A Unified Differential Evolution Algorithm for Global Optimization
Energy Technology Data Exchange (ETDEWEB)
Qiang, Ji; Mitchell, Chad
2014-06-24
Abstract?In this paper, we propose a new unified differential evolution (uDE) algorithm for single objective global optimization. Instead of selecting among multiple mutation strategies as in the conventional differential evolution algorithm, this algorithm employs a single equation as the mutation strategy. It has the virtue of mathematical simplicity and also provides users the flexbility for broader exploration of different mutation strategies. Numerical tests using twelve basic unimodal and multimodal functions show promising performance of the proposed algorithm in comparison to convential differential evolution algorithms.
Solving Partial Differential Equations Using a New Differential Evolution Algorithm
Directory of Open Access Journals (Sweden)
Natee Panagant
2014-01-01
Full Text Available This paper proposes an alternative meshless approach to solve partial differential equations (PDEs. With a global approximate function being defined, a partial differential equation problem is converted into an optimisation problem with equality constraints from PDE boundary conditions. An evolutionary algorithm (EA is employed to search for the optimum solution. For this approach, the most difficult task is the low convergence rate of EA which consequently results in poor PDE solution approximation. However, its attractiveness remains due to the nature of a soft computing technique in EA. The algorithm can be used to tackle almost any kind of optimisation problem with simple evolutionary operation, which means it is mathematically simpler to use. A new efficient differential evolution (DE is presented and used to solve a number of the partial differential equations. The results obtained are illustrated and compared with exact solutions. It is shown that the proposed method has a potential to be a future meshless tool provided that the search performance of EA is greatly enhanced.
An Adaptive Unified Differential Evolution Algorithm for Global Optimization
Energy Technology Data Exchange (ETDEWEB)
Qiang, Ji; Mitchell, Chad
2014-11-03
In this paper, we propose a new adaptive unified differential evolution algorithm for single-objective global optimization. Instead of the multiple mutation strate- gies proposed in conventional differential evolution algorithms, this algorithm employs a single equation unifying multiple strategies into one expression. It has the virtue of mathematical simplicity and also provides users the flexibility for broader exploration of the space of mutation operators. By making all control parameters in the proposed algorithm self-adaptively evolve during the process of optimization, it frees the application users from the burden of choosing appro- priate control parameters and also improves the performance of the algorithm. In numerical tests using thirteen basic unimodal and multimodal functions, the proposed adaptive unified algorithm shows promising performance in compari- son to several conventional differential evolution algorithms.
Solving SAT Problem Based on Hybrid Differential Evolution Algorithm
Liu, Kunqi; Zhang, Jingmin; Liu, Gang; Kang, Lishan
Satisfiability (SAT) problem is an NP-complete problem. Based on the analysis about it, SAT problem is translated equally into an optimization problem on the minimum of objective function. A hybrid differential evolution algorithm is proposed to solve the Satisfiability problem. It makes full use of strong local search capacity of hill-climbing algorithm and strong global search capability of differential evolution algorithm, which makes up their disadvantages, improves the efficiency of algorithm and avoids the stagnation phenomenon. The experiment results show that the hybrid algorithm is efficient in solving SAT problem.
A Hybrid Backtracking Search Optimization Algorithm with Differential Evolution
Directory of Open Access Journals (Sweden)
Lijin Wang
2015-01-01
Full Text Available The backtracking search optimization algorithm (BSA is a new nature-inspired method which possesses a memory to take advantage of experiences gained from previous generation to guide the population to the global optimum. BSA is capable of solving multimodal problems, but it slowly converges and poorly exploits solution. The differential evolution (DE algorithm is a robust evolutionary algorithm and has a fast convergence speed in the case of exploitive mutation strategies that utilize the information of the best solution found so far. In this paper, we propose a hybrid backtracking search optimization algorithm with differential evolution, called HBD. In HBD, DE with exploitive strategy is used to accelerate the convergence by optimizing one worse individual according to its probability at each iteration process. A suit of 28 benchmark functions are employed to verify the performance of HBD, and the results show the improvement in effectiveness and efficiency of hybridization of BSA and DE.
Real parameter optimization by an effective differential evolution algorithm
Directory of Open Access Journals (Sweden)
Ali Wagdy Mohamed
2013-03-01
Full Text Available This paper introduces an Effective Differential Evolution (EDE algorithm for solving real parameter optimization problems over continuous domain. The proposed algorithm proposes a new mutation rule based on the best and the worst individuals among the entire population of a particular generation. The mutation rule is combined with the basic mutation strategy through a linear decreasing probability rule. The proposed mutation rule is shown to promote local search capability of the basic DE and to make it faster. Furthermore, a random mutation scheme and a modified Breeder Genetic Algorithm (BGA mutation scheme are merged to avoid stagnation and/or premature convergence. Additionally, the scaling factor and crossover of DE are introduced as uniform random numbers to enrich the search behavior and to enhance the diversity of the population. The effectiveness and benefits of the proposed modifications used in EDE has been experimentally investigated. Numerical experiments on a set of bound-constrained problems have shown that the new approach is efficient, effective and robust. The comparison results between the EDE and several classical differential evolution methods and state-of-the-art parameter adaptive differential evolution variants indicate that the proposed EDE algorithm is competitive with , and in some cases superior to, other algorithms in terms of final solution quality, efficiency, convergence rate, and robustness.
A DIFFERENTIAL EVOLUTION ALGORITHM DEVELOPED FOR A NURSE SCHEDULING PROBLEM
Directory of Open Access Journals (Sweden)
Shahnazari-Shahrezaei, P.
2012-11-01
Full Text Available Nurse scheduling is a type of manpower allocation problem that tries to satisfy hospital managers objectives and nurses preferences as much as possible by generating fair shift schedules. This paper presents a nurse scheduling problem based on a real case study, and proposes two meta-heuristics a differential evolution algorithm (DE and a greedy randomised adaptive search procedure (GRASP to solve it. To investigate the efficiency of the proposed algorithms, two problems are solved. Furthermore, some comparison metrics are applied to examine the reliability of the proposed algorithms. The computational results in this paper show that the proposed DE outperforms the GRASP.
A Self Adaptive Differential Evolution Algorithm for Global Optimization
Kumar, Pravesh; Pant, Millie
This paper presents a new Differential Evolution algorithm based on hybridization of adaptive control parameters and trigonometric mutation. First we propose a self adaptive DE named ADE where choice of control parameter F and Cr is not fixed at some constant value but is taken iteratively. The proposed algorithm is further modified by applying trigonometric mutation in it and the corresponding algorithm is named as ATDE. The performance of ATDE is evaluated on the set of 8 benchmark functions and the results are compared with the classical DE algorithm in terms of average fitness function value, number of function evaluations, convergence time and success rate. The numerical result shows the competence of the proposed algorithm.
Parameter Estimation of Damped Compound Pendulum Differential Evolution Algorithm
Directory of Open Access Journals (Sweden)
Saad Mohd Sazli
2016-01-01
Full Text Available This paper present the parameter identification of damped compound pendulum using differential evolution algorithm. The procedure used to achieve the parameter identification of the experimental system consisted of input output data collection, ARX model order selection and parameter estimation using conventional method least square (LS and differential evolution (DE algorithm. PRBS signal is used to be input signal to regulate the motor speed. Whereas, the output signal is taken from position sensor. Both, input and output data is used to estimate the parameter of the ARX model. The residual error between the actual and predicted output responses of the models is validated using mean squares error (MSE. Analysis showed that, MSE value for LS is 0.0026 and MSE value for DE is 3.6601×10-5. Based results obtained, it was found that DE have lower MSE than the LS method.
Differential Evolution Algorithm with Self-Adaptive Population Resizing Mechanism
Directory of Open Access Journals (Sweden)
Xu Wang
2013-01-01
Full Text Available A differential evolution (DE algorithm with self-adaptive population resizing mechanism, SapsDE, is proposed to enhance the performance of DE by dynamically choosing one of two mutation strategies and tuning control parameters in a self-adaptive manner. More specifically, more appropriate mutation strategies along with its parameter settings can be determined adaptively according to the previous status at different stages of the evolution process. To verify the performance of SapsDE, 17 benchmark functions with a wide range of dimensions, and diverse complexities are used. Nonparametric statistical procedures were performed for multiple comparisons between the proposed algorithm and five well-known DE variants from the literature. Simulation results show that SapsDE is effective and efficient. It also exhibits much more superiorresultsthan the other five algorithms employed in the comparison in most of the cases.
Differential Evolution algorithm applied to FSW model calibration
Idagawa, H. S.; Santos, T. F. A.; Ramirez, A. J.
2014-03-01
Friction Stir Welding (FSW) is a solid state welding process that can be modelled using a Computational Fluid Dynamics (CFD) approach. These models use adjustable parameters to control the heat transfer and the heat input to the weld. These parameters are used to calibrate the model and they are generally determined using the conventional trial and error approach. Since this method is not very efficient, we used the Differential Evolution (DE) algorithm to successfully determine these parameters. In order to improve the success rate and to reduce the computational cost of the method, this work studied different characteristics of the DE algorithm, such as the evolution strategy, the objective function, the mutation scaling factor and the crossover rate. The DE algorithm was tested using a friction stir weld performed on a UNS S32205 Duplex Stainless Steel.
Improved Differential Evolution Algorithm for Wireless Sensor Network Coverage Optimization
Directory of Open Access Journals (Sweden)
Xing Xu
2014-04-01
Full Text Available In order to serve for the ecological monitoring efficiency of Poyang Lake, an improved hybrid algorithm, mixed with differential evolution and particle swarm optimization, is proposed and applied to optimize the coverage problem of wireless sensor network. And then, the affect of the population size and the number of iterations on the coverage performance are both discussed and analyzed. The four kinds of statistical results about the coverage rate are obtained through lots of simulation experiments.
Optimization Shape of Variable Capacitance Micromotor Using Differential Evolution Algorithm
Directory of Open Access Journals (Sweden)
A. Ketabi
2010-01-01
Full Text Available A new method for optimum shape design of variable capacitance micromotor (VCM using Differential Evolution (DE, a stochastic search algorithm, is presented. In this optimization exercise, the objective function aims to maximize torque value and minimize the torque ripple, where the geometric parameters are considered to be the variables. The optimization process is carried out using a combination of DE algorithm and FEM analysis. Fitness value is calculated by FEM analysis using COMSOL3.4, and the DE algorithm is realized by MATLAB7.4. The proposed method is applied to a VCM with 8 poles at the stator and 6 poles at the rotor. The results show that the optimized micromotor using DE algorithm had higher torque value and lower torque ripple, indicating the validity of this methodology for VCM design.
Application of differential evolution algorithm on self-potential data.
Li, Xiangtao; Yin, Minghao
2012-01-01
Differential evolution (DE) is a population based evolutionary algorithm widely used for solving multidimensional global optimization problems over continuous spaces, and has been successfully used to solve several kinds of problems. In this paper, differential evolution is used for quantitative interpretation of self-potential data in geophysics. Six parameters are estimated including the electrical dipole moment, the depth of the source, the distance from the origin, the polarization angle and the regional coefficients. This study considers three kinds of data from Turkey: noise-free data, contaminated synthetic data, and Field example. The differential evolution and the corresponding model parameters are constructed as regards the number of the generations. Then, we show the vibration of the parameters at the vicinity of the low misfit area. Moreover, we show how the frequency distribution of each parameter is related to the number of the DE iteration. Experimental results show the DE can be used for solving the quantitative interpretation of self-potential data efficiently compared with previous methods.
Application of differential evolution algorithm on self-potential data.
Directory of Open Access Journals (Sweden)
Xiangtao Li
Full Text Available Differential evolution (DE is a population based evolutionary algorithm widely used for solving multidimensional global optimization problems over continuous spaces, and has been successfully used to solve several kinds of problems. In this paper, differential evolution is used for quantitative interpretation of self-potential data in geophysics. Six parameters are estimated including the electrical dipole moment, the depth of the source, the distance from the origin, the polarization angle and the regional coefficients. This study considers three kinds of data from Turkey: noise-free data, contaminated synthetic data, and Field example. The differential evolution and the corresponding model parameters are constructed as regards the number of the generations. Then, we show the vibration of the parameters at the vicinity of the low misfit area. Moreover, we show how the frequency distribution of each parameter is related to the number of the DE iteration. Experimental results show the DE can be used for solving the quantitative interpretation of self-potential data efficiently compared with previous methods.
Calibration of three-axis magnetometers with differential evolution algorithm
International Nuclear Information System (INIS)
Pang, Hongfeng; Zhang, Qi; Wang, Wei; Wang, Junya; Li, Ji; Luo, Shitu; Wan, Chengbiao; Chen, Dixiang; Pan, Mengchun; Luo, Feilu
2013-01-01
The accuracy of three-axis magnetometers is influenced by different scale and bias of each axis and nonorthogonality between axes. One limitation of traditional iteration methods is that initial parameters influence the calibration, thus leading to the local optimal or wrong results. In this paper, a new method is proposed to calibrate three-axis magnetometers. To employ this method, a nonmagnetic rotation platform, a proton magnetometer, a DM-050 three-axis magnetometer and the differential evolution (DE) algorithm are used. The performance of this calibration method is analyzed with simulation and experiment. In simulation, the calibration results of DE, unscented Kalman filter (UKF), recursive least squares (RLS) and genetic algorithm (GA) are compared. RMS error using DE is least, which is reduced from 81.233 nT to 1.567 nT. Experimental results show that comparing with UKF, RLS and GA, the DE algorithm has not only the least calibration error but also the best robustness. After calibration, RMS error is reduced from 68.914 nT to 2.919 nT. In addition, the DE algorithm is not sensitive to initial parameters, which is an important advantage compared with traditional iteration algorithms. The proposed algorithm can avoid the troublesome procedure to select suitable initial parameters, thus it can improve the calibration performance of three-axis magnetometers. - Highlights: • The calibration results and robustness of UKF, GA, RLS and DE algorithm are analyzed. • Calibration error of DE is the least in simulation and experiment. • Comparing with traditional calibration algorithms, DE is not sensitive to initial parameters. • It can improve the calibration performance of three-axis magnetometers
Differential evolution and simulated annealing algorithms for mechanical systems design
Directory of Open Access Journals (Sweden)
H. Saruhan
2014-09-01
Full Text Available In this study, nature inspired algorithms – the Differential Evolution (DE and the Simulated Annealing (SA – are utilized to seek a global optimum solution for ball bearings link system assembly weight with constraints and mixed design variables. The Genetic Algorithm (GA and the Evolution Strategy (ES will be a reference for the examination and validation of the DE and the SA. The main purpose is to minimize the weight of an assembly system composed of a shaft and two ball bearings. Ball bearings link system is used extensively in many machinery applications. Among mechanical systems, designers pay great attention to the ball bearings link system because of its significant industrial importance. The problem is complex and a time consuming process due to mixed design variables and inequality constraints imposed on the objective function. The results showed that the DE and the SA performed and obtained convergence reliability on the global optimum solution. So the contribution of the DE and the SA application to the mechanical system design can be very useful in many real-world mechanical system design problems. Beside, the comparison confirms the effectiveness and the superiority of the DE over the others algorithms – the SA, the GA, and the ES – in terms of solution quality. The ball bearings link system assembly weight of 634,099 gr was obtained using the DE while 671,616 gr, 728213.8 gr, and 729445.5 gr were obtained using the SA, the ES, and the GA respectively.
Estimating Traffic Accidents in Turkey Using Differential Evolution Algorithm
Akgüngör, Ali Payıdar; Korkmaz, Ersin
2017-06-01
Estimating traffic accidents play a vital role to apply road safety procedures. This study proposes Differential Evolution Algorithm (DEA) models to estimate the number of accidents in Turkey. In the model development, population (P) and the number of vehicles (N) are selected as model parameters. Three model forms, linear, exponential and semi-quadratic models, are developed using DEA with the data covering from 2000 to 2014. Developed models are statistically compared to select the best fit model. The results of the DE models show that the linear model form is suitable to estimate the number of accidents. The statistics of this form is better than other forms in terms of performance criteria which are the Mean Absolute Percentage Errors (MAPE) and the Root Mean Square Errors (RMSE). To investigate the performance of linear DE model for future estimations, a ten-year period from 2015 to 2024 is considered. The results obtained from future estimations reveal the suitability of DE method for road safety applications.
Directory of Open Access Journals (Sweden)
Ahmed R. Abdelaziz
2015-08-01
Full Text Available This paper presents an application of Chaotic differential evolution optimization approach meta-heuristics in solving transmission network expansion planning TNEP using an AC model associated with reactive power planning RPP. The reliabilityredundancy of network analysis optimization problems implicate selection of components with multiple choices and redundancy levels that produce maximum benefits can be subject to the cost weight and volume constraints is presented in this paper. Classical mathematical methods have failed in handling non-convexities and non-smoothness in optimization problems. As an alternative to the classical optimization approaches the meta-heuristics have attracted lot of attention due to their ability to find an almost global optimal solution in reliabilityredundancy optimization problems. Evolutionary algorithms EAs paradigms of evolutionary computation field are stochastic and robust meta-heuristics useful to solve reliabilityredundancy optimization problems. EAs such as genetic algorithm evolutionary programming evolution strategies and differential evolution are being used to find global or near global optimal solution. The Differential Evolution Algorithm DEA population-based algorithm is an optimal algorithm with powerful global searching capability but it is usually in low convergence speed and presents bad searching capability in the later evolution stage. A new Chaotic Differential Evolution algorithm CDE based on the cat map is recommended which combines DE and chaotic searching algorithm. Simulation results and comparisons show that the chaotic differential evolution algorithm using Cat map is competitive and stable in performance with other optimization approaches and other maps.
Hybridizing Differential Evolution with a Genetic Algorithm for Color Image Segmentation
Directory of Open Access Journals (Sweden)
R. V. V. Krishna
2016-10-01
Full Text Available This paper proposes a hybrid of differential evolution and genetic algorithms to solve the color image segmentation problem. Clustering based color image segmentation algorithms segment an image by clustering the features of color and texture, thereby obtaining accurate prototype cluster centers. In the proposed algorithm, the color features are obtained using the homogeneity model. A new texture feature named Power Law Descriptor (PLD which is a modification of Weber Local Descriptor (WLD is proposed and further used as a texture feature for clustering. Genetic algorithms are competent in handling binary variables, while differential evolution on the other hand is more efficient in handling real parameters. The obtained texture feature is binary in nature and the color feature is a real value, which suits very well the hybrid cluster center optimization problem in image segmentation. Thus in the proposed algorithm, the optimum texture feature centers are evolved using genetic algorithms, whereas the optimum color feature centers are evolved using differential evolution.
Institute of Scientific and Technical Information of China (English)
2008-01-01
Using functional derivative technique in quantum field theory, the algebraic dy-namics approach for solution of ordinary differential evolution equations was gen-eralized to treat partial differential evolution equations. The partial differential evo-lution equations were lifted to the corresponding functional partial differential equations in functional space by introducing the time translation operator. The functional partial differential evolution equations were solved by algebraic dynam-ics. The algebraic dynamics solutions are analytical in Taylor series in terms of both initial functions and time. Based on the exact analytical solutions, a new nu-merical algorithm—algebraic dynamics algorithm was proposed for partial differ-ential evolution equations. The difficulty of and the way out for the algorithm were discussed. The application of the approach to and computer numerical experi-ments on the nonlinear Burgers equation and meteorological advection equation indicate that the algebraic dynamics approach and algebraic dynamics algorithm are effective to the solution of nonlinear partial differential evolution equations both analytically and numerically.
Directory of Open Access Journals (Sweden)
Chuii Khim Chong
2012-06-01
Full Text Available This paper introduces an improved Differential Evolution algorithm (IDE which aims at improving its performance in estimating the relevant parameters for metabolic pathway data to simulate glycolysis pathway for yeast. Metabolic pathway data are expected to be of significant help in the development of efficient tools in kinetic modeling and parameter estimation platforms. Many computation algorithms face obstacles due to the noisy data and difficulty of the system in estimating myriad of parameters, and require longer computational time to estimate the relevant parameters. The proposed algorithm (IDE in this paper is a hybrid of a Differential Evolution algorithm (DE and a Kalman Filter (KF. The outcome of IDE is proven to be superior than Genetic Algorithm (GA and DE. The results of IDE from experiments show estimated optimal kinetic parameters values, shorter computation time and increased accuracy for simulated results compared with other estimation algorithms
Hyyti, Janne; Escoto, Esmerando; Steinmeyer, Günter
2017-01-01
A novel algorithm for the ultrashort laser pulse characterization method of interferometric frequency-resolved optical gating (iFROG) is presented. Based on a genetic method, namely differential evolution, the algorithm can exploit all available information of an iFROG measurement to retrieve the complex electric field of a pulse. The retrieval is subjected to a series of numerical tests to prove robustness of the algorithm against experimental artifacts and noise. These tests show that the i...
Parameter optimization of differential evolution algorithm for automatic playlist generation problem
Alamag, Kaye Melina Natividad B.; Addawe, Joel M.
2017-11-01
With the digitalization of music, the number of collection of music increased largely and there is a need to create lists of music that filter the collection according to user preferences, thus giving rise to the Automatic Playlist Generation Problem (APGP). Previous attempts to solve this problem include the use of search and optimization algorithms. If a music database is very large, the algorithm to be used must be able to search the lists thoroughly taking into account the quality of the playlist given a set of user constraints. In this paper we perform an evolutionary meta-heuristic optimization algorithm, Differential Evolution (DE) using different combination of parameter values and select the best performing set when used to solve four standard test functions. Performance of the proposed algorithm is then compared with normal Genetic Algorithm (GA) and a hybrid GA with Tabu Search. Numerical simulations are carried out to show better results from Differential Evolution approach with the optimized parameter values.
Cloud computing task scheduling strategy based on improved differential evolution algorithm
Ge, Junwei; He, Qian; Fang, Yiqiu
2017-04-01
In order to optimize the cloud computing task scheduling scheme, an improved differential evolution algorithm for cloud computing task scheduling is proposed. Firstly, the cloud computing task scheduling model, according to the model of the fitness function, and then used improved optimization calculation of the fitness function of the evolutionary algorithm, according to the evolution of generation of dynamic selection strategy through dynamic mutation strategy to ensure the global and local search ability. The performance test experiment was carried out in the CloudSim simulation platform, the experimental results show that the improved differential evolution algorithm can reduce the cloud computing task execution time and user cost saving, good implementation of the optimal scheduling of cloud computing tasks.
International Nuclear Information System (INIS)
Coelho, Leandro dos Santos; Mariani, Viviana Cocco
2007-01-01
Global optimization based on evolutionary algorithms can be used as the important component for many engineering optimization problems. Evolutionary algorithms have yielded promising results for solving nonlinear, non-differentiable and multi-modal optimization problems in the power systems area. Differential evolution (DE) is a simple and efficient evolutionary algorithm for function optimization over continuous spaces. It has reportedly outperformed search heuristics when tested over both benchmark and real world problems. This paper proposes improved DE algorithms for solving economic load dispatch problems that take into account nonlinear generator features such as ramp rate limits and prohibited operating zones in the power system operation. The DE algorithms and its variants are validated for two test systems consisting of 6 and 15 thermal units. Various DE approaches outperforms other state of the art algorithms reported in the literature in solving load dispatch problems with generator constraints
Cui, Xinchun; Niu, Yuying; Zheng, Xiangwei; Han, Yingshuai
2018-01-01
In this paper, a new color watermarking algorithm based on differential evolution is proposed. A color host image is first converted from RGB space to YIQ space, which is more suitable for the human visual system. Then, apply three-level discrete wavelet transformation to luminance component Y and generate four different frequency sub-bands. After that, perform singular value decomposition on these sub-bands. In the watermark embedding process, apply discrete wavelet transformation to a watermark image after the scrambling encryption processing. Our new algorithm uses differential evolution algorithm with adaptive optimization to choose the right scaling factors. Experimental results show that the proposed algorithm has a better performance in terms of invisibility and robustness.
Gao, Xiaohui; Liu, Yongguang
2018-01-01
There is a serious nonlinear relationship between input and output in the giant magnetostrictive actuator (GMA) and how to establish mathematical model and identify its parameters is very important to study characteristics and improve control accuracy. The current-displacement model is firstly built based on Jiles-Atherton (J-A) model theory, Ampere loop theorem and stress-magnetism coupling model. And then laws between unknown parameters and hysteresis loops are studied to determine the data-taking scope. The modified simulated annealing differential evolution algorithm (MSADEA) is proposed by taking full advantage of differential evolution algorithm's fast convergence and simulated annealing algorithm's jumping property to enhance the convergence speed and performance. Simulation and experiment results shows that this algorithm is not only simple and efficient, but also has fast convergence speed and high identification accuracy.
An Improved Differential Evolution Algorithm for Maritime Collision Avoidance Route Planning
Directory of Open Access Journals (Sweden)
Yu-xin Zhao
2014-01-01
Full Text Available High accuracy navigation and surveillance systems are pivotal to ensure efficient ship route planning and marine safety. Based on existing ship navigation and maritime collision prevention rules, an improved approach for collision avoidance route planning using a differential evolution algorithm was developed. Simulation results show that the algorithm is capable of significantly enhancing the optimized route over current methods. It has the potential to be used as a tool to generate optimal vessel routing in the presence of conflicts.
Directory of Open Access Journals (Sweden)
Ali Wagdy Mohamed
2014-11-01
Full Text Available In this paper, a novel version of Differential Evolution (DE algorithm based on a couple of local search mutation and a restart mechanism for solving global numerical optimization problems over continuous space is presented. The proposed algorithm is named as Restart Differential Evolution algorithm with Local Search Mutation (RDEL. In RDEL, inspired by Particle Swarm Optimization (PSO, a novel local mutation rule based on the position of the best and the worst individuals among the entire population of a particular generation is introduced. The novel local mutation scheme is joined with the basic mutation rule through a linear decreasing function. The proposed local mutation scheme is proven to enhance local search tendency of the basic DE and speed up the convergence. Furthermore, a restart mechanism based on random mutation scheme and a modified Breeder Genetic Algorithm (BGA mutation scheme is combined to avoid stagnation and/or premature convergence. Additionally, an exponent increased crossover probability rule and a uniform scaling factors of DE are introduced to promote the diversity of the population and to improve the search process, respectively. The performance of RDEL is investigated and compared with basic differential evolution, and state-of-the-art parameter adaptive differential evolution variants. It is discovered that the proposed modifications significantly improve the performance of DE in terms of quality of solution, efficiency and robustness.
Hyyti, Janne; Escoto, Esmerando; Steinmeyer, Günter
2017-10-01
A novel algorithm for the ultrashort laser pulse characterization method of interferometric frequency-resolved optical gating (iFROG) is presented. Based on a genetic method, namely, differential evolution, the algorithm can exploit all available information of an iFROG measurement to retrieve the complex electric field of a pulse. The retrieval is subjected to a series of numerical tests to prove the robustness of the algorithm against experimental artifacts and noise. These tests show that the integrated error-correction mechanisms of the iFROG method can be successfully used to remove the effect from timing errors and spectrally varying efficiency in the detection. Moreover, the accuracy and noise resilience of the new algorithm are shown to outperform retrieval based on the generalized projections algorithm, which is widely used as the standard method in FROG retrieval. The differential evolution algorithm is further validated with experimental data, measured with unamplified three-cycle pulses from a mode-locked Ti:sapphire laser. Additionally introducing group delay dispersion in the beam path, the retrieval results show excellent agreement with independent measurements with a commercial pulse measurement device based on spectral phase interferometry for direct electric-field retrieval. Further experimental tests with strongly attenuated pulses indicate resilience of differential-evolution-based retrieval against massive measurement noise.
Parameter identification of PEMFC model based on hybrid adaptive differential evolution algorithm
International Nuclear Information System (INIS)
Sun, Zhe; Wang, Ning; Bi, Yunrui; Srinivasan, Dipti
2015-01-01
In this paper, a HADE (hybrid adaptive differential evolution) algorithm is proposed for the identification problem of PEMFC (proton exchange membrane fuel cell). Inspired by biological genetic strategy, a novel adaptive scaling factor and a dynamic crossover probability are presented to improve the adaptive and dynamic performance of differential evolution algorithm. Moreover, two kinds of neighborhood search operations based on the bee colony foraging mechanism are introduced for enhancing local search efficiency. Through testing the benchmark functions, the proposed algorithm exhibits better performance in convergent accuracy and speed. Finally, the HADE algorithm is applied to identify the nonlinear parameters of PEMFC stack model. Through experimental comparison with other identified methods, the PEMFC model based on the HADE algorithm shows better performance. - Highlights: • We propose a hybrid adaptive differential evolution algorithm (HADE). • The search efficiency is enhanced in low and high dimension search space. • The effectiveness is confirmed by testing benchmark functions. • The identification of the PEMFC model is conducted by adopting HADE.
Directory of Open Access Journals (Sweden)
Xinli Xu
2013-01-01
Full Text Available A two-level batch chromosome coding scheme is proposed to solve the lot splitting problem with equipment capacity constraints in flexible job shop scheduling, which includes a lot splitting chromosome and a lot scheduling chromosome. To balance global search and local exploration of the differential evolution algorithm, a hybrid discrete differential evolution algorithm (HDDE is presented, in which the local strategy with dynamic random searching based on the critical path and a random mutation operator is developed. The performance of HDDE was experimented with 14 benchmark problems and the practical dye vat scheduling problem. The simulation results showed that the proposed algorithm has the strong global search capability and can effectively solve the practical lot splitting problems with equipment capacity constraints.
An Orthogonal Learning Differential Evolution Algorithm for Remote Sensing Image Registration
Directory of Open Access Journals (Sweden)
Wenping Ma
2014-01-01
Full Text Available We introduce an area-based method for remote sensing image registration. We use orthogonal learning differential evolution algorithm to optimize the similarity metric between the reference image and the target image. Many local and global methods have been used to achieve the optimal similarity metric in the last few years. Because remote sensing images are usually influenced by large distortions and high noise, local methods will fail in some cases. For this reason, global methods are often required. The orthogonal learning (OL strategy is efficient when searching in complex problem spaces. In addition, it can discover more useful information via orthogonal experimental design (OED. Differential evolution (DE is a heuristic algorithm. It has shown to be efficient in solving the remote sensing image registration problem. So orthogonal learning differential evolution algorithm (OLDE is efficient for many optimization problems. The OLDE method uses the OL strategy to guide the DE algorithm to discover more useful information. Experiments show that the OLDE method is more robust and efficient for registering remote sensing images.
Directory of Open Access Journals (Sweden)
Zhongbo Hu
2014-01-01
Full Text Available Many improved differential Evolution (DE algorithms have emerged as a very competitive class of evolutionary computation more than a decade ago. However, few improved DE algorithms guarantee global convergence in theory. This paper developed a convergent DE algorithm in theory, which employs a self-adaptation scheme for the parameters and two operators, that is, uniform mutation and hidden adaptation selection (haS operators. The parameter self-adaptation and uniform mutation operator enhance the diversity of populations and guarantee ergodicity. The haS can automatically remove some inferior individuals in the process of the enhancing population diversity. The haS controls the proposed algorithm to break the loop of current generation with a small probability. The breaking probability is a hidden adaptation and proportional to the changes of the number of inferior individuals. The proposed algorithm is tested on ten engineering optimization problems taken from IEEE CEC2011.
Directory of Open Access Journals (Sweden)
Xiaohao Wen
2018-03-01
Full Text Available Long-term scheduling of large cascade hydropower stations (LSLCHS is a complex problem of high dimension, nonlinearity, coupling and complex constraint. In view of the above problem, we present an improved differential evolution (iLSHADE algorithm based on LSHADE, a state-of-the-art evolutionary algorithm. iLSHADE uses new mutation strategies “current to pbest/2-rand” to obtain wider search range and accelerate convergence with the preventing individual repeated failure evolution (PIRFE strategy. The handling of complicated constraints strategy of ε-constrained method is presented to handle outflow, water level and output constraints in the cascade reservoir operation. Numerical experiments of 10 benchmark functions have been done, showing that iLSHADE has stable convergence and high efficiency. Furthermore, we demonstrate the performance of the iLSHADE algorithm by comparing it with other improved differential evolution algorithms for LSLCHS in four large hydropower stations of the Jinsha River. With the applications of iLSHADE in reservoir operation, LSLCHS can obtain more power generation benefit than other alternatives in dry, normal, and wet years. The results of numerical experiments and case studies show that the iLSHADE has a distinct optimization effect and good stability, and it is a valid and reliable tool to solve LSLCHS problem.
DEFF Research Database (Denmark)
Vesterstrøm, Jacob Svaneborg; Thomsen, Rene
2004-01-01
Several extensions to evolutionary algorithms (EAs) and particle swarm optimization (PSO) have been suggested during the last decades offering improved performance on selected benchmark problems. Recently, another search heuristic termed differential evolution (DE) has shown superior performance...... in several real-world applications. In this paper, we evaluate the performance of DE, PSO, and EAs regarding their general applicability as numerical optimization techniques. The comparison is performed on a suite of 34 widely used benchmark problems. The results from our study show that DE generally...... outperforms the other algorithms. However, on two noisy functions, both DE and PSO were outperformed by the EA....
Directory of Open Access Journals (Sweden)
Wei Li
2015-01-01
Full Text Available We propose a new optimization algorithm inspired by the formation and change of the cloud in nature, referred to as Cloud Particles Differential Evolution (CPDE algorithm. The cloud is assumed to have three states in the proposed algorithm. Gaseous state represents the global exploration. Liquid state represents the intermediate process from the global exploration to the local exploitation. Solid state represents the local exploitation. The best solution found so far acts as a nucleus. In gaseous state, the nucleus leads the population to explore by condensation operation. In liquid state, cloud particles carry out macrolocal exploitation by liquefaction operation. A new mutation strategy called cloud differential mutation is introduced in order to solve a problem that the misleading effect of a nucleus may cause the premature convergence. In solid state, cloud particles carry out microlocal exploitation by solidification operation. The effectiveness of the algorithm is validated upon different benchmark problems. The results have been compared with eight well-known optimization algorithms. The statistical analysis on performance evaluation of the different algorithms on 10 benchmark functions and CEC2013 problems indicates that CPDE attains good performance.
An Improved Binary Differential Evolution Algorithm to Infer Tumor Phylogenetic Trees.
Liang, Ying; Liao, Bo; Zhu, Wen
2017-01-01
Tumourigenesis is a mutation accumulation process, which is likely to start with a mutated founder cell. The evolutionary nature of tumor development makes phylogenetic models suitable for inferring tumor evolution through genetic variation data. Copy number variation (CNV) is the major genetic marker of the genome with more genes, disease loci, and functional elements involved. Fluorescence in situ hybridization (FISH) accurately measures multiple gene copy number of hundreds of single cells. We propose an improved binary differential evolution algorithm, BDEP, to infer tumor phylogenetic tree based on FISH platform. The topology analysis of tumor progression tree shows that the pathway of tumor subcell expansion varies greatly during different stages of tumor formation. And the classification experiment shows that tree-based features are better than data-based features in distinguishing tumor. The constructed phylogenetic trees have great performance in characterizing tumor development process, which outperforms other similar algorithms.
Directory of Open Access Journals (Sweden)
Yalin Wang
2013-01-01
Full Text Available The grinding-classification is the prerequisite process for full recovery of the nonrenewable minerals with both production quality and quantity objectives concerned. Its natural formulation is a constrained multiobjective optimization problem of complex expression since the process is composed of one grinding machine and two classification machines. In this paper, a hybrid differential evolution (DE algorithm with multi-population is proposed. Some infeasible solutions with better performance are allowed to be saved, and they participate randomly in the evolution. In order to exploit the meaningful infeasible solutions, a functionally partitioned multi-population mechanism is designed to find an optimal solution from all possible directions. Meanwhile, a simplex method for local search is inserted into the evolution process to enhance the searching strategy in the optimization process. Simulation results from the test of some benchmark problems indicate that the proposed algorithm tends to converge quickly and effectively to the Pareto frontier with better distribution. Finally, the proposed algorithm is applied to solve a multiobjective optimization model of a grinding and classification process. Based on the technique for order performance by similarity to ideal solution (TOPSIS, the satisfactory solution is obtained by using a decision-making method for multiple attributes.
An implementation of differential evolution algorithm for inversion of geoelectrical data
Balkaya, Çağlayan
2013-11-01
Differential evolution (DE), a population-based evolutionary algorithm (EA) has been implemented to invert self-potential (SP) and vertical electrical sounding (VES) data sets. The algorithm uses three operators including mutation, crossover and selection similar to genetic algorithm (GA). Mutation is the most important operator for the success of DE. Three commonly used mutation strategies including DE/best/1 (strategy 1), DE/rand/1 (strategy 2) and DE/rand-to-best/1 (strategy 3) were applied together with a binomial type crossover. Evolution cycle of DE was realized without boundary constraints. For the test studies performed with SP data, in addition to both noise-free and noisy synthetic data sets two field data sets observed over the sulfide ore body in the Malachite mine (Colorado) and over the ore bodies in the Neem-Ka Thana cooper belt (India) were considered. VES test studies were carried out using synthetically produced resistivity data representing a three-layered earth model and a field data set example from Gökçeada (Turkey), which displays a seawater infiltration problem. Mutation strategies mentioned above were also extensively tested on both synthetic and field data sets in consideration. Of these, strategy 1 was found to be the most effective strategy for the parameter estimation by providing less computational cost together with a good accuracy. The solutions obtained by DE for the synthetic cases of SP were quite consistent with particle swarm optimization (PSO) which is a more widely used population-based optimization algorithm than DE in geophysics. Estimated parameters of SP and VES data were also compared with those obtained from Metropolis-Hastings (M-H) sampling algorithm based on simulated annealing (SA) without cooling to clarify uncertainties in the solutions. Comparison to the M-H algorithm shows that DE performs a fast approximate posterior sampling for the case of low-dimensional inverse geophysical problems.
Design of 2-D Recursive Filters Using Self-adaptive Mutation Differential Evolution Algorithm
Directory of Open Access Journals (Sweden)
Lianghong Wu
2011-08-01
Full Text Available This paper investigates a novel approach to the design of two-dimensional recursive digital filters using differential evolution (DE algorithm. The design task is reformulated as a constrained minimization problem and is solved by an Self-adaptive Mutation DE algorithm (SAMDE, which adopts an adaptive mutation operator that combines with the advantages of the DE/rand/1/bin strategy and the DE/best/2/bin strategy. As a result, its convergence performance is improved greatly. Numerical experiment results confirm the conclusion. The proposedSAMDE approach is effectively applied to test a numerical example and is compared with previous design methods. The computational experiments show that the SAMDE approach can obtain better results than previous design methods.
Optimal Location and Sizing of UPQC in Distribution Networks Using Differential Evolution Algorithm
Directory of Open Access Journals (Sweden)
Seyed Abbas Taher
2012-01-01
Full Text Available Differential evolution (DE algorithm is used to determine optimal location of unified power quality conditioner (UPQC considering its size in the radial distribution systems. The problem is formulated to find the optimum location of UPQC based on an objective function (OF defined for improving of voltage and current profiles, reducing power loss and minimizing the investment costs considering the OF's weighting factors. Hence, a steady-state model of UPQC is derived to set in forward/backward sweep load flow. Studies are performed on two IEEE 33-bus and 69-bus standard distribution networks. Accuracy was evaluated by reapplying the procedures using both genetic (GA and immune algorithms (IA. Comparative results indicate that DE is capable of offering a nearer global optimal in minimizing the OF and reaching all the desired conditions than GA and IA.
International Nuclear Information System (INIS)
Jazebi, S.; Hosseinian, S.H.; Vahidi, B.
2011-01-01
Highlights: → Reconfiguration and DSTATCOM allocation are implemented for RDS planning. → Differential evolution algorithm is applied to solve the nonlinear problem. → Optimal status of tie switches, DSTATCOM size and location are determined. → The goal is to minimize network losses and to improve voltage profile. → The results show the effectiveness of the proposed method to satisfy objectives. -- Abstract: The main idea in distribution network reconfiguration is usually to reduce loss by changing the status of sectionalizing switches and determining appropriate tie switches. Recently Distribution FACTS (DFACTS) devices such as DSTATCOM also have been planned for loss reduction and voltage profile improvement in steady state conditions. This paper implements a combinatorial process based on reconfiguration and DSTATCOM allocation in order to mitigate losses and improve voltage profile in power distribution networks. The distribution system tie switches, DSTATCOM location and size have been optimally determined to obtain an appropriate operational condition. Differential evolution algorithm (DEA) has been used to solve and overcome the complicity of this combinatorial nonlinear optimization problem. To validate the accuracy of results a comparison with particle swarm optimization (PSO) has been made. Simulations have been applied on 69 and 83 busses distribution test systems. All optimization results show the effectiveness of the combinatorial approach in loss reduction and voltage profile improvement.
Identification of time-varying nonlinear systems using differential evolution algorithm
DEFF Research Database (Denmark)
Perisic, Nevena; Green, Peter L; Worden, Keith
2013-01-01
(DE) algorithm for the identification of time-varying systems. DE is an evolutionary optimisation method developed to perform direct search in a continuous space without requiring any derivative estimation. DE is modified so that the objective function changes with time to account for the continuing......, thus identification of time-varying systems with nonlinearities can be a very challenging task. In order to avoid conventional least squares and gradient identification methods which require uni-modal and double differentiable objective functions, this work proposes a modified differential evolution...... inclusion of new data within an error metric. This paper presents results of identification of a time-varying SDOF system with Coulomb friction using simulated noise-free and noisy data for the case of time-varying friction coefficient, stiffness and damping. The obtained results are promising and the focus...
Multi-objective optimum design of fast tool servo based on improved differential evolution algorithm
International Nuclear Information System (INIS)
Zhu, Zhiwei; Zhou, Xiaoqin; Liu, Qiang; Zhao, Shaoxin
2011-01-01
The flexure-based mechanism is a promising realization of fast tool servo (FTS), and the optimum determination of flexure hinge parameters is one of the most important elements in the FTS design. This paper presents a multi-objective optimization approach to optimizing the dimension and position parameters of the flexure-based mechanism, which is based on the improved differential evolution algorithm embedding chaos and nonlinear simulated anneal algorithm. The results of optimum design show that the proposed algorithm has excellent performance and a well-balanced compromise is made between two conflicting objectives, the stroke and natural frequency of the FTS mechanism. The validation tests based on finite element analysis (FEA) show good agreement with the results obtained by using the proposed theoretical algorithm of this paper. Finally, a series of experimental tests are conducted to validate the design process and assess the performance of the FTS mechanism. The designed FTS reaches up to a stroke of 10.25 μm with at least 2 kHz bandwidth. Both of the FEA and experimental results demonstrate that the parameters of the flexure-based mechanism determined by the proposed approaches can achieve the specified performance and the proposed approach is suitable for the optimum design of FTS mechanism and of excellent performances
Ekinci, Yunus Levent; Özyalın, Şenol; Sındırgı, Petek; Balkaya, Çağlayan; Göktürkler, Gökhan
2017-12-01
In this work, analytic signal amplitude (ASA) inversion of total field magnetic anomalies has been achieved by differential evolution (DE) which is a population-based evolutionary metaheuristic algorithm. Using an elitist strategy, the applicability and effectiveness of the proposed inversion algorithm have been evaluated through the anomalies due to both hypothetical model bodies and real isolated geological structures. Some parameter tuning studies relying mainly on choosing the optimum control parameters of the algorithm have also been performed to enhance the performance of the proposed metaheuristic. Since ASAs of magnetic anomalies are independent of both ambient field direction and the direction of magnetization of the causative sources in a two-dimensional (2D) case, inversions of synthetic noise-free and noisy single model anomalies have produced satisfactory solutions showing the practical applicability of the algorithm. Moreover, hypothetical studies using multiple model bodies have clearly showed that the DE algorithm is able to cope with complicated anomalies and some interferences from neighbouring sources. The proposed algorithm has then been used to invert small- (120 m) and large-scale (40 km) magnetic profile anomalies of an iron deposit (Kesikköprü-Bala, Turkey) and a deep-seated magnetized structure (Sea of Marmara, Turkey), respectively to determine depths, geometries and exact origins of the source bodies. Inversion studies have yielded geologically reasonable solutions which are also in good accordance with the results of normalized full gradient and Euler deconvolution techniques. Thus, we propose the use of DE not only for the amplitude inversion of 2D analytical signals of magnetic profile anomalies having induced or remanent magnetization effects but also the low-dimensional data inversions in geophysics. A part of this paper was presented as an abstract at the 2nd International Conference on Civil and Environmental Engineering, 8
Binol, Hamidullah; Bal, Abdullah; Cukur, Huseyin
2015-10-01
The performance of the kernel based techniques depends on the selection of kernel parameters. That's why; suitable parameter selection is an important problem for many kernel based techniques. This article presents a novel technique to learn the kernel parameters in kernel Fukunaga-Koontz Transform based (KFKT) classifier. The proposed approach determines the appropriate values of kernel parameters through optimizing an objective function constructed based on discrimination ability of KFKT. For this purpose we have utilized differential evolution algorithm (DEA). The new technique overcomes some disadvantages such as high time consumption existing in the traditional cross-validation method, and it can be utilized in any type of data. The experiments for target detection applications on the hyperspectral images verify the effectiveness of the proposed method.
A Hybrid Differential Evolution and Tree Search Algorithm for the Job Shop Scheduling Problem
Directory of Open Access Journals (Sweden)
Rui Zhang
2011-01-01
Full Text Available The job shop scheduling problem (JSSP is a notoriously difficult problem in combinatorial optimization. In terms of the objective function, most existing research has been focused on the makespan criterion. However, in contemporary manufacturing systems, due-date-related performances are more important because they are essential for maintaining a high service reputation. Therefore, in this study we aim at minimizing the total weighted tardiness in JSSP. Considering the high complexity, a hybrid differential evolution (DE algorithm is proposed for the problem. To enhance the overall search efficiency, a neighborhood property of the problem is discovered, and then a tree search procedure is designed and embedded into the DE framework. According to the extensive computational experiments, the proposed approach is efficient in solving the job shop scheduling problem with total weighted tardiness objective.
Zhang, Jin-Yu; Meng, Xiang-Bing; Xu, Wei; Zhang, Wei; Zhang, Yong
2014-01-01
This paper has proposed a new thermal wave image sequence compression algorithm by combining double exponential decay fitting model and differential evolution algorithm. This study benchmarked fitting compression results and precision of the proposed method was benchmarked to that of the traditional methods via experiment; it investigated the fitting compression performance under the long time series and improved model and validated the algorithm by practical thermal image sequence compression and reconstruction. The results show that the proposed algorithm is a fast and highly precise infrared image data processing method. PMID:24696649
Directory of Open Access Journals (Sweden)
Jin-Yu Zhang
2014-01-01
Full Text Available This paper has proposed a new thermal wave image sequence compression algorithm by combining double exponential decay fitting model and differential evolution algorithm. This study benchmarked fitting compression results and precision of the proposed method was benchmarked to that of the traditional methods via experiment; it investigated the fitting compression performance under the long time series and improved model and validated the algorithm by practical thermal image sequence compression and reconstruction. The results show that the proposed algorithm is a fast and highly precise infrared image data processing method.
Braak, ter C.J.F.
2006-01-01
Differential Evolution (DE) is a simple genetic algorithm for numerical optimization in real parameter spaces. In a statistical context one would not just want the optimum but also its uncertainty. The uncertainty distribution can be obtained by a Bayesian analysis (after specifying prior and
International Nuclear Information System (INIS)
Banerjee, Amit; Abu-Mahfouz, Issam
2014-01-01
The use of evolutionary algorithms has been popular in recent years for solving the inverse problem of identifying system parameters given the chaotic response of a dynamical system. The inverse problem is reformulated as a minimization problem and population-based optimizers such as evolutionary algorithms have been shown to be efficient solvers of the minimization problem. However, to the best of our knowledge, there has been no published work that evaluates the efficacy of using the two most popular evolutionary techniques – particle swarm optimization and differential evolution algorithm, on a wide range of parameter estimation problems. In this paper, the two methods along with their variants (for a total of seven algorithms) are applied to fifteen different parameter estimation problems of varying degrees of complexity. Estimation results are analyzed using nonparametric statistical methods to identify if an algorithm is statistically superior to others over the class of problems analyzed. Results based on parameter estimation quality suggest that there are significant differences between the algorithms with the newer, more sophisticated algorithms performing better than their canonical versions. More importantly, significant differences were also found among variants of the particle swarm optimizer and the best performing differential evolution algorithm
Koshak, William; Solakiewicz, Richard
2012-01-01
The ability to estimate the fraction of ground flashes in a set of flashes observed by a satellite lightning imager, such as the future GOES-R Geostationary Lightning Mapper (GLM), would likely improve operational and scientific applications (e.g., severe weather warnings, lightning nitrogen oxides studies, and global electric circuit analyses). A Bayesian inversion method, called the Ground Flash Fraction Retrieval Algorithm (GoFFRA), was recently developed for estimating the ground flash fraction. The method uses a constrained mixed exponential distribution model to describe a particular lightning optical measurement called the Maximum Group Area (MGA). To obtain the optimum model parameters (one of which is the desired ground flash fraction), a scalar function must be minimized. This minimization is difficult because of two problems: (1) Label Switching (LS), and (2) Parameter Identity Theft (PIT). The LS problem is well known in the literature on mixed exponential distributions, and the PIT problem was discovered in this study. Each problem occurs when one allows the numerical minimizer to freely roam through the parameter search space; this allows certain solution parameters to interchange roles which leads to fundamental ambiguities, and solution error. A major accomplishment of this study is that we have employed a state-of-the-art genetic-based global optimization algorithm called Differential Evolution (DE) that constrains the parameter search in such a way as to remove both the LS and PIT problems. To test the performance of the GoFFRA when DE is employed, we applied it to analyze simulated MGA datasets that we generated from known mixed exponential distributions. Moreover, we evaluated the GoFFRA/DE method by applying it to analyze actual MGAs derived from low-Earth orbiting lightning imaging sensor data; the actual MGA data were classified as either ground or cloud flash MGAs using National Lightning Detection Network[TM] (NLDN) data. Solution error
Directory of Open Access Journals (Sweden)
Banaja Mohanty
2014-09-01
Full Text Available This paper presents the design and performance analysis of Differential Evolution (DE algorithm based Proportional–Integral (PI and Proportional–Integral–Derivative (PID controllers for Automatic Generation Control (AGC of an interconnected power system. Initially, a two area thermal system with governor dead-band nonlinearity is considered for the design and analysis purpose. In the proposed approach, the design problem is formulated as an optimization problem control and DE is employed to search for optimal controller parameters. Three different objective functions are used for the design purpose. The superiority of the proposed approach has been shown by comparing the results with a recently published Craziness based Particle Swarm Optimization (CPSO technique for the same interconnected power system. It is noticed that, the dynamic performance of DE optimized PI controller is better than CPSO optimized PI controllers. Additionally, controller parameters are tuned at different loading conditions so that an adaptive gain scheduling control strategy can be employed. The study is further extended to a more realistic network of two-area six unit system with different power generating units such as thermal, hydro, wind and diesel generating units considering boiler dynamics for thermal plants, Generation Rate Constraint (GRC and Governor Dead Band (GDB non-linearity.
Institute of Scientific and Technical Information of China (English)
Lili Tao; Bin Xu; Zhihua Hu; Weimin Zhong
2017-01-01
The rise in the use of global polyester fiber contributed to strong demand of the Terephthalic acid (TPA). The liquid-phase catalytic oxidation of p-xylene (PX) to TPA is regarded as a critical and efficient chemical process in industry [1]. PX oxidation reaction involves many complex side reactions, among which acetic acid combustion and PX combustion are the most important. As the target product of this oxidation process, the quality and yield of TPA are of great concern. However, the improvement of the qualified product yield can bring about the high energy consumption, which means that the economic objectives of this process cannot be achieved simulta-neously because the two objectives are in conflict with each other. In this paper, an improved self-adaptive multi-objective differential evolution algorithm was proposed to handle the multi-objective optimization prob-lems. The immune concept is introduced to the self-adaptive multi-objective differential evolution algorithm (SADE) to strengthen the local search ability and optimization accuracy. The proposed algorithm is successfully tested on several benchmark test problems, and the performance measures such as convergence and divergence metrics are calculated. Subsequently, the multi-objective optimization of an industrial PX oxidation process is carried out using the proposed immune self-adaptive multi-objective differential evolution algorithm (ISADE). Optimization results indicate that application of ISADE can greatly improve the yield of TPA with low combustion loss without degenerating TA quality.
International Nuclear Information System (INIS)
He Dakuo; Dong Gang; Wang Fuli; Mao Zhizhong
2011-01-01
A chaotic sequence based differential evolution (DE) approach for solving the dynamic economic dispatch problem (DEDP) with valve-point effect is presented in this paper. The proposed method combines the DE algorithm with the local search technique to improve the performance of the algorithm. DE is the main optimizer, while an approximated model for local search is applied to fine tune in the solution of the DE run. To accelerate convergence of DE, a series of constraints handling rules are adopted. An initial population obtained by using chaotic sequence exerts optimal performance of the proposed algorithm. The combined algorithm is validated for two test systems consisting of 10 and 13 thermal units whose incremental fuel cost function takes into account the valve-point loading effects. The proposed combined method outperforms other algorithms reported in literatures for DEDP considering valve-point effects.
Villalba-Morales, Jesús Daniel; Laier, José Elias
2014-01-01
Structural damage detection has become an important research topic in certain segments of the engineering community. These methodologies occasionally formulate an optimization problem by defining an objective function based on dynamic parameters, with metaheuristics used to find the solution. In this study, damage localization and quantification is performed by an Adaptive Differential Evolution algorithm, which solves the associated optimization problem. Furthermore, this paper looks at the ...
A Novel Discrete Differential Evolution Algorithm for the Vehicle Routing Problem in B2C E-Commerce
Xia, Chao; Sheng, Ying; Jiang, Zhong-Zhong; Tan, Chunqiao; Huang, Min; He, Yuanjian
2015-12-01
In this paper, a novel discrete differential evolution (DDE) algorithm is proposed to solve the vehicle routing problems (VRP) in B2C e-commerce, in which VRP is modeled by the incomplete graph based on the actual urban road system. First, a variant of classical VRP is described and a mathematical programming model for the variant is given. Second, the DDE is presented, where individuals are represented as the sequential encoding scheme, and a novel reparation operator is employed to repair the infeasible solutions. Furthermore, a FLOYD operator for dealing with the shortest route is embedded in the proposed DDE. Finally, an extensive computational study is carried out in comparison with the predatory search algorithm and genetic algorithm, and the results show that the proposed DDE is an effective algorithm for VRP in B2C e-commerce.
Ara, Asmat; Khan, Najeeb Alam; Naz, Farah; Raja, Muhammad Asif Zahoor; Rubbab, Qammar
2018-01-01
This article explores the Jeffery-Hamel flow of an incompressible non-Newtonian fluid inside non-parallel walls and observes the influence of heat transfer in the flow field. The fluid is considered to be micropolar fluid that flows in a convergent/divergent channel. The governing nonlinear partial differential equations (PDEs) are converted to nonlinear coupled ordinary differential equations (ODEs) with the help of a suitable similarity transformation. The resulting nonlinear analysis is determined analytically with the utilization of the Taylor optimization method based on differential evolution (DE) algorithm. In order to understand the flow field, the effects of pertinent parameters such as the coupling parameter, spin gradient viscosity parameter and the Reynolds number have been examined on velocity and temperature profiles. It concedes that the good results can be attained by an implementation of the proposed method. Ultimately, the accuracy of the method is confirmed by comparing the present results with the results obtained by Runge-Kutta method.
Directory of Open Access Journals (Sweden)
Akbar Swandaru
2012-09-01
Full Text Available Peningkatan suplai daya listrik diperlukan untuk memenuhi kebutuhan daya listrik. Generator cenderung beroperasi dalam beban penuh.Hal ini berpengaruh pada keamanan generator dalam operasi sistem tenaga listrik.Salah satu masalah adalah osilasi frekuensi.Bila perubahan beban terjadi, kontroler diperlukan untuk meredam osilasi frekuensi ini.Pada tugas akhir ini diusulkan sebuah koordinasi antara Kontroler Capacitive Energy Storage (CES dan Kontroler PID. CES disini berfungsi untuk membantu kinerja Governor agar meredam osilasi frekuensi dengan cepat. Kontroler CES ini digunakan bersama dengan PID controller yang dioptimalkan dengan Differential Evolution Algorithm (DEA.
Design of a fuzzy differential evolution algorithm to predict non-deposition sediment transport
Ebtehaj, Isa; Bonakdari, Hossein
2017-12-01
Since the flow entering a sewer contains solid matter, deposition at the bottom of the channel is inevitable. It is difficult to understand the complex, three-dimensional mechanism of sediment transport in sewer pipelines. Therefore, a method to estimate the limiting velocity is necessary for optimal designs. Due to the inability of gradient-based algorithms to train Adaptive Neuro-Fuzzy Inference Systems (ANFIS) for non-deposition sediment transport prediction, a new hybrid ANFIS method based on a differential evolutionary algorithm (ANFIS-DE) is developed. The training and testing performance of ANFIS-DE is evaluated using a wide range of dimensionless parameters gathered from the literature. The input combination used to estimate the densimetric Froude number ( Fr) parameters includes the volumetric sediment concentration ( C V ), ratio of median particle diameter to hydraulic radius ( d/R), ratio of median particle diameter to pipe diameter ( d/D) and overall friction factor of sediment ( λ s ). The testing results are compared with the ANFIS model and regression-based equation results. The ANFIS-DE technique predicted sediment transport at limit of deposition with lower root mean square error (RMSE = 0.323) and mean absolute percentage of error (MAPE = 0.065) and higher accuracy ( R 2 = 0.965) than the ANFIS model and regression-based equations.
Directory of Open Access Journals (Sweden)
B Vinoth Kumar
2017-07-01
Full Text Available Quantization Table is responsible for compression / quality trade-off in baseline Joint Photographic Experts Group (JPEG algorithm and therefore it is viewed as an optimization problem. In the literature, it has been found that Classical Differential Evolution (CDE is a promising algorithm to generate the optimal quantization table. However, the searching capability of CDE could be limited due to generation of single trial vector in an iteration which in turn reduces the convergence speed. This paper studies the performance of CDE by employing multiple trial vectors in a single iteration. An extensive performance analysis has been made between CDE and CDE with multiple trial vectors in terms of Optimization process, accuracy, convergence speed and reliability. The analysis report reveals that CDE with multiple trial vectors improves the convergence speed of CDE and the same is confirmed using a statistical hypothesis test (t-test.
International Nuclear Information System (INIS)
Lu Youlin; Zhou Jianzhong; Qin Hui; Wang Ying; Zhang Yongchuan
2011-01-01
An enhanced multi-objective differential evolution algorithm (EMODE) is proposed in this paper to solve environmental/economic dispatch (EED) problem by considering the minimal of fuel cost and emission effects synthetically. In the proposed algorithm, an elitist archive technique is adopted to retain the non-dominated solutions obtained during the evolutionary process, and the operators of DE are modified according to the characteristics of multi-objective optimization problems. Moreover, in order to avoid premature convergence, a local random search (LRS) operator is integrated with the proposed method to improve the convergence performance. In view of the difficulties of handling the complicated constraints of EED problem, a new heuristic constraints handling method without any penalty factor settings is presented. The feasibility and effectiveness of the proposed EMODE method is demonstrated for a test power system. Compared with other methods, EMODE can get higher quality solutions by reducing the fuel cost and the emission effects synthetically.
Institute of Scientific and Technical Information of China (English)
无
2010-01-01
We give an equivalent construction of the infinitesimal time translation operator for partial differential evolution equation in the algebraic dynamics algorithm proposed by Shun-Jin Wang and his students. Our construction involves only simple partial differentials and avoids the derivative terms of δ function which appear in the course of computation by means of Wang-Zhang operator. We prove Wang’s equivalent theorem which says that our construction and Wang-Zhang’s are equivalent. We use our construction to deal with several typical equations such as nonlinear advection equation, Burgers equation, nonlinear Schrodinger equation, KdV equation and sine-Gordon equation, and obtain at least second order approximate solutions to them. These equations include the cases of real and complex field variables and the cases of the first and the second order time derivatives.
Wang, Mingming; Luo, Jianjun; Fang, Jing; Yuan, Jianping
2018-03-01
The existence of the path dependent dynamic singularities limits the volume of available workspace of free-floating space robot and induces enormous joint velocities when such singularities are met. In order to overcome this demerit, this paper presents an optimal joint trajectory planning method using forward kinematics equations of free-floating space robot, while joint motion laws are delineated with application of the concept of reaction null-space. Bézier curve, in conjunction with the null-space column vectors, are applied to describe the joint trajectories. Considering the forward kinematics equations of the free-floating space robot, the trajectory planning issue is consequently transferred to an optimization issue while the control points to construct the Bézier curve are the design variables. A constrained differential evolution (DE) scheme with premature handling strategy is implemented to find the optimal solution of the design variables while specific objectives and imposed constraints are satisfied. Differ from traditional methods, we synthesize null-space and specialized curve to provide a novel viewpoint for trajectory planning of free-floating space robot. Simulation results are presented for trajectory planning of 7 degree-of-freedom (DOF) kinematically redundant manipulator mounted on a free-floating spacecraft and demonstrate the feasibility and effectiveness of the proposed method.
Addawe, Rizavel C.; Addawe, Joel M.; Magadia, Joselito C.
2016-10-01
Accurate forecasting of dengue cases would significantly improve epidemic prevention and control capabilities. This paper attempts to provide useful models in forecasting dengue epidemic specific to the young and adult population of Baguio City. To capture the seasonal variations in dengue incidence, this paper develops a robust modeling approach to identify and estimate seasonal autoregressive integrated moving average (SARIMA) models in the presence of additive outliers. Since the least squares estimators are not robust in the presence of outliers, we suggest a robust estimation based on winsorized and reweighted least squares estimators. A hybrid algorithm, Differential Evolution - Simulated Annealing (DESA), is used to identify and estimate the parameters of the optimal SARIMA model. The method is applied to the monthly reported dengue cases in Baguio City, Philippines.
Directory of Open Access Journals (Sweden)
Ning Dong
2014-01-01
functions are executed, and comparisons with five state-of-the-art algorithms are made. The results illustrate that the proposed algorithm is competitive with and in some cases superior to the compared ones in terms of the quality, efficiency, and the robustness of the obtained results.
Directory of Open Access Journals (Sweden)
Asmat Ara
2018-01-01
Full Text Available This article explores the Jeffery-Hamel flow of an incompressible non-Newtonian fluid inside non-parallel walls and observes the influence of heat transfer in the flow field. The fluid is considered to be micropolar fluid that flows in a convergent/divergent channel. The governing nonlinear partial differential equations (PDEs are converted to nonlinear coupled ordinary differential equations (ODEs with the help of a suitable similarity transformation. The resulting nonlinear analysis is determined analytically with the utilization of the Taylor optimization method based on differential evolution (DE algorithm. In order to understand the flow field, the effects of pertinent parameters such as the coupling parameter, spin gradient viscosity parameter and the Reynolds number have been examined on velocity and temperature profiles. It concedes that the good results can be attained by an implementation of the proposed method. Ultimately, the accuracy of the method is confirmed by comparing the present results with the results obtained by Runge-Kutta method.
Composite Differential Search Algorithm
Directory of Open Access Journals (Sweden)
Bo Liu
2014-01-01
Full Text Available Differential search algorithm (DS is a relatively new evolutionary algorithm inspired by the Brownian-like random-walk movement which is used by an organism to migrate. It has been verified to be more effective than ABC, JDE, JADE, SADE, EPSDE, GSA, PSO2011, and CMA-ES. In this paper, we propose four improved solution search algorithms, namely “DS/rand/1,” “DS/rand/2,” “DS/current to rand/1,” and “DS/current to rand/2” to search the new space and enhance the convergence rate for the global optimization problem. In order to verify the performance of different solution search methods, 23 benchmark functions are employed. Experimental results indicate that the proposed algorithm performs better than, or at least comparable to, the original algorithm when considering the quality of the solution obtained. However, these schemes cannot still achieve the best solution for all functions. In order to further enhance the convergence rate and the diversity of the algorithm, a composite differential search algorithm (CDS is proposed in this paper. This new algorithm combines three new proposed search schemes including “DS/rand/1,” “DS/rand/2,” and “DS/current to rand/1” with three control parameters using a random method to generate the offspring. Experiment results show that CDS has a faster convergence rate and better search ability based on the 23 benchmark functions.
Ekinci, Yunus Levent; Balkaya, Çağlayan; Göktürkler, Gökhan; Turan, Seçil
2016-06-01
An efficient approach to estimate model parameters from residual gravity data based on differential evolution (DE), a stochastic vector-based metaheuristic algorithm, has been presented. We have showed the applicability and effectiveness of this algorithm on both synthetic and field anomalies. According to our knowledge, this is a first attempt of applying DE for the parameter estimations of residual gravity anomalies due to isolated causative sources embedded in the subsurface. The model parameters dealt with here are the amplitude coefficient (A), the depth and exact origin of causative source (zo and xo, respectively) and the shape factors (q and ƞ). The error energy maps generated for some parameter pairs have successfully revealed the nature of the parameter estimation problem under consideration. Noise-free and noisy synthetic single gravity anomalies have been evaluated with success via DE/best/1/bin, which is a widely used strategy in DE. Additionally some complicated gravity anomalies caused by multiple source bodies have been considered, and the results obtained have showed the efficiency of the algorithm. Then using the strategy applied in synthetic examples some field anomalies observed for various mineral explorations such as a chromite deposit (Camaguey district, Cuba), a manganese deposit (Nagpur, India) and a base metal sulphide deposit (Quebec, Canada) have been considered to estimate the model parameters of the ore bodies. Applications have exhibited that the obtained results such as the depths and shapes of the ore bodies are quite consistent with those published in the literature. Uncertainty in the solutions obtained from DE algorithm has been also investigated by Metropolis-Hastings (M-H) sampling algorithm based on simulated annealing without cooling schedule. Based on the resulting histogram reconstructions of both synthetic and field data examples the algorithm has provided reliable parameter estimations being within the sampling limits of
International Nuclear Information System (INIS)
Atif, Maimoon; Al-Sulaiman, Fahad A.
2015-01-01
Highlights: • Differential evolution optimization model was developed to optimize the heliostat field. • Five optical parameters were considered for the optimization of the optical efficiency. • Optimization using insolation weighted and un-weighted annual efficiency are developed. • The daily averaged annual optical efficiency was calculated to be 0.5023 while the monthly was 0.5025. • The insolation weighted daily averaged annual efficiency was 0.5634. - Abstract: Optimization of a heliostat field is an essential task to make a solar central receiver system effective because major optical losses are associated with the heliostat fields. In this study, a mathematical model was developed to effectively optimize the heliostat field on annual basis using differential evolution, which is an evolutionary algorithm. The heliostat field layout optimization is based on the calculation of five optical performance parameters: the mirror or the heliostat reflectivity, the cosine factor, the atmospheric attenuation factor, the shadowing and blocking factor, and the intercept factor. This model calculates all the aforementioned performance parameters at every stage of the optimization, until the best heliostat field layout based on annual performance is obtained. Two different approaches were undertaken to optimize the heliostat field layout: one with optimizing insolation weighted annual efficiency and the other with optimizing the un-weighted annual efficiency. Moreover, an alternate approach was also proposed to efficiently optimize the heliostat field in which the number of computational time steps was considerably reduced. It was observed that the daily averaged annual optical efficiency was calculated to be 0.5023 as compared to the monthly averaged annual optical efficiency, 0.5025. Moreover, the insolation weighted daily averaged annual efficiency of the heliostat field was 0.5634 for Dhahran, Saudi Arabia. The code developed can be used for any other
Directory of Open Access Journals (Sweden)
Shuyu Dai
2018-04-01
Full Text Available In recent years, the construction of China’s power grid has experienced rapid development, and its scale has leaped into the first place in the world. Accurate and effective prediction of power grid investment can not only help pool funds and rationally arrange investment in power grid construction, but also reduce capital costs and economic risks, which plays a crucial role in promoting power grid investment planning and construction process. In order to forecast the power grid investment of China accurately, firstly on the basis of analyzing the influencing factors of power grid investment, the influencing factors system for China’s power grid investment forecasting is constructed in this article. The method of grey relational analysis is used for screening the main influencing factors as the prediction model input. Then, a novel power grid investment prediction model based on DE-GWO-SVM (support vector machine optimized by differential evolution and grey wolf optimization algorithm is proposed. Next, two cases are taken for empirical analysis to prove that the DE-GWO-SVM model has strong generalization capacity and has achieved a good prediction effect for power grid investment forecasting in China. Finally, the DE-GWO-SVM model is adopted to forecast power grid investment in China from 2018 to 2022.
Directory of Open Access Journals (Sweden)
Rasim M. Alguliev
2011-01-01
Full Text Available Extractive multidocument summarization is modeled as a modified p-median problem. The problem is formulated with taking into account four basic requirements, namely, relevance, information coverage, diversity, and length limit that should satisfy summaries. To solve the optimization problem a self-adaptive differential evolution algorithm is created. Differential evolution has been proven to be an efficient and robust algorithm for many real optimization problems. However, it still may converge toward local optimum solutions, need to manually adjust the parameters, and finding the best values for the control parameters is a consuming task. In the paper is proposed a self-adaptive scaling factor in original DE to increase the exploration and exploitation ability. This paper has found that self-adaptive differential evolution can efficiently find the best solution in comparison with the canonical differential evolution. We implemented our model on multi-document summarization task. Experiments have shown that the proposed model is competitive on the DUC2006 dataset.
Directory of Open Access Journals (Sweden)
Kumar Deepak
2015-12-01
Full Text Available Groundwater contamination due to leakage of gasoline is one of the several causes which affect the groundwater environment by polluting it. In the past few years, In-situ bioremediation has attracted researchers because of its ability to remediate the contaminant at its site with low cost of remediation. This paper proposed the use of a new hybrid algorithm to optimize a multi-objective function which includes the cost of remediation as the first objective and residual contaminant at the end of the remediation period as the second objective. The hybrid algorithm was formed by combining the methods of Differential Evolution, Genetic Algorithms and Simulated Annealing. Support Vector Machines (SVM was used as a virtual simulator for biodegradation of contaminants in the groundwater flow. The results obtained from the hybrid algorithm were compared with Differential Evolution (DE, Non Dominated Sorting Genetic Algorithm (NSGA II and Simulated Annealing (SA. It was found that the proposed hybrid algorithm was capable of providing the best solution. Fuzzy logic was used to find the best compromising solution and finally a pumping rate strategy for groundwater remediation was presented for the best compromising solution. The results show that the cost incurred for the best compromising solution is intermediate between the highest and lowest cost incurred for other non-dominated solutions.
Guo, Zhan; Yan, Xuefeng
2018-04-01
Different operating conditions of p-xylene oxidation have different influences on the product, purified terephthalic acid. It is necessary to obtain the optimal combination of reaction conditions to ensure the quality of the products, cut down on consumption and increase revenues. A multi-objective differential evolution (MODE) algorithm co-evolved with the population-based incremental learning (PBIL) algorithm, called PBMODE, is proposed. The PBMODE algorithm was designed as a co-evolutionary system. Each individual has its own parameter individual, which is co-evolved by PBIL. PBIL uses statistical analysis to build a model based on the corresponding symbiotic individuals of the superior original individuals during the main evolutionary process. The results of simulations and statistical analysis indicate that the overall performance of the PBMODE algorithm is better than that of the compared algorithms and it can be used to optimize the operating conditions of the p-xylene oxidation process effectively and efficiently.
Directory of Open Access Journals (Sweden)
Ouafa Herbadji
2016-03-01
Full Text Available This paper proposes a new hybrid metaheuristique algorithm based on the hybridization of Biogeography-based optimization with the Differential Evolution for solving the optimal power flow problem with emission control. The biogeography-based optimization (BBO algorithm is strongly influenced by equilibrium theory of island biogeography, mainly through two steps: Migration and Mutation. Differential Evolution (DE is one of the best Evolutionary Algorithms for global optimization. The hybridization of these two methods is used to overcome traps of local optimal solutions and problems of time consumption. The objective of this paper is to minimize the total fuel cost of generation, total emission, total real power loss and also maintain an acceptable system performance in terms of limits on generator real power, bus voltages and power flow of transmission lines. In the present work, BBO/DE has been applied to solve the optimal power flow problems on IEEE 30-bus test system and the Algerian electrical network 114 bus. The results obtained from this method show better performances compared with DE, BBO and other well known metaheuristique and evolutionary optimization methods.
El-Qulity, Said Ali; Mohamed, Ali Wagdy
2016-01-01
This paper proposes a nonlinear integer goal programming model (NIGPM) for solving the general problem of admission capacity planning in a country as a whole. The work aims to satisfy most of the required key objectives of a country related to the enrollment problem for higher education. The system general outlines are developed along with the solution methodology for application to the time horizon in a given plan. The up-to-date data for Saudi Arabia is used as a case study and a novel evolutionary algorithm based on modified differential evolution (DE) algorithm is used to solve the complexity of the NIGPM generated for different goal priorities. The experimental results presented in this paper show their effectiveness in solving the admission capacity for higher education in terms of final solution quality and robustness.
Directory of Open Access Journals (Sweden)
Hammoudi Abderazek
2015-09-01
Full Text Available Profile shift has an immense effect on the sliding, load capacity, and stability of involute cylindrical gears. Available standards such as ISO/DIS 6336 and BS 436 DIN/3990 currently give the recommendation for the selection of profile shift coefficients. It is, however, very approximate and usually given in the form of implicit graphs or charts. In this article, the optimal selection values of profile shift coefficients for cylindrical involute spur and helical gears are described, using a differential evolution algorithm. The optimization procedure is developed specifically for exact balancing specific sliding coefficients at extremes of contact path and account for gear design constraints. The obtained results are compared with those of standards and research of other authors. They demonstrate the effectiveness and robustness of the applied method. A substantial improvement in balancing specific sliding coefficients is found in this work.
Automatic differentiation algorithms in model analysis
Huiskes, M.J.
2002-01-01
Title: Automatic differentiation algorithms in model analysis
Author: M.J. Huiskes
Date: 19 March, 2002
In this thesis automatic differentiation algorithms and derivative-based methods
Results of Evolution Supervised by Genetic Algorithms
Directory of Open Access Journals (Sweden)
Lorentz JÄNTSCHI
2010-09-01
Full Text Available The efficiency of a genetic algorithm is frequently assessed using a series of operators of evolution like crossover operators, mutation operators or other dynamic parameters. The present paper aimed to review the main results of evolution supervised by genetic algorithms used to identify solutions to agricultural and horticultural hard problems and to discuss the results of using a genetic algorithms on structure-activity relationships in terms of behavior of evolution supervised by genetic algorithms. A genetic algorithm had been developed and implemented in order to identify the optimal solution in term of estimation power of a multiple linear regression approach for structure-activity relationships. Three survival and three selection strategies (proportional, deterministic and tournament were investigated in order to identify the best survival-selection strategy able to lead to the model with higher estimation power. The Molecular Descriptors Family for structure characterization of a sample of 206 polychlorinated biphenyls with measured octanol-water partition coefficients was used as case study. Evolution using different selection and survival strategies proved to create populations of genotypes living in the evolution space with different diversity and variability. Under a series of criteria of comparisons these populations proved to be grouped and the groups were showed to be statistically different one to each other. The conclusions about genetic algorithm evolution according to a number of criteria were also highlighted.
Geometric differential evolution for combinatorial and programs spaces.
Moraglio, A; Togelius, J; Silva, S
2013-01-01
Geometric differential evolution (GDE) is a recently introduced formal generalization of traditional differential evolution (DE) that can be used to derive specific differential evolution algorithms for both continuous and combinatorial spaces retaining the same geometric interpretation of the dynamics of the DE search across representations. In this article, we first review the theory behind the GDE algorithm, then, we use this framework to formally derive specific GDE for search spaces associated with binary strings, permutations, vectors of permutations and genetic programs. The resulting algorithms are representation-specific differential evolution algorithms searching the target spaces by acting directly on their underlying representations. We present experimental results for each of the new algorithms on a number of well-known problems comprising NK-landscapes, TSP, and Sudoku, for binary strings, permutations, and vectors of permutations. We also present results for the regression, artificial ant, parity, and multiplexer problems within the genetic programming domain. Experiments show that overall the new DE algorithms are competitive with well-tuned standard search algorithms.
Parallel Algorithm Solves Coupled Differential Equations
Hayashi, A.
1987-01-01
Numerical methods adapted to concurrent processing. Algorithm solves set of coupled partial differential equations by numerical integration. Adapted to run on hypercube computer, algorithm separates problem into smaller problems solved concurrently. Increase in computing speed with concurrent processing over that achievable with conventional sequential processing appreciable, especially for large problems.
Directory of Open Access Journals (Sweden)
Yamina BOUGHARI
2017-06-01
Full Text Available Setting the appropriate controllers for aircraft stability and control augmentation systems are complicated and time consuming tasks. As in the Linear Quadratic Regulator method gains are found by selecting the appropriate weights or as in the Proportional Integrator Derivative control by tuning gains. A trial and error process is usually employed for the determination of weighting matrices, which is normally a time consuming procedure. Flight Control Law were optimized and designed by combining the Deferential Evolution algorithm, the Linear Quadratic Regulator method, and the Proportional Integral controller. The optimal controllers were used to reach satisfactory aircraft’s dynamic and safe flight operations with respect to the augmentation systems’ handling qualities, and design requirements for different flight conditions. Furthermore the design and the clearance of the controllers over the flight envelope were automated using a Graphical User Interface, which offers to the designer, the flexibility to change the design requirements. In the aim of reducing time, and costs of the Flight Control Law design, one fitness function has been used for both optimizations, and using design requirements as constraints. Consequently the Flight Control Law design process complexity was reduced by using the meta-heuristic algorithm.
Algorithms For Integrating Nonlinear Differential Equations
Freed, A. D.; Walker, K. P.
1994-01-01
Improved algorithms developed for use in numerical integration of systems of nonhomogenous, nonlinear, first-order, ordinary differential equations. In comparison with integration algorithms, these algorithms offer greater stability and accuracy. Several asymptotically correct, thereby enabling retention of stability and accuracy when large increments of independent variable used. Accuracies attainable demonstrated by applying them to systems of nonlinear, first-order, differential equations that arise in study of viscoplastic behavior, spread of acquired immune-deficiency syndrome (AIDS) virus and predator/prey populations.
Institute of Scientific and Technical Information of China (English)
WANG; Shunjin; ZHANG; Hua
2006-01-01
The problem of preserving fidelity in numerical computation of nonlinear ordinary differential equations is studied in terms of preserving local differential structure and approximating global integration structure of the dynamical system.The ordinary differential equations are lifted to the corresponding partial differential equations in the framework of algebraic dynamics,and a new algorithm-algebraic dynamics algorithm is proposed based on the exact analytical solutions of the ordinary differential equations by the algebraic dynamics method.In the new algorithm,the time evolution of the ordinary differential system is described locally by the time translation operator and globally by the time evolution operator.The exact analytical piece-like solution of the ordinary differential equations is expressd in terms of Taylor series with a local convergent radius,and its finite order truncation leads to the new numerical algorithm with a controllable precision better than Runge Kutta Algorithm and Symplectic Geometric Algorithm.
Automatic Clustering Using FSDE-Forced Strategy Differential Evolution
Yasid, A.
2018-01-01
Clustering analysis is important in datamining for unsupervised data, cause no adequate prior knowledge. One of the important tasks is defining the number of clusters without user involvement that is known as automatic clustering. This study intends on acquiring cluster number automatically utilizing forced strategy differential evolution (AC-FSDE). Two mutation parameters, namely: constant parameter and variable parameter are employed to boost differential evolution performance. Four well-known benchmark datasets were used to evaluate the algorithm. Moreover, the result is compared with other state of the art automatic clustering methods. The experiment results evidence that AC-FSDE is better or competitive with other existing automatic clustering algorithm.
Differential Evolution and Particle Swarm Optimization for Partitional Clustering
DEFF Research Database (Denmark)
Krink, Thiemo; Paterlini, Sandra
2006-01-01
for numerical optimisation, which are hardly known outside the search heuristics field, are particle swarm optimisation (PSO) and differential evolution (DE). The performance of GAs for a representative point evolution approach to clustering is compared with PSO and DE. The empirical results show that DE......Many partitional clustering algorithms based on genetic algorithms (GA) have been proposed to tackle the problem of finding the optimal partition of a data set. Very few studies considered alternative stochastic search heuristics other than GAs or simulated annealing. Two promising algorithms...
Aerodynamic Shape Optimization Using Hybridized Differential Evolution
Madavan, Nateri K.
2003-01-01
An aerodynamic shape optimization method that uses an evolutionary algorithm known at Differential Evolution (DE) in conjunction with various hybridization strategies is described. DE is a simple and robust evolutionary strategy that has been proven effective in determining the global optimum for several difficult optimization problems. Various hybridization strategies for DE are explored, including the use of neural networks as well as traditional local search methods. A Navier-Stokes solver is used to evaluate the various intermediate designs and provide inputs to the hybrid DE optimizer. The method is implemented on distributed parallel computers so that new designs can be obtained within reasonable turnaround times. Results are presented for the inverse design of a turbine airfoil from a modern jet engine. (The final paper will include at least one other aerodynamic design application). The capability of the method to search large design spaces and obtain the optimal airfoils in an automatic fashion is demonstrated.
Differential evolution based method for total transfer capability ...
African Journals Online (AJOL)
The application of Differential Evolution (DE) to compute the Total Transfer Capability (TTC) in deregulated market is proposed in this paper. The objective is to maximize a specific point-to-point power transaction without violating system constraints using DE. This algorithm is based on full ac optimal power flow solution to ...
Differential Evolution for Many-Particle Adaptive Quantum Metrology
Lovett, N.B.; Crosnier, C.; Perarnau- Llobet, M.; Sanders, B.
2013-01-01
We devise powerful algorithms based on differential evolution for adaptive many-particle quantum metrology. Our new approach delivers adaptive quantum metrology policies for feedback control that are orders-of-magnitude more efficient and surpass the few-dozen-particle limitation arising in methods
High-order quantum algorithm for solving linear differential equations
International Nuclear Information System (INIS)
Berry, Dominic W
2014-01-01
Linear differential equations are ubiquitous in science and engineering. Quantum computers can simulate quantum systems, which are described by a restricted type of linear differential equations. Here we extend quantum simulation algorithms to general inhomogeneous sparse linear differential equations, which describe many classical physical systems. We examine the use of high-order methods (where the error over a time step is a high power of the size of the time step) to improve the efficiency. These provide scaling close to Δt 2 in the evolution time Δt. As with other algorithms of this type, the solution is encoded in amplitudes of the quantum state, and it is possible to extract global features of the solution. (paper)
Exponentially Convergent Algorithms for Abstract Differential Equations
Gavrilyuk, Ivan; Vasylyk, Vitalii
2011-01-01
This book presents new accurate and efficient exponentially convergent methods for abstract differential equations with unbounded operator coefficients in Banach space. These methods are highly relevant for the practical scientific computing since the equations under consideration can be seen as the meta-models of systems of ordinary differential equations (ODE) as well as the partial differential equations (PDEs) describing various applied problems. The framework of functional analysis allows one to obtain very general but at the same time transparent algorithms and mathematical results which
Differential evolution-simulated annealing for multiple sequence alignment
Addawe, R. C.; Addawe, J. M.; Sueño, M. R. K.; Magadia, J. C.
2017-10-01
Multiple sequence alignments (MSA) are used in the analysis of molecular evolution and sequence structure relationships. In this paper, a hybrid algorithm, Differential Evolution - Simulated Annealing (DESA) is applied in optimizing multiple sequence alignments (MSAs) based on structural information, non-gaps percentage and totally conserved columns. DESA is a robust algorithm characterized by self-organization, mutation, crossover, and SA-like selection scheme of the strategy parameters. Here, the MSA problem is treated as a multi-objective optimization problem of the hybrid evolutionary algorithm, DESA. Thus, we name the algorithm as DESA-MSA. Simulated sequences and alignments were generated to evaluate the accuracy and efficiency of DESA-MSA using different indel sizes, sequence lengths, deletion rates and insertion rates. The proposed hybrid algorithm obtained acceptable solutions particularly for the MSA problem evaluated based on the three objectives.
Modelling Evolutionary Algorithms with Stochastic Differential Equations.
Heredia, Jorge Pérez
2017-11-20
There has been renewed interest in modelling the behaviour of evolutionary algorithms (EAs) by more traditional mathematical objects, such as ordinary differential equations or Markov chains. The advantage is that the analysis becomes greatly facilitated due to the existence of well established methods. However, this typically comes at the cost of disregarding information about the process. Here, we introduce the use of stochastic differential equations (SDEs) for the study of EAs. SDEs can produce simple analytical results for the dynamics of stochastic processes, unlike Markov chains which can produce rigorous but unwieldy expressions about the dynamics. On the other hand, unlike ordinary differential equations (ODEs), they do not discard information about the stochasticity of the process. We show that these are especially suitable for the analysis of fixed budget scenarios and present analogues of the additive and multiplicative drift theorems from runtime analysis. In addition, we derive a new more general multiplicative drift theorem that also covers non-elitist EAs. This theorem simultaneously allows for positive and negative results, providing information on the algorithm's progress even when the problem cannot be optimised efficiently. Finally, we provide results for some well-known heuristics namely Random Walk (RW), Random Local Search (RLS), the (1+1) EA, the Metropolis Algorithm (MA), and the Strong Selection Weak Mutation (SSWM) algorithm.
New Parallel Algorithms for Landscape Evolution Model
Jin, Y.; Zhang, H.; Shi, Y.
2017-12-01
Most landscape evolution models (LEM) developed in the last two decades solve the diffusion equation to simulate the transportation of surface sediments. This numerical approach is difficult to parallelize due to the computation of drainage area for each node, which needs huge amount of communication if run in parallel. In order to overcome this difficulty, we developed two parallel algorithms for LEM with a stream net. One algorithm handles the partition of grid with traditional methods and applies an efficient global reduction algorithm to do the computation of drainage areas and transport rates for the stream net; the other algorithm is based on a new partition algorithm, which partitions the nodes in catchments between processes first, and then partitions the cells according to the partition of nodes. Both methods focus on decreasing communication between processes and take the advantage of massive computing techniques, and numerical experiments show that they are both adequate to handle large scale problems with millions of cells. We implemented the two algorithms in our program based on the widely used finite element library deal.II, so that it can be easily coupled with ASPECT.
Many-Objective Distinct Candidates Optimization using Differential Evolution
DEFF Research Database (Denmark)
Justesen, Peter; Ursem, Rasmus Kjær
2010-01-01
for each objective. The Many-Objective Distinct Candidates Optimization using Differential Evolution (MODCODE) algorithm takes a novel approach by focusing search using a user-defined number of subpopulations each returning a distinct optimal solution within the preferred region of interest. In this paper......, we present the novel MODCODE algorithm incorporating the ROD measure to measure and control candidate distinctiveness. MODCODE is tested against GDE3 on three real world centrifugal pump design problems supplied by Grundfos. Our algorithm outperforms GDE3 on all problems with respect to all...
Design of Test Wrapper Scan Chain Based on Differential Evolution
Directory of Open Access Journals (Sweden)
Aijun Zhu
2013-08-01
Full Text Available Integrated Circuit has entered the era of design of the IP-based SoC (System on Chip, which makes the IP core reuse become a key issue. SoC test wrapper design for scan chain is a NP Hard problem, we propose an algorithm based on Differential Evolution (DE to design wrapper scan chain. Through group’s mutation, crossover and selection operations, the design of test wrapper scan chain is achieved. Experimental verification is carried out according to the international standard benchmark ITC’02. The results show that the algorithm can obtain shorter longest wrapper scan chains, compared with other algorithms.
An algorithm of computing inhomogeneous differential equations for definite integrals
Nakayama, Hiromasa; Nishiyama, Kenta
2010-01-01
We give an algorithm to compute inhomogeneous differential equations for definite integrals with parameters. The algorithm is based on the integration algorithm for $D$-modules by Oaku. Main tool in the algorithm is the Gr\\"obner basis method in the ring of differential operators.
Efficient receiver tuning using differential evolution strategies
Wheeler, Caleb H.; Toland, Trevor G.
2016-08-01
Differential evolution (DE) is a powerful and computationally inexpensive optimization strategy that can be used to search an entire parameter space or to converge quickly on a solution. The Kilopixel Array Pathfinder Project (KAPPa) is a heterodyne receiver system delivering 5 GHz of instantaneous bandwidth in the tuning range of 645-695 GHz. The fully automated KAPPa receiver test system finds optimal receiver tuning using performance feedback and DE. We present an adaptation of DE for use in rapid receiver characterization. The KAPPa DE algorithm is written in Python 2.7 and is fully integrated with the KAPPa instrument control, data processing, and visualization code. KAPPa develops the technologies needed to realize heterodyne focal plane arrays containing 1000 pixels. Finding optimal receiver tuning by investigating large parameter spaces is one of many challenges facing the characterization phase of KAPPa. This is a difficult task via by-hand techniques. Characterizing or tuning in an automated fashion without need for human intervention is desirable for future large scale arrays. While many optimization strategies exist, DE is ideal for time and performance constraints because it can be set to converge to a solution rapidly with minimal computational overhead. We discuss how DE is utilized in the KAPPa system and discuss its performance and look toward the future of 1000 pixel array receivers and consider how the KAPPa DE system might be applied.
An Efficient Binary Differential Evolution with Parameter Adaptation
Directory of Open Access Journals (Sweden)
Dongli Jia
2013-04-01
Full Text Available Differential Evolution (DE has been applied to many scientific and engineering problems for its simplicity and efficiency. However, the standard DE cannot be used in a binary search space directly. This paper proposes an adaptive binary Differential Evolution algorithm, or ABDE, that has a similar framework as the standard DE but with an improved binary mutation strategy in which the best individual participates. To further enhance the search ability, the parameters of the ABDE are slightly disturbed in an adaptive manner. Experiments have been carried out by comparing ABDE with two binary DE variants, normDE and BDE, and the most used binary search technique, GA, on a set of 13 selected benchmark functions and the classical 0-1 knapsack problem. Results show that the ABDE performs better than, or at least comparable to, the other algorithms in terms of search ability, convergence speed, and solution accuracy.
The Cellular Differential Evolution Based on Chaotic Local Search
Directory of Open Access Journals (Sweden)
Qingfeng Ding
2015-01-01
Full Text Available To avoid immature convergence and tune the selection pressure in the differential evolution (DE algorithm, a new differential evolution algorithm based on cellular automata and chaotic local search (CLS or ccDE is proposed. To balance the exploration and exploitation tradeoff of differential evolution, the interaction among individuals is limited in cellular neighbors instead of controlling parameters in the canonical DE. To improve the optimizing performance of DE, the CLS helps by exploring a large region to avoid immature convergence in the early evolutionary stage and exploiting a small region to refine the final solutions in the later evolutionary stage. What is more, to improve the convergence characteristics and maintain the population diversity, the binomial crossover operator in the canonical DE may be instead by the orthogonal crossover operator without crossover rate. The performance of ccDE is widely evaluated on a set of 14 bound constrained numerical optimization problems compared with the canonical DE and several DE variants. The simulation results show that ccDE has better performances in terms of convergence rate and solution accuracy than other optimizers.
Algorithmic Verification of Linearizability for Ordinary Differential Equations
Lyakhov, Dmitry A.; Gerdt, Vladimir P.; Michels, Dominik L.
2017-01-01
one by a point transformation of the dependent and independent variables. The first algorithm is based on a construction of the Lie point symmetry algebra and on the computation of its derived algebra. The second algorithm exploits the differential
Harmony Search Based Parameter Ensemble Adaptation for Differential Evolution
Directory of Open Access Journals (Sweden)
Rammohan Mallipeddi
2013-01-01
Full Text Available In differential evolution (DE algorithm, depending on the characteristics of the problem at hand and the available computational resources, different strategies combined with a different set of parameters may be effective. In addition, a single, well-tuned combination of strategies and parameters may not guarantee optimal performance because different strategies combined with different parameter settings can be appropriate during different stages of the evolution. Therefore, various adaptive/self-adaptive techniques have been proposed to adapt the DE strategies and parameters during the course of evolution. In this paper, we propose a new parameter adaptation technique for DE based on ensemble approach and harmony search algorithm (HS. In the proposed method, an ensemble of parameters is randomly sampled which form the initial harmony memory. The parameter ensemble evolves during the course of the optimization process by HS algorithm. Each parameter combination in the harmony memory is evaluated by testing them on the DE population. The performance of the proposed adaptation method is evaluated using two recently proposed strategies (DE/current-to-pbest/bin and DE/current-to-gr_best/bin as basic DE frameworks. Numerical results demonstrate the effectiveness of the proposed adaptation technique compared to the state-of-the-art DE based algorithms on a set of challenging test problems (CEC 2005.
An Enhanced Differential Evolution with Elite Chaotic Local Search
Directory of Open Access Journals (Sweden)
Zhaolu Guo
2015-01-01
Full Text Available Differential evolution (DE is a simple yet efficient evolutionary algorithm for real-world engineering problems. However, its search ability should be further enhanced to obtain better solutions when DE is applied to solve complex optimization problems. This paper presents an enhanced differential evolution with elite chaotic local search (DEECL. In DEECL, it utilizes a chaotic search strategy based on the heuristic information from the elite individuals to promote the exploitation power. Moreover, DEECL employs a simple and effective parameter adaptation mechanism to enhance the robustness. Experiments are conducted on a set of classical test functions. The experimental results show that DEECL is very competitive on the majority of the test functions.
Battery parameterisation based on differential evolution via a boundary evolution strategy
DEFF Research Database (Denmark)
Yang, Guangya
2013-01-01
the advances of evolutionary algorithms (EAs). Differential evolution (DE) is selected and modified to parameterise an equivalent circuit model of lithium-ion batteries. A boundary evolution strategy (BES) is developed and incorporated into the DE to update the parameter boundaries during the parameterisation......, as the equivalent circuit model is an abstract map of the battery electric characteristics, the determination of the possible ranges of parameters can be a challenging task. In this paper, an efficient yet easy to implement method is proposed to parameterise the equivalent circuit model of batteries utilising...
Galois theory and algorithms for linear differential equations
Put, Marius van der
2005-01-01
This paper is an informal introduction to differential Galois theory. It surveys recent work on differential Galois groups, related algorithms and some applications. (c) 2005 Elsevier Ltd. All rights reserved.
Gradient Evolution-based Support Vector Machine Algorithm for Classification
Zulvia, Ferani E.; Kuo, R. J.
2018-03-01
This paper proposes a classification algorithm based on a support vector machine (SVM) and gradient evolution (GE) algorithms. SVM algorithm has been widely used in classification. However, its result is significantly influenced by the parameters. Therefore, this paper aims to propose an improvement of SVM algorithm which can find the best SVMs’ parameters automatically. The proposed algorithm employs a GE algorithm to automatically determine the SVMs’ parameters. The GE algorithm takes a role as a global optimizer in finding the best parameter which will be used by SVM algorithm. The proposed GE-SVM algorithm is verified using some benchmark datasets and compared with other metaheuristic-based SVM algorithms. The experimental results show that the proposed GE-SVM algorithm obtains better results than other algorithms tested in this paper.
GPU-accelerated adjoint algorithmic differentiation
Gremse, Felix; Höfter, Andreas; Razik, Lukas; Kiessling, Fabian; Naumann, Uwe
2016-03-01
Many scientific problems such as classifier training or medical image reconstruction can be expressed as minimization of differentiable real-valued cost functions and solved with iterative gradient-based methods. Adjoint algorithmic differentiation (AAD) enables automated computation of gradients of such cost functions implemented as computer programs. To backpropagate adjoint derivatives, excessive memory is potentially required to store the intermediate partial derivatives on a dedicated data structure, referred to as the ;tape;. Parallelization is difficult because threads need to synchronize their accesses during taping and backpropagation. This situation is aggravated for many-core architectures, such as Graphics Processing Units (GPUs), because of the large number of light-weight threads and the limited memory size in general as well as per thread. We show how these limitations can be mediated if the cost function is expressed using GPU-accelerated vector and matrix operations which are recognized as intrinsic functions by our AAD software. We compare this approach with naive and vectorized implementations for CPUs. We use four increasingly complex cost functions to evaluate the performance with respect to memory consumption and gradient computation times. Using vectorization, CPU and GPU memory consumption could be substantially reduced compared to the naive reference implementation, in some cases even by an order of complexity. The vectorization allowed usage of optimized parallel libraries during forward and reverse passes which resulted in high speedups for the vectorized CPU version compared to the naive reference implementation. The GPU version achieved an additional speedup of 7.5 ± 4.4, showing that the processing power of GPUs can be utilized for AAD using this concept. Furthermore, we show how this software can be systematically extended for more complex problems such as nonlinear absorption reconstruction for fluorescence-mediated tomography.
Differential evolution optimization combined with chaotic sequences for image contrast enhancement
Energy Technology Data Exchange (ETDEWEB)
Santos Coelho, Leandro dos [Industrial and Systems Engineering Graduate Program, LAS/PPGEPS, Pontifical Catholic University of Parana, PUCPR Imaculada Conceicao, 1155, 80215-901 Curitiba, Parana (Brazil)], E-mail: leandro.coelho@pucpr.br; Sauer, Joao Guilherme [Industrial and Systems Engineering Graduate Program, LAS/PPGEPS, Pontifical Catholic University of Parana, PUCPR Imaculada Conceicao, 1155, 80215-901 Curitiba, Parana (Brazil)], E-mail: joao.sauer@gmail.com; Rudek, Marcelo [Industrial and Systems Engineering Graduate Program, LAS/PPGEPS, Pontifical Catholic University of Parana, PUCPR Imaculada Conceicao, 1155, 80215-901 Curitiba, Parana (Brazil)], E-mail: marcelo.rudek@pucpr.br
2009-10-15
Evolutionary Algorithms (EAs) are stochastic and robust meta-heuristics of evolutionary computation field useful to solve optimization problems in image processing applications. Recently, as special mechanism to avoid being trapped in local minimum, the ergodicity property of chaotic sequences has been used in various designs of EAs. Three differential evolution approaches based on chaotic sequences using logistic equation for image enhancement process are proposed in this paper. Differential evolution is a simple yet powerful evolutionary optimization algorithm that has been successfully used in solving continuous problems. The proposed chaotic differential evolution schemes have fast convergence rate but also maintain the diversity of the population so as to escape from local optima. In this paper, the image contrast enhancement is approached as a constrained nonlinear optimization problem. The objective of the proposed chaotic differential evolution schemes is to maximize the fitness criterion in order to enhance the contrast and detail in the image by adapting the parameters using a contrast enhancement technique. The proposed chaotic differential evolution schemes are compared with classical differential evolution to two testing images. Simulation results on three images show that the application of chaotic sequences instead of random sequences is a possible strategy to improve the performance of classical differential evolution optimization algorithm.
Yamina BOUGHARI; Georges GHAZI; Ruxandra Mihaela BOTEZ; Florian THEEL
2017-01-01
In this paper the Cessna Citation X clearance criteria were evaluated for a new Flight Controller. The Flight Control Law were optimized and designed for the Cessna Citation X flight envelope by combining the Deferential Evolution algorithm, the Linear Quadratic Regulator method, and the Proportional Integral controller during a previous research presented in part 1. The optimal controllers were used to reach satisfactory aircraft’s dynamic and safe flight operations with respect to the augme...
Kernel Clustering with a Differential Harmony Search Algorithm for Scheme Classification
Directory of Open Access Journals (Sweden)
Yu Feng
2017-01-01
Full Text Available This paper presents a kernel fuzzy clustering with a novel differential harmony search algorithm to coordinate with the diversion scheduling scheme classification. First, we employed a self-adaptive solution generation strategy and differential evolution-based population update strategy to improve the classical harmony search. Second, we applied the differential harmony search algorithm to the kernel fuzzy clustering to help the clustering method obtain better solutions. Finally, the combination of the kernel fuzzy clustering and the differential harmony search is applied for water diversion scheduling in East Lake. A comparison of the proposed method with other methods has been carried out. The results show that the kernel clustering with the differential harmony search algorithm has good performance to cooperate with the water diversion scheduling problems.
Institute of Scientific and Technical Information of China (English)
彭春华; 相龙阳; 刘刚; 易洪京
2012-01-01
Output control of wind turbines is the key item in the operation of wind farm. In view of complicated relations among wind turbine output, wind speed and blade pitch angle, it is hard to establish a versatile and accurate mathematical model. For this reason, a new mode to optimize wind turbine output is proposed： firstly a model for nonlinear fitting between wind turbine output and operational parameters is built; then based on the built model and the variation of wind speed and adopting the high-efficient differential evolution algorithm, the blade pitch angle of wind turbine is optimized fast and dynamically. Using the proposed method, the dynamic relation between wind speed and optimal blade pitch angle can be established. Simulation results of the proposed method show that the output of wind turbine can be effectively uprated, thus the feasibility of the proposed method is verified.%风电机出力控制是风电场运行过程中的一个关键问题。针对风电机出力与风速和桨距角之间存在非常复杂的关系，很难建立通用准确的数学模型，提出了一种新的风电机出力优化模式，即首先通过支持向量机算法建立风电机出力与运行参数之间的非线性拟合模型，并基于此模型和风速的变化，采用高效的微分进化算法对风力机桨距角进行快速动态优化，从而实现风电机出力最大化。以鄱阳湖长岭风电场风电机组实际运行数据进行了仿真应用与分析。结果表明通过优化风力机桨距角可有效地提高风电机出力，验证了文中方法的可行性和优越性。采用文中方法可准确建立风速与最优桨距角的动态对应关系，为风电机的优化运行提供了科学的指导。
International Nuclear Information System (INIS)
Zhang Huifeng; Zhou Jianzhong; Zhang Yongchuan; Lu Youlin; Wang Yongqiang
2013-01-01
Highlights: ► Culture belief is integrated into multi-objective differential evolution. ► Chaotic sequence is imported to improve evolutionary population diversity. ► The priority of convergence rate is proved in solving hydrothermal problem. ► The results show the quality and potential of proposed algorithm. - Abstract: A culture belief based multi-objective hybrid differential evolution (CB-MOHDE) is presented to solve short term hydrothermal optimal scheduling with economic emission (SHOSEE) problem. This problem is formulated for compromising thermal cost and emission issue while considering its complicated non-linear constraints with non-smooth and non-convex characteristics. The proposed algorithm integrates a modified multi-objective differential evolutionary algorithm into the computation model of culture algorithm (CA) as well as some communication protocols between population space and belief space, three knowledge structures in belief space are redefined according to these problem-solving characteristics, and in the differential evolution a chaotic factor is embedded into mutation operator for avoiding the premature convergence by enlarging the search scale when the search trajectory reaches local optima. Furthermore, a new heuristic constraint-handling technique is utilized to handle those complex equality and inequality constraints of SHOSEE problem. After the application on hydrothermal scheduling system, the efficiency and stability of the proposed CB-MOHDE is verified by its more desirable results in comparison to other method established recently, and the simulation results also reveal that CB-MOHDE can be a promising alternative for solving SHOSEE.
Algorithmic Verification of Linearizability for Ordinary Differential Equations
Lyakhov, Dmitry A.
2017-07-19
For a nonlinear ordinary differential equation solved with respect to the highest order derivative and rational in the other derivatives and in the independent variable, we devise two algorithms to check if the equation can be reduced to a linear one by a point transformation of the dependent and independent variables. The first algorithm is based on a construction of the Lie point symmetry algebra and on the computation of its derived algebra. The second algorithm exploits the differential Thomas decomposition and allows not only to test the linearizability, but also to generate a system of nonlinear partial differential equations that determines the point transformation and the coefficients of the linearized equation. The implementation of both algorithms is discussed and their application is illustrated using several examples.
Differential evolution enhanced with multiobjective sorting-based mutation operators.
Wang, Jiahai; Liao, Jianjun; Zhou, Ying; Cai, Yiqiao
2014-12-01
Differential evolution (DE) is a simple and powerful population-based evolutionary algorithm. The salient feature of DE lies in its mutation mechanism. Generally, the parents in the mutation operator of DE are randomly selected from the population. Hence, all vectors are equally likely to be selected as parents without selective pressure at all. Additionally, the diversity information is always ignored. In order to fully exploit the fitness and diversity information of the population, this paper presents a DE framework with multiobjective sorting-based mutation operator. In the proposed mutation operator, individuals in the current population are firstly sorted according to their fitness and diversity contribution by nondominated sorting. Then parents in the mutation operators are proportionally selected according to their rankings based on fitness and diversity, thus, the promising individuals with better fitness and diversity have more opportunity to be selected as parents. Since fitness and diversity information is simultaneously considered for parent selection, a good balance between exploration and exploitation can be achieved. The proposed operator is applied to original DE algorithms, as well as several advanced DE variants. Experimental results on 48 benchmark functions and 12 real-world application problems show that the proposed operator is an effective approach to enhance the performance of most DE algorithms studied.
Low dose reconstruction algorithm for differential phase contrast imaging.
Wang, Zhentian; Huang, Zhifeng; Zhang, Li; Chen, Zhiqiang; Kang, Kejun; Yin, Hongxia; Wang, Zhenchang; Marco, Stampanoni
2011-01-01
Differential phase contrast imaging computed tomography (DPCI-CT) is a novel x-ray inspection method to reconstruct the distribution of refraction index rather than the attenuation coefficient in weakly absorbing samples. In this paper, we propose an iterative reconstruction algorithm for DPCI-CT which benefits from the new compressed sensing theory. We first realize a differential algebraic reconstruction technique (DART) by discretizing the projection process of the differential phase contrast imaging into a linear partial derivative matrix. In this way the compressed sensing reconstruction problem of DPCI reconstruction can be transformed to a resolved problem in the transmission imaging CT. Our algorithm has the potential to reconstruct the refraction index distribution of the sample from highly undersampled projection data. Thus it can significantly reduce the dose and inspection time. The proposed algorithm has been validated by numerical simulations and actual experiments.
Differential Evolution between Monotocous and Polytocous Species
Directory of Open Access Journals (Sweden)
Hyeonju Ahn
2014-04-01
Full Text Available One of the most important traits for both animal science and livestock production is the number of offspring for a species. This study was performed to identify differentially evolved genes and their distinct functions that influence the number of offspring at birth by comparative analysis of eight monotocous mammals and seven polytocous mammals in a number of scopes: specific amino acid substitution with site-wise adaptive evolution, gene expansion and specific orthologous group. The mutually exclusive amino acid substitution among the 16 mammalian species identified five candidate genes. These genes were both directly and indirectly related to ovulation. Furthermore, in monotocous mammals, the EPH gene family was found to have undergone expansion. Previously, the EPHA4 gene was found to positively affect litter size in pigs and supports the possibility of the EPH gene playing a role in determining the number of offspring per birth. The identified genes in this study offer a basis from which the differences between monotocous and polytocous species can be studied. Furthermore, these genes may harbor some clues to the underlying mechanism, which determines litter size and may prove useful for livestock breeding strategies.
Directory of Open Access Journals (Sweden)
Longquan Yong
2012-01-01
Full Text Available Harmony search (HS method is an emerging metaheuristic optimization algorithm. In this paper, an improved harmony search method based on differential mutation operator (IHSDE is proposed to deal with the optimization problems. Since the population diversity plays an important role in the behavior of evolution algorithm, the aim of this paper is to calculate the expected population mean and variance of IHSDE from theoretical viewpoint. Numerical results, compared with the HSDE, NGHS, show that the IHSDE method has good convergence property over a test-suite of well-known benchmark functions.
Differential harmony search algorithm to optimize PWRs loading pattern
Energy Technology Data Exchange (ETDEWEB)
Poursalehi, N., E-mail: npsalehi@yahoo.com [Engineering Department, Shahid Beheshti University, G.C, P.O.Box: 1983963113, Tehran (Iran, Islamic Republic of); Zolfaghari, A.; Minuchehr, A. [Engineering Department, Shahid Beheshti University, G.C, P.O.Box: 1983963113, Tehran (Iran, Islamic Republic of)
2013-04-15
Highlights: ► Exploit of DHS algorithm in LP optimization reveals its flexibility, robustness and reliability. ► Upshot of our experiments with DHS shows that the search approach to optimal LP is quickly. ► On the average, the final band width of DHS fitness values is narrow relative to HS and GHS. -- Abstract: The objective of this work is to develop a core loading optimization technique using differential harmony search algorithm in the context of obtaining an optimal configuration of fuel assemblies in pressurized water reactors. To implement and evaluate the proposed technique, differential harmony search nodal expansion package for 2-D geometry, DHSNEP-2D, is developed. The package includes two modules; in the first modules differential harmony search (DHS) is implemented and nodal expansion code which solves two dimensional-multi group neutron diffusion equations using fourth degree flux expansion with one node per a fuel assembly is in the second module. For evaluation of DHS algorithm, classical harmony search (HS) and global-best harmony search (GHS) algorithms are also included in DHSNEP-2D in order to compare the outcome of techniques together. For this purpose, two PWR test cases have been investigated to demonstrate the DHS algorithm capability in obtaining near optimal loading pattern. Results show that the convergence rate of DHS and execution times are quite promising and also is reliable for the fuel management operation. Moreover, numerical results show the good performance of DHS relative to other competitive algorithms such as genetic algorithm (GA), classical harmony search (HS) and global-best harmony search (GHS) algorithms.
Differential harmony search algorithm to optimize PWRs loading pattern
International Nuclear Information System (INIS)
Poursalehi, N.; Zolfaghari, A.; Minuchehr, A.
2013-01-01
Highlights: ► Exploit of DHS algorithm in LP optimization reveals its flexibility, robustness and reliability. ► Upshot of our experiments with DHS shows that the search approach to optimal LP is quickly. ► On the average, the final band width of DHS fitness values is narrow relative to HS and GHS. -- Abstract: The objective of this work is to develop a core loading optimization technique using differential harmony search algorithm in the context of obtaining an optimal configuration of fuel assemblies in pressurized water reactors. To implement and evaluate the proposed technique, differential harmony search nodal expansion package for 2-D geometry, DHSNEP-2D, is developed. The package includes two modules; in the first modules differential harmony search (DHS) is implemented and nodal expansion code which solves two dimensional-multi group neutron diffusion equations using fourth degree flux expansion with one node per a fuel assembly is in the second module. For evaluation of DHS algorithm, classical harmony search (HS) and global-best harmony search (GHS) algorithms are also included in DHSNEP-2D in order to compare the outcome of techniques together. For this purpose, two PWR test cases have been investigated to demonstrate the DHS algorithm capability in obtaining near optimal loading pattern. Results show that the convergence rate of DHS and execution times are quite promising and also is reliable for the fuel management operation. Moreover, numerical results show the good performance of DHS relative to other competitive algorithms such as genetic algorithm (GA), classical harmony search (HS) and global-best harmony search (GHS) algorithms
Directory of Open Access Journals (Sweden)
Yamina BOUGHARI
2017-06-01
Full Text Available In this paper the Cessna Citation X clearance criteria were evaluated for a new Flight Controller. The Flight Control Law were optimized and designed for the Cessna Citation X flight envelope by combining the Deferential Evolution algorithm, the Linear Quadratic Regulator method, and the Proportional Integral controller during a previous research presented in part 1. The optimal controllers were used to reach satisfactory aircraft’s dynamic and safe flight operations with respect to the augmentation systems’ handling qualities, and design requirements. Furthermore the number of controllers used to control the aircraft in its flight envelope was optimized using the Linear Fractional Representations features. To validate the controller over the whole aircraft flight envelope, the linear stability, eigenvalue, and handling qualities criteria in addition of the nonlinear analysis criteria were investigated during this research to assess the business aircraft for flight control clearance and certification. The optimized gains provide a very good stability margins as the eigenvalue analysis shows that the aircraft has a high stability, and a very good flying qualities of the linear aircraft models are ensured in its entire flight envelope, its robustness is demonstrated with respect to uncertainties due to its mass and center of gravity variations.
Evolution of Strategies for "Prisoner's Dilemma" using Genetic Algorithm
Heinz, Jan
2010-01-01
The subject of this thesis is the software application "Prisoner's Dilemma". The program creates a population of players of "Prisoner's Dilemma", has them play against each other, and - based on their results - performs an evolution of their strategies by means of a genetic algorithm (selection, mutation, and crossover). The program was written in Microsoft Visual Studio, in the C++ programming language, and its interface makes use of the .NET Framework. The thesis includes examples of strate...
Directory of Open Access Journals (Sweden)
Eman Ali Hussain
2015-01-01
Full Text Available Absract In this project A new method for solving Stochastic Differential Equations SDEs deriving by Wiener process numerically will be construct and implement using Accelerated Genetic Algorithm AGA. An SDE is a differential equation in which one or more of the terms and hence the solutions itself is a stochastic process. Solving stochastic differential equations requires going away from the recognizable deterministic setting of ordinary and partial differential equations into a world where the evolution of a quantity has an inherent random component and where the expected behavior of this quantity can be described in terms of probability distributions. We applied our method on the Ito formula which is equivalent to the SDE to find approximation solution of the SDEs. Numerical experiments illustrate the behavior of the proposed method.
Optimization of wind farm turbines layout using an evolutive algorithm
International Nuclear Information System (INIS)
Gonzalez, Javier Serrano; Santos, Jesus Riquelme; Payan, Manuel Burgos; Gonzalez Rodriguez, Angel G.; Mora, Jose Castro
2010-01-01
The optimum wind farm configuration problem is discussed in this paper and an evolutive algorithm to optimize the wind farm layout is proposed. The algorithm's optimization process is based on a global wind farm cost model using the initial investment and the present value of the yearly net cash flow during the entire wind-farm life span. The proposed algorithm calculates the yearly income due to the sale of the net generated energy taking into account the individual wind turbine loss of production due to wake decay effects and it can deal with areas or terrains with non-uniform load-bearing capacity soil and different roughness length for every wind direction or restrictions such as forbidden areas or limitations in the number of wind turbines or the investment. The results are first favorably compared with those previously published and a second collection of test cases is used to proof the performance and suitability of the proposed evolutive algorithm to find the optimum wind farm configuration. (author)
Structure-preserving algorithms for oscillatory differential equations II
Wu, Xinyuan; Shi, Wei
2015-01-01
This book describes a variety of highly effective and efficient structure-preserving algorithms for second-order oscillatory differential equations. Such systems arise in many branches of science and engineering, and the examples in the book include systems from quantum physics, celestial mechanics and electronics. To accurately simulate the true behavior of such systems, a numerical algorithm must preserve as much as possible their key structural properties: time-reversibility, oscillation, symplecticity, and energy and momentum conservation. The book describes novel advances in RKN methods, ERKN methods, Filon-type asymptotic methods, AVF methods, and trigonometric Fourier collocation methods. The accuracy and efficiency of each of these algorithms are tested via careful numerical simulations, and their structure-preserving properties are rigorously established by theoretical analysis. The book also gives insights into the practical implementation of the methods. This book is intended for engineers and sc...
Förster, Michael
2014-01-01
Numerical programs often use parallel programming techniques such as OpenMP to compute the program's output values as efficient as possible. In addition, derivative values of these output values with respect to certain input values play a crucial role. To achieve code that computes not only the output values simultaneously but also the derivative values, this work introduces several source-to-source transformation rules. These rules are based on a technique called algorithmic differentiation. The main focus of this work lies on the important reverse mode of algorithmic differentiation. The inh
International Nuclear Information System (INIS)
Li Jing; Sun Yi; Zhu Peiping
2013-01-01
Differential phase-contrast computed tomography (DPC-CT) reconstruction problems are usually solved by using parallel-, fan- or cone-beam algorithms. For rod-shaped objects, the x-ray beams cannot recover all the slices of the sample at the same time. Thus, if a rod-shaped sample is required to be reconstructed by the above algorithms, one should alternately perform translation and rotation on this sample, which leads to lower efficiency. The helical cone-beam CT may significantly improve scanning efficiency for rod-shaped objects over other algorithms. In this paper, we propose a theoretically exact filter-backprojection algorithm for helical cone-beam DPC-CT, which can be applied to reconstruct the refractive index decrement distribution of the samples directly from two-dimensional differential phase-contrast images. Numerical simulations are conducted to verify the proposed algorithm. Our work provides a potential solution for inspecting the rod-shaped samples using DPC-CT, which may be applicable with the evolution of DPC-CT equipments. (paper)
Battery parameterisation based on differential evolution via a boundary evolution strategy
Yang, Guangya
2014-01-01
Attention has been given to the battery modelling in the electric engineering field following the current development of renewable energy and electrification of transportation. The establishment of the equivalent circuit model of the battery requires data preparation and parameterisation. Besides, as the equivalent circuit model is an abstract map of the battery electric characteristics, the determination of the possible ranges of parameters can be a challenging task. In this paper, an efficient yet easy to implement method is proposed to parameterise the equivalent circuit model of batteries utilising the advances of evolutionary algorithms (EAs). Differential evolution (DE) is selected and modified to parameterise an equivalent circuit model of lithium-ion batteries. A boundary evolution strategy (BES) is developed and incorporated into the DE to update the parameter boundaries during the parameterisation. The method can parameterise the model without extensive data preparation. In addition, the approach can also estimate the initial SOC and the available capacity. The efficiency of the approach is verified through two battery packs, one is an 8-cell battery module and one from an electrical vehicle.
On the adaptivity and complexity embedded into differential evolution
International Nuclear Information System (INIS)
Senkerik, Roman; Pluhacek, Michal; Jasek, Roman; Zelinka, Ivan
2016-01-01
This research deals with the comparison of the two modern approaches for evolutionary algorithms, which are the adaptivity and complex chaotic dynamics. This paper aims on the investigations on the chaos-driven Differential Evolution (DE) concept. This paper is aimed at the embedding of discrete dissipative chaotic systems in the form of chaotic pseudo random number generators for the DE and comparing the influence to the performance with the state of the art adaptive representative jDE. This research is focused mainly on the possible disadvantages and advantages of both compared approaches. Repeated simulations for Lozi map driving chaotic systems were performed on the simple benchmark functions set, which are more close to the real optimization problems. Obtained results are compared with the canonical not-chaotic and not adaptive DE. Results show that with used simple test functions, the performance of ChaosDE is better in the most cases than jDE and Canonical DE, furthermore due to the unique sequencing in CPRNG given by the hidden chaotic dynamics, thus better and faster selection of unique individuals from population, ChaosDE is faster.
On the adaptivity and complexity embedded into differential evolution
Senkerik, Roman; Pluhacek, Michal; Zelinka, Ivan; Jasek, Roman
2016-06-01
This research deals with the comparison of the two modern approaches for evolutionary algorithms, which are the adaptivity and complex chaotic dynamics. This paper aims on the investigations on the chaos-driven Differential Evolution (DE) concept. This paper is aimed at the embedding of discrete dissipative chaotic systems in the form of chaotic pseudo random number generators for the DE and comparing the influence to the performance with the state of the art adaptive representative jDE. This research is focused mainly on the possible disadvantages and advantages of both compared approaches. Repeated simulations for Lozi map driving chaotic systems were performed on the simple benchmark functions set, which are more close to the real optimization problems. Obtained results are compared with the canonical not-chaotic and not adaptive DE. Results show that with used simple test functions, the performance of ChaosDE is better in the most cases than jDE and Canonical DE, furthermore due to the unique sequencing in CPRNG given by the hidden chaotic dynamics, thus better and faster selection of unique individuals from population, ChaosDE is faster.
On the adaptivity and complexity embedded into differential evolution
Energy Technology Data Exchange (ETDEWEB)
Senkerik, Roman; Pluhacek, Michal; Jasek, Roman [Tomas Bata University in Zlin, Faculty of Applied Informatics, Nam T.G. Masaryka 5555, 760 01 Zlin, Czech Republic, senkerik@fai.utb.cz,pluhacek@fai.utb.cz (Czech Republic); Zelinka, Ivan [Technical University of Ostrava, Faculty of Electrical Engineering and Computer Science, 17. listopadu 15,708 33 Ostrava-Poruba, Czech Republic, ivan.zelinka@vsb.cz (Czech Republic)
2016-06-08
This research deals with the comparison of the two modern approaches for evolutionary algorithms, which are the adaptivity and complex chaotic dynamics. This paper aims on the investigations on the chaos-driven Differential Evolution (DE) concept. This paper is aimed at the embedding of discrete dissipative chaotic systems in the form of chaotic pseudo random number generators for the DE and comparing the influence to the performance with the state of the art adaptive representative jDE. This research is focused mainly on the possible disadvantages and advantages of both compared approaches. Repeated simulations for Lozi map driving chaotic systems were performed on the simple benchmark functions set, which are more close to the real optimization problems. Obtained results are compared with the canonical not-chaotic and not adaptive DE. Results show that with used simple test functions, the performance of ChaosDE is better in the most cases than jDE and Canonical DE, furthermore due to the unique sequencing in CPRNG given by the hidden chaotic dynamics, thus better and faster selection of unique individuals from population, ChaosDE is faster.
Directory of Open Access Journals (Sweden)
Roman Senkerik
2016-01-01
Full Text Available In this paper, evolutionary technique Differential Evolution (DE is used for the evolutionary tuning of controller parameters for the stabilization of selected discrete chaotic system, which is the two-dimensional Lozi map. The novelty of the approach is that the selected controlled discrete dissipative chaotic system is used within Chaos enhanced heuristic concept as the chaotic pseudo-random number generator to drive the mutation and crossover process in the DE. The idea was to utilize the hidden chaotic dynamics in pseudo-random sequences given by chaotic map to help Differential evolution algorithm in searching for the best controller settings for the same chaotic system. The optimizations were performed for three different required final behavior of the chaotic system, and two types of developed cost function. To confirm the robustness of presented approach, comparisons with canonical DE strategy and PSO algorithm have been performed.
International Nuclear Information System (INIS)
Zhu, Wu; Fang, Jian-an; Tang, Yang; Zhang, Wenbing; Xu, Yulong
2012-01-01
In this Letter, a differential evolution variant, called switching DE (SDE), has been employed to estimate the orders and parameters in incommensurate fractional-order chaotic systems. The proposed algorithm includes a switching population utilization strategy, where the population size is adjusted dynamically based on the solution-searching status. Thus, this adaptive control method realizes the identification of fractional-order Lorenz, Lü and Chen systems in both deterministic and stochastic environments, respectively. Numerical simulations are provided, where comparisons are made with five other State-of-the-Art evolutionary algorithms (EAs) to verify the effectiveness of the proposed method. -- Highlights: ► Switching population utilization strategy is applied for differential evolution. ► The parameters are estimated in both deterministic and stochastic environments. ► Comparisons with five other EAs verify the effectiveness of the proposed method.
Energy Technology Data Exchange (ETDEWEB)
Zhu, Wu, E-mail: dtzhuwu@gmail.com [College of Information Science and Technology, Donghua University, Shanghai 201620 (China); Fang, Jian-an [College of Information Science and Technology, Donghua University, Shanghai 201620 (China); Tang, Yang, E-mail: yang.tang@pik-potsdam.de [Institute of Physics, Humboldt University, Berlin 12489 (Germany); Potsdam Institute for Climate Impact Research, Potsdam 14415 (Germany); Research Institute for Intelligent Control and System, Harbin Institute of Technology, Harbin 150006 (China); Zhang, Wenbing [Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong (China); Xu, Yulong [College of Information Science and Technology, Donghua University, Shanghai 201620 (China)
2012-10-01
In this Letter, a differential evolution variant, called switching DE (SDE), has been employed to estimate the orders and parameters in incommensurate fractional-order chaotic systems. The proposed algorithm includes a switching population utilization strategy, where the population size is adjusted dynamically based on the solution-searching status. Thus, this adaptive control method realizes the identification of fractional-order Lorenz, Lü and Chen systems in both deterministic and stochastic environments, respectively. Numerical simulations are provided, where comparisons are made with five other State-of-the-Art evolutionary algorithms (EAs) to verify the effectiveness of the proposed method. -- Highlights: ► Switching population utilization strategy is applied for differential evolution. ► The parameters are estimated in both deterministic and stochastic environments. ► Comparisons with five other EAs verify the effectiveness of the proposed method.
DEFF Research Database (Denmark)
Bech, Michael Møller; Nørgård, Christian; Roemer, Daniel Beck
2016-01-01
This paper illustrates how the relatively simple constrained multi-objective optimization algorithm Generalized Differential Evolution 3 (GDE3), can assist with the practical sizing of mechatronic components used in e.g. digital displacement fluid power machinery. The studied bi- and tri-objectiv......This paper illustrates how the relatively simple constrained multi-objective optimization algorithm Generalized Differential Evolution 3 (GDE3), can assist with the practical sizing of mechatronic components used in e.g. digital displacement fluid power machinery. The studied bi- and tri...... different optimization control parameter settings and it is concluded that GDE3 is a reliable optimization tool that can assist mechatronic engineers in the design and decision making process....
Vinayaka : A Semi-Supervised Projected Clustering Method Using Differential Evolution
Satish Gajawada; Durga Toshniwal
2012-01-01
Differential Evolution (DE) is an algorithm for evolutionary optimization. Clustering problems have beensolved by using DE based clustering methods but these methods may fail to find clusters hidden insubspaces of high dimensional datasets. Subspace and projected clustering methods have been proposed inliterature to find subspace clusters that are present in subspaces of dataset. In this paper we proposeVINAYAKA, a semi-supervised projected clustering method based on DE. In this method DE opt...
Reliability-redundancy optimization by means of a chaotic differential evolution approach
International Nuclear Information System (INIS)
Coelho, Leandro dos Santos
2009-01-01
The reliability design is related to the performance analysis of many engineering systems. The reliability-redundancy optimization problems involve selection of components with multiple choices and redundancy levels that produce maximum benefits, can be subject to the cost, weight, and volume constraints. Classical mathematical methods have failed in handling nonconvexities and nonsmoothness in optimization problems. As an alternative to the classical optimization approaches, the meta-heuristics have been given much attention by many researchers due to their ability to find an almost global optimal solution in reliability-redundancy optimization problems. Evolutionary algorithms (EAs) - paradigms of evolutionary computation field - are stochastic and robust meta-heuristics useful to solve reliability-redundancy optimization problems. EAs such as genetic algorithm, evolutionary programming, evolution strategies and differential evolution are being used to find global or near global optimal solution. A differential evolution approach based on chaotic sequences using Lozi's map for reliability-redundancy optimization problems is proposed in this paper. The proposed method has a fast convergence rate but also maintains the diversity of the population so as to escape from local optima. An application example in reliability-redundancy optimization based on the overspeed protection system of a gas turbine is given to show its usefulness and efficiency. Simulation results show that the application of deterministic chaotic sequences instead of random sequences is a possible strategy to improve the performance of differential evolution.
Dynamics of the evolution of learning algorithms by selection
International Nuclear Information System (INIS)
Neirotti, Juan Pablo; Caticha, Nestor
2003-01-01
We study the evolution of artificial learning systems by means of selection. Genetic programming is used to generate populations of programs that implement algorithms used by neural network classifiers to learn a rule in a supervised learning scenario. In contrast to concentrating on final results, which would be the natural aim while designing good learning algorithms, we study the evolution process. Phenotypic and genotypic entropies, which describe the distribution of fitness and of symbols, respectively, are used to monitor the dynamics. We identify significant functional structures responsible for the improvements in the learning process. In particular, some combinations of variables and operators are useful in assessing performance in rule extraction and can thus implement annealing of the learning schedule. We also find combinations that can signal surprise, measured on a single example, by the difference between predicted and correct classification. When such favorable structures appear, they are disseminated on very short time scales throughout the population. Due to such abruptness they can be thought of as dynamical transitions. But foremost, we find a strict temporal order of such discoveries. Structures that measure performance are never useful before those for measuring surprise. Invasions of the population by such structures in the reverse order were never observed. Asymptotically, the generalization ability approaches Bayesian results
Directory of Open Access Journals (Sweden)
Guang-zhou Chen
2015-01-01
Full Text Available Parameter identification plays a crucial role for simulating and using model. This paper firstly carried out the sensitivity analysis of the 2-chlorophenol oxidation model in supercritical water using the Monte Carlo method. Then, to address the nonlinearity of the model, two improved differential search (DS algorithms were proposed to carry out the parameter identification of the model. One strategy is to adopt the Latin hypercube sampling method to replace the uniform distribution of initial population; the other is to combine DS with simplex method. The results of sensitivity analysis reveal the sensitivity and the degree of difficulty identified for every model parameter. Furthermore, the posteriori probability distribution of parameters and the collaborative relationship between any two parameters can be obtained. To verify the effectiveness of the improved algorithms, the optimization performance of improved DS in kinetic parameter estimation is studied and compared with that of the basic DS algorithm, differential evolution, artificial bee colony optimization, and quantum-behaved particle swarm optimization. And the experimental results demonstrate that the DS with the Latin hypercube sampling method does not present better performance, while the hybrid methods have the advantages of strong global search ability and local search ability and are more effective than the other algorithms.
Conical differentiability for evolution variational inequalities
Jarušek, Jiří; Krbec, Miroslav; Rao, Murali; Sokołowski, Jan
The conical differentiability of solutions to the parabolic variational inequality with respect to the right-hand side is proved in the paper. From one side the result is based on the Lipschitz continuity in H {1}/{2},1 (Q) of solutions to the variational inequality with respect to the right-hand side. On the other side, in view of the polyhedricity of the convex cone K={v∈ H;v |Σ c⩾0,v |Σ d=0}, we prove new results on sensitivity analysis of parabolic variational inequalities. Therefore, we have a positive answer to the question raised by Fulbert Mignot (J. Funct. Anal. 22 (1976) 25-32).
New Collaborative Filtering Algorithms Based on SVD++ and Differential Privacy
Directory of Open Access Journals (Sweden)
Zhengzheng Xian
2017-01-01
Full Text Available Collaborative filtering technology has been widely used in the recommender system, and its implementation is supported by the large amount of real and reliable user data from the big-data era. However, with the increase of the users’ information-security awareness, these data are reduced or the quality of the data becomes worse. Singular Value Decomposition (SVD is one of the common matrix factorization methods used in collaborative filtering, which introduces the bias information of users and items and is realized by using algebraic feature extraction. The derivative model SVD++ of SVD achieves better predictive accuracy due to the addition of implicit feedback information. Differential privacy is defined very strictly and can be proved, which has become an effective measure to solve the problem of attackers indirectly deducing the personal privacy information by using background knowledge. In this paper, differential privacy is applied to the SVD++ model through three approaches: gradient perturbation, objective-function perturbation, and output perturbation. Through theoretical derivation and experimental verification, the new algorithms proposed can better protect the privacy of the original data on the basis of ensuring the predictive accuracy. In addition, an effective scheme is given that can measure the privacy protection strength and predictive accuracy, and a reasonable range for selection of the differential privacy parameter is provided.
Trans gene regulation in adaptive evolution: a genetic algorithm model.
Behera, N; Nanjundiah, V
1997-09-21
This is a continuation of earlier studies on the evolution of infinite populations of haploid genotypes within a genetic algorithm framework. We had previously explored the evolutionary consequences of the existence of indeterminate-"plastic"-loci, where a plastic locus had a finite probability in each generation of functioning (being switched "on") or not functioning (being switched "off"). The relative probabilities of the two outcomes were assigned on a stochastic basis. The present paper examines what happens when the transition probabilities are biased by the presence of regulatory genes. We find that under certain conditions regulatory genes can improve the adaptation of the population and speed up the rate of evolution (on occasion at the cost of lowering the degree of adaptation). Also, the existence of regulatory loci potentiates selection in favour of plasticity. There is a synergistic effect of regulatory genes on plastic alleles: the frequency of such alleles increases when regulatory loci are present. Thus, phenotypic selection alone can be a potentiating factor in a favour of better adaptation. Copyright 1997 Academic Press Limited.
An optimized algorithm for detecting and annotating regional differential methylation.
Li, Sheng; Garrett-Bakelman, Francine E; Akalin, Altuna; Zumbo, Paul; Levine, Ross; To, Bik L; Lewis, Ian D; Brown, Anna L; D'Andrea, Richard J; Melnick, Ari; Mason, Christopher E
2013-01-01
DNA methylation profiling reveals important differentially methylated regions (DMRs) of the genome that are altered during development or that are perturbed by disease. To date, few programs exist for regional analysis of enriched or whole-genome bisulfate conversion sequencing data, even though such data are increasingly common. Here, we describe an open-source, optimized method for determining empirically based DMRs (eDMR) from high-throughput sequence data that is applicable to enriched whole-genome methylation profiling datasets, as well as other globally enriched epigenetic modification data. Here we show that our bimodal distribution model and weighted cost function for optimized regional methylation analysis provides accurate boundaries of regions harboring significant epigenetic modifications. Our algorithm takes the spatial distribution of CpGs into account for the enrichment assay, allowing for optimization of the definition of empirical regions for differential methylation. Combined with the dependent adjustment for regional p-value combination and DMR annotation, we provide a method that may be applied to a variety of datasets for rapid DMR analysis. Our method classifies both the directionality of DMRs and their genome-wide distribution, and we have observed that shows clinical relevance through correct stratification of two Acute Myeloid Leukemia (AML) tumor sub-types. Our weighted optimization algorithm eDMR for calling DMRs extends an established DMR R pipeline (methylKit) and provides a needed resource in epigenomics. Our method enables an accurate and scalable way of finding DMRs in high-throughput methylation sequencing experiments. eDMR is available for download at http://code.google.com/p/edmr/.
An Improved Differential Evolution Based Dynamic Economic Dispatch with Nonsmooth Fuel Cost Function
Directory of Open Access Journals (Sweden)
R. Balamurugan
2007-09-01
Full Text Available Dynamic economic dispatch (DED is one of the major operational decisions in electric power systems. DED problem is an optimization problem with an objective to determine the optimal combination of power outputs for all generating units over a certain period of time in order to minimize the total fuel cost while satisfying dynamic operational constraints and load demand in each interval. This paper presents an improved differential evolution (IDE method to solve the DED problem of generating units considering valve-point effects. Heuristic crossover technique and gene swap operator are introduced in the proposed approach to improve the convergence characteristic of the differential evolution (DE algorithm. To illustrate the effectiveness of the proposed approach, two test systems consisting of five and ten generating units have been considered. The results obtained through the proposed method are compared with those reported in the literature.
A Differential Evolution Based MPPT Method for Photovoltaic Modules under Partial Shading Conditions
Directory of Open Access Journals (Sweden)
Kok Soon Tey
2014-01-01
Full Text Available Partially shaded photovoltaic (PV modules have multiple peaks in the power-voltage (P-V characteristic curve and conventional maximum power point tracking (MPPT algorithm, such as perturbation and observation (P&O, which is unable to track the global maximum power point (GMPP accurately due to its localized search space. Therefore, this paper proposes a differential evolution (DE based optimization algorithm to provide the globalized search space to track the GMPP. The direction of mutation in the DE algorithm is modified to ensure that the mutation always converges to the best solution among all the particles in the generation. This helps to provide the rapid convergence of the algorithm. Simulation of the proposed PV system is carried out in PSIM and the results are compared to P&O algorithm. In the hardware implementation, a high step-up DC-DC converter is employed to verify the proposed algorithm experimentally on partial shading conditions, load variation, and solar intensity variation. The experimental results show that the proposed algorithm is able to converge to the GMPP within 1.2 seconds with higher efficiency than P&O.
Isaksson, H.E.; Donkelaar, van C.C.; Huiskes, R.; Ito, K.
2006-01-01
Several mechanoregulation algorithms proposed to control tissue differentiation during bone healing have been shown to accurately predict temporal and spatial tissue distributions during normal fracture healing. As these algorithms are different in nature and biophysical parameters, it raises the
Existence results for impulsive evolution differential equations with state-dependent delay
Eduardo Hernandez M.; Rathinasamy Sakthivel; Sueli Tanaka Aki
2008-01-01
We study the existence of mild solution for impulsive evolution abstract differential equations with state-dependent delay. A concrete application to partial delayed differential equations is considered.
Directory of Open Access Journals (Sweden)
Weilin Nie
2017-01-01
Full Text Available Abstract Convex risk minimization is a commonly used setting in learning theory. In this paper, we firstly give a perturbation analysis for such algorithms, and then we apply this result to differential private learning algorithms. Our analysis needs the objective functions to be strongly convex. This leads to an extension of our previous analysis to the non-differentiable loss functions, when constructing differential private algorithms. Finally, an error analysis is then provided to show the selection for the parameters.
Market-based transmission expansion planning by improved differential evolution
International Nuclear Information System (INIS)
Georgilakis, Pavlos S.
2010-01-01
The restructuring and deregulation has exposed the transmission planner to new objectives and uncertainties. As a result, new criteria and approaches are needed for transmission expansion planning (TEP) in deregulated electricity markets. This paper proposes a new market-based approach for TEP. An improved differential evolution (IDE) model is proposed for the solution of this new market-based TEP problem. The modifications of IDE in comparison to the simple differential evolution method are: (1) the scaling factor F is varied randomly within some range, (2) an auxiliary set is employed to enhance the diversity of the population, (3) the newly generated trial vector is compared with the nearest parent, and (4) the simple feasibility rule is used to treat the constraints. Results from the application of the proposed method on the IEEE 30-bus test system demonstrate the feasibility and practicality of the proposed IDE for the solution of TEP problem. (author)
Uher, Vojtěch; Gajdoš, Petr; Radecký, Michal; Snášel, Václav
2016-01-01
The Differential Evolution (DE) is a widely used bioinspired optimization algorithm developed by Storn and Price. It is popular for its simplicity and robustness. This algorithm was primarily designed for real-valued problems and continuous functions, but several modified versions optimizing both integer and discrete-valued problems have been developed. The discrete-coded DE has been mostly used for combinatorial problems in a set of enumerative variants. However, the DE has a great potential in the spatial data analysis and pattern recognition. This paper formulates the problem as a search of a combination of distinct vertices which meet the specified conditions. It proposes a novel approach called the Multidimensional Discrete Differential Evolution (MDDE) applying the principle of the discrete-coded DE in discrete point clouds (PCs). The paper examines the local searching abilities of the MDDE and its convergence to the global optimum in the PCs. The multidimensional discrete vertices cannot be simply ordered to get a convenient course of the discrete data, which is crucial for good convergence of a population. A novel mutation operator utilizing linear ordering of spatial data based on the space filling curves is introduced. The algorithm is tested on several spatial datasets and optimization problems. The experiments show that the MDDE is an efficient and fast method for discrete optimizations in the multidimensional point clouds.
Directory of Open Access Journals (Sweden)
Roman Senkerik
2014-01-01
Full Text Available Evolutionary technique differential evolution (DE is used for the evolutionary tuning of controller parameters for the stabilization of set of different chaotic systems. The novelty of the approach is that the selected controlled discrete dissipative chaotic system is used also as the chaotic pseudorandom number generator to drive the mutation and crossover process in the DE. The idea was to utilize the hidden chaotic dynamics in pseudorandom sequences given by chaotic map to help differential evolution algorithm search for the best controller settings for the very same chaotic system. The optimizations were performed for three different chaotic systems, two types of case studies and developed cost functions.
A SLAM based on auxiliary marginalised particle filter and differential evolution
Havangi, R.; Nekoui, M. A.; Teshnehlab, M.; Taghirad, H. D.
2014-09-01
FastSLAM is a framework for simultaneous localisation and mapping (SLAM) using a Rao-Blackwellised particle filter. In FastSLAM, particle filter is used for the robot pose (position and orientation) estimation, and parametric filter (i.e. EKF and UKF) is used for the feature location's estimation. However, in the long term, FastSLAM is an inconsistent algorithm. In this paper, a new approach to SLAM based on hybrid auxiliary marginalised particle filter and differential evolution (DE) is proposed. In the proposed algorithm, the robot pose is estimated based on auxiliary marginal particle filter that operates directly on the marginal distribution, and hence avoids performing importance sampling on a space of growing dimension. In addition, static map is considered as a set of parameters that are learned using DE. Compared to other algorithms, the proposed algorithm can improve consistency for longer time periods and also, improve the estimation accuracy. Simulations and experimental results indicate that the proposed algorithm is effective.
Optimization of ultrasonic arrays design and setting using a differential evolution
International Nuclear Information System (INIS)
Puel, B.; Chatillon, S.; Calmon, P.; Lesselier, D.
2011-01-01
Optimization of both design and setting of phased arrays could be not so easy when they are performed manually via parametric studies. An optimization method based on an Evolutionary Algorithm and numerical simulation is proposed and evaluated. The Randomized Adaptive Differential Evolution has been adapted to meet the specificities of the non-destructive testing applications. In particular, the solution of multi-objective problems is aimed at with the implementation of the concept of pareto-optimal sets of solutions. The algorithm has been implemented and connected to the ultrasonic simulation modules of the CIVA software used as forward model. The efficiency of the method is illustrated on two realistic cases of application: optimization of the position and delay laws of a flexible array inspecting a nozzle, considered as a mono-objective problem; and optimization of the design of a surrounded array and its delay laws, considered as a constrained bi-objective problem. (authors)
Aerodynamic optimization of supersonic compressor cascade using differential evolution on GPU
Energy Technology Data Exchange (ETDEWEB)
Aissa, Mohamed Hasanine; Verstraete, Tom [Von Karman Institute for Fluid Dynamics (VKI) 1640 Sint-Genesius-Rode (Belgium); Vuik, Cornelis [Delft University of Technology 2628 CD Delft (Netherlands)
2016-06-08
Differential Evolution (DE) is a powerful stochastic optimization method. Compared to gradient-based algorithms, DE is able to avoid local minima but requires at the same time more function evaluations. In turbomachinery applications, function evaluations are performed with time-consuming CFD simulation, which results in a long, non affordable, design cycle. Modern High Performance Computing systems, especially Graphic Processing Units (GPUs), are able to alleviate this inconvenience by accelerating the design evaluation itself. In this work we present a validated CFD Solver running on GPUs, able to accelerate the design evaluation and thus the entire design process. An achieved speedup of 20x to 30x enabled the DE algorithm to run on a high-end computer instead of a costly large cluster. The GPU-enhanced DE was used to optimize the aerodynamics of a supersonic compressor cascade, achieving an aerodynamic loss minimization of 20%.
Differential evolution to enhance localization of mobile robots
DEFF Research Database (Denmark)
Lisowski, Michal; Fan, Zhun; Ravn, Ole
2011-01-01
. In addition, a novel mechanism for effective robot kidnap detection was proposed. Experiments were performed using computer simulations based on the odometer data and laser range finder measurements collected in advance by a robot in real-life. Experimental results showed that integrating DE enables MCL...... to provide more accurate robot pose estimations in shorter time while using fewer particles.......This paper focuses on the mobile robot localization problems: pose tracking, global localization and robot kidnap. Differential Evolution (DE) applied to extend Monte Carlo Localization (MCL) was investigated to better solve localization problem by increasing localization reliability and speed...
Differential paralog divergence modulates genome evolution across yeast species.
Directory of Open Access Journals (Sweden)
Monica R Sanchez
2017-02-01
Full Text Available Evolutionary outcomes depend not only on the selective forces acting upon a species, but also on the genetic background. However, large timescales and uncertain historical selection pressures can make it difficult to discern such important background differences between species. Experimental evolution is one tool to compare evolutionary potential of known genotypes in a controlled environment. Here we utilized a highly reproducible evolutionary adaptation in Saccharomyces cerevisiae to investigate whether experimental evolution of other yeast species would select for similar adaptive mutations. We evolved populations of S. cerevisiae, S. paradoxus, S. mikatae, S. uvarum, and interspecific hybrids between S. uvarum and S. cerevisiae for ~200-500 generations in sulfate-limited continuous culture. Wild-type S. cerevisiae cultures invariably amplify the high affinity sulfate transporter gene, SUL1. However, while amplification of the SUL1 locus was detected in S. paradoxus and S. mikatae populations, S. uvarum cultures instead selected for amplification of the paralog, SUL2. We measured the relative fitness of strains bearing deletions and amplifications of both SUL genes from different species, confirming that, converse to S. cerevisiae, S. uvarum SUL2 contributes more to fitness in sulfate limitation than S. uvarum SUL1. By measuring the fitness and gene expression of chimeric promoter-ORF constructs, we were able to delineate the cause of this differential fitness effect primarily to the promoter of S. uvarum SUL1. Our data show evidence of differential sub-functionalization among the sulfate transporters across Saccharomyces species through recent changes in noncoding sequence. Furthermore, these results show a clear example of how such background differences due to paralog divergence can drive changes in genome evolution.
Many-Objective Optimization Using Adaptive Differential Evolution with a New Ranking Method
Directory of Open Access Journals (Sweden)
Xiaoguang He
2014-01-01
Full Text Available Pareto dominance is an important concept and is usually used in multiobjective evolutionary algorithms (MOEAs to determine the nondominated solutions. However, for many-objective problems, using Pareto dominance to rank the solutions even in the early generation, most obtained solutions are often the nondominated solutions, which results in a little selection pressure of MOEAs toward the optimal solutions. In this paper, a new ranking method is proposed for many-objective optimization problems to verify a relatively smaller number of representative nondominated solutions with a uniform and wide distribution and improve the selection pressure of MOEAs. After that, a many-objective differential evolution with the new ranking method (MODER for handling many-objective optimization problems is designed. At last, the experiments are conducted and the proposed algorithm is compared with several well-known algorithms. The experimental results show that the proposed algorithm can guide the search to converge to the true PF and maintain the diversity of solutions for many-objective problems.
International Nuclear Information System (INIS)
Li, Y.F.; Sansavini, G.; Zio, E.
2013-01-01
A number of research works have been devoted to the optimization of protection strategies (e.g. transmission line switch off) of critical infrastructures (e.g. power grids, telecommunication networks, computer networks, etc) to avoid cascading failures. This work aims at improving a previous optimization approach proposed by some of the authors [1], based on the modified binary differential evolution (MBDE) algorithm. The improvements are three-fold: (1) in the optimization problem formulation, we introduce a third objective function to minimize the impacts of the switching off operations onto the existing network topology; (2) in the optimization problem formulation, we use the final results of cascades, rather than only a short horizon of one step cascading, to evaluate the effects of the switching off strategies; (3) in the optimization algorithm, the fast non-dominated sorting mechanisms are incorporated into the MBDE algorithm: a new algorithm, namely non-dominated sorting binary differential evolution algorithm (NSBDE) is then proposed. The numerical application to the topological structure of the 380 kV Italian power transmission network proves the benefits of the improvements.
Simulating Evolution of Drosophila melanogaster Ebony Mutants Using a Genetic Algorithm
DEFF Research Database (Denmark)
Helles, Glennie
2009-01-01
Genetic algorithms are generally quite easy to understand and work with, and they are a popular choice in many cases. One area in which genetic algorithms are widely and successfully used is artificial life where they are used to simulate evolution of artificial creatures. However, despite...... their suggestive name, simplicity and popularity in artificial life, they do not seem to have gained a footing within the field of population genetics to simulate evolution of real organisms --- possibly because genetic algorithms are based on a rather crude simplification of the evolutionary mechanisms known...
Modification of species-based differential evolution for multimodal optimization
Idrus, Said Iskandar Al; Syahputra, Hermawan; Firdaus, Muliawan
2015-12-01
At this time optimization has an important role in various fields as well as between other operational research, industry, finance and management. Optimization problem is the problem of maximizing or minimizing a function of one variable or many variables, which include unimodal and multimodal functions. Differential Evolution (DE), is a random search technique using vectors as an alternative solution in the search for the optimum. To localize all local maximum and minimum on multimodal function, this function can be divided into several domain of fitness using niching method. Species-based niching method is one of method that build sub-populations or species in the domain functions. This paper describes the modification of species-based previously to reduce the computational complexity and run more efficiently. The results of the test functions show species-based modifications able to locate all the local optima in once run the program.
Mantle differentiation and thermal evolution of Mars, Mercury, and Venus
International Nuclear Information System (INIS)
Spohn, T.
1991-01-01
In the present models for the thermal evolution of Mercury, Venus, and Mars encompass core and mantle chemical differentiation, lithospheric growth, and volcanic heat-transfer processes. Calculation results indicate that crust and lithosphere thicknesses are primarily dependent on planet size as well as the bulk concentration of planetary radiogenic elements and the lithosphere's thermal conductivity. The evidence for Martian volcanism for at least 3.5 Gyr, and in Mercury for up to 1 Gyr, in conjunction with the presence of a magnetic field on Mercury and its absence on Mars, suggest the dominance of a lithospheric conduction heat-transfer mechanism in these planets for most of their thermal history; by contrast, volcanic heat piping may have been an important heat-transfer mechanism on Venus. 50 refs
Parameter extraction of different fuel cell models with transferred adaptive differential evolution
International Nuclear Information System (INIS)
Gong, Wenyin; Yan, Xuesong; Liu, Xiaobo; Cai, Zhihua
2015-01-01
To improve the design and control of FC (fuel cell) models, it is important to extract their unknown parameters. Generally, the parameter extraction problems of FC models can be transformed as nonlinear and multi-variable optimization problems. To extract the parameters of different FC models exactly and fast, in this paper, we propose a transferred adaptive DE (differential evolution) framework, in which the successful parameters of the adaptive DE solving previous problems are properly transferred to solve new optimization problems in the similar problem-domains. Based on this framework, an improved adaptive DE method (TRADE, in short) is presented as an illustration. To verify the performance of our proposal, TRADE is used to extract the unknown parameters of two types of fuel cell models, i.e., PEMFC (proton exchange membrane fuel cell) and SOFC (solid oxide fuel cell). The results of TRADE are also compared with those of other state-of-the-art EAs (evolutionary algorithms). Even though the modification is very simple, the results indicate that TRADE can extract the parameters of both PEMFC and SOFC models exactly and fast. Moreover, the V–I characteristics obtained by TRADE agree well with the simulated and experimental data in all cases for both types of fuel cell models. Also, it improves the performance of the original adaptive DE significantly in terms of both the quality of final solutions and the convergence speed in all cases. Additionally, TRADE is able to provide better results compared with other EAs. - Highlights: • A framework of transferred adaptive differential evolution is proposed. • Based on the framework, an improved differential evolution (TRADE) is presented. • TRADE obtains very promising results to extract the parameters of PEMFC and SOFC models
An implementation of Kovacic's algorithm for solving ordinary differential equations in FORMAC
International Nuclear Information System (INIS)
Zharkov, A.Yu.
1987-01-01
An implementation of Kovacic's algorithm for finding Liouvillian solutions of the differential equations y'' + a(x)y' + b(x)y = 0 with rational coefficients a(x) and b(x) in the Computer Algebra System FORMAC is described. The algorithm description is presented in such a way that one can easily implement it in a suitable Computer Algebra System
Genetic engineering versus natural evolution: Genetic algorithms with deterministic operators
Jozwiak, L.; Postula, A.
2002-01-01
Genetic algorithms (GA) have several important features that predestine them to solve design problems. Their main disadvantage however is the excessively long run-time that is needed to deliver satisfactory results for large instances of complex design problems. The main aims of this paper are (1)
Energy Technology Data Exchange (ETDEWEB)
Vrugt, Jasper A [Los Alamos National Laboratory; Hyman, James M [Los Alamos National Laboratory; Robinson, Bruce A [Los Alamos National Laboratory; Higdon, Dave [Los Alamos National Laboratory; Ter Braak, Cajo J F [NETHERLANDS; Diks, Cees G H [UNIV OF AMSTERDAM
2008-01-01
Markov chain Monte Carlo (MCMC) methods have found widespread use in many fields of study to estimate the average properties of complex systems, and for posterior inference in a Bayesian framework. Existing theory and experiments prove convergence of well constructed MCMC schemes to the appropriate limiting distribution under a variety of different conditions. In practice, however this convergence is often observed to be disturbingly slow. This is frequently caused by an inappropriate selection of the proposal distribution used to generate trial moves in the Markov Chain. Here we show that significant improvements to the efficiency of MCMC simulation can be made by using a self-adaptive Differential Evolution learning strategy within a population-based evolutionary framework. This scheme, entitled DiffeRential Evolution Adaptive Metropolis or DREAM, runs multiple different chains simultaneously for global exploration, and automatically tunes the scale and orientation of the proposal distribution in randomized subspaces during the search. Ergodicity of the algorithm is proved, and various examples involving nonlinearity, high-dimensionality, and multimodality show that DREAM is generally superior to other adaptive MCMC sampling approaches. The DREAM scheme significantly enhances the applicability of MCMC simulation to complex, multi-modal search problems.
Directory of Open Access Journals (Sweden)
Minggang Dong
2014-01-01
Full Text Available Motivated by recent advancements in differential evolution and constraints handling methods, this paper presents a novel modified oracle penalty function-based composite differential evolution (MOCoDE for constrained optimization problems (COPs. More specifically, the original oracle penalty function approach is modified so as to satisfy the optimization criterion of COPs; then the modified oracle penalty function is incorporated in composite DE. Furthermore, in order to solve more complex COPs with discrete, integer, or binary variables, a discrete variable handling technique is introduced into MOCoDE to solve complex COPs with mix variables. This method is assessed on eleven constrained optimization benchmark functions and seven well-studied engineering problems in real life. Experimental results demonstrate that MOCoDE achieves competitive performance with respect to some other state-of-the-art approaches in constrained optimization evolutionary algorithms. Moreover, the strengths of the proposed method include few parameters and its ease of implementation, rendering it applicable to real life. Therefore, MOCoDE can be an efficient alternative to solving constrained optimization problems.
SGO: A fast engine for ab initio atomic structure global optimization by differential evolution
Chen, Zhanghui; Jia, Weile; Jiang, Xiangwei; Li, Shu-Shen; Wang, Lin-Wang
2017-10-01
As the high throughout calculations and material genome approaches become more and more popular in material science, the search for optimal ways to predict atomic global minimum structure is a high research priority. This paper presents a fast method for global search of atomic structures at ab initio level. The structures global optimization (SGO) engine consists of a high-efficiency differential evolution algorithm, accelerated local relaxation methods and a plane-wave density functional theory code running on GPU machines. The purpose is to show what can be achieved by combining the superior algorithms at the different levels of the searching scheme. SGO can search the global-minimum configurations of crystals, two-dimensional materials and quantum clusters without prior symmetry restriction in a relatively short time (half or several hours for systems with less than 25 atoms), thus making such a task a routine calculation. Comparisons with other existing methods such as minima hopping and genetic algorithm are provided. One motivation of our study is to investigate the properties of magnetic systems in different phases. The SGO engine is capable of surveying the local minima surrounding the global minimum, which provides the information for the overall energy landscape of a given system. Using this capability we have found several new configurations for testing systems, explored their energy landscape, and demonstrated that the magnetic moment of metal clusters fluctuates strongly in different local minima.
Inclan, Eric; Lassester, Jack; Geohegan, David; Yoon, Mina
Optimization algorithms (OA) coupled with numerical methods enable researchers to identify and study (meta) stable nanoclusters without the control restrictions of empirical methods. An algorithm's performance is governed by two factors: (1) its compatibility with an objective function, (2) the dimension of a design space, which increases with cluster size. Although researchers often tune an algorithm's user-defined parameters (UDP), tuning is not guaranteed to improve performance. In this research, Particle Swarm (PSO) and Differential Evolution (DE), are compared by tuning their UDP in a multi-objective optimization environment (MOE). Combined with a Kolmogorov Smirnov test for statistical significance, the MOE enables the study of the Pareto Front (PF), made of the UDP settings that trade-off between best performance in energy minimization (``effectiveness'') based on force-field potential energy, and best convergence rate (``efficiency''). By studying the PF, this research finds that UDP values frequently suggested in the literature do not provide best effectiveness for these methods. Additionally, monotonic convergence is found to significantly improve efficiency without sacrificing effectiveness for very small systems, suggesting better compatibility. Work is supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division.
Cloud computing task scheduling strategy based on differential evolution and ant colony optimization
Ge, Junwei; Cai, Yu; Fang, Yiqiu
2018-05-01
This paper proposes a task scheduling strategy DEACO based on the combination of Differential Evolution (DE) and Ant Colony Optimization (ACO), aiming at the single problem of optimization objective in cloud computing task scheduling, this paper combines the shortest task completion time, cost and load balancing. DEACO uses the solution of the DE to initialize the initial pheromone of ACO, reduces the time of collecting the pheromone in ACO in the early, and improves the pheromone updating rule through the load factor. The proposed algorithm is simulated on cloudsim, and compared with the min-min and ACO. The experimental results show that DEACO is more superior in terms of time, cost, and load.
Directory of Open Access Journals (Sweden)
Abdellatif HAMOUDA
2011-12-01
Full Text Available Economic power dispatch (EPD is one of the main tools for optimal operation and planning of modern power systems. To solve effectively the EPD problem, most of the conventional calculus methods rely on the assumption that the fuel cost characteristic of a generating unit is a continuous and convex function, resulting in inaccurate dispatch. This paper presents the design and application of efficient adaptive differential evolution (ADE algorithm for the solution of the economic power dispatch problem, where the non-convex characteristics of the generators, such us prohibited operating zones and ramp rate limits of the practical generator operation are considered. The 26 bus benchmark test system with 6 units having prohibited operating zones and ramp rate limits was used for testing and validation purposes. The results obtained demonstrate the effectiveness of the proposed method for solving the non-convex economic dispatch problem.
An algorithm for numerical solution of Anisimov coupled differential ...
African Journals Online (AJOL)
This paper proposes a way of obtaining non-equilibrium transient electron-lattice temperature of several thousands of Kelvin in semiconductor thin films by applying satisfactorily boundary conditions to Anisimov coupled differential equations .This is possible by adjusting some of the parameters in the equations and ...
Multi-objective optimization of coal-fired power plants using differential evolution
International Nuclear Information System (INIS)
Wang, Ligang; Yang, Yongping; Dong, Changqing; Morosuk, Tatiana; Tsatsaronis, George
2014-01-01
Highlights: • Multi-objective optimization of large-scale coal-fired power plants using differential evolution. • A newly-proposed algorithm for searching the fronts of decision space in a single run. • A reduction of cost of electricity by 2–4% with an optimal efficiency increase up to 2% points. • The uncertainty comes mainly from temperature- and reheat-related cost factors of steam generator. • An exergoeconomic analysis and comparison between optimal designs and one real industrial design. - Abstract: The design trade-offs between thermodynamics and economics for thermal systems can be studied with the aid of multi-objective optimization techniques. The investment costs usually increase with increasing thermodynamic performance of a system. In this paper, an enhanced differential evolution with diversity-preserving and density-adjusting mechanisms, and a newly-proposed algorithm for searching the decision space frontier in a single run were used, to conduct the multi-objective optimization of large-scale, supercritical coal-fired plants. The uncertainties associated with cost functions were discussed by analyzing the sensitivity of the decision space frontier to some significant parameters involved in cost functions. Comparisons made with the aid of an exergoeconomic analysis between the cost minimum designs and a real industrial design demonstrated how the plant improvement was achieved. It is concluded that the cost of electricity could be reduced by a 2–4%, whereas the efficiency could be increased by up to two percentage points. The largest uncertainty is introduced by the temperature-related and reheat-related cost coefficients of the steam generator. More reliable data on the price prediction of future advanced materials should be used to obtain more accurate fronts of the objective space
International Nuclear Information System (INIS)
Gong, Wenyin; Cai, Zhihua
2013-01-01
Parameter identification of PEM (proton exchange membrane) fuel cell model is a very active area of research. Generally, it can be treated as a numerical optimization problem with complex nonlinear and multi-variable features. DE (differential evolution), which has been successfully used in various fields, is a simple yet efficient evolutionary algorithm for global numerical optimization. In this paper, with the objective of accelerating the process of parameter identification of PEM fuel cell models and reducing the necessary computational efforts, we firstly present a generic and simple ranking-based mutation operator for the DE algorithm. Then, the ranking-based mutation operator is incorporated into five highly-competitive DE variants to solve the PEM fuel cell model parameter identification problems. The main contributions of this work are the proposed ranking-based DE variants and their application to the parameter identification problems of PEM fuel cell models. Experiments have been conducted by using both the simulated voltage–current data and the data obtained from the literature to validate the performance of our approach. The results indicate that the ranking-based DE methods provide better results with respect to the solution quality, the convergence rate, and the success rate compared with their corresponding original DE methods. In addition, the voltage–current characteristics obtained by our approach are in good agreement with the original voltage–current curves in all cases. - Highlights: • A simple and generic ranking-based mutation operator is presented in this paper. • Several DE (differential evolution) variants are used to solve the parameter identification of PEMFC (proton exchange membrane fuel cells) model. • Results show that our method accelerates the process of parameter identification. • The V–I characteristics are in very good agreement with experimental data
Kinetic-Monte-Carlo-Based Parallel Evolution Simulation Algorithm of Dust Particles
Directory of Open Access Journals (Sweden)
Xiaomei Hu
2014-01-01
Full Text Available The evolution simulation of dust particles provides an important way to analyze the impact of dust on the environment. KMC-based parallel algorithm is proposed to simulate the evolution of dust particles. In the parallel evolution simulation algorithm of dust particles, data distribution way and communication optimizing strategy are raised to balance the load of every process and reduce the communication expense among processes. The experimental results show that the simulation of diffusion, sediment, and resuspension of dust particles in virtual campus is realized and the simulation time is shortened by parallel algorithm, which makes up for the shortage of serial computing and makes the simulation of large-scale virtual environment possible.
Directory of Open Access Journals (Sweden)
Yunes Sh. ALQUDSI
2018-06-01
Full Text Available This paper discusses and presents an overview of the proportional navigation (PN guidance law as well as the differential geometry (DG guidance algorithm that are used to develop the intercept course of a certain target. The intent of this study is to illustrate the advantages of the guidance algorithm generated based on the concepts of differential geometry against the well-known PN guidance law. The basic principles behind the both algorithms are mentioned. Moreover, the different versions of the PN approach is briefly clarified to show the essential improvement from one version to the other. The paper terminated with numerous two-dimension simulation figures to give a great value of visual aids, illustrating the significant relations and main features and properties of both algorithms.
Unified algorithm for partial differential equations and examples of numerical computation
International Nuclear Information System (INIS)
Watanabe, Tsuguhiro
1999-01-01
A new unified algorithm is proposed to solve partial differential equations which describe nonlinear boundary value problems, eigenvalue problems and time developing boundary value problems. The algorithm is composed of implicit difference scheme and multiple shooting scheme and is named as HIDM (Higher order Implicit Difference Method). A new prototype computer programs for 2-dimensional partial differential equations is constructed and tested successfully to several problems. Extension of the computer programs to 3 or more higher order dimension problems will be easy due to the direct product type difference scheme. (author)
Ghosh, Sayan; Das, Swagatam; Vasilakos, Athanasios V; Suresh, Kaushik
2012-02-01
Differential evolution (DE) is arguably one of the most powerful stochastic real-parameter optimization algorithms of current interest. Since its inception in the mid 1990s, DE has been finding many successful applications in real-world optimization problems from diverse domains of science and engineering. This paper takes a first significant step toward the convergence analysis of a canonical DE (DE/rand/1/bin) algorithm. It first deduces a time-recursive relationship for the probability density function (PDF) of the trial solutions, taking into consideration the DE-type mutation, crossover, and selection mechanisms. Then, by applying the concepts of Lyapunov stability theorems, it shows that as time approaches infinity, the PDF of the trial solutions concentrates narrowly around the global optimum of the objective function, assuming the shape of a Dirac delta distribution. Asymptotic convergence behavior of the population PDF is established by constructing a Lyapunov functional based on the PDF and showing that it monotonically decreases with time. The analysis is applicable to a class of continuous and real-valued objective functions that possesses a unique global optimum (but may have multiple local optima). Theoretical results have been substantiated with relevant computer simulations.
International Nuclear Information System (INIS)
Contreras-Astorga, Alonso; Schulze-Halberg, Axel
2015-01-01
We construct a relationship between integral and differential representation of second-order Jordan chains. Conditions to obtain regular potentials through the confluent supersymmetry algorithm when working with the differential representation are obtained using this relationship. Furthermore, it is used to find normalization constants of wave functions of quantum systems that feature energy-dependent potentials. Additionally, this relationship is used to express certain integrals involving functions that are solution of Schrödinger equations through derivatives. (paper)
Introduction to Evolutionary Algorithms
Yu, Xinjie
2010-01-01
Evolutionary algorithms (EAs) are becoming increasingly attractive for researchers from various disciplines, such as operations research, computer science, industrial engineering, electrical engineering, social science, economics, etc. This book presents an insightful, comprehensive, and up-to-date treatment of EAs, such as genetic algorithms, differential evolution, evolution strategy, constraint optimization, multimodal optimization, multiobjective optimization, combinatorial optimization, evolvable hardware, estimation of distribution algorithms, ant colony optimization, particle swarm opti
Fikri, Fariz Fahmi; Nuraini, Nuning
2018-03-01
The differential equation is one of the branches in mathematics which is closely related to human life problems. Some problems that occur in our life can be modeled into differential equations as well as systems of differential equations such as the Lotka-Volterra model and SIR model. Therefore, solving a problem of differential equations is very important. Some differential equations are difficult to solve, so numerical methods are needed to solve that problems. Some numerical methods for solving differential equations that have been widely used are Euler Method, Heun Method, Runge-Kutta and others. However, some of these methods still have some restrictions that cause the method cannot be used to solve more complex problems such as an evaluation interval that we cannot change freely. New methods are needed to improve that problems. One of the method that can be used is the artificial bees colony algorithm. This algorithm is one of metaheuristic algorithm method, which can come out from local search space and do exploration in solution search space so that will get better solution than other method.
Directory of Open Access Journals (Sweden)
Bickel David R
2010-01-01
Full Text Available Abstract Background Sustained research on the problem of determining which genes are differentially expressed on the basis of microarray data has yielded a plethora of statistical algorithms, each justified by theory, simulation, or ad hoc validation and yet differing in practical results from equally justified algorithms. Recently, a concordance method that measures agreement among gene lists have been introduced to assess various aspects of differential gene expression detection. This method has the advantage of basing its assessment solely on the results of real data analyses, but as it requires examining gene lists of given sizes, it may be unstable. Results Two methodologies for assessing predictive error are described: a cross-validation method and a posterior predictive method. As a nonparametric method of estimating prediction error from observed expression levels, cross validation provides an empirical approach to assessing algorithms for detecting differential gene expression that is fully justified for large numbers of biological replicates. Because it leverages the knowledge that only a small portion of genes are differentially expressed, the posterior predictive method is expected to provide more reliable estimates of algorithm performance, allaying concerns about limited biological replication. In practice, the posterior predictive method can assess when its approximations are valid and when they are inaccurate. Under conditions in which its approximations are valid, it corroborates the results of cross validation. Both comparison methodologies are applicable to both single-channel and dual-channel microarrays. For the data sets considered, estimating prediction error by cross validation demonstrates that empirical Bayes methods based on hierarchical models tend to outperform algorithms based on selecting genes by their fold changes or by non-hierarchical model-selection criteria. (The latter two approaches have comparable
A novel Random Walk algorithm with Compulsive Evolution for heat exchanger network synthesis
International Nuclear Information System (INIS)
Xiao, Yuan; Cui, Guomin
2017-01-01
Highlights: • A novel Random Walk Algorithm with Compulsive Evolution is proposed for HENS. • A simple and feasible evolution strategy is presented in RWCE algorithm. • The integer and continuous variables of HEN are optimized simultaneously in RWCE. • RWCE is demonstrated a relatively strong global search ability in HEN optimization. - Abstract: The heat exchanger network (HEN) synthesis can be characterized as highly combinatorial, nonlinear and nonconvex, contributing to unmanageable computational time and a challenge in identifying the global optimal network design. Stochastic methods are robust and show a powerful global optimizing ability. Based on the common characteristic of different stochastic methods, namely randomness, a novel Random Walk algorithm with Compulsive Evolution (RWCE) is proposed to achieve the best possible total annual cost of heat exchanger network with the relatively simple and feasible evolution strategy. A population of heat exchanger networks is first randomly initialized. Next, the heat load of heat exchanger for each individual is randomly expanded or contracted in order to optimize both the integer and continuous variables simultaneously and to obtain the lowest total annual cost. Besides, when individuals approach to local optima, there is a certain probability for them to compulsively accept the imperfect networks in order to keep the population diversity and ability of global optimization. The presented method is then applied to heat exchanger network synthesis cases from the literature to compare the best results published. RWCE consistently has a lower computed total annual cost compared to previously published results.
Sazonova, V Iu; Fedorova, V E; Danilova, N V
2013-01-01
Pretumoral changes in the epithelium of the cervix uteri include cervical intraepithelial neoplasia (CIN). CIN III should be differentiated with regenerative changes during epidermization of endocervicoses. Epidermization is proliferation of undifferentiated reserve cells that differentiate towards the squamous epithelium, by superseding the ectopic endocervical glandular epithelium. This process was called immature squamous metaplasia (ISM). The objective of the investigation was to define the significance of different morphological signs in the differential diagnosis of CIN III and ISM. One hundred and twelve cervical, CIN III, and immature squamous metaplasia biopsies were selected for examination. The selected cervical specimens were divided into 2 groups according to the presence or absence of p16 and CK17 expression. The p16+, CK17- cases were taken as true CIN III and the pl 6-, CK17+ as a regenerative process. The basis for this investigation is the signs included by O.K. Khmelnitsky into an algorithm for the differential diagnosis of epidermizing pseudoerosion and intraepithelial cancer of the cervix uteri. The algorithm was reconsidered to objectify. The investigation established great differences in the number of significant mitoses in the study groups. A clear trend was found for differences in the number of acanthotic strands. A new differential diagnostic algorithm for CIN III and ISM, which included the number of significant mitoses and acanthotic strands and p16 and CK17 expression, was proposed.
Assessment of available integration algorithms for initial value ordinary differential equations
International Nuclear Information System (INIS)
Carver, M.B.; Stewart, D.G.
1979-11-01
There exists an extremely large number of algorithms designed for the ordinary differential equation initial value problem. The integration is normally done by a finite sum at time intervals which are chosen dynamically to satisfy an imposed error tolerance. This report describes the basic logistics of the integration process, identifies common areas of difficulty, and establishes a comprehensive test profile for integration algorithms. A number of algorithms are described, and selected published subroutines are evaluated using the test profile. It concludes that an effective library for general use need have only two such routines. The two selected are versions of the well-known Gear and Runge-Kutta-Fehlberg algorithms. Full documentation and listings are included. (auth)
Directory of Open Access Journals (Sweden)
Guoliang Li
2017-01-01
Full Text Available We study the order acceptance and scheduling (OAS problem with time-dependent earliness-tardiness penalties in a single agile earth observation satellite environment where orders are defined by their release dates, available processing time windows ranging from earliest start date to deadline, processing times, due dates, sequence-dependent setup times, and revenues. The objective is to maximise total revenue, where the revenue from an order is a piecewise linear function of its earliness and tardiness with reference to its due date. We formulate this problem as a mixed integer linear programming model and develop a novel hybrid differential evolution (DE algorithm under self-adaptation framework to solve this problem. Compared with classical DE, hybrid DE employs two mutation operations, scaling factor adaptation and crossover probability adaptation. Computational tests indicate that the proposed algorithm outperforms classical DE in addition to two other variants of DE.
Application of evolution strategy algorithm for optimization of a single-layer sound absorber
Directory of Open Access Journals (Sweden)
Morteza Gholamipoor
2014-12-01
Full Text Available Depending on different design parameters and limitations, optimization of sound absorbers has always been a challenge in the field of acoustic engineering. Various methods of optimization have evolved in the past decades with innovative method of evolution strategy gaining more attention in the recent years. Based on their simplicity and straightforward mathematical representations, single-layer absorbers have been widely used in both engineering and industrial applications and an optimized design for these absorbers has become vital. In the present study, the method of evolution strategy algorithm is used for optimization of a single-layer absorber at both a particular frequency and an arbitrary frequency band. Results of the optimization have been compared against different methods of genetic algorithm and penalty functions which are proved to be favorable in both effectiveness and accuracy. Finally, a single-layer absorber is optimized in a desired range of frequencies that is the main goal of an industrial and engineering optimization process.
Energy Technology Data Exchange (ETDEWEB)
Piovesan, Luis Sergio
1997-07-01
The appliance of two algorithms is evaluated, one based in Fourier analysis and other based in a rectangular transform technique over Fourier analysis, to be used in digital logical circuits (digital protection relays) for the purpose of differential protection of power transformers (ANSI 87T). The first chapter has a brief introduction about electrical protection. The second chapter discusses the general problems of transform protection, the development of digital technology and, with more detail, the differential protection associated to this technology. In this chapter are presented the particular aspects of transformers differential protection concerning sensibility, inrush current situations and harmonic distortions caused by transformer core saturations and the differential protection algorithms and their applications in a specific relay design. In chapter three, a method to make possible testing the protection performance is developed. This work applies digital simulations using EMTP to generate current signal of transformer operation and fault conditions. Digital simulation using Matlab is used to simulate the protection. The EMTP generated field signals are sent to the relay under test, furnishing data of normal operation, internal and external faults. The relay logic simulator at Matlab will work this data and so, it will be possible to verify and evaluate the algorithm behavior and performance. Chapter 4 shows the protection operation over simulations of several of transformer operation and fault conditions. The last chapter presents a conclusion about the protection performance, discussions about all the methods applied in this work and suggestions for further studies. (author)
Directory of Open Access Journals (Sweden)
Pandu Sandi Pratama
2012-12-01
Full Text Available This paper proposed an algorithm to track the obstacle position and avoid the moving objects for differential driving Automatic Guided Vehicles (AGV system in industrial environment. This algorithm has several abilities such as: to detect the moving objects, to predict the velocity and direction of moving objects, to predict the collision possibility and to plan the avoidance maneuver. For sensing the local environment and positioning, the laser measurement system LMS-151 and laser navigation system NAV-200 are applied. Based on the measurement results of the sensors, the stationary and moving obstacles are detected and the collision possibility is calculated. The velocity and direction of the obstacle are predicted using Kalman filter algorithm. Collision possibility, time, and position can be calculated by comparing the AGV movement and obstacle prediction result obtained by Kalman filter. Finally the avoidance maneuver using the well known tangent Bug algorithm is decided based on the calculation data. The effectiveness of proposed algorithm is verified using simulation and experiment. Several examples of experiment conditions are presented using stationary obstacle, and moving obstacles. The simulation and experiment results show that the AGV can detect and avoid the obstacles successfully in all experimental condition. [Keywords— Obstacle avoidance, AGV, differential drive, laser measurement system, laser navigation system].
Directory of Open Access Journals (Sweden)
Milinkovitch Michel C
2007-11-01
Full Text Available Abstract Background Distance matrix methods constitute a major family of phylogenetic estimation methods, and the minimum evolution (ME principle (aiming at recovering the phylogeny with shortest length is one of the most commonly used optimality criteria for estimating phylogenetic trees. The major difficulty for its application is that the number of possible phylogenies grows exponentially with the number of taxa analyzed and the minimum evolution principle is known to belong to the NP MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacPC6xNi=xH8viVGI8Gi=hEeeu0xXdbba9frFj0xb9qqpG0dXdb9aspeI8k8fiI+fsY=rqGqVepae9pg0db9vqaiVgFr0xfr=xfr=xc9adbaqaaeGacaGaaiaabeqaaeqabiWaaaGcbaWenfgDOvwBHrxAJfwnHbqeg0uy0HwzTfgDPnwy1aaceaGae8xdX7Kaeeiuaafaaa@3888@-hard class of problems. Results In this paper, we introduce an Ant Colony Optimization (ACO algorithm to estimate phylogenies under the minimum evolution principle. ACO is an optimization technique inspired from the foraging behavior of real ant colonies. This behavior is exploited in artificial ant colonies for the search of approximate solutions to discrete optimization problems. Conclusion We show that the ACO algorithm is potentially competitive in comparison with state-of-the-art algorithms for the minimum evolution principle. This is the first application of an ACO algorithm to the phylogenetic estimation problem.
International Nuclear Information System (INIS)
Chang, P.; Lee, S.Y.; Yan, Y.T.
2006-01-01
A differential algebraic integration algorithm is developed for symplectic mapping through a three-dimensional (3-D) magnetic field. The self-consistent reference orbit in phase space is obtained by making a canonical transformation to eliminate the linear part of the Hamiltonian. Transfer maps from the entrance to the exit of any 3-D magnetic field are then obtained through slice-by-slice symplectic integration. The particle phase-space coordinates are advanced by using the integrable polynomial procedure. This algorithm is a powerful tool to attain nonlinear maps for insertion devices in synchrotron light source or complicated magnetic field in the interaction region in high energy colliders
International Nuclear Information System (INIS)
Chang, P
2004-01-01
A differential algebraic integration algorithm is developed for symplectic mapping through a three-dimensional (3-D) magnetic field. The self-consistent reference orbit in phase space is obtained by making a canonical transformation to eliminate the linear part of the Hamiltonian. Transfer maps from the entrance to the exit of any 3-D magnetic field are then obtained through slice-by-slice symplectic integration. The particle phase-space coordinates are advanced by using the integrable polynomial procedure. This algorithm is a powerful tool to attain nonlinear maps for insertion devices in synchrotron light source or complicated magnetic field in the interaction region in high energy colliders
A Numerical Algorithm for Solving a Four-Point Nonlinear Fractional Integro-Differential Equations
Directory of Open Access Journals (Sweden)
Er Gao
2012-01-01
Full Text Available We provide a new algorithm for a four-point nonlocal boundary value problem of nonlinear integro-differential equations of fractional order q∈(1,2] based on reproducing kernel space method. According to our work, the analytical solution of the equations is represented in the reproducing kernel space which we construct and so the n-term approximation. At the same time, the n-term approximation is proved to converge to the analytical solution. An illustrative example is also presented, which shows that the new algorithm is efficient and accurate.
Spline based iterative phase retrieval algorithm for X-ray differential phase contrast radiography.
Nilchian, Masih; Wang, Zhentian; Thuering, Thomas; Unser, Michael; Stampanoni, Marco
2015-04-20
Differential phase contrast imaging using grating interferometer is a promising alternative to conventional X-ray radiographic methods. It provides the absorption, differential phase and scattering information of the underlying sample simultaneously. Phase retrieval from the differential phase signal is an essential problem for quantitative analysis in medical imaging. In this paper, we formalize the phase retrieval as a regularized inverse problem, and propose a novel discretization scheme for the derivative operator based on B-spline calculus. The inverse problem is then solved by a constrained regularized weighted-norm algorithm (CRWN) which adopts the properties of B-spline and ensures a fast implementation. The method is evaluated with a tomographic dataset and differential phase contrast mammography data. We demonstrate that the proposed method is able to produce phase image with enhanced and higher soft tissue contrast compared to conventional absorption-based approach, which can potentially provide useful information to mammographic investigations.
An adaptive left–right eigenvector evolution algorithm for vibration isolation control
International Nuclear Information System (INIS)
Wu, T Y
2009-01-01
The purpose of this research is to investigate the feasibility of utilizing an adaptive left and right eigenvector evolution (ALREE) algorithm for active vibration isolation. As depicted in the previous paper presented by Wu and Wang (2008 Smart Mater. Struct. 17 015048), the structural vibration behavior depends on both the disturbance rejection capability and mode shape distributions, which correspond to the left and right eigenvector distributions of the system, respectively. In this paper, a novel adaptive evolution algorithm is developed for finding the optimal combination of left–right eigenvectors of the vibration isolator, which is an improvement over the simultaneous left–right eigenvector assignment (SLREA) method proposed by Wu and Wang (2008 Smart Mater. Struct. 17 015048). The isolation performance index used in the proposed algorithm is defined by combining the orthogonality index of left eigenvectors and the modal energy ratio index of right eigenvectors. Through the proposed ALREE algorithm, both the left and right eigenvectors evolve such that the isolation performance index decreases, and therefore one can find the optimal combination of left–right eigenvectors of the closed-loop system for vibration isolation purposes. The optimal combination of left–right eigenvectors is then synthesized to determine the feedback gain matrix of the closed-loop system. The result of the active isolation control shows that the proposed method can be utilized to improve the vibration isolation performance compared with the previous approaches
Constructing HVS-Based Optimal Substitution Matrix Using Enhanced Differential Evolution
Directory of Open Access Journals (Sweden)
Shu-Fen Tu
2013-01-01
Full Text Available Least significant bit (LSB substitution is a method of information hiding. The secret message is embedded into the last k bits of a cover-image in order to evade the notice of hackers. The security and stego-image quality are two main limitations of the LSB substitution method. Therefore, some researchers have proposed an LSB substitution matrix to address these two issues. Finding the optimal LSB substitution matrix can be conceptualized as a problem of combinatorial optimization. In this paper, we adopt a different heuristic method based on other researchers’ method, called enhanced differential evolution (EDE, to construct an optimal LSB substitution matrix. Differing from other researchers, we adopt an HVS-based measurement as a fitness function and embed the secret by modifying the pixel to a closest value rather than simply substituting the LSBs. Our scheme extracts the secret by modular operations as simple LSB substitution does. The experimental results show that the proposed embedding algorithm indeed improves imperceptibility of stego-images substantially.
Application of enhanced discrete differential evolution approach to unit commitment problem
International Nuclear Information System (INIS)
Yuan Xiaohui; Su Anjun; Nie Hao; Yuan Yanbin; Wang Liang
2009-01-01
This paper proposes a discrete binary differential evolution (DBDE) approach to solve the unit commitment problem (UCP). The proposed method is enhanced by priority list based on the unit characteristics and heuristic search strategies to handle constraints effectively. The implementation of the proposed method for UCP consists of three stages. Firstly, the DBDE based on priority list is applied for unit scheduling when neglecting the minimum up/down time constraints. Secondly, repairing strategies are used to handle the minimum up/down time constraints and decommit excess spinning reserve units. Finally, heuristic unit substitution search and gray zone modification algorithm are used to improve optimal solution further. Furthermore, the effects of two crucial parameters on performance of the DBDE for solving UCP are studied as well. To verify the advantages of the method, the proposed method is tested and compared to the other methods on the systems with the number of units in the range of 10-100. Numerical results demonstrate that the proposed method is superior to other methods reported in the literature.
Chai, Runqi; Savvaris, Al; Tsourdos, Antonios; Chai, Senchun
2017-07-01
Highly constrained trajectory optimization for Space Manoeuvre Vehicles (SMV) is a challenging problem. In practice, this problem becomes more difficult when multiple mission requirements are taken into account. Because of the nonlinearity in the dynamic model and even the objectives, it is usually hard for designers to generate a compromised trajectory without violating strict path and box constraints. In this paper, a new multi-objective SMV optimal control model is formulated and parameterized using combined shooting-collocation technique. A modified game theory approach, coupled with an adaptive differential evolution algorithm, is designed in order to generate the pareto front of the multi-objective trajectory optimization problem. In addition, to improve the quality of obtained solutions, a control logic is embedded in the framework of the proposed approach. Several existing multi-objective evolutionary algorithms are studied and compared with the proposed method. Simulation results indicate that without driving the solution out of the feasible region, the proposed method can perform better in terms of convergence ability and convergence speed than its counterparts. Moreover, the quality of the pareto set generated using the proposed method is higher than other multi-objective evolutionary algorithms, which means the newly proposed algorithm is more attractive for solving multi-criteria SMV trajectory planning problem.
Roselyn, J. Preetha; Devaraj, D.; Dash, Subhransu Sekhar
2013-11-01
Voltage stability is an important issue in the planning and operation of deregulated power systems. The voltage stability problems is a most challenging one for the system operators in deregulated power systems because of the intense use of transmission line capabilities and poor regulation in market environment. This article addresses the congestion management problem avoiding offline transmission capacity limits related to voltage stability by considering Voltage Security Constrained Optimal Power Flow (VSCOPF) problem in deregulated environment. This article presents the application of Multi Objective Differential Evolution (MODE) algorithm to solve the VSCOPF problem in new competitive power systems. The maximum of L-index of the load buses is taken as the indicator of voltage stability and is incorporated in the Optimal Power Flow (OPF) problem. The proposed method in hybrid power market which also gives solutions to voltage stability problems by considering the generation rescheduling cost and load shedding cost which relieves the congestion problem in deregulated environment. The buses for load shedding are selected based on the minimum eigen value of Jacobian with respect to the load shed. In the proposed approach, real power settings of generators in base case and contingency cases, generator bus voltage magnitudes, real and reactive power demands of selected load buses using sensitivity analysis are taken as the control variables and are represented as the combination of floating point numbers and integers. DE/randSF/1/bin strategy scheme of differential evolution with self-tuned parameter which employs binomial crossover and difference vector based mutation is used for the VSCOPF problem. A fuzzy based mechanism is employed to get the best compromise solution from the pareto front to aid the decision maker. The proposed VSCOPF planning model is implemented on IEEE 30-bus system, IEEE 57 bus practical system and IEEE 118 bus system. The pareto optimal
Indian Academy of Sciences (India)
polynomial) division have been found in Vedic Mathematics which are dated much before Euclid's algorithm. A programming language Is used to describe an algorithm for execution on a computer. An algorithm expressed using a programming.
Directory of Open Access Journals (Sweden)
Reem A. Al-Omair
2009-03-01
Full Text Available In this paper we prove the existence of a mild solution for a semilinear evolution differential inclusion with nonlocal condition and governed by a family of linear operators, not necessarily bounded or closed, in a Banach space. No compactness assumption is assumed on the evolution operator generated by the family operators. Also, we prove that the set of mild solutions is compact.
Macro-micro interlocked simulation algorithm: an exemplification for aurora arc evolution
Energy Technology Data Exchange (ETDEWEB)
Sato, Tetsuya [University of Hyogo, Kobe 650-0044 (Japan); Hasegawa, Hiroki; Ohno, Nobuaki [Japan Agency for Marine-Earth Science and Technology, Yokohama 236-0001 (Japan)], E-mail: sato@hq.u-hyogo.ac.jp
2009-01-01
Using an innovative holistic simulation algorithm that can self-consistently treat a system that evolves as cooperation between macroscopic and microscopic processes, the evolution of a colorful aurora arc is beautifully reproduced as the result of cooperation between the global field-aligned feedback instability of the coupled magnetosphere-ionosphere system and the ensuing microscopic ion-acoustic instability that generates electric double layers and accelerates aurora electrons. These results are in agreement with rocket and satellite observations. This shows that the proposed holistic algorithm could be a reliable tool to reveal complex real dramatic events and become, in the near future, a viable scientifically secure prediction tool for natural disasters such as earthquakes, landslides and floods caused by typhoons.
Optimum Parameters for Tuned Mass Damper Using Shuffled Complex Evolution (SCE Algorithm
Directory of Open Access Journals (Sweden)
Hessamoddin Meshkat Razavi
2015-06-01
Full Text Available This study is investigated the optimum parameters for a tuned mass damper (TMD under the seismic excitation. Shuffled complex evolution (SCE is a meta-heuristic optimization method which is used to find the optimum damping and tuning frequency ratio for a TMD. The efficiency of the TMD is evaluated by decreasing the structural displacement dynamic magnification factor (DDMF and acceleration dynamic magnification factor (ADMF for a specific vibration mode of the structure. The optimum TMD parameters and the corresponding optimized DDMF and ADMF are achieved for two control levels (displacement control and acceleration control, different structural damping ratio and mass ratio of the TMD system. The optimum TMD parameters are checked for a 10-storey building under earthquake excitations. The maximum storey displacement and acceleration obtained by SCE method are compared with the results of other existing approaches. The results show that the peak building response decreased with decreases of about 20% for displacement and 30% for acceleration of the top floor. To show the efficiency of the adopted algorithm (SCE, a comparison is also made between SCE and other meta-heuristic optimization methods such as genetic algorithm (GA, particle swarm optimization (PSO method and harmony search (HS algorithm in terms of success rate and computational processing time. The results show that the proposed algorithm outperforms other meta-heuristic optimization methods.
Implementation of Evolution Strategies (ES Algorithm to Optimization Lovebird Feed Composition
Directory of Open Access Journals (Sweden)
Agung Mustika Rizki
2017-05-01
Full Text Available Lovebird current society, especially popular among bird lovers. Some people began to try to develop the cultivation of these birds. In the cultivation process to consider the composition of feed to produce a quality bird. Determining the feed is not easy because it must consider the cost and need for vitamin Lovebird. This problem can be solved by the algorithm Evolution Strategies (ES. Based on test results obtained optimal fitness value of 0.3125 using a population size of 100 and optimal fitness value of 0.3267 in the generation of 1400.
Malicious Botnet Survivability Mechanism Evolution Forecasting by Means of a Genetic Algorithm
Directory of Open Access Journals (Sweden)
Nikolaj Goranin
2012-04-01
Full Text Available Botnets are considered to be among the most dangerous modern malware types and the biggest current threats to global IT infrastructure. Botnets are rapidly evolving, and therefore forecasting their survivability strategies is important for the development of countermeasure techniques. The article propose the botnet-oriented genetic algorithm based model framework, which aimed at forecasting botnet survivability mechanisms. The model may be used as a framework for forecasting the evolution of other characteristics. The efficiency of different survivability mechanisms is evaluated by applying the proposed fitness function. The model application area also covers scientific botnet research and modelling tasks.
Directory of Open Access Journals (Sweden)
Meng Zhi-Jun
2016-01-01
Full Text Available This paper addresses a new application of the local fractional variational iteration algorithm III to solve the local fractional diffusion equation defined on Cantor sets associated with non-differentiable heat transfer.
Alkan, Hilal; Balkaya, Çağlayan
2018-02-01
We present an efficient inversion tool for parameter estimation from horizontal loop electromagnetic (HLEM) data using Differential Search Algorithm (DSA) which is a swarm-intelligence-based metaheuristic proposed recently. The depth, dip, and origin of a thin subsurface conductor causing the anomaly are the parameters estimated by the HLEM method commonly known as Slingram. The applicability of the developed scheme was firstly tested on two synthetically generated anomalies with and without noise content. Two control parameters affecting the convergence characteristic to the solution of the algorithm were tuned for the so-called anomalies including one and two conductive bodies, respectively. Tuned control parameters yielded more successful statistical results compared to widely used parameter couples in DSA applications. Two field anomalies measured over a dipping graphitic shale from Northern Australia were then considered, and the algorithm provided the depth estimations being in good agreement with those of previous studies and drilling information. Furthermore, the efficiency and reliability of the results obtained were investigated via probability density function. Considering the results obtained, we can conclude that DSA characterized by the simple algorithmic structure is an efficient and promising metaheuristic for the other relatively low-dimensional geophysical inverse problems. Finally, the researchers after being familiar with the content of developed scheme displaying an easy to use and flexible characteristic can easily modify and expand it for their scientific optimization problems.
Intercept Algorithm for Maneuvering Targets Based on Differential Geometry and Lyapunov Theory
Directory of Open Access Journals (Sweden)
Yunes Sh. ALQUDSI
2018-03-01
Full Text Available Nowadays, the homing guidance is utilized in the existed and under development air defense systems (ADS to effectively intercept the targets. The targets became smarter and capable to fly and maneuver professionally and the tendency to design missile with a small warhead became greater, then there is a pressure to produce a more precise and accurate missile guidance system based on intelligent algorithms to ensure effective interception of highly maneuverable targets. The aim of this paper is to present an intelligent guidance algorithm that effectively and precisely intercept the maneuverable and smart targets by virtue of the differential geometry (DG concepts. The intercept geometry and engagement kinematics, in addition to the direct intercept condition are developed and expressed in DG terms. The guidance algorithm is then developed by virtue of DG and Lyapunov theory. The study terminates with 2D engagement simulation with illustrative examples, to demonstrate that, the derived DG guidance algorithm is a generalized guidance approach and the well-known proportional navigation (PN guidance law is a subset of this approach.
Zhang, Ye; Gong, Rongfang; Cheng, Xiaoliang; Gulliksson, Mårten
2018-06-01
This study considers the inverse source problem for elliptic partial differential equations with both Dirichlet and Neumann boundary data. The unknown source term is to be determined by additional boundary conditions. Unlike the existing methods found in the literature, which usually employ the first-order in time gradient-like system (such as the steepest descent methods) for numerically solving the regularized optimization problem with a fixed regularization parameter, we propose a novel method with a second-order in time dissipative gradient-like system and a dynamical selected regularization parameter. A damped symplectic scheme is proposed for the numerical solution. Theoretical analysis is given for both the continuous model and the numerical algorithm. Several numerical examples are provided to show the robustness of the proposed algorithm.
Parareal algorithms with local time-integrators for time fractional differential equations
Wu, Shu-Lin; Zhou, Tao
2018-04-01
It is challenge work to design parareal algorithms for time-fractional differential equations due to the historical effect of the fractional operator. A direct extension of the classical parareal method to such equations will lead to unbalance computational time in each process. In this work, we present an efficient parareal iteration scheme to overcome this issue, by adopting two recently developed local time-integrators for time fractional operators. In both approaches, one introduces auxiliary variables to localized the fractional operator. To this end, we propose a new strategy to perform the coarse grid correction so that the auxiliary variables and the solution variable are corrected separately in a mixed pattern. It is shown that the proposed parareal algorithm admits robust rate of convergence. Numerical examples are presented to support our conclusions.
Day-ahead distributed energy resource scheduling using differential search algorithm
DEFF Research Database (Denmark)
Soares, J.; Lobo, C.; Silva, M.
2015-01-01
The number of dispersed energy resources is growing every day, such as the use of more distributed generators. This paper deals with energy resource scheduling model in future smart grids. The methodology can be used by virtual power players (VPPs) considering day-ahead time horizon. This method...... considers that energy resources are managed by a VPP which establishes contracts with their owners. The full AC power flow calculation included in the model takes into account network constraints. This paper presents an application of differential search algorithm (DSA) for solving the day-ahead scheduling...
A Numerical Algorithm for Solving a Four-Point Nonlinear Fractional Integro-Differential Equations
Gao, Er; Song, Songhe; Zhang, Xinjian
2012-01-01
We provide a new algorithm for a four-point nonlocal boundary value problem of nonlinear integro-differential equations of fractional order q∈(1,2] based on reproducing kernel space method. According to our work, the analytical solution of the equations is represented in the reproducing kernel space which we construct and so the n-term approximation. At the same time, the n-term approximation is proved to converge to the analytical solution. An illustrative example is also presented, which sh...
Algorithms of estimation for nonlinear systems a differential and algebraic viewpoint
Martínez-Guerra, Rafael
2017-01-01
This book acquaints readers with recent developments in dynamical systems theory and its applications, with a strong focus on the control and estimation of nonlinear systems. Several algorithms are proposed and worked out for a set of model systems, in particular so-called input-affine or bilinear systems, which can serve to approximate a wide class of nonlinear control systems. These can either take the form of state space models or be represented by an input-output equation. The approach taken here further highlights the role of modern mathematical and conceptual tools, including differential algebraic theory, observer design for nonlinear systems and generalized canonical forms.
Ighravwe, D. E.; Oke, S. A.; Adebiyi, K. A.
2018-03-01
This paper draws on the "human reliability" concept as a structure for gaining insight into the maintenance workforce assessment in a process industry. Human reliability hinges on developing the reliability of humans to a threshold that guides the maintenance workforce to execute accurate decisions within the limits of resources and time allocations. This concept offers a worthwhile point of deviation to encompass three elegant adjustments to literature model in terms of maintenance time, workforce performance and return-on-workforce investments. These fully explain the results of our influence. The presented structure breaks new grounds in maintenance workforce theory and practice from a number of perspectives. First, we have successfully implemented fuzzy goal programming (FGP) and differential evolution (DE) techniques for the solution of optimisation problem in maintenance of a process plant for the first time. The results obtained in this work showed better quality of solution from the DE algorithm compared with those of genetic algorithm and particle swarm optimisation algorithm, thus expressing superiority of the proposed procedure over them. Second, the analytical discourse, which was framed on stochastic theory, focusing on specific application to a process plant in Nigeria is a novelty. The work provides more insights into maintenance workforce planning during overhaul rework and overtime maintenance activities in manufacturing systems and demonstrated capacity in generating substantially helpful information for practice.
Recent developments in structure-preserving algorithms for oscillatory differential equations
Wu, Xinyuan
2018-01-01
The main theme of this book is recent progress in structure-preserving algorithms for solving initial value problems of oscillatory differential equations arising in a variety of research areas, such as astronomy, theoretical physics, electronics, quantum mechanics and engineering. It systematically describes the latest advances in the development of structure-preserving integrators for oscillatory differential equations, such as structure-preserving exponential integrators, functionally fitted energy-preserving integrators, exponential Fourier collocation methods, trigonometric collocation methods, and symmetric and arbitrarily high-order time-stepping methods. Most of the material presented here is drawn from the recent literature. Theoretical analysis of the newly developed schemes shows their advantages in the context of structure preservation. All the new methods introduced in this book are proven to be highly effective compared with the well-known codes in the scientific literature. This book also addre...
Differential evolution and neofunctionalization of snake venom metalloprotease domains.
Brust, Andreas; Sunagar, Kartik; Undheim, Eivind A B; Vetter, Irina; Yang, Daryl C; Yang, Dary C; Casewell, Nicholas R; Jackson, Timothy N W; Koludarov, Ivan; Alewood, Paul F; Hodgson, Wayne C; Lewis, Richard J; King, Glenn F; Antunes, Agostinho; Hendrikx, Iwan; Fry, Bryan G
2013-03-01
Snake venom metalloproteases (SVMP) are composed of five domains: signal peptide, propeptide, metalloprotease, disintegrin, and cysteine-rich. Secreted toxins are typically combinatorial variations of the latter three domains. The SVMP-encoding genes of Psammophis mossambicus venom are unique in containing only the signal and propeptide domains. We show that the Psammophis SVMP propeptide evolves rapidly and is subject to a high degree of positive selection. Unlike Psammophis, some species of Echis express both the typical multidomain and the unusual monodomain (propeptide only) SVMP, with the result that a lower level of variation is exerted upon the latter. We showed that most mutations in the multidomain Echis SVMP occurred in the protease domain responsible for proteolytic and hemorrhagic activities. The cysteine-rich and disintegrin-like domains, which are putatively responsible for making the P-III SVMPs more potent than the P-I and P-II forms, accumulate the remaining variation. Thus, the binding sites on the molecule's surface are evolving rapidly whereas the core remains relatively conserved. Bioassays conducted on two post-translationally cleaved novel proline-rich peptides from the P. mossambicus propeptide domain showed them to have been neofunctionalized for specific inhibition of mammalian a7 neuronal nicotinic acetylcholine receptors. We show that the proline rich postsynaptic specific neurotoxic peptides from Azemiops feae are the result of convergent evolution within the precursor region of the C-type natriuretic peptide instead of the SVMP. The results of this study reinforce the value of studying obscure venoms for biodiscovery of novel investigational ligands.
Existence of solutions for quasilinear random impulsive neutral differential evolution equation
Directory of Open Access Journals (Sweden)
B. Radhakrishnan
2018-07-01
Full Text Available This paper deals with the existence of solutions for quasilinear random impulsive neutral functional differential evolution equation in Banach spaces and the results are derived by using the analytic semigroup theory, fractional powers of operators and the Schauder fixed point approach. An application is provided to illustrate the theory. Keywords: Quasilinear differential equation, Analytic semigroup, Random impulsive neutral differential equation, Fixed point theorem, 2010 Mathematics Subject Classification: 34A37, 47H10, 47H20, 34K40, 34K45, 35R12
Energy Technology Data Exchange (ETDEWEB)
Kubota, N. [Osaka Inst. of Technology, Osaka (Japan); Fukuda, T. [Nagoya University, Nagoya (Japan)
1998-05-31
This paper deals with virus evolutionary genetic algorithm. The genetic algorithms (GAs) have been demonstrated its effectiveness in optimization problems in these days. In general, the GAs simulate the survival of fittest by natural selection and the heredity of the Darwin`s theory of evolution. However, some types of evolutionary hypotheses such as neutral theory of molecular evolution, Imanishi`s evolutionary theory, serial symbiosis theory, and virus theory of evolution, have been proposed in addition to the Darwinism. Virus theory of evolution is based on the view that the virus transduction is a key mechanism for transporting segments of DNA across species. This paper proposes genetic algorithm based on the virus theory of evolution (VE-GA), which has two types of populations: host population and virus population. The VE-GA is composed of genetic operators and virus operators such as reverse transcription and incorporation. The reverse transcription operator transcribes virus genes on the chromosome of host individual and the incorporation operator creates new genotype of virus from host individual. These operators by virus population make it possible to transmit segment of DNA between individuals in the host population. Therefore, the VE-GA realizes not only vertical but also horizontal propagation of genetic information. Further, the VE-GA is applied to the traveling salesman problem in order to show the effectiveness. 20 refs., 10 figs., 3 tabs.
Majeed, Muhammad Usman
2017-07-19
Steady-state elliptic partial differential equations (PDEs) are frequently used to model a diverse range of physical phenomena. The source and boundary data estimation problems for such PDE systems are of prime interest in various engineering disciplines including biomedical engineering, mechanics of materials and earth sciences. Almost all existing solution strategies for such problems can be broadly classified as optimization-based techniques, which are computationally heavy especially when the problems are formulated on higher dimensional space domains. However, in this dissertation, feedback based state estimation algorithms, known as state observers, are developed to solve such steady-state problems using one of the space variables as time-like. In this regard, first, an iterative observer algorithm is developed that sweeps over regular-shaped domains and solves boundary estimation problems for steady-state Laplace equation. It is well-known that source and boundary estimation problems for the elliptic PDEs are highly sensitive to noise in the data. For this, an optimal iterative observer algorithm, which is a robust counterpart of the iterative observer, is presented to tackle the ill-posedness due to noise. The iterative observer algorithm and the optimal iterative algorithm are then used to solve source localization and estimation problems for Poisson equation for noise-free and noisy data cases respectively. Next, a divide and conquer approach is developed for three-dimensional domains with two congruent parallel surfaces to solve the boundary and the source data estimation problems for the steady-state Laplace and Poisson kind of systems respectively. Theoretical results are shown using a functional analysis framework, and consistent numerical simulation results are presented for several test cases using finite difference discretization schemes.
Kasatkina, T. I.; Dushkin, A. V.; Pavlov, V. A.; Shatovkin, R. R.
2018-03-01
In the development of information, systems and programming to predict the series of dynamics, neural network methods have recently been applied. They are more flexible, in comparison with existing analogues and are capable of taking into account the nonlinearities of the series. In this paper, we propose a modified algorithm for predicting the series of dynamics, which includes a method for training neural networks, an approach to describing and presenting input data, based on the prediction by the multilayer perceptron method. To construct a neural network, the values of a series of dynamics at the extremum points and time values corresponding to them, formed based on the sliding window method, are used as input data. The proposed algorithm can act as an independent approach to predicting the series of dynamics, and be one of the parts of the forecasting system. The efficiency of predicting the evolution of the dynamics series for a short-term one-step and long-term multi-step forecast by the classical multilayer perceptron method and a modified algorithm using synthetic and real data is compared. The result of this modification was the minimization of the magnitude of the iterative error that arises from the previously predicted inputs to the inputs to the neural network, as well as the increase in the accuracy of the iterative prediction of the neural network.
Energy Technology Data Exchange (ETDEWEB)
Moryakov, A. V., E-mail: sailor@orc.ru [National Research Centre Kurchatov Institute (Russian Federation)
2016-12-15
An algorithm for solving the linear Cauchy problem for large systems of ordinary differential equations is presented. The algorithm for systems of first-order differential equations is implemented in the EDELWEISS code with the possibility of parallel computations on supercomputers employing the MPI (Message Passing Interface) standard for the data exchange between parallel processes. The solution is represented by a series of orthogonal polynomials on the interval [0, 1]. The algorithm is characterized by simplicity and the possibility to solve nonlinear problems with a correction of the operator in accordance with the solution obtained in the previous iterative process.
Single- and Multiple-Objective Optimization with Differential Evolution and Neural Networks
Rai, Man Mohan
2006-01-01
Genetic and evolutionary algorithms have been applied to solve numerous problems in engineering design where they have been used primarily as optimization procedures. These methods have an advantage over conventional gradient-based search procedures became they are capable of finding global optima of multi-modal functions and searching design spaces with disjoint feasible regions. They are also robust in the presence of noisy data. Another desirable feature of these methods is that they can efficiently use distributed and parallel computing resources since multiple function evaluations (flow simulations in aerodynamics design) can be performed simultaneously and independently on ultiple processors. For these reasons genetic and evolutionary algorithms are being used more frequently in design optimization. Examples include airfoil and wing design and compressor and turbine airfoil design. They are also finding increasing use in multiple-objective and multidisciplinary optimization. This lecture will focus on an evolutionary method that is a relatively new member to the general class of evolutionary methods called differential evolution (DE). This method is easy to use and program and it requires relatively few user-specified constants. These constants are easily determined for a wide class of problems. Fine-tuning the constants will off course yield the solution to the optimization problem at hand more rapidly. DE can be efficiently implemented on parallel computers and can be used for continuous, discrete and mixed discrete/continuous optimization problems. It does not require the objective function to be continuous and is noise tolerant. DE and applications to single and multiple-objective optimization will be included in the presentation and lecture notes. A method for aerodynamic design optimization that is based on neural networks will also be included as a part of this lecture. The method offers advantages over traditional optimization methods. It is more
Indian Academy of Sciences (India)
to as 'divide-and-conquer'. Although there has been a large effort in realizing efficient algorithms, there are not many universally accepted algorithm design paradigms. In this article, we illustrate algorithm design techniques such as balancing, greedy strategy, dynamic programming strategy, and backtracking or traversal of ...
Han, Zhifeng; Liu, Jianye; Li, Rongbing; Zeng, Qinghua; Wang, Yi
2017-07-04
BeiDou system navigation messages are modulated with a secondary NH (Neumann-Hoffman) code of 1 kbps, where frequent bit transitions limit the coherent integration time to 1 millisecond. Therefore, a bit synchronization algorithm is necessary to obtain bit edges and NH code phases. In order to realize bit synchronization for BeiDou weak signals with large frequency deviation, a bit synchronization algorithm based on differential coherent and maximum likelihood is proposed. Firstly, a differential coherent approach is used to remove the effect of frequency deviation, and the differential delay time is set to be a multiple of bit cycle to remove the influence of NH code. Secondly, the maximum likelihood function detection is used to improve the detection probability of weak signals. Finally, Monte Carlo simulations are conducted to analyze the detection performance of the proposed algorithm compared with a traditional algorithm under the CN0s of 20~40 dB-Hz and different frequency deviations. The results show that the proposed algorithm outperforms the traditional method with a frequency deviation of 50 Hz. This algorithm can remove the effect of BeiDou NH code effectively and weaken the influence of frequency deviation. To confirm the feasibility of the proposed algorithm, real data tests are conducted. The proposed algorithm is suitable for BeiDou weak signal bit synchronization with large frequency deviation.
Directory of Open Access Journals (Sweden)
D. N. Safonov
2017-08-01
Full Text Available Subject relevance. The process of mental pathology pathomorphosis leads to the polymorphism of its clinical manifestations and, as a consequence – to difficulties in identification and differential diagnosis. The solution to this problem is in the adaption of diagnostic methodology to clinical realities by including into their structure instruments formed basing on pathomorphosis factors and trends. In this perspective, the most prominent example is endogenous catatonia, which in the academic tradition is conventionally affiliated with the form of schizophrenia with the same name. According to the classical understanding, endogenous catatonia, or, in the narrow sense – catatonic syndrome, is a group of intermittent motor disorders, arranged with polymorphic shell constellation of neuropsychiatric manifestations. The aim is to develop pathomorphosis adapted clinical algorithm of endogenous catatonia differential diagnostics. Materials and methods: 236 patients of Zaporizhzhia Regional Psychiatric Clinic were examined. Patients were divided into groups due to their mental disorders: – core group: patients with elements of endogenous catatonia in the structure of different clinical forms of schizophrenia (there were 144 patients in this group; – comparison group #1: 69 patients with late neurotropic effects of neuroleptic therapy (LNENT; – comparison group #2: 103 patients with catatonia-morphic dissociative disorders (CDD; – comparison group #3: 90 patients with organic catatonic disorder (OrCD; Results. Using Bush-Francis Catatonia Rating scale as an instrument of clinical analysis and statistical research of results with A. Wald’s sequential analysis (modificated by E. V. Gubler an algorithm of differential diagnostics of endogenus catatonia which includes 3 steps of Recognition Scale for Endogenous Catatonia is developed. Conclusion. Designed scales have a number of categorical differences from existing analogues, foremost by
Directory of Open Access Journals (Sweden)
Chandramouli Anandaraman
2012-01-01
Full Text Available A new evolutionary computation algorithm, Superbug algorithm, which simulates evolution of bacteria in a culture, is proposed. The algorithm is developed for solving large scale optimization problems such as scheduling, transportation and assignment problems. In this work, the algorithm optimizes machine schedules in a Flexible Manufacturing System (FMS by minimizing makespan. The FMS comprises of four machines and two identical Automated Guided Vehicles (AGVs. AGVs are used for carrying jobs between the Load/Unload (L/U station and the machines. Experimental results indicate the efficiency of the proposed algorithm in its optimization performance in scheduling is noticeably superior to other evolutionary algorithms when compared to the best results reported in the literature for FMS Scheduling.
Colautti, Robert I; Lau, Jennifer A
2015-05-01
Biological invasions are 'natural' experiments that can improve our understanding of contemporary evolution. We evaluate evidence for population differentiation, natural selection and adaptive evolution of invading plants and animals at two nested spatial scales: (i) among introduced populations (ii) between native and introduced genotypes. Evolution during invasion is frequently inferred, but rarely confirmed as adaptive. In common garden studies, quantitative trait differentiation is only marginally lower (~3.5%) among introduced relative to native populations, despite genetic bottlenecks and shorter timescales (i.e. millennia vs. decades). However, differentiation between genotypes from the native vs. introduced range is less clear and confounded by nonrandom geographic sampling; simulations suggest this causes a high false-positive discovery rate (>50%) in geographically structured populations. Selection differentials (¦s¦) are stronger in introduced than in native species, although selection gradients (¦β¦) are not, consistent with introduced species experiencing weaker genetic constraints. This could facilitate rapid adaptation, but evidence is limited. For example, rapid phenotypic evolution often manifests as geographical clines, but simulations demonstrate that nonadaptive trait clines can evolve frequently during colonization (~two-thirds of simulations). Additionally, QST-FST studies may often misrepresent the strength and form of natural selection acting during invasion. Instead, classic approaches in evolutionary ecology (e.g. selection analysis, reciprocal transplant, artificial selection) are necessary to determine the frequency of adaptive evolution during invasion and its influence on establishment, spread and impact of invasive species. These studies are rare but crucial for managing biological invasions in the context of global change. © 2015 John Wiley & Sons Ltd.
Directory of Open Access Journals (Sweden)
Ligang Cui
2013-01-01
Full Text Available The capacitated vehicle routing problem (CVRP is the most classical vehicle routing problem (VRP; many solution techniques are proposed to find its better answer. In this paper, a new improved quantum evolution algorithm (IQEA with a mixed local search procedure is proposed for solving CVRPs. First, an IQEA with a double chain quantum chromosome, new quantum rotation schemes, and self-adaptive quantum Not gate is constructed to initialize and generate feasible solutions. Then, to further strengthen IQEA's searching ability, three local search procedures 1-1 exchange, 1-0 exchange, and 2-OPT, are adopted. Experiments on a small case have been conducted to analyze the sensitivity of main parameters and compare the performances of the IQEA with different local search strategies. Together with results from the testing of CVRP benchmarks, the superiorities of the proposed algorithm over the PSO, SR-1, and SR-2 have been demonstrated. At last, a profound analysis of the experimental results is presented and some suggestions on future researches are given.
Lynch, Alejandro; Baker, Allan J
1994-04-01
We investigated cultural evolution in populations of common chaffinches (Fringilla coelebs) in the Atlantic islands (Azores, Madeira, and Canaries) and neighboring continental regions (Morocco and Iberia) by employing a population-memetic approach. To quantify differentiation, we used the concept of a song meme, defined as a single syllable or a series of linked syllables capable of being transmitted. The levels of cultural differentiation are higher among the Canaries populations than among the Azorean ones, even though the islands are on average closer to each other geographically. This is likely the result of reduced levels of migration, lower population sizes, and bottlenecks (possibly during the colonization of these populations) in the Canaries; all these factors produce a smaller effective population size and therefore accentuate the effects of differentiation by random drift. Significant levels of among-population differentiation in the Azores, in spite of substantial levels of migration, attest to the differentiating effects of high mutation rates of memes, which allow the accumulation of new mutants in different populations before migration can disperse them throughout the entire region. © 1994 The Society for the Study of Evolution.
Multiple Active Contours Guided by Differential Evolution for Medical Image Segmentation
Cruz-Aceves, I.; Avina-Cervantes, J. G.; Lopez-Hernandez, J. M.; Rostro-Gonzalez, H.; Garcia-Capulin, C. H.; Torres-Cisneros, M.; Guzman-Cabrera, R.
2013-01-01
This paper presents a new image segmentation method based on multiple active contours guided by differential evolution, called MACDE. The segmentation method uses differential evolution over a polar coordinate system to increase the exploration and exploitation capabilities regarding the classical active contour model. To evaluate the performance of the proposed method, a set of synthetic images with complex objects, Gaussian noise, and deep concavities is introduced. Subsequently, MACDE is applied on datasets of sequential computed tomography and magnetic resonance images which contain the human heart and the human left ventricle, respectively. Finally, to obtain a quantitative and qualitative evaluation of the medical image segmentations compared to regions outlined by experts, a set of distance and similarity metrics has been adopted. According to the experimental results, MACDE outperforms the classical active contour model and the interactive Tseng method in terms of efficiency and robustness for obtaining the optimal control points and attains a high accuracy segmentation. PMID:23983809
Multiple Active Contours Guided by Differential Evolution for Medical Image Segmentation
Directory of Open Access Journals (Sweden)
I. Cruz-Aceves
2013-01-01
Full Text Available This paper presents a new image segmentation method based on multiple active contours guided by differential evolution, called MACDE. The segmentation method uses differential evolution over a polar coordinate system to increase the exploration and exploitation capabilities regarding the classical active contour model. To evaluate the performance of the proposed method, a set of synthetic images with complex objects, Gaussian noise, and deep concavities is introduced. Subsequently, MACDE is applied on datasets of sequential computed tomography and magnetic resonance images which contain the human heart and the human left ventricle, respectively. Finally, to obtain a quantitative and qualitative evaluation of the medical image segmentations compared to regions outlined by experts, a set of distance and similarity metrics has been adopted. According to the experimental results, MACDE outperforms the classical active contour model and the interactive Tseng method in terms of efficiency and robustness for obtaining the optimal control points and attains a high accuracy segmentation.
Martín, Fernando; Moreno, Luis; Garrido, Santiago; Blanco, Dolores
2015-09-16
One of the most important skills desired for a mobile robot is the ability to obtain its own location even in challenging environments. The information provided by the sensing system is used here to solve the global localization problem. In our previous work, we designed different algorithms founded on evolutionary strategies in order to solve the aforementioned task. The latest developments are presented in this paper. The engine of the localization module is a combination of the Markov chain Monte Carlo sampling technique and the Differential Evolution method, which results in a particle filter based on the minimization of a fitness function. The robot's pose is estimated from a set of possible locations weighted by a cost value. The measurements of the perceptive sensors are used together with the predicted ones in a known map to define a cost function to optimize. Although most localization methods rely on quadratic fitness functions, the sensed information is processed asymmetrically in this filter. The Kullback-Leibler divergence is the basis of a cost function that makes it possible to deal with different types of occlusions. The algorithm performance has been checked in a real map. The results are excellent in environments with dynamic and unmodeled obstacles, a fact that causes occlusions in the sensing area.
Directory of Open Access Journals (Sweden)
Fernando Martín
2015-09-01
Full Text Available One of the most important skills desired for a mobile robot is the ability to obtain its own location even in challenging environments. The information provided by the sensing system is used here to solve the global localization problem. In our previous work, we designed different algorithms founded on evolutionary strategies in order to solve the aforementioned task. The latest developments are presented in this paper. The engine of the localization module is a combination of the Markov chain Monte Carlo sampling technique and the Differential Evolution method, which results in a particle filter based on the minimization of a fitness function. The robot’s pose is estimated from a set of possible locations weighted by a cost value. The measurements of the perceptive sensors are used together with the predicted ones in a known map to define a cost function to optimize. Although most localization methods rely on quadratic fitness functions, the sensed information is processed asymmetrically in this filter. The Kullback-Leibler divergence is the basis of a cost function that makes it possible to deal with different types of occlusions. The algorithm performance has been checked in a real map. The results are excellent in environments with dynamic and unmodeled obstacles, a fact that causes occlusions in the sensing area.
Baraldi, P.; Bonfanti, G.; Zio, E.
2018-03-01
The identification of the current degradation state of an industrial component and the prediction of its future evolution is a fundamental step for the development of condition-based and predictive maintenance approaches. The objective of the present work is to propose a general method for extracting a health indicator to measure the amount of component degradation from a set of signals measured during operation. The proposed method is based on the combined use of feature extraction techniques, such as Empirical Mode Decomposition and Auto-Associative Kernel Regression, and a multi-objective Binary Differential Evolution (BDE) algorithm for selecting the subset of features optimal for the definition of the health indicator. The objectives of the optimization are desired characteristics of the health indicator, such as monotonicity, trendability and prognosability. A case study is considered, concerning the prediction of the remaining useful life of turbofan engines. The obtained results confirm that the method is capable of extracting health indicators suitable for accurate prognostics.
Directory of Open Access Journals (Sweden)
Yuqing He
2014-01-01
Full Text Available Autonomous maneuvering flight control of rotor-flying robots (RFR is a challenging problem due to the highly complicated structure of its model and significant uncertainties regarding many aspects of the field. As a consequence, it is difficult in many cases to decide whether or not a flight maneuver trajectory is feasible. It is necessary to conduct an analysis of the flight maneuvering ability of an RFR prior to test flight. Our aim in this paper is to use a numerical method called algorithm differentiation (AD to solve this problem. The basic idea is to compute the internal state (i.e., attitude angles and angular rates and input profiles based on predetermined maneuvering trajectory information denoted by the outputs (i.e., positions and yaw angle and their higher-order derivatives. For this purpose, we first present a model of the RFR system and show that it is flat. We then cast the procedure for obtaining the required state/input based on the desired outputs as a static optimization problem, which is solved using AD and a derivative based optimization algorithm. Finally, we test our proposed method using a flight maneuver trajectory to verify its performance.
International Nuclear Information System (INIS)
Mellor, R.A.; Harrington, C.L.; Bard, S.T.
1984-01-01
Proposed changes to 10CFR20 combining internal and external exposures will require accurate and precise in vivo bioassay data. One of the many uncertainties in the interpretation of in vivo bioassay data is the imprecise knowledge of the location of any observed radioactivity within the body of an individual. Attempts to minimize this uncertainty have been made by collimating the field of view of a single photon detector to each organ or body system of concern. In each of these cases, full removal of any potential gamma flux from organs other than the desired organ is not achieved. In certain commercially available systems this ''cross talk'' may range from 20 to 40 percent. A computerized algorithm has been developed which resolves this ''cross talk'' for all observed radionuclides in a system composed of two high purity germanium photon detectors separately viewing the lung and GI regions of a subject. The algorithm routinely applies cross talk correction factors and photopeak detection efficiencies to the net spectral photopeak areas determined by a peak search methodology. Separate lung and GI activities, corrected for cross talk, are calculated and reported. The logic utilized in the total software package, as well as the derivation of the cross talk correction factors, will be discussed. Any limitations of the computer algorithm when applied to various radioactivity levels will also be identified. An evaluation of the cross talk factors for potential use in differentiating surface contamination from true organ burdens will be presented. In addition, the capability to efficiently execute this software using a low cost, portable stand-alone computer system will be demonstrated
Size evolution of ultrafine particles: Differential signatures of normal and episodic events
International Nuclear Information System (INIS)
Joshi, Manish; Khan, Arshad; Anand, S.; Sapra, B.K.
2016-01-01
The effect of fireworks on the aerosol number characteristics of atmosphere was studied for an urban mega city. Measurements were made at 50 m height to assess the local changes around the festival days. Apart from the increase in total number concentration and characteristic accumulation mode, short-term increase of ultrafine particle concentration was noted. Total number concentration varies an order of magnitude during the measurement period in which peak occurs at a frequency of approximately one per day. On integral scale, it seems not possible to distinguish an episodic (e.g. firework bursting induced aerosol emission) and a normal (ambient atmospheric changes) event. However these events could be differentiated on the basis of size evolution analysis around number concentration peaks. The results are discussed relative to past studies and inferences are drawn towards aerosol signatures of firework bursting. The short-term burst in ultrafine particle concentration can pose an inhalation hazard. - Highlights: • Effect of firework emissions on atmospheric aerosol characteristics was studied. • Significant increase in ultrafine particle concentration was observed during firework bursting. • Size distribution evolution analysis of number concentration peaks has been performed. • Differential signatures of normal and episodic event were noted. - Notable increase in ultrafine particle concentration during firework bursting was seen. Normal and episodic event could be differentiated on the basis of size evolution analysis.
Li, Bai; Gong, Li-gang; Yang, Wen-lun
2014-01-01
Unmanned combat aerial vehicles (UCAVs) have been of great interest to military organizations throughout the world due to their outstanding capabilities to operate in dangerous or hazardous environments. UCAV path planning aims to obtain an optimal flight route with the threats and constraints in the combat field well considered. In this work, a novel artificial bee colony (ABC) algorithm improved by a balance-evolution strategy (BES) is applied in this optimization scheme. In this new algorithm, convergence information during the iteration is fully utilized to manipulate the exploration/exploitation accuracy and to pursue a balance between local exploitation and global exploration capabilities. Simulation results confirm that BE-ABC algorithm is more competent for the UCAV path planning scheme than the conventional ABC algorithm and two other state-of-the-art modified ABC algorithms.
Directory of Open Access Journals (Sweden)
Bai Li
2014-01-01
Full Text Available Unmanned combat aerial vehicles (UCAVs have been of great interest to military organizations throughout the world due to their outstanding capabilities to operate in dangerous or hazardous environments. UCAV path planning aims to obtain an optimal flight route with the threats and constraints in the combat field well considered. In this work, a novel artificial bee colony (ABC algorithm improved by a balance-evolution strategy (BES is applied in this optimization scheme. In this new algorithm, convergence information during the iteration is fully utilized to manipulate the exploration/exploitation accuracy and to pursue a balance between local exploitation and global exploration capabilities. Simulation results confirm that BE-ABC algorithm is more competent for the UCAV path planning scheme than the conventional ABC algorithm and two other state-of-the-art modified ABC algorithms.
Indian Academy of Sciences (India)
ticians but also forms the foundation of computer science. Two ... with methods of developing algorithms for solving a variety of problems but ... applications of computers in science and engineer- ... numerical calculus are as important. We will ...
Directory of Open Access Journals (Sweden)
Yu Zhang
2015-10-01
Full Text Available In this article, we begin with the non-homogeneous model for the non-differentiable heat flow, which is described using the local fractional vector calculus, from the first law of thermodynamics in fractal media point view. We employ the local fractional variational iteration algorithm II to solve the fractal heat equations. The obtained results show the non-differentiable behaviors of temperature fields of fractal heat flow defined on Cantor sets.
Liu, Xiaofeng; Bai, Fang; Ouyang, Sisheng; Wang, Xicheng; Li, Honglin; Jiang, Hualiang
2009-03-31
Conformation generation is a ubiquitous problem in molecule modelling. Many applications require sampling the broad molecular conformational space or perceiving the bioactive conformers to ensure success. Numerous in silico methods have been proposed in an attempt to resolve the problem, ranging from deterministic to non-deterministic and systemic to stochastic ones. In this work, we described an efficient conformation sampling method named Cyndi, which is based on multi-objective evolution algorithm. The conformational perturbation is subjected to evolutionary operation on the genome encoded with dihedral torsions. Various objectives are designated to render the generated Pareto optimal conformers to be energy-favoured as well as evenly scattered across the conformational space. An optional objective concerning the degree of molecular extension is added to achieve geometrically extended or compact conformations which have been observed to impact the molecular bioactivity (J Comput -Aided Mol Des 2002, 16: 105-112). Testing the performance of Cyndi against a test set consisting of 329 small molecules reveals an average minimum RMSD of 0.864 A to corresponding bioactive conformations, indicating Cyndi is highly competitive against other conformation generation methods. Meanwhile, the high-speed performance (0.49 +/- 0.18 seconds per molecule) renders Cyndi to be a practical toolkit for conformational database preparation and facilitates subsequent pharmacophore mapping or rigid docking. The copy of precompiled executable of Cyndi and the test set molecules in mol2 format are accessible in Additional file 1. On the basis of MOEA algorithm, we present a new, highly efficient conformation generation method, Cyndi, and report the results of validation and performance studies comparing with other four methods. The results reveal that Cyndi is capable of generating geometrically diverse conformers and outperforms other four multiple conformer generators in the case of
Directory of Open Access Journals (Sweden)
Li Honglin
2009-03-01
Full Text Available Abstract Background Conformation generation is a ubiquitous problem in molecule modelling. Many applications require sampling the broad molecular conformational space or perceiving the bioactive conformers to ensure success. Numerous in silico methods have been proposed in an attempt to resolve the problem, ranging from deterministic to non-deterministic and systemic to stochastic ones. In this work, we described an efficient conformation sampling method named Cyndi, which is based on multi-objective evolution algorithm. Results The conformational perturbation is subjected to evolutionary operation on the genome encoded with dihedral torsions. Various objectives are designated to render the generated Pareto optimal conformers to be energy-favoured as well as evenly scattered across the conformational space. An optional objective concerning the degree of molecular extension is added to achieve geometrically extended or compact conformations which have been observed to impact the molecular bioactivity (J Comput -Aided Mol Des 2002, 16: 105–112. Testing the performance of Cyndi against a test set consisting of 329 small molecules reveals an average minimum RMSD of 0.864 Å to corresponding bioactive conformations, indicating Cyndi is highly competitive against other conformation generation methods. Meanwhile, the high-speed performance (0.49 ± 0.18 seconds per molecule renders Cyndi to be a practical toolkit for conformational database preparation and facilitates subsequent pharmacophore mapping or rigid docking. The copy of precompiled executable of Cyndi and the test set molecules in mol2 format are accessible in Additional file 1. Conclusion On the basis of MOEA algorithm, we present a new, highly efficient conformation generation method, Cyndi, and report the results of validation and performance studies comparing with other four methods. The results reveal that Cyndi is capable of generating geometrically diverse conformers and outperforms
Opposition-Based Adaptive Fireworks Algorithm
Directory of Open Access Journals (Sweden)
Chibing Gong
2016-07-01
Full Text Available A fireworks algorithm (FWA is a recent swarm intelligence algorithm that is inspired by observing fireworks explosions. An adaptive fireworks algorithm (AFWA proposes additional adaptive amplitudes to improve the performance of the enhanced fireworks algorithm (EFWA. The purpose of this paper is to add opposition-based learning (OBL to AFWA with the goal of further boosting performance and achieving global optimization. Twelve benchmark functions are tested in use of an opposition-based adaptive fireworks algorithm (OAFWA. The final results conclude that OAFWA significantly outperformed EFWA and AFWA in terms of solution accuracy. Additionally, OAFWA was compared with a bat algorithm (BA, differential evolution (DE, self-adapting control parameters in differential evolution (jDE, a firefly algorithm (FA, and a standard particle swarm optimization 2011 (SPSO2011 algorithm. The research results indicate that OAFWA ranks the highest of the six algorithms for both solution accuracy and runtime cost.
Directory of Open Access Journals (Sweden)
Xiaogang Qi
2015-01-01
Full Text Available Wireless sensor network (WSN is a classical self-organizing communication network, and its topology evolution currently becomes one of the attractive issues in this research field. Accordingly, the problem is divided into two subproblems: one is to design a new preferential attachment method and the other is to analyze the dynamics of the network topology evolution. To solve the first subproblem, a revised PageRank algorithm, called Con-rank, is proposed to evaluate the node importance upon the existing node contraction, and then a novel preferential attachment is designed based on the node importance calculated by the proposed Con-rank algorithm. To solve the second one, we firstly analyze the network topology evolution dynamics in a theoretical way and then simulate the evolution process. Theoretical analysis proves that the network topology evolution of our model agrees with power-law distribution, and simulation results are well consistent with our conclusions obtained from the theoretical analysis and simultaneously show that our topology evolution model is superior to the classic BA model in the average path length and the clustering coefficient, and the network topology is more robust and can tolerate the random attacks.
A hybrid algorithm for coupling partial differential equation and compartment-based dynamics.
Harrison, Jonathan U; Yates, Christian A
2016-09-01
Stochastic simulation methods can be applied successfully to model exact spatio-temporally resolved reaction-diffusion systems. However, in many cases, these methods can quickly become extremely computationally intensive with increasing particle numbers. An alternative description of many of these systems can be derived in the diffusive limit as a deterministic, continuum system of partial differential equations (PDEs). Although the numerical solution of such PDEs is, in general, much more efficient than the full stochastic simulation, the deterministic continuum description is generally not valid when copy numbers are low and stochastic effects dominate. Therefore, to take advantage of the benefits of both of these types of models, each of which may be appropriate in different parts of a spatial domain, we have developed an algorithm that can be used to couple these two types of model together. This hybrid coupling algorithm uses an overlap region between the two modelling regimes. By coupling fluxes at one end of the interface and using a concentration-matching condition at the other end, we ensure that mass is appropriately transferred between PDE- and compartment-based regimes. Our methodology gives notable reductions in simulation time in comparison with using a fully stochastic model, while maintaining the important stochastic features of the system and providing detail in appropriate areas of the domain. We test our hybrid methodology robustly by applying it to several biologically motivated problems including diffusion and morphogen gradient formation. Our analysis shows that the resulting error is small, unbiased and does not grow over time. © 2016 The Authors.
Wormeester, Herbert; Sasse, A.G.B.M.; van Silfhout, Arend
1988-01-01
One of the main problems in the analysis of measured spectra is how to reduce the influence of noise in data processing. We show a deconvolution, a differentiation and a Fourier Transform algorithm that can be run on a small computer (64 K RAM) and suffer less from noise than commonly used routines.
Energy Technology Data Exchange (ETDEWEB)
Vanzeler, Francisco Joclean Alves
1999-06-01
In this work, we extract the elastic stiffness and mass density from an multi azimuthal qP-wave reflection coefficients at an interface separating two anisotropic media with monoclinic symmetry with at least one of its planes of symmetry parallel to the interface. This objective was reach by forward and inverse modeling. We calculate the q-P-wave reflection for three models (I, II, III) of anisotropic equivalent medium: isotropic medium above a TIH medium; TIV medium above a TIH medium; and orthorhombic medium above a TIH medium. The TIH medium is equivalent an isotropic fractured medium with equivalent elastic stiffness and mass density calculated by the Hudson formulation. The reflection coefficients used was on its exact form and was generated for models I, II and III in multi-azimuthal/incidence angles and contaminated by gaussian noise. In the inverse modeling we work with GA and with DE algorithms to calculate the inversion parameter (5 elastic stiffness and mass density for bottom media and Vs of upper isotropic media) by minimization of 12 norm of difference between the true and synthetic reflection coefficient. We assume that we know the parameter of the upper media of the three models, except Vs for model one in especial case of inversion of upper media.The parameter to be determined by inverse modeling are parametrized in model space for values that is in according with the value of the observed velocity of propagation of elastic waves in the earth crust, and the resolution of measure, and constraints of elastic stability of the solid media. The GA and DE algorithms reached good inversion to the models with at least three azimuthal angles, (0 deg C, 45 deg C and 90 deg C) and incidence angles of 34 deg C for model I, and 50 deg C inverted only by GA for models II and III; and the especial case take by DE that need at least 44 deg C to invert the model I with the Vs of the upper media. From this results we can see the potential to determine from q
Indian Academy of Sciences (India)
algorithm design technique called 'divide-and-conquer'. One of ... Turtle graphics, September. 1996. 5. ... whole list named 'PO' is a pointer to the first element of the list; ..... Program for computing matrices X and Y and placing the result in C *).
Indian Academy of Sciences (India)
algorithm that it is implicitly understood that we know how to generate the next natural ..... Explicit comparisons are made in line (1) where maximum and minimum is ... It can be shown that the function T(n) = 3/2n -2 is the solution to the above ...
Directory of Open Access Journals (Sweden)
Kim Jae H
2005-01-01
Full Text Available In this paper, we consider the issue of blind detection of Alamouti-type differential space-time (ST modulation in static Rayleigh fading channels. We focus our attention on a -shifted BPSK constellation, introducing a novel transformation to the received signal such that this binary ST modulation, which has a second-order transmit diversity, is equivalent to QPSK modulation with second-order receive diversity. This equivalent representation allows us to apply a low-complexity detection technique specifically designed for receive diversity, namely, scalar multiple-symbol differential detection (MSDD. To further increase receiver performance, we apply an iterative expectation-maximization (EM algorithm which performs joint channel estimation and sequence detection. This algorithm uses minimum mean square estimation to obtain channel estimates and the maximum-likelihood principle to detect the transmitted sequence, followed by differential decoding. With receiver complexity proportional to the observation window length, our receiver can achieve the performance of a coherent maximal ratio combining receiver (with differential decoding in as few as a single EM receiver iteration, provided that the window size of the initial MSDD is sufficiently long. To further demonstrate that the MSDD is a vital part of this receiver setup, we show that an initial ST conventional differential detector would lead to strange convergence behavior in the EM algorithm.
Algorithms to solve coupled systems of differential equations in terms of power series
International Nuclear Information System (INIS)
Ablinger, Jakob; Schneider, Carsten
2016-08-01
Using integration by parts relations, Feynman integrals can be represented in terms of coupled systems of differential equations. In the following we suppose that the unknown Feynman integrals can be given in power series representations, and that sufficiently many initial values of the integrals are given. Then there exist algorithms that decide constructively if the coefficients of their power series representations can be given within the class of nested sums over hypergeometric products. In this article we work out the calculation steps that solve this problem. First, we present a successful tactic that has been applied recently to challenging problems coming from massive 3-loop Feynman integrals. Here our main tool is to solve scalar linear recurrences within the class of nested sums over hypergeometric products. Second, we will present a new variation of this tactic which relies on more involved summation technologies but succeeds in reducing the problem to solve scalar recurrences with lower recurrence orders. The article works out the different challenges of this new tactic and demonstrates how they can be treated efficiently with our existing summation technologies.
Directory of Open Access Journals (Sweden)
Deling Wang
2018-03-01
Full Text Available Breast cancer is one of the most common malignancies in women. Patient-derived tumor xenograft (PDX model is a cutting-edge approach for drug research on breast cancer. However, PDX still exhibits differences from original human tumors, thereby challenging the molecular understanding of tumorigenesis. In particular, gene expression changes after tissues are transplanted from human to mouse model. In this study, we propose a novel computational method by incorporating several machine learning algorithms, including Monte Carlo feature selection (MCFS, random forest (RF, and rough set-based rule learning, to identify genes with significant expression differences between PDX and original human tumors. First, 831 breast tumors, including 657 PDX and 174 human tumors, were collected. Based on MCFS and RF, 32 genes were then identified to be informative for the prediction of PDX and human tumors and can be used to construct a prediction model. The prediction model exhibits a Matthews coefficient correlation value of 0.777. Seven interpretable interactions within the informative gene were detected based on the rough set-based rule learning. Furthermore, the seven interpretable interactions can be well supported by previous experimental studies. Our study not only presents a method for identifying informative genes with differential expression but also provides insights into the mechanism through which gene expression changes after being transplanted from human tumor into mouse model. This work would be helpful for research and drug development for breast cancer.
Wang, Deling; Li, Jia-Rui; Zhang, Yu-Hang; Chen, Lei; Huang, Tao; Cai, Yu-Dong
2018-03-12
Breast cancer is one of the most common malignancies in women. Patient-derived tumor xenograft (PDX) model is a cutting-edge approach for drug research on breast cancer. However, PDX still exhibits differences from original human tumors, thereby challenging the molecular understanding of tumorigenesis. In particular, gene expression changes after tissues are transplanted from human to mouse model. In this study, we propose a novel computational method by incorporating several machine learning algorithms, including Monte Carlo feature selection (MCFS), random forest (RF), and rough set-based rule learning, to identify genes with significant expression differences between PDX and original human tumors. First, 831 breast tumors, including 657 PDX and 174 human tumors, were collected. Based on MCFS and RF, 32 genes were then identified to be informative for the prediction of PDX and human tumors and can be used to construct a prediction model. The prediction model exhibits a Matthews coefficient correlation value of 0.777. Seven interpretable interactions within the informative gene were detected based on the rough set-based rule learning. Furthermore, the seven interpretable interactions can be well supported by previous experimental studies. Our study not only presents a method for identifying informative genes with differential expression but also provides insights into the mechanism through which gene expression changes after being transplanted from human tumor into mouse model. This work would be helpful for research and drug development for breast cancer.
International Nuclear Information System (INIS)
Baklacioglu, Tolga; Aydin, Hakan; Turan, Onder
2016-01-01
An aircraft is a complex system that requires methodologies for an efficient thermodynamic design process. So, it is important to gain a deeper understanding of energy and exergy use throughout an aircraft. The aim of this study is to propose a topology improving NE (neuro-evolution) algorithm modeling for assessing energy and exergy efficiency of a cargo aircraft for the phases of a flight. In this regard, energy and exergy data of the aircraft achieved from several engine runs at different power settings have been utilized to derive the ANN (artificial neural network) models optimized by a GA (genetic algorithm). NE of feed-forward networks trained by a BP (backpropagation) algorithm with momentum has assured the accomplishment of optimum initial network weights as well as the improvement of the network topology. The linear correlation coefficients very close to unity obtained for the derived ANN models have proved the tight fitting of the real data and the estimated values of the efficiencies provided by the models. Finally, compared to the trial-and-error case, evolving the networks by GAs has enhanced the accuracy of the modeling simply further as the reduction in the MSE (mean squared errors) for the energy and exergy efficiencies indicates. - Highlights: • Optimization using neuro-evolution algorithm. • Improved backpropagation algorithm using momentum factor. • Turboprop parameters as independent variables. • Energy and exergy efficiency modeling of a cargo aircraft.
Differential Evolution-Based PID Control of Nonlinear Full-Car Electrohydraulic Suspensions
Directory of Open Access Journals (Sweden)
Jimoh O. Pedro
2013-01-01
Full Text Available This paper presents a differential-evolution- (DE- optimized, independent multiloop proportional-integral-derivative (PID controller design for full-car nonlinear, electrohydraulic suspension systems. The multiloop PID control stabilises the actuator via force feedback and also improves the system performance. Controller gains are computed using manual tuning and through DE optimization to minimise a performance index, which addresses suspension travel, road holding, vehicle handling, ride comfort, and power consumption constraints. Simulation results showed superior performance of the DE-optimized PID-controlled active vehicle suspension system (AVSS over the manually tuned PID-controlled AVSS and the passive vehicle suspension system (PVSS.
International Nuclear Information System (INIS)
Miranda, M; Dorrio, B V; Blanco, J; Diz-Bugarin, J; Ribas, F
2011-01-01
Several metrological applications base their measurement principle in the phase sum or difference between two patterns, one original s(r,φ) and another modified t(r,φ+Δφ). Additive or differential phase shifting algorithms directly recover the sum 2φ+Δφ or the difference Δφ of phases without requiring prior calculation of the individual phases. These algorithms can be constructed, for example, from a suitable combination of known phase shifting algorithms. Little has been written on the design, analysis and error compensation of these new two-stage algorithms. Previously we have used computer simulation to study, in a linear approach or with a filter process in reciprocal space, the response of several families of them to the main error sources. In this work we present an error analysis that uses Monte Carlo simulation to achieve results in good agreement with those obtained with spatial and temporal methods.
International Nuclear Information System (INIS)
Li Tianduo; Xiao Gang; Di Yuming; Han Feng; Qiu Xiaoling
1999-01-01
The γ energy spectrum is expanded in allied energy-frequency space. By the different characterization of the evolution of wavelet transform modulus maxima across scales between energy spectrum and noise, the algorithm for removing the noise from γ energy spectrum by analyzing the evolution of the wavelet transform maxima across scales is presented. The results show, in contrast to the methods in energy space or in frequency space, the method has the advantages that the peak of energy spectrum can be indicated accurately and the energy spectrum can be reconstructed with a good approximation
Directory of Open Access Journals (Sweden)
Yanfei Zhong
2017-08-01
Full Text Available Hyperspectral images and light detection and ranging (LiDAR data have, respectively, the high spectral resolution and accurate elevation information required for urban land-use/land-cover (LULC classification. To combine the respective advantages of hyperspectral and LiDAR data, this paper proposes an optimal decision fusion method based on adaptive differential evolution, namely ODF-ADE, for urban LULC classification. In the ODF-ADE framework the normalized difference vegetation index (NDVI, gray-level co-occurrence matrix (GLCM and digital surface model (DSM are extracted to form the feature map. The three different classifiers of the maximum likelihood classifier (MLC, support vector machine (SVM and multinomial logistic regression (MLR are used to classify the extracted features. To find the optimal weights for the different classification maps, weighted voting is used to obtain the classification result and the weights of each classification map are optimized by the differential evolution algorithm which uses a self-adaptive strategy to obtain the parameter adaptively. The final classification map is obtained after post-processing based on conditional random fields (CRF. The experimental results confirm that the proposed algorithm is very effective in urban LULC classification.
Indian Academy of Sciences (India)
will become clear in the next article when we discuss a simple logo like programming language. ... Rod B may be used as an auxiliary store. The problem is to find an algorithm which performs this task. ... No disks are moved from A to Busing C as auxiliary rod. • move _disk (A, C);. (No + l)th disk is moved from A to C directly ...
International Nuclear Information System (INIS)
Duez, Matthew D.; Liu, Yuk Tung; Shapiro, Stuart L.; Stephens, Branson C.; Shibata, Masaru
2006-01-01
We study the effects of magnetic fields on the evolution of differentially rotating neutron stars, which can be formed in stellar core collapse or binary neutron star coalescence. Magnetic braking and the magnetorotational instability (MRI) both act on differentially rotating stars to redistribute angular momentum. Simulations of these stars are carried out in axisymmetry using our recently developed codes which integrate the coupled Einstein-Maxwell-MHD equations. We consider stars with two different equations of state (EOS), a gamma-law EOS with Γ=2, and a more realistic hybrid EOS, and we evolve them adiabatically. Our simulations show that the fate of the star depends on its mass and spin. For initial data, we consider three categories of differentially rotating, equilibrium configurations, which we label normal, hypermassive and ultraspinning. Normal configurations have rest masses below the maximum achievable with uniform rotation, and angular momentum below the maximum for uniform rotation at the same rest mass. Hypermassive stars have rest masses exceeding the mass limit for uniform rotation. Ultraspinning stars are not hypermassive, but have angular momentum exceeding the maximum for uniform rotation at the same rest mass. We show that a normal star will evolve to a uniformly rotating equilibrium configuration. An ultraspinning star evolves to an equilibrium state consisting of a nearly uniformly rotating central core, surrounded by a differentially rotating torus with constant angular velocity along magnetic field lines, so that differential rotation ceases to wind the magnetic field. In addition, the final state is stable against the MRI, although it has differential rotation. For a hypermassive neutron star, the MHD-driven angular momentum transport leads to catastrophic collapse of the core. The resulting rotating black hole is surrounded by a hot, massive, magnetized torus undergoing quasistationary accretion, and a magnetic field collimated along
Tang, Min; Zhao, Rui; van de Velde, Helgi; Tross, Jennifer G; Mitsiades, Constantine; Viselli, Suzanne; Neuwirth, Rachel; Esseltine, Dixie-Lee; Anderson, Kenneth; Ghobrial, Irene M; San Miguel, Jesús F; Richardson, Paul G; Tomasson, Michael H; Michor, Franziska
2016-08-15
Since the pioneering work of Salmon and Durie, quantitative measures of tumor burden in multiple myeloma have been used to make clinical predictions and model tumor growth. However, such quantitative analyses have not yet been performed on large datasets from trials using modern chemotherapy regimens. We analyzed a large set of tumor response data from three randomized controlled trials of bortezomib-based chemotherapy regimens (total sample size n = 1,469 patients) to establish and validate a novel mathematical model of multiple myeloma cell dynamics. Treatment dynamics in newly diagnosed patients were most consistent with a model postulating two tumor cell subpopulations, "progenitor cells" and "differentiated cells." Differential treatment responses were observed with significant tumoricidal effects on differentiated cells and less clear effects on progenitor cells. We validated this model using a second trial of newly diagnosed patients and a third trial of refractory patients. When applying our model to data of relapsed patients, we found that a hybrid model incorporating both a differentiation hierarchy and clonal evolution best explains the response patterns. The clinical data, together with mathematical modeling, suggest that bortezomib-based therapy exerts a selection pressure on myeloma cells that can shape the disease phenotype, thereby generating further inter-patient variability. This model may be a useful tool for improving our understanding of disease biology and the response to chemotherapy regimens. Clin Cancer Res; 22(16); 4206-14. ©2016 AACR. ©2016 American Association for Cancer Research.
Directory of Open Access Journals (Sweden)
Ahadi Arif Nugraha
2015-03-01
Full Text Available Salah satu aspek penting dalam perencanaan infrastruktur jaringan seluler adalah Base Transceiver Station (BTS yang merupakan sebuah pemancar dan penerima sinyal telephone seluler. Di satu sisi, peningkatan jumlah menara memang akan mendukung tercapainya pemenuhan kebutuhan masyarakat terhadap layanan telekomunikasi. Namun di sisi lain, penempatan menara yang tanpa perencanaan serta koordinasi yang tepat akan menimbulkan jumlah menara yang berlebih sehingga dapat mengganggu estetika lingkungan, tata ruang suatu wilayah, dan radiasi gelombang radio yang tidak terkontrol sehingga sangat mengganggu. Berdasarkan permasalahan diatas, maka dapat diselesaikan dengan cara menyusun suatu master plan yang lengkap dan rinci tentang penataan lokasi menara di Kabupaten Mojokerto untuk lima tahun mendatang. Penataan lokasi menara dilakukan dengan menggunakan algoritma Differential Evolution (DE untuk menemukan solusi penataan menara yang baik berdasarkan luas cakupan area sel yang dihasilkan, kemudian menggunakan software MapInfo sebagai media visualisasi peta lokasi penempatan menara telekomunikasi. Dalam perancangan menara BTS tahun 2019, Kabupaten Mojokerto membutuhkan 106 menara BTS 2G dan 36 menara BTS 3G. Penempatan menara BTS 2G dan 3G menggunakan algoritma differential evolution mampu mengoptimalkan 2,94% dari luas wilayah Kabupaten Mojokerto
Prabusankarlal, Kadayanallur Mahadevan; Thirumoorthy, Palanisamy; Manavalan, Radhakrishnan
2017-04-01
A method using rough set feature selection and extreme learning machine (ELM) whose learning strategy and hidden node parameters are optimized by self-adaptive differential evolution (SaDE) algorithm for classification of breast masses is investigated. A pathologically proven database of 140 breast ultrasound images, including 80 benign and 60 malignant, is used for this study. A fast nonlocal means algorithm is applied for speckle noise removal, and multiresolution analysis of undecimated discrete wavelet transform is used for accurate segmentation of breast lesions. A total of 34 features, including 29 textural and five morphological, are applied to a [Formula: see text]-fold cross-validation scheme, in which more relevant features are selected by quick-reduct algorithm, and the breast masses are discriminated into benign or malignant using SaDE-ELM classifier. The diagnosis accuracy of the system is assessed using parameters, such as accuracy (Ac), sensitivity (Se), specificity (Sp), positive predictive value (PPV), negative predictive value (NPV), Matthew's correlation coefficient (MCC), and area ([Formula: see text]) under receiver operating characteristics curve. The performance of the proposed system is also compared with other classifiers, such as support vector machine and ELM. The results indicated that the proposed SaDE algorithm has superior performance with [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], and [Formula: see text] compared to other classifiers.
Directory of Open Access Journals (Sweden)
B. Thamaraikannan
2014-01-01
Full Text Available This paper studies in detail the background and implementation of a teaching-learning based optimization (TLBO algorithm with differential operator for optimization task of a few mechanical components, which are essential for most of the mechanical engineering applications. Like most of the other heuristic techniques, TLBO is also a population-based method and uses a population of solutions to proceed to the global solution. A differential operator is incorporated into the TLBO for effective search of better solutions. To validate the effectiveness of the proposed method, three typical optimization problems are considered in this research: firstly, to optimize the weight in a belt-pulley drive, secondly, to optimize the volume in a closed coil helical spring, and finally to optimize the weight in a hollow shaft. have been demonstrated. Simulation result on the optimization (mechanical components problems reveals the ability of the proposed methodology to find better optimal solutions compared to other optimization algorithms.
Pilote, Alex J; Donovan, Lisa A
2016-12-01
Patterns of plant stem traits are expected to align with a "fast-slow" plant economic spectrum across taxa. Although broad patterns support such tradeoffs in field studies, tests of hypothesized correlated trait evolution and adaptive differentiation are more robust when taxa relatedness and environment are taken into consideration. Here we test for correlated evolution of stem and leaf traits and their adaptive differentiation across environments in the herbaceous genus, Helianthus. Stem and leaf traits of 14 species of Helianthus (28 populations) were assessed in a common garden greenhouse study. Phylogenetically independent contrasts were used to test for evidence of correlated evolution of stem hydraulic and biomechanical properties, correlated evolution of stem and leaf traits, and adaptive differentiation associated with source habitat environments. Among stem traits, there was evidence for correlated evolution of some hydraulic and biomechanical properties, supporting an expected tradeoff between stem theoretical hydraulic efficiency and resistance to bending stress. Population differentiation for suites of stem and leaf traits was found to be consistent with a "fast-slow" resource-use axis for traits related to water transport and use. Associations of population traits with source habitat characteristics supported repeated evolution of a resource-acquisitive "drought-escape" strategy in arid environments. This study provides evidence of correlated evolution of stem and leaf traits consistent with the fast-slow spectrum of trait combinations related to water transport and use along the stem-to-leaf pathway. Correlations of traits with source habitat characteristics further indicate that the correlated evolution is associated, at least in part, with adaptive differentiation of Helianthus populations among native habitats differing in climate. © 2016 Botanical Society of America.
2016-05-01
0.5 × 10−8. Our algorithm is implemented in C++ on an 1.7 GHz Intel Core i7-4650U CPU. Linear algebra packages BLAS [40] and LAPACK [41] are used to...subproblems. Our approach is expected to have wide applications in continuous dynamic games, control theory problems, and elsewhere. Mathematics...differential dynamic games, control theory problems, and dynamical systems coming from the physical world, e.g. [11]. An important application is to
Directory of Open Access Journals (Sweden)
Galperin Michael Y
2003-01-01
Full Text Available Abstract Background Comparative analysis of sequenced genomes reveals numerous instances of apparent horizontal gene transfer (HGT, at least in prokaryotes, and indicates that lineage-specific gene loss might have been even more common in evolution. This complicates the notion of a species tree, which needs to be re-interpreted as a prevailing evolutionary trend, rather than the full depiction of evolution, and makes reconstruction of ancestral genomes a non-trivial task. Results We addressed the problem of constructing parsimonious scenarios for individual sets of orthologous genes given a species tree. The orthologous sets were taken from the database of Clusters of Orthologous Groups of proteins (COGs. We show that the phyletic patterns (patterns of presence-absence in completely sequenced genomes of almost 90% of the COGs are inconsistent with the hypothetical species tree. Algorithms were developed to reconcile the phyletic patterns with the species tree by postulating gene loss, COG emergence and HGT (the latter two classes of events were collectively treated as gene gains. We prove that each of these algorithms produces a parsimonious evolutionary scenario, which can be represented as mapping of loss and gain events on the species tree. The distribution of the evolutionary events among the tree nodes substantially depends on the underlying assumptions of the reconciliation algorithm, e.g. whether or not independent gene gains (gain after loss after gain are permitted. Biological considerations suggest that, on average, gene loss might be a more likely event than gene gain. Therefore different gain penalties were used and the resulting series of reconstructed gene sets for the last universal common ancestor (LUCA of the extant life forms were analysed. The number of genes in the reconstructed LUCA gene sets grows as the gain penalty increases. However, qualitative examination of the LUCA versions reconstructed with different gain penalties
Differential rates of genic and chromosomal evolution in bats of the family Rhinolophidae.
Qumsiyeh, M B; Owen, R D; Chesser, R K
1988-06-01
Data for nondifferentially stained chromosomes from 10 species of Rhinolophus (Chiroptera: Rhinolophidae) suggest a conserved chromosomal evolution. G-banded chromosomes for three well differentiated species (Rhinolophus hipposideros, Rhinolophus blasii, and Rhinolophus acuminatus) corroborate a low level of gross chromosomal rearrangements. Additionally, a comparison between G-banded chromosomes of Rhinolophus (Rhinolophidae) and Hipposideros (Hipposideridae) suggests extreme conservatism in chromosomal arms between these two distantly related groups. On the other hand, we report extensive genic divergence as assayed by starch gel electrophoresis among these 10 species, and between Rhinolophus and two hipposiderid genera (Hipposideros and Aselliscus). The present chromosomal data are not sufficient for phylogenetic analysis. Phylogenies based on electrophoretic data are in many aspects discordant with those based on the classical morphological criteria. Different (and as yet not clearly understood) evolutionary forces affecting chromosomal, morphologic, and electrophoretic variation may be the reason for the apparent lack of concordance in these independent data sets.
On Improving Efficiency of Differential Evolution for Aerodynamic Shape Optimization Applications
Madavan, Nateri K.
2004-01-01
Differential Evolution (DE) is a simple and robust evolutionary strategy that has been proven effective in determining the global optimum for several difficult optimization problems. Although DE offers several advantages over traditional optimization approaches, its use in applications such as aerodynamic shape optimization where the objective function evaluations are computationally expensive is limited by the large number of function evaluations often required. In this paper various approaches for improving the efficiency of DE are reviewed and discussed. These approaches are implemented in a DE-based aerodynamic shape optimization method that uses a Navier-Stokes solver for the objective function evaluations. Parallelization techniques on distributed computers are used to reduce turnaround times. Results are presented for the inverse design of a turbine airfoil. The efficiency improvements achieved by the different approaches are evaluated and compared.
Size evolution of ultrafine particles: Differential signatures of normal and episodic events.
Joshi, Manish; Khan, Arshad; Anand, S; Sapra, B K
2016-01-01
The effect of fireworks on the aerosol number characteristics of atmosphere was studied for an urban mega city. Measurements were made at 50 m height to assess the local changes around the festival days. Apart from the increase in total number concentration and characteristic accumulation mode, short-term increase of ultrafine particle concentration was noted. Total number concentration varies an order of magnitude during the measurement period in which peak occurs at a frequency of approximately one per day. On integral scale, it seems not possible to distinguish an episodic (e.g. firework bursting induced aerosol emission) and a normal (ambient atmospheric changes) event. However these events could be differentiated on the basis of size evolution analysis around number concentration peaks. The results are discussed relative to past studies and inferences are drawn towards aerosol signatures of firework bursting. The short-term burst in ultrafine particle concentration can pose an inhalation hazard. Copyright © 2015 Elsevier Ltd. All rights reserved.
Amjad, M.; Salam, Z.; Ishaque, K.
2014-04-01
In order to design an efficient resonant power supply for ozone gas generator, it is necessary to accurately determine the parameters of the ozone chamber. In the conventional method, the information from Lissajous plot is used to estimate the values of these parameters. However, the experimental setup for this purpose can only predict the parameters at one operating frequency and there is no guarantee that it results in the highest ozone gas yield. This paper proposes a new approach to determine the parameters using a search and optimization technique known as Differential Evolution (DE). The desired objective function of DE is set at the resonance condition and the chamber parameter values can be searched regardless of experimental constraints. The chamber parameters obtained from the DE technique are validated by experiment.
Majeed, Muhammad Usman
2017-01-01
the problems are formulated on higher dimensional space domains. However, in this dissertation, feedback based state estimation algorithms, known as state observers, are developed to solve such steady-state problems using one of the space variables as time
A Lie-Deprit perturbation algorithm for linear differential equations with periodic coefficients
Casas Pérez, Fernando; Chiralt Monleon, Cristina
2014-01-01
A perturbative procedure based on the Lie-Deprit algorithm of classical mechanics is proposed to compute analytic approximations to the fundamental matrix of linear di erential equations with periodic coe cients. These approximations reproduce the structure assured by the Floquet theorem. Alternatively, the algorithm provides explicit approximations to the Lyapunov transformation reducing the original periodic problem to an autonomous sys- tem and also to its characteristic ...
Fixation times in differentiation and evolution in the presence of bottlenecks, deserts, and oases.
Chou, Tom; Wang, Yu
2015-05-07
Cellular differentiation and evolution are stochastic processes that can involve multiple types (or states) of particles moving on a complex, high-dimensional state-space or "fitness" landscape. Cells of each specific type can thus be quantified by their population at a corresponding node within a network of states. Their dynamics across the state-space network involve genotypic or phenotypic transitions that can occur upon cell division, such as during symmetric or asymmetric cell differentiation, or upon spontaneous mutation. Here, we use a general multi-type branching processes to study first passage time statistics for a single cell to appear in a specific state. Our approach readily allows for nonexponentially distributed waiting times between transitions, reflecting, e.g., the cell cycle. For simplicity, we restrict most of our detailed analysis to exponentially distributed waiting times (Poisson processes). We present results for a sequential evolutionary process in which L successive transitions propel a population from a "wild-type" state to a given "terminally differentiated," "resistant," or "cancerous" state. Analytic and numeric results are also found for first passage times across an evolutionary chain containing a node with increased death or proliferation rate, representing a desert/bottleneck or an oasis. Processes involving cell proliferation are shown to be "nonlinear" (even though mean-field equations for the expected particle numbers are linear) resulting in first passage time statistics that depend on the position of the bottleneck or oasis. Our results highlight the sensitivity of stochastic measures to cell division fate and quantify the limitations of using certain approximations (such as the fixed-population and mean-field assumptions) in evaluating fixation times. Published by Elsevier Ltd.
Rosenfeld, D.; Hu, J.; Zhang, P.; Snyder, J.; Orville, R. E.; Ryzhkov, A.; Zrnic, D.; Williams, E.; Zhang, R.
2017-12-01
A methodology to track the evolution of the hydrometeors and electrification of convective cells is presented and applied to various convective clouds from warm showers to super-cells. The input radar data are obtained from the polarimetric NEXRAD weather radars, The information on cloud electrification is obtained from Lightning Mapping Arrays (LMA). The development time and height of the hydrometeors and electrification requires tracking the evolution and lifecycle of convective cells. A new methodology for Multi-Cell Identification and Tracking (MCIT) is presented in this study. This new algorithm is applied to time series of radar volume scans. A cell is defined as a local maximum in the Vertical Integrated Liquid (VIL), and the echo area is divided between cells using a watershed algorithm. The tracking of the cells between radar volume scans is done by identifying the two cells in consecutive radar scans that have maximum common VIL. The vertical profile of the polarimetric radar properties are used for constructing the time-height cross section of the cell properties around the peak reflectivity as a function of height. The LMA sources that occur within the cell area are integrated as a function of height as well for each time step, as determined by the radar volume scans. The result of the tracking can provide insights to the evolution of storms, hydrometer types, precipitation initiation and cloud electrification under different thermodynamic, aerosol and geographic conditions. The details of the MCIT algorithm, its products and their performance for different types of storm are described in this poster.
Manual Engineering and Evolution of Emergent Algorithms for Agents on Two-dimensional Grids
Komann, Marcus
2011-01-01
In this thesis, the problem of detecting the attributes of multiple objects in binary images in realtime is solved. It is a common problem in industrial machine vision. For the solution, the usage of emergent algorithms on a smart camera with a fine-grained massively-parallel processor is proposed. Combining both is promising since such processors can exploit the abilities of emergent algorithms. Therefore, so-called Marching Pixels are introduced. These are local agents that traverse the pix...
Pareto evolution of gene networks: an algorithm to optimize multiple fitness objectives
International Nuclear Information System (INIS)
Warmflash, Aryeh; Siggia, Eric D; Francois, Paul
2012-01-01
The computational evolution of gene networks functions like a forward genetic screen to generate, without preconceptions, all networks that can be assembled from a defined list of parts to implement a given function. Frequently networks are subject to multiple design criteria that cannot all be optimized simultaneously. To explore how these tradeoffs interact with evolution, we implement Pareto optimization in the context of gene network evolution. In response to a temporal pulse of a signal, we evolve networks whose output turns on slowly after the pulse begins, and shuts down rapidly when the pulse terminates. The best performing networks under our conditions do not fall into categories such as feed forward and negative feedback that also encode the input–output relation we used for selection. Pareto evolution can more efficiently search the space of networks than optimization based on a single ad hoc combination of the design criteria. (paper)
Pareto evolution of gene networks: an algorithm to optimize multiple fitness objectives.
Warmflash, Aryeh; Francois, Paul; Siggia, Eric D
2012-10-01
The computational evolution of gene networks functions like a forward genetic screen to generate, without preconceptions, all networks that can be assembled from a defined list of parts to implement a given function. Frequently networks are subject to multiple design criteria that cannot all be optimized simultaneously. To explore how these tradeoffs interact with evolution, we implement Pareto optimization in the context of gene network evolution. In response to a temporal pulse of a signal, we evolve networks whose output turns on slowly after the pulse begins, and shuts down rapidly when the pulse terminates. The best performing networks under our conditions do not fall into categories such as feed forward and negative feedback that also encode the input-output relation we used for selection. Pareto evolution can more efficiently search the space of networks than optimization based on a single ad hoc combination of the design criteria.
Directory of Open Access Journals (Sweden)
Daniel Vasiliu
Full Text Available Global gene expression analysis using microarrays and, more recently, RNA-seq, has allowed investigators to understand biological processes at a system level. However, the identification of differentially expressed genes in experiments with small sample size, high dimensionality, and high variance remains challenging, limiting the usability of these tens of thousands of publicly available, and possibly many more unpublished, gene expression datasets. We propose a novel variable selection algorithm for ultra-low-n microarray studies using generalized linear model-based variable selection with a penalized binomial regression algorithm called penalized Euclidean distance (PED. Our method uses PED to build a classifier on the experimental data to rank genes by importance. In place of cross-validation, which is required by most similar methods but not reliable for experiments with small sample size, we use a simulation-based approach to additively build a list of differentially expressed genes from the rank-ordered list. Our simulation-based approach maintains a low false discovery rate while maximizing the number of differentially expressed genes identified, a feature critical for downstream pathway analysis. We apply our method to microarray data from an experiment perturbing the Notch signaling pathway in Xenopus laevis embryos. This dataset was chosen because it showed very little differential expression according to limma, a powerful and widely-used method for microarray analysis. Our method was able to detect a significant number of differentially expressed genes in this dataset and suggest future directions for investigation. Our method is easily adaptable for analysis of data from RNA-seq and other global expression experiments with low sample size and high dimensionality.
Hybrid Firefly Variants Algorithm for Localization Optimization in WSN
Directory of Open Access Journals (Sweden)
P. SrideviPonmalar
2017-01-01
Full Text Available Localization is one of the key issues in wireless sensor networks. Several algorithms and techniques have been introduced for localization. Localization is a procedural technique of estimating the sensor node location. In this paper, a novel three hybrid algorithms based on firefly is proposed for localization problem. Hybrid Genetic Algorithm-Firefly Localization Algorithm (GA-FFLA, Hybrid Differential Evolution-Firefly Localization Algorithm (DE-FFLA and Hybrid Particle Swarm Optimization -Firefly Localization Algorithm (PSO-FFLA are analyzed, designed and implemented to optimize the localization error. The localization algorithms are compared based on accuracy of estimation of location, time complexity and iterations required to achieve the accuracy. All the algorithms have hundred percent estimation accuracy but with variations in the number of firefliesr requirements, variation in time complexity and number of iteration requirements. Keywords: Localization; Genetic Algorithm; Differential Evolution; Particle Swarm Optimization
International Nuclear Information System (INIS)
Sunaguchi, Naoki; Yuasa, Tetsuya; Gupta, Rajiv; Ando, Masami
2015-01-01
The main focus of this paper is reconstruction of tomographic phase-contrast image from a set of projections. We propose an efficient reconstruction algorithm for differential phase-contrast computed tomography that can considerably reduce the number of projections required for reconstruction. The key result underlying this research is a projection theorem that states that the second derivative of the projection set is linearly related to the Laplacian of the tomographic image. The proposed algorithm first reconstructs the Laplacian image of the phase-shift distribution from the second-derivative of the projections using total variation regularization. The second step is to obtain the phase-shift distribution by solving a Poisson equation whose source is the Laplacian image previously reconstructed under the Dirichlet condition. We demonstrate the efficacy of this algorithm using both synthetically generated simulation data and projection data acquired experimentally at a synchrotron. The experimental phase data were acquired from a human coronary artery specimen using dark-field-imaging optics pioneered by our group. Our results demonstrate that the proposed algorithm can reduce the number of projections to approximately 33% as compared with the conventional filtered backprojection method, without any detrimental effect on the image quality
Mulyadi, Y.; Sucita, T.; Sumarto; Alpani, M.
2018-02-01
Electricity supply demand is increasing every year. It makes PT. PLN (Persero) is required to provide optimal customer service and satisfaction. Optimal service depends on the performance of the equipment of the power system owned, especially the transformer. Power transformer is an electrical equipment that transforms electricity from high voltage to low voltage or vice versa. However, in the electrical power system, is inseparable from interference included in the transformer. But, the disturbance can be minimized by the protection system. The main protection transformer is differential relays. Differential relays working system using Kirchoff law where inflows equal outflows. If there are excessive currents that interfere then the relays will work. But, the relay can also experience decreased performance. Therefore, this final project aims to analyze the reliability of the differential relay on the transformer in three different substations. Referring to the standard applied by the transmission line protection officer, the differential relay shall have slope characteristics of 30% in the first slope and 80% in the second slope when using two slopes and 80% when using one slope with an instant time and the corresponding ratio. So, the results obtained on the Siemens differential release have a reliable slope characteristic with a value of 30 on the fuzzy logic system. In a while, ABB a differential relay is only 80% reliable because two experiments are not reliable. For the time, all the differential relays are instant with a value of 0.06 on the fuzzy logic system. For ratios, the differential relays ABB have a better value than others brand with a value of 151 on the fuzzy logic system.
Directory of Open Access Journals (Sweden)
Qiang Yu
Full Text Available Texture enhancement is one of the most important techniques in digital image processing and plays an essential role in medical imaging since textures discriminate information. Most image texture enhancement techniques use classical integral order differential mask operators or fractional differential mask operators using fixed fractional order. These masks can produce excessive enhancement of low spatial frequency content, insufficient enhancement of large spatial frequency content, and retention of high spatial frequency noise. To improve upon existing approaches of texture enhancement, we derive an improved Variable Order Fractional Centered Difference (VOFCD scheme which dynamically adjusts the fractional differential order instead of fixing it. The new VOFCD technique is based on the second order Riesz fractional differential operator using a Lagrange 3-point interpolation formula, for both grey scale and colour image enhancement. We then use this method to enhance photographs and a set of medical images related to patients with stroke and Parkinson's disease. The experiments show that our improved fractional differential mask has a higher signal to noise ratio value than the other fractional differential mask operators. Based on the corresponding quantitative analysis we conclude that the new method offers a superior texture enhancement over existing methods.
International Nuclear Information System (INIS)
Supriyono; Miyoshi, T.
1997-01-01
NECD Method and runge-Kutta method for large system of second order ordinary differential equations in comparing algorithm. The paper introduce a extrapolation method used for solving the large system of second order ordinary differential equation. We call this method the modified extrapolated central difference (MECD) method. for the accuracy and efficiency MECD method. we compare the method with 4-th order runge-Kutta method. The comparison results show that, this method has almost the same accuracy as the 4-th order runge-Kutta method, but the computation time is about half of runge-Kutta. The MECD was declare by the author and Tetsuhiko Miyoshi of the Dept. Applied Science Yamaguchi University Japan
Gene duplication and the evolution of hemoglobin isoform differentiation in birds.
Grispo, Michael T; Natarajan, Chandrasekhar; Projecto-Garcia, Joana; Moriyama, Hideaki; Weber, Roy E; Storz, Jay F
2012-11-02
The majority of bird species co-express two functionally distinct hemoglobin (Hb) isoforms in definitive erythrocytes as follows: HbA (the major adult Hb isoform, with α-chain subunits encoded by the α(A)-globin gene) and HbD (the minor adult Hb isoform, with α-chain subunits encoded by the α(D)-globin gene). The α(D)-globin gene originated via tandem duplication of an embryonic α-like globin gene in the stem lineage of tetrapod vertebrates, which suggests the possibility that functional differentiation between the HbA and HbD isoforms may be attributable to a retained ancestral character state in HbD that harkens back to a primordial, embryonic function. To investigate this possibility, we conducted a combined analysis of protein biochemistry and sequence evolution to characterize the structural and functional basis of Hb isoform differentiation in birds. Functional experiments involving purified HbA and HbD isoforms from 11 different bird species revealed that HbD is characterized by a consistently higher O(2) affinity in the presence of allosteric effectors such as organic phosphates and Cl(-) ions. In the case of both HbA and HbD, analyses of oxygenation properties under the two-state Monod-Wyman-Changeux allosteric model revealed that the pH dependence of Hb-O(2) affinity stems primarily from changes in the O(2) association constant of deoxy (T-state)-Hb. Ancestral sequence reconstructions revealed that the amino acid substitutions that distinguish the adult-expressed Hb isoforms are not attributable to the retention of an ancestral (pre-duplication) character state in the α(D)-globin gene that is shared with the embryonic α-like globin gene.
Gene Duplication and the Evolution of Hemoglobin Isoform Differentiation in Birds*
Grispo, Michael T.; Natarajan, Chandrasekhar; Projecto-Garcia, Joana; Moriyama, Hideaki; Weber, Roy E.; Storz, Jay F.
2012-01-01
The majority of bird species co-express two functionally distinct hemoglobin (Hb) isoforms in definitive erythrocytes as follows: HbA (the major adult Hb isoform, with α-chain subunits encoded by the αA-globin gene) and HbD (the minor adult Hb isoform, with α-chain subunits encoded by the αD-globin gene). The αD-globin gene originated via tandem duplication of an embryonic α-like globin gene in the stem lineage of tetrapod vertebrates, which suggests the possibility that functional differentiation between the HbA and HbD isoforms may be attributable to a retained ancestral character state in HbD that harkens back to a primordial, embryonic function. To investigate this possibility, we conducted a combined analysis of protein biochemistry and sequence evolution to characterize the structural and functional basis of Hb isoform differentiation in birds. Functional experiments involving purified HbA and HbD isoforms from 11 different bird species revealed that HbD is characterized by a consistently higher O2 affinity in the presence of allosteric effectors such as organic phosphates and Cl− ions. In the case of both HbA and HbD, analyses of oxygenation properties under the two-state Monod-Wyman-Changeux allosteric model revealed that the pH dependence of Hb-O2 affinity stems primarily from changes in the O2 association constant of deoxy (T-state)-Hb. Ancestral sequence reconstructions revealed that the amino acid substitutions that distinguish the adult-expressed Hb isoforms are not attributable to the retention of an ancestral (pre-duplication) character state in the αD-globin gene that is shared with the embryonic α-like globin gene. PMID:22962007
Directory of Open Access Journals (Sweden)
Dazhi Jiang
2015-01-01
Full Text Available At present there is a wide range of evolutionary algorithms available to researchers and practitioners. Despite the great diversity of these algorithms, virtually all of the algorithms share one feature: they have been manually designed. A fundamental question is “are there any algorithms that can design evolutionary algorithms automatically?” A more complete definition of the question is “can computer construct an algorithm which will generate algorithms according to the requirement of a problem?” In this paper, a novel evolutionary algorithm based on automatic designing of genetic operators is presented to address these questions. The resulting algorithm not only explores solutions in the problem space like most traditional evolutionary algorithms do, but also automatically generates genetic operators in the operator space. In order to verify the performance of the proposed algorithm, comprehensive experiments on 23 well-known benchmark optimization problems are conducted. The results show that the proposed algorithm can outperform standard differential evolution algorithm in terms of convergence speed and solution accuracy which shows that the algorithm designed automatically by computers can compete with the algorithms designed by human beings.
International Nuclear Information System (INIS)
Yan Zhenya
2005-01-01
A new transformation method is developed using the general sine-Gordon travelling wave reduction equation and a generalized transformation. With the aid of symbolic computation, this method can be used to seek more types of solutions of nonlinear differential equations, which include not only the known solutions derived by some known methods but new solutions. Here we choose the double sine-Gordon equation, the Magma equation and the generalized Pochhammer-Chree (PC) equation to illustrate the method. As a result, many types of new doubly periodic solutions are obtained. Moreover when using the method to these special nonlinear differential equations, some transformations are firstly needed. The method can be also extended to other nonlinear differential equations
Lin, Ying Chih; Lu, Chin Lung; Chang, Hwan-You; Tang, Chuan Yi
2005-01-01
In the study of genome rearrangement, the block-interchanges have been proposed recently as a new kind of global rearrangement events affecting a genome by swapping two nonintersecting segments of any length. The so-called block-interchange distance problem, which is equivalent to the sorting-by-block-interchange problem, is to find a minimum series of block-interchanges for transforming one chromosome into another. In this paper, we study this problem by considering the circular chromosomes and propose a Omicron(deltan) time algorithm for solving it by making use of permutation groups in algebra, where n is the length of the circular chromosome and delta is the minimum number of block-interchanges required for the transformation, which can be calculated in Omicron(n) time in advance. Moreover, we obtain analogous results by extending our algorithm to linear chromosomes. Finally, we have implemented our algorithm and applied it to the circular genomic sequences of three human vibrio pathogens for predicting their evolutionary relationships. Consequently, our experimental results coincide with the previous ones obtained by others using a different comparative genomics approach, which implies that the block-interchange events seem to play a significant role in the evolution of vibrio species.
Kumar, Narender; Mariappan, Vanitha; Baddam, Ramani; Lankapalli, Aditya K; Shaik, Sabiha; Goh, Khean-Lee; Loke, Mun Fai; Perkins, Tim; Benghezal, Mohammed; Hasnain, Seyed E; Vadivelu, Jamuna; Marshall, Barry J; Ahmed, Niyaz
2015-01-01
The discordant prevalence of Helicobacter pylori and its related diseases, for a long time, fostered certain enigmatic situations observed in the countries of the southern world. Variation in H. pylori infection rates and disease outcomes among different populations in multi-ethnic Malaysia provides a unique opportunity to understand dynamics of host-pathogen interaction and genome evolution. In this study, we extensively analyzed and compared genomes of 27 Malaysian H. pylori isolates and identified three major phylogeographic lineages: hspEastAsia, hpEurope and hpSouthIndia. The analysis of the virulence genes within the core genome, however, revealed a comparable pathogenic potential of the strains. In addition, we identified four genes limited to strains of East-Asian lineage. Our analyses identified a few strain-specific genes encoding restriction modification systems and outlined 311 core genes possibly under differential evolutionary constraints, among the strains representing different ethnic groups. The cagA and vacA genes also showed variations in accordance with the host genetic background of the strains. Moreover, restriction modification genes were found to be significantly enriched in East-Asian strains. An understanding of these variations in the genome content would provide significant insights into various adaptive and host modulation strategies harnessed by H. pylori to effectively persist in a host-specific manner. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.
Coronary artery segmentation in X-ray angiogram using Gabor filters and differential evolution
Energy Technology Data Exchange (ETDEWEB)
Cervantes S, F.; Hernandez A, A.; Cruz A, I. [Centro de Investigacion en Matematicas, A. C., Jalisco s/n, Col. Valenciana, 36240 Guanajuato, Gto. (Mexico); Solorio M, S. [IMSS, Unidad de Investigacion, UMAE Hospital de Especialidades No. 1 del Centro Medico Nacional del Bajio, 37260 Leon, Guanajuato (Mexico); Cordova F, T. [Universidad de Guanajuato, Departamento de Ingenieria Fisica, 37150 Leon, Guanajuato (Mexico); Avina C, J. G., E-mail: ivan.cruz@cimat.mx [Universidad de Guanajuato, Departamento de Electronica, 36885 Salamanca, Guanajuato (Mexico)
2016-10-15
Segmentation of coronary arteries in X-ray angiograms represents an essential task for computer-aided diagnosis, since it can help cardiologists in diagnosing and monitoring vascular abnormalities. Due to the main disadvantages of the X-ray angiograms are the nonuniform illumination, and the weak contrast between blood vessels and image background, different vessel enhancement methods have been introduced. In this paper, a novel method for blood vessel enhancement based on Gabor filters tuned using the optimization strategy of Differential evolution (De) is proposed. Because the Gabor filters are governed by three different parameters, the optimal selection of those parameters is highly desirable in order to maximize the vessel detection rate while reducing the computational cost of the training stage. To obtain the optimal set of parameters for the Gabor filters, the area (Az) under the receiver operating characteristic curve is used as objective function. In the experimental results, the proposed method obtained the highest detection performance with Az = 0.956 using a test set of 60 angiograms, and Az = 0.934 with a training set of 20 angiograms compared with different state-of-the-art vessel detection methods. In addition, the experimental results in terms of computational time have also shown that the proposed method can be highly suitable for clinical decision support. (Author)
A modified differential evolution approach for dynamic economic dispatch with valve-point effects
International Nuclear Information System (INIS)
Yuan Xiaohui; Wang Liang; Yuan Yanbin; Zhang Yongchuan; Cao Bo; Yang Bo
2008-01-01
Dynamic economic dispatch (DED) plays an important role in power system operation, which is a complicated non-linear constrained optimization problem. It has nonsmooth and nonconvex characteristic when generation unit valve-point effects are taken into account. This paper proposes a modified differential evolution approach (MDE) to solve DED problem with valve-point effects. In the proposed MDE method, feasibility-based selection comparison techniques and heuristic search rules are devised to handle constraints effectively. In contrast to the penalty function method, the constraints-handling method does not require penalty factors or any extra parameters and can guide the population to the feasible region quickly. Especially, it can be satisfied equality constraints of DED problem precisely. Moreover, the effects of two crucial parameters on the performance of the MDE for DED problem are studied as well. The feasibility and effectiveness of the proposed method is demonstrated for application example and the test results are compared with those of other methods reported in literature. It is shown that the proposed method is capable of yielding higher quality solutions
Integrated model of multiple kernel learning and differential evolution for EUR/USD trading.
Deng, Shangkun; Sakurai, Akito
2014-01-01
Currency trading is an important area for individual investors, government policy decisions, and organization investments. In this study, we propose a hybrid approach referred to as MKL-DE, which combines multiple kernel learning (MKL) with differential evolution (DE) for trading a currency pair. MKL is used to learn a model that predicts changes in the target currency pair, whereas DE is used to generate the buy and sell signals for the target currency pair based on the relative strength index (RSI), while it is also combined with MKL as a trading signal. The new hybrid implementation is applied to EUR/USD trading, which is the most traded foreign exchange (FX) currency pair. MKL is essential for utilizing information from multiple information sources and DE is essential for formulating a trading rule based on a mixture of discrete structures and continuous parameters. Initially, the prediction model optimized by MKL predicts the returns based on a technical indicator called the moving average convergence and divergence. Next, a combined trading signal is optimized by DE using the inputs from the prediction model and technical indicator RSI obtained from multiple timeframes. The experimental results showed that trading using the prediction learned by MKL yielded consistent profits.
Integrated Model of Multiple Kernel Learning and Differential Evolution for EUR/USD Trading
Directory of Open Access Journals (Sweden)
Shangkun Deng
2014-01-01
Full Text Available Currency trading is an important area for individual investors, government policy decisions, and organization investments. In this study, we propose a hybrid approach referred to as MKL-DE, which combines multiple kernel learning (MKL with differential evolution (DE for trading a currency pair. MKL is used to learn a model that predicts changes in the target currency pair, whereas DE is used to generate the buy and sell signals for the target currency pair based on the relative strength index (RSI, while it is also combined with MKL as a trading signal. The new hybrid implementation is applied to EUR/USD trading, which is the most traded foreign exchange (FX currency pair. MKL is essential for utilizing information from multiple information sources and DE is essential for formulating a trading rule based on a mixture of discrete structures and continuous parameters. Initially, the prediction model optimized by MKL predicts the returns based on a technical indicator called the moving average convergence and divergence. Next, a combined trading signal is optimized by DE using the inputs from the prediction model and technical indicator RSI obtained from multiple timeframes. The experimental results showed that trading using the prediction learned by MKL yielded consistent profits.
Coronary artery segmentation in X-ray angiogram using Gabor filters and differential evolution
International Nuclear Information System (INIS)
Cervantes S, F.; Hernandez A, A.; Cruz A, I.; Solorio M, S.; Cordova F, T.; Avina C, J. G.
2016-10-01
Segmentation of coronary arteries in X-ray angiograms represents an essential task for computer-aided diagnosis, since it can help cardiologists in diagnosing and monitoring vascular abnormalities. Due to the main disadvantages of the X-ray angiograms are the nonuniform illumination, and the weak contrast between blood vessels and image background, different vessel enhancement methods have been introduced. In this paper, a novel method for blood vessel enhancement based on Gabor filters tuned using the optimization strategy of Differential evolution (De) is proposed. Because the Gabor filters are governed by three different parameters, the optimal selection of those parameters is highly desirable in order to maximize the vessel detection rate while reducing the computational cost of the training stage. To obtain the optimal set of parameters for the Gabor filters, the area (Az) under the receiver operating characteristic curve is used as objective function. In the experimental results, the proposed method obtained the highest detection performance with Az = 0.956 using a test set of 60 angiograms, and Az = 0.934 with a training set of 20 angiograms compared with different state-of-the-art vessel detection methods. In addition, the experimental results in terms of computational time have also shown that the proposed method can be highly suitable for clinical decision support. (Author)
Using Differential Evolution to Optimize Learning from Signals and Enhance Network Security
Energy Technology Data Exchange (ETDEWEB)
Harmer, Paul K [Air Force Institute of Technology; Temple, Michael A [Air Force Institute of Technology; Buckner, Mark A [ORNL; Farquhar, Ethan [ORNL
2011-01-01
Computer and communication network attacks are commonly orchestrated through Wireless Access Points (WAPs). This paper summarizes proof-of-concept research activity aimed at developing a physical layer Radio Frequency (RF) air monitoring capability to limit unauthorizedWAP access and mprove network security. This is done using Differential Evolution (DE) to optimize the performance of a Learning from Signals (LFS) classifier implemented with RF Distinct Native Attribute (RF-DNA) fingerprints. Performance of the resultant DE-optimized LFS classifier is demonstrated using 802.11a WiFi devices under the most challenging conditions of intra-manufacturer classification, i.e., using emissions of like-model devices that only differ in serial number. Using identical classifier input features, performance of the DE-optimized LFS classifier is assessed relative to a Multiple Discriminant Analysis / Maximum Likelihood (MDA/ML) classifier that has been used for previous demonstrations. The comparative assessment is made using both Time Domain (TD) and Spectral Domain (SD) fingerprint features. For all combinations of classifier type, feature type, and signal-to-noise ratio considered, results show that the DEoptimized LFS classifier with TD features is uperior and provides up to 20% improvement in classification accuracy with proper selection of DE parameters.
Using meta-differential evolution to enhance a calculation of a continuous blood glucose level.
Koutny, Tomas
2016-09-01
We developed a new model of glucose dynamics. The model calculates blood glucose level as a function of transcapillary glucose transport. In previous studies, we validated the model with animal experiments. We used analytical method to determine model parameters. In this study, we validate the model with subjects with type 1 diabetes. In addition, we combine the analytic method with meta-differential evolution. To validate the model with human patients, we obtained a data set of type 1 diabetes study that was coordinated by Jaeb Center for Health Research. We calculated a continuous blood glucose level from continuously measured interstitial fluid glucose level. We used 6 different scenarios to ensure robust validation of the calculation. Over 96% of calculated blood glucose levels fit A+B zones of the Clarke Error Grid. No data set required any correction of model parameters during the time course of measuring. We successfully verified the possibility of calculating a continuous blood glucose level of subjects with type 1 diabetes. This study signals a successful transition of our research from an animal experiment to a human patient. Researchers can test our model with their data on-line at https://diabetes.zcu.cz. Copyright © 2016 The Author. Published by Elsevier Ireland Ltd.. All rights reserved.
Hübner, Sariel; Rashkovetsky, Eugenia; Kim, Young Bun; Oh, Jung Hun; Michalak, Katarzyna; Weiner, Dmitry; Korol, Abraham B.; Nevo, Eviatar; Michalak, Pawel
2013-01-01
The opposite slopes of “Evolution Canyon” in Israel have served as a natural model system of adaptation to a microclimate contrast. Long-term studies of Drosophila melanogaster populations inhabiting the canyon have exhibited significant interslope divergence in thermal and drought stress resistance, candidate genes, mobile elements, habitat choice, mating discrimination, and wing-shape variation, all despite close physical proximity of the contrasting habitats, as well as substantial interslope migration. To examine patterns of genetic differentiation at the genome-wide level, we used high coverage sequencing of the flies’ genomes. A total of 572 genes were significantly different in allele frequency between the slopes, 106 out of which were associated with 74 significantly overrepresented gene ontology (GO) terms, particularly so with response to stimulus and developmental and reproductive processes, thus corroborating previous observations of interslope divergence in stress response, life history, and mating functions. There were at least 37 chromosomal “islands” of interslope divergence and low sequence polymorphism, plausible signatures of selective sweeps, more abundant in flies derived from one (north-facing) of the slopes. Positive correlation between local recombination rate and the level of nucleotide polymorphism was also found. PMID:24324170
Designing manufacturable filters for a 16-band plenoptic camera using differential evolution
Doster, Timothy; Olson, Colin C.; Fleet, Erin; Yetzbacher, Michael; Kanaev, Andrey; Lebow, Paul; Leathers, Robert
2017-05-01
A 16-band plenoptic camera allows for the rapid exchange of filter sets via a 4x4 filter array on the lens's front aperture. This ability to change out filters allows for an operator to quickly adapt to different locales or threat intelligence. Typically, such a system incorporates a default set of 16 equally spaced at-topped filters. Knowing the operating theater or the likely targets of interest it becomes advantageous to tune the filters. We propose using a modified beta distribution to parameterize the different possible filters and differential evolution (DE) to search over the space of possible filter designs. The modified beta distribution allows us to jointly optimize the width, taper and wavelength center of each single- or multi-pass filter in the set over a number of evolutionary steps. Further, by constraining the function parameters we can develop solutions which are not just theoretical but manufacturable. We examine two independent tasks: general spectral sensing and target detection. In the general spectral sensing task we utilize the theory of compressive sensing (CS) and find filters that generate codings which minimize the CS reconstruction error based on a fixed spectral dictionary of endmembers. For the target detection task and a set of known targets, we train the filters to optimize the separation of the background and target signature. We compare our results to the default 16 at-topped non-overlapping filter set which comes with the plenoptic camera and full hyperspectral resolution data which was previously acquired.
A software for parameter optimization with Differential Evolution Entirely Parallel method
Directory of Open Access Journals (Sweden)
Konstantin Kozlov
2016-08-01
Full Text Available Summary. Differential Evolution Entirely Parallel (DEEP package is a software for finding unknown real and integer parameters in dynamical models of biological processes by minimizing one or even several objective functions that measure the deviation of model solution from data. Numerical solutions provided by the most efficient global optimization methods are often problem-specific and cannot be easily adapted to other tasks. In contrast, DEEP allows a user to describe both mathematical model and objective function in any programming language, such as R, Octave or Python and others. Being implemented in C, DEEP demonstrates as good performance as the top three methods from CEC-2014 (Competition on evolutionary computation benchmark and was successfully applied to several biological problems. Availability. DEEP method is an open source and free software distributed under the terms of GPL licence version 3. The sources are available at http://deepmethod.sourceforge.net/ and binary packages for Fedora GNU/Linux are provided for RPM package manager at https://build.opensuse.org/project/repositories/home:mackoel:compbio.
Li, Xiangyu; Cai, Hao; Wang, Xianlong; Ao, Lu; Guo, You; He, Jun; Gu, Yunyan; Qi, Lishuang; Guan, Qingzhou; Lin, Xu; Guo, Zheng
2017-10-13
To detect differentially expressed genes (DEGs) in small-scale cell line experiments, usually with only two or three technical replicates for each state, the commonly used statistical methods such as significance analysis of microarrays (SAM), limma and RankProd (RP) lack statistical power, while the fold change method lacks any statistical control. In this study, we demonstrated that the within-sample relative expression orderings (REOs) of gene pairs were highly stable among technical replicates of a cell line but often widely disrupted after certain treatments such like gene knockdown, gene transfection and drug treatment. Based on this finding, we customized the RankComp algorithm, previously designed for individualized differential expression analysis through REO comparison, to identify DEGs with certain statistical control for small-scale cell line data. In both simulated and real data, the new algorithm, named CellComp, exhibited high precision with much higher sensitivity than the original RankComp, SAM, limma and RP methods. Therefore, CellComp provides an efficient tool for analyzing small-scale cell line data. © The Author 2017. Published by Oxford University Press.
Engwerda, Jacob
2015-01-01
This note deals with solving scalar coupled algebraic Riccati equations. These equations arise in finding linear feedback Nash equilibria of the scalar N-player affine quadratic differential game. A numerical procedure is provided to compute all the stabilizing solutions. The main idea is to
Lee, Junyung; Yi, Kyongsu; Yoo, Hyunjae; Chong, Hyokjin; Ko, Bongchul
2015-06-01
This paper describes a risk management algorithm for rear-side collision avoidance. The proposed risk management algorithm consists of a supervisor and a coordinator. The supervisor is designed to monitor collision risks between the subject vehicle and approaching vehicle in the adjacent lane. An appropriate criterion of intervention, which satisfies high acceptance to drivers through the consideration of a realistic traffic, has been determined based on the analysis of the kinematics of the vehicles in longitudinal and lateral directions. In order to assist the driver actively and increase driver's safety, a coordinator is designed to combine lateral control using a steering torque overlay by motor-driven power steering and differential braking by vehicle stability control. In order to prevent the collision while limiting actuator's control inputs and vehicle dynamics to safe values for the assurance of the driver's comfort, the Lyapunov theory and linear matrix inequalities based optimisation methods have been used. The proposed risk management algorithm has been evaluated via simulation using CarSim and MATLAB/Simulink.
Sun, J.; Li, Y.
2017-12-01
Magnetic data contain important information about the subsurface rocks that were magnetized in the geological history, which provides an important avenue to the study of the crustal heterogeneities associated with magmatic and hydrothermal activities. Interpretation of magnetic data has been widely used in mineral exploration, basement characterization and large scale crustal studies for several decades. However, interpreting magnetic data has been often complicated by the presence of remanent magnetizations with unknown magnetization directions. Researchers have developed different methods to deal with the challenges posed by remanence. We have developed a new and effective approach to inverting magnetic data for magnetization vector distributions characterized by region-wise consistency in the magnetization directions. This approach combines the classical Tikhonov inversion scheme with fuzzy C-means clustering algorithm, and constrains the estimated magnetization vectors to a specified small number of possible directions while fitting the observed magnetic data to within noise level. Our magnetization vector inversion recovers both the magnitudes and the directions of the magnetizations in the subsurface. Magnetization directions reflect the unique geological or hydrothermal processes applied to each geological unit, and therefore, can potentially be used for the purpose of differentiating various geological units. We have developed a practically convenient and effective way of assessing the uncertainty associated with the inverted magnetization directions (Figure 1), and investigated how geological differentiation results might be affected (Figure 2). The algorithm and procedures we have developed for magnetization vector inversion and uncertainty analysis open up new possibilities of extracting useful information from magnetic data affected by remanence. We will use a field data example from exploration of an iron-oxide-copper-gold (IOCG) deposit in Brazil to
International Nuclear Information System (INIS)
Hudson, S.R.
2010-01-01
A method for approximately solving magnetic differential equations is described. The approach is to include a small diffusion term to the equation, which regularizes the linear operator to be inverted. The extra term allows a 'source-correction' term to be defined, which is generally required in order to satisfy the solvability conditions. The approach is described in the context of computing the pressure and parallel currents in the iterative approach for computing magnetohydrodynamic equilibria.
Gunzburger, M. D.; Nicolaides, R. A.
1986-01-01
Substructuring methods are in common use in mechanics problems where typically the associated linear systems of algebraic equations are positive definite. Here these methods are extended to problems which lead to nonpositive definite, nonsymmetric matrices. The extension is based on an algorithm which carries out the block Gauss elimination procedure without the need for interchanges even when a pivot matrix is singular. Examples are provided wherein the method is used in connection with finite element solutions of the stationary Stokes equations and the Helmholtz equation, and dual methods for second-order elliptic equations.
Kim, Chang-Goo; Ostriker, Eve C.
2017-09-01
We introduce TIGRESS, a novel framework for multi-physics numerical simulations of the star-forming interstellar medium (ISM) implemented in the Athena MHD code. The algorithms of TIGRESS are designed to spatially and temporally resolve key physical features, including: (1) the gravitational collapse and ongoing accretion of gas that leads to star formation in clusters; (2) the explosions of supernovae (SNe), both near their progenitor birth sites and from runaway OB stars, with time delays relative to star formation determined by population synthesis; (3) explicit evolution of SN remnants prior to the onset of cooling, which leads to the creation of the hot ISM; (4) photoelectric heating of the warm and cold phases of the ISM that tracks the time-dependent ambient FUV field from the young cluster population; (5) large-scale galactic differential rotation, which leads to epicyclic motion and shears out overdense structures, limiting large-scale gravitational collapse; (6) accurate evolution of magnetic fields, which can be important for vertical support of the ISM disk as well as angular momentum transport. We present tests of the newly implemented physics modules, and demonstrate application of TIGRESS in a fiducial model representing the solar neighborhood environment. We use a resolution study to demonstrate convergence and evaluate the minimum resolution {{Δ }}x required to correctly recover several ISM properties, including the star formation rate, wind mass-loss rate, disk scale height, turbulent and Alfvénic velocity dispersions, and volume fractions of warm and hot phases. For the solar neighborhood model, all these ISM properties are converged at {{Δ }}x≤slant 8 {pc}.
Density functional theory and evolution algorithm calculations of elastic properties of AlON
Energy Technology Data Exchange (ETDEWEB)
Batyrev, I. G.; Taylor, D. E.; Gazonas, G. A.; McCauley, J. W. [U.S. Army Research Laboratory, Aberdeen Proving Ground, Maryland 21005 (United States)
2014-01-14
Different models for aluminum oxynitride (AlON) were calculated using density functional theory and optimized using an evolutionary algorithm. Evolutionary algorithm and density functional theory (DFT) calculations starting from several models of AlON with different Al or O vacancy locations and different positions for the N atoms relative to the vacancy were carried out. The results show that the constant anion model [McCauley et al., J. Eur. Ceram. Soc. 29(2), 223 (2009)] with a random distribution of N atoms not adjacent to the Al vacancy has the lowest energy configuration. The lowest energy structure is in a reasonable agreement with experimental X-ray diffraction spectra. The optimized structure of a 55 atom unit cell was used to construct 220 and 440 atom models for simulation cells using DFT with a Gaussian basis set. Cubic elastic constant predictions were found to approach the experimentally determined AlON single crystal elastic constants as the model size increased from 55 to 440 atoms. The pressure dependence of the elastic constants found from simulated stress-strain relations were in overall agreement with experimental measurements of polycrystalline and single crystal AlON. Calculated IR intensity and Raman spectra are compared with available experimental data.
Energy Technology Data Exchange (ETDEWEB)
Qin Hui [College of Hydropower and Information Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Zhou Jianzhong, E-mail: jz.zhou@hust.edu.c [College of Hydropower and Information Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Lu Youlin; Wang Ying; Zhang Yongchuan [College of Hydropower and Information Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China)
2010-04-15
A new multi-objective optimization method based on differential evolution with adaptive Cauchy mutation (MODE-ACM) is presented to solve short-term multi-objective optimal hydro-thermal scheduling (MOOHS) problem. Besides fuel cost, the pollutant gas emission is also optimized as an objective. The water transport delay between connected reservoirs and the effect of valve-point loading of thermal units are also taken into account in the presented problem formulation. The proposed algorithm adopts an elitist archive to retain non-dominated solutions obtained during the evolutionary process. It modifies the DE's operators to make it suit for multi-objective optimization (MOO) problems and improve its performance. Furthermore, to avoid premature convergence, an adaptive Cauchy mutation is proposed to preserve the diversity of population. An effective constraints handling method is utilized to handle the complex equality and inequality constraints. The effectiveness of the proposed algorithm is tested on a hydro-thermal system consisting of four cascaded hydro plants and three thermal units. The results obtained by MODE-ACM are compared with several previous studies. It is found that the results obtained by MODE-ACM are superior in terms of fuel cost as well as emission output, consuming a shorter time. Thus it can be a viable alternative to generate optimal trade-offs for short-term MOOHS problem.
Fong, Sim S.; Rearden, Preshious; Kanchagar, Chitra; Sassetti, Christopher; Trevejo, Jose; Brereton, Richard G.
2013-01-01
A gas chromatography–differential mobility spectrometer (GC-DMS) involves a portable and selective mass analyzer that may be applied to chemical detection in the field. Existing approaches examine whole profiles and do not attempt to resolve peaks. A new approach for peak detection in the 2D GC-DMS chromatograms is reported. This method is demonstrated on three case studies: a simulated case study; a case study of headspace gas analysis of Mycobacterium tuberculosis (MTb) cultures consisting of three matching GC-DMS and GC-MS chromatograms; a case study consisting of 41 GC-DMS chromatograms of headspace gas analysis of MTb culture and media. PMID:21204557
Motsepa, Tanki; Aziz, Taha; Fatima, Aeeman; Khalique, Chaudry Masood
2018-03-01
The optimal investment-consumption problem under the constant elasticity of variance (CEV) model is investigated from the perspective of Lie group analysis. The Lie symmetry group of the evolution partial differential equation describing the CEV model is derived. The Lie point symmetries are then used to obtain an exact solution of the governing model satisfying a standard terminal condition. Finally, we construct conservation laws of the underlying equation using the general theorem on conservation laws.
International Nuclear Information System (INIS)
Villanueva, J.F.; Sanchez, A.I.; Carlos, S.; Martorell, S.
2008-01-01
This paper presents the results of a survey to show the applicability of an approach based on a combination of distribution-free tolerance interval and genetic algorithms for testing and maintenance optimization of safety-related systems based on unavailability and cost estimation acting as uncertain decision criteria. Several strategies have been checked using a combination of Monte Carlo (simulation)--genetic algorithm (search-evolution). Tolerance intervals for the unavailability and cost estimation are obtained to be used by the genetic algorithms. Both single- and multiple-objective genetic algorithms are used. In general, it is shown that the approach is a robust, fast and powerful tool that performs very favorably in the face of noise in the output (i.e. uncertainty) and it is able to find the optimum over a complicated, high-dimensional nonlinear space in a tiny fraction of the time required for enumeration of the decision space. This approach reduces the computational effort by means of providing appropriate balance between accuracy of simulation and evolution; however, negative effects are also shown when a not well-balanced accuracy-evolution couple is used, which can be avoided or mitigated with the use of a single-objective genetic algorithm or the use of a multiple-objective genetic algorithm with additional statistical information
Evolution of online algorithms in ATLAS and CMS in Run2
Tomei, Thiago R. F. P.
2017-01-01
The Large Hadron Collider has entered a new era in Run~2, with centre-of-mass energy of 13~TeV and instantaneous luminosity reaching $\\mathcal{L}_\\textrm{inst} = 1.4\\times$10\\textsuperscript{34}~cm\\textsuperscript{-2}~s\\textsuperscript{-1} for pp collisions. In order to cope with those harsher conditions, the ATLAS and CMS collaborations have improved their online selection infrastructure to keep a high efficiency for important physics processes -- like W, Z and Higgs bosons in their leptonic and diphoton modes -- whilst keeping the size of data stream compatible with the bandwidth and disk resources available. In this note, we describe some of the trigger improvements implemented for Run~2, including algorithms for selection of electrons, photons, muons and hadronic final states.
Zgurovsky, Mikhail Z; Kasyanov, Pavlo O
2011-01-01
Here, the authors present modern mathematical methods to solve problems of differential-operator inclusions and evolution variation inequalities which may occur in fields such as geophysics, aerohydrodynamics, or fluid dynamics. For the first time, they describe the detailed generalization of various approaches to the analysis of fundamentally nonlinear models and provide a toolbox of mathematical equations. These new mathematical methods can be applied to a broad spectrum of problems. Examples of these are phase changes, diffusion of electromagnetic, acoustic, vibro-, hydro- and seismoacousti
Energy Technology Data Exchange (ETDEWEB)
Eldin, A.A. Hossam; Refaey, M.A. [Electrical Engineering Department, Alexandria University, Alexandria (Egypt)
2011-01-15
This paper proposes a novel methodology for transformer differential protection, based on wave shape recognition of the discriminating criterion extracted of the instantaneous differential currents. Discrete wavelet transform has been applied to the differential currents due to internal fault and inrush currents. The diagnosis criterion is based on median absolute deviation (MAD) of wavelet coefficients over a specified frequency band. The proposed algorithm is examined using various simulated inrush and internal fault current cases on a power transformer that has been modeled using electromagnetic transients program EMTDC software. Results of evaluation study show that, proposed wavelet based differential protection scheme can discriminate internal faults from inrush currents. (author)
Chen, Chi-Kan
2017-07-26
-step algorithms can potentially incorporate with different nonlinear differential equation models to reconstruct the GRN.
Jin, Lifang; Xu, Changsong; Xie, Xueqian; Li, Fan; Lv, Xiuhong; Du, Lianfang
2017-01-01
Enhancement heterogeneity on contrast-enhanced ultrasonography (CEUS) is used to differentiate between benign and malignant thyroid nodules. In this study, we used an algorithm to quantify enhancement heterogeneity of solid thyroid nodules on CEUS. The heterogeneity value (HV) is calculated as standard deviation/mean intensity × 100 (using Adobe Photoshop). The heterogeneity ratio (HR) is calculated as the ratio of the HV of the nodule to that of the surrounding parenchyma. Three phases-ascending, peak and descending phases-were studied. HV values at ascending (HV a ) and peak (HV p ) phases were significantly higher in malignant nodules than in benign nodules (95.57 ± 43.87 vs. 73.06 ± 44.04, p = 0.009, and 32.53 ± 10.73 vs. 26.44 ± 8.25, p = 0.002, respectively). HR a , HR p and HR d were significantly higher in malignant nodules than in benign nodules (1.93 ± 1.03 vs. 1.00 ± 0.47, p = 0.000, 1.43 ± 0.51 vs. 1.09 ± 0.28, p = 0.000, and 1.33 ± 0.40 vs. 1.08 ± 0.33, p = 0.001, respectively). HR a achieved optimal diagnostic performance on receiver operating characteristic curve analysis. The algorithm used for assessment of image heterogeneity on CEUS examination may be a useful adjunct to conventional ultrasound for differential diagnosis of solid thyroid nodules. Copyright © 2016 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
Directory of Open Access Journals (Sweden)
F. F. Ngwane
2015-01-01
Full Text Available We propose a block hybrid trigonometrically fitted (BHT method, whose coefficients are functions of the frequency and the step-size for directly solving general second-order initial value problems (IVPs, including systems arising from the semidiscretization of hyperbolic Partial Differential Equations (PDEs, such as the Telegraph equation. The BHT is formulated from eight discrete hybrid formulas which are provided by a continuous two-step hybrid trigonometrically fitted method with two off-grid points. The BHT is implemented in a block-by-block fashion; in this way, the method does not suffer from the disadvantages of requiring starting values and predictors which are inherent in predictor-corrector methods. The stability property of the BHT is discussed and the performance of the method is demonstrated on some numerical examples to show accuracy and efficiency advantages.
Learning Qualitative Differential Equation models: a survey of algorithms and applications.
Pang, Wei; Coghill, George M
2010-03-01
Over the last two decades, qualitative reasoning (QR) has become an important domain in Artificial Intelligence. QDE (Qualitative Differential Equation) model learning (QML), as a branch of QR, has also received an increasing amount of attention; many systems have been proposed to solve various significant problems in this field. QML has been applied to a wide range of fields, including physics, biology and medical science. In this paper, we first identify the scope of this review by distinguishing QML from other QML systems, and then review all the noteworthy QML systems within this scope. The applications of QML in several application domains are also introduced briefly. Finally, the future directions of QML are explored from different perspectives.
Morphological evolution of protective works by Genetic Algorithms: An application to Mt Etna
Marocco, Davide; Spataro, William; D'Ambrosio, Donato; Filippone, Giuseppe; Rongo, Rocco; Iovine, Giulio; Neri, Marco
2013-04-01
The hazard induced by dangerous flow-type phenomena - e.g. lava flows, earth flows, debris flows, and debris avalanches - has increased in recent years due to continuous urbanization. In many cases, the numerical simulation of hypothetical events can help to forecast the flow path in advance and therefore give indications about the areas that can be considered for the construction of protective works - e.g. earth barriers or channels. In this way, urbanized areas, as well as cultural heritage sites or even important infrastructures, can be protected by diverting the flow towards lower interest regions. Here, we have considered the numerical Cellular Automata model Sciara-fv2 for simulating lava flows at Mt Etna and Genetic Algorithms for optimizing the position, orientation and extension of an earth barrier built to protect the Rifugio Sapienza, a well-known touristic facility located near the summit of the volcano. The Rifugio Sapienza area was in fact interested by a lava flow in 2003, which destroyed a Service Center, a parking area and a Cafeteria. In this study, a perimeter was devised around the Rifugio (i.e., security perimeter), which delimitates the area that has to be protected by the flow. Furthermore, another perimeter was devised (i.e., work perimeter), specifying the area in which the earth barrier can be located. The barrier is specified by three parameters, namely the two geographic coordinates of the vertex and the height. In fact, in this preliminary analysis the barrier was modeled as a segment (in plant) having a constant height. Though preliminary, the study has produced extremely positive results. Among different alternatives generated by the genetic algorithm, an interesting scenario consists of a 35 meters barrier high solution, which completely deviates the flow avoiding that the lava reaches the inhabited area. The relative elevated height of the barrier is high due to the fact that the crater is located close to the area to be protected
Horiuchi, Youko
2015-12-23
Background Since the development of transcriptome analysis systems, many expression evolution studies characterized evolutionary forces acting on gene expression, without explicit discrimination between global expression differences and tissue specific expression differences. However, different types of gene expression alteration should have different effects on an organism, the evolutionary forces that act on them might be different, and different types of genes might show different types of differential expression between species. To confirm this, we studied differentially expressed (DE) genes among closely related groups that have extensive gene expression atlases, and clarified characteristics of different types of DE genes including the identification of regulating loci for differential expression using expression quantitative loci (eQTL) analysis data. Results We detected differentially expressed (DE) genes between rice subspecies in five homologous tissues that were verified using japonica and indica transcriptome atlases in public databases. Using the transcriptome atlases, we classified DE genes into two types, global DE genes and changed-tissues DE genes. Global type DE genes were not expressed in any tissues in the atlas of one subspecies, however changed-tissues type DE genes were expressed in both subspecies with different tissue specificity. For the five tissues in the two japonica-indica combinations, 4.6 ± 0.8 and 5.9 ± 1.5 % of highly expressed genes were global and changed-tissues DE genes, respectively. Changed-tissues DE genes varied in number between tissues, increasing linearly with the abundance of tissue specifically expressed genes in the tissue. Molecular evolution of global DE genes was rapid, unlike that of changed-tissues DE genes. Based on gene ontology, global and changed-tissues DE genes were different, having no common GO terms. Expression differences of most global DE genes were regulated by cis-eQTLs. Expression
Srinivasan, A; Galbán, C J; Johnson, T D; Chenevert, T L; Ross, B D; Mukherji, S K
2010-04-01
Does the K-means algorithm do a better job of differentiating benign and malignant neck pathologies compared to only mean ADC? The objective of our study was to analyze the differences between ADC partitions to evaluate whether the K-means technique can be of additional benefit to whole-lesion mean ADC alone in distinguishing benign and malignant neck pathologies. MR imaging studies of 10 benign and 10 malignant proved neck pathologies were postprocessed on a PC by using in-house software developed in Matlab. Two neuroradiologists manually contoured the lesions, with the ADC values within each lesion clustered into 2 (low, ADC-ADC(L); high, ADC-ADC(H)) and 3 partitions (ADC(L); intermediate, ADC-ADC(I); ADC(H)) by using the K-means clustering algorithm. An unpaired 2-tailed Student t test was performed for all metrics to determine statistical differences in the means of the benign and malignant pathologies. A statistically significant difference between the mean ADC(L) clusters in benign and malignant pathologies was seen in the 3-cluster models of both readers (P = .03 and .022, respectively) and the 2-cluster model of reader 2 (P = .04), with the other metrics (ADC(H), ADC(I); whole-lesion mean ADC) not revealing any significant differences. ROC curves demonstrated the quantitative differences in mean ADC(H) and ADC(L) in both the 2- and 3-cluster models to be predictive of malignancy (2 clusters: P = .008, area under curve = 0.850; 3 clusters: P = .01, area under curve = 0.825). The K-means clustering algorithm that generates partitions of large datasets may provide a better characterization of neck pathologies and may be of additional benefit in distinguishing benign and malignant neck pathologies compared with whole-lesion mean ADC alone.
Directory of Open Access Journals (Sweden)
Muqaddas Naz
2018-02-01
Full Text Available With the emergence of automated environments, energy demand by consumers is increasing rapidly. More than 80% of total electricity is being consumed in the residential sector. This brings a challenging task of maintaining the balance between demand and generation of electric power. In order to meet such challenges, a traditional grid is renovated by integrating two-way communication between the consumer and generation unit. To reduce electricity cost and peak load demand, demand side management (DSM is modeled as an optimization problem, and the solution is obtained by applying meta-heuristic techniques with different pricing schemes. In this paper, an optimization technique, the hybrid gray wolf differential evolution (HGWDE, is proposed by merging enhanced differential evolution (EDE and gray wolf optimization (GWO scheme using real-time pricing (RTP and critical peak pricing (CPP. Load shifting is performed from on-peak hours to off-peak hours depending on the electricity cost defined by the utility. However, there is a trade-off between user comfort and cost. To validate the performance of the proposed algorithm, simulations have been carried out in MATLAB. Results illustrate that using RTP, the peak to average ratio (PAR is reduced to 53.02%, 29.02% and 26.55%, while the electricity bill is reduced to 12.81%, 12.012% and 12.95%, respectively, for the 15-, 30- and 60-min operational time interval (OTI. On the other hand, the PAR and electricity bill are reduced to 47.27%, 22.91%, 22% and 13.04%, 12%, 11.11% using the CPP tariff.
International Nuclear Information System (INIS)
Zhang, Huifeng; Yue, Dong; Xie, Xiangpeng; Dou, Chunxia; Sun, Feng
2017-01-01
With the integration of wind power and photovoltaic power, optimal operation of hydrothermal power system becomes great challenge due to its non-convex, stochastic and complex-coupled constrained characteristics. This paper extends short-term hydrothermal system optimal model into short-term hydrothermal optimal scheduling of economic emission while considering integrated intermittent energy resources (SHOSEE-IIER). For properly solving SHOSEE-IIER problem, a gradient decent based multi-objective cultural differential evolution (GD-MOCDE) is proposed to improve the optimal efficiency of SHOSEE-IIER combined with three designed knowledge structures, which mainly enhances search ability of differential evolution in the shortest way. With considering those complex-coupled and stochastic constraints, a heuristic constraint-handling measurement is utilized to tackle with them both in coarse and fine tuning way, and probability constraint-handling procedures are taken to properly handle those stochastic constraints combined with their probability density functions. Ultimately, those approaches are implemented on five test systems, which testify the optimization efficiency of proposed GD-MOCDE and constraint-handling efficiency for system load balance, water balance and stochastic constraint-handling measurements, those obtained results reveal that the proposed GD-MOCDE can properly solve the SHOSEE-IIER problem combined with those constraint-handling approaches. - Highlights: • Gradient decent method is proposed to improve mutation operator. • Hydrothermal system is extended to hybrid energy system. • The uncertainty constraint is converted into deterministic constraint. • The results show the viability and efficiency of proposed algorithm.
Search for the algorithm of genes distribution during the process of microbial evolution
Pikuta, Elena V.
2015-09-01
Previous two and three dimensional graph analysis of eco-physiological data of Archaea demonstrated specific geometry for distribution of major Prokaryotic groups in a hyperboloid function. The function of a two-sheet hyperboloid covered all known biological groups, and therefore, could be applied for the entire evolution of life on Earth. The vector of evolution was indicated from the point of hyper temperature, extreme acidity and low salinity to the point of low temperature and increased alkalinity and salinity. According to this vector, the following groups were chosen for the gene screening analysis. In the vector "High-Temperature → Low-Temperature" within extreme acidic pH (0-3), it is: 1) the hyperthermophilic Crenarchaeota - order Sulfolobales, 2) moderately thermophilic Euryarchaeota - Class Thermoplasmata, and 3) mesophilic acidophiles- genus Thiobacillus and others. In the vector "Low pH → High pH" the following groups were selected in three temperature ranges: a) Hyperthermophilic Archaea and Eubacteria, b) moderately thermophilic - representatives of the genera Anaerobacter and Anoxybacillus, and c) mesophilic haloalkaliphiles (Eubacteria and Archaea). The genes associated with acidophily (H+ pump), chemolitho-autotrophy (proteins of biochemichal cycles), polymerases, and histones were proposed for the first vector, and for the second vector the genes associated with halo-alkaliphily (Na+ pumps), enzymes of organotrophic metabolisms (sugar- and proteolytics), and others were indicated for the screening. Here, an introduction to the phylogenetic constant (ρη) is presented and discussed. This universal characteristic is calculated for two principally different life forms -Prokaryotes and Eukaryotes; Existence of the second type of living forms is impossible without the first one. The number of chromosomes in Prokaryotic organisms is limited to one (with very rare exceptions, to two), while in Eukaryotic organisms this number is larger. Currently
International Nuclear Information System (INIS)
Yu Yunwei; Cao Xiaofeng; Zheng Xiaoping
2009-01-01
In a second-order r-mode theory, Sa and Tome found that the r-mode oscillation in neutron stars (NSs) could induce stellar differential rotation, which naturally leads to a saturated state of the oscillation. Based on a consideration of the coupling of the r-modes and the stellar spin and thermal evolution, we carefully investigate the influences of the differential rotation on the long-term evolution of isolated NSs and NSs in low-mass X-ray binaries, where the viscous damping of the r-modes and its resultant effects are taken into account. The numerical results show that, for both kinds of NSs, the differential rotation can significantly prolong the duration of the r-modes. As a result, the stars can keep nearly a constant temperature and constant angular velocity for over a thousand years. Moreover, the persistent radiation of a quasi-monochromatic gravitational wave would also be predicted due to the long-term steady r-mode oscillation and stellar rotation. This increases the detectability of gravitational waves from both young isolated and old accreting NSs. (research papers)
Sengupta, Partho P; Huang, Yen-Min; Bansal, Manish; Ashrafi, Ali; Fisher, Matt; Shameer, Khader; Gall, Walt; Dudley, Joel T
2016-06-01
Associating a patient's profile with the memories of prototypical patients built through previous repeat clinical experience is a key process in clinical judgment. We hypothesized that a similar process using a cognitive computing tool would be well suited for learning and recalling multidimensional attributes of speckle tracking echocardiography data sets derived from patients with known constrictive pericarditis and restrictive cardiomyopathy. Clinical and echocardiographic data of 50 patients with constrictive pericarditis and 44 with restrictive cardiomyopathy were used for developing an associative memory classifier-based machine-learning algorithm. The speckle tracking echocardiography data were normalized in reference to 47 controls with no structural heart disease, and the diagnostic area under the receiver operating characteristic curve of the associative memory classifier was evaluated for differentiating constrictive pericarditis from restrictive cardiomyopathy. Using only speckle tracking echocardiography variables, associative memory classifier achieved a diagnostic area under the curve of 89.2%, which improved to 96.2% with addition of 4 echocardiographic variables. In comparison, the area under the curve of early diastolic mitral annular velocity and left ventricular longitudinal strain were 82.1% and 63.7%, respectively. Furthermore, the associative memory classifier demonstrated greater accuracy and shorter learning curves than other machine-learning approaches, with accuracy asymptotically approaching 90% after a training fraction of 0.3 and remaining flat at higher training fractions. This study demonstrates feasibility of a cognitive machine-learning approach for learning and recalling patterns observed during echocardiographic evaluations. Incorporation of machine-learning algorithms in cardiac imaging may aid standardized assessments and support the quality of interpretations, particularly for novice readers with limited experience. © 2016
Sengupta, Partho P.; Huang, Yen-Min; Bansal, Manish; Ashrafi, Ali; Fisher, Matt; Shameer, Khader; Gall, Walt; Dudley, Joel T
2016-01-01
Background Associating a patient’s profile with the memories of prototypical patients built through previous repeat clinical experience is a key process in clinical judgment. We hypothesized that a similar process using a cognitive computing tool would be well suited for learning and recalling multidimensional attributes of speckle tracking echocardiography (STE) data sets derived from patients with known constrictive pericarditis (CP) and restrictive cardiomyopathy (RCM). Methods and Results Clinical and echocardiographic data of 50 patients with CP and 44 with RCM were used for developing an associative memory classifier (AMC) based machine learning algorithm. The STE data was normalized in reference to 47 controls with no structural heart disease, and the diagnostic area under the receiver operating characteristic curve (AUC) of the AMC was evaluated for differentiating CP from RCM. Using only STE variables, AMC achieved a diagnostic AUC of 89·2%, which improved to 96·2% with addition of 4 echocardiographic variables. In comparison, the AUC of early diastolic mitral annular velocity and left ventricular longitudinal strain were 82.1% and 63·7%, respectively. Furthermore, AMC demonstrated greater accuracy and shorter learning curves than other machine learning approaches with accuracy asymptotically approaching 90% after a training fraction of 0·3 and remaining flat at higher training fractions. Conclusions This study demonstrates feasibility of a cognitive machine learning approach for learning and recalling patterns observed during echocardiographic evaluations. Incorporation of machine learning algorithms in cardiac imaging may aid standardized assessments and support the quality of interpretations, particularly for novice readers with limited experience. PMID:27266599
Bresadola, Vittorio; Feo, Carlo V
2012-04-01
Achalasia is a rare disease of the esophagus, characterized by the absence of peristalsis in the esophageal body and incomplete relaxation of the lower esophageal sphincter, which may be hypertensive. The cause of this disease is unknown; therefore, the aim of the therapy is to improve esophageal emptying by eliminating the outflow resistance caused by the lower esophageal sphincter. This goal can be accomplished either by pneumatic dilatation or surgical myotomy, which are the only long-term effective therapies for achalasia. Historically, pneumatic dilatation was preferred over surgical myotomy because of the morbidity associated with a thoracotomy or a laparotomy. However, with the development of minimally invasive techniques, the surgical approach has gained widespread acceptance among patients and gastroenterologists and, consequently, the role of surgery has changed. The aim of this study was to review the changes occurred in the surgical treatment of achalasia over the last 2 decades; specifically, the development of minimally invasive techniques with the evolution from a thoracoscopic approach without an antireflux procedure to a laparoscopic myotomy with a partial fundoplication, the changes in the length of the myotomy, and the modification of the therapeutic algorithm.
DEFF Research Database (Denmark)
Hobolth, Asger
2008-01-01
-dimensional integrals required in the EM algorithm are estimated using MCMC sampling. The MCMC sampler requires simulation of sample paths from a continuous time Markov process, conditional on the beginning and ending states and the paths of the neighboring sites. An exact path sampling algorithm is developed......The evolution of DNA sequences can be described by discrete state continuous time Markov processes on a phylogenetic tree. We consider neighbor-dependent evolutionary models where the instantaneous rate of substitution at a site depends on the states of the neighboring sites. Neighbor......-dependent substitution models are analytically intractable and must be analyzed using either approximate or simulation-based methods. We describe statistical inference of neighbor-dependent models using a Markov chain Monte Carlo expectation maximization (MCMC-EM) algorithm. In the MCMC-EM algorithm, the high...
Directory of Open Access Journals (Sweden)
M Ann Mongan
Full Text Available Genome-wide gene expression profiling has become standard for assessing potential liabilities as well as for elucidating mechanisms of toxicity of drug candidates under development. Analysis of microarray data is often challenging due to the lack of a statistical model that is amenable to biological variation in a small number of samples. Here we present a novel non-parametric algorithm that requires minimal assumptions about the data distribution. Our method for determining differential expression consists of two steps: 1 We apply a nominal threshold on fold change and platform p-value to designate whether a gene is differentially expressed in each treated and control sample relative to the averaged control pool, and 2 We compared the number of samples satisfying criteria in step 1 between the treated and control groups to estimate the statistical significance based on a null distribution established by sample permutations. The method captures group effect without being too sensitive to anomalies as it allows tolerance for potential non-responders in the treatment group and outliers in the control group. Performance and results of this method were compared with the Significant Analysis of Microarrays (SAM method. These two methods were applied to investigate hepatic transcriptional responses of wild-type (PXR(+/+ and pregnane X receptor-knockout (PXR(-/- mice after 96 h exposure to CMP013, an inhibitor of β-secretase (β-site of amyloid precursor protein cleaving enzyme 1 or BACE1. Our results showed that CMP013 led to transcriptional changes in hallmark PXR-regulated genes and induced a cascade of gene expression changes that explained the hepatomegaly observed only in PXR(+/+ animals. Comparison of concordant expression changes between PXR(+/+ and PXR(-/- mice also suggested a PXR-independent association between CMP013 and perturbations to cellular stress, lipid metabolism, and biliary transport.
Li, Jing; Hong, Wenxue
2014-12-01
The feature extraction and feature selection are the important issues in pattern recognition. Based on the geometric algebra representation of vector, a new feature extraction method using blade coefficient of geometric algebra was proposed in this study. At the same time, an improved differential evolution (DE) feature selection method was proposed to solve the elevated high dimension issue. The simple linear discriminant analysis was used as the classifier. The result of the 10-fold cross-validation (10 CV) classification of public breast cancer biomedical dataset was more than 96% and proved superior to that of the original features and traditional feature extraction method.
Kinnebrew, John S.; Biswas, Gautam
2012-01-01
Our learning-by-teaching environment, Betty's Brain, captures a wealth of data on students' learning interactions as they teach a virtual agent. This paper extends an exploratory data mining methodology for assessing and comparing students' learning behaviors from these interaction traces. The core algorithm employs sequence mining techniques to…
Zhang, Huifeng; Lei, Xiaohui; Wang, Chao; Yue, Dong; Xie, Xiangpeng
2017-01-01
Since wind power is integrated into the thermal power operation system, dynamic economic emission dispatch (DEED) has become a new challenge due to its uncertain characteristics. This paper proposes an adaptive grid based multi-objective Cauchy differential evolution (AGB-MOCDE) for solving stochastic DEED with wind power uncertainty. To properly deal with wind power uncertainty, some scenarios are generated to simulate those possible situations by dividing the uncertainty domain into different intervals, the probability of each interval can be calculated using the cumulative distribution function, and a stochastic DEED model can be formulated under different scenarios. For enhancing the optimization efficiency, Cauchy mutation operation is utilized to improve differential evolution by adjusting the population diversity during the population evolution process, and an adaptive grid is constructed for retaining diversity distribution of Pareto front. With consideration of large number of generated scenarios, the reduction mechanism is carried out to decrease the scenarios number with covariance relationships, which can greatly decrease the computational complexity. Moreover, the constraint-handling technique is also utilized to deal with the system load balance while considering transmission loss among thermal units and wind farms, all the constraint limits can be satisfied under the permitted accuracy. After the proposed method is simulated on three test systems, the obtained results reveal that in comparison with other alternatives, the proposed AGB-MOCDE can optimize the DEED problem while handling all constraint limits, and the optimal scheme of stochastic DEED can decrease the conservation of interval optimization, which can provide a more valuable optimal scheme for real-world applications.
Dlouhy, Brian J; Dahdaleh, Nader S; Menezes, Arnold H
2015-04-01
The craniovertebral junction (CVJ), or the craniocervical junction (CCJ) as it is otherwise known, houses the crossroads of the CNS and is composed of the occipital bone that surrounds the foramen magnum, the atlas vertebrae, the axis vertebrae, and their associated ligaments and musculature. The musculoskeletal organization of the CVJ is unique and complex, resulting in a wide range of congenital, developmental, and acquired pathology. The refinements of the transoral approach to the CVJ by the senior author (A.H.M.) in the late 1970s revolutionized the treatment of CVJ pathology. At the same time, a physiological approach to CVJ management was adopted at the University of Iowa Hospitals and Clinics in 1977 based on the stability and motion dynamics of the CVJ and the site of encroachment, incorporating the transoral approach for irreducible ventral CVJ pathology. Since then, approaches and techniques to treat ventral CVJ lesions have evolved. In the last 40 years at University of Iowa Hospitals and Clinics, multiple approaches to the CVJ have evolved and a better understanding of CVJ pathology has been established. In addition, new reduction strategies that have diminished the need to perform ventral decompressive approaches have been developed and implemented. In this era of surgical subspecialization, to properly treat complex CVJ pathology, the CVJ specialist must be trained in skull base transoral and endoscopic endonasal approaches, pediatric and adult CVJ spine surgery, and must understand and be able to treat the complex CSF dynamics present in CVJ pathology to provide the appropriate, optimal, and tailored treatment strategy for each individual patient, both child and adult. This is a comprehensive review of the history and evolution of the transoral approaches, extended transoral approaches, endoscopie assisted transoral approaches, endoscopie endonasal approaches, and CVJ reduction strategies. Incorporating these advancements, the authors update the
Variation, differential reproduction and oscillation: the evolution of nucleic acid hybridization.
Suárez-Díaz, Edna
2013-01-01
This paper builds upon Hans-Jörg Rheinberger ideas on the oscillation and intercalation of epistemic things and technical objects in experimental systems, to give a fine-grained analysis of what here is called the problems of "adaptation" between our material and cognitive tools and the phenomena of the material world. To do so, it relies on the case-study of the evolution of nucleic acid hybridization and the stabilization of satellite DNA.
Differential scaling patterns of vertebrae and the evolution of neck length in mammals.
Arnold, Patrick; Amson, Eli; Fischer, Martin S
2017-06-01
Almost all mammals have seven vertebrae in their cervical spines. This consistency represents one of the most prominent examples of morphological stasis in vertebrae evolution. Hence, the requirements associated with evolutionary modifications of neck length have to be met with a fixed number of vertebrae. It has not been clear whether body size influences the overall length of the cervical spine and its inner organization (i.e., if the mammalian neck is subject to allometry). Here, we provide the first large-scale analysis of the scaling patterns of the cervical spine and its constituting cervical vertebrae. Our findings reveal that the opposite allometric scaling of C1 and C2-C7 accommodate the increase of neck bending moment with body size. The internal organization of the neck skeleton exhibits surprisingly uniformity in the vast majority of mammals. Deviations from this general pattern only occur under extreme loading regimes associated with particular functional and allometric demands. Our results indicate that the main source of variation in the mammalian neck stems from the disparity of overall cervical spine length. The mammalian neck reveals how evolutionary disparity manifests itself in a structure that is otherwise highly restricted by meristic constraints. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.
Li, Zhi; Chen, Weidong; Lian, Feiyu; Ge, Hongyi; Guan, Aihong
2017-12-01
Quantitative analysis of component mixtures is an important application of terahertz time-domain spectroscopy (THz-TDS) and has attracted broad interest in recent research. Although the accuracy of quantitative analysis using THz-TDS is affected by a host of factors, wavelength selection from the sample's THz absorption spectrum is the most crucial component. The raw spectrum consists of signals from the sample and scattering and other random disturbances that can critically influence the quantitative accuracy. For precise quantitative analysis using THz-TDS, the signal from the sample needs to be retained while the scattering and other noise sources are eliminated. In this paper, a novel wavelength selection method based on differential evolution (DE) is investigated. By performing quantitative experiments on a series of binary amino acid mixtures using THz-TDS, we demonstrate the efficacy of the DE-based wavelength selection method, which yields an error rate below 5%.
Manonmani, N; Subbiah, V; Sivakumar, L
2015-01-01
The key objective of wind turbine development is to ensure that output power is continuously increased. It is authenticated that wind turbines (WTs) supply the necessary reactive power to the grid at the time of fault and after fault to aid the flowing grid voltage. At this juncture, this paper introduces a novel heuristic based controller module employing differential evolution and neural network architecture to improve the low-voltage ride-through rate of grid-connected wind turbines, which are connected along with doubly fed induction generators (DFIGs). The traditional crowbar-based systems were basically applied to secure the rotor-side converter during the occurrence of grid faults. This traditional controller is found not to satisfy the desired requirement, since DFIG during the connection of crowbar acts like a squirrel cage module and absorbs the reactive power from the grid. This limitation is taken care of in this paper by introducing heuristic controllers that remove the usage of crowbar and ensure that wind turbines supply necessary reactive power to the grid during faults. The controller is designed in this paper to enhance the DFIG converter during the grid fault and this controller takes care of the ride-through fault without employing any other hardware modules. The paper introduces a double wavelet neural network controller which is appropriately tuned employing differential evolution. To validate the proposed controller module, a case study of wind farm with 1.5 MW wind turbines connected to a 25 kV distribution system exporting power to a 120 kV grid through a 30 km 25 kV feeder is carried out by simulation.
Directory of Open Access Journals (Sweden)
N. Manonmani
2015-01-01
Full Text Available The key objective of wind turbine development is to ensure that output power is continuously increased. It is authenticated that wind turbines (WTs supply the necessary reactive power to the grid at the time of fault and after fault to aid the flowing grid voltage. At this juncture, this paper introduces a novel heuristic based controller module employing differential evolution and neural network architecture to improve the low-voltage ride-through rate of grid-connected wind turbines, which are connected along with doubly fed induction generators (DFIGs. The traditional crowbar-based systems were basically applied to secure the rotor-side converter during the occurrence of grid faults. This traditional controller is found not to satisfy the desired requirement, since DFIG during the connection of crowbar acts like a squirrel cage module and absorbs the reactive power from the grid. This limitation is taken care of in this paper by introducing heuristic controllers that remove the usage of crowbar and ensure that wind turbines supply necessary reactive power to the grid during faults. The controller is designed in this paper to enhance the DFIG converter during the grid fault and this controller takes care of the ride-through fault without employing any other hardware modules. The paper introduces a double wavelet neural network controller which is appropriately tuned employing differential evolution. To validate the proposed controller module, a case study of wind farm with 1.5 MW wind turbines connected to a 25 kV distribution system exporting power to a 120 kV grid through a 30 km 25 kV feeder is carried out by simulation.
International Nuclear Information System (INIS)
Chin, Vun Jack; Salam, Zainal; Ishaque, Kashif
2016-01-01
Highlights: • An accurate computational method for the two-diode model of PV module is proposed. • The hybrid method employs analytical equations and Differential Evolution (DE). • I PV , I o1 , and R p are computed analytically, while a 1 , a 2 , I o2 and R s are optimized. • This allows the model parameters to be computed without using costly assumptions. - Abstract: This paper proposes an accurate computational technique for the two-diode model of PV module. Unlike previous methods, it does not rely on assumptions that cause the accuracy to be compromised. The key to this improvement is the implementation of a hybrid solution, i.e. by incorporating the analytical method with the differential evolution (DE) optimization technique. Three parameters, i.e. I PV , I o1 , and R p are computed analytically, while the remaining, a 1 , a 2 , I o2 and R s are optimized using the DE. To validate its accuracy, the proposed method is tested on three PV modules of different technologies: mono-crystalline, poly-crystalline and thin film. Furthermore, its performance is evaluated against two popular computational methods for the two-diode model. The proposed method is found to exhibit superior accuracy for the variation in irradiance and temperature for all module types. In particular, the improvement in accuracy is evident at low irradiance conditions; the root-mean-square error is one order of magnitude lower than that of the other methods. In addition, the values of the model parameters are consistent with the physics of PV cell. It is envisaged that the method can be very useful for PV simulation, in which accuracy of the model is of prime concern.
Directory of Open Access Journals (Sweden)
Małgorzata Pilot
Full Text Available Recent studies on highly mobile carnivores revealed cryptic population genetic structures correlated to transitions in habitat types and prey species composition. This led to the hypothesis that natal-habitat-biased dispersal may be responsible for generating population genetic structure. However, direct evidence for the concordant ecological and genetic differentiation between populations of highly mobile mammals is rare. To address this we analyzed stable isotope profiles (δ(13C and δ(15N values for Eastern European wolves (Canis lupus as a quantifiable proxy measure of diet for individuals that had been genotyped in an earlier study (showing cryptic genetic structure, to provide a quantitative assessment of the relationship between individual foraging behavior and genotype. We found a significant correlation between genetic distances and dietary differentiation (explaining 46% of the variation in both the marginal test and crucially, when geographic distance was accounted for as a co-variable. These results, interpreted in the context of other possible mechanisms such as allopatry and isolation by distance, reinforce earlier studies suggesting that diet and associated habitat choice are influencing the structuring of populations in highly mobile carnivores.
Goitom, Eyerusalem; Kilsdonk, Laurens J; Brans, Kristien; Jansen, Mieke; Lemmens, Pieter; De Meester, Luc
2018-01-01
There is growing evidence of rapid genetic adaptation of natural populations to environmental change, opening the perspective that evolutionary trait change may subsequently impact ecological processes such as population dynamics, community composition, and ecosystem functioning. To study such eco-evolutionary feedbacks in natural populations, however, requires samples across time. Here, we capitalize on a resurrection ecology study that documented rapid and adaptive evolution in a natural population of the water flea Daphnia magna in response to strong changes in predation pressure by fish, and carry out a follow-up mesocosm experiment to test whether the observed genetic changes influence population dynamics and top-down control of phytoplankton. We inoculated populations of the water flea D. magna derived from three time periods of the same natural population known to have genetically adapted to changes in predation pressure in replicate mesocosms and monitored both Daphnia population densities and phytoplankton biomass in the presence and absence of fish. Our results revealed differences in population dynamics and top-down control of algae between mesocosms harboring populations from the time period before, during, and after a peak in fish predation pressure caused by human fish stocking. The differences, however, deviated from our a priori expectations. An S-map approach on time series revealed that the interactions between adults and juveniles strongly impacted the dynamics of populations and their top-down control on algae in the mesocosms, and that the strength of these interactions was modulated by rapid evolution as it occurred in nature. Our study provides an example of an evolutionary response that fundamentally alters the processes structuring population dynamics and impacts ecosystem features.
Garde-Cerdán, Teresa; Lorenzo, Cándida; Lara, José Félix; Pardo, Francisco; Ancín-Azpilicueta, Carmen; Salinas, M Rosario
2009-03-25
The aim of this work was to study the evolution of amino acids and ammonium during grape ripening and to evaluate its application to differentiate grape varieties and cultivated systems (organic and nonorganic). For this purpose, Monastrell, Syrah, Merlot, and Petit Verdot grapes produced using conventional agriculture and Monastrell grape cultivated using organic agriculture, collected during two consecutive harvests at different stages of ripening, were studied. These years of harvest were very different climatic years; even so, the grape varieties presented similar qualitative compositions. Therefore, the percentage of amino acids at harvest moment allowed differentiation of grapes according to variety and cultivated system, regardless of the year. The nitrogen composition could allow estimation of the fermentative aroma potential of grapes. Thus, Syrah was the grape with the greatest aroma potential at harvest. Monastrell nonorganic grape had a concentration of nitrogen compounds superior to that of Monastrell organic grape. In Monastrell, Syrah, and Merlot, traditional varieties in the area, the highest concentration of nitrogen compounds coincided with the highest degrees Baume/total acidity ratio and color index during 2007. Consequently, technological and phenolic maturity of these grape varieties coincided with the maximum composition of nitrogen compounds. However, in 2008, this did not happen because grape ripening was irregular as a consequence of different climatological conditions.
Aldoghaither, Abeer
2015-12-01
In this paper, a new method, based on the so-called modulating functions, is proposed to estimate average velocity, dispersion coefficient, and differentiation order in a space-fractional advection-dispersion equation, where the average velocity and the dispersion coefficient are space-varying. First, the average velocity and the dispersion coefficient are estimated by applying the modulating functions method, where the problem is transformed into a linear system of algebraic equations. Then, the modulating functions method combined with a Newton\\'s iteration algorithm is applied to estimate the coefficients and the differentiation order simultaneously. The local convergence of the proposed method is proved. Numerical results are presented with noisy measurements to show the effectiveness and robustness of the proposed method. It is worth mentioning that this method can be extended to general fractional partial differential equations.
Aldoghaither, Abeer; Liu, Da-Yan; Laleg-Kirati, Taous-Meriem
2015-01-01
In this paper, a new method, based on the so-called modulating functions, is proposed to estimate average velocity, dispersion coefficient, and differentiation order in a space-fractional advection-dispersion equation, where the average velocity and the dispersion coefficient are space-varying. First, the average velocity and the dispersion coefficient are estimated by applying the modulating functions method, where the problem is transformed into a linear system of algebraic equations. Then, the modulating functions method combined with a Newton's iteration algorithm is applied to estimate the coefficients and the differentiation order simultaneously. The local convergence of the proposed method is proved. Numerical results are presented with noisy measurements to show the effectiveness and robustness of the proposed method. It is worth mentioning that this method can be extended to general fractional partial differential equations.
Directory of Open Access Journals (Sweden)
Brüne Martin
2012-04-01
Full Text Available Abstract The diathesis-stress model of psychiatric conditions has recently been challenged by the view that it might be more accurate to speak of 'differential susceptibility' or 'plasticity' genes, rather than one-sidedly focusing on individual vulnerability. That is, the same allelic variation that predisposes to a psychiatric disorder if associated with (developmentally early environmental adversity may lead to a better-than-average functional outcome in the same domain under thriving (or favourable environmental conditions. Studies of polymorphic variations of the serotonin transporter gene, the monoamino-oxidase-inhibitor A coding gene or the dopamine D4 receptor gene indicate that the early environment plays a crucial role in the development of favourable versus unfavourable outcomes. Current evidence is limited, however, to establishing a link between genetic variation and behavioural phenotypes. In contrast, little is known about how plasticity may be expressed at the neuroanatomical level as a 'hard-wired' correlate of observable behaviour. The present review article seeks to further strengthen the argument in favour of the differential susceptibility theory by incorporating findings from behavioural and neuroanatomical studies in relation to genetic variation of the oxytocin receptor gene. It is suggested that polymorphic variation at the oxytocin receptor gene (rs2254298 is associated with sociability, amygdala volume and differential risk for psychiatric conditions including autism, depression and anxiety disorder, depending on the quality of early environmental experiences. Seeing genetic variation at the core of developmental plasticity can explain, in contrast to the diathesis-stress perspective, why evolution by natural selection has maintained such 'risk' alleles in the gene pool of a population. Please see related manuscript: http://www.biomedcentral.com/1741-7015/10/37
Li, Qi; Zhang, Ning; Zhang, Liangsheng; Ma, Hong
2015-04-01
Rhomboid proteins are intramembrane serine proteases that are involved in a plethora of biological functions, but the evolutionary history of the rhomboid gene family is not clear. We performed a comprehensive molecular evolutionary analysis of the rhomboid gene family and also investigated the organization and sequence features of plant rhomboids in different subfamilies. Our results showed that eukaryotic rhomboids could be divided into five subfamilies (RhoA-RhoD and PARL). Most orthology groups appeared to be conserved only as single or low-copy genes in all lineages in RhoB-RhoD and PARL, whereas RhoA genes underwent several duplication events, resulting in multiple gene copies. These duplication events were due to whole genome duplications in plants and animals and the duplicates might have experienced functional divergence. We also identified a novel group of plant rhomboid (RhoB1) that might have lost their enzymatic activity; their existence suggests that they might have evolved new mechanisms. Plant and animal rhomboids have similar evolutionary patterns. In addition, there are mutations affecting key active sites in RBL8, RBL9 and one of the Brassicaceae PARL duplicates. This study delineates a possible evolutionary scheme for intramembrane proteins and illustrates distinct fates and a mechanism of evolution of gene duplicates. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.
Directory of Open Access Journals (Sweden)
Ricardo D’Oliveira Albanus
2014-01-01
Full Text Available Chemoreception is among the most important sensory modalities in animals. Organisms use the ability to perceive chemical compounds in all major ecological activities. Recent studies have allowed the characterization of chemoreceptor gene families. These genes present strikingly high variability in copy numbers and pseudogenization degrees among different species, but the mechanisms underlying their evolution are not fully understood. We have analyzed the functional networks of these genes, their orthologs distribution, and performed phylogenetic analyses in order to investigate their evolutionary dynamics. We have modeled the chemosensory networks and compared the evolutionary constraints of their genes in Mus musculus, Homo sapiens, and Rattus norvegicus. We have observed significant differences regarding the constraints on the orthologous groups and network topologies of chemoreceptors and signal transduction machinery. Our findings suggest that chemosensory receptor genes are less constrained than their signal transducing machinery, resulting in greater receptor diversity and conservation of information processing pathways. More importantly, we have observed significant differences among the receptors themselves, suggesting that olfactory and bitter taste receptors are more conserved than vomeronasal receptors.
Gatti, Roberto Cazzolla
2011-01-01
A. McFayden and G.E. Hutchinson defined a niche as a multidimensional space or hypervolume within the environment that allows an individual or a species to survive, we consider niches as a fundamental ecological variable that regulate species' composition and relation in ecosystems. Successively the niche concept has been associated to the genetic term "phenotype" by MacArthurstressing the importance on what a species or a genome can show outside, either in the environmental functions or in body characteristics. Several indexes have been developed to evaluate the grade of overlapping and similarities of species' niches, even utilizing the theory of information. However, which are the factors that determine the number of species that can coexist in a determinate environment and why a generalist species do not compete until the exclusion of the remaining species to maximize its fitness, is still quite unknown. Moreover, there are few studies and theories that clearly explain why the number of niches is so variable through ecosystems and how can several species live in the same basal niche, intended in a comprehensive sense as the range of basic conditions (temperature, humidity, food-guild, etc.). Here I show that the number of niches in an ecosystem depends on the number of species present in a particular moment and that the species themselves allow the enhancement of niches in terms of space and number. I found that using a three-dimensional model as hypervolume and testing the theory on a Mediterranean, temperate and tropical forest ecosystem it is possible to demonstrate that each species plays a fundamental role in facilitating the colonization by other species by simply modifying the environment and exponentially increasing the available niches' space and number. I resumed these hypothesis, after some preliminary empiric tests, in the Biodiversity-related Niches Differentiation Theory (BNDT), stressing with these definition that the process of niches
Lopez Cruz, I.L.; Willigenburg, van L.G.; Straten, van G.
2003-01-01
Abstract Since high concentration levels of nitrate in lettuce and other leafy vegetables are undesirable, cultivation of lettuce according to specified governmental regulations is currently an important issue. Therefore, methods are sought in order to produce a lettuce crop that allow maximization
Re-Os Isotopic Constraints on the Chemical Evolution and Differentiation of the Martian Mantle
Brandon, Alan D.; Walker, Richard J.
2002-01-01
The (187)Re-187Os isotopic systematics of SNC meteorites, thought to be from Mars, provide valuable information regarding the chemical processes that affected the Martian mantle, particularly with regard to the relative abundances of highly siderophile elements (HSE). Previously published data (Birck and Allegre 1994, Brandon et al. 2000), and new data obtained since these studies, indicate that the HSE and Os isotopic composition of the Martian mantle was primarily set in its earliest differentiation history. If so, then these meteorites provide key constraints on the processes that lead to variation in HSE observed in not only Mars, but also Earth, the Moon and other rocky bodies in the Solar System. Processes that likely have an effect on the HSE budgets of terrestrial mantles include core formation, magma ocean crystallization, development of juvenile crust, and the addition of a late veneer. Each of these processes will result in different HSE variation and the isotopic composition of mantle materials and mantle derived lavas. Two observations on the SNC data to present provide a framework for which to test the importance of each of these processes. First, the concentrations of Re and Os in SNC meteorites indicate that they are derived from a mantle that has similar concentrations to the Earth's mantle. Such an observation is consistent with a model where a chondritic late veneer replenished the Earth and Martian mantles subsequent to core formation on each planet. Alternative models to explain this observation do exist, but will require additional data to test the limitations of each. Second, Re-Os isotopic results from Brandon et al. (2000) and new data presented here, show that initial yos correlates with variations in the short-lived systems of (182)Hf- (182)W and (142)Sm-142Nd in the SNC meteorites (epsilon(sub W) and epsilon(sub 142Nd)). These systematics require an isolation of mantle reservoirs during the earliest differentiation history of Mars, and
Quasi-Newton methods for parameter estimation in functional differential equations
Brewer, Dennis W.
1988-01-01
A state-space approach to parameter estimation in linear functional differential equations is developed using the theory of linear evolution equations. A locally convergent quasi-Newton type algorithm is applied to distributed systems with particular emphasis on parameters that induce unbounded perturbations of the state. The algorithm is computationally implemented on several functional differential equations, including coefficient and delay estimation in linear delay-differential equations.
Hirth, Jacqueline M; Hatch, Sandra S; Lin, Yu-Li; Giordano, Sharon H; Silva, H Colleen; Kuo, Yong-Fang
2018-04-18
Overtreatment is a common concern for patients with ductal carcinoma in situ (DCIS), but this entity is difficult to distinguish from invasive breast cancers in administrative claims data sets because DCIS often is coded as invasive breast cancer. Therefore, the authors developed and validated algorithms to select DCIS cases from administrative claims data to enable outcomes research in this type of data. This retrospective cohort using invasive breast cancer and DCIS cases included women aged 66 to 70 years in the 2004 through 2011 Texas Cancer Registry (TCR) data linked to Medicare administrative claims data. TCR records were used as "gold" standards to evaluate the sensitivity, specificity, and positive predictive value (PPV) of 2 algorithms. Women with a biopsy enrolled in Medicare parts A and B at 12 months before and 6 months after their first biopsy without a second incident diagnosis of DCIS or invasive breast cancer within 12 months in the TCR were included. Women in 2010 Medicare data were selected to test the algorithms in a general sample. In the TCR data set, a total of 6907 cases met inclusion criteria, with 1244 DCIS cases. The first algorithm had a sensitivity of 79%, a specificity of 89%, and a PPV of 62%. The second algorithm had a sensitivity of 50%, a specificity of 97%. and a PPV of 77%. Among women in the general sample, the specificity was high and the sensitivity was similar for both algorithms. However, the PPV was approximately 6% to 7% lower. DCIS frequently is miscoded as invasive breast cancer, and thus the proposed algorithms are useful to examine DCIS outcomes using data sets not linked to cancer registries. Cancer 2018. © 2018 American Cancer Society. © 2018 American Cancer Society.
International Nuclear Information System (INIS)
Luo, Yusheng; Du, Z W; Yang, Y J; Chen, P; Wang, X H; Cheng, Y; Peng, J; Shen, A G; Hu, J M; Tian, Q; Shang, X L; Liu, Z C; Yao, X Q; Wang, J Z
2013-01-01
Early and differential diagnosis of Alzheimer’s disease (AD) has puzzled many clinicians. In this work, laser Raman spectroscopy (LRS) was developed to diagnose AD from platelet samples from AD transgenic mice and non-transgenic controls of different ages. An adaptive Gaussian process (GP) classification algorithm was used to re-establish the classification models of early AD, advanced AD and the control group with just two features and the capacity for noise reduction. Compared with the previous multilayer perceptron network method, the GP showed much better classification performance with the same feature set. Besides, spectra of platelets isolated from AD and Parkinson’s disease (PD) mice were also discriminated. Spectral data from 4 month AD (n = 39) and 12 month AD (n = 104) platelets, as well as control data (n = 135), were collected. Prospective application of the algorithm to the data set resulted in a sensitivity of 80%, a specificity of about 100% and a Matthews correlation coefficient of 0.81. Samples from PD (n = 120) platelets were also collected for differentiation from 12 month AD. The results suggest that platelet LRS detection analysis with the GP appears to be an easier and more accurate method than current ones for early and differential diagnosis of AD. (paper)
Directory of Open Access Journals (Sweden)
Zabrina L Brumme
2007-07-01
Full Text Available Despite the formidable mutational capacity and sequence diversity of HIV-1, evidence suggests that viral evolution in response to specific selective pressures follows generally predictable mutational pathways. Population-based analyses of clinically derived HIV sequences may be used to identify immune escape mutations in viral genes; however, prior attempts to identify such mutations have been complicated by the inability to discriminate active immune selection from virus founder effects. Furthermore, the association between mutations arising under in vivo immune selection and disease progression for highly variable pathogens such as HIV-1 remains incompletely understood. We applied a viral lineage-corrected analytical method to investigate HLA class I-associated sequence imprinting in HIV protease, reverse transcriptase (RT, Vpr, and Nef in a large cohort of chronically infected, antiretrovirally naïve individuals. A total of 478 unique HLA-associated polymorphisms were observed and organized into a series of "escape maps," which identify known and putative cytotoxic T lymphocyte (CTL epitopes under selection pressure in vivo. Our data indicate that pathways to immune escape are predictable based on host HLA class I profile, and that epitope anchor residues are not the preferred sites of CTL escape. Results reveal differential contributions of immune imprinting to viral gene diversity, with Nef exhibiting far greater evidence for HLA class I-mediated selection compared to other genes. Moreover, these data reveal a significant, dose-dependent inverse correlation between HLA-associated polymorphisms and HIV disease stage as estimated by CD4(+ T cell count. Identification of specific sites and patterns of HLA-associated polymorphisms across HIV protease, RT, Vpr, and Nef illuminates regions of the genes encoding these products under active immune selection pressure in vivo. The high density of HLA-associated polymorphisms in Nef compared to other
Improved Bat Algorithm Applied to Multilevel Image Thresholding
Directory of Open Access Journals (Sweden)
Adis Alihodzic
2014-01-01
Full Text Available Multilevel image thresholding is a very important image processing technique that is used as a basis for image segmentation and further higher level processing. However, the required computational time for exhaustive search grows exponentially with the number of desired thresholds. Swarm intelligence metaheuristics are well known as successful and efficient optimization methods for intractable problems. In this paper, we adjusted one of the latest swarm intelligence algorithms, the bat algorithm, for the multilevel image thresholding problem. The results of testing on standard benchmark images show that the bat algorithm is comparable with other state-of-the-art algorithms. We improved standard bat algorithm, where our modifications add some elements from the differential evolution and from the artificial bee colony algorithm. Our new proposed improved bat algorithm proved to be better than five other state-of-the-art algorithms, improving quality of results in all cases and significantly improving convergence speed.
Wordsworth, R. D.; Schaefer, L. K.; Fischer, R. A.
2018-05-01
The oxidation of rocky planet surfaces and atmospheres, which arises from the twin forces of stellar nucleosynthesis and gravitational differentiation, is a universal process of key importance to habitability and exoplanet biosignature detection. Here we take a generalized approach to this phenomenon. Using a single parameter to describe the redox state, we model the evolution of terrestrial planets around nearby M stars and the Sun. Our model includes atmospheric photochemistry, diffusion and escape, line-by-line climate calculations, and interior thermodynamics and chemistry. In most cases, we find abiotic atmospheric {{{O}}}2 buildup around M stars during the pre-main-sequence phase to be much less than calculated previously, because the planet’s magma ocean absorbs most oxygen liberated from {{{H}}}2{{O}} photolysis. However, loss of noncondensing atmospheric gases after the mantle solidifies remains a significant potential route to abiotic atmospheric {{{O}}}2 subsequently. In all cases, we predict that exoplanets that receive lower stellar fluxes, such as LHS1140b and TRAPPIST-1f and g, have the lowest probability of abiotic {{{O}}}2 buildup and hence may be the most interesting targets for future searches for biogenic {{{O}}}2. Key remaining uncertainties can be minimized in future by comparing our predictions for the atmospheres of hot, sterile exoplanets such as GJ1132b and TRAPPIST-1b and c with observations.
Directory of Open Access Journals (Sweden)
Maciej Goćwin
2008-01-01
Full Text Available The complexity of initial-value problems is well studied for systems of equations of first order. In this paper, we study the \\(\\varepsilon\\-complexity for initial-value problems for scalar equations of higher order. We consider two models of computation, the randomized model and the quantum model. We construct almost optimal algorithms adjusted to scalar equations of higher order, without passing to systems of first order equations. The analysis of these algorithms allows us to establish upper complexity bounds. We also show (almost matching lower complexity bounds. The \\(\\varepsilon\\-complexity in the randomized and quantum setting depends on the regularity of the right-hand side function, but is independent of the order of equation. Comparing the obtained bounds with results known in the deterministic case, we see that randomized algorithms give us a speed-up by \\(1/2\\, and quantum algorithms by \\(1\\ in the exponent. Hence, the speed-up does not depend on the order of equation, and is the same as for the systems of equations of first order. We also include results of some numerical experiments which confirm theoretical results.
Manousaki, Tereza; Hull, Pincelli M; Kusche, Henrik; Machado-Schiaffino, Gonzalo; Franchini, Paolo; Harrod, Chris; Elmer, Kathryn R; Meyer, Axel
2013-02-01
The study of parallel evolution facilitates the discovery of common rules of diversification. Here, we examine the repeated evolution of thick lips in Midas cichlid fishes (the Amphilophus citrinellus species complex)-from two Great Lakes and two crater lakes in Nicaragua-to assess whether similar changes in ecology, phenotypic trophic traits and gene expression accompany parallel trait evolution. Using next-generation sequencing technology, we characterize transcriptome-wide differential gene expression in the lips of wild-caught sympatric thick- and thin-lipped cichlids from all four instances of repeated thick-lip evolution. Six genes (apolipoprotein D, myelin-associated glycoprotein precursor, four-and-a-half LIM domain protein 2, calpain-9, GTPase IMAP family member 8-like and one hypothetical protein) are significantly underexpressed in the thick-lipped morph across all four lakes. However, other aspects of lips' gene expression in sympatric morphs differ in a lake-specific pattern, including the magnitude of differentially expressed genes (97-510). Generally, fewer genes are differentially expressed among morphs in the younger crater lakes than in those from the older Great Lakes. Body shape, lower pharyngeal jaw size and shape, and stable isotopes (δ(13)C and δ(15)N) differ between all sympatric morphs, with the greatest differentiation in the Great Lake Nicaragua. Some ecological traits evolve in parallel (those related to foraging ecology; e.g. lip size, body and head shape) but others, somewhat surprisingly, do not (those related to diet and food processing; e.g. jaw size and shape, stable isotopes). Taken together, this case of parallelism among thick- and thin-lipped cichlids shows a mosaic pattern of parallel and nonparallel evolution. © 2012 Blackwell Publishing Ltd.
Directory of Open Access Journals (Sweden)
Lingyun Li
2013-01-01
Full Text Available We provide a new gossip algorithm to investigate the problem of opinion consensus with the time-varying influence factors and weakly connected graph among multiple agents. What is more, we discuss not only the effect of the time-varying factors and the randomized topological structure but also the spread of misinformation and communication constrains described by probabilistic quantized communication in the social network. Under the underlying weakly connected graph, we first denote that all opinion states converge to a stochastic consensus almost surely; that is, our algorithm indeed achieves the consensus with probability one. Furthermore, our results show that the mean of all the opinion states converges to the average of the initial states when time-varying influence factors satisfy some conditions. Finally, we give a result about the square mean error between the dynamic opinion states and the benchmark without quantized communication.
Directory of Open Access Journals (Sweden)
Chocat Rudy
2015-01-01
Full Text Available The design of complex systems often induces a constrained optimization problem under uncertainty. An adaptation of CMA-ES(λ, μ optimization algorithm is proposed in order to efficiently handle the constraints in the presence of noise. The update mechanisms of the parametrized distribution used to generate the candidate solutions are modified. The constraint handling method allows to reduce the semi-principal axes of the probable research ellipsoid in the directions violating the constraints. The proposed approach is compared to existing approaches on three analytic optimization problems to highlight the efficiency and the robustness of the algorithm. The proposed method is used to design a two stage solid propulsion launch vehicle.
International Nuclear Information System (INIS)
Rajagopalan, S.; Jethra, A.; Khare, A.N.; Ghodgaonkar, M.D.; Srivenkateshan, R.; Menon, S.V.G.
1990-01-01
Issues relating to implementing iterative procedures, for numerical solution of elliptic partial differential equations, on a distributed parallel computing system are discussed. Preliminary investigations show that a speed-up of about 3.85 is achievable on a four transputer pipeline network. (author). 2 figs., 3 a ppendixes., 7 refs
Directory of Open Access Journals (Sweden)
Liran Carmel
2010-01-01
Full Text Available Evolutionary binary characters are features of species or genes, indicating the absence (value zero or presence (value one of some property. Examples include eukaryotic gene architecture (the presence or absence of an intron in a particular locus, gene content, and morphological characters. In many studies, the acquisition of such binary characters is assumed to represent a rare evolutionary event, and consequently, their evolution is analyzed using various flavors of parsimony. However, when gain and loss of the character are not rare enough, a probabilistic analysis becomes essential. Here, we present a comprehensive probabilistic model to describe the evolution of binary characters on a bifurcating phylogenetic tree. A fast software tool, EREM, is provided, using maximum likelihood to estimate the parameters of the model and to reconstruct ancestral states (presence and absence in internal nodes and events (gain and loss events along branches.
Carmel, Liran; Wolf, Yuri I; Rogozin, Igor B; Koonin, Eugene V
2010-01-01
Evolutionary binary characters are features of species or genes, indicating the absence (value zero) or presence (value one) of some property. Examples include eukaryotic gene architecture (the presence or absence of an intron in a particular locus), gene content, and morphological characters. In many studies, the acquisition of such binary characters is assumed to represent a rare evolutionary event, and consequently, their evolution is analyzed using various flavors of parsimony. However, when gain and loss of the character are not rare enough, a probabilistic analysis becomes essential. Here, we present a comprehensive probabilistic model to describe the evolution of binary characters on a bifurcating phylogenetic tree. A fast software tool, EREM, is provided, using maximum likelihood to estimate the parameters of the model and to reconstruct ancestral states (presence and absence in internal nodes) and events (gain and loss events along branches).
Gomes, J. M.; Papaderos, P.
2017-07-01
The goal of population spectral synthesis (pss; also referred to as inverse, semi-empirical evolutionary- or fossil record approach) is to decipher from the spectrum of a galaxy the mass, age and metallicity of its constituent stellar populations. This technique, which is the reverse of but complementary to evolutionary synthesis, has been established as fundamental tool in extragalactic research. It has been extensively applied to large spectroscopic data sets, notably the SDSS, leading to important insights into the galaxy assembly history. However, despite significant improvements over the past decade, all current pss codes suffer from two major deficiencies that inhibit us from gaining sharp insights into the star-formation history (SFH) of galaxies and potentially introduce substantial biases in studies of their physical properties (e.g., stellar mass, mass-weighted stellar age and specific star formation rate). These are I) the neglect of nebular emission in spectral fits, consequently; II) the lack of a mechanism that ensures consistency between the best-fitting SFH and the observed nebular emission characteristics of a star-forming (SF) galaxy (e.g., hydrogen Balmer-line luminosities and equivalent widths-EWs, shape of the continuum in the region around the Balmer and Paschen jump). In this article, we present fado (Fitting Analysis using Differential evolution Optimization) - a conceptually novel, publicly available pss tool with the distinctive capability of permitting identification of the SFH that reproduces the observed nebular characteristics of a SF galaxy. This so-far unique self-consistency concept allows us to significantly alleviate degeneracies in current spectral synthesis, thereby opening a new avenue to the exploration of the assembly history of galaxies. The innovative character of fado is further augmented by its mathematical foundation: fado is the first pss code employing genetic differential evolution optimization. This, in conjunction
An Enhanced Jaya Algorithm with a Two Group Adaption
Directory of Open Access Journals (Sweden)
Chibing Gong
2017-01-01
Full Text Available This paper proposes a novel performance enhanced Jaya algorithm with a two group adaption (E-Jaya. Two improvements are presented in E-Jaya. First, instead of using the best and the worst values in Jaya algorithm, EJaya separates all candidates into two groups: the better and the worse groups based on their fitness values, then the mean of the better group and the mean of the worse group are used. Second, in order to add non algorithm-specific parameters in E-Jaya, a novel adaptive method of dividing the two groups has been developed. Finally, twelve benchmark functions with different dimensionality, such as 40, 60, and 100, were evaluated using the proposed EJaya algorithm. The results show that E-Jaya significantly outperformed Jaya algorithm in terms of the solution accuracy. Additionally, E-Jaya was also compared with a differential evolution (DE, a self-adapting control parameters in differential evolution (jDE, a firefly algorithm (FA, and a standard particle swarm optimization 2011 (SPSO2011 algorithm. E-Jaya algorithm outperforms all the algorithms.
Monte Carlo algorithms for lattice gauge theory
International Nuclear Information System (INIS)
Creutz, M.
1987-05-01
Various techniques are reviewed which have been used in numerical simulations of lattice gauge theories. After formulating the problem, the Metropolis et al. algorithm and some interesting variations are discussed. The numerous proposed schemes for including fermionic fields in the simulations are summarized. Langevin, microcanonical, and hybrid approaches to simulating field theories via differential evolution in a fictitious time coordinate are treated. Some speculations are made on new approaches to fermionic simulations
Srinivasan, A.; Galbán, C.J.; Johnson, T.D.; Chenevert, T.L.; Ross, B.D.; Mukherji, S.K.
2014-01-01
Purpose The objective of our study was to analyze the differences between apparent diffusion coefficient (ADC) partitions (created using the K-Means algorithm) between benign and malignant neck lesions and evaluate its benefit in distinguishing these entities. Material and methods MRI studies of 10 benign and 10 malignant proven neck pathologies were post-processed on a PC using in-house software developed in MATLAB (The MathWorks, Inc., Natick, MA). Lesions were manually contoured by two neuroradiologists with the ADC values within each lesion clustered into two (low ADC-ADCL, high ADC-ADCH) and three partitions (ADCL, intermediate ADC-ADCI, ADCH) using the K-Means clustering algorithm. An unpaired two-tailed Student’s t-test was performed for all metrics to determine statistical differences in the means between the benign and malignant pathologies. Results Statistically significant difference between the mean ADCL clusters in benign and malignant pathologies was seen in the 3 cluster models of both readers (p=0.03, 0.022 respectively) and the 2 cluster model of reader 2 (p=0.04) with the other metrics (ADCH, ADCI, whole lesion mean ADC) not revealing any significant differences. Receiver operating characteristics curves demonstrated the quantitative difference in mean ADCH and ADCL in both the 2 and 3 cluster models to be predictive of malignancy (2 clusters: p=0.008, area under curve=0.850, 3 clusters: p=0.01, area under curve=0.825). Conclusion The K-Means clustering algorithm that generates partitions of large datasets may provide a better characterization of neck pathologies and may be of additional benefit in distinguishing benign and malignant neck pathologies compared to whole lesion mean ADC alone. PMID:20007723
Pei, Yan
2015-01-01
We present and discuss philosophy and methodology of chaotic evolution that is theoretically supported by chaos theory. We introduce four chaotic systems, that is, logistic map, tent map, Gaussian map, and Hénon map, in a well-designed chaotic evolution algorithm framework to implement several chaotic evolution (CE) algorithms. By comparing our previous proposed CE algorithm with logistic map and two canonical differential evolution (DE) algorithms, we analyse and discuss optimization performance of CE algorithm. An investigation on the relationship between optimization capability of CE algorithm and distribution characteristic of chaotic system is conducted and analysed. From evaluation result, we find that distribution of chaotic system is an essential factor to influence optimization performance of CE algorithm. We propose a new interactive EC (IEC) algorithm, interactive chaotic evolution (ICE) that replaces fitness function with a real human in CE algorithm framework. There is a paired comparison-based mechanism behind CE search scheme in nature. A simulation experimental evaluation is conducted with a pseudo-IEC user to evaluate our proposed ICE algorithm. The evaluation result indicates that ICE algorithm can obtain a significant better performance than or the same performance as interactive DE. Some open topics on CE, ICE, fusion of these optimization techniques, algorithmic notation, and others are presented and discussed.
2015-01-01
We present and discuss philosophy and methodology of chaotic evolution that is theoretically supported by chaos theory. We introduce four chaotic systems, that is, logistic map, tent map, Gaussian map, and Hénon map, in a well-designed chaotic evolution algorithm framework to implement several chaotic evolution (CE) algorithms. By comparing our previous proposed CE algorithm with logistic map and two canonical differential evolution (DE) algorithms, we analyse and discuss optimization performance of CE algorithm. An investigation on the relationship between optimization capability of CE algorithm and distribution characteristic of chaotic system is conducted and analysed. From evaluation result, we find that distribution of chaotic system is an essential factor to influence optimization performance of CE algorithm. We propose a new interactive EC (IEC) algorithm, interactive chaotic evolution (ICE) that replaces fitness function with a real human in CE algorithm framework. There is a paired comparison-based mechanism behind CE search scheme in nature. A simulation experimental evaluation is conducted with a pseudo-IEC user to evaluate our proposed ICE algorithm. The evaluation result indicates that ICE algorithm can obtain a significant better performance than or the same performance as interactive DE. Some open topics on CE, ICE, fusion of these optimization techniques, algorithmic notation, and others are presented and discussed. PMID:25879067
Directory of Open Access Journals (Sweden)
Yan Pei
2015-01-01
Full Text Available We present and discuss philosophy and methodology of chaotic evolution that is theoretically supported by chaos theory. We introduce four chaotic systems, that is, logistic map, tent map, Gaussian map, and Hénon map, in a well-designed chaotic evolution algorithm framework to implement several chaotic evolution (CE algorithms. By comparing our previous proposed CE algorithm with logistic map and two canonical differential evolution (DE algorithms, we analyse and discuss optimization performance of CE algorithm. An investigation on the relationship between optimization capability of CE algorithm and distribution characteristic of chaotic system is conducted and analysed. From evaluation result, we find that distribution of chaotic system is an essential factor to influence optimization performance of CE algorithm. We propose a new interactive EC (IEC algorithm, interactive chaotic evolution (ICE that replaces fitness function with a real human in CE algorithm framework. There is a paired comparison-based mechanism behind CE search scheme in nature. A simulation experimental evaluation is conducted with a pseudo-IEC user to evaluate our proposed ICE algorithm. The evaluation result indicates that ICE algorithm can obtain a significant better performance than or the same performance as interactive DE. Some open topics on CE, ICE, fusion of these optimization techniques, algorithmic notation, and others are presented and discussed.
Rached, Nadhir B.
2014-01-06
A new hybrid adaptive MC forward Euler algorithm for SDEs with singular coefficients and non-smooth observables is developed. This adaptive method is based on the derivation of a new error expansion with computable leading order terms. When a non-smooth binary payoff is considered, the new adaptive method achieves the same complexity as the uniform discretization with smooth problems. Moreover, the new developed algorithm is extended to the multilevel Monte Carlo (MLMC) forward Euler setting which reduces the complexity from O(TOL-3) to O(TOL-2(log(TOL))2). For the binary option case, it recovers the standard multilevel computational cost O(TOL-2(log(TOL))2). When considering a higher order Milstein scheme, a similar complexity result was obtained by Giles using the uniform time stepping for one dimensional SDEs, see [2]. The difficulty to extend Giles’ Milstein MLMC method to the multidimensional case is an argument for the flexibility of our new constructed adaptive MLMC forward Euler method which can be easily adapted to this setting. Similarly, the expected complexity O(TOL-2(log(TOL))2) is reached for the multidimensional case and verified numerically.
Rached, Nadhir B.; Hoel, Haakon; Tempone, Raul
2014-01-01
A new hybrid adaptive MC forward Euler algorithm for SDEs with singular coefficients and non-smooth observables is developed. This adaptive method is based on the derivation of a new error expansion with computable leading order terms. When a non-smooth binary payoff is considered, the new adaptive method achieves the same complexity as the uniform discretization with smooth problems. Moreover, the new developed algorithm is extended to the multilevel Monte Carlo (MLMC) forward Euler setting which reduces the complexity from O(TOL-3) to O(TOL-2(log(TOL))2). For the binary option case, it recovers the standard multilevel computational cost O(TOL-2(log(TOL))2). When considering a higher order Milstein scheme, a similar complexity result was obtained by Giles using the uniform time stepping for one dimensional SDEs, see [2]. The difficulty to extend Giles’ Milstein MLMC method to the multidimensional case is an argument for the flexibility of our new constructed adaptive MLMC forward Euler method which can be easily adapted to this setting. Similarly, the expected complexity O(TOL-2(log(TOL))2) is reached for the multidimensional case and verified numerically.
Chen, Li; Tan, Chih-Hung; Kao, Shuh-Ji; Wang, Tai-Sheng
2008-01-01
Parallel GEGA was constructed by incorporating grammatical evolution (GE) into the parallel genetic algorithm (GA) to improve reservoir water quality monitoring based on remote sensing images. A cruise was conducted to ground-truth chlorophyll-a (Chl-a) concentration longitudinally along the Feitsui Reservoir, the primary water supply for Taipei City in Taiwan. Empirical functions with multiple spectral parameters from the Landsat 7 Enhanced Thematic Mapper (ETM+) data were constructed. The GE, an evolutionary automatic programming type system, automatically discovers complex nonlinear mathematical relationships among observed Chl-a concentrations and remote-sensed imageries. A GA was used afterward with GE to optimize the appropriate function type. Various parallel subpopulations were processed to enhance search efficiency during the optimization procedure with GA. Compared with a traditional linear multiple regression (LMR), the performance of parallel GEGA was found to be better than that of the traditional LMR model with lower estimating errors.
Novelli, Antonio
2016-08-01
Leaf Area Index (LAI) is essential in ecosystem and agronomic studies, since it measures energy and gas exchanges between vegetation and atmosphere. In the last decades, LAI values have widely been estimated from passive remotely sensed data. Common approaches are based on semi-empirical/statistic techniques or on radiative transfer model inversion. Although the scientific community has been providing several LAI retrieval methods, the estimated results are often affected by noise and measurement uncertainties. The sequential data assimilation theory provides a theoretical framework to combine an imperfect model with incomplete observation data. In this document a data fusion Kalman filter algorithm is proposed in order to estimate the time evolution of LAI by combining MODIS LAI data and PROBA-V surface reflectance data. The reflectance data were linked to LAI by using the Reduced Simple Ratio index. The main working hypotheses were lacking input data necessary for climatic models and canopy reflectance models.
Rached, Nadhir B.
2013-12-01
The Monte Carlo forward Euler method with uniform time stepping is the standard technique to compute an approximation of the expected payoff of a solution of an Itô SDE. For a given accuracy requirement TOL, the complexity of this technique for well behaved problems, that is the amount of computational work to solve the problem, is O(TOL-3). A new hybrid adaptive Monte Carlo forward Euler algorithm for SDEs with non-smooth coefficients and low regular observables is developed in this thesis. This adaptive method is based on the derivation of a new error expansion with computable leading-order terms. The basic idea of the new expansion is the use of a mixture of prior information to determine the weight functions and posterior information to compute the local error. In a number of numerical examples the superior efficiency of the hybrid adaptive algorithm over the standard uniform time stepping technique is verified. When a non-smooth binary payoff with either GBM or drift singularity type of SDEs is considered, the new adaptive method achieves the same complexity as the uniform discretization with smooth problems. Moreover, the new developed algorithm is extended to the MLMC forward Euler setting which reduces the complexity from O(TOL-3) to O(TOL-2(log(TOL))2). For the binary option case with the same type of Itô SDEs, the hybrid adaptive MLMC forward Euler recovers the standard multilevel computational cost O(TOL-2(log(TOL))2). When considering a higher order Milstein scheme, a similar complexity result was obtained by Giles using the uniform time stepping for one dimensional SDEs. The difficulty to extend Giles\\' Milstein MLMC method to the multidimensional case is an argument for the flexibility of our new constructed adaptive MLMC forward Euler method which can be easily adapted to this setting. Similarly, the expected complexity O(TOL-2(log(TOL))2) is reached for the multidimensional case and verified numerically.
Horiuchi, Youko; Harushima, Yoshiaki; Fujisawa, Hironori; Mochizuki, Takako; Fujita, Masahiro; Ohyanagi, Hajime; Kurata, Nori
2015-01-01
Since the development of transcriptome analysis systems, many expression evolution studies characterized evolutionary forces acting on gene expression, without explicit discrimination between global expression differences and tissue
Horiuchi, Youko; Harushima, Yoshiaki; Fujisawa, Hironori; Mochizuki, Takako; Fujita, Masahiro; Ohyanagi, Hajime; Kurata, Nori
2015-01-01
Abstract Background Since the development of transcriptome analysis systems, many expression evolution studies characterized evolutionary forces acting on gene expression, without explicit discrimination between global expression differences and tissue specific expression differences. However, different types of gene expression alteration should have different effects on an organism, the evolutionary forces that act on them might be different, and different types of genes might show different types of differential expression between species. To confirm this, we studied differentially expressed (DE) genes among closely related groups that have extensive gene expression atlases, and clarified characteristics of different types of DE genes including the identification of regulating loci for differential expression using expression quantitative loci (eQTL) analysis data. Results We detected differentially expressed (DE) genes between rice subspecies in five homologous tissues that were verified using japonica and indica transcriptome atlases in public databases. Using the transcriptome atlases, we classified DE genes into two types, global DE genes and changed-tissues DE genes. Global type DE genes were not expressed in any tissues in the atlas of one subspecies, however changed-tissues type DE genes were expressed in both subspecies with different tissue specificity. For the five tissues in the two japonica-indica combinations, 4.6 ± 0.8 and 5.9 ± 1.5 % of highly expressed genes were global and changed-tissues DE genes, respectively. Changed-tissues DE genes varied in number between tissues, increasing linearly with the abundance of tissue specifically expressed genes in the tissue. Molecular evolution of global DE genes was rapid, unlike that of changed-tissues DE genes. Based on gene ontology, global and changed-tissues DE genes were different, having no common GO terms. Expression differences of most global DE genes were regulated by cis
Bause, Fabian; Walther, Andrea; Rautenberg, Jens; Henning, Bernd
2013-12-01
For the modeling and simulation of wave propagation in geometrically simple waveguides such as plates or rods, one may employ the analytical global matrix method. That is, a certain (global) matrix depending on the two parameters wavenumber and frequency is built. Subsequently, one must calculate all parameter pairs within the domain of interest where the global matrix becomes singular. For this purpose, one could compute all roots of the determinant of the global matrix when the two parameters vary in the given intervals. This requirement to calculate all roots is actually the method's most concerning restriction. Previous approaches are based on so-called mode-tracers, which use the physical phenomenon that solutions, i.e., roots of the determinant of the global matrix, appear in a certain pattern, the waveguide modes, to limit the root-finding algorithm's search space with respect to consecutive solutions. In some cases, these reductions of the search space yield only an incomplete set of solutions, because some roots may be missed as a result of uncertain predictions. Therefore, we propose replacement of the mode-tracer approach with a suitable version of an interval- Newton method. To apply this interval-based method, we extended the interval and derivative computation provided by a numerical computing environment such that corresponding information is also available for Bessel functions used in circular models of acoustic waveguides. We present numerical results for two different scenarios. First, a polymeric cylindrical waveguide is simulated, and second, we show simulation results of a one-sided fluid-loaded plate. For both scenarios, we compare results obtained with the proposed interval-Newton algorithm and commercial software.
Jackson-Booth, N.
2016-12-01
Artificial Ionospheric Modification (AIM) attempts to modify the ionosphere in order to alter the propagation environment. It can be achieved through injecting the ionosphere with aerosols, chemicals or radio signals. The effects of any such release can be detected through the deployment of sensors, including ground based high frequency (HF) sounders. During the Metal Oxide Space Clouds (MOSC) experiment (undertaken in April/May 2013 in the Kwajalein Atoll, part of the Marshall Islands) several oblique ionograms were recorded from a ground based HF system. These ionograms were collected over multiple geometries and allowed the effects on the HF propagation environment to be understood. These ionograms have subsequently been used in the ClOud Reflection Algorithm (CORA) to attempt to model the evolution of the cloud following release. This paper describes the latest validation results from CORA, both from testing against ionograms, but also other independent models of cloud evolution from MOSC. For all testing the various cloud models (including that generated by CORA) were incorporated into a background ionosphere through which a 3D numerical ray trace was run to produce synthetic ionograms that could be compared with the ionograms recorded during MOSC.
International Nuclear Information System (INIS)
Perevertov, Oleksiy
2003-01-01
The classical Preisach model (PM) of magnetic hysteresis requires that any minor differential permeability curve lies under minor curves with larger field amplitude. Measurements of ferromagnetic materials show that very often this is not true. By applying the classical PM formalism to measured minor curves one can discover that it leads to an oval-shaped region on each half of the Preisach plane where the calculations produce negative values in the Preisach function. Introducing an effective field, which differs from the applied one by a mean-field term proportional to the magnetization, usually solves this problem. Complex techniques exist to estimate the minimum necessary proportionality constant (the moving parameter). In this paper we propose a simpler way to estimate the mean-field effects for use in nondestructive testing, which is based on experience from the measurements of industrial steels. A new parameter (parameter of shift) is introduced, which monitors the mean-field effects. The relation between the shift parameter and the moving one was studied for a number of steels. From preliminary experiments no correlation was found between the shift parameter and the classical magnetic ones such as the coercive field, maximum differential permeability and remanent magnetization
Directory of Open Access Journals (Sweden)
Fuqing Zhao
2016-01-01
Full Text Available A fixed evolutionary mechanism is usually adopted in the multiobjective evolutionary algorithms and their operators are static during the evolutionary process, which causes the algorithm not to fully exploit the search space and is easy to trap in local optima. In this paper, a SPEA2 algorithm which is based on adaptive selection evolution operators (AOSPEA is proposed. The proposed algorithm can adaptively select simulated binary crossover, polynomial mutation, and differential evolution operator during the evolutionary process according to their contribution to the external archive. Meanwhile, the convergence performance of the proposed algorithm is analyzed with Markov chain. Simulation results on the standard benchmark functions reveal that the performance of the proposed algorithm outperforms the other classical multiobjective evolutionary algorithms.
Energy Technology Data Exchange (ETDEWEB)
Leblanc, B.
2002-03-01
Molecular simulation aims at simulating particles in interaction, describing a physico-chemical system. When considering Markov Chain Monte Carlo sampling in this context, we often meet the same problem of statistical efficiency as with Molecular Dynamics for the simulation of complex molecules (polymers for example). The search for a correct sampling of the space of possible configurations with respect to the Boltzmann-Gibbs distribution is directly related to the statistical efficiency of such algorithms (i.e. the ability of rapidly providing uncorrelated states covering all the configuration space). We investigated how to improve this efficiency with the help of Artificial Evolution (AE). AE algorithms form a class of stochastic optimization algorithms inspired by Darwinian evolution. Efficiency measures that can be turned into efficiency criteria have been first searched before identifying parameters that could be optimized. Relative frequencies for each type of Monte Carlo moves, usually empirically chosen in reasonable ranges, were first considered. We combined parallel simulations with a 'genetic server' in order to dynamically improve the quality of the sampling during the simulations progress. Our results shows that in comparison with some reference settings, it is possible to improve the quality of samples with respect to the chosen criterion. The same algorithm has been applied to improve the Parallel Tempering technique, in order to optimize in the same time the relative frequencies of Monte Carlo moves and the relative frequencies of swapping between sub-systems simulated at different temperatures. Finally, hints for further research in order to optimize the choice of additional temperatures are given. (author)
Chow, Sy-Miin; Lu, Zhaohua; Sherwood, Andrew; Zhu, Hongtu
2016-03-01
The past decade has evidenced the increased prevalence of irregularly spaced longitudinal data in social sciences. Clearly lacking, however, are modeling tools that allow researchers to fit dynamic models to irregularly spaced data, particularly data that show nonlinearity and heterogeneity in dynamical structures. We consider the issue of fitting multivariate nonlinear differential equation models with random effects and unknown initial conditions to irregularly spaced data. A stochastic approximation expectation-maximization algorithm is proposed and its performance is evaluated using a benchmark nonlinear dynamical systems model, namely, the Van der Pol oscillator equations. The empirical utility of the proposed technique is illustrated using a set of 24-h ambulatory cardiovascular data from 168 men and women. Pertinent methodological challenges and unresolved issues are discussed.
Odom, Karan J; Omland, Kevin E; Price, J Jordan
2015-03-01
Female bird song and combined vocal duets of mated pairs are both frequently associated with tropical, monogamous, sedentary natural histories. Little is known, however, about what selects for duetting behavior versus female song. Female song likely preceded duet evolution and could drive apparent relationships between duets and these natural histories. We compared the evolution of female song and male-female duets in the New World blackbirds (Icteridae) by investigating patterns of gains and losses of both traits and their relationships with breeding latitude, mating system, nesting pattern, and migratory behavior. We found that duets evolved only in lineages in which female song was likely ancestral. Both female song and duets were correlated with tropical breeding, social monogamy, territorial nesting, and sedentary behavior when all taxa were included; however, correlations between duets and these natural history traits disappeared when comparisons were limited to taxa with female song. Also, likelihood values supported stronger relationships between the natural history traits and female song than between these traits and duets. Our results suggest that the natural histories thought to favor the evolution of duetting may in fact be associated with female song and that additional selection pressures are responsible for the evolution of duets. © 2015 The Author(s).
Pattern Nulling of Linear Antenna Arrays Using Backtracking Search Optimization Algorithm
Directory of Open Access Journals (Sweden)
Kerim Guney
2015-01-01
Full Text Available An evolutionary method based on backtracking search optimization algorithm (BSA is proposed for linear antenna array pattern synthesis with prescribed nulls at interference directions. Pattern nulling is obtained by controlling only the amplitude, position, and phase of the antenna array elements. BSA is an innovative metaheuristic technique based on an iterative process. Various numerical examples of linear array patterns with the prescribed single, multiple, and wide nulls are given to illustrate the performance and flexibility of BSA. The results obtained by BSA are compared with the results of the following seventeen algorithms: particle swarm optimization (PSO, genetic algorithm (GA, modified touring ant colony algorithm (MTACO, quadratic programming method (QPM, bacterial foraging algorithm (BFA, bees algorithm (BA, clonal selection algorithm (CLONALG, plant growth simulation algorithm (PGSA, tabu search algorithm (TSA, memetic algorithm (MA, nondominated sorting GA-2 (NSGA-2, multiobjective differential evolution (MODE, decomposition with differential evolution (MOEA/D-DE, comprehensive learning PSO (CLPSO, harmony search algorithm (HSA, seeker optimization algorithm (SOA, and mean variance mapping optimization (MVMO. The simulation results show that the linear antenna array synthesis using BSA provides low side-lobe levels and deep null levels.
Asaithambi, Sasikumar; Rajappa, Muthaiah
2018-05-01
In this paper, an automatic design method based on a swarm intelligence approach for CMOS analog integrated circuit (IC) design is presented. The hybrid meta-heuristics optimization technique, namely, the salp swarm algorithm (SSA), is applied to the optimal sizing of a CMOS differential amplifier and the comparator circuit. SSA is a nature-inspired optimization algorithm which mimics the navigating and hunting behavior of salp. The hybrid SSA is applied to optimize the circuit design parameters and to minimize the MOS transistor sizes. The proposed swarm intelligence approach was successfully implemented for an automatic design and optimization of CMOS analog ICs using Generic Process Design Kit (GPDK) 180 nm technology. The circuit design parameters and design specifications are validated through a simulation program for integrated circuit emphasis simulator. To investigate the efficiency of the proposed approach, comparisons have been carried out with other simulation-based circuit design methods. The performances of hybrid SSA based CMOS analog IC designs are better than the previously reported studies.
A Novel Hybrid Firefly Algorithm for Global Optimization.
Directory of Open Access Journals (Sweden)
Lina Zhang
Full Text Available Global optimization is challenging to solve due to its nonlinearity and multimodality. Traditional algorithms such as the gradient-based methods often struggle to deal with such problems and one of the current trends is to use metaheuristic algorithms. In this paper, a novel hybrid population-based global optimization algorithm, called hybrid firefly algorithm (HFA, is proposed by combining the advantages of both the firefly algorithm (FA and differential evolution (DE. FA and DE are executed in parallel to promote information sharing among the population and thus enhance searching efficiency. In order to evaluate the performance and efficiency of the proposed algorithm, a diverse set of selected benchmark functions are employed and these functions fall into two groups: unimodal and multimodal. The experimental results show better performance of the proposed algorithm compared to the original version of the firefly algorithm (FA, differential evolution (DE and particle swarm optimization (PSO in the sense of avoiding local minima and increasing the convergence rate.
Comparing the Robustness of Evolutionary Algorithms on the Basis of Benchmark Functions
Directory of Open Access Journals (Sweden)
DENIZ ULKER, E.
2013-05-01
Full Text Available In real-world optimization problems, even though the solution quality is of great importance, the robustness of the solution is also an important aspect. This paper investigates how the optimization algorithms are sensitive to the variations of control parameters and to the random initialization of the solution set for fixed control parameters. The comparison is performed of three well-known evolutionary algorithms which are Particle Swarm Optimization (PSO algorithm, Differential Evolution (DE algorithm and the Harmony Search (HS algorithm. Various benchmark functions with different characteristics are used for the evaluation of these algorithms. The experimental results show that the solution quality of the algorithms is not directly related to their robustness. In particular, the algorithm that is highly robust can have a low solution quality, or the algorithm that has a high quality of solution can be quite sensitive to the parameter variations.
Directory of Open Access Journals (Sweden)
Bradly Alicea
2016-08-01
Full Text Available Embryonic development proceeds through a series of differentiation events. The mosaic version of this process (binary cell divisions can be analyzed by comparing early development of Ciona intestinalis and Caenorhabditis elegans. To do this, we reorganize lineage trees into differentiation trees using the graph theory ordering of relative cell volume. Lineage and differentiation trees provide us with means to classify each cell using binary codes. Extracting data characterizing lineage tree position, cell volume, and nucleus position for each cell during early embryogenesis, we conduct several statistical analyses, both within and between taxa. We compare both cell volume distributions and cell volume across developmental time within and between single species and assess differences between lineage tree and differentiation tree orderings. This enhances our understanding of the differentiation events in a model of pure mosaic embryogenesis and its relationship to evolutionary conservation. We also contribute several new techniques for assessing both differences between lineage trees and differentiation trees, and differences between differentiation trees of different species. The results suggest that at the level of differentiation trees, there are broad similarities between distantly related mosaic embryos that might be essential to understanding evolutionary change and phylogeny reconstruction. Differentiation trees may therefore provide a basis for an Evo-Devo Postmodern Synthesis.
Parameter identification of Rossler's chaotic system by an evolutionary algorithm
Energy Technology Data Exchange (ETDEWEB)
Chang, W.-D. [Department of Computer and Communication, Shu-Te University, Kaohsiung 824, Taiwan (China)]. E-mail: wdchang@mail.stu.edu.tw
2006-09-15
In this paper, a differential evolution (DE) algorithm is applied to parameter identification of Rossler's chaotic system. The differential evolution has been shown to possess a powerful searching capability for finding the solutions for a given optimization problem, and it allows for parameter solution to appear directly in the form of floating point without further numerical coding or decoding. Three unknown parameters of Rossler's Chaotic system are optimally estimated by using the DE algorithm. Finally, a numerical example is given to verify the effectiveness of the proposed method.
DEFF Research Database (Denmark)
Cao, Bin; Zhao, Jianwei; Yang, Po
2018-01-01
-objective evolutionary algorithms the Cooperative Coevolutionary Generalized Differential Evolution 3, the Cooperative Multi-objective Differential Evolution and the Nondominated Sorting Genetic Algorithm III, the proposed algorithm addresses the deployment optimization problem efficiently and effectively.......Using immune algorithms is generally a time-intensive process especially for problems with a large number of variables. In this paper, we propose a distributed parallel cooperative coevolutionary multi-objective large-scale immune algorithm that is implemented using the message passing interface...... (MPI). The proposed algorithm is composed of three layers: objective, group and individual layers. First, for each objective in the multi-objective problem to be addressed, a subpopulation is used for optimization, and an archive population is used to optimize all the objectives. Second, the large...
Zhang, Haipeng; Fu, Tong; Zhang, Zhiru; Fan, Zhimin; Zheng, Chao; Han, Bing
2014-08-01
To explore the value of application of support vector machine-recursive feature elimination (SVM-RFE) method in Raman spectroscopy for differential diagnosis of benign and malignant breast diseases. Fresh breast tissue samples of 168 patients (all female; ages 22-75) were obtained by routine surgical resection from May 2011 to May 2012 at the Department of Breast Surgery, the First Hospital of Jilin University. Among them, there were 51 normal tissues, 66 benign and 51 malignant breast lesions. All the specimens were assessed by Raman spectroscopy, and the SVM-RFE algorithm was used to process the data and build the mathematical model. Mahalanobis distance and spectral residuals were used as discriminating criteria to evaluate this data-processing method. 1 800 Raman spectra were acquired from the fresh samples of human breast tissues. Based on spectral profiles, the presence of 1 078, 1 267, 1 301, 1 437, 1 653, and 1 743 cm(-1) peaks were identified in the normal tissues; and 1 281, 1 341, 1 381, 1 417, 1 465, 1 530, and 1 637 cm(-1) peaks were found in the benign and malignant tissues. The main characteristic peaks differentiating benign and malignant lesions were 1 340 and 1 480 cm(-1). The accuracy of SVM-RFE in discriminating normal and malignant lesions was 100.0%, while that in the assessment of benign lesions was 93.0%. There are distinct differences among the Raman spectra of normal, benign and malignant breast tissues, and SVM-RFE method can be used to build differentiation model of breast lesions.
A Fuzzy Gravitational Search Algorithm to Design Optimal IIR Filters
Directory of Open Access Journals (Sweden)
Danilo Pelusi
2018-03-01
Full Text Available The goodness of Infinite Impulse Response (IIR digital filters design depends on pass band ripple, stop band ripple and transition band values. The main problem is defining a suitable error fitness function that depends on these parameters. This fitness function can be optimized by search algorithms such as evolutionary algorithms. This paper proposes an intelligent algorithm for the design of optimal 8th order IIR filters. The main contribution is the design of Fuzzy Inference Systems able to tune key parameters of a revisited version of the Gravitational Search Algorithm (GSA. In this way, a Fuzzy Gravitational Search Algorithm (FGSA is designed. The optimization performances of FGSA are compared with those of Differential Evolution (DE and GSA. The results show that FGSA is the algorithm that gives the best compromise between goodness, robustness and convergence rate for the design of 8th order IIR filters. Moreover, FGSA assures a good stability of the designed filters.
Barboni, M.; Bussy, F.; Ovtcharova, M.; Schoene, B.
2009-12-01
Understanding the emplacement and growth of intrusive bodies in terms of mechanism, duration, thermal evolution and rates are fundamental aspects of crustal evolution. Recent studies show that many plutons grow in several Ma by in situ accretion of discrete magma pulses, which constitute small-scale magmatic reservoirs. The residence time of magmas, and hence their capacities to interact and differentiate, are controlled by the local thermal environment. The latter is highly dependant on 1) the emplacement depth, 2) the magmas and country rock composition, 3) the country rock thermal conductivity, 4) the rate of magma injection and 5) the geometry of the intrusion. In shallow level plutons, where magmas solidify quickly, evidence for magma mixing and/or differentiation processes is considered by many authors to be inherited from deeper levels. We show however that in-situ differentiation and magma interactions occurred within basaltic and felsic sills at shallow depth (0.3 GPa) in the St-Jean-du-Doigt bimodal intrusion, France. Field evidence coupled to high precision zircon U-Pb dating document progressive thermal maturation within the incrementally built laccolith. Early m-thick mafic sills are homogeneous and fine-grained with planar contacts with neighbouring felsic sills; within a minimal 0.5 Ma time span, the system gets warmer, adjacent sills interact and mingle, and mafic sills are differentiating in the top 40 cm of the layer. Rheological and thermal modelling show that observed in-situ differentiation-accumulation processes may be achieved in less than 10 years at shallow depth, provided that (1) the differentiating sills are injected beneath consolidated, yet still warm basalt sills, which act as low conductive insulating screens, (2) the early mafic sills accreted under the roof of the laccolith as a 100m thick top layer within 0.5 My, and (3) subsequent and sustained magmatic activity occurred on a short time scale (years) at an injection rate of ca. 0
Nakayama, Hiromasa
2006-01-01
We give an algorithm to compute the local $b$ function. In this algorithm, we use the Mora division algorithm in the ring of differential operators and an approximate division algorithm in the ring of differential operators with power series coefficient.
A new hybrid metaheuristic algorithm for wind farm micrositing
International Nuclear Information System (INIS)
Massan, S.U.R.; Wagan, A.I.; Shaikh, M.M.
2017-01-01
This work focuses on proposing a new algorithm, referred as HMA (Hybrid Metaheuristic Algorithm) for the solution of the WTO (Wind Turbine Optimization) problem. It is well documented that turbines located behind one another face a power loss due to the obstruction of the wind due to wake loss. It is required to reduce this wake loss by the effective placement of turbines using a new HMA. This HMA is derived from the two basic algorithms i.e. DEA (Differential Evolution Algorithm) and the FA (Firefly Algorithm). The function of optimization is undertaken on the N.O. Jensen model. The blending of DEA and FA into HMA are discussed and the new algorithm HMA is implemented maximize power and minimize the cost in a WTO problem. The results by HMA have been compared with GA (Genetic Algorithm) used in some previous studies. The successfully calculated total power produced and cost per unit turbine for a wind farm by using HMA and its comparison with past approaches using single algorithms have shown that there is a significant advantage of using the HMA as compared to the use of single algorithms. The first time implementation of a new algorithm by blending two single algorithms is a significant step towards learning the behavior of algorithms and their added advantages by using them together. (author)
A New Hybrid Metaheuristic Algorithm for Wind Farm Micrositing
Directory of Open Access Journals (Sweden)
SHAFIQ-UR-REHMAN MASSAN
2017-07-01
Full Text Available This work focuses on proposing a new algorithm, referred as HMA (Hybrid Metaheuristic Algorithm for the solution of the WTO (Wind Turbine Optimization problem. It is well documented that turbines located behind one another face a power loss due to the obstruction of the wind due to wake loss. It is required to reduce this wake loss by the effective placement of turbines using a new HMA. This HMA is derived from the two basic algorithms i.e. DEA (Differential Evolution Algorithm and the FA (Firefly Algorithm. The function of optimization is undertaken on the N.O. Jensen model. The blending of DEA and FA into HMA are discussed and the new algorithm HMA is implemented maximize power and minimize the cost in a WTO problem. The results by HMA have been compared with GA (Genetic Algorithm used in some previous studies. The successfully calculated total power produced and cost per unit turbine for a wind farm by using HMA and its comparison with past approaches using single algorithms have shown that there is a significant advantage of using the HMA as compared to the use of single algorithms. The first time implementation of a new algorithm by blending two single algorithms is a significant step towards learning the behavior of algorithms and their added advantages by using them together.
Quantum Computation and Algorithms
International Nuclear Information System (INIS)
Biham, O.; Biron, D.; Biham, E.; Grassi, M.; Lidar, D.A.
1999-01-01
It is now firmly established that quantum algorithms provide a substantial speedup over classical algorithms for a variety of problems, including the factorization of large numbers and the search for a marked element in an unsorted database. In this talk I will review the principles of quantum algorithms, the basic quantum gates and their operation. The combination of superposition and interference, that makes these algorithms efficient, will be discussed. In particular, Grover's search algorithm will be presented as an example. I will show that the time evolution of the amplitudes in Grover's algorithm can be found exactly using recursion equations, for any initial amplitude distribution
The problem of evolution of toroidal plasma equilibrium
International Nuclear Information System (INIS)
Kostomarov, D.; Zaitsev, F.; Shishkin, A.
1999-03-01
This paper is devoted to an advanced mathematical model for a self-consistent description of the evolution of free boundary toroidal plasmas, with a description of numerical algorithms for the solution of the appropriate non-linear system of integro-differential equations, and discussion of some results from the model. (author)
Bianucci, Marco
2018-05-01
Finding the generalized Fokker-Planck Equation (FPE) for the reduced probability density function of a subpart of a given complex system is a classical issue of statistical mechanics. Zwanzig projection perturbation approach to this issue leads to the trouble of resumming a series of commutators of differential operators that we show to correspond to solving the Lie evolution of first order differential operators along the unperturbed Liouvillian of the dynamical system of interest. In this paper, we develop in a systematic way the procedure to formally solve this problem. In particular, here we show which the basic assumptions are, concerning the dynamical system of interest, necessary for the Lie evolution to be a group on the space of first order differential operators, and we obtain the coefficients of the so-evolved operators. It is thus demonstrated that if the Liouvillian of the system of interest is not a first order differential operator, in general, the FPE structure breaks down and the master equation contains all the power of the partial derivatives, up to infinity. Therefore, this work shed some light on the trouble of the ubiquitous emergence of both thermodynamics from microscopic systems and regular regression laws at macroscopic scales. However these results are very general and can be applied also in other contexts that are non-Hamiltonian as, for example, geophysical fluid dynamics, where important events, like El Niño, can be considered as large time scale phenomena emerging from the observation of few ocean degrees of freedom of a more complex system, including the interaction with the atmosphere.
Directory of Open Access Journals (Sweden)
Mohamed Zellagui
2017-09-01
Full Text Available The paper presents a new hybrid global optimization algorithm based on Chemical Reaction based Optimization (CRO and Di¤erential evolution (DE algorithm for nonlinear constrained optimization problems. This approach proposed for the optimal coordination and setting relays of directional overcurrent relays in complex power systems. In protection coordination problem, the objective function to be minimized is the sum of the operating time of all main relays. The optimization problem is subject to a number of constraints which are mainly focused on the operation of the backup relay, which should operate if a primary relay fails to respond to the fault near to it, Time Dial Setting (TDS, Plug Setting (PS and the minimum operating time of a relay. The hybrid global proposed optimization algorithm aims to minimize the total operating time of each protection relay. Two systems are used as case study to check the effeciency of the optimization algorithm which are IEEE 4-bus and IEEE 6-bus models. Results are obtained and presented for CRO and DE and hybrid CRO-DE algorithms. The obtained results for the studied cases are compared with those results obtained when using other optimization algorithms which are Teaching Learning-Based Optimization (TLBO, Chaotic Differential Evolution Algorithm (CDEA and Modiffied Differential Evolution Algorithm (MDEA, and Hybrid optimization algorithms (PSO-DE, IA-PSO, and BFOA-PSO. From analysing the obtained results, it has been concluded that hybrid CRO-DO algorithm provides the most optimum solution with the best convergence rate.
Multilevel Image Segmentation Based on an Improved Firefly Algorithm
Directory of Open Access Journals (Sweden)
Kai Chen
2016-01-01
Full Text Available Multilevel image segmentation is time-consuming and involves large computation. The firefly algorithm has been applied to enhancing the efficiency of multilevel image segmentation. However, in some cases, firefly algorithm is easily trapped into local optima. In this paper, an improved firefly algorithm (IFA is proposed to search multilevel thresholds. In IFA, in order to help fireflies escape from local optima and accelerate the convergence, two strategies (i.e., diversity enhancing strategy with Cauchy mutation and neighborhood strategy are proposed and adaptively chosen according to different stagnation stations. The proposed IFA is compared with three benchmark optimal algorithms, that is, Darwinian particle swarm optimization, hybrid differential evolution optimization, and firefly algorithm. The experimental results show that the proposed method can efficiently segment multilevel images and obtain better performance than the other three methods.
Directory of Open Access Journals (Sweden)
Zhihua Sun
2012-01-01
Full Text Available Brain temperature is elevated in acute ischemic stroke, especially in the ischemic penumbra (IP. We attempted to investigate the dynamic evolution of brain temperature in different ischemic regions in a monkey model of middle cerebral artery occlusion. The brain temperature of different ischemic regions was measured with proton magnetic resonance spectroscopy (1H MRS, and the evolution processes of brain temperature were compared among different ischemic regions. We found that the normal (baseline brain temperature of the monkey brain was 37.16°C. In the artery occlusion stage, the mean brain temperature of ischemic tissue was 1.16°C higher than the baseline; however, this increase was region dependent, with 1.72°C in the IP, 1.08°C in the infarct core, and 0.62°C in the oligemic region. After recanalization, the brain temperature of the infarct core showed a pattern of an initial decrease accompanied by a subsequent increase. However, the brain temperature of the IP and oligemic region showed a monotonously and slowly decreased pattern. Our study suggests that in vivo measurement of brain temperature could help to identify whether ischemic tissue survives.
Bouc–Wen hysteresis model identification using Modified Firefly Algorithm
International Nuclear Information System (INIS)
Zaman, Mohammad Asif; Sikder, Urmita
2015-01-01
The parameters of Bouc–Wen hysteresis model are identified using a Modified Firefly Algorithm. The proposed algorithm uses dynamic process control parameters to improve its performance. The algorithm is used to find the model parameter values that results in the least amount of error between a set of given data points and points obtained from the Bouc–Wen model. The performance of the algorithm is compared with the performance of conventional Firefly Algorithm, Genetic Algorithm and Differential Evolution algorithm in terms of convergence rate and accuracy. Compared to the other three optimization algorithms, the proposed algorithm is found to have good convergence rate with high degree of accuracy in identifying Bouc–Wen model parameters. Finally, the proposed method is used to find the Bouc–Wen model parameters from experimental data. The obtained model is found to be in good agreement with measured data. - Highlights: • We describe a new method to find the Bouc–Wen hysteresis model parameters. • We propose a Modified Firefly Algorithm. • We compare our method with existing methods to find that the proposed method performs better. • We use our model to fit experimental results. Good agreement is found
Bouc–Wen hysteresis model identification using Modified Firefly Algorithm
Energy Technology Data Exchange (ETDEWEB)
Zaman, Mohammad Asif, E-mail: zaman@stanford.edu [Department of Electrical Engineering, Stanford University (United States); Sikder, Urmita [Department of Electrical Engineering and Computer Sciences, University of California, Berkeley (United States)
2015-12-01
The parameters of Bouc–Wen hysteresis model are identified using a Modified Firefly Algorithm. The proposed algorithm uses dynamic process control parameters to improve its performance. The algorithm is used to find the model parameter values that results in the least amount of error between a set of given data points and points obtained from the Bouc–Wen model. The performance of the algorithm is compared with the performance of conventional Firefly Algorithm, Genetic Algorithm and Differential Evolution algorithm in terms of convergence rate and accuracy. Compared to the other three optimization algorithms, the proposed algorithm is found to have good convergence rate with high degree of accuracy in identifying Bouc–Wen model parameters. Finally, the proposed method is used to find the Bouc–Wen model parameters from experimental data. The obtained model is found to be in good agreement with measured data. - Highlights: • We describe a new method to find the Bouc–Wen hysteresis model parameters. • We propose a Modified Firefly Algorithm. • We compare our method with existing methods to find that the proposed method performs better. • We use our model to fit experimental results. Good agreement is found.
Lin, Yanping; Wang, Kangyu; Li, Xiangyu; Sun, Chunyu; Yin, Rui; Wang, Yanfang; Wang, Yi; Zhang, Meiping
2018-02-21
Most genes in a genome exist in the form of a gene family; therefore, it is necessary to have knowledge of how a gene family functions to comprehensively understand organismal biology. The receptor-like kinase (RLK)-encoding gene family is one of the most important gene families in plants. It plays important roles in biotic and abiotic stress tolerances, and growth and development. However, little is known about the functional differentiation and relationships among the gene members within a gene family in plants. This study has isolated 563 RLK genes (designated as PgRLK genes) expressed in Jilin ginseng (Panax ginseng C.A. Meyer), investigated their evolution, and deciphered their functional diversification and relationships. The PgRLK gene family is highly diverged and formed into eight types. The LRR type is the earliest and most prevalent, while only the Lec type originated after P. ginseng evolved. Furthermore, although the members of the PgRLK gene family all encode receptor-like protein kinases and share conservative domains, they are functionally very diverse, participating in numerous biological processes. The expressions of different members of the PgRLK gene family are extremely variable within a tissue, at a developmental stage and in the same cultivar, but most of the genes tend to express correlatively, forming a co-expression network. These results not only provide a deeper and comprehensive understanding of the evolution, functional differentiation and correlation of a gene family in plants, but also an RLK genic resource useful for enhanced ginseng genetic improvement.
Aurongzeb, Deeder
2010-11-01
Anomalous X-ray pulsars and soft gamma-ray repeaters reveal that existence of very strong magnetic field(> 10e15G) from neutron stars. It has been estimated that at the core the magnitude can be even higher at the center. Apart from dynamo mechanism it has been shown that color locked ferromagnetic phase [ Phys. Rev. D. 72,114003(2005)] can be a possible origin of magnetic field. In this study, we explore electric charge of strange quark matter and its effect on forming chirality in the quark-gluon plasma. We show that electromagnetic current induced by chiral magnetic effect [(Phys. Rev. D. 78.07033(2008)] can induce differential rotation in super fluid quark-gluon plasma giving additional boost to the magnetic field. The internal phase and current has no effect from external magnetic field originating from active galactic nuclei due to superconducting phase formation which screens the fields due to Meissner effect. We show that differential motion can create high radial electric field at the surface making all radiation highly polarized and directional including thermal radiation. As the electric field strength can be even stronger for a collapsing neutron star, the implication of this study to detect radiation from black holes will also be discussed. The work was partly completed at the University of Texas at austin
International Nuclear Information System (INIS)
Monteagudo, S.M.; Moragues, A.; Gálvez, J.C.; Casati, M.J.; Reyes, E.
2014-01-01
Highlights: • A proposal of hydration degree calculation for blended cement pastes is presented. • The method is based both on the contributions of various authors and on DTA–TG results. • Paste and mortar specimens with BFS, FA and SF mineral admixtures were used. • The evaluation of CH gives information on hydration and pozzolanic reactions. • The assessment of α provides an insight into future strength evolution. - Abstract: The degree of hydration assessment of cement paste from differential thermal and thermogravimetric analysis data has been performed by several authors that have offered a number of proposals for technical application to blended cements. In this paper, two calculation methods are studied in detail. Then, a proposal of the degree of hydration calculation for blended cements, based on the analysis of experimental results of DTA–TG, is presented. The proposed method combines the contributions of the authors and allows straightforward calculation of the degree of hydration from the experimental results. Validation of the methodology was performed by macroscopic and microstructural tests through paste and mortar specimens with blast furnace slag, flying ash and silica fume mineral admixtures bei(g)ng used. Tests of scanning electron microscopy with an energy dispersive analyser on paste specimens, and of mechanical strength on mortar specimens with the same percentages of substitution, were performed. They showed good agreement with the information derived from the differential thermal and thermogravimetric analysis data
Directory of Open Access Journals (Sweden)
Woncheoul Park
Full Text Available Previous studies of horse RNA-seq were performed by mapping sequence reads to the reference genome during transcriptome analysis. However in this study, we focused on two main ideas. First, differentially expressed genes (DEGs were identified by de novo-based analysis (DBA in RNA-seq data from six Thoroughbreds before and after exercise, here-after referred to as "de novo unique differentially expressed genes" (DUDEG. Second, by integrating both conventional DEGs and genes identified as being selected for during domestication of Thoroughbred and Jeju pony from whole genome re-sequencing (WGS data, we give a new concept to the definition of DEG. We identified 1,034 and 567 DUDEGs in skeletal muscle and blood, respectively. DUDEGs in skeletal muscle were significantly related to exercise-induced stress biological process gene ontology (BP-GO terms: 'immune system process'; 'response to stimulus'; and, 'death' and a KEGG pathways: 'JAK-STAT signaling pathway'; 'MAPK signaling pathway'; 'regulation of actin cytoskeleton'; and, 'p53 signaling pathway'. In addition, we found TIMELESS, EIF4A3 and ZNF592 in blood and CHMP4C and FOXO3 in skeletal muscle, to be in common between DUDEGs and selected genes identified by evolutionary statistics such as FST and Cross Population Extended Haplotype Homozygosity (XP-EHH. Moreover, in Thoroughbreds, three out of five genes (CHMP4C, EIF4A3 and FOXO3 related to exercise response showed relatively low nucleotide diversity compared to the Jeju pony. DUDEGs are not only conceptually new DEGs that cannot be attained from reference-based analysis (RBA but also supports previous RBA results related to exercise in Thoroughbred. In summary, three exercise related genes which were selected for during domestication in the evolutionary history of Thoroughbred were identified as conceptually new DEGs in this study.
Brill, E; Kang, L; Michalak, K; Michalak, P; Price, D K
2016-08-01
The Hawaiian Drosophila are an iconic example of sequential colonization, adaptive radiation and speciation on islands. Genetic and phenotypic analysis of closely related species pairs that exhibit incomplete reproductive isolation can provide insights into the mechanisms of speciation. Drosophila silvestris from Hawai'i Island and Drosophila planitibia from Maui are two closely related allopatric Hawaiian picture-winged Drosophila that produce sterile F1 males but fertile F1 females, a pattern consistent with Haldane's rule. Backcrossing F1 hybrid females between these two species to parental species gives rise to recombinant males with three distinct sperm phenotypes despite a similar genomic background: motile sperm, no sperm (sterile), and immotile sperm. We found that these three reproductive morphologies of backcross hybrid males produce divergent gene expression profiles in testes, as measured with RNA sequencing. There were a total of 71 genes significantly differentially expressed between backcross males with no sperm compared with those backcross males with motile sperm and immotile sperm, but no significant differential gene expression between backcross males with motile sperm and backcross males with immotile sperm. All of these genes were underexpressed in males with no sperm, including a number of genes with previously known activities in adult testis. An allele-specific expression analysis showed overwhelmingly more cis-divergent than trans-divergent genes, with no significant difference in the ratio of cis- and trans-divergent genes among the sperm phenotypes. Overall, the results indicate that the regulation of gene expression involved in sperm production likely diverged relatively rapidly between these two closely related species.
Park, Woncheoul; Kim, Jaemin; Kim, Hyeon Jeong; Choi, JaeYoung; Park, Jeong-Woong; Cho, Hyun-Woo; Kim, Byeong-Woo; Park, Myung Hum; Shin, Teak-Soon; Cho, Seong-Keun; Park, Jun-Kyu; Kim, Heebal; Hwang, Jae Yeon; Lee, Chang-Kyu; Lee, Hak-Kyo; Cho, Seoae; Cho, Byung-Wook
2014-01-01
Previous studies of horse RNA-seq were performed by mapping sequence reads to the reference genome during transcriptome analysis. However in this study, we focused on two main ideas. First, differentially expressed genes (DEGs) were identified by de novo-based analysis (DBA) in RNA-seq data from six Thoroughbreds before and after exercise, here-after referred to as "de novo unique differentially expressed genes" (DUDEG). Second, by integrating both conventional DEGs and genes identified as being selected for during domestication of Thoroughbred and Jeju pony from whole genome re-sequencing (WGS) data, we give a new concept to the definition of DEG. We identified 1,034 and 567 DUDEGs in skeletal muscle and blood, respectively. DUDEGs in skeletal muscle were significantly related to exercise-induced stress biological process gene ontology (BP-GO) terms: 'immune system process'; 'response to stimulus'; and, 'death' and a KEGG pathways: 'JAK-STAT signaling pathway'; 'MAPK signaling pathway'; 'regulation of actin cytoskeleton'; and, 'p53 signaling pathway'. In addition, we found TIMELESS, EIF4A3 and ZNF592 in blood and CHMP4C and FOXO3 in skeletal muscle, to be in common between DUDEGs and selected genes identified by evolutionary statistics such as FST and Cross Population Extended Haplotype Homozygosity (XP-EHH). Moreover, in Thoroughbreds, three out of five genes (CHMP4C, EIF4A3 and FOXO3) related to exercise response showed relatively low nucleotide diversity compared to the Jeju pony. DUDEGs are not only conceptually new DEGs that cannot be attained from reference-based analysis (RBA) but also supports previous RBA results related to exercise in Thoroughbred. In summary, three exercise related genes which were selected for during domestication in the evolutionary history of Thoroughbred were identified as conceptually new DEGs in this study.
Institute of Scientific and Technical Information of China (English)
WANG ShunJin; ZHANG Hua
2007-01-01
Based on the exact analytical solution of ordinary differential equations,a truncation of the Taylor series of the exact solution to the Nth order leads to the Nth order algebraic dynamics algorithm.A detailed numerical comparison is presented with Runge-Kutta algorithm and symplectic geometric algorithm for 12 test models.The results show that the algebraic dynamics algorithm can better preserve both geometrical and dynamical fidelity of a dynamical system at a controllable precision,and it can solve the problem of algorithm-induced dissipation for the Runge-Kutta algorithm and the problem of algorithm-induced phase shift for the symplectic geometric algorithm.
Institute of Scientific and Technical Information of China (English)
2007-01-01
Based on the exact analytical solution of ordinary differential equations, a truncation of the Taylor series of the exact solution to the Nth order leads to the Nth order algebraic dynamics algorithm. A detailed numerical comparison is presented with Runge-Kutta algorithm and symplectic geometric algorithm for 12 test models. The results show that the algebraic dynamics algorithm can better preserve both geometrical and dynamical fidelity of a dynamical system at a controllable precision, and it can solve the problem of algorithm-induced dissipation for the Runge-Kutta algorithm and the problem of algorithm-induced phase shift for the symplectic geometric algorithm.
Real coded genetic algorithm for fuzzy time series prediction
Jain, Shilpa; Bisht, Dinesh C. S.; Singh, Phool; Mathpal, Prakash C.
2017-10-01
Genetic Algorithm (GA) forms a subset of evolutionary computing, rapidly growing area of Artificial Intelligence (A.I.). Some variants of GA are binary GA, real GA, messy GA, micro GA, saw tooth GA, differential evolution GA. This research article presents a real coded GA for predicting enrollments of University of Alabama. Data of Alabama University is a fuzzy time series. Here, fuzzy logic is used to predict enrollments of Alabama University and genetic algorithm optimizes fuzzy intervals. Results are compared to other eminent author works and found satisfactory, and states that real coded GA are fast and accurate.
Analog Group Delay Equalizers Design Based on Evolutionary Algorithm
Directory of Open Access Journals (Sweden)
M. Laipert
2006-04-01
Full Text Available This paper deals with a design method of the analog all-pass filter designated for equalization of the group delay frequency response of the analog filter. This method is based on usage of evolutionary algorithm, the Differential Evolution algorithm in particular. We are able to design such equalizers to be obtained equal-ripple group delay frequency response in the pass-band of the low-pass filter. The procedure works automatically without an input estimation. The method is presented on solving practical examples.
Goel, Ridhi; Pandey, Ashutosh; Trivedi, Prabodh K; Asif, Mehar H
2016-01-01
The WRKY gene family plays an important role in the development and stress responses in plants. As information is not available on the WRKY gene family in Musa species, genome-wide analysis has been carried out in this study using available genomic information from two species, Musa acuminata and Musa balbisiana. Analysis identified 147 and 132 members of the WRKY gene family in M. acuminata and M. balbisiana, respectively. Evolutionary analysis suggests that the WRKY gene family expanded much before the speciation in both the species. Most of the orthologs retained in two species were from the γ duplication event which occurred prior to α and β genome-wide duplication (GWD) events. Analysis also suggests that subtle changes in nucleotide sequences during the course of evolution have led to the development of new motifs which might be involved in neo-functionalization of different WRKY members in two species. Expression and cis-regulatory motif analysis suggest possible involvement of Group II and Group III WRKY members during various stresses and growth/development including fruit ripening process respectively.
Directory of Open Access Journals (Sweden)
Wurzman Rachel
2012-04-01
Full Text Available Abstract Brüne's proposal that erstwhile 'vulnerability' genes need to be reconsidered as 'plasticity' genes, given the potential for certain environments to yield increased positive function in the same domain as potential dysfunction, has implications for psychiatric nosology as well as a more dynamic understanding of the relationship between genes and culture. In addition to validating neuropsychiatric spectrum disorder nosologies by calling for similar methodological shifts in gene-environment-interaction studies, Brüne's position elevates the importance of environmental contexts - inclusive of socio-cultural variables - as mechanisms that contribute to clinical presentation. We assert that when models of susceptibility to plasticity and neuropsychiatric spectrum disorders are concomitantly considered, a new line of inquiry emerges into the co-evolution and co-determination of socio-cultural contexts and endophenotypes. This presents potentially unique opportunities, benefits, challenges, and responsibilities for research and practice in psychiatry. Please see related manuscript: http://www.biomedcentral.com/1741-7015/10/38
Directory of Open Access Journals (Sweden)
Ridhi eGoel
2016-03-01
Full Text Available The WRKY gene family plays an important role in the development and stress responses in plants. As information is not available on the WRKY gene family in Musa species, genome-wide analysis has been carried out in this study using available genomic information from two species, Musa acuminata and Musa balbisiana. Analysis identified 147 and 132 members of the WRKY gene family in M. acuminata and M. balbisiana respectively. Evolutionary analysis suggests that the WRKY gene family expanded much before the speciation in both the species. Most of the orthologs retained in two species were from the γ duplication event which occurred prior to α and β genome-wide duplication (GWD events. Analysis also suggests that subtle changes in nucleotide sequences during the course of evolution have led to the development of new motifs which might be involved in neo-functionalization of different WRKY members in two species. Expression and cis-regulatory motif analysis suggest possible involvement of Group II and Group III WRKY members during various stresses and growth/ development including fruit ripening process respectively.
International Nuclear Information System (INIS)
Moloshnikov, I.A.; Rybka, R.B.; Gudovskikh, D.V.; Sboev, A.G.
2016-01-01
The composite algorithm integrating, on one hand, the algorithm of finding documents on a given topic, and, on the other hand, the method of emotiveness evaluation of topical texts has been presented. Some examples of such analysis have been demonstrated and discussed [ru
Directory of Open Access Journals (Sweden)
Geyner Alves dos Santos Cruz
2018-01-01
Full Text Available ABSTRACT The taxonomy of Cyperaceae is complex, with genera like Cyperus harboring species complexes. We analyzed the genetic similarity between Cyperus ligularis L. and C. odoratus L. based on DNA fingerprinting and cytogenetics. Significative genetic differentiation (G ST = 0.363 and low gene flow (N m = 0.877 indicated a clear genetic distinction between the two species. Moreover, the clustering analysis showed two distinct genetic groups, suggesting a lack of evidence for hybridization. The phenogram revealed two different lineages, and although all individuals of C. odoratus were collected from plots close to each other, they possessed greater genetic diversity than that observed among individuals of C. ligularis, which were sampled over a wider geographic range. Variation in chromosome number within the two species exhibited the opposite pattern, indicating greater karyotype stability in C. odoratus with 2n = 72 and 2n = 76, while the diploid number for C. ligularis varied from 2n = 66 to 88. The lower genetic variation in C. ligularis may be a result of the founder effect associated with seed dispersion and clonal reproduction. Field observations and analysis of reproductive biology should enrich the understanding of the genetic structure of the investigated populations and their role in successional processes.
A Hybrid Genetic Algorithm Approach for Optimal Power Flow
Directory of Open Access Journals (Sweden)
Sydulu Maheswarapu
2011-08-01
Full Text Available This paper puts forward a reformed hybrid genetic algorithm (GA based approach to the optimal power flow. In the approach followed here, continuous variables are designed using real-coded GA and discrete variables are processed as binary strings. The outcomes are compared with many other methods like simple genetic algorithm (GA, adaptive genetic algorithm (AGA, differential evolution (DE, particle swarm optimization (PSO and music based harmony search (MBHS on a IEEE30 bus test bed, with a total load of 283.4 MW. Its found that the proposed algorithm is found to offer lowest fuel cost. The proposed method is found to be computationally faster, robust, superior and promising form its convergence characteristics.
Xu, Yingchun; Wang, Yanjie; Mattson, Neil; Yang, Liu; Jin, Qijiang
2017-12-01
Trehalose-6-phosphate synthase (TPS) serves important functions in plant desiccation tolerance and response to environmental stimuli. At present, a comprehensive analysis, i.e. functional classification, molecular evolution, and expression patterns of this gene family are still lacking in Solanum tuberosum (potato). In this study, a comprehensive analysis of the TPS gene family was conducted in potato. A total of eight putative potato TPS genes (StTPSs) were identified by searching the latest potato genome sequence. The amino acid identity among eight StTPSs varied from 59.91 to 89.54%. Analysis of d N /d S ratios suggested that regions in the TPP (trehalose-6-phosphate phosphatase) domains evolved faster than the TPS domains. Although the sequence of the eight StTPSs showed high similarity (2571-2796 bp), their gene length is highly differentiated (3189-8406 bp). Many of the regulatory elements possibly related to phytohormones, abiotic stress and development were identified in different TPS genes. Based on the phylogenetic tree constructed using TPS genes of potato, and four other Solanaceae plants, TPS genes could be categorized into 6 distinct groups. Analysis revealed that purifying selection most likely played a major role during the evolution of this family. Amino acid changes detected in specific branches of the phylogenetic tree suggests relaxed constraints might have contributed to functional divergence among groups. Moreover, StTPSs were found to exhibit tissue and treatment specific expression patterns upon analysis of transcriptome data, and performing qRT-PCR. This study provides a reference for genome-wide identification of the potato TPS gene family and sets a framework for further functional studies of this important gene family in development and stress response.
DEFF Research Database (Denmark)
Ødegård, Jørgen; Meuwissen, Theo HE; Heringstad, Bjørg
2010-01-01
Background In the genetic analysis of binary traits with one observation per animal, animal threshold models frequently give biased heritability estimates. In some cases, this problem can be circumvented by fitting sire- or sire-dam models. However, these models are not appropriate in cases where...... records exist for the parents). Furthermore, the new algorithm showed much faster Markov chain mixing properties for genetic parameters (similar to the sire-dam model). Conclusions The new algorithm to estimate genetic parameters via Gibbs sampling solves the bias problems typically occurring in animal...... individual records exist on parents. Therefore, the aim of our study was to develop a new Gibbs sampling algorithm for a proper estimation of genetic (co)variance components within an animal threshold model framework. Methods In the proposed algorithm, individuals are classified as either "informative...
Differential equations, mechanics, and computation
Palais, Richard S
2009-01-01
This book provides a conceptual introduction to the theory of ordinary differential equations, concentrating on the initial value problem for equations of evolution and with applications to the calculus of variations and classical mechanics, along with a discussion of chaos theory and ecological models. It has a unified and visual introduction to the theory of numerical methods and a novel approach to the analysis of errors and stability of various numerical solution algorithms based on carefully chosen model problems. While the book would be suitable as a textbook for an undergraduate or elementary graduate course in ordinary differential equations, the authors have designed the text also to be useful for motivated students wishing to learn the material on their own or desiring to supplement an ODE textbook being used in a course they are taking with a text offering a more conceptual approach to the subject.
Efficient GPS Position Determination Algorithms
National Research Council Canada - National Science Library
Nguyen, Thao Q
2007-01-01
... differential GPS algorithm for a network of users. The stand-alone user GPS algorithm is a direct, closed-form, and efficient new position determination algorithm that exploits the closed-form solution of the GPS trilateration equations and works...
DE and NLP Based QPLS Algorithm
Yu, Xiaodong; Huang, Dexian; Wang, Xiong; Liu, Bo
As a novel evolutionary computing technique, Differential Evolution (DE) has been considered to be an effective optimization method for complex optimization problems, and achieved many successful applications in engineering. In this paper, a new algorithm of Quadratic Partial Least Squares (QPLS) based on Nonlinear Programming (NLP) is presented. And DE is used to solve the NLP so as to calculate the optimal input weights and the parameters of inner relationship. The simulation results based on the soft measurement of diesel oil solidifying point on a real crude distillation unit demonstrate that the superiority of the proposed algorithm to linear PLS and QPLS which is based on Sequential Quadratic Programming (SQP) in terms of fitting accuracy and computational costs.
A Cooperative Framework for Fireworks Algorithm.
Zheng, Shaoqiu; Li, Junzhi; Janecek, Andreas; Tan, Ying
2017-01-01
This paper presents a cooperative framework for fireworks algorithm (CoFFWA). A detailed analysis of existing fireworks algorithm (FWA) and its recently developed variants has revealed that ( i) the current selection strategy has the drawback that the contribution of the firework with the best fitness (denoted as core firework) overwhelms the contributions of all other fireworks (non-core fireworks) in the explosion operator, ( ii) the Gaussian mutation operator is not as effective as it is designed to be. To overcome these limitations, the CoFFWA is proposed, which significantly improves the exploitation capability by using an independent selection method and also increases the exploration capability by incorporating a crowdness-avoiding cooperative strategy among the fireworks. Experimental results on the CEC2013 benchmark functions indicate that CoFFWA outperforms the state-of-the-art FWA variants, artificial bee colony, differential evolution, and the standard particle swarm optimization SPSO2007/SPSO2011 in terms of convergence performance.
International Nuclear Information System (INIS)
Karimi, Mohsen; Rahimpour, Mohammad Reza; Rafiei, Razieh; Shariati, Alireza; Iranshahi, Davood
2016-01-01
Highlights: • Double moving bed thermally coupled reactor is modeled in two dimensions. • The required heat of naphtha process is attained with nitrobenzene hydrogenation. • DE optimization method is applied to optimize operating conditions. • Hydrogen, aromatic and aniline productions increase in the proposed configuration. - Abstract: According to the global requirements for energy saving and the control of global warming, multifunctional auto-thermal reactors as a novel concept in the process integration (PI) have risen up in the recent years. In the novel modification presented in this study, the required heat of endothermic naphtha reforming process has been supplied by nitrobenzene hydrogenation reaction. In addition, the enhancement of reactor performance, such as the increase of production rate, has become a key issue in the diverse industries. Thus, Differential Evolution (DE) technique is applied to optimize the operating conditions (temperature and pressure) and designing parameters of a thermally coupled reactor with double moving beds. Ultimately, the obtained results of the proposed model are compared with non-optimized and conventional model. This model results in noticeable reduction in the operational costs as well as enhancement of the net profit of the plant. The increase in the hydrogen and aromatic production shows the superiority of the proposed model.
Reactive power dispatch considering voltage stability with seeker optimization algorithm
Energy Technology Data Exchange (ETDEWEB)
Dai, Chaohua; Chen, Weirong; Zhang, Xuexia [The School of Electrical Engineering, Southwest Jiaotong University, Chengdu 610031 (China); Zhu, Yunfang [Department of Computer and Communication Engineering, E' mei Campus, Southwest Jiaotong University, E' mei 614202 (China)
2009-10-15
Optimal reactive power dispatch (ORPD) has a growing impact on secure and economical operation of power systems. This issue is well known as a non-linear, multi-modal and multi-objective optimization problem where global optimization techniques are required in order to avoid local minima. In the last decades, computation intelligence-based techniques such as genetic algorithms (GAs), differential evolution (DE) algorithms and particle swarm optimization (PSO) algorithms, etc., have often been used for this aim. In this work, a seeker optimization algorithm (SOA) based method is proposed for ORPD considering static voltage stability and voltage deviation. The SOA is based on the concept of simulating the act of human searching where search direction is based on the empirical gradient by evaluating the response to the position changes and step length is based on uncertainty reasoning by using a simple Fuzzy rule. The algorithm's performance is studied with comparisons of two versions of GAs, three versions of DE algorithms and four versions of PSO algorithms on the IEEE 57 and 118-bus power systems. The simulation results show that the proposed approach performed better than the other listed algorithms and can be efficiently used for the ORPD problem. (author)
DEFF Research Database (Denmark)
Mahnke, Martina; Uprichard, Emma
2014-01-01
Imagine sailing across the ocean. The sun is shining, vastness all around you. And suddenly [BOOM] you’ve hit an invisible wall. Welcome to the Truman Show! Ever since Eli Pariser published his thoughts on a potential filter bubble, this movie scenario seems to have become reality, just with slight...... changes: it’s not the ocean, it’s the internet we’re talking about, and it’s not a TV show producer, but algorithms that constitute a sort of invisible wall. Building on this assumption, most research is trying to ‘tame the algorithmic tiger’. While this is a valuable and often inspiring approach, we...
Yamina BOUGHARI; Georges GHAZI; Ruxandra Mihaela BOTEZ; Florian THEEL
2017-01-01
Setting the appropriate controllers for aircraft stability and control augmentation systems are complicated and time consuming tasks. As in the Linear Quadratic Regulator method gains are found by selecting the appropriate weights or as in the Proportional Integrator Derivative control by tuning gains. A trial and error process is usually employed for the determination of weighting matrices, which is normally a time consuming procedure. Flight Control Law were optimized and designed by combin...
DEFF Research Database (Denmark)
Hobolth, Asger
2008-01-01
The evolution of DNA sequences can be described by discrete state continuous time Markov processes on a phylogenetic tree. We consider neighbor-dependent evolutionary models where the instantaneous rate of substitution at a site depends on the states of the neighboring sites. Neighbor...
Partial Differential Equations
1988-01-01
The volume contains a selection of papers presented at the 7th Symposium on differential geometry and differential equations (DD7) held at the Nankai Institute of Mathematics, Tianjin, China, in 1986. Most of the contributions are original research papers on topics including elliptic equations, hyperbolic equations, evolution equations, non-linear equations from differential geometry and mechanics, micro-local analysis.
A backtracking evolutionary algorithm for power systems
Directory of Open Access Journals (Sweden)
Chiou Ji-Pyng
2017-01-01
Full Text Available This paper presents a backtracking variable scaling hybrid differential evolution, called backtracking VSHDE, for solving the optimal network reconfiguration problems for power loss reduction in distribution systems. The concepts of the backtracking, variable scaling factor, migrating, accelerated, and boundary control mechanism are embedded in the original differential evolution (DE to form the backtracking VSHDE. The concepts of the backtracking and boundary control mechanism can increase the population diversity. And, according to the convergence property of the population, the scaling factor is adjusted based on the 1/5 success rule of the evolution strategies (ESs. A larger population size must be used in the evolutionary algorithms (EAs to maintain the population diversity. To overcome this drawback, two operations, acceleration operation and migrating operation, are embedded into the proposed method. The feeder reconfiguration of distribution systems is modelled as an optimization problem which aims at achieving the minimum loss subject to voltage and current constraints. So, the proper system topology that reduces the power loss according to a load pattern is an important issue. Mathematically, the network reconfiguration system is a nonlinear programming problem with integer variables. One three-feeder network reconfiguration system from the literature is researched by the proposed backtracking VSHDE method and simulated annealing (SA. Numerical results show that the perfrmance of the proposed method outperformed the SA method.
Corbin, Cyrielle; Drouet, Samantha; Markulin, Lucija; Auguin, Daniel; Lainé, Éric; Davin, Laurence B; Cort, John R; Lewis, Norman G; Hano, Christophe
2018-05-01
Identification of DIR encoding genes in flax genome. Analysis of phylogeny, gene/protein structures and evolution. Identification of new conserved motifs linked to biochemical functions. Investigation of spatio-temporal gene expression and response to stress. Dirigent proteins (DIRs) were discovered during 8-8' lignan biosynthesis studies, through identification of stereoselective coupling to afford either (+)- or (-)-pinoresinols from E-coniferyl alcohol. DIRs are also involved or potentially involved in terpenoid, allyl/propenyl phenol lignan, pterocarpan and lignin biosynthesis. DIRs have very large multigene families in different vascular plants including flax, with most still of unknown function. DIR studies typically focus on a small subset of genes and identification of biochemical/physiological functions. Herein, a genome-wide analysis and characterization of the predicted flax DIR 44-membered multigene family was performed, this species being a rich natural grain source of 8-8' linked secoisolariciresinol-derived lignan oligomers. All predicted DIR sequences, including their promoters, were analyzed together with their public gene expression datasets. Expression patterns of selected DIRs were examined using qPCR, as well as through clustering analysis of DIR gene expression. These analyses further implicated roles for specific DIRs in (-)-pinoresinol formation in seed-coats, as well as (+)-pinoresinol in vegetative organs and/or specific responses to stress. Phylogeny and gene expression analysis segregated flax DIRs into six distinct clusters with new cluster-specific motifs identified. We propose that these findings can serve as a foundation to further systematically determine functions of DIRs, i.e. other than those already known in lignan biosynthesis in flax and other species. Given the differential expression profiles and inducibility of the flax DIR family, we provisionally propose that some DIR genes of unknown function could be involved in
Energy Technology Data Exchange (ETDEWEB)
Corbin, Cyrielle; Drouet, Samantha; Markulin, Lucija; Auguin, Daniel; Laine, Eric; Davin, Laurence B.; Cort, John R.; Lewis, Norman G.; Hano, Christophe
2018-04-30
Identification of DIR encoding genes in flax genome. Analysis of phylogeny, gene/protein structures and evolution. Identification of new conserved motifs linked to biochemical functions. Investigation of spatio-temporal gene expression and response to stress. Dirigent proteins (DIRs) were discovered during 8-8' lignan biosynthesis studies, through identification of stereoselective coupling to afford either (+)- or (-)-pinoresinols from E-coniferyl alcohol. DIRs are also involved or potentially involved in terpenoid, allyl/propenyl phenol lignan, pterocarpan and lignin biosynthesis. DIRs have very large multigene families in different vascular plants including flax, with most still of unknown function. DIR studies typically focus on a small subset of genes and identification of biochemical/physiological functions. Herein, a genome-wide analysis and characterization of the predicted flax DIR 44-membered multigene family was performed, this species being a rich natural grain source of 8-8' linked secoisolariciresinol-derived lignan oligomers. All predicted DIR sequences, including their promoters, were analyzed together with their public gene expression datasets. Expression patterns of selected DIRs were examined using qPCR, as well as through clustering analysis of DIR gene expression. These analyses further implicated roles for specific DIRs in (-)-pinoresinol formation in seed-coats, as well as (+)-pinoresinol in vegetative organs and/or specific responses to stress. Phylogeny and gene expression analysis segregated flax DIRs into six distinct clusters with new cluster-specific motifs identified. We propose that these findings can serve as a foundation to further systematically determine functions of DIRs, i.e. other than those already known in lignan biosynthesis in flax and other species. Given the differential expression profiles and inducibility of the flax DIR family, we provisionally propose that some DIR genes of unknown function could be involved
CIME course on Control of Partial Differential Equations
Alabau-Boussouira, Fatiha; Glass, Olivier; Le Rousseau, Jérôme; Zuazua, Enrique
2012-01-01
The term “control theory” refers to the body of results - theoretical, numerical and algorithmic - which have been developed to influence the evolution of the state of a given system in order to meet a prescribed performance criterion. Systems of interest to control theory may be of very different natures. This monograph is concerned with models that can be described by partial differential equations of evolution. It contains five major contributions and is connected to the CIME Course on Control of Partial Differential Equations that took place in Cetraro (CS, Italy), July 19 - 23, 2010. Specifically, it covers the stabilization of evolution equations, control of the Liouville equation, control in fluid mechanics, control and numerics for the wave equation, and Carleman estimates for elliptic and parabolic equations with application to control. We are confident this work will provide an authoritative reference work for all scientists who are interested in this field, representing at the same time a fri...
International Nuclear Information System (INIS)
Soleymani, S.; Ranjbar, A.M.; Mirabedini, H.
2001-01-01
One method for on-line fault diagnosis in synchronous generator is stator current harmonics analysis. Then artificial neural network is considered in this paper in order to evaluate stator current harmonics in different loads. Training set of artificial neural network is made ready by generator modeling, finite element method and state space model. Many points from generator capability curve are used in order to complete this set. Artificial neural network which is used in this paper is a percept ron network with a single hidden layer, Eight hidden neurons and back propagation algorithm. Results are indicated that the trained artificial neural network can identify stator current harmonics for arbitrary load from the capability curve. The error is less than 10% in comparison with values obtained directly from the CFE-SS algorithm. The rating parameters of modeled generator are 43950 (kV A), 11(KV), 3000 (rpm), 50 (H Z), (P F=0.8)
Levandowski, William Brower; Boyd, Oliver; Briggs, Richard; Gold, Ryan D.
2015-01-01
This paper develops a Monte Carlo algorithm for extracting three-dimensional lithospheric density models from geophysical data. Empirical scaling relationships between velocity and density create a 3D starting density model, which is then iteratively refined until it reproduces observed gravity and topography. This approach permits deviations from uniform crustal velocity-density scaling, which provide insight into crustal lithology and prevent spurious mapping of crustal anomalies into the mantle.
A Novel Spectrum Scheduling Scheme with Ant Colony Optimization Algorithm
Directory of Open Access Journals (Sweden)
Liping Liu
2018-01-01
Full Text Available Cognitive radio is a promising technology for improving spectrum utilization, which allows cognitive users access to the licensed spectrum while primary users are absent. In this paper, we design a resource allocation framework based on graph theory for spectrum assignment in cognitive radio networks. The framework takes into account the constraints that interference for primary users and possible collision among cognitive users. Based on the proposed model, we formulate a system utility function to maximize the system benefit. Based on the proposed model and objective problem, we design an improved ant colony optimization algorithm (IACO from two aspects: first, we introduce differential evolution (DE process to accelerate convergence speed by monitoring mechanism; then we design a variable neighborhood search (VNS process to avoid the algorithm falling into the local optimal. Simulation results demonstrate that the improved algorithm achieves better performance.
De Götzen , Amalia; Mion , Luca; Tache , Olivier
2007-01-01
International audience; We call sound algorithms the categories of algorithms that deal with digital sound signal. Sound algorithms appeared in the very infancy of computer. Sound algorithms present strong specificities that are the consequence of two dual considerations: the properties of the digital sound signal itself and its uses, and the properties of auditory perception.
Wang, Lui; Bayer, Steven E.
1991-01-01
Genetic algorithms are mathematical, highly parallel, adaptive search procedures (i.e., problem solving methods) based loosely on the processes of natural genetics and Darwinian survival of the fittest. Basic genetic algorithms concepts are introduced, genetic algorithm applications are introduced, and results are presented from a project to develop a software tool that will enable the widespread use of genetic algorithm technology.
Time-advance algorithms based on Hamilton's principle
International Nuclear Information System (INIS)
Lewis, H.R.; Kostelec, P.J.
1993-01-01
Time-advance algorithms based on Hamilton's variational principle are being developed for application to problems in plasma physics and other areas. Hamilton's principle was applied previously to derive a system of ordinary differential equations in time whose solution provides an approximation to the evolution of a plasma described by the Vlasov-Maxwell equations. However, the variational principle was not used to obtain an algorithm for solving the ordinary differential equations numerically. The present research addresses the numerical solution of systems of ordinary differential equations via Hamilton's principle. The basic idea is first to choose a class of functions for approximating the solution of the ordinary differential equations over a specific time interval. Then the parameters in the approximating function are determined by applying Hamilton's principle exactly within the class of approximating functions. For example, if an approximate solution is desired between time t and time t + Δ t, the class of approximating functions could be polynomials in time up to some degree. The issue of how to choose time-advance algorithms is very important for achieving efficient, physically meaningful computer simulations. The objective is to reliably simulate those characteristics of an evolving system that are scientifically most relevant. Preliminary numerical results are presented, including comparisons with other computational methods
Numerical Methods for Partial Differential Equations
Guo, Ben-yu
1987-01-01
These Proceedings of the first Chinese Conference on Numerical Methods for Partial Differential Equations covers topics such as difference methods, finite element methods, spectral methods, splitting methods, parallel algorithm etc., their theoretical foundation and applications to engineering. Numerical methods both for boundary value problems of elliptic equations and for initial-boundary value problems of evolution equations, such as hyperbolic systems and parabolic equations, are involved. The 16 papers of this volume present recent or new unpublished results and provide a good overview of current research being done in this field in China.
Başhan, Ali; Uçar, Yusuf; Murat Yağmurlu, N.; Esen, Alaattin
2018-01-01
In the present paper, a Crank-Nicolson-differential quadrature method (CN-DQM) based on utilizing quintic B-splines as a tool has been carried out to obtain the numerical solutions for the nonlinear Schrödinger (NLS) equation. For this purpose, first of all, the Schrödinger equation has been converted into coupled real value differential equations and then they have been discretized using both the forward difference formula and the Crank-Nicolson method. After that, Rubin and Graves linearization techniques have been utilized and the differential quadrature method has been applied to obtain an algebraic equation system. Next, in order to be able to test the efficiency of the newly applied method, the error norms, L2 and L_{∞}, as well as the two lowest invariants, I1 and I2, have been computed. Besides those, the relative changes in those invariants have been presented. Finally, the newly obtained numerical results have been compared with some of those available in the literature for similar parameters. This comparison clearly indicates that the currently utilized method, namely CN-DQM, is an effective and efficient numerical scheme and allows us to propose to solve a wide range of nonlinear equations.
Optimization of Straight Cylindrical Turning Using Artificial Bee Colony (ABC) Algorithm
Prasanth, Rajanampalli Seshasai Srinivasa; Hans Raj, Kandikonda
2017-04-01
Artificial bee colony (ABC) algorithm, that mimics the intelligent foraging behavior of honey bees, is increasingly gaining acceptance in the field of process optimization, as it is capable of handling nonlinearity, complexity and uncertainty. Straight cylindrical turning is a complex and nonlinear machining process which involves the selection of appropriate cutting parameters that affect the quality of the workpiece. This paper presents the estimation of optimal cutting parameters of the straight cylindrical turning process using the ABC algorithm. The ABC algorithm is first tested on four benchmark problems of numerical optimization and its performance is compared with genetic algorithm (GA) and ant colony optimization (ACO) algorithm. Results indicate that, the rate of convergence of ABC algorithm is better than GA and ACO. Then, the ABC algorithm is used to predict optimal cutting parameters such as cutting speed, feed rate, depth of cut and tool nose radius to achieve good surface finish. Results indicate that, the ABC algorithm estimated a comparable surface finish when compared with real coded genetic algorithm and differential evolution algorithm.
Automatic differentiation bibliography
Energy Technology Data Exchange (ETDEWEB)
Corliss, G.F. [comp.
1992-07-01
This is a bibliography of work related to automatic differentiation. Automatic differentiation is a technique for the fast, accurate propagation of derivative values using the chain rule. It is neither symbolic nor numeric. Automatic differentiation is a fundamental tool for scientific computation, with applications in optimization, nonlinear equations, nonlinear least squares approximation, stiff ordinary differential equation, partial differential equations, continuation methods, and sensitivity analysis. This report is an updated version of the bibliography which originally appeared in Automatic Differentiation of Algorithms: Theory, Implementation, and Application.
An investigation of genetic algorithms
International Nuclear Information System (INIS)
Douglas, S.R.
1995-04-01
Genetic algorithms mimic biological evolution by natural selection in their search for better individuals within a changing population. they can be used as efficient optimizers. This report discusses the developing field of genetic algorithms. It gives a simple example of the search process and introduces the concept of schema. It also discusses modifications to the basic genetic algorithm that result in species and niche formation, in machine learning and artificial evolution of computer programs, and in the streamlining of human-computer interaction. (author). 3 refs., 1 tab., 2 figs
Directory of Open Access Journals (Sweden)
Yu-Pei Huang
2018-01-01
Full Text Available This paper proposes a modified maximum power point tracking (MPPT algorithm for photovoltaic systems under rapidly changing partial shading conditions (PSCs. The proposed algorithm integrates a genetic algorithm (GA and the firefly algorithm (FA and further improves its calculation process via a differential evolution (DE algorithm. The conventional GA is not advisable for MPPT because of its complicated calculations and low accuracy under PSCs. In this study, we simplified the GA calculations with the integration of the DE mutation process and FA attractive process. Results from both the simulation and evaluation verify that the proposed algorithm provides rapid response time and high accuracy due to the simplified processing. For instance, evaluation results demonstrate that when compared to the conventional GA, the execution time and tracking accuracy of the proposed algorithm can be, respectively, improved around 69.4% and 4.16%. In addition, in comparison to FA, the tracking speed and tracking accuracy of the proposed algorithm can be improved around 42.9% and 1.85%, respectively. Consequently, the major improvement of the proposed method when evaluated against the conventional GA and FA is tracking speed. Moreover, this research provides a framework to integrate multiple nature-inspired algorithms for MPPT. Furthermore, the proposed method is adaptable to different types of solar panels and different system formats with specifically designed equations, the advantages of which are rapid tracking speed with high accuracy under PSCs.
Contemporary evolution strategies
Bäck, Thomas; Krause, Peter
2013-01-01
Evolution strategies have more than 50 years of history in the field of evolutionary computation. Since the early 1990s, many algorithmic variations of evolution strategies have been developed, characterized by the fact that they use the so-called derandomization concept for strategy parameter adaptation. Most importantly, the covariance matrix adaptation strategy (CMA-ES) and its successors are the key representatives of this group of contemporary evolution strategies. This book provides an overview of the key algorithm developments between 1990 and 2012, including brief descriptions of the a
Directory of Open Access Journals (Sweden)
Guanlong Deng
2016-01-01
Full Text Available This paper presents an enhanced discrete artificial bee colony algorithm for minimizing the total flow time in the flow shop scheduling problem with buffer capacity. First, the solution in the algorithm is represented as discrete job permutation to directly convert to active schedule. Then, we present a simple and effective scheme called best insertion for the employed bee and onlooker bee and introduce a combined local search exploring both insertion and swap neighborhood. To validate the performance of the presented algorithm, a computational campaign is carried out on the Taillard benchmark instances, and computations and comparisons show that the proposed algorithm is not only capable of solving the benchmark set better than the existing discrete differential evolution algorithm and iterated greedy algorithm, but also capable of performing better than two recently proposed discrete artificial bee colony algorithms.
Joux, Antoine
2009-01-01
Illustrating the power of algorithms, Algorithmic Cryptanalysis describes algorithmic methods with cryptographically relevant examples. Focusing on both private- and public-key cryptographic algorithms, it presents each algorithm either as a textual description, in pseudo-code, or in a C code program.Divided into three parts, the book begins with a short introduction to cryptography and a background chapter on elementary number theory and algebra. It then moves on to algorithms, with each chapter in this section dedicated to a single topic and often illustrated with simple cryptographic applic
Directory of Open Access Journals (Sweden)
Qingyang Zhang
2015-02-01
Full Text Available Bird Mating Optimizer (BMO is a novel meta-heuristic optimization algorithm inspired by intelligent mating behavior of birds. However, it is still insufficient in convergence of speed and quality of solution. To overcome these drawbacks, this paper proposes a hybrid algorithm (TLBMO, which is established by combining the advantages of Teaching-learning-based optimization (TLBO and Bird Mating Optimizer (BMO. The performance of TLBMO is evaluated on 23 benchmark functions, and compared with seven state-of-the-art approaches, namely BMO, TLBO, Artificial Bee Bolony (ABC, Particle Swarm Optimization (PSO, Fast Evolution Programming (FEP, Differential Evolution (DE, Group Search Optimization (GSO. Experimental results indicate that the proposed method performs better than other existing algorithms for global numerical optimization.
Quantum-circuit model of Hamiltonian search algorithms
International Nuclear Information System (INIS)
Roland, Jeremie; Cerf, Nicolas J.
2003-01-01
We analyze three different quantum search algorithms, namely, the traditional circuit-based Grover's algorithm, its continuous-time analog by Hamiltonian evolution, and the quantum search by local adiabatic evolution. We show that these algorithms are closely related in the sense that they all perform a rotation, at a constant angular velocity, from a uniform superposition of all states to the solution state. This makes it possible to implement the two Hamiltonian-evolution algorithms on a conventional quantum circuit, while keeping the quadratic speedup of Grover's original algorithm. It also clarifies the link between the adiabatic search algorithm and Grover's algorithm
Selfish Gene Algorithm Vs Genetic Algorithm: A Review
Ariff, Norharyati Md; Khalid, Noor Elaiza Abdul; Hashim, Rathiah; Noor, Noorhayati Mohamed
2016-11-01
Evolutionary algorithm is one of the algorithms inspired by the nature. Within little more than a decade hundreds of papers have reported successful applications of EAs. In this paper, the Selfish Gene Algorithms (SFGA), as one of the latest evolutionary algorithms (EAs) inspired from the Selfish Gene Theory which is an interpretation of Darwinian Theory ideas from the biologist Richards Dawkins on 1989. In this paper, following a brief introduction to the Selfish Gene Algorithm (SFGA), the chronology of its evolution is presented. It is the purpose of this paper is to present an overview of the concepts of Selfish Gene Algorithm (SFGA) as well as its opportunities and challenges. Accordingly, the history, step involves in the algorithm are discussed and its different applications together with an analysis of these applications are evaluated.
Directory of Open Access Journals (Sweden)
Betania Hernández-Ocaña
2016-01-01
Full Text Available This paper presents two-swim operators to be added to the chemotaxis process of the modified bacterial foraging optimization algorithm to solve three instances of the synthesis of four-bar planar mechanisms. One swim favors exploration while the second one promotes fine movements in the neighborhood of each bacterium. The combined effect of the new operators looks to increase the production of better solutions during the search. As a consequence, the ability of the algorithm to escape from local optimum solutions is enhanced. The algorithm is tested through four experiments and its results are compared against two BFOA-based algorithms and also against a differential evolution algorithm designed for mechanical design problems. The overall results indicate that the proposed algorithm outperforms other BFOA-based approaches and finds highly competitive mechanisms, with a single set of parameter values and with less evaluations in the first synthesis problem, with respect to those mechanisms obtained by the differential evolution algorithm, which needed a parameter fine-tuning process for each optimization problem.
Hougardy, Stefan
2016-01-01
Algorithms play an increasingly important role in nearly all fields of mathematics. This book allows readers to develop basic mathematical abilities, in particular those concerning the design and analysis of algorithms as well as their implementation. It presents not only fundamental algorithms like the sieve of Eratosthenes, the Euclidean algorithm, sorting algorithms, algorithms on graphs, and Gaussian elimination, but also discusses elementary data structures, basic graph theory, and numerical questions. In addition, it provides an introduction to programming and demonstrates in detail how to implement algorithms in C++. This textbook is suitable for students who are new to the subject and covers a basic mathematical lecture course, complementing traditional courses on analysis and linear algebra. Both authors have given this "Algorithmic Mathematics" course at the University of Bonn several times in recent years.
Tel, G.
We define the notion of total algorithms for networks of processes. A total algorithm enforces that a "decision" is taken by a subset of the processes, and that participation of all processes is required to reach this decision. Total algorithms are an important building block in the design of
Energy Technology Data Exchange (ETDEWEB)
Elbridge Gerry Puckett
2008-05-13
All of the work conducted under the auspices of DE-FC02-01ER25473 was characterized by exceptionally close collaboration with researchers at the Lawrence Berkeley National Laboratory (LBNL). This included having one of my graduate students - Sarah Williams - spend the summer working with Dr. Ann Almgren a staff scientist in the Center for Computational Sciences and Engineering (CCSE) which is a part of the National Energy Research Supercomputer Center (NERSC) at LBNL. As a result of this visit Sarah decided to work on a problem suggested by Dr. John Bell the head of CCSE for her PhD thesis, which she finished in June 2007. Writing a PhD thesis while working at one of the University of California (UC) managed DOE laboratories is a long established tradition at the University of California and I have always encouraged my students to consider doing this. For example, in 2000 one of my graduate students - Matthew Williams - finished his PhD thesis while working with Dr. Douglas Kothe at the Los Alamos National Laboratory (LANL). Matt is now a staff scientist in the Diagnostic Applications Group in the Applied Physics Division at LANL. Another one of my graduate students - Christopher Algieri - who was partially supported with funds from DE-FC02-01ER25473 wrote am MS Thesis that analyzed and extended work published by Dr. Phil Colella and his colleagues in 1998. Dr. Colella is the head of the Applied Numerical Algorithms Group (ANAG) in the National Energy Research Supercomputer Center at LBNL and is the lead PI for the APDEC ISIC which was comprised of several National Laboratory research groups and at least five University PI's at five different universities. Chris Algieri is now employed as a staff member in Dr. Bill Collins' research group at LBNL developing computational models for climate change research. Bill Collins was recently hired at LBNL to start and be the Head of the Climate Science Department in the Earth Sciences Division at LBNL. Prior to
Ding, Pan; Gong, Xue-Qing
2016-05-01
Titanium dioxide (TiO2) is an important metal oxide that has been used in many different applications. TiO2 has also been widely employed as a model system to study basic processes and reactions in surface chemistry and heterogeneous catalysis. In this work, we investigated the (011) surface of rutile TiO2 by focusing on its reconstruction. Density functional theory calculations aided by a genetic algorithm based optimization scheme were performed to extensively sample the potential energy surfaces of reconstructed rutile TiO2 structures that obey (2 × 1) periodicity. A lot of stable surface configurations were located, including the global-minimum configuration that was proposed previously. The wide variety of surface structures determined through the calculations performed in this work provide insight into the relationship between the atomic configuration of a surface and its stability. More importantly, several analytical schemes were proposed and tested to gauge the differences and similarities among various surface structures, aiding the construction of the complete pathway for the reconstruction process.
A survey of parallel multigrid algorithms
Chan, Tony F.; Tuminaro, Ray S.
1987-01-01
A typical multigrid algorithm applied to well-behaved linear-elliptic partial-differential equations (PDEs) is described. Criteria for designing and evaluating parallel algorithms are presented. Before evaluating the performance of some parallel multigrid algorithms, consideration is given to some theoretical complexity results for solving PDEs in parallel and for executing the multigrid algorithm. The effect of mapping and load imbalance on the partial efficiency of the algorithm is studied.
Search and optimization by metaheuristics techniques and algorithms inspired by nature
Du, Ke-Lin
2016-01-01
This textbook provides a comprehensive introduction to nature-inspired metaheuristic methods for search and optimization, including the latest trends in evolutionary algorithms and other forms of natural computing. Over 100 different types of these methods are discussed in detail. The authors emphasize non-standard optimization problems and utilize a natural approach to the topic, moving from basic notions to more complex ones. An introductory chapter covers the necessary biological and mathematical backgrounds for understanding the main material. Subsequent chapters then explore almost all of the major metaheuristics for search and optimization created based on natural phenomena, including simulated annealing, recurrent neural networks, genetic algorithms and genetic programming, differential evolution, memetic algorithms, particle swarm optimization, artificial immune systems, ant colony optimization, tabu search and scatter search, bee and bacteria foraging algorithms, harmony search, biomolecular computin...
Differential Equations as Actions
DEFF Research Database (Denmark)
Ronkko, Mauno; Ravn, Anders P.
1997-01-01
We extend a conventional action system with a primitive action consisting of a differential equation and an evolution invariant. The semantics is given by a predicate transformer. The weakest liberal precondition is chosen, because it is not always desirable that steps corresponding to differential...... actions shall terminate. It is shown that the proposed differential action has a semantics which corresponds to a discrete approximation when the discrete step size goes to zero. The extension gives action systems the power to model real-time clocks and continuous evolutions within hybrid systems....
Maximum-entropy clustering algorithm and its global convergence analysis
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
Constructing a batch of differentiable entropy functions touniformly approximate an objective function by means of the maximum-entropy principle, a new clustering algorithm, called maximum-entropy clustering algorithm, is proposed based on optimization theory. This algorithm is a soft generalization of the hard C-means algorithm and possesses global convergence. Its relations with other clustering algorithms are discussed.
Rolling Force Prediction in Heavy Plate Rolling Based on Uniform Differential Neural Network
Directory of Open Access Journals (Sweden)
Fei Zhang
2016-01-01
Full Text Available Accurate prediction of the rolling force is critical to assuring the quality of the final product in steel manufacturing. Exit thickness of plate for each pass is calculated from roll gap, mill spring, and predicted roll force. Ideal pass scheduling is dependent on a precise prediction of the roll force in each pass. This paper will introduce a concept that allows obtaining the material model parameters directly from the rolling process on an industrial scale by the uniform differential neural network. On the basis of the characteristics that the uniform distribution can fully characterize the solution space and enhance the diversity of the population, uniformity research on differential evolution operator is made to get improved crossover with uniform distribution. When its original function is transferred with a transfer function, the uniform differential evolution algorithms can quickly solve complex optimization problems. Neural network structure and weights threshold are optimized by uniform differential evolution algorithm, and a uniform differential neural network is formed to improve rolling force prediction accuracy in process control system.
Czech Academy of Sciences Publication Activity Database
Pokorná, M.; Rábová, Marie; Ráb, Petr; Kratochvíl, L.
2010-01-01
Roč. 18, č. 6 (2010), s. 748-748 ISSN 0967-3849. [19th International Colloquium on animal cytogenetics and gene mapping. 06.06.-09.06.2010, Krakow] Institutional research plan: CEZ:AV0Z50450515 Keywords : sex chromosomes * karyotypic evolution * eye-lid geckos Subject RIV: EB - Genetics ; Molecular Biology
Modified cuckoo search: A new gradient free optimisation algorithm
International Nuclear Information System (INIS)
Walton, S.; Hassan, O.; Morgan, K.; Brown, M.R.
2011-01-01
Highlights: → Modified cuckoo search (MCS) is a new gradient free optimisation algorithm. → MCS shows a high convergence rate, able to outperform other optimisers. → MCS is particularly strong at high dimension objective functions. → MCS performs well when applied to engineering problems. - Abstract: A new robust optimisation algorithm, which can be regarded as a modification of the recently developed cuckoo search, is presented. The modification involves the addition of information exchange between the top eggs, or the best solutions. Standard optimisation benchmarking functions are used to test the effects of these modifications and it is demonstrated that, in most cases, the modified cuckoo search performs as well as, or better than, the standard cuckoo search, a particle swarm optimiser, and a differential evolution strategy. In particular the modified cuckoo search shows a high convergence rate to the true global minimum even at high numbers of dimensions.
Majorization arrow in quantum-algorithm design
International Nuclear Information System (INIS)
Latorre, J.I.; Martin-Delgado, M.A.
2002-01-01
We apply majorization theory to study the quantum algorithms known so far and find that there is a majorization principle underlying the way they operate. Grover's algorithm is a neat instance of this principle where majorization works step by step until the optimal target state is found. Extensions of this situation are also found in algorithms based in quantum adiabatic evolution and the family of quantum phase-estimation algorithms, including Shor's algorithm. We state that in quantum algorithms the time arrow is a majorization arrow
A global optimization algorithm inspired in the behavior of selfish herds.
Fausto, Fernando; Cuevas, Erik; Valdivia, Arturo; González, Adrián
2017-10-01
In this paper, a novel swarm optimization algorithm called the Selfish Herd Optimizer (SHO) is proposed for solving global optimization problems. SHO is based on the simulation of the widely observed selfish herd behavior manifested by individuals within a herd of animals subjected to some form of predation risk. In SHO, individuals emulate the predatory interactions between groups of prey and predators by two types of search agents: the members of a selfish herd (the prey) and a pack of hungry predators. Depending on their classification as either a prey or a predator, each individual is conducted by a set of unique evolutionary operators inspired by such prey-predator relationship. These unique traits allow SHO to improve the balance between exploration and exploitation without altering the population size. To illustrate the proficiency and robustness of the proposed method, it is compared to other well-known evolutionary optimization approaches such as Particle Swarm Optimization (PSO), Artificial Bee Colony (ABC), Firefly Algorithm (FA), Differential Evolution (DE), Genetic Algorithms (GA), Crow Search Algorithm (CSA), Dragonfly Algorithm (DA), Moth-flame Optimization Algorithm (MOA) and Sine Cosine Algorithm (SCA). The comparison examines several standard benchmark functions, commonly considered within the literature of evolutionary algorithms. The experimental results show the remarkable performance of our proposed approach against those of the other compared methods, and as such SHO is proven to be an excellent alternative to solve global optimization problems. Copyright © 2017 Elsevier B.V. All rights reserved.
Directory of Open Access Journals (Sweden)
Santosh Kumar Singh
2017-06-01
Full Text Available This paper presents a new hybrid method based on Gravity Search Algorithm (GSA and Recursive Least Square (RLS, known as GSA-RLS, to solve the harmonic estimation problems in the case of time varying power signals in presence of different noises. GSA is based on the Newton’s law of gravity and mass interactions. In the proposed method, the searcher agents are a collection of masses that interact with each other using Newton’s laws of gravity and motion. The basic GSA algorithm strategy is combined with RLS algorithm sequentially in an adaptive way to update the unknown parameters (weights of the harmonic signal. Simulation and practical validation are made with the experimentation of the proposed algorithm with real time data obtained from a heavy paper industry. A comparative performance of the proposed algorithm is evaluated with other recently reported algorithms like, Differential Evolution (DE, Particle Swarm Optimization (PSO, Bacteria Foraging Optimization (BFO, Fuzzy-BFO (F-BFO hybridized with Least Square (LS and BFO hybridized with RLS algorithm, which reveals that the proposed GSA-RLS algorithm is the best in terms of accuracy, convergence and computational time.
Coy, Heidi; Young, Jonathan R; Douek, Michael L; Brown, Matthew S; Sayre, James; Raman, Steven S
2017-07-01
To evaluate the performance of a novel, quantitative computer-aided diagnostic (CAD) algorithm on four-phase multidetector computed tomography (MDCT) to detect peak lesion attenuation to enable differentiation of clear cell renal cell carcinoma (ccRCC) from chromophobe RCC (chRCC), papillary RCC (pRCC), oncocytoma, and fat-poor angiomyolipoma (fp-AML). We queried our clinical databases to obtain a cohort of histologically proven renal masses with preoperative MDCT with four phases [unenhanced (U), corticomedullary (CM), nephrographic (NP), and excretory (E)]. A whole lesion 3D contour was obtained in all four phases. The CAD algorithm determined a region of interest (ROI) of peak lesion attenuation within the 3D lesion contour. For comparison, a manual ROI was separately placed in the most enhancing portion of the lesion by visual inspection for a reference standard, and in uninvolved renal cortex. Relative lesion attenuation for both CAD and manual methods was obtained by normalizing the CAD peak lesion attenuation ROI (and the reference standard manually placed ROI) to uninvolved renal cortex with the formula [(peak lesion attenuation ROI - cortex ROI)/cortex ROI] × 100%. ROC analysis and area under the curve (AUC) were used to assess diagnostic performance. Bland-Altman analysis was used to compare peak ROI between CAD and manual method. The study cohort comprised 200 patients with 200 unique renal masses: 106 (53%) ccRCC, 32 (16%) oncocytomas, 18 (9%) chRCCs, 34 (17%) pRCCs, and 10 (5%) fp-AMLs. In the CM phase, CAD-derived ROI enabled characterization of ccRCC from chRCC, pRCC, oncocytoma, and fp-AML with AUCs of 0.850 (95% CI 0.732-0.968), 0.959 (95% CI 0.930-0.989), 0.792 (95% CI 0.716-0.869), and 0.825 (95% CI 0.703-0.948), respectively. On Bland-Altman analysis, there was excellent agreement of CAD and manual methods with mean differences between 14 and 26 HU in each phase. A novel, quantitative CAD algorithm enabled robust peak HU lesion detection
Directory of Open Access Journals (Sweden)
Drelich Audrey
2018-01-01
Full Text Available The evolution of W/O emulsion versus time in microgravity conditions has been studied in the framework of the FASES (Fundamental and Applied Studies on Emulsion Stability project sponsored by the European Space Agency (ESA. The objective of this study was to investigate the evolution of W/O emulsions made of water + paraffin oil + SPAN 80® under purely diffusive conditions (no gravity driven effects and to compare with evolution of similar emulsions observed on ground. A correlation between the state of dispersion of water and either the freezing temperature during cooling, or the freezing time at a fixed temperature was used to follow the emulsion evolution versus time. For that purpose, two identical calorimeters were built by Airbus (formerly EADS with the support of the French company SETARAM: The Flight Model (FM located onboard the International Space Station (ISS and the Engineering Model (EM located at the TELESPAZIO Centre in Naples. Dedicated cells were filled on ground with different formulations of W/O emulsions and identical experiments were performed with the FM and the EM models in order to highlight the differences in emulsion evolution. On ground, the experiments were performed by cooling and heating the calorimeter between 40 °C and −60 °C but due to technical constraints in the FM, the experiments performed in the FSL (Fluid Science Laboratory of the ISS were limited to a lowest temperature of −22 °C. The results obtained with the FM confirmed the formation of emulsions in the dedicated cell with the selected stirring system in space. These results also demonstrated that it is possible to detect the freezing and the melting of the water droplets with the designed calorimeter either during cooling and heating phases or versus time during a temperature holding period at −22 °C. Furthermore, the comparison between both results obtained with the EM on ground and with the FM in space revealed distinct
Directory of Open Access Journals (Sweden)
Yi Zhang
2012-01-01
Full Text Available In consideration of the significant role the brake plays in ensuring the fast and safe running of vehicles, and since the present parameter optimization design models of brake are far from the practical application, this paper proposes a multiobjective optimization model of drum brake, aiming at maximizing the braking efficiency and minimizing the volume and temperature rise of drum brake. As the commonly used optimization algorithms are of some deficiency, we present a differential evolution cellular multiobjective genetic algorithm (DECell by introducing differential evolution strategy into the canonical cellular genetic algorithm for tackling this problem. For DECell, the gained Pareto front could be as close as possible to the exact Pareto front, and also the diversity of nondominated individuals could be better maintained. The experiments on the test functions reveal that DECell is of good performance in solving high-dimension nonlinear multiobjective problems. And the results of optimizing the new brake model indicate that DECell obviously outperforms the compared popular algorithm NSGA-II concerning the number of obtained brake design parameter sets, the speed, and stability for finding them.
Coordinated Control of PV Generation and EVs Charging Based on Improved DECell Algorithm
Directory of Open Access Journals (Sweden)
Guo Zhao
2015-01-01
Full Text Available Recently, the coordination of EVs’ charging and renewable energy has become a hot research all around the globe. Considering the requirements of EV owner and the influence of the PV output fluctuation on the power grid, a three-objective optimization model was established by controlling the EVs charging power during charging process. By integrating the meshing method into differential evolution cellular (DECell genetic algorithm, an improved differential evolution cellular (IDECell genetic algorithm was presented to solve the multiobjective optimization model. Compared to the NSGA-II and DECell, the IDECell algorithm showed better performance in the convergence and uniform distribution. Furthermore, the IDECell algorithm was applied to obtain the Pareto front of nondominated solutions. Followed by the normalized sorting of the nondominated solutions, the optimal solution was chosen to arrive at the optimized coordinated control strategy of PV generation and EVs charging. Compared to typical charging pattern, the optimized charging pattern could reduce the fluctuations of PV generation output power, satisfy the demand of EVs charging quantity, and save the total charging cost.
Poorly Differentiated Thyroid Carcinoma.
Setia, Namrata; Barletta, Justine A
2014-12-01
Poorly differentiated thyroid carcinoma (PDTC) has been recognized for the past 30 years as an entity showing intermediate differentiation and clinical behavior between well-differentiated thyroid carcinomas (ie, papillary thyroid carcinoma and follicular thyroid carcinoma) and anaplastic thyroid carcinoma; however, there has been considerable controversy around the definition of PDTC. In this review, the evolution in the definition of PDTC, current diagnostic criteria, differential diagnoses, potentially helpful immunohistochemical studies, and molecular alterations are discussed with the aim of highlighting where the diagnosis of PDTC currently stands. Published by Elsevier Inc.
Brianti, Mitsue T; Ananina, Galina; Klaczko, Louis B
2013-01-01
Detailed chromosome maps with reliable homologies among chromosomes of different species are the first step to study the evolution of the genetic architecture in any set of species. Here, we present detailed photo maps of the polytene chromosomes of three closely related species of the tripunctata group (subgenus Drosophila): Drosophila mediopunctata, D. roehrae, and D. unipunctata. We identified Muller's elements in each species, using FISH, establishing reliable chromosome homologies among species and D. melanogaster. The simultaneous analysis of chromosome inversions revealed a distribution pattern for the inversion polymorphisms among Muller's elements in the three species. Element E is the most polymorphic, with many inversions in each species. Element C follows; while the least polymorphic elements are B and D. While interesting, it remains to be determined how general this pattern is among species of the tripunctata group. Despite previous studies showing that D. mediopunctata and D. unipunctata are phylogenetically closer to each other than to D. roehrae, D. unipunctata shows rare karyotypic changes. It has two chromosome fusions: an additional heterochromatic chromosome pair and a pericentric inversion in the X chromosome. This especial conformation suggests a fast chromosomal evolution that deserves further study.
Algorithm for Stabilizing a POD-Based Dynamical System
Kalb, Virginia L.
2010-01-01
This algorithm provides a new way to improve the accuracy and asymptotic behavior of a low-dimensional system based on the proper orthogonal decomposition (POD). Given a data set representing the evolution of a system of partial differential equations (PDEs), such as the Navier-Stokes equations for incompressible flow, one may obtain a low-dimensional model in the form of ordinary differential equations (ODEs) that should model the dynamics of the flow. Temporal sampling of the direct numerical simulation of the PDEs produces a spatial time series. The POD extracts the temporal and spatial eigenfunctions of this data set. Truncated to retain only the most energetic modes followed by Galerkin projection of these modes onto the PDEs obtains a dynamical system of ordinary differential equations for the time-dependent behavior of the flow. In practice, the steps leading to this system of ODEs entail numerically computing first-order derivatives of the mean data field and the eigenfunctions, and the computation of many inner products. This is far from a perfect process, and often results in the lack of long-term stability of the system and incorrect asymptotic behavior of the model. This algorithm describes a new stabilization method that utilizes the temporal eigenfunctions to derive correction terms for the coefficients of the dynamical system to significantly reduce these errors.
Hardouin, Charlotte; Minchenko, Andrei; Ovchinnikov, Alexey
2015-01-01
The main motivation of our work is to create an efficient algorithm that decides hypertranscendence of solutions of linear differential equations, via the parameterized differential and Galois theories. To achieve this, we expand the representation theory of linear differential algebraic groups and develop new algorithms that calculate unipotent radicals of parameterized differential Galois groups for differential equations whose coefficients are rational functions. P. Berman and M.F. Singer ...
An Efficient ABC_DE_Based Hybrid Algorithm for Protein–Ligand Docking
Directory of Open Access Journals (Sweden)
Boxin Guan
2018-04-01
Full Text Available Protein–ligand docking is a process of searching for the optimal binding conformation between the receptor and the ligand. Automated docking plays an important role in drug design, and an efficient search algorithm is needed to tackle the docking problem. To tackle the protein–ligand docking problem more efficiently, An ABC_DE_based hybrid algorithm (ADHDOCK, integrating artificial bee colony (ABC algorithm and differential evolution (DE algorithm, is proposed in the article. ADHDOCK applies an adaptive population partition (APP mechanism to reasonably allocate the computational resources of the population in each iteration process, which helps the novel method make better use of the advantages of ABC and DE. The experiment tested fifty protein–ligand docking problems to compare the performance of ADHDOCK, ABC, DE, Lamarckian genetic algorithm (LGA, running history information guided genetic algorithm (HIGA, and swarm optimization for highly flexible protein–ligand docking (SODOCK. The results clearly exhibit the capability of ADHDOCK toward finding the lowest energy and the smallest root-mean-square deviation (RMSD on most of the protein–ligand docking problems with respect to the other five algorithms.
Wang, Z.
2015-12-01
For decades, distributed and lumped hydrological models have furthered our understanding of hydrological system. The development of hydrological simulation in large scale and high precision elaborated the spatial descriptions and hydrological behaviors. Meanwhile, the new trend is also followed by the increment of model complexity and number of parameters, which brings new challenges of uncertainty quantification. Generalized Likelihood Uncertainty Estimation (GLUE) has been widely used in uncertainty analysis for hydrological models referring to Monte Carlo method coupled with Bayesian estimation. However, the stochastic sampling method of prior parameters adopted by GLUE appears inefficient, especially in high dimensional parameter space. The heuristic optimization algorithms utilizing iterative evolution show better convergence speed and optimality-searching performance. In light of the features of heuristic optimization algorithms, this study adopted genetic algorithm, differential evolution, shuffled complex evolving algorithm to search the parameter space and obtain the parameter sets of large likelihoods. Based on the multi-algorithm sampling, hydrological model uncertainty analysis is conducted by the typical GLUE framework. To demonstrate the superiority of the new method, two hydrological models of different complexity are examined. The results shows the adaptive method tends to be efficient in sampling and effective in uncertainty analysis, providing an alternative path for uncertainty quantilization.
International Nuclear Information System (INIS)
Murray, A.J.; Read, F.H.
1993-01-01
Experimentally determined differential cross sections are presented for the (e,2e) process in helium, in which the two outgoing electrons have the same energy and the same scattering angle with respect to the incident beam. At four incident energies from 20 to 50 eV above the ionization threshold the detection plane defined by the outgoing electrons was varied from being coplanar with the incident beam to being perpendicular to the beam. The differential cross section evolves from a two-peak structure in coplanar geometry to a three-peak structure in the perpendicular plane. At the lowest energy the forward-scattering coplanar peak is smaller than the backscatter peak, in contrast to the results at higher energies. A deep minimum is seen at an intermediate plane angle of 67.5 degree, this minimum being deepest at 40 eV above the ionization threshold. The results are normalized to an absolute scale using previous coplanar measurements as discussed in the text. The spectrometer used to collect these results is fully computer controlled and real-time computer optimized
Quantum walks and search algorithms
Portugal, Renato
2013-01-01
This book addresses an interesting area of quantum computation called quantum walks, which play an important role in building quantum algorithms, in particular search algorithms. Quantum walks are the quantum analogue of classical random walks. It is known that quantum computers have great power for searching unsorted databases. This power extends to many kinds of searches, particularly to the problem of finding a specific location in a spatial layout, which can be modeled by a graph. The goal is to find a specific node knowing that the particle uses the edges to jump from one node to the next. This book is self-contained with main topics that include: Grover's algorithm, describing its geometrical interpretation and evolution by means of the spectral decomposition of the evolution operater Analytical solutions of quantum walks on important graphs like line, cycles, two-dimensional lattices, and hypercubes using Fourier transforms Quantum walks on generic graphs, describing methods to calculate the limiting d...
BONDI-97 A novel neutron energy spectrum unfolding tool using a genetic algorithm
Mukherjee, B
1999-01-01
The neutron spectrum unfolding procedure using the count rate data obtained from a set of Bonner sphere neutron detectors requires the solution of the Fredholm integral equation of the first kind by using complex mathematical methods. This paper reports a new approach for the unfolding of neutron spectra using the Genetic Algorithm tool BONDI-97 (BOnner sphere Neutron DIfferentiation). The BONDI-97 was used as the input for Genetic Algorithm engine EVOLVER to search for a globally optimised solution vector from a population of randomly generated solutions. This solution vector corresponds to the unfolded neutron energy spectrum. The Genetic Algorithm engine emulates the Darwinian 'Survival of the Fittest' strategy, the key ingredient of the 'Theory of Evolution'. The spectra of sup 2 sup 4 sup 1 Am/Be (alpha,n) and sup 2 sup 3 sup 9 Pu/Be (alpha,n) neutron sources were unfolded using the BONDI-97 tool. (author)
Fanuel, Ibrahim Mwita; Mushi, Allen; Kajunguri, Damian
2018-03-01
This paper analyzes more than 40 papers with a restricted area of application of Multi-Objective Genetic Algorithm, Non-Dominated Sorting Genetic Algorithm-II and Multi-Objective Differential Evolution (MODE) to solve the multi-objective problem in agricultural water management. The paper focused on different application aspects which include water allocation, irrigation planning, crop pattern and allocation of available land. The performance and results of these techniques are discussed. The review finds that there is a potential to use MODE to analyzed the multi-objective problem, the application is more significance due to its advantage of being simple and powerful technique than any Evolutionary Algorithm. The paper concludes with the hopeful new trend of research that demand effective use of MODE; inclusion of benefits derived from farm byproducts and production costs into the model.
Research on the target coverage algorithms for 3D curved surface
International Nuclear Information System (INIS)
Sun, Shunyuan; Sun, Li; Chen, Shu
2016-01-01
To solve the target covering problems in three-dimensional space, putting forward a deployment strategies of the target points innovatively, and referencing to the differential evolution (DE) algorithm to optimize the location coordinates of the sensor nodes to realize coverage of all the target points in 3-D surface with minimal sensor nodes. Firstly, building the three-dimensional perception model of sensor nodes, and putting forward to the blind area existing in the process of the sensor nodes sensing the target points in 3-D surface innovatively, then proving the feasibility of solving the target coverage problems in 3-D surface with DE algorithm theoretically, and reflecting the fault tolerance of the algorithm.
Directory of Open Access Journals (Sweden)
Rabindra Kumar Sahu
2014-09-01
Full Text Available An attempt is made for the effective application of Gravitational Search Algorithm (GSA to optimize PI/PIDF controller parameters in Automatic Generation Control (AGC of interconnected power systems. Initially, comparison of several conventional objective functions reveals that ITAE yields better system performance. Then, the parameters of GSA technique are properly tuned and the GSA control parameters are proposed. The superiority of the proposed approach is demonstrated by comparing the results of some recently published techniques such as Differential Evolution (DE, Bacteria Foraging Optimization Algorithm (BFOA and Genetic Algorithm (GA. Additionally, sensitivity analysis is carried out that demonstrates the robustness of the optimized controller parameters to wide variations in operating loading condition and time constants of speed governor, turbine, tie-line power. Finally, the proposed approach is extended to a more realistic power system model by considering the physical constraints such as reheat turbine, Generation Rate Constraint (GRC and Governor Dead Band nonlinearity.
International Nuclear Information System (INIS)
Creutz, M.
1987-11-01
A large variety of Monte Carlo algorithms are being used for lattice gauge simulations. For purely bosonic theories, present approaches are generally adequate; nevertheless, overrelaxation techniques promise savings by a factor of about three in computer time. For fermionic fields the situation is more difficult and less clear. Algorithms which involve an extrapolation to a vanishing step size are all quite closely related. Methods which do not require such an approximation tend to require computer time which grows as the square of the volume of the system. Recent developments combining global accept/reject stages with Langevin or microcanonical updatings promise to reduce this growth to V/sup 4/3/
Hu, T C
2002-01-01
Newly enlarged, updated second edition of a valuable text presents algorithms for shortest paths, maximum flows, dynamic programming and backtracking. Also discusses binary trees, heuristic and near optimums, matrix multiplication, and NP-complete problems. 153 black-and-white illus. 23 tables.Newly enlarged, updated second edition of a valuable, widely used text presents algorithms for shortest paths, maximum flows, dynamic programming and backtracking. Also discussed are binary trees, heuristic and near optimums, matrix multiplication, and NP-complete problems. New to this edition: Chapter 9
Abstract methods in partial differential equations
Carroll, Robert W
2012-01-01
Detailed, self-contained treatment examines modern abstract methods in partial differential equations, especially abstract evolution equations. Suitable for graduate students with some previous exposure to classical partial differential equations. 1969 edition.
SMACK: A New Algorithm for Modeling Collisions and Dynamics of Planetesimals in Debris Disks
Nesvold, Erika Rose; Kuchner, Marc J.; Rein, Hanno; Pan, Margaret
2013-01-01
We present the Superparticle Model/Algorithm for Collisions in Kuiper belts and debris disks (SMACK), a new method for simultaneously modeling, in 3-D, the collisional and dynamical evolution of planetesimals in a debris disk with planets. SMACK can simulate azimuthal asymmetries and how these asymmetries evolve over time. We show that SMACK is stable to numerical viscosity and numerical heating over 10(exp 7) yr, and that it can reproduce analytic models of disk evolution. We use SMACK to model the evolution of a debris ring containing a planet on an eccentric orbit. Differential precession creates a spiral structure as the ring evolves, but collisions subsequently break up the spiral, leaving a narrower eccentric ring.
An efficient algorithm for global periodic orbits generation near irregular-shaped asteroids
Shang, Haibin; Wu, Xiaoyu; Ren, Yuan; Shan, Jinjun
2017-07-01
Periodic orbits (POs) play an important role in understanding dynamical behaviors around natural celestial bodies. In this study, an efficient algorithm was presented to generate the global POs around irregular-shaped uniformly rotating asteroids. The algorithm was performed in three steps, namely global search, local refinement, and model continuation. First, a mascon model with a low number of particles and optimized mass distribution was constructed to remodel the exterior gravitational potential of the asteroid. Using this model, a multi-start differential evolution enhanced with a deflection strategy with strong global exploration and bypassing abilities was adopted. This algorithm can be regarded as a search engine to find multiple globally optimal regions in which potential POs were located. This was followed by applying a differential correction to locally refine global search solutions and generate the accurate POs in the mascon model in which an analytical Jacobian matrix was derived to improve convergence. Finally, the concept of numerical model continuation was introduced and used to convert the POs from the mascon model into a high-fidelity polyhedron model by sequentially correcting the initial states. The efficiency of the proposed algorithm was substantiated by computing the global POs around an elongated shoe-shaped asteroid 433 Eros. Various global POs with different topological structures in the configuration space were successfully located. Specifically, the proposed algorithm was generic and could be conveniently extended to explore periodic motions in other gravitational systems.
Directory of Open Access Journals (Sweden)
Anna Bourmistrova
2011-02-01
Full Text Available The autodriver algorithm is an intelligent method to eliminate the need of steering by a driver on a well-defined road. The proposed method performs best on a four-wheel steering (4WS vehicle, though it is also applicable to two-wheel-steering (TWS vehicles. The algorithm is based on coinciding the actual vehicle center of rotation and road center of curvature, by adjusting the kinematic center of rotation. The road center of curvature is assumed prior information for a given road, while the dynamic center of rotation is the output of dynamic equations of motion of the vehicle using steering angle and velocity measurements as inputs. We use kinematic condition of steering to set the steering angles in such a way that the kinematic center of rotation of the vehicle sits at a desired point. At low speeds the ideal and actual paths of the vehicle are very close. With increase of forward speed the road and tire characteristics, along with the motion dynamics of the vehicle cause the vehicle to turn about time-varying points. By adjusting the steering angles, our algorithm controls the dynamic turning center of the vehicle so that it coincides with the road curvature center, hence keeping the vehicle on a given road autonomously. The position and orientation errors are used as feedback signals in a closed loop control to adjust the steering angles. The application of the presented autodriver algorithm demonstrates reliable performance under different driving conditions.
Testing algorithms for critical slowing down
Directory of Open Access Journals (Sweden)
Cossu Guido
2018-01-01
Full Text Available We present the preliminary tests on two modifications of the Hybrid Monte Carlo (HMC algorithm. Both algorithms are designed to travel much farther in the Hamiltonian phase space for each trajectory and reduce the autocorrelations among physical observables thus tackling the critical slowing down towards the continuum limit. We present a comparison of costs of the new algorithms with the standard HMC evolution for pure gauge fields, studying the autocorrelation times for various quantities including the topological charge.
The evolution of alliance capabilities
Heimeriks, K.H.; Duysters, G.M.; Vanhaverbeke, W.P.M.
2004-01-01
This paper assesses the effectiveness and differential performance effects of learning mechanisms on the evolution of alliance capabilities. Relying on the concept of capability lifecycles, prior research has suggested that different capability levels could be identified in which different
Directory of Open Access Journals (Sweden)
Nagendra N. Mishra
2012-01-01
Full Text Available Previous studies showed serial 20 d in vitro passage of MRSA strain MW2 in sublethal daptomycin (DAP resulted in diverse perturbations in both cell membrane (CM and cell wall (CW characteristics, including increased CM rigidity; increased CW thickness; “gain-in-function” single nucleotide polymorphisms (SNPs in the mprF locus (i.e., increased synthesis and translocation of lysyl-phosphatidylglycerol (L-PG; progressive accumulation of SNPs in yyc and rpo locus genes; reduced carotenoid production; cross-resistance to innate host defense peptides. The current study was designed to characterize the reproducibility of these phenotypic and genotypic modifications following in vitro serial passages of the same parental strain. After a second 20d serial in vitro passage of parental MW2, emergence of DAP-R was associated with evolution of several phenotypes closely mirroring previous passage outcomes. However, in contrast to the initial serial passage strain set, we observed (i only modest increase in L-PG synthesis and no increase in L-PG outer CM translocation; (ii significantly increased carotenoid synthesis (P<0.05; (iii a different order of SNP accumulations (mprF≫rpoB≫yycG; (iv a different cadre and locations of such SNPs. Thus, MRSA strains are not “pre-programmed” to phenotypically and/or genotypically adapt in an identical manner during induction of DAP resistance.
Pokorná, Martina; Rábová, Marie; Ráb, Petr; Ferguson-Smith, Malcolm A; Rens, Willem; Kratochvíl, Lukáš
2010-11-01
The eyelid geckos (family Eublepharidae) include both species with temperature-dependent sex determination and species where genotypic sex determination (GSD) was suggested based on the observation of equal sex ratios at several incubation temperatures. In this study, we present data on karyotypes and chromosomal characteristics in 12 species (Aeluroscalabotes felinus, Coleonyx brevis, Coleonyx elegans, Coleonyx variegatus, Eublepharis angramainyu, Eublepharis macularius, Goniurosaurus araneus, Goniurosaurus lichtenfelderi, Goniurosaurus luii, Goniurosaurus splendens, Hemitheconyx caudicinctus, and Holodactylus africanus) covering all genera of the family, and search for the presence of heteromorphic sex chromosomes. Phylogenetic mapping of chromosomal changes showed a long evolutionary stasis of karyotypes with all acrocentric chromosomes followed by numerous chromosomal rearrangements in the ancestors of two lineages. We have found heteromorphic sex chromosomes in only one species, which suggests that sex chromosomes in most GSD species of the eyelid geckos are not morphologically differentiated. The sexual difference in karyotype was detected only in C. elegans which has a multiple sex chromosome system (X(1)X(2)Y). The metacentric Y chromosome evolved most likely via centric fusion of two acrocentric chromosomes involving loss of interstitial telomeric sequences. We conclude that the eyelid geckos exhibit diversity in sex determination ranging from the absence of any sexual differences to heteromorphic sex chromosomes, which makes them an interesting system for exploring the evolutionary origin of sexually dimorphic genomes.
DEFF Research Database (Denmark)
Markham, Annette
This paper takes an actor network theory approach to explore some of the ways that algorithms co-construct identity and relational meaning in contemporary use of social media. Based on intensive interviews with participants as well as activity logging and data tracking, the author presents a richly...... layered set of accounts to help build our understanding of how individuals relate to their devices, search systems, and social network sites. This work extends critical analyses of the power of algorithms in implicating the social self by offering narrative accounts from multiple perspectives. It also...... contributes an innovative method for blending actor network theory with symbolic interaction to grapple with the complexity of everyday sensemaking practices within networked global information flows....