Pressure Indicator Using Inductive Pick-up Type Transducer and Bourdon Tube Sensor

    Directory of Open Access Journals (Sweden)

    S. C. BERA

    2009-08-01

    Full Text Available Bourdon tube is a mechanical type pressure sensor and the bourdon gauge measures gauge pressure of a process pipe line or a process tank. But it is a local indicator and special costlier techniques are required to transmit the reading of bourdon gauge to a remote distance. In the present paper, a very simple inductive pick-up type technique has been developed to transmit the reading of bourdon gauge to a remote distance in the form of 1-5 Volt D.C. signal. This signal has been optically isolated to design a PC based pressure indicator using Labtech Note Book Pro software. The theoretical analysis of the whole technique has been presented in the paper. The instrument developed using this technique has been experimentally tested and the experimental results are reported in the paper. A good linearity and repeatability of the instrument has been observed.

  17. Active Sensing Air Pressure Using Differential Absorption Barometric Radar

    Science.gov (United States)

    Lin, B.

    2016-12-01

    Tropical storms and other severe weathers cause huge life losses and property damages and have major impacts on public safety and national security. Their observations and predictions need to be significantly improved. This effort tries to develop a feasible active microwave approach that measures surface air pressure, especially over open seas, from space using a Differential-absorption BArometric Radar (DiBAR) operating at 50-55 GHz O2 absorption band in order to constrain assimilated dynamic fields of numerical weather Prediction (NWP) models close to actual conditions. Air pressure is the most important variable that drives atmospheric dynamics, and currently can only be measured by limited in-situ observations over oceans. Even over land there is no uniform coverage of surface air pressure measurements. Analyses show that with the proposed space radar the errors in instantaneous (averaged) pressure estimates can be as low as 4mb ( 1mb) under all weather conditions. NASA Langley research team has made substantial progresses in advancing the DiBAR concept. The feasibility assessment clearly shows the potential of surface barometry using existing radar technologies. The team has also developed a DiBAR system design, fabricated a Prototype-DiBAR (P-DiBAR) for proof-of-concept, conducted laboratory, ground and airborne P-DiBAR tests. The flight test results are consistent with the instrumentation goals. The precision and accuracy of radar surface pressure measurements are within the range of the theoretical analysis of the DiBAR concept. Observational system simulation experiments for space DiBAR performance based on the existing DiBAR technology and capability show substantial improvements in tropical storm predictions, not only for the hurricane track and position but also for the hurricane intensity. DiBAR measurements will provide us an unprecedented level of the prediction and knowledge on global extreme weather and climate conditions.

  18. Correction of static pressure on a research aircraft in accelerated flight using differential pressure measurements

    Directory of Open Access Journals (Sweden)

    A. R. Rodi

    2012-11-01

    Full Text Available A method is described that estimates the error in the static pressure measurement on an aircraft from differential pressure measurements on the hemispherical surface of a Rosemount model 858AJ air velocity probe mounted on a boom ahead of the aircraft. The theoretical predictions for how the pressure should vary over the surface of the hemisphere, involving an unknown sensitivity parameter, leads to a set of equations that can be solved for the unknowns – angle of attack, angle of sideslip, dynamic pressure and the error in static pressure – if the sensitivity factor can be determined. The sensitivity factor was determined on the University of Wyoming King Air research aircraft by comparisons with the error measured with a carefully designed sonde towed on connecting tubing behind the aircraft – a trailing cone – and the result was shown to have a precision of about ±10 Pa over a wide range of conditions, including various altitudes, power settings, and gear and flap extensions. Under accelerated flight conditions, geometric altitude data from a combined Global Navigation Satellite System (GNSS and inertial measurement unit (IMU system are used to estimate acceleration effects on the error, and the algorithm is shown to predict corrections to a precision of better than ±20 Pa under those conditions. Some limiting factors affecting the precision of static pressure measurement on a research aircraft are discussed.

  19. Calcium homeostasis in myogenic differentiation factor 1 (MyoD-transformed, virally-transduced, skin-derived equine myotubes.

    Directory of Open Access Journals (Sweden)

    Marta Fernandez-Fuente

    Full Text Available Dysfunctional skeletal muscle calcium homeostasis plays a central role in the pathophysiology of several human and animal skeletal muscle disorders, in particular, genetic disorders associated with ryanodine receptor 1 (RYR1 mutations, such as malignant hyperthermia, central core disease, multiminicore disease and certain centronuclear myopathies. In addition, aberrant skeletal muscle calcium handling is believed to play a pivotal role in the highly prevalent disorder of Thoroughbred racehorses, known as Recurrent Exertional Rhabdomyolysis. Traditionally, such defects were studied in human and equine subjects by examining the contractile responses of biopsied muscle strips exposed to caffeine, a potent RYR1 agonist. However, this test is not widely available and, due to its invasive nature, is potentially less suitable for valuable animals in training or in the human paediatric setting. Furthermore, increasingly, RYR1 gene polymorphisms (of unknown pathogenicity and significance are being identified through next generation sequencing projects. Consequently, we have investigated a less invasive test that can be used to study calcium homeostasis in cultured, skin-derived fibroblasts that are converted to the muscle lineage by viral transduction with a MyoD (myogenic differentiation 1 transgene. Similar models have been utilised to examine calcium homeostasis in human patient cells, however, to date, there has been no detailed assessment of the cells' calcium homeostasis, and in particular, the responses to agonists and antagonists of RYR1. Here we describe experiments conducted to assess calcium handling of the cells and examine responses to treatment with dantrolene, a drug commonly used for prophylaxis of recurrent exertional rhabdomyolysis in horses and malignant hyperthermia in humans.

  20. Self adaptive internal combustion engine control for hydrogen mixtures using piezoelectric transducers for dynamic cylinder pressure monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Courteau, R.; Bose, T.K. [Quebec Univ., Trois-Rivieres, PQ (Canada). Institut de recherche sur l' hydrogene

    2004-07-01

    Hydrogen internal combustion engine research at the Hydrogen Research Institute includes the following infrastructure: a 20 square metre test cell, an engine preparation room, a 150 hp dynamometer, exhaust gas analysers and a hydrogen supply. The goal of the research is to develop internal combustion engine technologies that can use hydrogen as a fuel without knocking, backfires, excessive engine wear, and with low emissions. As well as hydrogen, fuels such as biogas are also investigated. Technologies under investigation include adaptive control algorithms, as well as advanced sensors and actuators. The latter include piezolelectrics, optical fibres, nitrogen oxide detectors, and chemical composition detectors. Developments include microprocessor-controlled injection and ignition control systems for both single cylinder and multicylinder engines. Research on the influence of fuel composition on best ignition timing is presented. There is also dynamic cylinder pressure monitoring to prevent knocking make engine state assessments and perform engine calibration. Piezoelectric cylinder pressure sensors are employed, either integrated with the spark plugs, or stand-alone, inserted through separate holes through the cylinder head. tabs, figs.

  1. Leak Rate Quantification Method for Gas Pressure Seals with Controlled Pressure Differential

    Science.gov (United States)

    Daniels, Christopher C.; Braun, Minel J.; Oravec, Heather A.; Mather, Janice L.; Taylor, Shawn C.

    2015-01-01

    An enhancement to the pressure decay leak rate method with mass point analysis solved deficiencies in the standard method. By adding a control system, a constant gas pressure differential across the test article was maintained. As a result, the desired pressure condition was met at the onset of the test, and the mass leak rate and measurement uncertainty were computed in real-time. The data acquisition and control system were programmed to automatically stop when specified criteria were met. Typically, the test was stopped when a specified level of measurement uncertainty was attained. Using silicone O-ring test articles, the new method was compared with the standard method that permitted the downstream pressure to be non-constant atmospheric pressure. The two methods recorded comparable leak rates, but the new method recorded leak rates with significantly lower measurement uncertainty, statistical variance, and test duration. Utilizing this new method in leak rate quantification, projects will reduce cost and schedule, improve test results, and ease interpretation between data sets.

  2. Transducer-Mounting Fixture

    Science.gov (United States)

    Spiegel, Kirk W.

    1990-01-01

    Transducer-mounting fixture holds transducer securely against stud. Projects only slightly beyond stud after installation. Flanged transducer fits into fixture when hinged halves open. When halves reclosed, fixture tightened onto threaded stud until stud makes contact with transducer. Knurled area on fixture aids in tightening fixture on stud.

  3. Calculation of acoustic field based on laser-measured vibration velocities on ultrasonic transducer surface

    Science.gov (United States)

    Hu, Liang; Zhao, Nannan; Gao, Zhijian; Mao, Kai; Chen, Wenyu; Fu, Xin

    2018-05-01

    Determination of the distribution of a generated acoustic field is valuable for studying ultrasonic transducers, including providing the guidance for transducer design and the basis for analyzing their performance, etc. A method calculating the acoustic field based on laser-measured vibration velocities on the ultrasonic transducer surface is proposed in this paper. Without knowing the inner structure of the transducer, the acoustic field outside it can be calculated by solving the governing partial differential equation (PDE) of the field based on the specified boundary conditions (BCs). In our study, the BC on the transducer surface, i.e. the distribution of the vibration velocity on the surface, is accurately determined by laser scanning measurement of discrete points and follows a data fitting computation. In addition, to ensure the calculation accuracy for the whole field even in an inhomogeneous medium, a finite element method is used to solve the governing PDE based on the mixed BCs, including the discretely measured velocity data and other specified BCs. The method is firstly validated on numerical piezoelectric transducer models. The acoustic pressure distributions generated by a transducer operating in an homogeneous and inhomogeneous medium, respectively, are both calculated by the proposed method and compared with the results from other existing methods. Then, the method is further experimentally validated with two actual ultrasonic transducers used for flow measurement in our lab. The amplitude change of the output voltage signal from the receiver transducer due to changing the relative position of the two transducers is calculated by the proposed method and compared with the experimental data. This method can also provide the basis for complex multi-physical coupling computations where the effect of the acoustic field should be taken into account.

  4. Transducers and microprocessors in oceanographic applications

    Digital Repository Service at National Institute of Oceanography (India)

    Desai, R.G.P.; Desa, E.

    Transducers used for the sensing of the ten most measured marine parameters have been described in this paper. The ten parameters have been classed under 5 sensor types, namely temperature, pressure, salinity, currents and waves. For each sensor...

  5. Justification of response time testing requirements for pressure and differential pressure sensors

    International Nuclear Information System (INIS)

    Weiss, J.M.; Mayo, C.; Swisher, V.

    1991-01-01

    This paper reports on response time testing (RTT) requirements that were imposed on pressure, differential pressure sensors as a conservative approach to insure that assumptions in the plant safety analyses were met. The purpose of this project has been to identify the need for response time testing using the bases identified in IEEE Standard 338. A combination of plant data analyses, failure modes, and effects analyses (FMEAs) was performed. Eighteen currently qualified sensor models were utilized. The results of these analyses indicate that there are only two failure modes that affect response time, not sensor output concurrently. For these failure modes, appropriate plant actions and testing techniques were identified. Safety system RTT requirements were established by IEEE Standard 338-1975. Criteria for the Periodic Testing of Class IE Power, Protection Systems, presuming the need existed for this testing. This standard established guidelines for periodic testing to verify that loop response times of installed nuclear safety-related equipment were within the limits presumed by the design basis plant transient, accident analyses. The requirements covered all passive, active components in an instrument loop, including sensors. Individual components could be tested either in groups or separately to determine the overall loop response time

  6. Driving electrostatic transducers

    DEFF Research Database (Denmark)

    Nielsen, Dennis; Knott, Arnold; Andersen, Michael A. E.

    2013-01-01

    Electrostatic transducers represent a very interesting alternative to the traditional inefficient electrodynamic transducers. In order to establish the full potential of these transducers, power amplifiers which fulfill the strict requirements imposed by such loads (high impedance, frequency...... depended, nonlinear and high bias voltage for linearization) must be developed. This paper analyzes power stages and bias configurations suitable for driving an electrostatic transducer. Measurement results of a 300 V prototype amplifier are shown. Measuring THD across a high impedance source is discussed...

  7. Transducer handbook user's directory of electrical transducers

    CERN Document Server

    Boyle, H B

    2013-01-01

    When selecting or using a particular type of transducer or sensor, there are a number of factors which must be considered. The question is not only for what kind of measurement, but under what physical conditions, constraints of accuracy, and to meet which service requirements, is a transducer needed? This handbook is designed to meet the selection needs of anyone specifying or using transducers with an electrical output. Each transducer is described in an easy-to-use tabular format, giving all of the necessary data including operating principles, applications, range limits, errors, over-range protection, supply voltage requirements, sensitivities, cross sensitivities, temperature ranges and sensitivities and signal conditioning needs. The author has added notes that reflect his broad practical experience. Added to this is an extensive worldwide suppliers directory.

  8. Combined Differential and Static Pressure Sensor based on a Double-Bridged Structure

    DEFF Research Database (Denmark)

    Pedersen, Casper; Jespersen, S.T.; Krog, J.P.

    2005-01-01

    A combined differential and static silicon microelectromechanical system pressure sensor based on a double piezoresistive Wheatstone bridge structure is presented. The developed sensor has a conventional (inner) bridge on a micromachined diaphragm and a secondary (outer) bridge on the chip...... substrate. A novel approach is demonstrated with a combined measurement of outputs from the two bridges, which results in a combined deduction of both differential and static media pressure. Also following this new approach, a significant improvement in differential pressure sensor accuracy is achieved....... Output from the two bridges depends linearly on both differential and absolute (relative to atmospheric pressure) media pressure. Furthermore, the sensor stress distributions involved are studied by three-dimensional finite-element (FE) stress analysis. Furthermore, the FE analysis evaluates current...

  9. Differential pressure distribution measurement for the development of insect-sized wings

    International Nuclear Information System (INIS)

    Takahashi, Hidetoshi; Matsumoto, Kiyoshi; Shimoyama, Isao

    2013-01-01

    This paper reports on the measurement of the differential pressure distribution over a flat, thin wing using a micro-electro-mechanical systems sensor. Sensors featuring a piezoresistive cantilever were attached to a polyimide/Cu wing. Because the weight of the cantilever element was less than 10 ng, the sensor can measure the differential pressure without interference from inertial forces, such as wing flapping motions. The dimensions of the sensor chips and the wing were 1.0 mm × 1.0 mm × 0.3 mm and 100 mm × 30 mm × 1 mm, respectively. The differential pressure distribution along the wing's chord direction was measured in a wind tunnel at an air velocity of 4.0 m s –1 by changing the angle of attack. It was confirmed that the pressure coefficient calculated by the measured differential pressure distribution was similar to the value measured by a load cell. (paper)

  10. Irradiation Testing of Ultrasonic Transducers

    International Nuclear Information System (INIS)

    Daw, J.; Rempe, J.; Palmer, J.; Tittmann, B.; Reinhardt, B.; Kohse, G.; Ramuhalli, P.; Montgomery, R.; Chien, H.T.; Villard, J.F.

    2013-06-01

    Ultrasonic technologies offer the potential for high accuracy and resolution in-pile measurement of numerous parameters, including geometry changes, temperature, crack initiation and growth, gas pressure and composition, and microstructural changes. Many Department of Energy-Office of Nuclear Energy (DOE-NE) programs are exploring the use of ultrasonic technologies to provide enhanced sensors for in-pile instrumentation during irradiation testing. For example, the ability of single, small diameter ultrasonic thermometers (UTs) to provide a temperature profile in candidate metallic and oxide fuel would provide much needed data for validating new fuel performance models. Other efforts include an ultrasonic technique to detect morphology changes (such as crack initiation and growth) and acoustic techniques to evaluate fission gas composition and pressure. These efforts are limited by the lack of existing knowledge of ultrasonic transducer material survivability under irradiation conditions. To address this need, the Pennsylvania State University (PSU) was awarded an Advanced Test Reactor National Scientific User Facility (ATR NSUF) project to evaluate promising magnetostrictive and piezoelectric transducer performance in the Massachusetts Institute of Technology Research Reactor (MITR) up to a fast fluence of at least 10 21 n/cm 2 (E> 0.1 MeV). This test will be an instrumented lead test; and real-time transducer performance data will be collected along with temperature and neutron and gamma flux data. By characterizing magnetostrictive and piezoelectric transducer survivability during irradiation, test results will enable the development of novel radiation tolerant ultrasonic sensors for use in Material and Test Reactors (MTRs). The current work bridges the gap between proven out-of-pile ultrasonic techniques and in-pile deployment of ultrasonic sensors by acquiring the data necessary to demonstrate the performance of ultrasonic transducers. (authors)

  11. An instrument to measure differential pore pressures in deep ocean sediments: Pop-Up-Pore-Pressure-Instrument (PUPPI)

    International Nuclear Information System (INIS)

    Schultheiss, P.J.; McPhail, S.D.; Packwood, A.R.; Hart, B.

    1985-01-01

    A Pop-Up-Pore-Pressure-Instrument (PUPPI) has been developed to measure differential pore pressures in sediments. The differential pressure is the pressure above or below normal hydrostatic pressure at the depth of the measurement. It is designed to operate in water depths up to 6000 metres for periods of weeks or months, if required, and measures differential pore pressures at depths of up to 3 metres into the sediments with a resolution of 0.05 kPa. It is a free-fall device with a lance which penetrates the sediments. This lance and the ballast weight is disposed when the PUPPI is acoustically released from the sea floor. When combined with permeability and porosity values of deep-sea sediments the pore pressure measurements made using the PUPPI suggest advection velocities as low as 8.8 mm/yr. The mechanical, electrical and acoustic systems are described together with data obtained from both shallow and deep water trials. (author)

  12. Model of a Piezoelectric Transducer

    Science.gov (United States)

    Goodenow, Debra

    2004-01-01

    It's difficult to control liquid and gas in propellant tanks in zero gravity. A possible a design would utilize acoustic liquid manipulation (ALM) technology which uses ultrasonic beams conducted through a liquid and solid media, to push gas bubbles in the liquid to desirable locations. We can propel and control the bubble with acoustic radiation pressure by aiming the acoustic waves on the bubble s surface. This allows us to design a so called smart tank in which the ALM devices transfer the gas to the outer wall of the tank and isolating the liquid in the center. Because the heat transfer rate of a gas is lower of that of the liquid it would substantially decrease boil off and provide of for a longer storage life. The ALM beam is composed of little wavelets which are individual waves that constructively interfere with each other to produce a single, combined acoustic wave front. This is accomplished by using a set of synchronized ultrasound transducers arranged in an array. A slight phase offset of these elements allows us to focus and steer the beam. The device that we are using to produce the acoustic beam is called the piezoelectric transducer. This device converts electrical energy to mechanical energy, which appears in the form of acoustic energy. Therefore the behavior of the device is dependent on both the mechanical characteristics, such as its density, cross-sectional area, and its electrical characteristics, such as, electric flux permittivity and coupling factor. These devices can also be set up in a number of modes which are determined by the way the piezoelectric device is arranged, and the shape of the transducer. For this application we are using the longitudinal or thickness mode for our operation. The transducer also vibrates in the lateral mode, and one of the goals of my project is to decrease the amount of energy lost to the lateral mode. To model the behavior of the transducers I will be using Pspice, electric circuit modeling tool, to

  13. Handbook of force transducers

    CERN Document Server

    Stefanescu, Dan Mihai

    2011-01-01

    Part I introduces the basic ""Principles and Methods of Force Measurement"" acording to a classification into a dozen of force transducers types: resistive, inductive, capacitive, piezoelectric, electromagnetic, electrodynamic, magnetoelastic, galvanomagnetic (Hall-effect), vibrating wires, (micro)resonators, acoustic and gyroscopic. Two special chapters refer to force balance techniques and to combined methods in force measurement. Part II discusses the ""(Strain Gauge) Force Transducers Components"", evolving from the classical force transducer to the digital / intelligent one, with the inco

  14. MEASUREMENT OF FRICTIONAL PRESSURE DIFFERENTIALS DURING A VENTILATION SURVEY

    International Nuclear Information System (INIS)

    B.S. Prosser, PE; I.M. Loomis, PE, PhD

    2003-01-01

    During the course of a ventilation survey, both airflow quantity and frictional pressure losses are measured and quantified. The measurement of airflow has been extensively studied as the vast majority of ventilation standards/regulations are tied to airflow quantity or velocity. However, during the conduct of a ventilation survey, measurement of airflow only represents half of the necessary parameters required to directly calculate the airway resistance. The measurement of frictional pressure loss is an often misunderstood and misapplied part of the ventilation survey. This paper compares the two basic methods of frictional pressure drop measurements; the barometer and the gauge and tube. Personal experiences with each method will be detailed along with the authors' opinions regarding the applicability and conditions favoring each method

  15. Development of transducers for integrated garter spring repositioning system

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, B S.V.G.; Shyam, T V; Shrivastava, A K; Rupani, B B; Sinha, R K [Bhabha Atomic Research Centre, Bombay (India). Reactor Engineering Div.

    1994-12-31

    In order to reposition the dislocated garter springs in active channels of 235 MW Pressurised Heavy Water Reactors (PHWRs), a tool named as Integrated Garter Spring Repositioning System (INGRES) has been developed. The tool consists of transducers to detect the concentricity between the Pressure Tube (P/T) and Calandria Tube (C/T) and also to detect garter springs in the channel besides different modules for correcting the eccentricity between P/T and C/T and garter spring repositioning. The transducers used in the system namely Concentricity Detection Probe (CDP) and Garter Spring Detection Probe (GSDP) are based on the eddy current techniques. The CDP makes use of four eddy current bobbin probes separated 90 degrees apart in cross sectional plane of channel assembly. The transducer gives output signal in proportional to the air gap between P/T and C/T in two axes (X and Y) which are designed for the purpose. The output of the unit is obtained on the Cathode Ray Oscilloscope (CRO) screen in the form of illuminated dot. The dot position on the CRO screen gives the information about mismatch in concentricity between P/T and C/T of the channel. The GSDP meant for detecting garter springs in PHWR channel uses two sets of primary and secondary coils connected in differential mode. The output signals from the transducers are processed through a signal processing unit devised for the purpose to obtain output from it as a horizontal beam on the CRO screen. The garter spring presence in the channel is indicated by a change in the voltage level of beam and also by audio-visual indication in the form of buzzer and LED illumination on the processing unit. This paper gives general design and development aspects of the CDP and GSDP transducers of the INGRES tool. (author). 3 figs.

  16. Flow-regulated versus differential pressure-regulated shunt valves for adult patients with normal pressure hydrocephalus

    DEFF Research Database (Denmark)

    Ziebell, Morten; Wetterslev, Jørn; Tisell, Magnus

    2013-01-01

    Since 1965 many ventriculo-peritoneal shunt systems have been inserted worldwide to treat hydrocephalus. The most frequent indication in adults is normal pressure hydrocephalus (NPH), a condition that can be difficult to diagnose precisely. Surgical intervention with flow-regulated and differential...

  17. Atmospheric pressure and temperature profiling using near IR differential absorption lidar

    Science.gov (United States)

    Korb, C. L.; Schwemmer, G. K.; Dombrowski, M.; Weng, C. Y.

    1983-01-01

    The present investigation is concerned with differential absorption lidar techniques for remotely measuring the atmospheric temperature and pressure profile, surface pressure, and cloud top pressure-height. The procedure used in determining the pressure is based on the conduction of high-resolution measurements of absorption in the wings of lines in the oxygen A band. Absorption with respect to these areas is highly pressure sensitive in connection with the mechanism of collisional line broadening. The method of temperature measurement utilizes a determination of the absorption at the center of a selected line in the oxygen A band which originates from a quantum state with high ground state energy.

  18. Programming macro tree transducers

    DEFF Research Database (Denmark)

    Bahr, Patrick; Day, Laurence E.

    2013-01-01

    transducers can be concisely represented in Haskell, and demonstrate the benefits of utilising such an approach with a number of examples. In particular, tree transducers afford a modular programming style as they can be easily composed and manipulated. Our Haskell representation generalises the original...

  19. Crossflow force transducer

    International Nuclear Information System (INIS)

    Mulcahy, T.M.

    1982-05-01

    A force transducer for measuring lift and drag coefficients for a circular cylinder in turbulent water flow is presented. In addition to describing the actual design and construction of the strain-gauged force- ring based transducer, requirements for obtained valid fluid force test data are discussed, and pertinent flow test experience is related

  20. Differential Intracochlear Sound Pressure Measurements in Human Temporal Bones with an Off-the-Shelf Sensor

    Directory of Open Access Journals (Sweden)

    Martin Grossöhmichen

    2016-01-01

    Full Text Available The standard method to determine the output level of acoustic and mechanical stimulation to the inner ear is measurement of vibration response of the stapes in human cadaveric temporal bones (TBs by laser Doppler vibrometry. However, this method is reliable only if the intact ossicular chain is stimulated. For other stimulation modes an alternative method is needed. The differential intracochlear sound pressure between scala vestibuli (SV and scala tympani (ST is assumed to correlate with excitation. Using a custom-made pressure sensor it has been successfully measured and used to determine the output level of acoustic and mechanical stimulation. To make this method generally accessible, an off-the-shelf pressure sensor (Samba Preclin 420 LP, Samba Sensors was tested here for intracochlear sound pressure measurements. During acoustic stimulation, intracochlear sound pressures were simultaneously measurable in SV and ST between 0.1 and 8 kHz with sufficient signal-to-noise ratios with this sensor. The pressure differences were comparable to results obtained with custom-made sensors. Our results demonstrated that the pressure sensor Samba Preclin 420 LP is usable for measurements of intracochlear sound pressures in SV and ST and for the determination of differential intracochlear sound pressures.

  1. Smart transducer with radiomodem

    Science.gov (United States)

    Pugach, V. N.; Voronin, E. L.

    2018-04-01

    Systems for measuring different parameters enabling metering and wireless data transmission are an urgent problem in the industry. One of the most promising solutions is the developments of metering instruments enabling radio-link and GSM data transmission. The article describes a transducer operating with temperature sensors of different types as well as with the sensors of other physical values with the output signal represented as current or voltage with subsequent measurement data transmission from the transducer to the computer via radio-link. The article provides transducer measurement accuracy check. The work confirmed the claimed temperature measurement accuracy, noted a stable data transmission via radio link and convenience of work with the transducer and software.

  2. Identification of two-phase flow pattern by using specific spatial frequency of differential pressure signal

    International Nuclear Information System (INIS)

    Han Bin; Tong Yunxian; Wu Shaorong

    1992-11-01

    It is a classical method by using analysis of differential pressure fluctuation signal to identify two-phase flow pattern. The method which uses trait peak in the frequency-domain will result confusion between bubble flow and intermittent flow due to the influence of gas speed. Considering the spatial geometric significance of two-phase slow patterns and using the differential pressure gauge as a sensor, the Strouhal number 'Sr' is taken as the basis for distinguishing flow patterns. Using Strouhal number 'Sr' to identify flow pattern has clear physical meaning. The experimental results using the spatial analytical technique to measure the flow pattern are also given

  3. Design of Novel FBG-Based Sensor of Differential Pressure with Magnetic Transfer

    Directory of Open Access Journals (Sweden)

    Guohui Lyu

    2017-02-01

    Full Text Available In this paper, a differential pressure sensor with magnetic transfer is proposed, in which the non-electric measurement based on the fiber Bragg grating (FBG with the position limiting mechanism is implemented without the direct contact of the sensing unit with the measuring fluid. The test shows that the designed sensor is effective for measuring differential pressure in the range of 0~10 kPa with a sensitivity of 0.0112 nm/kPa, which can be used in environments with high temperature, strong corrosion and high overload measurements.

  4. Design of Novel FBG-Based Sensor of Differential Pressure with Magnetic Transfer.

    Science.gov (United States)

    Lyu, Guohui; Che, Guohang; Li, Junqing; Jiang, Xu; Wang, Keda; Han, Yueqiang; Gao, Laixu

    2017-02-15

    In this paper, a differential pressure sensor with magnetic transfer is proposed, in which the non-electric measurement based on the fiber Bragg grating (FBG) with the position limiting mechanism is implemented without the direct contact of the sensing unit with the measuring fluid. The test shows that the designed sensor is effective for measuring differential pressure in the range of 0~10 kPa with a sensitivity of 0.0112 nm/kPa, which can be used in environments with high temperature, strong corrosion and high overload measurements.

  5. Differential pressure distribution measurement with an MEMS sensor on a free-flying butterfly wing

    International Nuclear Information System (INIS)

    Takahashi, Hidetoshi; Matsumoto, Kiyoshi; Shimoyama, Isao; Tanaka, Hiroto

    2012-01-01

    An insect can perform various flight maneuvers. However, the aerodynamic force generated by real insect wings during free flight has never been measured directly. In this study, we present the direct measurement of the four points of the differential pressures acting on the wing surface of a flying insect. A small-scale differential pressure sensor of 1.0 mm × 1.0 mm × 0.3 mm in size was developed using microelectromechanical systems (MEMS) and was attached to a butterfly wing. Total weight of the sensor chip and the flexible electrode on the wing was 4.5 mg, which was less than 10% of the wing weight. Four points on the wing were chosen as measurement points, and one sensor chip was attached in each flight experiment. During takeoff, the wing's flapping motion induced a periodic and symmetric differential pressure between upstroke and downstroke. The average absolute value of the local differential pressure differed significantly with the location: 7.4 Pa at the forewing tip, 5.5 Pa at the forewing center, 2.1 Pa at the forewing root and 2.1 Pa at the hindwing center. The instantaneous pressure at the forewing tip reached 10 Pa, which was ten times larger than wing loading of the butterfly. (paper)

  6. In vivo effects of myeloablative alkylator therapy on survival and differentiation of MGMTP140K-transduced human G-CSF-mobilized peripheral blood cells.

    Science.gov (United States)

    Cai, Shanbao; Hartwell, Jennifer R; Cooper, Ryan J; Juliar, Beth E; Kreklau, Emi; Abonour, Rafat; Goebel, W Scott; Pollok, Karen E

    2006-05-01

    High-intensity alkylator-based chemotherapy is required to eradicate tumors expressing high levels of O6-methylguanine DNA methyltransferase (MGMT). This treatment, however, can lead to life-threatening myelosuppression. We investigated a gene therapy strategy to protect human granulocyte colony-stimulating factor-mobilized peripheral blood CD34+ cells (MPB) from a high-intensity alkylator-based regimen. We transduced MPB with an oncoretroviral vector that coexpresses MGMT(P140K) and the enhanced green fluorescent protein (EGFP) (n = 5 donors). At 4 weeks posttransplantation into nonobese diabetic/severe combined immunodeficient (NOD/SCID) mice, cohorts were not treated or were treated with low- or high-intensity alkylating chemotherapy. In the high-intensity-treated cohort, it was necessary to infuse NOD/SCID bone marrow (BM) to alleviate hematopoietic toxicity. At 8 weeks posttreatment, human CD45+ cells in the BM of mice treated with either regimen were EGFP+ and contained MGMT-specific DNA repair activity. In cohorts receiving low-intensity therapy, both primitive and mature hematopoietic cells were present in the BM. Although B-lymphoid and myeloid cells were resistant to in vivo drug treatment in cohorts that received high-intensity therapy, no human CD34+ cells or B-cell precursors were detected. These data suggest that improved strategies to optimize repair of DNA damage in primitive human hematopoietic cells are needed when using high-intensity anti-cancer therapy.

  7. Prediction of the relationship between flow of tubular pump and differential pressure within inlet passage with CFD method

    International Nuclear Information System (INIS)

    Yu, Y H; Cheng, B

    2012-01-01

    The measurement of flow of tubular pump, in which the differential pressure of two measuring points within inlet passage is replaced by the mean differential pressure of two specified section of inlet passage to calibrate the relationship between flow and differential pressure, is developed. The numerical simulation on differential pressure of two measuring points within inlet passage, which is started before the pump set test, is carried out with the standard k-ε turbulence model and SIMPLEC algorithm. The comparison of the relationships between flow and differential pressure fitted respectively with the data from numerical simulation and pump set test shows that the calibration accuracy about two different sources of data is nearly same. The conclusion can be drawn that the calibration of the relationship between flow and differential pressure with CFD is feasible. The CFD-based flow measurement method, as a more simple and convenient way, can be applied in tubular pumps.

  8. Pressure regulation system for modern gas-filled detectors

    International Nuclear Information System (INIS)

    McDonald, R.J.

    1986-08-01

    A gas pressure and flow regulation system has been designed and constructed to service a wide variety of gas-filled detectors which operate at pressures of ∼2 to 1000 Torr and flow rate of ∼5 to 200 standard cubic centimeters per minute (sccm). Pressure regulation is done at the detector input by a pressure transducer linked to a solenoid leak valve via an electronic control system. Gas flow is controlled via a mechanical leak valve at the detector output. Interchangeable transducers, flowmeters, and leak valves allow for different pressure and flow ranges. The differential pressure transducer and control system provide automatic let-up of vacuum chambers to atmospheric pressure while maintaining a controlled overpressure in the detector. The gas system is constructed on a standard 19'' rack-mounted panel from commercially available parts. Five of these systems have been built and are routinely used for both ionization chambers and position-sensitive avalanche detectors

  9. Calibration of acoustic emission transducers

    International Nuclear Information System (INIS)

    Leschek, W.C.

    1976-01-01

    A method is described for calibrating an acoustic emission transducer to be used in a pre-set frequency range. The absolute reception sensitivity of a reference transducer is determined at frequencies selected within the frequency range. The reference transducer and the acoustic emission transducer are put into acoustic communication with the surface of a limited acoustic medium representing an equivalent acoustic load appreciably identical to that of the medium in which the use of the acoustic emission transducer is intended. A blank random acoustic noise is emitted in the acoustic medium in order to establish a diffuse and reverberating sound field, after which the output responses of the reference transducer and of the acoustic emission transducer are obtained with respect to the diffuse and reverberating field, for selected frequencies. The output response of the acoustic emission transducer is compared with that of the reference transducer for the selected frequencies, so as to determine the reception sensitivity of the acoustic emission transducer [fr

  10. Engineering Task Plan for Hepa Filter Differential Pressure (DP) Fan Interlock Upgrades

    International Nuclear Information System (INIS)

    SIMONS, S.R.

    2000-01-01

    This document provides a plan for installation of Differential Pressure (DP) fan interlocks on the primary ventilation systems in selected Tank Farm facilities. This plan contains the engineering tasks required for installation and is summarized by the Acceptance for Beneficial Use list. Individuals responsible for each task are identified and scheduled accordingly

  11. Software Verification and Validation Test Report for the HEPA filter Differential Pressure Fan Interlock System

    International Nuclear Information System (INIS)

    ERMI, A.M.

    2000-01-01

    The HEPA Filter Differential Pressure Fan Interlock System PLC ladder logic software was tested using a Software Verification and Validation (VandV) Test Plan as required by the ''Computer Software Quality Assurance Requirements''. The purpose of his document is to report on the results of the software qualification

  12. Resonant transducers for solid-state plasma density modulation

    Energy Technology Data Exchange (ETDEWEB)

    Hallock, Gary A., E-mail: hallock@ece.utexas.edu [The University of Texas at Austin, Austin, Texas 78701 (United States); Meier, Mark A., E-mail: mark.a.meier@exxonmobil.com [ExxonMobil Upstream Research Company, Houston, Texas 77389 (United States)

    2016-04-15

    We have developed transducers capable of modulating the plasma density and plasma density gradients in indium antimonide. These transducers make use of piezoelectric drivers to excite acoustic pressure resonance at 3λ/2, generating large amplitude standing waves and plasma density modulations. The plasma density has been directly measured using a laser diagnostic. A layered media model shows good agreement with the experimental measurements.

  13. NMR signal transducer

    International Nuclear Information System (INIS)

    Kucheryaev, A.G.; Oliferchuk, N.L.

    1975-01-01

    A signal transducer of nuclear magnetic resonance for simultaneously measuring frequency and intensitivity of two various isotope signals, which are in one specimen is described. The transducer represents radiofrequency circuit with two resonance frequences, which is common for two autodyne generators. To decrease measuring time and to increase recording diagram stability the radiofrequency circuit has LC netork, in the inductivity of which investigated specimen is located; a circuit variable capacity is connected in parallel with one of the autodyne generators. Besides the radiofrequency circuit has an inductance coil in series with a standard specimen inside as well as a variable capacitor connected in parallel with the second autodyne generator. An amplitude of oscillation of each resonance frequency is controlled and adjusted separately. The transducer described can be used for the measurement of a nuclei concentration, isotope concentration and for the spin determination

  14. [Differentiation between moisture lesions and pressure ulcers using photographs in a critical area].

    Science.gov (United States)

    Valls-Matarín, Josefa; Del Cotillo-Fuente, Mercedes; Pujol-Vila, María; Ribal-Prior, Rosa; Sandalinas-Mulero, Inmaculada

    2016-01-01

    To identify difficulties for nurses in differentiating between moisture lesions and pressure ulcers, proper classification of pressure ulcers to assess the adequate classification of the Grupo Nacional para el Estudio y Asesoramiento de Úlceras por Presión y Heridas Crónicas (GNEAUPP) and the degree of agreement in the correct assessment by type and category of injury. Cross-sectional study in a critical area during 2014. All nurses who agreed to participate were included. They performed a questionnaire with 14 photographs validated by experts of moisture lesions or pressure ulcers in the sacral area and buttocks, with 6 possible answers: Pressure ulcer category I, II, III, IV, moisture lesions and unknown. Demographics and knowledge of the classification system of the pressure ulcers were collected according to GNEAUPP. It involved 98% of the population (n=56); 98.2% knew the classification system of the GNEAUPP; 35.2% of moisture lesions were considered as pressure ulcers, most of them as a category II (18.9%). The 14.8% of the pressure ulcers photographs were identified as moisture lesions and 16.1% were classified in another category. The agreement between nurses earned a global Kappa index of .38 (95% CI: .29-.57). There are difficulties differentiating between pressure ulcers and moisture lesions, especially within initial categories. Nurses have the perception they know the pressure ulcers classification, but they do not classify them correctly. The degree of concordance in the diagnosis of skin lesions was low. Copyright © 2016 Elsevier España, S.L.U. All rights reserved.

  15. Piezoelectric transducer array microspeaker

    KAUST Repository

    Carreno, Armando Arpys Arevalo; Conchouso Gonzalez, David; Castro, David; Kosel, Jü rgen; Foulds, Ian G.

    2016-01-01

    contains 2n piezoelectric transducer membranes, where “n” is the bit number. Every element of the array has a circular shape structure. The membrane is made out four layers: 300nm of platinum for the bottom electrode, 250nm or lead zirconate titanate (PZT

  16. Vibration transducer calibration techniques

    Science.gov (United States)

    Brinkley, D. J.

    1980-09-01

    Techniques for the calibration of vibration transducers used in the Aeronautical Quality Assurance Directorate of the British Ministry of Defence are presented. Following a review of the types of measurements necessary in the calibration of vibration transducers, the performance requirements of vibration transducers, which can be used to measure acceleration, velocity or vibration amplitude, are discussed, with particular attention given to the piezoelectric accelerometer. Techniques for the accurate measurement of sinusoidal vibration amplitude in reference-grade transducers are then considered, including the use of a position sensitive photocell and the use of a Michelson laser interferometer. Means of comparing the output of working-grade accelerometers with that of previously calibrated reference-grade devices are then outlined, with attention given to a method employing a capacitance bridge technique and a method to be used at temperatures between -50 and 200 C. Automatic calibration procedures developed to speed up the calibration process are outlined, and future possible extensions of system software are indicated.

  17. Indigeneous design and development of differential pressure reducing valves for PHWRs (Paper No. 055)

    International Nuclear Information System (INIS)

    Soni, N.L.; Agrawal, R.C.; Chandra, Rajesh

    1987-02-01

    On load fuelling of Pressurised Heavy Water Reactors (PHWRs) is being achieved with the help of Fuelling Machine (F/M). Various actuations are to be carried out inside the F/M magazine pressure housing with the help of high pressure water hydraulic actuators. A constant differential pressure is required to be maintained between pressurized magazine housing and the actuators-supply line for proper operation of the actuators which are to be located inside it. This is achieved with the help of the Differential Pressure Reducing Valve (DPRV). So far these valves have been procured only from a single foreign supplier. In March 1980, the price of each valve was US dollars 3100.00. Dependence on a single foreign supplier may create problems of timely procurement. An effort was made to design and manufacture the DPRV indigensouly meeting the stringent specifications. Theoretical study of single acting DPRV was carried out and design criteria were established. The valve was tested for its performance and was found satisfactory. (author). 8 figs

  18. Pressure Measurement in Supersonic Air Flow by Differential Absorptive Laser-Induced Thermal Acoustics

    Science.gov (United States)

    Hart, Roger C.; Herring, Gregory C.; Balla, Robert J.

    2007-01-01

    Nonintrusive, off-body flow barometry in Mach-2 airflow has been demonstrated in a large-scale supersonic wind tunnel using seedless laser-induced thermal acoustics (LITA). The static pressure of the gas flow is determined with a novel differential absorption measurement of the ultrasonic sound produced by the LITA pump process. Simultaneously, stream-wise velocity and static gas temperature of the same spatially-resolved sample volume were measured with this nonresonant time-averaged LITA technique. Mach number, temperature and pressure have 0.2%, 0.4%, and 4% rms agreement, respectively, in comparison with known free-stream conditions.

  19. Elastin Is Differentially Regulated by Pressure Therapy in a Porcine Model of Hypertrophic Scar.

    Science.gov (United States)

    Carney, Bonnie C; Liu, Zekun; Alkhalil, Abdulnaser; Travis, Taryn E; Ramella-Roman, Jessica; Moffatt, Lauren T; Shupp, Jeffrey W

    Beneficial effects of pressure therapy for hypertrophic scars have been reported, but the mechanisms of action are not fully understood. This study evaluated elastin and its contribution to scar pliability. The relationship between changes in Vancouver Scar Scale (VSS) scores of pressure-treated scars and differential regulation of elastin was assessed. Hypertrophic scars were created and assessed weekly using VSS and biopsy procurement. Pressure treatment began on day 70 postinjury. Treated scars were compared with untreated shams. Treatment lasted 2 weeks, through day 84, and scars were assessed weekly through day 126. Transcript and protein levels of elastin were quantified. Pressure treatment resulted in lower VSS scores compared with sham-treated scars. Pliability (VSSP) was a key contributor to this difference. At day 70 pretreatment, VSSP = 2. Without treatment, sham-treated scars became less pliable, while pressure-treated scars became more pliable. The percentage of elastin in scars at day 70 was higher than in uninjured skin. Following treatment, the percentage of elastin increased and continued to increase through day 126. Untreated sham scars did not show a similar increase. Quantification of Verhoeff-Van Gieson staining corroborated the findings and immunofluorescence revealed the alignment of elastin fibers. Pressure treatment results in increased protein level expression of elastin compared with sham-untreated scars. These findings further characterize the extracellular matrix's response to the application of pressure as a scar treatment, which will contribute to the refinement of rehabilitation practices and ultimately improvements in functional and psychosocial outcomes for patients.

  20. Rat bone marrow progenitor cells transduced in situ by rSV40 vectors differentiate into multiple central nervous system cell lineages.

    Science.gov (United States)

    Louboutin, Jean-Pierre; Liu, Bianling; Reyes, Beverly A S; Van Bockstaele, Elisabeth J; Strayer, David S

    2006-12-01

    Using bone marrow-directed gene transfer, we tested whether bone marrow-derived cells may function as progenitors of central nervous system (CNS) cells in adult animals. SV40-derived gene delivery vectors were injected directly into femoral bone marrow, and we examined transgene expression in blood and brain for 0-16 months thereafter by immunostaining for FLAG epitope marker. An average of 5% of peripheral blood cells and 25% of femoral marrow cells were FLAG(+) throughout the study. CNS FLAG-expressing cells were mainly detected in the dentate gyrus (DG) and periventricular subependymal zone (PSZ). Although absent before 1 month and rare at 4 months, DG and PSZ FLAG(+) cells were abundant 16 months after bone marrow injection. Approximately 5% of DG cells expressed FLAG, including neurons (48.6%) and microglia (49.7%), and occasional astrocytes (1.6%), as determined by double immunostaining for FLAG and lineage markers. These data suggest that one or more populations of cells resident within adult bone marrow can migrate to the brain and differentiate into CNS-specific cells.

  1. Eddy Current Transducer Dedicated for Sigma Phase Evaluation in Duplex Stainless Steel

    Directory of Open Access Journals (Sweden)

    Grzegorz Psuj

    2012-01-01

    Full Text Available The paper describes a new transducer dedicated for evaluation of a duplex stainless steel (DSS. Different phases which exist in DSS have influence on mechanical as well as on electrical properties. Therefore, an eddy current transducer was utilized. In order to achieve high sensitivity, a differential type of the transducer was selected. The performance of the transducer was verified by utilizing the samples which had a different amount of sigma phase.

  2. Evaluation of handwriting kinematics and pressure for differential diagnosis of Parkinson's disease.

    Science.gov (United States)

    Drotár, Peter; Mekyska, Jiří; Rektorová, Irena; Masarová, Lucia; Smékal, Zdeněk; Faundez-Zanuy, Marcos

    2016-02-01

    We present the PaHaW Parkinson's disease handwriting database, consisting of handwriting samples from Parkinson's disease (PD) patients and healthy controls. Our goal is to show that kinematic features and pressure features in handwriting can be used for the differential diagnosis of PD. The database contains records from 37 PD patients and 38 healthy controls performing eight different handwriting tasks. The tasks include drawing an Archimedean spiral, repetitively writing orthographically simple syllables and words, and writing of a sentence. In addition to the conventional kinematic features related to the dynamics of handwriting, we investigated new pressure features based on the pressure exerted on the writing surface. To discriminate between PD patients and healthy subjects, three different classifiers were compared: K-nearest neighbors (K-NN), ensemble AdaBoost classifier, and support vector machines (SVM). For predicting PD based on kinematic and pressure features of handwriting, the best performing model was SVM with classification accuracy of Pacc=81.3% (sensitivity Psen=87.4% and specificity of Pspe=80.9%). When evaluated separately, pressure features proved to be relevant for PD diagnosis, yielding Pacc=82.5% compared to Pacc=75.4% using kinematic features. Experimental results showed that an analysis of kinematic and pressure features during handwriting can help assess subtle characteristics of handwriting and discriminate between PD patients and healthy controls. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Differential contributions of theobromine and caffeine on mood, psychomotor performance and blood pressure.

    Science.gov (United States)

    Mitchell, E S; Slettenaar, M; vd Meer, N; Transler, C; Jans, L; Quadt, F; Berry, M

    2011-10-24

    The combination of theobromine and caffeine, methylxanthines found in chocolate, has previously been shown to improve mood and cognition. However, it is unknown whether these molecules act synergistically. This study tested the hypothesis that a combination of caffeine and theobromine has synergistic effects on cognition, mood and blood pressure in 24 healthy female subjects. The effects of theobromine (700 mg), caffeine (120 mg) or the combination of both, or placebo were tested on mood (the Bond-Lader visual analog scale), psychomotor performance (the Digit Symbol Substitution Test (DSST)) and blood pressure before and at 1, 2 and 3 h after administration. Theobromine alone decreased self-reported calmness 3h after ingestion and lowered blood pressure relative to placebo 1 h after ingestion. Caffeine increased self-reported alertness 1, 2 and 3h after ingestion and contentedness 1 and 2 h after ingestion, and increased blood pressure relative to placebo (at 1 h). The combination of caffeine+theobromine had similar effects as caffeine alone on mood, but with no effect on blood pressure. There was no treatment effect on DSST performance. Together these results suggest that theobromine and caffeine could have differential effects on mood and blood pressure. It was tentatively concluded that caffeine may have more CNS-mediated effects on alertness, while theobromine may be acting primarily via peripheral physiological changes. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. A Lateral Differential Resonant Pressure Microsensor Based on SOI-Glass Wafer-Level Vacuum Packaging

    Directory of Open Access Journals (Sweden)

    Bo Xie

    2015-09-01

    Full Text Available This paper presents the fabrication and characterization of a resonant pressure microsensor based on SOI-glass wafer-level vacuum packaging. The SOI-based pressure microsensor consists of a pressure-sensitive diaphragm at the handle layer and two lateral resonators (electrostatic excitation and capacitive detection on the device layer as a differential setup. The resonators were vacuum packaged with a glass cap using anodic bonding and the wire interconnection was realized using a mask-free electrochemical etching approach by selectively patterning an Au film on highly topographic surfaces. The fabricated resonant pressure microsensor with dual resonators was characterized in a systematic manner, producing a quality factor higher than 10,000 (~6 months, a sensitivity of about 166 Hz/kPa and a reduced nonlinear error of 0.033% F.S. Based on the differential output, the sensitivity was increased to two times and the temperature-caused frequency drift was decreased to 25%.

  5. Differentiation of normal pressure hydrocephalus and cerebral atrophy by computed tomography and spinal infusion test

    Energy Technology Data Exchange (ETDEWEB)

    Tans, J T.J. [Nijverheidsorganisatie TNO, The Hague (Netherlands). Dept. of Neurology and Research Unit TNO for Clinical Neurophysiology

    1979-01-01

    The diagnostic value of computed tomography (CT) and spinal infusion test (SIT) was investigated in 27 patients with normal pressure hydrocephalus (NPH) and 35 patients with cerebral atrophy. The most consistent CT finding of NPH was dilatation of the temporal horns, that of cerebral atrophy widening of the convexity sulci. However, 43% of patients with cerebral atrophy demonstrated no cortical atrophy. The SIT showed an excellent relation with isotope cisternography and continuous intracranial pressure recording. NPH and cerebral atrophy were correctly differentiated in 71% by CT and SIT. A normal SIT and a CT scan without the typical features of NPH exclude impairment of cerebrospinal fluid absorption. An abnormal SIT and a CT scan showing ventricular enlargement without dilatation of convexity sulci, require isotope cisternography and possibly intracranial pressure recording to determine the degree of the absorption deficit.

  6. Stress wave focusing transducers

    Energy Technology Data Exchange (ETDEWEB)

    Visuri, S.R., LLNL

    1998-05-15

    Conversion of laser radiation to mechanical energy is the fundamental process behind many medical laser procedures, particularly those involving tissue destruction and removal. Stress waves can be generated with laser radiation in several ways: creation of a plasma and subsequent launch of a shock wave, thermoelastic expansion of the target tissue, vapor bubble collapse, and ablation recoil. Thermoelastic generation of stress waves generally requires short laser pulse durations and high energy density. Thermoelastic stress waves can be formed when the laser pulse duration is shorter than the acoustic transit time of the material: {tau}{sub c} = d/c{sub s} where d = absorption depth or spot diameter, whichever is smaller, and c{sub s} = sound speed in the material. The stress wave due to thermoelastic expansion travels at the sound speed (approximately 1500 m/s in tissue) and leaves the site of irradiation well before subsequent thermal events can be initiated. These stress waves, often evolving into shock waves, can be used to disrupt tissue. Shock waves are used in ophthalmology to perform intraocular microsurgery and photodisruptive procedures as well as in lithotripsy to fragment stones. We have explored a variety of transducers that can efficiently convert optical to mechanical energy. One such class of transducers allows a shock wave to be focused within a material such that the stress magnitude can be greatly increased compared to conventional geometries. Some transducer tips could be made to operate regardless of the absorption properties of the ambient media. The size and nature of the devices enable easy delivery, potentially minimally-invasive procedures, and precise tissue- targeting while limiting thermal loading. The transducer tips may have applications in lithotripsy, ophthalmology, drug delivery, and cardiology.

  7. Steerable Doppler transducer probes

    International Nuclear Information System (INIS)

    Fidel, H.F.; Greenwood, D.L.

    1986-01-01

    An ultrasonic diagnostic probe is described which is capable of performing ultrasonic imaging and Doppler measurement consisting of: a hollow case having an acoustic window which passes ultrasonic energy and including chamber means for containing fluid located within the hollow case and adjacent to a portion of the acoustic window; imaging transducer means, located in the hollow case and outside the fluid chamber means, and oriented to direct ultrasonic energy through the acoustic window toward an area which is to be imaged; Doppler transducer means, located in the hollow case within the fluid chamber means, and movably oriented to direct Doppler signals through the acoustic window toward the imaged area; means located within the fluid chamber means and externally controlled for controllably moving the Doppler transducer means to select one of a plurality of axes in the imaged area along which the Doppler signals are to be directed; and means, located external to the fluid chamber means and responsive to the means for moving, for providing an indication signal for identifying the selected axis

  8. Hydrogen concentration determination in pressure tube samples using differential scanning calorimetry (dsc)

    International Nuclear Information System (INIS)

    Marinescu, R.; Mincu, M.

    2015-01-01

    Zirconium alloys are widely used as a structural material in nuclear reactors. It is known that zirconium based cladding alloys absorb hydrogen as a result of service in a pressurized water reactor. Hydrogen absorbed (during operation of the reactor) in the zirconium alloy, out of which the pressure tube is made, is one of the major factors determining the life time of the pressure tube. For monitoring the hydrides, samples of the pressure tube are periodically taken and analyzed. At normal reactor operating temperature, hydrogen has limited solubility in the zirconium lattice and precipitates out of solid solution as zirconium hydride when the solid solubility is exceeded. As a consequences material characterization of Zr-2.5Nb CANDU pressure tubes is required after manufacturing but also during the operation to assess its structural integrity and to predict its behavior until the next in-service inspection. Hydrogen and deuterium concentration determination is one of the most important parameters to be evaluated during the experimental tests. Hydrogen present in zirconium alloys has a strong effect of weakening. Following the zirconium-hydrogen reaction, the resulting zirconium hydride precipitates in the mass of material. Weakening of the material, due to the presence of 10 ppm of precipitated hydrogen significantly affects some of its properties. The concentration of hydrogen in a sample can be determined by several methods, one of them being the differential scanning calorimetry (DSC). The principle of the method consists in measuring the difference between the amount of heat required to raise the temperature of a sample and a reference to a certain value. The experiments were made using a TA Instruments DSC Q2000 calorimeter. This paper contains experimental work for hydrogen concentration determination by Differential Scanning Calorimetry (DSC) method. Also, the reproducibility and accuracy of the method used at INR Pitesti are presented. (authors)

  9. The effect of hydrostatic pressure on staurosporine-induced neural differentiation in mouse bone marrow‑derived mesenchymal stem cells.

    Science.gov (United States)

    Javanmard, F; Azadbakht, M; Pourmoradi, M

    2016-01-01

    In this study, the role of hydrostatic pressure on staurosporine-induced neural differentiation in mouse bone marrow mesenchymal stem cells were investigated. The cells were cultured in treatment medium containing 100 nM of staurosporine for 4 hours; then the cells were affected by hydrostatic pressure (0, 25,50, 100 mmHg). The percentage of cell viability by trypan blue staining and the percentage of cell death by Hoechst/PI differential staining were assessed. We obtained the total neurite length. Expression of β-tubulin III and GFAP (Glial fibrillary acidic protein) proteins were also analyzed by immunocytochemistry. The percentage of cell viability in treatments decreased relative to the increase in hydrostatic pressure and time (p Keywords: bone marrow mesenchymal stem cell, hydrostatic pressure, immunocytochemistry, neural differentiation, neurite length, cell differentiation.

  10. Numerical Transducer Modeling

    DEFF Research Database (Denmark)

    Henriquez, Vicente Cutanda

    This thesis describes the development of a numerical model of the propagation of sound waves in fluids with viscous and thermal losses, with application to the simulation of acoustic transducers, in particular condenser microphones for measurement. The theoretical basis is presented, numerical...... manipulations are developed to satisfy the more complicated boundary conditions, and a model of a condenser microphone with a coupled membrane is developed. The model is tested against measurements of ¼ inch condenser microphones and analytical calculations. A detailed discussion of the results is given....

  11. Piezoelectric transducer array microspeaker

    KAUST Repository

    Carreno, Armando Arpys Arevalo

    2016-12-19

    In this paper we present the fabrication and characterization of a piezoelectric micro-speaker. The speaker is an array of micro-machined piezoelectric membranes, fabricated on silicon wafer using advanced micro-machining techniques. Each array contains 2n piezoelectric transducer membranes, where “n” is the bit number. Every element of the array has a circular shape structure. The membrane is made out four layers: 300nm of platinum for the bottom electrode, 250nm or lead zirconate titanate (PZT), a top electrode of 300nm and a structural layer of 50

  12. Differential Thermal Analysis and Dielectric Studies on 2-Methyl-2-Nitro-Propane under High Pressure

    Science.gov (United States)

    Büsing, D.; Jenau, M.; Reuter, J.; Würflinger, A.; Tamarit, J. Li.

    1995-05-01

    Differential thermal analysis and dielectric studies under pressures up to 300 MPa and temperatures of about 200 to 350 K have been performed on 2-methyl-2-nitro-propane (TBN). TBN displays an orientationally disordered phase (ODIC), solid I, and two non-plastic phases, solids II and III. The coexistence region of the plastic phase I increases with increasing pressure, whereas the low-temperature phase II apparently vanishes at a triple point I, II, III, above 300 MPa. The static permittivity increases on freezing, characterizing the solid I as an ODIC phase. In the frame of the Kirkwood-Onsager-Fröhlich theory the g-factor is about unity, discounting specific dielectric correlations. The dielectric behaviour of TBN is similar to previously studied related compounds, such as 2-chloro-2-methyl-propane or 2-brome- 2-methyl-propane

  13. An analytical investigation on the valve and centrifugal pump speed control with a constant differential pressure across the valve

    International Nuclear Information System (INIS)

    Jung, B. R.; Joo, K. I.; Lee, B. J.; Baek, S. J.; Noh, T. S.

    2003-01-01

    A valve opening and centrifugal pump speed control was investigated analytically in a simple pumping system where the differential pressure across the control valve is maintained constant over the required flow range. The valve control program was derived analytically only as a function of the required flow rate to maintain the constant differential pressure across the valve. The centrifugal pump speed control program was also derived analytically for the required flow rate for the constant differential pressure across the control valve. These derivations theoretically show that the independent control is possible between the valve and pump speed in a system with a constant valve pressure drop. In addition, it was shown that a linear pump speed control is impossible in maintaining the constant valve pressure drop

  14. High Temperature Heat Exchanger Design and Fabrication for Systems with Large Pressure Differentials

    Energy Technology Data Exchange (ETDEWEB)

    Chordia, Lalit [Thar Energy, LLC, Pittsburgh, PA (United States); Portnoff, Marc A. [Thar Energy, LLC, Pittsburgh, PA (United States); Green, Ed [Thar Energy, LLC, Pittsburgh, PA (United States)

    2017-03-31

    The project’s main purpose was to design, build and test a compact heat exchanger for supercritical carbon dioxide (sCO2) power cycle recuperators. The compact recuperator is required to operate at high temperature and high pressure differentials, 169 bar (~2,500 psi), between streams of sCO2. Additional project tasks included building a hot air-to-sCO2 Heater heat exchanger (HX) and design, build and operate a test loop to characterize the recuperator and heater heat exchangers. A novel counter-current microtube recuperator was built to meet the high temperature high differential pressure criteria and tested. The compact HX design also incorporated a number of features that optimize material use, improved reliability and reduced cost. The air-to-sCO2 Heater HX utilized a cross flow, counter-current, micro-tubular design. This compact HX design was incorporated into the test loop and exceeded design expectations. The test loop design to characterize the prototype Brayton power cycle HXs was assembled, commissioned and operated during the program. Both the prototype recuperator and Heater HXs were characterized. Measured results for the recuperator confirmed the predictions of the heat transfer models developed during the project. Heater HX data analysis is ongoing.

  15. Detection and generation of first sound in4He by vibrating superleak transducers

    Science.gov (United States)

    Giordano, N.; Edison, N.

    1986-07-01

    Measurement is made of the first-sound generation and detection efficiencies of vibrating superleak transducers (VSTs) operated in superfluid4He. This is accomplished by using an ordinary pressure transducer to generate first sound with a VST as the detector, and by using a pressure transducer to detect the sound generated by a VST. The results are in reasonably good agreement with the current theory of VST operation.

  16. Detection and generation of first sound in 4He by vibrating superleak transducers

    International Nuclear Information System (INIS)

    Giordano, N.; Edison, N.

    1986-01-01

    Measurement is made of the first-sound generation and detection efficiencies of vibrating superleak transducers (VSTs) operated in superfluid 4 He. This is accomplished by using an ordinary pressure transducer to generate first sound with a VST as the detector, and by using a pressure transducer to detect the sound generated by a VST. The results are in reasonably good agreement with the current theory of VST operation

  17. Novel Therapeutic Effects of Non-thermal atmospheric pressure plasma for Muscle Regeneration and Differentiation

    Science.gov (United States)

    Choi, Jae Won; Kang, Sung Un; Kim, Yang Eun; Park, Ju Kyeong; Yang, Sang Sik; Kim, Yeon Soo; Lee, Yun Sang; Lee, Yuijina; Kim, Chul-Ho

    2016-01-01

    Skeletal muscle can repair muscle tissue damage, but significant loss of muscle tissue or its long-lasting chronic degeneration makes injured skeletal muscle tissue difficult to restore. It has been demonstrated that non-thermal atmospheric pressure plasma (NTP) can be used in many biological areas including regenerative medicine. Therefore, we determined whether NTP, as a non-contact biological external stimulator that generates biological catalyzers, can induce regeneration of injured muscle without biomaterials. Treatment with NTP in the defected muscle of a Sprague Dawley (SD) rat increased the number of proliferating muscle cells 7 days after plasma treatment (dapt) and rapidly induced formation of muscle tissue and muscle cell differentiation at 14 dapt. In addition, in vitro experiments also showed that NTP could induce muscle cell proliferation and differentiation of human muscle cells. Taken together, our results demonstrated that NTP promotes restoration of muscle defects through control of cell proliferation and differentiation without biological or structural supporters, suggesting that NTP has the potential for use in muscle tissue engineering and regenerative therapies. PMID:27349181

  18. Differential pressure measurement using a free-flying insect-like ornithopter with an MEMS sensor

    International Nuclear Information System (INIS)

    Takahashi, Hidetoshi; Aoyama, Yuichiro; Ohsawa, Kazuharu; Iwase, Eiji; Matsumoto, Kiyoshi; Shimoyama, Isao; Tanaka, Hiroto

    2010-01-01

    This paper presents direct measurements of the aerodynamic forces on the wing of a free-flying, insect-like ornithopter that was modeled on a hawk moth (Manduca sexta). A micro differential pressure sensor was fabricated with micro electro mechanical systems (MEMS) technology and attached to the wing of the ornithopter. The sensor chip was less than 0.1% of the wing area. The mass of the sensor chip was 2.0 mg, which was less than 1% of the wing mass. Thus, the sensor was both small and light in comparison with the wing, resulting in a measurement system that had a minimal impact on the aerodynamics of the wing. With this sensor, the 'pressure coefficient' of the ornithopter wing was measured during both steady airflow and actual free flight. The maximum pressure coefficient observed for steady airflow conditions was 1.4 at an angle of attack of 30 0 . In flapping flight, the coefficient was around 2.0 for angles of attack that ranged from 25 0 to 40 0 . Therefore, a larger aerodynamic force was generated during the downstroke in free flight compared to steady airflow conditions.

  19. Remote Sensing Global Surface Air Pressure Using Differential Absorption BArometric Radar (DiBAR)

    Science.gov (United States)

    Lin, Bing; Harrah, Steven; Lawrence, Wes; Hu, Yongxiang; Min, Qilong

    2016-01-01

    Tropical storms and severe weathers are listed as one of core events that need improved observations and predictions in World Meteorological Organization and NASA Decadal Survey (DS) documents and have major impacts on public safety and national security. This effort tries to observe surface air pressure, especially over open seas, from space using a Differential-absorption BArometric Radar (DiBAR) operating at the 50-55 gigahertz O2 absorption band. Air pressure is among the most important variables that affect atmospheric dynamics, and currently can only be measured by limited in-situ observations over oceans. Analyses show that with the proposed space radar the errors in instantaneous (averaged) pressure estimates can be as low as approximately 4 millibars (approximately 1 millibar under all weather conditions). With these sea level pressure measurements, the forecasts of severe weathers such as hurricanes will be significantly improved. Since the development of the DiBAR concept about a decade ago, NASA Langley DiBAR research team has made substantial progress in advancing the concept. The feasibility assessment clearly shows the potential of sea surface barometry using existing radar technologies. The team has developed a DiBAR system design, fabricated a Prototype-DiBAR (P-DiBAR) for proof-of-concept, conducted lab, ground and airborne P-DiBAR tests. The flight test results are consistent with the instrumentation goals. Observational system simulation experiments for space DiBAR performance based on the existing DiBAR technology and capability show substantial improvements in tropical storm predictions, not only for the hurricane track and position but also for the hurricane intensity. DiBAR measurements will lead us to an unprecedented level of the prediction and knowledge on global extreme weather and climate conditions.

  20. Investigation of Kinetic Hydrate Inhibition Using a High Pressure Micro Differential Scanning Calorimeter

    DEFF Research Database (Denmark)

    Daraboina, Nagu; Malmos, Christine; von Solms, Nicolas

    2013-01-01

    of hydrate growth. Additionally, hydrate formed in the presence of inhibitor decomposed at higher temperatures compared to pure water, indicating that while hydrate formation is initially inhibited; once hydrates form, they are more stable in the presence of inhibitor. Overall, this method proved a viable......Methane hydrate formation and decomposition were investigated in the presence of the kinetic inhibitor (Luvicap EG) and synergist (polyethylene oxide; PEO) using a high pressure micro-differential scanning calorimeter (HP-μDSC) with both temperature ramping and isothermal temperature programs....... These investigations were performed using small samples in four different capillary tubes in the calorimeter cell. When the isothermal method was employed, it was found that Luvicap EG significantly delays the hydrate nucleation time as compared to water. The results obtained from the ramping method demonstrated...

  1. Circuit for Driving Piezoelectric Transducers

    Science.gov (United States)

    Randall, David P.; Chapsky, Jacob

    2009-01-01

    The figure schematically depicts an oscillator circuit for driving a piezoelectric transducer to excite vibrations in a mechanical structure. The circuit was designed and built to satisfy application-specific requirements to drive a selected one of 16 such transducers at a regulated amplitude and frequency chosen to optimize the amount of work performed by the transducer and to compensate for both (1) temporal variations of the resonance frequency and damping time of each transducer and (2) initially unknown differences among the resonance frequencies and damping times of different transducers. In other words, the circuit is designed to adjust itself to optimize the performance of whichever transducer is selected at any given time. The basic design concept may be adaptable to other applications that involve the use of piezoelectric transducers in ultrasonic cleaners and other apparatuses in which high-frequency mechanical drives are utilized. This circuit includes three resistor-capacitor networks that, together with the selected piezoelectric transducer, constitute a band-pass filter having a peak response at a frequency of about 2 kHz, which is approximately the resonance frequency of the piezoelectric transducers. Gain for generating oscillations is provided by a power hybrid operational amplifier (U1). A junction field-effect transistor (Q1) in combination with a resistor (R4) is used as a voltage-variable resistor to control the magnitude of the oscillation. The voltage-variable resistor is part of a feedback control loop: Part of the output of the oscillator is rectified and filtered for use as a slow negative feedback to the gate of Q1 to keep the output amplitude constant. The response of this control loop is much slower than 2 kHz and, therefore, does not introduce significant distortion of the oscillator output, which is a fairly clean sine wave. The positive AC feedback needed to sustain oscillations is derived from sampling the current through the

  2. Design of compact piezoelectric transducers for shock wave applications

    Science.gov (United States)

    Dreyer, Thomas; Liebler, Marko; Riedlinger, Rainer E.; Ginter, Siegfried

    2003-10-01

    The application of focused intense sound pulses to treat several orthopedic diseases has gained in importance during the past years. Self-focusing piezoelectric transducers known from ESWL are not well suited for this purpose due to their size. Therefore compact transducers have to be designed. This implies an increase of the pressure pulse amplitude generated at the radiating surface. A stacked placement of two piezoelectric layers driven by two high-voltage pulses with an adjustable delay accomplishes this. Several designs are presented here representing transducers of different sizes. In principle piezoelectric transducers have the ability to vary the pressure pulse shape to a wider extent than other shock wave sources. Based on FEM simulations of the transducer the influence of some driving parameters, like a variation of the interpulse delay or shape of the driving voltage, on the resulting focal pressure signal is demonstrated. The results show the feasibility to control some parameters of the signal, for example the peak negative pressure amplitude. This possibility could provide new aspects in basic research as well as in clinical applications.

  3. Differential Post-Exercise Blood Pressure Responses between Blacks and Caucasians.

    Science.gov (United States)

    Yan, Huimin; Behun, Michael A; Cook, Marc D; Ranadive, Sushant M; Lane-Cordova, Abbi D; Kappus, Rebecca M; Woods, Jeffrey A; Wilund, Kenneth R; Baynard, Tracy; Halliwill, John R; Fernhall, Bo

    2016-01-01

    Post-exercise hypotension (PEH) is widely observed in Caucasians (CA) and is associated with histamine receptors 1- and 2- (H1R and H2R) mediated post-exercise vasodilation. However, it appears that blacks (BL) may not exhibit PEH following aerobic exercise. Hence, this study sought to determine the extent to which BL develop PEH, and the contribution of histamine receptors to PEH (or lack thereof) in this population. Forty-nine (22 BL, 27 CA) young and healthy subjects completed the study. Subjects were randomly assigned to take either a combined H1R and H2R antagonist (fexofenadine and ranitidine) or a control placebo. Supine blood pressure (BP), cardiac output and peripheral vascular resistance measurements were obtained at baseline, as well as at 30 min, 60 min and 90 min after 45 min of treadmill exercise at 70% heart rate reserve. Exercise increased diastolic BP in young BL but not in CA. Post-exercise diastolic BP was also elevated in BL after exercise with histamine receptor blockade. Moreover, H1R and H2R blockade elicited differential responses in stroke volume between BL and CA at rest, and the difference remained following exercise. Our findings show differential BP responses following exercise in BL and CA, and a potential role of histamine receptors in mediating basal and post-exercise stroke volume in BL. The heightened BP and vascular responses to exercise stimulus is consistent with the greater CVD risk in BL.

  4. Differential diagnosis of normal pressure hydrocephalus by MRI mean diffusivity histogram analysis.

    Science.gov (United States)

    Ivkovic, M; Liu, B; Ahmed, F; Moore, D; Huang, C; Raj, A; Kovanlikaya, I; Heier, L; Relkin, N

    2013-01-01

    Accurate diagnosis of normal pressure hydrocephalus is challenging because the clinical symptoms and radiographic appearance of NPH often overlap those of other conditions, including age-related neurodegenerative disorders such as Alzheimer and Parkinson diseases. We hypothesized that radiologic differences between NPH and AD/PD can be characterized by a robust and objective MR imaging DTI technique that does not require intersubject image registration or operator-defined regions of interest, thus avoiding many pitfalls common in DTI methods. We collected 3T DTI data from 15 patients with probable NPH and 25 controls with AD, PD, or dementia with Lewy bodies. We developed a parametric model for the shape of intracranial mean diffusivity histograms that separates brain and ventricular components from a third component composed mostly of partial volume voxels. To accurately fit the shape of the third component, we constructed a parametric function named the generalized Voss-Dyke function. We then examined the use of the fitting parameters for the differential diagnosis of NPH from AD, PD, and DLB. Using parameters for the MD histogram shape, we distinguished clinically probable NPH from the 3 other disorders with 86% sensitivity and 96% specificity. The technique yielded 86% sensitivity and 88% specificity when differentiating NPH from AD only. An adequate parametric model for the shape of intracranial MD histograms can distinguish NPH from AD, PD, or DLB with high sensitivity and specificity.

  5. Micromachined Integrated Transducers for Ultrasound Imaging

    DEFF Research Database (Denmark)

    la Cour, Mette Funding

    The purpose of this project is to develop capacitive micromachined ultrasonic transducers (CMUTs) for medical imaging. Medical ultrasound transducers used today are fabricated using piezoelectric materials and bulk processing. To fabricate transducers capable of delivering a higher imaging...

  6. Experimental Evaluation of Three Designs of Electrodynamic Flexural Transducers

    Directory of Open Access Journals (Sweden)

    Tobias J. R. Eriksson

    2016-08-01

    Full Text Available Three designs for electrodynamic flexural transducers (EDFT for air-coupled ultrasonics are presented and compared. An all-metal housing was used for robustness, which makes the designs more suitable for industrial applications. The housing is designed such that there is a thin metal plate at the front, with a fundamental flexural vibration mode at ∼50 kHz. By using a flexural resonance mode, good coupling to the load medium was achieved without the use of matching layers. The front radiating plate is actuated electrodynamically by a spiral coil inside the transducer, which produces an induced magnetic field when an AC current is applied to it. The transducers operate without the use of piezoelectric materials, which can simplify manufacturing and prolong the lifetime of the transducers, as well as open up possibilities for high-temperature applications. The results show that different designs perform best for the generation and reception of ultrasound. All three designs produced large acoustic pressure outputs, with a recorded sound pressure level (SPL above 120 dB at a 40 cm distance from the highest output transducer. The sensitivity of the transducers was low, however, with single shot signal-to-noise ratio ( SNR ≃ 15 dB in transmit–receive mode, with transmitter and receiver 40 cm apart.

  7. Application of smart differential pressure transmitters (DPTS) for containment studies facility (CSF)

    International Nuclear Information System (INIS)

    Shanware, V.M.; Gole, N.V.; Sebastian, A.; Subramaniam, K.

    2001-01-01

    Containment Studies Facility (CSF) is being set up in BARC for studying various containment related thermal hydraulic and other processes during simulated conditions of pipe rupture. The set up consists of a model reactor containment vessel with a model primary heat transport system. Besides, provisions exist to introduce aerosols and hydrogen also in the containment model. The instrumentation includes measurement of the process temperatures, pressures, levels, flows, humidity, etc. Differential Pressure Transmitters (DPT) will be used for measurement of levels and flows in the CSF. The procured DPTs for this facility are smart. Conventional transmitters have a rangeability specification of 5 or 6. But the smart transmitters have rangeability varying between 40-100. Smart transmitters have facility to change its operating range online. This enables the provision of zooming in on the selected range and narrowing the range around the point of measurement. This facility can be exploited to realise the maximum possible accuracy at the smallest possible range around the point of measurement. This paper describes how the smart DPTs function, how the Highway Addressable Remote Transmitter (HART) protocol works and how we propose to use the on-line rangeability of these DPTs get the highest resolution in our measurements. (author)

  8. Turbine transducer developed for adverse conditions

    International Nuclear Information System (INIS)

    Cooper, D.R.; Edson, J.L.

    1982-01-01

    This paper reviews the latest developments that the Idaho National Engineering Laboratory (INEL) has made on a turbine transducer used in measurement of two-phase flow. It is operated in a modular configuration with a drag transducer to provide mass flow data. Current configurations allow its use in single modules or in multiples to provide flow profile information. The turbine can also provide mass flow data when used with associated instrumentation such as a densitometer. The transducer, which is the product of long investigations and test series, is subject to high vibration loading and high temperatures as well as a borated liquid environment; flow conditions range from all liquid to all steam and from ambient temperatures to over 600 0 F at pressures up to 2200 psi. Graphite bearing and carbide shaft materials were selected to provide corrosion resistance along with mechanical integrity, and resistance to wear. The new turbine design has met all operational requirements in actual use and in extended lifetime tests

  9. A study on the stem friction coefficient with differential pressure conditions for the motor operated flexible wedge gate valve

    International Nuclear Information System (INIS)

    Kim, Dae Woong; Park, Sung Keun; Kim, Yang Seok; Lee, Do Hwan

    2008-01-01

    Stem friction coefficient is very important parameter for the evaluation of valve performance. In this study, the characteristics of stem friction coefficient is analyzed, and the bounding value is determined. The hydraulic testing is performed for flexible wedge gate valves in the plant and statistical method is applied to the determination of bounding value. According to the results of this study, stem friction coefficient is not effected in low differential pressure condition, but it is showed different distribution in medium and high differential pressure condition. And the bounding value of closing stroke is higher than that of opening stroke

  10. The Distinct Effects of Estrogen and Hydrostatic Pressure on Mesenchymal Stem Cells Differentiation: Involvement of Estrogen Receptor Signaling.

    Science.gov (United States)

    Zhao, Ying; Yi, Fei-Zhou; Zhao, Yin-Hua; Chen, Yong-Jin; Ma, Heng; Zhang, Min

    2016-10-01

    This study aimed to investigate the differential and synergistic effects of mechanical stimulation and estrogen on the proliferation and osteogenic or chondrogenic differentiation potential of bone marrow mesenchymal stem cells (BMSCs) and the roles of estrogen receptor (ER) in them. BMSCs were isolated and cultured using the whole bone marrow adherence method, and flow cytometry was used to identify the surface marker molecules of BMSCs. Cells were pre-treated with 1 nM 17β-estradiol or 1 nM of the estrogen receptor antagonist tamoxifen. Then, the cells were stimulated with hydrostatic pressure. Assessment included flow cytometry analysis of the cell cycle; immunofluorescent staining for F-actin; protein quantification for MAPK protein; and mRNA analysis for Col I, OCN, OPN and BSP after osteogenic induction and Sox-9, Aggrecan and Col-II after chondrogenic induction. Hydrostatic pressure (90 kPa/1 h) and 1 nM 17β-estradiol enhanced the cellular proliferation ability and the cytoskeleton activity but without synergistic biological effects. Estrogen activated ERKs and JNKs simultaneously and promoted the osteogenic differentiation, whereas the pressure just caused JNK-1/2 activation and promoted the chondrogenic differentiation of BMSCs. Estrogen had antagonism effect on chondrogenic promotion of hydrostatic pressure. Mechanobiological effects of hydrostatic pressure are closely associated with ERα activity. MAPK molecules and F-actin were likely to be important mediator molecules in the ER-mediated mechanotransduction of BMSCs.

  11. Updated Results of Ultrasonic Transducer Irradiation Test

    Energy Technology Data Exchange (ETDEWEB)

    Daw, Joshua; Palmer, Joe [Idaho National Laboratory, P.O. Box 1625, MS 4112, Idaho Falls, ID, 38415-3840 (United States); Ramuhalli, Pradeep; Keller, Paul; Montgomery, Robert [Pacific Northwest National Laboratory, 902 Battelle Blvd. Richland, WA, 99354 (United States); Chien, Hual-Te [Argonne National Laboratory, 9700 S. Cass Avenue Argonne, IL, 60439 (United States); Tittmann, Bernhard; Reinhardt, Brian [Pennsylvania State University, 212 Earth and Engr. Sciences Building, University Park, PA, 16802 (United States); Kohse, Gordon [Massachusetts Institute of Technology, 77 Massachusetts Ave. Cambridge, MA 02139 (United States); Rempe, Joy [Rempe and Associates, LLC, 360 Stillwater, Idaho Falls, ID 83404 (United States); Villard, J.F. [Commissariat a l' energie atomique et aux energies alternatives, Centre d' etudes de Cadarache, 13108 Saint-Paul-lez-Durance (France)

    2015-07-01

    Ultrasonic technologies offer the potential for high accuracy and resolution in-pile measurement of a range of parameters, including geometry changes, temperature, crack initiation and growth, gas pressure and composition, and microstructural changes. Many Department of Energy-Office of Nuclear Energy (DOE-NE) programs are exploring the use of ultrasonic technologies to provide enhanced sensors for in-pile instrumentation during irradiation testing. For example, the ability of small diameter ultrasonic thermometers (UTs) to provide a temperature profile in candidate metallic and oxide fuel would provide much needed data for validating new fuel performance models. These efforts are limited by the lack of identified ultrasonic transducer materials capable of long term performance under irradiation test conditions. To address this need, the Pennsylvania State University (PSU) was awarded an Advanced Test Reactor National Scientific User Facility (ATR NSUF) project to evaluate the performance of promising magnetostrictive and piezoelectric transducers in the Massachusetts Institute of Technology Research Reactor (MITR) up to a fast fluence of at least 10{sup 21} n/cm{sup 2}. A multi-National Laboratory collaboration funded by the Nuclear Energy Enabling Technologies Advanced Sensors and Instrumentation (NEET-ASI) program also provided initial support for this effort. This irradiation, which started in February 2014, is an instrumented lead test and real-time transducer performance data are collected along with temperature and neutron and gamma flux data. The irradiation is ongoing and will continue to approximately mid-2015. To date, very encouraging results have been attained as several transducers continue to operate under irradiation. (authors)

  12. An enzyme logic bioprotonic transducer

    Energy Technology Data Exchange (ETDEWEB)

    Miyake, Takeo; Keene, Scott; Deng, Yingxin; Rolandi, Marco, E-mail: rolandi@uw.edu [Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195-2120 (United States); Josberger, Erik E. [Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195-2120 (United States); Department of Electrical Engineering, University of Washington, Seattle, Washington 98195-2500 (United States)

    2015-01-01

    Translating ionic currents into measureable electronic signals is essential for the integration of bioelectronic devices with biological systems. We demonstrate the use of a Pd/PdH{sub x} electrode as a bioprotonic transducer that connects H{sup +} currents in solution into an electronic signal. This transducer exploits the reversible formation of PdH{sub x} in solution according to PdH↔Pd + H{sup +} + e{sup −}, and the dependence of this formation on solution pH and applied potential. We integrate the protonic transducer with glucose dehydrogenase as an enzymatic AND gate for glucose and NAD{sup +}. PdH{sub x} formation and associated electronic current monitors the output drop in pH, thus transducing a biological function into a measurable electronic output.

  13. Continuous hydrostatic pressure induces differentiation phenomena in chondrocytes mediated by changes in polycystins, SOX9, and RUNX2.

    Science.gov (United States)

    Karamesinis, Konstantinos; Spyropoulou, Anastasia; Dalagiorgou, Georgia; Katsianou, Maria A; Nokhbehsaim, Marjan; Memmert, Svenja; Deschner, James; Vastardis, Heleni; Piperi, Christina

    2017-01-01

    The present study aimed to investigate the long-term effects of hydrostatic pressure on chondrocyte differentiation, as indicated by protein levels of transcription factors SOX9 and RUNX2, on transcriptional activity of SOX9, as determined by pSOX9 levels, and on the expression of polycystin-encoding genes Pkd1 and Pkd2. ATDC5 cells were cultured in insulin-supplemented differentiation medium (ITS) and/or exposed to 14.7 kPa of hydrostatic pressure for 12, 24, 48, and 96 h. Cell extracts were assessed for SOX9, pSOX9, and RUNX2 using western immunoblotting. The Pkd1 and Pkd2 mRNA levels were detected by real-time PCR. Hydrostatic pressure resulted in an early drop in SOX9 and pSOX9 protein levels at 12 h followed by an increase from 24 h onwards. A reverse pattern was followed by RUNX2, which reached peak levels at 24 h of hydrostatic pressure-treated chondrocytes in ITS culture. Pkd1 and Pkd2 mRNA levels increased at 24 h of combined hydrostatic pressure and ITS treatment, with the latter remaining elevated up to 96 h. Our data indicate that long periods of continuous hydrostatic pressure stimulate chondrocyte differentiation through a series of molecular events involving SOX9, RUNX2, and polycystins-1, 2, providing a theoretical background for functional orthopedic mechanotherapies.

  14. Design of HIFU Transducers for Generating Specified Nonlinear Ultrasound Fields.

    Science.gov (United States)

    Rosnitskiy, Pavel B; Yuldashev, Petr V; Sapozhnikov, Oleg A; Maxwell, Adam D; Kreider, Wayne; Bailey, Michael R; Khokhlova, Vera A

    2017-02-01

    Various clinical applications of high-intensity focused ultrasound have different requirements for the pressure levels and degree of nonlinear waveform distortion at the focus. The goal of this paper is to determine transducer design parameters that produce either a specified shock amplitude in the focal waveform or specified peak pressures while still maintaining quasi-linear conditions at the focus. Multiparametric nonlinear modeling based on the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation with an equivalent source boundary condition was employed. Peak pressures, shock amplitudes at the focus, and corresponding source outputs were determined for different transducer geometries and levels of nonlinear distortion. The results are presented in terms of the parameters of an equivalent single-element spherically shaped transducer. The accuracy of the method and its applicability to cases of strongly focused transducers were validated by comparing the KZK modeling data with measurements and nonlinear full diffraction simulations for a single-element source and arrays with 7 and 256 elements. The results provide look-up data for evaluating nonlinear distortions at the focus of existing therapeutic systems as well as for guiding the design of new transducers that generate specified nonlinear fields.

  15. Electronic structure computation and differential capacitance profile in δ-doped FET as a function of hydrostatic pressure

    Energy Technology Data Exchange (ETDEWEB)

    Carlos-Pinedo, C.; Rodríguez-Vargas, I.; Martínez-Orozco, J. C. [Unidad Académica de Física. Universidad Autónoma de Zacatecas. Calzada Solidaridad Esquina con Paseo la Bufa S/N. C.P. 98060, Zacatecas, Zac. (Mexico)

    2014-05-15

    In this work we present the results obtained from the calculation of the level structure of a n-type delta-doped well Field Effect Transistor when is subjected to hydrostatic pressure. We study the energy level structure as a function of hydrostatic pressure within the range of 0 to 6 kbar for different Schottky barrier height (SBH). We use an analytical expression for the effect of hydrostatic pressure on the SBH and the pressure dependence of the basic parameters of the system as the effective mass m(P) and the dielectric constant ε(P) of GaAs. We found that due to the effects of hydrostatic pressure, in addition to electronic level structure alteration, the profile of the differential capacitance per unit area C{sup −2} is affected.

  16. Electronic structure computation and differential capacitance profile in δ-doped FET as a function of hydrostatic pressure

    International Nuclear Information System (INIS)

    Carlos-Pinedo, C.; Rodríguez-Vargas, I.; Martínez-Orozco, J. C.

    2014-01-01

    In this work we present the results obtained from the calculation of the level structure of a n-type delta-doped well Field Effect Transistor when is subjected to hydrostatic pressure. We study the energy level structure as a function of hydrostatic pressure within the range of 0 to 6 kbar for different Schottky barrier height (SBH). We use an analytical expression for the effect of hydrostatic pressure on the SBH and the pressure dependence of the basic parameters of the system as the effective mass m(P) and the dielectric constant ε(P) of GaAs. We found that due to the effects of hydrostatic pressure, in addition to electronic level structure alteration, the profile of the differential capacitance per unit area C −2 is affected

  17. Receive-Noise Analysis of Capacitive Micromachined Ultrasonic Transducers.

    Science.gov (United States)

    Bozkurt, Ayhan; Yaralioglu, G Goksenin

    2016-11-01

    This paper presents an analysis of thermal (Johnson) noise received from the radiation medium by otherwise noiseless capacitive micromachined ultrasonic transducer (CMUT) membranes operating in their fundamental resonance mode. Determination of thermal noise received by multiple numbers of transducers or a transducer array requires the assessment of cross-coupling through the radiation medium, as well as the self-radiation impedance of the individual transducer. We show that the total thermal noise received by the cells of a CMUT has insignificant correlation, and is independent of the radiation impedance, but is only determined by the mass of each membrane and the electromechanical transformer ratio. The proof is based on the analytical derivations for a simple transducer with two cells, and extended to transducers with numerous cells using circuit simulators. We used a first-order model, which incorporates the fundamental resonance of the CMUT. Noise power is calculated by integrating over the entire spectrum; hence, the presented figures are an upper bound for the noise. The presented analyses are valid for a transimpedance amplifier in the receive path. We use the analysis results to calculate the minimum detectable pressure of a CMUT. We also provide an analysis based on the experimental data to show that output noise power is limited by and comparable to the theoretical upper limit.

  18. Characterization of Dielectric Electroactive Polymer transducers

    DEFF Research Database (Denmark)

    Nielsen, Dennis; Møller, Martin B.; Sarban, Rahimullah

    2014-01-01

    This paper analysis the small-signal model of the Dielectric Electro Active Polymer (DEAP) transducer. The DEAP transducer have been proposed as an alternative to the electrodynamic transducer in sound reproduction systems. In order to understand how the DEAP transducer works, and provide...

  19. Pressure-modulated differential scanning calorimetry. An approach to the continuous, simultaneous determination of heat capacities and expansion coefficients.

    Science.gov (United States)

    Boehm, K; Rösgen, J; Hinz, H-J

    2006-02-15

    A new method is described that permits the continuous and synchronous determination of heat capacity and expansibility data. We refer to it as pressure-modulated differential scanning calorimetry (PMDSC), as it involves a standard DSC temperature scan and superimposes on it a pressure modulation of preselected format. The power of the method is demonstrated using salt solutions for which the most accurate heat capacity and expansibility data exist in the literature. As the PMDSC measurements could reproduce the parameters with high accuracy and precision, we applied the method also to an aqueous suspension of multilamellar DSPC vesicles for which no expansibility data had been reported previously for the transition region. Excellent agreement was obtained between data from PMDSC and values from independent direct differential scanning densimetry measurements. The basic theoretical background of the method when using sawtooth-like pressure ramps is given under Supporting Information, and a complete statistical thermodynamic derivation of the general equations is presented in the accompanying paper.

  20. A Float Type Liquid Level Measuring System Using a Modified Inductive Transducer

    Directory of Open Access Journals (Sweden)

    Samik MARICK

    2014-11-01

    Full Text Available Float type liquid level sensor is generally used as a very simple technique for local level indication and level switching. In the present paper a technique has been proposed to transmit the measured liquid level signal of a float type sensor at remote terminal using a modified differential inductance type electromechanical transducer. The theoretical characteristic equation of this transducer has been derived. A prototype unit of the transducer has been developed and fabricated and its performance characteristic has been experimentally determined. The experimental results are reported in the paper. From experimental data, a very good linear characteristic of the proposed level transducer has been observed.

  1. Multiple single-element transducer photoacoustic computed tomography system

    Science.gov (United States)

    Kalva, Sandeep Kumar; Hui, Zhe Zhi; Pramanik, Manojit

    2018-02-01

    Light absorption by the chromophores (hemoglobin, melanin, water etc.) present in any biological tissue results in local temperature rise. This rise in temperature results in generation of pressure waves due to the thermoelastic expansion of the tissue. In a circular scanning photoacoustic computed tomography (PACT) system, these pressure waves can be detected using a single-element ultrasound transducer (SUST) (while rotating in full 360° around the sample) or using a circular array transducer. SUST takes several minutes to acquire the PA data around the sample whereas the circular array transducer takes only a fraction of seconds. Hence, for real time imaging circular array transducers are preferred. However, these circular array transducers are custom made, expensive and not easily available in the market whereas SUSTs are cheap and readily available in the market. Using SUST for PACT systems is still cost effective. In order to reduce the scanning time to few seconds instead of using single SUST (rotating 360° ), multiple SUSTs can be used at the same time to acquire the PA data. This will reduce the scanning time by two-fold in case of two SUSTs (rotating 180° ) or by four-fold and eight-fold in case of four SUSTs (rotating 90° ) and eight SUSTs (rotating 45° ) respectively. Here we show that with multiple SUSTs, similar PA images (numerical and experimental phantom data) can be obtained as that of PA images obtained using single SUST.

  2. Auto-positioning ultrasonic transducer system

    Science.gov (United States)

    Buchanan, Randy K. (Inventor)

    2010-01-01

    An ultrasonic transducer apparatus and process for determining the optimal transducer position for flow measurement along a conduit outer surface. The apparatus includes a transmitting transducer for transmitting an ultrasonic signal, said transducer affixed to a conduit outer surface; a guide rail attached to a receiving transducer for guiding movement of a receiving transducer along the conduit outer surface, wherein the receiving transducer receives an ultrasonic signal from the transmitting transducer and sends a signal to a data acquisition system; and a motor for moving the receiving transducer along the guide rail, wherein the motor is controlled by a controller. The method includes affixing a transmitting transducer to an outer surface of a conduit; moving a receiving transducer on the conduit outer surface, wherein the receiving transducer is moved along a guide rail by a motor; transmitting an ultrasonic signal from the transmitting transducer that is received by the receiving transducer; communicating the signal received by the receiving transducer to a data acquisition and control system; and repeating the moving, transmitting, and communicating along a length of the conduit.

  3. Modeling piezoelectric ultrasonic transducers for physiotherapy

    International Nuclear Information System (INIS)

    Iglesias, E.; Frutos, J. de; Montero de Espinosa, F.

    2015-01-01

    Applications of ultrasound are well known in medical and aesthetic skin and subcutaneous fatty tissue mobilization treatments. The basic transducer used consists of a piezoelectric disk adhered to a metal delay line in capsule shape. The capsule design is critical since the two bonded elements have vibration modes which can cause very inefficient designs and vibration distributions very irregular if they are not properly studied and utilized. This must be known to avoid distributions of heat and sound pressure that could be ineffective or harmful. In this paper, using Finite Element Method and laser interferometric vibrational analysis, it has reached a piston-type solution that allows properly implement sound pressure vibration dose. (Author)

  4. Design and Construction of Strain Gauge Interface Pressure ...

    African Journals Online (AJOL)

    Design and Construction of Strain Gauge Interface Pressure Transducer for Measurement of Static and Dynamic Interface Pressure Applied by Pressure Garments and its Relationship to Deep Vein Thrombosis.

  5. Temperature-compensated pressure detectors and transmitter for use in hostile environment

    International Nuclear Information System (INIS)

    Di Noia, E.J.; Breunich, T.R.

    1984-01-01

    A pressure or differential pressure detector suitable for use in a hostile environment, for example, under high pressure, temperature, and radiation conditions in the containment vessel of a nuclear generating plant includes as a transducer a linear variable differential transformer (LVDT) disposed within a detector housing designed to withstand temperatures of about 260 deg C. A signal detecting and conditioning circuit remote from the detector housing includes a demodulator for producing X and Y demodulated signals respectively from A and B secondary windings of the LVDT, a summing circuit for producing a temperature analog voltage X + Y, a subtractor for providing a differential pressure analog voltage X - Y, and a multiplier for multiplying the differential pressure analog voltage X - Y by a temperature compensation voltage X + Y - Ref based on the temperature analog voltage to provide a resulting temperature-compensated differential pressure analog signal. (author)

  6. Differential Effects of Continuous Versus Discontinuous Aerobic Training on Blood Pressure and Hemodynamics.

    Science.gov (United States)

    Landram, Michael J; Utter, Alan C; Baldari, Carlo; Guidetti, Laura; McAnulty, Steven R; Collier, Scott R

    2018-01-01

    Landram, MJ, Utter, AC, Baldari, C, Guidetti, L, McAnulty, SR, and Collier, SR. Differential effects of continuous versus discontinuous aerobic training on blood pressure and hemodynamics. J Strength Cond Res 32(1): 97-104, 2018-The purpose of this study was to compare the hemodynamic, arterial stiffness, and blood flow changes after 4 weeks of either continuous or discontinuous aerobic exercise in adults. Forty-seven subjects between the ages of 18 and 57 were recruited for 1 month of either continuous aerobic treadmill work for 30 minutes at 70% max heart rate or 3 bouts of 10 minutes of exercise at 70% of max heart rate with two 10 minutes break periods in between, totaling 30 minutes of aerobic work. After exercise, both continuous (CON) and discontinuous (DIS) groups demonstrated a significant improvement in maximal oxygen uptake (V[Combining Dot Above]O2max, CON 35.39 ± 1.99 to 38.19 ± 2.03; DIS 36.18 ± 1.82 to 39.33 ± 1.75), heart rate maximum (CON 183.5 ± 3.11 to 187.17 ± 3.06; DIS 179.06 ± 2.75 to 182 ± 2.61), decreases in systolic blood pressure (CON 119 ± 1.82 to 115.11 ± 1.50; DIS 117.44 ± 1.90 to 112.67 ± 1.66), diastolic blood pressure (CON 72.56 ± 1.65 to 70.56 ± 1.06; DIS 71.56 ± 1.59 to 69.56 ± 1.43), augmentation index (CON 17.17 ± 2.17 to 14.9 ± 1.92; DIS 19.71 ± 2.66 to 13.91 ± 2.46), central pulse wave velocity (CON 8.29 ± 0.32 to 6.92 ± 0.21; DIS 7.85 ± 0.30 to 6.83 ± 0.29), peripheral pulse wave velocity (CON 9.49 ± 0.35 to 7.72 ± 0.38; DIS 9.11 ± 0.37 to 7.58 ± 0.47), and significant increases in average forearm blood flow (CON 4.06 ± 0.12 to 4.34 ± 0.136; DIS 4.26 ± 0.18 to 4.53 ± 0.15), peak forearm blood flow (FBF) after reactive hyperemia (CON 28.45 ± 0.094 to 29.96 ± 0.45; DIS 29.29 ± 0.46 to 30.6 ± 0.38), area under the curve (AUC) of FBF (CON 28.65 ± 1.77 to 30.4 ± 1.08; DIS 30.52 ± 1.9 to 31.67 ± 1.44), and AUC peak FBF after reactive hyperemia (CON 222.3 ± 5.68 to 231.95 ± 4.42; DIS 230.81

  7. Evoked Pressure Pain Sensitivity Is Associated with Differential Analgesic Response to Verum and Sham Acupuncture in Fibromyalgia.

    Science.gov (United States)

    Zucker, Noah A; Tsodikov, Alex; Mist, Scott D; Cina, Stephen; Napadow, Vitaly; Harris, Richard E

    2017-08-01

    Fibromyalgia is a chronic pain condition with few effective treatments. Many fibromyalgia patients seek acupuncture for analgesia; however, its efficacy is limited and not fully understood. This may be due to heterogeneous pathologies among participants in acupuncture clinical trials. We hypothesized that pressure pain tenderness would differentially classify treatment response to verum and sham acupuncture in fibromyalgia patients. Baseline pressure pain sensitivity at the thumbnail at baseline was used in linear mixed models as a modifier of differential treatment response to sham versus verum acupuncture. Similarly, needle-induced sensation was also analyzed to determine its differential effect of treatment on clinical pain. A cohort of 114 fibromyalgia patients received baseline pressure pain testing and were randomized to either verum (N = 59) or sham (N = 55) acupuncture. Participants received treatments from once a week to three times a week, increasing in three-week blocks for a total of 18 treatments. Clinical pain was measured on a 101-point visual analog scale, and needle sensation was measured by questionnaire throughout the trial. Participants who had higher pain pressure thresholds had greater reduction in clinical pain following verum acupuncture while participants who had lower pain pressure thresholds showed better analgesic response to sham acupuncture. Moreover, patients with lower pressure pain thresholds had exacerbated clinical pain following verum acupuncture. Similar relationships were observed for sensitivity to acupuncture needling. These findings suggest that acupuncture efficacy in fibromyalgia may be underestimated and a more personalized treatment for fibromyalgia may also be possible. © 2017 American Academy of Pain Medicine. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

  8. A digital transducer and digital microphone using an optical technique

    Science.gov (United States)

    Ghelmansarai, F. A.

    1996-09-01

    A transducer is devised to measure pressure, displacements or angles by optical means. This transducer delivers a digital output without relying on interferometry techniques or analogue-to-digital converters. This device is based on an optical scanner and an optical detector. An inter-digital photoconductive detector (IDPC) is employed that delivers a series of pulses, whose number depends on the scan length. A pre-objective scanning configuration is used that allows for the possibility of a flat image plane. The optical scanner provides scanning of IDPC and the generated scan length is proportional to the measurand.

  9. Torque magnetometry by use of capacitance type transducer

    International Nuclear Information System (INIS)

    Braught, M.C.; Pechan, M.J.

    1992-01-01

    Interfacial anisotropy in magnetic multilayered samples comprised of nanometer thick magnetic layers alternating with non-magnetic layers is investigated by torque magnetometry in the temperature regime of 4 to 300K. The design, construction and use of a capacitance type transducer wherein the sample is mounted directly on with the plate of the capacitor, will be described. As a result the sample and transducer spatially coexist at the sample temperature in an applied external field, eliminating mechanical coupling from the cryogenic region to a remote room temperature transducer. The capacitor measuring the torque of the sample is paired with a reference capacitor. The difference between torque influenced capacitance and the reference is then determined by a differential transimpedance amplifier. Since both capacitors are physically identical variables such as temperature, vibration, orientation and external devices are minimized. Torques up to 300 dyne-cm can be measured with a sensitivity of 0.010 dyne-cm

  10. Acoustic Levitation With One Transducer

    Science.gov (United States)

    Barmatz, Martin B.

    1987-01-01

    Higher resonator modes enables simplification of equipment. Experimental acoustic levitator for high-temperature containerless processing has round cylindrical levitation chamber and only one acoustic transducer. Stable levitation of solid particle or liquid drop achieved by exciting sound in chamber to higher-order resonant mode that makes potential well for levitated particle or drop at some point within chamber.

  11. Proceedings of transducer 84 conference

    Energy Technology Data Exchange (ETDEWEB)

    1984-01-01

    In the broad and varied field of sensors this conference reviews thermal sensors for temperature measurements, gas sensors for gas analysis (for example analysis of exhaust gases from vehicles), optical fiber sensors, applications for optics, mechanics, robotics and signal processing. In particular one of the applications concerns acoustical transducers operating in liquid sodium for LMFBR reactors.

  12. Calculations for Piezoelectric Ultrasonic Transducers

    DEFF Research Database (Denmark)

    Jensen, Henrik

    1986-01-01

    Analysis of piezoelectric ultrasonic transducers implies a solution of a boundary value problem, for a boay which consists of different materials, including a piezoelectric part. The problem is dynamic at frequencies, where a typical wavelength is somewhat less than the size of the body. Radiation...

  13. A new hybrid longitudinal–torsional magnetostrictive ultrasonic transducer

    International Nuclear Information System (INIS)

    Karafi, Mohammad Reza; Hojjat, Yousef; Sassani, Farrokh

    2013-01-01

    In this paper, a novel hybrid longitudinal–torsional magnetostrictive ultrasonic transducer (HL–TMUT) is introduced. The transducer is composed of a magnetostrictive exponential horn and a stainless steel tail mass. In this transducer a spiral magnetic field made up of longitudinal and circumferential magnetic fields is applied to the magnetostrictive horn. As a result, the magnetostrictive horn oscillates simultaneously both longitudinally and torsionally in accordance with the Joule and Wiedemann effects. The magnetostrictive exponential horn is designed in such a manner that it has the same longitudinal and torsional resonant frequency. It is made up of ‘2V Permendur’, which has isotropic magnetic properties. The differential equations of the torsional and longitudinal vibration of the horn are derived, and a HL–TMUT is designed with a resonant frequency of 20 573 Hz. The natural frequency and mode shapes of the transducer are considered theoretically and numerically. The experimental results show that this transducer resonates torsionally and longitudinally with frequencies of 20 610 Hz and 20 830 Hz respectively. The maximum torsional displacement is 1.5 mrad m −1 and the maximum longitudinal displacement is 0.6 μm. These are promising features for industrial applications. (paper)

  14. Measurement of two-phase flow momentum with force transducers

    International Nuclear Information System (INIS)

    Hardy, J.E.; Smith, J.E.

    1990-01-01

    Two strain-gage-based drag transducers were developed to measure two-phase flow in simulated pressurized water reactor (PWR) test facilities. One transducer, a drag body (DB), was designed to measure the bidirectional average momentum flux passing through an end box. The second drag sensor, a break through detector (BTD), was designed to sense liquid downflow from the upper plenum to the core region. After prototype sensors passed numerous acceptance tests, transducers were fabricated and installed in two experimental test facilities, one in Japan and one in West Germany. High-quality data were extracted from both the DBs and BTDs for a variety of loss-of-coolant accident (LOCA) scenarios. The information collected from these sensors has added to the understanding of the thermohydraulic phenomena that occur during the refill/reflood stage of a LOCA in a PWR. 9 refs., 15 figs

  15. Differential Susceptibility: The Genetic Moderation of Peer Pressure on Alcohol Use

    OpenAIRE

    Griffin, Amanda M.; Cleveland, H. Harrington; Schlomer, Gabriel L.; Vandenbergh, David J.; Feinberg, Mark E.

    2015-01-01

    Although peer pressure can influence adolescents’ alcohol use, individual susceptibility to these pressures varies across individuals. The dopamine receptor D4 gene (DRD4) is a potential candidate gene that may influence adolescents’ susceptibility to their peer environment due to the role dopamine plays in reward sensation during social interaction. We hypothesized that DRD4 genotype status would moderate the impact of 7th-grade antisocial peer pressure on 12th-grade lifetime alcohol use (n ...

  16. Effect of differential pressure on the magnitude of the destructive force in tooth penetration into rock

    Energy Technology Data Exchange (ETDEWEB)

    Kolesnikov, N.A.; Shestakov, V.N.

    1981-08-01

    Analytical relations are established describing the final stage of the breakup of rocks in the course of penetration of the tooth of a drilling bit into the rock in the presence of a pressure drop. A good convergence between the calculated and experimental data is shown. A formula is presented permitting calculation of contact pressures necessary for the volumetric breakup of rocks in the presence of a pressure drop.

  17. Resistance calculation of un-fully developed two-phase flow through high differential pressure regulating valves

    International Nuclear Information System (INIS)

    Xu Mingyang; Wang Wenran; Wang Jiaying

    1999-01-01

    To reduce the flow velocity in the high differential pressure regulating valve with labyrinth. A type of complicated valve core structure were designed with tortuous flow path made from reversal double elbows. It is very difficult to calculate the pressure-drop of the un-fully developed two-phase flow under high temperature and pressure which flow through the valve core. A calculation method called 'constant (varing) pressure-drop progressing step by step design method' was developed. The complicated flow path was disintegrated into a series of independent resistance units and with the valve stem end progressing step by step the dimensions of the flow path were designed in accordance with the principle that in every position the total pressure-drop of the valve should amount to that required by the design goal curve. In the course of calculating the total pressure-drop, the valve flow path was also divided into a series of independent resistance units. The experiment results show that design flow characteristics are approximately consistent with the flow characteristics measured in the test

  18. Method for achieving hydraulic balance in typical Chinese building heating systems by managing differential pressure and flow

    DEFF Research Database (Denmark)

    Zhang, Lipeng; Xia, Jianjun; Thorsen, Jan Eric

    2017-01-01

    to a lack of pressure and flow control. This study investigated using pre-set radiator valves combined with differential pressure (DP) controllers to achieve hydraulic balance in building distribution systems, and consequently save energy and reduce the emissions. We considered a multi-storey building......Hydraulic unbalance is a common problem in Chinese district heating (DH) systems. Hydraulic unbalance has resulted in poor flow distribution among heating branches and overheating of apartments. Studies show that nearly 30% of the total heat supply is being wasted in Chinese DH systems due...... modelled in the IDA-ICE software, along with a self-developed mathematical hydraulic model to simulate its heat performance and hydraulic performance with various control scenarios. In contrast to the situation with no pressure or flow control, this solution achieves the required flow distribution...

  19. The research on high power transducer

    International Nuclear Information System (INIS)

    Zhao Wuling; Li Yubin; Peng Shuwen

    2014-01-01

    This paper introduces the transducer structure used double PWM mode, the control system design of hardware and software. The transducer has been applied in factory. From the real experiment, it shows that the system has a high reliability. (authors)

  20. A Direct Driver for Electrostatic Transducers

    DEFF Research Database (Denmark)

    Nielsen, Dennis; Knott, Arnold; Andersen, Michael A. E.

    2014-01-01

    Electrostatic transducers represent a very interesting alternative to the traditional inefficient electrodynamic transducers. In order to establish the full potential of these transducers, power amplifiers which fulfill the strict requirements imposed by such loads (high impedance, frequency...... depended, nonlinear and high bias voltage for linearization) must be developed. This paper analyzes a power stage suitable for driving an electrostatic transducer under biasing. Measurement results of a ±400 V prototype amplifier are shown. THD below 1% is reported....

  1. Pavement damaging effects from dual tyre configurations of heavy vehicles with tyre inflation pressure differentials

    CSIR Research Space (South Africa)

    De Beer, M

    2015-08-16

    Full Text Available inflation pressure data in addition to tyre loading resulted in a rough empirical estimate of tyre inflation pressure directly from SIM contact stress measurements. In an ideal world, an instrument such as the SIM could be invaluable in not only capturing...

  2. Pavement damaging effects from dual tyre configurations of heavy vehicles with tyre inflation pressure differentials

    CSIR Research Space (South Africa)

    De Beer, M

    2015-08-01

    Full Text Available inflation pressure data in addition to tyre loading resulted in a rough empirical estimate of tyre inflation pressure directly from SIM contact stress measurements. In an ideal world, an instrument such as the SIM could be invaluable in not only capturing...

  3. Digital electrostatic acoustic transducer array

    KAUST Repository

    Carreno, Armando Arpys Arevalo

    2016-12-19

    In this paper we present the fabrication and characterization of an array of electrostatic acoustic transducers. The array is micromachined on a silicon wafer using standard micro-machining techniques. Each array contains 2n electrostatic transducer membranes, where “n” is the bit number. Every element of the array has a hexagonal membrane shape structure, which is separated from the substrate by 3µm air gap. The membrane is made out 5µm thick polyimide layer that has a bottom gold electrode on the substrate and a gold top electrode on top of the membrane (250nm). The wafer layout design was diced in nine chips with different array configurations, with variation of the membrane dimensions. The device was tested with 90 V giving and sound output level as high as 35dB, while actuating all the elements at the same time.

  4. Digital electrostatic acoustic transducer array

    KAUST Repository

    Carreno, Armando Arpys Arevalo; Castro, David; Conchouso Gonzalez, David; Kosel, Jü rgen; Foulds, Ian G.

    2016-01-01

    In this paper we present the fabrication and characterization of an array of electrostatic acoustic transducers. The array is micromachined on a silicon wafer using standard micro-machining techniques. Each array contains 2n electrostatic transducer membranes, where “n” is the bit number. Every element of the array has a hexagonal membrane shape structure, which is separated from the substrate by 3µm air gap. The membrane is made out 5µm thick polyimide layer that has a bottom gold electrode on the substrate and a gold top electrode on top of the membrane (250nm). The wafer layout design was diced in nine chips with different array configurations, with variation of the membrane dimensions. The device was tested with 90 V giving and sound output level as high as 35dB, while actuating all the elements at the same time.

  5. Differential Susceptibility: The Genetic Moderation of Peer Pressure on Alcohol Use.

    Science.gov (United States)

    Griffin, Amanda M; Cleveland, H Harrington; Schlomer, Gabriel L; Vandenbergh, David J; Feinberg, Mark E

    2015-10-01

    Although peer pressure can influence adolescents' alcohol use, individual susceptibility to these pressures varies across individuals. The dopamine receptor D4 gene (DRD4) is a potential candidate gene that may influence adolescents' susceptibility to their peer environment due to the role dopamine plays in reward sensation during social interaction. We hypothesized that DRD4 genotype status would moderate the impact of 7th-grade antisocial peer pressure on 12th-grade lifetime alcohol use (n = 414; 58.7% female; 92.8% White). The results revealed significant main effects for antisocial peer pressure, but no main effects for DRD4 genotype on lifetime alcohol use. Adolescent DRD4 genotype moderated the association between peer pressure and lifetime alcohol use. For individuals who carried at least one copy of the DRD4 7-repeat allele (7+), antisocial peer pressure was associated with increased lifetime alcohol use. These findings indicate that genetic sensitivity to peer pressure confers increased alcohol use in late adolescence.

  6. Calculations for piezoelectric ultrasonic transducers

    International Nuclear Information System (INIS)

    Jensen, H.

    1986-05-01

    Analysis of piezoelectric ultrasonic transducers implies a solution of a boundary value problem, for a body which consists of different materials, including a piezoelectric part. The problem is dynamic at frequencies, where a typical wavelength is somewhat less than the size of the body. Radiation losses as well as internal losses may be important. Due to the complexity of the problem, a closed form solution is the exception rather than the rule. For this reason, it is necessary to use approximate methods for the analysis. Equivalent circuits, the Rayleigh-Ritz method, Mindlin plate theory and in particular the finite element method are considered. The finite element method is utilized for analysis of axisymmetric transducers. An explicit, fully piezoelectric, triangular ring element, with linear variations in displacement and electric potential is given. The influence of a fluid half-space is also given, in the form of a complex stiffness matrix. A special stacking procedure, for analysis of the backing has been developed. This procedure gives a saving, which is similar to that of the fast fourier transform algorithm, and is also wellsuited for analysis of finite and infinite waveguides. Results obtained by the finite element method are shown and compared with measurements and exact solutions. Good agreement is obtained. It is concluded that the finite element method can be a valueable tool in analysis and design of ultrasonic transducers. (author)

  7. Measurement of fast transient pressures

    International Nuclear Information System (INIS)

    Procaccia, Henri

    1978-01-01

    The accuracy, reliability and sensitivity of a pressure transducers define its principal static characteristics. When the quantity measured varies with time, the measurement carries a dynamic error and a delay depending on the frequency of this variation. Hence, when fast pressure changes in a fluid have to be determined, different kinds of pressure transducers can be used depending on their inherent dynamic characteristics which must be compared with those of the transient phenomenon to be analysed. The text describes the pressure transducers generally employed in industry for analysing such phenomenon and gives two practical applications developed in the EDF: the first submits the measurements and results of pump cavitation tests carried out at the Vitry II EDF power station; the second deals with hammer blows particularly noticed in nuclear power stations and required the use of transducers of exceptionally high performance such as strain gauge transducers and piezoelectric transducers (response time within 1m sec.) [fr

  8. A new ultrasonic transducer for improved contrast nonlinear imaging

    International Nuclear Information System (INIS)

    Bouakaz, Ayache; Cate, Folkert ten; Jong, Nico de

    2004-01-01

    Second harmonic imaging has provided significant improvement in contrast detection over fundamental imaging. This improvement is a result of a higher contrast-to-tissue ratio (CTR) achievable at the second harmonic frequency. Nevertheless, the differentiation between contrast and tissue at the second harmonic frequency is still in many situations cumbersome and contrast detection remains nowadays as one of the main challenges, especially in the capillaries. The reduced CTR is mainly caused by the generation of second harmonic energy from nonlinear propagation effects in tissue, which hence obscures the echoes from contrast bubbles. In a previous study, we demonstrated theoretically that the CTR increases with the harmonic number. Therefore the purpose of our study was to increase the CTR by selectively looking to the higher harmonic frequencies. In order to be able to receive these high frequency components (third up to the fifth harmonic), a new ultrasonic phased array transducer has been constructed. The main advantage of the new design is its wide frequency bandwidth. The new array transducer contains two different types of elements arranged in an interleaved pattern (odd and even elements). This design enables separate transmission and reception modes. The odd elements operate at 2.8 MHz and 80% bandwidth, whereas the even elements have a centre frequency of 900 kHz with a bandwidth of 50%. The probe is connected to a Vivid 5 system (GE-Vingmed) and proper software is developed for driving. The total bandwidth of such a transducer is estimated to be more than 150% which enables higher harmonic imaging at an adequate sensitivity and signal to noise ratio compared to standard medical array transducers. We describe in this paper the design and fabrication of the array transducer. Moreover its acoustic properties are measured and its performances for nonlinear contrast imaging are evaluated in vitro and in vivo. The preliminary results demonstrate the advantages of

  9. Seasonal emanation of radon at Ghuttu, northwest Himalaya: Differentiation of atmospheric temperature and pressure influences

    International Nuclear Information System (INIS)

    Kamra, Leena

    2015-01-01

    Continuous monitoring of radon along with meteorological parameters has been carried out in a seismically active area of Garhwal region, northwest Himalaya, within the frame work of earthquake precursory research. Radon measurements are carried out by using a gamma ray detector installed in the air column at a depth of 10 m in a 68 m deep borehole. The analysis of long time series for 2006–2012 shows strong seasonal variability masked by diurnal and multi-day variations. Isolation of a seasonal cycle by minimising short-time by 31 day running average shows a strong seasonal variation with unambiguous dependence on atmospheric temperature and pressure. The seasonal characteristics of radon concentrations are positively correlated to atmospheric temperature (R=0.95) and negatively correlated to atmospheric pressure (R=−0.82). The temperature and pressure variation in their annual progressions are negatively correlated. The calculations of partial correlation coefficient permit us to conclude that atmospheric temperature plays a dominant role in controlling the variability of radon in borehole, 71% of the variability in radon arises from the variation in atmospheric temperature and about 6% of the variability is contributed by atmospheric pressure. The influence of pressure variations in an annual cycle appears to be a pseudo-effect, resulting from the negative correlation between temperature and pressure variations. Incorporation of these results explains the varying and even contradictory claims regarding the influence of the pressure variability on radon changes in the published literature. Temperature dependence, facilitated by the temperature gradient in the borehole, controls the transportation of radon from the deep interior to the surface. - Highlights: • Seasonal variability of radon in borehole. • Influence of atmospheric temperature and pressure on radon variability. • Partial correlation coefficient.

  10. Experimental approaches for distribution and behavior of water in PEMFC under flow direction and differential pressure using neutron imaging technique

    International Nuclear Information System (INIS)

    Kim, TaeJoo; Kim, JongRok; Sim, CheulMuu; Lee, SeungWook; Kaviany, Massound; Son, SangYoung; Kim, MooHwan

    2009-01-01

    In this investigation, we prepared a 3-parallel serpentine single PEMFC which has an active area of 25 cm 2 and a flow channel cross section of 1x1 mm. Distribution and transport of water in an operating PEMFC were observed by varying the flow directions (co-current and counter-current) in each channel and the differential pressures (100, 200, 300 kPa) applied between the anode and cathode channels. This investigation was performed at the neutron imaging facility at the NIST of which the collimation ratio and neutron fluence rate are 600, 7.2x10 6 n/s/cm 2 , respectively. Neutron image was continuously recorded by an amorphous silicon flat panel detector every 1 s during the operation of the fuel cell. It has been observed that the differential pressure affects the total amount of water produced while the flow direction affects the spatial distribution of water when the neutron images were analyzed for several different operating conditions. More specifically, the amount of water production in the fuel cell increased as the partial pressure increases at a given current density and the water production was more uniform for the counter current than the co-current case. It is shown that the neutron imaging technique is a powerful tool to visualize the PEMFC. The information on the water distribution and behavior at an operating PEMFC helps improve the efficiency of PEMFC.

  11. Pressure-Application Device for Testing Pressure Sensors

    Science.gov (United States)

    2002-01-01

    A portable pressure-application device has been designed and built for use in testing and calibrating piezoelectric pressure transducers in the field. The device generates pressure pulses of known amplitude. A pressure pulse (in contradistinction to a steady pressure) is needed because in the presence of a steady pressure, the electrical output of a piezoelectric pressure transducer decays rapidly with time. The device includes a stainless- steel compressed-air-storage cylinder of 500 cu cm volume. A manual hand pump with check valves and a pressure gauge are located at one end of the cylinder. A three-way solenoid valve that controls the release of pressurized air is located at the other end of the cylinder. Power for the device is provided by a 3.7-V cordless-telephone battery. The valve is controlled by means of a pushbutton switch, which activates a 5 V to +/-15 V DC-to-DC converter that powers the solenoid. The outlet of the solenoid valve is connected to the pressure transducer to be tested. Before the solenoid is energized, the transducer to be tested is at atmospheric pressure. When the solenoid is actuated by the push button, pressurized air from inside the cylinder is applied to the transducer. Once the pushbutton is released, the cylinder pressure is removed from the transducer and the pressurized air applied to the transducer is vented, bringing the transducer back to atmospheric pressure. Before this device was used for actual calibration, its accuracy was checked with a NIST (National Institute of Standards and Technology) traceable calibrator and commercially calibrated pressure transducers. This work was done by Wanda Solano of Stennis Space Center and Greg Richardson of Lockheed Martin Corp.

  12. Transducers

    Digital Repository Service at National Institute of Oceanography (India)

    Chakraborty, B

    stream_size 27 stream_content_type text/plain stream_name Encycl_Microcomputers_18_335.pdf.txt stream_source_info Encycl_Microcomputers_18_335.pdf.txt Content-Encoding ISO-8859-1 Content-Type text/plain; charset=ISO-8859-1 ...

  13. Seasonal emanation of radon at Ghuttu, northwest Himalaya: Differentiation of atmospheric temperature and pressure influences.

    Science.gov (United States)

    Kamra, Leena

    2015-11-01

    Continuous monitoring of radon along with meteorological parameters has been carried out in a seismically active area of Garhwal region, northwest Himalaya, within the frame work of earthquake precursory research. Radon measurements are carried out by using a gamma ray detector installed in the air column at a depth of 10m in a 68m deep borehole. The analysis of long time series for 2006-2012 shows strong seasonal variability masked by diurnal and multi-day variations. Isolation of a seasonal cycle by minimising short-time by 31 day running average shows a strong seasonal variation with unambiguous dependence on atmospheric temperature and pressure. The seasonal characteristics of radon concentrations are positively correlated to atmospheric temperature (R=0.95) and negatively correlated to atmospheric pressure (R=-0.82). The temperature and pressure variation in their annual progressions are negatively correlated. The calculations of partial correlation coefficient permit us to conclude that atmospheric temperature plays a dominant role in controlling the variability of radon in borehole, 71% of the variability in radon arises from the variation in atmospheric temperature and about 6% of the variability is contributed by atmospheric pressure. The influence of pressure variations in an annual cycle appears to be a pseudo-effect, resulting from the negative correlation between temperature and pressure variations. Incorporation of these results explains the varying and even contradictory claims regarding the influence of the pressure variability on radon changes in the published literature. Temperature dependence, facilitated by the temperature gradient in the borehole, controls the transportation of radon from the deep interior to the surface. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Disturbances of the liquor circulation: differential diagnosis of the hydrocephalus by radionuclide scintigraphy, pneumoencephalography and determination of the liquor pressure

    International Nuclear Information System (INIS)

    Fuhrmeister, U.; Boerner, W.; Wuerzburg Univ.

    1976-01-01

    Normal-pressure hydrocephalus (NPH) is a special case of communicating hydrocephalus with disturbed resorption of cerebrospinal fluid. Because of the therapeutic consequences, NPH must be clearly differentiated from cerebral atrophy with compensatory increase of the liquor and from hydrocephalus with well-balanced cerebrospinal fluid. NPH is indicated by: excessive pressure rise after artificial volume load on the liquor space in spinal infusion tests; in the X-ray picture, an internal hydrocephalus; an acute-angled corpus callosum, and a progressive ventricular enlargement following in the pneumoencephalography; ventricular reflux with stasis in radionuclide cisternography. In some limiting cases, the diagnosis can be facilitated by a quantitative functional study of the dynamics of the cerebrospinal fluid with the aid of radionuclides. The biological half-life of 131 I albumin is doubled when the resorption of the cerebrospinal fluid is disturbed. (orig.) [de

  15. Disturbances of the liquor circulation: differential diagnosis of the hydrocephalus by radionuclide scintigraphy, pneumoencephalography and determination of the liquor pressure

    Energy Technology Data Exchange (ETDEWEB)

    Fuhrmeister, U; Boerner, W [Wuerzburg Univ. (F.R. Germany). Neurologische Klinik; Wuerzburg Univ. (F.R. Germany). Nuklearmedizinische Abt.)

    1976-06-01

    Normal-pressure hydrocephalus (NPH) is a special case of communicating hydrocephalus with disturbed resorption of cerebrospinal fluid. Because of the therapeutic consequences, NPH must be clearly differentiated from cerebral atrophy with compensatory increase of the liquor and from hydrocephalus with well-balanced cerebrospinal fluid. NPH is indicated by: excessive pressure rise after artificial volume load on the liquor space in spinal infusion tests; in the x-ray picture, an internal hydrocephalus; an acute-angled corpus callosum, and a progressive ventricular enlargement following in the pneumoencephalography; ventricular reflux with stasis in radionuclide cisternography. In some limiting cases, the diagnosis can be facilitated by a quantitative functional study of the dynamics of the cerebrospinal fluid with the aid of radionuclides. The biological half-life of /sup 131/I albumin is doubled when the resorption of the cerebrospinal fluid is disturbed.

  16. Methylmercury and elemental mercury differentially associate with blood pressure among dental professionals

    Science.gov (United States)

    Goodrich, Jaclyn M.; Wang, Yi; Gillespie, Brenda; Werner, Robert; Franzblau, Alfred; Basu, Niladri

    2013-01-01

    Methylmercury-associated effects on the cardiovascular system have been documented though discrepancies exist, and most studied populations experience elevated methylmercury exposures. No paper has investigated the impact of low-level elemental (inorganic) mercury exposure on cardiovascular risk in humans. The purpose of this study was to increase understanding of the association between mercury exposure (methylmercury and elemental mercury) and blood pressure measures in a cohort of dental professionals that experience background exposures to both mercury forms. Dental professionals were recruited during the 2010 Michigan Dental Association Annual Convention. Mercury levels in hair and urine samples were analyzed as biomarkers of methylmercury and elemental mercury exposure, respectively. Blood pressure (systolic, diastolic) was measured using an automated device. Distribution of mercury in hair (mean, range: 0.45, 0.02–5.18 μg/g) and urine (0.94, 0.03–5.54 μg/L) correspond well with the US National Health and Nutrition Examination Survey. Linear regression models revealed significant associations between diastolic blood pressure (adjusted for blood pressure medication use) and hair mercury (n = 262, p = 0.02). Urine mercury results opposed hair mercury in many ways. Notably, elemental mercury exposure was associated with a significant systolic blood pressure decrease (n = 262, p = 0.04) that was driven by the male population. Associations between blood pressure and two forms of mercury were found at exposure levels relevant to the general population, and associations varied according to type of mercury exposure and gender. PMID:22494934

  17. Differential equations governing slip-induced pore-pressure fluctuations in a water-saturated granular medium

    Science.gov (United States)

    Iverson, R.M.

    1993-01-01

    Macroscopic frictional slip in water-saturated granular media occurs commonly during landsliding, surface faulting, and intense bedload transport. A mathematical model of dynamic pore-pressure fluctuations that accompany and influence such sliding is derived here by both inductive and deductive methods. The inductive derivation shows how the governing differential equations represent the physics of the steadily sliding array of cylindrical fiberglass rods investigated experimentally by Iverson and LaHusen (1989). The deductive derivation shows how the same equations result from a novel application of Biot's (1956) dynamic mixture theory to macroscopic deformation. The model consists of two linear differential equations and five initial and boundary conditions that govern solid displacements and pore-water pressures. Solid displacements and water pressures are strongly coupled, in part through a boundary condition that ensures mass conservation during irreversible pore deformation that occurs along the bumpy slip surface. Feedback between this deformation and the pore-pressure field may yield complex system responses. The dual derivations of the model help explicate key assumptions. For example, the model requires that the dimensionless parameter B, defined here through normalization of Biot's equations, is much larger than one. This indicates that solid-fluid coupling forces are dominated by viscous rather than inertial effects. A tabulation of physical and kinematic variables for the rod-array experiments of Iverson and LaHusen and for various geologic phenomena shows that the model assumptions commonly are satisfied. A subsequent paper will describe model tests against experimental data. ?? 1993 International Association for Mathematical Geology.

  18. Differential Systolic and Diastolic Regulation of the Cerebral Pressure-Flow Relationship During Squat-Stand Manoeuvres.

    Science.gov (United States)

    Smirl, Jonathan D; Wright, Alexander D; Ainslie, Philip N; Tzeng, Yu-Chieh; van Donkelaar, Paul

    2018-01-01

    Cerebral pressure-flow dynamics are typically reported between mean arterial pressure and mean cerebral blood velocity. However, by reporting only mean responses, potential differential regulatory properties associated with systole and diastole may have been overlooked. Twenty young adults (16 male, age: 26.7 ± 6.6 years, BMI: 24.9 ± 3.0 kg/m 2 ) were recruited for this study. Middle cerebral artery velocity was indexed via transcranial Doppler. Cerebral pressure-flow dynamics were assessed using transfer function analysis at both 0.05 and 0.10 Hz using squat-stand manoeuvres. This method provides robust and reliable measures for coherence (correlation index), phase (timing buffer) and gain (amplitude buffer) metrics. There were main effects for both cardiac cycle and frequency for phase and gain metrics (p flow relationship. The oscillations associated with systole are extensively buffered within the cerebrovasculature, whereas diastolic oscillations are relatively unaltered. This indicates that the brain is adapted to protect itself against large increases in systolic blood pressure, likely as a mechanism to prevent cerebral haemorrhages.

  19. Electronically-Scanned Pressure Sensors

    Science.gov (United States)

    Coe, C. F.; Parra, G. T.; Kauffman, R. C.

    1984-01-01

    Sensors not pneumatically switched. Electronic pressure-transducer scanning system constructed in modular form. Pressure transducer modules and analog to digital converter module small enough to fit within cavities of average-sized wind-tunnel models. All switching done electronically. Temperature controlled environment maintained within sensor modules so accuracy maintained while ambient temperature varies.

  20. Differential effects of lower body negative pressure and upright tilt on splanchnic blood volume

    Science.gov (United States)

    Taneja, Indu; Moran, Christopher; Medow, Marvin S.; Glover, June L.; Montgomery, Leslie D.; Stewart, Julian M.

    2015-01-01

    Upright posture and lower body negative pressure (LBNP) both induce reductions in central blood volume. However, regional circulatory responses to postural changes and LBNP may differ. Therefore, we studied regional blood flow and blood volume changes in 10 healthy subjects undergoing graded lower-body negative pressure (−10 to −50 mmHg) and 8 subjects undergoing incremental head-up tilt (HUT; 20°, 40°, and 70°) on separate days. We continuously measured blood pressure (BP), heart rate, and regional blood volumes and blood flows in the thoracic, splanchnic, pelvic, and leg segments by impedance plethysmography and calculated regional arterial resistances. Neither LBNP nor HUT altered systolic BP, whereas pulse pressure decreased significantly. Blood flow decreased in all segments, whereas peripheral resistances uniformly and significantly increased with both HUT and LBNP. Thoracic volume decreased while pelvic and leg volumes increased with HUT and LBNP. However, splanchnic volume changes were directionally opposite with stepwise decreases in splanchnic volume with LBNP and stepwise increases in splanchnic volume during HUT. Splanchnic emptying in LBNP models regional vascular changes during hemorrhage. Splanchnic filling may limit the ability of the splanchnic bed to respond to thoracic hypovolemia during upright posture. PMID:17085534

  1. High Pressure Differential Scanning Calorimetry of poly(4-methyl-pentene-1)

    NARCIS (Netherlands)

    Hoehne, G.W.H.; Rastogi, S.; Wunderlich, B.

    2000-01-01

    The polymer poly(4-methyl pentene-1), P4MP1, displays an unusual pressure–temperature phase diagram. The previous exploration of this phase behavior through X-ray diffraction has been extended through high-pressure calorimetry. The resulting phase diagram displays a melt area, the common tetragonal

  2. Differential effects of sulindac and indomethacin on blood pressure in treated essential hypertensive subjects.

    Science.gov (United States)

    Puddey, I B; Beilin, L J; Vandongen, R; Banks, R; Rouse, I

    1985-09-01

    Attenuation of the effectiveness of antihypertensive therapy by non-steroidal anti-inflammatory (NSAI) drugs has been attributed to inhibition of systemic or renal vasodilator prostaglandin synthesis, or a combination of both. Indomethacin is a NSAI drug with both renal and extrarenal cyclo-oxygenase inhibition properties. Sulindac is a relatively selective cyclo-oxygenase inhibitor said not to affect urinary prostaglandin excretion. This study examines the relative effect on blood pressure of 4 weeks' treatment, with indomethacin 25 mg three times daily and sulindac 200 mg twice daily, in a randomized placebo controlled trial in 26 hypertensive subjects. In nine patients treated with indomethacin, supine blood pressure rose 11 mmHg systolic and 4 mmHg diastolic by the end of the first week, whereas nine subjects treated with sulindac showed a fall in blood pressure similar to the trend seen in placebo-treated subjects. Indomethacin treatment inhibited renal cyclo-oxygenase with a 78% reduction in urinary prostaglandin E2 excretion and 89% suppression of plasma renin activity. Neither measurement was affected by sulindac. Extrarenal cyclo-oxygenase activity was inhibited by both indomethacin and sulindac with serum thromboxane B2 decreasing by 96% and 69% respectively. The results suggest that the pressor effect of NSAI drugs is predominantly related to renal cyclo-oxygenase inhibition. the lack of effect of sulindac on blood pressure may make it a safer therapeutic option if NSAI drug therapy is necessary in the hypertensive patient.

  3. Micromachined capacitive ultrasonic immersion transducer array

    Science.gov (United States)

    Jin, Xuecheng

    Capacitive micromachined ultrasonic transducers (cMUTs) have emerged as an attractive alternative to conventional piezoelectric ultrasonic transducers. They offer performance advantages of wide bandwidth and sensitivity that have heretofore been attainable. In addition, micromachining technology, which has benefited from the fast-growing microelectronics industry, enables cMUT array fabrication and electronics integration. This thesis describes the design and fabrication of micromachined capacitive ultrasonic immersion transducer arrays. The basic transducer electrical equivalent circuit is derived from Mason's theory. The effects of Lamb waves and Stoneley waves on cross coupling and acoustic losses are discussed. Electrical parasitics such as series resistance and shunt capacitance are also included in the model of the transducer. Transducer fabrication technology is systematically studied. Device dimension control in both vertical and horizontal directions, process alternatives and variations in membrane formation, via etch and cavity sealing, and metalization as well as their impact on transducer performance are summarized. Both 64 and 128 element 1-D array transducers are fabricated. Transducers are characterized in terms of electrical input impedance, bandwidth, sensitivity, dynamic range, impulse response and angular response, and their performance is compared with theoretical simulation. Various schemes for cross coupling reduction is analyzed, implemented, and verified with both experiments and theory. Preliminary results of immersion imaging are presented using 64 elements 1-D array transducers for active source imaging.

  4. Differential Response Pattern of Oropharyngeal Pressure by Bolus and Dry Swallows.

    Science.gov (United States)

    Hasegawa, Mana; Kurose, Masayuki; Okamoto, Keiichiro; Yamada, Yoshiaki; Tsujimura, Takanori; Inoue, Makoto; Sato, Taisuke; Narumi, Takatsune; Fujii, Noritaka; Yamamura, Kensuke

    2018-02-01

    The aim of this study was to determine if bolus and dry swallow showed similar pressure changes in the oropharynx using our newly developed device. A unique character of it includes that baropressure can be measured with the sensor being placed in the balloon and can assess the swallowing mechanics in terms of pressure changes in the oropharynx with less influences of direct contacts of boluses and oropharyngeal structures during swallow indirectly. Fifteen healthy subjects swallowed saliva (dry), 15 ml of water, 45 ml of water, and 15 ml of two different types of food in terms of viscosity (potage soup-type and mayonnaise-type foods). Suprahyoid muscle activity was recorded simultaneously. Three parameters, area under the curve (AUC), peak amplitude, and duration of pressure, were analyzed from each swallow. Almost all of the bolus swallowing events had biphasic baropressure responses consisting of an early phase and late phase (99%), whereas 90% of the saliva swallowing events had a single phase. AUC, peak, and duration displayed greater effects during the late phase than during the early phase. Baropressure of the early phase, but not of the late phase, significantly increased with increasing volume; however, small but significant viscosity effects on pressure were seen during both phases. Peak pressure of the late phase was preceded by maximum muscle activity, whereas that of the early phase was seen when muscle activity displayed a peak response. These findings indicated that our device with the ability to measure baropressure has the potential to provide additional parameter to assess the swallow physiology, and biphasic baropressure responses in the early and late phases could reflect functional aspects of the swallowing reflexes.

  5. Reliability of Pressure Ulcer Rates: How Precisely Can We Differentiate Among Hospital Units, and Does the Standard Signal‐Noise Reliability Measure Reflect This Precision?

    Science.gov (United States)

    Cramer, Emily

    2016-01-01

    Abstract Hospital performance reports often include rankings of unit pressure ulcer rates. Differentiating among units on the basis of quality requires reliable measurement. Our objectives were to describe and apply methods for assessing reliability of hospital‐acquired pressure ulcer rates and evaluate a standard signal‐noise reliability measure as an indicator of precision of differentiation among units. Quarterly pressure ulcer data from 8,199 critical care, step‐down, medical, surgical, and medical‐surgical nursing units from 1,299 US hospitals were analyzed. Using beta‐binomial models, we estimated between‐unit variability (signal) and within‐unit variability (noise) in annual unit pressure ulcer rates. Signal‐noise reliability was computed as the ratio of between‐unit variability to the total of between‐ and within‐unit variability. To assess precision of differentiation among units based on ranked pressure ulcer rates, we simulated data to estimate the probabilities of a unit's observed pressure ulcer rate rank in a given sample falling within five and ten percentiles of its true rank, and the probabilities of units with ulcer rates in the highest quartile and highest decile being identified as such. We assessed the signal‐noise measure as an indicator of differentiation precision by computing its correlations with these probabilities. Pressure ulcer rates based on a single year of quarterly or weekly prevalence surveys were too susceptible to noise to allow for precise differentiation among units, and signal‐noise reliability was a poor indicator of precision of differentiation. To ensure precise differentiation on the basis of true differences, alternative methods of assessing reliability should be applied to measures purported to differentiate among providers or units based on quality. © 2016 The Authors. Research in Nursing & Health published by Wiley Periodicals, Inc. PMID:27223598

  6. Differential Influence of Distinct Components of Increased Blood Pressure on Cardiovascular OutcomesR3

    OpenAIRE

    Cheng, Susan; Gupta, Deepak K.; Claggett, Brian; Sharrett, A. Richey; Shah, Amil M.; Skali, Hicham; Takeuchi, Madoka; Ni, Hanyu; Solomon, Scott D.

    2013-01-01

    Elevation in blood pressure (BP) increases risk for all cardiovascular events. Nevertheless, the extent to which different indices of BP elevation may be associated to varying degrees with different cardiovascular outcomes remains unclear. We studied 13,340 participants (aged 54±6 years, 56% women, 27% black) of the Atherosclerosis Risk in Communities Study who were free of baseline cardiovascular disease. We used Cox proportional hazards models to compare the relative contributions of systol...

  7. Differential Influence of Distinct Components of Increased Blood Pressure on Cardiovascular OutcomesR3

    Science.gov (United States)

    Cheng, Susan; Gupta, Deepak K.; Claggett, Brian; Sharrett, A. Richey; Shah, Amil M.; Skali, Hicham; Takeuchi, Madoka; Ni, Hanyu; Solomon, Scott D.

    2013-01-01

    Elevation in blood pressure (BP) increases risk for all cardiovascular events. Nevertheless, the extent to which different indices of BP elevation may be associated to varying degrees with different cardiovascular outcomes remains unclear. We studied 13,340 participants (aged 54±6 years, 56% women, 27% black) of the Atherosclerosis Risk in Communities Study who were free of baseline cardiovascular disease. We used Cox proportional hazards models to compare the relative contributions of systolic (SBP), diastolic (DBP), pulse pressure (PP), and mean arterial pressure (MAP) to risk for coronary heart disease (CHD), heart failure (HF), stroke, and all-cause mortality. For each multivariable-adjusted model, the largest area under the receiver-operating curve (AUC) and smallest -2 log likelihood values were used to identify BP measures with the greatest contribution to risk prediction for each outcome. A total of 2095 CHD events, 1669 HF events, 771 stroke events, and 3016 deaths occurred during up to 18±5 years of follow up. In multivariable analyses adjusting for traditional cardiovascular risk factors, the BP measures with the greatest risk contributions were: SBP for CHD (AUC=0.74); PP for HF (AUC=0.79), SBP for stroke (AUC=0.74), and PP for all-cause mortality (AUC=0.74). With few exceptions, results were similar in analyses stratified by age, sex, and race. Our data indicate that distinct BP components contribute variably to risk for different cardiovascular outcomes. PMID:23876475

  8. Micromachined Ultrasonic Transducers for 3-D Imaging

    DEFF Research Database (Denmark)

    Christiansen, Thomas Lehrmann

    of state-of-the-art 3-D ultrasound systems. The focus is on row-column addressed transducer arrays. This previously sparsely investigated addressing scheme offers a highly reduced number of transducer elements, resulting in reduced transducer manufacturing costs and data processing. To produce...... such transducer arrays, capacitive micromachined ultrasonic transducer (CMUT) technology is chosen for this project. Properties such as high bandwidth and high design flexibility makes this an attractive transducer technology, which is under continuous development in the research community. A theoretical...... treatment of CMUTs is presented, including investigations of the anisotropic plate behaviour and modal radiation patterns of such devices. Several new CMUT fabrication approaches are developed and investigated in terms of oxide quality and surface protrusions, culminating in a simple four-mask process...

  9. The Dynamic Performance of Flexural Ultrasonic Transducers

    Directory of Open Access Journals (Sweden)

    Andrew Feeney

    2018-01-01

    Full Text Available Flexural ultrasonic transducers are principally used as proximity sensors and for industrial metrology. Their operation relies on a piezoelectric ceramic to generate a flexing of a metallic membrane, which delivers the ultrasound signal. The performance of flexural ultrasonic transducers has been largely limited to excitation through a short voltage burst signal at a designated mechanical resonance frequency. However, a steady-state amplitude response is not generated instantaneously in a flexural ultrasonic transducer from a drive excitation signal, and differences in the drive characteristics between transmitting and receiving transducers can affect the measured response. This research investigates the dynamic performance of flexural ultrasonic transducers using acoustic microphone measurements and laser Doppler vibrometry, supported by a detailed mechanical analog model, in a process which has not before been applied to the flexural ultrasonic transducer. These techniques are employed to gain insights into the physics of their vibration behaviour, vital for the optimisation of industrial ultrasound systems.

  10. Transducers and arrays for underwater sound

    CERN Document Server

    Butler, John L

    2016-01-01

    This improved and updated second edition covers the theory, development, and design of electro-acoustic transducers for underwater applications. This highly regarded text discusses the basics of piezoelectric and magnetostrictive transducers that are currently being used as well as promising new designs. It presents the basic acoustics as well as the specific acoustics data needed in transducer design and evaluation. A broad range of designs of projectors and hydrophones are described in detail along with methods of modeling, evaluation, and measurement. Analysis of projector and hydrophone transducer arrays, including the effects of mutual radiation impedance and numerical models for elements and arrays, are also covered. The book includes new advances in transducer design and transducer materials and has been completely reorganized to be suitable for use as a textbook, as well as a reference or handbook. The new edition contains updates to the first edition, end-of-chapter exercises, and solutions to select...

  11. Hydrostatic pressure promotes the proliferation and osteogenic/chondrogenic differentiation of mesenchymal stem cells: The roles of RhoA and Rac1

    Directory of Open Access Journals (Sweden)

    Yin-Hua Zhao

    2015-05-01

    Full Text Available Our previous studies have shown that hydrostatic pressure can serve as an active regulator for bone marrow mesenchymal stem cells (BMSCs. The current work further investigates the roles of cytoskeletal regulatory proteins Ras homolog gene family member A (RhoA and Ras-related C3 botulinum toxin substrate 1 (Rac1 in hydrostatic pressure-related effects on BMSCs. Flow cytometry assays showed that the hydrostatic pressure promoted cell cycle initiation in a RhoA- and Rac1-dependent manner. Furthermore, fluorescence assays confirmed that RhoA played a positive and Rac1 displayed a negative role in the hydrostatic pressure-induced F-actin stress fiber assembly. Western blots suggested that RhoA and Rac1 play central roles in the pressure-inhibited ERK phosphorylation, and Rac1 but not RhoA was involved in the pressure-promoted JNK phosphorylation. Finally, real-time polymerase chain reaction (PCR experiments showed that pressure promoted the expression of osteogenic marker genes in BMSCs at an early stage of osteogenic differentiation through the up-regulation of RhoA activity. Additionally, the PCR results showed that pressure enhanced the expression of chondrogenic marker genes in BMSCs during chondrogenic differentiation via the up-regulation of Rac1 activity. Collectively, our results suggested that RhoA and Rac1 are critical to the pressure-induced proliferation and differentiation, the stress fiber assembly, and MAPK activation in BMSCs.

  12. Hydrostatic pressure promotes the proliferation and osteogenic/chondrogenic differentiation of mesenchymal stem cells: The roles of RhoA and Rac1.

    Science.gov (United States)

    Zhao, Yin-Hua; Lv, Xin; Liu, Yan-Li; Zhao, Ying; Li, Qiang; Chen, Yong-Jin; Zhang, Min

    2015-05-01

    Our previous studies have shown that hydrostatic pressure can serve as an active regulator for bone marrow mesenchymal stem cells (BMSCs). The current work further investigates the roles of cytoskeletal regulatory proteins Ras homolog gene family member A (RhoA) and Ras-related C3 botulinum toxin substrate 1 (Rac1) in hydrostatic pressure-related effects on BMSCs. Flow cytometry assays showed that the hydrostatic pressure promoted cell cycle initiation in a RhoA- and Rac1-dependent manner. Furthermore, fluorescence assays confirmed that RhoA played a positive and Rac1 displayed a negative role in the hydrostatic pressure-induced F-actin stress fiber assembly. Western blots suggested that RhoA and Rac1 play central roles in the pressure-inhibited ERK phosphorylation, and Rac1 but not RhoA was involved in the pressure-promoted JNK phosphorylation. Finally, real-time polymerase chain reaction (PCR) experiments showed that pressure promoted the expression of osteogenic marker genes in BMSCs at an early stage of osteogenic differentiation through the up-regulation of RhoA activity. Additionally, the PCR results showed that pressure enhanced the expression of chondrogenic marker genes in BMSCs during chondrogenic differentiation via the up-regulation of Rac1 activity. Collectively, our results suggested that RhoA and Rac1 are critical to the pressure-induced proliferation and differentiation, the stress fiber assembly, and MAPK activation in BMSCs. Copyright © 2015. Published by Elsevier B.V.

  13. Nuclear Radiation Tolerance of Single Crystal Aluminum Nitride Ultrasonic Transducer

    Science.gov (United States)

    Reinhard, Brian; Tittmann, Bernhard R.; Suprock, Andrew

    Ultrasonic technologies offer the potential for high accuracy and resolution in-pile measurement of a range of parameters, including geometry changes, temperature, crack initiation and growth, gas pressure and composition, and microstructural changes. Many Department of Energy-Office of Nuclear Energy (DOE-NE) programs are exploring the use of ultrasonic technologies to provide enhanced sensors for in-pile instrumentation during irradiation testing. For example, the ability of small diameter ultrasonic thermometers (UTs) to provide a temperature profile in candidate metallic and oxide fuel would provide much needed data for validating new fuel performance models, (Rempe et al., 2011; Kazys et al., 2005). These efforts are limited by the lack of identified ultrasonic transducer materials capable of long term performance under irradiation test conditions. To address this need, the Pennsylvania State University (PSU) was awarded an Advanced Test Reactor National Scientific User Facility (ATR NSUF) project to evaluate the performance of promising magnetostrictive and piezoelectric transducers in the Massachusetts Institute of Technology Research Reactor (MITR) up to a fast fluence of at least 1021 n/cm2. The irradiation is also supported by a multi-National Laboratory collaboration funded by the Nuclear Energy Enabling Technologies Advanced Sensors and Instrumentation (NEET ASI) program. The results from this irradiation, which started in February 2014, offer the potential to enable the development of novel radiation tolerant ultrasonic sensors for use in Material Testing Reactors (MTRs). As such, this test is an instrumented lead test and real-time transducer performance data is collected along with temperature and neutron and gamma flux data. Hence, results from this irradiation offer the potential to bridge the gap between proven out-of-pile ultrasonic techniques and in-pile deployment of ultrasonic sensors by acquiring the data necessary to demonstrate the

  14. Effects of Recombinant Human Thyrotropin Administration on 24-Hour Arterial Pressure in Female Undergoing Evaluation for Differentiated Thyroid Cancer

    Directory of Open Access Journals (Sweden)

    Gianna Rentziou

    2014-01-01

    Full Text Available Objective. Thyroid-stimulating-hormone (TSH receptors are expressed in endothelial cells. We investigated whether elevated TSH levels after acute recombinant TSH (rhTSH administration may result in alterations in blood pressure (BP in premenopausal women with well-differentiated thyroid carcinoma (DTC. Designs. Thirty euthyroid DTC female patients were evaluated by rhTSH stimulation test (mean age 40.4±8.6 years. A 24 h ambulatory systolic and diastolic blood pressure (SBP, DBP monitoring (24 hr ABPM was performed on days 2-3(D2-3. TSH was measured on day 1(D1, day 3(D3, and day 5(D5. Central blood pressure was evaluated on D3. Twenty-three patients were studied 1–4 weeks earlier (basal measurements. Results. TSH levels were D1: median 0.2 mU/L, D3: median 115.0 mU/L, and D5: median 14.6 mU/L. There were no significant associations between TSH on D1 and D3 and any BP measurements. Median D5 office-SBP and 24 h SBP, DBP, and central SBP were correlated with D5-TSH (P<0.04. In those where a basal 24 h ABPM had been performed median pulse pressure was higher after rhTSH-test (P=0.02. Conclusions. TSH, when acutely elevated, may slightly increase SBP, DBP, and central SBP. This agrees with previous reports showing positive associations of BP with TSH.

  15. Standards for dielectric elastomer transducers

    International Nuclear Information System (INIS)

    Carpi, Federico; Frediani, Gabriele; Anderson, Iain; Bauer, Siegfried; Gallone, Giuseppe; Gei, Massimiliano; Graaf, Christian; Jean-Mistral, Claire; Kaal, William; Kofod, Guggi; Kollosche, Matthias; Kornbluh, Roy; Pelrine, Ron; Lassen, Benny; Rechenbach, Björn; Matysek, Marc; Michel, Silvain; Nowak, Stephan; O’Brien, Benjamin; Pei, Qibing

    2015-01-01

    Dielectric elastomer transducers consist of thin electrically insulating elastomeric membranes coated on both sides with compliant electrodes. They are a promising electromechanically active polymer technology that may be used for actuators, strain sensors, and electrical generators that harvest mechanical energy. The rapid development of this field calls for the first standards, collecting guidelines on how to assess and compare the performance of materials and devices. This paper addresses this need, presenting standardized methods for material characterisation, device testing and performance measurement. These proposed standards are intended to have a general scope and a broad applicability to different material types and device configurations. Nevertheless, they also intentionally exclude some aspects where knowledge and/or consensus in the literature were deemed to be insufficient. This is a sign of a young and vital field, whose research development is expected to benefit from this effort towards standardisation. (paper)

  16. Standards for dielectric elastomer transducers

    Science.gov (United States)

    Carpi, Federico; Anderson, Iain; Bauer, Siegfried; Frediani, Gabriele; Gallone, Giuseppe; Gei, Massimiliano; Graaf, Christian; Jean-Mistral, Claire; Kaal, William; Kofod, Guggi; Kollosche, Matthias; Kornbluh, Roy; Lassen, Benny; Matysek, Marc; Michel, Silvain; Nowak, Stephan; O'Brien, Benjamin; Pei, Qibing; Pelrine, Ron; Rechenbach, Björn; Rosset, Samuel; Shea, Herbert

    2015-10-01

    Dielectric elastomer transducers consist of thin electrically insulating elastomeric membranes coated on both sides with compliant electrodes. They are a promising electromechanically active polymer technology that may be used for actuators, strain sensors, and electrical generators that harvest mechanical energy. The rapid development of this field calls for the first standards, collecting guidelines on how to assess and compare the performance of materials and devices. This paper addresses this need, presenting standardized methods for material characterisation, device testing and performance measurement. These proposed standards are intended to have a general scope and a broad applicability to different material types and device configurations. Nevertheless, they also intentionally exclude some aspects where knowledge and/or consensus in the literature were deemed to be insufficient. This is a sign of a young and vital field, whose research development is expected to benefit from this effort towards standardisation.

  17. A computerized check-out system for transducers in nuclear power plants

    International Nuclear Information System (INIS)

    Brandt, A.

    1984-01-01

    A computerized system for the acquisition, administration and recording of test data of about 1000 pressure meters (transducers) being collected annually in nuclear power stations is described. The Mobile System is set up by three components - the control pressure device, the intelligent interface and the microcomputer (PDP 11/23, 256 kB) - the whole being assembled on a moveable wagon which allows on site measurement of the transducers. The PDP 11/23, fully integrated in a VT 103 video terminal, connects to the interface via an IEEE-488 bus system. Its keyboard is equipped with operation keys to handle and control the different test phases - uncoupling the transducer from plant operation, linking the transducer to the Mobile System, testing for leaks in the pipe system, recording and correcting the characteristic curve, reinstallation of the transducer in plant operation. Filling and emptying of the pipelines for high pressure measuring is computer controlled as well. As each Mobile System is a stand-alone test device, the number of systems is freely selectable according to environmental conditions (radiative and non-radiative zones, accessability etc.), failure resp. availability considerations and other boundary conditions. Data transport to and from the Stationary System is done via magnetic tape cartridges (256 KB), which may pick-up data of 150 transducers, or online via twisted pair cable connections between the measuring points and the Stationary System. (orig./GL) [de

  18. A new high performance current transducer

    International Nuclear Information System (INIS)

    Tang Lijun; Lu Songlin; Li Deming

    2003-01-01

    A DC-100 kHz current transducer is developed using a new technique on zero-flux detecting principle. It was shown that the new current transducer is of high performance, its magnetic core need not be selected very stringently, and it is easy to manufacture

  19. Pressure pain thresholds, clinical assessment, and differential diagnosis: reliability and validity in patients with myogenic pain.

    Science.gov (United States)

    Ohrbach, R; Gale, E N

    1989-11-01

    Four studies are presented testing the validity and reliability of pressure pain thresholds (PPTs) and of examination parameters believed to be important in the clinical assessment of sites commonly used for such measures in patient samples. Forty-five patients with a myogenous temporomandibular disorder were examined clinically prior to PPT measures. Criteria for history and examination included functional aspects of the pain, tissue quality of the pain site, and the type of pain elicited from palpation. Control sites within the same muscle and in the contralateral muscle were also examined. PPTs were measured as an index of tenderness using a strain gauge algometer at these sites. The data from the 5 male subjects were excluded from subsequent analyses due to the higher PPT in the males and to their unequal distribution among the various factorial conditions. The first study demonstrated strong validity in PPT measures between patients (using pain sites replicating the patients' pain) and matched controls (n = 11). The PPT was not significantly different between the primary pain site (referred pain and non-referred pain collapsed) and the no-pain control site in the same muscle (n = 16). The PPT was significantly lower at the pain site compared to the no-pain control site in the contralateral muscle (n = 13). The second study indicated adequate reliability in patient samples of the PPT measures. In the third study, the PPT was significantly lower at sites producing referred pain on palpation compared to sites producing localized pain on palpation. The PPT findings from the control sites were inconsistent on this factor. The fourth study presented preliminary evidence that palpable bands and nodular areas in muscle were most commonly associated with muscle regions that produce pain; such muscle findings were not specific, however, for regions that produce pain. Further, the intraexaminer reliability in reassessing these pain sites qualitatively was only fair

  20. Using Portable Transducers to Measure Tremor Severity

    Directory of Open Access Journals (Sweden)

    Rodger Elble

    2016-05-01

    Full Text Available Background: Portable motion transducers, suitable for measuring tremor, are now available at a reasonable cost. The use of these transducers requires knowledge of their limitations and data analysis. The purpose of this review is to provide a practical overview and example software for using portable motion transducers in the quantification of tremor. Methods: Medline was searched via PubMed.gov in December 2015 using the Boolean expression “tremor AND (accelerometer OR accelerometry OR gyroscope OR inertial measurement unit OR digitizing tablet OR transducer.” Abstracts of 419 papers dating back to 1964 were reviewed for relevant portable transducers and methods of tremor analysis, and 105 papers written in English were reviewed in detail. Results: Accelerometers, gyroscopes, and digitizing tablets are used most commonly, but few are sold for the purpose of measuring tremor. Consequently, most software for tremor analysis is developed by the user. Wearable transducers are capable of recording tremor continuously, in the absence of a clinician. Tremor amplitude, frequency, and occurrence (percentage of time with tremor can be computed. Tremor amplitude and occurrence correlate strongly with clinical ratings of tremor severity. Discussion: Transducers provide measurements of tremor amplitude that are objective, precise, and valid, but the precision and accuracy of transducers are mitigated by natural variability in tremor amplitude. This variability is so great that the minimum detectable change in amplitude, exceeding random variability, is comparable for scales and transducers. Research is needed to determine the feasibility of detecting smaller change using averaged data from continuous long-term recordings with wearable transducers.

  1. Comparison of differential pressure model based on flow regime for gas/liquid two-phase flow

    International Nuclear Information System (INIS)

    Dong, F; Zhang, F S; Li, W; Tan, C

    2009-01-01

    Gas/liquid two-phase flow in horizontal pipe is very common in many industry processes, because of the complexity and variability, the real-time parameter measurement of two-phase flow, such as the measurement of flow regime and flow rate, becomes a difficult issue in the field of engineering and science. The flow regime recognition plays a fundamental role in gas/liquid two-phase flow measurement, other parameters of two-phase flow can be measured more easily and correctly based on the correct flow regime recognition result. A multi-sensor system is introduced to make the flow regime recognition and the mass flow rate measurement. The fusion system is consisted of temperature sensor, pressure sensor, cross-section information system and v-cone flow meter. After the flow regime recognition by cross-section information system, comparison of four typical differential pressure (DP) models is discussed based on the DP signal of v-cone flow meter. Eventually, an optimum DP model has been chosen for each flow regime. The experiment result of mass flow rate measurement shows it is efficient to classify the DP models by flow regime.

  2. Investigation of transducers for large-scale cryogenic systems in Italy

    International Nuclear Information System (INIS)

    Pavese, F.

    1984-01-01

    This chapter investigates temperature, pressure (static, absolute), strain and flowrate transducers. A modular cryostat system, which includes a superconducting solenoid, is used for measurements. The module for pressure transducers allows them to be measured one at a time. Adiabatic conditions for the functional part of the module for strain-gages are ensured by sliding thermal anchors. The equipment is driven by three computer-based systems which act separately. Magnetoresistance has been measured up to 6 T. Only foil-type strain gages were investigated. It is determined that apparent strain has a peculiar trend at liquid helium temperatures. Four types of transducers, specifically designed for low-temperature measurement of static, absolute pressure, and uncalibrated, were tested

  3. Energetic balance in an ultrasonic reactor using focused or flat high frequency transducers.

    Science.gov (United States)

    Hallez, L; Touyeras, F; Hihn, J Y; Klima, J

    2007-09-01

    In order to undertake irradiation of polymer blocks or films by ultrasound, this paper deals with the measurements of ultrasonic power and its distribution within the cell by several methods. The electric power measured at the transducer input is compared to the ultrasonic power input to the cell evaluated by calorimetry and radiation force measurement for different generator settings. Results obtained in the specific case of new transducer types (composites and focused composites i.e., HIFU: high intensity focused ultrasound) provide an opportunity to conduct a discussion about measurement methods. It has thus been confirmed that these measurement techniques can be applied to HIFU transducers. For all cases, results underlined the fact that measurement of radiation pressure for power evaluation is more adapted to low powers (generator-transducer-liquid and sample.

  4. Intravascular forward-looking ultrasound transducers for microbubble-mediated sonothrombolysis.

    Science.gov (United States)

    Kim, Jinwook; Lindsey, Brooks D; Chang, Wei-Yi; Dai, Xuming; Stavas, Joseph M; Dayton, Paul A; Jiang, Xiaoning

    2017-06-14

    Effective removal or dissolution of large blood clots remains a challenge in clinical treatment of acute thrombo-occlusive diseases. Here we report the development of an intravascular microbubble-mediated sonothrombolysis device for improving thrombolytic rate and thus minimizing the required dose of thrombolytic drugs. We hypothesize that a sub-megahertz, forward-looking ultrasound transducer with an integrated microbubble injection tube is more advantageous for efficient thrombolysis by enhancing cavitation-induced microstreaming than the conventional high-frequency, side-looking, catheter-mounted transducers. We developed custom miniaturized transducers and demonstrated that these transducers are able to generate sufficient pressure to induce cavitation of lipid-shelled microbubble contrast agents. Our technology demonstrates a thrombolysis rate of 0.7 ± 0.15 percent mass loss/min in vitro without any use of thrombolytic drugs.

  5. Pressure measurements in harsh environments

    International Nuclear Information System (INIS)

    Cook, C.W.; Ames, E.S.

    1979-01-01

    A fluid coupled plate (FCP) gage was designed which allows pressure measurements to be made in harsh environments (including debris) using conventional pressure transducers. The pressure transducer is isolated by means of a rigid force plate which is supported by a bellows having one corrugation. This portion of the gage is machined from a single piece of material. The interior of the gage is filled with a phenol fluid which has a low compressibility

  6. Capacitance high temperature strain transducer by Interatom

    International Nuclear Information System (INIS)

    Fortmann, M.

    1987-01-01

    Special strain transducers are necessary to perform structure mechanical experiments on real components under creep-fatigue load. The new development of the transducer was able to solve the problem. In the meantime, different characteristics of the transducer have been examined and many successful applications have been effected. Some important aspects are given in this report. Up to now the longest operation period has been 24000 h on a pipe at 630 0 C service temperature in a conventional power station. (orig./DG) [de

  7. The role of non-thermal atmospheric pressure biocompatible plasma in the differentiation of osteoblastic precursor cells, MC3T3-E1.

    Science.gov (United States)

    Han, Ihn; Choi, Eun Ha

    2017-05-30

    Non-thermal atmospheric pressure plasma is ionized matter, composed of highly reactive species that include positive ions, negative ions, free radicals, neutral atoms, and molecules. Recent reports have suggested that non-thermal biocompatible plasma (NBP) can selectively kill a variety of cancer cells, and promote stem cell differentiation. However as of yet, the regulation of proliferation and differentiation potential of NBP has been poorly understood.Here, we investigated the effects of NBP on the osteogenic differentiation of precursor cell lines of osteoblasts, MC3T3 E1 and SaOS-2. For in vitro osteogenic differentiation, precursor cell lines were treated with NBP, and cultured with osteogenic induction medium. After 10 days of treatment, the NBP was shown to be effective in osteogenic differentiation in MC3T3 E1 cells by von Kossa and Alizarin Red S staining assay. Real-time PCR was then performed to investigate the expression of osteogenic specific genes, Runx2, OCN, COL1, ALP and osterix in MC3T3 E1 cells after treatment with NBP for 4 days. Furthermore, analysis of the protein expression showed that NBP treatment significantly reduced PI3K/AKT signaling and MAPK family signaling. However, p38 controlled phosphorylation of transcription factor forkhead box O1 (FoxO1) that related to cell differentiation with increased phosphorylated p38. These results suggest that non-thermal atmospheric pressure plasma can induce osteogenic differentiation, and enhance bone formation.

  8. An all-optical fiber optic photoacoustic transducer

    Science.gov (United States)

    Thathachary, Supriya V.; Motameni, Cameron; Ashkenazi, Shai

    2018-02-01

    A highly sensitive fiber-optic Fabry-Perot photoacoustic transducer is proposed in this work. The transducer will consist of separate transmit and receive fibers. The receiver will be composed of a Fabry-Perot Ultrasound sensor with a selfwritten waveguide with all-optical ultrasound detection with high sensitivity. In previous work, we have shown an increase in resonator Q-factor from 1900 to 3200 for a simulated Fabry-Perot ultrasound detector of 45 μm thickness upon including a waveguide to limit lateral power losses. Subsequently, we demonstrated a prototype device with 30nm gold mirrors and a cavity composed of the photosensitive polymer Benzocyclobutene. This 80 µm thick device showed an improvement in its Q-factor from 2500 to 5200 after a selfaligned waveguide was written into the cavity using UV exposure. Current work uses a significantly faster fabrication technique using a combination of UV-cured epoxies for the cavity medium, and the waveguide within it. This reduces the fabrication time from several hours to a few minutes, and significantly lowers the cost of fabrication. We use a dip-coating technique to deposit the polymer layer. Future work will include the use of Dielectric Bragg mirrors in place of gold to achieve better reflectivity, thereby further improving the Q-factor of the device. The complete transducer presents an ideal solution for intravascular imaging in cases where tissue differentiation is desirable, an important feature in interventional procedures where arterial perforation is a risk. The final design proposed comprises the transducer within a guidewire to guide interventions for Chronic Total Occlusions, a disease state for which there are currently no invasive imaging options.

  9. Making transducers and sensors which lead to safer mining

    Energy Technology Data Exchange (ETDEWEB)

    Laird, R

    1977-10-20

    MRDE work on transducers and sensors is described. A device containing a radioactive source has already been developed for detecting the edge of a coal seam; on a device which senses the edge of the seam by measuring natural radiation form the neighbouring rocks. Hard bands or dirt in a seam can be located by measuring pick force or pick vibrations. Environmental monitors, sensors for measuring pressure and flow in methane drainage pipes, vibration monitors for fans, means of detecting cage position in pit shaft, and bunker control systems are also mentioned.

  10. Investigation of focused and unfocused transducer beam patterns in moderately nonlinear absorbing media

    Science.gov (United States)

    Kharin, Nikolay A.

    2001-05-01

    The novel solution of the KZK equation for acoustic pressure of the second harmonic in slightly focused beam of a circular transducer was obtained in a closed form for moderately nonlinear absorbing media (Gol'dberg numbers ~ 1). The solution is based on the method of slowly changing wave profile in combination with the method of successive approximations. Two pairs of transducers (Valpey-Fisher Corp.) Were compared to investigate the influence of focusing on the applicability of the moderate nonlinearity approach. The first pair was of 0.25' diameter and the second was of 0.5' diameter. Both pairs has one transducer with flat surface and the other geometrically focused at 4'. The central frequency for all transducers was 5 MHz. Measurements were undertaken in the blood-mimicking solution of water and glycerine. The results demonstrated that for slightly focused transducers with circular apertures, the moderate nonlinearity approach is still valid, as it was proved for flat sources with the same source level, despite the higher pressures in the focal region. The peak pressure for the weakly focused system occurs at a shorter range than focal length.

  11. Active acoustical impedance using distributed electrodynamical transducers.

    Science.gov (United States)

    Collet, M; David, P; Berthillier, M

    2009-02-01

    New miniaturization and integration capabilities available from emerging microelectromechanical system (MEMS) technology will allow silicon-based artificial skins involving thousands of elementary actuators to be developed in the near future. SMART structures combining large arrays of elementary motion pixels coated with macroscopic components are thus being studied so that fundamental properties such as shape, stiffness, and even reflectivity of light and sound could be dynamically adjusted. This paper investigates the acoustic impedance capabilities of a set of distributed transducers connected with a suitable controlling strategy. Research in this domain aims at designing integrated active interfaces with a desired acoustical impedance for reaching an appropriate global acoustical behavior. This generic problem is intrinsically connected with the control of multiphysical systems based on partial differential equations (PDEs) and with the notion of multiscaled physics when a dense array of electromechanical systems (or MEMS) is considered. By using specific techniques based on PDE control theory, a simple boundary control equation capable of annihilating the wave reflections has been built. The obtained strategy is also discretized as a low order time-space operator for experimental implementation by using a dense network of interlaced microphones and loudspeakers. The resulting quasicollocated architecture guarantees robustness and stability margins. This paper aims at showing how a well controlled semidistributed active skin can substantially modify the sound transmissibility or reflectivity of the corresponding homogeneous passive interface. In Sec. IV, numerical and experimental results demonstrate the capabilities of such a method for controlling sound propagation in ducts. Finally, in Sec. V, an energy-based comparison with a classical open-loop strategy underlines the system's efficiency.

  12. Study on Temperature and Synthetic Compensation of Piezo-Resistive Differential Pressure Sensors by Coupled Simulated Annealing and Simplex Optimized Kernel Extreme Learning Machine.

    Science.gov (United States)

    Li, Ji; Hu, Guoqing; Zhou, Yonghong; Zou, Chong; Peng, Wei; Alam Sm, Jahangir

    2017-04-19

    As a high performance-cost ratio solution for differential pressure measurement, piezo-resistive differential pressure sensors are widely used in engineering processes. However, their performance is severely affected by the environmental temperature and the static pressure applied to them. In order to modify the non-linear measuring characteristics of the piezo-resistive differential pressure sensor, compensation actions should synthetically consider these two aspects. Advantages such as nonlinear approximation capability, highly desirable generalization ability and computational efficiency make the kernel extreme learning machine (KELM) a practical approach for this critical task. Since the KELM model is intrinsically sensitive to the regularization parameter and the kernel parameter, a searching scheme combining the coupled simulated annealing (CSA) algorithm and the Nelder-Mead simplex algorithm is adopted to find an optimal KLEM parameter set. A calibration experiment at different working pressure levels was conducted within the temperature range to assess the proposed method. In comparison with other compensation models such as the back-propagation neural network (BP), radius basis neural network (RBF), particle swarm optimization optimized support vector machine (PSO-SVM), particle swarm optimization optimized least squares support vector machine (PSO-LSSVM) and extreme learning machine (ELM), the compensation results show that the presented compensation algorithm exhibits a more satisfactory performance with respect to temperature compensation and synthetic compensation problems.

  13. Reversible effects of oxygen partial pressure on genes associated with placental angiogenesis and differentiation in primary-term cytotrophoblast cell culture.

    Science.gov (United States)

    Debiève, F; Depoix, C; Gruson, D; Hubinont, C

    2013-09-01

    Timely regulated changes in oxygen partial pressure are important for placental formation. Disturbances could be responsible for pregnancy-related diseases like preeclampsia and intrauterine growth restriction. We aimed to (i) determine the effect of oxygen partial pressure on cytotrophoblast differentiation; (ii) measure mRNA expression and protein secretion from genes associated with placental angiogenesis; and (iii) determine the reversibility of these effects at different oxygen partial pressures. Term cytotrophoblasts were incubated at 21% and 2.5% O2 for 96 hr, or were switched between the two oxygen concentrations after 48 hr. Real-time PCR and enzyme-linked immunosorbent assays (ELISAs) were used to evaluate cell fusion and differentiation, measuring transcript levels for those genes involved in cell fusion and placental angiogenesis, including VEGF, PlGF, VEGFR1, sVEGFR1, sENG, INHA, and GCM1. Cytotrophoblasts underwent fusion and differentiation in 2.5% O2 . PlGF expression was inhibited while sVEGFR1 expression increased. VEGF and sENG mRNA expressions increased in 2.5% compared to 21% O2 , but no protein was detected in the cell supernatants. Finally, GCM1 mRNA expression increased during trophoblast differentiation at 21% O2 , but was inhibited at 2.5% O2 . These mRNA expression effects were reversed by returning the cells to 21% O2 . Thus, low-oxygen partial pressure does not inhibit term-cytotrophoblast cell fusion and differentiation in vitro. Lowering the oxygen partial pressure from 21% to 2.5% caused normal-term trophoblasts to reversibly modify their expression of genes associated with placental angiogenesis. This suggests that modifications observed in pregnancy diseases such as preeclampsia or growth retardation are probably due to an extrinsic effect on trophoblasts. Copyright © 2013 Wiley Periodicals, Inc.

  14. Research on pressure sensors for biomedical instruments

    Science.gov (United States)

    Angell, J. B.

    1975-01-01

    The development of a piezo-resistive pressure transducer is discussed suitable for recording pressures typically encountered in biomedical applications. The pressure transducer consists of a thin silicon diaphragm containing four strain-sensitive resistors, and is fabricated using silicon monolithic integrated-circuit technology. The pressure transducers can be as small as 0.7 mm outer diameter, and are, as a result, suitable for mounting at the tip of a catheter. Pressure-induced stress in the diaphragm is sensed by the resistors, which are interconnected to form a Wheatstone bridge.

  15. Focused ultrasound transducer spatial peak intensity estimation: a comparison of methods

    Science.gov (United States)

    Civale, John; Rivens, Ian; Shaw, Adam; ter Haar, Gail

    2018-03-01

    Characterisation of the spatial peak intensity at the focus of high intensity focused ultrasound transducers is difficult because of the risk of damage to hydrophone sensors at the high focal pressures generated. Hill et al (1994 Ultrasound Med. Biol. 20 259-69) provided a simple equation for estimating spatial-peak intensity for solid spherical bowl transducers using measured acoustic power and focal beamwidth. This paper demonstrates theoretically and experimentally that this expression is only strictly valid for spherical bowl transducers without a central (imaging) aperture. A hole in the centre of the transducer results in over-estimation of the peak intensity. Improved strategies for determining focal peak intensity from a measurement of total acoustic power are proposed. Four methods are compared: (i) a solid spherical bowl approximation (after Hill et al 1994 Ultrasound Med. Biol. 20 259-69), (ii) a numerical method derived from theory, (iii) a method using measured sidelobe to focal peak pressure ratio, and (iv) a method for measuring the focal power fraction (FPF) experimentally. Spatial-peak intensities were estimated for 8 transducers at three drive powers levels: low (approximately 1 W), moderate (~10 W) and high (20-70 W). The calculated intensities were compared with those derived from focal peak pressure measurements made using a calibrated hydrophone. The FPF measurement method was found to provide focal peak intensity estimates that agreed most closely (within 15%) with the hydrophone measurements, followed by the pressure ratio method (within 20%). The numerical method was found to consistently over-estimate focal peak intensity (+40% on average), however, for transducers with a central hole it was more accurate than using the solid bowl assumption (+70% over-estimation). In conclusion, the ability to make use of an automated beam plotting system, and a hydrophone with good spatial resolution, greatly facilitates characterisation of the FPF, and

  16. Isoflurane and ketamine:xylazine differentially affect intraocular pressure-associated scotopic threshold responses in Sprague-Dawley rats.

    Science.gov (United States)

    Choh, Vivian; Gurdita, Akshay; Tan, Bingyao; Feng, Yunwei; Bizheva, Kostadinka; McCulloch, Daphne L; Joos, Karen M

    2017-10-01

    Amplitudes of electroretinograms (ERG) are enhanced during acute, moderate elevation of intraocular pressure (IOP) in rats anaesthetised with isoflurane. As anaesthetics alone are known to affect ERG amplitudes, the present study compares the effects of inhalant isoflurane and injected ketamine:xylazine on the scotopic threshold response (STR) in rats with moderate IOP elevation. Isoflurane-anaesthetised (n = 9) and ketamine:xylazine-anaesthetised (n = 6) rats underwent acute unilateral IOP elevation using a vascular loop anterior to the equator of the right eye. STRs to a luminance series (subthreshold to -3.04 log scotopic cd s/m 2 ) were recorded from each eye of Sprague-Dawley rats before, during, and after IOP elevation. Positive STR (pSTR) amplitudes for all conditions were significantly smaller (p = 0.0001) for isoflurane- than for ketamine:xylazine-anaesthetised rats. In addition, ketamine:xylazine was associated with a progressive increase in pSTR amplitudes over time (p = 0.0028). IOP elevation was associated with an increase in pSTR amplitude (both anaesthetics p ketamine:xylazine and isoflurane were similar (66.3 ± 35.5 vs. 54.2 ± 24.1 µV, respectively). However, the fold increase in amplitude during IOP elevation was significantly higher in the isoflurane- than in the ketamine:xylazine-anaesthetised rats (16.8 ± 29.7x vs. 2.1 ± 2.7x, respectively, p = 0.0004). The anaesthetics differentially affect the STRs in the rat model with markedly reduced amplitudes with isoflurane compared to ketamine:xylazine. However, the IOP-associated enhancement is of similar absolute magnitude for the two anaesthetics, suggesting that IOP stress and anaesthetic effects operate on separate retinal mechanisms.

  17. Cellular attachment and differentiation on titania nanotubes exposed to air- or nitrogen-based non-thermal atmospheric pressure plasma.

    Directory of Open Access Journals (Sweden)

    Hye Yeon Seo

    Full Text Available The surface topography and chemistry of titanium implants are important factors for successful osseointegration. However, chemical modification of an implant surface using currently available methods often results in the disruption of topographical features and the loss of beneficial effects during the shelf life of the implant. Therefore, the aim of this study was to apply the recently highlighted portable non-thermal atmospheric pressure plasma jet (NTAPPJ, elicited from one of two different gas sources (nitrogen and air, to TiO2 nanotube surfaces to further improve their osteogenic properties while preserving the topographical morphology. The surface treatment was performed before implantation to avoid age-related decay. The surface chemistry and morphology of the TiO2 nanotube surfaces before and after the NTAPPJ treatment were determined using a field-emission scanning electron microscope, a surface profiler, a contact angle goniometer, and an X-ray photoelectron spectroscope. The MC3T3-E1 cell viability, attachment and morphology were confirmed using calcein AM and ethidium homodimer-1 staining, and analysis of gene expression using rat mesenchymal stem cells was performed using a real-time reverse-transcription polymerase chain reaction. The results indicated that both portable nitrogen- and air-based NTAPPJ could be used on TiO2 nanotube surfaces easily and without topographical disruption. NTAPPJ resulted in a significant increase in the hydrophilicity of the surfaces as well as changes in the surface chemistry, which consequently increased the cell viability, attachment and differentiation compared with the control samples. The nitrogen-based NTAPPJ treatment group exhibited a higher osteogenic gene expression level than the air-based NTAPPJ treatment group due to the lower atomic percentage of carbon on the surface that resulted from treatment. It was concluded that NTAPPJ treatment of TiO2 nanotube surfaces results in an increase in

  18. Design of HIFU Transducers to Generate Specific Nonlinear Ultrasound Fields

    Science.gov (United States)

    Khokhlova, Vera A.; Yuldashev, Petr V.; Rosnitskiy, Pavel B.; Maxwell, Adam D.; Kreider, Wayne; Bailey, Michael R.; Sapozhnikov, Oleg A.

    Various clinical applications of high intensity focused ultrasound (HIFU) have different requirements on the pressure level and degree of nonlinear waveform distortion at the focus. Applications that utilize nonlinear waves with developed shocks are of growing interest, for example, for mechanical disintegration as well as for accelerated thermal ablation oftissue. In this work, an inverse problem of determining transducer parameters to enable formation of shockswith desired amplitude at the focus is solved. The solution was obtained by performing multipledirect simulations of the parabolic Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation for various parameters of the source. It is shown that results obtained within the parabolic approximation can be used to describe the focal region of single element spherical sourcesas well as complex transducer arrays. It is also demonstrated that the focal pressure level at which fully developed shocksare formed mainly depends on the focusing angle of the source and only slightly depends on its aperture and operating frequency. Using the simulation results, a 256-element HIFU array operating at 1.5 MHz frequency was designed for a specific application of boiling-histotripsy that relies on the presence of 90-100 MPa shocks at the focus. The size of the array elements and focusing angle of the array were chosen to satisfy technical limitations on the intensity at the array elements and desired shock amplitudes in the focal waveform. Focus steering capabilities of the array were analysed using an open-source T-Array software developed at Moscow State University.

  19. High Temperature, High Power Piezoelectric Composite Transducers

    Science.gov (United States)

    Lee, Hyeong Jae; Zhang, Shujun; Bar-Cohen, Yoseph; Sherrit, StewarT.

    2014-01-01

    Piezoelectric composites are a class of functional materials consisting of piezoelectric active materials and non-piezoelectric passive polymers, mechanically attached together to form different connectivities. These composites have several advantages compared to conventional piezoelectric ceramics and polymers, including improved electromechanical properties, mechanical flexibility and the ability to tailor properties by using several different connectivity patterns. These advantages have led to the improvement of overall transducer performance, such as transducer sensitivity and bandwidth, resulting in rapid implementation of piezoelectric composites in medical imaging ultrasounds and other acoustic transducers. Recently, new piezoelectric composite transducers have been developed with optimized composite components that have improved thermal stability and mechanical quality factors, making them promising candidates for high temperature, high power transducer applications, such as therapeutic ultrasound, high power ultrasonic wirebonding, high temperature non-destructive testing, and downhole energy harvesting. This paper will present recent developments of piezoelectric composite technology for high temperature and high power applications. The concerns and limitations of using piezoelectric composites will also be discussed, and the expected future research directions will be outlined. PMID:25111242

  20. LMFBR transducer performance in SLSF tests P1 and P2

    International Nuclear Information System (INIS)

    English, J.J.; Anderson, T.T.; Kuzay, T.M.; Wilson, R.E.; Pedersen, D.R.; Kaiser, W.C.; Klingler, W.B.

    1977-01-01

    The reliability and problem areas of sodium-immersed thermocouples, pressure transducers and flowmeters are presented for experiments P1 and P2 of the Sodium Loop Safety Facility (SLSF). The SLSF is a doubly-contained sodium loop situated in a core position of the Engineering Test Reactor at the Idaho National Engineering Laboratory

  1. Experimental study of underwater transmission characteristics of high-frequency 30 MHz polyurea ultrasonic transducer.

    Science.gov (United States)

    Nakazawa, Marie; Aoyagi, Takahiro; Tabaru, Masaya; Nakamura, Kentaro; Ueha, Sadayuki

    2014-02-01

    In this paper, we present the transmission characteristics of a polyurea ultrasonic transducer operating in water. In this study, we used a polyurea transducer with fundamental resonance at approximately 30 MHz. Firstly, acoustic pressure radiated from the transducer was measured using a hydrophone, which has a diameter of 0.2 mm. The transmission characteristics such as relative bandwidth, pulse width, and acoustic sensitivity were calculated from the experimental results. The results of the experiment showed a relative bandwidth of 50% and a pulse width of 0.061 μs. The acoustic sensitivity was 0.60 kPa/V with good linearity, where the correlation coefficient R in the fitting calculation was 0.996. A maximum pressure of 13.1 kPa was observed when the transducer was excited at a zero-to-peak voltage of 21 V. Moreover, we experimentally verified the results. The results of the pulse/echo experiment showed that the estimated diameters of the copper wires were 458 and 726 μm, where the differences between the actual and measured values were 15% and 4%, respectively. Acoustic streaming was also observed so that a particle velocity map was estimated by particle image velocimetry (PIV). The sound pressure calculated from the particle velocity obtained by PIV showed good agreement with the acoustic pressure measured using the hydrophone, where the differences between the calculated and measured values were 12-19%. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Measuring Clogging with Pressure Transducers in Permeable Pavement Strips

    Science.gov (United States)

    Two issues that have a negative affect on the long term hydrologic performance of permeable pavement systems are surface clogging and clogging at the interface with the underlying soil. Surface clogging limits infiltration capacity and results in bypass if runoff rate exceeds in...

  3. Mechano-electric optoisolator transducer with hysteresis

    International Nuclear Information System (INIS)

    Ciurus, I M; Dimian, M; Graur, A

    2011-01-01

    This article presents a theoretical and experimental study of designing a mechano-electric optoisolator transducer with hysteresis. Our research is centred upon designing transducers on the basis of optical sensors, as photoelectric conversions eliminate the influence of electromagnetic disturbances. Conversion of the rotation/translation motions into electric signals is performed with the help of a LED-photoresistor Polaroid optocoupler. The driver of the optocoupler's transmitter module is an independent current source. The signal conditioning circuit is a Schmitt trigger circuit. The device is designed to be applied in the field of automation and mechatronics.

  4. Immune Algorithm Complex Method for Transducer Calibration

    Directory of Open Access Journals (Sweden)

    YU Jiangming

    2014-08-01

    Full Text Available As a key link in engineering test tasks, the transducer calibration has significant influence on accuracy and reliability of test results. Because of unknown and complex nonlinear characteristics, conventional method can’t achieve satisfactory accuracy. An Immune algorithm complex modeling approach is proposed, and the simulated studies on the calibration of third multiple output transducers is made respectively by use of the developed complex modeling. The simulated and experimental results show that the Immune algorithm complex modeling approach can improve significantly calibration precision comparison with traditional calibration methods.

  5. On-line pressure measurement using scanning systems

    International Nuclear Information System (INIS)

    Morss, A.G.; Watson, A.P.

    1978-08-01

    Data collection methods can be improved significantly by using pressure scanning systems in conjunction with transducers for the measurement of pressure distribution in fluid flow rigs. However, the response of pressure transducers to the slight random pressure fluctuations that occur in practice can cause some measurement problems, especially for accurate work. The nature of these pressure fluctuations is examined and suitable analysis techniques are recommended. Results obtained using these techniques are presented. It is concluded that by using the correct techniques pressure transducer systems can be used to measure pressure distributions accurately and are sufficiently sensitive to measure very small systematic effects with great precision. (author)

  6. The reexamination of thermal expansion of ferromagnetic superconductors and the pressure differential of its superconducting transition temperature-possible application to UGe2

    International Nuclear Information System (INIS)

    Konno, Rikio; Hatayama, Nobukuni

    2011-01-01

    The temperature dependence of thermal expansion of ferromagnetic superconductors below the superconducting transition temperature T scu of a majority spin conduction band is reexamined. In the previous study [to be published in J. M. Phys. B] the volume differential of the kinetic energy of conduction electrons is constant. However, in this study the volume differential of the kinetic energy of conduction electrons is inconstant. The superconducting gap of the majority spin conduction band used in this study has a line node. It is appropriate to UGe 2 . The pressure differential of its superconducting transition temperature is also investigated. We find that the thermal expansion coefficient has the divergence at the superconducting transition temperature. The thermodynamic Grueneisen's relation is satisfied.

  7. Neural Network Based Real-time Correction of Transducer Dynamic Errors

    Science.gov (United States)

    Roj, J.

    2013-12-01

    In order to carry out real-time dynamic error correction of transducers described by a linear differential equation, a novel recurrent neural network was developed. The network structure is based on solving this equation with respect to the input quantity when using the state variables. It is shown that such a real-time correction can be carried out using simple linear perceptrons. Due to the use of a neural technique, knowledge of the dynamic parameters of the transducer is not necessary. Theoretical considerations are illustrated by the results of simulation studies performed for the modeled second order transducer. The most important properties of the neural dynamic error correction, when emphasizing the fundamental advantages and disadvantages, are discussed.

  8. Eliminating transducer distortion in acoustic measurements

    DEFF Research Database (Denmark)

    Agerkvist, Finn T.; Torras Rosell, Antoni; McWalter, Richard Ian

    2014-01-01

    This paper investigates the in uence of nonlinear components that contaminate the linear response of acoustic transducer, and presents a method for eliminating the in uence of nonlinearities in acoustic measurements. The method is evaluated on simulated as well as experimental data, and is shown...

  9. Ferroelectret non-contact ultrasonic transducers

    Czech Academy of Sciences Publication Activity Database

    Bovtun, Viktor; Döring, J.; Bartusch, J.; Beck, U.; Erhard, A.; Yakymenko, Y.

    2007-01-01

    Roč. 88, č. 4 (2007), s. 737-743 ISSN 0947-8396 R&D Projects: GA ČR(CZ) GA202/06/0403 Institutional research plan: CEZ:AV0Z10100520 Keywords : ferroelectrets * polymers * ultrasonic transducers Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.857, year: 2007

  10. Linearization of resistance thermometers and other transducers

    DEFF Research Database (Denmark)

    Diamond, Joseph M.

    1970-01-01

    deflection output or to null balance output. The application to the common temperature transducers is considered. It is shown that thermistors, linear metals (e.g., copper), and nickel can be linearized in terms of temperature, but platinum cannot be. If linearization is desired in terms of the reciprocal...

  11. Characterisation and Modelling of MEMS Ultrasonic Transducers

    International Nuclear Information System (INIS)

    Teng, M F; Hariz, A J

    2006-01-01

    Silicon ultrasonic transducer micro arrays based on micro-electro-mechanicalsystem (MEMS) technologies are gaining popularity for applications in sonar sensing and excitation. A current challenge for many researchers is modelling the dynamic performance of these and other micro-mechanical devices to ascertain their performance and explain experimental observations reported. In this work, the performance simulation of a MEMS ultrasonic transducer array made from silicon nitride has been successfully carried out using CoventorWare package. The dynamic response of the entire transducer array was characterised, and the results were compared with theoretical predictions. Individual elements were found to vibrate with Bessel-like displacement patterns, and they were resonant at approximately 3 MHz, depending on thickness and lateral dimensions. The frequency shows a linear dependence around the common thickness of 2 μm. Peak displacement levels were examined as a function of frequency, DC bias voltage, and AC drive voltage. Accounting for fabrication variations, and uniformity variations across the wafer, the full array showed minimal variations in peak out-of-plane displacement levels across the device, and isolated elements that were over-responsive and under-responsive. Presently, the effect of observed variations across the array on the performance of the transducers and their radiated fields are being examined

  12. Features calibration of the dynamic force transducers

    Science.gov (United States)

    Sc., M. Yu Prilepko D.; Lysenko, V. G.

    2018-04-01

    The article discusses calibration methods of dynamic forces measuring instruments. The relevance of work is dictated by need to valid definition of the dynamic forces transducers metrological characteristics taking into account their intended application. The aim of this work is choice justification of calibration method, which provides the definition dynamic forces transducers metrological characteristics under simulation operating conditions for determining suitability for using in accordance with its purpose. The following tasks are solved: the mathematical model and the main measurements equation of calibration dynamic forces transducers by load weight, the main budget uncertainty components of calibration are defined. The new method of dynamic forces transducers calibration with use the reference converter “force-deformation” based on the calibrated elastic element and measurement of his deformation by a laser interferometer is offered. The mathematical model and the main measurements equation of the offered method is constructed. It is shown that use of calibration method based on measurements by the laser interferometer of calibrated elastic element deformations allows to exclude or to considerably reduce the uncertainty budget components inherent to method of load weight.

  13. Investigation of HEPA filters subjected to tornado pressure pulses

    International Nuclear Information System (INIS)

    Gregory, W.S.; Horak, H.L.; Smith, P.R.; Ricketts, C.

    1977-03-01

    An experimental program is described that will determine the response of 0.6-x 0.6-m (24-x 24-in.) high-efficiency particulate air (HEPA) filters to tornado-induced pressure transients. A blow-down system will be used to impose pressure differentials across the filters. Progress in construction of this system is reported with a description of the component parts and their functions. The test facility is essentially complete with the exception of an air dryer system that has not yet been delivered. Initial structural testing will begin in March 1977. A description is given of the instrumentation needed to measure air pressure, velocity, turbulence, humidity and particulate concentration. This instrumentation includes pressure transducers, humidity equipment, laser Doppler velocimeters (LDV), signal processors and a data acquisition system. Operational theory of the LDV and its proposed use as a particle counting device are described

  14. D33 mode piezoelectric diaphragm based acoustic transducer with high sensitivity

    KAUST Repository

    Shen, Zhiyuan; Lu, Jingyu; Tan, Cheewee; Miao, Jianmin; Wang, Zhihong

    2013-01-01

    This paper presents the design, fabrication, and characterization of an acoustic transducer using a piezoelectric freestanding bulk diaphragm as the sensing element. The diaphragm bearing the spiral electrode operates in d 33 mode, which allows the in-plane deformation of the diaphragm to be converted to the out-of-plane deformation and generates an acoustic wave in the same direction. A finite element code is developed to reorient the material polarization distribution according to the poling field calculated. The first four resonance modes have been simulated and verified by impedance and velocity spectra. The sensitivity and the sound pressure level of the transducer were characterized. The realized sensitivity of 126.21 μV/Pa at 1 kHz is nearly twenty times of the sensitivity of a sandwich d31 mode transducer. © 2012 Elsevier B.V.

  15. Biasing of Capacitive Micromachined Ultrasonic Transducers.

    Science.gov (United States)

    Caliano, Giosue; Matrone, Giulia; Savoia, Alessandro Stuart

    2017-02-01

    Capacitive micromachined ultrasonic transducers (CMUTs) represent an effective alternative to piezoelectric transducers for medical ultrasound imaging applications. They are microelectromechanical devices fabricated using silicon micromachining techniques, developed in the last two decades in many laboratories. The interest for this novel transducer technology relies on its full compatibility with standard integrated circuit technology that makes it possible to integrate on the same chip the transducers and the electronics, thus enabling the realization of extremely low-cost and high-performance devices, including both 1-D or 2-D arrays. Being capacitive transducers, CMUTs require a high bias voltage to be properly operated in pulse-echo imaging applications. The typical bias supply residual ripple of high-quality high-voltage (HV) generators is in the millivolt range, which is comparable with the amplitude of the received echo signals, and it is particularly difficult to minimize. The aim of this paper is to analyze the classical CMUT biasing circuits, highlighting the features of each one, and to propose two novel HV generator architectures optimized for CMUT biasing applications. The first circuit proposed is an ultralow-residual ripple (generator that uses an extremely stable sinusoidal power oscillator topology. The second circuit employs a commercially available integrated step-up converter characterized by a particularly efficient switching topology. The circuit is used to bias the CMUT by charging a buffer capacitor synchronously with the pulsing sequence, thus reducing the impact of the switching noise on the received echo signals. The small area of the circuit (about 1.5 cm 2 ) makes it possible to generate the bias voltage inside the probe, very close to the CMUT, making the proposed solution attractive for portable applications. Measurements and experiments are shown to demonstrate the effectiveness of the new approaches presented.

  16. Parameter sensitivity study of a Field II multilayer transducer model on a convex transducer

    DEFF Research Database (Denmark)

    Bæk, David; Jensen, Jørgen Arendt; Willatzen, Morten

    2009-01-01

    A multilayer transducer model for predicting a transducer impulse response has in earlier works been developed and combined with the Field II software. This development was tested on current, voltage, and intensity measurements on piezoceramics discs (Bæk et al. IUS 2008) and a convex 128 element...... ultrasound imaging transducer (Bæk et al. ICU 2009). The model benefits from its 1D simplicity and hasshown to give an amplitude error around 1.7‐2 dB. However, any prediction of amplitude, phase, and attenuation of pulses relies on the accuracy of manufacturer supplied material characteristics, which may...... is a quantitative calibrated model for a complete ultrasound system. This includes a sensitivity study aspresented here.Statement of Contribution/MethodsThe study alters 35 different model parameters which describe a 128 element convex transducer from BK Medical Aps. The changes are within ±20 % of the values...

  17. Multiharmonic Frequency-Chirped Transducers for Surface-Acoustic-Wave Optomechanics

    Science.gov (United States)

    Weiß, Matthias; Hörner, Andreas L.; Zallo, Eugenio; Atkinson, Paola; Rastelli, Armando; Schmidt, Oliver G.; Wixforth, Achim; Krenner, Hubert J.

    2018-01-01

    Wide-passband interdigital transducers are employed to establish a stable phase lock between a train of laser pulses emitted by a mode-locked laser and a surface acoustic wave generated electrically by the transducer. The transducer design is based on a multiharmonic split-finger architecture for the excitation of a fundamental surface acoustic wave and a discrete number of its overtones. Simply by introducing a variation of the transducer's periodicity p , a frequency chirp is added. This combination results in wide frequency bands for each harmonic. The transducer's conversion efficiency from the electrical to the acoustic domain is characterized optomechanically using single quantum dots acting as nanoscale pressure sensors. The ability to generate surface acoustic waves over a wide band of frequencies enables advanced acousto-optic spectroscopy using mode-locked lasers with fixed repetition rate. Stable phase locking between the electrically generated acoustic wave and the train of laser pulses is confirmed by performing stroboscopic spectroscopy on a single quantum dot at a frequency of 320 MHz. Finally, the dynamic spectral modulation of the quantum dot is directly monitored in the time domain combining stable phase-locked optical excitation and time-correlated single-photon counting. The demonstrated scheme will be particularly useful for the experimental implementation of surface-acoustic-wave-driven quantum gates of optically addressable qubits or collective quantum states or for multicomponent Fourier synthesis of tailored nanomechanical waveforms.

  18. Microhydraulic transducer technology for actuation and power generation

    Science.gov (United States)

    Hagood, Nesbitt W.; Roberts, David C.; Saggere, Laxminarayana; Breuer, Kenneth S.; Chen, Kuo-Shen; Carretero, Jorge A.; Li, Hanqing; Mlcak, Richard; Pulitzer, Seward W.; Schmidt, Martin A.; Spearing, S. Mark; Su, Yu-Hsuan

    2000-06-01

    The paper introduces a novel transducer technology, called the solid-state micro-hydraulic transducer, currently under development at MIT. The new technology is enabled through integration of micromachining technology, piezoelectrics, and microhydraulic concepts. These micro-hydraulic transducers are capable of bi-directional electromechanical energy conversion, i.e., they can operate as both an actuator that supplies high mechanical force in response to electrical input and an energy generator that transduces electrical energy from mechanical energy in the environment. These transducers are capable of transducing energy at very high specific power output in the order of 1 kW/kg, and thus, they have the potential to enable many novel applications. The concept, the design, and the potential applications of the transducers are presented. Present efforts towards the development of these transducers, and the challenges involved therein, are also discussed.

  19. Towards a visual modeling approach to designing microelectromechanical system transducers

    Science.gov (United States)

    Dewey, Allen; Srinivasan, Vijay; Icoz, Evrim

    1999-12-01

    In this paper, we address initial design capture and system conceptualization of microelectromechanical system transducers based on visual modeling and design. Visual modeling frames the task of generating hardware description language (analog and digital) component models in a manner similar to the task of generating software programming language applications. A structured topological design strategy is employed, whereby microelectromechanical foundry cell libraries are utilized to facilitate the design process of exploring candidate cells (topologies), varying key aspects of the transduction for each topology, and determining which topology best satisfies design requirements. Coupled-energy microelectromechanical system characterizations at a circuit level of abstraction are presented that are based on branch constitutive relations and an overall system of simultaneous differential and algebraic equations. The resulting design methodology is called visual integrated-microelectromechanical VHDL-AMS interactive design (VHDL-AMS is visual hardware design language for analog and mixed signal).

  20. ICP measurement accuracy: the effect of temperature drift. Design of a laboratory test for assessment of ICP transducers.

    Science.gov (United States)

    Morgalla, M H; Mettenleiter, H; Katzenberger, T

    1999-01-01

    Intracranial pressure (ICP) monitoring has become the mainstay of multimodal neuromonitoring of comatous patients after head injury. In the presence of rising ICP and faced with pressures, difficult to control, aggressive measures, such as hypothermia may be used. The ICP readings should not be influenced by temperature changes. A laboratory test was designed to simulate temperature variations between 20 degrees C and 45 degrees C at different pressure levels under physiological conditions. Five types of transducers were examined: Epidyn Braun Melsungen, ICT/B-Titan Gaeltec, Camino-OLM-110-4B, Codman MicroSensor ICP-Transducer, Neurovent ICP transducer Rehau Ag+Co. Tests were performed at 6 different pressure levels between 0 mmHg and 50 mmHg. The results show very low drifts of less than 0.15 mmHg degree C-1 for Codman, Epidyn and Neurovent. Gaeltec and Camino exhibited higher drifts of 0.18 mmHg and 0.2 mmHg degree C-1 respectively. Within the temperature range from 35 degrees C to 42 degrees C all probes tested show insignificant temperature drift. Whether these results also apply to other types of transducers needs further evaluation. Problems and requirements related to the design of a laboratory test for the in vitro assessment of ICP transducers are discussed in detail.

  1. Fabrication and Characterization of Single-Aperture 3.5-MHz BNT-Based Ultrasonic Transducer for Therapeutic Application.

    Science.gov (United States)

    Taghaddos, Elaheh; Ma, T; Zhong, Hui; Zhou, Qifa; Wan, M X; Safari, Ahmad

    2018-04-01

    This paper discusses the fabrication and characterization of 3.5-MHz single-element transducers for therapeutic applications in which the active elements are made of hard lead-free BNT-based and hard commercial PZT (PZT-841) piezoceramics. Composition of (BiNa 0.88 K 0.08 Li 0.04 ) 0.5 (Ti 0.985 Mn 0.015 )O 3 (BNKLT88-1.5Mn) was used to develop lead-free piezoelectric ceramic. Mn-doped samples exhibited high mechanical quality factor ( ) of 970, thickness coupling coefficient ( ) of 0.48, a dielectric constant ( ) of 310 (at 1 kHz), depolarization temperature ( ) of 200 °C, and coercive field ( ) of 52.5 kV/cm. Two different unfocused single-element transducers using BNKLT88-1.5Mn and PZT-841 with the same center frequency of 3.5 MHz and similar aperture size of 10.7 and 10.5 mm were fabricated. Pulse-echo response, acoustic frequency spectrum, acoustic pressure field, and acoustic intensity field of transducers were characterized. The BNT-based transducer shows linear response up to the peak-to-peak voltage of 105 V in which the maximum rarefactional acoustic pressure of 1.1 MPa, and acoustic intensity of 43 W/cm 2 were achieved. Natural focal point of this transducer was at 60 mm from the surface of the transducer.

  2. Atmospheric pressure photo ionization hydrogen/deuterium exchange mass spectrometry--a method to differentiate isomers by mass spectrometry.

    Science.gov (United States)

    Ahmed, Arif; Kim, Sunghwan

    2013-12-01

    In this report, a method for in-source hydrogen/deuterium (H/D) exchange at atmospheric pressure is reported. The method was named atmospheric pressure photo ionization hydrogen/deuterium exchange mass spectrometry (APPI HDX MS). H/D exchange was performed by mixing samples dissolved in toluene with CH3OD solvent and analyzing the mixture using atmospheric pressure photo ionization mass spectrometry (APPI-MS). The APPI HDX spectra obtained with contact times between the analyte solution and methanol-OD (CH3OD) of atmospheric pressure. H/D exchange can be performed in any laboratory with a mass spectrometer and a commercial APPI source. Using this method, multiple H/D exchanges of aromatic hydrogen and/or H/D exchange of active hydrogen were observed. These results demonstrated that H/D exchange can be used to distinguish between isomers containing primary, secondary, and tertiary amines, as well as pyridine and pyrrole functional groups.

  3. Dissipation in vibrating superleak second sound transducers

    International Nuclear Information System (INIS)

    Giordano, N.

    1985-01-01

    We have performed an experimental study of the generation and detection of second sound in 4 He using vibrating superleak second sound transducers. At temperatures well below T/sub lambda/ and for low driving amplitudes, the magnitude of the generated second sound wave is proportional to the drive amplitude. However, near T/sub lambda/ and for high drive amplitudes this is no longer the case--instead, the second sound amplitude saturates. In this regime we also find that overtones of the drive frequency are generated. Our results suggest that this behavior is due to critical velocity effects in the pores of the superleak in the generator transducer. This type of measurement may prove to be a useful way in which to study critical velocity effects in confined geometries

  4. Ultrasonic transducer design for uniform insonation

    International Nuclear Information System (INIS)

    Harrison, G.H.; Balcer-Kubiczek, E.K.; McCulloch, D.

    1984-01-01

    Techniques used in transducer development for acoustical imaging have been evaluated for the purpose of producing broad, uniform ultrasonic fields from planar radiators. Such fields should be useful in hyperthermia, physical therapy, and ultrasonic bioeffects studies. Fourier inversion of the circ function yielded a source velocity distribution proportional to (P/r) exp ((-ik/2Z) (2Z/sup 2/+r/sup 2/)) J/sub 1/(krP/Z), where r is the radial source coordinate, k is the wave number, and P is the desired radius of uniform insonation at a depth Z in water. This source distribution can be truncated without significantly degrading the solution. A simpler solution consists of exponentially shading the edge of an otherwise uniformly excited disk transducer. This approach was successfully approximated experimentally

  5. Cymbal and BB underwater transducers and arrays

    Energy Technology Data Exchange (ETDEWEB)

    Newnham, R.E.; Zhang, J.; Alkoy, S.; Meyer, R.; Hughes, W.J.; Hladky-Hennion, A.C.; Cochran, J.; Markley, D. [Materials Research Laboratory, Penn State University, University Park, PA 16802 (United States)

    2002-09-01

    The cymbal is a miniaturized class V flextensional transducer that was developed for use as a shallow water sound projector and receiver. Single elements are characterized by high Q, low efficiency, and medium power output capability. Its low cost and thin profile allow the transducer to be assembled into large flexible arrays. Efforts were made to model both single elements and arrays using the ATILA code and the integral equation formulation (EQI).Millimeter size microprobe hydrophones (BBs) have been designed and fabricated from miniature piezoelectric hollow ceramic spheres for underwater applications such as mapping acoustic fields of projectors, and flow noise sensors for complex underwater structures. Green spheres are prepared from soft lead zirconate titanate powders using a coaxial nozzle slurry process. A compact hydrophone with a radially-poled sphere is investigated using inside and outside electrodes. Characterization of these hydrophones is done through measurement of hydrostatic piezoelectric charge coefficients, free field voltage sensitivities and directivity beam patterns. (orig.)

  6. ACT listening test[Active transducers

    Energy Technology Data Exchange (ETDEWEB)

    Agerkvist, F. [Oersted, DTU, Kgs. Lyngby (Denmark); Fenger, L.M. [Bang and Olufsen ICEPower a/s, Kgs. Lyngby (Denmark)

    2004-07-01

    This report describes the series of subjective listening that was performed in order to test the subjective quality of the integration of amplifier and loudspeaker developed in the Active transducer project. The project is a fundamental study of the loss mechanisms in loudspeakers and amplifiers. The project has resulted in new switch mode amplifier topologies with very high audio performance at a very low cost. (BA)

  7. Transducer Analysis and ATILA++ Model Development

    Science.gov (United States)

    2016-10-10

    the behavior of single crystal piezoelectric devices. OBJECTIVES To carry out this effort, a team consisting of ISEN...recording the vibration displacements on the opposite surface of the sample with a second receiving transducer. A software program is used to curve-fit the ...analysis in a loop until the desired quality of fit is achieved. 12 The technique has, in the past, been successfully used to determine

  8. Passive Mode Carbon Nanotube Underwater Acoustic Transducer

    Science.gov (United States)

    2016-09-20

    Acoustical transducer arrays can reflect a sound signal in reverse to the sender which can be used for echo location devices. [0008] In Jiang...States Patent No. 8,494,187) a sound wave generator is disclosed which includes a carbon nanotube structure and an insulating reinforcement structure... acoustic device that includes an electrode layer and a sound wave generator. The sound wave generator is disposed on a surface of the electrode

  9. Thermoelectric Transducer Using Bio Nano Process

    Science.gov (United States)

    2015-08-01

    Ferritin; Thermal Transducer; Nanoparticle; Ammonium acetate; Separation distance; Debye length . ABSTRACT: As an application to thermos...condition of 10 mM concentration, the Debye length of ferritin is shorter than 3 nm 40 . Comparing it with the DLS results (Fig. 3), the Debye length is...modified PEGs will obstruct additional modification. This effect should strengthen when PEG length becomes longer which means the utilization of

  10. Cooling Acoustic Transducer with Heat Pipes

    Science.gov (United States)

    2009-07-29

    a heat sink. [0009] In Kan et al (United States Patent No. 6,528,909), a spindle motor assembly is disclosed which has a shaft with an integral...heat pipe. The shaft with the integral heat pipe improves the thermal conductively of the shaft and the spindle motor assembly. The shaft includes...Description of the Prior Art [0004] It is known in the art that transducers, designed to project acoustic power, are often limited by the build

  11. Stress Sensors and Signal Transducers in Cyanobacteria

    Science.gov (United States)

    Los, Dmitry A.; Zorina, Anna; Sinetova, Maria; Kryazhov, Sergey; Mironov, Kirill; Zinchenko, Vladislav V.

    2010-01-01

    In living cells, the perception of environmental stress and the subsequent transduction of stress signals are primary events in the acclimation to changes in the environment. Some molecular sensors and transducers of environmental stress cannot be identified by traditional and conventional methods. Based on genomic information, a systematic approach has been applied to the solution of this problem in cyanobacteria, involving mutagenesis of potential sensors and signal transducers in combination with DNA microarray analyses for the genome-wide expression of genes. Forty-five genes for the histidine kinases (Hiks), 12 genes for serine-threonine protein kinases (Spks), 42 genes for response regulators (Rres), seven genes for RNA polymerase sigma factors, and nearly 70 genes for transcription factors have been successfully inactivated by targeted mutagenesis in the unicellular cyanobacterium Synechocystis sp. PCC 6803. Screening of mutant libraries by genome-wide DNA microarray analysis under various stress and non-stress conditions has allowed identification of proteins that perceive and transduce signals of environmental stress. Here we summarize recent progress in the identification of sensory and regulatory systems, including Hiks, Rres, Spks, sigma factors, transcription factors, and the role of genomic DNA supercoiling in the regulation of the responses of cyanobacterial cells to various types of stress. PMID:22294932

  12. Differential influence of distinct components of increased blood pressure on cardiovascular outcomes: from the atherosclerosis risk in communities study.

    Science.gov (United States)

    Cheng, Susan; Gupta, Deepak K; Claggett, Brian; Sharrett, A Richey; Shah, Amil M; Skali, Hicham; Takeuchi, Madoka; Ni, Hanyu; Solomon, Scott D

    2013-09-01

    Elevation in blood pressure (BP) increases risk for all cardiovascular events. Nevertheless, the extent to which different indices of BP elevation may be associated to varying degrees with different cardiovascular outcomes remains unclear. We studied 13340 participants (aged 54 ± 6 years, 56% women and 27% black) of the Atherosclerosis Risk in Communities Study who were free of baseline cardiovascular disease. We used Cox proportional hazards models to compare the relative contributions of systolic BP, diastolic BP, pulse pressure, and mean arterial pressure to risk for coronary heart disease, heart failure, stroke, and all-cause mortality. For each multivariable-adjusted model, the largest area under the receiver-operating curve (AUC) and smallest -2 log-likelihood values were used to identify BP measures with the greatest contribution to risk prediction for each outcome. A total of 2095 coronary heart disease events, 1669 heart failure events, 771 stroke events, and 3016 deaths occurred during 18 ± 5 years of follow-up. In multivariable analyses adjusting for traditional cardiovascular risk factors, the BP measures with the greatest risk contributions were the following: systolic BP for coronary heart disease (AUC=0.74); pulse pressure for heart failure (AUC=0.79); systolic BP for stroke (AUC=0.74); and pulse pressure for all-cause mortality (AUC=0.74). With few exceptions, results were similar in analyses stratified by age, sex, and race. Our data indicate that distinct BP components contribute variably to risk for different cardiovascular outcomes.

  13. Ultrasonic properties of all-printed piezoelectric polymer transducers

    Science.gov (United States)

    Wagle, Sanat; Decharat, Adit; Bodö, Peter; Melandsø, Frank

    2013-12-01

    The ability of producing ultrasonic transducers from screen-printing has been explored experimentally, through printing and characterization of a large number of transducers. In an all-printed test design, 124 transducers with four different electrode sizes ranging from 1 to 4.9 mm2, were printed layer-by-layer on a high performance polyethyleneimine polymer. Inks from ferroelectric and conductive polymers were applied to the active part of a transducer, to provide a good acoustical match between the individual layers. Ultrasonic characterizations of the transducers done by two independent methods provided a broad-banded frequency response with a maximum response around 100 MHz.

  14. Linear Array Ultrasonic Transducers: Sensitivity and Resolution Study

    International Nuclear Information System (INIS)

    Kramb, V.A.

    2005-01-01

    The University of Dayton Research Institute (UDRI) under contract by the US Air Force has designed and integrated a fully automated inspection system for the inspection of turbine engines that incorporates linear phased array ultrasonic transducers. Phased array transducers have been successfully implemented into weld and turbine blade root inspections where the defect types are well known and characterized. Embedded defects in aerospace turbine engine components are less well defined, however. In order to determine the applicability of linear arrays to aerospace inspections the sensitivity of array transducers to embedded defects in engine materials must be characterized. In addition, the implementation of array transducers into legacy inspection procedures must take into account any differences in sensitivity between the array transducer and that of the single element transducer currently used. This paper discusses preliminary results in a study that compares the sensitivity of linear array and conventional single element transducers to synthetic hard alpha defects in a titanium alloy

  15. A new concept of smart flexible phased array transducer to inspect component of complex geometry

    International Nuclear Information System (INIS)

    Roy, O.; Mauhaut, S.; Casula, O.; Cattiaux, G.

    2001-01-01

    In most of industries as aeronautics, aerospace and nuclear, the main part of the non destructive testing is carried out directly in touch with the inspected component. Among others, the cooling piping of French pressurized water reactor comprises many welding components with complex geometry: elbows, butt welds, nozzles. In service inspections of such components performed with conventional ultrasonic contact transducers present limited performances. First, variations in sensitivity, due to unmatched contact on depressions or irregular surface are observed, resulting in poor detection performances. In addition, the beam orientation transmitted through complex interfaces cannot be totally controlled, because of the disorientations suffered by the transducer during its displacement. As a result, the possible defect cannot be correctly detected, positioned and characterized. To overcome these difficulties and to improve the performances of such inspections, the French Atomic Energy Commission has developed a new concept of transducer, allowing both to take into account the varying profile of the tested component and to efficiently compensate these effects. This transducer is a flexible phased array able to match the surface of the inspected specimen and to efficiently compensate the deformation of its own surface, in order to preserve the ultrasonic beam characteristics in spite of the profile variations encountered during the scanning. This ability is achieved thanks to a specific instrumentation, which measures the deformation of the transducer radiating surface, made of individual ultrasonic elements mechanically jointed to fit the actual surface of the component being inspected. Inspections in pulse-echo mode have been performed on a specimen with an irregular profile containing artificial embedded reflectors. The comparison with inspection carried out using conventional transducer shows the efficiency of the system to characterize defects under such complex

  16. Transducer-based fiber Bragg grating high-temperature sensor with enhanced range and stability

    Science.gov (United States)

    Mamidi, Venkata Reddy; Kamineni, Srimannarayana; Ravinuthala, Lakshmi Narayana Sai Prasad; Tumu, Venkatappa Rao

    2017-09-01

    Fiber Bragg grating (FBG)-based high-temperature sensor with enhanced-temperature range and stability has been developed and tested. The sensor consists of an FBG and a mechanical transducer, which furnishes a linear temperature-dependent tensile strain on FBG by means of differential linear thermal expansion of two different ceramic materials. The designed sensor is tested over a range: 20°C to 1160°C and is expected to measure up to 1500°C.

  17. A New Low-frequency Sonophoresis System Combined with Ultrasonic Motor and Transducer

    Science.gov (United States)

    Zhu, Pancheng; Peng, Hanmin; Yang, Jianzhi; Mao, Ting; Sheng, Juan

    2018-03-01

    Low frequency sonophoresis (LFS) is currently being attempted as a transdermal drug delivery method in clinical areas. However, it lacks both an effective control method and the equipment to satisfy the varying drug dosage requirements of individual patients. Herein, a novel method aimed at controlling permeability is proposed and developed, using a pressure control strategy which is based on an accurate, adjustable and non-invasive ultrasound transdermal drug delivery system in in vitro LFS. The system mainly consists of a lead screw linear ultrasonic motor and an ultrasonic transducer, in which the former offers pressure and the latter provides ultrasound wave in the liquid. The ultrasound can enhance non-invasive permeation and the pressure from the motor can control the permeability. The calculated and experimental results demonstrate that the maximum pressure on artificial skin is under the area with the maximum vibration amplitude of the ultrasonic transducer, and the total pressure consists of acoustic pressure from the transducer and approximate static pressure from the motor. Changing the static pressure from the ultrasonic motor can effectively control the non-invasive permeability, by adjusting the duty ratio or the amplitude of the motor’s driving voltage. In addition, the permeability control of calcein by thrust control is realized in 15 min, indicating the suitability of this method for application in accurate medical technology. The obtained results reveal that the issue of difficult permeability control can be addressed, using this control method in in vitro LFS to open up a route to the design of accurate drug delivery technology for individual patients.

  18. Differential in vivo urodynamic measurement in a single thin catheter based on two optical fiber pressure sensors.

    Science.gov (United States)

    Poeggel, Sven; Duraibabu, Dineshbabu; Tosi, Daniele; Leen, Gabriel; Lewis, Elfed; McGrath, Deirdre; Fusco, Ferdinando; Sannino, Simone; Lupoli, Laura; Ippolito, Juliet; Mirone, Vincenzo

    2015-03-01

    Urodynamic analysis is the predominant method for evaluating dysfunctions in the lower urinary tract. The exam measures the pressure during the filling and voiding process of the bladder and is mainly interested in the contraction of the bladder muscles. The data arising out of these pressure measurements enables the urologist to arrive at a precise diagnosis and prescribe an adequate treatment. A technique based on two optical fiber pressure and temperature sensors with a resolution of better than 0.1 cm H₂O (∼10 Pa), a stability better than 1 cm H₂O/hour, and a diameter of 0.2 mm in a miniature catheter with a diameter of only 5 Fr (1.67 mm), was used. This technique was tested in vivo on four patients with a real-time urodynamic measurement system. The optical system presented showed a very good correlation to two commercially available medical reference sensors. Furthermore, the optical urodynamic system demonstrated a higher dynamic and better sensitivity to detect small obstructions than both pre-existing medical systems currently in use in the urodynamic field.

  19. Na, K-ATPase as signaling transducer

    OpenAIRE

    Li, Juan

    2007-01-01

    It is now generally agreed that Na,K-ATPase (NKA), in addition to its role in the maintenance of Na+ and K+ gradients across the cell membrane, is a signal transducer. Our group has identified a novel signaling pathway where NKA interact with IP3R to form a signaling microdomain. Ouabain, a specific ligand of NKA, activates this pathway, triggers slow Ca2+ oscillations and activates NF-κB. In current study, the molecular mechanisms and some important downstream effects of NK...

  20. Differential Measurement Periodontal Structures Mapping System

    Science.gov (United States)

    Companion, John A. (Inventor)

    1998-01-01

    This invention relates to a periodontal structure mapping system employing a dental handpiece containing first and second acoustic sensors for locating the Cemento-Enamel Junction (CEJ) and measuring the differential depth between the CEJ and the bottom of the periodontal pocket. Measurements are taken at multiple locations on each tooth of a patient, observed, analyzed by an optical analysis subsystem, and archived by a data storage system for subsequent study and comparison with previous and subsequent measurements. Ultrasonic transducers for the first and second acoustic sensors are contained within the handpiece and in connection with a control computer. Pressurized water is provided for the depth measurement sensor and a linearly movable probe sensor serves as the sensor for the CEJ finder. The linear movement of the CEJ sensor is obtained by a control computer actuated by the prober. In an alternate embodiment, the CEJ probe is an optical fiber sensor with appropriate analysis structure provided therefor.

  1. High Precision UTDR Measurements by Sonic Velocity Compensation with Reference Transducer

    Directory of Open Access Journals (Sweden)

    Sam Stade

    2014-07-01

    Full Text Available An ultrasonic sensor design with sonic velocity compensation is developed to improve the accuracy of distance measurement in membrane modules. High accuracy real-time distance measurements are needed in membrane fouling and compaction studies. The benefits of the sonic velocity compensation with a reference transducer are compared to the sonic velocity calculated with the measured temperature and pressure using the model by Belogol’skii, Sekoyan et al. In the experiments the temperature was changed from 25 to 60 °C at pressures of 0.1, 0.3 and 0.5 MPa. The set measurement distance was 17.8 mm. Distance measurements with sonic velocity compensation were over ten times more accurate than the ones calculated based on the model. Using the reference transducer measured sonic velocity, the standard deviations for the distance measurements varied from 0.6 to 2.0 µm, while using the calculated sonic velocity the standard deviations were 21–39 µm. In industrial liquors, not only the temperature and the pressure, which were studied in this paper, but also the properties of the filtered solution, such as solute concentration, density, viscosity, etc., may vary greatly, leading to inaccuracy in the use of the Belogol’skii, Sekoyan et al. model. Therefore, calibration of the sonic velocity with reference transducers is needed for accurate distance measurements.

  2. Manufacturing technologies for ultrasonic transducers in a broad frequency range

    OpenAIRE

    Gebhardt, Sylvia; Hohlfeld, Kai; Günther, Paul; Neubert, Holger

    2018-01-01

    According to the application field, working frequency of ultrasonic transducers needs to be tailored to a certain value. Low frequency ultrasonic transducers with working frequencies of 1 kHz to 1 MHz are especially interesting for sonar applications, whereas high frequency ultrasonic transducers with working frequencies higher than 15 MHz are favorable for high-resolution imaging in biomedical and non-destructive evaluation. Conventional non-destructive testing devices and clinical ultrasoun...

  3. First-order differential-delay equation for the baroreflex predicts the 0.4-Hz blood pressure rhythm in rats.

    Science.gov (United States)

    Burgess, D E; Hundley, J C; Li, S G; Randall, D C; Brown, D R

    1997-12-01

    We have described a 0.4-Hz rhythm in renal sympathetic nerve activity (SNA) that is tightly coupled to 0.4-Hz oscillations in blood pressure in the unanesthetized rat. In previous work, the relationship between SNA and fluctuations in mean arterial blood pressure (MAP) was described by a set of two first-order differential equations. We have now modified our earlier model to test the feasibility that the 0.4-Hz rhythm can be explained by the baroreflex without requiring a neural oscillator. In this baroreflex model, a linear feedback term replaces the sympathetic drive to the cardiovascular system. The time delay in the feedback loop is set equal to the time delay on the efferent side, approximately 0.5 s (as determined in the initial model), plus a time delay of 0.2 s on the afferent side for a total time delay of approximately 0.7 s. A stability analysis of this new model yields feedback resonant frequencies close to 0.4 Hz. Because of the time delay in the feedback loop, the proportional gain may not exceed a value on the order of 10 to maintain stability. The addition of a derivative feedback term increases the system's stability for a positive range of derivative gains. We conclude that the known physiological time delay for the sympathetic portion of the baroreflex can account for the observed 0.4-Hz rhythm in rat MAP and that the sensitivity of the baroreceptors to the rate of change in blood pressure, as well as average blood pressure, would enhance the natural stability of the baroreflex.

  4. High Temperature Ultrasonic Transducer for Real-time Inspection

    Science.gov (United States)

    Amini, Mohammad Hossein; Sinclair, Anthony N.; Coyle, Thomas W.

    A broadband ultrasonic transducer with a novel porous ceramic backing layer is introduced to operate at 700 °C. 36° Y-cut lithium niobate (LiNbO3) single crystal was selected for the piezoelectric element. By appropriate choice of constituent materials, porosity and pore size, the acoustic impedance and attenuation of a zirconia-based backing layer were optimized. An active brazing alloy with high temperature and chemical stability was selected to bond the transducer layers together. Prototype transducers have been tested at temperatures up to 700 °C. The experiments confirmed that transducer integrity was maintained.

  5. Differential Effects of Intraoperative Positive End-expiratory Pressure (PEEP) on Respiratory Outcome in Major Abdominal Surgery Versus Craniotomy

    DEFF Research Database (Denmark)

    de Jong, Myrthe A C; Ladha, Karim S; Melo, Marcos F Vidal

    2015-01-01

    OBJECTIVES: In this study, we examined whether (1) positive end-expiratory pressure (PEEP) has a protective effect on the risk of major postoperative respiratory complications in a cohort of patients undergoing major abdominal surgeries and craniotomies, and (2) the effect of PEEP is differed......: Within the entire study population (major abdominal surgeries and craniotomies), we found an association between application of PEEP ≥5 cmH2O and a decreased risk of postoperative respiratory complications compared with PEEP 5 cmH2O was associated with a significant lower...... undergoing major abdominal surgery. Our data suggest that default mechanical ventilator settings should include PEEP of 5-10 cmH2O during major abdominal surgery....

  6. Flutter Sensitivity to Boundary Layer Thickness, Structural Damping, and Static Pressure Differential for a Shuttle Tile Overlay Repair Concept

    Science.gov (United States)

    Scott, Robert C.; Bartels, Robert E.

    2009-01-01

    This paper examines the aeroelastic stability of an on-orbit installable Space Shuttle patch panel. CFD flutter solutions were obtained for thick and thin boundary layers at a free stream Mach number of 2.0 and several Mach numbers near sonic speed. The effect of structural damping on these flutter solutions was also examined, and the effect of structural nonlinearities associated with in-plane forces in the panel was considered on the worst case linear flutter solution. The results of the study indicated that adequate flutter margins exist for the panel at the Mach numbers examined. The addition of structural damping improved flutter margins as did the inclusion of nonlinear effects associated with a static pressure difference across the panel.

  7. Relation between burnout and differential pressure fluctuation characteristics by the disturbance waves near the flow obstacle in a vertical annular channel

    International Nuclear Information System (INIS)

    Mori, Shoji; Fukano, Tohru

    2002-01-01

    If a flow obstruction such as a spacer is set in a boiling two-phase flow within an annular channel, the inner tube of which is used as a heater, the temperature on the surface of the heater tube is severely affected by the existence of the spacer. In some cases the spacer has a cooling effect, and in the other case it causes the dryout of the cooling liquid film on the heating surface resulting in the burnout of the tube. But the thermo-fluid dynamic mechanism to cause burnout near the spacer is not still clear. In the present paper we discuss temperature fluctuation characteristics in relation to the change of the differential pressure across the spacer caused by the passing of the disturbance waves in case that the burnout generates. (author)

  8. Relation between burnout and differential pressure fluctuation characteristics by the disturbance waves near the flow obstacle in a vertical annular channel

    Energy Technology Data Exchange (ETDEWEB)

    Mori, Shoji; Fukano, Tohru [Kyushu Univ., Graduate School of Engineering, Fukuoka (Japan)

    2002-07-01

    If a flow obstruction such as a spacer is set in a boiling two-phase flow within an annular channel, the inner tube of which is used as a heater, the temperature on the surface of the heater tube is severely affected by the existence of the spacer. In some cases the spacer has a cooling effect, and in the other case it causes the dryout of the cooling liquid film on the heating surface resulting in the burnout of the tube. But the thermo-fluid dynamic mechanism to cause burnout near the spacer is not still clear. In the present paper we discuss temperature fluctuation characteristics in relation to the change of the differential pressure across the spacer caused by the passing of the disturbance waves in case that the burnout generates. (author)

  9. Smooth driving of Moessbauer electromechanical transducers

    Energy Technology Data Exchange (ETDEWEB)

    Veiga, A., E-mail: veiga@fisica.unlp.edu.ar; Mayosky, M. A. [Universidad Nacional de La Plata, Facultad de Ingenieria (Argentina); Martinez, N.; Mendoza Zelis, P.; Pasquevich, G. A.; Sanchez, F. H. [Instituto de Fisica La Plata, CONICET (Argentina)

    2011-11-15

    Quality of Moessbauer spectra is strongly related to the performance of source velocity modulator. Traditional electromechanical driving techniques demand hard-edged square or triangular velocity waveforms that introduce long settling times and demand careful driver tuning. For this work, the behavior of commercial velocity transducers and drive units was studied under different working conditions. Different velocity reference waveforms in constant-acceleration, constant-velocity and programmable-velocity techniques were tested. Significant improvement in spectrometer efficiency and accuracy was achieved by replacing triangular and square hard edges with continuous smooth-shaped transitions. A criterion for best waveform selection and synchronization is presented and attainable enhancements are evaluated. In order to fully exploit this driving technique, a compact microprocessor-based architecture is proposed and a suitable data acquisition system implementation is presented. System linearity and efficiency characterization are also shown.

  10. Development of piezoelectric composites for transducers

    Science.gov (United States)

    Safari, A.

    1994-07-01

    For the past decade and a half, many different types of piezoelectric ceramic-polymer composites have been developed intended for transducer applications. These diphasic composites are prepared from non-active polymer, such as epoxy, and piezoelectric ceramic, such as PZT, in the form of filler powders, elongated fibers, multilayer and more complex three-dimensional structures. For the last four years, most of the efforts have been given to producing large area and fine scale PZT fiber composites. In this paper, processing of piezoelectric ceramic-polymer composites with various connectivity patterns are reviewed. Development of fine scale piezoelectric composites by lost mold, injection molding and the relic method are described. Research activities of different groups for preparing large area piezocomposites for hydrophone and actuator applications are briefly reviewed. Initial development of electrostrictive ceramics and composites are also

  11. Design optimization of embedded ultrasonic transducers for concrete structures assessment.

    Science.gov (United States)

    Dumoulin, Cédric; Deraemaeker, Arnaud

    2017-08-01

    In the last decades, the field of structural health monitoring and damage detection has been intensively explored. Active vibration techniques allow to excite structures at high frequency vibrations which are sensitive to small damage. Piezoelectric PZT transducers are perfect candidates for such testing due to their small size, low cost and large bandwidth. Current ultrasonic systems are based on external piezoelectric transducers which need to be placed on two faces of the concrete specimen. The limited accessibility of in-service structures makes such an arrangement often impractical. An alternative is to embed permanently low-cost transducers inside the structure. Such types of transducers have been applied successfully for the in-situ estimation of the P-wave velocity in fresh concrete, and for crack monitoring. Up to now, the design of such transducers was essentially based on trial and error, or in a few cases, on the limitation of the acoustic impedance mismatch between the PZT and concrete. In the present study, we explore the working principles of embedded piezoelectric transducers which are found to be significantly different from external transducers. One of the major challenges concerning embedded transducers is to produce very low cost transducers. We show that a practical way to achieve this imperative is to consider the radial mode of actuation of bulk PZT elements. This is done by developing a simple finite element model of a piezoelectric transducer embedded in an infinite medium. The model is coupled with a multi-objective genetic algorithm which is used to design specific ultrasonic embedded transducers both for hard and fresh concrete monitoring. The results show the efficiency of the approach and a few designs are proposed which are optimal for hard concrete, fresh concrete, or both, in a given frequency band of interest. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Low-pressure differentiation of tholeiitic lavas as recorded in segregation veins from Reykjanes (Iceland), Lanzarote (Canary Islands) and Masaya (Nicaragua)

    Science.gov (United States)

    Martin, E.; Sigmarsson, O.

    2007-11-01

    Segregation veins are common in lava sheets and result from internal differentiation during lava emplacement and degassing. They consist of evolved liquid, most likely replaced by gas-filter pressing from a ˜50% crystallised host lava. Pairs of samples, host lavas and associated segregation veins from the Reykjanes Peninsula (Iceland), Lanzarote (Canary Islands) and the Masaya volcano (Nicaragua) show extreme mineralogical and compositional variations (MgO in host lava, segregation veins and interstitial glass ranges from 8-10 wt%, 3-6 wt%, and to less than 0.01 wt%, respectively). These samples allow the assessment of the internal lava flow differentiation mechanism, since both the parental and derived liquid are known in addition to the last magma drops in the form of late interstitial glasses. The mineralogical variation, mass-balance calculated from major- and trace element composition, and transitional metal partition between crystals and melts are all consistent with fractional crystallisation as the dominant differentiation mechanism. The interstitial glasses are highly silicic (SiO2 = 70-80 wt%) and represent a final product of high-degree (75-97%) fractional crystallisation of olivine tholeiite at a pressure close to one atmosphere. The tholeiitic liquid-line-of-decent and the composition of the residual melts are governed by the K2O/Na2O of the initial basaltic magma. The granitic minimum is reached if the initial liquid has a high K2O/Na2O whereas trondhjemitic composition is the final product of magma with low initial K2O/Na2O.

  13. Cultured subventricular zone progenitor cells transduced with neurogenin-2 become mature glutamatergic neurons and integrate into the dentate gyrus.

    Directory of Open Access Journals (Sweden)

    Xia Chen

    Full Text Available We have previously shown that transplantation of immature DCX+/NeuN+/Prox1+ neurons (found in the neonatal DG, but not undifferentiated neuronal progenitor cells (NPCs from ventral subventricular zone (SVZ, results in neuronal maturation in vivo within the dentate niche. Here we investigated whether we could enhance the integration of SVZ NPCs by forced expression of the proneural gene Neurogenin 2 (NEUROG2. NPCs cultured from neonatal GFP-transgenic rat SVZ for 7 days in a non-differentiating medium were transduced with a retrovirus encoding NEUROG2 and DsRed or the DsRed reporter gene alone (control. By 3 days post-transduction, the NEUROG2-transduced cells maintained in culture contained mostly immature neurons (91% DCX+; 76% NeuN+, whereas the control virus-transduced cells remained largely undifferentiated (30% DCX+; <1% NeuN+. At 6 weeks following transplantation into the DG of adult male rats, there were no neurons among the transplanted cells treated with the control virus but the majority of the NEUROG2-transduced DsRed+ SVZ cells became mature neurons (92% NeuN+; DCX-negative. Although the NEUROG2-transduced SVZ cells did not express the dentate granule neuron marker Prox1, most of the NEUROG2-transduced SVZ cells (78% expressed the glutamatergic marker Tbr1, suggesting the acquisition of a glutamatergic phenotype. Moreover, some neurons extended dendrites into the molecular layer, grew axons containing Ankyrin G+ axonal initial segments, and projected into the CA3 region, thus resembling mature DG granule neurons. A proportion of NEUROG2 transduced cells also expressed c-Fos and P-CREB, two markers of neuronal activation. We conclude that NEUROG2-transduction is sufficient to promote neuronal maturation and integration of transplanted NPCs from SVZ into the DG.

  14. Recombinant human parvovirus B19 vectors: erythroid cell-specific delivery and expression of transduced genes.

    Science.gov (United States)

    Ponnazhagan, S; Weigel, K A; Raikwar, S P; Mukherjee, P; Yoder, M C; Srivastava, A

    1998-06-01

    A novel packaging strategy combining the salient features of two human parvoviruses, namely the pathogenic parvovirus B19 and the nonpathogenic adeno-associated virus type 2 (AAV), was developed to achieve erythroid cell-specific delivery as well as expression of the transduced gene. The development of such a chimeric vector system was accomplished by packaging heterologous DNA sequences cloned within the inverted terminal repeats of AAV and subsequently packaging the DNA inside the capsid structure of B19 virus. Recombinant B19 virus particles were assembled, as evidenced by electron microscopy as well as DNA slot blot analyses. The hybrid vector failed to transduce nonerythroid human cells, such as 293 cells, as expected. However, MB-02 cells, a human megakaryocytic leukemia cell line which can be infected by B19 virus following erythroid differentiation with erythropoietin (N. C. Munshi, S. Z. Zhou, M. J. Woody, D. A. Morgan, and A. Srivastava, J. Virol. 67:562-566, 1993) but lacks the putative receptor for AAV (S. Ponnazhagan, X.-S. Wang, M. J. Woody, F. Luo, L. Y. Kang, M. L. Nallari, N. C. Munshi, S. Z. Zhou, and A. Srivastava, J. Gen. Virol. 77:1111-1122, 1996), were readily transduced by this vector. The hybrid vector was also found to specifically target the erythroid population in primary human bone marrow cells as well as more immature hematopoietic progenitor cells following erythroid differentiation, as evidenced by selective expression of the transduced gene in these target cells. Preincubation with anticapsid antibodies against B19 virus, but not anticapsid antibodies against AAV, inhibited transduction of primary human erythroid cells. The efficiency of transduction of primary human erythroid cells by the recombinant B19 virus vector was significantly higher than that by the recombinant AAV vector. Further development of the AAV-B19 virus hybrid vector system should prove beneficial in gene therapy protocols aimed at the correction of inherited and

  15. Recombinant Human Parvovirus B19 Vectors: Erythroid Cell-Specific Delivery and Expression of Transduced Genes

    Science.gov (United States)

    Ponnazhagan, Selvarangan; Weigel, Kirsten A.; Raikwar, Sudhanshu P.; Mukherjee, Pinku; Yoder, Mervin C.; Srivastava, Arun

    1998-01-01

    A novel packaging strategy combining the salient features of two human parvoviruses, namely the pathogenic parvovirus B19 and the nonpathogenic adeno-associated virus type 2 (AAV), was developed to achieve erythroid cell-specific delivery as well as expression of the transduced gene. The development of such a chimeric vector system was accomplished by packaging heterologous DNA sequences cloned within the inverted terminal repeats of AAV and subsequently packaging the DNA inside the capsid structure of B19 virus. Recombinant B19 virus particles were assembled, as evidenced by electron microscopy as well as DNA slot blot analyses. The hybrid vector failed to transduce nonerythroid human cells, such as 293 cells, as expected. However, MB-02 cells, a human megakaryocytic leukemia cell line which can be infected by B19 virus following erythroid differentiation with erythropoietin (N. C. Munshi, S. Z. Zhou, M. J. Woody, D. A. Morgan, and A. Srivastava, J. Virol. 67:562–566, 1993) but lacks the putative receptor for AAV (S. Ponnazhagan, X.-S. Wang, M. J. Woody, F. Luo, L. Y. Kang, M. L. Nallari, N. C. Munshi, S. Z. Zhou, and A. Srivastava, J. Gen. Virol. 77:1111–1122, 1996), were readily transduced by this vector. The hybrid vector was also found to specifically target the erythroid population in primary human bone marrow cells as well as more immature hematopoietic progenitor cells following erythroid differentiation, as evidenced by selective expression of the transduced gene in these target cells. Preincubation with anticapsid antibodies against B19 virus, but not anticapsid antibodies against AAV, inhibited transduction of primary human erythroid cells. The efficiency of transduction of primary human erythroid cells by the recombinant B19 virus vector was significantly higher than that by the recombinant AAV vector. Further development of the AAV-B19 virus hybrid vector system should prove beneficial in gene therapy protocols aimed at the correction of inherited

  16. Experiments with a Differential Transformer

    Science.gov (United States)

    Aguilar, Horacio Munguía

    2016-01-01

    An experiment with an electric transformer based on single coils shows how electromagnetic induction changes when the magnetic coupling between coils is adjusted. This transformer has two secondary outputs which are taken differentially. This is the basis for a widely used position transducer known as LVDT.

  17. A method for determining losses in magnetostrictive transducers

    Science.gov (United States)

    Krysin, V. N.; Ketlerov, A. S.

    A method for estimating energy losses in magnetostrictive transducers is described. It is shown that domain remagnetization is responsible for the greatest energy loss in magnetostrictive transducers. Energy losses associated with Foucault currents and Joule heat are an order of magnitude less.

  18. Resonant acoustic transducer system for a well drilling string

    Science.gov (United States)

    Nardi, Anthony P.

    1981-01-01

    For use in transmitting acoustic waves propated along a well drilling string, a piezoelectric transducer is provided operating in the relatively low loss acoustic propagation range of the well drilling string. The efficiently coupled transmitting transducer incorporates a mass-spring-piezoelectric transmitter combination permitting a resonant operation in the desired low frequency range.

  19. Optimization of ultrasonic tube testing with concentric transducers

    International Nuclear Information System (INIS)

    Dufayet, J.-P.; Gambin, Raymond.

    1978-01-01

    In order to test tubes by ultrasonics without rotation, concentric transducers can be used with conical mirrors to detect transverse defects and with helical shaped mirrors to detect longitudinal defects. Further optimization studies have been carried out in order to bring the system highly operational. The respective advantages brought by the rotating screen or by our especially designed sectorial transducers are discussed [fr

  20. Respiratory Belt Transducer Constructed Using a Singing Greeting Card Beeper

    Science.gov (United States)

    Bhaskar, Anand; Subramani, Selvam; Ojha, Rajdeep

    2013-01-01

    An article by Belusic and Zupancic described the construction of a finger pulse sensor using a singing greeting card beeper. These authors felt that this beeper made of piezoelectric material could be easily modified to function as a respiratory belt transducer to monitor respiratory movements. Commercially available respiratory belt transducers,…

  1. Design and performance of the drag-disc turbine transducer

    International Nuclear Information System (INIS)

    Averill, R.H.; Goodrich, L.D.; Ford, R.E.

    1979-01-01

    Mass flow rates at the Loss-of-Fluid Test (LOFT) facility, EG and G Idaho, Inc., at the Idaho National Engineering Laboratory, are measured with the drag-disc turbine transducer (DTT). Operational description of the DTT and the developmental effort are discussed. Performance data and experiences with this transducer have been evaluated and are presented in this paper

  2. A mathematical model for transducer working at high temperature

    International Nuclear Information System (INIS)

    Fabre, J.P.

    1974-01-01

    A mathematical model is proposed for a lithium niobate piezoelectric transducer working at high temperature in liquid sodium. The model proposed suitably described the operation of the high temperature transducer presented; it allows the optimization of the efficiency and band-pass [fr

  3. A Force Transducer from a Junk Electronic Balance

    Science.gov (United States)

    Aguilar, Horacio Munguia; Aguilar, Francisco Armenta

    2009-01-01

    It is shown how the load cell from a junk electronic balance can be used as a force transducer for physics experiments. Recovering this device is not only an inexpensive way of getting a valuable laboratory tool but also very useful didactic work on electronic instrumentation. Some experiments on mechanics with this transducer are possible after a…

  4. Performance evaluation of eddy current transducers and associated instrumentation of integrated garter spring repositioning system

    International Nuclear Information System (INIS)

    Sharma, B.S.V.G.; Shyam, T.V.; Shrivastava, A.K.; Sinha, R.K.

    1997-01-01

    To extend the life of coolant channels of operating Indian Pressurised Heavy Water Reactors (PHWRs) of an early generation, repositioning of dislocated Garter Spring (GS) spacers is necessary. For this purpose a remotely operated system named INtegrated Garter spring REpositioning System (INGRES) has been developed. As a part of this system, eddy current transducers namely Garter Spring Detection Probe (GSDP) and Concentricity Detection Probe (CDP) along with respective signal processor units have been designed and developed. These devices detect GS spacers and eccentricity between Pressure Tube (PT) and Calandria Tube (CT) of the channel respectively. During a recent campaign of INGRES at Madras Atomic Power Station unit-2 (MAPS-2), these transducer systems have fulfilled intended design and operational objectives besides providing additional information regarding channel. These aspects are discussed. (author). 6 figs

  5. Transducer hygiene: comparison of procedures for decontamination of ultrasound transducers and their use in clinical practice.

    Science.gov (United States)

    Häggström, Mikael; Spira, Jack; Edelstam, Greta

    2015-02-01

    To determine whether current hygiene practices are appropriate during sonographic examinations. Five major hospitals in Sweden were investigated with a survey. At each hospital, the departments corresponding to the main types of sonographic examination were chosen. Personnel who were responsible for or acquainted with the local hygiene procedures completed a standardardized questionnaire. The surveys were completed by 25 departments, where the total number of sonographic examinations was approximately 20,000 per month. For transvaginal and transrectal sonographic examinations, the most common method for decontamination of the transducer was barrier protection during the procedure followed by cleansing with alcohol. Latex was the predominant cover material, but one department used polyethylene gloves, and another department used nitrile gloves. Both of these involved transvaginal ultrasonography. In transcutaneous examinations, all hospitals were using alcohol and paper or cloth for decontamination at a minimum. Transesophageal examinations were carried out without barrier protection, and decontamination was performed with an alkylating substance. The hygiene practices appear to be appropriate at most hospitals, but there is a prevalence of transducer cover materials of unacceptable permeability, as well as use of gloves on transducers despite insufficient evidence of safety. © 2015 Wiley Periodicals, Inc.

  6. Design and Development of transducer for IR radiation measurement

    International Nuclear Information System (INIS)

    Pattarachindanuwong, Surat; Poopat, Bovornchoke; Meethong, Wachira

    2003-06-01

    Recently, IR radiation has many important roles such as for plastics industry, food industry and medical instrumentation. The consequence of exposed irradiation objects from IR can be greatly affected by the quantity of IR radiation. Therefore the objectively this research is to design and develop a transducer for IR radiation measurement. By using a quartz halogen lamp as a IR heat source of IR radiation and a thermopile sensor as a transducer. The thermal conductivity of transducer and air flow, were also considered for design and development of transducer. The study shows that the designed transducer can be used and applied in high temperature process, for example, the quality control of welding, the non-contact temperature measurement of drying oven and the testing of IR source in medical therapy device

  7. Transducers for Sound and Vibration - FEM Based Design

    DEFF Research Database (Denmark)

    Liu, Bin

    2001-01-01

    Design of transducers for measurement of vibration (piezoelectric accelerometers) and sound (condenser microphones) is a very labour intensive work. The design work is mostly based on experience and on simple analogies to electrical circuit design. Often a time consuming itterative loop is used......: Specification of the transducer, production of a physical prototype, measurements on the prototype, changed specification of the transducer etc. Furthermore are many transducers made based on customer requirements which also increases the amount of required design work. For these reasons there is a need...... for methods that can reduce the design time consumption and the number of itterations. The present work proposes to use finite element based programs for simulating the behaviour of a transducer with a given set of specifications. A simulation program for accelerometers was developed and has been tested...

  8. Study on electrical impedance matching for broadband ultrasonic transducer

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Geon Woo [University of Science and Technology, Daejeon (Korea, Republic of); Kim, Ki Bok [Korea Research Institute of Standards and Science, Center for Safety Measurement, Daejeon (Korea, Republic of); Baek, Kwang Sae [Elache Co., Busan (Korea, Republic of)

    2017-02-15

    Ultrasonic transducers with high resolution and resonant frequency are required to detect small defects (less than hundreds of μm) by ultrasonic testing. The resonance frequency and resolution of an ultrasonic transducer are closely related to the thickness of piezo-electric materials, backing materials, and the electric impedance matching technique. Among these factors, electrical impedance matching plays an important role because it can reduce the loss and reflection of ultrasonic energy differences in electrical impedance between an ultrasonic transducer and an ultrasonic defects detecting system. An LC matching circuit is the most frequently used electric matching method. It is necessary for the electrical impedance of an ultrasonic transducer to correspond to approximately 50 Ω to compensate the difference in electrical impedance between both connections. In this study, a 15 MHz immersion ultrasonic transducer was fabricated and an LC electrical impedance circuit was applied to that for having broad-band frequency characteristic.

  9. Differential pressure management and practice of pharmacy intravenous admixture service%静脉用药集中调配中心压差管理与实践

    Institute of Scientific and Technical Information of China (English)

    赵亮; 张潇菡; 岳延涛; 李艳华

    2017-01-01

    OBJECTIVE To explore the significance and function of PIVAS differential pressure management,then propose suggestions for the management of differential pressures.METHODS According to the management and practice of differential pressure of PIVAS construction and operation in our hospital,the key points of PIVAS differential pressure management,suitable pressure range and monitoring method were proposed.RESULTS It was necessary to monitor pressure drag for coarse,medium and high efficiency filters.When monitoring the differential static pressure of adjacent room of clean areas,the static pressure difference relative to atmospheric pressure in each room should also be monitored at the same time.In the set pressure monitoring,the differential static pressure of adjacent room of clean areas was no less than 5 Pa,the static pressure difference relative to atmospheric pressure in each non clean room was no less than 10 Pa.The static pressure difference would be suitable if no whistle sound or influence was observed when opening the door.CONCLUSION To achieve the cleanliness and occupational protection of PIVAS,measures should be developed to enhance differential pressure monitoring and management for different regions or equipments.Meanwhile,it is suggested to set corresponding standards for differential pressures in the newly established national standards to guarantee the effective operation of purifying system.%目的:探讨静脉用药集中调配中心(PIVAS)压差管理的意义与作用,提出对压差管理的意见和建议.方法:通过医院PIVAS建设及运行过程中对压差的管理与实践,对照规范及相关文献,提出PIVAS压差管理的关键点、适宜压差范围及监测方式.结果:粗、中、高效过滤器应进行必要的阻力压差监测;对洁净区相邻房间静压差进行监测的同时,还应监测各房间相对大气压的静压差;在设定压差监测时,洁净区相邻房间的静压差≥5 Pa,各房间

  10. Variable reluctance displacement transducer temperature compensated to 6500F

    International Nuclear Information System (INIS)

    1975-01-01

    In pressurized water reactor tests, compact instruments for accurate measurement of small displacements in a 650 0 F environment are often required. In the case of blowdown tests such as the Loss of Fluid Test (LOFT) or Semiscale computer code development tests, not only is the initial environment water at 650 0 F and 2200 psi but it undergoes a severe transient due to depressurization. Since the LOFT and Semiscale tests are run just for the purpose of obtaining data during the depressurization, instruments used to obtain the data must not give false outputs induced by the change in environment. A LOFT rho v 2 probe and a Semiscale drag disk are described. Each utilizes a variable reluctance transducer (VRT) for indication of the drag-disk location and a torsion bar for drag-disk restoring force. The VRT, in addition to being thermally gain and null offset stable, is fabricated from materials known to be resistant to large nuclear radiation levels and has successfully passed a fast neutron radiation test of 2.7 x 10 17 nvt without failure

  11. Near-field multiple traps of paraxial acoustic vortices with strengthened gradient force generated by sector transducer array

    Science.gov (United States)

    Wang, Qingdong; Li, Yuzhi; Ma, Qingyu; Guo, Gepu; Tu, Juan; Zhang, Dong

    2018-01-01

    In order to improve the capability of particle trapping close to the source plane, theoretical and experimental studies on near-field multiple traps of paraxial acoustic vortices (AVs) with a strengthened acoustic gradient force (AGF) generated by a sector transducer array were conducted. By applying the integration of point source radiation, numerical simulations for the acoustic fields generated by the sector transducer array were conducted and compared with those produced by the circular transducer array. It was proved that strengthened AGFs of near-field multiple AVs with higher peak pressures and smaller vortex radii could be produced by the sector transducer array with a small topological charge. The axial distributions of the equivalent potential gradient indicated that the AGFs of paraxial AVs in the near field were much higher than those in the far field, and the distances at the near-field vortex antinodes were also proved to be the ideal trapping positions with relatively higher AGFs. With the established 8-channel AV generation system, theoretical studies were also verified by the experimental measurements of pressure and phase for AVs with various topological charges. The formation of near-field multiple paraxial AVs was verified by the cross-sectional circular pressure distributions with perfect phase spirals around central pressure nulls, and was also proved by the vortex nodes and antinodes along the center axis. The favorable results demonstrated the feasibility of generating near-field multiple traps of paraxial AVs with strengthened AGF using the sector transducer array, and suggested the potential applications of close-range particle trapping in biomedical engineering.

  12. Evaluation of a novel therapeutic focused ultrasound transducer based on Fermat’s spiral

    Science.gov (United States)

    Ramaekers, P.; de Greef, M.; Berriet, R.; Moonen, C. T. W.; Ries, M.

    2017-06-01

    The purpose of this study was to evaluate a novel phased array transducer design rule for therapeutic focused ultrasound applications. This design rule uses the discretized Fermat’s spiral to determine the positioning of the transducer elements for a given number of elements and f-number. Using this principle, three variations of Fermat’s spiral were generated, aimed at (1) grating lobe minimization, (2) side lobe minimization, and (3) an optimized element packing efficiency. For each spiral, sparse layouts using identical circular elements and fully populated layouts based on additional Voronoi tessellation were evaluated numerically. Evaluation criteria included the element size distribution, beam steering capabilities, focal plane pressure distribution, prefocal pressure distribution, and practical considerations. Finally, one Voronoi-tessellated design with a focal length and aperture diameter of 16 cm and a natural frequency of 1.3 MHz was evaluated experimentally through hydrophone measurements. The numerical evaluation showed that while sparse arrays possess superior beam steering capabilities for a given number of elements, the focal point quality and prefocal pressure distribution is substantially more favorable when using the Voronoi-tessellated designs. Beam steering was shown to be feasible with the tessellated designs for lateral deflections up to 10 mm and axial deflections up to 20 mm. The experimental evaluation showed that such a transducer is capable of inducing 40.00 MPa rarefactional and 237.50 MPa compressional peak pressure levels at 800 W instantaneous acoustic output power under free-field conditions, making the system potentially relevant for thermal ablation therapy, histotripsy applications, and shockwave-enhanced heating.

  13. NORMAL PRESSURE AND FRICTION STRESS MEASUREMENT IN ROLLING PROCESSES

    DEFF Research Database (Denmark)

    Henningsen, Poul; Arentoft, Mogens; Lagergren, Jonas

    2005-01-01

    the output from the transducer, the friction stress and normal pressure in the contact zone can be determined. The new concept differs from existing pin designs by a lower disturbance of lubricant film and material flow and limited penetration of material between transducer and roll. Aluminum, cupper...

  14. Numerical comparison of patch and sandwich piezoelectric transducers for transmitting ultrasonic waves

    CSIR Research Space (South Africa)

    Loveday, PW

    2006-03-01

    Full Text Available in the waveguide. Piezoelectric patch transducers are frequently employed, by researchers, for exciting waves in beam like structures. Sonar systems frequently make use of resonant transducers, such as sandwich transducers, for acoustic wave generation...

  15. Mechanical Amplifier for a Piezoelectric Transducer

    Science.gov (United States)

    Moore, James; Swain, Mark; Lawson, Peter; Calvet, Robert

    2003-01-01

    A mechanical amplifier has been devised to multiply the stroke of a piezoelectric transducer (PZT) intended for use at liquid helium temperatures. Interferometry holds the key to high angular resolution imaging and astrometry in space. Future space missions that will detect planets around other solar systems and perform detailed studies of the evolution of stars and galaxies will use new interferometers that observe at mid- and far-infrared wavelengths. Phase-measurement interferometry is key to many aspects of astronomical interferometry, and PZTs are ideal modulators for most methods of phase measurement, but primarily at visible wavelengths. At far infrared wavelengths of 150 to 300 m, background noise is a severe problem and all optics must be cooled to about 4 K. Under these conditions, piezos are ill-suited as modulators, because their throw is reduced by as much as a factor of 2, and even a wavelength or two of modulation is beyond their capability. The largest commercially available piezo stacks are about 5 in. (12.7 cm) long and have a throw of about 180 m at room temperature and only 90 m at 4 K. It would seem difficult or impossible to use PZTs for phase measurements in the far infrared were it not for the new mechanical amplifier that was designed and built.

  16. Piezoelectric Nanotube Array for Broadband High-Frequency Ultrasonic Transducer.

    Science.gov (United States)

    Liew, Weng Heng; Yao, Kui; Chen, Shuting; Tay, Francis Eng Hock

    2018-03-01

    Piezoelectric materials are vital in determining ultrasonic transducer and imaging performance as they offer the function for conversion between mechanical and electrical energy. Ultrasonic transducers with high-frequency operation suffer from performance degradation and fabrication difficulty of the demanded piezoelectric materials. Hence, we propose 1-D polymeric piezoelectric nanostructure with controlled nanoscale features to overcome the technical limitations of high-frequency ultrasonic transducers. For the first time, we demonstrate the integration of a well-aligned piezoelectric nanotube array to produce a high-frequency ultrasonic transducer with outstanding performance. We find that nanoconfinement-induced polarization orientation and unique nanotube structure lead to significantly improved piezoelectric and ultrasonic transducing performance over the conventional piezoelectric thin film. A large bandwidth, 126% (-6 dB), is achieved at high center frequency, 108 MHz. Transmission sensitivity of nanotube array is found to be 46% higher than that of the monolithic thin film transducer attributed to the improved electromechanical coupling effectiveness and impedance match. We further demonstrate high-resolution scanning, ultrasonic imaging, and photoacoustic imaging using the obtained nanotube array transducers, which is valuable for biomedical imaging applications in the future.

  17. Differential osmotic pressure measurements of the concentration susceptibility of liquid 3He/4He mixtures near the lambda curve and tricritical point

    International Nuclear Information System (INIS)

    Gearhart, C.A. Jr.; Zimmermann, W. Jr.

    1979-01-01

    Values of the concentration susceptibility (partial x/partial Δ)/sub T/,P of liquid 3 He/ 4 He mixtures have been determined near the lambda curve and tricritical point from measurements of the differential osmotic pressure as a function of temperature T at four values of the 3 He mole fraction, x = 0.594, x = 0.644, x = 0.680, and x = 0.706. Here Δ = μ 3 - μ 4 is the difference between molar chemical potentials and P is the pressure. Our results for the two values of x less than the tricritical value x/sub t/ = 0.675 show pronounced peaks at the lambda transition. For 3 x 10 -4 -2 , where t equals [T - T/sub lambda/(x)]/T/sub lambda/(x), these peaks may be characterized both above and below the transition by the form (A/sub plus-or-minus//α/sub plus-or-minus/) (vertical-bart vertical-bar/sup -alpha/ +- - 1) + B/sub plus-or-minus/, with exponents α/sub plus-or-minus/ lying in the range from approx. 0.0 to approx. 0.2. Except perhaps for x -1 [T-T/sub t//T/sub t/)/vertical-barx-x/sub t//x/sub t/vertical-bar], where f and Ψ are functions determined by experiment and T/sub t/ = 0.867 K is the tricritical value of T. With the aid of this scaling relationship, the behavior of (partialx/partialΔ)/sub T/,P along curves of constant Δ near the lambda curve has been constucted from our data at constant x

  18. Development of a Piezoelectric Polymer Film Pressure Transducer for Low Frequency and Dynamic Pressure Measurement

    Science.gov (United States)

    1990-12-01

    Sample LOTUS 123 Cell Formulas for Reducing Reset Data A2: 0.0008 B2: 0.564 C2: -2.501 02: (A1-$A$1) E2: (@IF(@ABS(C2)>2,@TRUE,@FALSE)=1) F2: (@IF(E2...9 F14: (@IF( El4 =1,0,0.951*C14)) H14: (G14- 12 .492*D14) A15: 0.0034 B15: -0.248 015: 0.033 D15: (A14-$A$l) G15: @IF(El5=O, (F15+$G$1 1), (($G$1 1+Gl4...data corrected for rise rate and zero mean. I I F-4 I LOTUS 123 Cell Formulas Used to Reconstruct the Sine Data Al: 0.00324 Bi: -0.01 Cl: -0.14 D1: (Al

  19. Bonding and impedance matching of acoustic transducers using silver epoxy.

    Science.gov (United States)

    Son, Kyu Tak; Lee, Chin C

    2012-04-01

    Silver epoxy was selected to bond transducer plates on glass substrates. The properties and thickness of the bonding medium affect the electrical input impedance of the transducer. Thus, the thickness of the silver epoxy bonding layer was used as a design parameter to optimize the structure for the transducer input impedance to match the 50 Ω output impedance of most radio frequency (RF) generators. Simulation and experimental results show that nearly perfect matching is achieved without using any matching circuit. At the matching condition, the transducer operates at a frequency band a little bit below the half-wavelength resonant frequency of the piezoelectric plate. In experiments, lead titanate (PT) piezoelectric plates were employed. Both full-size, 11.5 mm × 2 mm × 0.4 mm, and half-size, 5.75 mm × 2 mm × 0.4 mm, can be well matched using optimal silver epoxy thickness. The transducer assemblies demonstrate high efficiency. The conversion loss from electrical power to acoustic power in soda-lime glass is 4.3 dB. This loss is low considering the fact that the transducers operate at off-resonance by 12%. With proper choice of silver epoxy thickness, the transducer can be matched at the fundamental, the 3rd and 5th harmonic frequencies. This leads to the possible realization of triple-band transducers. Reliability was assessed with thermal cycling test according to Telcordia GR-468-Core recommendation. Of the 30 transducer assemblies tested, none broke until 2900 cycles and 27 have sustained beyond 4050 cycles. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Broadband electrical impedance matching for piezoelectric ultrasound transducers.

    Science.gov (United States)

    Huang, Haiying; Paramo, Daniel

    2011-12-01

    This paper presents a systematic method for designing broadband electrical impedance matching networks for piezoelectric ultrasound transducers. The design process involves three steps: 1) determine the equivalent circuit of the unmatched piezoelectric transducer based on its measured admittance; 2) design a set of impedance matching networks using a computerized Smith chart; and 3) establish the simulation model of the matched transducer to evaluate the gain and bandwidth of the impedance matching networks. The effectiveness of the presented approach is demonstrated through the design, implementation, and characterization of impedance matching networks for a broadband acoustic emission sensor. The impedance matching network improved the power of the acquired signal by 9 times.

  1. USE OF PELTIER COOLERS AS SOIL HEAT FLUX TRANSDUCERS.

    Science.gov (United States)

    Weaver, H.L.; Campbell, G.S.

    1985-01-01

    Peltier coolers were modified and calibrated to serve as soil heat flux transducers. The modification was to fill their interiors with epoxy. The average calibration constant on 21 units was 13. 6 plus or minus 0. 8 kW m** minus **2 V** minus **1 at 20 degree C. This sensitivity is about eight times that of the two thermopile transducers with which comparisons were made. The thermal conductivity of the Peltier cooler transducers was 0. 4 W m** minus **1 degree C** minus **1, which is comparable to that of dry soil.

  2. Reflective array modeling for reflective and directional SAW transducers.

    Science.gov (United States)

    Morgan, D P

    1998-01-01

    This paper presents a new approximate method for analyzing reflective SAW transducers, with much of the convenience of the coupled-mode (COM) method but with better accuracy. Transduction accuracy is obtained by incorporating the accurate electrostatic solution, giving for example correct harmonics, and allowance for electrode width variation, in a simple manner. Results are shown for a single-electrode transducer, Natural SPUDT and DART SPUDT, each using theoretically derived parameters. In contrast to the COM, the RAM can give accurate results for short or withdrawal-weighted transducers and for wide analysis bandwidth.

  3. Ultrasonic Transducer Peak-to-Peak Optical Measurement

    Directory of Open Access Journals (Sweden)

    Pavel Skarvada

    2012-01-01

    Full Text Available Possible optical setups for measurement of the peak-to-peak value of an ultrasonic transducer are described in this work. The Michelson interferometer with the calibrated nanopositioner in reference path and laser Doppler vibrometer were used for the basic measurement of vibration displacement. Langevin type of ultrasonic transducer is used for the purposes of Electro-Ultrasonic Nonlinear Spectroscopy (EUNS. Parameters of produced mechanical vibration have to been well known for EUNS. Moreover, a monitoring of mechanical vibration frequency shift with a mass load and sample-transducer coupling is important for EUNS measurement.

  4. Advancements in the Design and Fabrication of Ultrasound Transducers for Extreme Temperatures

    Science.gov (United States)

    Bosyj, Christopher

    An ultrasound transducer for operation from room temperature to 800 °C is developed. The device includes a lithium niobate piezoelectric crystal, a porous zirconia attenuative backing layer, and a quarter wavelength matching layer. The manufacturing procedure for porous zirconia is optimized by adjusting pore size and forming pressure to yield good acoustic performance and mechanical integrity. Several acoustic coupling methods are evaluated. A novel silver-copper braze and an aluminum-based braze are found to be suitable at elevated temperatures. Several materials are evaluated for their performance as a quarter wavelength matching layer in the transducer stack. The use of either a nickel-chromium or stainless steel matching layer is established in place of ceramic components. Equipment limitations prevent evaluation at 800 °C, though ultrasound transmission is theoretically achievable with the devices established by this study. Reliable high-amplitude, wide-bandwidth ultrasound transmission is achieved from room temperature to 600 °C with two transducer variants.

  5. Metal composite as backing for ultrasonic transducers dedicated to non-destructive measurements in hostile

    International Nuclear Information System (INIS)

    Boubenia, R; Rosenkrantz, E; P, P; Ferrandis, J-Y; Despetis, F

    2016-01-01

    Our team is specialized in ultrasonic measurements in hostile environment especially under high temperatures. There is a need for acoustic transducers capable of continuous measurement at temperatures up to 700°C. To improve the performances of acoustic sensors we focus our works on the realisation and characterisation of transducer backings able to operate under very high temperature. Commercially, they are produced by the incorporation of tungsten powder in a plastic matrix, which limits the working temperature. The realisation of ultrasonic transducers for non-destructive measures at high temperatures requires adequate materials, manufacturing and assembly processes. To produce the backings, composites were made using very ductile metals such as tin and tungsten. These composites are manufactured by uniaxial hot pressing. First, we studied the influence of temperature and pressure on the densification of tin pellets. Then, several specimens made of tin/W were made and characterised by measuring the specific weight, speed and attenuation of sound. The acoustic measures were realised by ultrasonic spectroscopy. This test-bench was designed and tested on control samples of PMMA and on standard backings (epoxy / tungsten). (paper)

  6. Microstructure and elevated-temperature tensile properties of differential pressure sand cast Mg-4Y-3Nd-0.5Zr alloy

    Directory of Open Access Journals (Sweden)

    Hong-hui Liu

    2016-01-01

    Full Text Available The microstructures of an Mg-4Y-3Nd-0.5Zr alloy by differential pressure casting were investigated using scanning electron microscopy (SEM and transmission electron microscopy (TEM, and its tensile deformation behavior was measured using a Gleeble1500D themo-simulation machine in the temperature range of 200 to 400 °C at initial strain rates of 5×10-4 to 10-1 s-1. Results show that the as-cast microstructure consists of primary α-Mg phase and bone-shaped Mg5RE eutectic phase distributed along the grain boundary. The eutectic phase is dissolved into the matrix after solution treatment and subsequently precipitates during peak aging. Tensile deformation tests show that the strain rate has little effect on stress under 300 °C. Tensile stress decreases with an increase in temperature and the higher strain rate leads to an increase in stress above 300 °C. The fracture mechanism exhibits a mixed quasi-cleavage fracture at 200 °C, while the fracture above 300 °C is a ductile fracture. The dimples are melted at 400 °C with the lowest strain rate of 10-4 s-1.

  7. Thermal treatment investigation of natural lizardite at the atmospheric pressure, based on XRD and differential thermal analysis/thermal gravimetric analysis methods

    International Nuclear Information System (INIS)

    Dabiri, R.; Karimi Shahraki, B.; Mollaei, H.; Ghaffari, M.

    2009-01-01

    Determination of stability limits, mineralogical changes and thermal reaction of serpentine minerals are very important for the investigation of magmatism, mechanism and depth of plates of subduction. During the subduction process, serpentine (Lizardite) minerals will release their water due to thermal reactions. This dehydration can play an important role in volcanism processes related to the subduction, In this study, serpentine minerals (Lizardite) collected from the Neyriz Ophiolite Complex were dehydrated under the constant atmospheric pressure. These mineralogical changes were determined by X-Ray diffraction and differential thermal analysis-thermal gravimetric analyses methods. This study shows natural lizardites that heated for about one hour is stable up to 550 d eg C . Dehydration reactions on lizardite started at approximately between 100 to 150 d eg C and dehydroxylation reactions started at approximately 550-690 d eg C . As a result of thermal reaction, the decomposition of lizardite will take place and then changes in to olivine (forsterite). Crystallization of olivine (forsterite) will start at 600 d eg C . This mineral is stable up to 700 d eg C and then crystallization of enstatite will start at 700 d eg C . During this dehydration and crystallization reaction, amorphous processes will start at 600 d eg C and some amount water and silica will release.

  8. Electromechanically active polymer transducers: research in Europe

    Science.gov (United States)

    Carpi, Federico; Graz, Ingrid; Jager, Edwin; Ladegaard Skov, Anne; Vidal, Frédéric

    2013-10-01

    Smart materials and structures based on electromechanically active polymers (EAPs) represent a fast growing and stimulating field of research and development. EAPs are materials capable of changing dimensions and/or shape in response to suitable electrical stimuli. They are commonly classified in two major families: ionic EAPs (activated by an electrically induced transport of ions and/or solvent) and electronic EAPs (activated by electrostatic forces). These polymers show interesting properties, such as sizable active strains and/or stresses in response to electrical driving, high mechanical flexibility, low density, structural simplicity, ease of processing and scalability, no acoustic noise and, in most cases, low costs. Since many of these characteristics can also describe natural muscle tissues from an engineering standpoint, it is not surprising that EAP transducers are sometimes also referred to as 'muscle-like smart materials' or 'artificial muscles'. They are used not only to generate motion, but also to sense or harvest energy from it. In particular, EAP electromechanical transducers are studied for applications that can benefit from their 'biomimetic' characteristics, with possible usages from the micro- to the macro-scale, spanning several disciplines, such as mechatronics, robotics, automation, biotechnology and biomedical engineering, haptics, fluidics, optics and acoustics. Currently, the EAP field is just undergoing its initial transition from academic research into commercialization, with companies starting to invest in this technology and the first products appearing on the market. This focus issue is intentionally aimed at gathering contributions from the most influential European groups working in the EAP field. In fact, today Europe hosts the broadest EAP community worldwide. The rapid expansion of the EAP field in Europe, where it historically has strong roots, has stimulated the creation of the 'European Scientific Network for Artificial

  9. Construction and testing of a blower-door assembly for regulation of air pressure within structures

    International Nuclear Information System (INIS)

    Steele, W.D.

    1987-09-01

    The Technical Measurements Center is evaluating several methods to decrease the time required to determine an annual average radon-daughter concentration in structures. One method involves stabilizing the air pressure within the structure at a constant pressure with reference to external atmospheric or soil-gas pressure. This report describes the construction and preliminary testing of a blower-door system to maintain a constant differential air pressure within a structure. The blower-door assembly includes a collapsible frame and a large fan to occlude a doorway, a damper with an actuator to control air flow, a controller to drive the damper actuator, and a pressure transducer to measure the differential pressure. Preliminary testing of the system indicates that pressure within the structure in the range of 1 to 20 Pascals can be held to within approximately +-1 Pa of the set point. Further testing of the blower-door system is planned to provide data on the applicability of this method to short-duration tests for annual average radon-daughter concentration estimates. 13 figs., 1 tab

  10. Annular spherically focused ring transducers for improved single-beam acoustical tweezers

    Energy Technology Data Exchange (ETDEWEB)

    Mitri, F. G., E-mail: F.G.Mitri@ieee.org [Chevron, Area 52 Technology—ETC, Santa Fe, New Mexico 87508 (United States)

    2016-02-14

    The use of ultrasonic transducers with a central hollow is suggested for improved single-beam acoustical tweezers applications. Within the framework of the Fresnel-Kirchhoff parabolic approximation, a closed-form partial-wave series expansion (PWSE) for the incident velocity potential (or pressure) field is derived for an annular spherically focused ring (asfr) with uniform vibration across its surface in spherical coordinates. The Rayleigh-Sommerfeld diffraction integral and the addition theorems for the Legendre and spherical wave functions are used to obtain the PWSE assuming a weakly focused beam (with a focusing angle α ≤ 20°). The PWSE allows evaluating the incident field from the finite asfr in 3D. Moreover, the obtained solution allows computing efficiently the acoustic scattering and radiation force on a sphere centered on the beam's axis of wave propagation. The analytical solution is valid for wavelengths largely exceeding the radius of the asfr and when the viscosity of the surrounding fluid can be neglected. Numerical predictions for the beam-forming, scattering, and axial time-averaged radiation force are performed with particular emphasis on the asfr thickness, the axial distance separating the sphere from the center of the transducer, the (non-dimensional) size of the transducer, as well as the sphere's elastic properties without restriction to the long- (i.e., Rayleigh) or the short-wavelength (i.e., ray acoustics) regimes. Potential applications of the present solution are in beam-forming design, particle tweezing, and manipulation due to negative forces using ultrasonic asfr transducers.

  11. Wideband Single Crystal Transducer for Bone Characterization, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — TRS proposes to develop a simple-to-use, launch capable, ultrasound transducer that is capable of producing the necessary bandwidth to accurately determine in vivo...

  12. Phage Pl mutants with altered transducing abilities for Escherichia coli

    International Nuclear Information System (INIS)

    Wall, J.D.; Harriman, P.D.

    1974-01-01

    A search was made for mutants of the coliphage P1 with altered transducing frequencies. A method was developed for the rapid assay of transducing frequencies in single plaques using prophage lambda as the transduced bacterial marker. This procedure selects for mutants altered in their ability to package host DNA. Mutants with 5 to 10 times higher or 10 to 20 times lower frequencies than those of wild-type P1 were found. Not only are the markers used for the detection of the mutants affected, but all other markers are similarly affected (not always to the same extent). One of the high transducing frequency mutants is a suppressible amber, indicating that loss of a function increases P1's ability to package host DNA preferentially. (U.S.)

  13. Thermal properties photonic crystal fiber transducers with ferromagnetic nanoparticles

    Science.gov (United States)

    Przybysz, N.; Marć, P.; Kisielewska, A.; Jaroszewicz, L. R.

    2015-12-01

    The main aim of the research is to design new types of fiber optic transducers based on filled photonic crystal fibers for sensor applications. In our research we propose to use as a filling material nanoparticles' ferrofluids (Fe3O4 NPs). Optical properties of such transducers are studied by measurements of spectral characteristics' changes when transducers are exposed to temperature and magnetic field changes. From synthesized ferrofluid several mixtures with different NPs' concentrations were prepared. Partially filled commercially available photonic crystal fiber LMA 10 (NKT Photonics) was used to design PCF transducers. Their thermo-optic properties were tested in a temperature chamber. Taking into account magnetic properties of synthetized NPs the patch cords based on a partially filled PM 1550 PCF were measured.

  14. Failure Analysis of High-Power Piezoelectric Transducers

    National Research Council Canada - National Science Library

    Gabrielson, T. B

    2005-01-01

    ... and stress in a piezoelectric material. For a transducer operated near resonance, there will be "hot spots" or regions of locally intense stress and electric field that precipitate premature failure...

  15. Piezoelectric textured ceramics: Effective properties and application to ultrasonic transducers.

    Science.gov (United States)

    Levassort, Franck; Pham Thi, Mai; Hemery, Henry; Marechal, Pierre; Tran-Huu-Hue, Louis-Pascal; Lethiecq, Marc

    2006-12-22

    Piezoelectric textured ceramics obtained by homo-template grain growth (HTGG) were recently demonstrated. A simple model with several assumptions has been used to calculate effective parameters of these new materials. Different connectivities have been simulated to show that spatial arrangements between the considered phases have little influence on the effective parameters, even through the 3-0 connectivity delivers the highest electromechanical thickness factor. A transducer based on a textured ceramic sample has been fabricated and characterised to show the efficiency of these piezoelectric materials. Finally, in a single element transducer configuration, simulation shows an improvement of 2 dB sensitivity for a transducer made with textured ceramic in comparison with a similar transducer design based on standard soft PZT (at equivalent bandwidths).

  16. Detection of plane, poorly oriented wide flaws using focused transducers

    International Nuclear Information System (INIS)

    Vadder, D. de; Azou, P.; Bastien, P.; Saglio, R.

    1976-01-01

    The detection of plane, poorly oriented, wide flaws by ultrasonic non destructive testing is distinctly improved when using focused transducers. An increased echo can be obtained crossing the defect limit [fr

  17. Piezoelectric transducer vibrations in a one-dimensional approximation

    CERN Document Server

    Hilke, H J

    1973-01-01

    The theory of piezoelectric transducer vibrations, which may be treated as one-dimensional, is developed in detail for thin discs vibrating in a pure thickness extensional mode. An effort has been made to obtain relations of general validity, which include losses, and which are in a simple explicit form convenient for practical calculations. The behaviour of transducers is discussed with special attention to their characteristics at the two fundamental frequencies, the so-called parallel and series resonances. Several peculiarities occur when transducers are coupled to media with considerably different acoustic impedances. These peculiarities are discussed and illustrated by numerical results for quartz and PZT 4 piezoelectric discs radiating into water, air and liquid hydrogen. The application of the theory to different types of vibrations is briefly illustrated for thin bars vibrating longitudinally. Short discussions are included on compound transducer systems, and on the properties of thin discs as receiv...

  18. Active Metamaterial Based Ultrasonic Guided Wave Transducer System, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — An active and tunable metamaterial phased array transducer for guided wave mode selection with high intensity per driving channel and with dramatically lower modal...

  19. Integration of Capacitive Micromachined Ultrasound Transducers to Microfluidic Devices

    KAUST Repository

    Viržonis, Darius; Kodzius, Rimantas; Vanagas, Galius

    2013-01-01

    The design and manufacturing flexibility of capacitive micromachined ultrasound transducers (CMUT) makes them attractive option for integration with microfluidic devices both for sensing and fluid manipulation. CMUT concept is introduced here

  20. Integration of Capacitive Micromachined Ultrasound Transducers to Microfluidic Devices

    KAUST Repository

    Viržonis, Darius

    2013-10-22

    The design and manufacturing flexibility of capacitive micromachined ultrasound transducers (CMUT) makes them attractive option for integration with microfluidic devices both for sensing and fluid manipulation. CMUT concept is introduced here by presentin

  1. High-temperature fiber optic pressure sensor

    Science.gov (United States)

    Berthold, J. W.

    1984-01-01

    Attention is given to a program to develop fiber optic methods to measure diaphragm deflection. The end application is intended for pressure transducers capable of operating to 540 C. In this paper are reported the results of a laboratory study to characterize the performance of the fiber-optic microbend sensor. The data presented include sensitivity and spring constant. The advantages and limitations of the microbend sensor for static pressure measurement applications are described. A proposed design is presented for a 540 C pressure transducer using the fiber optic microbend sensor.

  2. Thermoelectric Control Of Temperatures Of Pressure Sensors

    Science.gov (United States)

    Burkett, Cecil G., Jr.; West, James W.; Hutchinson, Mark A.; Lawrence, Robert M.; Crum, James R.

    1995-01-01

    Prototype controlled-temperature enclosure containing thermoelectric devices developed to house electronically scanned array of pressure sensors. Enclosure needed because (1) temperatures of transducers in sensors must be maintained at specified set point to ensure proper operation and calibration and (2) sensors sometimes used to measure pressure in hostile environments (wind tunnels in original application) that are hotter or colder than set point. Thus, depending on temperature of pressure-measurement environment, thermoelectric devices in enclosure used to heat or cool transducers to keep them at set point.

  3. Finite-State Complexity and the Size of Transducers

    Directory of Open Access Journals (Sweden)

    Cristian Calude

    2010-08-01

    Full Text Available Finite-state complexity is a variant of algorithmic information theory obtained by replacing Turing machines with finite transducers. We consider the state-size of transducers needed for minimal descriptions of arbitrary strings and, as our main result, we show that the state-size hierarchy with respect to a standard encoding is infinite. We consider also hierarchies yielded by more general computable encodings.

  4. Test and evaluation of radioactively contaminated transducers and transmitters

    International Nuclear Information System (INIS)

    Strahm, R.C.

    1983-01-01

    People in the nuclear industries face some unique problems when handling, testing, or examining transducers and transmitters that have been radioactively contaminated. Although many people and organizations, including EG and G Idaho, have performed such work for many years, there are no set, structured approaches or procedures. This paper discusses a disciplined laboratory approach to contaminated transducer testing and evaluation, utilizing equipment and facilities developed specifically for this type of work

  5. A theoretical study of cylindrical ultrasound transducers for intracavitary hyperthermia

    International Nuclear Information System (INIS)

    Lin, W.-L.; Fan, W.-C.; Yen, J.-Y.; Chen, Y.-Y.; Shieh, M.-J.

    2000-01-01

    Purpose: The purpose of this paper was to examine the heating patterns and penetration depth when a cylindrical ultrasound transducer is employed for intracavitary hyperthermia treatments. Methods and Materials: The present study employs a simulation program based on a simplified power deposition model for infinitely long cylindrical ultrasound transducers. The ultrasound power in the tissue is assumed to be exponentially attenuated according to the penetration depth of the ultrasound beam, and a uniform attenuation for the entire treatment region is also assumed. The distribution of specific absorption rate (SAR) ratio (the ratio of SAR for a point within the tissue to that for a specific point on the cavity surface) is used to determine the heating pattern for a set of given parameters. The parameters considered are the ultrasound attenuation in the tissue, the cavity size, and the transducer eccentricity. Results: Simulation results show that the ultrasound attenuation in the tissue, the cavity size, and the transducer eccentricity are the most influential parameters for the distribution of SAR ratio. A low frequency transducer located in a large cavity can produce a much better penetration. The cavity size is the major parameter affecting the penetration depth for a small cavity size, such as interstitial hyperthermia. The heating pattern can also be dramatically changed by the transducer eccentricity and radiating sector. In addition, for a finite length of cylindrical transducer, lower SAR ratio appears in the regions near the applicator's edges. Conclusion: The distribution of SAR ratio indicates the relationship between the treatable region and the parameters if an appropriate threshold of SAR ratio is taken. The findings of the present study comprehend whether or not a tumor is treatable, as well as select the optimal driving frequency, the appropriate cavity size, and the eccentricity of a cylindrical transducer for a specific treatment

  6. Design of a Smart Ultrasonic Transducer for Interconnecting Machine Applications

    Directory of Open Access Journals (Sweden)

    Chang Xu

    2009-06-01

    Full Text Available A high-frequency ultrasonic transducer for copper or gold wire bonding has been designed, analyzed, prototyped and tested. Modeling techniques were used in the design phase and a practical design procedure was established and used. The transducer was decomposed into its elementary components. For each component, an initial design was obtained with simulations using a finite elements model (FEM. Simulated ultrasonic modules were built and characterized experimentally through the Laser Doppler Vibrometer (LDV and electrical resonance spectra. Compared with experimental data, the FEM could be iteratively adjusted and updated. Having achieved a remarkably highly-predictive FEM of the whole transducer, the design parameters could be tuned for the desired applications, then the transducer is fixed on the wire bonder with a complete holder clamping was calculated by the FEM. The approach to mount ultrasonic transducers on wire bonding machines also is of major importance for wire bonding in modern electronic packaging. The presented method can lead to obtaining a nearly complete decoupling clamper design of the transducer to the wire bonder.

  7. DESIGN AND IMPLEMENTATION OF POTENTIOMETER-BASED NONLINEAR TRANSDUCER EMULATOR

    Directory of Open Access Journals (Sweden)

    Sheroz Khan

    2011-05-01

    Full Text Available This work attempts to design and implement in hardware a transducer with a nonlinear response using potentiometer. Potentiometer is regarded as a linear transducer, while a the response of a nonlinear transducer can be treated as a concatenation of linear segments made out of the response curve of an actual nonlinear transducer at the points of inflections being exhibited by the nonlinear curve. Each straight line segment is characterized by its slope and a constant, called the y-intercept, which is ultimately realized by a corresponding electronic circuit. The complete circuit diagram is made of three stages: (i the input stage for range selection, (ii a digital logic to make appropriate selection, (iii a conditioning circuit for realizing a given straight-line segment identified by its relevant slope and reference voltage. The simulation of the circuit is carried using MULTISIM, and the designed circuit is afterward tested to verify that variations of the input voltage give us an output voltage very close to the response pattern envisaged in the analytical stage of the design. The utility of this work lies in its applications in emulating purpose built transducers that could be used to nicely emulate a transducer in a real world system that is to be controlled by a programmable digital system.

  8. Damage detection in concrete structures with smart piezoceramic transducers

    Science.gov (United States)

    Naidu, Akshay S. K.; Bhalla, Suresh

    2003-10-01

    Detection of damages and progressive deterioration in structures is a critical issue. Visual inspections are tedious and unreliable. Incipient damages are often not discernible by low frequency dynamic response and other NDE techniques. Smart piezoelectric ceramic (PZT) transducers are emerging as an effective alternative in health monitoring of structures. The electro-mechanical impedance method employs the self-actuating and sensing characteristics of the PZT, without having to use actuators and sensors separately. When excited by an ac source, the PZT transducers bonded to the host structure activates the higher modes of vibration locally. Changes in the admittance response of the transducer serves as an indicator of damage around the transducer. In this paper, the effectiveness of PZT transducers for characterizing damages in concrete, in terms of the damage extent and location, is experimentally examined. The root mean square deviation (RMSD) index, adopted to quantify the changes in the admittance signatures, correlates with the damage extent. The damages on the surface that is not mounted by the PZT are also discernible. An array of transducers proves effective in detecting the damaged zone. The progressive incipient crack can be detected much before it actually becomes visible to the naked eye.

  9. Home Automation System Based on Intelligent Transducer Enablers

    Science.gov (United States)

    Suárez-Albela, Manuel; Fraga-Lamas, Paula; Fernández-Caramés, Tiago M.; Dapena, Adriana; González-López, Miguel

    2016-01-01

    This paper presents a novel home automation system named HASITE (Home Automation System based on Intelligent Transducer Enablers), which has been specifically designed to identify and configure transducers easily and quickly. These features are especially useful in situations where many transducers are deployed, since their setup becomes a cumbersome task that consumes a significant amount of time and human resources. HASITE simplifies the deployment of a home automation system by using wireless networks and both self-configuration and self-registration protocols. Thanks to the application of these three elements, HASITE is able to add new transducers by just powering them up. According to the tests performed in different realistic scenarios, a transducer is ready to be used in less than 13 s. Moreover, all HASITE functionalities can be accessed through an API, which also allows for the integration of third-party systems. As an example, an Android application based on the API is presented. Remote users can use it to interact with transducers by just using a regular smartphone or a tablet. PMID:27690031

  10. Home Automation System Based on Intelligent Transducer Enablers.

    Science.gov (United States)

    Suárez-Albela, Manuel; Fraga-Lamas, Paula; Fernández-Caramés, Tiago M; Dapena, Adriana; González-López, Miguel

    2016-09-28

    This paper presents a novel home automation system named HASITE (Home Automation System based on Intelligent Transducer Enablers), which has been specifically designed to identify and configure transducers easily and quickly. These features are especially useful in situations where many transducers are deployed, since their setup becomes a cumbersome task that consumes a significant amount of time and human resources. HASITE simplifies the deployment of a home automation system by using wireless networks and both self-configuration and self-registration protocols. Thanks to the application of these three elements, HASITE is able to add new transducers by just powering them up. According to the tests performed in different realistic scenarios, a transducer is ready to be used in less than 13 s. Moreover, all HASITE functionalities can be accessed through an API, which also allows for the integration of third-party systems. As an example, an Android application based on the API is presented. Remote users can use it to interact with transducers by just using a regular smartphone or a tablet.

  11. Home Automation System Based on Intelligent Transducer Enablers

    Directory of Open Access Journals (Sweden)

    Manuel Suárez-Albela

    2016-09-01

    Full Text Available This paper presents a novel home automation system named HASITE (Home Automation System based on Intelligent Transducer Enablers, which has been specifically designed to identify and configure transducers easily and quickly. These features are especially useful in situations where many transducers are deployed, since their setup becomes a cumbersome task that consumes a significant amount of time and human resources. HASITE simplifies the deployment of a home automation system by using wireless networks and both self-configuration and self-registration protocols. Thanks to the application of these three elements, HASITE is able to add new transducers by just powering them up. According to the tests performed in different realistic scenarios, a transducer is ready to be used in less than 13 s. Moreover, all HASITE functionalities can be accessed through an API, which also allows for the integration of third-party systems. As an example, an Android application based on the API is presented. Remote users can use it to interact with transducers by just using a regular smartphone or a tablet.

  12. Software for Correcting the Dynamic Error of Force Transducers

    Directory of Open Access Journals (Sweden)

    Naoki Miyashita

    2014-07-01

    Full Text Available Software which corrects the dynamic error of force transducers in impact force measurements using their own output signal has been developed. The software corrects the output waveform of the transducers using the output waveform itself, estimates its uncertainty and displays the results. In the experiment, the dynamic error of three transducers of the same model are evaluated using the Levitation Mass Method (LMM, in which the impact forces applied to the transducers are accurately determined as the inertial force of the moving part of the aerostatic linear bearing. The parameters for correcting the dynamic error are determined from the results of one set of impact measurements of one transducer. Then, the validity of the obtained parameters is evaluated using the results of the other sets of measurements of all the three transducers. The uncertainties in the uncorrected force and those in the corrected force are also estimated. If manufacturers determine the correction parameters for each model using the proposed method, and provide the software with the parameters corresponding to each model, then users can obtain the waveform corrected against dynamic error and its uncertainty. The present status and the future prospects of the developed software are discussed in this paper.

  13. High Frequency Longitudinal Damped Vibrations of a Cylindrical Ultrasonic Transducer

    Directory of Open Access Journals (Sweden)

    Mihai Valentin Predoi

    2014-01-01

    Full Text Available Ultrasonic piezoelectric transducers used in classical nondestructive testing are producing in general longitudinal vibrations in the MHz range. A simple mechanical model of these transducers would be very useful for wave propagation numerical simulations, avoiding the existing complicated models in which the real components of the transducer are modeled by finite elements. The classical model for longitudinal vibrations is not adequate because the generated longitudinal wave is not dispersive, the velocity being the same at any frequency. We have adopted the Rayleigh-Bishop model, which avoids these limitations, even if it is not converging to the first but to the second exact longitudinal mode in an elastic rod, as obtained from the complicated Pochhammer-Chree equations. Since real transducers have significant vibrations damping, we have introduced a damping term in the Rayleigh-Bishop model, increasing the imaginary part and keeping almost identical real part of the wavenumber. Common transducers produce amplitude modulated signals, completely attenuated after several periods. This can be modeled by two close frequencies, producing a “beat” phenomenon, superposed on the high damping. For this reason, we introduce a two-rod Rayleigh-Bishop model with damping. Agreement with measured normal velocity on the transducer free surface is encouraging for continuation of the research.

  14. Eyes with Suspicious Appearance of the Optic Disc and Normal Intraocular Pressure: Using Clinical and Epidemiological Characteristics to Differentiate Those with and without Glaucoma.

    Directory of Open Access Journals (Sweden)

    Diego T Dias

    Full Text Available Among all glaucoma suspects, eyes with optic nerve head features suspicious or suggestive of early glaucoma are probably those that offer the greatest challenge for clinicians. In contrast with the robust longitudinal data published on ocular hypertension, there is no specific management guideline for these patients. Therefore, evaluating eyes with suspicious optic disc appearance and normal intraocular pressure (IOP, we sought to investigate potential differences in clinical and epidemiological characteristics to differentiate those with normal-tension glaucoma (NTG from those with presumed large physiological optic disc cups (pLPC. In this observational case-control study, we consecutively enrolled individuals with pLPC and NTG. All eyes had vertical cup-to-disc ratio (VCDR≥0.6 and untreated IOP<21 mmHg. Glaucomatous eyes had reproducible visual field defects. Eyes with pLPC required normal visual fields and ≥30 months of follow-up with no evidence of glaucomatous neuropathy. Clinical and epidemiological parameters were compared between groups. Eighty-four individuals with pLPC and 40 NTG patients were included. Regarding our main results, NTG patients were significantly older and with a higher prevalence of Japanese descendants (p<0.01. Not only did pLPC eyes have smaller mean VCDR, but also larger optic discs (p≤0.04. There were no significant differences for gender, central corneal thickness, and spherical equivalent (p≥0.38. Significant odds ratios (OR were found for race (OR = 2.42; for Japanese ancestry, age (OR = 1.05, VCDR (OR = 5.03, and disc size (OR = 0.04; p≤0.04. In conclusion, in patients with suspicious optic disc and normal IOP, those with older age, Japanese ancestry, smaller optic discs, and larger VCDR are more likely to have NTG, and therefore, deserve deeper investigation and closer monitoring.

  15. Immersion apparatus and process for an ultrasonic transducer in a liquid metal

    International Nuclear Information System (INIS)

    Le Baud, P.

    1987-01-01

    The ultrasonic transducer is introduced in a casing. The coupling zone of the transducer is covered by a layer of liquid metal. This layer is solidified and then the transducer with his coating layer is introduced in the liquid metal under an inert atmosphere. The device for immersing the transducer is claimed [fr

  16. Design of a saturated analogue and digital current transducer

    International Nuclear Information System (INIS)

    Pross, Alexander

    2002-01-01

    This project describes the development of a new analogue and digital current transducer, providing a range of new theoretical design methods for these novel devices. The main control feature is the limit cycling operation, and the novel use of the embedded sigma-delta modulator sensor structure to derive a low component count digital sensor. The research programme was initiated into the design, development and evaluation of a novel non-Hall sensing analogue and digital current transducer. These transducers are used for measurement of high currents in power systems applications. The investigation is concerned with a new design which uses a magnetic ferrite core without an air gap for current measurement. The motivation for this work was to design a new control circuit which provides a low component count, and utilises the non-linear properties of the magnetic ferrite core to transmit direct current. The use of a limit cycle control circuit was believed to be particularly suitable for the analogue and digital transducers, for two main reasons: the low component count, and the output signal is directly digital. In line with the motivations outlined above, the outcome of the research has witnessed the design, development and evaluation of a practically realisable analogue and digital current transducer. The design procedure, which is documented in this thesis, is considered to be a major contribution to the field of transducers design and development using a control systems approach. Mathematical models for both analogue and digital transducers were developed and the resulting model based predictions were found to be in good agreement with measured results. Simplification of the new model sensing device was achieved by approximating the non-linear ferrite core using FFT analysis. This is also considered to be a significant contribution. The development analogue and digital current censors employed a sampled data control systems design and utilised limit cycling

  17. The design of a focused ultrasound transducer array for the treatment of stroke: a simulation study

    International Nuclear Information System (INIS)

    Pajek, Daniel; Hynynen, Kullervo

    2012-01-01

    High intensity focused ultrasound (HIFU) is capable of mechanically disintegrating blood clots at high pressures. Safe thrombolysis may require frequencies higher than those currently utilized by transcranial HIFU. Since the attenuation and focal distortion of ultrasound in bone increases at higher frequencies, resulting focal pressures are diminished. This study investigated the feasibility of using transcranial HIFU for the non-invasive treatment of ischemic stroke. The use of large aperture, 1.1–1.5 MHz phased arrays in targeting four clinically relevant vessel locations was simulated. Resulting focal sizes decreased with frequency, producing a maximum –3 dB depth of field and lateral width of 2.0 and 1.2 mm, respectively. Mean focal gains above an order of magnitude were observed in three of four targets and transducer intensities required to achieve thrombolysis were determined. Required transducer element counts are about an order of magnitude higher than what currently exists and so, although technically feasible, new arrays would need to be developed to realize this as a treatment modality for stroke. (paper)

  18. A piezoelectric transducer for measurement of dynamic strain in pipes

    Energy Technology Data Exchange (ETDEWEB)

    Lannes, Daniel P.; Gama, Antonio L. [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil). Dept. de Engenharia Mecanica

    2009-07-01

    This work presents a new strain transducer developed mainly for the inspection and evaluation of piping systems with excessive vibration. Vibration is one of the most common causes of piping failures. These failures could be avoided if the vibration problems were identified and quickly evaluated. Procedures for evaluation of piping vibration are usually based on pipe velocity or displacement. Although simple and fast, these procedures do not provide precise information on the risk of piping fatigue failure. Through the measurement of pipe dynamic strains the risk of failure due to vibration can be determined more accurately. The measurement of strain is usually performed using the conventional strain gauge method. Although efficient and accurate, the implementation of the conventional strain gauge technique may become a difficult task in certain industrial scenarios. Motivated by the need of a simple and rapid method for pipe dynamic strain measurement, a piezoelectric dynamic strain transducer was developed. This work presents a description of the piezoelectric strain transducer and the preliminary results of pipe strain measurements. The transducer can be applied directly to the pipe through magnetic bases allowing for the quick measurement of the dynamic strains in many points of the pipe. The transducer signal can be read with the same commercial data collectors used for accelerometers. (author)

  19. Piezoelectric Polymer Ultrasound Transducers and Its Biomedical Applications

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Kang Lyeol; Cao, Yanggang [Department of Physics, Pukyong National University, Busan (Korea, Republic of)

    2012-10-15

    PVDF(poly vinylidene fluoride) and P(VDF-TrFE)(poly vinylidene fluoride-tetrafluoroethylene) are the typical piezoelectric polymers with unique properties. Even they are inferior to conventional piezoelectric ceramics PZT in electromechanical conversion efficiency and interior loss, though they are superior in receiving sensitivity and frequency bandwidth. Their acoustic impedances are relatively close to water or biological tissue and it is easier to make thin film than other piezoelectric materials. Furthermore, the film is so flexible that it is easy to attach on a complex surface. Those properties are suitable for the ultrasound transducers which are useful for medical and biological application, so that various types of polymer transducers have been developed. In this paper, several important considerations for design and fabrication of piezoelectric polymer transducers were described and their effect on the transducer performance were demonstrated through the KLM model analysis. Then, it was briefly reviewed about the structures of the polymer transducers developed for obtaining images as well as the characteristics of the images in several important medical and biological application fields.

  20. An improved electro-acoustic transducer

    International Nuclear Information System (INIS)

    Leschek, W.C.; Carpenter, P.E.

    1975-01-01

    That device comprises a tubular metal enclosure, a window and a piezoelectric member, an elongated damping member in contact with said piezoelectric member, an insulating pad mounted in said enclosure, means for pressing said insulating pad against the damping member and, therefore, against the piezoelectric member, and electrical conductors connected to one of the surfaces of said piezoelectric member and to said damping member respectively. That device can be used, in particular, for inspecting the defects, and flaws being formed in the wall of pressurized containers, e.g. nuclear reactors [fr

  1. A method of making an ultrasonic transducer

    International Nuclear Information System (INIS)

    Bishop, J.

    1980-01-01

    A wafer of lead zirconate titanate (piezo-electric material) having silver face coatings is heat and pressure bonded, under vacuum, to a nickel diaphragm with the interposition of lead, and the wafer of lead zirconate titanate is slidably rotated relative to the surface of the diaphragm during the bonding process to effect an improved bond. The wafer is pressed and rotated by a shaft 'S' about the lower end of which R.F. induction heating coils are disposed. The bonding produces a lead/silver eutectic alloy. (author)

  2. Modeling piezoelectric ultrasonic transducers for physiotherapy; Modelado de transductores ultrasonicos piezoelectricos para fisioterapia

    Energy Technology Data Exchange (ETDEWEB)

    Iglesias, E.; Frutos, J. de; Montero de Espinosa, F.

    2015-07-01

    Applications of ultrasound are well known in medical and aesthetic skin and subcutaneous fatty tissue mobilization treatments. The basic transducer used consists of a piezoelectric disk adhered to a metal delay line in capsule shape. The capsule design is critical since the two bonded elements have vibration modes which can cause very inefficient designs and vibration distributions very irregular if they are not properly studied and utilized. This must be known to avoid distributions of heat and sound pressure that could be ineffective or harmful. In this paper, using Finite Element Method and laser interferometric vibrational analysis, it has reached a piston-type solution that allows properly implement sound pressure vibration dose. (Author)

  3. Electromechanical characteristics of discal piezoelectric transducers with spiral interdigitated electrodes

    International Nuclear Information System (INIS)

    Pan, Chengliang; Xiao, Guangjun; Feng, Zhihua; Liao, Wei-Hsin

    2014-01-01

    In this study, piezoceramic thin disks with spiral interdigitated electrodes on their surfaces are proposed to generate in-plane torsional vibrations. Electromechanical characteristics of the discal piezoelectric transducers are investigated. Working principles of the transducers are explained while their static deformations are formulated. Dynamic models are derived to analyze the in-plane torsional vibrations of the disks together with the radial vibrations. The corresponding electromechanical equivalent circuits are also obtained. With different boundary conditions and structural parameters, frequency responses of their electric admittances are calculated numerically. Resonant frequencies, mode shapes, and electromechanical coupling coefficients of the vibration modes are also extracted. Prototype transducers are fabricated and tested to validate the theoretical results. (paper)

  4. Inspection of complex geometry pieces with an intelligent contact transducer

    International Nuclear Information System (INIS)

    Chatillon, S.; Roy, O.; Mahaut, St.

    2000-01-01

    A new multi-element contact transducer has been developed to improve the inspection of components with complex geometry. The emitting surface is flexible in order to optimize the contact with pieces. An algorithm, based on a simplified geometric model, has been used to determine the delays law which allows to control the focal characteristics of the transmitted field. Acquisition data lead in transmission with an articulated transducer validate the behavior provided by simulation. Thus the optimization of the delays law ensures the transmission of a beam which is homogeneous and controlled during the moving of the transducer. Inspections in echo-pulse mode are implemented on a sample simulating a component controlled on site. Results show that the dynamical adaptation of the delays law to the geometry of the piece leads to very good performances

  5. Actuators, transducers and motors based on giant magnetostrictive materials

    Energy Technology Data Exchange (ETDEWEB)

    Claeyssen, F.; Lhermet, N.; Le Letty, R. [Cedrat Recherche, Meylan (France); Bouchilloux, P. [Magsoft Corporation, 1223 People`s Avenue, New York 12180 (United States)

    1997-08-01

    Rare earth-iron magnetostrictive alloys, especially Terfenol-D, feature ``giant`` magnetostrains: static strains of 1000-2000 ppm and dynamic strains of 3500 ppm are reported. These strains permit building various actuating devices (actuators, transducers, motors) both at macro and micro scale. The object of the paper is to recall adapted design methods, especially finite element methods such as ATILA, and to review these different kinds of devices studied at Cedrat Recherche, providing both up-dated experimental and numerical results. The presented devices will include several large displacement longitudinal and shear actuators biased using permanent magnets and used either as characterisation devices or as electromechanical actuators (for active damping, for sonar transducers..), a 1 kHz 4 kW Tonpilz-type sonar transducer called the tripode, a 2 N m torque rotating multi-mode motor, a torsion based drift free micro actuator and a wireless linear micromotor. (orig.)

  6. A novel serrated columnar phased array ultrasonic transducer

    Science.gov (United States)

    Zou, Cheng; Sun, Zhenguo; Cai, Dong; Song, Hongwei; Chen, Qiang

    2016-02-01

    Traditionally, wedges are required to generate transverse waves in a solid specimen and mechanical rotation device is needed for interrogation of a specimen with a hollow bore, such as high speed railway locomotive axles, turbine rotors, etc. In order to eliminate the mechanical rotation process, a novel array pattern of phased array ultrasonic transducers named as serrated columnar phased array ultrasonic transducer (SCPAUT) is designed. The elementary transducers are planar rectangular, located on the outside surface of a cylinder. This layout is aimed to generate electrically rotating transverse waveforms so as to inspect the longitudinal cracks on the outside surface of a specimen which has a hollow bore at the center, such as the high speed railway locomotive axles. The general geometry of the SCPAUT and the inspection system are illustrated. A FEM model and mockup experiment has been carried out. The experiment results are in good agreement with the FEM simulation results.

  7. INFLUENCE OF PIEZOELECTRIC TRANSDUCER TO GLASS FIBER REINFORCED COMPOSITE STIFFNESS

    Directory of Open Access Journals (Sweden)

    Witold Rządkowski

    2015-08-01

    Full Text Available The main goal was to determine if transducers based on piezoelectric materials are suitable for strain calculations in thin GFRP specimens. Numerous experimental studies, both physical and numerical, performed by the authors, have shown that there is a huge influence of bonded piezoelectric transducer on the overall stiffness of the measured object. The paper presents tensile test performed on strength machine with Digital Image Correlation strain and deflection observations. Test were compared with FEM models for detailed investigation. The main conclusion is piezoelectric transducers has huge influence on local stiffness of measured object. That is critical especially when they are used as strain sensors, when presence of sensor is influencing to measured results.

  8. Investigation of Calibrating Force Transducer Using Sinusoidal Force

    International Nuclear Information System (INIS)

    Zhang Li; Wang Yu; Zhang Lizhe

    2010-01-01

    Sinusoidal force calibration method was studied several years before at Physikalisch-Technische Bundesanstalt (PTB). A similar dynamic force calibration system is developed at Changcheng Institute of Metrology and Measurement (CIMM). It uses electro-dynamic shakers to generate dynamic force in the range from 1 N to 20 kN, and heterodyne laser interferometers are used for acceleration measurement. The force transducer to be calibrated is mounted on the shaker, and a mass block is screwed on the top of force transducer, the sinusoidal forces realized by accelerated load masses are traceable to acceleration and mass according to the force definition. The methods of determining Spatial-dependent acceleration on mass block and measuring the end mass of force transducer in dynamic force calibration are discussed in this paper.

  9. High pressure metrology for industrial applications

    Science.gov (United States)

    Sabuga, Wladimir; Rabault, Thierry; Wüthrich, Christian; Pražák, Dominik; Chytil, Miroslav; Brouwer, Ludwig; Ahmed, Ahmed D. S.

    2017-12-01

    To meet the needs of industries using high pressure technologies, in traceable, reliable and accurate pressure measurements, a joint research project of the five national metrology institutes and the university was carried out within the European Metrology Research Programme. In particular, finite element methods were established for stress-strain analysis of elastic and nonlinear elastic-plastic deformation, as well as of contact processes in pressure-measuring piston-cylinder assemblies, and high-pressure components at pressures above 1 GPa. New pressure measuring multipliers were developed and characterised, which allow realisation of the pressure scale up to 1.6 GPa. This characterisation is based on research including measurements of material elastic constants by the resonant ultrasound spectroscopy, hardness of materials of high pressure components, density and viscosity of pressure transmitting liquids at pressures up to 1.4 GPa and dimensional measurements on piston-cylinders. A 1.6 GPa pressure system was created for operation of the 1.6 GPa multipliers and calibration of high pressure transducers. A transfer standard for 1.5 GPa pressure range, based on pressure transducers, was built and tested. Herewith, the project developed the capability of measuring pressures up to 1.6 GPa, from which industrial users can calibrate their pressure measurement devices for accurate measurements up to 1.5 GPa.

  10. Transducers for the Brazilian gravitational wave detector 'Mario Schenberg'

    International Nuclear Information System (INIS)

    Frajuca, Carlos; Ribeiro, Kilder L; Andrade, Luiz A; Jr, Walter F Velloso; Melo, Jose L; Aguiar, Odylio D; Magalhaes, Nadja S

    2002-01-01

    'Mario Schenberg' is a spherical resonant-mass gravitational wave (GW) detector that will be part of a GW detection array of three detectors. The other two will be built in Italy and the Netherlands. Their resonant frequencies will be around 3.2 kHz with a bandwidth of about 200 Hz. This range of frequencies is new in a field where the typical frequencies lie below 1 kHz, making the transducer development much more complex. In this paper, the design of the mechanical part of the transducer will be shown, as well as the attachment method to the sphere and the expected sensitivity

  11. Thermal energy harvesters with piezoelectric or electrostatic transducer

    Science.gov (United States)

    Prokaryn, Piotr; Domański, Krzysztof; Marchewka, Michał; Tomaszewski, Daniel; Grabiec, Piotr; Puscasu, Onoriu; Monfray, Stéphane; Skotnicki, Thomas

    2014-08-01

    This paper describes the idea of the energy harvester which converts thermal gradient present in environment into electricity. Two kinds of such devices are proposed and their prototypes are shown and discussed. The main parts of harvesters are bimetallic spring, piezoelectric transducer or electrostatic transducer with electret. The applied piezomembrane was commercial available product but electrets was made by authors. In the paper a fabrication procedure of electrets formed by the corona discharge process is described. Devices were compared in terms of generated power, charging current, and the voltage across a storage capacitor.

  12. New Analysis Scheme of Flow-Acoustic Coupling for Gas Ultrasonic Flowmeter with Vortex near the Transducer

    Directory of Open Access Journals (Sweden)

    Yanzhao Sun

    2018-04-01

    Full Text Available Ultrasonic flowmeters with a small or medium diameter are widely used in process industries. The flow field disturbance on acoustic propagation caused by a vortex near the transducer inside the sensor as well as the mechanism and details of flow-acoustic interaction are needed to strengthen research. For that reason, a new hybrid scheme is proposed; the theories of computational fluid dynamics (CFD, wave acoustics, and ray acoustics are used comprehensively by a new step-by-step method. The flow field with a vortex near the transducer, and its influence on sound propagation, receiving, and flowmeter performance are analyzed in depth. It was found that, firstly, the velocity and vortex intensity distribution were asymmetric on the sensor cross-section and acoustic path. Secondly, when passing through the vortex zone, the central ray trajectory was deflected significantly. The sound pressure on the central line of the sound path also changed. Thirdly, the pressure deviation becomes larger with as the flow velocity increases. The deviation was up to 17% for different velocity profiles in a range of 0.6 m/s to 53 m/s. Lastly, in comparison to the theoretical value, the relative deviation of the instrument coefficient for the velocity profile with a vortex near the transducer reached up to −17%. In addition, the rationality of the simulation was proved by experiments.

  13. New Analysis Scheme of Flow-Acoustic Coupling for Gas Ultrasonic Flowmeter with Vortex near the Transducer.

    Science.gov (United States)

    Sun, Yanzhao; Zhang, Tao; Zheng, Dandan

    2018-04-10

    Ultrasonic flowmeters with a small or medium diameter are widely used in process industries. The flow field disturbance on acoustic propagation caused by a vortex near the transducer inside the sensor as well as the mechanism and details of flow-acoustic interaction are needed to strengthen research. For that reason, a new hybrid scheme is proposed; the theories of computational fluid dynamics (CFD), wave acoustics, and ray acoustics are used comprehensively by a new step-by-step method. The flow field with a vortex near the transducer, and its influence on sound propagation, receiving, and flowmeter performance are analyzed in depth. It was found that, firstly, the velocity and vortex intensity distribution were asymmetric on the sensor cross-section and acoustic path. Secondly, when passing through the vortex zone, the central ray trajectory was deflected significantly. The sound pressure on the central line of the sound path also changed. Thirdly, the pressure deviation becomes larger with as the flow velocity increases. The deviation was up to 17% for different velocity profiles in a range of 0.6 m/s to 53 m/s. Lastly, in comparison to the theoretical value, the relative deviation of the instrument coefficient for the velocity profile with a vortex near the transducer reached up to -17%. In addition, the rationality of the simulation was proved by experiments.

  14. New Analysis Scheme of Flow-Acoustic Coupling for Gas Ultrasonic Flowmeter with Vortex near the Transducer

    Science.gov (United States)

    Zhang, Tao; Zheng, Dandan

    2018-01-01

    Ultrasonic flowmeters with a small or medium diameter are widely used in process industries. The flow field disturbance on acoustic propagation caused by a vortex near the transducer inside the sensor as well as the mechanism and details of flow-acoustic interaction are needed to strengthen research. For that reason, a new hybrid scheme is proposed; the theories of computational fluid dynamics (CFD), wave acoustics, and ray acoustics are used comprehensively by a new step-by-step method. The flow field with a vortex near the transducer, and its influence on sound propagation, receiving, and flowmeter performance are analyzed in depth. It was found that, firstly, the velocity and vortex intensity distribution were asymmetric on the sensor cross-section and acoustic path. Secondly, when passing through the vortex zone, the central ray trajectory was deflected significantly. The sound pressure on the central line of the sound path also changed. Thirdly, the pressure deviation becomes larger with as the flow velocity increases. The deviation was up to 17% for different velocity profiles in a range of 0.6 m/s to 53 m/s. Lastly, in comparison to the theoretical value, the relative deviation of the instrument coefficient for the velocity profile with a vortex near the transducer reached up to −17%. In addition, the rationality of the simulation was proved by experiments. PMID:29642577

  15. Ethnic differentials in the timing of family formation: A case study of the complex interaction between ethnicity, socioeconomic level, and marriage market pressure

    Directory of Open Access Journals (Sweden)

    Heather Booth

    2010-07-01

    Full Text Available Ethnic differentials in the timing of family formation in Fiji cannot be adequately explained by hypotheses commonly used to explain differentials in fertility behaviour, namely the norms, characteristics, minority group and interaction hypotheses. The norms hypothesis explains a large part of the differentials, but socio-economic factors and changing norms are increasingly involved. The interaction hypothesis is partially operational but cannot explain decreasing age at marriage among lower socio-economic groups. A more comprehensive approach incorporates the counterbalancing effects of modernisation and marriage market imbalances arising from fertility transition. This approach also allows for true interactions between norms, socio-economic characteristics and demographic behaviour.

  16. Analysis of eigenfrequencies in piezoelectric transducers using the finite element method

    DEFF Research Database (Denmark)

    Jensen, Henrik

    1988-01-01

    transducers, which include the complete set of piezoelectric equations, have been included. They can find eigenfrequencies for undamped transducers and perform forced-response analysis for transducers with internal and radiation damping. The superelement technique is used to model the transducer backing......It is noted that the finite-element method is a valuable supplement to the traditional methods for design of novel transducer types because it can determine the vibrational pattern of piezoelectric transducers and is applicable to any geometry. Computer programs for analysis of axisymmetric...

  17. Wall thickness tests by means of rotating electrodynamic transducers

    International Nuclear Information System (INIS)

    Hueschelrath, G.

    1986-01-01

    For about three years, the EROT system has been employed for measuring wall thicknesses on pipes of ferritic steels. The experience gathered and the degree of reliability reached up to now are definitely encouraging, so that an increased use of electrodynamic transducers can be expected for measuring pipes with outside diameters of up to 22 inches. (orig.) [de

  18. A New High-Temperature Ultrasonic Transducer for Continuous Inspection.

    Science.gov (United States)

    Amini, Mohammad Hossein; Sinclair, Anthony N; Coyle, Thomas W

    2016-03-01

    A novel design of piezoelectric ultrasonic transducer is introduced, suitable for operation at temperatures of up to 700 °C-800 °C. Lithium niobate single crystal is chosen as the piezoelectric element primarily due to the high Curie temperature of 1200 °C. A backing element based on a porous ceramic is designed for which the pore volume fraction and average pore diameter in the ceramic matrix can be controlled in the manufacturing process; this enables the acoustic impedance and attenuation to be selected to match their optimal values as predicted by a one-dimensional transducer model of the entire transducer. Porous zirconia is selected as the ceramic matrix material of the backing element to obtain an ultrasonic signal with center frequency of 2.7-3 MHz, and 3-dB bandwidth of 90%-95% at the targeted operating temperature. Acoustic coupling of the piezocrystal to the backing element and matching layer is investigated using commercially available high-temperature adhesives and brazing alloys. The performance of the transducer as a function of temperature is studied. Stable bonding and clear signals were obtained using an aluminum brazing alloy as the bonding agent.

  19. Universal Quantum Transducers Based on Surface Acoustic Waves

    NARCIS (Netherlands)

    Schuetz, M.J.A.; Kessler, E.M.; Giedke, G.; Vandersypen, L.M.K.; Lukin, M.D.; Cirac, J.I.

    2015-01-01

    We propose a universal, on-chip quantum transducer based on surface acoustic waves in piezoactive materials. Because of the intrinsic piezoelectric (and/or magnetostrictive) properties of the material, our approach provides a universal platform capable of coherently linking a broad array of qubits,

  20. Instantaneous input electrical power measurements of HITU transducer

    Energy Technology Data Exchange (ETDEWEB)

    Karaboece, B; Guelmez, Y [Tuebitak Ulusal Metroloji Enstituesue (UME), P.K. 54 41470 Gebze-Kocaeli (Turkey); Rajagapol, S; Shaw, A, E-mail: baki.karaboce@ume.tubitak.gov.t [National Physical Laboratory (NPL), Hampton Road, Teddington TW11 0LW (United Kingdom)

    2011-02-01

    HITU (High Intensity Theraupetic Ultrasound) transducers are widely used in therapeutic ultrasound in medicine. The output ultrasonic power of HITU transducer can be measured in number of methods described in IEC 61161 standard [1]. New IEC standards specifically for measurement of HITU equipment are under development. The ultrasound power radiated from a transducer is dependent on applied input electrical voltage and current and consequently power. But, up to now, no standardised method has been developed and adopted for the input electrical power measurements. Hence, a workpackage was carried out for the establishment of such method in the frequency range of 1 to 3 MHz as a part of EURAMET EMRP Era-net plus 'External Beam Cancer Therapy' project. Several current shunts were developed and evaluated. Current measurements were also realized with Philips current probe and preamplifier at NPL and Agilent current probe at UME. In this paper, a method for the measurement of instantaneous electrical power delivered to a reactive ultrasound transducer in the required frequency range is explored.

  1. Nonlinear Dynamic Modeling of Langevin-Type Piezoelectric Transducers

    Directory of Open Access Journals (Sweden)

    Nicolás Peréz Alvarez

    2015-11-01

    Full Text Available Langevin transducers are employed in several applications, such as power ultrasound systems, naval hydrophones, and high-displacement actuators. Nonlinear effects can influence their performance, especially at high vibration amplitude levels. These nonlinear effects produce variations in the resonant frequency, harmonics of the excitation frequency, in addition to loss of symmetry in the frequency response and “frequency domain hysteresis”. In this context, this paper presents a simplified nonlinear dynamic model of power ultrasound transducers requiring only two parameters for simulating the most relevant nonlinear effects. One parameter reproduces the changes in the resonance frequency and the other introduces the dependence of the frequency response on the history of the system. The piezoelectric constitutive equations are extended by a linear dependence of the elastic constant on the mechanical displacement amplitude. For introducing the frequency hysteresis, the elastic constant is computed by combining the current value of the mechanical amplitude with the previous state amplitude. The model developed in this work is applied for predicting the dynamic responses of a 26 kHz ultrasonic transducer. The comparison of theoretical and experimental responses, obtained at several input voltages around the tuned frequency, shows a good agreement, indicating that the model can accurately describe the transducer nonlinear behavior.

  2. Analysis of a non-contact magnetoelastic torque transducer

    International Nuclear Information System (INIS)

    Andreescu, R.; Spellman, B.; Furlani, E.P.

    2008-01-01

    Results are presented for the performance of a magnetoelastic torque transducer that converts a torque-induced strain in a non-magnetic shaft into changes in a measurable magnetic field. The magnetic field is generated by a thin magnetostrictive layer that is coated onto the circumference of the shaft. The layer is magnetized and has an initial residual strain. The magnetization within the layer rotates in response to changes in the strain which occur when the shaft is torqued. The magnetic field produced by the layer changes with the magnetization and this can be sensed by a magnetometer to monitor the torque on the shaft. In this paper, a phenomenological theory is developed for predicting the performance of the transducer. The theory can be used to predict the magnetic field distribution of the transducer as a function of the physical properties of the magnetic coating, its residual strain, and the applied torque. It enables rapid parametric analysis of transducer performance, which is useful for the development and optimization of novel non-contact torque sensors

  3. A capacitive ultrasonic transducer based on parametric resonance.

    Science.gov (United States)

    Surappa, Sushruta; Satir, Sarp; Levent Degertekin, F

    2017-07-24

    A capacitive ultrasonic transducer based on a parametric resonator structure is described and experimentally demonstrated. The transducer structure, which we call capacitive parametric ultrasonic transducer (CPUT), uses a parallel plate capacitor with a movable membrane as part of a degenerate parametric series RLC resonator circuit with a resonance frequency of f o . When the capacitor plate is driven with an incident harmonic ultrasonic wave at the pump frequency of 2f o with sufficient amplitude, the RLC circuit becomes unstable and ultrasonic energy can be efficiently converted to an electrical signal at f o frequency in the RLC circuit. An important characteristic of the CPUT is that unlike other electrostatic transducers, it does not require DC bias or permanent charging to be used as a receiver. We describe the operation of the CPUT using an analytical model and numerical simulations, which shows drive amplitude dependent operation regimes including parametric resonance when a certain threshold is exceeded. We verify these predictions by experiments with a micromachined membrane based capacitor structure in immersion where ultrasonic waves incident at 4.28 MHz parametrically drive a signal with significant amplitude in the 2.14 MHz RLC circuit. With its unique features, the CPUT can be particularly advantageous for applications such as wireless power transfer for biomedical implants and acoustic sensing.

  4. Testing of electron beam welding by ultrasonic transducers

    International Nuclear Information System (INIS)

    Touffait, A.-M.; Roule, M.; Destribats, M.-T.

    1978-01-01

    Focalized ultrasonic testing is well adapted to the study of electron beam welding. This type of welding leads to narrow weld beads and to small dimension testing zones. Focalized transducers can be used enabling very small defects to be detected [fr

  5. Instantaneous input electrical power measurements of HITU transducer

    International Nuclear Information System (INIS)

    Karaboece, B; Guelmez, Y; Rajagapol, S; Shaw, A

    2011-01-01

    HITU (High Intensity Theraupetic Ultrasound) transducers are widely used in therapeutic ultrasound in medicine. The output ultrasonic power of HITU transducer can be measured in number of methods described in IEC 61161 standard [1]. New IEC standards specifically for measurement of HITU equipment are under development. The ultrasound power radiated from a transducer is dependent on applied input electrical voltage and current and consequently power. But, up to now, no standardised method has been developed and adopted for the input electrical power measurements. Hence, a workpackage was carried out for the establishment of such method in the frequency range of 1 to 3 MHz as a part of EURAMET EMRP Era-net plus 'External Beam Cancer Therapy' project. Several current shunts were developed and evaluated. Current measurements were also realized with Philips current probe and preamplifier at NPL and Agilent current probe at UME. In this paper, a method for the measurement of instantaneous electrical power delivered to a reactive ultrasound transducer in the required frequency range is explored.

  6. Candle soot nanoparticles-polydimethylsiloxane composites for laser ultrasound transducers

    Science.gov (United States)

    Chang, Wei-Yi; Huang, Wenbin; Kim, Jinwook; Li, Sibo; Jiang, Xiaoning

    2015-10-01

    Generation of high power laser ultrasound strongly demands the advanced materials with efficient laser energy absorption, fast thermal diffusion, and large thermoelastic expansion capabilities. In this study, candle soot nanoparticles-polydimethylsiloxane (CSNPs-PDMS) composite was investigated as the functional layer for an optoacoustic transducer with high-energy conversion efficiency. The mean diameter of the collected candle soot carbon nanoparticles is about 45 nm, and the light absorption ratio at 532 nm wavelength is up to 96.24%. The prototyped CSNPs-PDMS nano-composite laser ultrasound transducer was characterized and compared with transducers using Cr-PDMS, carbon black (CB)-PDMS, and carbon nano-fiber (CNFs)-PDMS composites, respectively. Energy conversion coefficient and -6 dB frequency bandwidth of the CSNPs-PDMS composite laser ultrasound transducer were measured to be 4.41 × 10-3 and 21 MHz, respectively. The unprecedented laser ultrasound transduction performance using CSNPs-PDMS nano-composites is promising for a broad range of ultrasound therapy applications.

  7. Enhancing endosomal escape of transduced proteins by photochemical internalisation.

    Directory of Open Access Journals (Sweden)

    Kevin Mellert

    Full Text Available Induced internalisation of functional proteins into cultured cells has become an important aspect in a rising number of in vitro and in vivo assays. The endo-lysosomal entrapment of the transduced proteins remains the major problem in all transduction protocols. In this study we compared the efficiency, cytotoxicity and protein targeting of different commercially available transduction reagents by transducing a well-studied fluorescently labelled protein (Atto488-bovine serum albumin into cultured human sarcoma cells. The amount of internalised protein and toxicity differed between the different reagents, but the percentage of transduced cells was consistently high. Furthermore, in all protocols the signals of the transduced Atto488-BSA were predominantly punctual consistent with an endosomal localisation. To overcome the endosomal entrapment, the transduction protocols were combined with a photochemical internalisation (PCI treatment. Using this combination revealed that an endosomal disruption is highly effective in cell penetrating peptide (CPP mediated transduction, whereas lipid-mediated transductions lead to a lower signal spreading throughout the cytosol. No change in the signal distribution could be achieved in treatments using non-lipid polymers as a transduction reagent. Therefore, the combination of protein transduction protocols based on CPPs with the endosomolytic treatment PCI can facilitate protein transduction experiments in vitro.

  8. Enhancing endosomal escape of transduced proteins by photochemical internalisation.

    Science.gov (United States)

    Mellert, Kevin; Lamla, Markus; Scheffzek, Klaus; Wittig, Rainer; Kaufmann, Dieter

    2012-01-01

    Induced internalisation of functional proteins into cultured cells has become an important aspect in a rising number of in vitro and in vivo assays. The endo-lysosomal entrapment of the transduced proteins remains the major problem in all transduction protocols. In this study we compared the efficiency, cytotoxicity and protein targeting of different commercially available transduction reagents by transducing a well-studied fluorescently labelled protein (Atto488-bovine serum albumin) into cultured human sarcoma cells. The amount of internalised protein and toxicity differed between the different reagents, but the percentage of transduced cells was consistently high. Furthermore, in all protocols the signals of the transduced Atto488-BSA were predominantly punctual consistent with an endosomal localisation. To overcome the endosomal entrapment, the transduction protocols were combined with a photochemical internalisation (PCI) treatment. Using this combination revealed that an endosomal disruption is highly effective in cell penetrating peptide (CPP) mediated transduction, whereas lipid-mediated transductions lead to a lower signal spreading throughout the cytosol. No change in the signal distribution could be achieved in treatments using non-lipid polymers as a transduction reagent. Therefore, the combination of protein transduction protocols based on CPPs with the endosomolytic treatment PCI can facilitate protein transduction experiments in vitro.

  9. A capacitive ultrasonic transducer based on parametric resonance

    Science.gov (United States)

    Surappa, Sushruta; Satir, Sarp; Levent Degertekin, F.

    2017-07-01

    A capacitive ultrasonic transducer based on a parametric resonator structure is described and experimentally demonstrated. The transducer structure, which we call capacitive parametric ultrasonic transducer (CPUT), uses a parallel plate capacitor with a movable membrane as part of a degenerate parametric series RLC resonator circuit with a resonance frequency of fo. When the capacitor plate is driven with an incident harmonic ultrasonic wave at the pump frequency of 2fo with sufficient amplitude, the RLC circuit becomes unstable and ultrasonic energy can be efficiently converted to an electrical signal at fo frequency in the RLC circuit. An important characteristic of the CPUT is that unlike other electrostatic transducers, it does not require DC bias or permanent charging to be used as a receiver. We describe the operation of the CPUT using an analytical model and numerical simulations, which shows drive amplitude dependent operation regimes including parametric resonance when a certain threshold is exceeded. We verify these predictions by experiments with a micromachined membrane based capacitor structure in immersion where ultrasonic waves incident at 4.28 MHz parametrically drive a signal with significant amplitude in the 2.14 MHz RLC circuit. With its unique features, the CPUT can be particularly advantageous for applications such as wireless power transfer for biomedical implants and acoustic sensing.

  10. Electrical capacity and resistance determination of emitting electric transducer

    International Nuclear Information System (INIS)

    Alba Fernandez, J.; Ramis Soriano, J.

    2000-01-01

    In this work we calculate the electrical resistance and capacity of emitting electric transducer, which is mainly formed, in direct relationship with its properties, by a ceramic capacitor. Our aim is to motivate the students with an attractive element in order to carry out traditional measurements of the charge and discharge transients of a capacitor, implementing high resistance setups. (Author) 5 refs

  11. Analysis of the conical piezoelectric acoustic emission transducer

    Czech Academy of Sciences Publication Activity Database

    Červená, Olga; Hora, Petr

    2008-01-01

    Roč. 2, č. 1 (2008), s. 13-24 ISSN 1802-680X R&D Projects: GA ČR GA101/06/1689 Institutional research plan: CEZ:AV0Z20760514 Keywords : acoustic emission * conical transducer * FEM Subject RIV: BI - Acoustics

  12. Multilevel inverter based class D audio amplifier for capacitive transducers

    DEFF Research Database (Denmark)

    Nielsen, Dennis; Knott, Arnold; Andersen, Michael A. E.

    2014-01-01

    The reduced semiconductor voltage stress makes the multilevel inverters especially interesting, when driving capacitive transducers for audio applications. A ± 300 V flying capacitor class D audio amplifier driving a 100 nF load in the midrange region of 0.1-3.5 kHz with Total Harmonic Distortion...

  13. Multilayer piezoelectric transducer models combined with Field II

    DEFF Research Database (Denmark)

    Bæk, David; Willatzen, Morten; Jensen, Jørgen Arendt

    2012-01-01

    One-dimensional and three-dimensional axisymmetric transducer model have been compared to determine their feasibility to predict the volt-to-surface impulse response of a circular Pz27 piezoceramic disc. The ceramic is assumed mounted with silver electrodes, bounded at the outer circular boundary...

  14. Lithium niobate ultrasonic transducer design for Enhanced Oil Recovery.

    Science.gov (United States)

    Wang, Zhenjun; Xu, Yuanming; Gu, Yuting

    2015-11-01

    Due to the strong piezoelectric effect possessed by lithium niobate, a new idea that uses lithium niobate to design high-power ultrasonic transducer for Enhanced Oil Recovery technology is proposed. The purpose of this paper is to lay the foundation for the further research and development of high-power ultrasonic oil production technique. The main contents of this paper are as follows: firstly, structure design technique and application of a new high-power ultrasonic transducer are introduced; secondly, the experiment for reducing the viscosity of super heavy oil by this transducer is done, the optimum ultrasonic parameters for reducing the viscosity of super heavy oil are given. Experimental results show that heavy large molecules in super heavy oil can be cracked into light hydrocarbon substances under strong cavitation effect caused by high-intensity ultrasonic wave. Experiment proves that it is indeed feasible to design high-power ultrasonic transducer for ultrasonic oil production technology using lithium niobate. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Transducer frequency response variations investigated by time reversal calibration

    Czech Academy of Sciences Publication Activity Database

    Kober, Jan; Převorovský, Zdeněk

    2016-01-01

    Roč. 26, č. 2 (2016), A16-A16 ISSN 1213-3825. [Europen Conference on Acoustic Emission Testing /32./. 07.09.2016-09.09.2016, Praha] Institutional support: RVO:61388998 Keywords : calibration * time reversal * transducer * frequency response Subject RIV: BI - Acoustics

  16. Modelling of multilayer piezoelectric transducers for echographic applications Equivalent circuits

    International Nuclear Information System (INIS)

    Ramos, A.; Riera, E.; San Emeterio, J.L.; Sanz, P.T.

    1988-01-01

    In this paper, the main equivalent circuits of pulse-echo, single element, multilayer piezoelectric transducers, are analysed. The analogy of matching layers with lossless transmission lines is described. Finally, using the KLM model, the effects of backing and matching layers on the bandwidth and impulse response is analysed. (Author)

  17. A Novel Rotary Piezoelectric Motor Using First Bending Hybrid Transducers

    Directory of Open Access Journals (Sweden)

    Yingxiang Liu

    2015-08-01

    Full Text Available We report a novel rotary piezoelectric motor using bending transducers in this work. Three transducers are used to drive a disk-shaped rotor together by the elliptical movements of their driving tips; these motions are produced by the hybrid of two first bending vibration modes. The proposed piezoelectric transducer has a simple structure as it only contains an aluminum alloy beam and four pieces of PZT plates. Symmetrical structure is the only necessary condition in the design process as it will ensure the resonance frequencies of the two orthogonal first bending modes are equal. Transducers with first bending resonance frequency of about 53 kHz were fabricated and assembled into a rotary motor. The proposed motor exhibits good performance on speed and torque control. Under a working frequency of 53.2 kHz, the maximum no-load speed and the maximum torque of the prototype are tested to be 53.3 rpm and of 27 mN·m.

  18. Unsteady pressures on a blunt trailing edge measured with an embedded pressure scanner

    Science.gov (United States)

    Naughton, Jonathan; Nikoueeyan, Pourya; Hind, Michael; Strike, John; Dahland, Matz; Keeter, Steven

    2017-11-01

    Development of direct-mount pressure scanners can decrease the pneumatic tubing length required to connect the measurement ports to the scanner manifold resulting in improved dynamic range for unsteady pressure measurements. In this work, the performance of a direct-mount pressure scanner for time-resolved pressure measurement is demonstrated in a well-established flow; the pressure fluctuations near the base of flat plate is considered. The additive manufactured model is instrumented with a pressure scanner and flush-mounted high-speed pressure transducers. The configuration of the ports on the model allows for side-by-side comparison of the pressures measured via embedded pneumatic tubing routed to a pressure scanner with that measured by high-speed transducers. Prior to testing, the dynamic response of each embedded pressure port is dynamically calibrated via an in-situ calibration technique. Pressure data is then acquired for fixed angle-of-attack and different dynamic pitching conditions. The dynamic range of the measurements acquired via direct-mount scanner will be compared to those acquired by the high speed transducers for both static and dynamic pitching configurations. The uncertainties associated with Weiner deconvolution are also quantified for the measurements.

  19. Irradiation Behavior and Post-Irradiation Examinations of an Acoustic Sensor Using a Piezoelectric Transducer

    International Nuclear Information System (INIS)

    Lambert, T.; Zacharie-Aubrun, I.; Hanifi, K.; Valot, Ch.; Fayette, L.; Rosenkantz, E.; Ferrandis, J.Y.; Tiratay, X.

    2013-06-01

    The development of advanced instrumentation for in-pile experiments in Material Testing Reactor constitutes a main goal for the improvement of the nuclear fuel behavior knowledge. In the framework of high burn-up fuel experiments under transient operating conditions, an innovative sensor based on acoustic method was developed by CEA and IES (Southern Electronic Institute).This sensor is used to determine the on-line composition of the gases located in fuel rodlet free volume and thus, allows calculating the molar fractions of fission gases and helium. The main principle of the composition determination by acoustic method consists in measuring the time of flight of an acoustic signal emitted and reflected in a specific cavity. A piezoelectric transducer, driven by a pulse generator, generates the acoustic wave in the cavity. The piezoelectric transducer is a PZT ceramic disk, mainly consisting of lead, zirconium and titanium. This acoustic method was tested with success during a first experiment called REMORA 3, and the results were used to differentiate helium and fission gas release kinetics under transient operating conditions. However, during the irradiation test, acoustic signal degradation was observed, mainly due to irradiation effect but also due to the increasing of the gas temperature. Despite this acoustic signal degradation, the time of flight measurements were carried out with good accuracy throughout the test, thanks to the development of a more efficient signal processing. After experiment, neutronic calculations were performed in order to determine neutron fluence at the level of the piezoelectric transducer. In order to have a better understanding of the acoustic sensor behavior under irradiation, Post Irradiation Examination program was done on piezoelectric transducer and on acoustic coupling material too. These examinations were also realized on a non-irradiated acoustic sensor built in the same conditions and with the same materials and the same

  20. Effect of stimuli, transducers and gender on acoustic change complex

    Directory of Open Access Journals (Sweden)

    Hemanth N. Shetty

    2012-08-01

    Full Text Available The objective of this study was to investigate the effect of stimuli, transducers and gender on the latency and amplitude of acoustic change complex (ACC. ACC is a multiple overlapping P1-N1-P2 complex reflecting acoustic changes across the entire stimulus. Fifteen males and 15 females, in the age range of 18 to 25 (mean=21.67 years, having normal hearing participated in the study. The ACC was recorded using the vertical montage. The naturally produced stimuli /sa/ and /si/ were presented through the insert earphone/loud speaker to record the ACC. The ACC obtained from different stimuli presented through different transducers from male/female participants were analyzed using mixed analysis of variance. Dependent t-test and independent t-test were performed when indicated. There was a significant difference in latency of 2N1 at the transition, with latency for /sa/ being earlier; but not at the onset portions of ACC. There was no significant difference in amplitude of ACC between the stimuli. Among the transducers, there was no significant difference in latency and amplitude of ACC, for both /sa/ and /si/ stimuli. Female participants showed earlier latency for 2N1 and larger amplitude of N1 and 2P2 than male participants, which was significant. ACC provides important insight in detecting the subtle spectral changes in each stimulus. Among the transducers, no difference in ACC was noted as the spectra of stimuli delivered were within the frequency response of the transducers. The earlier 2N1 latency and larger N1 and 2P2 amplitudes noticed in female participants could be due to smaller head circumference. The findings of this study will be useful in determining the capacity of the auditory pathway in detecting subtle spectral changes in the stimulus at the level of the auditory cortex.

  1. Role of blood pressure and other variables in the differential cardiovascular event rates noted in the Anglo-Scandinavian Cardiac Outcomes Trial-Blood Pressure Lowering Arm (ASCOT-BPLA)

    DEFF Research Database (Denmark)

    Poulter, Neil R; Wedel, Hans; Dahlöf, Björn

    2005-01-01

    Results of the Anglo-Scandinavian Cardiac Outcomes Trial-Blood Pressure Lowering Arm (ASCOT-BPLA) show significantly lower rates of coronary and stroke events in individuals allocated an amlodipine-based combination drug regimen than in those allocated an atenolol-based combination drug regimen (HR...... 0.86 and 0.77, respectively). Our aim was to assess to what extent these differences were due to significant differences in blood pressures and in other variables noted after randomisation....

  2. Vibration energy harvesting in a small channel fluid flow using piezoelectric transducer

    Energy Technology Data Exchange (ETDEWEB)

    Hassan, Md. Mehedi, E-mail: buetmehedi10@gmail.com; Hossain, Md. Yeam, E-mail: yeamhossain@gmail.com; Mazumder, Rakib, E-mail: rakibmazumder46075@gmail.com; Rahman, Roussel, E-mail: roussel.rahman@gmail.com; Rahman, Md. Ashiqur, E-mail: ashiqurrahman@me.buet.ac.bd [Department of Mechanical Engineering, Bangladesh University of Engineering and Technology (BUET), Dhaka-1000 (Bangladesh)

    2016-07-12

    This work is aimed at developing a way to harvest energy from a fluid stream with the application of piezoelectric transducers in a small channel. In this COMSOL Multiphysics based simulation study, it is attempted to harvest energy from the abundant renewable source of energy available in the form of kinetic energy of naturally occurring flow of fluids. The strategy involves harnessing energy from a fluid-actuator through generation of couples, eddies and vortices, resulting from the stagnation and separation of flow around a semi-circular bluff-body attached to a cantilever beam containing a piezoceramic layer. Fluctuation of fluidic pressure impulse on the beam due to vortex shedding and varying lift forces causes the flexible cantilever beam to oscillate in the direction normal to the fluid flow in a periodic manner. The periodic application and release of a mechanical strain upon the beam effected a generation of electric potential within the piezoelectric layer, thus enabling extraction of electrical energy from the kinetic energy of the fluid. The piezoelectric material properties and transducer design are kept unchanged throughout the study, whereas the configuration is tested with different fluids and varying flow characteristics. The size and geometry of the obstructing entity are systematically varied to closely inspect the output from different iterations and for finding the optimum design parameters. The intermittent changes in the generated forces and subsequent variation in the strain on the beam are also monitored to find definitive relationship with the electrical energy output.

  3. A transmission and reflection coupled ultrasonic process tomography based on cylindrical miniaturized transducers using PVDF films

    Science.gov (United States)

    Gu, J.; Yang, H.; Fan, F.; Su, M.

    2017-12-01

    A transmission and reflection coupled ultrasonic process tomography has been developed, which is characterized by a proposed dual-mode (DM) reconstruction algorithm, as well as an adaptive search approach to determine an optimal image threshold during the image binarization. In respect of hardware, to improve the accuracy of time-of-flight (TOF) and extend the lowest detection limit of particle size, a cylindrical miniaturized transducer using polyvinylidene fluoride (PVDF) films is designed. Besides, the development of range-gating technique for the identification of transmission and reflection waves in scanning is discussed. A particle system with four iron particles is then investigated numerically and experimentally to evaluate these proposed methods. The sound pressure distribution in imaging area is predicted numerically, followed by the analysis of the relationship between the emitting surface width of transducer and particle size. After the processing of experimental data for effective waveform extraction and fusion, the comparison between reconstructed results from transmission-mode (TM), reflection-mode (RM), and dual-mode reconstructions is carried out and the latter manifests obvious improvements from the blurring reduction to the enhancement of particle boundary.

  4. Automatic Calculation of Hydrostatic Pressure Gradient in Patients with Head Injury: A Pilot Study.

    Science.gov (United States)

    Moss, Laura; Shaw, Martin; Piper, Ian; Arvind, D K; Hawthorne, Christopher

    2016-01-01

    The non-surgical management of patients with traumatic brain injury is the treatment and prevention of secondary insults, such as low cerebral perfusion pressure (CPP). Most clinical pressure monitoring systems measure pressure relative to atmospheric pressure. If a patient is managed with their head tilted up, relative to their arterial pressure transducer, then a hydrostatic pressure gradient (HPG) can act against arterial pressure and cause significant errors in calculated CPP.To correct for HPG, the arterial pressure transducer should be placed level with the intracranial pressure transducer. However, this is not always achieved. In this chapter, we describe a pilot study investigating the application of speckled computing (or "specks") for the automatic monitoring of the patient's head tilt and subsequent automatic calculation of HPG. In future applications this will allow us to automatically correct CPP to take into account any HPG.

  5. Semi-analytical computation of the acoustic field of a segment of a cylindrically concave transducer in lossless and attenuating media.

    Science.gov (United States)

    Karbeyaz, Başak Ulker; Miller, Eric L; Cleveland, Robin O

    2007-02-01

    Conventional ultrasound transducers used for medical diagnosis generally consist of linearly aligned rectangular apertures with elements that are focused in one plane. While traditional beamforming is easily accomplished with such transducers, the development of quantitative, physics-based imaging methods, such as tomography, requires an accurate, and computationally efficient, model of the field radiated by the transducer. The field can be expressed in terms of the Helmholtz-Kirchhoff integral; however, its direct numerical evaluation is a computationally intensive task. Here, a fast semianalytical method based on Stepanishen's spatial impulse response formulation [J. Acoust. Soc. Am. 49, 1627-1638 (1971)] is developed to compute the acoustic field of a rectangular element of cylindrically concave transducers in a homogeneous medium. The pressure field, for, lossless and attenuating media, is expressed as a superposition of Bessel functions, which can be evaluated rapidly. In particular, the coefficients of the Bessel series are frequency independent and need only be evaluated once for a given transducer. A speed up of two orders of magnitude is obtained compared to an optimized direct numerical integration. The numerical results are compared with Field II and the Fresnel approximation.

  6. Development of ultrasonic testing technique with the large transducer to inspect the containment vessel plates of nuclear power plant embedded in concrete

    International Nuclear Information System (INIS)

    Ishida, Hitoshi; Kurozumi, Yasuo; Kaneshima, Yoshiari

    2004-01-01

    The containment vessel plates embedded in concrete on Pressurized Water Reactors are inaccessible to inspect directly. Therefore, it is advisable to prepare inspection technology to detect existence and a location of corrosion on the embedded plates indirectly. In order to establish ultrasonic testing technique to be able to inspect the containment vessel plates embedded in concrete widely at the accessible point, experiments to detect artificial hollows simulating corrosion on a surface of a carbon steel plate mock-up covered with concrete simulating the embedded containment vessel plates were carried out with newly made ultrasonic transducers. We made newly low frequency (0.3 MHz and 0.5 MHz) surface shear horizontal (SH) wave transducers combined with three large active elements, which were equivalent to a 120mm width element. As a result of the experiments, the surface SH transducers could detect clearly the echo from the hollows with a depth of 9.5 mm and 19 mm at a distance of 1500mm from the transducers on the surface of the mock-up covered with concrete. Therefore, we evaluate that it is possible to detect the defects such as corrosion on the plates embedded in concrete with the newly made low frequency surface SH transducers with large elements. (author)

  7. Urodynamic pressure sensor

    Science.gov (United States)

    Moore, Thomas

    1991-01-01

    A transducer system was developed for measuring the closing pressure profile along the female urethra, which provides up to five sensors within the functional length of the urethra. This new development is an improvement over an earlier measurement method that has a smaller sensor area and was unable to respond to transient events. Three sensors were constructed; one of them was subjected to approximately eight hours of use in a clinical setting during which 576 data points were obtained. The complete instrument system, including the signal conditioning electronics, data acquisition unit, and the computer with its display and printer is described and illustrated.

  8. Ultrasonic transducers with resonant cavities as emitters for air-borne applications

    Directory of Open Access Journals (Sweden)

    Montero De Espinosa Freijo, F.

    2009-08-01

    Full Text Available In this work a new proposal to improve the emission efficiency of air-borne ultrasonic transducers is introduced. A theoretical ultrasonic transducer design is studied using a piezoelectric membrane and a Helmholtz resonator with two acoustic ports. The resonator provides radiation in the acoustic ports in phase with that of the membrane. Several finite element simulations and experimental results are used to study the device. The finite element models were used to compare its behaviour with that of conventional vacuum-cavity transducers. These results show an improvement in the bandwidth reaching a quality factor value of 19. Furthermore, the experimental measurements were used to study the effects of the resonant cavity in the response. Several measurements for different cavity depths were performed. The results show an improvement of 25 dB in the emitted pressure through tuning the transducer.

    En este trabajo se presenta una nueva propuesta para mejorar la eficiencia de transductores ultrasónicos acoplados a aire. Para este estudio se ha empleado un diseño teórico de transductor ultrasónico que utiliza una membrana piezoeléctrica y un resonador de Helmholtz con dos puertos acústicos. El resonador hace que la radiación en los puertos acústicos se encuentre en fase con la producida por la membrana. Para estudiar el dispositivo se utilizaron resultados obtenidos mediante programas de elementos finitos y resultados experimentales. Por un lado, los modelos de elementos finitos se utilizaron para comparar el comportamiento del dispositivo con el de transductores convencionales con cavidades al vacío. Estos resultados indican una mejora en el ancho de banda alcanzando valores de factor de calidad de 19. Por otro lado, los resultados experimentales se emplearon para identificar los efectos de la cavidad resonante en el funcionamiento del dispositivo. Para ello se realizaron varias medidas utilizando ciertas profundidades de cavidad

  9. Six-Axis Force-Torque Transducer for Mars 2018 Mission, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — A transducer element that is hearty enough for a Mars lander mission needs to be developed so that a six-axis force and torque transducer is possible. The technical...

  10. Retrovirally transduced NCAM140 facilitates neuronal fate choice of hippocampal progenitor cells.

    Science.gov (United States)

    Kim, Ju Hee; Lee, Jung-Ha; Park, Jin-Yong; Park, Chang-Hwan; Yun, Chae-Ok; Lee, Sang-Hun; Lee, Yong-Sung; Son, Hyeon

    2005-07-01

    Neural cell adhesion molecule (NCAM) influences proliferation and differentiation of neuronal cells. However, only a little is known about the downstream effects of NCAM signalling, such as alterations in gene transcription, which are associated with cell fate choice. To examine whether NCAM plays a role in cell fate choice during hippocampal neurogenesis, we performed a gain-of-function study, using a retroviral vector which contained full-length NCAM140 cDNA and the marker gene EGFP, and found that NCAM140 promoted neurogenesis by activating proneural transcription activators with concurrent inhibition of gliogenesis. The enhanced transcript levels of proneural transcription factors in NCAM140-transduced cells were down-regulated by treatment of the cells with mitogen-activated protein kinase kinase (MEK) inhibitor PD098059. Overall, these findings suggest that NCAM140 may facilitate hippocampal neurogenesis via regulation of proneurogenic transcription factors in an extracellular signal-regulated kinase (ERK)-dependent manner.

  11. Water cooled static pressure probe

    Science.gov (United States)

    Lagen, Nicholas T. (Inventor); Eves, John W. (Inventor); Reece, Garland D. (Inventor); Geissinger, Steve L. (Inventor)

    1991-01-01

    An improved static pressure probe containing a water cooling mechanism is disclosed. This probe has a hollow interior containing a central coolant tube and multiple individual pressure measurement tubes connected to holes placed on the exterior. Coolant from the central tube symmetrically immerses the interior of the probe, allowing it to sustain high temperature (in the region of 2500 F) supersonic jet flow indefinitely, while still recording accurate pressure data. The coolant exits the probe body by way of a reservoir attached to the aft of the probe. The pressure measurement tubes are joined to a single, larger manifold in the reservoir. This manifold is attached to a pressure transducer that records the average static pressure.

  12. Progress towards developing neutron tolerant magnetostrictive and piezoelectric transducers

    Energy Technology Data Exchange (ETDEWEB)

    Reinhardt, Brian; Tittmann, Bernhard [The Pennsylvania State University (United States); Rempe, Joy; Daw, Joshua [Idaho National Laboratory (United States); Kohse, Gordon; Carpenter, David; Ames, Michael; Ostrovsky, Yakov [Massachusetts Institute of Technology (United States); Ramuhalli, Pradeep; Montgomery, Robert [Pacific Northwest National Laboratory (United States); Chien, Hualte [Argonne National Laboratory (United States); Wernsman, Bernard [Bechtel Marine Propulsion Corp (United States)

    2015-03-31

    Current generation light water reactors (LWRs), sodium cooled fast reactors (SFRs), small modular reactors (SMRs), and next generation nuclear plants (NGNPs) produce harsh environments in and near the reactor core that can severely tax material performance and limit component operational life. To address this issue, several Department of Energy Office of Nuclear Energy (DOE-NE) research programs are evaluating the long duration irradiation performance of fuel and structural materials used in existing and new reactors. In order to maximize the amount of information obtained from Material Testing Reactor (MTR) irradiations, DOE is also funding development of enhanced instrumentation that will be able to obtain in-situ, real-time data on key material characteristics and properties, with unprecedented accuracy and resolution. Such data are required to validate new multi-scale, multi-physics modeling tools under development as part of a science-based, engineering driven approach to reactor development. It is not feasible to obtain high resolution/microscale data with the current state of instrumentation technology. However, ultrasound-based sensors offer the ability to obtain such data if it is demonstrated that these sensors and their associated transducers are resistant to high neutron flux, high gamma radiation, and high temperature. To address this need, the Advanced Test Reactor National Scientific User Facility (ATR-NSUF) is funding an irradiation, led by PSU, at the Massachusetts Institute of Technology Research Reactor to test the survivability of ultrasound transducers. As part of this effort, PSU and collaborators have designed, fabricated, and provided piezoelectric and magnetostrictive transducers that are optimized to perform in harsh, high flux, environments. Four piezoelectric transducers were fabricated with either aluminum nitride, zinc oxide, or bismuth titanate as the active element that were coupled to either Kovar or aluminum waveguides and two

  13. Progress towards developing neutron tolerant magnetostrictive and piezoelectric transducers

    Science.gov (United States)

    Reinhardt, Brian; Tittmann, Bernhard; Rempe, Joy; Daw, Joshua; Kohse, Gordon; Carpenter, David; Ames, Michael; Ostrovsky, Yakov; Ramuhalli, Pradeep; Montgomery, Robert; Chien, Hualte; Wernsman, Bernard

    2015-03-01

    Current generation light water reactors (LWRs), sodium cooled fast reactors (SFRs), small modular reactors (SMRs), and next generation nuclear plants (NGNPs) produce harsh environments in and near the reactor core that can severely tax material performance and limit component operational life. To address this issue, several Department of Energy Office of Nuclear Energy (DOE-NE) research programs are evaluating the long duration irradiation performance of fuel and structural materials used in existing and new reactors. In order to maximize the amount of information obtained from Material Testing Reactor (MTR) irradiations, DOE is also funding development of enhanced instrumentation that will be able to obtain in-situ, real-time data on key material characteristics and properties, with unprecedented accuracy and resolution. Such data are required to validate new multi-scale, multi-physics modeling tools under development as part of a science-based, engineering driven approach to reactor development. It is not feasible to obtain high resolution/microscale data with the current state of instrumentation technology. However, ultrasound-based sensors offer the ability to obtain such data if it is demonstrated that these sensors and their associated transducers are resistant to high neutron flux, high gamma radiation, and high temperature. To address this need, the Advanced Test Reactor National Scientific User Facility (ATR-NSUF) is funding an irradiation, led by PSU, at the Massachusetts Institute of Technology Research Reactor to test the survivability of ultrasound transducers. As part of this effort, PSU and collaborators have designed, fabricated, and provided piezoelectric and magnetostrictive transducers that are optimized to perform in harsh, high flux, environments. Four piezoelectric transducers were fabricated with either aluminum nitride, zinc oxide, or bismuth titanate as the active element that were coupled to either Kovar or aluminum waveguides and two

  14. Randomized controlled trial for Salvia sclarea or Lavandula angustifolia: differential effects on blood pressure in female patients with urinary incontinence undergoing urodynamic examination.

    Science.gov (United States)

    Seol, Geun Hee; Lee, Yun Hee; Kang, Purum; You, Ji Hye; Park, Mira; Min, Sun Seek

    2013-07-01

    The aim of this study was to investigate the effect of inhalation of Salvia sclarea (clary sage; clary) or Lavandula angustifolia (lavender) essential oil vapors on autonomic nervous system activity in female patients with urinary incontinence undergoing urodynamic assessment. STUDY DESIGN, LOCATION, AND SUBJECTS: This study was a double-blind, randomized, controlled trial carried out in 34 female patients with urinary incontinence. The subjects were randomized to inhale lavender, clary, or almond (control) oil at concentrations of 5% (vol/vol) each. Systolic blood pressure, diastolic blood pressure, pulse rate, respiratory rate, and salivary cortisol were measured before and after inhalation of these odors for 60 minutes. The clary oil group experienced a significant decrease in systolic blood pressure compared with the control (p=0.048) and lavender oil (p=0.026) groups, a significant decrease in diastolic blood pressure compared with the lavender oil group (p=0.034) and a significant decrease in respiratory rate compared with the control group (p<0.001). In contrast, the lavender oil group tended to increase systolic and diastolic blood pressure compared with the control group. Compared with the control group, inhalation of lavender oil (p=0.045) and clary oil (p<0.001) resulted in statistically significant reductions in respiratory rate. These results suggest that lavender oil inhalation may be inappropriate in lowering stress during urodynamic examinations, despite its antistress effects, while clary oil inhalation may be useful in inducing relaxation in female urinary incontinence patients undergoing urodynamic assessments.

  15. A laboratory device for evaluation and study in the filed of ultrasonic transducers

    International Nuclear Information System (INIS)

    Vasiliu, S.

    1978-12-01

    A laboratory device for evaluation of the ultrasonic transducers, in view of adequate selection according to the testing requirements is presented. Recordings of ultrasonic beam of some transducers delivered as being of the same type are presented, showing important departures from specifications of the characteristics. Some of transducers evaluated have not been found acceptable for NDT in the nuclear field. (author)

  16. Development of a High-Temperature Smart Transducer Interface Node and Telemetry System (HSTINTS)

    Energy Technology Data Exchange (ETDEWEB)

    Buckner, M.A. et al.

    2006-11-03

    Halliburton Energy Services and Oak Ridge National Laboratory established a CRADA to conduct applied research to develop a general purpose, High-Temperature, Smart Transducer Interface Node and Telemetry System (HSTINTS) capable of temporally-coherent multiple-channel, high speed, high-resolution data transuction and acquisition while operating in a hostile thermal, chemical, and pressure environment for extended periods of time over a single coaxial cable. This ambitious, high-risk effort required development of custom dielectric isolated integrated circuits, amplified hybrid couplers for telemetry and an audio-frequency based power supply and distribution system using an engineered application of standing waves to compensate voltage drop along a 2 mile long cable. Several goals were achieved but underestimated challenges and a couple of mistakes hampered progress. When it was determined that an additional year of concerted effort would be required to complete the system demonstration, the sponsor withdrew funding and terminated the effort.

  17. Cyclooxygenases 1 and 2 differentially regulate blood pressure and cerebrovascular responses to acute and chronic intermittent hypoxia: implications for sleep apnea.

    Science.gov (United States)

    Beaudin, Andrew E; Pun, Matiram; Yang, Christina; Nicholl, David D M; Steinback, Craig D; Slater, Donna M; Wynne-Edwards, Katherine E; Hanly, Patrick J; Ahmed, Sofia B; Poulin, Marc J

    2014-05-09

    Obstructive sleep apnea (OSA) is associated with increased risk of cardiovascular and cerebrovascular disease resulting from intermittent hypoxia (IH)-induced inflammation. Cyclooxygenase (COX)-formed prostanoids mediate the inflammatory response, and regulate blood pressure and cerebral blood flow (CBF), but their role in blood pressure and CBF responses to IH is unknown. Therefore, this study's objective was to determine the role of prostanoids in cardiovascular and cerebrovascular responses to IH. Twelve healthy, male participants underwent three, 6-hour IH exposures. For 4 days before each IH exposure, participants ingested a placebo, indomethacin (nonselective COX inhibitor), or Celebrex(®) (selective COX-2 inhibitor) in a double-blind, randomized, crossover study design. Pre- and post-IH blood pressure, CBF, and urinary prostanoids were assessed. Additionally, blood pressure and urinary prostanoids were assessed in newly diagnosed, untreated OSA patients (n=33). Nonselective COX inhibition increased pre-IH blood pressure (P ≤ 0.04) and decreased pre-IH CBF (P=0.04) while neither physiological variable was affected by COX-2 inhibition (P ≥ 0.90). Post-IH, MAP was elevated (P ≤ 0.05) and CBF was unchanged with placebo and nonselective COX inhibition. Selective COX-2 inhibition abrogated the IH-induced MAP increase (P=0.19), but resulted in lower post-IH CBF (P=0.01). Prostanoids were unaffected by IH, except prostaglandin E2 was elevated with the placebo (P=0.02). Finally, OSA patients had elevated blood pressure (P ≤ 0.4) and COX-1 formed thromboxane A2 concentrations (P=0.02). COX-2 and COX-1 have divergent roles in modulating vascular responses to acute and chronic IH. Moreover, COX-1 inhibition may mitigate cardiovascular and cerebrovascular morbidity in OSA. www.clinicaltrials.gov. Unique identifier: NCT01280006.

  18. Pressure Measurement Systems

    Science.gov (United States)

    1990-01-01

    System 8400 is an advanced system for measurement of gas and liquid pressure, along with a variety of other parameters, including voltage, frequency and digital inputs. System 8400 offers exceptionally high speed data acquisition through parallel processing, and its modular design allows expansion from a relatively inexpensive entry level system by the addition of modular Input Units that can be installed or removed in minutes. Douglas Juanarena was on the team of engineers that developed a new technology known as ESP (electronically scanned pressure). The Langley ESP measurement system was based on miniature integrated circuit pressure-sensing transducers that communicated pressure information to a minicomputer. In 1977, Juanarena formed PSI to exploit the NASA technology. In 1978 he left Langley, obtained a NASA license for the technology, introduced the first commercial product, the 780B pressure measurement system. PSI developed a pressure scanner for automation of industrial processes. Now in its second design generation, the DPT-6400 is capable of making 2,000 measurements a second and has 64 channels by addition of slave units. New system 8400 represents PSI's bid to further exploit the 600 million U.S. industrial pressure measurement market. It is geared to provide a turnkey solution to physical measurement.

  19. Acoustic Wave Propagation in Pressure Sense Lines

    Science.gov (United States)

    Vitarius, Patrick; Gregory, Don A.; Wiley, John; Korman, Valentin

    2003-01-01

    Sense lines are used in pressure measurements to passively transmit information from hostile environments to areas where transducers can be used. The transfer function of a sense line can be used to obtain information about the measured environment from the protected sensor. Several properties of this transfer function are examined, including frequency dependence, Helmholtz resonance, and time of flight delay.

  20. Measurement of vehicle-load using capacitance and acceleration transducers

    International Nuclear Information System (INIS)

    Yang, S; Yang, W; Yang, Y

    2007-01-01

    Over-loading is a common problem in some developing countries. Currently, large and fixed measurement systems are used to measure the load of vehicles travelling on highways. This paper presents an on-vehicle measuring device, which is based on measurement of change in capacitance due to variation in distance between electrodes mounted on vehicles. The on-vehicle leaf springs are used as a key part of the weighing transducer. Acceleration transducers are used to measure the vehicle's forward and the vertical accelerations. A feature of this on-vehicle measuring device is that it can provide both static and dynamic load measurements. The drivers can check the load in the cab, and the highway inspectors can check the load at any time and any place through radio communication, thus identifying over-loaded vehicles

  1. W-Band Circularly Polarized TE11 Mode Transducer

    Science.gov (United States)

    Zhan, Mingzhou; He, Wangdong; Wang, Lei

    2018-06-01

    This paper presents a balanced sidewall exciting approach to realize the circularly polarized TE11 mode transducer. We used a voltage vector transfer matrix to establish the relationship between input and output vectors, then we analyzed amplitude and phase errors to estimate the isolation of degenerate mode. A mode transducer with a sidewall exciter was designed based on the results. In the 88-100 GHz frequency range, the simulated axial ratio is less than 1.05 and the isolation of linearly polarization TE11 mode is higher than 30 dBc. In back-to-back measurements, the return loss is generally greater than 20 dB with a typical insertion loss of 1.2 dB. Back-to-back transmission measurements are in excellent agreement with simulations.

  2. The copying power of one-state tree transducers

    DEFF Research Database (Denmark)

    Engelfriet, Joost; Skyum, Sven

    1982-01-01

    One-state deterministic top-down tree transducers (or, tree homomorphisms) cannot handle “prime copying,” i.e., their class of output (string) languages is not closed under the operation L → {$(w$)f(n) short parallel w ε L, f(n) greater-or-equal, slanted 1}, where f is any integer function whose...... range contains numbers with arbitrarily large prime factors (such as a polynomial). The exact amount of nonclosure under these copying operations is established for several classes of input (tree) languages. These results are relevant to the extended definable (or, restricted parallel level) languages......, to the syntax-directed translation of context-free languages, and to the tree transducer hierarchy....

  3. Transducers for providing an electrical signal representative of physical movement

    International Nuclear Information System (INIS)

    Duncombe, E.; Roach, P.F.

    1985-01-01

    A transducer for use in hostile environments has an externally threaded rod slidable in an internally threaded tube. The threads of rod and tube are of two-start form and define slots in which inductively coupled mineral insulated conductors are located, the conductors being of hairpin form secured at the ends of the rod and tube at the hairpin bend with the hairpin tails in the slots. End diaphragms make a sealed transducer in which the rod can move axially relative to the tube by one half of one pitch of the threads without straining the diaphragms. In a modification rod and tube are arranged to rotate relative to each other up to +-180 0 which effectively also causes a one half pitch movement of the conductors. (author)

  4. Capacitive micromachined ultrasonic transducers for medical imaging and therapy

    International Nuclear Information System (INIS)

    Khuri-Yakub, Butrus T; Oralkan, Ömer

    2011-01-01

    Capacitive micromachined ultrasonic transducers (CMUTs) have been subject to extensive research for the last two decades. Although they were initially developed for air-coupled applications, today their main application space is medical imaging and therapy. This paper first presents a brief description of CMUTs, their basic structure and operating principles. Our progression of developing several generations of fabrication processes is discussed with an emphasis on the advantages and disadvantages of each process. Monolithic and hybrid approaches for integrating CMUTs with supporting integrated circuits are surveyed. Several prototype transducer arrays with integrated front-end electronic circuits we developed and their use for 2D and 3D, anatomical and functional imaging, and ablative therapies are described. The presented results prove the CMUT as a micro-electro-mechanical systems technology for many medical diagnostic and therapeutic applications

  5. Capacitive micromachined ultrasonic transducers for medical imaging and therapy.

    Science.gov (United States)

    Khuri-Yakub, Butrus T; Oralkan, Omer

    2011-05-01

    Capacitive micromachined ultrasonic transducers (CMUTs) have been subject to extensive research for the last two decades. Although they were initially developed for air-coupled applications, today their main application space is medical imaging and therapy. This paper first presents a brief description of CMUTs, their basic structure, and operating principles. Our progression of developing several generations of fabrication processes is discussed with an emphasis on the advantages and disadvantages of each process. Monolithic and hybrid approaches for integrating CMUTs with supporting integrated circuits are surveyed. Several prototype transducer arrays with integrated frontend electronic circuits we developed and their use for 2-D and 3-D, anatomical and functional imaging, and ablative therapies are described. The presented results prove the CMUT as a MEMS technology for many medical diagnostic and therapeutic applications.

  6. Electromechanical modelling of tapered ionic polymer metal composites transducers

    Directory of Open Access Journals (Sweden)

    Rakesha Chandra Dash

    2016-09-01

    Full Text Available Ionic polymer metal composites (IPMCs are relatively new smart materials that exhibit a bidirectional electromechanical coupling. IPMCs have large number of important engineering applications such as micro robotics, biomedical devices, biomimetic robotics etc. This paper presents a comparison between tapered and uniform cantilevered Nafion based IPMCs transducer. Electromechanical modelling is done for the tapered beam. Thickness can be varied according to the requirement of force and deflection. Numerical results pertaining to the force and deflection characteristics of both type IPMCs transducer are obtained. It is shown that the desired amount of force and deflections for tapered IPMCs can be achieved for a given voltage. Different fixed end (t0 and free end (t1 thickness values have been taken to justify the results using MATLAB.

  7. Role of blood pressure and other variables in the differential cardiovascular event rates noted in the Anglo-Scandinavian Cardiac Outcomes Trial-Blood Pressure Lowering Arm (ASCOT-BPLA)

    DEFF Research Database (Denmark)

    Poulter, Neil R; Wedel, Hans; Dahlöf, Björn

    2005-01-01

    Results of the Anglo-Scandinavian Cardiac Outcomes Trial-Blood Pressure Lowering Arm (ASCOT-BPLA) show significantly lower rates of coronary and stroke events in individuals allocated an amlodipine-based combination drug regimen than in those allocated an atenolol-based combination drug regimen (HR...

  8. A 1372-element Large Scale Hemispherical Ultrasound Phased Array Transducer for Noninvasive Transcranial Therapy

    International Nuclear Information System (INIS)

    Song, Junho; Hynynen, Kullervo

    2009-01-01

    Noninvasive transcranial therapy using high intensity focused ultrasound transducers has attracted high interest as a promising new modality for the treatments of brain related diseases. We describe the development of a 1372 element large scale hemispherical ultrasound phased array transducer operating at a resonant frequency of 306 kHz. The hemispherical array has a diameter of 31 cm and a 15.5 cm radius of curvature. It is constructed with piezoelectric (PZT-4) tube elements of a 10 mm in diameter, 6 mm in length and 1.4 mm wall thickness. Each element is quasi-air backed by attaching a cork-rubber membrane on the back of the element. The acoustic efficiency of the element is determined to be approximately 50%. The large number of the elements delivers high power ultrasound and offers better beam steering and focusing capability. Comparisons of sound pressure-squared field measurements with theoretical calculations in water show that the array provides good beam steering and tight focusing capability over an efficient volume of approximately 100x100x80 mm 3 with nominal focal spot size of approximately 2.3 mm in diameter at -6 dB. We also present its beam steering and focusing capability through an ex vivo human skull by measuring pressure-squared amplitude after phase corrections. These measurements show the same efficient volume range and focal spot sizes at -6 dB as the ones in water without the skull present. These results indicate that the array is sufficient for use in noninvasive transcranial ultrasound therapy.

  9. Nonlinear electromechanical response of the ferroelectret ultrasonic transducers

    Czech Academy of Sciences Publication Activity Database

    Döring, J.; Bovtun, Viktor; Bartusch, J.; Erhard, A.; Kreutzbruck, M.; Yakymenko, Y.

    2010-01-01

    Roč. 100, č. 2 (2010), 479-485 ISSN 0947-8396 R&D Projects: GA ČR GAP204/10/0616; GA ČR(CZ) GA202/09/0682 Institutional research plan: CEZ:AV0Z10100520 Keywords : piezoelectric * ferroelectret * transducer * ultrasonic Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.765, year: 2010

  10. Application of digital PWM technology in current transducers

    International Nuclear Information System (INIS)

    Liu Huifang; Hu Zhimin; Li Rui

    2012-01-01

    With the development of DSP technology and mature use of PID technology,, a new program for DC or AC signal measurement is proposed. Combined with the DSP chip timer module and PID algorithm, PWM signals are generated to control the feedback circuit for the compensation current. Finally the measured current value can be obtained according to the ampere-turns compensation current and the measured current. Studies have shown that this technology enables new current transducers have high stability. (authors)

  11. Characterization of HIFU transducers designed for sonochemistry application: Acoustic streaming.

    Science.gov (United States)

    Hallez, L; Touyeras, F; Hihn, J-Y; Bailly, Y

    2016-03-01

    Cavitation distribution in a High Intensity Focused Ultrasound sonoreactors (HIFU) has been extensively described in the recent literature, including quantification by an optical method (Sonochemiluminescence SCL). The present paper provides complementary measurements through the study of acoustic streaming generated by the same kind of HIFU transducers. To this end, results of mass transfer measurements (electrodiffusional method) were compared to optical method ones (Particle Image Velocimetry). This last one was used in various configurations: with or without an electrode in the acoustic field in order to have the same perturbation of the wave propagation. Results show that the maximum velocity is not located at the focal but shifted near the transducer, and that this shift is greater for high powers. The two cavitation modes (stationary and moving bubbles) are greatly affect the hydrodynamic behavior of our sonoreactors: acoustic streaming and the fluid generated by bubble motion. The results obtained by electrochemical measurements show the same low hydrodynamic activity in the transducer vicinity, the same shift of the active focal toward the transducer, and the same absence of activity in the post-focal axial zone. The comparison with theoretical Eckart's velocities (acoustic streaming in non-cavitating media) confirms a very high activity at the "sonochemical focal", accounted for by wave distortion, which induced greater absorption coefficients. Moreover, the equivalent liquid velocities are one order of magnitude larger than the ones measured by PIV, confirming the enhancement of mass transfer by bubbles oscillation and collapse close to the surface, rather than from a pure streaming effect. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Finite element analysis of hysteresis effects in piezoelectric transducers

    Science.gov (United States)

    Simkovics, Reinhard; Landes, Hermann; Kaltenbacher, Manfred; Hoffelner, Johann; Lerch, Reinhard

    2000-06-01

    The design of ultrasonic transducers for high power applications, e.g. in medical therapy or production engineering, asks for effective computer aided design tools to analyze the occurring nonlinear effects. In this paper the finite-element-boundary-element package CAPA is presented that allows to model different types of electromechanical sensors and actuators. These transducers are based on various physical coupling effects, such as piezoelectricity or magneto- mechanical interactions. Their computer modeling requires the numerical solution of a multifield problem, such as coupled electric-mechanical fields or magnetic-mechanical fields as well as coupled mechanical-acoustic fields. With the reported software environment we are able to compute the dynamic behavior of electromechanical sensors and actuators by taking into account geometric nonlinearities, nonlinear wave propagation and ferroelectric as well as magnetic material nonlinearities. After a short introduction to the basic theory of the numerical calculation schemes, two practical examples will demonstrate the applicability of the numerical simulation tool. As a first example an ultrasonic thickness mode transducer consisting of a piezoceramic material used for high power ultrasound production is examined. Due to ferroelectric hysteresis, higher order harmonics can be detected in the actuators input current. Also in case of electrical and mechanical prestressing a resonance frequency shift occurs, caused by ferroelectric hysteresis and nonlinear dependencies of the material coefficients on electric field and mechanical stresses. As a second example, a power ultrasound transducer used in HIFU-therapy (high intensity focused ultrasound) is presented. Due to the compressibility and losses in the propagating fluid a nonlinear shock wave generation can be observed. For both examples a good agreement between numerical simulation and experimental data has been achieved.

  13. Sensitivity limits of capacitive transducer for gravitational wave resonant antennas

    Energy Technology Data Exchange (ETDEWEB)

    Bassan, M; Pizzella, G [Rome Tor Vergata Univ. (Italy). Dip. di Fisica

    1996-12-01

    It is analyzed the performance of a resonant gravitational wave antenna equipped with a resonant, d.c. biased capacitive transducer, an untuned superconducting matching circuit and a d.c. Squid. It is derived simple relations for the detector energy sensitivity that serve as guidelines for device development and it is shown that, with reasonable improvements in Squid technology, an effective temperature for burst detection of 2miK can be achieved.

  14. Numerical Analysis of Ultrasonic Beam Profile Due to the Change of the Number of Piezoelectric Elements for Phased Array Transducer

    International Nuclear Information System (INIS)

    Choi, Sang Woo; Lee, Joon Hyun

    1999-01-01

    A phased array is a multi-element piezoelectric device whose elements are individually excited by electric pulses at programmed delay time. One of the advantages of using phased array in nondestructive evaluation (NDE) application over conventional ultrasonic transducers is their great maneuverability of ultrasonic beam. There are some parameters such as the number and the size of the piezoelectric elements and the inter-element spacing of the elements to design phased array transducer. In this study, the characteristic of ultrasonic beam for phased array transducer due to the variation of the number of elements has been simulated for ultrasonic SH-wave on the basis of Huygen's principle. Ultrasonic beam directivity and focusing due to the change of time delay of each element were discussed due to the change of the number of piezoelectric elements. It was found that ultrasonic beam was much more spreaded and hence its sound pressure was decreased as steering angle of ultrasonic beam was increased. In addition, the ability of ultrasonic bean focusing decreased gradually with the increase of focal length at the same piezoelectric elements. However, the ability of beam focusing was improved as the number of consisting elements was increased

  15. Control of the ultrasonic beam transmitted through an irregular profile using a smart flexible transducer: modelling an application

    Energy Technology Data Exchange (ETDEWEB)

    Roy, O.; Mahaut, S.; Casula, O. [CEA Fontenay aux Roses, DRT/LIST/DECS/STA/LMUS, 92 (France)

    2001-07-01

    In most of industries as aeronautics, aerospace and nuclear, the main part of the ultrasonic testing is carried out directly in touch with the inspected component. Among others, the cooling piping of French pressurized water reactor comprises many welding components with complex geometry: elbows, butt welds, nozzles. In service inspections of such components performed with conventional ultrasonic contact transducers present limited performances. Variations in sensitivity are produced by unmatched contact on irregular surface, which results in poor detection performances. In addition, the beam orientation transmitted through complex interfaces cannot be totally controlled, because of the disorientations suffered by the transducer during its displacement. As a result, a possible defect cannot be correctly detected, positioned and characterized. At last, the geometry of some components limits the displacement of the transducer, resulting in an uncovered scan area. To overcome these difficulties and to improve the performances of such inspections, the CEA, supported by the safety authorities (IPSN), has developed a new concept of phased array. Recent studies have been made to obtain further performances improvements of this system, including instrumentation development and a new phased array design. Inspections have been performed on a specimen containing artificial defects under a realistic profile, with an adaptive mode to compensate the effect of the irregular profile. Experimental results, displayed using specific imaging, show the ability of this system to detect and characterize defects under irregular profiles, using longitudinal or shear waves in a fully mastered beam. (authors)

  16. Setting thresholds to varying blood pressure monitoring intervals differentially affects risk estimates associated with white-coat and masked hypertension in the population

    DEFF Research Database (Denmark)

    Asayama, Kei; Thijs, Lutgarde; Li, Yan

    2014-01-01

    Outcome-driven recommendations about time intervals during which ambulatory blood pressure should be measured to diagnose white-coat or masked hypertension are lacking. We cross-classified 8237 untreated participants (mean age, 50.7 years; 48.4% women) enrolled in 12 population studies, using ≥14...

  17. A double-blind comparison of terazosin and tamsulosin on their differential effects on ambulatory blood pressure and nocturnal orthostatic stress testing

    NARCIS (Netherlands)

    de Mey, C.; Michel, M. C.; McEwen, J.; Moreland, T.

    1998-01-01

    OBJECTIVES: This single-centre, double-blind, randomized parallel-group study compared ambulatory blood pressure (AMBP) and heart rate (HR) profiles and responses to orthostatic testing (OT) for recommended regimens of tamsulosin (TAM, modified release formulation) and terazosin (TER), two

  18. Review of piezoelectric micromachined ultrasonic transducers and their applications

    International Nuclear Information System (INIS)

    Jung, Joontaek; Lee, Wonjun; Kang, Woojin; Shin, Eunjung; Choi, Hongsoo; Ryu, Jungho

    2017-01-01

    In recent decades, micromachined ultrasonic transducers (MUTs) have been investigated as an alternative to conventional piezocomposite ultrasonic transducers, primarily due to the advantages that microelectromechanical systems provide. Miniaturized ultrasonic systems require ultrasonic transducers integrated with complementary metal-oxide-semiconductor circuits. Hence, piezoelectric MUTs (pMUTs) and capacitive MUTs (cMUTs) have been developed as the most favorable solutions. This paper reviews the basic equations to understand the characteristics of thin-film-based piezoelectric devices and presents recent research on pMUTs, including current approaches and limitations. Methods to improve the coupling coefficient of pMUTs are also investigated, such as device structure, materials, and fabrication techniques. The device structure improvements include multielectrode pMUTs, partially clamped boundary conditions, and 3D pMUTs (curved and domed types), where the latter can provide an electromechanical coupling coefficient of up to 45%. The piezoelectric coefficient ( e 31 ) can be increased by controlling the crystal texture (seed layer of γ -Al 2 O 3 ), using single-crystal (PMN-PT) materials, or control of residual stresses (using SiO 2 layer). Arrays of pMUTs can be implemented for various applications including intravascular ultrasound, fingerprint sensors, rangefinders in air, and wireless power supply systems. pMUTs are expected to be an ideal solution for applications such as mobile biometric security (fingerprint sensors) and rangefinders due to their superior power efficiency and compact size. (topical review)

  19. Development of ultrasonic testing equipment incorporating electromagnetic acoustic transducer

    International Nuclear Information System (INIS)

    Sato, Michio; Kimura, Motohiko; Okano, Hideharu; Miyazawa, Tatsuo; Nagase, Koichi; Ishikawa, Masaaki

    1989-01-01

    An ultrasonic testing equipment for use in in-service inspection of nuclear power plant piping has been developed, which comprises an angle-beam electromagnetic acoustic transducer mounted on a vehicle for scanning the piping surface to be inspected. The transducer functions without direct contact with the piping surface through couplant, and the vehicle does not require a guide track installed on the piping surface, being equipped with magnetic wheels that adhere to the piping material, permitting it to travel along the circumferential weld joint of a carbon steel pipe. The equipment thus dispenses with the laborious manual work involved in preparing the piping for inspection, such as removal of protective coating, surface polishing and installation of guide track and thereby considerably reduces the duration of inspection. The functioning principle and structural features of the transducer and vehicle are described, together with the results of trial operation of a prototype unit, which proved a 1mm deep notch cut on a test piece of 25mm thick carbon steel plate to be locatable with an accuracy of ±2mm. (author)

  20. Efficient Driving of Piezoelectric Transducers Using a Biaxial Driving Technique.

    Directory of Open Access Journals (Sweden)

    Samuel Pichardo

    Full Text Available Efficient driving of piezoelectric materials is desirable when operating transducers for biomedical applications such as high intensity focused ultrasound (HIFU or ultrasound imaging. More efficient operation reduces the electric power required to produce the desired bioeffect or contrast. Our preliminary work [Cole et al. Journal of Physics: Condensed Matter. 2014;26(13:135901.] suggested that driving transducers by applying orthogonal electric fields can significantly reduce the coercivity that opposes ferroelectric switching. We present here the experimental validation of this biaxial driving technique using piezoelectric ceramics typically used in HIFU. A set of narrow-band transducers was fabricated with two sets of electrodes placed in an orthogonal configuration (following the propagation and the lateral mode. The geometry of the ceramic was chosen to have a resonance frequency similar for the propagation and the lateral mode. The average (± s.d. resonance frequency of the samples was 465.1 (± 1.5 kHz. Experiments were conducted in which each pair of electrodes was driven independently and measurements of effective acoustic power were obtained using the radiation force method. The efficiency (acoustic/electric power of the biaxial driving method was compared to the results obtained when driving the ceramic using electrodes placed only in the pole direction. Our results indicate that the biaxial method increases efficiency from 50% to 125% relative to the using a single electric field.

  1. Tungsten Oxide Photonic Crystals as Optical Transducer for Gas Sensing.

    Science.gov (United States)

    Amrehn, Sabrina; Wu, Xia; Wagner, Thorsten

    2018-01-26

    Some metal oxide semiconductors, such as tungsten trioxide or tin dioxide, are well-known as resistive transducers for gas sensing and offer high sensitivities down to the part per billion level. Electrical signal read-out, however, limits the information obtained on the electronic properties of metal oxides to a certain frequency range and its application because of the required electrical contacts. Therefore, a novel approach for building an optical transducer for gas reactions utilizing metal oxide photonic crystals is presented here. By the rational design of the structure and composition it is possible to synthesize a functional material which allows one to obtain insight into its electronic properties in the optical frequency range with simple experimental measures. The concept is demonstrated by tungsten trioxide inverse opal structure as optical transducer material for hydrogen sensing. The sensing behavior is analyzed in a temperature range from room temperature to 500 °C and in a wide hydrogen concentration range (3000 ppm to 10%). The sensing mechanism is mainly the refractive index change resulting from hydrogen intercalation in tungsten trioxide, but the back reaction has also impact on the optical properties of this system. Detailed chemical reaction studies provide suggestions for specific sensing conditions.

  2. Ergonomic design and evaluation of a diagnostic ultrasound transducer holder.

    Science.gov (United States)

    Ghasemi, Mohamad Sadegh; Hosseinzadeh, Payam; Zamani, Farhad; Ahmadpoor, Hossein; Dehghan, Naser

    2017-12-01

    Work-related musculoskeletal disorders (WMSDs) are injuries and disorders that affect the body's movement and musculoskeletal system. Awkward postures represent one of the major ergonomic risk factors that cause WMSDs among sonographers while working with an ultrasound transducer. This study aimed to design and evaluate a new holder for the ultrasound transducer. In the first phase a new holder was designed for the transducer, considering design principles. Evaluation of the new holder was then carried out by electrogoniometry and a locally perceived discomfort (LPD) scale. The application of design principles to the new holder resulted in an improvement of wrist posture and comfort. Wrist angles in extension, flexion, radial deviation and ulnar deviation were lower with utilization of the new holder. The severity of discomfort based on the LPD method in the two modes of work with and without the new holder was reported with values of 1.3 and 1.8, respectively (p ergonomics design principles was effective in minimizing wrist deviation and increasing comfort while working with the new holder.

  3. Damage detection with concentrated configurations of piezoelectric transducers

    International Nuclear Information System (INIS)

    Wandowski, T; Malinowski, P; Ostachowicz, W M

    2011-01-01

    In this paper results of investigation on concentrated piezoelectric networks with different configurations are presented. They were used for elastic wave generation and acquisition. The elastic wave propagation phenomenon was used for damage localization in thin aluminium panels. This approach utilized the fact that any discontinuities existing in structural elements cause local changes of physical material properties which affect elastic wave propagation. Elastic waves were excited and received using piezoelectric transducer networks with different element arrangements. The method of transducer placement and the number of piezoelectric elements used had an influence on the accuracy of the damage localization algorithm. Obviously, the more elements there were, the more data had to be processed. After the acquisition process signal processing was conducted in order to create damage influence maps. These maps presents elastic wave energy connected with reflection from discontinuities. In order to create such a map a computer program was developed that assigns a mesh of points to the panel surface. At each point the energy of elastic wave reflection was calculated. This energy was extracted from the acquired signals. This paper summarizes an extensive experimental investigation that included three damage scenarios and twelve transducer configurations

  4. Review of piezoelectric micromachined ultrasonic transducers and their applications

    Science.gov (United States)

    Jung, Joontaek; Lee, Wonjun; Kang, Woojin; Shin, Eunjung; Ryu, Jungho; Choi, Hongsoo

    2017-11-01

    In recent decades, micromachined ultrasonic transducers (MUTs) have been investigated as an alternative to conventional piezocomposite ultrasonic transducers, primarily due to the advantages that microelectromechanical systems provide. Miniaturized ultrasonic systems require ultrasonic transducers integrated with complementary metal-oxide-semiconductor circuits. Hence, piezoelectric MUTs (pMUTs) and capacitive MUTs (cMUTs) have been developed as the most favorable solutions. This paper reviews the basic equations to understand the characteristics of thin-film-based piezoelectric devices and presents recent research on pMUTs, including current approaches and limitations. Methods to improve the coupling coefficient of pMUTs are also investigated, such as device structure, materials, and fabrication techniques. The device structure improvements include multielectrode pMUTs, partially clamped boundary conditions, and 3D pMUTs (curved and domed types), where the latter can provide an electromechanical coupling coefficient of up to 45%. The piezoelectric coefficient (e 31) can be increased by controlling the crystal texture (seed layer of γ-Al2O3), using single-crystal (PMN-PT) materials, or control of residual stresses (using SiO2 layer). Arrays of pMUTs can be implemented for various applications including intravascular ultrasound, fingerprint sensors, rangefinders in air, and wireless power supply systems. pMUTs are expected to be an ideal solution for applications such as mobile biometric security (fingerprint sensors) and rangefinders due to their superior power efficiency and compact size.

  5. A novel, flat, electronically-steered phased array transducer for tissue ablation: preliminary results

    International Nuclear Information System (INIS)

    Ellens, Nicholas P K; Lucht, Benjamin B C; Gunaseelan, Samuel T; Hudson, John M; Hynynen, Kullervo H

    2015-01-01

    Flat, λ/2-spaced phased arrays for therapeutic ultrasound were examined in silico and in vitro. All arrays were made by combining modules made of 64 square elements with 1.5 mm inter-element spacing along both major axes. The arrays were designed to accommodate integrated, co-aligned diagnostic transducers for targeting and monitoring. Six arrays of 1024 elements (16 modules) and four arrays of 6144 elements (96 modules) were modelled and compared according to metrics such as peak pressure amplitude, focal size, ability to be electronically-steered far off-axis and grating lobe amplitude. Two 1024 element prototypes were built and measured in vitro, producing over 100 W of acoustic power. In both cases, the simulation model of the pressure amplitude field was in good agreement with values measured by hydrophone. Using one of the arrays, it was shown that the peak pressure amplitude dropped by only 24% and 25% of the on-axis peak pressure amplitude when steered to the edge of the array (40 mm) at depths of 30 mm and 50 mm. For the 6144 element arrays studied in in silico only, similarly high steerability was found: even when steered 100 mm off-axis, the pressure amplitude decrease at the focus was less than 20%, while the maximum pressure grating lobe was only 20%. Thermal simulations indicate that the modules produce more than enough acoustic power to perform rapid ablations at physiologically relevant depths and steering angles. Arrays such as proposed and tested in this study have enormous potential: their high electronic steerability suggests that they will be able to perform ablations of large volumes without the need for any mechanical translation. (paper)

  6. Electromechanical transducer for rapid detection, discrimination and quantification of lung cancer cells

    International Nuclear Information System (INIS)

    Ali, Waqas; Raza, Muhammad Usman; Iqbal, Samir M; Moghaddam, Fatemeh Jalvhei; Bui, Loan; Sayles, Bailey; Kim, Young-Tae

    2016-01-01

    Tumor cells are malignant derivatives of normal cells. There are characteristic differences in the mechanophysical properties of normal and tumor cells, and these differences stem from the changes that occur in the cell cytoskeleton during cancer progression. There is a need for viable whole blood processing techniques for rapid and reliable tumor cell detection that do not require tagging. Micropore biosensors have previously been used to differentiate tumor cells from normal cells and we have used a micropore-based electromechanical transducer to differentiate one type of tumor cells from the other types. This device generated electrical signals that were characteristic of the cell properties. Three non-small cell lung cancer (NSCLC) cell lines, NCl-H1155, A549 and NCI-H460, were successfully differentiated. NCI-H1155, due to their comparatively smaller size, were found to be the quickest in translocating through the micropore. Their translocation through a 15 μm micropore caused electrical pulses with an average translocation time of 101 ± 9.4 μs and an average peak amplitude of 3.71 ± 0.42 μA, whereas translocation of A549 and NCI-H460 caused pulses with average translocation times of 126 ± 17.9 μs and 148 ± 13.7 μs and average peak amplitudes of 4.58 ± 0.61 μA and 5.27 ± 0.66 μA, respectively. This transformation of the differences in cell properties into differences in the electrical profiles (i.e. the differences in peak amplitudes and translocation times) with this electromechanical transducer is a quantitative way to differentiate these lung cancer cells. The solid-state micropore device processed whole biological samples without any pre-processing requirements and is thus ideal for point-of-care applications. (paper)

  7. Research and development of in-core transducers at the CIAE

    International Nuclear Information System (INIS)

    Huang Yucai; Liu Yupu; Jia Guozhen; Liu Lianping

    1996-01-01

    In this paper, R and D of in-core transducers at the CIAE are briefly summarized. With the construction and commissioning of PWR nuclear power plant in China, fuel rod behaviour need to be studied carefully. As conventional transducers cannot meet the requirements of in-core applications, R and D of in-core transducers are developed. Since 1980's, several kinds of in-core transducers have been successfully fabricated and tested under the conditions simulating PWR. At present, in-pile tests of the transducers combining with the studies of individual behaviour of PWR fuel rod are being planned at the CIAE. (author). 11 refs, 12 figs, 4 tabs

  8. Positioning calibration apparatus for transducers employed in nuclear reactor vessel inspection apparatus

    International Nuclear Information System (INIS)

    Elsner, H.J.

    1981-01-01

    The invention provides a calibration apparatus suitable for verifying the position and orientation of transducers used in reactor vessel ultrasonic inspection. The apparatus includes moveable mounting means which secures a transducer within the tank in its normal inspection orientation. A drive is also provided for moving the transducer in the tank relative to a target. The target is slidably positioned in the tank at a distance from the transducer which is selected to avoid the distortion effects in the near field of the transducer. The drive mechanism may be provided with graduated indicia of travel, or a scale may be affixed to the side of the tank. (L.L.)

  9. Toric focusing for radiation force applications using a toric lens coupled to a spherically focused transducer.

    Science.gov (United States)

    Arnal, Bastien; Nguyen, Thu-Mai; O'Donnell, Matthew

    2014-12-01

    Dynamic elastography using radiation force requires that an ultrasound field be focused during hundreds of microseconds at a pressure of several megapascals. Here, we address the importance of the focal geometry. Although there is usually no control of the elevational focal width in generating a tissue mechanical response, we propose a tunable approach to adapt the focus geometry that can significantly improve radiation force efficiency. Several thin, in-house-made polydimethylsiloxane lenses were designed to modify the focal spot of a spherical transducer. They exhibited low absorption and the focal spot widths were extended up to 8-fold in the elevation direction. Radiation force experiments demonstrated an 8-fold increase in tissue displacements using the same pressure level in a tissue-mimicking phantom with a similar shear wave spectrum, meaning it does not affect elastography resolution. Our results demonstrate that larger tissue responses can be obtained for a given pressure level, or that similar response can be reached at a much lower mechanical index (MI). We envision that this work will impact 3-D elastography using 2-D phased arrays, where such shaping can be achieved electronically with the potential for adaptive optimization.

  10. Diaphragm size and sensitivity for fiber optic pressure sensors

    Science.gov (United States)

    He, Gang; Cuomo, Frank W.; Zuckerwar, Allan J.

    1991-01-01

    A mechanism which leads to a significant increase in sensitivity and linear operating range in reflective type fiber optic pressure transducers with minute active dimensions is studied. A general theoretical formalism is presented which is in good agreement with the experimental data. These results are found useful in the development of small pressure sensors used in turbulent boundary layer studies and other applications.

  11. A U-shaped linear ultrasonic motor using longitudinal vibration transducers with double feet.

    Science.gov (United States)

    Liu, Yingxiang; Liu, Junkao; Chen, Weishan; Shi, Shengjun

    2012-05-01

    A U-shaped linear ultrasonic motor using longitudinal vibration transducers with double feet was proposed in this paper. The proposed motor contains a horizontal transducer and two vertical transducers. The horizontal transducer includes two exponential shape horns located at the leading ends, and each vertical transducer contains one exponential shape horn. The horns of the horizontal transducer and the vertical transducer intersect at the tip ends where the driving feet are located. Longitudinal vibrations are superimposed in the motor and generate elliptical motions at the driving feet. The two vibration modes of the motor are discussed, and the motion trajectories of driving feet are deduced. By adjusting the structural parameters, the resonance frequencies of two vibration modes were degenerated. A prototype motor was fabricated and measured. Typical output of the prototype is no-load speed of 854 mm/s and maximum thrust force of 40 N at a voltage of 200 V(rms).

  12. Differential Responses to Blood Pressure and Oxidative Stress in Streptozotocin-Induced Diabetic Wistar-Kyoto Rats and Spontaneously Hypertensive Rats: Effects of Antioxidant (Honey) Treatment

    Science.gov (United States)

    Erejuwa, Omotayo O.; Sulaiman, Siti A.; Wahab, Mohd Suhaimi Ab; Sirajudeen, Kuttulebbai N. S.; Salleh, Md Salzihan Md; Gurtu, Sunil

    2011-01-01

    Oxidative stress is implicated in the pathogenesis and/or complications of hypertension and/or diabetes mellitus. A combination of these disorders increases the risk of developing cardiovascular events. This study investigated the effects of streptozotocin (60 mg/kg; ip)-induced diabetes on blood pressure, oxidative stress and effects of honey on these parameters in the kidneys of streptozotocin-induced diabetic Wistar-Kyoto (WKY) and spontaneously hypertensive rats (SHR). Diabetic WKY and SHR were randomized into four groups and received distilled water (0.5 mL) and honey (1.0 g/kg) orally once daily for three weeks. Control SHR had reduced malondialdehyde (MDA) and increased systolic blood pressure (SBP), catalase (CAT) activity, and total antioxidant status (TAS). SBP, activities of glutathione peroxidase (GPx) and glutathione reductase (GR) were elevated while TAS was reduced in diabetic WKY. In contrast, SBP, TAS, activities of GPx and GR were reduced in diabetic SHR. Antioxidant (honey) treatment further reduced SBP in diabetic SHR but not in diabetic WKY. It also increased TAS, GSH, reduced glutathione (GSH)/oxidized glutathione (GSSG) ratio, activities of GPx and GR in diabetic SHR. These data suggest that differences in types, severity, and complications of diseases as well as strains may influence responses to blood pressure and oxidative stress. PMID:21673929

  13. Liquid crystalline fiber optic colorimeter for hydrostatic pressure measurement

    Science.gov (United States)

    Wolinski, Tomasz R.; Bajdecki, Waldemar K.; Domanski, Andrzej W.; Karpierz, Miroslaw A.; Konopka, Witold; Nasilowski, T.; Sierakowski, Marek W.; Swillo, Marcin; Dabrowski, Roman S.; Nowinowski-Kruszelnicki, Edward; Wasowski, Janusz

    2001-08-01

    This paper presents results of tests performed on a fiber optic system of liquid crystalline transducer for hydrostatic pressure monitoring based on properties of colorimetry. The system employs pressure-induced deformations occurring in liquid crystalline (LC) cells configured in a homogeneous Frederiks geometry. The sensor is compared of a round LC cell placed inside a specially designed pressure chamber. As a light source we used a typical diode operating at red wavelength and modulated using standard techniques. The pressure transducer was connected to a computer with a specially designed interface built on the bas of advanced ADAM modules. Results indicate that the system offers high response to pressure with reduced temperature sensitivity and, depending on the LC cell used, can be adjusted for monitoring of low hydrostatic pressures up to 6 MPa. These studies have demonstrated the feasibility of fiber optic liquid crystal colorimeter for hydrostatic pressure sensing specially dedicated to pipe- lines, mining instrumentation, and process-control technologies.

  14. Setting thresholds to varying blood pressure monitoring intervals differentially affects risk estimates associated with white-coat and masked hypertension in the population.

    Science.gov (United States)

    Asayama, Kei; Thijs, Lutgarde; Li, Yan; Gu, Yu-Mei; Hara, Azusa; Liu, Yan-Ping; Zhang, Zhenyu; Wei, Fang-Fei; Lujambio, Inés; Mena, Luis J; Boggia, José; Hansen, Tine W; Björklund-Bodegård, Kristina; Nomura, Kyoko; Ohkubo, Takayoshi; Jeppesen, Jørgen; Torp-Pedersen, Christian; Dolan, Eamon; Stolarz-Skrzypek, Katarzyna; Malyutina, Sofia; Casiglia, Edoardo; Nikitin, Yuri; Lind, Lars; Luzardo, Leonella; Kawecka-Jaszcz, Kalina; Sandoya, Edgardo; Filipovský, Jan; Maestre, Gladys E; Wang, Jiguang; Imai, Yutaka; Franklin, Stanley S; O'Brien, Eoin; Staessen, Jan A

    2014-11-01

    Outcome-driven recommendations about time intervals during which ambulatory blood pressure should be measured to diagnose white-coat or masked hypertension are lacking. We cross-classified 8237 untreated participants (mean age, 50.7 years; 48.4% women) enrolled in 12 population studies, using ≥140/≥90, ≥130/≥80, ≥135/≥85, and ≥120/≥70 mm Hg as hypertension thresholds for conventional, 24-hour, daytime, and nighttime blood pressure. White-coat hypertension was hypertension on conventional measurement with ambulatory normotension, the opposite condition being masked hypertension. Intervals used for classification of participants were daytime, nighttime, and 24 hours, first considered separately, and next combined as 24 hours plus daytime or plus nighttime, or plus both. Depending on time intervals chosen, white-coat and masked hypertension frequencies ranged from 6.3% to 12.5% and from 9.7% to 19.6%, respectively. During 91 046 person-years, 729 participants experienced a cardiovascular event. In multivariable analyses with normotension during all intervals of the day as reference, hazard ratios associated with white-coat hypertension progressively weakened considering daytime only (1.38; P=0.033), nighttime only (1.43; P=0.0074), 24 hours only (1.21; P=0.20), 24 hours plus daytime (1.24; P=0.18), 24 hours plus nighttime (1.15; P=0.39), and 24 hours plus daytime and nighttime (1.16; P=0.41). The hazard ratios comparing masked hypertension with normotension were all significant (Pcoat hypertension requires setting thresholds simultaneously to 24 hours, daytime, and nighttime blood pressure. Although any time interval suffices to diagnose masked hypertension, as proposed in current guidelines, full 24-hour recordings remain standard in clinical practice. © 2014 American Heart Association, Inc.

  15. Setting Thresholds to Varying Blood Pressure Monitoring Intervals Differentially Affects Risk Estimates Associated With White-Coat and Masked Hypertension in the Population

    Science.gov (United States)

    Asayama, Kei; Thijs, Lutgarde; Li, Yan; Gu, Yu-Mei; Hara, Azusa; Liu, Yan-Ping; Zhang, Zhenyu; Wei, Fang-Fei; Lujambio, Inés; Mena, Luis J.; Boggia, José; Hansen, Tine W.; Björklund-Bodegård, Kristina; Nomura, Kyoko; Ohkubo, Takayoshi; Jeppesen, Jørgen; Torp-Pedersen, Christian; Dolan, Eamon; Stolarz-Skrzypek, Katarzyna; Malyutina, Sofia; Casiglia, Edoardo; Nikitin, Yuri; Lind, Lars; Luzardo, Leonella; Kawecka-Jaszcz, Kalina; Sandoya, Edgardo; Filipovský, Jan; Maestre, Gladys E.; Wang, Jiguang; Imai, Yutaka; Franklin, Stanley S.; O’Brien, Eoin; Staessen, Jan A.

    2015-01-01

    Outcome-driven recommendations about time intervals during which ambulatory blood pressure should be measured to diagnose white-coat or masked hypertension are lacking. We cross-classified 8237 untreated participants (mean age, 50.7 years; 48.4% women) enrolled in 12 population studies, using ≥140/≥90, ≥130/≥80, ≥135/≥85, and ≥120/≥70 mm Hg as hypertension thresholds for conventional, 24-hour, daytime, and nighttime blood pressure. White-coat hypertension was hypertension on conventional measurement with ambulatory normotension, the opposite condition being masked hypertension. Intervals used for classification of participants were daytime, nighttime, and 24 hours, first considered separately, and next combined as 24 hours plus daytime or plus nighttime, or plus both. Depending on time intervals chosen, white-coat and masked hypertension frequencies ranged from 6.3% to 12.5% and from 9.7% to 19.6%, respectively. During 91 046 person-years, 729 participants experienced a cardiovascular event. In multivariable analyses with normotension during all intervals of the day as reference, hazard ratios associated with white-coat hypertension progressively weakened considering daytime only (1.38; P=0.033), nighttime only (1.43; P=0.0074), 24 hours only (1.21; P=0.20), 24 hours plus daytime (1.24; P=0.18), 24 hours plus nighttime (1.15; P=0.39), and 24 hours plus daytime and nighttime (1.16; P=0.41). The hazard ratios comparing masked hypertension with normotension were all significant (Phypertension requires setting thresholds simultaneously to 24 hours, daytime, and nighttime blood pressure. Although any time interval suffices to diagnose masked hypertension, as proposed in current guidelines, full 24-hour recordings remain standard in clinical practice. PMID:25135185

  16. Differential effects of sporulation temperature on the high pressure resistance of Clostridium botulinum type E spores and the interconnection with sporulation medium cation contents.

    Science.gov (United States)

    Lenz, Christian A; Vogel, Rudi F

    2015-04-01

    High pressure thermal (HPT) processing can be used to improve traditional preservation methods and increase food safety and durability, whereas quality related characteristics can be largely maintained. Clostridium (C.) botulinum type E is a non-proteolytic, psychrotrophic, toxin-producing spore former, commonly associated with aquatic environments in temperate regions of the northern hemisphere. Sporulation in nature is likely to occur under varying conditions including temperature and nutrient availability, which might affect resistance properties of resulting spores. In our study, we determined the effect of sporulation temperature (13-38 °C) on the resistance of three Clostridium botulinum type E strains to differently intense HPT treatments (200 MPa at 40 and 80 °C, and 800 MPa at 40 and 80 °C). Furthermore, the effect of cations on sporulation temperature-mediated alterations in HHP resistance was investigated. Results indicate that low and high sporulation temperatures can increase and decrease sporal HPT resistance, respectively, in a treatment-dependent (pressure level, treatment temperature) manner, whereas the trends observed are largely unaffected by pressure dwells (1 s-10 min). Furthermore, results show that the cation content of the sporulation medium (Ca(2+), Mg(2+), Mn(2+)) marginally influences and partially counteracts effects on the HPT resistance of spores grown at low and elevated temperatures, respectively. This suggests that sporulation temperature and medium cations provoke changes in some common spore resistance structures. Sporulation conditions can markedly affect spore resistance properties and, thus, should be considered for the experimental setup of worst case studies aiming to evaluate the effectiveness of food processes in terms of the inactivation of C. botulinum type E spores. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. LPG based all plastic pressure sensor

    DEFF Research Database (Denmark)

    Bundalo, Ivan-Lazar; Lwin, R.; Leon-Saval, S.

    2015-01-01

    A prototype all-plastic pressure sensor is presented and characterized for potential use as an endoscope. The sensor is based on Long Period Gratings (LPG) inscribed with a CO2 laser in 6-ring microstructured PMMA fiber. Through a latex coated, plastic 3D-printed transducer pod, external pressure...... is converted to longitudinal elongation of the pod and therefore of the fiber containing the LPG. The sensor has been characterised for pressures of up to 160 mBar in an in-house built pressure chamber. Furthermore, the influence of the fiber prestrain, fiber thickness and the effect of different glues...

  18. Energy harvesting for wireless sensors by using piezoelectric transducers

    Energy Technology Data Exchange (ETDEWEB)

    Duerager, Christian [Empa, Swiss Federal Laboratories for Materials Science and Technology, Duebendorf (Switzerland)

    2012-07-01

    Wireless sensor technology, which integrates transducers, measurement electronics and wireless communication, has become increasingly vital in structural health monitoring (SHM) applications. Compared to traditional wired systems, wireless solutions reduce the installation time and costs and are not subjected to breakage caused by harsh weather conditions or other extreme events. Because of the low installation costs, wireless sensor networks allow the deployment of a big number of wireless sensor nodes on the structures. Moreover, the nodes can be placed on particularly critical components of the structure difficult to reach by wires. In most of the cases the power supply are conventional batteries, which could be a problem because of their finite life span. Furthermore, in the case of wireless sensor nodes located on structures, it is often advantageous to embed them, which makes an access impossible. Therefore, if a method of obtaining the untapped energy surrounding these sensors was implemented, significant life could be added to the power supply. Various approaches to energy harvesting and energy storage are discussed and limitations associated with the current technology are addressed. In this paper we first discuss the research that has been performed in the area of energy harvesting for wireless sensor technologies by using the ambient vibration energy. In many cases the energy produced by the ambient vibrations is far too small to directly power a wireless sensor node. Therefore, in a second step we discuss the development process for an electronic energy harvesting circuit optimized for piezoelectric transducers. In the last part of this paper an experiment with different piezoelectric transducers and their applicability for energy harvesting applications on vibrating structures will be discussed. (orig.)

  19. Development of a novel omnidirectional magnetostrictive transducer for plate applications

    Science.gov (United States)

    Vinogradov, Sergey; Cobb, Adam; Bartlett, Jonathan; Udagawa, Youichi

    2018-04-01

    The application of guided waves for the testing of plate-type structures has been recently investigated by a number of research groups due to the ability of guided waves to detect corrosion in remote and hidden areas. Guided wave sensors for plate applications can be either directed (i.e., the waves propagate in a single direction) or omnidirectional. Each type has certain advantages and disadvantages. Omnidirectional sensors can inspect large areas from a single location, but it is challenging to define where a feature is located. Conversely, directed sensors can be used to precisely locate an indication, but have no sensitivity to flaws away from the wave propagation direction. This work describes a newly developed sensor that combines the strengths of both sensor types to create a novel omnidirectional transducer. The sensor transduction is based on a custom magnetostrictive transducer (MsT). In this new probe design, a directed, plate-application MsT with known characteristics was incorporated into an automated scanner. This scanner rotates the directed MsT for data collection at regular intervals. Coupling of the transducer to the plate is accomplished using a shear wave couplant. The array of data that is received is used for compiling B-scans and imaging, utilizing a synthetic aperture focusing algorithm (SAFT). The performance of the probe was evaluated on a 0.5-inch thick carbon steel plate mockup with a surface area of over 100 square feet. The mockup had a variety of known anomalies representing localized and distributed pitting corrosion, gradual wall thinning, and notches of different depths. Experimental data was also acquired using the new probe on a retired storage tank with known corrosion damage. The performance of the new sensor and its limitations are discussed together with general directions in technology development.

  20. UPR transducer BBF2H7 allows export of type II collagen in a cargo- and developmental stage–specific manner

    Science.gov (United States)

    Toyama, Takuya; Nakamura, Yuki; Tamada, Kentaro; Shimizu, Hitomi; Ninagawa, Satoshi; Okada, Tetsuya; Ishikawa-Fujiwara, Tomoko; Aoyama, Eriko; Takigawa, Masaharu

    2017-01-01

    The unfolded protein response (UPR) handles unfolded/misfolded proteins accumulated in the endoplasmic reticulum (ER). However, it is unclear how vertebrates correctly use the total of ten UPR transducers. We have found that ER stress occurs physiologically during early embryonic development in medaka fish and that the smooth alignment of notochord cells requires ATF6 as a UPR transducer, which induces ER chaperones for folding of type VIII (short-chain) collagen. After secretion of hedgehog for tissue patterning, notochord cells differentiate into sheath cells, which synthesize type II collagen. In this study, we show that this vacuolization step requires both ATF6 and BBF2H7 as UPR transducers and that BBF2H7 regulates a complete set of genes (Sec23/24/13/31, Tango1, Sedlin, and KLHL12) essential for the enlargement of COPII vesicles to accommodate long-chain collagen for export, leading to the formation of the perinotochordal basement membrane. Thus, the most appropriate UPR transducer is activated to cope with the differing physiological ER stresses of different content types depending on developmental stage. PMID:28500182

  1. Design and analysis of fractional order seismic transducer for displacement and acceleration measurements

    Science.gov (United States)

    Veeraian, Parthasarathi; Gandhi, Uma; Mangalanathan, Umapathy

    2018-04-01

    Seismic transducers are widely used for measurement of displacement, velocity, and acceleration. This paper presents the design of seismic transducer in the fractional domain for the measurement of displacement and acceleration. The fractional order transfer function for seismic displacement and acceleration transducer are derived using Grünwald-Letnikov derivative. Frequency response analysis of fractional order seismic displacement transducer (FOSDT) and fractional order seismic acceleration transducer (FOSAT) are carried out for different damping ratio with the different fractional order, and the maximum dynamic measurement range is identified. The results demonstrate that fractional order seismic transducer has increased dynamic measurement range and less phase distortion as compared to the conventional seismic transducer even with a lower damping ratio. Time response of FOSDT and FOSAT are derived analytically in terms of Mittag-Leffler function, the effect of fractional behavior in the time domain is evaluated from the impulse and step response. The fractional order system is found to have significantly reduced overshoot as compared to the conventional transducer. The fractional order seismic transducer design proposed in this paper is illustrated with a design example for FOSDT and FOSAT. Finally, an electrical equivalent of FOSDT and FOSAT is considered, and its frequency response is found to be in close agreement with the proposed fractional order seismic transducer.

  2. LOFT liquid level transducer application techniques and measurement uncertainty

    International Nuclear Information System (INIS)

    Batt, D.L.; Biladeau, G.L.; Goodrich, L.D.; Nightingale, C.M.

    1979-01-01

    A conductivity sensitive liquid level transducer (LLT) has been designed and used successfully for determining whether steam or water is present in the Loss-of-Fluid Tests (LOFT) performed by EG and G Idaho, Inc., at the Idaho National Engineering Laboratory. The presence of steam or water is determined by establishing a discriminator level which is set manually. A computer program establishes the presence or absence of water for each data point taken. In addition to liquid level, the LLT is used for reactor vessel mass and volume calculations. The uncertainty in the liquid level is essentially the spacing of the LLT electrodes

  3. Capacitive micromachined ultrasonic transducer arrays as tunable acoustic metamaterials

    Energy Technology Data Exchange (ETDEWEB)

    Lani, Shane W., E-mail: shane.w.lani@gmail.com, E-mail: karim.sabra@me.gatech.edu, E-mail: levent.degertekin@me.gatech.edu; Sabra, Karim G. [George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 801Ferst Drive, Georgia 30332-0405 (United States); Wasequr Rashid, M.; Hasler, Jennifer [School of Electrical and Computer Engineering, Georgia Institute of Technology, Van Leer Electrical Engineering Building, 777 Atlantic Drive NW, Atlanta, Georgia 30332-0250 (United States); Levent Degertekin, F. [George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 801Ferst Drive, Georgia 30332-0405 (United States); School of Electrical and Computer Engineering, Georgia Institute of Technology, Van Leer Electrical Engineering Building, 777 Atlantic Drive NW, Atlanta, Georgia 30332-0250 (United States)

    2014-02-03

    Capacitive Micromachined Ultrasonic Transducers (CMUTs) operating in immersion support dispersive evanescent waves due to the subwavelength periodic structure of electrostatically actuated membranes in the array. Evanescent wave characteristics also depend on the membrane resonance which is modified by the externally applied bias voltage, offering a mechanism to tune the CMUT array as an acoustic metamaterial. The dispersion and tunability characteristics are examined using a computationally efficient, mutual radiation impedance based approach to model a finite-size array and realistic parameters of variation. The simulations are verified, and tunability is demonstrated by experiments on a linear CMUT array operating in 2-12 MHz range.

  4. The Current State of Silicone-Based Dielectric Elastomer Transducers

    DEFF Research Database (Denmark)

    Madsen, Frederikke Bahrt; Daugaard, Anders Egede; Hvilsted, Søren

    2016-01-01

    class of transducer due to their inherent lightweight and potentially large strains. For the field to progress towards industrial implementation, a leap in material devel- opment is required, specifically targeting longer lifetime and higher energy densities to provide more efficient transduction at lower...... driving voltages. In this review, the current state of sili- cone elastomers for DETs is summarised and critically discussed, including commercial elastomers, composites, polymer blends, grafted elastomers and complex network structures. For future developments in the field it is essential that all aspects...

  5. Production of particulates from transducer erosion: implications on food safety.

    Science.gov (United States)

    Mawson, Raymond; Rout, Manoj; Ripoll, Gabriela; Swiergon, Piotr; Singh, Tanoj; Knoerzer, Kai; Juliano, Pablo

    2014-11-01

    The formation of metallic particulates from erosion was investigated by running a series of transducers at various frequencies in water. Two low frequency transducer sonotrodes were run for 7.5h at 18kHz and 20kHz. Three high frequency plates operating at megasonic frequencies of 0.4MHz, 1MHz, and 2MHz were run over a 7days period. Electrical conductivity and pH of the solution were measured before and after each run. A portion of the non-sonicated and treated water was partially evaporated to achieve an 80-fold concentration of particles and then sieved through nano-filters of 0.1μm, 0.05μm, and 0.01μm. An aliquot of the evaporated liquid was also completely dried on strips of carbon tape to determine the presence of finer particles post sieving. An aliquot was analyzed for detection of 11 trace elements by Inductively Coupled Plasma Mass Spectroscopy (ICPMS). The filters and carbon tapes were analyzed by FE-SEM imaging to track the presence of metals by EDS (Energy Dispersive Spectroscopy) and measure the particle size and approximate composition of individual particles detected. Light microscopy visualization was used to calculate the area occupied by the particles present in each filter and high resolution photography was used for visualization of sonotrode surfaces. The roughness of all transducers before and after sonication was tested through profilometry. No evidence of formation of nano-particles was found at any tested frequency. High amounts of metallic micron-sized particles at 18kHz and 20kHz formed within a day, while after 7day runs only a few metallic micro particles were detected above 0.4MHz. Erosion was corroborated by an increase in roughness in the 20kHz tip after ultrasound. The elemental analysis showed that metal leach occurred but values remained below accepted drinking water limits, even after excessively long exposure to ultrasound. With the proviso that the particles measured here were only characterized in two dimensions and could be

  6. Supported silver clusters as nanoplasmonic transducers for protein sensing

    DEFF Research Database (Denmark)

    Fojan, Peter; Hanif, Muhammad; Bartling, Stephen

    2015-01-01

    Transducers for optical sensing of proteins are prepared using cluster beam deposition on quartz substrates. Surface plasmon resonance phenomenon of the supported silver clusters is used for the detection. It is shown that surface immobilisation procedure providing adhesion of the silver clusters...... stages and protein immobilisation scheme the sensing of protein of interest can be assured using a relatively simple optical spectroscopy method....... an enhancement of the plasmon absorption band used for the detection. Atomic force microscopy study allows to suggest that immobilisation of antibodies on silver clusters has been achieved, thus giving a possibility to incubate and detect an antigen of interest. Hence, by applying the developed preparation...

  7. A Treatise on Acoustic Radiation. Volume 2. Acoustic Transducers

    Science.gov (United States)

    1983-01-01

    Newton) V (meter/sec) acoustical p (Newton/meter2 ) U (meter 3/sec) To display Eq. 1.53.1 in simple form we take time to be given by exp(- iot ) and choose...if all the C-component edges and e-drivers are in the tree, all the L-component "A edges and idrivers are in the cotree, all the algebraic equations...momentum and mass of the elastic field then become, (a) Al - V -T + F 278 W-4. ,-,- * * * 4 % • *.• Design of Acoustic Transducers IOT (b) I + VV-s

  8. Immersed acoustical transducers and their potential uses in LMFBR

    International Nuclear Information System (INIS)

    Argous, J.P.; Brunet, M.; Baron, J.; Lhuillier, C.; Segui, J.L.

    1980-04-01

    Six years satisfactory operation in PHENIX has proved the reliability and effectivness of under-sodium viewing (VISUS) and Acoustic Detection. This fact has been strong incentive to maintain, on the future LMFBR the visus as well as the Acoustic Detection functions. These two functions are performed on SUPER PHENIX, by two sets of distinct systems using the well-known solution. Taking into account of recent improvements in sodium immersible acoustic transducers technology, CEA decided to undertake the development of a multi-functions instrument. This paper gives an outline of this new concept, which should be able to reduce the cost and the complexity of core instrumentation

  9. Three-dimensional micro electromechanical system piezoelectric ultrasound transducer

    Science.gov (United States)

    Hajati, Arman; Latev, Dimitre; Gardner, Deane; Hajati, Azadeh; Imai, Darren; Torrey, Marc; Schoeppler, Martin

    2012-12-01

    Here we present the design and experimental acoustic test data for an ultrasound transducer technology based on a combination of micromachined dome-shaped piezoelectric resonators arranged in a flexible architecture. Our high performance niobium-doped lead zirconate titanate film is implemented in three-dimensional dome-shaped structures, which form the basic resonating cells. Adjustable frequency response is realized by mixing these basic cells and modifying their dimensions by lithography. Improved characteristics such as high sensitivity, adjustable wide-bandwidth frequency response, low transmit voltage compatible with ordinary integrated circuitry, low electrical impedance well matched to coaxial cabling, and intrinsic acoustic impedance match to water are demonstrated.

  10. Pressure vessel design manual

    CERN Document Server

    Moss, Dennis R

    2013-01-01

    Pressure vessels are closed containers designed to hold gases or liquids at a pressure substantially different from the ambient pressure. They have a variety of applications in industry, including in oil refineries, nuclear reactors, vehicle airbrake reservoirs, and more. The pressure differential with such vessels is dangerous, and due to the risk of accident and fatality around their use, the design, manufacture, operation and inspection of pressure vessels is regulated by engineering authorities and guided by legal codes and standards. Pressure Vessel Design Manual is a solutions-focused guide to the many problems and technical challenges involved in the design of pressure vessels to match stringent standards and codes. It brings together otherwise scattered information and explanations into one easy-to-use resource to minimize research and take readers from problem to solution in the most direct manner possible. * Covers almost all problems that a working pressure vessel designer can expect to face, with ...

  11. Fundamentals of differential beamforming

    CERN Document Server

    Benesty, Jacob; Pan, Chao

    2016-01-01

    This book provides a systematic study of the fundamental theory and methods of beamforming with differential microphone arrays (DMAs), or differential beamforming in short. It begins with a brief overview of differential beamforming and some popularly used DMA beampatterns such as the dipole, cardioid, hypercardioid, and supercardioid, before providing essential background knowledge on orthogonal functions and orthogonal polynomials, which form the basis of differential beamforming. From a physical perspective, a DMA of a given order is defined as an array that measures the differential acoustic pressure field of that order; such an array has a beampattern in the form of a polynomial whose degree is equal to the DMA order. Therefore, the fundamental and core problem of differential beamforming boils down to the design of beampatterns with orthogonal polynomials. But certain constraints also have to be considered so that the resulting beamformer does not seriously amplify the sensors’ self noise and the mism...

  12. Nonlinear effects in ultrasound fields of diagnostic-type transducers used for kidney stone propulsion: Characterization in water

    International Nuclear Information System (INIS)

    Karzova, M.; th Street, Seattle, WA 98105 (United States))" data-affiliation=" (Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, 1013 NE 40th Street, Seattle, WA 98105 (United States))" >Cunitz, B.; th Street, Seattle, WA 98105 (United States))" data-affiliation=" (Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, 1013 NE 40th Street, Seattle, WA 98105 (United States))" >Kreider, W.; th Street, Seattle, WA 98105 (United States))" data-affiliation=" (Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, 1013 NE 40th Street, Seattle, WA 98105 (United States))" >Bailey, M.; Yuldashev, P.; Andriyakhina, Y.; th Street, Seattle, WA 98105 (United States))" data-affiliation=" (Physics Faculty, Moscow State University, Leninskie Gory, 119991 Moscow (Russian Federation); Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, 1013 NE 40th Street, Seattle, WA 98105 (United States))" >Sapozhnikov, O.; th Street, Seattle, WA 98105 (United States))" data-affiliation=" (Physics Faculty, Moscow State University, Leninskie Gory, 119991 Moscow (Russian Federation); Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, 1013 NE 40th Street, Seattle, WA 98105 (United States))" >Khokhlova, V.

    2015-01-01

    Newer imaging and therapeutic ultrasound technologies require higher in situ pressure levels compared to conventional diagnostic values. One example is the recently developed use of focused ultrasonic radiation force to move kidney stones and residual fragments out of the urinary collecting system. A commercial diagnostic 2.3 MHz C5-2 array probe is used to deliver the acoustic pushing pulses. The probe comprises 128 elements equally spaced at the 55 mm long convex cylindrical surface with 38 mm radius of curvature. The efficacy of the treatment can be increased by using higher intensity at the focus to provide stronger pushing force; however, nonlinear acoustic saturation can be a limiting factor. In this work nonlinear propagation effects were analyzed for the C5-2 transducer using a combined measurement and modeling approach. Simulations were based on the 3D Westervelt equation; the boundary condition was set to match the focal geometry of the beam as measured at a low power output. Focal waveforms simulated for increased output power levels were compared with the fiber-optic hydrophone measurements and were found in good agreement. It was shown that saturation effects do limit the acoustic pressure in the focal region of the transducer. This work has application to standard diagnostic probes and imaging

  13. Nonlinear effects in ultrasound fields of diagnostic-type transducers used for kidney stone propulsion: Characterization in water

    Energy Technology Data Exchange (ETDEWEB)

    Karzova, M., E-mail: masha@acs366.phys.msu.ru [Laboratoire de Mécanique des Fluides et d’Acoustique, Ecole Centrale de Lyon, 36 Avenue Guy de Collongue, 69134 Ecully (France); Physics Faculty, Moscow State University, Leninskie Gory, 119991 Moscow (Russian Federation); Cunitz, B.; Kreider, W.; Bailey, M. [Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, 1013 NE 40" t" h Street, Seattle, WA 98105 (United States); Yuldashev, P.; Andriyakhina, Y. [Physics Faculty, Moscow State University, Leninskie Gory, 119991 Moscow (Russian Federation); Sapozhnikov, O.; Khokhlova, V. [Physics Faculty, Moscow State University, Leninskie Gory, 119991 Moscow (Russian Federation); Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, 1013 NE 40" t" h Street, Seattle, WA 98105 (United States)

    2015-10-28

    Newer imaging and therapeutic ultrasound technologies require higher in situ pressure levels compared to conventional diagnostic values. One example is the recently developed use of focused ultrasonic radiation force to move kidney stones and residual fragments out of the urinary collecting system. A commercial diagnostic 2.3 MHz C5-2 array probe is used to deliver the acoustic pushing pulses. The probe comprises 128 elements equally spaced at the 55 mm long convex cylindrical surface with 38 mm radius of curvature. The efficacy of the treatment can be increased by using higher intensity at the focus to provide stronger pushing force; however, nonlinear acoustic saturation can be a limiting factor. In this work nonlinear propagation effects were analyzed for the C5-2 transducer using a combined measurement and modeling approach. Simulations were based on the 3D Westervelt equation; the boundary condition was set to match the focal geometry of the beam as measured at a low power output. Focal waveforms simulated for increased output power levels were compared with the fiber-optic hydrophone measurements and were found in good agreement. It was shown that saturation effects do limit the acoustic pressure in the focal region of the transducer. This work has application to standard diagnostic probes and imaging.

  14. Development of a Novel Transparent Flexible Capacitive Micromachined Ultrasonic Transducer

    Directory of Open Access Journals (Sweden)

    Da-Chen Pang

    2017-06-01

    Full Text Available This paper presents the world’s first transparent flexible capacitive micromachined ultrasonic transducer (CMUT that was fabricated through a roll-lamination technique. This polymer-based CMUT has advantages of transparency, flexibility, and non-contacting detection which provide unique functions in display panel applications. Comprising an indium tin oxide-polyethylene terephthalate (ITO-PET substrate, SU-8 sidewall and vibrating membranes, and silver nanowire transparent electrode, the transducer has visible-light transmittance exceeding 80% and can operate on curved surfaces with a 40 mm radius of curvature. Unlike the traditional silicon-based high temperature process, the CMUT can be fabricated on a flexible substrate at a temperature below 100 °C to reduce residual stress introduced at high temperature. The CMUT on the curved surfaces can detect a flat target and finger at distances up to 50 mm and 40 mm, respectively. The transparent flexible CMUT provides a better human-machine interface than existing touch panels because it can be integrated with a display panel for non-contacting control in a health conscious environment and the flexible feature is critical for curved display and wearable electronics.

  15. Putting Encyclopaedia Knowledge into Structural Form: Finite State Transducers Approach

    Directory of Open Access Journals (Sweden)

    Pajić Vesna

    2011-06-01

    Full Text Available In biology and functional genomics in particular, understanding the dependence and interplay between different genome and ecological characteristics of organisms is a very challenging problem. There are some public databases which combine this kind of information, but there is still much more information about microbes and other organisms that reside in unstructured and semi-structured documents, such as encyclopaedias. In this paper we present a method for extracting information from semi-structured resources, such as encyclopaedias, based on finite state transducers, consisting of two clearly distinguished phases. The first phase strongly relies on the analysis of the document structure and it is used for locating records of data in the text. The second phase is based on the finite state transducers created for extracting the data, which can be modified so as to achieve the preferred efficiency and it is used for extracting the particular characteristic from the text. We show how the two phase method is applied to the text of the encyclopaedia “Systematic Bacteriology”. A fully structured database with genotype and phenotype characteristics of organisms has been created from the encyclopaedia unstructured descriptions.

  16. Sensitivity-Bandwidth Limit in a Multimode Optoelectromechanical Transducer

    Science.gov (United States)

    Moaddel Haghighi, I.; Malossi, N.; Natali, R.; Di Giuseppe, G.; Vitali, D.

    2018-03-01

    An optoelectromechanical system formed by a nanomembrane capacitively coupled to an L C resonator and to an optical interferometer has recently been employed for the highly sensitive optical readout of rf signals [T. Bagci et al., Nature (London) 507, 81 (2013), 10.1038/nature13029]. We propose and experimentally demonstrate how the bandwidth of such a transducer can be increased by controlling the interference between two electromechanical interaction pathways of a two-mode mechanical system. With a proof-of-principle device operating at room temperature, we achieve a sensitivity of 300 nV /√{Hz } over a bandwidth of 15 kHz in the presence of radio-frequency noise, and an optimal shot-noise-limited sensitivity of 10 nV /√{Hz } over a bandwidth of 5 kHz. We discuss strategies for improving the performance of the device, showing that, for the same given sensitivity, a mechanical multimode transducer can achieve a bandwidth significantly larger than that for a single-mode one.

  17. Folding and Function of Proteorhodopsins in Photoenergy Transducing Membranes

    Energy Technology Data Exchange (ETDEWEB)

    Spudich, John L. [University of Texas Medical School, Houston, TX (United States). Health Science Center, Dept. of Biochemistry and Molecular Biology

    2012-08-10

    The overall research objectives are to develop proteorhodopsin (PR) proteins as a model system for α-helical membrane protein insertion and folding, and to advance understanding of the diversity and mechanisms of PRs, a large family of photoenergy transducers (~4000 identified) abundant in the world’s oceans. Specific aims are: (1) To develop a high-efficiency genetic selection procedure for light-driven proton-pumping in E. coli cells. Such a procedure would provide a positive selection method for proper folding and function of PRs in the E. coli membrane. (2) Characterize flash-induced absorption changes and photocurrents in PR variants in organisms from various environments, and their expression level and function when expressed in E. coli. Subaims are to: (a) elucidate the relationship of the transport mechanism to mechanisms of other microbial rhodopsins, some of which like PRs function as ion transporters and some of which use light energy to activate signaling pathways (sensory rhodopsins); and (b) identify important residues and chemical events in light-driven proton transport by PRs. In addition to their importance to the energy of the biosphere PRs have attracted interest for their potential for use in making photoenergy-transducing membranes for bioengineering applications.

  18. A ring transducer system for medical ultrasound research.

    Science.gov (United States)

    Waag, Robert C; Fedewa, Russell J

    2006-10-01

    An ultrasonic ring transducer system has been developed for experimental studies of scattering and imaging. The transducer consists of 2048 rectangular elements with a 2.5-MHz center frequency, a 67% -6 dB bandwidth, and a 0.23-mm pitch arranged in a 150-mm-diameter ring with a 25-mm elevation. At the center frequency, the element size is 0.30lambda x 42lambda and the pitch is 0.38lambda. The system has 128 parallel transmit channels, 16 parallel receive channels, a 2048:128 transmit multiplexer, a 2048:16 receive multiplexer, independently programmable transmit waveforms with 8-bit resolution, and receive amplifiers with time variable gain independently programmable over a 40-dB range. Receive signals are sampled at 20 MHz with 12-bit resolution. Arbitrary transmit and receive apertures can be synthesized. Calibration software minimizes system nonidealities caused by noncircularity of the ring and element-to-element response differences. Application software enables the system to be used by specification of high-level parameters in control files from which low-level hardware-dependent parameters are derived by specialized code. Use of the system is illustrated by producing focused and steered beams, synthesizing a spatially limited plane wave, measuring angular scattering, and forming b-scan images.

  19. An overheight vehicle bridge collision monitoring system using piezoelectric transducers

    Science.gov (United States)

    Song, G.; Olmi, C.; Gu, H.

    2007-04-01

    With increasing traffic volume follows an increase in the number of overheight truck collisions with highway bridges. The detection of collision impact and evaluation of the impact level is a critical issue in the maintenance of a concrete bridge. In this paper, an overheight collision detection and evaluation system is developed for concrete bridge girders using piezoelectric transducers. An electric circuit is designed to detect the impact and to activate a digital camera to take photos of the offending truck. Impact tests and a health monitoring test were conducted on a model concrete bridge girder by using three piezoelectric transducers embedded before casting. From the experimental data of the impact test, it can be seen that there is a linear relation between the output of sensor energy and the impact energy. The health monitoring results show that the proposed damage index indicates the level of damage inside the model concrete bridge girder. The proposed overheight truck-bridge collision detection and evaluation system has the potential to be applied to the safety monitoring of highway bridges.

  20. Two high accuracy digital integrators for Rogowski current transducers

    Science.gov (United States)

    Luo, Pan-dian; Li, Hong-bin; Li, Zhen-hua

    2014-01-01

    The Rogowski current transducers have been widely used in AC current measurement, but their accuracy is mainly subject to the analog integrators, which have typical problems such as poor long-term stability and being susceptible to environmental conditions. The digital integrators can be another choice, but they cannot obtain a stable and accurate output for the reason that the DC component in original signal can be accumulated, which will lead to output DC drift. Unknown initial conditions can also result in integral output DC offset. This paper proposes two improved digital integrators used in Rogowski current transducers instead of traditional analog integrators for high measuring accuracy. A proportional-integral-derivative (PID) feedback controller and an attenuation coefficient have been applied in improving the Al-Alaoui integrator to change its DC response and get an ideal frequency response. For the special design in the field of digital signal processing, the improved digital integrators have better performance than analog integrators. Simulation models are built for the purpose of verification and comparison. The experiments prove that the designed integrators can achieve higher accuracy than analog integrators in steady-state response, transient-state response, and temperature changing condition.