WorldWideScience

Sample records for differential carm1 expression

  1. Differential CARM1 expression in prostate and colorectal cancers

    International Nuclear Information System (INIS)

    Kim, Young-Rang; Lee, Byung Kook; Park, Ra-Young; Nguyen, Nguyen Thi Xuan; Bae, Jeong A; Kwon, Dong Deuk; Jung, Chaeyong

    2010-01-01

    Coactivator-associated arginine methyltransferase 1 (CARM1) functions as a transcriptional coactivator of androgen receptor (AR)-mediated signaling. Correspondingly, overexpression of CARM1 has been associated with the development of prostate cancer (PCa) and its progression to androgen-independent PCa. In our preliminary study, however, the promoting effects of CARM1, with regard to androgen-stimulated AR target gene expression were minimal. These results suggested that the AR target gene expression associated with CARM1 may result primarily from non-hormone dependent activity. The goal of this study was to confirm the pattern of expression of CARM1 in human tumors and determine the mechanism of action in CARM1 overexpressed tumors. Tissue microarray was used to determine the pattern of expression of CARM1 in human cancers by immunohistochemistry. CARM1 expression was also evaluated in prostate and colorectal surgical specimens and the clinical records of all cases were reviewed. In addition, a reporter transcription assay using the prostate-specific antigen (PSA) promoter was used to identify the signaling pathways involved in non-hormone-mediated signal activation associated with CARM1. The tissue microarray showed that CARM1 was particularly overexpressed in the colorectal cancers while CARM1 expression was not prevalent in the prostate and breast cancers. Further studies using surgical specimens demonstrated that CARM1 was highly overexpressed in 75% of colorectal cancers (49 out of 65) but not in the androgen-independent PCa. In addition, CARM1's coactivating effect on the entire PSA promoter was very limited in both androgen-dependent and androgen-independent PCa cells. These results suggest that there are other factors associated with CARM1 expression in PSA regulation. Indeed, CARM1 significantly regulated both p53 and NF-κB target gene transcription. The results of this study suggest that, in addition to its role in activation of steroid receptors

  2. Differential CARM1 Isoform Expression in Subcellular Compartments and among Malignant and Benign Breast Tumors.

    Directory of Open Access Journals (Sweden)

    David Shlensky

    Full Text Available Coactivator-associated arginine methyltransferase 1 (CARM1 is a coactivator for ERα and cancer-relevant transcription factors, and can methylate diverse cellular targets including histones. CARM1 is expressed in one of two alternative splice isoforms, full-length CARM1 (CARM1FL and truncated CARM1 (CARM1ΔE15. CARM1FL and CARM1ΔE15 function differently in transcriptional regulation, protein methylation, and mediation of pre-mRNA splicing in cellular models.To investigate the functional roles and the prognosis potential of CARM1 alternative spliced isoforms in breast cancer, we used recently developed antibodies to detect differential CARM1 isoform expression in subcellular compartments and among malignant and benign breast tumors.Immunofluorescence in MDA-MB-231 and BG-1 cell lines demonstrated that CARM1ΔE15 is the dominant isoform expressed in the cytoplasm, and CARM1FL is more nuclear localized. CARM1ΔE15 was found to be more sensitive to Hsp90 inhibition than CARM1FL, indicating that the truncated isoform may be the oncogenic form. Clinical cancer samples did not have significantly higher expression of CARM1FL or CARM1ΔE15 than benign breast samples at the level of mRNA or histology. Furthermore neither CARM1FL nor CARM1ΔE15 expression correlated with breast cancer molecular subtypes, tumor size, or lymph node involvement.The analysis presented here lends new insights into the possible oncogenic role of CARM1ΔE15. This study also demonstrates no obvious association of CARM1 isoform expression and clinical correlates in breast cancer. Recent studies, however, have shown that CARM1 expression correlates with poor prognosis, indicating a need for further studies of both CARM1 isoforms in a large cohort of breast cancer specimens.

  3. Insulin-induced CARM1 upregulation facilitates hepatocyte proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Yeom, Chul-gon; Kim, Dong-il; Park, Min-jung; Choi, Joo-hee [College of Veterinary Medicine, Chonnam National University, Gwangju 500-757 (Korea, Republic of); Jeong, Jieun; Wi, Anjin; Park, Whoashig [Jeollanamdo Forest Resources Research Institute, Naju 520-833 (Korea, Republic of); Han, Ho-jae [College of Veterinary Medicine, Seoul National University, Seoul 151-741 (Korea, Republic of); Park, Soo-hyun, E-mail: parksh@chonnam.ac.kr [College of Veterinary Medicine, Chonnam National University, Gwangju 500-757 (Korea, Republic of)

    2015-06-05

    Previously, we reported that CARM1 undergoes ubiquitination-dependent degradation in renal podocytes. It was also reported that CARM1 is necessary for fasting-induced hepatic gluconeogenesis. Based on these reports, we hypothesized that treatment with insulin, a hormone typically present under the ‘fed’ condition, would inhibit gluconeogenesis via CARM1 degradation. HepG2 cells, AML-12 cells, and rat primary hepatocytes were treated with insulin to confirm CARM1 downregulation. Surprisingly, insulin treatment increased CARM1 expression in all cell types examined. Furthermore, treatment with insulin increased histone 3 methylation at arginine 17 and 26 in HepG2 cells. To elucidate the role of insulin-induced CARM1 upregulation, the HA-CARM1 plasmid was transfected into HepG2 cells. CARM1 overexpression did not increase the expression of lipogenic proteins generally increased by insulin signaling. Moreover, CARM1 knockdown did not influence insulin sensitivity. Insulin is known to facilitate hepatic proliferation. Like insulin, CARM1 overexpression increased CDK2 and CDK4 expression. In addition, CARM1 knockdown reduced the number of insulin-induced G2/M phase cells. Moreover, GFP-CARM1 overexpression increased the number of G2/M phase cells. Based on these results, we concluded that insulin-induced CARM1 upregulation facilitates hepatocyte proliferation. These observations indicate that CARM1 plays an important role in liver pathophysiology. - Highlights: • Insulin treatment increases CARM1 expression in hepatocytes. • CARM1 overexpression does not increase the expression of lipogenic proteins. • CARM1 knockdown does not influence insulin sensitivity. • Insulin-induced CARM1 upregulation facilitates hepatocyte proliferation.

  4. Insulin-induced CARM1 upregulation facilitates hepatocyte proliferation

    International Nuclear Information System (INIS)

    Yeom, Chul-gon; Kim, Dong-il; Park, Min-jung; Choi, Joo-hee; Jeong, Jieun; Wi, Anjin; Park, Whoashig; Han, Ho-jae; Park, Soo-hyun

    2015-01-01

    Previously, we reported that CARM1 undergoes ubiquitination-dependent degradation in renal podocytes. It was also reported that CARM1 is necessary for fasting-induced hepatic gluconeogenesis. Based on these reports, we hypothesized that treatment with insulin, a hormone typically present under the ‘fed’ condition, would inhibit gluconeogenesis via CARM1 degradation. HepG2 cells, AML-12 cells, and rat primary hepatocytes were treated with insulin to confirm CARM1 downregulation. Surprisingly, insulin treatment increased CARM1 expression in all cell types examined. Furthermore, treatment with insulin increased histone 3 methylation at arginine 17 and 26 in HepG2 cells. To elucidate the role of insulin-induced CARM1 upregulation, the HA-CARM1 plasmid was transfected into HepG2 cells. CARM1 overexpression did not increase the expression of lipogenic proteins generally increased by insulin signaling. Moreover, CARM1 knockdown did not influence insulin sensitivity. Insulin is known to facilitate hepatic proliferation. Like insulin, CARM1 overexpression increased CDK2 and CDK4 expression. In addition, CARM1 knockdown reduced the number of insulin-induced G2/M phase cells. Moreover, GFP-CARM1 overexpression increased the number of G2/M phase cells. Based on these results, we concluded that insulin-induced CARM1 upregulation facilitates hepatocyte proliferation. These observations indicate that CARM1 plays an important role in liver pathophysiology. - Highlights: • Insulin treatment increases CARM1 expression in hepatocytes. • CARM1 overexpression does not increase the expression of lipogenic proteins. • CARM1 knockdown does not influence insulin sensitivity. • Insulin-induced CARM1 upregulation facilitates hepatocyte proliferation

  5. Nuclear AMPK regulated CARM1 stabilization impacts autophagy in aged heart

    International Nuclear Information System (INIS)

    Li, Chen; Yu, Lu; Xue, Han; Yang, Zheng; Yin, Yue; Zhang, Bo; Chen, Mai; Ma, Heng

    2017-01-01

    Senescence-associated autophagy downregulation leads to cardiomyocyte dysfunction. Coactivator-associated arginine methyltransferase 1 (CARM1) participates in many cellular processes, including autophagy in mammals. However, the effect of CARM1 in aging-related cardiac autophagy decline remains undefined. Moreover, AMP-activated protein kinase (AMPK) is a key regulator in metabolism and autophagy, however, the role of nuclear AMPK in autophagy outcome in aged hearts still unclear. Hers we identify the correlation between nuclear AMPK and CARM1 in aging heart. We found that fasting could promote autophagy in young hearts but not in aged hearts. The CARM1 stabilization is markedly decrease in aged hearts, which impaired nucleus TFEB-CARM1 complex and autophagy flux. Further, S-phase kinase-associated protein 2(SKP2), responsible for CARM1 degradation, was increased in aged hearts. We further validated that AMPK dependent FoxO3 phosphorylation was markedly reduced in nucleus, the decreased nuclear AMPK-FoxO3 activity fails to suppress SKP2-E3 ubiquitin ligase. This loss of repression leads to The CARM1 level and autophagy in aged hearts could be restored through AMPK activation. Taken together, AMPK deficiency results in nuclear CARM1 decrease mediated in part by SKP2, contributing to autophagy dysfunction in aged hearts. Our results identified nuclear AMPK controlled CARM1 stabilization as a new actor that regulates cardiac autophagy. - Highlights: • AMPK-dependent CARM1 stabilization is an important nuclear mechanism in cardiac autophagy. • AMPK deficiency lead to SKP2-mediated decrease in CARM1. • AMPK–SKP2–CARM1 in the regulation of autophagy dysfunction in aged heart.

  6. Disruption of histone modification and CARM1 recruitment by arsenic represses transcription at glucocorticoid receptor-regulated promoters.

    Science.gov (United States)

    Barr, Fiona D; Krohmer, Lori J; Hamilton, Joshua W; Sheldon, Lynn A

    2009-08-26

    Chronic exposure to inorganic arsenic (iAs) found in the environment is one of the most significant and widespread environmental health risks in the U.S. and throughout the world. It is associated with a broad range of health effects from cancer to diabetes as well as reproductive and developmental anomalies. This diversity of diseases can also result from disruption of metabolic and other cellular processes regulated by steroid hormone receptors via aberrant transcriptional regulation. Significantly, exposure to iAs inhibits steroid hormone-mediated gene activation. iAs exposure is associated with disease, but is also used therapeutically to treat specific cancers complicating an understanding of iAs action. Transcriptional activation by steroid hormone receptors is accompanied by changes in histone and non-histone protein post-translational modification (PTM) that result from the enzymatic activity of coactivator and corepressor proteins such as GRIP1 and CARM1. This study addresses how iAs represses steroid receptor-regulated gene transcription. PTMs on histones H3 and H4 at the glucocorticoid receptor (GR)-activated mouse mammary tumor virus (MMTV) promoter were identified by chromatin immunoprecipitation analysis following exposure to steroid hormone+/-iAs. Histone H3K18 and H3R17 amino acid residues had significantly different patterns of PTMs after treatment with iAs. Promoter interaction of the coactivator CARM1 was disrupted, but the interaction of GRIP1, a p160 coactivator through which CARM1 interacts with a promoter, was intact. Over-expression of CARM1 was able to fully restore and GRIP1 partially restored iAs-repressed transcription indicating that these coactivators are functionally associated with iAs-mediated transcriptional repression. Both are essential for robust transcription at steroid hormone regulated genes and both are associated with disease when inappropriately expressed. We postulate that iAs effects on CARM1 and GRIP1 may underlie some

  7. High-efficiency CARM

    Energy Technology Data Exchange (ETDEWEB)

    Bratman, V.L.; Kol`chugin, B.D.; Samsonov, S.V.; Volkov, A.B. [Institute of Applied Physics, Nizhny Novgorod (Russian Federation)

    1995-12-31

    The Cyclotron Autoresonance Maser (CARM) is a well-known variety of FEMs. Unlike the ubitron in which electrons move in a periodical undulator field, in the CARM the particles move along helical trajectories in a uniform magnetic field. Since it is much simpler to generate strong homogeneous magnetic fields than periodical ones for a relatively low electron energy ({Brit_pounds}{le}1-3 MeV) the period of particles` trajectories in the CARM can be sufficiently smaller than in the undulator in which, moreover, the field decreases rapidly in the transverse direction. In spite of this evident advantage, the number of papers on CARM is an order less than on ubitron, which is apparently caused by the low (not more than 10 %) CARM efficiency in experiments. At the same time, ubitrons operating in two rather complicated regimes-trapping and adiabatic deceleration of particles and combined undulator and reversed guiding fields - yielded efficiencies of 34 % and 27 %, respectively. The aim of this work is to demonstrate that high efficiency can be reached even for a simplest version of the CARM. In order to reduce sensitivity to an axial velocity spread of particles, a short interaction length where electrons underwent only 4-5 cyclotron oscillations was used in this work. Like experiments, a narrow anode outlet of a field-emission electron gun cut out the {open_quotes}most rectilinear{close_quotes} near-axis part of the electron beam. Additionally, magnetic field of a small correcting coil compensated spurious electron oscillations pumped by the anode aperture. A kicker in the form of a sloping to the axis frame with current provided a control value of rotary velocity at a small additional velocity spread. A simple cavity consisting of a cylindrical waveguide section restricted by a cut-off waveguide on the cathode side and by a Bragg reflector on the collector side was used as the CARM-oscillator microwave system.

  8. High frequency CARM driver for RF linacs. Progress report, Year 1

    International Nuclear Information System (INIS)

    Danly, B.G.

    1990-01-01

    Progress during the first year of this program has been noteworthy in both theoretical and experimental areas. Substantial improvements to the MIT CARM codes have been carried out, and the code has been successfully benchmarked against other codes, linear theory, and experimental work. CARM amplifier phase stability has been studied theoretically and found to be significantly better than that of free-electron lasers or relativistic klystrons, provided the device is properly designed. Both multimode simulations and particle-in-cell simulations have been carried out to study mode competition effects between convectively unstable and absolutely unstable modes. Improvement of the Pierce-Wiggler code for modeling the beam formation prior to the interaction region has been carried out. Experimental designs for a long-pulse, modulator-driven CARM amplifier experiment which will be carried out by the end of this fiscal year have been mostly completed. Designs for an induction-linac-driven CARM amplifier experiment, which will be carried out by the end of Year II of this program,, have also been performed. Finally, a CARM oscillator experiment is presently underway at our facility

  9. High frequency CARM driver for rf linacs

    International Nuclear Information System (INIS)

    Danly, B.G.

    1993-01-01

    This CARM program has successfully demonstrated the first ever long-pulse CARM oscillator operation; these results demonstrate the potential of CARMs as an alternative source of millimeter waves to the gyrotron for ECRH plasma heating. The result of 1.8 MW at 27.8 GHz and 0.5 μs pulse width in the TE 11 mode represent a clear demonstration of the capabilities of the CARM oscillator for the production of high powers with large frequency upshift. It is hoped that this successful proof-of-principle demonstration.will lead to further development of the CARM as an ECRH source by the DOE Office of Fusion Energy, Development and Technology Division. This success is a direct outcome of this support of the Advanced Energy Projects Office of DOE in the form of this program. The CARM amplifier component of the program, although unsuccessful at obtaining CARM amplifier operation at 17 GHz, has succeeded by furthering the understanding of the limitations and difficulties that lie ahead for continued CARM amplifier development. The amplifier component of the program has successfully demonstrated a high power second and third harmonic gyro-TWT amplifier. Up to 5 MW of power at 17.1 GHz and >50dB gain have been obtained. These results should be viewed as an important contribution of this program to the development of viable microwave sources for powering the next linear collider. Indeed, the present gyro-amplifier, which resulted from this program, is presently being used in ongoing high-gradient accelerator research at MIT under a DOE High Energy Physics grant. As a result of both the oscillator and amplifier advances made during this program, the CARM and harmonic gyro-TWT have reached a significantly more mature level; their future role in specific applications of benefit to DOEs OFE and HEP offices may now be pursued

  10. CARM1 modulators affect epigenome of stem cells and change morphology of nucleoli.

    Science.gov (United States)

    Franek, M; Legartová, S; Suchánková, J; Milite, C; Castellano, S; Sbardella, G; Kozubek, S; Bártová, E

    2015-01-01

    CARM1 interacts with numerous transcription factors to mediate cellular processes, especially gene expression. This is important for the maintenance of ESC pluripotency or intervention to tumorigenesis. Here, we studied epigenomic effects of two potential CARM1 modulators: an activator (EML159) and an inhibitor (ellagic acid dihydrate, EA). We examined nuclear morphology in human and mouse embryonic stem cells (hESCs, mESCs), as well as in iPS cells. The CARM1 modulators did not function similarly in all cell types. EA decreased the levels of the pluripotency markers, OCT4 and NANOG, particularly in iPSCs, whereas the levels of these proteins increased after EML159 treatment. EML159 treatment of mouse ESCs led to decreased levels of OCT4 and NANOG, which was accompanied by an increased level of Endo-A. The same trend was observed for NANOG and Endo-A in hESCs affected by EML159. Interestingly, EA mainly changed epigenetic features of nucleoli because a high level of arginine asymmetric di-methylation in the nucleoli of hESCs was reduced after EA treatment. ChIP-PCR of ribosomal genes confirmed significantly reduced levels of H3R17me2a, in both the promoter region of ribosomal genes and rDNA encoding 28S rRNA, after EA addition. Moreover, EA treatment changed the nuclear pattern of AgNORs (silver-stained nucleolus organizer regions) in all cell types studied. In EA-treated ESCs, AgNOR pattern was similar to the pattern of AgNORs after inhibition of RNA pol I by actinomycin D. Together, inhibitory effect of EA on arginine methylation and effect on related morphological parameters was especially observed in compartment of nucleoli.

  11. Differentially-Expressed Pseudogenes in HIV-1 Infection

    Directory of Open Access Journals (Sweden)

    Aditi Gupta

    2015-09-01

    Full Text Available Not all pseudogenes are transcriptionally silent as previously thought. Pseudogene transcripts, although not translated, contribute to the non-coding RNA pool of the cell that regulates the expression of other genes. Pseudogene transcripts can also directly compete with the parent gene transcripts for mRNA stability and other cell factors, modulating their expression levels. Tissue-specific and cancer-specific differential expression of these “functional” pseudogenes has been reported. To ascertain potential pseudogene:gene interactions in HIV-1 infection, we analyzed transcriptomes from infected and uninfected T-cells and found that 21 pseudogenes are differentially expressed in HIV-1 infection. This is interesting because parent genes of one-third of these differentially-expressed pseudogenes are implicated in HIV-1 life cycle, and parent genes of half of these pseudogenes are involved in different viral infections. Our bioinformatics analysis identifies candidate pseudogene:gene interactions that may be of significance in HIV-1 infection. Experimental validation of these interactions would establish that retroviruses exploit this newly-discovered layer of host gene expression regulation for their own benefit.

  12. Differentially-Expressed Pseudogenes in HIV-1 Infection.

    Science.gov (United States)

    Gupta, Aditi; Brown, C Titus; Zheng, Yong-Hui; Adami, Christoph

    2015-09-29

    Not all pseudogenes are transcriptionally silent as previously thought. Pseudogene transcripts, although not translated, contribute to the non-coding RNA pool of the cell that regulates the expression of other genes. Pseudogene transcripts can also directly compete with the parent gene transcripts for mRNA stability and other cell factors, modulating their expression levels. Tissue-specific and cancer-specific differential expression of these "functional" pseudogenes has been reported. To ascertain potential pseudogene:gene interactions in HIV-1 infection, we analyzed transcriptomes from infected and uninfected T-cells and found that 21 pseudogenes are differentially expressed in HIV-1 infection. This is interesting because parent genes of one-third of these differentially-expressed pseudogenes are implicated in HIV-1 life cycle, and parent genes of half of these pseudogenes are involved in different viral infections. Our bioinformatics analysis identifies candidate pseudogene:gene interactions that may be of significance in HIV-1 infection. Experimental validation of these interactions would establish that retroviruses exploit this newly-discovered layer of host gene expression regulation for their own benefit.

  13. Expression, purification, crystallization and preliminary crystallographic study of isolated modules of the mouse coactivator-associated arginine methyltransferase 1

    Energy Technology Data Exchange (ETDEWEB)

    Troffer-Charlier, Nathalie; Cura, Vincent; Hassenboehler, Pierre; Moras, Dino; Cavarelli, Jean, E-mail: cava@igbmc.u-strasbg.fr [IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire), Département de Biologie et Génomique Structurales, 1 Rue Laurent Fries, Illkirch, F-67404 (France); INSERM, U596, Illkirch, F-67400 (France); CNRS, UMR7104, Illkirch, F-67400 (France); Université Louis Pasteur, Faculté des Sciences de la Vie, Strasbourg, F-67000 (France)

    2007-04-01

    Isolated modules of mouse coactivator-associated arginine methyltransferase 1 encompassing the protein arginine N-methyltransferase catalytic domain have been overexpressed, purified and crystallized. X-ray diffraction data have been collected and have enabled determination of the structures by multiple isomorphous replacement using anomalous scattering. Coactivator-associated arginine methyltransferase 1 (CARM1) plays a crucial role in gene expression as a coactivator of several nuclear hormone receptors and also of non-nuclear receptor systems. Its recruitment by the transcriptional machinery induces protein methylation, leading to chromatin remodelling and gene activation. CARM1{sub 28–507} and two structural states of CARM1{sub 140–480} were expressed, purified and crystallized. Crystals of CARM1{sub 28–507} belong to space group P6{sub 2}22, with unit-cell parameters a = b = 136.0, c = 125.3 Å; they diffract to beyond 2.5 Å resolution using synchrotron radiation and contain one monomer in the asymmetric unit. The structure of CARM1{sub 28–507} was solved by multiple isomorphous replacement and anomalous scattering methods. Crystals of apo CARM1{sub 140–480} belong to space group I222, with unit-cell parameters a = 74.6, b = 99.0, c = 207.4 Å; they diffract to beyond 2.7 Å resolution and contain two monomers in the asymmetric unit. Crystals of CARM1{sub 140–480} in complex with S-adenosyl-l-homocysteine belong to space P2{sub 1}2{sub 1}2, with unit-cell parameters a = 74.6, b = 98.65, c = 206.08 Å; they diffract to beyond 2.6 Å resolution and contain four monomers in the asymmetric unit. The structures of apo and holo CARM1{sub 140–480} were solved by molecular-replacement techniques from the structure of CARM1{sub 28–507}.

  14. A Comparison of Image Quality and Radiation Exposure Between the Mini C-Arm and the Standard C-Arm.

    Science.gov (United States)

    van Rappard, Juliaan R M; Hummel, Willy A; de Jong, Tijmen; Mouës, Chantal M

    2018-04-01

    The use of intraoperative fluoroscopy has become mandatory in osseous hand surgery. Due to its overall practicality, the mini C-arm has gained popularity among hand surgeons over the standard C-arm. This study compares image quality and radiation exposure for patient and staff between the mini C-arm and the standard C-arm, both with flat panel technology. An observer-based subjective image quality study was performed using a contrast detail (CD) phantom. Five independent observers were asked to determine the smallest circles discernable to them. The results were plotted in a graph, forming a CD curve. From each curve, an image quality figure (IQF) was derived. A lower IQF equates to a better image quality. The patients' entrance skin dose was measured, and to obtain more information about the staff exposure dose, a perspex hand phantom was used. The scatter radiation was measured at various distances and angles relative to a central point on the detector. The IQF was significantly lower for the mini C-arm resulting in a better image quality. The patients' entrance dose was 10 times higher for the mini C-arm as compared with the standard C-arm, and the scatter radiation threefold. Due to its improved image quality and overall practicality, the mini C-arm is recommended for hand surgical procedures. To ensure that the surgeons' radiation exposure is not exceeding the safety limits, monitoring radiation exposure using mini C-arms with flat panel technology during surgery should be done in a future clinical study.

  15. Ray tracing reconstruction investigation for C-arm tomosynthesis

    Science.gov (United States)

    Malalla, Nuhad A. Y.; Chen, Ying

    2016-04-01

    C-arm tomosynthesis is a three dimensional imaging technique. Both x-ray source and the detector are mounted on a C-arm wheeled structure to provide wide variety of movement around the object. In this paper, C-arm tomosynthesis was introduced to provide three dimensional information over a limited view angle (less than 180o) to reduce radiation exposure and examination time. Reconstruction algorithms based on ray tracing method such as ray tracing back projection (BP), simultaneous algebraic reconstruction technique (SART) and maximum likelihood expectation maximization (MLEM) were developed for C-arm tomosynthesis. C-arm tomosynthesis projection images of simulated spherical object were simulated with a virtual geometric configuration with a total view angle of 40 degrees. This study demonstrated the sharpness of in-plane reconstructed structure and effectiveness of removing out-of-plane blur for each reconstruction algorithms. Results showed the ability of ray tracing based reconstruction algorithms to provide three dimensional information with limited angle C-arm tomosynthesis.

  16. Prostate implant reconstruction from C-arm images with motion-compensated tomosynthesis

    International Nuclear Information System (INIS)

    Dehghan, Ehsan; Moradi, Mehdi; Wen, Xu; French, Danny; Lobo, Julio; Morris, W. James; Salcudean, Septimiu E.; Fichtinger, Gabor

    2011-01-01

    Purpose: Accurate localization of prostate implants from several C-arm images is necessary for ultrasound-fluoroscopy fusion and intraoperative dosimetry. The authors propose a computational motion compensation method for tomosynthesis-based reconstruction that enables 3D localization of prostate implants from C-arm images despite C-arm oscillation and sagging. Methods: Five C-arm images are captured by rotating the C-arm around its primary axis, while measuring its rotation angle using a protractor or the C-arm joint encoder. The C-arm images are processed to obtain binary seed-only images from which a volume of interest is reconstructed. The motion compensation algorithm, iteratively, compensates for 2D translational motion of the C-arm by maximizing the number of voxels that project on a seed projection in all of the images. This obviates the need for C-arm full pose tracking traditionally implemented using radio-opaque fiducials or external trackers. The proposed reconstruction method is tested in simulations, in a phantom study and on ten patient data sets. Results: In a phantom implanted with 136 dummy seeds, the seed detection rate was 100% with a localization error of 0.86 ± 0.44 mm (Mean ± STD) compared to CT. For patient data sets, a detection rate of 99.5% was achieved in approximately 1 min per patient. The reconstruction results for patient data sets were compared against an available matching-based reconstruction method and showed relative localization difference of 0.5 ± 0.4 mm. Conclusions: The motion compensation method can successfully compensate for large C-arm motion without using radio-opaque fiducial or external trackers. Considering the efficacy of the algorithm, its successful reconstruction rate and low computational burden, the algorithm is feasible for clinical use.

  17. Prostate implant reconstruction from C-arm images with motion-compensated tomosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Dehghan, Ehsan; Moradi, Mehdi; Wen, Xu; French, Danny; Lobo, Julio; Morris, W. James; Salcudean, Septimiu E.; Fichtinger, Gabor [School of Computing, Queen' s University, Kingston, Ontario K7L-3N6 (Canada); Department of Electrical and Computer Engineering, University of British Columbia, Vancouver, British Columbia V6T-1Z4 (Canada); Vancouver Cancer Centre, Vancouver, British Columbia V5Z-1E6 (Canada); Department of Electrical and Computer Engineering, University of British Columbia, Vancouver, British Columbia V6T-1Z4 (Canada); School of Computing, Queen' s University, Kingston, Ontario K7L-3N6 (Canada)

    2011-10-15

    Purpose: Accurate localization of prostate implants from several C-arm images is necessary for ultrasound-fluoroscopy fusion and intraoperative dosimetry. The authors propose a computational motion compensation method for tomosynthesis-based reconstruction that enables 3D localization of prostate implants from C-arm images despite C-arm oscillation and sagging. Methods: Five C-arm images are captured by rotating the C-arm around its primary axis, while measuring its rotation angle using a protractor or the C-arm joint encoder. The C-arm images are processed to obtain binary seed-only images from which a volume of interest is reconstructed. The motion compensation algorithm, iteratively, compensates for 2D translational motion of the C-arm by maximizing the number of voxels that project on a seed projection in all of the images. This obviates the need for C-arm full pose tracking traditionally implemented using radio-opaque fiducials or external trackers. The proposed reconstruction method is tested in simulations, in a phantom study and on ten patient data sets. Results: In a phantom implanted with 136 dummy seeds, the seed detection rate was 100% with a localization error of 0.86 {+-} 0.44 mm (Mean {+-} STD) compared to CT. For patient data sets, a detection rate of 99.5% was achieved in approximately 1 min per patient. The reconstruction results for patient data sets were compared against an available matching-based reconstruction method and showed relative localization difference of 0.5 {+-} 0.4 mm. Conclusions: The motion compensation method can successfully compensate for large C-arm motion without using radio-opaque fiducial or external trackers. Considering the efficacy of the algorithm, its successful reconstruction rate and low computational burden, the algorithm is feasible for clinical use.

  18. Differential Expression of Cysteine Dioxygenase 1 in Complex Karyotype Liposarcomas

    Directory of Open Access Journals (Sweden)

    Mohammed Shaker

    2014-01-01

    Full Text Available Altered cysteine dioxygenase 1 (CDO1 gene expression has been observed in several cancers but has not yet been investigated in liposarcomas. The aim of this study was to evaluate CDO1 expression in a cohort of liposarcomas and to determine its association with clinicopathological features. Existing microarray data indicated variable CDO1 expression in liposarcoma subtypes. CDO1 mRNA from a larger cohort of liposarcomas was quantified by real time-PCR, and CDO1 protein expression was determined by immunohistochemistry (IHC in more than 300 tumor specimens. Well-differentiated liposarcomas (WDLSs had significantly higher CDO1 gene expression and protein levels than dedifferentiated liposarcomas (DDLSs ( P < 0.001. Location of the tumor was not predictive of the expression level of CDO1 mRNA in any histological subtype of liposarcoma. Recurrent tumors did not show any difference in CDO1 expression when compared to primary tumors. CDO1 expression was upregulated as human mesenchymal stem cells (hMSCs undergo differentiation into mature adipocytes. Our results suggest that CDO1 is a marker of liposarcoma progression and adipogenic differentiation.

  19. Development of the OPESCOPE mobile C-arm system

    International Nuclear Information System (INIS)

    Tsuji, Hisao; Kadowaki, Toshio; Shimizu, Yasumitsu

    1994-01-01

    A new mobile C-arm X-ray fluoroscopy system called the 'OPESCOPE' equipped with a CCD TV camera and high-definition Image Intensifier has been developed. All the cables for the I.I. and X-ray generator are held inside the C-arm to prevent interference with operation and the C-arm is locked electromagnetically. Moreover, the C-arm is spring counterbalanced in the vertical motion axis. These features enable smooth positioning and uncluttered operation. The X-ray generator uses a high-frequency inverter designed to assure noiseless operation and a compact size. With the new DFS-700 videoprocessor unit being combined, clearer, more informative images can be obtained. In addition to its inherent portability this unit can be upgraded in DSA function to allow angiographic examinations in the surgical theater. (author)

  20. C-arm CT for chemo-embolization of liver tumors

    International Nuclear Information System (INIS)

    Huppert, P.E.; Firlbeck, G.; Meissner, O.A.; Wietholtz, H.

    2009-01-01

    Local efficacy of transarterial chemo-embolization (TACE) is enhanced if selective treatment is performed. Selectivity of TACE mainly depends on vascular anatomy but also on the identification and catheterization of tumor feeding arteries. Correlation of vascular territories and target tumor volume in angiographic projection images is more difficult if tumors are not hypervascularized and contrast of liver parenchyma is inhomogeneous. C-arm CT offers the option of selective perfusion imaging via tumor-feeding arteries. This allows the comparison of perfusion images and baseline cross-sectional imaging to evaluate if tumors are covered completely by local treatment and to change the catheter position if necessary. Furthermore the uptake of embolization material, such as lipiodol can be checked by C-arm CT. In a prospective study of 75 TACE of liver tumors and liver metastases we evaluated the appropriateness of 85 catheter positions ready for delivery by perfusion C-arm CT and compared the diagnostic confidence of angiography and perfusion C-arm CT in terms of judgment of correct catheter position for the planned treatment. Diagnostic confidence was improved by perfusion C-arm CT in 55% of cases and in 11 cases (13%) catheter positions were inappropriate and had to be corrected. The reasons for catheter repositioning were incomplete coverage of the target tumor by perfusion volume (mismatch) in 6 cases, inappropriate perfusion of adjacent liver parenchyma in 2 cases and non-selective tumor perfusion via collateral arteries in 3 cases. C-arm CT allowed sufficient visualization of uptake of lipiodol in all cases evaluated. The diagnostic benefit of C-arm CT increases if tumors are treated more selectively, are not strongly hypervascular, are located centrally and if the enhancement of liver parenchyma is inhomogeneous. C-arm CT causes additional working time and contrast load, which is relatively low compared to angiography. Radiation exposure of 151 μGy per C-arm

  1. Measurements of surgeons' exposure to ionizing radiation dose: comparison of conventional and mini C-arm fluoroscopy.

    Science.gov (United States)

    Sung, K H; Min, E; Chung, C Y; Jo, B C; Park, M S; Lee, K

    2016-03-01

    This study was performed to measure the equivalent scattered radiation dose delivered to susceptible organs while simulating orthopaedic surgery using conventional and mini C-arm fluoroscopy. In addition, shielding effects on the thyroid, thymus, and gonad, and the direct exposure delivered to the patient's hands were also compared. A conventional and mini C-arms were installed in an operating room, and a hand and an operator phantom were used to simulate a patient's hand and a surgeon. Photoluminescence dosimeters were used to measure the equivalent dose by scattered radiation arriving at the thyroid, thymus, and gonad on a whole-body phantom in the position of the surgeon. Equivalent scattered radiation doses were measured in four groups: (1) unshielded conventional C-arm group; (2) unshielded mini C-arm group; (3) lead-shielded conventional C-arm group; and (4) lead-shielded mini C-arm group. Equivalent scattered radiation doses to the unshielded group were significantly lower in the mini C-arm group than those in the conventional C-arm group for all organs. The gonad in the lead-shielded conventional C-arm group showed the highest equivalent dose among operator-susceptible organs, and radiation dose was reduced by approximately 96% compared with that in the unshielded group. Scattered radiation was not detected in any susceptible organ in the lead-shielded mini C-arm group. The direct radiation dose to the hand phantom measured from the mini C-arm was significantly lower than that measured from the conventional C-arm. The results show that the equivalent scattered radiation dose to the surgeon's susceptible organs and the direct radiation dose to a patient's hand can be decreased significantly by using a mini C-arm rather than a conventional C-arm. However, protective lead garments, such as a thyroid shield and apron, should be applied to minimize radiation exposure to susceptible organs, even during use of mini C-arm fluoroscopy. © The Author(s) 2015.

  2. Reduced-dose C-arm computed tomography applications at a pediatric institution

    Energy Technology Data Exchange (ETDEWEB)

    Acord, Michael; Shellikeri, Sphoorti; Vatsky, Seth; Srinivasan, Abhay; Krishnamurthy, Ganesh; Keller, Marc S.; Cahill, Anne Marie [The Children' s Hospital of Philadelphia, Department of Radiology, Philadelphia, PA (United States)

    2017-12-15

    Reduced-dose C-arm computed tomography (CT) uses flat-panel detectors to acquire real-time 3-D images in the interventional radiology suite to assist with anatomical localization and procedure planning. To describe dose-reduction techniques for C-arm CT at a pediatric institution and to provide guidance for implementation. We conducted a 5-year retrospective study on procedures using an institution-specific reduced-dose protocol: 5 or 8 s Dyna Rotation, 248/396 projection images/acquisition and 0.1-0.17 μGy/projection dose at the detector with 0.3/0.6/0.9-mm copper (Cu) filtration. We categorized cases by procedure type and average patient age and calculated C-arm CT and total dose area product (DAP). Two hundred twenty-two C-arm CT-guided procedures were performed with a dose-reduction protocol. The most common procedures were temporomandibular and sacroiliac joint injections (48.6%) and sclerotherapy (34.2%). C-arm CT was utilized in cases of difficult percutaneous access in less common applications such as cecostomy and gastrostomy placement, foreign body retrieval and thoracentesis. C-arm CT accounted for between 9.9% and 80.7% of the total procedural DAP. Dose-reducing techniques can preserve image quality for intervention while reducing radiation exposure to the child. This technology has multiple applications within pediatric interventional radiology and can be considered as an adjunctive imaging tool in a variety of procedures, particularly when percutaneous access is challenging despite routine fluoroscopic or ultrasound guidance. (orig.)

  3. Registration of 2D C-Arm and 3D CT Images for a C-Arm Image-Assisted Navigation System for Spinal Surgery

    Directory of Open Access Journals (Sweden)

    Chih-Ju Chang

    2015-01-01

    Full Text Available C-Arm image-assisted surgical navigation system has been broadly applied to spinal surgery. However, accurate path planning on the C-Arm AP-view image is difficult. This research studies 2D-3D image registration methods to obtain the optimum transformation matrix between C-Arm and CT image frames. Through the transformation matrix, the surgical path planned on preoperative CT images can be transformed and displayed on the C-Arm images for surgical guidance. The positions of surgical instruments will also be displayed on both CT and C-Arm in the real time. Five similarity measure methods of 2D-3D image registration including Normalized Cross-Correlation, Gradient Correlation, Pattern Intensity, Gradient Difference Correlation, and Mutual Information combined with three optimization methods including Powell’s method, Downhill simplex algorithm, and genetic algorithm are applied to evaluate their performance in converge range, efficiency, and accuracy. Experimental results show that the combination of Normalized Cross-Correlation measure method with Downhill simplex algorithm obtains maximum correlation and similarity in C-Arm and Digital Reconstructed Radiograph (DRR images. Spine saw bones are used in the experiment to evaluate 2D-3D image registration accuracy. The average error in displacement is 0.22 mm. The success rate is approximately 90% and average registration time takes 16 seconds.

  4. C-arm CT for planning and guidance of extrahepatic embolizations

    International Nuclear Information System (INIS)

    Wacker, F.K.; Meissner, O.A.; Meyer, B.C.

    2009-01-01

    Interventional radiological vascular embolizations are complex procedures that require exact imaging of the target region to facilitate safe and effective treatment. The purpose of this paper is to present the technique and feasibility of flat detector C-arm computed tomography (C-arm CT) for control and guidance of extrahepatic abdominal embolization procedures. C-arm CT images can provide important information on both vascular and cross-sectional anatomy of the target region, help in determining therapy endpoints and provide follow-up during and immediately after the abdominal interventions.The cases presented demonstrate that C-arm CT images are beneficial for abdominal embolization procedures and facilitate precise treatment. (orig.) [de

  5. N-Myc Differentially Regulates Expression of MXI1 Isoforms in Neuroblastoma1

    Science.gov (United States)

    Armstrong, Michael B; Mody, Rajen J; Ellis, D Christian; Hill, Adam B; Erichsen, David A; Wechsler, Daniel S

    2013-01-01

    Amplification of the MYCN proto-oncogene is associated with a poor prognosis in patients with metastatic neuroblastoma (NB). MYCN encodes the N-Myc protein, a transcriptional regulator that dimerizes with the Max transcription factor, binds to E-box DNA sequences, and regulates genes involved in cell growth and apoptosis. Overexpression of N-Myc leads to transcriptional activation and an increase in NB cell proliferation. Mxi1, a member of the Myc family of transcriptional regulators, also binds to Max. However, Mxi1 is a transcriptional repressor and inhibits proliferation of NB cells, suggesting that Mxi1 functions as an N-Myc antagonist. Our laboratory previously identified Mxi1-0, an alternatively transcribed Mxi1 isoform. Mxi1-0 has properties distinct from those of Mxi1; in contrast to Mxi1, Mxi1-0 is unable to suppress c-Myc-dependent transcription. We now show that Mxi1-0 expression increases in response to MYCN overexpression in NB cells, with a positive correlation between MYCN and MXI1-0 RNA levels. We also show that N-Myc expression differentially regulates the MXI1 and MXI1-0 promoters: Increased MYCN expression suppresses MXI1 promoter activity while enhancing transcription through the MXI1-0 promoter. Finally, induction of Mxi1-0 leads to increased proliferation, whereas expression of Mxi1 inhibits cell growth, indicating differential roles for these two proteins. These data suggest that N-Myc differentially regulates the expression of MXI1 and MXI1-0 and can alter the balance between the two transcription factors. Furthermore, MXI1-0 appears to be a downstream target of MYCN-dependent signaling pathways and may contribute to N-Myc-dependent cell growth and proliferation. PMID:24403858

  6. Optimal C-arm angulation during transcatheter aortic valve replacement: Accuracy of a rotational C-arm computed tomography based three dimensional heart model.

    Science.gov (United States)

    Veulemans, Verena; Mollus, Sabine; Saalbach, Axel; Pietsch, Max; Hellhammer, Katharina; Zeus, Tobias; Westenfeld, Ralf; Weese, Jürgen; Kelm, Malte; Balzer, Jan

    2016-10-26

    To investigate the accuracy of a rotational C-arm CT-based 3D heart model to predict an optimal C-arm configuration during transcatheter aortic valve replacement (TAVR). Rotational C-arm CT (RCT) under rapid ventricular pacing was performed in 57 consecutive patients with severe aortic stenosis as part of the pre-procedural cardiac catheterization. With prototype software each RCT data set was segmented using a 3D heart model. From that the line of perpendicularity curve was obtained that generates a perpendicular view of the aortic annulus according to the right-cusp rule. To evaluate the accuracy of a model-based overlay we compared model- and expert-derived aortic root diameters. For all 57 patients in the RCT cohort diameter measurements were obtained from two independent operators and were compared to the model-based measurements. The inter-observer variability was measured to be in the range of 0°-12.96° of angular C-arm displacement for two independent operators. The model-to-operator agreement was 0°-13.82°. The model-based and expert measurements of aortic root diameters evaluated at the aortic annulus ( r = 0.79, P optimal C-arm configuration, potentially simplifying current clinical workflows before and during TAVR.

  7. Virtual Reality Aided Positioning of Mobile C-Arms for Image-Guided Surgery

    Directory of Open Access Journals (Sweden)

    Zhenzhou Shao

    2014-06-01

    Full Text Available For the image-guided surgery, the positioning of mobile C-arms is a key technique to take X-ray images in a desired pose for the confirmation of current surgical outcome. Unfortunately, surgeons and patient often suffer the radiation exposure due to the repeated imaging when the X-ray image is of poor quality or not captured at a good projection view. In this paper, a virtual reality (VR aided positioning method for the mobile C-arm is proposed by the alignment of 3D surface model of region of interest and preoperative anatomy, so that a reference pose of the mobile C-arm with respect to the inside anatomy can be figured out from outside view. It allows a one-time imaging from the outside view to greatly reduce the additional radiation exposure. To control the mobile C-arm to the desired pose, the mobile C-arm is modeled as a robotic arm with a movable base. Experiments were conducted to evaluate the accuracy of appearance model and precision of mobile C-arm positioning. The appearance model was reconstructed with the average error of 2.16 mm. One-time imaging of mobile C-arm was achieved, and new modeling of mobile C-arm with 8 DoFs enlarges the working space in the operating room.

  8. Measurements of surgeons' exposure to ionizing radiation dose during intraoperative use of C-arm fluoroscopy.

    Science.gov (United States)

    Lee, Kisung; Lee, Kyoung Min; Park, Moon Seok; Lee, Boram; Kwon, Dae Gyu; Chung, Chin Youb

    2012-06-15

    Measurement of radiation dose from C-arm fluoroscopy during a simulated intraoperative use in spine surgery. OBJECTIVE.: To investigate scatter radiation doses to specific organs of surgeons during intraoperative use of C-arm fluoroscopy in spine surgery and to provide practical intraoperative guidelines. There have been studies that reported the radiation dose of C-arm fluoroscopy in various procedures. However, radiation doses to surgeons' specific organs during spine surgery have not been sufficiently examined, and the practical intraoperative radioprotective guidelines have not been suggested. Scatter radiation dose (air kerma rate) was measured during the use of a C-arm on an anthropomorphic chest phantom on an operating table. Then, a whole body anthropomorphic phantom was located besides the chest phantom to simulate a surgeon, and scatter radiation doses to specific organs (eye, thyroid, breast, and gonads) and direct radiation dose to the surgeon's hand were measured using 4 C-arm configurations (standard, inverted, translateral, and tube translateral). The effects of rotating the surgeon's head away from the patient and of a thyroid shield were also evaluated. Scatter radiation doses decreased as distance from the patient increased during C-arm fluoroscopy use. The standard and translateral C-arm configurations caused lower scatter doses to sensitive organs than inverted and tube translateral configurations. Scatter doses were highest for breast and lowest for gonads. The use of a thyroid shield and rotating the surgeon's head away from the patient reduced scatter radiation dose to the surgeon's thyroid and eyes. The direct radiation dose was at least 20 times greater than scatter doses to sensitive organs. The following factors could reduce radiation exposure during intraoperative use of C-arm; (1) distance from the patient, (2) C-arm configuration, (3) radioprotective equipments, (4) rotating the surgeons' eyes away from the patient, and (5) avoiding

  9. Differential expression of parental alleles of BRCA1 in human preimplantation embryos

    Science.gov (United States)

    Tulay, Pinar; Doshi, Alpesh; Serhal, Paul; SenGupta, Sioban B

    2017-01-01

    Gene expression from both parental genomes is required for completion of embryogenesis. Differential methylation of each parental genome has been observed in mouse and human preimplantation embryos. It is possible that these differences in methylation affect the level of gene transcripts from each parental genome in early developing embryos. The aim of this study was to investigate if there is a parent-specific pattern of BRCA1 expression in human embryos and to examine if this affects embryo development when the embryo carries a BRCA1 or BRCA2 pathogenic mutation. Differential parental expression of ACTB, SNRPN, H19 and BRCA1 was semi-quantitatively analysed by minisequencing in 95 human preimplantation embryos obtained from 15 couples undergoing preimplantation genetic diagnosis. BRCA1 was shown to be differentially expressed favouring the paternal transcript in early developing embryos. Methylation-specific PCR showed a variable methylation profile of BRCA1 promoter region at different stages of embryonic development. Embryos carrying paternally inherited BRCA1 or 2 pathogenic variants were shown to develop more slowly compared with the embryos with maternally inherited BRCA1 or 2 pathogenic mutations. This study suggests that differential demethylation of the parental genomes can influence the early development of preimplantation embryos. Expression of maternal and paternal genes is required for the completion of embryogenesis. PMID:27677417

  10. Percutaneous sacroplasty with the use of C-arm flat-panel detector CT: technical feasibility and clinical outcome

    International Nuclear Information System (INIS)

    Kang, Sung Eun; Lee, Joon Woo; Kim, Joo Hyung; Kang, Heung Sik; Park, Kun Woo; Yeom, Jin S.

    2011-01-01

    Sacroplasty for sacral insufficiency fractures (SIFs) has been performed mostly under computed tomography (CT) or fluoroscopy guidance. The purposes of this study are to describe technical tips and clinical outcomes of sacroplasty under C-arm flat panel detector CT (C-arm CT) guidance, and to compare the cement distributions shown on C-arm CT with those on multi-detector CT (MDCT). This study consisted of patients who underwent sacroplasty for SIF using C-arm CT from May 2006 to May 2009. Technical success was assessed in terms of cement filling and leakage. Clinical outcome was assessed at short-term (less than 1 month) and long-term (more than 1 month) follow-up using a four-grade patient satisfaction scale: poor, fair, good, and excellent. After sacroplasty, all patients underwent MDCT and three radiologists compared MDCT images with C-arm CT images in consensus, focusing on the cement distribution and cement leakage. Sacroplasties were performed on both sacral alae in all 8 patients (male:female = 2:6, mean age = 76.9, range = 63-82). The technical success rate was 100%. At short-term follow up, 6 patients (87.5%) reported significant improvement. Five patients (62.5%) were available for long-term follow-up and all 5 patients reported a reduced pain and an improved ability to ambulate. Using MDCT as the standard of reference, the cement distribution was visualized equally well by C-arm CT. Sacroplasty under C-arm CT showed excellent technical success and good clinical outcome. There was an excellent correlation between C-arm CT and MDCT in evaluating cement distribution and cement leakage. (orig.)

  11. Percutaneous sacroplasty with the use of C-arm flat-panel detector CT: technical feasibility and clinical outcome

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Sung Eun; Lee, Joon Woo; Kim, Joo Hyung; Kang, Heung Sik [Seoul National University Bundang Hospital, Department of Radiology, Gyeonggi-do (Korea, Republic of); Park, Kun Woo; Yeom, Jin S. [Seoul National University Bundang Hospital, Department of Orthopaedic Surgery, Gyeonggi-do (Korea, Republic of)

    2011-04-15

    Sacroplasty for sacral insufficiency fractures (SIFs) has been performed mostly under computed tomography (CT) or fluoroscopy guidance. The purposes of this study are to describe technical tips and clinical outcomes of sacroplasty under C-arm flat panel detector CT (C-arm CT) guidance, and to compare the cement distributions shown on C-arm CT with those on multi-detector CT (MDCT). This study consisted of patients who underwent sacroplasty for SIF using C-arm CT from May 2006 to May 2009. Technical success was assessed in terms of cement filling and leakage. Clinical outcome was assessed at short-term (less than 1 month) and long-term (more than 1 month) follow-up using a four-grade patient satisfaction scale: poor, fair, good, and excellent. After sacroplasty, all patients underwent MDCT and three radiologists compared MDCT images with C-arm CT images in consensus, focusing on the cement distribution and cement leakage. Sacroplasties were performed on both sacral alae in all 8 patients (male:female = 2:6, mean age = 76.9, range = 63-82). The technical success rate was 100%. At short-term follow up, 6 patients (87.5%) reported significant improvement. Five patients (62.5%) were available for long-term follow-up and all 5 patients reported a reduced pain and an improved ability to ambulate. Using MDCT as the standard of reference, the cement distribution was visualized equally well by C-arm CT. Sacroplasty under C-arm CT showed excellent technical success and good clinical outcome. There was an excellent correlation between C-arm CT and MDCT in evaluating cement distribution and cement leakage. (orig.)

  12. The expression and activity of thioredoxin reductase 1 splice variants v1 and v2 regulate the expression of genes associated with differentiation and adhesion

    Science.gov (United States)

    Nalvarte, Ivan; Damdimopoulos, Anastasios E.; Rüegg, Joëlle; Spyrou, Giannis

    2015-01-01

    The mammalian redox-active selenoprotein thioredoxin reductase (TrxR1) is a main player in redox homoeostasis. It transfers electrons from NADPH to a large variety of substrates, particularly to those containing redox-active cysteines. Previously, we reported that the classical form of cytosolic TrxR1 (TXNRD1_v1), when overexpressed in human embryonic kidney cells (HEK-293), prompted the cells to undergo differentiation [Nalvarte et al. (2004) J. Biol. Chem. 279, 54510–54517]. In the present study, we show that several genes associated with differentiation and adhesion are differentially expressed in HEK-293 cells stably overexpressing TXNRD1_v1 compared with cells expressing its splice variant TXNRD1_v2. Overexpression of these two splice forms resulted in distinctive effects on various aspects of cellular functions including gene regulation patterns, alteration of growth rate, migration and morphology and susceptibility to selenium-induced toxicity. Furthermore, differentiation of the neuroblastoma cell line SH-SY5Y induced by all-trans retinoic acid (ATRA) increased both TXNRD1_v1 and TXNRD1_v2 expressions along with several of the identified genes associated with differentiation and adhesion. Selenium supplementation in the SH-SY5Y cells also induced a differentiated morphology and changed expression of the adhesion protein fibronectin 1 and the differentiation marker cadherin 11, as well as different temporal expression of the studied TXNRD1 variants. These data suggest that both TXNRD1_v1 and TXNRD1_v2 have distinct roles in differentiation, possibly by altering the expression of the genes associated with differentiation, and further emphasize the importance in distinguishing each unique action of different TrxR1 splice forms, especially when studying the gene silencing or knockout of TrxR1. PMID:26464515

  13. Cyclin D1 Expression and Its Correlation with Histopathological Differentiation in Oral Squamous Cell Carcinoma

    Directory of Open Access Journals (Sweden)

    Swati Saawarn

    2012-01-01

    Full Text Available Background. Cyclin D1 regulates the G1 to S transition of cell cycle. Its deregulation or overexpression may lead to disturbance in the normal cell cycle control and tumour formation. Overexpression of cyclin D1 has been reported in various tumors of diverse histogenesis. This case control retrospective study was carried out to study the immunohistochemical reactivity and expression of cyclin D1 and its association with site, clinical staging, and histopathological differentiation of oral squamous cell carcinoma (OSCC. Methods. Forty formalin-fixed paraffin-embedded tissue blocks of biopsy specimens of oral squamous cell carcinoma were immunohistochemically evaluated for expression of cyclin D1. Results. Cyclin D1 expression was seen in 45% cases of OSCC. It did not correlate with site and clinical staging. Highest expression was seen in well-differentiated, followed by moderately differentiated, and poorly differentiated squamous cell carcinomas, with a statistically significant correlation. Conclusion. Cyclin D1 expression significantly increases with increase in differentiation.

  14. C-arm cone beam computed tomography needle path overlay for fluoroscopic guided vertebroplasty.

    Science.gov (United States)

    Tam, Alda L; Mohamed, Ashraf; Pfister, Marcus; Chinndurai, Ponraj; Rohm, Esther; Hall, Andrew F; Wallace, Michael J

    2010-05-01

    Retrospective review. To report our early clinical experience using C-arm cone beam computed tomography (C-arm CBCT) with fluoroscopic overlay for needle guidance during vertebroplasty. C-arm CBCT is advanced three-dimensional (3-D) imaging technology that is currently available on state-of-the-art flat panel based angiography systems. The imaging information provided by C-arm CBCT allows for the acquisition and reconstruction of "CT-like" images in flat panel based angiography/interventional suites. As part of the evolution of this technology, enhancements allowing the overlay of cross-sectional imaging information can now be integrated with real time fluoroscopy. We report our early clinical experience with C-arm CBCT with fluoroscopic overlay for needle guidance during vertebroplasty. This is a retrospective review of 10 consecutive oncology patients who underwent vertebroplasty of 13 vertebral levels using C-arm CBCT with fluoroscopic overlay for needle guidance from November 2007 to December 2008. Procedural data including vertebral level, approach (transpedicular vs. extrapedicular), access (bilateral vs. unilateral) and complications were recorded. Technical success with the overlay technology was assessed based on accuracy which consisted of 4 measured parameters: distance from target to needle tip, distance from planned path to needle tip, distance from midline to needle tip, and distance from the anterior 1/3 of the vertebral body to needle tip. Success within each parameter required that the distance between the needle tip and parameter being evaluated be no more than 5 mm on multiplanar CBCT or fluoroscopy. Imaging data for 12 vertebral levels was available for review. All vertebral levels were treated using unilateral access and 9 levels were treated with an extrapedicular approach. Technical success rates were 92% for both distance from planned path and distance from midline to final needle tip, 100% when distance from needle tip to the anterior 1

  15. IGF1 regulates RUNX1 expression via IRS1/2: Implications for antler chondrocyte differentiation

    OpenAIRE

    Yang, Zhan-Qing; Zhang, Hong-Liang; Duan, Cui-Cui; Geng, Shuang; Wang, Kai; Yu, Hai-Fan; Yue, Zhan-Peng; Guo, Bin

    2017-01-01

    Although IGF1 is important for the proliferation and differentiation of chondrocytes, its underlying molecular mechanism is still unknown. Here we addressed the physiologic function of IGF1 in antler cartilage and explored the interplay of IGF1, IRS1/2 and RUNX1 in chondrocyte differentiation. The results showed that IGF1 was highly expressed in antler chondrocytes. Exogenous rIGF1 could increase the proliferation of chondrocytes and cell proportion in the S phase, whereas IGF1R inhibitor PQ4...

  16. Angiography-based C-arm CT for the assessment of extrahepatic shunting before radioembolization

    International Nuclear Information System (INIS)

    Heusner, Till Alexander; Hahn, S.; Forsting, M.; Antoch, G.; Hamami, M.E.; Poeppel, T.; Bockisch, A.; Ertle, J.; Hilgard, P.

    2010-01-01

    Purpose: to retrospectively assess the accuracy of angiography-based C-arm CT for the detection of extrahepatic shunting before SIRT. Materials and methods: 30 patients (mean age: 64 ± 12 years) with hypervascularized hepatic tumors underwent hepatic angiography, coil embolization of gastrointestinal collaterals and 99mTc-macroaggregated albumin (MAA) SPECT/CT before SIRT. Before MAA injection via a microcatheter from the intended treatment position, an angiography and angiography-based C-arm CT (XperCT trademark, Philips Healthcare) were acquired. Angiographies and XperCT trademark were performed from 48 microcatheter positions followed by MAA injections and MAA-SPECT/CT. MAA-SPECT/CT served as the reference standard for determining the accuracy of hepatic arteriography and C-arm CT for the detection of extrahepatic shunting. Results: MAA-SPECT/CT revealed extrahepatic shunting in 5 patients (17%). Hepatic arteriography yielded a true negative in 22 (73%), a false negative in 5 (17%), and an unclear result in 3 patients (10%). C-arm CT yielded a true positive in 3 (10%), true negative in 24 (80%), false positive in 1 (3%), and false negative in 2 patients (7%). The specificity and the NPV of hepatic arteriography for the detection of extrahepatic shunting were 88% and 81%, respectively. For C-arm CT the sensitivity, specificity, PPV, NPV, and accuracy for the detection of extrahepatic shunting were 60%, 96%, 75%, 92%, and 90%, respectively. Conclusion: C-arm CT offers additional information to angiography when assessing SIRT patients for extrahepatic shunting. More accurate detection of extrahepatic shunting may optimize the workflow in SIRT preparations by avoiding unnecessary repeat angiographies. (orig.)

  17. Interplay between H1 and HMGN epigenetically regulates OLIG1&2 expression and oligodendrocyte differentiation.

    Science.gov (United States)

    Deng, Tao; Postnikov, Yuri; Zhang, Shaofei; Garrett, Lillian; Becker, Lore; Rácz, Ildikó; Hölter, Sabine M; Wurst, Wolfgang; Fuchs, Helmut; Gailus-Durner, Valerie; de Angelis, Martin Hrabe; Bustin, Michael

    2017-04-07

    An interplay between the nucleosome binding proteins H1 and HMGN is known to affect chromatin dynamics, but the biological significance of this interplay is still not clear. We find that during embryonic stem cell differentiation loss of HMGNs leads to down regulation of genes involved in neural differentiation, and that the transcription factor OLIG2 is a central node in the affected pathway. Loss of HMGNs affects the expression of OLIG2 as well as that of OLIG1, two transcription factors that are crucial for oligodendrocyte lineage specification and nerve myelination. Loss of HMGNs increases the chromatin binding of histone H1, thereby recruiting the histone methyltransferase EZH2 and elevating H3K27me3 levels, thus conferring a repressive epigenetic signature at Olig1&2 sites. Embryonic stem cells lacking HMGNs show reduced ability to differentiate towards the oligodendrocyte lineage, and mice lacking HMGNs show reduced oligodendrocyte count and decreased spinal cord myelination, and display related neurological phenotypes. Thus, the presence of HMGN proteins is required for proper expression of neural differentiation genes during embryonic stem cell differentiation. Specifically, we demonstrate that the dynamic interplay between HMGNs and H1 in chromatin epigenetically regulates the expression of OLIG1&2, thereby affecting oligodendrocyte development and myelination, and mouse behavior. Published by Oxford University Press on behalf of Nucleic Acids Research 2016.

  18. En introduktion til CARM: The Conversation Analytic Role-Play Method

    DEFF Research Database (Denmark)

    Lange, Simon Bierring

    2014-01-01

    Dette working paper er en introduktion til og kort diskussion af workshopmetoden Conversation Analytic Role-Play Method (CARM), som er en metode udviklet til at afholde workshops på baggrund af resultater fra interaktionsanalyser. Artiklen er den første introduktion til CARM-metoden på dansk, og...

  19. N-Myc Differentially Regulates Expression of MXI1 Isoforms in Neuroblastoma

    Directory of Open Access Journals (Sweden)

    Michael B. Armstrong

    2013-12-01

    Full Text Available Amplification of the MYCN proto-oncogene is associated with a poor prognosis in patients with metastatic neuroblastoma (NB. MYCN encodes the N-Myc protein, a transcriptional regulator that dimerizes with the Max transcription factor, binds to E-box DNA sequences, and regulates genes involved in cell growth and apoptosis. Overexpression of N-Myc leads to transcriptional activation and an increase in NB cell proliferation. Mxi1, a member of the Myc family of transcriptional regulators, also binds to Max. However, Mxi1 is a transcriptional repressor and inhibits proliferation of NB cells, suggesting that Mxi1 functions as an N-Myc antagonist. Our laboratory previously identified Mxi1-0, an alternatively transcribed Mxi1 isoform. Mxi1-0 has properties distinct from those of Mxi1; in contrast to Mxi1, Mxi1-0 is unable to suppress c-Myc-dependent transcription. We now show that Mxi1-0 expression increases in response to MYCN overexpression in NB cells, with a positive correlation between MYCN and MXI1-0 RNA levels. We also show that N-Myc expression differentially regulates the MXI1 and MXI1-0 promoters: Increased MYCN expression suppresses MXI1 promoter activity while enhancing transcription through the MXI1-0 promoter. Finally, induction of Mxi1-0 leads to increased proliferation, whereas expression of Mxi1 inhibits cell growth, indicating differential roles for these two proteins. These data suggest that N-Myc differentially regulates the expression of MXI1 and MXI1-0 and can alter the balance between the two transcription factors. Furthermore, MXI1-0 appears to be a downstream target of MYCN-dependent signaling pathways and may contribute to N-Myc-dependent cell growth and proliferation.

  20. Quantitative analysis of differentially expressed saliva proteins in human immunodeficiency virus type 1 (HIV-1) infected individuals

    International Nuclear Information System (INIS)

    Zhang, Nawei; Zhang, Zhenyu; Feng, Shan; Wang, Qingtao; Malamud, Daniel; Deng, Haiteng

    2013-01-01

    Highlights: ► A high-throughput method for profiling and quantification of the differentially expressed proteins in saliva samples was developed. ► Identified that DMBT1, S100A7, S100A8, S100A9 and alpha defensin were up-regulated in saliva from HIV-1 seropositive patients. ► Established analytical strategies are translatable to the clinical setting. -- Abstract: In the present study, we have established a new methodology to analyze saliva proteins from HIV-1-seropositive patients before highly active antiretroviral therapy (HAART) and seronegative controls. A total of 593 and 601 proteins were identified in the pooled saliva samples from 5 HIV-1 subjects and 5 controls, respectively. Forty-one proteins were found to be differentially expressed. Bioinformatic analysis of differentially expressed salivary proteins showed an increase of antimicrobial proteins and decrease of protease inhibitors upon HIV-1 infection. To validate some of these differentially expressed proteins, a high-throughput quantitation method was established to determine concentrations of 10 salivary proteins in 40 individual saliva samples from 20 seropositive patients before HAART and 20 seronegative subjects. This method was based on limited protein separation within the zone of the stacking gel of the 1D SDS PAGE and using isotope-coded synthetic peptides as internal standards. The results demonstrated that a combination of protein profiling and targeted quantitation is an efficient method to identify and validate differentially expressed salivary proteins. Expression levels of members of the calcium-binding S100 protein family and deleted in malignant brain tumors 1 protein (DMBT1) were up-regulated while that of Mucin 5B was down-regulated in HIV-1 seropositive saliva samples, which may provide new perspectives for monitoring HIV-infection and understanding the mechanism of HIV-1 infectivity

  1. Quantitative analysis of differentially expressed saliva proteins in human immunodeficiency virus type 1 (HIV-1) infected individuals

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Nawei; Zhang, Zhenyu [Beijing Chaoyang Hospital Affiliated Capital Medical University, Beijing (China); Feng, Shan [MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing (China); Wang, Qingtao [Beijing Chaoyang Hospital Affiliated Capital Medical University, Beijing (China); Malamud, Daniel [NYU College of Dentistry, 345 East 24th Street, New York, NY 10010 (United States); Deng, Haiteng, E-mail: dht@mail.tsinghua.edu.cn [MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing (China)

    2013-04-24

    Highlights: ► A high-throughput method for profiling and quantification of the differentially expressed proteins in saliva samples was developed. ► Identified that DMBT1, S100A7, S100A8, S100A9 and alpha defensin were up-regulated in saliva from HIV-1 seropositive patients. ► Established analytical strategies are translatable to the clinical setting. -- Abstract: In the present study, we have established a new methodology to analyze saliva proteins from HIV-1-seropositive patients before highly active antiretroviral therapy (HAART) and seronegative controls. A total of 593 and 601 proteins were identified in the pooled saliva samples from 5 HIV-1 subjects and 5 controls, respectively. Forty-one proteins were found to be differentially expressed. Bioinformatic analysis of differentially expressed salivary proteins showed an increase of antimicrobial proteins and decrease of protease inhibitors upon HIV-1 infection. To validate some of these differentially expressed proteins, a high-throughput quantitation method was established to determine concentrations of 10 salivary proteins in 40 individual saliva samples from 20 seropositive patients before HAART and 20 seronegative subjects. This method was based on limited protein separation within the zone of the stacking gel of the 1D SDS PAGE and using isotope-coded synthetic peptides as internal standards. The results demonstrated that a combination of protein profiling and targeted quantitation is an efficient method to identify and validate differentially expressed salivary proteins. Expression levels of members of the calcium-binding S100 protein family and deleted in malignant brain tumors 1 protein (DMBT1) were up-regulated while that of Mucin 5B was down-regulated in HIV-1 seropositive saliva samples, which may provide new perspectives for monitoring HIV-infection and understanding the mechanism of HIV-1 infectivity.

  2. C-arm computed tomography for transarterial chemoperfusion and chemo-embolization of thoracic lesions; Transarterielle Chemoperfusion und -embolisation thorakaler Neoplasmen mittels C-Arm CT

    Energy Technology Data Exchange (ETDEWEB)

    Vogl, T.J.; Naguib, N.N.; Nour-Eldin, N.E.; Lehnert, T.; Mbalisike, E. [Klinikum der Johann-Wolfgang-Goethe-Universitaet, Institut fuer Diagnostische und Interventionelle Radiologie, Frankfurt am Main (Germany)

    2009-09-15

    To evaluate the role of C-arm CT for on-line fluoroscopy in regional transarterial chemoperfusion (TACP) and chemo-embolization (TPCE) of primary and secondary malignant thoracic lesions. From September 2008 to March 2009 a total of 31 patients (20 males and 11 females, average age: 61.7 years, range 22-84 years) with 53 thoracic malignant lesions from different origins (primary or secondary pulmonary carcinoma n=37, pleural mesothelioma n=16) were treated with TACP or TPCE using flat-detector CT (FD-CT). C-arm CT of the latest generation was used to localize the lesion before local chemotherapy (Artis Zeego, Siemens, Erlangen). For TACP a 220 rotation and a volume of 150 ml (ratio of 1:2 contrast/normal saline), delay 2 s and flow 12 ml/s was used. For TPCE a volume of 75 ml (ratio of 1:2 contrast/normal saline), delay 2 s and flow 3 ml/s was used. TPCE C-arm CT allowed the evaluation of the degree of perfusion of the tumor and the geographic areas of enhancement correlated with the post-interventional lipiodol uptake in MSCT. In TACP the intercostal arteries involved could be visualized and in 30% of interventions the catheter had to be repositioned for the following intervention. C-arm CT provides additional information on the vascular characteristics and perfusion of pulmonary lesions resulting in a change of interventional strategy in a relevant number of patients. (orig.) [German] Ziel der Arbeit war die Evaluation der Wertigkeit der C-Arm CT fuer die online gesteuerte regionale transarterielle Chemoperfusion (TACP) und die transpulmonale Chemoembolisation (TPCE) primaerer und sekundaerer thorakaler Neoplasmen Von September 2008 bis Maerz 2009 wurden 31 Patienten (11 Frauen/20 Maenner, Durchschnittsalter 61,7 Jahre) mit 53 unterschiedlichen thorakalen Neoplasmen (primaere oder sekundaere Lungenkarzinome [n=37], Pleuramesotheliome [n=16]) mittels TACP oder TPCE unter Einsatz der Flachdetektortechnologie (FD-CT) behandelt. Alle Behandlungen erfolgten an einem C

  3. Differential expression and interaction of host factors augment HIV-1 gene expression in neonatal mononuclear cells

    International Nuclear Information System (INIS)

    Sundaravaradan, Vasudha; Mehta, Roshni; Harris, David T.; Zack, Jerome A.; Ahmad, Nafees

    2010-01-01

    We have previously shown a higher level of HIV-1 replication and gene expression in neonatal (cord) blood mononuclear cells (CBMC) compared with adult blood cells (PBMC), which could be due to differential expression of host factors. We performed the gene expression profile of CBMC and PBMC and found that 8013 genes were expressed at higher levels in CBMC than PBMC and 8028 genes in PBMC than CBMC, including 1181 and 1414 genes upregulated after HIV-1 infection in CBMC and PBMC, respectively. Several transcription factors (NF-κB, E2F, HAT-1, TFIIE, Cdk9, Cyclin T1), signal transducers (STAT3, STAT5A) and cytokines (IL-1β, IL-6, IL-10) were upregulated in CBMC than PBMC, which are known to influence HIV-1 replication. In addition, a repressor of HIV-1 transcription, YY1, was down regulated in CBMC than PBMC and several matrix metalloproteinase (MMP-7, -12, -14) were significantly upregulated in HIV-1 infected CBMC than PBMC. Furthermore, we show that CBMC nuclear extracts interacted with a higher extent to HIV-1 LTR cis-acting sequences, including NF-κB, NFAT, AP1 and NF-IL6 compared with PBMC nuclear extracts and retroviral based short hairpin RNA (shRNA) for STAT3 and IL-6 down regulated their own and HIV-1 gene expression, signifying that these factors influenced differential HIV-1 gene expression in CBMC than PBMC.

  4. Characterization of Vitis vinifera L. Cv. Carménère grape and wine proanthocyanidins.

    Science.gov (United States)

    Fernández, Katherina; Kennedy, James A; Agosin, Eduardo

    2007-05-02

    A formal compositional study of the proanthocyanidins of Vitis vinifera L. cv. Carménère was conducted in this work. We first characterized the polymeric proanthocyanidins of Carménère skins, seeds, and wines. In addition, the wine astringency was analyzed and compared with Cabernet Sauvignon. Although Carménère wines had a higher proanthocyanidin concentration and mean degree of polymerization than Cabernet Sauvignon wines, the former wines were perceived as less astringent. The low seed/skin proportion in Carménère wines as compared to other varieties, as evidenced by the reduced number of seeds per berry and the higher amount of epigallocatechin subunits of Carménère wine proanthocyanidins, could explain this apparent paradox.

  5. Meis1 regulates Foxn4 expression during retinal progenitor cell differentiation

    Directory of Open Access Journals (Sweden)

    Mohammed M. Islam

    2013-09-01

    The transcription factor forkhead box N4 (Foxn4 is a key regulator in a variety of biological processes during development. In particular, Foxn4 plays an essential role in the genesis of horizontal and amacrine neurons from neural progenitors in the vertebrate retina. Although the functions of Foxn4 have been well established, the transcriptional regulation of Foxn4 expression during progenitor cell differentiation remains unclear. Here, we report that an evolutionarily conserved 129 bp noncoding DNA fragment (Foxn4CR4.2 or CR4.2, located ∼26 kb upstream of Foxn4 transcription start site, functions as a cis-element for Foxn4 regulation. CR4.2 directs gene expression in Foxn4-positive cells, primarily in progenitors, differentiating horizontal and amacrine cells. We further determined that the gene regulatory activity of CR4.2 is modulated by Meis1 binding motif, which is bound and activated by Meis1 transcription factor. Deletion of the Meis1 binding motif or knockdown of Meis1 expression abolishes the gene regulatory activity of CR4.2. In addition, knockdown of Meis1 expression diminishes the endogenous Foxn4 expression and affects cell lineage development. Together, we demonstrate that CR4.2 and its interacting Meis1 transcription factor play important roles in regulating Foxn4 expression during early retinogenesis. These findings provide new insights into molecular mechanisms that govern gene regulation in retinal progenitors and specific cell lineage development.

  6. Dynamics of GATA1 binding and expression response in a GATA1-induced erythroid differentiation system

    Directory of Open Access Journals (Sweden)

    Deepti Jain

    2015-06-01

    Full Text Available During the maturation phase of mammalian erythroid differentiation, highly proliferative cells committed to the erythroid lineage undergo dramatic changes in morphology and function to produce circulating, enucleated erythrocytes. These changes are caused by equally dramatic alterations in gene expression, which in turn are driven by changes in the abundance and binding patterns of transcription factors such as GATA1. We have studied the dynamics of GATA1 binding by ChIP-seq and the global expression responses by RNA-seq in a GATA1-dependent mouse cell line model for erythroid maturation, in both cases examining seven progressive stages during differentiation. Analyses of these data should provide insights both into mechanisms of regulation (early versus late targets and the consequences in cell physiology (e.g., distinctive categories of genes regulated at progressive stages of differentiation. The data are deposited in the Gene Expression Omnibus, series GSE36029, GSE40522, GSE49847, and GSE51338.

  7. C-arm guided closed reduction of zygomatic arch fracture

    International Nuclear Information System (INIS)

    Eo, Yoon Ki; Lee, Dong Kun; Kim, Jeong Sam; Jang, Young Il

    1999-01-01

    The zygomatic arch is structurally protruded and is easily fractured. The classic management of zygomatic arch fracture has been mentioned the Keen, Lothrop, Dingman and Alling and threaded K-wire. All of the above methods have advantages and disadvantages. To minimize the disadvantages, we performed threaded K-wire for the first time using C-arm image intensifier. The subjects were 16 patients with Knight North group II (Zygomatic arch fracture). Among them the C-arm was used in 12 patients and the operator used sensitivity general method in 4 patients and confirmed the operation by mobile X-ray equipment. In conclusion, both groups were satisfied surgically and cosmetically. Using the C-arm, actual image at the time operation was clear and satisfied, the surrounding tissue damage was minimized and at was more accurately completed. The operation time was shortened by 30 to 60 minutes proving it to be an efficient method. We suggest though that further studies be needed to evaluate the radiation effect on these patients

  8. Elevated Radiation Exposure Associated With Above Surface Flat Detector Mini C-Arm Use.

    Science.gov (United States)

    Martin, Dennis P; Chapman, Talia; Williamson, Christopher; Tinsley, Brian; Ilyas, Asif M; Wang, Mark L

    2017-11-01

    This study aims to test the hypothesis that: (1) radiation exposure is increased with the intended use of Flat Surface Image Intensifier (FSII) units above the operative surface compared with the traditional below-table configuration; (2) this differential increases in a dose-dependent manner; and (3) radiation exposure varies with body part and proximity to the radiation source. A surgeon mannequin was seated at a radiolucent hand table, positioned for volar distal radius plating. Thermoluminescent dosimeters measured exposure to the eyes, thyroid, chest, hand, and groin, for 1- and 15-minute trials from a mini C-arm FSII unit positioned above and below the operating surface. Background radiation was measured by control dosimeters placed within the operating theater. At 1-minute of exposure, hand and eye dosages were significantly greater with the flat detector positioned above the table. At 15-minutes of exposure, hand radiation dosage exceeded that of all other anatomic sites with the FSII in both positions. Hand exposure was increased in a dose-dependent manner with the flat detector in either position, whereas groin exposure saw a dose-dependent only with the flat detector beneath the operating table. These findings suggest that the surgeon's hands and eyes may incur greater radiation exposure compared with other body parts, during routine mini C-arm FSII utilization in its intended position above the operating table. The clinical impact of these findings remains unclear, and future long-term radiation safety investigation is warranted. Surgeons should take precautions to protect critical body parts, particularly when using FSII technology above the operating with prolonged exposure time.

  9. Kaluza-Klein-Carmeli Metric from Quaternion-Clifford Space, Lorentz' Force, and Some Observables

    Directory of Open Access Journals (Sweden)

    Christianto V.

    2008-04-01

    Full Text Available It was known for quite long time that a quaternion space can be generalized to a Clifford space, and vice versa; but how to find its neat link with more convenient metric form in the General Relativity theory, has not been explored extensively. We begin with a representation of group with non-zero quaternions to derive closed FLRW metric [1], and from there obtains Carmeli metric, which can be extended further to become 5D and 6D metric (which we propose to call Kaluza-Klein-Carmeli metric. Thereafter we discuss some plausible implications of this metric, beyond describing a galaxy’s spiraling motion and redshift data as these have been done by Carmeli and Hartnett [4, 5, 6]. In subsequent section we explain Podkletnov’s rotating disc experiment. We also note possible implications to quantum gravity. Further observations are of course recommended in order to refute or verify this proposition.

  10. Comparison of C-arm computed tomography and on-site quick cortisol assay for adrenal venous sampling: A retrospective study of 178 patients

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Chin-Chen; Lee, Bo-Ching; Chang, Yeun-Chung; Liu, Kao-Lang [National Taiwan University Hospital and National Taiwan University College of Medicine, Department of Medical Imaging, Taipei (China); Wu, Vin-Cent [National Taiwan University Hospital and National Taiwan University College of Medicine, Department of Internal Medicine, Taipei (China); Huang, Kuo-How [National Taiwan University Hospital and National Taiwan University College of Medicine, Department of Urology, Taipei (China); Collaboration: on behalf of the TAIPAI Study Group

    2017-12-15

    To compare the performance of on-site quick cortisol assay (QCA) and C-arm computed tomography (CT) assistance on adrenal venous sampling (AVS) without adrenocorticotropic hormone stimulation. The institutional review board at our hospital approved this retrospective study, which included 178 consecutive patients with primary aldosteronism. During AVS, we used C-arm CT to confirm right adrenal cannulation between May 2012 and June 2015 (n = 100) and QCA for bilateral adrenal cannulation between July 2015 and September 2016 (n = 78). Successful AVS required a selectivity index (cortisol{sub adrenal} {sub vein}/cortisol{sub peripheral}) of ≥ 2.0 bilaterally. The overall success rate of C-arm CT-assisted AVS was 87%, which increased to 97.4% under QCA (P =.013). The procedure time (C-arm CT, 49.5 ± 21.3 min; QCA, 37.5 ± 15.6 min; P <.001) and radiation dose (C-arm CT, 673.9 ± 613.8 mGy; QCA, 346.4 ± 387.8 mGy; P <.001) were also improved. The resampling rate was 16% and 21.8% for C-arm CT and QCA, respectively. The initial success rate of the performing radiologist remained stable during the study period (C-arm CT 75%; QCA, 82.1%, P =.259). QCA might be superior to C-arm CT for improving the performance of AVS. (orig.)

  11. Quantification of the gravity-dependent change in the C-arm image center for image compensation in fluoroscopic spinal neuronavigation.

    Science.gov (United States)

    Hariri, S; Abbasi, H R; Chin, S; Steinberg, G; Shahidi, R

    2001-01-01

    In the quest to develop a viable, frameless spinal navigation system, many researchers are utilizing the C-arm fluoroscope. However, there is a significant problem with the C-arm that must be quantified: the gravity-dependent sag effect resulting from the geometry of the C-arm and aggravated by the inequity of weight at each end of the C-arm. This study quantified the C-arm sag effect, giving researchers the protocol and data needed to develop a program that accounts for this distortion. The development of spinal navigation algorithms that account for the C-arm sag effect should produce a more accurate spinal navigation system.

  12. Informatics in radiology: use of a C-arm fluoroscopy simulator to support training in intraoperative radiography.

    Science.gov (United States)

    Bott, Oliver Johannes; Dresing, Klaus; Wagner, Markus; Raab, Björn-Werner; Teistler, Michael

    2011-01-01

    Mobile image intensifier systems (C-arms) are used frequently in orthopedic and reconstructive surgery, especially in trauma and emergency settings, but image quality and radiation exposure levels may vary widely, depending on the extent of the C-arm operator's knowledge and experience. Current training programs consist mainly of theoretical instruction in C-arm operation, the physical foundations of radiography, and radiation avoidance, and are largely lacking in hands-on application. A computer-based simulation program such as that tested by the authors may be one way to improve the effectiveness of C-arm training. In computer simulations of various scenarios commonly encountered in the operating room, trainees using the virtX program interact with three-dimensional models to test their knowledge base and improve their skill levels. Radiographs showing the simulated patient anatomy and surgical implants are "reconstructed" from data computed on the basis of the trainee's positioning of models of a C-arm, patient, and table, and are displayed in real time on the desktop monitor. Trainee performance is signaled in real time by color graphics in several control panels and, on completion of the exercise, is compared in detail with the performance of an expert operator. Testing of this computer-based training program in continuing medical education courses for operating room personnel showed an improvement in the overall understanding of underlying principles of intraoperative radiography performed with a C-arm, with resultant higher image quality, lower overall radiation exposure, and greater time efficiency. Supplemental material available at http://radiographics.rsna.org/lookup/suppl/doi:10.1148/rg.313105125/-/DC1. Copyright © RSNA, 2011.

  13. Redefining the expression and function of the inhibitor of differentiation 1 in mammary gland development.

    Directory of Open Access Journals (Sweden)

    Radhika Nair

    2010-08-01

    Full Text Available The accumulation of poorly differentiated cells is a hallmark of breast neoplasia and progression. Thus an understanding of the factors controlling mammary differentiation is critical to a proper understanding of breast tumourigenesis. The Inhibitor of Differentiation 1 (Id1 protein has well documented roles in the control of mammary epithelial differentiation and proliferation in vitro and breast cancer progression in vivo. However, it has not been determined whether Id1 expression is sufficient for the inhibition of mammary epithelial differentiation or the promotion of neoplastic transformation in vivo. We now show that Id1 is not commonly expressed by the luminal mammary epithelia, as previously reported. Generation and analysis of a transgenic mouse model of Id1 overexpression in the mammary gland reveals that Id1 is insufficient for neoplastic progression in virgin animals or to prevent terminal differentiation of the luminal epithelia during pregnancy and lactation. Together, these data demonstrate that there is no luminal cell-autonomous role for Id1 in mammary epithelial cell fate determination, ductal morphogenesis and terminal differentiation.

  14. Melatonin receptor genes (mel-1a, mel-1b, mel-1c) are differentially expressed in the avian germ line.

    Science.gov (United States)

    Kawashima, Takaharu; Stepińska, Urszula; Kuwana, Takashi; Olszańska, Bozenna

    2008-09-01

    The presence of melatonin receptor transcripts (mel-1a, mel-1b and mel-1c) was investigated in primordial germ cells (PGCs), immature and mature oocytes, and sperm of Japanese quail by reverse transcription--polymerase chain reaction (RT-PCR). The mel-1a transcript was detected in as few as in a thousand PGCs. Significant differences in the expression of melatonin receptor genes were found in differentiating germ cells: in PGCs only the mel-1a receptor was expressed, in blastoderms and immature oocytes all three transcripts (mel-1a, mel-1b, mel-1c) were present, while in mature ovulated oocytes the predominant transcript was mel-1c (with sporadic occurrence of mel-1a and mel-1b). In sperm, mel-1a and mel-1c were present but mel-1b was absent. This indicates that the expression of melatonin receptor genes changes throughout the differentiation of PGCs into adult gametes: during oocyte differentiation two additional transcripts, mel-1b and mel-1c, are synthesized in addition to mel-1a, but at oocyte maturation, mel-1a and mel-1b are degraded and only mel-1c remains. During male line (spermatozoa) differentiation mel-1c is transcribed in addition to mel-1a, with mel-1b being completely absent. Since melatonin and the activities of enzymes participating in melatonin synthesis are present in the avian yolk, it is reasonable to suggest a role for this molecule in early avian development and germ line differentiation. We propose that melatonin may act as a signaling molecule regulating some differentiation processes (e.g., cell proliferation, migration, etc.) before the formation of neural and hormonal systems.

  15. Differential expression of nanog1 and nanogp8 in colon cancer cells

    International Nuclear Information System (INIS)

    Ishiguro, Tatsuya; Sato, Ai; Ohata, Hirokazu; Sakai, Hiroaki; Nakagama, Hitoshi; Okamoto, Koji

    2012-01-01

    Highlights: ► Nanog is expressed in a majority of colon cancer cell lines examined. ► Both nanog1 and nanogp8 are expressed in colon cancer cells with varying ratios. ► Nanog mediates cell proliferation of colon cancer cells. ► Nanog predominantly localizes in cytoplasm of colon cancer cells. -- Abstract: Nanog, a homeodomain transcription factor, is an essential regulator for promotion of self-renewal of embryonic stem cells and inhibition of their differentiation. It has been demonstrated that nanog1 as well as nanogp8, a retrogene of nanog1, is preferentially expressed in advanced stages of several types of cancer, suggesting their involvement during cancer progression. Here, we investigated the expression of Nanog in well-characterized colon cancer cell lines. Expression of Nanog was detectable in 5 (HCT116, HT29, RKO, SW48, SW620) out of seven cell lines examined. RNA expression analyses of nanog1 and nanogp8 indicated that, while nanog1 was a major form in SW620 as well as in teratoma cells Tera-2, nanogp8 was preferentially expressed in HT29 and HCT116. In accordance with this, shRNA-mediated knockdown of nanog1 caused the reduction of Nanog in SW620 but not in HT29. Inhibition of Nanog in SW620 cells negatively affected cell proliferation and tumor formation in mouse xenograft. Biochemical subcellular fractionation and immunostaining analyses revealed predominant localization of Nanog in cytoplasm in SW620 and HT29, while it was mainly localized in nucleus in Tera-2. Our data indicate that nanog1 and nanogp8 are differentially expressed in colon cancer cells, and suggest that their expression contributes to proliferation of colon cancer cells.

  16. Differential expression of nanog1 and nanogp8 in colon cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Ishiguro, Tatsuya; Sato, Ai; Ohata, Hirokazu; Sakai, Hiroaki [Division of Cancer Differentiation, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045 (Japan); Nakagama, Hitoshi, E-mail: hnakagam@ncc.go.jp [Division of Cancer Development System, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045 (Japan); Okamoto, Koji, E-mail: kojokamo@ncc.go.jo [Division of Cancer Differentiation, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045 (Japan)

    2012-02-10

    Highlights: Black-Right-Pointing-Pointer Nanog is expressed in a majority of colon cancer cell lines examined. Black-Right-Pointing-Pointer Both nanog1 and nanogp8 are expressed in colon cancer cells with varying ratios. Black-Right-Pointing-Pointer Nanog mediates cell proliferation of colon cancer cells. Black-Right-Pointing-Pointer Nanog predominantly localizes in cytoplasm of colon cancer cells. -- Abstract: Nanog, a homeodomain transcription factor, is an essential regulator for promotion of self-renewal of embryonic stem cells and inhibition of their differentiation. It has been demonstrated that nanog1 as well as nanogp8, a retrogene of nanog1, is preferentially expressed in advanced stages of several types of cancer, suggesting their involvement during cancer progression. Here, we investigated the expression of Nanog in well-characterized colon cancer cell lines. Expression of Nanog was detectable in 5 (HCT116, HT29, RKO, SW48, SW620) out of seven cell lines examined. RNA expression analyses of nanog1 and nanogp8 indicated that, while nanog1 was a major form in SW620 as well as in teratoma cells Tera-2, nanogp8 was preferentially expressed in HT29 and HCT116. In accordance with this, shRNA-mediated knockdown of nanog1 caused the reduction of Nanog in SW620 but not in HT29. Inhibition of Nanog in SW620 cells negatively affected cell proliferation and tumor formation in mouse xenograft. Biochemical subcellular fractionation and immunostaining analyses revealed predominant localization of Nanog in cytoplasm in SW620 and HT29, while it was mainly localized in nucleus in Tera-2. Our data indicate that nanog1 and nanogp8 are differentially expressed in colon cancer cells, and suggest that their expression contributes to proliferation of colon cancer cells.

  17. Differential expression of PARP1 mRNA in leucocytes of patients ...

    Indian Academy of Sciences (India)

    P. 2011 Differential expression of PARP1 mRNA in leucocytes of patients with Down's syndrome. J. Genet. ... of Alzheimer disease at an earlier age than subjects with- ... family and personal informed consent. .... In effect, they report that.

  18. Marker detection evaluation by phantom and cadaver experiments for C-arm pose estimation pattern

    Science.gov (United States)

    Steger, Teena; Hoßbach, Martin; Wesarg, Stefan

    2013-03-01

    C-arm fluoroscopy is used for guidance during several clinical exams, e.g. in bronchoscopy to locate the bronchoscope inside the airways. Unfortunately, these images provide only 2D information. However, if the C-arm pose is known, it can be used to overlay the intrainterventional fluoroscopy images with 3D visualizations of airways, acquired from preinterventional CT images. Thus, the physician's view is enhanced and localization of the instrument at the correct position inside the bronchial tree is facilitated. We present a novel method for C-arm pose estimation introducing a marker-based pattern, which is placed on the patient table. The steel markers form a pattern, allowing to deduce the C-arm pose by use of the projective invariant cross-ratio. Simulations show that the C-arm pose estimation is reliable and accurate for translations inside an imaging area of 30 cm x 50 cm and rotations up to 30°. Mean error values are 0.33 mm in 3D space and 0.48 px in the 2D imaging plane. First tests on C-arm images resulted in similarly compelling accuracy values and high reliability in an imaging area of 30 cm x 42.5 cm. Even in the presence of interfering structures, tested both with anatomy phantoms and a turkey cadaver, high success rates over 90% and fully satisfying execution times below 4 sec for 1024 px × 1024 px images could be achieved.

  19. Utility of intraoperative diagnostic C-arm angiography for management of high grade subarachnoid hemorrhage

    Directory of Open Access Journals (Sweden)

    Zhikui Wei

    2015-06-01

    Full Text Available The accurate and efficient localization of underlying vascular lesions is crucial for prompt and definitive treatment of subarachnoid hemorrhage (SAH. To demonstrate the utility and feasibility of intraoperative C-arm angiography in cerebrovascular emergencies, we report five cases of high grade SAH and/or intracerebral hemorrhage (ICH where intraoperative diagnostic C-arm angiography was safely and effectively utilized. Initial evaluations of all patients included a non-contrast head CT scan, which was followed by urgent decompressive hemicraniectomy as a life-saving measure in the presence of markedly elevated intracranial pressure. Further diagnostic evaluations were performed intraoperatively using a multi-purpose C-arm angiography system. The C-arm angiography findings greatly aided the intraoperative planning and led to definitive treatments in four cases of SAH by elucidating the underlying neurovascular lesions. With this treatment strategy, two of the patients made moderately good recoveries from their SAH and/or ICH with a Glasgow outcome score (GOS of 4. Three of the patients expired despite maximal therapy mostly due to unfavorable presenting grade. These results suggest that C-arm angiography is a reasonable diagnostic and surgical planning tool for selected patients with high grade diffuse SAH who require immediate decompression.

  20. Test results from the LLNL 250 GHz CARM experiment

    International Nuclear Information System (INIS)

    Kulke, B.; Caplan, M.; Bubp, D.; Houck, T.; Rogers, D.; Trimble, D.; VanMaren, R.; Westenskow, G.; McDermott, D.B.; Luhmann, N.C. Jr.; Danly, B.

    1991-05-01

    We have completed the initial phase of a 250 GHz CARM experiment, driven by the 2 MeV, 1 kA, 30 ns induction linac at the LLNL ARC facility. A non-Brillouin, solid, electron beam is generated from a flux-threaded, thermionic cathode. As the beam traverses a 10 kG plateau produced by a superconducting magnet, ten percent of the beam energy is converted into rotational energy in a bifilar helix wiggler that produces a spiraling, 50 G, transverse magnetic field. The beam is then compressed to a 5 mm diameter as it drifts into a 30 kG plateau. For the present experiment, the CARM interaction region consisted of a single Bragg section resonator, followed by a smooth-bore amplifier section. Using high-pass filters, we have observed broadband output signals estimated to be at the several megawatt level in the range 140 to over 230 GHz. This is consistent with operation as a superradiant amplifier. Simultaneously, we also observed K a band power levels near 3 MW

  1. Test results from the LLNL 250 GHz CARM experiment

    International Nuclear Information System (INIS)

    Kulke, B.; Caplan, M.; Bubp, D.; Houck, T.; Rogers, D.; Trimble, D.; VanMaren, R.; Westenskow, G.; McDermott, D.B.; Luhmann, N.C. Jr.; Danly, B.

    1991-01-01

    The authors have completed the initial phase of a 250 GHz CARM experiment, driven by the 2 MeV, 1 kA, 30 ns induction linac at the LLNL ARC facility. A non-Brillouin, solid, electron beam is generated from a flux-threaded, thermionic cathode. As the beam traverses a 10 kG plateau produced by a superconducting magnet, ten percent of the beam energy is converted into rotational energy in a bifilar helix wiggler that produces a spiraling, 50 G, transverse magnetic field. The beam is then compressed to a 5 mm diameter as it drifts into a 30 kG plateau. For the present experiment, the CARM interaction region consisted of a single Bragg section resonator, followed by a smooth-bore amplifier section. Using high-pass filters, they have observed broadband output signals estimated to be at the several megawatt level in the range 140 to over 230 GHz. This is consistent with operation as a superradiant amplifier. Simultaneously, they also observed K a band power levels near 3 MW

  2. Phospholipase D1 increases Bcl-2 expression during neuronal differentiation of rat neural stem cells.

    Science.gov (United States)

    Park, Shin-Young; Ma, Weina; Yoon, Sung Nyo; Kang, Min Jeong; Han, Joong-Soo

    2015-01-01

    We studied the possible role of phospholipase D1 (PLD1) in the neuronal differentiation, including neurite formation of neural stem cells. PLD1 protein and PLD activity increased during neuronal differentiation. Bcl-2 also increased. Downregulation of PLD1 by transfection with PLD1 siRNA or a dominant-negative form of PLD1 (DN-PLD1) inhibited both neurite outgrowth and Bcl-2 expression. PLD activity was dramatically reduced by a PLCγ (phospholipase Cγ) inhibitor (U73122), a Ca(2+)chelator (BAPTA-AM), and a PKCα (protein kinase Cα) inhibitor (RO320432). Furthermore, treatment with arachidonic acid (AA) which is generated by the action of PLA2 (phospholipase A2) on phosphatidic acid (a PLD1 product), increased the phosphorylation of p38 MAPK and CREB, as well as Bcl-2 expression, indicating that PLA2 is involved in the differentiation process resulting from PLD1 activation. PGE2 (prostaglandin E2), a cyclooxygenase product of AA, also increased during neuronal differentiation. Moreover, treatment with PGE2 increased the phosphorylation of p38 MAPK and CREB, as well as Bcl-2 expression, and this effect was inhibited by a PKA inhibitor (Rp-cAMP). As expected, inhibition of p38 MAPK resulted in loss of CREB activity, and when CREB activity was blocked with CREB siRNA, Bcl-2 production also decreased. We also showed that the EP4 receptor was required for the PKA/p38MAPK/CREB/Bcl-2 pathway. Taken together, these observations indicate that PLD1 is activated by PLCγ/PKCα signaling and stimulate Bcl-2 expression through PLA2/Cox2/EP4/PKA/p38MAPK/CREB during neuronal differentiation of rat neural stem cells.

  3. Percutaneous radiofrequency ablation of lung metastases from colorectal carcinoma under C-arm cone beam CT guidance.

    Science.gov (United States)

    Amouyal, G; Pernot, S; Déan, C; Cholley, B; Scotté, F; Sapoval, M; Pellerin, O

    2017-11-01

    The aim of this study was to assess the feasibility, safety and efficacy of percutaneous radiofrequency ablation of lung metastases from colorectal carcinoma using C-arm cone beam computed tomography (CBCT) guidance. This single-center prospective observational study was performed from August 2013 to August 2016, and included consecutive patients referred for radiofrequency ablation of lung metastases from colorectal cancer. Radiofrequency ablation procedures were performed under C-arm CBCT guidance. Feasibility was assessed by probe accuracy placement, time to accurate placement and number of C-arm CBCT acquisitions to reach the target lesion. Safety was assessed by the report of adverse event graded using the common terminology criteria for adverse events (CTCAE-V4.0). Efficacy was assessed by metastases response rate using RECIST 1.1 and 18 FDG-PET-CT tumor uptake at 6months. Fifty-four consecutive patients (32 men, 22 women) with a mean age of 63±8 (SD) years (range: 51-81years) with a total of 56 lung metastasis from colorectal metastases were treated in a single session. The mean tumor diameter was 25.6±4.5 (SD)mm (range: 17-31mm). Median time to insert the needle into the target lesion was 10min (range: 5-25min). Median number of needles repositioning and C-arm CBCT acquisition per patient was 1 (range: 0-3) and 4 (range: 3-6) respectively. The accuracy for radiofrequency ablation probe placement was 2±0.2 (SD)mm (range: 0-9mm). Pneumothorax requiring chest tube placement occurred in one patient (CTCAE-V4.0 grade 3). At 6months, all patients were alive with tumor response rate of -27% and had no significant activity on the 18 FDG-PET CT follow-up. Percutaneous radiofrequency ablation of lung metastases from colorectal cancer under C-arm CBCT guidance is feasible and safe, with immediate and short-term results similar to those obtained using conventional CT guidance. Copyright © 2017 Éditions françaises de radiologie. Published by Elsevier Masson SAS

  4. Intra-operative adjustment of standard planes in C-arm CT image data.

    Science.gov (United States)

    Brehler, Michael; Görres, Joseph; Franke, Jochen; Barth, Karl; Vetter, Sven Y; Grützner, Paul A; Meinzer, Hans-Peter; Wolf, Ivo; Nabers, Diana

    2016-03-01

    With the help of an intra-operative mobile C-arm CT, medical interventions can be verified and corrected, avoiding the need for a post-operative CT and a second intervention. An exact adjustment of standard plane positions is necessary for the best possible assessment of the anatomical regions of interest but the mobility of the C-arm causes the need for a time-consuming manual adjustment. In this article, we present an automatic plane adjustment at the example of calcaneal fractures. We developed two feature detection methods (2D and pseudo-3D) based on SURF key points and also transferred the SURF approach to 3D. Combined with an atlas-based registration, our algorithm adjusts the standard planes of the calcaneal C-arm images automatically. The robustness of the algorithms is evaluated using a clinical data set. Additionally, we tested the algorithm's performance for two registration approaches, two resolutions of C-arm images and two methods for metal artifact reduction. For the feature extraction, the novel 3D-SURF approach performs best. As expected, a higher resolution ([Formula: see text] voxel) leads also to more robust feature points and is therefore slightly better than the [Formula: see text] voxel images (standard setting of device). Our comparison of two different artifact reduction methods and the complete removal of metal in the images shows that our approach is highly robust against artifacts and the number and position of metal implants. By introducing our fast algorithmic processing pipeline, we developed the first steps for a fully automatic assistance system for the assessment of C-arm CT images.

  5. Soft-tissue imaging with C-arm cone-beam CT using statistical reconstruction

    International Nuclear Information System (INIS)

    Wang, Adam S; Stayman, J Webster; Otake, Yoshito; Siewerdsen, Jeffrey H; Kleinszig, Gerhard; Vogt, Sebastian; Gallia, Gary L; Khanna, A Jay

    2014-01-01

    The potential for statistical image reconstruction methods such as penalized-likelihood (PL) to improve C-arm cone-beam CT (CBCT) soft-tissue visualization for intraoperative imaging over conventional filtered backprojection (FBP) is assessed in this work by making a fair comparison in relation to soft-tissue performance. A prototype mobile C-arm was used to scan anthropomorphic head and abdomen phantoms as well as a cadaveric torso at doses substantially lower than typical values in diagnostic CT, and the effects of dose reduction via tube current reduction and sparse sampling were also compared. Matched spatial resolution between PL and FBP was determined by the edge spread function of low-contrast (∼40–80 HU) spheres in the phantoms, which were representative of soft-tissue imaging tasks. PL using the non-quadratic Huber penalty was found to substantially reduce noise relative to FBP, especially at lower spatial resolution where PL provides a contrast-to-noise ratio increase up to 1.4–2.2× over FBP at 50% dose reduction across all objects. Comparison of sampling strategies indicates that soft-tissue imaging benefits from fully sampled acquisitions at dose above ∼1.7 mGy and benefits from 50% sparsity at dose below ∼1.0 mGy. Therefore, an appropriate sampling strategy along with the improved low-contrast visualization offered by statistical reconstruction demonstrates the potential for extending intraoperative C-arm CBCT to applications in soft-tissue interventions in neurosurgery as well as thoracic and abdominal surgeries by overcoming conventional tradeoffs in noise, spatial resolution, and dose. (paper)

  6. Design of an induction linac driven CARM [Cyclotron Auto Resonance Maser] oscillator at 250 GHz

    International Nuclear Information System (INIS)

    Caplan, M.; Kulke, B.

    1990-01-01

    We present the design of a 250 GHz, 400 MW Cyclotron Auto Resonance Maser (CARM) oscillator driven by a 1 KA, 2 MeV electron beam produced by the induction linac at the ARC facility of LLNL. The oscillator circuit is designed as a feedback amplifier operating in the TE 11 mode at ten times cutoff terminated at each end with Bragg reflectors. Theory and cold test results are in good agreement for a manufactured Bragg reflector using 50 μm corrugations to ensure mode purity. The CARM is to be operational by February 1990. 3 figs., 2 tabs

  7. TGF-β1 resulting in differential microRNA expression in bovine granulosa cells.

    Science.gov (United States)

    Xu, Yefen; Niu, Jiaqiang; Xi, Guangying; Niu, Xuezhi; Wang, Yuheng; Guo, Ming; Yangzong, Qiangba; Yao, Yilong; Sizhu, Suo Lang; Tian, Jianhui

    2018-07-15

    To explore the expression profile of the cellular miRNAs in bovine ovarian granulosa cells responding to transforming growth factor-β1 (TGF-β1), the effect of TGF-β1 on cell proliferation was firstly investigated by CCK-8 method and the results showed that there was a significant inhibitory effect on bovine granulosa cell proliferation treated with 5/10 ng/mL human recombinant TGF-β1 for 24 h compared to the control (P cells stimulated with or without 10 ng/mL human recombinant TGF-β1. A total of 13,257,248 and 138,726,391 clean reads per library were obtained from TGF-β1 and control groups, respectively. There were 498 and 499 bovine-specific exist miRNAs (exist miRNAs), 627 and 570 conserved known miRNAs (known miRNAs), and 593 and 585 predicted novel miRNAs in TGF-β1 and control groups, respectively. A total of 78 miRNAs with significant differential expression, including 39 up-regulated miRNAs and 39 down-regulated miRNAs were identified in the TGF-β1 group compared with the control. Real-time quantitative PCR analyses of bta-miR-106a and bta-miR-1434-5p showed that their up-expressions were interrupted by SB431542, an inhibitor that blocks TGFβ1/Smad signaling, which supported the sequencing data. GO analysis showed involvement of the predicted genes of the differentially expressed miRNAs in a broad spectrum of cell biological processes, cell components, and molecular functions. KEGG pathway analysis of the predicted miRNA targets further indicated that these differentially expressed miRNAs are involved in various signaling pathways, such as Wnt, MAPK, and TGF-β signaling, which might be involved in follicular development. These results provide valuable information on the composition, expression, and function of miRNAs in bovine granulosa cells responding to TGF-β1, and will aid in understanding the molecular mechanisms of TGF-β1 in granulosa cells. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Understanding the scatter radiation distribution during C-arm CT examination. A body phantom study

    International Nuclear Information System (INIS)

    Norimasa, Toshiyo; Kakimi, Akihiko; Takao, Yoshinori; Sasaki, Shohei; Katayama, Yutaka; Himoto, Daisuke; Izuta, Shinichiro; Ichida, Takao

    2016-01-01

    The purpose of this study was to understand the scatter radiation distribution during C-arm CT examination in the interventional radiography (IVR) room to show the escaped area and the radiation protective method. The C-arm rotates 200deg in 5 s. The tube voltage was 90 kV, and the entrance dose to the detector was 0.36 μGy/frame during C-arm CT examination. The scattered doses were measured each 50 cm from the isocenter like a grid pattern. The heights of the measurement were 50, 100, and 150 cm from the floor. The maximum scattered doses were 38.23 ± 0.60 μGy at 50 cm, 43.86 ± 20 μGy at 100 cm, and 25.78 ± 0.37 μGy at 150 cm. The scatter radiation distribution at 100 cm was the highest scattered dose. The operator should protect their reproductive gland, thyroid, and lens. The scattered dose was low behind the C-arm body and the bed, so they will be able to become the escaped area for staff. (author)

  9. Aging-dependent DNA hypermethylation and gene expression of GSTM1 involved in T cell differentiation.

    Science.gov (United States)

    Yeh, Shu-Hui; Liu, Cheng-Ling; Chang, Ren-Chieh; Wu, Chih-Chiang; Lin, Chia-Hsueh; Yang, Kuender D

    2017-07-25

    This study investigated whether aging was associated with epigenetic changes of DNA hypermethylation on immune gene expression and lymphocyte differentiation. We screened CG sites of methylation in blood leukocytes from different age populations, picked up genes with age-related increase of CG methylation content more than 15%, and validated immune related genes with CG hypermethylation involved in lymphocyte differentiation in the aged population. We found that 12 genes (EXHX1、 IL-10、 TSP50、 GSTM1、SLC5A5、SPI1、F2R、LMO2、PTPN6、FGFR2、MMP9、MET) were associated with promoter or exon one DNA hypermethylation in the aged group. Two immune related genes, GSTM1 and LMO2, were chosen to validate its aging-related CG hypermethylation in different leukocytes. We are the first to validate that GSTM1_P266 and LMO2_E128 CG methylation contents in T lymphocytes but not polymorphonuclear cells (PMNs) or mononuclear cells (MNCs) were significantly increased in the aged population. The GSTM1 mRNA expression in T lymphocytes but not PMNs or MNCs was inversely associated with the GSTM1 CG hypermethylation levels in the aged population studied. Further studies showed that lower GSTM1 CG methylation content led to the higher GSTM1 mRNA expression in T cells and knockdown of GSTM1 mRNA expression decreased type 1 T helper cell (Th1) differentiation in Jurkat T cells and normal adult CD4 T cells. The GSTM1_P266 hypermethylation in the aged population associated with lower GSTM1 mRNA expression was involved in Th1 differentiation, highlighting that modulation of aging-associated GSTM1 methylation may be able to enhance T helper cell immunity in the elders.

  10. Differential regulation of BACE1 expression by oxidative and nitrosative signals

    Directory of Open Access Journals (Sweden)

    Xu Huaxi

    2011-03-01

    Full Text Available Abstract Background It is well established that both cerebral hypoperfusion/stroke and type 2 diabetes are risk factors for Alzheimer's disease (AD. Recently, the molecular link between ischemia/hypoxia and amyloid precursor protein (APP processing has begun to be established. However, the role of the key common denominator, namely nitric oxide (NO, in AD is largely unknown. In this study, we investigated redox regulation of BACE1, the rate-limiting enzyme responsible for the β-cleavage of APP to Aβ peptides. Results Herein, we studied events such as S-nitrosylation, a covalent modification of cysteine residues by NO, and H2O2-mediated oxidation. We found that NO and H2O2 differentially modulate BACE1 expression and enzymatic activity: NO at low concentrations (2O2 (1-10 μM induces BACE1 expression via transcriptional activation, resulting in increased enzymatic activity. The differential effects of NO and H2O2 on BACE1 expression and activity are also reflected in their opposing effects on Aβ generation in cultured neurons in a dose-dependent manner. Furthermore, we found that BACE1 is highly S-nitrosylated in normal aging brains while S-nitrosylation is markedly reduced in AD brains. Conclusion This study demonstrates for the first time that BACE1 is highly modified by NO via multiple mechanisms: low and high levels of NO suppress BACE1 via transcriptional and post translational regulation, in contrast with the upregulation of BACE1 by H2O2-mediated oxidation. These novel NO-mediated regulatory mechanisms likely protect BACE1 from being further oxidized by excessive oxidative stress, as from H2O2 and peroxynitrite which are known to upregulate BACE1 and activate the enzyme, resulting in excessive cleavage of APP and Aβ generation; they likely represent the crucial house-keeping mechanism for BACE1 expression/activation under physiological conditions.

  11. Lactoferrin promote primary rat osteoblast proliferation and differentiation via up-regulation of insulin-like growth factor-1 expression.

    Science.gov (United States)

    Hou, Jian-ming; Wu, Man; Lin, Qing-ming; Lin, Fan; Xue, Ying; Lan, Xu-hua; Chen, En-yu; Wang, Mei-li; Yang, Hai-yan; Wang, Feng-xiong

    2014-08-01

    The aim of this study was to explore the effect of lactoferrin (LF) in primary fetal rat osteoblasts proliferation and differentiation and investigate the underlying molecular mechanisms. Primary rat osteoblasts were obtained from the calvarias of neonatal rats. Osteoblasts were treated with LF (0.1-1000 μg/mL), or OSI-906 [a selective inhibitor of insulin-like growth factor 1 (IGF-1) receptor and insulin receptor]. The IGF-1 was then knocked down by small hairpin RNA (shRNA) technology and then was treated with recombinant human IGF-1 or LF. Cell proliferation and differentiation were measured by MTT assay and alkaline phosphatase (ALP) assay, respectively. The expression of IGF-1 and IGF binding protein 2 (IGFBP2) mRNA were analyzed using real-time PCR. LF promotes the proliferation and differentiation of osteoblasts in a certain range (1-100 μg/mL) in time- and dose-dependent manner. The mRNA level of IGF-1 was significantly increased, while the expression of IGFBP2 was suppressed by LF treatment. Knockdown of IGF-1 by shRNA in primary rat osteoblast dramatically decreased the abilities of proliferation and differentiation of osteoblasts and blocked the proliferation and differentiation effect of LF in osteoblasts. OSI906 (5 μM) blocked the mitogenic and differentiation of LF in osteoblasts. Proliferation and differentiation of primary rat osteoblasts in response to LF are mediated in part by stimulating of IGF-1 gene expression and alterations in the gene expression of IGFBP2.

  12. High-Resolution C-Arm CT and Metal Artifact Reduction Software: A Novel Imaging Modality for Analyzing Aneurysms Treated with Stent-Assisted Coil Embolization.

    Science.gov (United States)

    Yuki, I; Kambayashi, Y; Ikemura, A; Abe, Y; Kan, I; Mohamed, A; Dahmani, C; Suzuki, T; Ishibashi, T; Takao, H; Urashima, M; Murayama, Y

    2016-02-01

    Combination of high-resolution C-arm CT and novel metal artifact reduction software may contribute to the assessment of aneurysms treated with stent-assisted coil embolization. This study aimed to evaluate the efficacy of a novel Metal Artifact Reduction prototype software combined with the currently available high spatial-resolution C-arm CT prototype implementation by using an experimental aneurysm model treated with stent-assisted coil embolization. Eight experimental aneurysms were created in 6 swine. Coil embolization of each aneurysm was performed by using a stent-assisted technique. High-resolution C-arm CT with intra-arterial contrast injection was performed immediately after the treatment. The obtained images were processed with Metal Artifact Reduction. Five neurointerventional specialists reviewed the image quality before and after Metal Artifact Reduction. Observational and quantitative analyses (via image analysis software) were performed. Every aneurysm was successfully created and treated with stent-assisted coil embolization. Before Metal Artifact Reduction, coil loops protruding through the stent lumen were not visualized due to the prominent metal artifacts produced by the coils. These became visible after Metal Artifact Reduction processing. Contrast filling in the residual aneurysm was also visualized after Metal Artifact Reduction in every aneurysm. Both the observational (P software. The combination of high-resolution C-arm CT and Metal Artifact Reduction enables differentiation of the coil mass, stent, and contrast material on the same image by significantly reducing the metal artifacts produced by the platinum coils. This novel image technique may improve the assessment of aneurysms treated with stent-assisted coil embolization. © 2016 by American Journal of Neuroradiology.

  13. The Regulation of Chemerin and CMKLR1 Genes Expression by TNF-α, Adiponectin, and Chemerin Analog in Bovine Differentiated Adipocytes

    Directory of Open Access Journals (Sweden)

    Y. Suzuki

    2012-09-01

    Full Text Available Adipokines, adipocyte-derived protein, have important roles in various kinds of physiology including energy homeostasis. Chemerin, one of adipocyte-derived adipokines, is highly expressed in differentiated adipocytes and is known to induce macrophage chemotaxis and glucose intolerance. The objective of the present study was to investigate the changes of chemerin and the chemokine-like-receptor 1 (CMKLR1 gene expression levels during differentiation of the bovine adipocyte and in differentiated adipocytes treated with tumor necrosis factor-α (TNF-α, adiponectin, leptin, and chemerin (peptide analog. The expression levels of the chemerin gene increased at d 6 and 12 of the differentiation period accompanied by increased cytoplasm lipid droplets. From d 6 onward, peroxisome proliferator-activated receptor-γ2 (PPAR-γ2 gene expression levels were significantly higher than that of d 0 and 3. In contrast, CMKLR1 expression levels decreased at the end of the differentiation period. In fully differentiated adipocytes (i.e. at d 12, the treatment of TNF-α and adiponectin upregulated both chemerin and CMKLR1 gene expression levels, although leptin did not show such effects. Moreover, chemerin analog treatment was shown to upregulate chemerin gene expression levels regardless of doses. These results suggest that the expression of chemerin in bovine adipocyte might be regulated by chemerin itself and other adipokines, which indicates its possible role in modulating the adipokine secretions in adipose tissues.

  14. Conceptual design of pulsed high voltage and high precision power supply for a cyclotron auto-resonance maser (CARM) for plasma heating

    International Nuclear Information System (INIS)

    Zito, Pietro; Maffia, Giuseppe; Lampasi, Alessandro

    2015-01-01

    Highlights: • ENEA started a project to develop a cyclotron auto-resonance maser (CARM). • This facility requires an advanced pulsed high voltage power supply (HVPS). • The conceptual design answers to the performances requested for CARM HVPS. • The pulse transformer parameters were estimated according to IEEE standards. • PWM PID-based controller has been optimized to follow very fast rectangular pulses. - Abstract: Due to the high electron temperature during the plasma burning, both a higher power (>1 MW) and a higher frequency (up to 300 GHz) are required for plasma heating in future fusion experiments like DEMO. For this task, ENEA started a project to develop a cyclotron auto-resonance maser (CARM) able to produce an electron radiation in synchronism with the electromagnetic field and to transfer the electron beam kinetic energy to the plasma. This facility requires an advanced pulsed high voltage power supply (HVPS) with the following technical characteristics: variable output voltage up to 700 kV; variable pulse length in the range 5–50 μs; overshoot < 2%; rise time < 1 μs; voltage accuracy (including drop, ripple and stability) <0.1%. This paper describes the conceptual design and the technical solutions adopted to achieve the performance requested for the CARM HVPS.

  15. Conceptual design of pulsed high voltage and high precision power supply for a cyclotron auto-resonance maser (CARM) for plasma heating

    Energy Technology Data Exchange (ETDEWEB)

    Zito, Pietro, E-mail: pietro.zito@enea.it; Maffia, Giuseppe; Lampasi, Alessandro

    2015-10-15

    Highlights: • ENEA started a project to develop a cyclotron auto-resonance maser (CARM). • This facility requires an advanced pulsed high voltage power supply (HVPS). • The conceptual design answers to the performances requested for CARM HVPS. • The pulse transformer parameters were estimated according to IEEE standards. • PWM PID-based controller has been optimized to follow very fast rectangular pulses. - Abstract: Due to the high electron temperature during the plasma burning, both a higher power (>1 MW) and a higher frequency (up to 300 GHz) are required for plasma heating in future fusion experiments like DEMO. For this task, ENEA started a project to develop a cyclotron auto-resonance maser (CARM) able to produce an electron radiation in synchronism with the electromagnetic field and to transfer the electron beam kinetic energy to the plasma. This facility requires an advanced pulsed high voltage power supply (HVPS) with the following technical characteristics: variable output voltage up to 700 kV; variable pulse length in the range 5–50 μs; overshoot < 2%; rise time < 1 μs; voltage accuracy (including drop, ripple and stability) <0.1%. This paper describes the conceptual design and the technical solutions adopted to achieve the performance requested for the CARM HVPS.

  16. Expression Profiling of Differentiating Emerin-Null Myogenic Progenitor Identifies Molecular Pathways Implicated in Their Impaired Differentiation

    Directory of Open Access Journals (Sweden)

    Ashvin Iyer

    2017-10-01

    Full Text Available Mutations in the gene encoding emerin cause Emery-Dreifuss muscular dystrophy (EDMD, a disorder causing progressive skeletal muscle wasting, irregular heart rhythms and contractures of major tendons. RNA sequencing was performed on differentiating wildtype and emerin-null myogenic progenitors to identify molecular pathways implicated in EDMD, 340 genes were uniquely differentially expressed during the transition from day 0 to day 1 in wildtype cells. 1605 genes were uniquely expressed in emerin-null cells; 1706 genes were shared among both wildtype and emerin-null cells. One thousand and forty-seven transcripts showed differential expression during the transition from day 1 to day 2. Four hundred and thirty-one transcripts showed altered expression in both wildtype and emerin-null cells. Two hundred and ninety-five transcripts were differentially expressed only in emerin-null cells and 321 transcripts were differentially expressed only in wildtype cells. DAVID, STRING and Ingenuity Pathway Analysis identified pathways implicated in impaired emerin-null differentiation, including cell signaling, cell cycle checkpoints, integrin signaling, YAP/TAZ signaling, stem cell differentiation, and multiple muscle development and myogenic differentiation pathways. Functional enrichment analysis showed biological functions associated with the growth of muscle tissue and myogenesis of skeletal muscle were inhibited. The large number of differentially expressed transcripts upon differentiation induction suggests emerin functions during transcriptional reprograming of progenitors to committed myoblasts.

  17. Three-dimensional C-arm CT-guided transjugular intrahepatic portosystemic shunt placement: Feasibility, technical success and procedural time

    Energy Technology Data Exchange (ETDEWEB)

    Ketelsen, Dominik; Groezinger, Gerd; Maurer, Michael; Grosse, Ulrich; Horger, Marius; Nikolaou, Konstantin; Syha, Roland [University of Tuebingen, Department of Diagnostic and Interventional Radiology, Tuebingen (Germany); Lauer, Ulrich M. [University of Tuebingen, Internal Medicine I, Department of Gastroenterology, Hepatology and Infectious disease, Tuebingen (Germany)

    2016-12-15

    Establishment of transjugular intrahepatic portosystemic shunts (TIPS) constitutes a standard procedure in patients suffering from portal hypertension. The most difficult step in TIPS placement is blind puncture of the portal vein. This study aimed to evaluate three-dimensional mapping of portal vein branches and targeted puncture of the portal vein. Twelve consecutive patients suffering from refractory ascites by liver cirrhosis were included in this retrospective study to evaluate feasibility, technical success and procedural time of C-arm CT-targeted puncture of the portal vein. As a control, 22 patients receiving TIPS placement with fluoroscopy-guided blind puncture were included to compare procedural time. Technical success could be obtained in 100 % of the study group (targeted puncture) and in 95.5 % of the control group (blind puncture). Appropriate, three-dimensional C-arm CT-guided mapping of the portal vein branches could be achieved in all patients. The median number of punctures in the C-arm CT-guided study group was 2 ± 1.3 punctures. Procedural time was significantly lower in the study group (14.8 ± 8.2 min) compared to the control group (32.6 ± 22.7 min) (p = 0.02). C-arm CT-guided portal vein mapping is technically feasible and a promising tool for TIPS placement resulting in a significant reduction of procedural time. (orig.)

  18. The caspase-1 inhibitor CARD18 is specifically expressed during late differentiation of keratinocytes and its expression is lost in lichen planus.

    Science.gov (United States)

    Qin, Haihong; Jin, Jiang; Fischer, Heinz; Mildner, Michael; Gschwandtner, Maria; Mlitz, Veronika; Eckhart, Leopold; Tschachler, Erwin

    2017-08-01

    CARD18 contains a caspase recruitment domain (CARD) via which it binds to caspase-1 and thereby inhibits caspase-1-mediated activation of the pro-inflammatory cytokine interleukin (IL)-1β. To determine the expression profile and the role of CARD18 during differentiation of keratinocytes and to compare the expression of CARD18 in normal skin and in inflammatory skin diseases. Human keratinocytes were induced to differentiate in monolayer and in 3D skin equivalent cultures. In some experiments, CARD18-specific siRNAs were used to knock down expression of CARD18. CARD18 mRNA levels were determined by quantitative real-time PCR, and CARD18 protein was detected by Western blot and immunofluorescence analyses. In situ expression was analyzed in skin biopsies obtained from healthy donors and patients with psoriasis and lichen planus. CARD18 mRNA was expressed in the epidermis at more than 100-fold higher levels than in any other human tissue. Within the epidermis, CARD18 was specifically expressed in the granular layer. In vitro CARD18 was strongly upregulated at both mRNA and protein levels in keratinocytes undergoing terminal differentiation. In skin equivalent cultures the expression of CARD18 was efficiently suppressed by siRNAs without impairing stratum corneum formation. Epidermal expression of CARD18 was increased after ultraviolet (UV)B irradiation of skin explants. In skin biopsies of patients with psoriasis no consistent regulation of CARD18 expression was observed, however, in lesional epidermis of patients with lichen planus, CARD18 expression was either greatly diminished or entirely absent whereas in non-lesional areas expression was comparable to normal skin. Our results identify CARD18 as a differentiation-associated keratinocyte protein that is altered in abundance by UV stress. Its downregulation in lichen planus indicates a potential role in inflammatory reactions of the epidermis in this disease. Copyright © 2017 Japanese Society for Investigative

  19. Differential expression of homeobox-containing genes Msx-1 and Msx-2 and homeoprotein Msx-2 expression during chick craniofacial development.

    Science.gov (United States)

    Nishikawa, K; Nakanishi, T; Aoki, C; Hattori, T; Takahashi, K; Taniguchi, S

    1994-03-01

    The expression pattern of chick Msx-1 and Msx-2 homeobox genes in craniofacial primordia was examined by in situ hybridization using cRNA probes. Both genes were expressed in the distal region of the facial primordia, where the distribution of Msx-2 expression was restricted distally within the Msx-1 expression domain. On the contrary, Msx-2 expression in the lateral choroid plexus and cranial skull was broader and more intensive than Msx-1 expression. Our findings suggest that these two genes cooperate to play differential roles in craniofacial development. Msx-2 protein was detected immunohistochemically, and its localization essentially corresponded to the mRNA expression pattern, substantiating the involvement of Msx-2 protein as a transcriptional regulator in developing limb and face.

  20. Functional network analysis of genes differentially expressed during xylogenesis in soc1ful woody Arabidopsis plants.

    Science.gov (United States)

    Davin, Nicolas; Edger, Patrick P; Hefer, Charles A; Mizrachi, Eshchar; Schuetz, Mathias; Smets, Erik; Myburg, Alexander A; Douglas, Carl J; Schranz, Michael E; Lens, Frederic

    2016-06-01

    Many plant genes are known to be involved in the development of cambium and wood, but how the expression and functional interaction of these genes determine the unique biology of wood remains largely unknown. We used the soc1ful loss of function mutant - the woodiest genotype known in the otherwise herbaceous model plant Arabidopsis - to investigate the expression and interactions of genes involved in secondary growth (wood formation). Detailed anatomical observations of the stem in combination with mRNA sequencing were used to assess transcriptome remodeling during xylogenesis in wild-type and woody soc1ful plants. To interpret the transcriptome changes, we constructed functional gene association networks of differentially expressed genes using the STRING database. This analysis revealed functionally enriched gene association hubs that are differentially expressed in herbaceous and woody tissues. In particular, we observed the differential expression of genes related to mechanical stress and jasmonate biosynthesis/signaling during wood formation in soc1ful plants that may be an effect of greater tension within woody tissues. Our results suggest that habit shifts from herbaceous to woody life forms observed in many angiosperm lineages could have evolved convergently by genetic changes that modulate the gene expression and interaction network, and thereby redeploy the conserved wood developmental program. © 2016 The Authors. The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd.

  1. 2D-3D radiograph to cone-beam computed tomography (CBCT) registration for C-arm image-guided robotic surgery.

    Science.gov (United States)

    Liu, Wen Pei; Otake, Yoshito; Azizian, Mahdi; Wagner, Oliver J; Sorger, Jonathan M; Armand, Mehran; Taylor, Russell H

    2015-08-01

    C-arm radiographs are commonly used for intraoperative image guidance in surgical interventions. Fluoroscopy is a cost-effective real-time modality, although image quality can vary greatly depending on the target anatomy. Cone-beam computed tomography (CBCT) scans are sometimes available, so 2D-3D registration is needed for intra-procedural guidance. C-arm radiographs were registered to CBCT scans and used for 3D localization of peritumor fiducials during a minimally invasive thoracic intervention with a da Vinci Si robot. Intensity-based 2D-3D registration of intraoperative radiographs to CBCT was performed. The feasible range of X-ray projections achievable by a C-arm positioned around a da Vinci Si surgical robot, configured for robotic wedge resection, was determined using phantom models. Experiments were conducted on synthetic phantoms and animals imaged with an OEC 9600 and a Siemens Artis zeego, representing the spectrum of different C-arm systems currently available for clinical use. The image guidance workflow was feasible using either an optically tracked OEC 9600 or a Siemens Artis zeego C-arm, resulting in an angular difference of Δθ:∼ 30°. The two C-arm systems provided TRE mean ≤ 2.5 mm and TRE mean ≤ 2.0 mm, respectively (i.e., comparable to standard clinical intraoperative navigation systems). C-arm 3D localization from dual 2D-3D registered radiographs was feasible and applicable for intraoperative image guidance during da Vinci robotic thoracic interventions using the proposed workflow. Tissue deformation and in vivo experiments are required before clinical evaluation of this system.

  2. Effect of Malnutrition on the Expression of Cytokines Involved in Th1 Cell Differentiation

    Directory of Open Access Journals (Sweden)

    Leonor Rodríguez

    2013-02-01

    Full Text Available Malnutrition is a common cause of secondary immune deficiency and has been linked to an increased susceptibility to infection in humans. Malnutrition specifically affects T-cell-mediated immune responses. The aim of this study was to assess in lymphocytes from malnourished children the expression levels of IL-12, IL-18 and IL-21, molecules that induce the differentiation of T cells related to the immunological cellular response (Th1 response and the production of cytokines related to the immunological cellular response (Th1 cytokines. We found that the expression levels of IL-12, IL-18 and IL-21 were significantly diminished in malnourished children compared to well-nourished children and were coincident with lower plasmatic levels of IL-2 and IFN-γ (Th1 cytokines. In this study, we show for the first time that the gene expression and intracellular production of cytokines responsible for Th1 cell differentiation (IL-12, IL-18 and IL-21 are diminished in malnourished children. As expected, this finding was related to lower plasmatic levels of IL-2 and IFN-γ. The decreased expression of Th1 cytokines observed in this study may contribute to the deterioration of the immunological Type 1 (cellular response. We hypothesize that the decreased production of IL-12, IL-18 and IL-21 in malnourished children contributes to their inability to eradicate infections.

  3. Differentially expressed proteins on postoperative 3

    Directory of Open Access Journals (Sweden)

    Jialili Ainuer

    2011-04-01

    Full Text Available 【Abstract】Objectives: Surgical repair of Achilles tendon (AT rupture should immediately be followed by active tendon mobilization. The optimal time as to when the mobilization should begin is important yet controversial. Early kinesitherapy leads to reduced rehabilitation period. However, an insight into the detailed mechanism of this process has not been gained. Proteomic technique can be used to separate and purify the proteins by differential expression profile which is related to the function of different proteins, but research in the area of proteomic analysis of AT 3 days after repair has not been studied so far. Methods: Forty-seven New Zealand white rabbits were randomized into 3 groups. Group A (immobilization group, n=16 received postoperative cast immobilization; Group B (early motion group, n=16 received early active motion treatments immediately following the repair of AT rupture from tenotomy. Another 15 rabbits served as control group (Group C. The AT samples were prepared 3 days following the microsurgery. The proteins were separated employing twodimensional polyacrylamide gel electrophoresis (2D-PAGE. PDQuest software version 8.0 was used to identify differentially expressed proteins, followed by peptide mass fingerprint (PMF and tandem mass spectrum analysis, using the National Center for Biotechnology Information (NCBI protein database retrieval and then for bioinformatics analysis. Results: A mean of 446.33, 436.33 and 462.67 protein spots on Achilles tendon samples of 13 rabbits in Group A, 14 rabbits in Group B and 13 rabbits in Group C were successfully detected in the 2D-PAGE. There were 40, 36 and 79 unique proteins in Groups A, B and C respectively. Some differentially expressed proteins were enzyme with the gel, matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS. We successfully identified 9 and 11 different proteins in Groups A and B, such as GAPDH, phosphoglycerate kinase 1

  4. Differential expression of OPN, VEGF-A, and HIF-1α and its clinical significance in hepatocellular carcinoma

    Directory of Open Access Journals (Sweden)

    ZHENG Yan

    2013-01-01

    Full Text Available ObjectiveTo investigate the expression patterns of osteopontin (OPN, vascular endothelial growth factor-A (VEGF-A, and hypoxia-inducible factor-1α(HIF-1α in primary hepatocellular carcinoma (HCC and determine the clinical significance of this differential expression profile. MethodsImmunohistochemical staining of OPN, VEGF-A, and HIF-1α was carried out on primary HCC tissues from 90 patients, HCC-adjacent cirrhosis tissues from 20 of those patients, and normal liver tissues from 15 healthy controls. Correlations between expression levels and HCC clinicopathological characteristics were assessed by Spearman's correlation coefficient. ResultsThe majority of HCC tissues showed positive immunostaining for OPN (69/90, 76.67%, VEGF-A (64/90, 71.11%, and HIF-1α (66/90, 73.33%. OPN- and VEGF-A-positivity were significantly higher than the results from the cirrhosis tissues and normal tissues. HIF-1α-positivity was similar between the HCC and cirrhosis tissues, but both were significantly different from the normal tissues. The differential expressions of OPN, VEGF-A, and HIF-1α were significantly correlated with tumor thrombus, capsular integrity, tumor differentiation and stage, and metastasis (P<0.05. ConclusionHCC tissues overexpress OPN, VEGF-A, and HIF-1α and this differential profile may be related to HCC progression. Future investigations of this triad of factors may provide novel insights into the biological characteristics of HCC and reveal important targets of molecular therapy.

  5. TGF-β induces the expression of the adaptor Ndfip1 to silence IL-4 production during iTreg cell differentiation.

    Science.gov (United States)

    Beal, Allison M; Ramos-Hernández, Natalia; Riling, Chris R; Nowelsky, Erin A; Oliver, Paula M

    2011-11-13

    Mice deficient in the adaptor Ndfip1 develop inflammation at sites of environmental antigen exposure. We show here that such mice had fewer inducible regulatory T cells (iT(reg) cells). In vitro, Ndfip1-deficient T cells expressed normal amounts of the transcription factor Foxp3 during the first 48 h of iT(reg) cell differentiation; however, this expression was not sustained. Abortive Foxp3 expression was caused by production of interleukin 4 (IL-4) by Ndfip1(-/-) cells. We found that Ndfip1 expression was transiently upregulated during iT(reg) cell differentiation in a manner dependent on transforming growth factor-β (TGF-β). Once expressed, Ndfip1 promoted degradation of the transcription factor JunB mediated by the E3 ubiquitin ligase Itch, thus preventing IL-4 production. On the basis of our data, we propose that TGF-β signaling induces Ndfip1 expression to silence IL-4 production, thus permitting iT(reg) cell differentiation.

  6. Differentiation-inducing factor-1 suppresses gene expression of cyclin D1 in tumor cells

    International Nuclear Information System (INIS)

    Yasmin, Tania; Takahashi-Yanaga, Fumi; Mori, Jun; Miwa, Yoshikazu; Hirata, Masato; Watanabe, Yutaka; Morimoto, Sachio; Sasaguri, Toshiyuki

    2005-01-01

    To determine the mechanism by which differentiation-inducing factor-1 (DIF-1), a morphogen of Dictyostelium discoideum, inhibits tumor cell proliferation, we examined the effect of DIF-1 on the gene expression of cyclin D1. DIF-1 strongly reduced the expression of cyclin D1 mRNA and correspondingly decreased the amount of β-catenin in HeLa cells and squamous cell carcinoma cells. DIF-1 activated glycogen synthase kinase-3β (GSK-3β) and inhibition of GSK-3β attenuated the DIF-1-induced β-catenin degradation, indicating the involvement of GSK-3β in this effect. Moreover, DIF-1 reduced the activities of T-cell factor (TCF)/lymphoid enhancer factor (LEF) reporter plasmid and a reporter gene driven by the human cyclin D1 promoter. Eliminating the TCF/LEF consensus site from the cyclin D1 promoter diminished the effect of DIF-1. These results suggest that DIF-1 inhibits Wnt/β-catenin signaling, resulting in the suppression of cyclin D1 promoter activity

  7. TGF-β induces the expression of Nedd4 family-interacting protein 1 (Ndfip1) to silence IL-4 production during iTreg cell differentiation

    Science.gov (United States)

    Beal, Allison M.; Ramos-Hernández, Natalia; Riling, Chris R.; Nowelsky, Erin A.; Oliver, Paula M.

    2011-01-01

    Mice deficient for the adaptor Ndfip1 develop inflammation at sites of environmental antigen exposure. We show here that these animals contain fewer inducible regulatory (iTreg) cells. In vitro, Ndfip1-deficient T cells express normal levels of the transcription factor Foxp3 during the first 48 hours of iTreg cell differentiation, however this cannot be sustained. Abortive Foxp3 expression is because Ndfip1–/– cells produce interleukin 4 (IL-4). We demonstrate that Ndfip1 is transiently unregulated during iTreg cell differentiation in a transforming growth factor-β (TGF-β) dependent manner. Once expressed Ndfip1 promotes Itch-mediated degradation of the transcription factor JunB, thus preventing IL-4 production. Based on these data, we propose that TGF-β signaling induces Ndfip1 expression to silence IL-4 production, thus permitting iTreg cell differentiation. PMID:22080920

  8. Study on the method or reducing the operator's exposure dose from a C-Arm system

    International Nuclear Information System (INIS)

    Kim, Ki Sik; Song, Jong Nam; Kim, Seung Ok

    2016-01-01

    In this study, C-Arm equipment is being used as we intend to verify the exposure dose on the operator by the scattering rays during the operation of the C-Arm equipment and to provide an effective method of reducing the exposure dose. Exposure dose is less than the Over Tube method utilizes the C-arm equipment Under Tube the scheme, The result showed that the exposure dose on the operator decreased with a thicker shield, and as the operator moved away from the center line. Moreover, as the research time prolongated, the exposure dose increased, and among the three affixed location of the dosimeter, the most exposure dose was measured at gonadal, then followed by chest and thyroid. However, in consideration of the relationship between the operator and the patient, the distance cannot be increased infinitely and the research time cannot be decreased infinitely in order to reduce the exposure dose. Therefore, by changing the thickness of the radiation shield, the exposure dose on the operator was able to be reduced. If you are using a C-Arm equipment discomfort during surgery because the grounds that the procedure is neglected and close to the dose of radiation shielding made can only increase. Because a separate control room cannot be used for the C-Arm equipment due to its characteristic, the exposure dose on the operator needs to be reduced by reinforcing the shield through an appropriate thickness of radiation shield devices, such as apron, etc. during a treatment

  9. Expression of PD-1 and PD-L1 in poorly differentiated neuroendocrine carcinomas of the digestive system: a potential target for anti-PD-1/PD-L1 therapy.

    Science.gov (United States)

    Roberts, Jordan A; Gonzalez, Raul S; Das, Satya; Berlin, Jordan; Shi, Chanjuan

    2017-12-01

    Poorly differentiated neuroendocrine carcinoma of the digestive system has a dismal prognosis with limited treatment options. This study aimed to investigate expression of the PD-1/PD-L1 pathway in these tumors. Thirty-seven patients with a poorly differentiated neuroendocrine carcinoma of the digestive system were identified. Their electronic medical records, pathology reports, and pathology slides were reviewed for demographics, clinical history, and pathologic features. Tumor sections were immunohistochemically labeled for PD-1 and PD-L1, and expression of PD-1 and PD-L1 on tumor and tumor-associated immune cells was analyzed and compared between small cell and large cell neuroendocrine carcinomas. The mean age of patients was 61 years old with 18 men and 19 women. The colorectum (n=20) was the most common primary site; other primary sites included the pancreaticobiliary system, esophagus, stomach, duodenum, and ampulla. Expression of PD-1 was detected on tumor cells (n=6, 16%) as well as on tumor-associated immune cells (n=23, 63%). The 6 cases with PD-1 expression on tumor cells also had the expression on immune cells. Expression of PD-L1 was visualized on tumor cells in 5 cases (14%) and on tumor-associated immune cells in 10 cases (27%). There was no difference in PD-1 and PD-L1 expression between small cell and large cell neuroendocrine carcinomas. In conclusion, PD-1/PD-L1 expression is a frequent occurrence in poorly differentiated neuroendocrine carcinomas of the digestive system. Checkpoint blockade targeting the PD-1/PD-L1 pathway may have a potential role in treating patients with this disease. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Differential expression of cyclin D1 in keratin-producing odontogenic cysts.

    Science.gov (United States)

    Vera-Sirera, Beatriz; Forner-Navarro, Leopoldo; Vera-Sempere, Francisco

    2015-01-01

    The aim of the present study was to analyze the expression levels of Cyclin D1 (CCD1), a nuclear protein that plays a crucial role in cell cycle progression, in a series of keratin-producing odontogenic cysts. A total of 58 keratin-producing odontogenic cysts, diagnosed over ten years and classified according to the WHO 2005 criteria, were immunohistochemically analyzed in terms of CCD1 expression, which was quantified in the basal, suprabasal and intermediate/superficial epithelial compartments. The extent of immunostaining was measured as a proportion of total epithelial thickness. Quantified immunohistochemical data were correlated with clinicopathological features and clinical recurrence. Keratin-producing odontogenic cysts were classified as 6 syndromic keratocystic odontogenic tumors (S-KCOT), 40 sporadic or non-syndromic KCOT (NS-KCOT) and 12 orthokeratinized odontogenic cysts (OOC). Immunohistochemically, CCD1 staining was evident predominantly in the parabasal region of all cystic lesions, but among-lesion differences were apparent, showing a clear expansion of parabasal compartment especially in the S-KCOT, followed to a lesser extent in the NS-KCOT, and being much more reduced in the OOC, which had the greatest average epithelial thickness. The differential expression of CCD1 noted in the present study suggests that dysregulation of cell cycle progression from G1 to the S phase contributes to the different aggressiveness of these lesions. However, CCD1 expression levels did not predict NS-KCOT recurrence, which is likely influenced by factors unrelated to lesion biology.

  11. Differential expression gene profiling in human lymphocyte after 6 h irradiated

    International Nuclear Information System (INIS)

    Li Jianguo; Qin Xiujun; Zhang Wei; Xu Chaoqi; Li Weibin; Dang Xuhong; Zuo Yahui

    2011-01-01

    Objective: To provide the evidence of health damage for the staff irradiated from the gene level. Methods: The study analyzed the differential transcriptional profile of normal human lymphocyte and human lymphocyte irradiated with 0.1 Gy, 0.2 Gy, 0.5 Gy, 1.0 Gy by whole genome chip after 6 h irradiated. Results: The results showed that there were 1177 differentially expressed genes with 0.1 Gy after 6 h irradiation, and there were 1922 differentially expressed genes with 0.2 Gy after 6 h irradiation, and there were 492 differentially expressed genes with 0.5 Gy after 6 h irradiation, 2615 differentially expressed genes with 1.0 Gy after 6 h irradiation, 114 differentially expressed genes in 4 dose points after 6 h irradiation. RT-PCR results indicated that the relative quantity's result of EGR1, HLA-DMB and TAIAP1 was consistent with gene chip data. Conclusion: The study found many significant different genes in human lymphocyte with different doses after 6 h irradiation, which will provide a basis for the further radiation-different-genes and the mechanism of radiation damage. (authors)

  12. The rotate-plus-shift C-arm trajectory. Part I. Complete data with less than 180° rotation

    International Nuclear Information System (INIS)

    Ritschl, Ludwig; Fleischmann, Christof; Kuntz, Jan; Kachelrieß, Marc

    2016-01-01

    Purpose: In the last decade, C-arm-based cone-beam CT became a widely used modality for intraoperative imaging. Typically a C-arm CT scan is performed using a circular or elliptical trajectory around a region of interest. Therefore, an angular range of at least 180° plus fan angle must be covered to ensure a completely sampled data set. However, mobile C-arms designed with a focus on classical 2D applications like fluoroscopy may be limited to a mechanical rotation range of less than 180° to improve handling and usability. The method proposed in this paper allows for the acquisition of a fully sampled data set with a system limited to a mechanical rotation range of at least 180° minus fan angle using a new trajectory design. This enables CT like 3D imaging with a wide range of C-arm devices which are mainly designed for 2D imaging. Methods: The proposed trajectory extends the mechanical rotation range of the C-arm system with two additional linear shifts. Due to the divergent character of the fan-beam geometry, these two shifts lead to an additional angular range of half of the fan angle. Combining one shift at the beginning of the scan followed by a rotation and a second shift, the resulting rotate-plus-shift trajectory enables the acquisition of a completely sampled data set using only 180° minus fan angle of rotation. The shifts can be performed using, e.g., the two orthogonal positioning axes of a fully motorized C-arm system. The trajectory was evaluated in phantom and cadaver examinations using two prototype C-arm systems. Results: The proposed trajectory leads to reconstructions without limited angle artifacts. Compared to the limited angle reconstructions of 180° minus fan angle, image quality increased dramatically. Details in the rotate-plus-shift reconstructions were clearly depicted, whereas they are dominated by artifacts in the limited angle scan. Conclusions: The method proposed here employs 3D imaging using C-arms with less than 180° rotation

  13. The rotate-plus-shift C-arm trajectory. Part I. Complete data with less than 180° rotation

    Energy Technology Data Exchange (ETDEWEB)

    Ritschl, Ludwig; Fleischmann, Christof [Ziehm Imaging GmbH, Donaustraße 31, Nürnberg 90451 (Germany); Kuntz, Jan, E-mail: j.kuntz@dkfz.de; Kachelrieß, Marc [Medical Physics in Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120 (Germany)

    2016-05-15

    Purpose: In the last decade, C-arm-based cone-beam CT became a widely used modality for intraoperative imaging. Typically a C-arm CT scan is performed using a circular or elliptical trajectory around a region of interest. Therefore, an angular range of at least 180° plus fan angle must be covered to ensure a completely sampled data set. However, mobile C-arms designed with a focus on classical 2D applications like fluoroscopy may be limited to a mechanical rotation range of less than 180° to improve handling and usability. The method proposed in this paper allows for the acquisition of a fully sampled data set with a system limited to a mechanical rotation range of at least 180° minus fan angle using a new trajectory design. This enables CT like 3D imaging with a wide range of C-arm devices which are mainly designed for 2D imaging. Methods: The proposed trajectory extends the mechanical rotation range of the C-arm system with two additional linear shifts. Due to the divergent character of the fan-beam geometry, these two shifts lead to an additional angular range of half of the fan angle. Combining one shift at the beginning of the scan followed by a rotation and a second shift, the resulting rotate-plus-shift trajectory enables the acquisition of a completely sampled data set using only 180° minus fan angle of rotation. The shifts can be performed using, e.g., the two orthogonal positioning axes of a fully motorized C-arm system. The trajectory was evaluated in phantom and cadaver examinations using two prototype C-arm systems. Results: The proposed trajectory leads to reconstructions without limited angle artifacts. Compared to the limited angle reconstructions of 180° minus fan angle, image quality increased dramatically. Details in the rotate-plus-shift reconstructions were clearly depicted, whereas they are dominated by artifacts in the limited angle scan. Conclusions: The method proposed here employs 3D imaging using C-arms with less than 180° rotation

  14. Comparison of C-arm computed tomography and on-site quick cortisol assay for adrenal venous sampling: A retrospective study of 178 patients.

    Science.gov (United States)

    Chang, Chin-Chen; Lee, Bo-Ching; Chang, Yeun-Chung; Wu, Vin-Cent; Huang, Kuo-How; Liu, Kao-Lang

    2017-12-01

    To compare the performance of on-site quick cortisol assay (QCA) and C-arm computed tomography (CT) assistance on adrenal venous sampling (AVS) without adrenocorticotropic hormone stimulation. The institutional review board at our hospital approved this retrospective study, which included 178 consecutive patients with primary aldosteronism. During AVS, we used C-arm CT to confirm right adrenal cannulation between May 2012 and June 2015 (n = 100) and QCA for bilateral adrenal cannulation between July 2015 and September 2016 (n = 78). Successful AVS required a selectivity index (cortisol adrenal vein /cortisol peripheral ) of ≥ 2.0 bilaterally. The overall success rate of C-arm CT-assisted AVS was 87%, which increased to 97.4% under QCA (P = .013). The procedure time (C-arm CT, 49.5 ± 21.3 min; QCA, 37.5 ± 15.6 min; P AVS. • Adrenal venous sampling (AVS) is a technically challenging procedure. • C-arm CT and quick cortisol assay (QCA) are efficient for assisting AVS. • QCA might outperform C-arm CT in enhancing AVS performance.

  15. Differential anatomical expression of ganglioside GM1 species containing d18:1 or d20:1 sphingosine detected by MALDI Imaging Mass Spectrometry in mature rat brain

    Directory of Open Access Journals (Sweden)

    Nina eWeishaupt

    2015-12-01

    Full Text Available GM1 ganglioside plays a role in essential neuronal processes, including differentiation, survival and signaling. Yet, little is known about GM1 species with different sphingosine bases, such as the most abundant species containing 18 carbon atoms in the sphingosine chain (GM1d18:1, and the less abundant containing 20 carbon atoms (GM1d20:1. While absent in the early fetal brain, GM1d20:1 continues to increase throughout pre- and postnatal development and into old age, raising questions about the functional relevance of the GM1d18:1 to GM1d20:1 ratio. Matrix-assisted laser desorption/ionization (MALDI Imaging Mass Spectrometry is a novel technology that allows differentiation between these two GM1 species and quantification of their expression within an anatomical context. Using this technology, we find GM1d18:1/d20:1 expression ratios are highly specific to defined anatomical brain regions in adult rats. Thus, the ratio was significantly different among different thalamic nuclei and between the corpus callosum and internal capsule. Differential GM1d18:1/GM1d20:1 ratios measured in hippocampal subregions in rat brain complement previous studies conducted in mice. Across layers of the sensory cortex, opposing expression gradients were found for GM1d18:1 and GM1d20:1. Superficial layers demonstrated lower GM1d18:1 and higher GM1d20:1 signal than other layers, while in deep layers GM1d18:1 expression was relatively high and GM1d20:1 expression low. By far the highest GM1d18:1/d20:1 ratio was found in the amygdala. Differential expression of GM1 with d18:1- or d20:1-sphingosine bases in the adult rat brain suggests tight regulation of expression and points toward a distinct functional relevance for each of these GM1 species in neuronal processes.

  16. Perturbation-expression analysis identifies RUNX1 as a regulator of human mammary stem cell differentiation.

    Directory of Open Access Journals (Sweden)

    Ethan S Sokol

    2015-04-01

    Full Text Available The search for genes that regulate stem cell self-renewal and differentiation has been hindered by a paucity of markers that uniquely label stem cells and early progenitors. To circumvent this difficulty we have developed a method that identifies cell-state regulators without requiring any markers of differentiation, termed Perturbation-Expression Analysis of Cell States (PEACS. We have applied this marker-free approach to screen for transcription factors that regulate mammary stem cell differentiation in a 3D model of tissue morphogenesis and identified RUNX1 as a stem cell regulator. Inhibition of RUNX1 expanded bipotent stem cells and blocked their differentiation into ductal and lobular tissue rudiments. Reactivation of RUNX1 allowed exit from the bipotent state and subsequent differentiation and mammary morphogenesis. Collectively, our findings show that RUNX1 is required for mammary stem cells to exit a bipotent state, and provide a new method for discovering cell-state regulators when markers are not available.

  17. The Effect of Agmatine on Expression of IL-1β and TLX Which Promotes Neuronal Differentiation in Lipopolysaccharide-Treated Neural Progenitors.

    Science.gov (United States)

    Song, Juhyun; Kumar, Bokara Kiran; Kang, Somang; Park, Kyung Ah; Lee, Won Taek; Lee, Jong Eun

    2013-12-01

    Differentiation of neural progenitor cells (NPCs) is important for protecting neural cells and brain tissue during inflammation. Interleukin-1 beta (IL-1β) is the most common pro- inflammatory cytokine in brain inflammation, and increased IL-1β levels can decrease the proliferation of NPCs. We aimed to investigate whether agmatine (Agm), a primary polyamine that protects neural cells, could trigger differentiation of NPCs by activating IL-1β in vitro. The cortex of ICR mouse embryos (E14) was dissociated to culture NPCs. NPCs were stimulated by lipopolysaccharide (LPS). After 6 days, protein expression of stem cell markers and differentiation signal factors was confirmed by using western blot analysis. Also, immunocytochemistry was used to confirm the cell fate. Agm treatment activated NPC differentiation significantly more than in the control group, which was evident by the increased expression of a neuronal marker, MAP2, in the LPS-induced, Agm-treated group. Differentiation of LPS-induced, Agm-treated NPCs was regulated by the MAPK pathway and is thought to be related to IL-1β activation and decreased expression of TLX, a transcription factor that regulates NPC differentiation. Our results reveal that Agm can promote NPC differentiation to neural stem cells by modulating IL-1β expression under inflammatory condition, and they suggest that Agm may be a novel therapeutic strategy for neuroinflammatory diseases.

  18. Low Annexin A1 expression predicts benefit from induction chemotherapy in oral cancer patients with moderate or poor pathologic differentiation grade

    International Nuclear Information System (INIS)

    Zhu, Dong-wang; Zhang, Chen-ping; Zhang, Zhi-yuan; Zhong, Lai-ping; Liu, Ying; Yang, Xiao; Yang, Cheng-zhe; Ma, Jie; Yang, Xi; Qiao, Jin-ke; Wang, Li-zhen; Li, Jiang

    2013-01-01

    The benefit of induction chemotherapy in locally advanced oral squamous cell carcinoma (OSCC) remains to be clearly defined. Induction chemotherapy is likely to be effective for biologically distinct subgroups of patients and biomarker development might lead to identification of the patients whose tumors are to respond to a particular treatment. Annexin A1 may serve as a biomarker for responsiveness to induction chemotherapy. The aim of this study was to investigate Annexin A1 expression in pre-treatment biopsies from a cohort of OSCC patients treated with surgery and post-operative radiotherapy or docetaxel, cisplatin and 5-fluorouracil (TPF) induction chemotherapy followed by surgery and post-operative radiotherapy. Furthermore we sought to assess the utility of Annexin A1 as a prognostic or predictive biomarker. Immunohistochemical staining for Annexin A1 was performed in pre-treatment biopsies from 232 of 256 clinical stage III/IVA OSCC patients. Annexin A1 index was estimated as the proportion of tumor cells (low and high, <50% and ≥50% of stained cells, respectively) to Annexin A1 cellular membrane and cytoplasm staining. There was a significant correlation between Annexin A1 expression and pathologic differentiation grade (P=0.015) in OSCC patients. The proportion of patients with low Annexin A1 expression was significantly higher amongst those with moderate/poorly differentiated tumor (78/167) compared to those with well differentiated tumor (18/65). Multivariate Cox model analysis showed clinical stage (P=0.001) and Annexin A1 expression (P=0.038) as independent prognostic risk factors. Furthermore, a low Annexin A1 expression level was predictive of longer disease-free survival (P=0.036, HR=0.620) and locoregional recurrence-free survival (P=0.031, HR=0.607) compared to high Annexin A1 expression. Patients with moderate/poorly differentiated tumor and low Annexin A1 expression benefited from TPF induction chemotherapy as measured by distant metastasis

  19. Study on the method or reducing the operator's exposure dose from a C-Arm system

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ki Sik; Song, Jong Nam [Dept. of Radiological Science, Dongshin University, Naju (Korea, Republic of); Kim, Seung Ok [Dept. of Radiology, Catholic Kwangdong Universty International ST.Mary' s Hospital, Incheon (Korea, Republic of)

    2016-12-15

    In this study, C-Arm equipment is being used as we intend to verify the exposure dose on the operator by the scattering rays during the operation of the C-Arm equipment and to provide an effective method of reducing the exposure dose. Exposure dose is less than the Over Tube method utilizes the C-arm equipment Under Tube the scheme, The result showed that the exposure dose on the operator decreased with a thicker shield, and as the operator moved away from the center line. Moreover, as the research time prolongated, the exposure dose increased, and among the three affixed location of the dosimeter, the most exposure dose was measured at gonadal, then followed by chest and thyroid. However, in consideration of the relationship between the operator and the patient, the distance cannot be increased infinitely and the research time cannot be decreased infinitely in order to reduce the exposure dose. Therefore, by changing the thickness of the radiation shield, the exposure dose on the operator was able to be reduced. If you are using a C-Arm equipment discomfort during surgery because the grounds that the procedure is neglected and close to the dose of radiation shielding made can only increase. Because a separate control room cannot be used for the C-Arm equipment due to its characteristic, the exposure dose on the operator needs to be reduced by reinforcing the shield through an appropriate thickness of radiation shield devices, such as apron, etc. during a treatment.

  20. CARM and harmonic gyro-amplifier experiments at 17 GHz

    International Nuclear Information System (INIS)

    Menninger, W.L.; Danly, B.G.; Alberti, S.; Chen, C.; Rullier, J.L.; Temkin, R.J.

    1993-01-01

    Cyclotron resonance maser amplifiers are possible sources for applications such as electron cyclotron resonance heating of fusion plasmas and driving high-gradient rf linear accelerators. For accelerator drivers, amplifiers or phase locked-oscillators are required. A 17 GHz cyclotron autoresonance maser (CARM) amplifier experiment and a 17 GHz third harmonic gyro-amplifier experiment are presently underway at the MIT Plasma Fusion Center. Using the SRL/MIT SNOMAD II introduction accelerator to provide a 380 kV, 180 A, 30 ns flat top electron beam, the gyro-amplifier experiment has produced 5 MW of rf power with over 50 dB of gain at 17 GHz. The gyro-amplifier operates in the TE 31 mode using a third harmonic interaction. Because of its high power output, the gyro-amplifier will be used as the rf source for a photocathode rf electron gun experiment also taking place at MIT. Preliminary gyro-amplifier results are presented, including measurement of rf power, gain versus interaction length, and the far-field pattern. A CARM experiment designed to operate in the TE 11 mode is also discussed

  1. Developmental expression and differentiation-related neuron-specific splicing of metastasis suppressor 1 (Mtss1 in normal and transformed cerebellar cells

    Directory of Open Access Journals (Sweden)

    Baader Stephan L

    2007-10-01

    Full Text Available Abstract Background Mtss1 encodes an actin-binding protein, dysregulated in a variety of tumors, that interacts with sonic hedgehog/Gli signaling in epidermal cells. Given the prime importance of this pathway for cerebellar development and tumorigenesis, we assessed expression of Mtss1 in the developing murine cerebellum and human medulloblastoma specimens. Results During development, Mtss1 is transiently expressed in granule cells, from the time point they cease to proliferate to their synaptic integration. It is also expressed by granule cell precursor-derived medulloblastomas. In the adult CNS, Mtss1 is found exclusively in cerebellar Purkinje cells. Neuronal differentiation is accompanied by a switch in Mtss1 splicing. Whereas immature granule cells express a Mtss1 variant observed also in peripheral tissues and comprising exon 12, this exon is replaced by a CNS-specific exon, 12a, in more mature granule cells and in adult Purkinje cells. Bioinformatic analysis of Mtss1 suggests that differential exon usage may affect interaction with Fyn and Src, two tyrosine kinases previously recognized as critical for cerebellar cell migration and histogenesis. Further, this approach led to the identification of two evolutionary conserved nuclear localization sequences. These overlap with the actin filament binding site of Mtss1, and one also harbors a potential PKA and PKC phosphorylation site. Conclusion Both the pattern of expression and splicing of Mtss1 is developmentally regulated in the murine cerebellum. These findings are discussed with a view on the potential role of Mtss1 for cytoskeletal dynamics in developing and mature cerebellar neurons.

  2. Expression of Xanthophyll Biosynthetic Genes during Light-Dependent Chloroplast Differentiation1

    Science.gov (United States)

    Woitsch, Sonja; Römer, Susanne

    2003-01-01

    In higher plants, etioplast to chloroplast differentiation is characterized by dramatic ultrastructural changes of the plastid and a concomitant increase in chlorophylls and carotenoids. Whereas the formation and function of carotenes and their oxygenated derivatives, the xanthophylls, have been well studied, little is known about the regulation of the genes involved in xanthophyll biosynthesis. Here, we analyze the expression of three xanthophyll biosynthetic genes (i.e. β-carotene hydroxylase [bhy], zeaxanthin epoxidase [zep], and violaxanthin de-epoxidase [vde]) during de-etiolation of seedlings of tobacco (Nicotiana tabacum L. cv Samsun) under different light conditions. White-light illumination caused an increase in the amount of all corresponding mRNAs. The expression profiles of bhy and zep not only resembled each other but were also similar to the pattern of a gene encoding a major light-harvesting protein of photosystem II. This finding indicates a coordinated synthesis during formation of the antenna complex. In contrast, the expression pattern of vde was clearly different. Furthermore, the gene expression of bhy was shown to be modulated after illumination with different white-light intensities. The expression of all xanthophyll biosynthetic genes under examination was up-regulated upon exposure to red, blue, and white light. Gene expression of bhy and vde but not of zep was more pronounced under red-light illumination, pointing at an involvement of the phytochrome system. Expression analysis in the presence of the photosynthetic electron transport inhibitors 3-(3,4-dichlorophenyl)-1,1-dimethyl-urea and 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone indicated a redox control of transcription of two of the xanthophyll biosynthetic genes (bhy and zep). PMID:12857831

  3. Differential gene expression and Hog1 interaction with osmoresponsive genes in the extremely halotolerant black yeast Hortaea werneckii

    Directory of Open Access Journals (Sweden)

    Plemenitaš Ana

    2007-08-01

    Full Text Available Abstract Background Fluctuations in external salinity force eukaryotic cells to respond by changes in the gene expression of proteins acting in protective biochemical processes, thus counteracting the changing osmotic pressure. The high-osmolarity glycerol (HOG signaling pathway is essential for the efficient up-regulation of the osmoresponsive genes. In this study, the differential gene expression of the extremely halotolerant black yeast Hortaea werneckii was explored. Furthermore, the interaction of mitogen-activated protein kinase HwHog1 and RNA polymerase II with the chromatin in cells adapted to an extremely hypersaline environment was analyzed. Results A cDNA subtraction library was constructed for H. werneckii, adapted to moderate salinity or an extremely hypersaline environment of 4.5 M NaCl. An uncommon osmoresponsive set of 95 differentially expressed genes was identified. The majority of these had not previously been connected with the adaptation of salt-sensitive S. cerevisiae to hypersaline conditions. The transcriptional response in hypersaline-adapted and hypersaline-stressed cells showed that only a subset of the identified genes responded to acute salt-stress, whereas all were differentially expressed in adapted cells. Interaction with HwHog1 was shown for 36 of the 95 differentially expressed genes. The majority of the identified osmoresponsive and HwHog1-dependent genes in H. werneckii have not been previously reported as Hog1-dependent genes in the salt-sensitive S. cerevisiae. The study further demonstrated the co-occupancy of HwHog1 and RNA polymerase II on the chromatin of 17 up-regulated and 2 down-regulated genes in 4.5 M NaCl-adapted H. werneckii cells. Conclusion Extremely halotolerant H. werneckii represents a suitable and highly relevant organism to study cellular responses to environmental salinity. In comparison with the salt-sensitive S. cerevisiae, this yeast shows a different set of genes being expressed at

  4. 1α,25(OH)2D3 differentially regulates miRNA expression in human bladder cancer cells.

    Science.gov (United States)

    Ma, Yingyu; Hu, Qiang; Luo, Wei; Pratt, Rachel N; Glenn, Sean T; Liu, Song; Trump, Donald L; Johnson, Candace S

    2015-04-01

    Bladder cancer is the fourth most commonly diagnosed cancer in men and eighth leading cause of cancer-related death in the US. Epidemiological and experimental studies strongly suggest a role for 1α,25(OH)2D3 in cancer prevention and treatment. The antitumor activities of 1α,25(OH)2D3 are mediated by the induction of cell cycle arrest, apoptosis, differentiation and the inhibition of angiogenesis and metastasis. miRNAs play important regulatory roles in cancer development and progression. However, the role of 1α,25(OH)2D3 in the regulation of miRNA expression and the potential impact in bladder cancer has not been investigated. Therefore, we studied 1α,25(OH)2D3-regulated miRNA expression profiles in human bladder cancer cell line 253J and the highly tumorigenic and metastatic derivative line 253J-BV by miRNA qPCR panels. 253J and 253J-BV cells express endogenous vitamin D receptor (VDR), which can be further induced by 1α,25(OH)2D3. VDR target gene 24-hydroxylase was induced by 1α,25(OH)2D3 in both cell lines, indicating functional 1α,25(OH)2D3 signaling. The miRNA qPCR panel assay results showed that 253J and 253J-BV cells have distinct miRNA expression profiles. Further, 1α,25(OH)2D3 differentially regulated miRNA expression profiles in 253J and 253J-BV cells in a dynamic manner. Pathway analysis of the miRNA target genes revealed distinct patterns of contribution to the molecular functions and biological processes in the two cell lines. In conclusion, 1α,25(OH)2D3 differentially regulates the expression of miRNAs, which may contribute to distinct biological functions, in human bladder 253J and 253J-BV cells. This article is part of a Special Issue entitled '17th Vitamin D Workshop'. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Altered MENIN expression disrupts the MAFA differentiation pathway in insulinoma.

    Science.gov (United States)

    Hamze, Z; Vercherat, C; Bernigaud-Lacheretz, A; Bazzi, W; Bonnavion, R; Lu, J; Calender, A; Pouponnot, C; Bertolino, P; Roche, C; Stein, R; Scoazec, J Y; Zhang, C X; Cordier-Bussat, M

    2013-12-01

    The protein MENIN is the product of the multiple endocrine neoplasia type I (MEN1) gene. Altered MENIN expression is one of the few events that are clearly associated with foregut neuroendocrine tumours (NETs), classical oncogenes or tumour suppressors being not involved. One of the current challenges is to understand how alteration of MENIN expression contributes to the development of these tumours. We hypothesised that MENIN might regulate factors maintaining endocrine-differentiated functions. We chose the insulinoma model, a paradigmatic example of well-differentiated pancreatic NETs, to study whether MENIN interferes with the expression of v-MAF musculoaponeurotic fibrosarcoma oncogene homologue A (MAFA), a master glucose-dependent transcription factor in differentiated β-cells. Immunohistochemical analysis of a series of human insulinomas revealed a correlated decrease in both MENIN and MAFA. Decreased MAFA expression resulting from targeted Men1 ablation was also consistently observed in mouse insulinomas. In vitro analyses using insulinoma cell lines showed that MENIN regulated MAFA protein and mRNA levels, and bound to Mafa promoter sequences. MENIN knockdown concomitantly decreased mRNA expression of both Mafa and β-cell differentiation markers (Ins1/2, Gck, Slc2a2 and Pdx1) and, in parallel, increased the proliferation rate of tumours as measured by bromodeoxyuridine incorporation. Interestingly, MAFA knockdown alone also increased proliferation rate but did not affect the expression of candidate proliferation genes regulated by MENIN. Finally, MENIN variants with missense mutations detected in patients with MEN1 lost the WT MENIN properties to regulate MAFA. Together, our findings unveil a previously unsuspected MENIN/MAFA connection regarding control of the β-cell differentiation/proliferation balance, which could contribute to tumorigenesis.

  6. Expression profiles for six zebrafish genes during gonadal sex differentiation

    DEFF Research Database (Denmark)

    Jørgensen, Anne; Morthorst, Jane Ebsen; Andersen, Ole

    2008-01-01

    BACKGROUND: The mechanism of sex determination in zebrafish is largely unknown and neither sex chromosomes nor a sex-determining gene have been identified. This indicates that sex determination in zebrafish is mediated by genetic signals from autosomal genes. The aim of this study was to determine...... the precise timing of expression of six genes previously suggested to be associated with sex differentiation in zebrafish. The current study investigates the expression of all six genes in the same individual fish with extensive sampling dates during sex determination and -differentiation. RESULTS......: In the present study, we have used quantitative real-time PCR to investigate the expression of ar, sox9a, dmrt1, fig alpha, cyp19a1a and cyp19a1b during the expected sex determination and gonadal sex differentiation period. The expression of the genes expected to be high in males (ar, sox9a and dmrt1a) and high...

  7. TU-FG-BRB-11: Design and Evaluation of a Robotic C-Arm CBCT System for Image-Guided Proton Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Hua, C; Yao, W; Farr, J; Merchant, T [St. Jude Children’s Research Hospital, Memphis, TN (United States); Kidani, T; Tomida, K; Ozawa, S; Nishimura, T; Fujusawa, T; Shinagawa, R [Hitachi, Ltd., Hitachi-shi, Ibaraki-ken (Japan)

    2016-06-15

    Purpose: To describe the design and performance of a ceiling-mounted robotic C-arm CBCT system for image-guided proton therapy. Methods: Uniquely different from traditional C-arm CBCT used in interventional radiology, the imaging system was designed to provide volumetric image guidance for patients treated on a 190-degree proton gantry system and a 6 degree-of-freedom (DOF) robotic patient positioner. The mounting of robotic arms to the ceiling rails, rather than gantry or nozzle, provides the flexibility in imaging locations (isocenter, iso+27cm in X, iso+100cm in Y) in the room and easier upgrade as technology advances. A kV X-ray tube and a 43×43cm flat panel imager were mounted to a rotating C-ring (87cm diameter), which is coupled to the C-arm concentrically. Both C-arm and the robotic arm remain stationary during imaging to maintain high position accuracy. Source-to-axis distance and source-to-imager distance are 100 and 150cm, respectively. A 14:1 focused anti-scatter grid and a bowtie filer are used for image acquisition. A unique automatic collimator device of 4 independent blades for adjusting field of view and reducing patient dose has also been developed. Results: Sub-millimeter position accuracy and repeatability of the robotic C-arm were measured with a laser tracker. High quality CBCT images for positioning can be acquired with a weighted CTDI of 3.6mGy (head in 200° full fan mode: 100kV, 20mA, 20ms, 10fps)-8.7 mGy (pelvis in 360° half fan mode: 125kV, 42mA, 20ms, 10fps). Image guidance accuracy achieved <1mm (3D vector) with automatic 3D-3D registration for anthropomorphic head and pelvis phantoms. Since November 2015, 22 proton therapy patients have undergone daily CBCT imaging for 6 DOF positioning. Conclusion: Decoupled from gantry and nozzle, this CBCT system provides a unique solution for volumetric image guidance with half/partial proton gantry systems. We demonstrated that daily CBCT can be integrated into proton therapy for pre

  8. TU-FG-BRB-11: Design and Evaluation of a Robotic C-Arm CBCT System for Image-Guided Proton Therapy

    International Nuclear Information System (INIS)

    Hua, C; Yao, W; Farr, J; Merchant, T; Kidani, T; Tomida, K; Ozawa, S; Nishimura, T; Fujusawa, T; Shinagawa, R

    2016-01-01

    Purpose: To describe the design and performance of a ceiling-mounted robotic C-arm CBCT system for image-guided proton therapy. Methods: Uniquely different from traditional C-arm CBCT used in interventional radiology, the imaging system was designed to provide volumetric image guidance for patients treated on a 190-degree proton gantry system and a 6 degree-of-freedom (DOF) robotic patient positioner. The mounting of robotic arms to the ceiling rails, rather than gantry or nozzle, provides the flexibility in imaging locations (isocenter, iso+27cm in X, iso+100cm in Y) in the room and easier upgrade as technology advances. A kV X-ray tube and a 43×43cm flat panel imager were mounted to a rotating C-ring (87cm diameter), which is coupled to the C-arm concentrically. Both C-arm and the robotic arm remain stationary during imaging to maintain high position accuracy. Source-to-axis distance and source-to-imager distance are 100 and 150cm, respectively. A 14:1 focused anti-scatter grid and a bowtie filer are used for image acquisition. A unique automatic collimator device of 4 independent blades for adjusting field of view and reducing patient dose has also been developed. Results: Sub-millimeter position accuracy and repeatability of the robotic C-arm were measured with a laser tracker. High quality CBCT images for positioning can be acquired with a weighted CTDI of 3.6mGy (head in 200° full fan mode: 100kV, 20mA, 20ms, 10fps)-8.7 mGy (pelvis in 360° half fan mode: 125kV, 42mA, 20ms, 10fps). Image guidance accuracy achieved <1mm (3D vector) with automatic 3D-3D registration for anthropomorphic head and pelvis phantoms. Since November 2015, 22 proton therapy patients have undergone daily CBCT imaging for 6 DOF positioning. Conclusion: Decoupled from gantry and nozzle, this CBCT system provides a unique solution for volumetric image guidance with half/partial proton gantry systems. We demonstrated that daily CBCT can be integrated into proton therapy for pre

  9. The Regulation of Chemerin and CMKLR1 Genes Expression by TNF-α, Adiponectin, and Chemerin Analog in Bovine Differentiated Adipocytes

    OpenAIRE

    Y. Suzuki; Y. H. Hong; S. H. Song; A. Ardiyanti; D. Kato; K. H. So; K. Katoh; S. G Roh

    2012-01-01

    Adipokines, adipocyte-derived protein, have important roles in various kinds of physiology including energy homeostasis. Chemerin, one of adipocyte-derived adipokines, is highly expressed in differentiated adipocytes and is known to induce macrophage chemotaxis and glucose intolerance. The objective of the present study was to investigate the changes of chemerin and the chemokine-like-receptor 1 (CMKLR1) gene expression levels during differentiation of the bovine adipocyte and in differentiat...

  10. Enforced expression of the transcriptional coactivator OBF1 impairs B cell differentiation at the earliest stage of development.

    Directory of Open Access Journals (Sweden)

    Alain Bordon

    Full Text Available OBF1, also known as Bob.1 or OCA-B, is a B lymphocyte-specific transcription factor which coactivates Oct1 and Oct2 on B cell specific promoters. So far, the function of OBF1 has been mainly identified in late stage B cell populations. The central defect of OBF1 deficient mice is a severely reduced immune response to T cell-dependent antigens and a lack of germinal center formation in the spleen. Relatively little is known about a potential function of OBF1 in developing B cells. Here we have generated transgenic mice overexpressing OBF1 in B cells under the control of the immunoglobulin heavy chain promoter and enhancer. Surprisingly, these mice have greatly reduced numbers of follicular B cells in the periphery and have a compromised immune response. Furthermore, B cell differentiation is impaired at an early stage in the bone marrow: a first block is observed during B cell commitment and a second differentiation block is seen at the large preB2 cell stage. The cells that succeed to escape the block and to differentiate into mature B cells have post-translationally downregulated the expression of transgene, indicating that expression of OBF1 beyond the normal level early in B cell development is deleterious. Transcriptome analysis identified genes deregulated in these mice and Id2 and Id3, two known negative regulators of B cell differentiation, were found to be upregulated in the EPLM and preB cells of the transgenic mice. Furthermore, the Id2 and Id3 promoters contain octamer-like sites, to which OBF1 can bind. These results provide evidence that tight regulation of OBF1 expression in early B cells is essential to allow efficient B lymphocyte differentiation.

  11. Use of the mini C-arm for wrist fractures - Establishing a diagnostic reference level

    International Nuclear Information System (INIS)

    Love, G. J.; Pillai, A.; Gibson, S.

    2008-01-01

    The establishment of diagnostic reference levels (DRLs) for all typical radiological examinations became mandatory following the implementation of the Ionising Radiations (Medical Exposure) Regulations Act 2000. At present, there are no national dosage guidelines in the UK regarding use of fluoroscopy in orthopaedic trauma. The increasing popularity of the mini C-arm image intensifier amongst surgeons has led to concerns regarding use of ionizing radiation by personnel who have not been trained in radiation protection. It is therefore essential to have formal protocols for use of the mini C-arm to comply with the law and to maintain safe clinical practice. It is attempted to provide dose data for wrist fracture manipulations that may be used as a basis for setting a DRL for this procedure. Screening times were recorded for 80 wrist manipulations in a fracture clinic setting using a mini C-arm image intensifier. A DRL was set using the third quartile value for screening time. The median screening time for wrist fractures was 20 s with a range from 1 to 177 s. The third quartile value for screening time was 34 s. This value can be used as a provisional DRL for wrist fracture manipulations. The DRL is a quantitative guide for the optimisation of radiological protection. IR(ME)R 2000 states that if it is consistently exceeded by an individual operator or a piece of equipment, investigation and remedial action must be taken. We recommend that trauma units establish their own local DRLs for common procedures as made mandatory by legislation. (authors)

  12. Characterization of differentially expressed genes using high-dimensional co-expression networks

    DEFF Research Database (Denmark)

    Coelho Goncalves de Abreu, Gabriel; Labouriau, Rodrigo S.

    2010-01-01

    We present a technique to characterize differentially expressed genes in terms of their position in a high-dimensional co-expression network. The set-up of Gaussian graphical models is used to construct representations of the co-expression network in such a way that redundancy and the propagation...... that allow to make effective inference in problems with high degree of complexity (e.g. several thousands of genes) and small number of observations (e.g. 10-100) as typically occurs in high throughput gene expression studies. Taking advantage of the internal structure of decomposable graphical models, we...... construct a compact representation of the co-expression network that allows to identify the regions with high concentration of differentially expressed genes. It is argued that differentially expressed genes located in highly interconnected regions of the co-expression network are less informative than...

  13. Study of factors controlling exposure dose and image quality of C-arm in operation room according to detector size of it (Mainly L-Spine AP study)

    Energy Technology Data Exchange (ETDEWEB)

    Chui, Sung Hyun; Jo, Hwang Woo [Dept. of Radiology, Kyung Hee University Hospital at Gangdong, Seoul (Korea, Republic of); Chun, Woon Kwan; Song, Ha Jin [Dept. of Nuclear Engineering, Chosun University, Gwangju (Korea, Republic of); Dong, Kyung Rae [Dept. of Radiological Technology, Gwangju Health University, Gwangju (Korea, Republic of); Choi, Eun Jin [Dept. of Public Health and Medicine, Dongshin University, Naju (Korea, Republic of)

    2015-02-15

    Time of operation has been reduced and accuracy of operation has been improved since C-arm, which offer real-time image of patient, was introduced in operation room. However, because of the contamination of patient, C-arm could not be used more appropriately. Therefore, this study is to know factors of controlling exposure dose, image quality and the exposed dose of health professional in operation room. Height of Wilson frame (bed for operation) was fixed at 130 cm. Then, Model 76-2 Phantom, which was set by assembling manual of Fluke Company, was set on the bed. Head/Spine Fluoroscopy AEC mode was set for exposure condition. According to detector size of C-arm, the absorbed dose per min was measured in the 7 steps OFD (cm) from 10 cm to 40 cm (10, 15, 20, 25, 30, 35, 40 cm). In each step of OFD, the absorbed dose per min of same diameter of collimation was measured. Moreover, using Nero MAX Model 8000, exposure dose per min was measured according to 3 step of distance from detector (20 cm, 60 cm, 100 cm). Finally, resolution was measured by CDRH Disc Phantom and magnification of each OFD was measured by aluminum stick bar. According to detector size of C-arm, difference of absorbed dose shows that the dose of 20 cm OFD is 1.750 times higher than the dose of 40 cm OFD. It means that the C-arm, which has smaller size of detector, shows the bigger difference of absorbed dose per min (p<0.05). In the difference of absorbed dose in the same step of OFD (from 20 cm to 40 cm), the absorbed dose of 9 inch detect or C-arm was 1.370 times higher than 12 inch' s (p<0.05). When OFD was set to 20 cm OFD, the absorbed dose of non-collimation case was approximately 0.816 times lower than the absorbed dose of collimation cases (p<0.05). When the distance was 20 cm from detector, exposed does includes first-ray and scatter-ray. When the distance was 60 cm and 100 cm from detector, exposed does includes just scatter-ray. So, there was the 2.200 times difference of absorbed

  14. Cyclin D1 negatively regulates the expression of differentiation genes in HT-29 M6 mucus-secreting colon cancer cells.

    Science.gov (United States)

    Mayo, Clara; Mayol, Xavier

    2009-08-28

    HT-29 M6 colon cancer cells differentiate to a mucus-secreting phenotype in culture. We found that the pattern of cyclin D1 expression in HT-29 M6 cells did not correlate with instances of cell proliferation but was specifically induced during a dedifferentiation process following disaggregation of epithelial cell layers, even under conditions that did not allow cell cycle reentrance. Interestingly, ectopic expression of cyclin D1 in differentiated cells led to the inhibition of the transcriptional activity of differentiation gene promoters, such as the mucin MUC1. We thus propose that the overexpression of cyclin D1 found in colon cancer favours tumour dedifferentiation as one mechanism of tumour progression.

  15. Differential expression of hERG1 channel isoforms reproduces properties of native I(Kr and modulates cardiac action potential characteristics.

    Directory of Open Access Journals (Sweden)

    Anders Peter Larsen

    Full Text Available BACKGROUND: The repolarizing cardiac rapid delayed rectifier current, I(Kr, is composed of ERG1 channels. It has been suggested that two isoforms of the ERG1 protein, ERG1a and ERG1b, both contribute to I(Kr. Marked heterogeneity in the kinetic properties of native I(Kr has been described. We hypothesized that the heterogeneity of native I(Kr can be reproduced by differential expression of ERG1a and ERG1b isoforms. Furthermore, the functional consequences of differential expression of ERG1 isoforms were explored as a potential mechanism underlying native heterogeneity of action potential duration (APD and restitution. METHODOLOGY/PRINCIPAL FINDINGS: The results show that the heterogeneity of native I(Kr can be reproduced in heterologous expression systems by differential expression of ERG1a and ERG1b isoforms. Characterization of the macroscopic kinetics of ERG1 currents demonstrated that these were dependent on the relative abundance of ERG1a and ERG1b. Furthermore, we used a computational model of the ventricular cardiomyocyte to show that both APD and the slope of the restitution curve may be modulated by varying the relative abundance of ERG1a and ERG1b. As the relative abundance of ERG1b was increased, APD was gradually shortened and the slope of the restitution curve was decreased. CONCLUSIONS/SIGNIFICANCE: Our results show that differential expression of ERG1 isoforms may explain regional heterogeneity of I(Kr kinetics. The data demonstrate that subunit dependent changes in channel kinetics are important for the functional properties of ERG1 currents and hence I(Kr. Importantly, our results suggest that regional differences in the relative abundance of ERG1 isoforms may represent a potential mechanism underlying the heterogeneity of both APD and APD restitution observed in mammalian hearts.

  16. Spine segmentation from C-arm CT data sets: application to region-of-interest volumes for spinal interventions

    Science.gov (United States)

    Buerger, C.; Lorenz, C.; Babic, D.; Hoppenbrouwers, J.; Homan, R.; Nachabe, R.; Racadio, J. M.; Grass, M.

    2017-03-01

    Spinal fusion is a common procedure to stabilize the spinal column by fixating parts of the spine. In such procedures, metal screws are inserted through the patients back into a vertebra, and the screws of adjacent vertebrae are connected by metal rods to generate a fixed bridge. In these procedures, 3D image guidance for intervention planning and outcome control is required. Here, for anatomical guidance, an automated approach for vertebra segmentation from C-arm CT images of the spine is introduced and evaluated. As a prerequisite, 3D C-arm CT images are acquired covering the vertebrae of interest. An automatic model-based segmentation approach is applied to delineate the outline of the vertebrae of interest. The segmentation approach is based on 24 partial models of the cervical, thoracic and lumbar vertebrae which aggregate information about (i) the basic shape itself, (ii) trained features for image based adaptation, and (iii) potential shape variations. Since the volume data sets generated by the C-arm system are limited to a certain region of the spine the target vertebra and hence initial model position is assigned interactively. The approach was trained and tested on 21 human cadaver scans. A 3-fold cross validation to ground truth annotations yields overall mean segmentation errors of 0.5 mm for T1 to 1.1 mm for C6. The results are promising and show potential to support the clinician in pedicle screw path and rod planning to allow accurate and reproducible insertions.

  17. Lactacystin inhibits 3T3-L1 adipocyte differentiation through induction of CHOP-10 expression

    International Nuclear Information System (INIS)

    Li Xi; Huang Haiyan; Chen Jiegen; Jiang Lin; Liu Honglei; Liu Deguo; Song Tanjing; He Qun; Ma Chungu; Ma Duan; Song Houyan; Tang Qiqun

    2006-01-01

    Hormonal induction triggers a cascade leading to the expression of CCAAT/enhancer-binding protein(C/EBP)α and peroxisome proliferator-activated receptor (PPAR) γ, C/EBPα, and PPARγ turns on series of adipocyte genes that give rise to the adipocyte phenotype. Previous findings indicate that C/EBPβ, a transcriptional activator of the C/EBPα and PPARγ genes, is rapidly expressed after induction, but lacks DNA-binding activity and therefore cannot activate transcription of the C/EBPα and PPARγ genes early in the differentiation program. Acquisition of DNA-binding activity of C/EBPβ occurs when CHOP-10, a dominant-negative form of C/EBP family members, is down-regulated and becomes hyperphosphorylated as preadipocytes traverse the G 1 -S checkpoint of mitotic clonal expansion. Evidences are presented in this report that lactacystin, a proteasome inhibitor, up-regulated the CHOP-10 expression, blocked the DNA-binding activity of C/EBPβ, and subsequently inhibited MCE as well as adipocyte differentiation

  18. Analysis of radiation risk to patients from intra-operative use of the mobile X-ray system (C-arm

    Directory of Open Access Journals (Sweden)

    Yang-Sub Lee

    2015-01-01

    Full Text Available Background: The aim of this study was to investigate clinical applications of mobile C-arms and consequent radiation risk, to increase medical attention on radiation protection, and to provide basic data for safe radiation use in the operating room. Materials and Methods: In this study, a total of 374 surgical operations, conducted using a portable fluoroscopic X-ray system from January to March of 2013, were analyzed. Dose summaries produced by the General Electric C-arm and data elements in digital imaging and communications in the medicine header of Ziehm C-arm, fluoroscopy time were used to obtain dose-area product (DAP and effective dose. Corresponding mean and maximum values were calculated, and the resulting data on the frequency of application, fluoroscopy time, DAP, and effective dose were compared and analyzed in terms of surgical specialty and operation types. Results: Orthopedic surgery was the most frequent with 165 cases (44.1%. The highest DAP value and effective dose were found in liver transplant among surgical specialty fields, with mean values of 2.90 ± 3.76 mGy∙m 2 and 58 ± 75.2 mSv, respectively (P = 0.0001. The highest DAP value and effective dose were observed in intra-operative mesenteric portography among types of surgery, showing mean values of 2.90 ± 3.81 mGy∙m 2 and 58.03 ± 76.24 mSv, respectively (P = 0.0001. Conclusion: Because DAP varies significantly across surgical specialties and types of operation, aggressive efforts to understand the effects of radiation dose is critical for radiation protection from intra-operative use of mobile C-arms.

  19. Neuropilin-1 and neuropilin-2 are differentially expressed in human proteinuric nephropathies and cytokine-stimulated proximal tubular cells.

    Science.gov (United States)

    Schramek, Herbert; Sarközi, Rita; Lauterberg, Christina; Kronbichler, Andreas; Pirklbauer, Markus; Albrecht, Rudolf; Noppert, Susie-Jane; Perco, Paul; Rudnicki, Michael; Strutz, Frank M; Mayer, Gert

    2009-11-01

    Neuropilin-1 (NRP1) and neuropilin-2 (NRP2) are transmembrane glycoproteins with large extracellular domains that interact with class 3 semaphorins, vascular endothelial growth factor (VEGF) family members, and ligands, such as hepatocyte growth factor, platelet-derived growth factor BB, transforming growth factor-beta1 (TGF-beta1), and fibroblast growth factor2 (FGF2). Neuropilins (NRPs) have been implicated in tumor growth and vascularization, as novel mediators of the primary immune response and in regeneration and repair; however, their role in renal pathophysiology is largely unknown. Here, we report upregulation of tubular and interstitial NRP2 protein expression in patients with focal segmental glomerulosclerosis (FSGS). In an additional cohort of patients with minimal change disease (MCD), membranous nephropathy (MN), and FSGS, elevated NRP2 mRNA expression in kidney biopsies inversely correlated with estimated glomerular filtration rate (eGFR) at the time of biopsy. Furthermore, upregulation of NRP2 mRNA correlated with post-bioptic decline of kidney function. Expression of NRP1 and NRP2 in human proximal tubular cells (PTCs) was differentially affected after stimulation with TGF-beta1, interleukin-1beta (IL-1beta), and oncostatin M (OSM). Although the pro-fibrotic mediators, TGF-beta1 and IL-1beta, induced upregulation of NRP2 expression but downregulation of NRP1 expression, OSM stimulated the expression of both NRP1 and NRP2. Basal and OSM-induced NRP1 mRNA expression, as well as TGF-beta1-induced NRP2 mRNA and protein expression were partially mediated by MEK1/2-ERK1/2 signaling. This is the first report suggesting a differential role of NRP1 and NRP2 in renal fibrogenesis, and TGF-beta1, IL-1beta, and OSM represent the first ligands known to stimulate NRP2 expression in mammalian cells.

  20. REX-1 expression and p38 MAPK activation status can determine proliferation/differentiation fates in human mesenchymal stem cells.

    Directory of Open Access Journals (Sweden)

    Dilli Ram Bhandari

    Full Text Available BACKGROUND: REX1/ZFP42 is a well-known embryonic stem cell (ESC marker. However, the role of REX1, itself, is relatively unknown because the function of REX1 has only been reported in the differentiation of ESCs via STAT signaling pathways. Human mesenchymal stem cells (hMSCs isolated from young tissues and cancer cells express REX1. METHODOLOGY/PRINCIPAL FINDING: Human umbilical cord blood-derived MSCs (hUCB-MSCs and adipose tissue-derived MSCs (hAD-MSCs strongly express REX1 and have a lower activation status of p38 MAPK, but bone marrow-derived MSCs (hBM-MSCs have weak REX1 expression and higher activation of p38 MAPK. These results indicated that REX1 expression in hMSCs was positively correlated with proliferation rates but inversely correlated with the phosphorylation of p38 MAPK. In hUCB-MSCs, the roles of REX1 and p38 MAPK were investigated, and a knockdown study was performed using a lentiviral vector-based small hairpin RNA (shRNA. After REX1 knockdown, decreased cell proliferation was observed. In REX1 knocked-down hUCB-MSCs, the osteogenic differentiation ability deteriorated, but the adipogenic potential increased or was similar to that observed in the controls. The phosphorylation of p38 MAPK in hUCB-MSCs significantly increased after REX1 knockdown. After p38 MAPK inhibitor treatment, the cell growth in REX1 knocked-down hUCB-MSCs almost recovered, and the suppressed expression levels of CDK2 and CCND1 were also restored. The expression of MKK3, an upstream regulator of p38 MAPK, significantly increased in REX1 knocked-down hUCB-MSCs. The direct binding of REX1 to the MKK3 gene was confirmed by a chromatin immunoprecipitation (ChIP assay. CONCLUSIONS/SIGNIFICANCE: These findings showed that REX1 regulates the proliferation/differentiation of hMSCs through the suppression of p38 MAPK signaling via the direct suppression of MKK3. Therefore, p38 MAPK and REX-1 status can determine the cell fate of adult stem cells (ASCs. These

  1. Fos and jun proteins are specifically expressed during differentiation of human keratinocytes.

    Science.gov (United States)

    Mehic, Denis; Bakiri, Latifa; Ghannadan, Minoo; Wagner, Erwin F; Tschachler, Erwin

    2005-01-01

    Activator protein 1 (AP-1) proteins play key roles in the regulation of cell proliferation and differentiation. In this study we investigated the expression of Fos and Jun proteins in different models of terminal differentiation of human keratinocytes and in skin from psoriasis patients. All Jun and Fos proteins, with the exception of FosB, were efficiently expressed in keratinocytes in monolayer cultures. In contrast, in normal epidermis as well as in organotypic epidermal cultures, the expression pattern of AP-1 proteins was dependent on the differentiation stage. Fos proteins were readily detected in nuclei of keratinocytes of basal and suprabasal layers. JunB and JunD were expressed in all layers of normal epidermis. Interestingly, expression of c-Jun started suprabasally, then disappeared and became detectable again in distinct cells of the outermost granular layer directly at the transition zone to the stratum corneum. In psoriatic epidermis, c-Jun expression was prominent in both hyperproliferating basal and suprabasal keratinocytes, whereas c-Fos expression was unchanged. These data indicate that AP-1 proteins are expressed in a highly specific manner during terminal differentiation of keratinocytes and that the enhanced expression of c-Jun in basal and suprabasal keratinocytes might contribute to the pathogenesis of psoriasis.

  2. ATF3 represses PPARγ expression and inhibits adipocyte differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Min-Kyung; Jung, Myeong Ho, E-mail: jung0603@pusan.ac.kr

    2014-11-07

    Highlights: • ATF3 decrease the expression of PPARγ and its target gene in 3T3-L1 adipocytes. • ATF3 represses the promoter activity of PPARγ2 gene. • ATF/CRE (−1537/−1530) is critical for ATF3-mediated downregulation of PPARγ. • ATF3 binds to the promoter region containing the ATF/CRE. • ER stress inhibits adipocyte differentiation through downregulation of PPARγ by ATF3. - Abstract: Activating transcription factor 3 (ATF3) is a stress-adaptive transcription factor that mediates cellular stress response signaling. We previously reported that ATF3 represses CCAAT/enhancer binding protein α (C/EBPα) expression and inhibits 3T3-L1 adipocyte differentiation. In this study, we explored potential role of ATF3 in negatively regulating peroxisome proliferator activated receptor-γ (PPARγ). ATF3 decreased the expression of PPARγ and its target gene in 3T3-L1 adipocytes. ATF3 also repressed the activity of −2.6 Kb promoter of mouse PPARγ2. Overexpression of PPARγ significantly prevented the ATF3-mediated inhibition of 3T3-L1 differentiation. Transfection studies with 5′ deleted-reporters showed that ATF3 repressed the activity of −2037 bp promoter, whereas it did not affect the activity of −1458 bp promoter, suggesting that ATF3 responsive element is located between the −2037 and −1458. An electrophoretic mobility shift assay and chromatin immunoprecipitation assay demonstrated that ATF3 binds to ATF/CRE site (5′-TGACGTTT-3′) between −1537 and −1530. Mutation of the ATF/CRE site abrogated ATF3-mediated transrepression of the PPARγ2 promoter. Treatment with thapsigargin, endoplasmic reticulum (ER) stress inducer, increased ATF3 expression, whereas it decreased PPARγ expression. ATF3 knockdown significantly blocked the thapsigargin-mediated downregulation of PPARγ expression. Furthermore, overexpression of PPARγ prevented inhibition of 3T3-L1 differentiation by thapsigargin. Collectively, these results suggest that ATF3-mediated

  3. Effect of TNF-Alpha on Caveolin-1 Expression and Insulin Signaling During Adipocyte Differentiation and in Mature Adipocytes

    Directory of Open Access Journals (Sweden)

    Sara Palacios-Ortega

    2015-07-01

    Full Text Available Background/Aims: Tumor necrosis factor-α (TNF-α-mediated chronic low-grade inflammation of adipose tissue is associated with obesity and insulin resistance. Caveolin-1 (Cav-1 is the central component of adipocyte caveolae and has an essential role in the regulation of insulin signaling. The effects of TNF-α on Cav-1 expression and insulin signaling during adipocyte differentiation and in mature adipocytes were studied. Methods: 3T3-L1 cells were differentiated (21 days in the presence TNF-α (10 ng/mL and mature adipocytes were also treated with TNF-α for 48 hours. Cav-1 and insulin receptor (IR gene methylation were determined as well as Cav-1, IR, PKB/AKT-2 and Glut-4 expression and activation by real time RT-PCR and western blot. Baseline and insulin-induced glucose uptake was measured by the 2-[C14]-deoxyglucose uptake assay. Results: TNF-α slowed down the differentiation program, hindering the expression of some insulin signaling intermediates without fully eliminating insulin-mediated glucose uptake. In mature adipocytes, TNF-α did not compromise lipid-storage capacity, but downregulated the expression of the insulin signaling intermediates, totally blocking insulin-mediated glucose uptake. Insulin sensitivity correlated with the level of activated phospho-Cav-1 in both situations, strongly suggesting the direct contribution of Cav-1 to the maintenance of this physiological response. Conclusion: Cav-1 activation by phosphorylation seems to be essential for the maintenance of an active and insulin-sensitive glucose uptake.

  4. Interleukins 1alpha and 1beta secreted by some melanoma cell lines strongly reduce expression of MITF-M and melanocyte differentiation antigens.

    Science.gov (United States)

    Kholmanskikh, Olga; van Baren, Nicolas; Brasseur, Francis; Ottaviani, Sabrina; Vanacker, Julie; Arts, Nathalie; van der Bruggen, Pierre; Coulie, Pierre; De Plaen, Etienne

    2010-10-01

    We report that melanoma cell lines expressing the interleukin-1 receptor exhibit 4- to 10-fold lower levels of mRNA of microphthalmia-associated transcription factor (MITF-M) when treated with interleukin-1beta. This effect is NF-kappaB and JNK-dependent. MITF-M regulates the expression of melanocyte differentiation genes such as MLANA, tyrosinase and gp100, which encode antigens recognized on melanoma cells by autologous cytolytic T lymphocytes. Accordingly, treating some melanoma cells with IL-1beta reduced by 40-100% their ability to activate such antimelanoma cytolytic T lymphocytes. Finally, we observed large amounts of biologically active IL-1alpha or IL-1beta secreted by two melanoma cell lines that did not express MITF-M, suggesting an autocrine MITF-M downregulation. We estimate that approximately 13% of melanoma cell lines are MITF-M-negative and secrete IL-1 cytokines. These results indicate that the repression of melanocyte-differentiation genes by IL-1 produced by stromal cells or by tumor cells themselves may represent an additional mechanism of melanoma immune escape.

  5. Identification of α(1,6)fucosylated proteins differentially expressed in human colorectal cancer

    International Nuclear Information System (INIS)

    Muinelo-Romay, Laura; Villar-Portela, Susana; Cuevas, Elisa; Gil-Martín, Emilio; Fernández-Briera, Almudena

    2011-01-01

    A universal hallmark of cancer cells is the change in their glycosylation phenotype. One of the most frequent alterations in the normal glycosylation pattern observed during carcinogenesis is the enhancement of α(1,6)linked fucose residues of glycoproteins, due to the up-regulation of the α(1,6)fucosyltransferase activity. Our previous results demonstrated the specific alteration of this enzyme activity and expression in colorectal cancer, suggesting its implication in tumour development and progression. In the current work we combined a LCA-affinity chromatography with SDS-PAGE and mass spectrometry in order to identify α(1,6)fucosylated proteins differentially expressed in colorectal cancer. This strategy allowed the identification of a group of α(1,6)fucosylated proteins candidates to be involved in CRC malignancy. The majority of the identified proteins take part in cell signaling and interaction processes as well as in modulation of the immunological response. Likewise, we confirmed the increased expression of GRP94 in colorectal cancer tissue and the significant down-regulation of the IgGFcBP expression in tumour cells. All these results validate the importance of core-fucosylated proteins profile analysis to understand the mechanisms which promote cancer onset and progression and to discover new tumour markers or therapeutic targets

  6. Intraprocedural blood volume measurement using C-arm CT as a predictor for treatment response of malignant liver tumours undergoing repetitive transarterial chemoembolization (TACE)

    International Nuclear Information System (INIS)

    Vogl, Thomas J.; Schaefer, Patrik; Lehnert, Thomas; Mbalisike, Emmanuel; Hammerstingl, Renate; Eichler, Katrin; Zangos, Stephan; Nour-Eldin, Nour-Eldin A.; Ackermann, Hanns; Naguib, Nagy N.N.

    2016-01-01

    To evaluate feasibility of measuring parenchymal blood volume (PBV) of malignant hepatic tumours using C-arm CT, test the changes in PBV following repeated transarterial chemoembolization (TACE) and correlate these changes with the change in tumour size in MRI. 111 patients with liver malignancy were included. Patients underwent MRI and TACE in a 4- to 6-week interval. During intervention C-arm CT was performed. Images were post-processed to generate PBV maps. Blood volume data in C-arm CT and change in size in MRI were evaluated. The correlation between PBV and size was tested using Spearman rank test. Pre-interventional PBV maps showed a mean blood volume of 84.5 ml/1000 ml ± 62.0, follow-up PBV maps after multiple TACE demonstrated 61.1 ml/1000 ml ± 57.5. The change in PBV was statistically significant (p = 0.02). Patients with initial tumour blood volume >100 ml/1000 ml dropped 7.1 % in size and 47.2 % in blood volume; 50-100 ml/1000 ml dropped 4.6 % in size and 25.7 % in blood volume; and <50 ml/1000 ml decreased 2.8 % in size and increased 82.2 % in blood volume. PBV measurement of malignant liver tumours using C-arm CT is feasible. Following TACE PBV decreased significantly. Patients with low initial PBV show low local response rates and further increase in blood volume, whereas high initial tumour PBV showed better response to TACE. (orig.)

  7. Differential expression of CCN-family members in primary human bone marrow-derived mesenchymal stem cells during osteogenic, chondrogenic and adipogenic differentiation

    Directory of Open Access Journals (Sweden)

    Hendrich Christian

    2005-03-01

    Full Text Available Abstract Background The human cysteine rich protein 61 (CYR61, CCN1 as well as the other members of the CCN family of genes play important roles in cellular processes such as proliferation, adhesion, migration and survival. These cellular events are of special importance within the complex cellular interactions ongoing in bone remodeling. Previously, we analyzed the role of CYR61/CCN1 as an extracellular signaling molecule in human osteoblasts. Since mesenchymal stem cells of bone marrow are important progenitors for various differentiation pathways in bone and possess increasing potential for regenerative medicine, here we aimed to analyze the expression of CCN family members in bone marrow-derived human mesenchymal stem cells and along the osteogenic, the adipogenic and the chondrogenic differentiation. Results Primary cultures of human mesenchymal stem cells were obtained from the femoral head of patients undergoing total hip arthroplasty. Differentiation into adipocytes and osteoblasts was done in monolayer culture, differentiation into chondrocytes was induced in high density cell pellet cultures. For either pathway, established differentiation markers and CCN-members were analyzed at the mRNA level by RT-PCR and the CYR61/CCN1 protein was analyzed by immunocytochemistry. RT-PCR and histochemical analysis revealed the appropriate phenotype of differentiated cells (Alizarin-red S, Oil Red O, Alcian blue, alkaline phosphatase; osteocalcin, collagen types I, II, IX, X, cbfa1, PPARγ, aggrecan. Mesenchymal stem cells expressed CYR61/CCN1, CTGF/CCN2, CTGF-L/WISP2/CCN5 and WISP3/CCN6. The CYR61/CCN1 expression decreased markedly during osteogenic differentiation, adipogenic differentiation and chondrogenic differentiation. These results were confirmed by immuncytochemical analyses. WISP2/CCN5 RNA expression declined during adipogenic differentiation and WISP3/CCN6 RNA expression was markedly reduced in chondrogenic differentiation. Conclusion The

  8. Dyslexia risk variant rs600753 is linked with dyslexia-specific differential allelic expression of DYX1C1

    Directory of Open Access Journals (Sweden)

    Bent Müller

    2018-02-01

    Full Text Available Abstract An increasing number of genetic variants involved in dyslexia development were discovered during the last years, yet little is known about the molecular functional mechanisms of these SNPs. In this study we investigated whether dyslexia candidate SNPs have a direct, disease-specific effect on local expression levels of the assumed target gene by using a differential allelic expression assay. In total, 12 SNPs previously associated with dyslexia and related phenotypes were suitable for analysis. Transcripts corresponding to four SNPs were sufficiently expressed in 28 cell lines originating from controls and a family affected by dyslexia. We observed a significant effect of rs600753 on expression levels of DYX1C1 in forward and reverse sequencing approaches. The expression level of the rs600753 risk allele was increased in the respective seven cell lines from members of the dyslexia family which might be due to a disturbed transcription factor binding sites. When considering our results in the context of neuroanatomical dyslexia-specific findings, we speculate that this mechanism may be part of the pathomechanisms underlying the dyslexia-specific brain phenotype. Our results suggest that allele-specific DYX1C1 expression levels depend on genetic variants of rs600753 and contribute to dyslexia. However, these results are preliminary and need replication.

  9. Differentially expressed genes in iron-induced prion protein conversion

    International Nuclear Information System (INIS)

    Kim, Minsun; Kim, Eun-hee; Choi, Bo-Ran; Woo, Hee-Jong

    2016-01-01

    The conversion of the cellular prion protein (PrP C ) to the protease-resistant isoform is the key event in chronic neurodegenerative diseases, including transmissible spongiform encephalopathies (TSEs). Increased iron in prion-related disease has been observed due to the prion protein-ferritin complex. Additionally, the accumulation and conversion of recombinant PrP (rPrP) is specifically derived from Fe(III) but not Fe(II). Fe(III)-mediated PK-resistant PrP (PrP res ) conversion occurs within a complex cellular environment rather than via direct contact between rPrP and Fe(III). In this study, differentially expressed genes correlated with prion degeneration by Fe(III) were identified using Affymetrix microarrays. Following Fe(III) treatment, 97 genes were differentially expressed, including 85 upregulated genes and 12 downregulated genes (≥1.5-fold change in expression). However, Fe(II) treatment produced moderate alterations in gene expression without inducing dramatic alterations in gene expression profiles. Moreover, functional grouping of identified genes indicated that the differentially regulated genes were highly associated with cell growth, cell maintenance, and intra- and extracellular transport. These findings showed that Fe(III) may influence the expression of genes involved in PrP folding by redox mechanisms. The identification of genes with altered expression patterns in neural cells may provide insights into PrP conversion mechanisms during the development and progression of prion-related diseases. - Highlights: • Differential genes correlated with prion degeneration by Fe(III) were identified. • Genes were identified in cell proliferation and intra- and extracellular transport. • In PrP degeneration, redox related genes were suggested. • Cbr2, Rsad2, Slc40a1, Amph and Mvd were expressed significantly.

  10. Marked change in microRNA expression during neuronal differentiation of human teratocarcinoma NTera2D1 and mouse embryonal carcinoma P19 cells

    International Nuclear Information System (INIS)

    Hohjoh, Hirohiko; Fukushima, Tatsunobu

    2007-01-01

    MicroRNAs (miRNAs) are small noncoding RNAs, with a length of 19-23 nucleotides, which appear to be involved in the regulation of gene expression by inhibiting the translation of messenger RNAs carrying partially or nearly complementary sequences to the miRNAs in their 3' untranslated regions. Expression analysis of miRNAs is necessary to understand their complex role in the regulation of gene expression during the development, differentiation and proliferation of cells. Here we report on the expression profile analysis of miRNAs in human teratocarcinoma NTere2D1, mouse embryonic carcinoma P19, mouse neuroblastoma Neuro2a and rat pheochromocytoma PC12D cells, which can be induced into differentiated cells with long neuritic processes, i.e., after cell differentiation, such that the resultant cells look similar to neuronal cells. The data presented here indicate marked changes in the expression of miRNAs, as well as genes related to neuronal development, occurred in the differentiation of NTera2D1 and P19 cells. Significant changes in miRNA expression were not observed in Neuro2a and PC12D cells, although they showed apparent morphologic change between undifferentiated and differentiated cells. Of the miRNAs investigated, the expression of miRNAs belonging to the miR-302 cluster, which is known to be specifically expressed in embryonic stem cells, and of miR-124a specific to the brain, appeared to be markedly changed. The miR-302 cluster was potently expressed in undifferentiated NTera2D1 and P19 cells, but hardly in differentiated cells, such that miR-124a showed an opposite expression pattern to the miR-302 cluster. Based on these observations, it is suggested that the miR-302 cluster and miR-124a may be useful molecular indicators in the assessment of degree of undifferentiation and/or differentiation in the course of neuronal differentiation

  11. Differential gene expression by 1,25(OH)2D3 in an endometriosis stromal cell line.

    Science.gov (United States)

    Ingles, Sue Ann; Wu, Liang; Liu, Benjamin T; Chen, Yibu; Wang, Chun-Yeh; Templeman, Claire; Brueggmann, Doerthe

    2017-10-01

    Endometriosis is a common female reproductive disease characterized by invasion of endometrial cells into other organs, frequently causing pelvic pain and infertility. Alterations of the vitamin D system have been linked to endometriosis incidence and severity. To shed light on the potential mechanism for these associations, we examined the effects of 1,25(OH) 2 D 3 on gene expression in endometriosis cells. Stromal cell lines derived from endometriosis tissue were treated with 1,25(OH) 2 D 3 , and RNA-seq was used to identify genes differentially expressed between treated and untreated cells. Gene ontology and pathway analyses were carried out using Partek Flow and Ingenuity software suites, respectively. We identified 1627 genes that were differentially expressed (886 down-regulated and 741 up-regulated) by 1,25(OH) 2 D 3 . Only one gene, CYP24A1, was strongly up-regulated (369-fold). Many genes were strongly down-regulated. 1,25(OH) 2 D 3 treatment down-regulated several genetic pathways related to neuroangiogenesis, cellular motility, and invasion, including pathways for axonal guidance, Rho GDP signaling, and matrix metalloprotease inhibition. These findings support a role for vitamin D in the pathophysiology of endometriosis, and provide new targets for investigation into possible causes and treatments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Differential regulation of GluA1 expression by ketamine and memantine.

    Science.gov (United States)

    Zhang, Ke; Yamaki, Vitor Nagai; Wei, Zhisheng; Zheng, Yu; Cai, Xiang

    2017-01-01

    Evidence from preclinical and clinical studies shows that ketamine, a noncompetitive NMDA receptor antagonist, exerts rapid and sustained antidepressant responses. However, ketamine's psychotomimetic side effects and abuse liability limit the clinical use of the compound. Interestingly, memantine, another NMDA receptor channel blocker, processes no defined antidepressant property but is much safer and clinical tolerated. Understanding why ketamine but not memantine exhibits rapid antidepressant responses is important to elucidate the cellular signaling underlying the fast antidepressant actions of ketamine and to design a new safer generation of fast-acting antidepressants. Here we show that ketamine but memantine caused a rapid and sustained antidepressant-like responses in forced swim test (FST). Both drugs enhanced GluA1 S845 phosphorylation and potentiated Schaffer collateral-CA1 synaptic transmission. However, ketamine but not memantine elevated the expression of GluA1. Incubating acutely prepared hippocampal slices with ketamine but not memantine enhanced mTOR phosphorylation in a time course parallel to the time course of GluA1 elevation. Our results suggest that distinct properties in regulation of mTOR phosphorylation and synaptic protein expression may underlie the differential effectiveness of ketamine and memantine in their antidepressant responses. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Scatter correction using a primary modulator on a clinical angiography C-arm CT system.

    Science.gov (United States)

    Bier, Bastian; Berger, Martin; Maier, Andreas; Kachelrieß, Marc; Ritschl, Ludwig; Müller, Kerstin; Choi, Jang-Hwan; Fahrig, Rebecca

    2017-09-01

    Cone beam computed tomography (CBCT) suffers from a large amount of scatter, resulting in severe scatter artifacts in the reconstructions. Recently, a new scatter correction approach, called improved primary modulator scatter estimation (iPMSE), was introduced. That approach utilizes a primary modulator that is inserted between the X-ray source and the object. This modulation enables estimation of the scatter in the projection domain by optimizing an objective function with respect to the scatter estimate. Up to now the approach has not been implemented on a clinical angiography C-arm CT system. In our work, the iPMSE method is transferred to a clinical C-arm CBCT. Additional processing steps are added in order to compensate for the C-arm scanner motion and the automatic X-ray tube current modulation. These challenges were overcome by establishing a reference modulator database and a block-matching algorithm. Experiments with phantom and experimental in vivo data were performed to evaluate the method. We show that scatter correction using primary modulation is possible on a clinical C-arm CBCT. Scatter artifacts in the reconstructions are reduced with the newly extended method. Compared to a scan with a narrow collimation, our approach showed superior results with an improvement of the contrast and the contrast-to-noise ratio for the phantom experiments. In vivo data are evaluated by comparing the results with a scan with a narrow collimation and with a constant scatter correction approach. Scatter correction using primary modulation is possible on a clinical CBCT by compensating for the scanner motion and the tube current modulation. Scatter artifacts could be reduced in the reconstructions of phantom scans and in experimental in vivo data. © 2017 American Association of Physicists in Medicine.

  14. Hypoxia-Inducible Factor 1 Is an Inductor of Transcription Factor Activating Protein 2 Epsilon Expression during Chondrogenic Differentiation

    Directory of Open Access Journals (Sweden)

    Stephan Niebler

    2015-01-01

    Full Text Available The transcription factor AP-2ε (activating enhancer-binding protein epsilon is expressed in cartilage of humans and mice. However, knowledge about regulatory mechanisms influencing AP-2ε expression is limited. Using quantitative real time PCR, we detected a significant increase in AP-2ε mRNA expression comparing initial and late stages of chondrogenic differentiation processes in vitro and in vivo. Interestingly, in these samples the expression pattern of the prominent hypoxia marker gene angiopoietin-like 4 (Angptl4 strongly correlated with that of AP-2ε suggesting that hypoxia might represent an external regulator of AP-2ε expression in mammals. In order to show this, experiments directly targeting the activity of hypoxia-inducible factor-1 (HIF1, the complex mediating responses to oxygen deprivation, were performed. While the HIF1-activating compounds 2,2′-dipyridyl and desferrioxamine resulted in significantly enhanced mRNA concentration of AP-2ε, siRNA against HIF1α led to a significantly reduced expression rate of AP-2ε. Additionally, we detected a significant upregulation of the AP-2ε mRNA level after oxygen deprivation. In sum, these different experimental approaches revealed a novel role for the HIF1 complex in the regulation of the AP-2ε gene in cartilaginous cells and underlined the important role of hypoxia as an important external regulatory stimulus during chondrogenic differentiation modulating the expression of downstream transcription factors.

  15. Evaluation of imaging quality for flat-panel detector based low dose C-arm CT system

    International Nuclear Information System (INIS)

    Seo, Chang-Woo; Cha, Bo Kyung; Jeon, Sungchae; Huh, Young

    2015-01-01

    The image quality associated with the extent of the angle of gantry rotation, the number of projection views, and the dose of X-ray radiation was investigated in flat-panel detector (FPD) based C-arm cone-beam computed tomography (CBCT) system for medical applications. A prototype CBCT system for the projection acquisition used the X-ray tube (A-132, Varian inc.) having rhenium-tungsten molybdenum target and flat panel a-Si X-ray detector (PaxScan 4030CB, Varian inc.) having a 397 x 298 mm active area with 388 μm pixel pitch and 1024 x 768 pixels in 2 by 2 binning mode. The performance comparison of X-ray imaging quality was carried out using the Feldkamp, Davis, and Kress (FDK) reconstruction algorithm between different conditions of projection acquisition. In this work, head-and-dental (75 kVp/20 mA) and chest (90 kVp/25 mA) phantoms were used to evaluate the image quality. The 361 (30 fps x 12 s) projection data during 360 deg. gantry rotation with 1 deg. interval for the 3D reconstruction were acquired. Parke weighting function were applied to handle redundant data and improve the reconstructed image quality in a mobile C-arm system with limited rotation angles. The reconstructed 3D images were investigated for comparison of qualitative image quality in terms of scan protocols (projection views, rotation angles and exposure dose). Furthermore, the performance evaluation in image quality will be investigated regarding X-ray dose and limited projection data for a FPD based mobile C-arm CBCT system. (authors)

  16. Regulation of human skeletal stem cells differentiation by Dlk1/Pref-1

    DEFF Research Database (Denmark)

    Abdallah, Basem M; Jensen, Charlotte H; Gutierrez, Gloria

    2004-01-01

    Dlk-1/Pref-1 was identified as a novel regulator of human skeletal stem cell differentiation. Dlk1/Pref-1 is expressed in bone and cultured osteoblasts, and its constitutive overexpression led to inhibition of osteoblast and adipocyte differentiation of human marrow stromal cells. INTRODUCTION......: Molecular control of human mesenchymal stem cell (hMSC) differentiation into osteoblasts and adipocytes is not known. In this study, we examined the role of delta-like 1/preadipocyte factor-1 (Dlk1/Pref-1) in regulating the differentiation of hMSCs. MATERIALS AND METHODS: As a model for hMSCs, we have...... was used to confirm the in vitro effect of Dlk/Pref-1 on bone formation. RESULTS: Dlk1/Pref-1 was found to be expressed in fetal and adult bone, hMSCs, and some osteoblastic cell lines. A retroviral vector containing the human Dlk1/Pref-1 cDNA was used to create a cell line (hMSC-dlk1) expressing high...

  17. IGF-1 Promotes Brn-4 Expression and Neuronal Differentiation of Neural Stem Cells via the PI3K/Akt Pathway

    Science.gov (United States)

    Zhang, Xinhua; Zhang, Lei; Cheng, Xiang; Guo, Yuxiu; Sun, Xiaohui; Chen, Geng; Li, Haoming; Li, Pengcheng; Lu, Xiaohui; Tian, Meiling; Qin, Jianbing; Zhou, Hui; Jin, Guohua

    2014-01-01

    Our previous studies indicated that transcription factor Brn-4 is upregulated in the surgically denervated hippocampus in vivo, promoting neuronal differentiation of hippocampal neural stem cells (NSCs) in vitro. The molecules mediating Brn-4 upregulation in the denervated hippocampus remain unknown. In this study we examined the levels of insulin-like growth factor-1 (IGF-1) in hippocampus following denervation. Surgical denervation led to a significant increase in IGF-1 expression in vivo. We also report that IGF-1 treatment on NSCs in vitro led to a marked acceleration of Brn-4 expression and cell differentiation down neuronal pathways. The promotion effects were blocked by PI3K-specific inhibitor (LY294002), but not MAPK inhibitor (PD98059); levels of phospho-Akt were increased by IGF-1 treatment. In addition, inhibition of IGF-1 receptor (AG1024) and mTOR (rapamycin) both attenuated the increased expression of Brn-4 induced by IGF-1. Together, the results demonstrated that upregulation of IGF-1 induced by hippocampal denervation injury leads to activation of the PI3K/Akt signaling pathway, which in turn gives rise to upregulation of the Brn-4 and subsequent stem cell differentiation down neuronal pathways. PMID:25474202

  18. Arteries of the falciform ligament on C-arm CT hepatic arteriography: The hepatic falciform artery and the Sappey's superior artery

    Energy Technology Data Exchange (ETDEWEB)

    Hur, Saebeom; Chung, Jin Wook; Lee, Jae Hwan; Cho, SooBeum; Kim, Minuk; Lee, Myungsu; Kim, Hyo-Cheol; Jae, Hwan Jun [Seoul National University Hospital, Department of Radiology, Seoul (Korea, Republic of); Zhou, Chun Gao [First Affiliated Hospital of Nanjing Medical University, Department of Interventional Radiology, Nanjing, Jangsu (China)

    2017-04-15

    To investigate the prevalence, anatomy and distribution of the hepatic falciform artery (HFA) and Sappey's superior artery (SSA) using C-arm CT hepatic arteriography (C-arm CTHA). From January 2011 to December 2012, 220 patients who underwent C-arm CTHA during initial transarterial treatment for hepatocellular carcinoma were included in this retrospective study. The HFAs and SSAs prevalence and origin were evaluated using axial images of C-arm CTHA. A 5-point scale for HFAs and a 4-point scale for SSAs were used to designate the radiologically conspicuous arteries. The prevalences of the total HFAs and SSAs were 95 % (n=209) and 22 % (n=49), while those of radiologically conspicuous HFAs and SSAs were 62 % (n=137) and 10 % (n=22), respectively. Thirty HFAs (22 % of radiologically conspicuous HFAs and 14 % of the total study population) were distributed in the subcutaneous layer of the anterior abdominal wall, while the majority of SSAs ran through the superior part of the falciform ligament in the left-anterior direction and anastomosed with left inferior phrenic artery. Our study using C-arm CTHA revealed that the prevalence of the HFA is higher than the existing knowledge and proved the existence of the SSA radiologically for the first time. (orig.)

  19. Arteries of the falciform ligament on C-arm CT hepatic arteriography: The hepatic falciform artery and the Sappey's superior artery

    International Nuclear Information System (INIS)

    Hur, Saebeom; Chung, Jin Wook; Lee, Jae Hwan; Cho, SooBeum; Kim, Minuk; Lee, Myungsu; Kim, Hyo-Cheol; Jae, Hwan Jun; Zhou, Chun Gao

    2017-01-01

    To investigate the prevalence, anatomy and distribution of the hepatic falciform artery (HFA) and Sappey's superior artery (SSA) using C-arm CT hepatic arteriography (C-arm CTHA). From January 2011 to December 2012, 220 patients who underwent C-arm CTHA during initial transarterial treatment for hepatocellular carcinoma were included in this retrospective study. The HFAs and SSAs prevalence and origin were evaluated using axial images of C-arm CTHA. A 5-point scale for HFAs and a 4-point scale for SSAs were used to designate the radiologically conspicuous arteries. The prevalences of the total HFAs and SSAs were 95 % (n=209) and 22 % (n=49), while those of radiologically conspicuous HFAs and SSAs were 62 % (n=137) and 10 % (n=22), respectively. Thirty HFAs (22 % of radiologically conspicuous HFAs and 14 % of the total study population) were distributed in the subcutaneous layer of the anterior abdominal wall, while the majority of SSAs ran through the superior part of the falciform ligament in the left-anterior direction and anastomosed with left inferior phrenic artery. Our study using C-arm CTHA revealed that the prevalence of the HFA is higher than the existing knowledge and proved the existence of the SSA radiologically for the first time. (orig.)

  20. Accuracy of x-ray image-based 3D localization from two C-arm views: a comparison between an ideal system and a real device

    Science.gov (United States)

    Brost, Alexander; Strobel, Norbert; Yatziv, Liron; Gilson, Wesley; Meyer, Bernhard; Hornegger, Joachim; Lewin, Jonathan; Wacker, Frank

    2009-02-01

    arm X-ray imaging devices are commonly used for minimally invasive cardiovascular or other interventional procedures. Calibrated state-of-the-art systems can, however, not only be used for 2D imaging but also for three-dimensional reconstruction either using tomographic techniques or even stereotactic approaches. To evaluate the accuracy of X-ray object localization from two views, a simulation study assuming an ideal imaging geometry was carried out first. This was backed up with a phantom experiment involving a real C-arm angiography system. Both studies were based on a phantom comprising five point objects. These point objects were projected onto a flat-panel detector under different C-arm view positions. The resulting 2D positions were perturbed by adding Gaussian noise to simulate 2D point localization errors. In the next step, 3D point positions were triangulated from two views. A 3D error was computed by taking differences between the reconstructed 3D positions using the perturbed 2D positions and the initial 3D positions of the five points. This experiment was repeated for various C-arm angulations involving angular differences ranging from 15° to 165°. The smallest 3D reconstruction error was achieved, as expected, by views that were 90° degrees apart. In this case, the simulation study yielded a 3D error of 0.82 mm +/- 0.24 mm (mean +/- standard deviation) for 2D noise with a standard deviation of 1.232 mm (4 detector pixels). The experimental result for this view configuration obtained on an AXIOM Artis C-arm (Siemens AG, Healthcare Sector, Forchheim, Germany) system was 0.98 mm +/- 0.29 mm, respectively. These results show that state-of-the-art C-arm systems can localize instruments with millimeter accuracy, and that they can accomplish this almost as well as an idealized theoretical counterpart. High stereotactic localization accuracy, good patient access, and CT-like 3D imaging capabilities render state-of-the-art C-arm systems ideal devices for X

  1. A robotic C-arm cone beam CT system for image-guided proton therapy: design and performance.

    Science.gov (United States)

    Hua, Chiaho; Yao, Weiguang; Kidani, Takao; Tomida, Kazuo; Ozawa, Saori; Nishimura, Takenori; Fujisawa, Tatsuya; Shinagawa, Ryousuke; Merchant, Thomas E

    2017-11-01

    A ceiling-mounted robotic C-arm cone beam CT (CBCT) system was developed for use with a 190° proton gantry system and a 6-degree-of-freedom robotic patient positioner. We report on the mechanical design, system accuracy, image quality, image guidance accuracy, imaging dose, workflow, safety and collision-avoidance. The robotic CBCT system couples a rotating C-ring to the C-arm concentrically with a kV X-ray tube and a flat-panel imager mounted to the C-ring. CBCT images are acquired with flex correction and maximally 360° rotation for a 53 cm field of view. The system was designed for clinical use with three imaging locations. Anthropomorphic phantoms were imaged to evaluate the image guidance accuracy. The position accuracy and repeatability of the robotic C-arm was high (robotic CBCT system provides high-accuracy volumetric image guidance for proton therapy. Advances in knowledge: Ceiling-mounted robotic CBCT provides a viable option than CT on-rails for partial gantry and fixed-beam proton systems with the added advantage of acquiring images at the treatment isocentre.

  2. Application of C-arm computed tomography in cardiology

    International Nuclear Information System (INIS)

    Rieber, J.; Rohkohl, C.; Lauritsch, G.; Rittger, H.; Meissner, O.

    2009-01-01

    C-arm computed tomography is currently being introduced into cardiac imaging and offers the potential for three-dimensional imaging of the cardiac anatomy within the interventional environment. This detailed view is necessary to support complex interventional strategies, such as transcutaneous valve replacement, interventional therapy of atrial fibrillation, implantation of biventricular pacemakers and assessment of myocardial perfusion. Currently, the major limitation of this technology is its insufficient temporal resolution which limits the visualization of fast moving parts of the heart. (orig.) [de

  3. Insulin like growth factor-1/insulin bypasses Pref-1/FA1-mediated inhibition of adipocyte differentiation

    DEFF Research Database (Denmark)

    Zhang, Hongbin; Nøhr, Jane; Jensen, Charlotte Harken

    2003-01-01

    that forced expression of the soluble form, FA1, or full-length Pref-1 did not inhibit adipocyte differentiation of 3T3-L1 cells when differentiation was induced by standard treatment with methylisobutylxanthine, dexamethasone, and high concentrations of insulin. However, forced expression of either form...... of Pref-1/FA1 in 3T3-L1 or 3T3-F442A cells inhibited adipocyte differentiation when insulin or insulin-like growth factor-1 (IGF-1) was omitted from the differentiation mixture. We demonstrate that the level of the mature form of the IGF-1 receptor is reduced and that IGF-1-dependent activation of p42/p44...... mitogen-activated protein kinases (MAPKs) is compromised in preadipocytes with forced expression of Pref-1. This is accompanied by suppression of clonal expansion and terminal differentiation. Accordingly, supplementation with insulin or IGF-1 rescued p42/p44 MAPK activation, clonal expansion...

  4. C-arm flat detector computed tomography parenchymal blood volume imaging: the nature of parenchymal blood volume parameter and the feasibility of parenchymal blood volume imaging in aneurysmal subarachnoid haemorrhage patients

    Energy Technology Data Exchange (ETDEWEB)

    Kamran, Mudassar; Byrne, James V. [University of Oxford, Nuffield Department of Surgical Sciences, Oxford (United Kingdom)

    2015-09-15

    C-arm flat detector computed tomography (FDCT) parenchymal blood volume (PBV) measurements allow assessment of cerebral haemodynamics in the neurointerventional suite. This paper explores the feasibility of C-arm computed tomography (CT) PBV imaging and the relationship between the C-arm CT PBV and the MR-PWI-derived cerebral blood volume (CBV) and cerebral blood flow (CBF) parameters in aneurysmal subarachnoid haemorrhage (SAH) patients developing delayed cerebral ischemia (DCI). Twenty-six patients with DCI following aneurysmal SAH underwent a research C-arm CT PBV scan using a biplane angiography system and contemporaneous MR-PWI scan as part of a prospective study. Quantitative whole-brain atlas-based volume-of-interest analysis in conjunction with Pearson correlation and Bland-Altman tests was performed to explore the agreement between C-arm CT PBV and MR-derived CBV and CBF measurements. All patients received medical management, while eight patients (31 %) underwent selective intra-arterial chemical angioplasty. Colour-coded C-arm CT PBV maps were 91 % sensitive and 100 % specific in detecting the perfusion abnormalities. C-arm CT rPBV demonstrated good agreement and strong correlation with both MR-rCBV and MR-rCBF measurements; the agreement and correlation were stronger for MR-rCBF relative to MR-rCBV and improved for C-arm CT PBV versus the geometric mean of MR-rCBV and MR-rCBF. Analysis of weighted means showed that the C-arm CT PBV has a preferential blood flow weighting (∼60 % blood flow and ∼40 % blood volume weighting). C-arm CT PBV imaging is feasible in DCI following aneurysmal SAH. PBV is a composite perfusion parameter incorporating both blood flow and blood volume weightings. That PBV has preferential (∼60 %) blood flow weighting is an important finding, which is of clinical significance when interpreting the C-arm CT PBV maps, particularly in the setting of acute brain ischemia. (orig.)

  5. C-arm flat detector computed tomography parenchymal blood volume imaging: the nature of parenchymal blood volume parameter and the feasibility of parenchymal blood volume imaging in aneurysmal subarachnoid haemorrhage patients

    International Nuclear Information System (INIS)

    Kamran, Mudassar; Byrne, James V.

    2015-01-01

    C-arm flat detector computed tomography (FDCT) parenchymal blood volume (PBV) measurements allow assessment of cerebral haemodynamics in the neurointerventional suite. This paper explores the feasibility of C-arm computed tomography (CT) PBV imaging and the relationship between the C-arm CT PBV and the MR-PWI-derived cerebral blood volume (CBV) and cerebral blood flow (CBF) parameters in aneurysmal subarachnoid haemorrhage (SAH) patients developing delayed cerebral ischemia (DCI). Twenty-six patients with DCI following aneurysmal SAH underwent a research C-arm CT PBV scan using a biplane angiography system and contemporaneous MR-PWI scan as part of a prospective study. Quantitative whole-brain atlas-based volume-of-interest analysis in conjunction with Pearson correlation and Bland-Altman tests was performed to explore the agreement between C-arm CT PBV and MR-derived CBV and CBF measurements. All patients received medical management, while eight patients (31 %) underwent selective intra-arterial chemical angioplasty. Colour-coded C-arm CT PBV maps were 91 % sensitive and 100 % specific in detecting the perfusion abnormalities. C-arm CT rPBV demonstrated good agreement and strong correlation with both MR-rCBV and MR-rCBF measurements; the agreement and correlation were stronger for MR-rCBF relative to MR-rCBV and improved for C-arm CT PBV versus the geometric mean of MR-rCBV and MR-rCBF. Analysis of weighted means showed that the C-arm CT PBV has a preferential blood flow weighting (∼60 % blood flow and ∼40 % blood volume weighting). C-arm CT PBV imaging is feasible in DCI following aneurysmal SAH. PBV is a composite perfusion parameter incorporating both blood flow and blood volume weightings. That PBV has preferential (∼60 %) blood flow weighting is an important finding, which is of clinical significance when interpreting the C-arm CT PBV maps, particularly in the setting of acute brain ischemia. (orig.)

  6. Allelic variants of OsSUB1A cause differential expression of transcription factor genes in response to submergence in rice.

    Science.gov (United States)

    Sharma, Niharika; Dang, Trang Minh; Singh, Namrata; Ruzicic, Slobodan; Mueller-Roeber, Bernd; Baumann, Ute; Heuer, Sigrid

    2018-01-08

    Flooding during seasonal monsoons affects millions of hectares of rice-cultivated areas across Asia. Submerged rice plants die within a week due to lack of oxygen, light and excessive elongation growth to escape the water. Submergence tolerance was first reported in an aus-type rice landrace, FR13A, and the ethylene-responsive transcription factor (TF) gene SUB1A-1 was identified as the major tolerance gene. Intolerant rice varieties generally lack the SUB1A gene but some intermediate tolerant varieties, such as IR64, carry the allelic variant SUB1A-2. Differential effects of the two alleles have so far not been addressed. As a first step, we have therefore quantified and compared the expression of nearly 2500 rice TF genes between IR64 and its derived tolerant near isogenic line IR64-Sub1, which carries the SUB1A-1 allele. Gene expression was studied in internodes, where the main difference in expression between the two alleles was previously shown. Nineteen and twenty-six TF genes were identified that responded to submergence in IR64 and IR64-Sub1, respectively. Only one gene was found to be submergence-responsive in both, suggesting different regulatory pathways under submergence in the two genotypes. These differentially expressed genes (DEGs) mainly included MYB, NAC, TIFY and Zn-finger TFs, and most genes were downregulated upon submergence. In IR64, but not in IR64-Sub1, SUB1B and SUB1C, which are also present in the Sub1 locus, were identified as submergence responsive. Four TFs were not submergence responsive but exhibited constitutive, genotype-specific differential expression. Most of the identified submergence responsive DEGs are associated with regulatory hormonal pathways, i.e. gibberellins (GA), abscisic acid (ABA), and jasmonic acid (JA), apart from ethylene. An in-silico promoter analysis of the two genotypes revealed the presence of allele-specific single nucleotide polymorphisms, giving rise to ABRE, DRE/CRT, CARE and Site II cis-elements, which

  7. Proteomic Profiling for Identification of Novel Biomarkers Differentially Expressed in Human Ovaries from Polycystic Ovary Syndrome Patients.

    Directory of Open Access Journals (Sweden)

    Li Li

    Full Text Available To identify differential protein expression pattern associated with polycystic ovary syndrome (PCOS.Twenty women were recruited for the study, ten with PCOS as a test group and ten without PCOS as a control group. Differential in-gel electrophoresis (DIGE analysis and mass spectroscopy were employed to identify proteins that were differentially expressed between the PCOS and normal ovaries. The differentially expressed proteins were further validated by western blot (WB and immunohistochemistry (IHC.DIGE analysis revealed eighteen differentially expressed proteins in the PCOS ovaries of which thirteen were upregulated, and five downregulated. WB and IHC confirmed the differential expression of membrane-associated progesterone receptor component 1 (PGRMC1, retinol-binding protein 1 (RBP1, heat shock protein 90B1, calmodulin 1, annexin A6, and tropomyosin 2. Also, WB analysis revealed significantly (P<0.05 higher expression of PGRMC1 and RBP1 in PCOS ovaries as compared to the normal ovaries. The differential expression of the proteins was also validated by IHC.The present study identified novel differentially expressed proteins in the ovarian tissues of women with PCOS that can serve as potential biomarkers for the diagnosis and development of novel therapeutics for the treatment of PCOS using molecular interventions.

  8. Differential gene expression during Trypanosoma cruzi metacyclogenesis

    Directory of Open Access Journals (Sweden)

    Marco Aurelio Krieger

    1999-09-01

    Full Text Available The transformation of epimastigotes into metacyclic trypomastigotes involves changes in the pattern of expressed genes, resulting in important morphological and functional differences between these developmental forms of Trypanosoma cruzi. In order to identify and characterize genes involved in triggering the metacyclogenesis process and in conferring to metacyclic trypomastigotes their stage specific biological properties, we have developed a method allowing the isolation of genes specifically expressed when comparing two close related cell populations (representation of differential expression or RDE. The method is based on the PCR amplification of gene sequences selected by hybridizing and subtracting the populations in such a way that after some cycles of hybridization-amplification genes specific to a given population are highly enriched. The use of this method in the analysis of differential gene expression during T. cruzi metacyclogenesis (6 hr and 24 hr of differentiation and metacyclic trypomastigotes resulted in the isolation of several clones from each time point. Northern blot analysis showed that some genes are transiently expressed (6 hr and 24 hr differentiating cells, while others are present in differentiating cells and in metacyclic trypomastigotes. Nucleotide sequencing of six clones characterized so far showed that they do not display any homology to gene sequences available in the GeneBank.

  9. Differential expression of P-type ATPases in intestinal epithelial cells: Identification of putative new atp1a1 splice-variant

    International Nuclear Information System (INIS)

    Rocafull, Miguel A.; Thomas, Luz E.; Barrera, Girolamo J.; Castillo, Jesus R. del

    2010-01-01

    P-type ATPases are membrane proteins that couple ATP hydrolysis with cation transport across the membrane. Ten different subtypes have been described. In mammalia, 15 genes of P-type ATPases from subtypes II-A, II-B and II-C, that transport low-atomic-weight cations (Ca 2+ , Na + , K + and H + ), have been reported. They include reticulum and plasma-membrane Ca 2+ -ATPases, Na + /K + -ATPase and H + /K + -ATPases. Enterocytes and colonocytes show functional differences, which seem to be partially due to the differential expression of P-type ATPases. These enzymes have 9 structural motifs, being the phosphorylation (E) and the Mg 2+ ATP-binding (H) motifs the most preserved. These structural characteristics permitted developing a Multiplex-Nested-PCR (MN-PCR) for the simultaneous identification of different P-type ATPases. Thus, using MN-PCR, seven different cDNAs were cloned from enterocytes and colonocytes, including SERCA3, SERCA2, Na + /K + -ATPase α1-isoform, H + /K + -ATPase α2-isoform, PMCA1, PMCA4 and a cDNA-fragment that seems to be a new cassette-type splice-variant of the atp1a1 gen. PMCA4 in enterocytes and H + /K + -ATPase α2-isoform in colonocytes were differentially expressed. This cell-specific expression pattern is related with the distinctive enterocyte and colonocyte functions.

  10. Ultra-high resolution C-Arm CT arthrography of the wrist: Radiation dose and image quality compared to conventional multidetector computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Werncke, Thomas, E-mail: Werncke.Thomas@mh-hannover.de [Institute of Diagnostic and Interventional Radiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover (Germany); Sonnow, Lena; Meyer, Bernhard C. [Institute of Diagnostic and Interventional Radiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover (Germany); Lüpke, Matthias [University of Veterinary Medicine Hannover, Institute for General Radiology and Medical Physics, Bischofsholer Damm 15, 30173 Hannover (Germany); Hinrichs, Jan; Wacker, Frank K.; Falck, Christian von [Institute of Diagnostic and Interventional Radiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover (Germany)

    2017-04-15

    Objective: Objective of this phantom and cadaveric study was to compare the effective radiation dose (ED) and image quality (IQ) between C-arm computed tomography (CACT) using an ultra-high resolution 1 × 1 binning with a standard 16-slice CT (MDCT) arthrography of the wrist. Methods: ED was determined with thermoluminescence dosimetry using an anthropomorphic phantom and different patient positions. Imaging was conducted in 10 human cadaveric wrists after tri-compartmental injection of diluted iodinated contrast material and a wire phantom. IQ of MDCT was compared with CACT reconstructed with a soft (CACT1) and sharp (CACT2) kernel. High and low contrast resolution was determined. Three radiologists assessed IQ of wrist structures and occurrence of image artifacts using a 5-point Likert scale. Results: ED of MDCT was comparable to standard CACT (4.3 μSv/3.7 μSv). High contrast resolution was best for CACT2, decreased to CACT1 and MDCT. Low contrast resolution increased between CACT2 and MDCT (P < 0.001). IQ was best for CACT2 (1.3 ± 0.5), decreased to CACT1 (1.9 ± 0.6) and MDCT (3.5 ± 0.6). Non-compromising artifacts were only reported for CACT. Conclusions: The results of this phantom and cadaveric study indicate that ultra-high resolution C-Arm CT arthrography of the wrist bears the potential to outperform MDCT arthrography in terms of image quality and workflow at the cost of mildly increasing image artifacts while radiation dose to the patient is comparably low for both, MDCT and C-Arm CT.

  11. DISC1 (disrupted-in-schizophrenia-1 regulates differentiation of oligodendrocytes.

    Directory of Open Access Journals (Sweden)

    Tsuyoshi Hattori

    Full Text Available Disrupted-in-schizophrenia 1 (DISC1 is a gene disrupted by a translocation, t(1;11 (q42.1;q14.3, that segregates with major psychiatric disorders, including schizophrenia, recurrent major depression and bipolar affective disorder, in a Scottish family. Here we report that mammalian DISC1 endogenously expressed in oligodendroglial lineage cells negatively regulates differentiation of oligodendrocyte precursor cells into oligodendrocytes. DISC1 expression was detected in oligodendrocytes of the mouse corpus callosum at P14 and P70. DISC1 mRNA was expressed in primary cultured rat cortical oligodendrocyte precursor cells and decreased when oligodendrocyte precursor cells were induced to differentiate by PDGF deprivation. Immunocytochemical analysis showed that overexpressed DISC1 was localized in the cell bodies and processes of oligodendrocyte precursor cells and oligodendrocytes. We show that expression of the myelin related markers, CNPase and MBP, as well as the number of cells with a matured oligodendrocyte morphology, were decreased following full length DISC1 overexpression. Conversely, both expression of CNPase and the number of oligodendrocytes with a mature morphology were increased following knockdown of endogenous DISC1 by RNA interference. Overexpression of a truncated form of DISC1 also resulted in an increase in expression of myelin related proteins and the number of mature oligodendrocytes, potentially acting via a dominant negative mechanism. We also identified involvement of Sox10 and Nkx2.2 in the DISC1 regulatory pathway of oligodendrocyte differentiation, both well-known transcription factors involved in the regulation of myelin genes.

  12. Differential expression of miR-1, a putative tumor suppressing microRNA, in cancer resistant and cancer susceptible mice

    Directory of Open Access Journals (Sweden)

    Jessica L. Fleming

    2013-04-01

    Full Text Available Mus spretus mice are highly resistant to several types of cancer compared to Mus musculus mice. To determine whether differences in microRNA (miRNA expression account for some of the differences in observed skin cancer susceptibility between the strains, we performed miRNA expression profiling of skin RNA for over 300 miRNAs. Five miRNAs, miR-1, miR-124a-3, miR-133a, miR-134, miR-206, were differentially expressed by array and/or qPCR. miR-1 was previously shown to have tumor suppressing abilities in multiple tumor types. We found miR-1 expression to be lower in mouse cutaneous squamous cell carcinomas (cSCCs compared to normal skin. Based on the literature and our expression data, we performed detailed studies on predicted miR-1 targets and evaluated the effect of miR-1 expression on two murine cSCC cell lines, A5 and B9. Following transfection of miR-1, we found decreased mRNA expression of three validated miR-1 targets, Met, Twf1 and Ets1 and one novel target Bag4. Decreased expression of Ets1 was confirmed by Western analysis and by 3’ reporter luciferase assays containing wildtype and mutated Ets1 3’UTR. We evaluated the effect of miR-1 on multiple tumor phenotypes including apoptosis, proliferation, cell cycle and migration. In A5 cells, expression of miR-1 led to decreased proliferation compared to a control miR. miR-1 expression also led to increased apoptosis at later time points (72 and 96 h and to a decrease in cells in S-phase. In summary, we identified five miRNAs with differential expression between cancer resistant and cancer susceptible mice and found that miR-1, a candidate tumor suppressor, has targets with defined roles in tumorigenesis.

  13. Direct navigation on 3D rotational x-ray data acquired with a mobile propeller C-arm: accuracy and application in functional endoscopic sinus surgery

    International Nuclear Information System (INIS)

    Kraats, Everine B van de; Carelsen, Bart; Fokkens, Wytske J; Boon, Sjirk N; Noordhoek, Niels; Niessen, Wiro J; Walsum, Theo van

    2005-01-01

    Recently, three-dimensional (3D) rotational x-ray imaging has been combined with navigation technology, enabling direct 3D navigation for minimally invasive image guided interventions. In this study, phantom experiments are used to determine the accuracy of such a navigation set-up for a mobile C-arm with propeller motion. After calibration of the C-arm system, the accuracy is evaluated by pinpointing divots on a special-purpose phantom with known geometry. This evaluation is performed both with and without C-arm motion in between calibration and registration for navigation. The variation caused by each of the individual transformations in the calibration and registration process is also studied. The feasibility of direct navigation on 3D rotational x-ray images for functional endoscopic sinus surgery has been evaluated in a cadaver navigation experiment. Navigation accuracy was approximately 1.0 mm, which is sufficient for functional endoscopic sinus surgery. C-arm motion in between calibration and registration slightly degraded the registration accuracy by approximately 0.3 mm. Standard deviations of each of the transformations were in the range 0.15-0.31 mm. In the cadaver experiment, the navigation images were considered in good correspondence with the endoscopic images by an experienced ENT surgeon. Availability of 3D localization information provided by the navigation system was considered valuable by the ENT surgeon

  14. Coactivator-associated arginine methyltransferase 1 enhances transcriptional activity of the human T-cell lymphotropic virus type 1 long terminal repeat through direct interaction with Tax.

    Science.gov (United States)

    Jeong, Soo-Jin; Lu, Hanxin; Cho, Won-Kyung; Park, Hyeon Ung; Pise-Masison, Cynthia; Brady, John N

    2006-10-01

    In this study, we demonstrate that the coactivator-associated arginine methyltransferase 1 (CARM1), which methylates histone H3 and other proteins such as p300/CBP, is positively involved in the regulation of Tax transactivation. First, transfection studies demonstrated that overexpression of CARM1 wild-type protein resulted in increased Tax transactivation of the human T-cell lymphotropic virus type 1 (HTLV-1) long terminal repeat (LTR). In contrast, transfection of a catalytically inactive CARM1 methyltransferase mutant did not enhance Tax transactivation. CARM1 facilitated Tax transactivation of the CREB-dependent cellular GEM promoter. A direct physical interaction between HTLV-1 Tax and CARM1 was demonstrated using in vitro glutathione S-transferase-Tax binding assays, in vivo coimmunoprecipitation, and confocal microscopy experiments. Finally, chromatin immunoprecipitation analysis of the activated HTLV-1 LTR promoter showed the association of CARM1 and methylated histone H3 with the template DNA. In vitro, Tax facilitates the binding of CARM1 to the transcription complex. Together, our data provide evidence that CARM1 enhances Tax transactivation of the HTLV-1 LTR through a direct interaction between CARM1 and Tax and this binding promotes methylation of histone H3 (R2, R17, and R26).

  15. IGF-1 promotes Brn-4 expression and neuronal differentiation of neural stem cells via the PI3K/Akt pathway.

    Directory of Open Access Journals (Sweden)

    Xinhua Zhang

    Full Text Available Our previous studies indicated that transcription factor Brn-4 is upregulated in the surgically denervated hippocampus in vivo, promoting neuronal differentiation of hippocampal neural stem cells (NSCs in vitro. The molecules mediating Brn-4 upregulation in the denervated hippocampus remain unknown. In this study we examined the levels of insulin-like growth factor-1 (IGF-1 in hippocampus following denervation. Surgical denervation led to a significant increase in IGF-1 expression in vivo. We also report that IGF-1 treatment on NSCs in vitro led to a marked acceleration of Brn-4 expression and cell differentiation down neuronal pathways. The promotion effects were blocked by PI3K-specific inhibitor (LY294002, but not MAPK inhibitor (PD98059; levels of phospho-Akt were increased by IGF-1 treatment. In addition, inhibition of IGF-1 receptor (AG1024 and mTOR (rapamycin both attenuated the increased expression of Brn-4 induced by IGF-1. Together, the results demonstrated that upregulation of IGF-1 induced by hippocampal denervation injury leads to activation of the PI3K/Akt signaling pathway, which in turn gives rise to upregulation of the Brn-4 and subsequent stem cell differentiation down neuronal pathways.

  16. Proteomic Profiling for Identification of Novel Biomarkers Differentially Expressed in Human Ovaries from Polycystic Ovary Syndrome Patients.

    Science.gov (United States)

    Li, Li; Zhang, Jiangyu; Deng, Qingshan; Li, Jieming; Li, Zhengfen; Xiao, Yao; Hu, Shuiwang; Li, Tiantian; Tan, Qiuxiao; Li, Xiaofang; Luo, Bingshu; Mo, Hui

    2016-01-01

    To identify differential protein expression pattern associated with polycystic ovary syndrome (PCOS). Twenty women were recruited for the study, ten with PCOS as a test group and ten without PCOS as a control group. Differential in-gel electrophoresis (DIGE) analysis and mass spectroscopy were employed to identify proteins that were differentially expressed between the PCOS and normal ovaries. The differentially expressed proteins were further validated by western blot (WB) and immunohistochemistry (IHC). DIGE analysis revealed eighteen differentially expressed proteins in the PCOS ovaries of which thirteen were upregulated, and five downregulated. WB and IHC confirmed the differential expression of membrane-associated progesterone receptor component 1 (PGRMC1), retinol-binding protein 1 (RBP1), heat shock protein 90B1, calmodulin 1, annexin A6, and tropomyosin 2. Also, WB analysis revealed significantly (Povaries as compared to the normal ovaries. The differential expression of the proteins was also validated by IHC. The present study identified novel differentially expressed proteins in the ovarian tissues of women with PCOS that can serve as potential biomarkers for the diagnosis and development of novel therapeutics for the treatment of PCOS using molecular interventions.

  17. Expression of the chitinase family glycoprotein YKL-40 in undifferentiated, differentiated and trans-differentiated mesenchymal stem cells.

    Directory of Open Access Journals (Sweden)

    Daniel J Hoover

    Full Text Available The glycoprotein YKL-40 (CHI3L1 is a secreted chitinase family protein that induces angiogenesis, cell survival, and cell proliferation, and plays roles in tissue remodeling and immune regulation. It is expressed primarily in cells of mesenchymal origin, is overexpressed in numerous aggressive carcinomas and sarcomas, but is rarely expressed in normal ectodermal tissues. Bone marrow-derived mesenchymal stem cells (MSCs can be induced to differentiate into various mesenchymal tissues and trans-differentiate into some non-mesenchymal cell types. Since YKL-40 has been used as a mesenchymal marker, we followed YKL-40 expression as undifferentiated MSCs were induced to differentiate into bone, cartilage, and neural phenotypes. Undifferentiated MSCs contain significant levels of YKL-40 mRNA but do not synthesize detectable levels of YKL-40 protein. MSCs induced to differentiate into chondrocytes and osteocytes soon began to express and secrete YKL-40 protein, as do ex vivo cultured chondrocytes and primary osteocytes. In contrast, MSCs induced to trans-differentiate into neurons did not synthesize YKL-40 protein, consistent with the general absence of YKL-40 protein in normal CNS parenchyma. However, these trans-differentiated neurons retained significant levels of YKL-40 mRNA, suggesting the mechanisms which prevented YKL-40 translation in undifferentiated MSCs remained in place, and that these trans-differentiated neurons differ in at least this way from neurons derived from neuronal stem cells. Utilization of a differentiation protocol containing β-mercaptoethanol resulted in cells that expressed significant amounts of intracellular YKL-40 protein that was not secreted, which is not seen in normal cells. Thus the synthesis of YKL-40 protein is a marker for MSC differentiation into mature mesenchymal phenotypes, and the presence of untranslated YKL-40 mRNA in non-mesenchymal cells derived from MSCs reflects differences between differentiated and

  18. Msx homeobox genes inhibit differentiation through upregulation of cyclin D1.

    Science.gov (United States)

    Hu, G; Lee, H; Price, S M; Shen, M M; Abate-Shen, C

    2001-06-01

    During development, patterning and morphogenesis of tissues are intimately coordinated through control of cellular proliferation and differentiation. We describe a mechanism by which vertebrate Msx homeobox genes inhibit cellular differentiation by regulation of the cell cycle. We show that misexpression of Msx1 via retroviral gene transfer inhibits differentiation of multiple mesenchymal and epithelial progenitor cell types in culture. This activity of Msx1 is associated with its ability to upregulate cyclin D1 expression and Cdk4 activity, while Msx1 has minimal effects on cellular proliferation. Transgenic mice that express Msx1 under the control of the mouse mammary tumor virus long terminal repeat (MMTV LTR) display impaired differentiation of the mammary epithelium during pregnancy, which is accompanied by elevated levels of cyclin D1 expression. We propose that Msx1 gene expression maintains cyclin D1 expression and prevents exit from the cell cycle, thereby inhibiting terminal differentiation of progenitor cells. Our model provides a framework for reconciling the mutant phenotypes of Msx and other homeobox genes with their functions as regulators of cellular proliferation and differentiation during embryogenesis.

  19. Developmental expression of DAX1 in the European sea bass, Dicentrarchus labrax: lack of evidence for sexual dimorphism during sex differentiation

    Directory of Open Access Journals (Sweden)

    Power Deborah M

    2007-05-01

    Full Text Available Abstract Background DAX1 (NR0B1, a member of the nuclear receptors super family, has been shown to be involved in the genetic sex determination and in gonadal differentiation in several vertebrate species. In the aquaculture fish European sea bass, Dicentrarchus labrax, and in the generality of fish species, the mechanisms of sex determination and differentiation have not been elucidated. The present study aimed at characterizing the European DAX1 gene and its developmental expression at the mRNA level. Methods A full length European sea bass DAX1 cDNA (sbDAX1 was isolated by screening a testis cDNA library. The structure of the DAX1 gene was determined by PCR and Southern blot. Multisequence alignments and phylogenetic analysis were used to compare the translated sbDAX1 product to that of other vertebrates. sbDAX1 expression was analysed by Northern blot and relative RT-PCR in adult tissues. Developmental expression of mRNA levels was analysed in groups of larvae grown either at 15°C or 20°C (masculinising temperature during the first 60 days, or two groups of fish selected for fast (mostly females and slow growth. Results The sbDAX1 is expressed as a single transcript in testis and ovary encoding a predicted protein of 301 amino acids. A polyglutamine stretch of variable length in different DAX1 proteins is present in the DNA binding domain. The sbDAX1 gene is composed of two exons, separated by a single 283 bp intron with conserved splice sites in same region of the ligand binding domain as other DAX1 genes. sbDAX1 mRNA is not restricted to the brain-pituitary-gonadal axis and is also detected in the gut, heart, gills, muscle and kidney. sbDAX1 mRNA was detected as early as 4 days post hatching (dph and expression was not affected by incubation temperature. Throughout gonadal sex differentiation (60–300 dph no dimorphic pattern of expression was observed. Conclusion The sbDAX1 gene and putative protein coding region is highly conserved

  20. On Carmeli's exotic use of the Lorentz transformation and on the velocity composition approach to special relativity

    International Nuclear Information System (INIS)

    de Beauregard, O.C.

    1986-01-01

    As shown by Ramarkrishnan, the faithful mapping, in the sense of Lie groups, of the real line onto the finite segment -1 < u < + 1 is u = tanh A, from which follows the ''relativistic velocity composition law'' w = (u + v)/(1 + uv) and the Lorentz-Poincare' transformation formulas. Composition of translations is merely one application of this. Carmeli has shown that composition of rotations is another one. There may be still others

  1. Nonlinear theory of a cyclotron autoresonance maser (CARM) amplifier with outer-slotted-coaxial waveguide

    International Nuclear Information System (INIS)

    Qiu Chunrong; Ouyang Zhengbiao; Zhang Shichang; Zhang Huibo; Jin Jianbo; Lai Yingxin

    2005-01-01

    A self-consistent nonlinear theory for the outer-slotted-coaxial-waveguide cyclotron autoresonance maser (CARM) amplifier is presented, which includes the characteristic equation of the wave, coupling equation of the wave with the relativistic electron beam and the simulation model. The influences of the magnetic field, the slot depth and width are investigated. The interesting characteristic of the device is that the mode competition can be efficiently suppressed by slotting the outer wall of the coaxial waveguide. A typical example is given by the theoretical design of a 137 GHz outer-slotted-coaxial-waveguide CARM amplifier by utilizing an electron beam with a voltage of 90 kV, current of 50 A, velocity pitch angle of 0.85 and a magnetic field of 43.0 kG. The nonlinear simulation predicts a power of 467.9 kW, an electronic efficiency of 10.4% and a saturated gain of 46.7 dB, if the electron beam has no velocity spread. However, the axial velocity spread deteriorates the device; for example, if the axial velocity spread is 2%, the peak power decreases to 332.4 kW with an efficiency of 7.4% and a saturated gain of 45.22 dB. Simulation shows that the efficiency of the outer-slotted-coaxial-waveguide CARM amplifier may be increased from 10.4% to 29.6% by tapering the magnetic field

  2. Suppression of lipin-1 expression increases monocyte chemoattractant protein-1 expression in 3T3-L1 adipocytes

    International Nuclear Information System (INIS)

    Takahashi, Nobuhiko; Yoshizaki, Takayuki; Hiranaka, Natsumi; Suzuki, Takeshi; Yui, Tomoo; Akanuma, Masayasu; Oka, Kazuya; Kanazawa, Kaoru; Yoshida, Mika; Naito, Sumiyoshi; Fujiya, Mikihiro; Kohgo, Yutaka; Ieko, Masahiro

    2011-01-01

    Highlights: ► Lipin-1 affects lipid metabolism, adipocyte differentiation, and transcription. ► Adipose lipin-1 expression is reduced in obesity. ► Lipin-1 depletion using siRNA in 3T3-L1 adipocytes increased MCP-1 expression. ► Lipin-1 is involved in adipose inflammation. -- Abstract: Lipin-1 plays a crucial role in the regulation of lipid metabolism and cell differentiation in adipocytes. Expression of adipose lipin-1 is reduced in obesity, and metabolic syndrome. However, the significance of this reduction remains unclear. This study investigated if and how reduced lipin-1 expression affected metabolism. We assessed mRNA expression levels of various genes related to adipocyte metabolism in lipin-1-depleted 3T3-L1 adipocytes by introducing its specific small interfering RNA. In lipin-1-depleted adipocytes, mRNA and protein expression levels of monocyte chemoattractant protein-1 (MCP-1) were significantly increased, although the other genes tested were not altered. The conditioned media from the cells promoted monocyte chemotaxis. The increase in MCP-1 expression was prevented by treatment with quinazoline or salicylate, inhibitors of nuclear factor-κB activation. Because MCP-1 is related to adipose inflammation and systemic insulin resistance, these results suggest that a reduction in adipose lipin-1 in obesity may exacerbate adipose inflammation and metabolism.

  3. Suppression of lipin-1 expression increases monocyte chemoattractant protein-1 expression in 3T3-L1 adipocytes

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Nobuhiko, E-mail: ntkhs@hoku-iryo-u.ac.jp [Department of Internal Medicine, School of Dentistry, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Toubetsu, Hokkaido 061-0023 (Japan); Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa, Hokkaido 078-8510 (Japan); Yoshizaki, Takayuki [Innovation Center, Kagoshima University, 1-21-40 Korimoto, Kagoshima 890-0065 (Japan); Hiranaka, Natsumi; Suzuki, Takeshi [Department of Internal Medicine, School of Dentistry, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Toubetsu, Hokkaido 061-0023 (Japan); Yui, Tomoo; Akanuma, Masayasu; Oka, Kazuya [Department of Fixed Prosthodontics and Oral Implantology, School of Dentistry, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Toubetsu, Hokkaido 061-0023 (Japan); Kanazawa, Kaoru [Department of Dental Anesthesiology, School of Dentistry, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Toubetsu, Hokkaido 061-0023 (Japan); Yoshida, Mika; Naito, Sumiyoshi [Department of Clinical Laboratory, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Toubetsu, Hokkaido 061-0023 (Japan); Fujiya, Mikihiro; Kohgo, Yutaka [Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa, Hokkaido 078-8510 (Japan); Ieko, Masahiro [Department of Internal Medicine, School of Dentistry, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Toubetsu, Hokkaido 061-0023 (Japan)

    2011-11-11

    Highlights: Black-Right-Pointing-Pointer Lipin-1 affects lipid metabolism, adipocyte differentiation, and transcription. Black-Right-Pointing-Pointer Adipose lipin-1 expression is reduced in obesity. Black-Right-Pointing-Pointer Lipin-1 depletion using siRNA in 3T3-L1 adipocytes increased MCP-1 expression. Black-Right-Pointing-Pointer Lipin-1 is involved in adipose inflammation. -- Abstract: Lipin-1 plays a crucial role in the regulation of lipid metabolism and cell differentiation in adipocytes. Expression of adipose lipin-1 is reduced in obesity, and metabolic syndrome. However, the significance of this reduction remains unclear. This study investigated if and how reduced lipin-1 expression affected metabolism. We assessed mRNA expression levels of various genes related to adipocyte metabolism in lipin-1-depleted 3T3-L1 adipocytes by introducing its specific small interfering RNA. In lipin-1-depleted adipocytes, mRNA and protein expression levels of monocyte chemoattractant protein-1 (MCP-1) were significantly increased, although the other genes tested were not altered. The conditioned media from the cells promoted monocyte chemotaxis. The increase in MCP-1 expression was prevented by treatment with quinazoline or salicylate, inhibitors of nuclear factor-{kappa}B activation. Because MCP-1 is related to adipose inflammation and systemic insulin resistance, these results suggest that a reduction in adipose lipin-1 in obesity may exacerbate adipose inflammation and metabolism.

  4. Application of C-arm CT-guided targeted puncturing technique in performing non-vascular interventional biopsy or interventional therapy

    International Nuclear Information System (INIS)

    Li Zhen; Han Xinwei; Jiao Dechao; Ren Jianzhuang; Su Yu; Ye Hui

    2011-01-01

    Objective: to investigate the clinical value of C-arm CT-guided targeted puncturing technique in performing non, vascular interventional biopsy or interventional therapy. Methods: Thirty, one patients, who were encountered in authors' hospital during the period from July 2010 to September 2010, were involved in this study. C-arm CT-guided percutaneous targeted puncturing biopsy or interventional therapy was performed in all 31 patients. All patients had complete clinical data. The complications and positive rate of biopsy were recorded and analyzed. Results: Under C-arm CT-guidance, percutaneous interventional therapy was carried out in 13 patients. The interventional procedures included radiofrequency ablation therapy for hepatic cellular carcinoma (n=2), pelvic abscess draining (n=1), hepatic abscess draining (n=1), ethanol injection for liver cancer (n=4), sclerotic therapy with ethanol injection for renal cyst (n=2), sclerotic therapy with ethanol injection for liver cyst (n=2) and catheter-indwelling drainage for pancreatic pseudocyst (n=1). percutaneous interventional biopsy was performed in the remaining 18 cases, including liver (n=4), lung (n=7), mediastinum (n=2), bone and soft tissue (n=4) and neck mass (n=1). All the procedures were successfully accomplished, no technique, related complications occurred during the operation. For biopsy examination in 18 cases, the positive rate was 94.4% (17/18) and false, negative results was seen in one case with lung lesion. Conclusion: The percutaneous targeted puncturing technique with C, arm CT-guidance combines the advantages of both CT scanning and fluoroscopy. The use of real, time road, mapping function can effectively guide the puncturing and therapeutic management, which can not only optimize the workflow, save the operation time, but also improve the success rate and technical safety. Therefore, it is of great value to popularize this targeted puncturing technique. (authors)

  5. Developing low-dose C-arm CT imaging for temporomandibular joint (TMJ) disorder in interventional radiology

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Xiaowei; Cahill, Anne Marie [Children' s Hospital of Philadelphia, Department of Radiology, Philadelphia, PA (United States); Felice, Marc [University of Pennsylvania, Environmental Health and Radiation Safety, Philadelphia, PA (United States); Johnson, Laura [Computed Tomography Division, Siemens Healthcare Sector, Shanghai (China); Sarmiento, Marily [Siemens Medical Solutions, Angiography and X-ray Division, Hoffman Estates, IL (United States)

    2011-04-15

    Manufacturers have provided C-arm CT imaging technologies for applications in interventional radiology in recent years. However, clinical imaging protocols and radiation doses have not been well studied or reported. The purpose of this study is to develop low-dose settings for clinically acceptable CT imaging of temporomandibular joint in interventional radiology suites, using a C-arm imaging angiography system. CT scans were performed with a flat-panel digital C-arm angiographic system on a 5-year-old anthropomorphic phantom. The CTDI was determined for various rotation times, dose settings and Cu filter selections. The CTDI values were compared with those of conventional low-dose CT for the same phantom. The effectiveness of using Cu filters to reduce dose was also investigated. Images were reviewed by a senior radiologist for clinical acceptance. The manufacturer's default setting gave an equivalent CTDI of 4.8 mGy. Optimizing the dose settings and adding copper filtration reduced the radiation dose by 94%. This represents a 50% reduction from conventional CT. Use of Cu filters and low-dose settings significantly reduced radiation dose from that of standard settings. This phantom study process successfully guided the clinical implementation of low-dose studies for all ages at our institution. (orig.)

  6. Cholesterol and phytosterols differentially regulate the expression of caveolin 1 and a downstream prostate cell growth-suppressor gene

    Science.gov (United States)

    Ifere, Godwin O.; Equan, Anita; Gordon, Kereen; Nagappan, Peri; Igietseme, Joseph U.; Ananaba, Godwin A.

    2010-01-01

    Background The purpose of our study was to show the distinction between the apoptotic and anti-proliferative signaling of phytosterols and cholesterol enrichment in prostate cancer cell lines, mediated by the differential transcription of caveolin-1, and N-myc downstream regulated gene1 (NDRG1), a pro-apoptotic androgen-regulated tumor suppressor. Methods PC-3 and DU145 cells were treated with sterols (cholesterol and phytosterols) for 72 h, followed by trypan blue dye exclusion measurement of necrosis and cell growth measured with a Coulter counter. Sterol induction of cell growth-suppressor gene expression was evaluated by mRNA transcription using RT-PCR, while cell cycle analysis was performed by FACS analysis. Altered expression of Ndrg1 protein was confirmed by Western blot analysis. Apoptosis was evaluated by real time RT-PCR amplification of P53, Bcl-2 gene and its related pro- and anti-apoptotic family members. Results Physiological doses (16 µM) of cholesterol and phytosterols were not cytotoxic in these cells. Cholesterol enrichment promoted cell growth (Pphytosterols significantly induced growth-suppression (Pphytosterols decreased mitotic subpopulations. We demonstrated for the first time that cholesterols concertedly attenuated the expression of caveolin-1(cav-1) and NDRG1 genes in both prostate cancer cell lines. Phytosterols had the opposite effect by inducing overexpression of cav-1, a known mediator of androgen-dependent signals that presumably control cell growth or apoptosis. Conclusions Cholesterol and phytosterol treatment differentially regulated the growth of prostate cancer cells and the expression of p53 and cav-1, a gene that regulates androgen-regulated signals. These sterols also differentially regulated cell cycle arrest, downstream pro-apoptotic androgen-regulated tumor-suppressor, NDRG1 suggesting that cav-1 may mediate pro-apoptotic NDRG1 signals. Elucidation of the mechanism for sterol modulation of growth and apoptosis signaling

  7. Real-Time Verification of a High-Dose-Rate Iridium 192 Source Position Using a Modified C-Arm Fluoroscope

    Energy Technology Data Exchange (ETDEWEB)

    Nose, Takayuki, E-mail: nose-takayuki@nms.ac.jp [Department of Radiation Oncology, Nippon Medical School Tamanagayama Hospital, Tama (Japan); Chatani, Masashi [Department of Radiation Oncology, Osaka Rosai Hospital, Sakai (Japan); Otani, Yuki [Department of Radiology, Kaizuka City Hospital, Kaizuka (Japan); Teshima, Teruki [Department of Radiation Oncology, Osaka Medical Center for Cancer and Cardiovascular Diseases, Osaka (Japan); Kumita, Shinichirou [Department of Radiology, Nippon Medical School Hospital, Tokyo (Japan)

    2017-03-15

    Purpose: High-dose-rate (HDR) brachytherapy misdeliveries can occur at any institution, and they can cause disastrous results. Even a patient's death has been reported. Misdeliveries could be avoided with real-time verification methods. In 1996, we developed a modified C-arm fluoroscopic verification of an HDR Iridium 192 source position prevent these misdeliveries. This method provided excellent image quality sufficient to detect errors, and it has been in clinical use at our institutions for 20 years. The purpose of the current study is to introduce the mechanisms and validity of our straightforward C-arm fluoroscopic verification method. Methods and Materials: Conventional X-ray fluoroscopic images are degraded by spurious signals and quantum noise from Iridium 192 photons, which make source verification impractical. To improve image quality, we quadrupled the C-arm fluoroscopic X-ray dose per pulse. The pulse rate was reduced by a factor of 4 to keep the average exposure compliant with Japanese medical regulations. The images were then displayed with quarter-frame rates. Results: Sufficient quality was obtained to enable observation of the source position relative to both the applicators and the anatomy. With this method, 2 errors were detected among 2031 treatment sessions for 370 patients within a 6-year period. Conclusions: With the use of a modified C-arm fluoroscopic verification method, treatment errors that were otherwise overlooked were detected in real time. This method should be given consideration for widespread use.

  8. Differential expression of P-type ATPases in intestinal epithelial cells: Identification of putative new atp1a1 splice-variant

    Energy Technology Data Exchange (ETDEWEB)

    Rocafull, Miguel A., E-mail: mrocaful@ivic.ve [Lab. Fisiologia Molecular, Centro de Biofisica y Bioquimica, Instituto Venezolano de Investigaciones Cientificas (IVIC), Apartado 20632, Caracas 1020-A (Venezuela, Bolivarian Republic of); Thomas, Luz E.; Barrera, Girolamo J.; Castillo, Jesus R. del [Lab. Fisiologia Molecular, Centro de Biofisica y Bioquimica, Instituto Venezolano de Investigaciones Cientificas (IVIC), Apartado 20632, Caracas 1020-A (Venezuela, Bolivarian Republic of)

    2010-01-01

    P-type ATPases are membrane proteins that couple ATP hydrolysis with cation transport across the membrane. Ten different subtypes have been described. In mammalia, 15 genes of P-type ATPases from subtypes II-A, II-B and II-C, that transport low-atomic-weight cations (Ca{sup 2+}, Na{sup +}, K{sup +} and H{sup +}), have been reported. They include reticulum and plasma-membrane Ca{sup 2+}-ATPases, Na{sup +}/K{sup +}-ATPase and H{sup +}/K{sup +}-ATPases. Enterocytes and colonocytes show functional differences, which seem to be partially due to the differential expression of P-type ATPases. These enzymes have 9 structural motifs, being the phosphorylation (E) and the Mg{sup 2+}ATP-binding (H) motifs the most preserved. These structural characteristics permitted developing a Multiplex-Nested-PCR (MN-PCR) for the simultaneous identification of different P-type ATPases. Thus, using MN-PCR, seven different cDNAs were cloned from enterocytes and colonocytes, including SERCA3, SERCA2, Na{sup +}/K{sup +}-ATPase {alpha}1-isoform, H{sup +}/K{sup +}-ATPase {alpha}2-isoform, PMCA1, PMCA4 and a cDNA-fragment that seems to be a new cassette-type splice-variant of the atp1a1 gen. PMCA4 in enterocytes and H{sup +}/K{sup +}-ATPase {alpha}2-isoform in colonocytes were differentially expressed. This cell-specific expression pattern is related with the distinctive enterocyte and colonocyte functions.

  9. Identification of differentially expressed genes in childhood asthma.

    Science.gov (United States)

    Zhang, Nian-Zhen; Chen, Xiu-Juan; Mu, Yu-Hua; Wang, Hewen

    2018-05-01

    Asthma has been the most common chronic disease in children that places a major burden for affected people and their families.An integrated analysis of microarrays studies was performed to identify differentially expressed genes (DEGs) in childhood asthma compared with normal control. We also obtained the differentially methylated genes (DMGs) in childhood asthma according to GEO. The genes that were both differentially expressed and differentially methylated were identified. Functional annotation and protein-protein interaction network construction were performed to interpret biological functions of DEGs. We performed q-RT-PCR to verify the expression of selected DEGs.One DNA methylation and 3 gene expression datasets were obtained. Four hundred forty-one DEGs and 1209 DMGs in childhood asthma were identified. Among which, 16 genes were both differentially expressed and differentially methylated in childhood asthma. Natural killer cell mediated cytotoxicity pathway, Jak-STAT signaling pathway, and Wnt signaling pathway were 3 significantly enriched pathways in childhood asthma according to our KEGG enrichment analysis. The PPI network of top 20 up- and downregulated DEGs consisted of 822 nodes and 904 edges and 2 hub proteins (UBQLN4 and MID2) were identified. The expression of 8 DEGs (GZMB, FGFBP2, CLC, TBX21, ALOX15, IL12RB2, UBQLN4) was verified by qRT-PCR and only the expression of GZMB and FGFBP2 was inconsistent with our integrated analysis.Our finding was helpful to elucidate the underlying mechanism of childhood asthma and develop new potential diagnostic biomarker and provide clues for drug design.

  10. Mapping in an apple (Malus x domestica) F1 segregating population based on physical clustering of differentially expressed genes.

    Science.gov (United States)

    Jensen, Philip J; Fazio, Gennaro; Altman, Naomi; Praul, Craig; McNellis, Timothy W

    2014-04-04

    Apple tree breeding is slow and difficult due to long generation times, self-incompatibility, and complex genetics. The identification of molecular markers linked to traits of interest is a way to expedite the breeding process. In the present study, we aimed to identify genes whose steady-state transcript abundance was associated with inheritance of specific traits segregating in an apple (Malus × domestica) rootstock F1 breeding population, including resistance to powdery mildew (Podosphaera leucotricha) disease and woolly apple aphid (Eriosoma lanigerum). Transcription profiling was performed for 48 individual F1 apple trees from a cross of two highly heterozygous parents, using RNA isolated from healthy, actively-growing shoot tips and a custom apple DNA oligonucleotide microarray representing 26,000 unique transcripts. Genome-wide expression profiles were not clear indicators of powdery mildew or woolly apple aphid resistance phenotype. However, standard differential gene expression analysis between phenotypic groups of trees revealed relatively small sets of genes with trait-associated expression levels. For example, thirty genes were identified that were differentially expressed between trees resistant and susceptible to powdery mildew. Interestingly, the genes encoding twenty-four of these transcripts were physically clustered on chromosome 12. Similarly, seven genes were identified that were differentially expressed between trees resistant and susceptible to woolly apple aphid, and the genes encoding five of these transcripts were also clustered, this time on chromosome 17. In each case, the gene clusters were in the vicinity of previously identified major quantitative trait loci for the corresponding trait. Similar results were obtained for a series of molecular traits. Several of the differentially expressed genes were used to develop DNA polymorphism markers linked to powdery mildew disease and woolly apple aphid resistance. Gene expression profiling

  11. Differential gene expression profile reveals deregulation of pregnancy specific β1 glycoprotein 9 early during colorectal carcinogenesis

    Directory of Open Access Journals (Sweden)

    Gallinger Steven

    2005-06-01

    Full Text Available Abstract Background APC (Adenomatous polyposis coli plays an important role in the pathogenesis of both familial and sporadic colorectal cancer. Patients carrying germline APC mutations develop multiple colonic adenomas at younger age and higher frequency than non-carrier cases which indicates that silencing of one APC allele may be sufficient to initiate the transformation process. Methods To elucidate the biological dysregulation underlying adenoma formation we examined global gene expression profiles of adenomas and corresponding normal mucosa from an FAP patient. Differential expression of the most significant gene identified in this study was further validated by mRNA in situ hybridization, reverse transcriptase PCR and Northern blotting in different sets of adenomas, tumours and cancer cell lines. Results Eighty four genes were differentially expressed between all adenomas and corresponding normal mucosa, while only seven genes showed differential expression within the adenomas. The first group included pregnancy specific β-1 glycoprotein 9 (PSG9 (p PSG9 is a member of the carcinoembryonic antigen (CEA/PSG family and is produced at high levels during pregnancy, mainly by syncytiotrophoblasts. Further analysis of sporadic and familial colorectal cancer confirmed that PSG9 is ectopically upregulated in vivo by cancer cells. In total, deregulation of PSG9 mRNA was detected in 78% (14/18 of FAP adenomas and 75% (45/60 of sporadic colorectal cancer cases tested. Conclusion Detection of PSG9 expression in adenomas, and at higher levels in FAP cases, indicates that germline APC mutations and defects in Wnt signalling modulate PSG9 expression. Since PSG9 is not found in the non-pregnant adult except in association with cancer, and it appears to be an early molecular event associated with colorectal cancer monitoring of its expression may be useful as a biomarker for the early detection of this disease.

  12. Differentially expressed proteins among normal cervix, cervical intraepithelial neoplasia and cervical squamous cell carcinoma.

    Science.gov (United States)

    Zhao, Q; He, Y; Wang, X-L; Zhang, Y-X; Wu, Y-M

    2015-08-01

    To explore the differentially expressed proteins in normal cervix, cervical intraepithelial neoplasia (CIN) and cervical squamous cell carcinoma (CSCC) tissues by differential proteomics technique. Cervical tissues (including normal cervix, CIN and CSCC) were collected in Department of Gynecologic Oncology of Beijing Obstetrics and Gynecology Hospital. Two-dimensional fluorescence difference in gel electrophoresis (2-D DIGE) and DeCyder software were used to detect the differentially expressed proteins. Matrix-assisted laser desorption/ionization-time-of-flight tandem mass spectrometry (MALDI-TOF/TOF MS) was used to identify the differentially expressed proteins. Western blot (WB) and immunohistochemistry (IHC) were performed to validate the expressions of selected proteins among normal cervix, CIN and CSCC. 2-D DIGE images with high resolution and good repeatability were obtained. Forty-six differentially expressed proteins (27 up-regulated and 19 down-regulated) were differentially expressed among the normal cervix, CIN and CSCC. 26 proteins were successfully identified by MALDI-TOF/TOF MS. S100A9 (S100 calcium-binding protein A9) was the most significantly up-regulated protein. Eukaryotic elongation factor 1-alpha-1 (eEF1A1) was the most significantly down-regulated protein. Pyruvate kinase isozymes M2 (PKM2) was both up-regulated and down-regulated. The results of WB showed that with the increase in the severity of cervical lesions, the expression of S100A9 protein was significantly increased among the three groups (P = 0.010). The expression of eEF1A1 was reduced but without significant difference (P = 0.861). The expression of PKM2 was significantly reduced (P = 0.000). IHC showed that protein S100A9 was mainly expressed in the cytoplasm, and its positive expression rate was 20.0 % in normal cervix, 70.0 % in CIN and 100.0 % in CSCC, with a significant difference among them (P = 0.006). eEF1A1 was mainly expressed in the cell plasma, and its

  13. Glutathione S-transferase expression and isoenzyme composition during cell differentiation of Caco-2 cells

    International Nuclear Information System (INIS)

    Scharmach, E.; Hessel, S.; Niemann, B.; Lampen, A.

    2009-01-01

    The human colon adenocarcinoma cell line Caco-2 is frequently used to study human intestinal metabolism and transport of xenobiotica. Previous studies have shown that both Caco-2 cells and human colon cells constitutively express the multigene family of detoxifying enzymes glutathione S-transferases (GSTs), particularly GST alpha and GST pi. GSTs may play a fundamental role in the molecular interplay between phase I, II enzymes and ABC-transporters. The gut fermentation product, butyrate, can modulate the potential for detoxification. The aim of this study was to investigate the basal expression of further cytosolic GSTs in Caco-2 cells during cell differentiation. In addition, a comparison was made with expression levels in MCF-7 and HepG2, two other cell types with barrier functions. Finally, the butyrate-mediated modulation of gene and protein expression was determined by real time PCR and western blot analysis. In Caco-2, gene and protein expression levels of GST alpha increased during cell differentiation. High levels of GSTO1 and GSTP1 were constantly expressed. No expression of GSTM5 and GSTT1 was detected. HepG2 expressed GSTO1 and MCF-7 GSTZ1 most intensively. No expression of GSTA5, GSTM5, or GSTP1 was detected in either cell. Incubation of Caco-2 cells with butyrate (5 mM) significantly induced GSTA1 and GSTM2 in proliferating Caco-2 cells. In differentiated cells, butyrate tended to increase GSTO1 and GSTP1. The results of this study show that a differentiation-dependent expression of GSTs in Caco-2 cells may reflect the in vivo situation and indicate the potential of butyrate to modify intestinal metabolism. GSTA1-A4 have been identified as good markers for cell differentiation. The Caco-2 cell line is a useful model for assessing the potential of food-related substances to modulate the GST expression pattern.

  14. Glutathione S-transferase expression and isoenzyme composition during cell differentiation of Caco-2 cells.

    Science.gov (United States)

    Scharmach, E; Hessel, S; Niemann, B; Lampen, A

    2009-11-30

    The human colon adenocarcinoma cell line Caco-2 is frequently used to study human intestinal metabolism and transport of xenobiotica. Previous studies have shown that both Caco-2 cells and human colon cells constitutively express the multigene family of detoxifying enzymes glutathione S-transferases (GSTs), particularly GST alpha and GST pi. GSTs may play a fundamental role in the molecular interplay between phase I, II enzymes and ABC-transporters. The gut fermentation product, butyrate, can modulate the potential for detoxification. The aim of this study was to investigate the basal expression of further cytosolic GSTs in Caco-2 cells during cell differentiation. In addition, a comparison was made with expression levels in MCF-7 and HepG2, two other cell types with barrier functions. Finally, the butyrate-mediated modulation of gene and protein expression was determined by real time PCR and western blot analysis. In Caco-2, gene and protein expression levels of GST alpha increased during cell differentiation. High levels of GSTO1 and GSTP1 were constantly expressed. No expression of GSTM5 and GSTT1 was detected. HepG2 expressed GSTO1 and MCF-7 GSTZ1 most intensively. No expression of GSTA5, GSTM5, or GSTP1 was detected in either cell. Incubation of Caco-2 cells with butyrate (5 mM) significantly induced GSTA1 and GSTM2 in proliferating Caco-2 cells. In differentiated cells, butyrate tended to increase GSTO1 and GSTP1. The results of this study show that a differentiation-dependent expression of GSTs in Caco-2 cells may reflect the in vivo situation and indicate the potential of butyrate to modify intestinal metabolism. GSTA1-A4 have been identified as good markers for cell differentiation. The Caco-2 cell line is a useful model for assessing the potential of food-related substances to modulate the GST expression pattern.

  15. Differential binding of Lef1 and Msx1/2 transcription factors to Dkk1 CNEs correlates with reporter gene expression in vivo.

    Directory of Open Access Journals (Sweden)

    Oliver Lieven

    Full Text Available Besides the active Wnt signalling itself, the extracellular inhibition by Dkk1 is important for various embryonic developmental processes, such as optic vesicle differentiation and facial outgrowth. Although a feedback crosstalk of the active Wnt/β-catenin signaling and Dkk1 regulation has been suggested, the control of Dkk1 transcription by the Tcf/Lef1 mediated Wnt signalling and its connection to additional signalling factors has not been elucidated in vivo. Here, we used a combination of transgenic mouse approaches and biochemical analyses to unravel the direct Dkk1 transcriptional regulation via Tcf/Lefs. By using site directed mutagenesis, we tested several conserved Tcf/Lef1 binding sites within Dkk1 conserved non-coding elements (CNEs and found that these are required for tissue specific reporter expression. In addition a conserved Msx1/2 binding site is required for retinal reporter expression and Msx2 but not Msx1 binds its conserved binding site within CNE195 in the optic cups. Within craniofacial expression domains, Lef1 interferes with Dkk1 directly via two conserved Tcf/Lef1 binding sites in the craniofacial enhancer CNE114, both of which are required for the general craniofacial Dkk1 reporter activation. Furthermore, these Tcf/Lef1 sites are commonly bound in the whisker hair bud mesenchyme but specifically Tcf/Lef1 (no. 2 is required for mandibular activation and repression of maxillar Dkk1 activation. Lastly, we tested the Tcf/Lef1 binding capacities of the Dkk1 promoter and found that although Lef1 binds the Dkk1 promoter, these sites are not sufficient for tissue specific Dkk1 activation. Together, we here present the importance of conserved Tcf/Lef1 and Msx1/2 sites that are required for differential Dkk1 transcriptional reporter activation in vivo. This requirement directly correlates with Lef1 and Msx1/2 interaction with these genomic loci.

  16. A comparison of entrance skin dose delivered by clinical angiographic c-arms using the real-time dosimeter: the MOSkin

    International Nuclear Information System (INIS)

    Thorpe, Nathan K.; Cutajar, Dean; Lian, Cheryl; Rosenfeld, Anatoly; Pitney, Mark; Friedman, Daniel; Perevertaylo, Vladimir

    2016-01-01

    Coronary angiography is a procedure used in the diagnosis and intervention of coronary heart disease. The procedure is often considered one of the highest dose diagnostic procedures in clinical use. Despite this, there is minimal use of dosimeters within angiographic catheterisation laboratories due to challenges resulting from their implementation. The aim of this study was to compare entrance dose delivery across locally commissioned c-arms to assess the need for real-time dosimetry solutions during angiographic procedures. The secondary aim of this study was to establish a calibration method for the MOSkin dosimeter that accurately produces entrance dose values from the clinically sampled beam qualities and energies. The MOSkin is a real-time dosimeter used to measure the skin dose delivered by external radiation beams. The suitability of the MOSkin for measurements in the angiographic catheterisation laboratory was assessed. Measurements were performed using a 30 × 30 × 30cm 3 PMMA phantom positioned at the rotational isocenter of the c-arm gantry. The MOSkin calibration factor was established through comparison of the MOSkin response to EBT2 film response. Irradiation of the dosimeters was performed using several clinical beam qualities ranging in energy from 70 to 105 kVp. A total of four different interventional c-arm machines were surveyed and compared using the MOSkin dosimeter. The phantom was irradiated from a normal angle of incidence using clinically relevant protocols, field sizes and source to image detector distance values. The MOSkin was observed to be radiotranslucent to the c-arm beam in all clinical environments. The MOSkin response was reproducible to within 2 % of the average value across repeated measurements for each beam setting. There were large variations in entrance dose delivery to the phantom between the different c-arm machines with the highest observed cine-acquisition entrance dose rate measuring 326 % higher than the lowest

  17. Differential expression of syndecan isoforms during mouse incisor amelogenesis.

    Science.gov (United States)

    Muto, Taro; Miyoshi, Keiko; Munesue, Seiichi; Nakada, Hiroshi; Okayama, Minoru; Matsuo, Takashi; Noma, Takafumi

    2007-08-01

    Syndecans are transmembranous heparan sulfate proteoglycans (HSPGs) with covalently attached glycosaminoglycan side-chains located on the cell surface. The mammalian syndecan family is composed of four types of syndecans (syndecan-1 to -4). Syndecans interact with the intracellular cytoskeleton through the cytoplasmic domains of their core proteins and membrane proteins, extracellular enzymes, growth factors, and matrix components, through their heparan-sulfate chains, to regulate developmental processes.Here, as a first step to assess the possible roles of syndecan proteins in amelogenesis, we examined the expression patterns of all syndecan isoforms in continuously growing mouse incisors, in which we can overview major differentiation stages of amelogenesis at a glance. Understanding the expression domain of each syndecan isoform during specific developmental stages seems useful for investigating their physiological roles in amelogenesis. Immunohistochemical analysis of syndecan core proteins in the lower incisors from postnatal day 1 mice revealed spatially and temporally specific expression patterns, with syndecan-1 expressed in undifferentiated epithelial and mesenchymal cells, and syndecan-2, -3, and -4 in more differentiated cells. These findings suggest that each syndecan isoform functions distinctly during the amelogenesis of the incisors of mice.

  18. Sexual dimorphic expression of DMRT1 and Sox9a during gonadal differentiation and hormone-induced sex reversal in the teleost fish Nile tilapia (Oreochromis niloticus).

    Science.gov (United States)

    Kobayashi, Tohru; Kajiura-Kobayashi, Hiroko; Guan, Guijun; Nagahama, Yoshitaka

    2008-01-01

    We examined the expression profiles of tDMRT1 and Sox9a during gonadal sex differentiation and hormone-induced sex reversal. tDMRT1 was detected in the gonial germ-cell-surrounding cells in XY fry specifically before the appearance of any signs of morphological sex differentiation, that is, sex differences in germ cell number and histogenesis, such as differentiation into intratesticular efferent duct or ovarian cavity. The signals became localized in the Sertoli and epithelial cells comprising the efferent duct during gonadal differentiation. After the induction of XY sex reversal with estrogen, tDMRT1 decreased and then disappeared completely. In contrast, tDMRT1 was expressed in the germ-cell-surrounding cells in XX sex reversal with androgen. On the other hand, Sox9a did not show sexual dimorphism before the appearance of sex differences in histogenesis and was not expressed in the efferent duct in the testis. These results suggest that tDMRT1 is a superior testicular differentiation marker in tilapia.

  19. Deciphering the transcriptional circuitry of microRNA genes expressed during human monocytic differentiation

    KAUST Repository

    Schmeier, Sebastian; MacPherson, Cameron R; Essack, Magbubah; Kaur, Mandeep; Schaefer, Ulf; Suzuki, Harukazu; Hayashizaki, Yoshihide; Bajic, Vladimir B.

    2009-01-01

    Background: Macrophages are immune cells involved in various biological processes including host defence, homeostasis, differentiation, and organogenesis. Disruption of macrophage biology has been linked to increased pathogen infection, inflammation and malignant diseases. Differential gene expression observed in monocytic differentiation is primarily regulated by interacting transcription factors (TFs). Current research suggests that microRNAs (miRNAs) degrade and repress translation of mRNA, but also may target genes involved in differentiation. We focus on getting insights into the transcriptional circuitry regulating miRNA genes expressed during monocytic differentiation. Results: We computationally analysed the transcriptional circuitry of miRNA genes during monocytic differentiation using in vitro time-course expression data for TFs and miRNAs. A set of TF?miRNA associations was derived from predicted TF binding sites in promoter regions of miRNA genes. Time-lagged expression correlation analysis was utilised to evaluate the TF?miRNA associations. Our analysis identified 12 TFs that potentially play a central role in regulating miRNAs throughout the differentiation process. Six of these 12 TFs (ATF2, E2F3, HOXA4, NFE2L1, SP3, and YY1) have not previously been described to be important for monocytic differentiation. The remaining six TFs are CEBPB, CREB1, ELK1, NFE2L2, RUNX1, and USF2. For several miRNAs (miR-21, miR-155, miR-424, and miR-17-92), we show how their inferred transcriptional regulation impacts monocytic differentiation. Conclusions: The study demonstrates that miRNAs and their transcriptional regulatory control are integral molecular mechanisms during differentiation. Furthermore, it is the first study to decipher on a large-scale, how miRNAs are controlled by TFs during human monocytic differentiation. Subsequently, we have identified 12 candidate key controllers of miRNAs during this differentiation process. 2009 Schmeier et al; licensee Bio

  20. Deciphering the transcriptional circuitry of microRNA genes expressed during human monocytic differentiation

    KAUST Repository

    Schmeier, Sebastian

    2009-12-10

    Background: Macrophages are immune cells involved in various biological processes including host defence, homeostasis, differentiation, and organogenesis. Disruption of macrophage biology has been linked to increased pathogen infection, inflammation and malignant diseases. Differential gene expression observed in monocytic differentiation is primarily regulated by interacting transcription factors (TFs). Current research suggests that microRNAs (miRNAs) degrade and repress translation of mRNA, but also may target genes involved in differentiation. We focus on getting insights into the transcriptional circuitry regulating miRNA genes expressed during monocytic differentiation. Results: We computationally analysed the transcriptional circuitry of miRNA genes during monocytic differentiation using in vitro time-course expression data for TFs and miRNAs. A set of TF?miRNA associations was derived from predicted TF binding sites in promoter regions of miRNA genes. Time-lagged expression correlation analysis was utilised to evaluate the TF?miRNA associations. Our analysis identified 12 TFs that potentially play a central role in regulating miRNAs throughout the differentiation process. Six of these 12 TFs (ATF2, E2F3, HOXA4, NFE2L1, SP3, and YY1) have not previously been described to be important for monocytic differentiation. The remaining six TFs are CEBPB, CREB1, ELK1, NFE2L2, RUNX1, and USF2. For several miRNAs (miR-21, miR-155, miR-424, and miR-17-92), we show how their inferred transcriptional regulation impacts monocytic differentiation. Conclusions: The study demonstrates that miRNAs and their transcriptional regulatory control are integral molecular mechanisms during differentiation. Furthermore, it is the first study to decipher on a large-scale, how miRNAs are controlled by TFs during human monocytic differentiation. Subsequently, we have identified 12 candidate key controllers of miRNAs during this differentiation process. 2009 Schmeier et al; licensee Bio

  1. The human homeobox genes MSX-1, MSX-2, and MOX-1 are differentially expressed in the dermis and epidermis in fetal and adult skin.

    Science.gov (United States)

    Stelnicki, E J; Kömüves, L G; Holmes, D; Clavin, W; Harrison, M R; Adzick, N S; Largman, C

    1997-10-01

    In order to identify homeobox genes which may regulate skin development and possibly mediate scarless fetal wound healing we have screened amplified human fetal skin cDNAs by polymerase chain reaction (PCR) using degenerate oligonucleotide primers designed against highly conserved regions within the homeobox. We identified three non-HOX homeobox genes, MSX-1, MSX-2, and MOX-1, which were differentially expressed in fetal and adult human skin. MSX-1 and MSX-2 were detected in the epidermis, hair follicles, and fibroblasts of the developing fetal skin by in situ hybridization. In contrast, MSX-1 and MSX-2 expression in adult skin was confined to epithelially derived structures. Immunohistochemical analysis of these two genes suggested that their respective homeoproteins may be differentially regulated. While Msx-1 was detected in the cell nucleus of both fetal and adult skin; Msx-2 was detected as a diffuse cytoplasmic signal in fetal epidermis and portions of the hair follicle and dermis, but was localized to the nucleus in adult epidermis. MOX-1 was expressed in a pattern similar to MSX early in gestation but then was restricted exclusively to follicular cells in the innermost layer of the outer root sheath by 21 weeks of development. Furthermore, MOX-1 expression was completely absent in adult cutaneous tissue. These data imply that each of these homeobox genes plays a specific role in skin development.

  2. Normal uniform mixture differential gene expression detection for cDNA microarrays

    Directory of Open Access Journals (Sweden)

    Raftery Adrian E

    2005-07-01

    Full Text Available Abstract Background One of the primary tasks in analysing gene expression data is finding genes that are differentially expressed in different samples. Multiple testing issues due to the thousands of tests run make some of the more popular methods for doing this problematic. Results We propose a simple method, Normal Uniform Differential Gene Expression (NUDGE detection for finding differentially expressed genes in cDNA microarrays. The method uses a simple univariate normal-uniform mixture model, in combination with new normalization methods for spread as well as mean that extend the lowess normalization of Dudoit, Yang, Callow and Speed (2002 1. It takes account of multiple testing, and gives probabilities of differential expression as part of its output. It can be applied to either single-slide or replicated experiments, and it is very fast. Three datasets are analyzed using NUDGE, and the results are compared to those given by other popular methods: unadjusted and Bonferroni-adjusted t tests, Significance Analysis of Microarrays (SAM, and Empirical Bayes for microarrays (EBarrays with both Gamma-Gamma and Lognormal-Normal models. Conclusion The method gives a high probability of differential expression to genes known/suspected a priori to be differentially expressed and a low probability to the others. In terms of known false positives and false negatives, the method outperforms all multiple-replicate methods except for the Gamma-Gamma EBarrays method to which it offers comparable results with the added advantages of greater simplicity, speed, fewer assumptions and applicability to the single replicate case. An R package called nudge to implement the methods in this paper will be made available soon at http://www.bioconductor.org.

  3. Simultaneous 3D–2D image registration and C-arm calibration: Application to endovascular image-guided interventions

    Energy Technology Data Exchange (ETDEWEB)

    Mitrović, Uroš [Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, Ljubljana 1000, Slovenia and Cosylab, Control System Laboratory, Teslova ulica 30, Ljubljana 1000 (Slovenia); Pernuš, Franjo [Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, Ljubljana 1000 (Slovenia); Likar, Boštjan; Špiclin, Žiga, E-mail: ziga.spiclin@fe.uni-lj.si [Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, Ljubljana 1000, Slovenia and Sensum, Computer Vision Systems, Tehnološki Park 21, Ljubljana 1000 (Slovenia)

    2015-11-15

    Purpose: Three-dimensional to two-dimensional (3D–2D) image registration is a key to fusion and simultaneous visualization of valuable information contained in 3D pre-interventional and 2D intra-interventional images with the final goal of image guidance of a procedure. In this paper, the authors focus on 3D–2D image registration within the context of intracranial endovascular image-guided interventions (EIGIs), where the 3D and 2D images are generally acquired with the same C-arm system. The accuracy and robustness of any 3D–2D registration method, to be used in a clinical setting, is influenced by (1) the method itself, (2) uncertainty of initial pose of the 3D image from which registration starts, (3) uncertainty of C-arm’s geometry and pose, and (4) the number of 2D intra-interventional images used for registration, which is generally one and at most two. The study of these influences requires rigorous and objective validation of any 3D–2D registration method against a highly accurate reference or “gold standard” registration, performed on clinical image datasets acquired in the context of the intervention. Methods: The registration process is split into two sequential, i.e., initial and final, registration stages. The initial stage is either machine-based or template matching. The latter aims to reduce possibly large in-plane translation errors by matching a projection of the 3D vessel model and 2D image. In the final registration stage, four state-of-the-art intrinsic image-based 3D–2D registration methods, which involve simultaneous refinement of rigid-body and C-arm parameters, are evaluated. For objective validation, the authors acquired an image database of 15 patients undergoing cerebral EIGI, for which accurate gold standard registrations were established by fiducial marker coregistration. Results: Based on target registration error, the obtained success rates of 3D to a single 2D image registration after initial machine-based and

  4. Expression of POEM, a positive regulator of osteoblast differentiation, is suppressed by TNF-α

    International Nuclear Information System (INIS)

    Tsukasaki, Masayuki; Yamada, Atsushi; Suzuki, Dai; Aizawa, Ryo; Miyazono, Agasa; Miyamoto, Yoichi; Suzawa, Tetsuo; Takami, Masamichi; Yoshimura, Kentaro; Morimura, Naoko; Yamamoto, Matsuo; Kamijo, Ryutaro

    2011-01-01

    Highlights: → TNF-α inhibits POEM gene expression. → Inhibition of POEM gene expression is caused by NF-κB activation by TNF-α. → Over-expression of POEM recovers inhibition of osteoblast differentiation by TNF-α. -- Abstract: POEM, also known as nephronectin, is an extracellular matrix protein considered to be a positive regulator of osteoblast differentiation. In the present study, we found that tumor necrosis factor-α (TNF-α), a key regulator of bone matrix properties and composition that also inhibits terminal osteoblast differentiation, strongly inhibited POEM expression in the mouse osteoblastic cell line MC3T3-E1. TNF-α-induced down-regulation of POEM gene expression occurred in both time- and dose-dependent manners through the nuclear factor kappa B (NF-κB) pathway. In addition, expressions of marker genes in differentiated osteoblasts were down-regulated by TNF-α in a manner consistent with our findings for POEM, while over-expression of POEM recovered TNF-α-induced inhibition of osteoblast differentiation. These results suggest that TNF-α inhibits POEM expression through the NF-κB signaling pathway and down-regulation of POEM influences the inhibition of osteoblast differentiation by TNF-α.

  5. Expression of POEM, a positive regulator of osteoblast differentiation, is suppressed by TNF-{alpha}

    Energy Technology Data Exchange (ETDEWEB)

    Tsukasaki, Masayuki [Department of Biochemistry, School of Dentistry, Showa University, 1-5-8 Hatanodai, Shinagawa, Tokyo 142-8555 (Japan); Yamada, Atsushi, E-mail: yamadaa@dent.showa-u.ac.jp [Department of Biochemistry, School of Dentistry, Showa University, 1-5-8 Hatanodai, Shinagawa, Tokyo 142-8555 (Japan); Suzuki, Dai [Department of Biochemistry, School of Dentistry, Showa University, 1-5-8 Hatanodai, Shinagawa, Tokyo 142-8555 (Japan); Aizawa, Ryo [Department of Biochemistry, School of Dentistry, Showa University, 1-5-8 Hatanodai, Shinagawa, Tokyo 142-8555 (Japan); Department of Periodontology, School of Dentistry, Showa University, 2-1-1 Kitasenzoku, Ohta, Tokyo 145-8515 (Japan); Miyazono, Agasa [Department of Periodontology, School of Dentistry, Showa University, 2-1-1 Kitasenzoku, Ohta, Tokyo 145-8515 (Japan); Miyamoto, Yoichi; Suzawa, Tetsuo; Takami, Masamichi; Yoshimura, Kentaro [Department of Biochemistry, School of Dentistry, Showa University, 1-5-8 Hatanodai, Shinagawa, Tokyo 142-8555 (Japan); Morimura, Naoko [Laboratory for Comparative Neurogenesis, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako-shi, Saitama 351-0198 (Japan); Yamamoto, Matsuo [Department of Periodontology, School of Dentistry, Showa University, 2-1-1 Kitasenzoku, Ohta, Tokyo 145-8515 (Japan); Kamijo, Ryutaro [Department of Biochemistry, School of Dentistry, Showa University, 1-5-8 Hatanodai, Shinagawa, Tokyo 142-8555 (Japan)

    2011-07-15

    Highlights: {yields} TNF-{alpha} inhibits POEM gene expression. {yields} Inhibition of POEM gene expression is caused by NF-{kappa}B activation by TNF-{alpha}. {yields} Over-expression of POEM recovers inhibition of osteoblast differentiation by TNF-{alpha}. -- Abstract: POEM, also known as nephronectin, is an extracellular matrix protein considered to be a positive regulator of osteoblast differentiation. In the present study, we found that tumor necrosis factor-{alpha} (TNF-{alpha}), a key regulator of bone matrix properties and composition that also inhibits terminal osteoblast differentiation, strongly inhibited POEM expression in the mouse osteoblastic cell line MC3T3-E1. TNF-{alpha}-induced down-regulation of POEM gene expression occurred in both time- and dose-dependent manners through the nuclear factor kappa B (NF-{kappa}B) pathway. In addition, expressions of marker genes in differentiated osteoblasts were down-regulated by TNF-{alpha} in a manner consistent with our findings for POEM, while over-expression of POEM recovered TNF-{alpha}-induced inhibition of osteoblast differentiation. These results suggest that TNF-{alpha} inhibits POEM expression through the NF-{kappa}B signaling pathway and down-regulation of POEM influences the inhibition of osteoblast differentiation by TNF-{alpha}.

  6. Multivariate analysis of microarray data: differential expression and differential connection.

    Science.gov (United States)

    Kiiveri, Harri T

    2011-02-01

    Typical analysis of microarray data ignores the correlation between gene expression values. In this paper we present a model for microarray data which specifically allows for correlation between genes. As a result we combine gene network ideas with linear models and differential expression. We use sparse inverse covariance matrices and their associated graphical representation to capture the notion of gene networks. An important issue in using these models is the identification of the pattern of zeroes in the inverse covariance matrix. The limitations of existing methods for doing this are discussed and we provide a workable solution for determining the zero pattern. We then consider a method for estimating the parameters in the inverse covariance matrix which is suitable for very high dimensional matrices. We also show how to construct multivariate tests of hypotheses. These overall multivariate tests can be broken down into two components, the first one being similar to tests for differential expression and the second involving the connections between genes. The methods in this paper enable the extraction of a wealth of information concerning the relationships between genes which can be conveniently represented in graphical form. Differentially expressed genes can be placed in the context of the gene network and places in the gene network where unusual or interesting patterns have emerged can be identified, leading to the formulation of hypotheses for future experimentation.

  7. Interventional C-arm tomosynthesis for vascular imaging: initial results

    Science.gov (United States)

    Langan, David A.; Claus, Bernhard E. H.; Al Assad, Omar; Trousset, Yves; Riddell, Cyril; Avignon, Gregoire; Solomon, Stephen B.; Lai, Hao; Wang, Xin

    2015-03-01

    As percutaneous endovascular procedures address more complex and broader disease states, there is an increasing need for intra-procedure 3D vascular imaging. In this paper, we investigate C-Arm 2-axis tomosynthesis ("Tomo") as an alternative to C-Arm Cone Beam Computed Tomography (CBCT) for workflow situations in which the CBCT acquisition may be inconvenient or prohibited. We report on our experience in performing tomosynthesis acquisitions with a digital angiographic imaging system (GE Healthcare Innova 4100 Angiographic Imaging System, Milwaukee, WI). During a tomo acquisition the detector and tube each orbit on a plane above and below the table respectively. The tomo orbit may be circular or elliptical, and the tomographic half-angle in our studies varied from approximately 16 to 28 degrees as a function of orbit period. The trajectory, geometric calibration, and gantry performance are presented. We overview a multi-resolution iterative reconstruction employing compressed sensing techniques to mitigate artifacts associated with incomplete data reconstructions. In this work, we focus on the reconstruction of small high contrast objects such as iodinated vasculature and interventional devices. We evaluate the overall performance of the acquisition and reconstruction through phantom acquisitions and a swine study. Both tomo and comparable CBCT acquisitions were performed during the swine study thereby enabling the use of CBCT as a reference in the evaluation of tomo vascular imaging. We close with a discussion of potential clinical applications for tomo, reflecting on the imaging and workflow results achieved.

  8. TU-AB-204-02: Advances in C-Arm CBCT for Cardiac Interventions

    International Nuclear Information System (INIS)

    Fahrig, R.

    2015-01-01

    This symposium highlights advanced cone-beam CT (CBCT) technologies in four areas of emerging application in diagnostic imaging and image-guided interventions. Each area includes research that extends the spatial, temporal, and/or contrast resolution characteristics of CBCT beyond conventional limits through advances in scanner technology, acquisition protocols, and 3D image reconstruction techniques. Dr. G. Chen (University of Wisconsin) will present on the topic: Advances in C-arm CBCT for Brain Perfusion Imaging. Stroke is a leading cause of death and disability, and a fraction of people having an acute ischemic stroke are suitable candidates for endovascular therapy. Critical factors that affect both the likelihood of successful revascularization and good clinical outcome are: 1) the time between stroke onset and revascularization; and 2) the ability to distinguish patients who have a small volume of irreversibly injured brain (ischemic core) and a large volume of ischemic but salvageable brain (penumbra) from patients with a large ischemic core and little or no penumbra. Therefore, “time is brain” in the care of the stroke patients. C-arm CBCT systems widely available in angiography suites have the potential to generate non-contrast-enhanced CBCT images to exclude the presence of hemorrhage, time-resolved CBCT angiography to evaluate the site of occlusion and collaterals, and CBCT perfusion parametric images to assess the extent of the ischemic core and penumbra, thereby fulfilling the imaging requirements of a “one-stop-shop” in the angiography suite to reduce the time between onset and revascularization therapy. The challenges and opportunities to advance CBCT technology to fully enable the one-stop-shop C-arm CBCT platform for brain imaging will be discussed. Dr. R. Fahrig (Stanford University) will present on the topic: Advances in C-arm CBCT for Cardiac Interventions. With the goal of providing functional information during cardiac interventions

  9. TU-AB-204-02: Advances in C-Arm CBCT for Cardiac Interventions

    Energy Technology Data Exchange (ETDEWEB)

    Fahrig, R. [Stanford University (United States)

    2015-06-15

    This symposium highlights advanced cone-beam CT (CBCT) technologies in four areas of emerging application in diagnostic imaging and image-guided interventions. Each area includes research that extends the spatial, temporal, and/or contrast resolution characteristics of CBCT beyond conventional limits through advances in scanner technology, acquisition protocols, and 3D image reconstruction techniques. Dr. G. Chen (University of Wisconsin) will present on the topic: Advances in C-arm CBCT for Brain Perfusion Imaging. Stroke is a leading cause of death and disability, and a fraction of people having an acute ischemic stroke are suitable candidates for endovascular therapy. Critical factors that affect both the likelihood of successful revascularization and good clinical outcome are: 1) the time between stroke onset and revascularization; and 2) the ability to distinguish patients who have a small volume of irreversibly injured brain (ischemic core) and a large volume of ischemic but salvageable brain (penumbra) from patients with a large ischemic core and little or no penumbra. Therefore, “time is brain” in the care of the stroke patients. C-arm CBCT systems widely available in angiography suites have the potential to generate non-contrast-enhanced CBCT images to exclude the presence of hemorrhage, time-resolved CBCT angiography to evaluate the site of occlusion and collaterals, and CBCT perfusion parametric images to assess the extent of the ischemic core and penumbra, thereby fulfilling the imaging requirements of a “one-stop-shop” in the angiography suite to reduce the time between onset and revascularization therapy. The challenges and opportunities to advance CBCT technology to fully enable the one-stop-shop C-arm CBCT platform for brain imaging will be discussed. Dr. R. Fahrig (Stanford University) will present on the topic: Advances in C-arm CBCT for Cardiac Interventions. With the goal of providing functional information during cardiac interventions

  10. Utility of C-arm CT in overcoming challenges in patients undergoing Transarterial chemoembolization for hepatocellular carcinoma

    International Nuclear Information System (INIS)

    Kulkarni, Chinmay; Sreekumar, K. P.; Prabhu, Nirmal Kumar; Kannan, Rajesh R; Moorthy, Srikanth

    2014-01-01

    Transarterial chemoembolization (TACE) is the well-known treatment for hepatocellular carcinoma. Multiple digital subtraction angiography (DSA) acquisitions in different projections are required to identify difficult arterial feeders. Moreover, the tell-tale tumor blush can be obscured by proximity to lung base, small size of lesion, and breathing artifacts. C-arm CT is a revolutionary advancement in the intervention radiology suite that allows acquisition of data which can be reformatted in multiple planes and volume rendered incorporating both soft tissue and vascular information like multidetector computed tomography (MDCT). These images acquired during the TACE procedure can provide critical inputs for achieving a safe and effective therapy. This case series aims to illustrate the utility of C-arm CT in solving specific problems encountered while performing TACE

  11. Identification of genes differentially expressed during ripening of banana.

    Science.gov (United States)

    Manrique-Trujillo, Sandra Mabel; Ramírez-López, Ana Cecilia; Ibarra-Laclette, Enrique; Gómez-Lim, Miguel Angel

    2007-08-01

    The banana (Musa acuminata, subgroup Cavendish 'Grand Nain') is a climacteric fruit of economic importance. A better understanding of the banana ripening process is needed to improve fruit quality and to extend shelf life. Eighty-four up-regulated unigenes were identified by differential screening of a banana fruit cDNA subtraction library at a late ripening stage. The ripening stages in this study were defined according to the peel color index (PCI). Unigene sequences were analyzed with different databases to assign a putative identification. The expression patterns of 36 transcripts confirmed as positive by differential screening were analyzed comparing the PCI 1, PCI 5 and PCI 7 ripening stages. Expression profiles were obtained for unigenes annotated as orcinol O-methyltransferase, putative alcohol dehydrogenase, ubiquitin-protein ligase, chorismate mutase and two unigenes with non-significant matches with any reported sequence. Similar expression profiles were observed in banana pulp and peel. Our results show differential expression of a group of genes involved in processes associated with fruit ripening, such as stress, detoxification, cytoskeleton and biosynthesis of volatile compounds. Some of the identified genes had not been characterized in banana fruit. Besides providing an overview of gene expression programs and metabolic pathways at late stages of banana fruit ripening, this study contributes to increasing the information available on banana fruit ESTs.

  12. Mechanical stimuli on C2C12 myoblasts affect myoblast differentiation, focal adhesion kinase phosphorylation and galectin-1 expression

    DEFF Research Database (Denmark)

    Grossi, Alberto Blak; Lametsch, Rene; Karlsson, Anders H

    2011-01-01

    Mechanical forces are crucial in the regulation of cell morphology and function. At the cellular level, these forces influence myoblast differentiation and fusion. In this study we applied mechanical stimuli to embryonic muscle cells using magnetic microbeads, a method shown to apply stress...... by mechanical stimulation including Galectin-1, Annexin III, and RhoGDI. In this study we demonstrate how the combination of this method of mechanical stimuli and proteomic analysis can be a powerful tool to detect proteins that are potentially interacting in biochemical pathways or complex cellular mechanisms...... during the process of myoblast differentiation. We determined an increase in expression and changes in cellular localization of Galectin-1, in mechanically stimulated myoblasts. A potential involvement of Galectin-1 in myoblast differentiation is presented....

  13. Intraoperative imaging for patient safety and QA: detection of intracranial hemorrhage using C-arm cone-beam CT

    Science.gov (United States)

    Schafer, Sebastian; Wang, Adam; Otake, Yoshito; Stayman, J. W.; Zbijewski, Wojciech; Kleinszig, Gerhard; Xia, Xuewei; Gallia, Gary L.; Siewerdsen, Jeffrey H.

    2013-03-01

    Intraoperative imaging could improve patient safety and quality assurance (QA) via the detection of subtle complications that might otherwise only be found hours after surgery. Such capability could therefore reduce morbidity and the need for additional intervention. Among the severe adverse events that could be more quickly detected by high-quality intraoperative imaging is acute intracranial hemorrhage (ICH), conventionally assessed using post-operative CT. A mobile C-arm capable of high-quality cone-beam CT (CBCT) in combination with advanced image reconstruction techniques is reported as a means of detecting ICH in the operating room. The system employs an isocentric C-arm with a flat-panel detector in dual gain mode, correction of x-ray scatter and beam-hardening, and a penalized likelihood (PL) iterative reconstruction method. Performance in ICH detection was investigated using a quantitative phantom focusing on (non-contrast-enhanced) blood-brain contrast, an anthropomorphic head phantom, and a porcine model with injection of fresh blood bolus. The visibility of ICH was characterized in terms of contrast-to-noise ratio (CNR) and qualitative evaluation of images by a neurosurgeon. Across a range of size and contrast of the ICH as well as radiation dose from the CBCT scan, the CNR was found to increase from ~2.2-3.7 for conventional filtered backprojection (FBP) to ~3.9-5.4 for PL at equivalent spatial resolution. The porcine model demonstrated superior ICH detectability for PL. The results support the role of high-quality mobile C-arm CBCT employing advanced reconstruction algorithms for detecting subtle complications in the operating room at lower radiation dose and lower cost than intraoperative CT scanners and/or fixedroom C-arms. Such capability could present a potentially valuable aid to patient safety and QA.

  14. Differentiation-Dependent KLF4 Expression Promotes Lytic Epstein-Barr Virus Infection in Epithelial Cells.

    Directory of Open Access Journals (Sweden)

    Dhananjay M Nawandar

    2015-10-01

    Full Text Available Epstein-Barr virus (EBV is a human herpesvirus associated with B-cell and epithelial cell malignancies. EBV lytically infects normal differentiated oral epithelial cells, where it causes a tongue lesion known as oral hairy leukoplakia (OHL in immunosuppressed patients. However, the cellular mechanism(s that enable EBV to establish exclusively lytic infection in normal differentiated oral epithelial cells are not currently understood. Here we show that a cellular transcription factor known to promote epithelial cell differentiation, KLF4, induces differentiation-dependent lytic EBV infection by binding to and activating the two EBV immediate-early gene (BZLF1 and BRLF1 promoters. We demonstrate that latently EBV-infected, telomerase-immortalized normal oral keratinocyte (NOKs cells undergo lytic viral reactivation confined to the more differentiated cell layers in organotypic raft culture. Furthermore, we show that endogenous KLF4 expression is required for efficient lytic viral reactivation in response to phorbol ester and sodium butyrate treatment in several different EBV-infected epithelial cell lines, and that the combination of KLF4 and another differentiation-dependent cellular transcription factor, BLIMP1, is highly synergistic for inducing lytic EBV infection. We confirm that both KLF4 and BLIMP1 are expressed in differentiated, but not undifferentiated, epithelial cells in normal tongue tissue, and show that KLF4 and BLIMP1 are both expressed in a patient-derived OHL lesion. In contrast, KLF4 protein is not detectably expressed in B cells, where EBV normally enters latent infection, although KLF4 over-expression is sufficient to induce lytic EBV reactivation in Burkitt lymphoma cells. Thus, KLF4, together with BLIMP1, plays a critical role in mediating lytic EBV reactivation in epithelial cells.

  15. Differentially displayed expressed sequence tags in Melipona scutellaris (Hymenoptera, Apidae, Meliponini) development.

    Science.gov (United States)

    Santana, Flávia A; Nunes, Francis M F; Vieira, Carlos U; Machado, Maria Alice M S; Kerr, Warwick E; Silva, Wilson A; Bonetti, Ana Maria

    2006-03-01

    We have compared gene expression, using the Differential Display Reverse Transcriptase-Polymerase Chain Reaction (DDRT-PCR) technique, by means of mRNA profile in Melipona scutellaris during ontogenetic postembryonic development, in adult worker, and in both Natural and Juvenile Hormone III-induced adult queen. Six, out of the nine ESTs described here, presented differentially expressed in the phases L1 or L2, or even in both of them, suggesting that key mechanisms to the development of Melipona scutellaris are regulated in these stages. The combination HT11G-AP05 revealed in L1 and L2 a product which matches to thioredoxin reductase protein domain in the Clostridium sporogenes, an important protein during cellular oxidoreduction processes. This study represents the first molecular evidence of differential gene expression profiles toward a description of the genetic developmental traits in the genus Melipona.

  16. Mash1-expressing cells could differentiate to type III cells in adult mouse taste buds.

    Science.gov (United States)

    Takagi, Hiroki; Seta, Yuji; Kataoka, Shinji; Nakatomi, Mitsushiro; Toyono, Takashi; Kawamoto, Tatsuo

    2018-03-10

    The gustatory cells in taste buds have been identified as paraneuronal; they possess characteristics of both neuronal and epithelial cells. Like neurons, they form synapses, store and release transmitters, and are capable of generating an action potential. Like epithelial cells, taste cells have a limited life span and are regularly replaced throughout life. However, little is known about the molecular mechanisms that regulate taste cell genesis and differentiation. In the present study, to begin to understand these mechanisms, we investigated the role of Mash1-positive cells in regulating adult taste bud cell differentiation through the loss of Mash1-positive cells using the Cre-loxP system. We found that the cells expressing type III cell markers-aromatic L-amino acid decarboxylase (AADC), carbonic anhydrase 4 (CA4), glutamate decarboxylase 67 (GAD67), neural cell adhesion molecule (NCAM), and synaptosomal-associated protein 25 (SNAP25)-were significantly reduced in the circumvallate taste buds after the administration of tamoxifen. However, gustducin and phospholipase C beta2 (PLC beta2)-markers of type II taste bud cells-were not significantly changed in the circumvallate taste buds after the administration of tamoxifen. These results suggest that Mash1-positive cells could be differentiated to type III cells, not type II cells in the taste buds.

  17. Differential regulation of kiss1 expression by melatonin and gonadal hormones in male and female Syrian hamsters

    DEFF Research Database (Denmark)

    Ansel, L; Bolborea, M; Bentsen, A H

    2010-01-01

    In seasonal breeders, reproduction is synchronized to seasons by day length via the pineal hormone melatonin. Recently, we have demonstrated that Kiss1, a key activator of the reproductive function, is down-regulated in sexually inactive hamsters maintained in inhibitory short days (SDs). In rode......In seasonal breeders, reproduction is synchronized to seasons by day length via the pineal hormone melatonin. Recently, we have demonstrated that Kiss1, a key activator of the reproductive function, is down-regulated in sexually inactive hamsters maintained in inhibitory short days (SDs......). In rodents, Kiss1 is expressed in the anteroventral periventricular nucleus (AVPV) and in the arcuate nucleus (ARC). Because both the duration of the nocturnal peak of melatonin and circulating sex steroid levels vary with photoperiod, the aim of this study was to determine whether melatonin and sex steroids...... differentially regulate Kiss1 expression in the ARC and the AVPV. Kiss1 expression was examined by in situ hybridization in both male and female hamsters kept in various experimental conditions, and we observed that 1) SD exposure markedly reduced Kiss1 expression in the ARC and AVPV of male and female hamsters...

  18. Multivariate analysis of microarray data: differential expression and differential connection

    Directory of Open Access Journals (Sweden)

    Kiiveri Harri T

    2011-02-01

    Full Text Available Abstract Background Typical analysis of microarray data ignores the correlation between gene expression values. In this paper we present a model for microarray data which specifically allows for correlation between genes. As a result we combine gene network ideas with linear models and differential expression. Results We use sparse inverse covariance matrices and their associated graphical representation to capture the notion of gene networks. An important issue in using these models is the identification of the pattern of zeroes in the inverse covariance matrix. The limitations of existing methods for doing this are discussed and we provide a workable solution for determining the zero pattern. We then consider a method for estimating the parameters in the inverse covariance matrix which is suitable for very high dimensional matrices. We also show how to construct multivariate tests of hypotheses. These overall multivariate tests can be broken down into two components, the first one being similar to tests for differential expression and the second involving the connections between genes. Conclusion The methods in this paper enable the extraction of a wealth of information concerning the relationships between genes which can be conveniently represented in graphical form. Differentially expressed genes can be placed in the context of the gene network and places in the gene network where unusual or interesting patterns have emerged can be identified, leading to the formulation of hypotheses for future experimentation.

  19. Antiscatter grids in mobile C-arm cone-beam CT: Effect on image quality and dose

    Energy Technology Data Exchange (ETDEWEB)

    Schafer, S.; Stayman, J.W.; Zbijewski, W.; Schmidgunst, C.; Kleinszig, G.; Siewerdsen, J.H. [Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21202 (United States); Siemens Healthcare XP Division, Erlangen, Bavaria 91052 (Germany); Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21202 (United States) and Department of Computer Science, Johns Hopkins University, Baltimore, Maryland 21218 (United States)

    2012-01-15

    Purpose: X-ray scatter is a major detriment to image quality in cone-beam CT (CBCT). Existing geometries exhibit strong differences in scatter susceptibility with more compact geometries, e.g., dental or musculoskeletal, benefiting from antiscatter grids, whereas in more extended geometries, e.g., IGRT, grid use carries tradeoffs in image quality per unit dose. This work assesses the tradeoffs in dose and image quality for grids applied in the context of low-dose CBCT on a mobile C-arm for image-guided surgery. Methods: Studies were performed on a mobile C-arm equipped with a flat-panel detector for high-quality CBCT. Antiscatter grids of grid ratio (GR) 6:1-12:1, 40 lp/cm, were tested in ''body'' surgery, i.e., spine, using protocols for bone and soft-tissue visibility in the thoracic and abdominal spine. Studies focused on grid orientation, CT number accuracy, image noise, and contrast-to-noise ratio (CNR) in quantitative phantoms at constant dose. Results: There was no effect of grid orientation on possible gridline artifacts, given accurate angle-dependent gain calibration. Incorrect calibration was found to result in gridline shadows in the projection data that imparted high-frequency artifacts in 3D reconstructions. Increasing GR reduced errors in CT number from 31%, thorax, and 37%, abdomen, for gridless operation to 2% and 10%, respectively, with a 12:1 grid, while image noise increased by up to 70%. The CNR of high-contrast objects was largely unaffected by grids, but low-contrast soft-tissues suffered reduction in CNR, 2%-65%, across the investigated GR at constant dose. Conclusions: While grids improved CT number accuracy, soft-tissue CNR was reduced due to attenuation of primary radiation. CNR could be restored by increasing dose by factors of {approx}1.6-2.5 depending on GR, e.g., increase from 4.6 mGy for the thorax and 12.5 mGy for the abdomen without antiscatter grids to approximately 12 mGy and 30 mGy, respectively, with a high

  20. Sustained expression of GLP-1 receptor differentially modulates β-cell functions in diabetic and nondiabetic mice

    International Nuclear Information System (INIS)

    Kubo, Fumiyo; Miyatsuka, Takeshi; Sasaki, Shugo; Takahara, Mitsuyoshi; Yamamoto, Yuichi; Shimo, Naoki; Watada, Hirotaka; Kaneto, Hideaki; Gannon, Maureen; Matsuoka, Taka-aki; Shimomura, Iichiro

    2016-01-01

    Glucagon-like peptide 1 (GLP-1) has been shown to play important roles in maintaining β-cell functions, such as insulin secretion and proliferation. While expression levels of GLP-1 receptor (Glp1r) are compromised in the islets of diabetic rodents, it remains unclear when and to what degree Glp1r mRNA levels are decreased during the progression of diabetes. In this study, we performed real-time PCR with the islets of db/db diabetic mice at different ages, and found that the expression levels of Glp1r were comparable to those of the islets of nondiabetic db/misty controls at the age of four weeks, and were significantly decreased at the age of eight and 12 weeks. To investigate whether restored expression of Glp1r affects the diabetic phenotypes, we generated the transgenic mouse model Pdx1"P"B-CreER"T"M; CAG-CAT-Glp1r (βGlp1r) that allows for induction of Glp1r expression specifically in β cells. Whereas the expression of exogenous Glp1r had no measurable effect on glucose tolerance in nondiabetic βGlp1r;db/misty mice, βGlp1r;db/db mice exhibited higher glucose and lower insulin levels in blood on glucose challenge test than control db/db littermates. In contrast, four weeks of treatment with exendin-4 improved the glucose profiles and increased serum insulin levels in βGlp1r;db/db mice, to significantly higher levels than those in control db/db mice. These differential effects of exogenous Glp1r in nondiabetic and diabetic mice suggest that downregulation of Glp1r might be required to slow the progression of β-cell failure under diabetic conditions. - Highlights: • Expression levels of incretin receptors were significantly decreased in diabetic db/db islets after the age of eight weeks. • A transgenic mouse model expressing Glp1r specifically in β cells was generated. • Exogenous expression of Glp1r in β cells did not affect metabolic profiles in nondiabetic mice. • Sustained expression of Glp1r in diabetic db/db β cells deteriorated glucose

  1. Sustained expression of GLP-1 receptor differentially modulates β-cell functions in diabetic and nondiabetic mice

    Energy Technology Data Exchange (ETDEWEB)

    Kubo, Fumiyo [Department of Metabolic Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871 (Japan); Miyatsuka, Takeshi, E-mail: miyatsuka-takeshi@umin.net [Department of Metabolic Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871 (Japan); Department of Medicine, Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421 (Japan); Sasaki, Shugo; Takahara, Mitsuyoshi; Yamamoto, Yuichi; Shimo, Naoki [Department of Metabolic Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871 (Japan); Watada, Hirotaka [Department of Medicine, Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421 (Japan); Kaneto, Hideaki [Department of Diabetes, Endocrinology and Metabolism, Kawasaki Medical School, 577 Matsushima, Kurashiki, Japan Okayama 701-0192 (Japan); Gannon, Maureen [Department of Medicine, Division of Diabetes, Endocrinology, and Metabolism, Vanderbilt University Medical Center, 2220 Pierce Ave. 746 PRB, Nashville, TN 37232-6303 (United States); Matsuoka, Taka-aki; Shimomura, Iichiro [Department of Metabolic Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871 (Japan)

    2016-02-26

    Glucagon-like peptide 1 (GLP-1) has been shown to play important roles in maintaining β-cell functions, such as insulin secretion and proliferation. While expression levels of GLP-1 receptor (Glp1r) are compromised in the islets of diabetic rodents, it remains unclear when and to what degree Glp1r mRNA levels are decreased during the progression of diabetes. In this study, we performed real-time PCR with the islets of db/db diabetic mice at different ages, and found that the expression levels of Glp1r were comparable to those of the islets of nondiabetic db/misty controls at the age of four weeks, and were significantly decreased at the age of eight and 12 weeks. To investigate whether restored expression of Glp1r affects the diabetic phenotypes, we generated the transgenic mouse model Pdx1{sup PB}-CreER{sup TM}; CAG-CAT-Glp1r (βGlp1r) that allows for induction of Glp1r expression specifically in β cells. Whereas the expression of exogenous Glp1r had no measurable effect on glucose tolerance in nondiabetic βGlp1r;db/misty mice, βGlp1r;db/db mice exhibited higher glucose and lower insulin levels in blood on glucose challenge test than control db/db littermates. In contrast, four weeks of treatment with exendin-4 improved the glucose profiles and increased serum insulin levels in βGlp1r;db/db mice, to significantly higher levels than those in control db/db mice. These differential effects of exogenous Glp1r in nondiabetic and diabetic mice suggest that downregulation of Glp1r might be required to slow the progression of β-cell failure under diabetic conditions. - Highlights: • Expression levels of incretin receptors were significantly decreased in diabetic db/db islets after the age of eight weeks. • A transgenic mouse model expressing Glp1r specifically in β cells was generated. • Exogenous expression of Glp1r in β cells did not affect metabolic profiles in nondiabetic mice. • Sustained expression of Glp1r in diabetic db/db β cells deteriorated

  2. 4E-BP1 regulates the differentiation of white adipose tissue.

    Science.gov (United States)

    Tsukiyama-Kohara, Kyoko; Katsume, Asao; Kimura, Kazuhiro; Saito, Masayuki; Kohara, Michinori

    2013-07-01

    4E Binding protein 1 (4E-BP1) suppresses translation initiation. The absence of 4E-BP1 drastically reduces the amount of adipose tissue in mice. To address the role of 4E-BP1 in adipocyte differentiation, we characterized 4E-BP1(-/-) mice in this study. The lack of 4E-BP1 decreased the amount of white adipose tissue and increased the amount of brown adipose tissue. In 4E-BP1(-/-) MEF cells, PPARγ coactivator 1 alpha (PGC-1α) expression increased and exogenous 4E-BP1 expression suppressed PGC-1α expression. The level of 4E-BP1 expression was higher in white adipocytes than in brown adipocytes and showed significantly greater up-regulation in white adipocytes than in brown adipocytes during preadipocyte differentiation into mature adipocytes. The amount of PGC-1α was consistently higher in HB cells (a brown preadipocyte cell line) than in HW cells (a white preadipocyte cell line) during differentiation. Moreover, the ectopic over-expression of 4E-BP1 suppressed PGC-1α expression in white adipocytes, but not in brown adipocytes. Thus, the results of our study indicate that 4E-BP1 may suppress brown adipocyte differentiation and PGC-1α expression in white adipose tissues. © 2013 The Authors Genes to Cells © 2013 by the Molecular Biology Society of Japan and Wiley Publishing Asia Pty Ltd.

  3. Recombinant myostatin reduces highly expressed microRNAs in differentiating C2C12 cells

    Directory of Open Access Journals (Sweden)

    Zachary A. Graham

    2017-03-01

    Full Text Available Myostatin is small glycopeptide that is produced and secreted by skeletal muscle. It is a potent negative regulator of muscle growth that has been associated with conditions of frailty. In C2C12 cells, myostatin limits cell differentiation. Myostatin acts through activin receptor IIB, activin receptor-like kinase (ALK and Smad transcription factors. microRNAs (miRNA are short, 22 base pair nucleotides that bind to the 3′ UTR of target mRNA to repress translation or reduce mRNA stability. In the present study, expression in differentiating C2C12 cells of the myomiRs miR-1 and 133a were down-regulated following treatment with 1 µg of recombinant myostatin at 1 d post-induction of differentiation while all myomiRs (miR-1, 133a/b and 206 were upregulated by SB431542, a potent ALK4/5/7 inhibitor which reduces Smad2 signaling, at 1 d and all, with the exception of miR-206, were upregulated by SB431542 at 3 d. The expression of the muscle-enriched miR-486 was greater following treatment with SB431542 but not altered by myostatin. Other highly expressed miRNAs in skeletal muscle, miR-23a/b and 145, were altered only at 1 d post-induction of differentiation. miR-27b responded differently to treatments at 1 d, where it was upregulated, as compared to 3 d, where it was downregulated. Neither myostatin nor SB431542 altered cell size or cell morphology. The data indicate that myostatin represses myomiR expression in differentiating C2C12 cells and that inhibition of Smad signaling with SB431542 can result in large changes in highly expressed miRNAs in differentiating myoblasts.

  4. Density based pruning for identification of differentially expressed genes from microarray data

    Directory of Open Access Journals (Sweden)

    Xu Jia

    2010-11-01

    Full Text Available Abstract Motivation Identification of differentially expressed genes from microarray datasets is one of the most important analyses for microarray data mining. Popular algorithms such as statistical t-test rank genes based on a single statistics. The false positive rate of these methods can be improved by considering other features of differentially expressed genes. Results We proposed a pattern recognition strategy for identifying differentially expressed genes. Genes are mapped to a two dimension feature space composed of average difference of gene expression and average expression levels. A density based pruning algorithm (DB Pruning is developed to screen out potential differentially expressed genes usually located in the sparse boundary region. Biases of popular algorithms for identifying differentially expressed genes are visually characterized. Experiments on 17 datasets from Gene Omnibus Database (GEO with experimentally verified differentially expressed genes showed that DB pruning can significantly improve the prediction accuracy of popular identification algorithms such as t-test, rank product, and fold change. Conclusions Density based pruning of non-differentially expressed genes is an effective method for enhancing statistical testing based algorithms for identifying differentially expressed genes. It improves t-test, rank product, and fold change by 11% to 50% in the numbers of identified true differentially expressed genes. The source code of DB pruning is freely available on our website http://mleg.cse.sc.edu/degprune

  5. Differentially displayed expressed sequence tags in Melipona scutellaris (Hymenoptera, Apidae, Meliponini development

    Directory of Open Access Journals (Sweden)

    Santana Flávia A.

    2006-01-01

    Full Text Available We have compared gene expression, using the Differential Display Reverse Transcriptase - Polymerase Chain Reaction (DDRT-PCR technique, by means of mRNA profile in Melipona scutellaris during ontogenetic postembryonic development, in adult worker, and in both Natural and Juvenile Hormone III-induced adult queen. Six, out of the nine ESTs described here, presented differentially expressed in the phases L1 or L2, or even in both of them, suggesting that key mechanisms to the development of Melipona scutellaris are regulated in these stages. The combination HT11G-AP05 revealed in L1 and L2 a product which matches to thioredoxin reductase protein domain in the Clostridium sporogenes, an important protein during cellular oxidoreduction processes. This study represents the first molecular evidence of differential gene expression profiles toward a description of the genetic developmental traits in the genus Melipona.

  6. Differential expression of myogenic regulatory genes and Msx-1 during dedifferentiation and redifferentiation of regenerating amphibian limbs.

    Science.gov (United States)

    Simon, H G; Nelson, C; Goff, D; Laufer, E; Morgan, B A; Tabin, C

    1995-01-01

    An amputated limb of an adult urodele amphibian is capable of undergoing regeneration. The new structures form from an undifferentiated mass of cells called the regenerative blastema. The cells of the blastema are believed to derive from differentiated tissues of the adult limb. However, the exact source of these cells and the process by which they undergo dedifferentiation are poorly understood. In order to elucidate the molecular and cellular basis for dedifferentiation we isolated a number of genes which are potential regulators of the process. These include Msx-1, which is believed to support the undifferentiated and proliferative state of cells in the embryonic limb bud; and two members of the myogenic regulatory gene family, MRF-4 and Myf-5, which are expressed in differentiated muscle and regulate muscle-specific gene activity. As anticipated, we find that Msx-1 is strongly up-regulated during the initiation of regeneration. It remains expressed throughout regeneration but is not found in the fully regenerated limb. The myogenic gene MRF-4 has the reverse expression pattern. It is expressed in adult limb muscle, is rapidly shut off in early regenerative blastemas, and is only reexpressed at the completion of regeneration. These kinetics are paralleled by those of a muscle-specific Myosin gene. In contrast Myf-5, a second member of the myogenic gene family, continues to be expressed throughout the regenerative process. Thus, MRF-4 and Myf-5 are likely to play distinct roles during regeneration. MRF-4 may directly regulate muscle phenotype and as such its repression may be a key event in dedifferentiation.(ABSTRACT TRUNCATED AT 250 WORDS)

  7. Relationship of calcitonin mRNA expression to the differentiation state of HL 60 cells.

    Science.gov (United States)

    Kiefer, P; Bacher, M; Pflüger, K H

    1994-05-01

    Raised plasma levels of immunoreactive human calcitonin (ihCT) can be found in patients with myeloid leukemia and seem to indicate a poor prognosis. High levels were found in acute undifferentiated and acute myeloblastic leukemia. To test whether CT expression could be a marker of myeloid differentiation, we used the promyelocytic leukemia cell line HL 60 which also expresses ihCT as a model system for myeloid differentiation. Exponentially growing HL 60 cells as well as differentiation induced HL 60 cells expressed a single 1.0 Kb CT transcript. The induction of HL 60 cell differentiation along the granulocytic lineage by DMSO or HMBA had no effect on the level of CT transcripts. Induction of monocytic/macrophagic differentiation by TPA resulted in a transient, about 10-fold elevated expression of CT steady state mRNA after 24 h. In contrast to TPA, induction of HL 60 cell differentiation along the monocytic pathway by Vit D3 had no detectable effect on the level of the CT in RNA expression at corresponding time points. These findings suggest that the transient induction of CT steady state mRNA expression by TPA is rather a direct effect of the phorbol ester than commitment along the monocytic line of differentiation.

  8. Global expression differences and tissue specific expression differences in rice evolution result in two contrasting types of differentially expressed genes

    KAUST Repository

    Horiuchi, Youko

    2015-12-23

    Background Since the development of transcriptome analysis systems, many expression evolution studies characterized evolutionary forces acting on gene expression, without explicit discrimination between global expression differences and tissue specific expression differences. However, different types of gene expression alteration should have different effects on an organism, the evolutionary forces that act on them might be different, and different types of genes might show different types of differential expression between species. To confirm this, we studied differentially expressed (DE) genes among closely related groups that have extensive gene expression atlases, and clarified characteristics of different types of DE genes including the identification of regulating loci for differential expression using expression quantitative loci (eQTL) analysis data. Results We detected differentially expressed (DE) genes between rice subspecies in five homologous tissues that were verified using japonica and indica transcriptome atlases in public databases. Using the transcriptome atlases, we classified DE genes into two types, global DE genes and changed-tissues DE genes. Global type DE genes were not expressed in any tissues in the atlas of one subspecies, however changed-tissues type DE genes were expressed in both subspecies with different tissue specificity. For the five tissues in the two japonica-indica combinations, 4.6 ± 0.8 and 5.9 ± 1.5 % of highly expressed genes were global and changed-tissues DE genes, respectively. Changed-tissues DE genes varied in number between tissues, increasing linearly with the abundance of tissue specifically expressed genes in the tissue. Molecular evolution of global DE genes was rapid, unlike that of changed-tissues DE genes. Based on gene ontology, global and changed-tissues DE genes were different, having no common GO terms. Expression differences of most global DE genes were regulated by cis-eQTLs. Expression

  9. Aryl hydrocarbon receptor downregulates MYCN expression and promotes cell differentiation of neuroblastoma.

    Directory of Open Access Journals (Sweden)

    Pei-Yi Wu

    Full Text Available Neuroblastoma (NB is the most common malignant disease of infancy. MYCN amplification is a prognostic factor for NB and is a sign of highly malignant disease and poor patient prognosis. In this study, we aimed to investigate novel MYCN-related genes and assess how they affect NB cell behavior. The different gene expression found in 10 MYCN amplification NB tumors and 10 tumors with normal MYCN copy number were analyzed using tissue oligonucleotide microarrays. Ingenuity Pathway Analysis was subsequently performed to identify the potential genes involved in MYCN regulation pathways. Aryl hydrocarbon receptor (AHR, a receptor for dioxin-like compounds, was found to be inversely correlated with MYCN expression in NB tissues. This correlation was confirmed in a further 14 human NB samples. Moreover, AHR expression in NB tumors was found to correlate highly with histological grade of differentiation. In vitro studies revealed that AHR overexpression in NB cells induced spontaneous cell differentiation. In addition, it was found that ectopic expression of AHR suppressed MYCN promoter activity resulting in downregulation of MYCN expression. The suppression effect of AHR on the transcription of MYCN was compensated for by E2F1 overexpression, indicating that E2F1 is involved in the AHR-regulating MYCN pathway. Furthermore, AHR shRNA promotes the expression of E2F1 and MYCN in NB cells. These findings suggest that AHR is one of the upstream regulators of MYCN. Through the modulation of E2F1, AHR regulates MYCN gene expression, which may in turn affect NB differentiation.

  10. In vitro differentiation of HT-29 M6 mucus-secreting colon cancer cells involves a trychostatin A and p27(KIP1)-inducible transcriptional program of gene expression.

    Science.gov (United States)

    Mayo, Clara; Lloreta, Josep; Real, Francisco X; Mayol, Xavier

    2007-07-01

    Tumor cell dedifferentiation-such as the loss of cell-to-cell adhesion in epithelial tumors-is associated with tumor progression. To better understand the mechanisms that maintain carcinoma cells in a differentiated state, we have dissected in vitro differentiation pathways in the mucus-secretor HT-29 M6 colon cancer cell line, which spontaneously differentiates in postconfluent cultures. By lowering the extracellular calcium concentration to levels that prevent intercellular adhesion and epithelial polarization, our results reveal that differentiation is calcium-dependent and involves: (i) a process of cell cycle exit to G(0) and (ii) the induction of a transcriptional program of differentiation gene expression (i.e., mucins MUC1 and MUC5AC, and the apical membrane peptidase DPPIV). In calcium-deprived, non-differentiated postconfluent cultures, differentiation gene promoters are repressed by a trichostatin A (TSA)-sensitive mechanism, indicating that loss of gene expression by dedifferentiation is driven by histone deacetylases (HDAC). Since TSA treatment or extracellular calcium restoration allow gene promoter activation to similar levels, we suggest that induction of differentiation is one mechanism of HDAC inhibitor antitumor action. Moreover, transcriptional de-repression can also be induced in non-differentiating culture conditions by overexpressing the cyclin-dependent kinase inhibitor p27(KIP1), which is normally induced during spontaneous differentiation. Since p27(KIP1) downregulation in colon cancer is associated with poor prognosis independently of tumor cell division rates, we propose that p27 (KIP1) may prevent tumor progression by, at least in part, enhancing the expression of some differentiation genes. Therefore, the HT-29 M6 model allows the identification of some basic mechanisms of cancer cell differentiation control, so far revealing HDAC and p27(KIP1) as key regulatory factors of differentiation gene expression.

  11. Differential expression of the pr1A gene in Metarhizium anisopliae and Metarhizium acridum across different culture conditions and during pathogenesis

    Directory of Open Access Journals (Sweden)

    Mariele Porto Carneiro Leão

    2015-03-01

    Full Text Available The entomopathogenic fungi of the genus Metarhizium have several subtilisin-like proteases that are involved in pathogenesis and these have been used to investigate genes that are differentially expressed in response to different growth conditions. The identification and characterization of these proteases can provide insight into how the fungus is capable of infecting a wide variety of insects and adapt to different substrates. In addition, the pr1A gene has been used for the genetic improvement of strains used in pest control. In this study we used quantitative RT-PCR to assess the relative expression levels of the pr1A gene in M. anisopliae and M. acridum during growth in different culture conditions and during infection of the sugar cane borer, Diatraea saccharalis Fabricius. We also carried out a pathogenicity test to assess the virulence of both species against D. saccharalis and correlated the results with the pattern of pr1A gene expression. This analysis revealed that, in both species, the pr1A gene was differentially expressed under the growth conditions studied and during the pathogenic process. M. anisopliae showed higher expression of pr1A in all conditions examined, when compared to M. acridum. Furthermore, M. anisopliae showed a greater potential to control D. saccharalis. Taken together, our results suggest that these species have developed different strategies to adapt to different growing conditions.

  12. Differential expression of THOC1 and ALY mRNP biogenesis/export factors in human cancers

    International Nuclear Information System (INIS)

    Domínguez-Sánchez, María S; Sáez, Carmen; Japón, Miguel A; Aguilera, Andrés; Luna, Rosa

    2011-01-01

    One key step in gene expression is the biogenesis of mRNA ribonucleoparticle complexes (mRNPs). Formation of the mRNP requires the participation of a number of conserved factors such as the THO complex. THO interacts physically and functionally with the Sub2/UAP56 RNA-dependent ATPase, and the Yra1/REF1/ALY RNA-binding protein linking transcription, mRNA export and genome integrity. Given the link between genome instability and cancer, we have performed a comparative analysis of the expression patterns of THOC1, a THO complex subunit, and ALY in tumor samples. The mRNA levels were measured by quantitative real-time PCR and hybridization of a tumor tissue cDNA array; and the protein levels and distribution by immunostaining of a custom tissue array containing a set of paraffin-embedded samples of different tumor and normal tissues followed by statistical analysis. We show that the expression of two mRNP factors, THOC1 and ALY are altered in several tumor tissues. THOC1 mRNA and protein levels are up-regulated in ovarian and lung tumors and down-regulated in those of testis and skin, whereas ALY is altered in a wide variety of tumors. In contrast to THOC1, ALY protein is highly detected in normal proliferative cells, but poorly in high-grade cancers. These results suggest a differential connection between tumorogenesis and the expression levels of human THO and ALY. This study opens the possibility of defining mRNP biogenesis factors as putative players in cell proliferation that could contribute to tumor development

  13. Expression of prostaglandin synthases (pgds and pges) during zebrafish gonadal differentiation

    DEFF Research Database (Denmark)

    Jørgensen, Anne; Nielsen, John E; Nielsen, Betina Frydenlund

    2010-01-01

    The present study aimed at elucidating whether the expression pattern of the membrane bound form of prostaglandin E2 synthase (pges) and especially the lipocalin-type prostaglandin D2 synthase (pgds) indicates involvement in gonadal sex differentiation in zebrafish as has previously been found....... In this study, a sexually dimorphic expression of pgds was found in gonads of adult zebrafish with expression in testis but not in ovaries. To determine whether the sex-specific expression pattern of pgds was present in gonads of juvenile zebrafish and therefore could be an early marker of sex in zebrafish, we...... microdissected gonads from four randomly selected individual zebrafish for every second day in the period 2-20 days post hatch (dph) and 0-1 dph. The temporal expression of pgds and pges was investigated in the microdissected gonads, however, no differential expression that could indicate sex-specific difference...

  14. Differential expression of catalase genes in Nicotiana plumbaginifolia (L.).

    Science.gov (United States)

    Willekens, H; Langebartels, C; Tiré, C; Van Montagu, M; Inzé, D; Van Camp, W

    1994-10-25

    We have analyzed the expression of three catalase (Cat; EC 1.11.1.6) genes from Nicotiana plumbaginifolia by means of RNA blot and in situ hybridizations. Our data demonstrate that the expression of each catalase is associated with a particular H2O2-producing process. Cat1 appears to be specifically involved in the scavenging of photorespiratory H2O2 and is under control of a circadian rhythm, Cat2 is uniformly expressed in different organs with a cellular preference for vascular tissues, and the expression profile of Cat3 points to a role in glyoxysomal processes. Differential expression of these catalases is also manifested in response to temperature changes. DNA sequence comparison with other dicotyledonous catalases led to the identification of at least three distinct classes, which indicates that the functional organization of catalases is generally conserved in dicotyledonous plants.

  15. Increased methylation and decreased expression of homeobox genes TLX1, HOXA10 and DLX5 in human placenta are associated with trophoblast differentiation.

    Science.gov (United States)

    Novakovic, Boris; Fournier, Thierry; Harris, Lynda K; James, Joanna; Roberts, Claire T; Yong, Hannah E J; Kalionis, Bill; Evain-Brion, Danièle; Ebeling, Peter R; Wallace, Euan M; Saffery, Richard; Murthi, Padma

    2017-07-03

    Homeobox genes regulate embryonic and placental development, and are widely expressed in the human placenta, but their regulatory control by DNA methylation is unclear. DNA methylation analysis was performed on human placentae from first, second and third trimesters to determine methylation patterns of homeobox gene promoters across gestation. Most homeobox genes were hypo-methylated throughout gestation, suggesting that DNA methylation is not the primary mechanism involved in regulating HOX genes expression in the placenta. Nevertheless, several genes showed variable methylation patterns across gestation, with a general trend towards an increase in methylation over gestation. Three genes (TLX1, HOXA10 and DLX5) showed inverse gains of methylation with decreasing mRNA expression throughout pregnancy, supporting a role for DNA methylation in their regulation. Proteins encoded by these genes were primarily localised to the syncytiotrophoblast layer, and showed decreased expression later in gestation. siRNA mediated downregulation of DLX5, TLX1 and HOXA10 in primary term villous cytotrophoblast resulted in decreased proliferation and increased expression of differentiation markers, including ERVW-1. Our data suggest that loss of DLX5, TLX1 and HOXA10 expression in late gestation is required for proper placental differentiation and function.

  16. Differential expression of ozone-induced gene during exposures to ...

    African Journals Online (AJOL)

    Differential expression of ozone-induced gene during exposures to salt stress in Polygonum sibiricum Laxm leaves, stem and underground stem. ... PcOZI-1 mRNA in untreated plants was detected at low levels in underground stem, leaves and at higher levels in stem. PcOZI-1 mRNA accumulation was transiently induced ...

  17. Effects of transforming growth factor-beta1 on cell motility, collagen gel contraction, myofibroblastic differentiation, and extracellular matrix expression of human adipose-derived stem cell.

    Science.gov (United States)

    Kakudo, Natsuko; Kushida, Satoshi; Suzuki, Kenji; Ogura, Tsunetaka; Notodihardjo, Priscilla Valentin; Hara, Tomoya; Kusumoto, Kenji

    2012-12-01

    Human adipose-derived stem cells (ASCs) are adult pluripotent stem cells, and their usefulness in plastic surgery has garnered attention in recent years. Although, there have been expectations that ASCs might function in wound repair and regeneration, no studies to date have examined the role of ASCs in the mechanism that promotes wound-healing. Transforming growth factor-beta1 (TGF-β1) is a strong candidate cytokine for the triggering of mesenchymal stem cell migration, construction of extracellular matrices, and differentiation of ASCs into myofibroblasts. Cell proliferation, motility, and differentiation, as well as extracellular matrix production, play an important role in wound-healing. We have evaluated the capacity of ASCs to proliferate and their potential to differentiate into phenotypic myofibroblasts, as well as their cell motility and collagen gel contraction ability, when cultured with TGF-β1. Cell motility was analyzed using a wound-healing assay. ASCs that differentiated into myofibroblasts expressed the gene for alpha-smooth muscle actin, and its protein expression was detected immunohistochemically. The extracellular matrix expression in ASCs was evaluated using real-time RT-PCR. Based on the results, we conclude that human ASCs have the potential for cell motility, extracellular matrix gene expression, gel contraction, and differentiation into myofibroblasts and, therefore, may play an important role in the wound-healing process.

  18. Odor discrimination learning in the Indian greater short-nosed fruit bat (Cynopterus sphinx): differential expression of Egr-1, C-fos and PP-1 in the olfactory bulb, amygdala and hippocampus.

    Science.gov (United States)

    Mukilan, Murugan; Bogdanowicz, Wieslaw; Marimuthu, Ganapathy; Rajan, Koilmani Emmanuvel

    2018-04-19

    Activity-dependent expression of immediate-early genes (IEGs) is induced by exposure to odor. The present study was designed to investigate whether there is differential expression of IEGs ( Egr-1 , C-fos ) in the brain region mediating olfactory memory in the Indian greater short-nosed fruit bat Cynopterus sphinx We assumed that differential expression of IEGs in different brain regions may orchestrate a preference odor (PO) and aversive odor (AO) memory in C. sphinx We used preferred (0.8% wt/wt of cinnamon powder) and aversive (0.4% wt/vol of citral) odor substances, with freshly-prepared chopped apple, to assess the behavioural response and induction of IEGs in the olfactory bulb, hippocampus and amygdala. After experiencing PO and AO, the bats initially responded to both, later only engaging in feeding bouts in response to the PO food. The expression pattern of Egr-1 and C-fos in the olfactory bulb, hippocampus and amygdala was similar at different time points (15, 30 and 60 min) following the response to PO, but different for AO. The response to AO elevated the level of C-fos expression within 30 min and reduced it at 60 min in both the olfactory bulb and the hippocampus, as opposed to the continuous increase noted in the amygdala. In addition, we tested whether an epigenetic mechanism entailing protein phosphatase-1 (PP-1) acts on IEG expression. The observed PP-1 expression and the level of unmethylated/methylated promoter revealed that the C-fos expression is possibly controlled by an odor-mediated regulation of PP-1. These results in turn imply that the differential expression of C-fos in the hippocampus and amygdala may contribute to olfactory learning and memory in C. sphinx . © 2018. Published by The Company of Biologists Ltd.

  19. TU-AB-204-01: Advances in C-Arm CBCT for Brain Perfusion Imaging

    International Nuclear Information System (INIS)

    Chen, G.

    2015-01-01

    This symposium highlights advanced cone-beam CT (CBCT) technologies in four areas of emerging application in diagnostic imaging and image-guided interventions. Each area includes research that extends the spatial, temporal, and/or contrast resolution characteristics of CBCT beyond conventional limits through advances in scanner technology, acquisition protocols, and 3D image reconstruction techniques. Dr. G. Chen (University of Wisconsin) will present on the topic: Advances in C-arm CBCT for Brain Perfusion Imaging. Stroke is a leading cause of death and disability, and a fraction of people having an acute ischemic stroke are suitable candidates for endovascular therapy. Critical factors that affect both the likelihood of successful revascularization and good clinical outcome are: 1) the time between stroke onset and revascularization; and 2) the ability to distinguish patients who have a small volume of irreversibly injured brain (ischemic core) and a large volume of ischemic but salvageable brain (penumbra) from patients with a large ischemic core and little or no penumbra. Therefore, “time is brain” in the care of the stroke patients. C-arm CBCT systems widely available in angiography suites have the potential to generate non-contrast-enhanced CBCT images to exclude the presence of hemorrhage, time-resolved CBCT angiography to evaluate the site of occlusion and collaterals, and CBCT perfusion parametric images to assess the extent of the ischemic core and penumbra, thereby fulfilling the imaging requirements of a “one-stop-shop” in the angiography suite to reduce the time between onset and revascularization therapy. The challenges and opportunities to advance CBCT technology to fully enable the one-stop-shop C-arm CBCT platform for brain imaging will be discussed. Dr. R. Fahrig (Stanford University) will present on the topic: Advances in C-arm CBCT for Cardiac Interventions. With the goal of providing functional information during cardiac interventions

  20. TU-AB-204-01: Advances in C-Arm CBCT for Brain Perfusion Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Chen, G. [University of Wisconsin (United States)

    2015-06-15

    This symposium highlights advanced cone-beam CT (CBCT) technologies in four areas of emerging application in diagnostic imaging and image-guided interventions. Each area includes research that extends the spatial, temporal, and/or contrast resolution characteristics of CBCT beyond conventional limits through advances in scanner technology, acquisition protocols, and 3D image reconstruction techniques. Dr. G. Chen (University of Wisconsin) will present on the topic: Advances in C-arm CBCT for Brain Perfusion Imaging. Stroke is a leading cause of death and disability, and a fraction of people having an acute ischemic stroke are suitable candidates for endovascular therapy. Critical factors that affect both the likelihood of successful revascularization and good clinical outcome are: 1) the time between stroke onset and revascularization; and 2) the ability to distinguish patients who have a small volume of irreversibly injured brain (ischemic core) and a large volume of ischemic but salvageable brain (penumbra) from patients with a large ischemic core and little or no penumbra. Therefore, “time is brain” in the care of the stroke patients. C-arm CBCT systems widely available in angiography suites have the potential to generate non-contrast-enhanced CBCT images to exclude the presence of hemorrhage, time-resolved CBCT angiography to evaluate the site of occlusion and collaterals, and CBCT perfusion parametric images to assess the extent of the ischemic core and penumbra, thereby fulfilling the imaging requirements of a “one-stop-shop” in the angiography suite to reduce the time between onset and revascularization therapy. The challenges and opportunities to advance CBCT technology to fully enable the one-stop-shop C-arm CBCT platform for brain imaging will be discussed. Dr. R. Fahrig (Stanford University) will present on the topic: Advances in C-arm CBCT for Cardiac Interventions. With the goal of providing functional information during cardiac interventions

  1. Gene expression analysis of embryonic stem cells expressing VE-cadherin (CD144 during endothelial differentiation

    Directory of Open Access Journals (Sweden)

    Libermann Towia

    2008-05-01

    Full Text Available Abstract Background Endothelial differentiation occurs during normal vascular development in the developing embryo. This process is recapitulated in the adult when endothelial progenitor cells are generated in the bone marrow and can contribute to vascular repair or angiogenesis at sites of vascular injury or ischemia. The molecular mechanisms of endothelial differentiation remain incompletely understood. Novel approaches are needed to identify the factors that regulate endothelial differentiation. Methods Mouse embryonic stem (ES cells were used to further define the molecular mechanisms of endothelial differentiation. By flow cytometry a population of VEGF-R2 positive cells was identified as early as 2.5 days after differentiation of ES cells, and a subset of VEGF-R2+ cells, that were CD41 positive at 3.5 days. A separate population of VEGF-R2+ stem cells expressing the endothelial-specific marker CD144 (VE-cadherin was also identified at this same time point. Channels lined by VE-cadherin positive cells developed within the embryoid bodies (EBs formed by differentiating ES cells. VE-cadherin and CD41 expressing cells differentiate in close proximity to each other within the EBs, supporting the concept of a common origin for cells of hematopoietic and endothelial lineages. Results Microarray analysis of >45,000 transcripts was performed on RNA obtained from cells expressing VEGF-R2+, CD41+, and CD144+ and VEGF-R2-, CD41-, and CD144-. All microarray experiments were performed in duplicate using RNA obtained from independent experiments, for each subset of cells. Expression profiling confirmed the role of several genes involved in hematopoiesis, and identified several putative genes involved in endothelial differentiation. Conclusion The isolation of CD144+ cells during ES cell differentiation from embryoid bodies provides an excellent model system and method for identifying genes that are expressed during endothelial differentiation and that

  2. Gene expression profiling reveals new potential players of gonad differentiation in the chicken embryo.

    Directory of Open Access Journals (Sweden)

    Gwenn-Aël Carré

    Full Text Available BACKGROUND: In birds as in mammals, a genetic switch determines whether the undifferentiated gonad develops into an ovary or a testis. However, understanding of the molecular pathway(s involved in gonad differentiation is still incomplete. METHODOLOGY/PRINCIPAL FINDINGS: With the aim of improving characterization of the molecular pathway(s involved in gonad differentiation in the chicken embryo, we developed a large scale real time reverse transcription polymerase chain reaction approach on 110 selected genes for evaluation of their expression profiles during chicken gonad differentiation between days 5.5 and 19 of incubation. Hierarchical clustering analysis of the resulting datasets discriminated gene clusters expressed preferentially in the ovary or the testis, and/or at early or later periods of embryonic gonad development. Fitting a linear model and testing the comparisons of interest allowed the identification of new potential actors of gonad differentiation, such as Z-linked ADAMTS12, LOC427192 (corresponding to NIM1 protein and CFC1, that are upregulated in the developing testis, and BMP3 and Z-linked ADAMTSL1, that are preferentially expressed in the developing ovary. Interestingly, the expression patterns of several members of the transforming growth factor β family were sexually dimorphic, with inhibin subunits upregulated in the testis, and bone morphogenetic protein subfamily members including BMP2, BMP3, BMP4 and BMP7, upregulated in the ovary. This study also highlighted several genes displaying asymmetric expression profiles such as GREM1 and BMP3 that are potentially involved in different aspects of gonad left-right asymmetry. CONCLUSION/SIGNIFICANCE: This study supports the overall conservation of vertebrate sex differentiation pathways but also reveals some particular feature of gene expression patterns during gonad development in the chicken. In particular, our study revealed new candidate genes which may be potential actors

  3. Gene Expression Profiling Reveals New Potential Players of Gonad Differentiation in the Chicken Embryo

    Science.gov (United States)

    Carré, Gwenn-Aël; Couty, Isabelle; Hennequet-Antier, Christelle; Govoroun, Marina S.

    2011-01-01

    Background In birds as in mammals, a genetic switch determines whether the undifferentiated gonad develops into an ovary or a testis. However, understanding of the molecular pathway(s) involved in gonad differentiation is still incomplete. Methodology/Principal Findings With the aim of improving characterization of the molecular pathway(s) involved in gonad differentiation in the chicken embryo, we developed a large scale real time reverse transcription polymerase chain reaction approach on 110 selected genes for evaluation of their expression profiles during chicken gonad differentiation between days 5.5 and 19 of incubation. Hierarchical clustering analysis of the resulting datasets discriminated gene clusters expressed preferentially in the ovary or the testis, and/or at early or later periods of embryonic gonad development. Fitting a linear model and testing the comparisons of interest allowed the identification of new potential actors of gonad differentiation, such as Z-linked ADAMTS12, LOC427192 (corresponding to NIM1 protein) and CFC1, that are upregulated in the developing testis, and BMP3 and Z-linked ADAMTSL1, that are preferentially expressed in the developing ovary. Interestingly, the expression patterns of several members of the transforming growth factor β family were sexually dimorphic, with inhibin subunits upregulated in the testis, and bone morphogenetic protein subfamily members including BMP2, BMP3, BMP4 and BMP7, upregulated in the ovary. This study also highlighted several genes displaying asymmetric expression profiles such as GREM1 and BMP3 that are potentially involved in different aspects of gonad left-right asymmetry. Conclusion/Significance This study supports the overall conservation of vertebrate sex differentiation pathways but also reveals some particular feature of gene expression patterns during gonad development in the chicken. In particular, our study revealed new candidate genes which may be potential actors of chicken gonad

  4. Linking transgene expression of engineered mesenchymal stem cells and angiopoietin-1-induced differentiation to target cancer angiogenesis.

    Science.gov (United States)

    Conrad, Claudius; Hüsemann, Yves; Niess, Hanno; von Luettichau, Irene; Huss, Ralf; Bauer, Christian; Jauch, Karl-Walter; Klein, Christoph A; Bruns, Christiane; Nelson, Peter J

    2011-03-01

    To specifically target tumor angiogenesis by linking transgene expression of engineered mesenchymal stem cells to angiopoietin-1-induced differentiation. Mesenchymal stem cells (MSCs) have been used to deliver therapeutic genes into solid tumors. These strategies rely on their homing mechanisms only to deliver the therapeutic agent. We engineered murine MSC to express reporter genes or therapeutic genes under the selective control of the Tie2 promoter/enhancer. This approach uses the differentiative potential of MSCs induced by the tumor microenvironment to drive therapeutic gene expression only in the context of angiogenesis. When injected into the peripheral circulation of mice with either, orthotopic pancreatic or spontaneous breast cancer, the engineered MSCs were actively recruited to growing tumor vasculature and induced the selective expression of either reporter red florescent protein or suicide genes [herpes simplex virus-thymidine kinase (TK) gene] when the adoptively transferred MSC developed endothelial-like characteristics. The TK gene product in combination with the prodrug ganciclovir (GCV) produces a potent toxin, which affects replicative cells. The homing of engineered MSC with selective induction of TK in concert with GCV resulted in a toxic tumor-specific environment. The efficacy of this approach was demonstrated by significant reduction in primary tumor growth and prolongation of life in both tumor models. This "Trojan Horse" combined stem cell/gene therapy represents a novel treatment strategy for tailored therapy of solid tumors.

  5. Robust stratification of breast cancer subtypes using differential patterns of transcript isoform expression.

    Directory of Open Access Journals (Sweden)

    Thomas P Stricker

    2017-03-01

    Full Text Available Breast cancer, the second leading cause of cancer death of women worldwide, is a heterogenous disease with multiple different subtypes. These subtypes carry important implications for prognosis and therapy. Interestingly, it is known that these different subtypes not only have different biological behaviors, but also have distinct gene expression profiles. However, it has not been rigorously explored whether particular transcriptional isoforms are also differentially expressed among breast cancer subtypes, or whether transcript isoforms from the same sets of genes can be used to differentiate subtypes. To address these questions, we analyzed the patterns of transcript isoform expression using a small set of RNA-sequencing data for eleven Estrogen Receptor positive (ER+ subtype and fourteen triple negative (TN subtype tumors. We identified specific sets of isoforms that distinguish these tumor subtypes with higher fidelity than standard mRNA expression profiles. We found that alternate promoter usage, alternative splicing, and alternate 3'UTR usage are differentially regulated in breast cancer subtypes. Profiling of isoform expression in a second, independent cohort of 68 tumors confirmed that expression of splice isoforms differentiates breast cancer subtypes. Furthermore, analysis of RNAseq data from 594 cases from the TCGA cohort confirmed the ability of isoform usage to distinguish breast cancer subtypes. Also using our expression data, we identified several RNA processing factors that were differentially expressed between tumor subtypes and/or regulated by estrogen receptor, including YBX1, YBX2, MAGOH, MAGOHB, and PCBP2. RNAi knock-down of these RNA processing factors in MCF7 cells altered isoform expression. These results indicate that global dysregulation of splicing in breast cancer occurs in a subtype-specific and reproducible manner and is driven by specific differentially expressed RNA processing factors.

  6. Radiation dose reduction and new image modalities development for interventional C-arm imaging system

    Science.gov (United States)

    Niu, Kai

    Cardiovascular disease and stroke are the leading health problems and causes of death in the US. Due to the minimally invasive nature of the evolution of image guided techniques, interventional radiological procedures are becoming more common and are preferred in treating many cardiovascular diseases and strokes. In addition, with the recent advances in hardware and device technology, the speed and efficacy of interventional treatment has significantly improved. This implies that more image modalities can be developed based on the current C-arm system and patients treated in interventional suites can potentially experience better health outcomes. However, during the treatment patients are irradiated with substantial amounts of ionizing radiation with a high dose rate (digital subtraction angiography (DSA) with 3muGy/frame and 3D cone beam CT image with 0.36muGy/frame for a Siemens Artis Zee biplane system) and/or a long irradiation time (a roadmapping image sequence can be as long as one hour during aneurysm embolization). As a result, the patient entrance dose is extremely high. Despite the fact that the radiation dose is already substantial, image quality is not always satisfactory. By default a temporal average is used in roadmapping images to overcome poor image quality, but this technique can result in motion blurred images. Therefore, reducing radiation dose while maintaining or even improving the image quality is an important area for continued research. This thesis is focused on improving the clinical applications of C-arm cone beam CT systems in two ways: (1) Improve the performance of current image modalities on the C-arm system. (2) Develop new image modalities based on the current system. To be more specific, the objectives are to reduce radiation dose for current modalities (e.g., DSA, fluoroscopy, roadmapping, and cone beam CT) and enable cone beam CT perfusion and time resolved cone beam CT angiography that can be used to diagnose and triage acute

  7. Relation between Seed Appearance and Phenolic Maturity: A Case Study Using Grapes cv. Carménère Relación entre Apariencia de Semillas y Madurez Fenólica: Un Estudio de Caso usando Uvas cv. Carménère

    Directory of Open Access Journals (Sweden)

    Claudio Fredes

    2010-09-01

    Full Text Available Sensory evaluation of grapes (Vitis vinifera L. plays a key role in determining the harvest time in grapevine varieties. The harvest time of cv. Carménère is one of the latest of Chile. During the season 2007-2008, the evolution of the appearance of ‘Carménère’ seeds was evaluated as a harvest criterion, comparing it with the chemical and phenolic ripening. The samples were obtained from an organic vineyard located in Curicó Valley, Chile. Starting at 16 ºBrix, 100 seed berries samples were collected weekly from medium vigor vines in order to register photographically the ventral and dorsal sides of each seed. In addition to the seed tannins percentage, the extractable anthocyanins, total anthocyanins and total polyphenols index, as well as the titratable acidity, soluble solids and pH were registered. A color wheel of seed coat with a description of 12 digital colors was proposed for this cultivar. When the color number exceeded 10 (very dark brown, the soluble solids had already reached 24 ºBrix 1 month earlier. Two inverse correlations between seed coat color vs. seed phenols percentage and vs. total polyphenol index were found. The proper phenolic maturation (maximum anthocyanins and minimum seed tannins percentage occurred 177 d post flowering. The observation of seed coat color can be a reliable, simple and low-cost parameter to determine the correct ripeness of phenols in ‘Carménère’ grapevines.La evaluación sensorial de uvas (Vitis vinifera L. juega un rol clave en la determinación de la fecha de cosecha en los últimos estados de la maduración de la baya. La cosecha del cv. Carménère es una de las últimas en Chile. Durante la temporada 2007-2008, la evolución de la apariencia de semillas ‘Carménère’ fue evaluada como un criterio de cosecha, comparándola con la madurez química y fenólica. Las muestras fueron obtenidas desde una viña orgánica localizada en el valle de Curicó, Chile. Se colectaron

  8. Differential Gene Expression and Aging

    Directory of Open Access Journals (Sweden)

    Laurent Seroude

    2002-01-01

    Full Text Available It has been established that an intricate program of gene expression controls progression through the different stages in development. The equally complex biological phenomenon known as aging is genetically determined and environmentally modulated. This review focuses on the genetic component of aging, with a special emphasis on differential gene expression. At least two genetic pathways regulating organism longevity act by modifying gene expression. Many genes are also subjected to age-dependent transcriptional regulation. Some age-related gene expression changes are prevented by caloric restriction, the most robust intervention that slows down the aging process. Manipulating the expression of some age-regulated genes can extend an organism's life span. Remarkably, the activity of many transcription regulatory elements is linked to physiological age as opposed to chronological age, indicating that orderly and tightly controlled regulatory pathways are active during aging.

  9. Identification of differentially expressed sequences in bud ...

    African Journals Online (AJOL)

    The developmental process of lily flower bud differentiation has been studied in morphology thoroughly, but the mechanism in molecular biology is still ambiguous and few studies on genetic expression have been carried out. Little is known about the physiological responses of flower bud differentiation in Oriental hybrid lily ...

  10. RANK ligand signaling modulates the matrix metalloproteinase-9 gene expression during osteoclast differentiation

    International Nuclear Information System (INIS)

    Sundaram, Kumaran; Nishimura, Riko; Senn, Joseph; Youssef, Rimon F.; London, Steven D.; Reddy, Sakamuri V.

    2007-01-01

    Osteoclast differentiation is tightly regulated by receptor activator of NF-κB ligand (RANKL) signaling. Matrix metalloproteinase-9 (MMP-9), a type IV collagenase is highly expressed in osteoclast cells and plays an important role in degradation of extracellular matrix; however, the molecular mechanisms that regulate MMP-9 gene expression are unknown. In this study, we demonstrate that RANKL signaling induces MMP-9 gene expression in osteoclast precursor cells. We further show that RANKL regulates MMP-9 gene expression through TRAF6 but not TRAF2. Interestingly, blockade of p38 MAPK activity by pharmacological inhibitor, SB203580 increases MMP-9 activity whereas ERK1/2 inhibitor, PD98059 decreases RANKL induced MMP-9 activity in RAW264.7 cells. These data suggest that RANKL differentially regulates MMP-9 expression through p38 and ERK signaling pathways during osteoclast differentiation. Transient expression of MMP-9 gene (+ 1 to - 1174 bp relative to ATG start codon) promoter-luciferase reporter plasmids in RAW264.7 cells and RANKL stimulation showed significant increase (20-fold) of MMP-9 gene promoter activity; however, there is no significant change with respect to + 1 bp to - 446 bp promoter region and empty vector transfected cells. These results indicated that MMP-9 promoter sequence from - 446 bp to - 1174 bp relative to start codon is responsive to RANKL stimulation. Sequence analysis of the mouse MMP-9 gene promoter region further identified the presence of binding motif (- 1123 bp to - 1153 bp) for the nuclear factor of activated T cells 1 (NFATc1) transcription factor. Inhibition of NFATc1 using siRNA and VIVIT peptide inhibitor significantly decreased RANKL stimulation of MMP-9 activity. We further confirm by oligonucleotide pull-down assay that RANKL stimuli enhanced NFATc1 binding to MMP-9 gene promoter element. In addition, over-expression of constitutively active NFAT in RAW264.7 cells markedly increased (5-fold) MMP-9 gene promoter activity in

  11. miR-17-92 expression in differentiated T cells - implications for cancer immunotherapy

    Directory of Open Access Journals (Sweden)

    Martinson Jeremy

    2010-02-01

    Full Text Available Abstract Background Type-1 T cells are critical for effective anti-tumor immune responses. The recently discovered microRNAs (miRs are a large family of small regulatory RNAs that control diverse aspects of cell function, including immune regulation. We identified miRs differentially regulated between type-1 and type-2 T cells, and determined how the expression of such miRs is regulated. Methods We performed miR microarray analyses on in vitro differentiated murine T helper type-1 (Th1 and T helper type-2 (Th2 cells to identify differentially expressed miRs. We used quantitative RT-PCR to confirm the differential expression levels. We also used WST-1, ELISA, and flow cytometry to evaluate the survival, function and phenotype of cells, respectively. We employed mice transgenic for the identified miRs to determine the biological impact of miR-17-92 expression in T cells. Results Our initial miR microarray analyses revealed that the miR-17-92 cluster is one of the most significantly over-expressed miR in murine Th1 cells when compared with Th2 cells. RT-PCR confirmed that the miR-17-92 cluster expression was consistently higher in Th1 cells than Th2 cells. Disruption of the IL-4 signaling through either IL-4 neutralizing antibody or knockout of signal transducer and activator of transcription (STAT6 reversed the miR-17-92 cluster suppression in Th2 cells. Furthermore, T cells from tumor bearing mice and glioma patients had decreased levels of miR-17-92 when compared with cells from non-tumor bearing counterparts. CD4+ T cells derived from miR-17-92 transgenic mice demonstrated superior type-1 phenotype with increased IFN-γ production and very late antigen (VLA-4 expression when compared with counterparts derived from wild type mice. Human Jurkat T cells ectopically expressing increased levels of miR-17-92 cluster members demonstrated increased IL-2 production and resistance to activation-induced cell death (AICD. Conclusion The type-2-skewing

  12. Task-driven orbit design and implementation on a robotic C-arm system for cone-beam CT

    Science.gov (United States)

    Ouadah, S.; Jacobson, M.; Stayman, J. W.; Ehtiati, T.; Weiss, C.; Siewerdsen, J. H.

    2017-03-01

    Purpose: This work applies task-driven optimization to the design of non-circular orbits that maximize imaging performance for a particular imaging task. First implementation of task-driven imaging on a clinical robotic C-arm system is demonstrated, and a framework for orbit calculation is described and evaluated. Methods: We implemented a task-driven imaging framework to optimize orbit parameters that maximize detectability index d'. This framework utilizes a specified Fourier domain task function and an analytical model for system spatial resolution and noise. Two experiments were conducted to test the framework. First, a simple task was considered consisting of frequencies lying entirely on the fz-axis (e.g., discrimination of structures oriented parallel to the central axial plane), and a "circle + arc" orbit was incorporated into the framework as a means to improve sampling of these frequencies, and thereby increase task-based detectability. The orbit was implemented on a robotic C-arm (Artis Zeego, Siemens Healthcare). A second task considered visualization of a cochlear implant simulated within a head phantom, with spatial frequency response emphasizing high-frequency content in the (fy, fz) plane of the cochlea. An optimal orbit was computed using the task-driven framework, and the resulting image was compared to that for a circular orbit. Results: For the fz-axis task, the circle + arc orbit was shown to increase d' by a factor of 1.20, with an improvement of 0.71 mm in a 3D edge-spread measurement for edges located far from the central plane and a decrease in streak artifacts compared to a circular orbit. For the cochlear implant task, the resulting orbit favored complementary views of high tilt angles in a 360° orbit, and d' was increased by a factor of 1.83. Conclusions: This work shows that a prospective definition of imaging task can be used to optimize source-detector orbit and improve imaging performance. The method was implemented for execution of

  13. The effect of alcohol on the differential expression of cluster of differentiation 14 gene, associated pathways, and genetic network.

    Directory of Open Access Journals (Sweden)

    Diana X Zhou

    Full Text Available Alcohol consumption affects human health in part by compromising the immune system. In this study, we examined the expression of the Cd14 (cluster of differentiation 14 gene, which is involved in the immune system through a proinflammatory cascade. Expression was evaluated in BXD mice treated with saline or acute 1.8 g/kg i.p. ethanol (12.5% v/v. Hippocampal gene expression data were generated to examine differential expression and to perform systems genetics analyses. The Cd14 gene expression showed significant changes among the BXD strains after ethanol treatment, and eQTL mapping revealed that Cd14 is a cis-regulated gene. We also identified eighteen ethanol-related phenotypes correlated with Cd14 expression related to either ethanol responses or ethanol consumption. Pathway analysis was performed to identify possible biological pathways involved in the response to ethanol and Cd14. We also constructed a genetic network for Cd14 using the top 20 correlated genes and present several genes possibly involved in Cd14 and ethanol responses based on differential gene expression. In conclusion, we found Cd14, along with several other genes and pathways, to be involved in ethanol responses in the hippocampus, such as increased susceptibility to lipopolysaccharides and neuroinflammation.

  14. Regulation of white and brown adipocyte differentiation by RhoGAP DLC1.

    Directory of Open Access Journals (Sweden)

    Choon Kiat Sim

    Full Text Available Adipose tissues constitute an important component of metabolism, the dysfunction of which can cause obesity and type II diabetes. Here we show that differentiation of white and brown adipocytes requires Deleted in Liver Cancer 1 (DLC1, a Rho GTPase Activating Protein (RhoGAP previously studied for its function in liver cancer. We identified Dlc1 as a super-enhancer associated gene in both white and brown adipocytes through analyzing the genome-wide binding profiles of PPARγ, the master regulator of adipogenesis. We further observed that Dlc1 expression increases during differentiation, and knockdown of Dlc1 by siRNA in white adipocytes reduces the formation of lipid droplets and the expression of fat marker genes. Moreover, knockdown of Dlc1 in brown adipocytes reduces expression of brown fat-specific genes and diminishes mitochondrial respiration. Dlc1-/- knockout mouse embryonic fibroblasts show a complete inability to differentiate into adipocytes, but this phenotype can be rescued by inhibitors of Rho-associated kinase (ROCK and filamentous actin (F-actin, suggesting the involvement of Rho pathway in DLC1-regulated adipocyte differentiation. Furthermore, PPARγ binds to the promoter of Dlc1 gene to regulate its expression during both white and brown adipocyte differentiation. These results identify DLC1 as an activator of white and brown adipocyte differentiation, and provide a molecular link between PPARγ and Rho pathways.

  15. Differentially expressed circulating microRNAs in the development of acute diabetic Charcot foot.

    Science.gov (United States)

    Pasquier, Jennifer; Ramachandran, Vimal; Abu-Qaoud, Moh'd Rasheed; Thomas, Binitha; Benurwar, Manasi J; Chidiac, Omar; Hoarau-Véchot, Jessica; Robay, Amal; Fakhro, Khalid; Menzies, Robert A; Jayyousi, Amin; Zirie, Mahmoud; Al Suwaidi, Jassim; Malik, Rayaz A; Talal, Talal K; Najafi-Shoushtari, Seyed Hani; Rafii, Arash; Abi Khalil, Charbel

    2018-06-05

    Charcot foot (CF) is a rare complication of Type 2 diabetes (T2D). We assessed circulating miRNAs in 17 patients with T2D and acute CF (G1), 17 patients with T2D (G2) and equivalent neuropathy and 17 patients with T2D without neuropathy (G3) using the high-throughput miRNA expression profiling. 51 significantly deregulated miRNAs were identified in G1 versus G2, 37 in G1 versus G3 and 64 in G2 versus G3. Furthermore, we demonstrated that 16 miRNAs differentially expressed between G1 versus G2 could be involved in osteoclastic differentiation. Among them, eight are key factors involved in CF pathophysiology. Our data reveal that CF patients exhibit an altered expression profile of circulating miRNAs.

  16. Differentiation-Associated Downregulation of Poly(ADP-Ribose Polymerase-1 Expression in Myoblasts Serves to Increase Their Resistance to Oxidative Stress.

    Directory of Open Access Journals (Sweden)

    Gábor Oláh

    Full Text Available Poly(ADP-ribose polymerase 1 (PARP-1, the major isoform of the poly (ADP-ribose polymerase family, is a constitutive nuclear and mitochondrial protein with well-recognized roles in various essential cellular functions such as DNA repair, signal transduction, apoptosis, as well as in a variety of pathophysiological conditions including sepsis, diabetes and cancer. Activation of PARP-1 in response to oxidative stress catalyzes the covalent attachment of the poly (ADP-ribose (PAR groups on itself and other acceptor proteins, utilizing NAD+ as a substrate. Overactivation of PARP-1 depletes intracellular NAD+ influencing mitochondrial electron transport, cellular ATP generation and, if persistent, can result in necrotic cell death. Due to their high metabolic activity, skeletal muscle cells are particularly exposed to constant oxidative stress insults. In this study, we investigated the role of PARP-1 in a well-defined model of murine skeletal muscle differentiation (C2C12 and compare the responses to oxidative stress of undifferentiated myoblasts and differentiated myotubes. We observed a marked reduction of PARP-1 expression as myoblasts differentiated into myotubes. This alteration correlated with an increased resistance to oxidative stress of the myotubes, as measured by MTT and LDH assays. Mitochondrial function, assessed by measuring mitochondrial membrane potential, was preserved under oxidative stress in myotubes compared to myoblasts. Moreover, basal respiration, ATP synthesis, and the maximal respiratory capacity of mitochondria were higher in myotubes than in myoblasts. Inhibition of the catalytic activity of PARP-1 by PJ34 (a phenanthridinone PARP inhibitor exerted greater protective effects in undifferentiated myoblasts than in differentiated myotubes. The above observations in C2C12 cells were also confirmed in a rat-derived skeletal muscle cell line (L6. Forced overexpression of PARP1 in C2C12 myotubes sensitized the cells to oxidant

  17. Role of extrathyroidal TSHR expression in adipocyte differentiation and its association with obesity

    Directory of Open Access Journals (Sweden)

    Lu Sumei

    2012-01-01

    Full Text Available Abstract Background Obesity is known to be associated with higher risks of cardiovascular disease, metabolic syndrome, and diabetes mellitus. Thyroid-stimulating hormone (TSHR is the receptor for thyroid-stimulating hormone (TSH, or thyrotropin, the key regulator of thyroid functions. The expression of TSHR, once considered to be limited to thyrocytes, has been so far detected in many extrathyroidal tissues including liver and fat. Previous studies have shown that TSHR expression is upregulated when preadipocytes differentiate into mature adipocytes, suggestive of a possible role of TSHR in adipogenesis. However, it remains unclear whether TSHR expression in adipocytes is implicated in the pathogenesis of obesity. Methods In the present study, TSHR expression in adipose tissues from both mice and human was analyzed, and its association with obesity was evaluated. Results We here showed that TSHR expression was increased at both mRNA and protein levels when 3T3-L1 preadipocytes were induced to differentiate. Knockdown of TSHR blocked the adipocyte differentiation of 3T3-L1 preadipocytes as evaluated by Oil-red-O staining for lipid accumulation and by RT-PCR analyses of PPAR-γ and ALBP mRNA expression. We generated obesity mice (C57/BL6 by high-fat diet feeding and found that the TSHR protein expression in visceral adipose tissues from obesity mice was significantly higher in comparison with the non-obesity control mice (P Conclusion Taken together, these results suggested that TSHR is an important regulator of adipocyte differentiation. Dysregulated expression of TSHR in adipose tissues is associated with obesity, which may involve a mechanism of excess adipogenesis.

  18. Gene expression during ovarian differentiation in parasitic and non-parasitic lampreys: implications for fecundity and life history types.

    Science.gov (United States)

    Spice, Erin K; Whyard, Steven; Docker, Margaret F

    2014-11-01

    Lampreys diverged from the jawed vertebrate lineage approximately 500million years ago. Lampreys undergo sex differentiation much later than most other vertebrates, and ovarian differentiation occurs several years before testicular differentiation. The genetic basis of lamprey sex differentiation is of particular interest both because of the phylogenetic importance of lampreys and because of their unusual pattern of sex differentiation. As well, differences between parasitic and non-parasitic lampreys may first become evident at ovarian differentiation. However, nothing is known about the genetic basis of ovarian differentiation in lampreys. This study examined potential differences in gene expression before, during, and after ovarian differentiation in parasitic chestnut lamprey Ichthyomyzon castaneus and non-parasitic northern brook lamprey Ichthyomyzonfossor. Eight target genes (17β-hydroxysteroid dehydrogenase, germ cell-less, estrogen receptor β, insulin-like growth factor 1 receptor, daz-associated protein 1, cytochrome c oxidase subunit III, Wilms' tumour suppressor protein 1, and dehydrocholesterol reductase 7) were examined. Northern brook lamprey displayed higher expression of cytochrome c oxidase subunit III, whereas chestnut lamprey displayed higher expression of insulin-like growth factor 1 receptor; these genes may be involved in apoptosis and oocyte growth, respectively. Presumptive male larvae had higher expression of Wilms' tumour suppressor protein 1, which may be involved in the undifferentiated gonad and/or later testicular development. Differentiated females had higher expression of 17β hydroxysteroid dehydrogenase and daz-associated protein 1, which may be involved in female development. This study is the first to identify genes that may be involved in ovarian differentiation and fecundity in lampreys. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Identification of genes differentially expressed in association with acquired cisplatin resistance

    Science.gov (United States)

    Johnsson, A; Zeelenberg, I; Min, Y; Hilinski, J; Berry, C; Howell, S B; Los, G

    2000-01-01

    The goal of this study was to identify genes whose mRNA levels are differentially expressed in human cells with acquired cisplatin (cDDP) resistance. Using the parental UMSCC10b head and neck carcinoma cell line and the 5.9-fold cDDP-resistant subline, UMSCC10b/Pt-S15, two suppressive subtraction hybridization (SSH) cDNA libraries were prepared. One library represented mRNAs whose levels were increased in the cDDP resistant variant (the UP library), the other one represented mRNAs whose levels were decreased in the resistant cells (the DOWN library). Arrays constructed with inserts recovered from these libraries were hybridized with SSH products to identify truly differentially expressed elements. A total of 51 cDNA fragments present in the UP library and 16 in the DOWN library met the criteria established for differential expression. The sequences of 87% of these cDNA fragments were identified in Genbank. Among the mRNAs in the UP library that were frequently isolated and that showed high levels of differential expression were cytochrome oxidase I, ribosomal protein 28S, elongation factor 1α, α-enolase, stathmin, and HSP70. The approach taken in this study permitted identification of many genes never before linked to the cDDP-resistant phenotype. © 2000 Cancer Research Campaign PMID:10993653

  20. Respiratory syncytial virus and TNFalpha induction of chemokine gene expression involves differential activation of Rel A and NF-kappaB1

    Directory of Open Access Journals (Sweden)

    Roebuck Kenneth A

    2002-03-01

    Full Text Available Abstract Background Respiratory syncytial virus (RSV infection of airway epithelial cells stimulates the expression and secretion of a variety of cytokines including the chemotactic cytokines interleukin-8 (IL-8, monocyte chemoattractant protein-1 (MCP-1, and RANTES (regulated upon activation, normal T cell expressed and secreted. Chemokines are important chemoattractants for the recruitment of distinct sets of leukocytes to airway sites of inflammation. Results We have shown previously that chemokine expression is regulated in airway epithelial cells (A549 in a stimulus-specific manner in part through the redox-responsive transcription factors AP-1 and NF-κB. In this study, we examined the NF-κB-mediated effects of RSV and the proinflammatory cytokine TNFα on the induction of IL-8, MCP-1 and RANTES chemokine gene expression in A549 epithelial cells. The results demonstrate that RSV induces chemokine expression with distinct kinetics that is associated with a specific pattern of NF-κB binding activity. This distinction was further demonstrated by the differential effects of the NF-κB inhibitors dexamethasone (DEX and N-acetyl-L-cysteine (NAC. NAC preferentially inhibited RSV induced chemokine expression, whereas DEX preferentially inhibited TNFα induced chemokine expression. DNA binding studies using NF-κB subunit specific binding ELISA demonstrated that RSV and TNFα induced different NF-κB binding complexes containing Rel A (p65 and NF-κB1 (p50. Both TNFα and RSV strongly induced Rel A the activation subunit of NF-κB, whereas only TNFα was able to substantially induce the p50 subunit. Consistent with the expression studies, RSV but not TNFα induction of Rel A and p50 were markedly inhibited by NAC, providing a mechanism by which TNFα and RSV can differentially activate chemokine gene expression via NF-κB. Conclusions These data suggest that RSV induction of chemokine gene expression, in contrast to TNFα, involves redox

  1. A Study of the Differential Effects of Eicosapentaenoic Acid (EPA) and Docosahexaenoic Acid (DHA) on Gene Expression Profiles of Stimulated Thp-1 Macrophages.

    Science.gov (United States)

    Allam-Ndoul, Bénédicte; Guénard, Frédéric; Barbier, Olivier; Vohl, Marie-Claude

    2017-04-25

    Background: An appropriate intake of omega-3 ( n -3) fatty acids (FAs) such as eicosapentaenoic and docosahexaenoic acid (EPA/DHA) from marine sources is known to have anti-inflammatory effects. However, molecular mechanisms underlying their beneficial effects on health are not fully understood. The aim of the present study was to characterize gene expression profiles of THP-1 macrophages, incubated in either EPA or DHA and stimulated with lipopolysaccharide (LPS), a pro-inflammatory agent. Methods: THP-1 macrophages were incubated into 10, 50 and 75 µM of EPA or DHA for 24 h, and 100 nM of LPS was added to the culture media for 18 h. Total mRNA was extracted and gene expression examined by microarray analysis using Illumina Human HT-12 expression beadchips (Illumina). Results: Pathway analysis revealed that EPA and DHA regulate genes involved in cell cycle regulation, apoptosis, immune response and inflammation, oxidative stress and cancer pathways in a differential and dose-dependent manner. Conclusions: EPA and DHA appear to exert differential effects on gene expression in THP-1 macrophages. Specific effects of n -3 FAs on gene expression levels are also dose-dependent.

  2. Differential expression of the Kv1 voltage-gated potassium channel family in the rat nephron.

    Science.gov (United States)

    Carrisoza-Gaytán, Rolando; Salvador, Carolina; Diaz-Bello, Beatriz; Escobar, Laura I

    2014-10-01

    Several potassium (K(+)) channels contribute to maintaining the resting membrane potential of renal epithelial cells. Apart from buffering the cell membrane potential and cell volume, K(+) channels allow sodium reabsorption in the proximal tubule (PT), K(+) recycling and K(+) reabsorption in the thick ascending limb (TAL) and K(+) secretion and K(+) reabsorption in the distal convoluted tubule (DCT), connecting tubule (CNT) and collecting duct. Previously, we identified Kv.1.1, Kv1.3 and Kv1.6 channels in collecting ducts of the rat inner medulla. We also detected intracellular Kv1.3 channel in the acid secretory intercalated cells, which is trafficked to the apical membrane in response to dietary K(+) to function as a secretory K(+) channel. In this work we sought to characterize the expression of all members of the Kv1 family in the rat nephron. mRNA and protein expression were detected for all Kv1 channels. Immunoblots identified differential expression of each Kv1 in the cortex, outer and inner medulla. Immunofluorescence labeling detected Kv1.5 in Bowman´s capsule and endothelial cells and Kv1.7 in podocytes, endothelial cells and macula densa in glomeruli; Kv1.4, Kv1.5 and Kv1.7 in PT; Kv1.2, Kv1.4 and Kv1.6 in TAL; Kv1.1, Kv1.4 and Kv1.6 in DCT and CNT and Kv1.3 in DCT, and all the Kv1 family in the cortical and medullary collecting ducts. Recently, some hereditary renal syndromes have been attributed to mutations in K(+) channels. Our results expand the repertoire of K(+) channels that contribute to K(+) homeostasis to include the Kv1 family.

  3. Id2 reinforces TH1 differentiation and inhibits E2A to repress TFH differentiation.

    Science.gov (United States)

    Shaw, Laura A; Bélanger, Simon; Omilusik, Kyla D; Cho, Sunglim; Scott-Browne, James P; Nance, J Philip; Goulding, John; Lasorella, Anna; Lu, Li-Fan; Crotty, Shane; Goldrath, Ananda W

    2016-07-01

    The differentiation of helper T cells into effector subsets is critical to host protection. Transcription factors of the E-protein and Id families are important arbiters of T cell development, but their role in the differentiation of the TH1 and TFH subsets of helper T cells is not well understood. Here, TH1 cells showed more robust Id2 expression than that of TFH cells, and depletion of Id2 via RNA-mediated interference increased the frequency of TFH cells. Furthermore, TH1 differentiation was blocked by Id2 deficiency, which led to E-protein-dependent accumulation of effector cells with mixed characteristics during viral infection and severely impaired the generation of TH1 cells following infection with Toxoplasma gondii. The TFH cell-defining transcriptional repressor Bcl6 bound the Id2 locus, which provides a mechanism for the bimodal Id2 expression and reciprocal development of TH1 cells and TFH cells.

  4. Expression of CIAPIN1 in human colorectal cancer and its correlation with prognosis

    International Nuclear Information System (INIS)

    Shi, Hai; Wang, Weizhong; Zhao, Qingchuan; Zhou, Yi; Liu, Heliang; Chen, Changsheng; Li, Shujun; Li, Nanlin; Li, Xiaohua; Zhang, Xi; Zhang, Hongwei

    2010-01-01

    The cytokine-induced anti-apoptotic molecule (CIAPIN1) had been found to be a differentially-expressed gene involved in a variety of cancers, and it was also considered as a candidate tumour suppressor gene in gastric cancer, renal cancer and liver cancer. However, studies on the role of CIAPIN1 in colorectal cancer were still unavailable. The aim of this study was to determine the prognostic impact of CIAPIN1 in 273 colorectal cancer (CRC) samples and to investigate the CIAPIN1 expression in CRC cell lines after inducing differentiation. Immunohistochemical analysis was performed to detect the expression of CIAPIN1 in CRC samples from 273 patients. The relationship between CIAPIN1 expression and patients' characteristics (gender, age, location of cancer, UICC stage, local recurrence and tumour grade factors) was evaluated. In addition, these patients were followed up for five consecutive years to investigate the relationship between CIAPIN1 expression and the prognosis of CRC. We induced the differentiation of the CRC cell lines HT29 and SW480, in order to detect the expression of CIAPIN1 in the process of CRC cells differentiation. Results indicated that CIAPIN1 was mainly expressed in the cytoplasm and nucleus, and that its expression level in cancer samples was significantly lower than in normal tissues. The Wilcoxon-Mann-Whitney test showed a significant difference in the differential expression of CIAPIN1 in patients with different T and UICC stages, and tumour grade (P = 0.0393, 0.0297 and 0.0397, respectively). The Kaplan-Meier survival analysis demonstrated that the survival time of CRC patients with high expression of CIAPIN1 was longer than those with low expression during the 5-year follow up period (P = 0.0002). COX regression analysis indicated that low expression of CIAPIN1, cancer stage of > pT1, distant organ metastasis (pM 1 ), regional lymph node metastasis (> pN 1 ) and local recurrence (yes) were independent, poor prognostic factors of CRC

  5. Differential gene expression patterns between smokers and non‐smokers: cause or consequence?

    Science.gov (United States)

    Jansen, Rick; Brooks, Andy; Willemsen, Gonneke; van Grootheest, Gerard; de Geus, Eco; Smit, Jan H.; Penninx, Brenda W.; Boomsma, Dorret I.

    2015-01-01

    Abstract The molecular mechanisms causing smoking‐induced health decline are largely unknown. To elucidate the molecular pathways involved in cause and consequences of smoking behavior, we conducted a genome‐wide gene expression study in peripheral blood samples targeting 18 238 genes. Data of 743 smokers, 1686 never smokers and 890 ex‐smokers were available from two population‐based cohorts from the Netherlands. In addition, data of 56 monozygotic twin pairs discordant for ever smoking were used. One hundred thirty‐two genes were differentially expressed between current smokers and never smokers (P smokers into account, expression of these 132 genes was classified into reversible (94 genes), slowly reversible (31 genes), irreversible (6 genes) or inconclusive (1 gene). Expression of 6 of the 132 genes (three reversible and three slowly reversible) was confirmed to be reactive to smoking as they were differentially expressed in monozygotic pairs discordant for smoking. Cis‐expression quantitative trait loci for GPR56 and RARRES3 (downregulated in smokers) were associated with increased number of cigarettes smoked per day in a large genome‐wide association meta‐analysis, suggesting a causative effect of GPR56 and RARRES3 expression on smoking behavior. In conclusion, differential gene expression patterns in smokers are extensive and cluster in several underlying disease pathways. Gene expression differences seem mainly direct consequences of smoking, and largely reversible after smoking cessation. However, we also identified DNA variants that may influence smoking behavior via the mediating gene expression. PMID:26594007

  6. Histone h1 depletion impairs embryonic stem cell differentiation.

    Science.gov (United States)

    Zhang, Yunzhe; Cooke, Marissa; Panjwani, Shiraj; Cao, Kaixiang; Krauth, Beth; Ho, Po-Yi; Medrzycki, Magdalena; Berhe, Dawit T; Pan, Chenyi; McDevitt, Todd C; Fan, Yuhong

    2012-01-01

    Pluripotent embryonic stem cells (ESCs) are known to possess a relatively open chromatin structure; yet, despite efforts to characterize the chromatin signatures of ESCs, the role of chromatin compaction in stem cell fate and function remains elusive. Linker histone H1 is important for higher-order chromatin folding and is essential for mammalian embryogenesis. To investigate the role of H1 and chromatin compaction in stem cell pluripotency and differentiation, we examine the differentiation of embryonic stem cells that are depleted of multiple H1 subtypes. H1c/H1d/H1e triple null ESCs are more resistant to spontaneous differentiation in adherent monolayer culture upon removal of leukemia inhibitory factor. Similarly, the majority of the triple-H1 null embryoid bodies (EBs) lack morphological structures representing the three germ layers and retain gene expression signatures characteristic of undifferentiated ESCs. Furthermore, upon neural differentiation of EBs, triple-H1 null cell cultures are deficient in neurite outgrowth and lack efficient activation of neural markers. Finally, we discover that triple-H1 null embryos and EBs fail to fully repress the expression of the pluripotency genes in comparison with wild-type controls and that H1 depletion impairs DNA methylation and changes of histone marks at promoter regions necessary for efficiently silencing pluripotency gene Oct4 during stem cell differentiation and embryogenesis. In summary, we demonstrate that H1 plays a critical role in pluripotent stem cell differentiation, and our results suggest that H1 and chromatin compaction may mediate pluripotent stem cell differentiation through epigenetic repression of the pluripotency genes.

  7. miR-140-5p regulates hypoxia-mediated human pulmonary artery smooth muscle cell proliferation, apoptosis and differentiation by targeting Dnmt1 and promoting SOD2 expression

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yanwei; Xu, Jing, E-mail: xujingdoc@163.com

    2016-04-22

    miR-140-5p is down-regulated in patients with pulmonary arterial hypertension (PAH) and experimental models of PAH, and inhibits hypoxia-mediated pulmonary artery smooth muscle cell (PASMC) proliferation in vitro. Delivery of synthetic miR-140-5p prevents and treats established, experimental PAH. DNA methyltransferase 1 (Dnmt1) is up-regulated in PAH associated human PASMCs (HPASMCs), which promotes the development of PAH by hypermethylation of CpG islands within the promoter for superoxide dismutase 2 (SOD2) and down-regulating SOD2 expression. We searched for miR-140-5p targets using TargetScan, PicTar and MiRanda tools, and found that Dnmt1 is a potential target of miR-140-5p. Based on these findings, we speculated that miR-140-5p might target Dnmt1 and regulate SOD2 expression to regulate hypoxia-mediated HPASMC proliferation, apoptosis and differentiation. We detected the expression of miR-140-5p, Dnmt1 and SOD2 by quantitative real-time polymerase chain reaction (qRT-PCR) and western blot assays, respectively, and found down-regulation of miR-140-5p and SOD2 and up-regulation of Dnmt1 exist in PAH tissues and hypoxia-mediated HPASMCs. Cell proliferation, apoptosis and differentiation detection showed that miR-140-5p inhibits proliferation and promotes apoptosis and differentiation of HPASMCs in hypoxia, while the effect of Dnmt1 on hypoxia-mediated HPASMCs is reversed. Luciferase assay confirmed that miR-140-5p targets Dnmt1 directly. An inverse correlation is also found between miR-140-5p and Dnmt1 in HPASMCs. In addition, we further investigated whether miR-140-5p and Dnmt1 regulate HPASMC proliferation, apoptosis and differentiation by regulating SOD2 expression, and the results confirmed our speculation. Taken together, these results indicated that miR-140-5p at least partly targets Dnmt1 and regulates SOD2 expression to inhibit proliferation and promote apoptosis and differentiation of HPASMCs in hypoxia. - Highlights: • miR-140-5p and SOD2 are down

  8. Effects of 2-deoxy-D-glucose and quercetin on the expression of osteonectin and osteopontin during the differentiation of irradiated MC3T3-E1 osteoblastic cells

    International Nuclear Information System (INIS)

    Yu, Su Kyung; Koh, Kwang Joon; Kim, Kyoung A

    2008-01-01

    To characterize the effects of 2-deoxy-D-glucose (2-DG) and quercetin (QCT) on gene expression of osteonectin (ON) and osteopontin (OP) in irradiated MC3T3-E1 cells. When MC3T3-E1 osteoblastic cells had reached 70-80% confluence, cultures were transferred to a differentiating medium supplemented with 5 mM 2-DG or 10 μM QCT and then irradiated with 2, 4, 6, and 8 Gy. At various times after irradiation, the cells were analyzed for the expression of bone mineralization genes such as ON and OP. The mRNA expression of both ON and OP was increased according to the culture time in the differentiation medium, and the increase of the genes peaked at 14 days after the differentiation induction. In the case of OP, the increase of mRNA expression was maintained to 28 days after the differentiation, while the mRNA level of ON was reduced to the basal level at the same time. Irradiation adding 2-DG showed a significant peak value in the expression pattern of ON at 4 Gy 7 days after irradiation. Irradiation adding QCT increased the mRNA expression of ON and OP in a dose-dependant manner, but irradiation adding 2-DG did not show any differences between the control and experiments 14 days after irradiation. Irradiation adding QCT increased significantly the expression patterns of ON 21 days after irradiation. The results showed that QCT acted as a radiosensitizer in the gene expression of ON and OP during differentiation of the late stage of irradiated MC3T3-E1 osteoblastic cells in vitro.

  9. PKCα expression regulated by Elk-1 and MZF-1 in human HCC cells

    International Nuclear Information System (INIS)

    Hsieh, Y.-H.; Wu, T.-T.; Tsai, J.-H.; Huang, C.-Y.; Hsieh, Y.-S.; Liu, J.-Y.

    2006-01-01

    Our previous study found that PKCα was highly expressed in the poor-differentiated human HCC cells and associated with cell migration and invasion. In this study, we further investigated the gene regulation of this enzyme. We showed that PKCα expression enhancement in the poor-differentiated human HCC cells was found neither by DNA amplification nor by increasing mRNA stability using differential PCR and mRNA decay assays. After screening seven transcription factors in the putative cis-acting regulatory elements of human PKCα promoters, only Elk-1 and MZF-1 antisense oligonucleotide showed a significant reduction in the PKCα mRNA level. They also reduced cell proliferation, cell migratory and invasive capabilities, and DNA binding activities in the PKCα promoter region. Over-expression assay confirmed that the PKCα expression may be modulated by these two factors at the transcriptional level. Therefore, these results may provide a novel mechanism for PKCα expression regulation in human HCC cells

  10. Human immunodeficiency virus type 1 enhancer-binding protein 3 is essential for the expression of asparagine-linked glycosylation 2 in the regulation of osteoblast and chondrocyte differentiation.

    Science.gov (United States)

    Imamura, Katsuyuki; Maeda, Shingo; Kawamura, Ichiro; Matsuyama, Kanehiro; Shinohara, Naohiro; Yahiro, Yuhei; Nagano, Satoshi; Setoguchi, Takao; Yokouchi, Masahiro; Ishidou, Yasuhiro; Komiya, Setsuro

    2014-04-04

    Human immunodeficiency virus type 1 enhancer-binding protein 3 (Hivep3) suppresses osteoblast differentiation by inducing proteasomal degradation of the osteogenesis master regulator Runx2. In this study, we tested the possibility of cooperation of Hivep1, Hivep2, and Hivep3 in osteoblast and/or chondrocyte differentiation. Microarray analyses with ST-2 bone stroma cells demonstrated that expression of any known osteochondrogenesis-related genes was not commonly affected by the three Hivep siRNAs. Only Hivep3 siRNA promoted osteoblast differentiation in ST-2 cells, whereas all three siRNAs cooperatively suppressed differentiation in ATDC5 chondrocytes. We further used microarray analysis to identify genes commonly down-regulated in both MC3T3-E1 osteoblasts and ST-2 cells upon knockdown of Hivep3 and identified asparagine-linked glycosylation 2 (Alg2), which encodes a mannosyltransferase residing on the endoplasmic reticulum. The Hivep3 siRNA-mediated promotion of osteoblast differentiation was negated by forced Alg2 expression. Alg2 suppressed osteoblast differentiation and bone formation in cultured calvarial bone. Alg2 was immunoprecipitated with Runx2, whereas the combined transfection of Runx2 and Alg2 interfered with Runx2 nuclear localization, which resulted in suppression of Runx2 activity. Chondrocyte differentiation was promoted by Hivep3 overexpression, in concert with increased expression of Creb3l2, whose gene product is the endoplasmic reticulum stress transducer crucial for chondrogenesis. Alg2 silencing suppressed Creb3l2 expression and chondrogenesis of ATDC5 cells, whereas infection of Alg2-expressing virus promoted chondrocyte maturation in cultured cartilage rudiments. Thus, Alg2, as a downstream mediator of Hivep3, suppresses osteogenesis, whereas it promotes chondrogenesis. To our knowledge, this study is the first to link a mannosyltransferase gene to osteochondrogenesis.

  11. Id2 reinforces TH1 cell differentiation and inhibits E2A to repress TFH cell differentiation

    Science.gov (United States)

    Shaw, Laura A.; Bélanger, Simon; Omilusik, Kyla D.; Cho, Sunglim; Scott-Browne, James P.; Nance, J. Philip; Goulding, John; Lasorella, Anna; Lu, Li-Fan; Crotty, Shane; Goldrath, Ananda W.

    2016-01-01

    Differentiation of T helper (TH) effector subsets is critical for host protection. E protein transcription factors and Id proteins are important arbiters of T cell development, but their role in differentiation of TH1 and TFH cells is not well understood. TH1 cells showed robust Id2 expression compared to TFH cells, and RNAi depletion of Id2 increased TFH cell frequencies. Further, TH1 cell differentiation was blocked by Id2 deficiency, leading to E protein-dependent accumulation of effector cells with mixed characteristics during viral infection and severely impaired generation of TH1 cells following Toxoplasma gondii infection. The TFH-defining transcriptional repressor Bcl6 bound the Id2 locus, providing a mechanism for the bimodal Id2 expression and reciprocal development of TH1 and TFH cell fates. PMID:27213691

  12. Zfp206 regulates ES cell gene expression and differentiation.

    Science.gov (United States)

    Zhang, Wen; Walker, Emily; Tamplin, Owen J; Rossant, Janet; Stanford, William L; Hughes, Timothy R

    2006-01-01

    Understanding transcriptional regulation in early developmental stages is fundamental to understanding mammalian development and embryonic stem (ES) cell properties. Expression surveys suggest that the putative SCAN-Zinc finger transcription factor Zfp206 is expressed specifically in ES cells [Zhang,W., Morris,Q.D., Chang,R., Shai,O., Bakowski,M.A., Mitsakakis,N., Mohammad,N., Robinson,M.D., Zirngibl,R., Somogyi,E. et al., (2004) J. Biol., 3, 21; Brandenberger,R., Wei,H., Zhang,S., Lei,S., Murage,J., Fisk,G.J., Li,Y., Xu,C., Fang,R., Guegler,K. et al., (2004) Nat. Biotechnol., 22, 707-716]. Here, we confirm this observation, and we show that ZFP206 expression decreases rapidly upon differentiation of cultured mouse ES cells, and during development of mouse embryos. We find that there are at least six isoforms of the ZFP206 transcript, the longest being predominant. Overexpression and depletion experiments show that Zfp206 promotes formation of undifferentiated ES cell clones, and positively regulates abundance of a very small set of transcripts whose expression is also specific to ES cells and the two- to four-cell stages of preimplantation embryos. This set includes members of the Zscan4, Thoc4, Tcstv1 and eIF-1A gene families, none of which have been functionally characterized in vivo but whose members include apparent transcription factors, RNA-binding proteins and translation factors. Together, these data indicate that Zfp206 is a regulator of ES cell differentiation that controls a set of genes expressed very early in development, most of which themselves appear to be regulators.

  13. Mechanical stimulation increases proliferation, differentiation and protein expression in culture

    DEFF Research Database (Denmark)

    Grossi, Alberto; Yadav, Kavita; Lawson, Moira Ann

    2007-01-01

    Myogenesis is a complex sequence of events, including the irreversible transition from the proliferation-competent myoblast stage into fused, multinucleated myotubes. Myogenic differentiation is regulated by positive and negative signals from surrounding tissues. Stimulation due to stretch- or load...... to elucidate also the signaling pathway by which this mechanical stimulation can causes an increase in protein expression. When mechanically stimulated via laminin receptors on cell surface, C(2)C(12) cells showed an increase in cell proliferation and differentiation. Populations undergoing mechanical...... stimulation through laminin receptors show an increase in expression of Myo-D, myogenin and an increase in ERK1/2 phosphorylation. Cells stimulated via fibronectin receptors show no significant increases in fusion competence. We conclude that load induced signalling through integrin containing laminin...

  14. Presenilin expression during induced differentiation of the human neuroblastoma SH-SY5Y cell line.

    Science.gov (United States)

    Flood, Fiona; Sundström, Erik; Samuelsson, Eva-Britt; Wiehager, Birgitta; Seiger, Ake; Johnston, Janet A; Cowburn, Richard F

    2004-06-01

    Human neuroblastoma SH-SY5Y cells stably transfected with both wild-type and exon-9 deleted (deltaE9) presenilin constructs were used to study the role of the presenilin proteins during differentiation. Cells transfected with either wild-type or deltaE9 PS1, of which the latter abolishes normal endoproteolytic cleavage of the protein, showed no obvious differences in their ability to differentiate to a neuronal-like phenotype upon treatment with retinoic acid (RA). A defined pattern of PS1 expression was observed during differentiation with both RA and the phorbol ester TPA. Full-length PS1 was shown to increase dramatically within 5-24 h of RA treatment. TPA gave an earlier and longer lasting increase in full-length PS1 levels. The intracellular distribution pattern of PS1 was markedly altered following RA treatment. Within 24h PS1 was highly up-regulated throughout the cell body around the nucleus. Between 2 and 4 weeks PS1 staining appeared punctate and also localised to the nucleus. Increases in PS1 expression upon treatment with RA and TPA were blocked by treatment with cycloheximide, indicating a role of de-novo protein synthesis in this effect. PS2 expression remained unchanged during differentiation. Levels of full-length PS1 were also seen to increase during neurogenesis and neuronal differentiation in the forebrain of first trimester human foetuses between 6.5 and 11 weeks. These combined observations support the idea that PS1 is involved in neuronal differentiation by a mechanism likely independent of endoproteolysis of the protein.

  15. Gene expression profiling of bone marrow mesenchymal stem cells from Osteogenesis Imperfecta patients during osteoblast differentiation.

    Science.gov (United States)

    Kaneto, Carla Martins; Pereira Lima, Patrícia S; Prata, Karen Lima; Dos Santos, Jane Lima; de Pina Neto, João Monteiro; Panepucci, Rodrigo Alexandre; Noushmehr, Houtan; Covas, Dimas Tadeu; de Paula, Francisco José Alburquerque; Silva, Wilson Araújo

    2017-06-01

    Mesenchymal stem cells (MSCs) are precursors present in adult bone marrow that are able to differentiate into osteoblasts, adipocytes and chondroblasts that have gained great importance as a source for cell therapy. Recently, a number of studies involving the analysis of gene expression of undifferentiated MSCs and of MSCs in the differentiation into multiple lineage processes were observed but there is no information concerning the gene expression of MSCs from Osteogenesis Imperfecta (OI) patients. Osteogenesis Imperfecta is characterized as a genetic disorder in which a generalized osteopenia leads to excessive bone fragility and severe bone deformities. The aim of this study was to analyze gene expression profile during osteogenic differentiation from BMMSCs (Bone Marrow Mesenchymal Stem Cells) obtained from patients with Osteogenesis Imperfecta and from control subjects. Bone marrow samples were collected from three normal subjects and five patients with OI. Mononuclear cells were isolated for obtaining mesenchymal cells that had been expanded until osteogenic differentiation was induced. RNA was harvested at seven time points during the osteogenic differentiation period (D0, D+1, D+2, D+7, D+12, D+17 and D+21). Gene expression analysis was performed by the microarray technique and identified several differentially expressed genes. Some important genes for osteoblast differentiation had lower expression in OI patients, suggesting a smaller commitment of these patient's MSCs with the osteogenic lineage. Other genes also had their differential expression confirmed by RT-qPCR. An increase in the expression of genes related to adipocytes was observed, suggesting an increase of adipogenic differentiation at the expense osteogenic differentiation. Copyright © 2017. Published by Elsevier Masson SAS.

  16. Citrus aurantium L. dry extracts promote C/ebpβ expression and improve adipocyte differentiation in 3T3-L1 cells.

    Science.gov (United States)

    Raciti, Gregory Alexander; Fiory, Francesca; Campitelli, Michele; Desiderio, Antonella; Spinelli, Rosa; Longo, Michele; Nigro, Cecilia; Pepe, Giacomo; Sommella, Eduardo; Campiglia, Pietro; Formisano, Pietro; Beguinot, Francesco; Miele, Claudia

    2018-01-01

    Metabolic and/or endocrine dysfunction of the white adipose tissue (WAT) contribute to the development of metabolic disorders, such as Type 2 Diabetes (T2D). Therefore, the identification of products able to improve adipose tissue function represents a valuable strategy for the prevention and/or treatment of T2D. In the current study, we investigated the potential effects of dry extracts obtained from Citrus aurantium L. fruit juice (CAde) on the regulation of 3T3-L1 cells adipocyte differentiation and function in vitro. We found that CAde enhances terminal adipocyte differentiation of 3T3-L1 cells raising the expression of CCAAT/enhancer binding protein beta (C/Ebpβ), peroxisome proliferator activated receptor gamma (Pparγ), glucose transporter type 4 (Glut4) and fatty acid binding protein 4 (Fabp4). CAde improves insulin-induced glucose uptake of 3T3-L1 adipocytes, as well. A focused analysis of the phases occurring in the pre-adipocytes differentiation to mature adipocytes furthermore revealed that CAde promotes the early differentiation stage by up-regulating C/ebpβ expression at 2, 4 and 8 h post the adipogenic induction and anticipating the 3T3-L1 cell cycle entry and progression during mitotic clonal expansion (MCE). These findings provide evidence that the exposure to CAde enhances in vitro fat cell differentiation of pre-adipocytes and functional capacity of mature adipocytes, and pave the way to the development of products derived from Citrus aurantium L. fruit juice, which may improve WAT functional capacity and may be effective for the prevention and/or treatment of T2D.

  17. Epigenetically induced ectopic expression of UNCX impairs the proliferation and differentiation of myeloid cells.

    Science.gov (United States)

    Daniele, Giulia; Simonetti, Giorgia; Fusilli, Caterina; Iacobucci, Ilaria; Lonoce, Angelo; Palazzo, Antonio; Lomiento, Mariana; Mammoli, Fabiana; Marsano, Renè Massimiliano; Marasco, Elena; Mantovani, Vilma; Quentmeier, Hilmar; Drexler, Hans G; Ding, Jie; Palumbo, Orazio; Carella, Massimo; Nadarajah, Niroshan; Perricone, Margherita; Ottaviani, Emanuela; Baldazzi, Carmen; Testoni, Nicoletta; Papayannidis, Cristina; Ferrari, Sergio; Mazza, Tommaso; Martinelli, Giovanni; Storlazzi, Clelia Tiziana

    2017-07-01

    We here describe a leukemogenic role of the homeobox gene UNCX , activated by epigenetic modifications in acute myeloid leukemia (AML). We found the ectopic activation of UNCX in a leukemia patient harboring a t(7;10)(p22;p14) translocation, in 22 of 61 of additional cases [a total of 23 positive patients out of 62 (37.1%)], and in 6 of 75 (8%) of AML cell lines. UNCX is embedded within a low-methylation region (canyon) and encodes for a transcription factor involved in somitogenesis and neurogenesis, with specific expression in the eye, brain, and kidney. UNCX expression turned out to be associated, and significantly correlated, with DNA methylation increase at its canyon borders based on data in our patients and in archived data of patients from The Cancer Genome Atlas. UNCX -positive and -negative patients displayed significant differences in their gene expression profiles. An enrichment of genes involved in cell proliferation and differentiation, such as MAP2K1 and CCNA1 , was revealed. Similar results were obtained in UNCX -transduced CD34 + cells, associated with low proliferation and differentiation arrest. Accordingly, we showed that UNCX expression characterizes leukemia cells at their early stage of differentiation, mainly M2 and M3 subtypes carrying wild-type NPM1 We also observed that UNCX expression significantly associates with an increased frequency of acute promyelocytic leukemia with PML-RARA and AML with t(8;21)(q22;q22.1); RUNX1-RUNX1T1 classes, according to the World Health Organization disease classification. In summary, our findings suggest a novel leukemogenic role of UNCX , associated with epigenetic modifications and with impaired cell proliferation and differentiation in AML. Copyright© 2017 Ferrata Storti Foundation.

  18. A 250-GHz CARM [Cyclotron Auto Resonance Maser] oscillator experiment driven by an induction linac

    International Nuclear Information System (INIS)

    Caplan, M.; Kulke, B.; Bubp, D.G.; McDermott, D.; Luhmann, N.

    1990-01-01

    A 250-GHz Cyclotron Auto Resonance Maser (CARM) oscillator has been designed and constructed and will be tested using a 1-kA, 2-MeV electron beam produced by the induction linac at the Accelerator Research Center (ARC) facility of Lawrence Livermore National Laboratory (LLNL). The oscillator circuit was made to operate in the TE 11 mode at ten times cutoff using waveguide Bragg reflectors to create an external cavity Q of 8000. Theory predicts cavity fill times of less than 30 ns (pulse length) and efficiencies approaching 20% is sufficiently low transverse electron velocity spreads are maintained (2%)

  19. Interventional heart wall motion analysis with cardiac C-arm CT systems

    International Nuclear Information System (INIS)

    Müller, Kerstin; Maier, Andreas K; Schwemmer, Chris; Hornegger, Joachim; Zheng, Yefeng; Wang, Yang; Lauritsch, Günter; Rohkohl, Christopher; Fahrig, Rebecca

    2014-01-01

    Today, quantitative analysis of three-dimensional (3D) dynamics of the left ventricle (LV) cannot be performed directly in the catheter lab using a current angiographic C-arm system, which is the workhorse imaging modality for cardiac interventions. Therefore, myocardial wall analysis is completely based on the 2D angiographic images or pre-interventional 3D/4D imaging. In this paper, we present a complete framework to study the ventricular wall motion in 4D (3D+t) directly in the catheter lab. From the acquired 2D projection images, a dynamic 3D surface model of the LV is generated, which is then used to detect ventricular dyssynchrony. Different quantitative features to evaluate LV dynamics known from other modalities (ultrasound, magnetic resonance imaging) are transferred to the C-arm CT data. We use the ejection fraction, the systolic dyssynchrony index a 3D fractional shortening and the phase to maximal contraction (ϕ i, max ) to determine an indicator of LV dyssynchrony and to discriminate regionally pathological from normal myocardium. The proposed analysis tool was evaluated on simulated phantom LV data with and without pathological wall dysfunctions. The LV data used is publicly available online at https://conrad.stanford.edu/data/heart. In addition, the presented framework was tested on eight clinical patient data sets. The first clinical results demonstrate promising performance of the proposed analysis tool and encourage the application of the presented framework to a larger study in clinical practice. (paper)

  20. Bach2 is involved in neuronal differentiation of N1E-115 neuroblastoma cells

    International Nuclear Information System (INIS)

    Shim, Ki Shuk; Rosner, Margit; Freilinger, Angelika; Lubec, Gert; Hengstschlaeger, Markus

    2006-01-01

    Bach1 and Bach2 are evolutionarily related members of the BTB-basic region leucine zipper transcription factor family. We found that Bach2 downregulates cell proliferation of N1E-115 cells and negatively affects their potential to differentiate. Nuclear localization of the cyclin-dependent kinase inhibitor p21 is known to arrest cell cycle progression, and cytoplasmic p21 has been shown to promote neuronal differentiation of N1E-115 cells. We found that ectopic Bach2 causes upregulation of p21 expression in the nucleus and in the cytoplasm in undifferentiated N1E-115 cells. In differentiated cells, Bach2 specifically triggers upregulation of cytoplasmic p21. Our data suggest that Bach2 expression could represent a switch during the process of neuronal differentiation. Bach2 is not expressed in neuronal precursor cells. It would have negative effects on proliferation and differentiation of these cells. In differentiated neuronal cells Bach2 expression is upregulated, which could allow Bach2 to function as a gatekeeper of the differentiated status

  1. Evaluation of malrotation following intramedullary nailing in a femoral shaft fracture model: Can a 3D c-arm improve accuracy?

    Science.gov (United States)

    Ramme, Austin J; Egol, Jonathan; Chang, Gregory; Davidovitch, Roy I; Konda, Sanjit

    2017-07-01

    Difficulty determining anatomic rotation following intramedullary (IM) nailing of the femur continues to be problematic for surgeons. Clinical exam and fluoroscopic imaging of the hip and knee have been used to estimate femoral version, but are inaccurate. We hypothesize that 3D c-arm imaging can be used to accurately measure femoral version following IM nailing of femur fractures to prevent rotational malreduction. A midshaft osteotomy was created in a femur Sawbone to simulate a transverse diaphyseal fracture. An intramedullary (IM) nail was inserted into the Sawbone femur without locking screws or cephalomedullary fixation. A goniometer was used to simulate four femoral version situations after IM nailing: 20° retroversion, 0° version, 15° anteversion, and 30° anteversion. In each simulated position, 3D c-arm imaging and, for comparison purposes, perfect lateral radiographs of the knee and hip were performed. The femoral version of each simulated 3D and fluoroscopic case was measured and the results were tabulated. The measured version from the 3D c-arm images was 22.25° retroversion, 0.66° anteversion, 19.53° anteversion, and 25.15° anteversion for the simulated cases of 20° retroversion, 0° version, 15° anteversion, and 30° anteversion, respectively. The lateral fluoroscopic views were measured to be 9.66° retroversion, 12.12° anteversion, 20.91° anteversion, and 18.77° anteversion for the simulated cases, respectively. This study demonstrates the utility of a novel intraoperative method to evaluate femur rotational malreduction following IM nailing. The use of 3D c-arm imaging to measure femoral version offers accuracy and reproducibility. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. DEEP--a tool for differential expression effector prediction.

    Science.gov (United States)

    Degenhardt, Jost; Haubrock, Martin; Dönitz, Jürgen; Wingender, Edgar; Crass, Torsten

    2007-07-01

    High-throughput methods for measuring transcript abundance, like SAGE or microarrays, are widely used for determining differences in gene expression between different tissue types, dignities (normal/malignant) or time points. Further analysis of such data frequently aims at the identification of gene interaction networks that form the causal basis for the observed properties of the systems under examination. To this end, it is usually not sufficient to rely on the measured gene expression levels alone; rather, additional biological knowledge has to be taken into account in order to generate useful hypotheses about the molecular mechanism leading to the realization of a certain phenotype. We present a method that combines gene expression data with biological expert knowledge on molecular interaction networks, as described by the TRANSPATH database on signal transduction, to predict additional--and not necessarily differentially expressed--genes or gene products which might participate in processes specific for either of the examined tissues or conditions. In a first step, significance values for over-expression in tissue/condition A or B are assigned to all genes in the expression data set. Genes with a significance value exceeding a certain threshold are used as starting points for the reconstruction of a graph with signaling components as nodes and signaling events as edges. In a subsequent graph traversal process, again starting from the previously identified differentially expressed genes, all encountered nodes 'inherit' all their starting nodes' significance values. In a final step, the graph is visualized, the nodes being colored according to a weighted average of their inherited significance values. Each node's, or sub-network's, predominant color, ranging from green (significant for tissue/condition A) over yellow (not significant for either tissue/condition) to red (significant for tissue/condition B), thus gives an immediate visual clue on which molecules--differentially

  3. Dissection of regulatory networks that are altered in disease via differential co-expression.

    Directory of Open Access Journals (Sweden)

    David Amar

    Full Text Available Comparing the gene-expression profiles of sick and healthy individuals can help in understanding disease. Such differential expression analysis is a well-established way to find gene sets whose expression is altered in the disease. Recent approaches to gene-expression analysis go a step further and seek differential co-expression patterns, wherein the level of co-expression of a set of genes differs markedly between disease and control samples. Such patterns can arise from a disease-related change in the regulatory mechanism governing that set of genes, and pinpoint dysfunctional regulatory networks. Here we present DICER, a new method for detecting differentially co-expressed gene sets using a novel probabilistic score for differential correlation. DICER goes beyond standard differential co-expression and detects pairs of modules showing differential co-expression. The expression profiles of genes within each module of the pair are correlated across all samples. The correlation between the two modules, however, differs markedly between the disease and normal samples. We show that DICER outperforms the state of the art in terms of significance and interpretability of the detected gene sets. Moreover, the gene sets discovered by DICER manifest regulation by disease-specific microRNA families. In a case study on Alzheimer's disease, DICER dissected biological processes and protein complexes into functional subunits that are differentially co-expressed, thereby revealing inner structures in disease regulatory networks.

  4. TGFb signalling inhibits DLK1 expression during chondrogenesis in vitro

    DEFF Research Database (Denmark)

    Harkness, Linda; Taipaleenmaki, Hanna; Saamanen, Anna-Marja

    2011-01-01

    the effect of a number of signalling molecules on DLK1 expression during in vitro chondrogenic differentiation in mouse embryonic limb bud mesenchymal micromass cultures and mouse embryonic fibroblast (MEF) pellet cultures. Dlk1 was initially expressed during mesenchymal condensation and chondrocyte...... proliferation, in parallel with expression of Sox9 and Col2a1, and was down-regulated upon expression of Col10a1 by hypertrophic chondrocytes. Among a number of molecules that affected chondrogenesis, TGF-b signalling regulated Dlk1expression. TGF-b1-induced chondrogenesis was associated with decreased Dlk1...... expression and these effects were abolished by the TGF-b signalling inhibitor SB4311542 suggesting an involvement of DLK1/FA1 in mediating the function of TGF-b1 signalling in chondrogenesis. In support of this hypothesis, we found that TGF-b1 enhanced chondrocyte differentiation in dlk1-/- MEF compared...

  5. Ectopic expression and knocking-down of LINE-1 mRNA in human mesenchymal stem cells: impact on in vitro osteogenic and adipogenic differentiation

    KAUST Repository

    Atinbayeva, Nazerke

    2018-01-01

    on the acquisition of a terminally differentiated phenotype. In contrast, soon after MSCs commitment into pre-osteoblasts, L1 retrotransposable elements increase their expression and actively transpose. Inhibition of retrotransposition and knock down of L1 m

  6. Lactate induces osteoblast differentiation by stabilization of HIF1α.

    Science.gov (United States)

    Wu, Yu; Wang, Miaomiao; Feng, Haihua; Peng, Ying; Sun, Jieyun; Qu, Xiuxia; Li, Chunping

    2017-09-05

    Aerobic glycolysis is involved in osteoblast differentiation induced by Wnt signaling or PTH treatment. However, it is still unclear whether lactate, the end product of aerobic glycolysis, plays any role in osteoblast differentiation. Herein we report that in cultures of osteoblast-lineage cells, lactate promoted alkaline phosphatase-positive cell formation, increased the activity of alkaline phosphatase, and induced the expression of osteocalcin. This osteoblast differentiation-inducing effect of lactate can be inhibited by blocking its entry into cells with MCT1 siRNA or inhibitors, and by interfering with its metabolism by using specific siRNAs for LDHB and PDH. Moreover, lactate stabilized HIF1α expression and inhibited HIF1α activity, with BAY87-2243 lowering the osteoblast differentiation-inducing effect of lactate. Thus, these findings reveal an unrecognized role for aerobic glycolysis in osteoblast differentiation via its end product, lactate. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Differential hexosamine biosynthetic pathway gene expression with type 2 diabetes

    Directory of Open Access Journals (Sweden)

    Megan Coomer

    2014-01-01

    Full Text Available The hexosamine biosynthetic pathway (HBP culminates in the attachment of O-linked β-N-acetylglucosamine (O-GlcNAc onto serine/threonine residues of target proteins. The HBP is regulated by several modulators, i.e. O-linked β-N-acetylglucosaminyl transferase (OGT and β-N-acetylglucosaminidase (OGA catalyze the addition and removal of O-GlcNAc moieties, respectively; while flux is controlled by the rate-limiting enzyme glutamine:fructose-6-phosphate amidotransferase (GFPT, transcribed by two genes, GFPT1 and GFPT2. Since increased HBP flux is glucose-responsive and linked to insulin resistance/type 2 diabetes onset, we hypothesized that diabetic individuals exhibit differential expression of HBP regulatory genes. Volunteers (n = 60; n = 20 Mixed Ancestry, n = 40 Caucasian were recruited from Stellenbosch and Paarl (Western Cape, South Africa and classified as control, pre- or diabetic according to fasting plasma glucose and HbA1c levels, respectively. RNA was purified from leukocytes isolated from collected blood samples and OGT, OGA, GFPT1 and GFPT2 expressions determined by quantitative real-time PCR. The data reveal lower OGA expression in diabetic individuals (P < 0.01, while pre- and diabetic subjects displayed attenuated OGT expression vs. controls (P < 0.01 and P < 0.001, respectively. Moreover, GFPT2 expression decreased in pre- and diabetic Caucasians vs. controls (P < 0.05 and P < 0.01, respectively. We also found ethnic differences, i.e. Mixed Ancestry individuals exhibited a 2.4-fold increase in GFPT2 expression vs. Caucasians, despite diagnosis (P < 0.01. Gene expression of HBP regulators differs between diabetic and non-diabetic individuals, together with distinct ethnic-specific gene profiles. Thus differential HBP gene regulation may offer diagnostic utility and provide candidate susceptibility genes for different ethnic groupings.

  8. Supplementary Material for: Global expression differences and tissue specific expression differences in rice evolution result in two contrasting types of differentially expressed genes

    KAUST Repository

    Horiuchi, Youko; Harushima, Yoshiaki; Fujisawa, Hironori; Mochizuki, Takako; Fujita, Masahiro; Ohyanagi, Hajime; Kurata, Nori

    2015-01-01

    Abstract Background Since the development of transcriptome analysis systems, many expression evolution studies characterized evolutionary forces acting on gene expression, without explicit discrimination between global expression differences and tissue specific expression differences. However, different types of gene expression alteration should have different effects on an organism, the evolutionary forces that act on them might be different, and different types of genes might show different types of differential expression between species. To confirm this, we studied differentially expressed (DE) genes among closely related groups that have extensive gene expression atlases, and clarified characteristics of different types of DE genes including the identification of regulating loci for differential expression using expression quantitative loci (eQTL) analysis data. Results We detected differentially expressed (DE) genes between rice subspecies in five homologous tissues that were verified using japonica and indica transcriptome atlases in public databases. Using the transcriptome atlases, we classified DE genes into two types, global DE genes and changed-tissues DE genes. Global type DE genes were not expressed in any tissues in the atlas of one subspecies, however changed-tissues type DE genes were expressed in both subspecies with different tissue specificity. For the five tissues in the two japonica-indica combinations, 4.6 ± 0.8 and 5.9 ± 1.5 % of highly expressed genes were global and changed-tissues DE genes, respectively. Changed-tissues DE genes varied in number between tissues, increasing linearly with the abundance of tissue specifically expressed genes in the tissue. Molecular evolution of global DE genes was rapid, unlike that of changed-tissues DE genes. Based on gene ontology, global and changed-tissues DE genes were different, having no common GO terms. Expression differences of most global DE genes were regulated by cis

  9. Differentiation of Spermatogonia Stem Cells into Functional Mature Neurons Characterized with Differential Gene Expression.

    Science.gov (United States)

    Bojnordi, Maryam Nazm; Azizi, Hossein; Skutella, Thomas; Movahedin, Mansoureh; Pourabdolhossein, Fereshteh; Shojaei, Amir; Hamidabadi, Hatef Ghasemi

    2017-09-01

    Transplantation of embryonic stem cells (ESCs) is a promising therapeutic approach for the treatment of neurodegenerative diseases. However, ESCs are not usable clinically due to immunological and ethical limitations. The identification of an alternative safe cell source opens novel options via autologous transplantation in neuro-regeneration circumventing these problems. Here, we examined the neurogenic capacity of embryonic stem-like cells (ES-like cells) derived from the testis using neural growth factor inducers and utilized them to generate functional mature neurons. The neuronal differentiation of ES-like cells is induced in three stages. Stage 1 is related to embryoid body (EB) formation. To induce neuroprogenitor cells, EBs were cultured in the presence of retinoic acid, N 2 supplement and fibroblast growth factor followed by culturing in a neurobasal medium containing B 27 , N 2 supplements for additional 10 days, to allow the maturation and development of neuronal progenitor cells. The neurogenic differentiation was confirmed by immunostaining for markers of mature neurons. The differentiated neurons were positive for Tuj1 and Tau1. Real-time PCR dates indicated the expression of Nestin and Neuro D (neuroprogenitor markers) in induced cells at the second stage of the differentiation protocol. The differentiated mature neurons exhibited the specific neuron markers Map2 and β-tubulin. The functional maturity of neurons was confirmed by an electrophysiological analysis of passive and active neural membrane properties. These findings indicated a differentiation capacity of ES-like cells derived from the testis to functionally mature neurons, which proposes them as a novel cell source for neuroregenerative medicine.

  10. Differential expressions of putative genes in various floral organs of ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-06-03

    Jun 3, 2009 ... Full Length Research Paper. Differential expressions of putative genes in various floral organs of the Pigeon orchid (Dendrobium crumenatum) using GeneFishing. Faridah, Q. Z.1, 2, Ng, B. Z.3, Raha, A. R.4, Umi, K. A. B.5 and Khosravi, A. R.2*. 1Department of Biology, Faculty Science, University Putra ...

  11. Radiation protection for an intraoperative X-ray source compared to C-arm fluoroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, Frank; Clausen, Sven; Jahnke, Anika; Steil, Volker; Wenz, Frederik [Heidelberg Univ., University Medical Center Mannheim (Germany). Dept. of Radiation Oncology; Bludau, Frederic; Obertacke, Udo [Heidelberg Univ., University Medical Center Mannheim (Germany). Dept. of Trauma Surgery; Suetterlin, Marc [Heidelberg Univ., University Medical Center Mannheim (Germany). Dept. of Obstetrics and Gynaecology

    2014-10-01

    Background: Intraoperative radiotherapy (IORT) using the INTRABEAM {sup registered} system promises a flexible use regarding radiation protection compared to other approaches such as electron treatment or HDR brachytherapy with {sup 192}Ir or {sup 60}Co. In this study we compared dose rate measurements of breast- and Kypho-IORT with C-arm fluoroscopy which is needed to estimate radiation protection areas. Materials and Methods: C-arm fluoroscopy, breast- and Kypho-IORTs were performed using phantoms (silicon breast or bucket of water). Dose rates were measured at the phantom's surface, at 30 cm, 100 cm and 200 cm distance. Those measurements were confirmed during 10 Kypho-IORT and 10 breast-IORT patient treatments. Results: The measured dose rates were in the same magnitude for all three paradigms and ranges from 20 μSv/h during a simulated breast-IORT at two meter distance up to 64 mSv/h directly at the surface of a simulated Kypho-IORT. Those measurements result in a circle of controlled area (yearly doses > 6 mSv) for each paradigm of about 4 m ± 2 m. Discussion/Conclusions: All three paradigms show comparable dose rates which implies that the radiation protection is straight forward and confirms the flexible use of the INTRABEAM {sup registered} system. (orig.)

  12. C-arm Cone Beam Computed Tomography: A New Tool in the Interventional Suite.

    Science.gov (United States)

    Raj, Santhosh; Irani, Farah Gillan; Tay, Kiang Hiong; Tan, Bien Soo

    2013-11-01

    C-arm Cone Beam CT (CBCT) is a technology that is being integrated into many of the newer angiography systems in the interventional suite. Due to its ability to provide cross sectional imaging, it has opened a myriad of opportunities for creating new clinical applications. We review the technical aspects, current reported clinical applications and potential benefits of this technology. Searches were made via PubMed using the string "CBCT", "Cone Beam CT", "Cone Beam Computed Tomography" and "C-arm Cone Beam Computed Tomography". All relevant articles in the results were reviewed. CBCT clinical applications have been reported in both vascular and non-vascular interventions. They encompass many aspects of a procedure including preprocedural planning, intraprocedural guidance and postprocedural assessment. As a result, they have allowed the interventionalist to be safer and more accurate in performing image guided procedures. There are however several technical limitations. The quality of images produced is not comparable to conventional computed tomography (CT). Radiation doses are also difficult to quantify when compared to CT and fluoroscopy. CBCT technology in the interventional suite has contributed significant benefits to the patient despite its current limitations. It is a tool that will evolve and potentially become an integral part of imaging guidance for intervention.

  13. Microarray-based screening of differentially expressed genes in glucocorticoid-induced avascular necrosis

    Science.gov (United States)

    Huang, Gangyong; Wei, Yibing; Zhao, Guanglei; Xia, Jun; Wang, Siqun; Wu, Jianguo; Chen, Feiyan; Chen, Jie; Shi, Jingshen

    2017-01-01

    The underlying mechanisms of glucocorticoid (GC)-induced avascular necrosis of the femoral head (ANFH) have yet to be fully understood, in particular the mechanisms associated with the change of gene expression pattern. The present study aimed to identify key genes with a differential expression pattern in GC-induced ANFH. E-MEXP-2751 microarray data were downloaded from the ArrayExpress database. Differentially expressed genes (DEGs) were identified in 5 femoral head samples of steroid-induced ANFH rats compared with 5 placebo-treated rat samples. Gene Ontology (GO) and pathway enrichment analyses were performed upon these DEGs. A total 93 DEGs (46 upregulated and 47 downregulated genes) were identified in GC-induced ANFH samples. These DEGs were enriched in different GO terms and pathways, including chondrocyte differentiation and detection of chemical stimuli. The enrichment map revealed that skeletal system development was interconnected with several other GO terms by gene overlap. The literature mined network analysis revealed that 5 upregulated genes were associated with femoral necrosis, including parathyroid hormone receptor 1 (PTHR1), vitamin D (1,25-Dihydroxyvitamin D3) receptor (VDR), collagen, type II, α1, proprotein convertase subtilisin/kexin type 6 and zinc finger protein 354C (ZFP354C). In addition, ZFP354C and VDR were identified to transcription factors. Furthermore, PTHR1 was revealed to interact with VDR, and α-2-macroglobulin (A2M) interacted with fibronectin 1 (FN1) in the PPI network. PTHR1 may be involved in GC-induced ANFH via interacting with VDR. A2M may also be involved in the development of GC-induced ANFH through interacting with FN1. An improved understanding of the molecular mechanisms underlying GC-induced ANFH may provide novel targets for diagnostics and therapeutic treatment. PMID:28393228

  14. Microarray‑based screening of differentially expressed genes in glucocorticoid‑induced avascular necrosis.

    Science.gov (United States)

    Huang, Gangyong; Wei, Yibing; Zhao, Guanglei; Xia, Jun; Wang, Siqun; Wu, Jianguo; Chen, Feiyan; Chen, Jie; Shi, Jingshen

    2017-06-01

    The underlying mechanisms of glucocorticoid (GC)‑induced avascular necrosis of the femoral head (ANFH) have yet to be fully understood, in particular the mechanisms associated with the change of gene expression pattern. The present study aimed to identify key genes with a differential expression pattern in GC‑induced ANFH. E‑MEXP‑2751 microarray data were downloaded from the ArrayExpress database. Differentially expressed genes (DEGs) were identified in 5 femoral head samples of steroid‑induced ANFH rats compared with 5 placebo‑treated rat samples. Gene Ontology (GO) and pathway enrichment analyses were performed upon these DEGs. A total 93 DEGs (46 upregulated and 47 downregulated genes) were identified in GC‑induced ANFH samples. These DEGs were enriched in different GO terms and pathways, including chondrocyte differentiation and detection of chemical stimuli. The enrichment map revealed that skeletal system development was interconnected with several other GO terms by gene overlap. The literature mined network analysis revealed that 5 upregulated genes were associated with femoral necrosis, including parathyroid hormone receptor 1 (PTHR1), vitamin D (1,25‑Dihydroxyvitamin D3) receptor (VDR), collagen, type II, α1, proprotein convertase subtilisin/kexin type 6 and zinc finger protein 354C (ZFP354C). In addition, ZFP354C and VDR were identified to transcription factors. Furthermore, PTHR1 was revealed to interact with VDR, and α‑2‑macroglobulin (A2M) interacted with fibronectin 1 (FN1) in the PPI network. PTHR1 may be involved in GC‑induced ANFH via interacting with VDR. A2M may also be involved in the development of GC‑induced ANFH through interacting with FN1. An improved understanding of the molecular mechanisms underlying GC‑induced ANFH may provide novel targets for diagnostics and therapeutic treatment.

  15. Hydroxylation of methylated DNA by TET1 in chondrocyte differentiation of C3H10T1/2 cells

    Directory of Open Access Journals (Sweden)

    Ryo Ito

    2016-03-01

    Full Text Available DNA methylation is closely involved in the regulation of cellular differentiation, including chondrogenic differentiation of mesenchymal stem cells. Recent studies showed that Ten–eleven translocation (TET family proteins converted 5-methylcytosine (5mC to 5-hydroxymethylcytosine, 5-formylcytosine and 5carboxylcytosine by oxidation. These reactions constitute potential mechanisms for active demethylation of methylated DNA. However, the relationship between the DNA methylation patterns and the effects of TET family proteins in chondrocyte differentiation is still unclear. In this study, we showed that DNA hydroxylation of 5mC was increased during chondrocytic differentiation of C3H10T1/2 cells and that the expression of Tet1 was particularly enhanced. Moreover, knockdown experiments revealed that the downregulation of Tet1 expression caused decreases in chondrogenesis markers such as type 2 and type 10 collagens. Furthermore, we found that TET proteins had a site preference for hydroxylation of 5mC on the Insulin-like growth factor 1 (Igf1 promoter in chondrocytes. Taken together, we showed that the expression of Tet1 was specifically facilitated in chondrocyte differentiation and Tet1 can regulate chondrocyte marker gene expression presumably through its hydroxylation activity for DNA.

  16. Extended ellipse-line-ellipse trajectory for long-object cone-beam imaging with a mounted C-arm system

    International Nuclear Information System (INIS)

    Yu, Zhicong; Noo, Frédéric; Lauritsch, Günter; Dennerlein, Frank; Mao, Yanfei; Hornegger, Joachim

    2016-01-01

    Recent reports show that three-dimensional cone-beam (CB) imaging with a floor-mounted (or ceiling-mounted) C-arm system has become a valuable tool in interventional radiology. Currently, a circular short scan is used for data acquisition, which inevitably yields CB artifacts and a short coverage in the direction of the patient table. To overcome these two limitations, a more sophisticated data acquisition geometry is needed. This geometry should be complete in terms of Tuy’s condition and should allow continuous scanning, while being compatible with the mechanical constraints of mounted C-arm systems. Additionally, the geometry should allow accurate image reconstruction from truncated data. One way to ensure such a feature is to adopt a trajectory that provides full R-line coverage within the field-of-view (FOV). An R-line is any segment of line that connects two points on a source trajectory, and the R-line coverage is the set of points that belong to an R-line. In this work, we propose a novel geometry called the extended ellipse-line-ellipse (ELE) for long-object imaging with a mounted C-arm system. This trajectory is built from modules consisting of two elliptical arcs connected by a line. We demonstrate that the extended ELE can be configured in many ways so that full R-line coverage is guaranteed. Both tight and relaxed parametric settings are presented. All results are supported by extensive mathematical proofs provided in appendices. Our findings make the extended ELE trajectory attractive for axially-extended FOV imaging in interventional radiology. (paper)

  17. Mechanisms of foot-and-mouth disease virus tropism inferred from differential tissue gene expression.

    Directory of Open Access Journals (Sweden)

    James J Zhu

    Full Text Available Foot-and-mouth disease virus (FMDV targets specific tissues for primary infection, secondary high-titer replication (e.g. foot and mouth where it causes typical vesicular lesions and long-term persistence at some primary replication sites. Although integrin αVβ6 receptor has been identified as primary FMDV receptors in animals, their tissue distribution alone fails to explain these highly selective tropism-driven events. Thus, other molecular mechanisms must play roles in determining this tissue specificity. We hypothesized that differences in certain biological activities due to differential gene expression determine FMDV tropism and applied whole genome gene expression profiling to identify genes differentially expressed between FMDV-targeted and non-targeted tissues in terms of supporting primary infection, secondary replication including vesicular lesions, and persistence. Using statistical and bioinformatic tools to analyze the differential gene expression, we identified mechanisms that could explain FMDV tissue tropism based on its association with differential expression of integrin αVβ6 heterodimeric receptor (FMDV receptor, fibronectin (ligand of the receptor, IL-1 cytokines, death receptors and the ligands, and multiple genes in the biological pathways involved in extracellular matrix turnover and interferon signaling found in this study. Our results together with reported findings indicate that differences in (1 FMDV receptor availability and accessibility, (2 type I interferon-inducible immune response, and (3 ability to clear virus infected cells via death receptor signaling play roles in determining FMDV tissue tropism and the additional increase of high extracellular matrix turnover induced by FMDV infection, likely via triggering the signaling of highly expressed IL-1 cytokines, play a key role in the pathogenesis of vesicular lesions.

  18. Differential Expression of Adhesion-Related Proteins and MAPK Pathways Lead to Suitable Osteoblast Differentiation of Human Mesenchymal Stem Cells Subpopulations.

    Science.gov (United States)

    Leyva-Leyva, Margarita; López-Díaz, Annia; Barrera, Lourdes; Camacho-Morales, Alberto; Hernandez-Aguilar, Felipe; Carrillo-Casas, Erika M; Arriaga-Pizano, Lourdes; Calderón-Pérez, Jaime; García-Álvarez, Jorge; Orozco-Hoyuela, Gabriel; Piña-Barba, Cristina; Rojas-Martínez, Augusto; Romero-Díaz, Víktor; Lara-Arias, Jorge; Rivera-Bolaños, Nancy; López-Camarillo, César; Moncada-Saucedo, Nidia; Galván-De los Santos, Alejandra; Meza-Urzúa, Fátima; Villarreal-Gómez, Luis; Fuentes-Mera, Lizeth

    2015-11-01

    Cellular adhesion enables communication between cells and their environment. Adhesion can be achieved throughout focal adhesions and its components influence osteoblast differentiation of human mesenchymal stem cells (hMSCs). Because cell adhesion and osteoblast differentiation are closely related, this article aimed to analyze the expression profiles of adhesion-related proteins during osteoblastic differentiation of two hMSCs subpopulations (CD105(+) and CD105(-)) and propose a strategy for assembling bone grafts based on its adhesion ability. In vitro experiments of osteogenic differentiation in CD105(-) cells showed superior adhesion efficiency and 2-fold increase of α-actinin expression compared with CD105(+) cells at the maturation stage. Interestingly, levels of activated β1-integrin increased in CD105(-) cells during the process. Additionally, the CD105(-) subpopulation showed 3-fold increase of phosphorylated FAK(Y397) compared to CD105(+) cells. Results also indicate that ERK1/2 was activated during CD105(-) bone differentiation and participation of mitogen-activated protein kinase (MAPK)-p38 in CD105(+) differentiation through a focal adhesion kinase (FAK)-independent pathway. In vivo trial demonstrated that grafts containing CD105(-) showed osteocytes embedded in a mineralized matrix, promoted adequate graft integration, increased host vascular infiltration, and efficient intramembranous repairing. In contrast, grafts containing CD105(+) showed deficient endochondral ossification and fibrocartilaginous tissue. Based on the expression of α-actinin, FAKy,(397) and ERK1/2 activation, we define maturation stage as critical for bone graft assembling. By in vitro assays, CD105(-) subpopulation showed superior adhesion efficiency compared to CD105(+) cells. Considering in vitro and in vivo assays, this study suggests that integration of a scaffold with CD105(-) subpopulation at the maturation stage represents an attractive strategy for clinical use in

  19. Identification of a thymidine kinase (RuTK1) homolog differentially expressed in blackberry (Rubus L.) prickles

    International Nuclear Information System (INIS)

    Zhang, C.; Yang, H.; Wang, X.

    2016-01-01

    Thymidine kinase (TK) is a key enzyme in controlling DNA synthesis and plays an important role in cell proliferation. However, our understanding on the TK functions in plants is still limited. From an earlier comparative transcriptome analysis of shoot apex of blackberry cv. Boysenberry and its bud mutant cv. Ningzhi 1 with fewer and thinner prickles, we found a unigene homologous to TK, RuTK1 which was differentially expressed between them. In this study, the cDNA and genomic DNA (gDNA) sequences of RuTK1 were further analyzed. RuTK1 revealed an open reading frame (ORF) of 660 bp coding for 219 amino acid residues. The gDNA sequence, which contains four exons and three introns, is relatively conserved in most plant TK homologs. A phylogenetic analysis revealed that the TK proteins from plants were classified into three groups. In each group, TKs from the same family were relatively concentrated, and RuTK1 was classified to the dicotyledoneae class and closer to those from Rosaceae. RuTK1 was highly expressed in prickles at the early stage in Boysenberry compared to in Ningzhi1. In addition, RuTK1 expression was similarly greater in mature prickles at the late stage in both cultivars, which implies a possible involvement of RuTK1 in the cell cycle at the early stage of prickle formation. These results provide a novel foundation for the further elucidation of blackberry prickle development mechanism and the functions of TKs in plants. (author)

  20. A high frequency, high power CARM proposal for the DEMO ECRH system

    International Nuclear Information System (INIS)

    Mirizzi, Francesco; Spassovsky, Ivan; Ceccuzzi, Silvio; Dattoli, Giuseppe; Di Palma, Emanuele; Doria, Andrea; Gallerano, Gianpiero; Lampasi, Alessandro; Maffia, Giuseppe; Ravera, GianLuca; Sabia, Elio; Tuccillo, Angelo Antonio; Zito, Pietro

    2015-01-01

    Highlights: • ECRH system for DEMO. • Cyclotron Auto-Resonance Maser (CARM) devices. • Relativistic electron beams. • Bragg reflectors. • High voltage pulse modulators. - Abstract: ECRH&CD systems are extensively used on tokamak plasmas due to their capability of highly tailored power deposition, allowing very localised heating and non-inductive current drive, useful for MHD and profiles control. The high electron temperatures expected in DEMO will require ECRH systems with operating frequency in the 200–300 GHz range, equipped with a reasonable number of high power (P ≥ 1 MW) CW RF sources, for allowing central RF power deposition. In this frame the ENEA Fusion Department (Frascati) is coordinating a task force aimed at the study and realisation of a suitable high power, high frequency reliable source.

  1. A high frequency, high power CARM proposal for the DEMO ECRH system

    Energy Technology Data Exchange (ETDEWEB)

    Mirizzi, Francesco, E-mail: francesco.mirizzi@enea.it [Consorzio CREATE, Via Claudio 21, I-80125 Napoli (Italy); Spassovsky, Ivan [Unità Tecnica Applicazioni delle Radiazioni – ENEA, C.R. Frascati, via E. Fermi 45, I-00044 Frascati (Italy); Ceccuzzi, Silvio [Unità Tecnica Fusione – ENEA C. R. Frascati, via E. Fermi 45, 00044 Frascati, Roma (Italy); Dattoli, Giuseppe; Di Palma, Emanuele; Doria, Andrea; Gallerano, Gianpiero [Unità Tecnica Applicazioni delle Radiazioni – ENEA, C.R. Frascati, via E. Fermi 45, I-00044 Frascati (Italy); Lampasi, Alessandro; Maffia, Giuseppe; Ravera, GianLuca [Unità Tecnica Fusione – ENEA C. R. Frascati, via E. Fermi 45, 00044 Frascati, Roma (Italy); Sabia, Elio [Unità Tecnica Applicazioni delle Radiazioni – ENEA, C.R. Frascati, via E. Fermi 45, I-00044 Frascati (Italy); Tuccillo, Angelo Antonio; Zito, Pietro [Unità Tecnica Fusione – ENEA C. R. Frascati, via E. Fermi 45, 00044 Frascati, Roma (Italy)

    2015-10-15

    Highlights: • ECRH system for DEMO. • Cyclotron Auto-Resonance Maser (CARM) devices. • Relativistic electron beams. • Bragg reflectors. • High voltage pulse modulators. - Abstract: ECRH&CD systems are extensively used on tokamak plasmas due to their capability of highly tailored power deposition, allowing very localised heating and non-inductive current drive, useful for MHD and profiles control. The high electron temperatures expected in DEMO will require ECRH systems with operating frequency in the 200–300 GHz range, equipped with a reasonable number of high power (P ≥ 1 MW) CW RF sources, for allowing central RF power deposition. In this frame the ENEA Fusion Department (Frascati) is coordinating a task force aimed at the study and realisation of a suitable high power, high frequency reliable source.

  2. FIDEA: a server for the functional interpretation of differential expression analysis.

    KAUST Repository

    D'Andrea, Daniel; Grassi, Luigi; Mazzapioda, Mariagiovanna; Tramontano, Anna

    2013-01-01

    The results of differential expression analyses provide scientists with hundreds to thousands of differentially expressed genes that need to be interpreted in light of the biology of the specific system under study. This requires mapping the genes

  3. Identification of genes differentially expressed in ectomycorrhizal roots during the Pinus pinaster-Laccaria bicolor interaction.

    Science.gov (United States)

    Flores-Monterroso, Aranzazu; Canales, Javier; de la Torre, Fernando; Ávila, Concepción; Cánovas, Francisco M

    2013-06-01

    Ectomycorrhizal associations are of major ecological importance in temperate and boreal forests. The development of a functional ectomycorrhiza requires many genetic and biochemical changes. In this study, suppressive subtraction hybridization was used to identify differentially expressed genes in the roots of maritime pine (Pinus pinaster Aiton) inoculated with Laccaria bicolor, a mycorrhizal fungus. A total number of 200 unigenes were identified as being differentially regulated in maritime pine roots during the development of mycorrhiza. These unigenes were classified into 10 categories according to the function of their homologues in the GenBank database. Approximately, 40 % of the differentially expressed transcripts were genes that coded for unknown proteins in the databases or that had no homology to known genes. A group of these differentially expressed genes was selected to validate the results using quantitative real-time PCR. The transcript levels of the representative genes were compared between the non-inoculated and inoculated plants at 1, 5, 15 and 30 days after inoculation. The observed expression patterns indicate (1) changes in the composition of the wall cell, (2) tight regulation of defence genes during the development of mycorrhiza and (3) changes in carbon and nitrogen metabolism. Ammonium excess or deficiency dramatically affected the stability of ectomycorrhiza and altered gene expression in maritime pine roots.

  4. C2C12 myotubes inhibit the proliferation and differentiation of 3T3-L1 preadipocytes by reducing the expression of glucocorticoid receptor gene

    Energy Technology Data Exchange (ETDEWEB)

    Chu, Weiwei; Wei, Wei; Yu, Shigang; Han, Haiyin; Shi, Xiaoli [College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095 (China); Sun, Wenxing [College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095 (China); College of Public Health, Nantong University, Nantong 226019 (China); Gao, Ying [College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095 (China); Zhang, Lifan [College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095 (China); Chen, Jie, E-mail: jiechen@njau.edu.cn [College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095 (China)

    2016-03-25

    Obesity is a well-established risk factor to health for its relationship with insulin resistance, diabetes and metabolic syndrome. Myocyte-adipocyte crosstalk model plays a significant role in studying the interaction of muscle and adipose development. Previous related studies mainly focus on the effects of adipocytes on the myocytes activity, however, the influence of myotubes on the preadipocytes development remains unclear. The present study was carried out to settle this issue. Firstly, the co-culture experiment showed that the proliferation, cell cycle, and differentiation of 3T3-L1 preadipocytes were arrested, and the apoptosis was induced, by differentiated C2C12 myotubes. Next, the sensitivity of 3T3-L1 preadipocytes to glucocorticoids (GCs), which was well known as cell proliferation, differentiation, apoptosis factor, was decreased after co-cultured with C2C12 myotubes. What's more, our results showed that C2C12 myotubes suppressed the mRNA and protein expression of glucocorticoid receptor (GR) in 3T3-L1 preadipocytes, indicating the potential mechanism of GCs sensitivity reduction. Taken together, we conclude that C2C12 myotubes inhibited 3T3-L1 preadipocytes proliferation and differentiation by reducing the expression of GR. These data suggest that decreasing GR by administration of myokines may be a promising therapy for treating patients with obesity or diabetes. - Highlights: • C2C12 myotubes inhibited proliferation and differentiation of 3T3-L1 preadipocytes. • C2C12 myotubes arrested cell cycle of 3T3-L1 preadipocytes. • C2C12 myotubes induced apoptosis of 3T3-L1 preadipocytes. • C2C12 inhibit 3T3-L1 cells by reducing the expression of glucocorticoid receptor gene.

  5. Characterization of Chondrogenic Gene Expression and Cartilage Phenotype Differentiation in Human Breast Adipose-Derived Stem Cells Promoted by Ginsenoside Rg1 In Vitro

    Directory of Open Access Journals (Sweden)

    Fang-Tian Xu

    2015-11-01

    Full Text Available Background/Aims: Investigating and understanding chondrogenic gene expression during the differentiation of human breast adipose-derived stem cells (HBASCs into chondrogenic cells is a prerequisite for the application of this approach for cartilage repair and regeneration. In this study, we aim to characterize HBASCs and to examine chondrogenic gene expression in chondrogenic inductive culture medium containing ginsenoside Rg1. Methods: Human breast adipose-derived stem cells at passage 3 were evaluated based on specific cell markers and their multilineage differentiation capacity. Cultured HBASCs were treated either with basic chondrogenic inductive conditioned medium alone (group A, control or with basic chondrogenic inductive medium plus 10 µg/ml (group B, 50 µg/ml (group C, or 100µg/ml ginsenoside Rg1 (group D. Cell proliferation was assessed using the CCK-8 assay for a period of 9 days. Two weeks after induction, the expression of chondrogenic genes (collagen type II, collagen type XI, ACP, COMP and ELASTIN was determined using real-time PCR in all groups. Results: The different concentrations of ginsenoside Rg1 that were added to the basic chondrogenic inductive culture medium promoted the proliferation of HBASCs at earlier stages (groups B, C, and D but resulted in chondrogenic phenotype differentiation and higher mRNA expression of collagen type II (CO-II, collagen type XI (CO-XI, acid phosphatase (ACP, cartilage oligomeric matrix protein (COMP and ELASTIN compared with the control (group A at later stages. The results reveal an obvious positive dose-effect relationship between ginsenoside Rg1 and the proliferation and chondrogenic phenotype differentiation of HBASCs in vitro. Conclusions: Human breast adipose-derived stem cells retain stem cell characteristics after expansion in culture through passage 3 and serve as a feasible source of cells for cartilage regeneration in vitro. Chondrogenesis in HBASCs was found to be prominent

  6. Identification of differentially expressed genes in cutaneous squamous cell carcinoma by microarray expression profiling

    Directory of Open Access Journals (Sweden)

    Sterry Wolfram

    2006-08-01

    Full Text Available Abstract Background Carcinogenesis is a multi-step process indicated by several genes up- or down-regulated during tumor progression. This study examined and identified differentially expressed genes in cutaneous squamous cell carcinoma (SCC. Results Three different biopsies of 5 immunosuppressed organ-transplanted recipients each normal skin (all were pooled, actinic keratosis (AK (two were pooled, and invasive SCC and additionally 5 normal skin tissues from immunocompetent patients were analyzed. Thus, total RNA of 15 specimens were used for hybridization with Affymetrix HG-U133A microarray technology containing 22,283 genes. Data analyses were performed by prediction analysis of microarrays using nearest shrunken centroids with the threshold 3.5 and ANOVA analysis was independently performed in order to identify differentially expressed genes (p vs. AK and SCC were observed for 118 genes. Conclusion The majority of identified differentially expressed genes in cutaneous SCC were previously not described.

  7. Methylglyoxal-bis-guanylhydrazone inhibits osteopontin expression and differentiation in cultured human monocytes.

    Science.gov (United States)

    Jin, Xia; Xu, Hua; McGrath, Michael S

    2018-01-01

    Monocyte activation and polarization play essential roles in many chronic inflammatory diseases. An imbalance of M1 and M2 macrophage activation (pro-inflammatory and alternatively activated, respectively) is believed to be a key aspect in the etiology of these diseases, thus a therapeutic approach that regulates macrophage activation could be of broad clinical relevance. Methylglyoxal-bis-guanylhydrazone (MGBG), a regulator of polyamine metabolism, has recently been shown to be concentrated in monocytes and macrophages, and interfere with HIV integration into the DNA of these cells in vitro. RNA expression analysis of monocytes from HIV+ and control donors with or without MGBG treatment revealed the only gene to be consistently down regulated by MGBG to be osteopontin (OPN). The elevated expression of this pro-inflammatory cytokine and monocyte chemoattractant is associated with various chronic inflammatory diseases. We demonstrate that MGBG is a potent inhibitor of secreted OPN (sOPN) in cultured monocytes with 50% inhibition achieved at 0.1 μM of the drug. Furthermore, inhibition of OPN RNA transcription in monocyte cultures occurs at similar concentrations of the drug. During differentiation of monocytes into macrophages in vitro, monocytes express cell surface CD16 and the cells undergo limited DNA synthesis as measured by uptake of BrdU. MGBG inhibited both activities at similar doses to those regulating OPN expression. In addition, monocyte treatment with MGBG inhibited differentiation into both M1 and M2 classes of macrophages at non-toxic doses. The inhibition of differentiation and anti-OPN effects of MGBG were specific for monocytes in that differentiated macrophages were nearly resistant to MGBG activities. Thus MGBG may have potential therapeutic utility in reducing or normalizing OPN levels and regulating monocyte activation in diseases that involve chronic inflammation.

  8. Personal Writing Goes Public: Social Commentary on Women’s Lives in Carme Riera’s Temps d’una espera / Lo personal sale al público: comentario social sobre la situación de la mujer en Temps d’una espera de Carme Riera

    Directory of Open Access Journals (Sweden)

    Novia Pagone

    2011-01-01

    Full Text Available Summary: In Carme Riera‟s personal writing she expresses her own opinions directly as she confronts some of the challenges women continue to face in contemporary society. In this study, we explore one of Riera‟s more personal and autobiographical works —Temps d’una espera— with the hope of gaining a better understanding of the self-mediation that occurs in the writing of autobiographical texts. I argue that by going public with her private writing, Riera helped to illuminate the struggles of at least one sector of Catalan life during the late 20th century, and by doing so she provides readers with important social commentary on the situation of women and their position in the public sphere.Resumen: En la escritura personal de Carme Riera ella expresa sus propias opiniones de una manera directa, al enfrentarse con algunos de los desafíos que siguen siendo cuestiones importantes en la vida de la mujer hoy en día. En este estudio, exploramos una de las obras más personales y autobiográficas de Riera, Temps d’una espera, con el propósito de entender mejor la auto-mediación que ocurre en el acto de escribir los textos autobiográficos. Demostraré que, al publicar su escritura personal, Riera ayudó a iluminar la lucha de por lo menos un sector de la vida catalana durante las últimas décadas del siglo XX, y que por lo tanto ella proporciona a los lectores un comentario social importante sobre la situación de la mujer y su posición en la esfera pública.

  9. Expression of prostaglandin synthases (pgds and pges) duringzebrafishgonadal differentiation

    DEFF Research Database (Denmark)

    Jørgensen, Anne; Nielsen, John E.; Nielsen, Betina F.

    2010-01-01

    The present study aimed at elucidating whether the expression pattern of the membrane bound form of prostaglandin E-2 synthase (pges) and especially the lipocalin-type prostaglandin D-2 synthase (pgds) indicates involvement in gonadal sex differentiation in zebrafish as has previously been found...... In this study, a sexually dimorphic expression of pgds was found in gonads of adult zebrafish with expression in testis but not in ovaries. To determine whether the sex-specific expression pattern of pgds was present in gonads of juvenile zebrafish and therefore could be an early marker of sex in zebrafish, we...... microdissected gonads from four randomly selected individual zebrafish for every second day in the period 2-20 days post hatch (dph) and 0-1 dph The temporal expression of pgds and pges was investigated in the microdissected gonads, however, no differential expression that could indicate sex-specific difference...

  10. Comparative Genomic Analysis of Transgenic Poplar Dwarf Mutant Reveals Numerous Differentially Expressed Genes Involved in Energy Flow

    Directory of Open Access Journals (Sweden)

    Su Chen

    2014-09-01

    Full Text Available In our previous research, the Tamarix androssowii LEA gene (Tamarix androssowii late embryogenesis abundant protein Mrna, GenBank ID: DQ663481 was transferred into Populus simonii × Populus nigra. Among the eleven transgenic lines, one exhibited a dwarf phenotype compared to the wild type and other transgenic lines, named dwf1. To uncover the mechanisms underlying this phenotype, digital gene expression libraries were produced from dwf1, wild-type, and other normal transgenic lines, XL-5 and XL-6. Gene expression profile analysis indicated that dwf1 had a unique gene expression pattern in comparison to the other two transgenic lines. Finally, a total of 1246 dwf1-unique differentially expressed genes were identified. These genes were further subjected to gene ontology and pathway analysis. Results indicated that photosynthesis and carbohydrate metabolism related genes were significantly affected. In addition, many transcription factors genes were also differentially expressed in dwf1. These various differentially expressed genes may be critical for dwarf mutant formation; thus, the findings presented here might provide insight for our understanding of the mechanisms of tree growth and development.

  11. Neural stem cell sex dimorphism in aromatase (CYP19 expression: a basis for differential neural fate

    Directory of Open Access Journals (Sweden)

    Jay Waldron

    2010-11-01

    Full Text Available Jay Waldron1, Althea McCourty1, Laurent Lecanu1,21The Research Institute of the McGill University Health Centre, Montreal, Canada; 2Department of Medicine, McGill University, Quebec, CanadaPurpose: Neural stem cell (NSC transplantation and pharmacologic activation of endogenous neurogenesis are two approaches that trigger a great deal of interest as brain repair strategies. However, the success rate of clinical attempts using stem cells to restore neurologic functions altered either after traumatic brain injury or as a consequence of neurodegenerative disease remains rather disappointing. This suggests that factors affecting the fate of grafted NSCs are largely understudied and remain to be characterized. We recently reported that aging differentially affects the neurogenic properties of male and female NSCs. Although the sex steroids androgens and estrogens participate in the regulation of neurogenesis, to our knowledge, research on how gender-based differences affect the capacity of NSCs to differentiate and condition their neural fate is lacking. In the present study, we explored further the role of cell sex as a determining factor of the neural fate followed by differentiating NSCs and its relationship with a potential differential expression of aromatase (CYP19, the testosterone-metabolizing enzyme.Results: Using NSCs isolated from the subventricular zone of three-month-old male and female Long-Evans rats and maintained as neurospheres, we showed that differentiation triggered by retinoic acid resulted in a neural phenotype that depends on cell sex. Differentiated male NSCs mainly expressed markers of neuronal fate, including ßIII-tubulin, microtubule associated protein 2, growth-associated protein 43, and doublecortin. In contrast, female NSCs essentially expressed the astrocyte marker glial fibrillary acidic protein. Quantification of the expression of aromatase showed a very low level of expression in undifferentiated female NSCs

  12. Adipose gene expression prior to weight loss can differentiate and weakly predict dietary responders.

    Directory of Open Access Journals (Sweden)

    David M Mutch

    Full Text Available BACKGROUND: The ability to identify obese individuals who will successfully lose weight in response to dietary intervention will revolutionize disease management. Therefore, we asked whether it is possible to identify subjects who will lose weight during dietary intervention using only a single gene expression snapshot. METHODOLOGY/PRINCIPAL FINDINGS: The present study involved 54 female subjects from the Nutrient-Gene Interactions in Human Obesity-Implications for Dietary Guidelines (NUGENOB trial to determine whether subcutaneous adipose tissue gene expression could be used to predict weight loss prior to the 10-week consumption of a low-fat hypocaloric diet. Using several statistical tests revealed that the gene expression profiles of responders (8-12 kgs weight loss could always be differentiated from non-responders (<4 kgs weight loss. We also assessed whether this differentiation was sufficient for prediction. Using a bottom-up (i.e. black-box approach, standard class prediction algorithms were able to predict dietary responders with up to 61.1%+/-8.1% accuracy. Using a top-down approach (i.e. using differentially expressed genes to build a classifier improved prediction accuracy to 80.9%+/-2.2%. CONCLUSION: Adipose gene expression profiling prior to the consumption of a low-fat diet is able to differentiate responders from non-responders as well as serve as a weak predictor of subjects destined to lose weight. While the degree of prediction accuracy currently achieved with a gene expression snapshot is perhaps insufficient for clinical use, this work reveals that the comprehensive molecular signature of adipose tissue paves the way for the future of personalized nutrition.

  13. VEGF-A isoforms differentially regulate ATF-2-dependent VCAM-1 gene expression and endothelial-leukocyte interactions.

    Science.gov (United States)

    Fearnley, Gareth W; Odell, Adam F; Latham, Antony M; Mughal, Nadeem A; Bruns, Alexander F; Burgoyne, Nicholas J; Homer-Vanniasinkam, Shervanthi; Zachary, Ian C; Hollstein, Monica C; Wheatcroft, Stephen B; Ponnambalam, Sreenivasan

    2014-08-15

    Vascular endothelial growth factor A (VEGF-A) regulates many aspects of vascular physiology. VEGF-A stimulates signal transduction pathways that modulate endothelial outputs such as cell migration, proliferation, tubulogenesis, and cell-cell interactions. Multiple VEGF-A isoforms exist, but the biological significance of this is unclear. Here we analyzed VEGF-A isoform-specific stimulation of VCAM-1 gene expression, which controls endothelial-leukocyte interactions, and show that this is dependent on both ERK1/2 and activating transcription factor-2 (ATF-2). VEGF-A isoforms showed differential ERK1/2 and p38 MAPK phosphorylation kinetics. A key feature of VEGF-A isoform-specific ERK1/2 activation and nuclear translocation was increased phosphorylation of ATF-2 on threonine residue 71 (T71). Using reverse genetics, we showed ATF-2 to be functionally required for VEGF-A-stimulated endothelial VCAM-1 gene expression. ATF-2 knockdown blocked VEGF-A-stimulated VCAM-1 expression and endothelial-leukocyte interactions. ATF-2 was also required for other endothelial cell outputs, such as cell migration and tubulogenesis. In contrast, VCAM-1 was essential only for promoting endothelial-leukocyte interactions. This work presents a new paradigm for understanding how soluble growth factor isoforms program complex cellular outputs and responses by modulating signal transduction pathways. © 2014 Fearnley et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  14. Calpain expression and activity during lens fiber cell differentiation.

    Science.gov (United States)

    De Maria, Alicia; Shi, Yanrong; Kumar, Nalin M; Bassnett, Steven

    2009-05-15

    In animal models, the dysregulated activity of calcium-activated proteases, calpains, contributes directly to cataract formation. However, the physiological role of calpains in the healthy lens is not well defined. In this study, we examined the expression pattern of calpains in the mouse lens. Real time PCR and Western blotting data indicated that calpain 1, 2, 3, and 7 were expressed in lens fiber cells. Using controlled lysis, depth-dependent expression profiles for each calpain were obtained. These indicated that, unlike calpain 1, 2, and 7, which were most abundant in cells near the lens surface, calpain 3 expression was strongest in the deep cortical region of the lens. We detected calpain activities in vitro and showed that calpains were active in vivo by microinjecting fluorogenic calpain substrates into cortical fiber cells. To identify endogenous calpain substrates, membrane/cytoskeleton preparations were treated with recombinant calpain, and cleaved products were identified by two-dimensional difference electrophoresis/mass spectrometry. Among the calpain substrates identified by this approach was alphaII-spectrin. An antibody that specifically recognized calpain-cleaved spectrin was used to demonstrate that spectrin is cleaved in vivo, late in fiber cell differentiation, at or about the time that lens organelles are degraded. The generation of the calpain-specific spectrin cleavage product was not observed in lens tissue from calpain 3-null mice, indicating that calpain 3 is uniquely activated during lens fiber differentiation. Our data suggest a role for calpains in the remodeling of the membrane cytoskeleton that occurs with fiber cell maturation.

  15. A Fast, Accurate and Easy to Implement Method for Pose Recognition of an Intramedullary Nail using a Tracked C-arm

    Directory of Open Access Journals (Sweden)

    H. Esfandiari

    2014-06-01

    Full Text Available A C-arm is a mobile X-ray device that is frequently used during orthopaedic surgeries. It consists of a semi-circular, arc-shaped arm that holds an X-ray transmitter at one end and an X-ray detector at the other. Intramedullary nail (IM nail fixation is a popular orthopaedic surgery in which a metallic rod is placed into the patient's fractured bone (femur or tibia and fixed using metal screws. The main challenge of IM-nail fixation surgery is to achieve the X-ray shot in which the distal holes of the IM nail appear as circles (desired view so that the surgeon can easily insert the screws. Although C-arm X-ray devices are routinely used in IM-nail fixation surgeries, the surgeons or radiation technologists (rad-techs usually use it in a trial-and-error manner. This method raises both radiation exposure and surgery time. In this study, we have designed and developed an IM-nail distal locking navigation technique that leads to more accurate and faster screw placement with a lower radiation dose and a minimum number of added steps to the operation to make it more accepted within the orthopaedic community. The specific purpose of this study was to develop and validate an automated technique for identifying the current pose of the IM nail relative to the C-arm. An accuracy assessment was performed to test the reliability of the navigation results. Translational accuracy was demonstrated to be better than 1 mm, roll and pitch rotations better than 2° and yaw rotational accuracy better than 2–5° depending on the separate angle. Computation time was less than 3.5 seconds.

  16. Differential expression of CART in ewes with differing ovulation rates.

    Science.gov (United States)

    Juengel, Jennifer L; French, Michelle C; Quirke, Laurel D; Kauff, Alexia; Smith, George W; Johnstone, Peter D

    2017-04-01

    We hypothesised that cocaine- and amphetamine-regulated transcript ( CARTPT ) would be differentially expressed in ewes with differing ovulation rates. Expression of mRNA for CARTPT , as well as LHCGR , FSHR , CYP19A1 and CYP17A1 was determined in antral follicles ≥1 mm in diameter collected during the follicular phase in ewes heterozygous for the Booroola and Inverdale genes (I+B+; average ovulation rate 4) and ++ contemporaries (++; average ovulation rate 1.8). In ++ ewes ( n  = 6), CARTPT was expressed in small follicles (1 to ewes. In I+B+ ewes, 5/6 ewes did not have any follicles that expressed CARTPT , and no CART peptide was detected in any follicle examined. Expression pattern of CYP19A1 differed between I+B+ and ++ ewes with an increased percentage of small and medium follicles (3 to ewes. Many of the large follicles from the I+B+ ewes appeared non-functional and expression of LHCGR , FSHR , CYP17A1 and CYP19A1 was less than that observed in ++ ewes. Expression of FSHR and CYP17A1 was not different between groups in small and medium follicles, but LHCGR expression was approximately double in I+B+ ewes compared to that in ++ ewes. Thus, ewes with high ovulation rates had a distinct pattern of expression of CARTPT mRNA and protein compared to ewes with normal ovulation rates, providing evidence for CART being important in the regulation of ovulation rate. © 2017 Society for Reproduction and Fertility.

  17. An Optimized Spline-Based Registration of a 3D CT to a Set of C-Arm Images

    Directory of Open Access Journals (Sweden)

    2006-01-01

    Full Text Available We have developed an algorithm for the rigid-body registration of a CT volume to a set of C-arm images. The algorithm uses a gradient-based iterative minimization of a least-squares measure of dissimilarity between the C-arm images and projections of the CT volume. To compute projections, we use a novel method for fast integration of the volume along rays. To improve robustness and speed, we take advantage of a coarse-to-fine processing of the volume/image pyramids. To compute the projections of the volume, the gradient of the dissimilarity measure, and the multiresolution data pyramids, we use a continuous image/volume model based on cubic B-splines, which ensures a high interpolation accuracy and a gradient of the dissimilarity measure that is well defined everywhere. We show the performance of our algorithm on a human spine phantom, where the true alignment is determined using a set of fiducial markers.

  18. Pod-1/Capsulin shows a sex- and stage-dependent expression pattern in the mouse gonad development and represses expression of Ad4BP/SF-1.

    Science.gov (United States)

    Tamura, M; Kanno, Y; Chuma, S; Saito, T; Nakatsuji, N

    2001-04-01

    Mammalian sex-determination and differentiation are controlled by several genes, such as Sry, Sox-9, Dax-1 and Mullerian inhibiting substance (MIS), but their upstream and downstream genes are largely unknown. Ad4BP/SF-1, encoding a zinc finger transcription factor, plays important roles in gonadogenesis. Disruption of this gene caused disappearance of the urogenital system including the gonad. Ad4BP/SF-1, however, is also involved in the sex differentiation of the gonad at later stages, such as the regulation of steroid hormones and MIS. Pod-1/Capsulin, a member of basic helix-loop-helix transcription factors, is expressed in a pattern closely related but mostly complimentary to that of the Ad4BP/SF-1 expression in the developing gonad. In the co-transfection experiment using cultured cells, overexpression of Pod-1/Capsulin repressed expression of a reporter gene that carried the upstream regulatory region of the Ad4BP/SF-1 gene. Furthermore, forced expression of Pod-1/Capsulin repressed expression of Ad4BP/SF-1 in the Leydig cell-derived I-10 cells. These results suggest that Pod-1/Capsulin may play important roles in the development and sex differentiation of the mammalian gonad via transcriptional regulation of Ad4BP/SF-1.

  19. IDH1R132H in Neural Stem Cells: Differentiation Impaired by Increased Apoptosis.

    Directory of Open Access Journals (Sweden)

    Kamila Rosiak

    Full Text Available The high frequency of mutations in the isocitrate dehydrogenase 1 (IDH1 gene in diffuse gliomas indicates its importance in the process of gliomagenesis. These mutations result in loss of the normal function and acquisition of the neomorphic activity converting α-ketoglutarate to 2-hydroxyglutarate. This potential oncometabolite may induce the epigenetic changes, resulting in the deregulated expression of numerous genes, including those related to the differentiation process or cell survivability.Neural stem cells were derived from human induced pluripotent stem cells following embryoid body formation. Neural stem cells transduced with mutant IDH1R132H, empty vector, non-transduced and overexpressing IDH1WT controls were differentiated into astrocytes and neurons in culture. The neuronal and astrocytic differentiation was determined by morphology and expression of lineage specific markers (MAP2, Synapsin I and GFAP as determined by real-time PCR and immunocytochemical staining. Apoptosis was evaluated by real-time observation of Caspase-3 activation and measurement of PARP cleavage by Western Blot.Compared with control groups, cells expressing IDH1R132H retained an undifferentiated state and lacked morphological changes following stimulated differentiation. The significant inhibitory effect of IDH1R132H on neuronal and astrocytic differentiation was confirmed by immunocytochemical staining for markers of neural stem cells. Additionally, real-time PCR indicated suppressed expression of lineage markers. High percentage of apoptotic cells was detected within IDH1R132H-positive neural stem cells population and their derivatives, if compared to normal neural stem cells and their derivatives. The analysis of PARP and Caspase-3 activity confirmed apoptosis sensitivity in mutant protein-expressing neural cells.Our study demonstrates that expression of IDH1R132H increases apoptosis susceptibility of neural stem cells and their derivatives. Robust

  20. Neural differentiation potential of human bone marrow-derived mesenchymal stromal cells: misleading marker gene expression

    Directory of Open Access Journals (Sweden)

    Montzka Katrin

    2009-03-01

    Full Text Available Abstract Background In contrast to pluripotent embryonic stem cells, adult stem cells have been considered to be multipotent, being somewhat more restricted in their differentiation capacity and only giving rise to cell types related to their tissue of origin. Several studies, however, have reported that bone marrow-derived mesenchymal stromal cells (MSCs are capable of transdifferentiating to neural cell types, effectively crossing normal lineage restriction boundaries. Such reports have been based on the detection of neural-related proteins by the differentiated MSCs. In order to assess the potential of human adult MSCs to undergo true differentiation to a neural lineage and to determine the degree of homogeneity between donor samples, we have used RT-PCR and immunocytochemistry to investigate the basal expression of a range of neural related mRNAs and proteins in populations of non-differentiated MSCs obtained from 4 donors. Results The expression analysis revealed that several of the commonly used marker genes from other studies like nestin, Enolase2 and microtubule associated protein 1b (MAP1b are already expressed by undifferentiated human MSCs. Furthermore, mRNA for some of the neural-related transcription factors, e.g. Engrailed-1 and Nurr1 were also strongly expressed. However, several other neural-related mRNAs (e.g. DRD2, enolase2, NFL and MBP could be identified, but not in all donor samples. Similarly, synaptic vesicle-related mRNA, STX1A could only be detected in 2 of the 4 undifferentiated donor hMSC samples. More significantly, each donor sample revealed a unique expression pattern, demonstrating a significant variation of marker expression. Conclusion The present study highlights the existence of an inter-donor variability of expression of neural-related markers in human MSC samples that has not previously been described. This donor-related heterogeneity might influence the reproducibility of transdifferentiation protocols as

  1. Retrogenic ICOS Expression Increases Differentiation of KLRG-1hiCD127loCD8+ T Cells during Listeria Infection and Diminishes Recall Responses.

    Science.gov (United States)

    Liu, Danya; Burd, Eileen M; Coopersmith, Craig M; Ford, Mandy L

    2016-02-01

    Following T cell encounter with Ag, multiple signals are integrated to collectively induce distinct differentiation programs within Ag-specific CD8(+) T cell populations. Several factors contribute to these cell fate decisions, including the amount and duration of Ag, exposure to inflammatory cytokines, and degree of ligation of cosignaling molecules. The ICOS is not expressed on resting T cells but is rapidly upregulated upon encounter with Ag. However, the impact of ICOS signaling on programmed differentiation is not well understood. In this study, we therefore sought to determine the role of ICOS signaling on CD8(+) T cell programmed differentiation. Through the creation of novel ICOS retrogenic Ag-specific TCR-transgenic CD8(+) T cells, we interrogated the phenotype, functionality, and recall potential of CD8(+) T cells that receive early and sustained ICOS signaling during Ag exposure. Our results reveal that these ICOS signals critically impacted cell fate decisions of Ag-specific CD8(+) T cells, resulting in increased frequencies of KLRG-1(hi)CD127(lo) cells, altered BLIMP-1, T-bet, and eomesodermin expression, and increased cytolytic capacity as compared with empty vector controls. Interestingly, however, ICOS retrogenic CD8(+) T cells also preferentially homed to nonlymphoid organs and exhibited reduced multicytokine functionality and reduced ability to mount secondary recall responses upon challenge in vivo. In sum, our results suggest that an altered differentiation program is induced following early and sustained ICOS expression, resulting in the generation of more cytolyticly potent, terminally differentiated effectors that possess limited capacity for recall response. Copyright © 2016 by The American Association of Immunologists, Inc.

  2. Mobile C-arm cone-beam CT for guidance of spine surgery: Image quality, radiation dose, and integration with interventional guidance

    Energy Technology Data Exchange (ETDEWEB)

    Schafer, S.; Nithiananthan, S.; Mirota, D. J.; Uneri, A.; Stayman, J. W.; Zbijewski, W.; Schmidgunst, C.; Kleinszig, G.; Khanna, A. J.; Siewerdsen, J. H. [Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21202 (United States); Department of Computer Science, Johns Hopkins University, Baltimore, Maryland 21218 (United States); Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21202 (United States); Siemens Healthcare XP Division, Erlangen (Germany); Department of Orthopaedic Surgery, Johns Hopkins University, Baltimore, Maryland 21239 (United States); Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21202 and Department of Computer Science, Johns Hopkins University, Baltimore, Maryland 21218 (United States)

    2011-08-15

    Purpose: A flat-panel detector based mobile isocentric C-arm for cone-beam CT (CBCT) has been developed to allow intraoperative 3D imaging with sub-millimeter spatial resolution and soft-tissue visibility. Image quality and radiation dose were evaluated in spinal surgery, commonly relying on lower-performance image intensifier based mobile C-arms. Scan protocols were developed for task-specific imaging at minimum dose, in-room exposure was evaluated, and integration of the imaging system with a surgical guidance system was demonstrated in preclinical studies of minimally invasive spine surgery. Methods: Radiation dose was assessed as a function of kilovolt (peak) (80-120 kVp) and milliampere second using thoracic and lumbar spine dosimetry phantoms. In-room radiation exposure was measured throughout the operating room for various CBCT scan protocols. Image quality was assessed using tissue-equivalent inserts in chest and abdomen phantoms to evaluate bone and soft-tissue contrast-to-noise ratio as a function of dose, and task-specific protocols (i.e., visualization of bone or soft-tissues) were defined. Results were applied in preclinical studies using a cadaveric torso simulating minimally invasive, transpedicular surgery. Results: Task-specific CBCT protocols identified include: thoracic bone visualization (100 kVp; 60 mAs; 1.8 mGy); lumbar bone visualization (100 kVp; 130 mAs; 3.2 mGy); thoracic soft-tissue visualization (100 kVp; 230 mAs; 4.3 mGy); and lumbar soft-tissue visualization (120 kVp; 460 mAs; 10.6 mGy) - each at (0.3 x 0.3 x 0.9 mm{sup 3}) voxel size. Alternative lower-dose, lower-resolution soft-tissue visualization protocols were identified (100 kVp; 230 mAs; 5.1 mGy) for the lumbar region at (0.3 x 0.3 x 1.5 mm{sup 3}) voxel size. Half-scan orbit of the C-arm (x-ray tube traversing under the table) was dosimetrically advantageous (prepatient attenuation) with a nonuniform dose distribution ({approx}2 x higher at the entrance side than at isocenter

  3. WE-EF-207-02: The Rotate-Plus-Shift C-Arm Trajectory: Theory and First Clinical Results

    International Nuclear Information System (INIS)

    Ritschl, L; Kachelriess, M; Kuntz, J

    2015-01-01

    Purpose: The proposed method enables the acquisition of a complete dataset for 3D reconstruction of C-Arm data using less than 180° rotation. Methods: Typically a C–arm cone–beam CT scan is performed using a circle–like trajectory around a region of interest. Therefore an angular range of at least 180° plus fan–angle must be covered to ensure a completely sampled data set. This fact defines some constraints on the geometry and technical specifications of a C–arm system, for example a larger C radius or a smaller C opening respectively. This is even more important for mobile C-arm devices which are typically used in surgical applications.To overcome these limitations we propose a new trajectory which requires only 180° minusfan–angle of rotation for a complete data set. The trajectory consists of three parts: A rotation of the C around a defined iso–center and two translational movements parallel to the detector plane at the begin and at the end of the rotation (rotate plus shift trajectory). This enables the acquisition of a completely sampled dataset using only 180° minus fan–angle of rotation. Results: For the evaluation of the method we show simulated and measured data. The results show, that the rotate plus shift scan yields equivalent image quality compared to the short scan which is assumed to be the gold standard for C-arm CT today. Compared to the pure rotational scan over only 165°, the rotate plus shift scan shows strong improvements in image quality. Conclusion: The proposed method makes 3D imaging using C–arms with less than 180° rotation range possible. This enables integrating full 3D functionality into a C- arm device without any loss of handling and usability for 2D imaging

  4. Evaluation of the dose distribution of dynamic conical conformal therapy using a C-arm mounted accelerator

    International Nuclear Information System (INIS)

    Nakagawa, Keiichi; Aoki, Yukimasa; Ohtomo, Kuni

    2001-01-01

    Conformal radiation therapy, which is widely utilized in Japan as a standard, highly precise technique has limited advantage in dose confinement because of its coplanar beam entry. An improved form of conformal therapy is delivered by a linac mounted on a C-arm rotatable gantry. The linac head was designed to move along the C-arm with a maximum angle of 60 degrees. Simultaneous rotation of the gantry creates a Dynamic Conical irradiation technique. Dynamic Conical Conformal Therapy (Dyconic Therapy) was developed by combining the technique with continuous MLC motion based on beam's eye views of the target volume. Dose distributions were measured in a phantom using film densitometry and compared with conventional conformal radiation therapy. The measurements showed that the dose distribution conformed to the target shape identified by CT. In addition, the dose distribution for a cancer patient was evaluated through the use of DVHs generated by a treatment planning system. These measurements showed that the dose distribution along the patient's long axis conformed to the shape of the target volume. DVH analysis, however, did not indicate superiority of the present technique over the conventional technique. Angulation of the C-arm gantry allowed the primary beam to strike a larger area of the therapy room. This necessitated adding shielding to the walls and ceiling of the treatment room. It was confirmed that the leakage radiation was reduced to a negligible level by adding an iron plate 20 cm thick to several places on the side walls, by adding an iron plate 9 cm thick to several places on the ceiling, and by increasing the thickness of the concrete ceiling from 70 to 140 cm. The possible usefulness of Dyconic Therapy was confirmed. (author)

  5. Online C-arm calibration using a marked guide wire for 3D reconstruction of pulmonary arteries

    Science.gov (United States)

    Vachon, Étienne; Miró, Joaquim; Duong, Luc

    2017-03-01

    3D reconstruction of vessels from 2D X-ray angiography is highly relevant to improve the visualization and the assessment of vascular structures such as pulmonary arteries by interventional cardiologists. However, to ensure a robust and accurate reconstruction, C-arm gantry parameters must be properly calibrated to provide clinically acceptable results. Calibration procedures often rely on calibration objects and complex protocol which is not adapted to an intervention context. In this study, a novel calibration algorithm for C-arm gantry is presented using the instrumentation such as catheters and guide wire. This ensures the availability of a minimum set of correspondences and implies minimal changes to the clinical workflow. The method was evaluated on simulated data and on retrospective patient datasets. Experimental results on simulated datasets demonstrate a calibration that allows a 3D reconstruction of the guide wire up to a geometric transformation. Experiments with patients datasets show a significant decrease of the retro projection error to 0.17 mm 2D RMS. Consequently, such procedure might contribute to identify any calibration drift during the intervention.

  6. Expression of Ras-related C3 botulinum toxin substrate 1 (RAC1) in human cholesteatoma.

    Science.gov (United States)

    Lee, No Hee; Chang, Ji-Won; Choi, June; Jung, Hak Hyun; Im, Gi Jung

    2013-02-01

    Ras-related C3 botulinum toxin substrate 1 (RAC1) is a 21-kDa signaling G protein that functions as a pleiotropic regulator of many cellular processes including epithelial differentiation. RAC1 activates the nicotinamide adenine dinucleotide phosphate oxidase complex which promotes formation of reactive oxygen species and degradation enzymes. RAC1 has been associated with rapid epithelial differentiation and invasive properties in human cholesteatoma. This study aimed to identify the presence of RAC1 in human cholesteatoma and analyze its functional role as a regulator of proteolysis and overgrowth. Tissue samples from human cholesteatoma and normal postaural skin were obtained from patients during otologic surgery for cholesteatoma. The expression of RAC1 mRNA was quantified by real-time RT-PCR, and localization of RAC1 expression was confirmed using immunohistochemical staining. Expression of RAC1 mRNA in the epithelium of cholesteatoma was significantly elevated 2.94 fold on average, compared with normal control skin. RAC1 expression in the suprabasal and basal layer of cholesteatoma epithelium was stronger than normal control skin. Our results suggest that RAC1 can be associated with rapid epithelial differentiation and invasive properties of human cholesteatoma.

  7. Cell cycle, differentiation and tissue-independent expression of ribosomal protein L37.

    Science.gov (United States)

    Su, S; Bird, R C

    1995-09-15

    A unique human cDNA (hG1.16) that encodes a mRNA of 450 nucleotides was isolated from a subtractive library derived from HeLa cells. The relative expression level of hG1.16 during different cell-cycle phases was determined by Northern-blot analysis of cells synchronized by double-thymidine block and serum deprivation/refeeding. hG1.16 was constitutively expressed during all phases of the cell cycle, including the quiescent phase when even most constitutively expressed genes experience some suppression of expression. The expression level of hG1.16 did not change during terminal differentiation of myoblasts to myotubes, during which cells become permanently post-mitotic. Examination of other tissues revealed that the relative expression level of hG1.16 was constitutive in all embryonic mouse tissues examined, including brain, eye, heart, kidney, liver, lung and skeletal muscle. This was unusual in that expression was not down-modulated during differentiation and did not vary appreciably between tissue types. Analysis by inter-species Northern-blot analysis revealed that hG1.16 was highly conserved among all vertebrates studied (from fish to humans but not in insects). DNA sequence analysis of hG1.16 revealed a high level of similarity to rat ribosomal protein L37, identifying hG1.16 as a new member of this multigene family. The deduced amino acid sequence of hG1.16 was identical to rat ribosomal protein L37 that contained 97 amino acids, many of which are highly positively charged (15 arginine and 14 lysine residues with a predicted M(r) of 11,065). hG1.16 protein has a single C2-C2 zinc-finger-like motif which is also present in rat ribosomal protein L37. Using primers designed from the sequence of hG1.16, unique bovine and rat cDNAs were also isolated by 5'-rapid-amplification of cDNA ends. DNA sequences of bovine and rat G1.16, clones were 92.8% and 92.2% similar to human G1.16 while the deduced amino acid sequences derived from bovine and rat cDNAs each differed

  8. A single enhancer regulating the differential expression of duplicated red-sensitive opsin genes in zebrafish.

    Directory of Open Access Journals (Sweden)

    Taro Tsujimura

    2010-12-01

    Full Text Available A fundamental step in the evolution of the visual system is the gene duplication of visual opsins and differentiation between the duplicates in absorption spectra and expression pattern in the retina. However, our understanding of the mechanism of expression differentiation is far behind that of spectral tuning of opsins. Zebrafish (Danio rerio have two red-sensitive cone opsin genes, LWS-1 and LWS-2. These genes are arrayed in a tail-to-head manner, in this order, and are both expressed in the long member of double cones (LDCs in the retina. Expression of the longer-wave sensitive LWS-1 occurs later in development and is thus confined to the peripheral, especially ventral-nasal region of the adult retina, whereas expression of LWS-2 occurs earlier and is confined to the central region of the adult retina, shifted slightly to the dorsal-temporal region. In this study, we employed a transgenic reporter assay using fluorescent proteins and P1-artificial chromosome (PAC clones encompassing the two genes and identified a 0.6-kb "LWS-activating region" (LAR upstream of LWS-1, which regulates expression of both genes. Under the 2.6-kb flanking upstream region containing the LAR, the expression pattern of LWS-1 was recapitulated by the fluorescent reporter. On the other hand, when LAR was directly conjugated to the LWS-2 upstream region, the reporter was expressed in the LDCs but also across the entire outer nuclear layer. Deletion of LAR from the PAC clones drastically lowered the reporter expression of the two genes. These results suggest that LAR regulates both LWS-1 and LWS-2 by enhancing their expression and that interaction of LAR with the promoters is competitive between the two genes in a developmentally restricted manner. Sharing a regulatory region between duplicated genes could be a general way to facilitate the expression differentiation in duplicated visual opsins.

  9. Low Annexin A1 expression predicts benefit from induction chemotherapy in oral cancer patients with moderate or poor pathologic differentiation grade.

    Science.gov (United States)

    Zhu, Dong-wang; Liu, Ying; Yang, Xiao; Yang, Cheng-zhe; Ma, Jie; Yang, Xi; Qiao, Jin-ke; Wang, Li-zhen; Li, Jiang; Zhang, Chen-ping; Zhang, Zhi-yuan; Zhong, Lai-ping

    2013-06-21

    The benefit of induction chemotherapy in locally advanced oral squamous cell carcinoma (OSCC) remains to be clearly defined. Induction chemotherapy is likely to be effective for biologically distinct subgroups of patients and biomarker development might lead to identification of the patients whose tumors are to respond to a particular treatment. Annexin A1 may serve as a biomarker for responsiveness to induction chemotherapy. The aim of this study was to investigate Annexin A1 expression in pre-treatment biopsies from a cohort of OSCC patients treated with surgery and post-operative radiotherapy or docetaxel, cisplatin and 5-fluorouracil (TPF) induction chemotherapy followed by surgery and post-operative radiotherapy. Furthermore we sought to assess the utility of Annexin A1 as a prognostic or predictive biomarker. Immunohistochemical staining for Annexin A1 was performed in pre-treatment biopsies from 232 of 256 clinical stage III/IVA OSCC patients. Annexin A1 index was estimated as the proportion of tumor cells (low and high, benefited from TPF induction chemotherapy as measured by distant metastasis-free survival (P=0.048, HR=0.373) as well as overall survival (P=0.078, HR=0.410). Annexin A1 can be used as a prognostic biomarker for OSCC. Patients with moderate/poorly differentiated OSCC and low Annexin A1 expression can benefit from the addition of TPF induction chemotherapy to surgery and post-operative radiotherapy. Annexin A1 expression can potentially be used as a predictive biomarker to select OSCC patients with moderate/poorly differentiated tumor who may benefit from TPF induction chemotherapy.

  10. Gαq Regulates the Development of Rheumatoid Arthritis by Modulating Th1 Differentiation.

    Science.gov (United States)

    Wang, Dashan; Liu, Yuan; Li, Yan; He, Yan; Zhang, Jiyun; Shi, Guixiu

    2017-01-01

    The G α q-containing G protein, an important member of G q/11 class, is ubiquitously expressed in mammalian cells. G α q has been found to play an important role in immune regulation and development of autoimmune disease such as rheumatoid arthritis (RA). However, how G α q participates in the pathogenesis of RA is still not fully understood. In the present study, we aimed to find out whether G α q controls RA via regulation of Th1 differentiation. We observed that the expression of G α q was negatively correlated with the expression of signature Th1 cytokine (IFN- γ ) in RA patients, which suggests a negative role of G α q in differentiation of Th1 cells. By using G α q knockout ( Gnaq-/- ) mice, we demonstrated that loss of G α q led to enhanced Th1 cell differentiation. G α q negative regulated the differentiation of Th1 cell by modulating the expression of T-bet and the activity of STAT4. Furthermore, we detected the increased ratio of Th1 cells in Gnaq-/- bone marrow (BM) chimeras spontaneously developing inflammatory arthritis. In conclusion, results presented in the study demonstrate that loss of G α q promotes the differentiation of Th1 cells and contributes to the pathogenesis of RA.

  11. Differential co-expression and regulation analyses reveal different mechanisms underlying major depressive disorder and subsyndromal symptomatic depression.

    Science.gov (United States)

    Xu, Fan; Yang, Jing; Chen, Jin; Wu, Qingyuan; Gong, Wei; Zhang, Jianguo; Shao, Weihua; Mu, Jun; Yang, Deyu; Yang, Yongtao; Li, Zhiwei; Xie, Peng

    2015-04-03

    Recent depression research has revealed a growing awareness of how to best classify depression into depressive subtypes. Appropriately subtyping depression can lead to identification of subtypes that are more responsive to current pharmacological treatment and aid in separating out depressed patients in which current antidepressants are not particularly effective. Differential co-expression analysis (DCEA) and differential regulation analysis (DRA) were applied to compare the transcriptomic profiles of peripheral blood lymphocytes from patients with two depressive subtypes: major depressive disorder (MDD) and subsyndromal symptomatic depression (SSD). Six differentially regulated genes (DRGs) (FOSL1, SRF, JUN, TFAP4, SOX9, and HLF) and 16 transcription factor-to-target differentially co-expressed gene links or pairs (TF2target DCLs) appear to be the key differential factors in MDD; in contrast, one DRG (PATZ1) and eight TF2target DCLs appear to be the key differential factors in SSD. There was no overlap between the MDD target genes and SSD target genes. Venlafaxine (Efexor™, Effexor™) appears to have a significant effect on the gene expression profile of MDD patients but no significant effect on the gene expression profile of SSD patients. DCEA and DRA revealed no apparent similarities between the differential regulatory processes underlying MDD and SSD. This bioinformatic analysis may provide novel insights that can support future antidepressant R&D efforts.

  12. Study of differential gene expression in human hepatocyte exposed to 50 cGy γ ray

    International Nuclear Information System (INIS)

    Wen Jianhua; Li Jianguo; Tian Huancheng; Li Yanling; Wang Xiaoli; Zuo Yanhui

    2008-01-01

    The study analyzed the differential transcriptional profile of the normal human hepatic cell and the human hepatic cell radiated with 50 cGy γ ray by gene chip technique. The results showed that there were 614 differentially expressed genes among 14 112 human genes analyzed, in which 521 genes were up-regulated and 93 genes down-regulated. These genes are associated with mitochondrial regulation, homo sapiens hepatitis A virus cellular receptor, tumor necrosis factor, cell cycle regulation, kinase and zinc finger protein etc. RT-PCR results indicated that up-regulated expression of gene HAVcr-1, HAVcr-2, MFTC, MOAP1 and down-regulated expression of gene TRIP12, DCN were consistent with gene chip data. (authors)

  13. Pancreatic differentiation of Pdx1-GFP reporter mouse induced pluripotent stem cells.

    Science.gov (United States)

    Porciuncula, Angelo; Kumar, Anujith; Rodriguez, Saray; Atari, Maher; Araña, Miriam; Martin, Franz; Soria, Bernat; Prosper, Felipe; Verfaillie, Catherine; Barajas, Miguel

    2016-12-01

    Efficient induction of defined lineages in pluripotent stem cells constitutes the determinant step for the generation of therapeutically relevant replacement cells to potentially treat a wide range of diseases, including diabetes. Pancreatic differentiation has remained an important challenge in large part because of the need to differentiate uncommitted pluripotent stem cells into highly specialized hormone-secreting cells, which has been shown to require a developmentally informed step-by-step induction procedure. Here, in the framework of using induced pluripotent stem cells (iPSCs) to generate pancreatic cells for pancreatic diseases, we have generated and characterized iPSCs from Pdx1-GFP transgenic mice. The use of a GFP reporter knocked into the endogenous Pdx1 promoter allowed us to monitor pancreatic induction based on the expression of Pdx1, a pancreatic master transcription factor, and to isolate a pure Pdx1-GFP + population for downstream applications. Differentiated cultures timely expressed markers specific to each stage and end-stage progenies acquired a rather immature beta-cell phenotype, characterized by polyhormonal expression even among cells highly expressing the Pdx1-GFP reporter. Our findings highlight the utility of employing a fluorescent protein reporter under the control of a master developmental gene in order to devise novel differentiation protocols for relevant cell types for degenerative diseases such as pancreatic beta cells for diabetes. Copyright © 2016 International Society of Differentiation. Published by Elsevier B.V. All rights reserved.

  14. Comparative transcriptome analysis reveals differentially expressed genes associated with sex expression in garden asparagus (Asparagus officinalis).

    Science.gov (United States)

    Li, Shu-Fen; Zhang, Guo-Jun; Zhang, Xue-Jin; Yuan, Jin-Hong; Deng, Chuan-Liang; Gao, Wu-Jun

    2017-08-22

    Garden asparagus (Asparagus officinalis) is a highly valuable vegetable crop of commercial and nutritional interest. It is also commonly used to investigate the mechanisms of sex determination and differentiation in plants. However, the sex expression mechanisms in asparagus remain poorly understood. De novo transcriptome sequencing via Illumina paired-end sequencing revealed more than 26 billion bases of high-quality sequence data from male and female asparagus flower buds. A total of 72,626 unigenes with an average length of 979 bp were assembled. In comparative transcriptome analysis, 4876 differentially expressed genes (DEGs) were identified in the possible sex-determining stage of female and male/supermale flower buds. Of these DEGs, 433, including 285 male/supermale-biased and 149 female-biased genes, were annotated as flower related. Of the male/supermale-biased flower-related genes, 102 were probably involved in anther development. In addition, 43 DEGs implicated in hormone response and biosynthesis putatively associated with sex expression and reproduction were discovered. Moreover, 128 transcription factor (TF)-related genes belonging to various families were found to be differentially expressed, and this finding implied the essential roles of TF in sex determination or differentiation in asparagus. Correlation analysis indicated that miRNA-DEG pairs were also implicated in asparagus sexual development. Our study identified a large number of DEGs involved in the sex expression and reproduction of asparagus, including known genes participating in plant reproduction, plant hormone signaling, TF encoding, and genes with unclear functions. We also found that miRNAs might be involved in the sex differentiation process. Our study could provide a valuable basis for further investigations on the regulatory networks of sex determination and differentiation in asparagus and facilitate further genetic and genomic studies on this dioecious species.

  15. Carbon Monoxide Releasing Molecule-A1 (CORM-A1) Improves Neurogenesis: Increase of Neuronal Differentiation Yield by Preventing Cell Death.

    Science.gov (United States)

    Almeida, Ana S; Soares, Nuno L; Vieira, Melissa; Gramsbergen, Jan Bert; Vieira, Helena L A

    2016-01-01

    Cerebral ischemia and neurodegenerative diseases lead to impairment or death of neurons in the central nervous system. Stem cell based therapies are promising strategies currently under investigation. Carbon monoxide (CO) is an endogenous product of heme degradation by heme oxygenase (HO) activity. Administration of CO at low concentrations produces several beneficial effects in distinct tissues, namely anti-apoptotic and anti-inflammatory. Herein the CO role on modulation of neuronal differentiation was assessed. Three different models with increasing complexity were used: human neuroblastoma SH-S5Y5 cell line, human teratocarcinoma NT2 cell line and organotypic hippocampal slice cultures (OHSC). Cell lines were differentiated into post-mitotic neurons by treatment with retinoic acid (RA) supplemented with CO-releasing molecule A1 (CORM-A1). CORM-A1 positively modulated neuronal differentiation, since it increased final neuronal production and enhanced the expression of specific neuronal genes: Nestin, Tuj1 and MAP2. Furthermore, during neuronal differentiation process, there was an increase in proliferative cell number (ki67 mRNA expressing cells) and a decrease in cell death (lower propidium iodide (PI) uptake, limitation of caspase-3 activation and higher Bcl-2 expressing cells). CO supplementation did not increase the expression of RA receptors. In the case of SH-S5Y5 model, small amounts of reactive oxygen species (ROS) generation emerges as important signaling molecules during CO-promoted neuronal differentiation. CO's improvement of neuronal differentiation yield was validated using OHSC as ex vivo model. CORM-A1 treatment of OHSC promoted higher levels of cells expressing the neuronal marker Tuj1. Still, CORM-A1 increased cell proliferation assessed by ki67 expression and also prevented cell death, which was followed by increased Bcl-2 expression, decreased levels of active caspase-3 and PI uptake. Likewise, ROS signaling emerged as key factors in CO

  16. Role of H1 linker histones in mammalian development and stem cell differentiation.

    Science.gov (United States)

    Pan, Chenyi; Fan, Yuhong

    2016-03-01

    H1 linker histones are key chromatin architectural proteins facilitating the formation of higher order chromatin structures. The H1 family constitutes the most heterogeneous group of histone proteins, with eleven non-allelic H1 variants in mammals. H1 variants differ in their biochemical properties and exhibit significant sequence divergence from one another, yet most of them are highly conserved during evolution from mouse to human. H1 variants are differentially regulated during development and their cellular compositions undergo dramatic changes in embryogenesis, gametogenesis, tissue maturation and cellular differentiation. As a group, H1 histones are essential for mouse development and proper stem cell differentiation. Here we summarize our current knowledge on the expression and functions of H1 variants in mammalian development and stem cell differentiation. Their diversity, sequence conservation, complex expression and distinct functions suggest that H1s mediate chromatin reprogramming and contribute to the large variations and complexity of chromatin structure and gene expression in the mammalian genome. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. LIX1 regulates YAP1 activity and controls the proliferation and differentiation of stomach mesenchymal progenitors.

    Science.gov (United States)

    McKey, Jennifer; Martire, Delphine; de Santa Barbara, Pascal; Faure, Sandrine

    2016-04-28

    Smooth muscle cell (SMC) plasticity maintains the balance between differentiated SMCs and proliferative mesenchymal progenitors, crucial for muscular tissue homeostasis. Studies on the development of mesenchymal progenitors into SMCs have proven useful in identifying molecular mechanisms involved in digestive musculature plasticity in physiological and pathological conditions. Here, we show that Limb Expression 1 (LIX1) molecularly defines the population of mesenchymal progenitors in the developing stomach. Using in vivo functional approaches in the chick embryo, we demonstrate that LIX1 is a key regulator of stomach SMC development. We show that LIX1 is required for stomach SMC determination to regulate the expression of the pro-proliferative gene YAP1 and mesenchymal cell proliferation. However, as stomach development proceeds, sustained LIX1 expression has a negative impact on further SMC differentiation and this is associated with a decrease in YAP1 activity. We demonstrate that expression of LIX1 must be tightly regulated to allow fine-tuning of the transcript levels and state of activation of the pro-proliferative transcriptional coactivator YAP1 to regulate proliferation rates of stomach mesenchymal progenitors and their differentiation. Our data highlight dual roles for LIX1 and YAP1 and provide new insights into the regulation of cell density-dependent proliferation, which is essential for the development and homeostasis of organs.

  18. Ascl1 Coordinately Regulates Gene Expression and the Chromatin Landscape during Neurogenesis

    Directory of Open Access Journals (Sweden)

    Alexandre A.S.F. Raposo

    2015-03-01

    Full Text Available The proneural transcription factor Ascl1 coordinates gene expression in both proliferating and differentiating progenitors along the neuronal lineage. Here, we used a cellular model of neurogenesis to investigate how Ascl1 interacts with the chromatin landscape to regulate gene expression when promoting neuronal differentiation. We find that Ascl1 binding occurs mostly at distal enhancers and is associated with activation of gene transcription. Surprisingly, the accessibility of Ascl1 to its binding sites in neural stem/progenitor cells remains largely unchanged throughout their differentiation, as Ascl1 targets regions of both readily accessible and closed chromatin in proliferating cells. Moreover, binding of Ascl1 often precedes an increase in chromatin accessibility and the appearance of new regions of open chromatin, associated with de novo gene expression during differentiation. Our results reveal a function of Ascl1 in promoting chromatin accessibility during neurogenesis, linking the chromatin landscape at Ascl1 target regions with the temporal progression of its transcriptional program.

  19. MicroRNA 107 partly inhibits endothelial progenitor cells differentiation via HIF-1β.

    Directory of Open Access Journals (Sweden)

    Shu Meng

    Full Text Available Endothelial progenitor cells (EPCs play an important role in tissue repair after ischemic heart disease. In particular, the recovery of endothelial function is reliant on the ability and rate of EPCs differentiate into mature endothelial cells. The present study evaluated the effect of microRNA 107 (miR-107 on the mechanism of EPCs differentiation. EPCs were isolated from rats' bone marrow and miR-107 expression of EPCs in hypoxic and normoxic conditions were measured by real-time qualitative PCR. CD31 was analyzed by flow cytometry and eNOS was examined by real-time qualitative PCR and western blotting and these were used as markers of EPC differentiation. In order to reveal the mechanism, we used miR107 inhibitor and lentiviral vector expressing a short hairpin RNA (shRNA that targets miR-107 and hypoxia-inducible factor-1 β (HIF-1β to alter miR107 and HIF-1β expression. MiR-107 expression were increased in EPCs under hypoxic conditions. Up-regulation of miR-107 partly suppressed the EPCs differentiation induced in hypoxia, while down-regulation of miR-107 promoted EPC differentiation. HIF-1β was the target. This study indicated that miR-107 was up-regulated in hypoxia to prevent EPCs differentiation via its target HIF-1β. The physiological mechanisms of miR-107 must be evaluated if it is to be used as a potential anti-ischemia therapeutic regime.

  20. Differential regulation of protease activated receptor-1 and tissue plasminogen activator expression by shear stress in vascular smooth muscle cells

    Science.gov (United States)

    Papadaki, M.; Ruef, J.; Nguyen, K. T.; Li, F.; Patterson, C.; Eskin, S. G.; McIntire, L. V.; Runge, M. S.

    1998-01-01

    Recent studies have demonstrated that vascular smooth muscle cells are responsive to changes in their local hemodynamic environment. The effects of shear stress on the expression of human protease activated receptor-1 (PAR-1) and tissue plasminogen activator (tPA) mRNA and protein were investigated in human aortic smooth muscle cells (HASMCs). Under conditions of low shear stress (5 dyn/cm2), PAR-1 mRNA expression was increased transiently at 2 hours compared with stationary control values, whereas at high shear stress (25 dyn/cm2), mRNA expression was decreased (to 29% of stationary control; Pmuscle cells, indicating that the effects of shear stress on human PAR-1 were not species-specific. Flow cytometry and ELISA techniques using rat smooth muscle cells and HASMCs, respectively, provided evidence that shear stress exerted similar effects on cell surface-associated PAR-1 and tPA protein released into the conditioned media. The decrease in PAR-1 mRNA and protein had functional consequences for HASMCs, such as inhibition of [Ca2+] mobilization in response to thrombin stimulation. These data indicate that human PAR-1 and tPA gene expression are regulated differentially by shear stress, in a pattern consistent with their putative roles in several arterial vascular pathologies.

  1. The Wnt Signaling Pathway Is Differentially Expressed during the Bovine Herpesvirus 1 Latency-Reactivation Cycle: Evidence That Two Protein Kinases Associated with Neuronal Survival, Akt3 and BMPR2, Are Expressed at Higher Levels during Latency.

    Science.gov (United States)

    Workman, Aspen; Zhu, Liqian; Keel, Brittney N; Smith, Timothy P L; Jones, Clinton

    2018-04-01

    Sensory neurons in trigeminal ganglia (TG) of calves latently infected with bovine herpesvirus 1 (BoHV-1) abundantly express latency-related (LR) gene products, including a protein (ORF2) and two micro-RNAs. Recent studies in mouse neuroblastoma cells (Neuro-2A) demonstrated ORF2 interacts with β-catenin and a β-catenin coactivator, high-mobility group AT-hook 1 (HMGA1) protein, which correlates with increased β-catenin-dependent transcription and cell survival. β-Catenin and HMGA1 are readily detected in a subset of latently infected TG neurons but not TG neurons from uninfected calves or reactivation from latency. Consequently, we hypothesized that the Wnt/β-catenin signaling pathway is differentially expressed during the latency and reactivation cycle and an active Wnt pathway promotes latency. RNA-sequencing studies revealed that 102 genes associated with the Wnt/β-catenin signaling pathway were differentially expressed in TG during the latency-reactivation cycle in calves. Wnt agonists were generally expressed at higher levels during latency, but these levels decreased during dexamethasone-induced reactivation. The Wnt agonist bone morphogenetic protein receptor 2 (BMPR2) was intriguing because it encodes a serine/threonine receptor kinase that promotes neuronal differentiation and inhibits cell death. Another differentially expressed gene encodes a protein kinase (Akt3), which is significant because Akt activity enhances cell survival and is linked to herpes simplex virus 1 latency and neuronal survival. Additional studies demonstrated ORF2 increased Akt3 steady-state protein levels and interacted with Akt3 in transfected Neuro-2A cells, which correlated with Akt3 activation. Conversely, expression of Wnt antagonists increased during reactivation from latency. Collectively, these studies suggest Wnt signaling cooperates with LR gene products, in particular ORF2, to promote latency. IMPORTANCE Lifelong BoHV-1 latency primarily occurs in sensory neurons

  2. Different gene-expression profiles for the poorly differentiated carcinoma and the highly differentiated papillary adenocarcinoma in mammary glands support distinct metabolic pathways

    International Nuclear Information System (INIS)

    Eilon, Tali; Barash, Itamar

    2008-01-01

    Deregulation of Stat5 in the mammary gland of transgenic mice causes tumorigenesis. Poorly differentiated carcinoma and highly differentiated papillary adenocarcinoma tumors evolve. To distinguish the genes and elucidate the cellular processes and metabolic pathways utilized to preserve these phenotypes, gene-expression profiles were analyzed. Mammary tumors were excised from transgenic mice carrying a constitutively active variant of Stat5, or a Stat5 variant lacking s transactivation domain. These tumors displayed either the carcinoma or the papillary adenocarcinoma phenotypes. cRNAs, prepared from each tumor were hybridized to an Affymetrix GeneChip ® Mouse Genome 430A 2.0 array. Gene-ontology analysis, hierarchical clustering and biological-pathway analysis were performed to distinct the two types of tumors. Histopathology and immunofluorescence staining complemented the comparison between the tumor phenotypes. The nucleus-cytoskeleton-plasma membrane axis is a major target for differential gene expression between phenotypes. In the carcinoma, stronger expression of genes coding for specific integrins, cytoskeletal proteins and calcium-binding proteins highlight cell-adhesion and motility features of the tumor cells. This is supported by the higher expression of genes involved in O-glycan synthesis, TGF-β, activin, their receptors and Smad3, as well as the Notch ligands and members of the γ-secretase complex that enable Notch nuclear localization. The Wnt pathway was also a target for differential gene expression. Higher expression of genes encoding the degradation complex of the canonical pathway and limited TCF expression in the papillary adenocarcinoma result in membranal accumulation of β-catenin, in contrast to its nuclear translocation in the carcinoma. Genes involved in cell-cycle arrest at G1 and response to DNA damage were more highly expressed in the papillary adenocarcinomas, as opposed to favored G2/M regulation in the carcinoma tumors. At least

  3. Robust Nonnegative Matrix Factorization via Joint Graph Laplacian and Discriminative Information for Identifying Differentially Expressed Genes

    Directory of Open Access Journals (Sweden)

    Ling-Yun Dai

    2017-01-01

    Full Text Available Differential expression plays an important role in cancer diagnosis and classification. In recent years, many methods have been used to identify differentially expressed genes. However, the recognition rate and reliability of gene selection still need to be improved. In this paper, a novel constrained method named robust nonnegative matrix factorization via joint graph Laplacian and discriminative information (GLD-RNMF is proposed for identifying differentially expressed genes, in which manifold learning and the discriminative label information are incorporated into the traditional nonnegative matrix factorization model to train the objective matrix. Specifically, L2,1-norm minimization is enforced on both the error function and the regularization term which is robust to outliers and noise in gene data. Furthermore, the multiplicative update rules and the details of convergence proof are shown for the new model. The experimental results on two publicly available cancer datasets demonstrate that GLD-RNMF is an effective method for identifying differentially expressed genes.

  4. Camera-augmented mobile C-arm (CamC): A feasibility study of augmented reality imaging in the operating room.

    Science.gov (United States)

    von der Heide, Anna Maria; Fallavollita, Pascal; Wang, Lejing; Sandner, Philipp; Navab, Nassir; Weidert, Simon; Euler, Ekkehard

    2018-04-01

    In orthopaedic trauma surgery, image-guided procedures are mostly based on fluoroscopy. The reduction of radiation exposure is an important goal. The purpose of this work was to investigate the impact of a camera-augmented mobile C-arm (CamC) on radiation exposure and the surgical workflow during a first clinical trial. Applying a workflow-oriented approach, 10 general workflow steps were defined to compare the CamC to traditional C-arms. The surgeries included were arbitrarily identified and assigned to the study. The evaluation criteria were radiation exposure and operation time for each workflow step and the entire surgery. The evaluation protocol was designed and conducted in a single-centre study. The radiation exposure was remarkably reduced by 18 X-ray shots 46% using the CamC while keeping similar surgery times. The intuitiveness of the system, its easy integration into the surgical workflow, and its great potential to reduce radiation have been demonstrated. Copyright © 2017 John Wiley & Sons, Ltd.

  5. Differential Protein Expressions in Virus-Infected and Uninfected Trichomonas vaginalis.

    Science.gov (United States)

    He, Ding; Pengtao, Gong; Ju, Yang; Jianhua, Li; He, Li; Guocai, Zhang; Xichen, Zhang

    2017-04-01

    Protozoan viruses may influence the function and pathogenicity of the protozoa. Trichomonas vaginalis is a parasitic protozoan that could contain a double stranded RNA (dsRNA) virus, T. vaginalis virus (TVV). However, there are few reports on the properties of the virus. To further determine variations in protein expression of T. vaginalis , we detected 2 strains of T. vaginalis ; the virus-infected (V + ) and uninfected (V - ) isolates to examine differentially expressed proteins upon TVV infection. Using a stable isotope N-terminal labeling strategy (iTRAQ) on soluble fractions to analyze proteomes, we identified 293 proteins, of which 50 were altered in V + compared with V - isolates. The results showed that the expression of 29 proteins was increased, and 21 proteins decreased in V + isolates. These differentially expressed proteins can be classified into 4 categories: ribosomal proteins, metabolic enzymes, heat shock proteins, and putative uncharacterized proteins. Quantitative PCR was used to detect 4 metabolic processes proteins: glycogen phosphorylase, malate dehydrogenase, triosephosphate isomerase, and glucose-6-phosphate isomerase, which were differentially expressed in V + and V - isolates. Our findings suggest that mRNA levels of these genes were consistent with protein expression levels. This study was the first which analyzed protein expression variations upon TVV infection. These observations will provide a basis for future studies concerning the possible roles of these proteins in host-parasite interactions.

  6. Acquiring Multiview C-Arm Images to Assist Cardiac Ablation Procedures

    Directory of Open Access Journals (Sweden)

    Fallavollita Pascal

    2010-01-01

    Full Text Available CARTO XP is an electroanatomical cardiac mapping system that provides 3D color-coded maps of the electrical activity of the heart; however it is expensive and it can only use a single costly magnetic catheter for each patient intervention. Our approach consists of integrating fluoroscopic and electrical data from the RF catheters into the same image so as to better guide RF ablation, shorten the duration of this procedure, increase its efficacy, and decrease hospital cost when compared to CARTO XP. We propose a method that relies on multi-view C-arm fluoroscopy image acquisition for (1 the 3D reconstruction of the anatomical structure of interest, (2 the robust temporal tracking of the tip-electrode of a mapping catheter between the diastolic and systolic phases and (3 the 2D/3D registration of color coded isochronal maps directly on the 2D fluoroscopy image that would help the clinician guide the ablation procedure much more effectively. The method has been tested on canine experimental data.

  7. Differentially expressed regulatory genes in honey bee caste development

    Science.gov (United States)

    Hepperle, C.; Hartfelder, K.

    2001-03-01

    In the honey bee, an eminently fertile queen with up to 200 ovarioles per ovary monopolizes colony level reproduction. In contrast, worker bees have only few ovarioles and are essentially sterile. This phenotype divergence is a result of caste-specifically modulated juvenile hormone and ecdysteroid titers in larval development. In this study we employed a differential-display reverse transcription (DDRT)-PCR protocol to detect ecdysteroid-regulated gene expression during a critical phase of caste development. We identified a Ftz-F1 homolog and a Cut-like transcript. Ftz-F1 could be a putative element of the metamorphic ecdysone response cascade of bees, whereas Cut-like proteins are described as transcription factors involved in maintaining cellular differentiation states. The downregulation of both factors can be interpreted as steps in the metamorphic degradation of ovarioles in worker-bee ovaries.

  8. Endoplasmic reticulum stress suppresses lipin-1 expression in 3T3-L1 adipocytes

    International Nuclear Information System (INIS)

    Takahashi, Nobuhiko; Yoshizaki, Takayuki; Hiranaka, Natsumi; Suzuki, Takeshi; Yui, Tomoo; Akanuma, Masayoshi; Kanazawa, Kaoru; Yoshida, Mika; Naito, Sumiyoshi; Fujiya, Mikihiro; Kohgo, Yutaka; Ieko, Masahiro

    2013-01-01

    Highlights: ► Lipin-1 involves lipid metabolism, adipocyte differentiation, and inflammation. ► Adipose lipin-1 expression is reduced in obesity. ► ER stress suppresses lipin-1 expression in 3T3-L1 adipocytes. ► Activation of PPAR-γ recovers ER stress-induced lipin-1 reduction. -- Abstract: Lipin-1 plays crucial roles in the regulation of lipid metabolism and cell differentiation in adipocytes. In obesity, adipose lipin-1 mRNA expression is decreased and positively correlated with systemic insulin sensitivity. Amelioration of the lipin-1 depletion might be improved dysmetabolism. Although some cytokines such as TNF-α and interleukin-1β reduces adipose lipin-1 expression, the mechanism of decreased adipose lipin-1 expression in obesity remains unclear. Recently, endoplasmic reticulum (ER) stress is implicated in the pathogenesis of obesity. Here we investigated the role of ER stress on the lipin-1 expression in 3T3-L1 adipocytes. We demonstrated that lipin-1 expression was suppressed by the treatment with ER stress inducers (tunicamycin and thapsigargin) at transcriptional level. We also showed that constitutive lipin-1 expression could be maintained by peroxisome proliferator-activated receptor-γ in 3T3-L1 adipocytes. Activation of peroxisome proliferator-activated receptor-γ recovered the ER stress-induced lipin-1 suppression. These results suggested that ER stress might be involved in the pathogenesis of obesity through lipin-1 depletion

  9. Endoplasmic reticulum stress suppresses lipin-1 expression in 3T3-L1 adipocytes

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Nobuhiko, E-mail: ntkhs@hoku-iryo-u.ac.jp [Department of Internal Medicine, School of Dentistry, Health Sciences University of Hokkaido, 1757, Kanazawa, Ishikari-Toubetsu, Hokkaido 061-0023 (Japan); Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, 2-1-1-1, Midorigaoka-Higashi, Asahikawa, Hokkaido 078-8510 (Japan); Yoshizaki, Takayuki [Innovation Center, Kagoshima University, 1-21-40, Korimoto, Kagoshima 890-0065 (Japan); Hiranaka, Natsumi; Suzuki, Takeshi [Department of Internal Medicine, School of Dentistry, Health Sciences University of Hokkaido, 1757, Kanazawa, Ishikari-Toubetsu, Hokkaido 061-0023 (Japan); Yui, Tomoo; Akanuma, Masayoshi [Department of Fixed Prosthodontics and Oral Implantology, School of Dentistry, Health Sciences University of Hokkaido, 1757, Kanazawa, Ishikari-Toubetsu, Hokkaido 061-0023 (Japan); Kanazawa, Kaoru [Department of Dental Anesthesiology, School of Dentistry, Health Sciences University of Hokkaido, 1757, Kanazawa, Ishikari-Toubetsu, Hokkaido 061-0023 (Japan); Yoshida, Mika; Naito, Sumiyoshi [Department of Clinical Laboratory, Health Sciences University of Hokkaido, 1757, Kanazawa, Ishikari-Toubetsu, Hokkaido 061-0023 (Japan); Fujiya, Mikihiro; Kohgo, Yutaka [Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, 2-1-1-1, Midorigaoka-Higashi, Asahikawa, Hokkaido 078-8510 (Japan); Ieko, Masahiro [Department of Internal Medicine, School of Dentistry, Health Sciences University of Hokkaido, 1757, Kanazawa, Ishikari-Toubetsu, Hokkaido 061-0023 (Japan)

    2013-02-01

    Highlights: ► Lipin-1 involves lipid metabolism, adipocyte differentiation, and inflammation. ► Adipose lipin-1 expression is reduced in obesity. ► ER stress suppresses lipin-1 expression in 3T3-L1 adipocytes. ► Activation of PPAR-γ recovers ER stress-induced lipin-1 reduction. -- Abstract: Lipin-1 plays crucial roles in the regulation of lipid metabolism and cell differentiation in adipocytes. In obesity, adipose lipin-1 mRNA expression is decreased and positively correlated with systemic insulin sensitivity. Amelioration of the lipin-1 depletion might be improved dysmetabolism. Although some cytokines such as TNF-α and interleukin-1β reduces adipose lipin-1 expression, the mechanism of decreased adipose lipin-1 expression in obesity remains unclear. Recently, endoplasmic reticulum (ER) stress is implicated in the pathogenesis of obesity. Here we investigated the role of ER stress on the lipin-1 expression in 3T3-L1 adipocytes. We demonstrated that lipin-1 expression was suppressed by the treatment with ER stress inducers (tunicamycin and thapsigargin) at transcriptional level. We also showed that constitutive lipin-1 expression could be maintained by peroxisome proliferator-activated receptor-γ in 3T3-L1 adipocytes. Activation of peroxisome proliferator-activated receptor-γ recovered the ER stress-induced lipin-1 suppression. These results suggested that ER stress might be involved in the pathogenesis of obesity through lipin-1 depletion.

  10. Differential expression of granulopoiesis related genes in neutrophil subsets distinguished by membrane expression of CD177

    DEFF Research Database (Denmark)

    Hu, Nan; Mora-Jensen, Helena; Theilgaard-Mønch, Kim

    2014-01-01

    OBJECTIVE: Differential gene expression in CD177+ and CD177- neutrophils was investigated, in order to detect possible differences in neutrophil function which could be related to the pathogenesis of ANCA-associated Vasculitides (AAV). METHODS: Neutrophils were isolated from healthy controls (HC......) with high, negative or bimodal CD177 expression, and sorted into CD177+ and CD177- subpopulations. Total RNA was screened for expression of 24,000 probes with Illumina Ref-8 Beadchips. Genes showing differential expression between CD177+ and CD177- subsets in microarray analysis were re-assessed using...... quantitative-PCR. CD177 expression on neutrophil precursors in bone marrow was analyzed using quantitative PCR and flowcytometry. RESULTS: The proportion of CD177+ cells increased during neutrophil maturation in bone marrow. Fold change analysis of gene expression profile of sorted CD177+ and CD177...

  11. The full-length E1-circumflexE4 protein of human papillomavirus type 18 modulates differentiation-dependent viral DNA amplification and late gene expression

    International Nuclear Information System (INIS)

    Wilson, Regina; Ryan, Gordon B.; Knight, Gillian L.; Laimins, Laimonis A.; Roberts, Sally

    2007-01-01

    Activation of the productive phase of the human papillomavirus (HPV) life cycle in differentiated keratinocytes is coincident with high-level expression of E1-circumflexE4 protein. To determine the role of E1-circumflexE4 in the HPV replication cycle, we constructed HPV18 mutant genomes in which expression of the full-length E1-circumflexE4 protein was abrogated. Undifferentiated keratinocytes containing mutant genomes showed enhanced proliferation when compared to cells containing wildtype genomes, but there were no differences in maintenance of viral episomes. Following differentiation, cells with mutant genomes exhibited reduced levels of viral DNA amplification and late gene expression, compared to wildtype genome-containing cells. This indicates that HPV18 E1-circumflexE4 plays an important role in regulating HPV late functions, and it may also function in the early phase of the replication cycle. Our finding that full-length HPV18 E1-circumflexE4 protein plays a significant role in promoting viral genome amplification concurs with a similar report with HPV31, but is in contrast to an HPV11 study where viral DNA amplification was not dependent on full-length E1-circumflexE4 expression, and to HPV16 where only C-terminal truncations in E1-circumflexE4 abrogated vegetative genome replication. This suggests that type-specific differences exist between various E1-circumflexE4 proteins

  12. Differential Expression ESTs Associated with Fluorosis in Rats Liver

    Directory of Open Access Journals (Sweden)

    Y. Q. He

    2012-01-01

    Full Text Available The fluoride has volcanic activity and abundantly exists in environment combining with other elements as fluoride compounds. Recent researches indicated that the molecular mechanisms of intracellular fluoride toxicity were very complex. However, the molecular mechanisms underlying the effects on gene expression of chronic fluoride-induced damage is unknown, especially the detailed regulatory process of mitochondria. In the present study, we screened the differential expression ESTs associated with fluorosis by DDRT-PCR in rat liver. We gained 8 genes, 3 new ESTs, and 1 unknown function sequence and firstly demonstrated that microsomal glutathione S-transferase 1 (MGST1, ATP synthase H+ transporting mitochondrial F0 complex subunit C1, selenoprotein S, mitochondrial IF1 protein, and mitochondrial succinyl-CoA synthetase alpha subunit were participated in mitochondria metabolism, functional and structural damage process caused by chronic fluorosis. This information will be very helpful for understanding the molecular mechanisms of fluorosis.

  13. Differential Gene Expression of Longan Under Simulated Acid Rain Stress.

    Science.gov (United States)

    Zheng, Shan; Pan, Tengfei; Ma, Cuilan; Qiu, Dongliang

    2017-05-01

    Differential gene expression profile was studied in Dimocarpus longan Lour. in response to treatments of simulated acid rain with pH 2.5, 3.5, and a control (pH 5.6) using differential display reverse transcription polymerase chain reaction (DDRT-PCR). Results showed that mRNA differential display conditions were optimized to find an expressed sequence tag (EST) related with acid rain stress. The potential encoding products had 80% similarity with a transcription initiation factor IIF of Gossypium raimondii and 81% similarity with a protein product of Theobroma cacao. This fragment is the transcription factor activated by second messenger substances in longan leaves after signal perception of acid rain.

  14. Differential Gene Expression in Colon Tissue Associated With Diet, Lifestyle, and Related Oxidative Stress.

    Directory of Open Access Journals (Sweden)

    Martha L Slattery

    Full Text Available Several diet and lifestyle factors may impact health by influencing oxidative stress levels. We hypothesize that level of cigarette smoking, alcohol, anti-inflammatory drugs, and diet alter gene expression. We analyzed RNA-seq data from 144 colon cancer patients who had information on recent cigarette smoking, recent alcohol consumption, diet, and recent aspirin/non-steroidal anti-inflammatory use. Using a false discovery rate of 0.1, we evaluated gene differential expression between high and low levels of exposure using DESeq2. Ingenuity Pathway Analysis (IPA was used to determine networks associated with de-regulated genes in our data. We identified 46 deregulated genes associated with recent cigarette use; these genes enriched causal networks regulated by TEK and MAP2K3. Different differentially expressed genes were associated with type of alcohol intake; five genes were associated with total alcohol, six were associated with beer intake, six were associated with wine intake, and four were associated with liquor consumption. Recent use of aspirin and/or ibuprofen was associated with differential expression of TMC06, ST8SIA4, and STEAP3 while a summary oxidative balance score (OBS was associated with SYCP3, HDX, and NRG4 (all up-regulated with greater oxidative balance. Of the dietary antioxidants and carotenoids evaluated only intake of beta carotene (1 gene, Lutein/Zeaxanthine (5 genes, and Vitamin E (4 genes were associated with differential gene expression. There were similarities in biological function of de-regulated genes associated with various dietary and lifestyle factors. Our data support the hypothesis that diet and lifestyle factors associated with oxidative stress can alter gene expression. However genes altered were unique to type of alcohol and type of antioxidant. Because of potential differences in associations observed between platforms these findings need replication in other populations.

  15. Cell recognition molecule L1 promotes embryonic stem cell differentiation through the regulation of cell surface glycosylation

    Energy Technology Data Exchange (ETDEWEB)

    Li, Ying [Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044 (China); Department of Clinical Laboratory, Second Affiliated Hospital of Dalian Medical University, Dalian 116023 (China); Huang, Xiaohua [Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044 (China); Department of Clinical Biochemistry, College of Laboratory Medicine, Dalian Medical University, Dalian 116044 (China); An, Yue [Department of Clinical Laboratory, Second Affiliated Hospital of Dalian Medical University, Dalian 116023 (China); Ren, Feng [Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044 (China); Yang, Zara Zhuyun; Zhu, Hongmei; Zhou, Lei [The Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming 650228 (China); Department of Anatomy and Developmental Biology, Monash University, Clayton 3800 (Australia); He, Xiaowen; Schachner, Melitta [Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers University, New Brunswick, NJ (United States); Xiao, Zhicheng, E-mail: zhicheng.xiao@monash.edu [The Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming 650228 (China); Department of Anatomy and Developmental Biology, Monash University, Clayton 3800 (Australia); Ma, Keli, E-mail: makeli666@aliyun.com [Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044 (China); Li, Yali, E-mail: yalilipaper@gmail.com [Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044 (China); Department of Anatomy, National University of Singapore, Singapore 119078 (Singapore)

    2013-10-25

    Highlights: •Down-regulating FUT9 and ST3Gal4 expression blocks L1-induced neuronal differentiation of ESCs. •Up-regulating FUT9 and ST3Gal4 expression in L1-ESCs depends on the activation of PLCγ. •L1 promotes ESCs to differentiate into neuron through regulating cell surface glycosylation. -- Abstract: Cell recognition molecule L1 (CD171) plays an important role in neuronal survival, migration, differentiation, neurite outgrowth, myelination, synaptic plasticity and regeneration after injury. Our previous study has demonstrated that overexpressing L1 enhances cell survival and proliferation of mouse embryonic stem cells (ESCs) through promoting the expression of FUT9 and ST3Gal4, which upregulates cell surface sialylation and fucosylation. In the present study, we examined whether sialylation and fucosylation are involved in ESC differentiation through L1 signaling. RNA interference analysis showed that L1 enhanced differentiation of ESCs into neurons through the upregulation of FUT9 and ST3Gal4. Furthermore, blocking the phospholipase Cγ (PLCγ) signaling pathway with either a specific PLCγ inhibitor or knockdown PLCγ reduced the expression levels of both FUT9 and ST3Gal4 mRNAs and inhibited L1-mediated neuronal differentiation. These results demonstrate that L1 promotes neuronal differentiation from ESCs through the L1-mediated enhancement of FUT9 and ST3Gal4 expression.

  16. Cell recognition molecule L1 promotes embryonic stem cell differentiation through the regulation of cell surface glycosylation

    International Nuclear Information System (INIS)

    Li, Ying; Huang, Xiaohua; An, Yue; Ren, Feng; Yang, Zara Zhuyun; Zhu, Hongmei; Zhou, Lei; He, Xiaowen; Schachner, Melitta; Xiao, Zhicheng; Ma, Keli; Li, Yali

    2013-01-01

    Highlights: •Down-regulating FUT9 and ST3Gal4 expression blocks L1-induced neuronal differentiation of ESCs. •Up-regulating FUT9 and ST3Gal4 expression in L1-ESCs depends on the activation of PLCγ. •L1 promotes ESCs to differentiate into neuron through regulating cell surface glycosylation. -- Abstract: Cell recognition molecule L1 (CD171) plays an important role in neuronal survival, migration, differentiation, neurite outgrowth, myelination, synaptic plasticity and regeneration after injury. Our previous study has demonstrated that overexpressing L1 enhances cell survival and proliferation of mouse embryonic stem cells (ESCs) through promoting the expression of FUT9 and ST3Gal4, which upregulates cell surface sialylation and fucosylation. In the present study, we examined whether sialylation and fucosylation are involved in ESC differentiation through L1 signaling. RNA interference analysis showed that L1 enhanced differentiation of ESCs into neurons through the upregulation of FUT9 and ST3Gal4. Furthermore, blocking the phospholipase Cγ (PLCγ) signaling pathway with either a specific PLCγ inhibitor or knockdown PLCγ reduced the expression levels of both FUT9 and ST3Gal4 mRNAs and inhibited L1-mediated neuronal differentiation. These results demonstrate that L1 promotes neuronal differentiation from ESCs through the L1-mediated enhancement of FUT9 and ST3Gal4 expression

  17. Role of OCT-1 and partner proteins in T cell differentiation.

    Science.gov (United States)

    Hwang, Soo Seok; Kim, Lark Kyun; Lee, Gap Ryol; Flavell, Richard A

    2016-06-01

    The understanding of CD4 T cell differentiation gives important insights into the control of immune responses against various pathogens and in autoimmune diseases. Naïve CD4 T cells become effector T cells in response to antigen stimulation in combination with various environmental cytokine stimuli. Several transcription factors and cis-regulatory regions have been identified to regulate epigenetic processes on chromatin, to allow the production of proper effector cytokines during CD4 T cell differentiation. OCT-1 (Pou2f1) is well known as a widely expressed transcription factor in most tissues and cells. Although the importance of OCT-1 has been emphasized during development and differentiation, its detailed molecular underpinning and precise role are poorly understood. Recently, a series of studies have reported that OCT-1 plays a critical role in CD4 T cells through regulating gene expression during differentiation and mediating long-range chromosomal interactions. In this review, we will describe the role of OCT-1 in CD4 T cell differentiation and discuss how this factor orchestrates the fate and function of CD4 effector T cells. Copyright © 2016. Published by Elsevier B.V.

  18. Differential gene expression between African American and European American colorectal cancer patients.

    Directory of Open Access Journals (Sweden)

    Biljana Jovov

    Full Text Available The incidence and mortality of colorectal cancer (CRC is higher in African Americans (AAs than other ethnic groups in the U. S., but reasons for the disparities are unknown. We performed gene expression profiling of sporadic CRCs from AAs vs. European Americans (EAs to assess the contribution to CRC disparities. We evaluated the gene expression of 43 AA and 43 EA CRC tumors matched by stage and 40 matching normal colorectal tissues using the Agilent human whole genome 4x44K cDNA arrays. Gene and pathway analyses were performed using Significance Analysis of Microarrays (SAM, Ten-fold cross validation, and Ingenuity Pathway Analysis (IPA. SAM revealed that 95 genes were differentially expressed between AA and EA patients at a false discovery rate of ≤5%. Using IPA we determined that most prominent disease and pathway associations of differentially expressed genes were related to inflammation and immune response. Ten-fold cross validation demonstrated that following 10 genes can predict ethnicity with an accuracy of 94%: CRYBB2, PSPH, ADAL, VSIG10L, C17orf81, ANKRD36B, ZNF835, ARHGAP6, TRNT1 and WDR8. Expression of these 10 genes was validated by qRT-PCR in an independent test set of 28 patients (10 AA, 18 EA. Our results are the first to implicate differential gene expression in CRC racial disparities and indicate prominent difference in CRC inflammation between AA and EA patients. Differences in susceptibility to inflammation support the existence of distinct tumor microenvironments in these two patient populations.

  19. CHD1 regulates cell fate determination by activation of differentiation-induced genes

    DEFF Research Database (Denmark)

    Baumgart, Simon J; Najafova, Zeynab; Hossan, Tareq

    2017-01-01

    The coordinated temporal and spatial activation of gene expression is essential for proper stem cell differentiation. The Chromodomain Helicase DNA-binding protein 1 (CHD1) is a chromatin remodeler closely associated with transcription and nucleosome turnover downstream of the transcriptional start...... site (TSS). In this study, we show that CHD1 is required for the induction of osteoblast-specific gene expression, extracellular-matrix mineralization and ectopic bone formation in vivo. Genome-wide occupancy analyses revealed increased CHD1 occupancy around the TSS of differentiation-activated genes....... Furthermore, we observed that CHD1-dependent genes are mainly induced during osteoblast differentiation and are characterized by higher levels of CHD1 occupancy around the TSS. Interestingly, CHD1 depletion resulted in increased pausing of RNA Polymerase II (RNAPII) and decreased H2A.Z occupancy close...

  20. cDNA-AFLP analysis reveals differential gene expression in response to salt stress in foxtail millet (Setaria italica L.).

    Science.gov (United States)

    Jayaraman, Ananthi; Puranik, Swati; Rai, Neeraj Kumar; Vidapu, Sudhakar; Sahu, Pranav Pankaj; Lata, Charu; Prasad, Manoj

    2008-11-01

    Plant growth and productivity are affected by various abiotic stresses such as heat, drought, cold, salinity, etc. The mechanism of salt tolerance is one of the most important subjects in plant science as salt stress decreases worldwide agricultural production. In our present study we used cDNA-AFLP technique to compare gene expression profiles of a salt tolerant and a salt-sensitive cultivar of foxtail millet (Seteria italica) in response to salt stress to identify early responsive differentially expressed transcripts accumulated upon salt stress and validate the obtained result through quantitative real-time PCR (qRT-PCR). The expression profile was compared between a salt tolerant (Prasad) and susceptible variety (Lepakshi) of foxtail millet in both control condition (L0 and P0) and after 1 h (L1 and P1) of salt stress. We identified 90 transcript-derived fragments (TDFs) that are differentially expressed, out of which 86 TDFs were classified on the basis of their either complete presence or absence (qualitative variants) and 4 on differential expression pattern levels (quantitative variants) in the two varieties. Finally, we identified 27 non-redundant differentially expressed cDNAs that are unique to salt tolerant variety which represent different groups of genes involved in metabolism, cellular transport, cell signaling, transcriptional regulation, mRNA splicing, seed development and storage, etc. The expression patterns of seven out of nine such genes showed a significant increase of differential expression in tolerant variety after 1 h of salt stress in comparison to salt-sensitive variety as analyzed by qRT-PCR. The direct and indirect relationship of identified TDFs with salinity tolerance mechanism is discussed.

  1. Expressão diferencial dos genes VuUCP1a e VuUCP1b em caupi sob estresse salino Differential expression of VuUCP1a and VuUCP1b in caupi under salt stress

    Directory of Open Access Journals (Sweden)

    Francisco Edson Alves Garantizado

    2011-06-01

    stress. The aim of this work was to study gene expression of pUCPs (VuUCP1a and VuUCP1b in roots and leaves from Vigna unguiculata seedlings under salt stress (100 mM NaCl. Seeds were germinated in the dark and after 3 days, the seedlings were transferred to Hoagland's medium and grown for 3 additional days before being submitted to the stress condition. Roots and leaves were harvested at 0; 6; 12 and 24 hours after addition of NaCl for total RNA isolation and RT-PCR assays. Expression analysis by RT-PCR showed that VuUCP1a is constitutive in leaves and roots while VuUCP1b is expressed as tissue-dependent presenting a constitutive profile in leaves and a differential one in roots from seedlings under salt stress. The uniqueness of pUCP1 gene duplication in cowpea with differential expression suggest a role of this enzyme in the adjustment of salt stress as well as promotes this species as an attractive model to understand the role of pUCP gene members in plants.

  2. Class A scavenger receptor promotes osteoclast differentiation via the enhanced expression of receptor activator of NF-{kappa}B (RANK)

    Energy Technology Data Exchange (ETDEWEB)

    Takemura, Kenichi [Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto 860-8556 (Japan); Department of Orthopaedic and Neuro-Musculoskeletal Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto (Japan); Sakashita, Naomi; Fujiwara, Yukio; Komohara, Yoshihiro; Lei, XiaoFeng; Ohnishi, Koji [Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto 860-8556 (Japan); Suzuki, Hiroshi [National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Hokkaido (Japan); Kodama, Tatsuhiko [Department of Molecular Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo (Japan); Mizuta, Hiroshi [Department of Orthopaedic and Neuro-Musculoskeletal Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto (Japan); Takeya, Motohiro, E-mail: takeya@kumamoto-u.ac.jp [Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto 860-8556 (Japan)

    2010-01-22

    Osteoclasts originate from bone marrow monocyte/macrophage lineage cells, and their differentiation depends on macrophage colony-stimulating factor (M-CSF) and receptor activator nuclear factor kappa B (RANK) ligand. Class A scavenger receptor (SR-A) is one of the principal functional molecules of macrophages, and its level of expression declines during osteoclast differentiation. To investigate the role of SR-A in osteoclastogenesis, we examined pathological changes in femoral bone and the expression levels of osteoclastogenesis-related molecules in SR-A{sup -/-} mice. The femoral osseous density of SR-A{sup -/-} mice was higher than that of SR-A{sup +/+} mice, and the number of multinucleated osteoclasts was significantly decreased. An in vitro differentiation assay revealed that the differentiation of multinucleated osteoclasts from bone marrow-derived progenitor cells is impaired in SR-A{sup -/-} mice. Elimination of SR-A did not alter the expression level of the M-CSF receptor, c-fms; however, the expression levels of RANK and RANK-related osteoclast-differentiation molecules such as nuclear factor of activated T-cells, cytoplasmic, calcineurin-dependent 1 (NFATc1) and microphthalmia-associated transcription factor (MITF) significantly decreased. Furthermore, acetylated low-density lipoprotein (AcLDL), an SR-A ligand, significantly increased the expression level of RANK and MITF during osteoclast differentiation. These data indicate that SR-A promotes osteoclastogenesis via augmentation of the expression level of RANK and its related molecules.

  3. Delta-like 1/fetal antigen 1(DLK1/FA1) inhibits BMP2 induced osteoblast differentiation through modulation of NFκB signaling pathway

    DEFF Research Database (Denmark)

    Qiu, Weimin; Abdallah, Basem; Kassem, Moustapha

    DLK1/FA1 (delta-like 1/fetal antigen-1) is a negative regulator of bone mass that acts to inhibit osteoblast differentiation and stimulate osteoclast differentiation. However, the molecular mechanisms underlying these effects are not known. Thus, we studied the effect of DLK1/FA1 on different...... osteogenic factors-induced osteoblast differentiation. We identified DLK1/FA1 as an inhibitor of BMP2-induced osteogenesis in mouse myoblast C2C12 cells. Stable overexpression of DLK1/FA1 in C2C12 cells or the addition of its soluble form protein FA1 significantly inhibited BMP2-induced osteogenesis...... as assessed by reduced Alp activity and osteogenic gene expression including Alp, Col1a1, Runx2 and Bglap. In addition, DLK1/FA1 inhibited BMP signaling as demonstrated by reduced gene expression of BMP-responsive genes: Junb and Id1, reduced BMP2 induced luciferase activity in C2C12 BMP luciferase reporter...

  4. Brain region-dependent differential expression of alpha-synuclein.

    Science.gov (United States)

    Taguchi, Katsutoshi; Watanabe, Yoshihisa; Tsujimura, Atsushi; Tanaka, Masaki

    2016-04-15

    α-Synuclein, the major constituent of Lewy bodies (LBs), is normally expressed in presynapses and is involved in synaptic function. Abnormal intracellular aggregation of α-synuclein is observed as LBs and Lewy neurites in neurodegenerative disorders, such as Parkinson's disease (PD) or dementia with Lewy bodies. Accumulated evidence suggests that abundant intracellular expression of α-synuclein is one of the risk factors for pathological aggregation. Recently, we reported differential expression patterns of α-synuclein between excitatory and inhibitory hippocampal neurons. Here we further investigated the precise expression profile in the adult mouse brain with special reference to vulnerable regions along the progression of idiopathic PD. The results show that α-synuclein was highly expressed in the neuronal cell bodies of some early PD-affected brain regions, such as the olfactory bulb, dorsal motor nucleus of the vagus, and substantia nigra pars compacta. Synaptic expression of α-synuclein was mostly accompanied by expression of vesicular glutamate transporter-1, an excitatory presynaptic marker. In contrast, expression of α-synuclein in the GABAergic inhibitory synapses was different among brain regions. α-Synuclein was clearly expressed in inhibitory synapses in the external plexiform layer of the olfactory bulb, globus pallidus, and substantia nigra pars reticulata, but not in the cerebral cortex, subthalamic nucleus, or thalamus. These results suggest that some neurons in early PD-affected human brain regions express high levels of perikaryal α-synuclein, as happens in the mouse brain. Additionally, synaptic profiles expressing α-synuclein are different in various brain regions. © 2015 Wiley Periodicals, Inc.

  5. Hypoxia-inducible factor 1-mediated human GATA1 induction promotes erythroid differentiation under hypoxic conditions.

    Science.gov (United States)

    Zhang, Feng-Lin; Shen, Guo-Min; Liu, Xiao-Ling; Wang, Fang; Zhao, Ying-Ze; Zhang, Jun-Wu

    2012-08-01

    Hypoxia-inducible factor promotes erythropoiesis through coordinated cell type-specific hypoxia responses. GATA1 is essential to normal erythropoiesis and plays a crucial role in erythroid differentiation. In this study, we show that hypoxia-induced GATA1 expression is mediated by HIF1 in erythroid cells. Under hypoxic conditions, significantly increased GATA1 mRNA and protein levels were detected in K562 cells and erythroid induction cultures of CD34(+) haematopoietic stem/progenitor cells. Enforced HIF1α expression increased GATA1 expression, while HIF1α knockdown by RNA interference decreased GATA1 expression. In silico analysis revealed one potential hypoxia response element (HRE). The results from reporter gene and mutation analysis suggested that this element is necessary for hypoxic response. Chromatin immunoprecipitation (ChIP)-PCR showed that the putative HRE was recognized and bound by HIF1 in vivo. These results demonstrate that the up-regulation of GATA1 during hypoxia is directly mediated by HIF1.The mRNA expression of some erythroid differentiation markers was increased under hypoxic conditions, but decreased with RNA interference of HIF1α or GATA1. Flow cytometry analysis also indicated that hypoxia, desferrioxamine or CoCl(2) induced expression of erythroid surface markers CD71 and CD235a, while expression repression of HIF1α or GATA1 by RNA interference led to a decreased expression of CD235a. These results suggested that HIF1-mediated GATA1 up-regulation promotes erythropoiesis in order to satisfy the needs of an organism under hypoxic conditions. © 2011 The Authors Journal of Cellular and Molecular Medicine © 2011 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd.

  6. Inhibition of Protein Farnesylation Arrests Adipogenesis and Affects PPARγ Expression and Activation in Differentiating Mesenchymal Stem Cells

    Science.gov (United States)

    Rivas, Daniel; Akter, Rahima; Duque, Gustavo

    2007-01-01

    Protein farnesylation is required for the activation of multiple proteins involved in cell differentiation and function. In white adipose tissue protein, farnesylation has shown to be essential for the successful differentiation of preadipocytes into adipocytes. We hypothesize that protein farnesylation is required for PPARγ2 expression and activation, and therefore for the differentiation of human mesenchymal stem cells (MSCs) into adipocytes. MSCs were plated and induced to differentiate into adipocytes for three weeks. Differentiating cells were treated with either an inhibitor of farnesylation (FTI-277) or vehicle alone. The effect of inhibition of farnesylation in differentiating adipocytes was determined by oil red O staining. Cell survival was quantified using MTS Formazan. Additionally, nuclear extracts were obtained and prelamin A, chaperon protein HDJ-2, PPARγ, and SREBP-1 were determined by western blot. Finally, DNA binding PPARγ activity was determined using an ELISA-based PPARγ activation quantification method. Treatment with an inhibitor of farnesylation (FTI-277) arrests adipogenesis without affecting cell survival. This effect was concomitant with lower levels of PPARγ expression and activity. Finally, accumulation of prelamin A induced an increased proportion of mature SREBP-1 which is known to affect PPARγ activity. In summary, inhibition of protein farnesylation arrests the adipogenic differentiation of MSCs and affects PPARγ expression and activity. PMID:18274630

  7. Differential expression of syntaxin-1 and synaptophysin in the ...

    Indian Academy of Sciences (India)

    Unknown

    In this study, the expression of both proteins was examined in the developing human retina and compared with .... human retina nor the state of synaptogenesis in the fetal human retina beyond 15 ... 2.1 Tissue samples. Human fetuses were ...

  8. Characterization of differentially expressed genes involved in pathways associated with gastric cancer.

    Directory of Open Access Journals (Sweden)

    Hao Li

    Full Text Available To explore the patterns of gene expression in gastric cancer, a total of 26 paired gastric cancer and noncancerous tissues from patients were enrolled for gene expression microarray analyses. Limma methods were applied to analyze the data, and genes were considered to be significantly differentially expressed if the False Discovery Rate (FDR value was 2. Subsequently, Gene Ontology (GO categories were used to analyze the main functions of the differentially expressed genes. According to the Kyoto Encyclopedia of Genes and Genomes (KEGG database, we found pathways significantly associated with the differential genes. Gene-Act network and co-expression network were built respectively based on the relationships among the genes, proteins and compounds in the database. 2371 mRNAs and 350 lncRNAs considered as significantly differentially expressed genes were selected for the further analysis. The GO categories, pathway analyses and the Gene-Act network showed a consistent result that up-regulated genes were responsible for tumorigenesis, migration, angiogenesis and microenvironment formation, while down-regulated genes were involved in metabolism. These results of this study provide some novel findings on coding RNAs, lncRNAs, pathways and the co-expression network in gastric cancer which will be useful to guide further investigation and target therapy for this disease.

  9. Genomewide analysis of gene expression associated with Tcof1 in mouse neuroblastoma

    International Nuclear Information System (INIS)

    Mogass, Michael; York, Timothy P.; Li, Lin; Rujirabanjerd, Sinitdhorn; Shiang, Rita

    2004-01-01

    Mutations in the Treacher Collins syndrome gene, TCOF1, cause a disorder of craniofacial development. We manipulated the levels of Tcof1 and its protein treacle in a murine neuroblastoma cell line to identify downstream changes in gene expression using a microarray platform. We identified a set of genes that have similar expression with Tcof1 as well as a set of genes that are negatively correlated with Tcof1 expression. We also showed that the level of Tcof1 and treacle expression is downregulated during differentiation of neuroblastoma cells into neuronal cells. Inhibition of Tcof1 expression by siRNA induced morphological changes in neuroblastoma cells that mimic differentiation. Thus, expression of Tcof1 and treacle synthesis play an important role in the proliferation of neuroblastoma cells and we have identified genes that may be important in this pathway

  10. Prion protein expression regulates embryonic stem cell pluripotency and differentiation.

    Directory of Open Access Journals (Sweden)

    Alberto Miranda

    2011-04-01

    Full Text Available Cellular prion protein (PRNP is a glycoprotein involved in the pathogenesis of transmissible spongiform encephalopathies (TSEs. Although the physiological function of PRNP is largely unknown, its key role in prion infection has been extensively documented. This study examines the functionality of PRNP during the course of embryoid body (EB differentiation in mouse Prnp-null (KO and WT embryonic stem cell (ESC lines. The first feature observed was a new population of EBs that only appeared in the KO line after 5 days of differentiation. These EBs were characterized by their expression of several primordial germ cell (PGC markers until Day 13. In a comparative mRNA expression analysis of genes playing an important developmental role during ESC differentiation to EBs, Prnp was found to participate in the transcription of a key pluripotency marker such as Nanog. A clear switching off of this gene on Day 5 was observed in the KO line as opposed to the WT line, in which maximum Prnp and Nanog mRNA levels appeared at this time. Using a specific antibody against PRNP to block PRNP pathways, reduced Nanog expression was confirmed in the WT line. In addition, antibody-mediated inhibition of ITGB5 (integrin αvβ5 in the KO line rescued the low expression of Nanog on Day 5, suggesting the regulation of Nanog transcription by Prnp via this Itgb5. mRNA expression analysis of the PRNP-related proteins PRND (Doppel and SPRN (Shadoo, whose PRNP function is known to be redundant, revealed their incapacity to compensate for the absence of PRNP during early ESC differentiation. Our findings provide strong evidence for a relationship between Prnp and several key pluripotency genes and attribute Prnp a crucial role in regulating self-renewal/differentiation status of ESC, confirming the participation of PRNP during early embryogenesis.

  11. Nutritionally driven differential gene expression leads to heterochronic brain development in honeybee castes.

    Directory of Open Access Journals (Sweden)

    Lívia Maria Moda

    Full Text Available The differential feeding regimes experienced by the queen and worker larvae of the honeybee Apis mellifera shape a complex endocrine response cascade that ultimately gives rise to differences in brain morphologies. Brain development analyzed at the morphological level from the third (L3 through fifth (L5 larval instars revealed an asynchrony between queens and workers. In the feeding phase of the last larval instar (L5F, two well-formed structures, pedunculi and calyces, are identifiable in the mushroom bodies of queens, both of which are not present in workers until a later phase (spinning phase, L5S. Genome-wide expression analyses and normalized transcript expression experiments monitoring specific genes revealed that this differential brain development starts earlier, during L3. Analyzing brains from L3 through L5S1 larvae, we identified 21 genes with caste-specific transcription patterns (e.g., APC-4, GlcAT-P, fax, kr-h1 and shot, which encode proteins that are potentially involved in the development of brain tissues through controlling the cell proliferation rate (APC4, kr-h1 and fasciculation (GlcAT-P, fax, and shot. Shot, whose expression is known to be required for axon extension and cell proliferation, was found to be transcribed at significantly higher levels in L4 queens compared with worker larvae. Moreover, the protein encoded by this gene was immunolocalized to the cytoplasm of cells near the antennal lobe neuropiles and proximal to the Kenyon cells in the brains of L4 queens. In conclusion, during the larval period, the brains of queens are larger and develop more rapidly than workers' brains, which represents a developmental heterochrony reflecting the effect of the differential feeding regime of the two castes on nervous system development. Furthermore, this differential development is characterized by caste-specific transcriptional profiles of a set of genes, thus pointing to a link between differential nutrition and

  12. Nutritionally driven differential gene expression leads to heterochronic brain development in honeybee castes.

    Science.gov (United States)

    Moda, Lívia Maria; Vieira, Joseana; Guimarães Freire, Anna Cláudia; Bonatti, Vanessa; Bomtorin, Ana Durvalina; Barchuk, Angel Roberto; Simões, Zilá Luz Paulino

    2013-01-01

    The differential feeding regimes experienced by the queen and worker larvae of the honeybee Apis mellifera shape a complex endocrine response cascade that ultimately gives rise to differences in brain morphologies. Brain development analyzed at the morphological level from the third (L3) through fifth (L5) larval instars revealed an asynchrony between queens and workers. In the feeding phase of the last larval instar (L5F), two well-formed structures, pedunculi and calyces, are identifiable in the mushroom bodies of queens, both of which are not present in workers until a later phase (spinning phase, L5S). Genome-wide expression analyses and normalized transcript expression experiments monitoring specific genes revealed that this differential brain development starts earlier, during L3. Analyzing brains from L3 through L5S1 larvae, we identified 21 genes with caste-specific transcription patterns (e.g., APC-4, GlcAT-P, fax, kr-h1 and shot), which encode proteins that are potentially involved in the development of brain tissues through controlling the cell proliferation rate (APC4, kr-h1) and fasciculation (GlcAT-P, fax, and shot). Shot, whose expression is known to be required for axon extension and cell proliferation, was found to be transcribed at significantly higher levels in L4 queens compared with worker larvae. Moreover, the protein encoded by this gene was immunolocalized to the cytoplasm of cells near the antennal lobe neuropiles and proximal to the Kenyon cells in the brains of L4 queens. In conclusion, during the larval period, the brains of queens are larger and develop more rapidly than workers' brains, which represents a developmental heterochrony reflecting the effect of the differential feeding regime of the two castes on nervous system development. Furthermore, this differential development is characterized by caste-specific transcriptional profiles of a set of genes, thus pointing to a link between differential nutrition and differential

  13. Differential proteomic and tissue expression analyses identify valuable diagnostic biomarkers of hepatocellular differentiation and hepatoid adenocarcinomas.

    Science.gov (United States)

    Reis, Henning; Padden, Juliet; Ahrens, Maike; Pütter, Carolin; Bertram, Stefanie; Pott, Leona L; Reis, Anna-Carinna; Weber, Frank; Juntermanns, Benjamin; Hoffmann, Andreas-C; Eisenacher, Martin; Schlaak, Joörg F; Canbay, Ali; Meyer, Helmut E; Sitek, Barbara; Baba, Hideo A

    2015-10-01

    The exact discrimination of lesions with true hepatocellular differentiation from secondary tumours and neoplasms with hepatocellular histomorphology like hepatoid adenocarcinomas (HAC) is crucial. Therefore, we aimed to identify ancillary protein biomarkers by using complementary proteomic techniques (2D-DIGE, label-free MS). The identified candidates were immunohistochemically validated in 14 paired samples of hepatocellular carcinoma (HCC) and non-tumourous liver tissue (NT). The candidates and HepPar1/Arginase1 were afterwards tested for consistency in a large cohort of hepatocellular lesions and NT (n = 290), non-hepatocellular malignancies (n = 383) and HAC (n = 13). Eight non-redundant, differentially expressed proteins were suitable for further immunohistochemical validation and four (ABAT, BHMT, FABP1, HAOX1) for further evaluation. Sensitivity and specificity rates for HCC/HAC were as follows: HepPar1 80.2%, 94.3% / 80.2%, 46.2%; Arginase1 82%, 99.4% / 82%, 69.2%; BHMT 61.4%, 93.8% / 61.4%, 100%; ABAT 84.4%, 33.7% / 84.4%, 30.8%; FABP1 87.2%, 95% / 87.2%, 69.2%; HAOX1 95.5%, 36.3% / 95.5%, 46.2%. The best 2×/3× biomarker panels for the diagnosis of HCC consisted of Arginase1/HAOX1 and BHMT/Arginase1/HAOX1 and for HAC consisted of Arginase1/FABP1 and BHMT/Arginase1/FABP1. In summary, we successfully identified, validated and benchmarked protein biomarker candidates of hepatocellular differentiation. BHMT in particular exhibited superior diagnostic characteristics in hepatocellular lesions and specifically in HAC. BHMT is therefore a promising (panel based) biomarker candidate in the differential diagnostic process of lesions with hepatocellular aspect.

  14. Psoriatic T cells reduce epidermal turnover time and affect cell proliferation contributed from differential gene expression.

    Science.gov (United States)

    Li, Junqin; Li, Xinhua; Hou, Ruixia; Liu, Ruifeng; Zhao, Xincheng; Dong, Feng; Wang, Chunfang; Yin, Guohua; Zhang, Kaiming

    2015-09-01

    Psoriasis is mediated primarily by T cells, which reduce epidermal turnover time and affect keratinocyte proliferation. We aimed to identify differentially expressed genes (DEG) in T cells from normal, five pairs of monozygotic twins concordant or discordant for psoriasis, to determine whether these DEG may account for the influence to epidermal turnover time and keratinocyte proliferation. The impact of T cells on keratinocyte proliferation and epidermal turnover time were investigated separately by immunohistochemistry and cultured with (3) H-TdR. mRNA expression patterns were investigated by RNA sequencing and verified by real-time reverse transcription polymerase chain reaction. After co-culture with psoriatic T cells, the expression of Ki-67, c-Myc and p53 increased, while expression of Bcl-2 and epidermal turnover time decreased. There were 14 DEG which were found to participate in the regulation of cell proliferation or differentiation. Psoriatic T cells exhibited the ability to decrease epidermal turnover time and affect keratinocyte proliferation because of the differential expression of PPIL1, HSPH1, SENP3, NUP54, FABP5, PLEKHG3, SLC9A9 and CHCHD4. © 2015 Japanese Dermatological Association.

  15. Function of FEZF1 during early neural differentiation of human embryonic stem cells.

    Science.gov (United States)

    Liu, Xin; Su, Pei; Lu, Lisha; Feng, Zicen; Wang, Hongtao; Zhou, Jiaxi

    2018-01-01

    The understanding of the mechanism underlying human neural development has been hampered due to lack of a cellular system and complicated ethical issues. Human embryonic stem cells (hESCs) provide an invaluable model for dissecting human development because of unlimited self-renewal and the capacity to differentiate into nearly all cell types in the human body. In this study, using a chemical defined neural induction protocol and molecular profiling, we identified Fez family zinc finger 1 (FEZF1) as a potential regulator of early human neural development. FEZF1 is rapidly up-regulated during neural differentiation in hESCs and expressed before PAX6, a well-established marker of early human neural induction. We generated FEZF1-knockout H1 hESC lines using CRISPR-CAS9 technology and found that depletion of FEZF1 abrogates neural differentiation of hESCs. Moreover, loss of FEZF1 impairs the pluripotency exit of hESCs during neural specification, which partially explains the neural induction defect caused by FEZF1 deletion. However, enforced expression of FEZF1 itself fails to drive neural differentiation in hESCs, suggesting that FEZF1 is necessary but not sufficient for neural differentiation from hESCs. Taken together, our findings identify one of the earliest regulators expressed upon neural induction and provide insight into early neural development in human.

  16. ANALYSES ON DIFFERENTIALLY EXPRESSED GENES ASSOCIATED WITH HUMAN BREAST CANCER

    Institute of Scientific and Technical Information of China (English)

    MENG Xu-li; DING Xiao-wen; XU Xiao-hong

    2006-01-01

    Objective: To investigate the molecular etiology of breast cancer by way of studying the differential expression and initial function of the related genes in the occurrence and development of breast cancer. Methods: Two hundred and eighty-eight human tumor related genes were chosen for preparation of the oligochips probe. mRNA was extracted from 16 breast cancer tissues and the corresponding normal breast tissues, and cDNA probe was prepared through reverse-transcription and hybridized with the gene chip. A laser focused fluorescent scanner was used to scan the chip. The different gene expressions were thereafter automatically compared and analyzed between the two sample groups. Cy3/Cy5>3.5 meant significant up-regulation. Cy3/Cy5<0.25 meant significant down-regulation. Results: The comparison between the breast cancer tissues and their corresponding normal tissues showed that 84 genes had differential expression in the Chip. Among the differently expressed genes, there were 4 genes with significant down-regulation and 6 with significant up-regulation. Compared with normal breast tissues, differentially expressed genes did partially exist in the breast cancer tissues. Conclusion: Changes in multi-gene expression regulations take place during the occurrence and development of breast cancer; and the research on related genes can help understanding the mechanism of tumor occurrence.

  17. [Screening differentially expressed plasma proteins in cold stress rats based on iTRAQ combined with mass spectrometry technology].

    Science.gov (United States)

    Liu, Yan-zhi; Guo, Jing-ru; Peng, Meng-ling; Ma, Li; Zhen, Li; Ji, Hong; Yang, Huan-min

    2015-09-01

    Isobaric tags for relative and absolute quantitation (iTRAQ) combined with mass spectrometry were used to screen differentially expressed plasma proteins in cold stress rats. Thirty health SPF Wistar rats were randomly divided into cold stress group A and control group B, then A and B were randomly divided into 3 groups (n = 5): A1, A2, A3 and B1, B2, B3. The temperature of room raising was (24.0 +/- 0.1) degrees C, and the cold stress temperature was (4.0 +/- 0.1) degrees C. The rats were treated with different temperatures until 12 h. The abdominal aortic blood was collected with heparin anticoagulation suction tube. Then, the plasma was separated for protein extraction, quantitative, enzymolysis, iTHAQ labeling, scx fractionation and mass spectrometry analysis. Totally, 1085 proteins were identified in the test, 39 differentially expressed proteins were screened, including 29 up-regulated proteins and 10 down-regulated proteins. Three important differentially expressed proteins related to cold stress were screened by bioinfonnatics analysis (Minor histocompatihility protein HA-1, Has-related protein Rap-1b, Integrin beta-1). In the experiment, the differentially expressed plasma proteins were successfully screened in cold stress rats. iTRAQ technology provided a good platform to screen protein diaguostic markers on cold stress rats, and laid a good foundation for further. study on animal cold stress mechanism.

  18. Genome-wide analysis of gene expression during adipogenesis in human adipose-derived stromal cells reveals novel patterns of gene expression during adipocyte differentiation

    Directory of Open Access Journals (Sweden)

    Melvin Anyasi Ambele

    2016-05-01

    Full Text Available We have undertaken an in-depth transcriptome analysis of adipogenesis in human adipose-derived stromal cells (ASCs induced to differentiate into adipocytes in vitro. Gene expression was assessed on days 1, 7, 14 and 21 post-induction and genes differentially expressed numbered 128, 218, 253 and 240 respectively. Up-regulated genes were associated with blood vessel development, leukocyte migration, as well as tumor growth, invasion and metastasis. They also shared common pathways with certain obesity-related pathophysiological conditions. Down-regulated genes were enriched for immune response processes. KLF15, LMO3, FOXO1 and ZBTB16 transcription factors were up-regulated throughout the differentiation process. CEBPA, PPARG, ZNF117, MLXIPL, MMP3 and RORB were up-regulated only on days 14 and 21, which coincide with the maturation of adipocytes and could possibly serve as candidates for controlling fat accumulation and the size of mature adipocytes. In summary, we have identified genes that were up-regulated only on days 1 and 7 or days 14 and 21 that could serve as potential early and late-stage differentiation markers.

  19. Expression pattern of the homeotic gene Bapx1 during early chick gastrointestinal tract development.

    Science.gov (United States)

    Faure, Sandrine; Georges, Maxime; McKey, Jennifer; Sagnol, Sébastien; de Santa Barbara, Pascal

    2013-12-01

    Regulation of the Bone Morphogenetic Protein (BMP) signaling pathway is essential for the normal development of vertebrate gastrointestinal (GI) tract, but also for the differentiation of the digestive mesenchymal layer into smooth muscles and submucosal layer. Different studies demonstrated that Bapx1 (for bagpipe homeobox homolog 1) negatively regulates the BMP pathway, but its precise expression pattern during the development and the differentiation of the GI tract mesenchyme actually remains to be examined. Here, we present the spatio-temporal expression profile of Bapx1 in the chick GI tract. We show that Bapx1 is first expressed in the undifferentiated mesenchyme of the gizzard and the colon. After the differentiation of the digestive mesenchyme, we found Bapx1 strongly expressed in the gizzard smooth muscle and in the submucosa layer of the colon. This expression pattern provides new insights into the roles of Bapx1 during the regionalization of the GI tract and the differentiation of the digestive mesenchyme of the colon and the stomach. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Sphingosine 1-phosphate receptor activation enhances BMP-2-induced osteoblast differentiation

    International Nuclear Information System (INIS)

    Sato, Chieri; Iwasaki, Tsuyoshi; Kitano, Sachie; Tsunemi, Sachi; Sano, Hajime

    2012-01-01

    Highlights: ► We investigated the role of S1P signaling for osteoblast differentiation. ► Both S1P and FTY enhanced BMP-2-stimulated osteoblast differentiation by C2C12 cells. ► S1P signaling enhanced BMP-2-stimulated Smad and ERK phosphorylation by C2C12 cells. ► MEK/ERK signaling is a pathway underlying S1P signaling for osteoblast differentiation. -- Abstract: We previously demonstrated that sphingosine 1-phosphate (S1P) receptor-mediated signaling induced proliferation and prostaglandin productions by synovial cells from rheumatoid arthritis (RA) patients. In the present study we investigated the role of S1P receptor-mediated signaling for osteoblast differentiation. We investigated osteoblast differentiation using C2C12 myoblasts, a cell line derived from murine satellite cells. Osteoblast differentiation was induced by the treatment of bone morphogenic protein (BMP)-2 in the presence or absence of either S1P or FTY720 (FTY), a high-affinity agonist of S1P receptors. Osteoblast differentiation was determined by osteoblast-specific transcription factor, Runx2 mRNA expression, alkaline phosphatase (ALP) activity and osteocalcin production by the cells. Smad1/5/8 and extracellular signal-regulated kinase (ERK) 1/2 phosphorylation was examined by Western blotting. Osteocalcin production by C2C12 cells were determined by ELISA. Runx2 expression and ALP activity by BMP-2-stimulated C2C12 cells were enhanced by addition of either S1P or FTY. Both S1P and FTY enhanced BMP-2-induced ERK1/2 and Smad1/5/8 phosphorylation. The effect of FTY was stronger than that of S1P. S1P receptor-mediated signaling on osteoblast differentiation was inhibited by addition of mitogen-activated protein kinase/ERK kinase (MEK) 1/2 inhibitor, indicating that the S1P receptor-mediated MEK1/2-ERK1/2 signaling pathway enhanced BMP-2-Smad signaling. These results indicate that S1P receptor-mediated signaling plays a crucial role for osteoblast differentiation.

  1. Differential Gene Expression of Fibroblasts: Keloid versus Normal

    Directory of Open Access Journals (Sweden)

    Michael F. Angel

    2002-11-01

    Full Text Available Abstract: This study investigated gene regulation and unique gene products in both keloid (KDF and normal (NDF dermal fibroblasts in established cell lines. For gene regulation, NDF versus KDF were compared using Clontech's Atlas™ Human cDNA Expression Array while unique gene products were studied using RNA Fingerprinting Kit. RNA from each sample was converted to cDNA using oligo-dT primers. Down-regulated genes using Atlas Array in KDF were 1 60 S ribosomal protein, 2 Thioredoxin dependent peroxidase, 3 Nuclease sensitive element DNA binding protein, 4 c-myc purine-binding transcription factor, 5 c-AMP dependent protein kinase, and, 6 Heat Shock Protein 90 kDa. Genes that are up regulated in KDF were 1 Tubulin and 2 Heat Shock Protein 27 kDa. With the differential display, we found 17 bands unique to both KDF and NDF. The specific gene and the manner in which they were differentially regulated have direct implications to understanding keloid fibroblast proliferation.

  2. A practical method for three-dimensional reconstruction of joints using a C-arm system and shift-and-add algorithm

    International Nuclear Information System (INIS)

    Li Senhu; Jiang Huabei

    2005-01-01

    Currently, radiography with C-arm systems is playing a major role in the assessment of arthritis. However, the radiographic two-dimensional projection images of joints often interfere with physicians' efforts to better understand and measure the structure changes of joints due to the overlap of bone structures at different depths. An accurate, low-cost, and practical three-dimensional (3D) reconstruction approach of joints will be beneficial in diagnosing arthritis. Toward this end, a novel method is developed in this paper based on a C-arm system. The idea is to apply the shift-and-add algorithm (commonly used in digital tomosynthesis) on the segmented projection images at multiple angles, which results in accurate reconstruction of the 3D structures of joints. The method provides a new solution to precisely distinguish objects from blurring background. The proposed method has been tested and evaluated on simulated cylinders, a chicken bone phantom with known structure, and an in vivo human index finger. The results are demonstrated and discussed

  3. Differential expression of members of the E2F family of transcription factors in rodent testes

    Directory of Open Access Journals (Sweden)

    Toppari Jorma

    2006-12-01

    Full Text Available Abstract Background The E2F family of transcription factors is required for the activation or repression of differentially expressed gene programs during the cell cycle in normal and abnormal development of tissues. We previously determined that members of the retinoblastoma protein family that interacts with the E2F family are differentially expressed and localized in almost all the different cell types and tissues of the testis and in response to known endocrine disruptors. In this study, the cell-specific and stage-specific expression of members of the E2F proteins has been elucidated. Methods We used immunohistochemical (IHC analysis of tissue sections and Western blot analysis of proteins, from whole testis and microdissected stages of seminiferous tubules to study the differential expression of the E2F proteins. Results For most of the five E2F family members studied, the localizations appear conserved in the two most commonly studied rodent models, mice and rats, with some notable differences. Comparisons between wild type and E2F-1 knockout mice revealed that the level of E2F-1 protein is stage-specific and most abundant in leptotene to early pachytene spermatocytes of stages IX to XI of mouse while strong staining of E2F-1 in some cells close to the basal lamina of rat tubules suggest that it may also be expressed in undifferentiated spermatogonia. The age-dependent development of a Sertoli-cell-only phenotype in seminiferous tubules of E2F-1 knockout males corroborates this, and indicates that E2F-1 is required for spermatogonial stem cell renewal. Interestingly, E2F-3 appears in both terminally differentiated Sertoli cells, as well as spermatogonial cells in the differentiative pathway, while the remaining member of the activating E2Fs, E2F-2 is most concentrated in spermatocytes of mid to late prophase of meiosis. Comparisons between wildtype and E2F-4 knockout mice demonstrated that the level of E2F-4 protein displays a distinct

  4. Design and development of a Compact Aerial Radiation Monitoring System (CARMS)

    International Nuclear Information System (INIS)

    Raman, N.; Chaudhury, Probal; Padmanabhan, N.; Pradeepkumar, K.S.; Sharma, D.N.

    2005-01-01

    Operation of nuclear facilities, increasing usage of radioisotopes in industrial, scientific and medical applications and transport of nuclear and radioactive materials may have impact on the surrounding environment. There is thus a need to periodically monitor the environmental radiation background all over the country and particularly around the nuclear facilities for assessing any possible impact on the environment. Preparedness required for response to emergencies caused due to radiological/nuclear incidents/ accidents or due to radiological/nuclear terrorism also demands state of the art systems and methodology for quick assessment of radiological impact over large affected areas. In order to meet these requirements, a Compact Aerial Radiation Monitoring System (CARMS) has been designed and developed. This system is battery operated, portable and rugged for mobile radiation monitoring and can be placed in aerial platforms like helicopters or Unmanned Aerial Vehicles (UAVs) for unattended operation. CARMS uses energy compensated multiple GM detectors for enhancing sensitivity and is attached with commercially available Global Positioning System (GPS) for online acquisition of positional coordinates with time. The AT89LV52 microcontroller used in the system tags the dose rate data with time and positional information and stores contiguously in a serial data memory for radiological mapping of the area surveyed using any mobile platform such as aircraft/train/boat/road vehicle. The system consumes ∼150 mA including the GPS at 12 V DC enabling ∼50 hours of continuous monitoring with a 7 Ah battery source. The system has been used in aerial, rail and road based environmental radiation surveys carried out at various places of the country. With PC support, the system can map the radiological status online onto the map of the area being surveyed to help decision-making on countermeasures during the survey. (author)

  5. CsSCL1 is differentially regulated upon maturation in chestnut microshoots and is specifically expressed in rooting-competent cells.

    Science.gov (United States)

    Vielba, Jesús M; Díaz-Sala, Carmen; Ferro, Enrique; Rico, Saleta; Lamprecht, María; Abarca, Dolores; Ballester, Antonio; Sánchez, Conchi

    2011-10-01

    The Castanea sativa SCL1 gene (CsSCL1) has previously been shown to be induced by auxin during adventitious root (AR) formation in rooting-competent microshoots. However, its expression has not previously been analyzed in rooting-incompetent shoots. This study focuses on the regulation of CsSCL1 during maturation and the role of the gene in the formation of AR. The expression of CsSCL1 in rooting-incompetent microshoots and other tissues was investigated by quantitative reverse transcriptase--polymerase chain reaction. The analysis was complemented by in situ hybridization of the basal segments of rooting-competent and --incompetent microshoots during AR induction, as well as in AR and lateral roots. It was found that CsSCL1 is upregulated by auxin in a cell-type- and phase-dependent manner during the induction of AR. In root-forming shoots, CsSCL1 mRNA was specifically located in the cambial zone and derivative cells, which are rooting-competent cells, whereas in rooting-incompetent shoots the hybridization signal was more diffuse and evenly distributed through the phloem and parenchyma. CsSCL1 expression was also detected in lateral roots and axillary buds. The different CsSCL1 expression patterns in rooting-competent and -incompetent microshoots, together with the specific location of transcripts in cell types involved in root meristem initiation and in the root primordia of AR and lateral roots, indicate an important role for the gene in determining whether certain cells will enter the root differentiation pathway and its involvement in meristem maintenance.

  6. Involvement of IGF-1 and MEOX2 in PI3K/Akt1/2 and ERK1/2 pathways mediated proliferation and differentiation of perivascular adipocytes

    International Nuclear Information System (INIS)

    Liu, Ping; Kong, Feng; Wang, Jue; Lu, Qinghua; Xu, Haijia; Qi, Tonggang; Meng, Juan

    2015-01-01

    Perivascular adipocyte (PVAC) proliferation and differentiation were closely involved in cardiovascular disease. We aimed to investigate whether phosphatidylinositol 3-kinase (PI3K) and mitogen-activated protein kinase (MAPK) signaling pathways enhance PVAC functions activated by insulin-like growth factor 1(IGF-1) and suppressed by mesenchyme homeobox 2 (MEOX2). In this study, PVACs from primary culture were cultured and induced to differentiate. Cell viability assays demonstrated that IGF-1 promoted PVAC proliferation and differentiation. However MEOX2 counteracted these IGF-1-mediated actions. Flow Cytometry revealed that IGF-1 increased S phase cells and decreased apoptosis; however, MEOX2 decreased S phase cells, increased G0–G1 phase cells, and promoted apoptosis. During PVAC proliferation and differentiation, IGF-1 activated PI3K/Akt1/2 and ERK1/2 signaling pathways, upregulated the expression of these signaling proteins and FAS, and increased PVAC lipid content. In contrast, MEOX2 constrained the phosphorylation of ERK1/2 and Akt1/2 protein, down-regulated these signaling molecules and FAS, and decreased PVAC lipid content. Instead, MEOX2 knockdown enhanced the ERK1/2 and Akt1/2 phosphorylation, augmented the expression of these signaling molecules and FAS, and increased PVAC lipid content. Our findings suggested that PI3K/Akt1/2 and ERK1/2 activation mediated by IGF-1 is essential for PVAC proliferation and differentiation, and MEOX2 is a promising therapeutic gene to intervene in the signaling pathways and inhibit PVAC functions. - Highlights: • IGF-1 activated PI3K/Akt2 and ERK1/2 pathways to mediate PVAC proliferation and differentiation. • The expression of ERK1, ERK 2, PI3K, Akt1 and Akt2 showed different change trends between PVAC proliferation and differentiation. • MEOX2 effectively expressed in PVAC, increased early and late cellular apoptosis, and inhibited its proliferation. • MEOX2 depressed PVAC differentiation and FAS expression

  7. Involvement of IGF-1 and MEOX2 in PI3K/Akt1/2 and ERK1/2 pathways mediated proliferation and differentiation of perivascular adipocytes

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Ping, E-mail: lping@sdu.edu.cn [Department of Cardiology, The Second Hospital of Shandong University, No. 247, Beiyuan Road, Shandong, Jinan 250033 (China); Kong, Feng; Wang, Jue [Central Laboratory, The Second Hospital of Shandong University, Shandong, Jinan 250033 (China); Lu, Qinghua [Department of Cardiology, The Second Hospital of Shandong University, No. 247, Beiyuan Road, Shandong, Jinan 250033 (China); Xu, Haijia [Department of Cardiology, Wendeng Central Hospital of Weihai City, Shandong, Weihai 264400 (China); Qi, Tonggang [Central Laboratory, The Second Hospital of Shandong University, Shandong, Jinan 250033 (China); Meng, Juan [Department of Cardiology, The Second Hospital of Shandong University, No. 247, Beiyuan Road, Shandong, Jinan 250033 (China)

    2015-02-01

    Perivascular adipocyte (PVAC) proliferation and differentiation were closely involved in cardiovascular disease. We aimed to investigate whether phosphatidylinositol 3-kinase (PI3K) and mitogen-activated protein kinase (MAPK) signaling pathways enhance PVAC functions activated by insulin-like growth factor 1(IGF-1) and suppressed by mesenchyme homeobox 2 (MEOX2). In this study, PVACs from primary culture were cultured and induced to differentiate. Cell viability assays demonstrated that IGF-1 promoted PVAC proliferation and differentiation. However MEOX2 counteracted these IGF-1-mediated actions. Flow Cytometry revealed that IGF-1 increased S phase cells and decreased apoptosis; however, MEOX2 decreased S phase cells, increased G0–G1 phase cells, and promoted apoptosis. During PVAC proliferation and differentiation, IGF-1 activated PI3K/Akt1/2 and ERK1/2 signaling pathways, upregulated the expression of these signaling proteins and FAS, and increased PVAC lipid content. In contrast, MEOX2 constrained the phosphorylation of ERK1/2 and Akt1/2 protein, down-regulated these signaling molecules and FAS, and decreased PVAC lipid content. Instead, MEOX2 knockdown enhanced the ERK1/2 and Akt1/2 phosphorylation, augmented the expression of these signaling molecules and FAS, and increased PVAC lipid content. Our findings suggested that PI3K/Akt1/2 and ERK1/2 activation mediated by IGF-1 is essential for PVAC proliferation and differentiation, and MEOX2 is a promising therapeutic gene to intervene in the signaling pathways and inhibit PVAC functions. - Highlights: • IGF-1 activated PI3K/Akt2 and ERK1/2 pathways to mediate PVAC proliferation and differentiation. • The expression of ERK1, ERK 2, PI3K, Akt1 and Akt2 showed different change trends between PVAC proliferation and differentiation. • MEOX2 effectively expressed in PVAC, increased early and late cellular apoptosis, and inhibited its proliferation. • MEOX2 depressed PVAC differentiation and FAS expression

  8. Neisseria meningitidis rifampicin resistant strains: analysis of protein differentially expressed

    Directory of Open Access Journals (Sweden)

    Schininà Maria

    2010-09-01

    Full Text Available Abstract Background Several mutations have been described as responsible for rifampicin resistance in Neisseria meningitidis. However, the intriguing question on why these strains are so rare remains open. The aim of this study was to investigate the protein content and to identify differential expression in specific proteins in two rifampicin resistant and one susceptible meningococci using two-dimensional electrophoresis (2-DE combined with mass spectrometry. Results In our experimental conditions, able to resolve soluble proteins with an isoelectric point between 4 and 7, twenty-three proteins have been found differentially expressed in the two resistant strains compared to the susceptible. Some of them, involved in the main metabolic pathways, showed an increased expression, mainly in the catabolism of pyruvate and in the tricarboxylic acid cycle. A decreased expression of proteins belonging to gene regulation and to those involved in the folding of polypeptides has also been observed. 2-DE analysis showed the presence of four proteins displaying a shift in their isoelectric point in both resistant strains, confirmed by the presence of amino acid changes in the sequence analysis, absent in the susceptible. Conclusions The analysis of differentially expressed proteins suggests that an intricate series of events occurs in N. meningitidis rifampicin resistant strains and the results here reported may be considered a starting point in understanding their decreased invasion capacity. In fact, they support the hypothesis that the presence of more than one protein differentially expressed, having a role in the metabolism of the meningococcus, influences its ability to infect and to spread in the population. Different reports have described and discussed how a drug resistant pathogen shows a high biological cost for survival and that may also explain why, for some pathogens, the rate of resistant organisms is relatively low considering the

  9. Plasma Cell Ontogeny Defined by Quantitative Changes in Blimp-1 Expression

    Science.gov (United States)

    Kallies, Axel; Hasbold, Jhagvaral; Tarlinton, David M.; Dietrich, Wendy; Corcoran, Lynn M.; Hodgkin, Philip D.; Nutt, Stephen L.

    2004-01-01

    Plasma cells comprise a population of terminally differentiated B cells that are dependent on the transcriptional regulator B lymphocyte–induced maturation protein 1 (Blimp-1) for their development. We have introduced a gfp reporter into the Blimp-1 locus and shown that heterozygous mice express the green fluorescent protein in all antibody-secreting cells (ASCs) in vivo and in vitro. In vitro, these cells display considerable heterogeneity in surface phenotype, immunoglobulin secretion rate, and Blimp-1 expression levels. Importantly, analysis of in vivo ASCs induced by immunization reveals a developmental pathway in which increasing levels of Blimp-1 expression define developmental stages of plasma cell differentiation that have many phenotypic and molecular correlates. Thus, maturation from transient plasmablast to long-lived ASCs in bone marrow is predicated on quantitative increases in Blimp-1 expression. PMID:15492122

  10. Identification of genes differentially expressed in testes containing carcinoma in situ

    DEFF Research Database (Denmark)

    Hoei-Hansen, C E; Nielsen, J E; Almstrup, K

    2004-01-01

    Virtually all testicular germ cell tumours originate from a common precursor, the carcinoma in situ (CIS) cell. The precise nature of the molecular mechanisms leading to CIS remains largely unknown. We performed the first systematic analysis of gene expression in testis with CIS compared to normal...... the novel expressed sequence tag (EST) OIC1 (Overexpressed In CIS). The genes could be grouped functionally into genes involved in cell growth, proliferation, differentiation, immunological response, and genes with unknown biological function. Examples of overexpressed genes are SFRP1 that is involved...... to testicular development (e.g. DCN, IGFBP6, SFRP1, SALL1), supporting our hypothesis that the origin of CIS is probably associated with disturbances of the fetal development of the testis....

  11. Validation of MIMGO: a method to identify differentially expressed GO terms in a microarray dataset

    Directory of Open Access Journals (Sweden)

    Yamada Yoichi

    2012-12-01

    Full Text Available Abstract Background We previously proposed an algorithm for the identification of GO terms that commonly annotate genes whose expression is upregulated or downregulated in some microarray data compared with in other microarray data. We call these “differentially expressed GO terms” and have named the algorithm “matrix-assisted identification method of differentially expressed GO terms” (MIMGO. MIMGO can also identify microarray data in which genes annotated with a differentially expressed GO term are upregulated or downregulated. However, MIMGO has not yet been validated on a real microarray dataset using all available GO terms. Findings We combined Gene Set Enrichment Analysis (GSEA with MIMGO to identify differentially expressed GO terms in a yeast cell cycle microarray dataset. GSEA followed by MIMGO (GSEA + MIMGO correctly identified (p Conclusions MIMGO is a reliable method to identify differentially expressed GO terms comprehensively.

  12. Suppression subtractive hybridization identified differentially expressed genes in lung adenocarcinoma: ERGIC3 as a novel lung cancer-related gene

    International Nuclear Information System (INIS)

    Wu, Mingsong; Tu, Tao; Huang, Yunchao; Cao, Yi

    2013-01-01

    To understand the carcinogenesis caused by accumulated genetic and epigenetic alterations and seek novel biomarkers for various cancers, studying differentially expressed genes between cancerous and normal tissues is crucial. In the study, two cDNA libraries of lung cancer were constructed and screened for identification of differentially expressed genes. Two cDNA libraries of differentially expressed genes were constructed using lung adenocarcinoma tissue and adjacent nonmalignant lung tissue by suppression subtractive hybridization. The data of the cDNA libraries were then analyzed and compared using bioinformatics analysis. Levels of mRNA and protein were measured by quantitative real-time polymerase chain reaction (q-RT-PCR) and western blot respectively, as well as expression and localization of proteins were determined by immunostaining. Gene functions were investigated using proliferation and migration assays after gene silencing and gene over-expression. Two libraries of differentially expressed genes were obtained. The forward-subtracted library (FSL) and the reverse-subtracted library (RSL) contained 177 and 59 genes, respectively. Bioinformatic analysis demonstrated that these genes were involved in a wide range of cellular functions. The vast majority of these genes were newly identified to be abnormally expressed in lung cancer. In the first stage of the screening for 16 genes, we compared lung cancer tissues with their adjacent non-malignant tissues at the mRNA level, and found six genes (ERGIC3, DDR1, HSP90B1, SDC1, RPSA, and LPCAT1) from the FSL were significantly up-regulated while two genes (GPX3 and TIMP3) from the RSL were significantly down-regulated (P < 0.05). The ERGIC3 protein was also over-expressed in lung cancer tissues and cultured cells, and expression of ERGIC3 was correlated with the differentiated degree and histological type of lung cancer. The up-regulation of ERGIC3 could promote cellular migration and proliferation in vitro. The

  13. Regulation of the expression of GARP/latent-TGF-β1 complexes on mouse T cells and their role in Regulatory T Cell and Th17 differentiation1

    Science.gov (United States)

    Edwards, Justin P.; Fujii, Hodaka; Zhou, Angela X.; Creemers, John; Unutmaz, Derya; Shevach, Ethan M.

    2013-01-01

    GARP/LRRC32 has previously been defined as a marker of activated human regulatory T-cells (Tregs) that is responsible for surface localization of latent TGF-β1. We find that GARP and latent TGF-β1 are also found on mouse Tregs activated via TCR stimulation, but in contrast to human Tregs, GARP is also expressed at a low level on resting Tregs. The expression of GARP can be upregulated on mouse Tregs by IL-2 or IL-4 exposure in the absence of TCR signaling. GARP is expressed at a low level on Tregs within the thymus and Treg precursors from the thymus concomitantly express GARP and Foxp3 upon exposure to IL-2. The expression of GARP is independent of TGF-β1 and TGF-β1 loading into GARP and is independent of furin-mediated processing of pro-TGF-β1 to latent TGF-β1. Specific deletion of GARP in CD4+ T cells results in lack of expression of latent-TGF-β1 on activated Tregs. GARP-deficient Tregs develop normally, are present in normal numbers in peripheral tissues, and are fully competent suppressors of the activation of T conventional cells in vitro. Activated Tregs expressing GARP/latent-TGF-β1 complexes are potent inducers of Th17 differentiation in the presence of exogenous IL-6 and inducers of Treg in the presence of IL-2. Induction of both Th17 producing cells and Treg is preferentially induced by Tregs expressing the latent-TGF-β1/GARP complex on their cell surface rather than by secreted latent-TGF-β1. PMID:23645881

  14. Comparative analysis of B7-1 and B7-2 expression in Langerhans cells: differential regulation by T helper type 1 and T helper type 2 cytokines.

    Science.gov (United States)

    Kawamura, T; Furue, M

    1995-07-01

    Epidermal Langerhans cells (LC) are Ia-bearing potent antigen-presenting cells (APC) of dendritic cell lineage that play a crucial role in primary and secondary T cell-dependent immune responses. LC express several costimulatory molecules such as B7, which has been implicated as one of the important determinants of professional APC. Recently, B7 antigens have been shown to include three distinct molecules termed B7-1, B7-2, and B7-3, and the expression of B7-1 and B7-2 in LC has been already confirmed. However, little is known of the regulation of B7-1 and B7-2 expression in LC. We demonstrated that LC do not express B7-1 and B7-2 in situ; however, the expression of both molecules is rapidly induced during the first 3 days of culture, and high levels of expression are maintained at least until day 6. We show that the expression of B7-2 in LC is much higher than that of B7-1 in each experiment, and that B7-1 and B7-2 expression is reproducibly augmented by interleukin (IL)-4 in a dose-dependent manner; however, IL-2 affected expression very little. Finally, B7-1 expression is significantly and dose-dependently down-regulated by interferon (IFN)-gamma or IL-10, and B7-2 expression is consistently inhibited by IL-10, but not by IFN-gamma. The effects of these cytokines are active only in the induction phase (during first 3 days of culture) of B7 expression: the modulatory effects of cytokines are hardly detected in the plateau phase (days 4 to 6 of culture) of B7 expression in LC. These findings suggest that B7-1 and B7-2 expression are indeed selectively and differentially regulated by these T cell-derived cytokines, and that the cytokines may modulate the synthesis of B7 molecules rather than the degradation of already-expressed B7 molecules.

  15. Cell Signaling and Differential Protein Expression in Neuronal Differentiation of Bone Marrow Mesenchymal Stem Cells with Hypermethylated Salvador/Warts/Hippo (SWH Pathway Genes.

    Directory of Open Access Journals (Sweden)

    Hui-Hung Tzeng

    Full Text Available Human mesenchymal stem cells (MSCs modified by targeting DNA hypermethylation of genes in the Salvador/Warts/Hippo pathway were induced to differentiate into neuronal cells in vitro. The differentiated cells secreted a significant level of brain-derived neurotrophy factor (BDNF and the expression of BDNF receptor tyrosine receptor kinase B (TrkB correlated well with the secretion of BDNF. In the differentiating cells, CREB was active after the binding of growth factors to induce phosphorylation of ERK in the MAPK/ERK pathway. Downstream of phosphorylated CREB led to the functional maturation of differentiated cells and secretion of BDNF, which contributed to the sustained expression of pERK and pCREB. In summary, both PI3K/Akt and MAPK/ERK signaling pathways play important roles in the neuronal differentiation of MSCs. The main function of the PI3K/Akt pathway is to maintain cell survival during neural differentiation; whereas the role of the MAPK/ERK pathway is probably to promote the maturation of differentiated MSCs. Further, cellular levels of protein kinase C epsilon type (PKC-ε and kinesin heavy chain (KIF5B increased with time of induction, whereas the level of NME/NM23 nucleoside diphosphate kinase 1 (Nm23-H1 decreased during the time course of differentiation. The correlation between PKC-ε and TrkB suggested that there is cross-talk between PKC-ε and the PI3K/Akt signaling pathway.

  16. Nucleolar protein PES1 is a marker of neuroblastoma outcome and is associated with neuroblastoma differentiation

    Science.gov (United States)

    Nakaguro, Masato; Kiyonari, Shinichi; Kishida, Satoshi; Cao, Dongliang; Murakami-Tonami, Yuko; Ichikawa, Hitoshi; Takeuchi, Ichiro; Nakamura, Shigeo; Kadomatsu, Kenji

    2015-01-01

    Neuroblastoma (NB) is a childhood malignant tumor that arises from precursor cells of the sympathetic nervous system. Spontaneous regression is a phenomenon unique to NBs and is caused by differentiation of tumor cells. PES1 is a multifunctional protein with roles in both neural development and ribosome biogenesis. Various kinds of models have revealed the significance of PES1 in neurodevelopment. However, the roles of PES1 in NB tumorigenesis and differentiation have remained unknown. Here we show that NB cases with MYCN amplification and clinically unfavorable stage (INSS stage 4) express higher levels of PES1. High PES1 expression was associated with worse overall and relapse-free survival. In NB cell lines, PES1 knockdown suppressed tumor cell growth and induced apoptosis. This growth inhibition was associated with the expression of NB differentiation markers. However, when the differentiation of NB cell lines was induced by the use of all-trans retinoic acid, there was a corresponding decrease in PES1 expression. Pes1 expression of tumorspheres originated from MYCN transgenic mice also diminished after the induction of differentiation with growth factors. We also reanalyzed the distribution of PES1 in the nucleolus. PES1 was localized in the dense fibrillar component, but not in the granular component of nucleoli. After treatment with the DNA-damaging agent camptothecin, this distribution was dramatically changed to diffuse nucleoplasmic. These data suggest that PES1 is a marker of NB outcome, that it regulates NB cell proliferation, and is associated with NB differentiation. PMID:25557119

  17. Differentially expressed and survival-related proteins of lung adenocarcinoma with bone metastasis.

    Science.gov (United States)

    Yang, Mengdi; Sun, Yi; Sun, Jing; Wang, Zhiyu; Zhou, Yiyi; Yao, Guangyu; Gu, Yifeng; Zhang, Huizhen; Zhao, Hui

    2018-04-01

    Despite recent advances in targeted and immune-based therapies, the poor prognosis of lung adenocarcinoma (LUAD) with bone metastasis (BM) remains a challenge. First, two-dimensional gel electrophoresis (2-DE) was used to identify proteins that were differentially expressed in LUAD with BM, and then matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF-MS) was used to identify these proteins. Second, the Cancer Genome Atlas (TCGA) was used to identify mutations in these differentially expressed proteins and Kaplan-Meier plotter (KM Plotter) was used to generate survival curves for the analyzed cases. Immunohistochemistry (IHC) was used to check the expression of proteins in 28 patients with BM and nine patients with LUAD. Lastly, the results were analyzed with respect to clinical features and patient's follow-up. We identified a number of matched proteins from 2-DE. High expression of enolase 1 (ENO1) (HR = 1.67, logrank P = 1.9E-05), ribosomal protein lateral stalk subunit P2 (RPLP2) (HR = 1.77, logrank P = 2.9e-06), and NME/NM23 nucleoside diphosphate kinase 2 (NME1-NME2) (HR = 2.65, logrank P = 3.9E-15) was all significantly associated with poor survival (P < 0.05). Further, ENO1 was upregulated (P = 0.0004) and calcyphosine (CAPS1) was downregulated (P = 5.34E-07) in TCGA LUAD RNA-seq expression data. IHC revealed that prominent ENO1 staining (OR = 7.5, P = 0.034) and low levels of CAPS1 (OR = 0.01, P < 0.0001) staining were associated with BM incidence. Finally, we found that LUAD patients with high expression of ENO1 and RPLP2 had worse overall survival. This is the first instance where the genes ENO1, RPLP2, NME1-NME2 and CAPS1 were associated with disease severity and progression in LUAD patients with BM. Thus, with this study, we have identified potential biomarkers and therapeutic targets for this disease. © 2018 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

  18. Differential Expression Profile of ZFX Variants Discriminates Breast Cancer Subtypes

    Science.gov (United States)

    Pourkeramati, Fatemeh; Asadi, Malek Hossein; Shakeri, Shahryar; Farsinejad, Alireza

    2018-05-13

    ZFX is a transcriptional regulator in embryonic stem cells that plays an important role in pluripotency and self-renewal. ZFX is widely expressed in pluripotent stem cells and is down-regulated during differentiation of embryonic stem cells. ZFX has five different variants that encode three different protein isoforms. While several reports have determined the overexpression of ZFX in a variety of somatic cancers, the expression of ZFX-spliced variants in cancer cells is not well-understood. We investigated the expression of ZFX variants in a series of breast cancer tissues and cell lines using quantitative PCR. The expression of ZFX variant 1/3 was higher in tumor tissue compared to marginal tissue. In contrast, the ZFX variant 5 was down-regulated in tumor tissues. While the ZFX variant 1/3 and ZFX variant 5 expression significantly increased in low-grade tumors, ZFX variant 4 was strongly expressed in high-grade tumors and demonstrating lymphatic invasion. In addition, our result revealed a significant association between the HER2 status and the expression of ZFX-spliced variants. Our data suggest that the expression of ZFX-spliced transcripts varies between different types of breast cancer and may contribute to their tumorigenesis process. Hence, ZFX-spliced transcripts could be considered as novel tumor markers with a probable value in diagnosis, prognosis, and therapy of breast cancer.

  19. RhoA, Rac1 and Cdc42 differentially regulate aSMA and collagen I expression in mesenchymal stem cells.

    Science.gov (United States)

    Ge, Jianfeng; Burnier, Laurent; Adamopoulou, Maria; Kwa, Mei Qi; Schaks, Matthias; Rottner, Klemens; Brakebusch, Cord

    2018-04-26

    Mesenchymal stem cells (MSC) are suggested to be important progenitors of myofibroblasts in fibrosis. To understand the role of Rho GTPase signaling in TGFβ-induced myofibroblast differentiation of MSC, we generated a novel MSC line and descendants of it lacking functional Rho GTPases and Rho GTPase signaling components. Unexpectedly, our data revealed that Rho GTPase signaling is required for TGFβ-induced expression of αSMA, but not of collagen I α1 (col1a1). While loss of RhoA and Cdc42 reduced αSMA expression, ablation of the Rac1 gene had the opposite effect. Although actin polymerization and MRTFa were crucial for TGFβ-induced αSMA expression, neither Arp2/3 dependent actin polymerization nor cofilin dependent severing and depolymerization of F-actin were required. Instead, F-actin levels were dependent on cell contraction and TGFβ-induced actin polymerisation correlated with increased cell contraction mediated by RhoA and Cdc42. Finally, we observed impaired collagen I secretion in MSC lacking RhoA or Cdc42. These data give novel molecular insights into the role of Rho GTPases in TGFβ signaling and have implications for our understanding of MSC function in fibrosis. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.

  20. In silico modelling and validation of differential expressed proteins in lung cancer

    Directory of Open Access Journals (Sweden)

    Bhagavathi S

    2012-05-01

    Full Text Available Objective: The present study aims predict the three dimensional structure of three major proteins responsible for causing Lung cancer. Methods: These are the differentially expressed proteins in lung cancer dataset. Initially, the structural template for these proteins is identified from structural database using homology search and perform homology modelling approach to predict its native 3D structure. Three-dimensional model obtained was validated using Ramachandran plot analysis to find the reliability of the model. Results: Four proteins were differentially expressed and were significant proteins in causing lung cancer. Among the four proteins, Matrixmetallo proteinase (P39900 had a known 3D structure and hence was not considered for modelling. The remaining proteins Polo like kinase I Q58A51, Trophinin B1AKF1, Thrombomodulin P07204 were modelled and validated. Conclusions: The three dimensional structure of proteins provides insights about the functional aspect and regulatory aspect of the protein. Thus, this study will be a breakthrough for further lung cancer related studies.

  1. MUC2 Expression Is Correlated with Tumor Differentiation and Inhibits Tumor Invasion in Gastric Carcinomas: A Systematic Review and Meta-analysis

    Directory of Open Access Journals (Sweden)

    Jung-Soo Pyo

    2015-05-01

    Full Text Available Background: While MUC2 is expressed in intestinal metaplasia and malignant lesions, the clinicopathological significance of MUC2 expression is not fully elucidated in gastric carcinoma (GC. Methods: The present study investigated the correlation between MUC2 expression and clinicopathological parameters in 167 human GCs. In addition, to confirm the clinicopathological significance of MUC2 expression, we performed a systematic review and meta-analysis in 1,832 GCs. Results: MUC2 expression was found in 58 of 167 GCs (34.7%. MUC2-expressing GC showed lower primary tumor (T, regional lymph node (N, and tumor node metastasis (TNM stages compared with GCs without MUC2 expression (p=.001, p=.001, and p=.011, respectively. However, MUC2 expression was not correlated with Lauren’s classification and tumor differentiation. In meta-analysis, MUC2 expression was significantly correlated with differentiation and lower tumor stage (odds ratio [OR], 1.303; 95% confidence interval [CI], 1.020 to 1.664; p = .034 and OR, 1.352; 95% CI, 1.055 to 1.734; p = .017, respectively but not with Lauren’s classification, pN stage, or pTNM stage. Conclusions: MUC2 expression was correlated with a lower tumor depth and lower lymph node metastasis in our study; the meta-analysis showed a correlation of MUC2 expression with tumor differentiation and lower tumor depth.

  2. Identification of differentially expressed microRNAs in human male breast cancer

    Directory of Open Access Journals (Sweden)

    Schipper Elisa

    2010-03-01

    Full Text Available Abstract Background The discovery of small non-coding RNAs and the subsequent analysis of microRNA expression patterns in human cancer specimens have provided completely new insights into cancer biology. Genetic and epigenetic data indicate oncogenic or tumor suppressor function of these pleiotropic regulators. Therefore, many studies analyzed the expression and function of microRNA in human breast cancer, the most frequent malignancy in females. However, nothing is known so far about microRNA expression in male breast cancer, accounting for approximately 1% of all breast cancer cases. Methods The expression of 319 microRNAs was analyzed in 9 primary human male breast tumors and in epithelial cells from 15 male gynecomastia specimens using fluorescence-labeled bead technology. For identification of differentially expressed microRNAs data were analyzed by cluster analysis and selected statistical methods. Expression levels were validated for the most up- or down-regulated microRNAs in this training cohort using real-time PCR methodology as well as in an independent test cohort comprising 12 cases of human male breast cancer. Results Unsupervised cluster analysis separated very well male breast cancer samples and control specimens according to their microRNA expression pattern indicating cancer-specific alterations of microRNA expression in human male breast cancer. miR-21, miR519d, miR-183, miR-197, and miR-493-5p were identified as most prominently up-regulated, miR-145 and miR-497 as most prominently down-regulated in male breast cancer. Conclusions Male breast cancer displays several differentially expressed microRNAs. Not all of them are shared with breast cancer biopsies from female patients indicating male breast cancer specific alterations of microRNA expression.

  3. Transcription factors SOHLH1 and SOHLH2 coordinate oocyte differentiation without affecting meiosis I.

    Science.gov (United States)

    Shin, Yong-Hyun; Ren, Yu; Suzuki, Hitomi; Golnoski, Kayla J; Ahn, Hyo Won; Mico, Vasil; Rajkovic, Aleksandar

    2017-06-01

    Following migration of primordial germ cells to the genital ridge, oogonia undergo several rounds of mitotic division and enter meiosis at approximately E13.5. Most oocytes arrest in the dictyate (diplotene) stage of meiosis circa E18.5. The genes necessary to drive oocyte differentiation in parallel with meiosis are unknown. Here, we have investigated whether expression of spermatogenesis and oogenesis bHLH transcription factor 1 (Sohlh1) and Sohlh2 coordinates oocyte differentiation within the embryonic ovary. We found that SOHLH2 protein was expressed in the mouse germline as early as E12.5 and preceded SOHLH1 protein expression, which occurred circa E15.5. SOHLH1 protein appearance at E15.5 correlated with SOHLH2 translocation from the cytoplasm into the nucleus and was dependent on SOHLH1 expression. NOBOX oogenesis homeobox (NOBOX) and LIM homeobox protein 8 (LHX8), two important regulators of postnatal oogenesis, were coexpressed with SOHLH1. Single deficiency of Sohlh1 or Sohlh2 disrupted the expression of LHX8 and NOBOX in the embryonic gonad without affecting meiosis. Sohlh1-KO infertility was rescued by conditional expression of the Sohlh1 transgene after the onset of meiosis. However, Sohlh1 or Sohlh2 transgene expression could not rescue Sohlh2-KO infertility due to a lack of Sohlh1 or Sohlh2 expression in rescued mice. Our results indicate that Sohlh1 and Sohlh2 are essential regulators of oocyte differentiation but do not affect meiosis I.

  4. Serum immune-related proteins are differentially expressed during hibernation in the American black bear.

    Directory of Open Access Journals (Sweden)

    Brian A Chow

    Full Text Available Hibernation is an adaptation to conserve energy in the face of extreme environmental conditions and low food availability that has risen in several animal phyla. This phenomenon is characterized by reduced metabolic rate (∼25% of the active basal metabolic rate in hibernating bears and energy demand, while other physiological adjustments are far from clear. The profiling of the serum proteome of the American black bear (Ursus americanus may reveal specific proteins that are differentially modulated by hibernation, and provide insight into the remarkable physiological adaptations that characterize ursid hibernation. In this study, we used differential gel electrophoresis (DIGE analysis, liquid chromatography coupled to tandem mass spectrometry, and subsequent MASCOT analysis of the mass spectra to identify candidate proteins that are differentially expressed during hibernation in captive black bears. Seventy serum proteins were identified as changing by ±1.5 fold or more, out of which 34 proteins increased expression during hibernation. The majority of identified proteins are involved in immune system processes. These included α2-macroglobulin, complement components C1s and C4, immunoglobulin μ and J chains, clusterin, haptoglobin, C4b binding protein, kininogen 1, α2-HS-glycoprotein, and apoplipoproteins A-I and A-IV. Differential expression of a subset of these proteins identified by proteomic analysis was also confirmed by immunodetection. We propose that the observed serum protein changes contribute to the maintenance of the hibernation phenotype and health, including increased capacities for bone maintenance and wound healing during hibernation in bears.

  5. Transiently truncated and differentially regulated expression of midkine during mouse embryogenesis

    International Nuclear Information System (INIS)

    Chen Qin; Yuan Yuanyang; Lin Shuibin; Chang Youde; Zhuo Xinming; Wei Wei; Tao Ping; Ruan Lingjuan; Li Qifu; Li Zhixing

    2005-01-01

    Midkine (MK) is a retinoic acid response cytokine, mostly expressed in embryonic tissues. Aberrant expression of MK was found in numerous cancers. In human, a truncated MK was expressed specifically in tumor/cancer tissues. Here we report the discovery of a novel truncated form of MK transiently expressed during normal mouse embryonic development. In addition, MK is concentrated at the interface between developing epithelium and mesenchyme as well as highly proliferating cells. Its expression, which is closely coordinated with angiogenesis and vasculogenesis, is spatiotemporally regulated with peaks in extensive organogenesis period and undifferentiated cells tailing off in maturing cells, implying its role in nascent blood vessel (endothelial) signaling of tissue differentiation and stem cell renewal/differentiation.. Cloning and sequencing analysis revealed that the embryonic truncated MK, in which the conserved domain is in-frame deleted, presumably producing a novel secreted small peptide, is different from the truncated form in human cancer tissues, whose deletion results in a frame-shift mutation. Our data suggest that MK may play a role in epithelium-mesenchyme interactions, blood vessel signaling, and the decision of proliferation vs differentiation. Detection of the transiently expressed truncated MK reveals its novel function in development and sheds light on its role in carcinogenesis

  6. Differential Expression of Osteo-Modulatory Molecules in Periodontal Ligament Stem Cells in Response to Modified Titanium Surfaces

    Directory of Open Access Journals (Sweden)

    So Yeon Kim

    2014-01-01

    Full Text Available This study assessed differential gene expression of signaling molecules involved in osteogenic differentiation of periodontal ligament stem cells (PDLSCs subjected to different titanium (Ti surface types. PDLSCs were cultured on tissue culture polystyrene (TCPS, and four types of Ti discs (PT, SLA, hydrophilic PT (pmodPT, and hydrophilic SLA (modSLA with no osteoinductive factor and then osteogenic activity, including alkaline phosphatase (ALP activity, mRNA expression of runt-related gene 2, osterix, FOSB, FRA1, and protein levels of osteopontin and collagen type IA, were examined. The highest osteogenic activity appeared in PDLSCs cultured on SLA, compared with the TCPS and other Ti surfaces. The role of surface properties in affecting signaling molecules to modulate PDLSC behavior was determined by examining the regulation of Wnt pathways. mRNA expression of the canonical Wnt signaling molecules, Wnt3a and β-catenin, was higher on SLA and modSLA than on smooth surfaces, but gene expression of the calcium-dependent Wnt signaling molecules Wnt5a, calmodulin, and NFATc1 was increased significantly on PT and pmodPT. Moreover, integrin α2/β1, sonic hedgehog, and Notch signaling molecules were affected differently by each surface modification. In conclusion, surface roughness and hydrophilicity can affect differential Wnt pathways and signaling molecules, targeting the osteogenic differentiation of PDLSCs.

  7. Quantification of differential gene expression by multiplexed targeted resequencing of cDNA

    Science.gov (United States)

    Arts, Peer; van der Raadt, Jori; van Gestel, Sebastianus H.C.; Steehouwer, Marloes; Shendure, Jay; Hoischen, Alexander; Albers, Cornelis A.

    2017-01-01

    Whole-transcriptome or RNA sequencing (RNA-Seq) is a powerful and versatile tool for functional analysis of different types of RNA molecules, but sample reagent and sequencing cost can be prohibitive for hypothesis-driven studies where the aim is to quantify differential expression of a limited number of genes. Here we present an approach for quantification of differential mRNA expression by targeted resequencing of complementary DNA using single-molecule molecular inversion probes (cDNA-smMIPs) that enable highly multiplexed resequencing of cDNA target regions of ∼100 nucleotides and counting of individual molecules. We show that accurate estimates of differential expression can be obtained from molecule counts for hundreds of smMIPs per reaction and that smMIPs are also suitable for quantification of relative gene expression and allele-specific expression. Compared with low-coverage RNA-Seq and a hybridization-based targeted RNA-Seq method, cDNA-smMIPs are a cost-effective high-throughput tool for hypothesis-driven expression analysis in large numbers of genes (10 to 500) and samples (hundreds to thousands). PMID:28474677

  8. Estrogen-Induced Maldevelopment of the Penis Involves Down-Regulation of Myosin Heavy Chain 11 (MYH11) Expression, a Biomarker for Smooth Muscle Cell Differentiation1

    Science.gov (United States)

    Okumu, L.A.; Bruinton, Sequoia; Braden, Tim D.; Simon, Liz; Goyal, Hari O.

    2012-01-01

    ABSTRACT Cavernous smooth muscle cells are essential components in penile erection. In this study, we investigated effects of estrogen exposure on biomarkers for smooth muscle cell differentiation in the penis. Neonatal rats received diethylstilbestrol (DES), with or without the estrogen receptor (ESR) antagonist ICI 182,780 (ICI) or the androgen receptor (AR) agonist dihydrotestosterone (DHT), from Postnatal Days 1 to 6. Tissues were collected at 7, 10, or 21 days of age. The smooth muscle cell biomarker MYH11 was studied in depth because microarray data showed it was significantly down-regulated, along with other biomarkers, in DES treatment. Quantitative real time-PCR and Western blot analyses showed 50%–80% reduction (P ≤ 0.05) in Myh11 expression in DES-treated rats compared to that in controls; and ICI and DHT coadministration mitigated the decrease. Temporally, from 7 to 21 days of age, Myh11 expression was onefold increased (P ≥ 0.05) in DES-treated rats versus threefold increased (P ≤ 0.001) in controls, implying the long-lasting inhibitory effect of DES on smooth muscle cell differentiation. Immunohistochemical localization of smooth muscle alpha actin, another biomarker for smooth muscle cell differentiation, showed fewer cavernous smooth muscle cells in DES-treated animals than in controls. Additionally, DES treatment significantly up-regulated Esr1 mRNA expression and suppressed the neonatal testosterone surge by 90%, which was mitigated by ICI coadministration but not by DHT coadministration. Collectively, results provided evidence that DES treatment in neonatal rats inhibited cavernous smooth muscle cell differentiation, as shown by down-regulation of MYH11 expression at the mRNA and protein levels and by reduced immunohistochemical staining of smooth muscle alpha actin. Both the ESR and the AR pathways probably mediate this effect. PMID:22976277

  9. Vitamin K2 promotes mesenchymal stem cell differentiation by inhibiting miR‑133a expression.

    Science.gov (United States)

    Zhang, Yuelei; Weng, Shiyang; Yin, Junhui; Ding, Hao; Zhang, Changqing; Gao, Youshui

    2017-05-01

    Vitamin K2 has been demonstrated to promote the osteogenic differentiation of mesenchymal stem cells; however, the mechanisms underlying this effect remain unclear. As microRNA (miR)‑133a has been identified as a negative regulator of osteogenic differentiation, the present study hypothesized that vitamin K2 promoted osteogenesis by inhibiting miR‑133a. Using human bone marrow stromal cells (hBMSCs) overexpressing miR‑133a, or a control, the expression levels of osteogenesis‑associated proteins, including runt‑related transcription factor 2, alkaline phosphatase and osteocalcin, were analyzed. miR‑133a significantly suppressed the osteogenic differentiation of hBMSCs. To determine the effect of vitamin K2 on miR‑133a expression and osteogenesis, hBMSCs were treated with vitamin K2. Vitamin K2 inhibited miR‑133a expression, which was accompanied by enhanced osteogenic differentiation. Furthermore, the expression levels of vitamin K epoxide reductase complex subunit 1, the key protein in γ‑carboxylation, were downregulated by miR‑133a overexpression and upregulated by vitamin K2 treatment, indicating a positive feedback on γ‑carboxylation. The results of the present study suggested that vitamin K2 targets miR‑133a to regulate osteogenesis.

  10. Functional features of gene expression profiles differentiating gastrointestinal stromal tumours according to KIT mutations and expression

    International Nuclear Information System (INIS)

    Ostrowski, Jerzy; Dobosz, Anna Jerzak Vel; Jarosz, Dorota; Ruka, Wlodzimierz; Wyrwicz, Lucjan S; Polkowski, Marcin; Paziewska, Agnieszka; Skrzypczak, Magdalena; Goryca, Krzysztof; Rubel, Tymon; Kokoszyñska, Katarzyna; Rutkowski, Piotr; Nowecki, Zbigniew I

    2009-01-01

    Gastrointestinal stromal tumours (GISTs) represent a heterogeneous group of tumours of mesenchymal origin characterized by gain-of-function mutations in KIT or PDGFRA of the type III receptor tyrosine kinase family. Although mutations in either receptor are thought to drive an early oncogenic event through similar pathways, two previous studies reported the mutation-specific gene expression profiles. However, their further conclusions were rather discordant. To clarify the molecular characteristics of differentially expressed genes according to GIST receptor mutations, we combined microarray-based analysis with detailed functional annotations. Total RNA was isolated from 29 frozen gastric GISTs and processed for hybridization on GENECHIP ® HG-U133 Plus 2.0 microarrays (Affymetrix). KIT and PDGFRA were analyzed by sequencing, while related mRNA levels were analyzed by quantitative RT-PCR. Fifteen and eleven tumours possessed mutations in KIT and PDGFRA, respectively; no mutation was found in three tumours. Gene expression analysis identified no discriminative profiles associated with clinical or pathological parameters, even though expression of hundreds of genes differentiated tumour receptor mutation and expression status. Functional features of genes differentially expressed between the two groups of GISTs suggested alterations in angiogenesis and G-protein-related and calcium signalling. Our study has identified novel molecular elements likely to be involved in receptor-dependent GIST development and allowed confirmation of previously published results. These elements may be potential therapeutic targets and novel markers of KIT mutation status

  11. DNA topoisomerase IIβ stimulates neurite outgrowth in neural differentiated human mesenchymal stem cells through regulation of Rho-GTPases (RhoA/Rock2 pathway) and Nurr1 expression.

    Science.gov (United States)

    Zaim, Merve; Isik, Sevim

    2018-04-25

    DNA topoisomerase IIβ (topo IIβ) is known to regulate neural differentiation by inducing the neuronal genes responsible for critical neural differentiation events such as neurite outgrowth and axon guidance. However, the pathways of axon growth controlled by topo IIβ have not been clarified yet. Microarray results of our previous study have shown that topo IIβ silencing in neural differentiated primary human mesenchymal stem cells (hMSCs) significantly alters the expression pattern of genes involved in neural polarity, axonal growth, and guidance, including Rho-GTPases. This study aims to further analyze the regulatory role of topo IIβ on the process of axon growth via regulation of Rho-GTPases. For this purpose, topo IIβ was silenced in neurally differentiated hMSCs. Cells lost their morphology because of topo IIβ deficiency, becoming enlarged and flattened. Additionally, a reduction in both neural differentiation efficiency and neurite length, upregulation in RhoA and Rock2, downregulation in Cdc42 gene expression were detected. On the other hand, cells were transfected with topo IIβ gene to elucidate the possible neuroprotective effect of topo IIβ overexpression on neural-induced hMSCs. Topo IIβ overexpression prompted all the cells to exhibit neural cell morphology as characterized by longer neurites. RhoA and Rock2 expressions were downregulated, whereas Cdc42 expression was upregulated. Nurr1 expression level correlated with topo IIβ in both topo IIβ-overexpressed and -silenced cells. Furthermore, differential translocation of Rho-GTPases was detected by immunostaining in response to topo IIβ. Our results suggest that topo IIβ deficiency could give rise to neurodegeneration through dysregulation of Rho-GTPases. However, further in-vivo research is needed to demonstrate if re-regulation of Rho GTPases by topo IIβ overexpression could be a neuroprotective treatment in the case of neurodegenerative diseases.

  12. Parvovirus B19 Replication and Expression in Differentiating Erythroid Progenitor Cells.

    Directory of Open Access Journals (Sweden)

    Gloria Bua

    Full Text Available The pathogenic Parvovirus B19 (B19V is characterized by a strict adaptation to erythroid progenitor cells (EPCs, a heterogeneous population of differentiating cells with diverse phenotypic and functional properties. In our work, we studied the dynamics of B19V infection in EPCs in dependence on the cell differentiation stage, in terms of distribution of infected cells, synthesis of viral nucleic acids and production of infectious virus. EPCs at early differentiation stage led to an abortive infection, without viral genome replication and a very low transcriptional activity. EPCs at later stages were permissive, with highest levels of viral replicative activity at day 9 (+3.0 Log from 2 to 48 hpi and lower levels at day 18 (+1.5 Log from 2 to 48 hpi. B19V DNA increment was in accordance with the percentage of cells positive to flow-FISH assay (41.4% at day 9, 1.1% at day 18. Quantitation of total RNA indicated a close association of genome replication and transcription with viral RNA accumulation within infected cells related to viral DNA increase during the course of infection. Analysis of the different classes of mRNAs revealed two distinct pattern of genome expression profile with a fine regulation in the frequency utilization of RNA processing signals: an early phase, when cleavage at the proximal site leading to a higher relative production of mRNA for NS protein, and a late phase, when cleavage at the distal site was more frequent leading to higher relative abundance of mRNA for VP and 11 kDA proteins. Infectious virus was released from cells at day 6-15, but not at day 18. Our results, providing a detailed description of B19V replication and expression profile in differentiating EPCs, highlight the very tight adaptation of B19V to a specific cellular target defined both by its erythroid lineage and its differentiation stage.

  13. Parvovirus B19 Replication and Expression in Differentiating Erythroid Progenitor Cells

    Science.gov (United States)

    Bua, Gloria; Manaresi, Elisabetta; Bonvicini, Francesca; Gallinella, Giorgio

    2016-01-01

    The pathogenic Parvovirus B19 (B19V) is characterized by a strict adaptation to erythroid progenitor cells (EPCs), a heterogeneous population of differentiating cells with diverse phenotypic and functional properties. In our work, we studied the dynamics of B19V infection in EPCs in dependence on the cell differentiation stage, in terms of distribution of infected cells, synthesis of viral nucleic acids and production of infectious virus. EPCs at early differentiation stage led to an abortive infection, without viral genome replication and a very low transcriptional activity. EPCs at later stages were permissive, with highest levels of viral replicative activity at day 9 (+3.0 Log from 2 to 48 hpi) and lower levels at day 18 (+1.5 Log from 2 to 48 hpi). B19V DNA increment was in accordance with the percentage of cells positive to flow-FISH assay (41.4% at day 9, 1.1% at day 18). Quantitation of total RNA indicated a close association of genome replication and transcription with viral RNA accumulation within infected cells related to viral DNA increase during the course of infection. Analysis of the different classes of mRNAs revealed two distinct pattern of genome expression profile with a fine regulation in the frequency utilization of RNA processing signals: an early phase, when cleavage at the proximal site leading to a higher relative production of mRNA for NS protein, and a late phase, when cleavage at the distal site was more frequent leading to higher relative abundance of mRNA for VP and 11 kDA proteins. Infectious virus was released from cells at day 6–15, but not at day 18. Our results, providing a detailed description of B19V replication and expression profile in differentiating EPCs, highlight the very tight adaptation of B19V to a specific cellular target defined both by its erythroid lineage and its differentiation stage. PMID:26845771

  14. IGF-1/IGF-1R/hsa-let-7c axis regulates the committed differentiation of stem cells from apical papilla

    Science.gov (United States)

    Ma, Shu; Liu, Genxia; Jin, Lin; Pang, Xiyao; Wang, Yanqiu; Wang, Zilu; Yu, Yan; Yu, Jinhua

    2016-01-01

    Insulin-like growth factor-1 (IGF-1) and its receptor IGF-1R play a paramount role in tooth/bone formation while hsa-let-7c actively participates in the osteogenic differentiation of mesenchymal stem cells. However, the interaction between IGF-1/IGF-1R and hsa-let-7c on the committed differentiation of stem cells from apical papilla (SCAPs) remains unclear. In this study, human SCAPs were isolated and treated with IGF-1 and hsa-let-7c over/low-expression viruses. The odonto/osteogenic differentiation of these stem cells and the involvement of mitogen-activated protein kinase (MAPK) pathway were subsequently investigated. Alizarin red staining showed that hsa-let-7c low-expression can significantly promote the mineralization of IGF-1 treated SCAPs, while hsa-let-7c over-expression can decrease the calcium deposition of IGF-1 treated SCAPs. Western blot assay and real-time reverse transcription polymerase chain reaction further demonstrated that the expression of odonto/osteogenic markers (ALP, RUNX2/RUNX2, OSX/OSX, OCN/OCN, COL-I/COL-I, DSPP/DSP, and DMP-1/DMP-1) in IGF-1 treated SCAPs were significantly upregulated in Let-7c-low group. On the contrary, hsa-let-7c over-expression could downregulate the expression of these odonto/osteogenic markers. Moreover, western blot assay showed that the JNK and p38 MAPK signaling pathways were activated in Let-7c-low SCAPs but inhibited in Let-7c-over SCAPs. Together, the IGF-1/IGF-1R/hsa-let-7c axis can control the odonto/osteogenic differentiation of IGF-1-treated SCAPs via the regulation of JNK and p38 MAPK signaling pathways. PMID:27833148

  15. C-arm Cone Beam Computed Tomographic Needle Path Overlay for Fluoroscopic-Guided Placement of Translumbar Central Venous Catheters

    International Nuclear Information System (INIS)

    Tam, Alda; Mohamed, Ashraf; Pfister, Marcus; Rohm, Esther; Wallace, Michael J.

    2009-01-01

    C-arm cone beam computed tomography is an advanced 3D imaging technology that is currently available on state-of-the-art flat-panel-based angiography systems. The overlay of cross-sectional imaging information can now be integrated with real-time fluoroscopy. This overlay technology was used to guide the placement of three percutaneous translumbar inferior vena cava catheters.

  16. Differential gene expression of wheat progeny with contrasting levels of transpiration efficiency.

    Science.gov (United States)

    Xue, Gang-Ping; McIntyre, C Lynne; Chapman, Scott; Bower, Neil I; Way, Heather; Reverter, Antonio; Clarke, Bryan; Shorter, Ray

    2006-08-01

    High water use efficiency or transpiration efficiency (TE) in wheat is a desirable physiological trait for increasing grain yield under water-limited environments. The identification of genes associated with this trait would facilitate the selection for genotypes with higher TE using molecular markers. We performed an expression profiling (microarray) analysis of approximately 16,000 unique wheat ESTs to identify genes that were differentially expressed between wheat progeny lines with contrasting TE levels from a cross between Quarrion (high TE) and Genaro 81 (low TE). We also conducted a second microarray analysis to identify genes responsive to drought stress in wheat leaves. Ninety-three genes that were differentially expressed between high and low TE progeny lines were identified. One fifth of these genes were markedly responsive to drought stress. Several potential growth-related regulatory genes, which were down-regulated by drought, were expressed at a higher level in the high TE lines than the low TE lines and are potentially associated with a biomass production component of the Quarrion-derived high TE trait. Eighteen of the TE differentially expressed genes were further analysed using quantitative RT-PCR on a separate set of plant samples from those used for microarray analysis. The expression levels of 11 of the 18 genes were positively correlated with the high TE trait, measured as carbon isotope discrimination (Delta(13)C). These data indicate that some of these TE differentially expressed genes are candidates for investigating processes that underlie the high TE trait or for use as expression quantitative trait loci (eQTLs) for TE.

  17. Validation of MIMGO: a method to identify differentially expressed GO terms in a microarray dataset

    OpenAIRE

    Yamada, Yoichi; Sawada, Hiroki; Hirotani, Ken-ichi; Oshima, Masanobu; Satou, Kenji

    2012-01-01

    Abstract Background We previously proposed an algorithm for the identification of GO terms that commonly annotate genes whose expression is upregulated or downregulated in some microarray data compared with in other microarray data. We call these “differentially expressed GO terms” and have named the algorithm “matrix-assisted identification method of differentially expressed GO terms” (MIMGO). MIMGO can also identify microarray data in which genes annotated with a differentially expressed GO...

  18. Upper ankle joint space detection on low contrast intraoperative fluoroscopic C-arm projections

    Science.gov (United States)

    Thomas, Sarina; Schnetzke, Marc; Brehler, Michael; Swartman, Benedict; Vetter, Sven; Franke, Jochen; Grützner, Paul A.; Meinzer, Hans-Peter; Nolden, Marco

    2017-03-01

    Intraoperative mobile C-arm fluoroscopy is widely used for interventional verification in trauma surgery, high flexibility combined with low cost being the main advantages of the method. However, the lack of global device-to- patient orientation is challenging, when comparing the acquired data to other intrapatient datasets. In upper ankle joint fracture reduction accompanied with an unstable syndesmosis, a comparison to the unfractured contralateral site is helpful for verification of the reduction result. To reduce dose and operation time, our approach aims at the comparison of single projections of the unfractured ankle with volumetric images of the reduced fracture. For precise assessment, a pre-alignment of both datasets is a crucial step. We propose a contour extraction pipeline to estimate the joint space location for a prealignment of fluoroscopic C-arm projections containing the upper ankle joint. A quadtree-based hierarchical variance comparison extracts potential feature points and a Hough transform is applied to identify bone shaft lines together with the tibiotalar joint space. By using this information we can define the coarse orientation of the projections independent from the ankle pose during acquisition in order to align those images to the volume of the fractured ankle. The proposed method was evaluated on thirteen cadaveric datasets consisting of 100 projections each with manually adjusted image planes by three trauma surgeons. The results show that the method can be used to detect the joint space orientation. The correlation between angle deviation and anatomical projection direction gives valuable input on the acquisition direction for future clinical experiments.

  19. EZH2 regulates neuroblastoma cell differentiation via NTRK1 promoter epigenetic modifications.

    Science.gov (United States)

    Li, Zhenghao; Takenobu, Hisanori; Setyawati, Amallia Nuggetsiana; Akita, Nobuhiro; Haruta, Masayuki; Satoh, Shunpei; Shinno, Yoshitaka; Chikaraishi, Koji; Mukae, Kyosuke; Akter, Jesmin; Sugino, Ryuichi P; Nakazawa, Atsuko; Nakagawara, Akira; Aburatani, Hiroyuki; Ohira, Miki; Kamijo, Takehiko

    2018-05-01

    The polycomb repressor complex 2 molecule EZH2 is now known to play a role in essential cellular processes, namely, cell fate decisions, cell cycle regulation, senescence, cell differentiation, and cancer development/progression. EZH2 inhibitors have recently been developed; however, their effectiveness and underlying molecular mechanisms in many malignancies have not yet been elucidated in detail. Although the functional role of EZH2 in tumorigenesis in neuroblastoma (NB) has been investigated, mutations of EZH2 have not been reported. A Kaplan-Meier analysis on the event free survival and overall survival of NB patients indicated that the high expression of EZH2 correlated with an unfavorable prognosis. In order to elucidate the functional roles of EZH2 in NB tumorigenesis and its aggressiveness, we knocked down EZH2 in NB cell lines using lentivirus systems. The knockdown of EZH2 significantly induced NB cell differentiation, e.g., neurite extension, and the neuronal differentiation markers, NF68 and GAP43. EZH2 inhibitors also induced NB cell differentiation. We performed a comprehensive transcriptome analysis using Human Gene Expression Microarrays and found that NTRK1 (TrkA) is one of the EZH2-related suppression targets. The depletion of NTRK1 canceled EZH2 knockdown-induced NB cell differentiation. Our integrative methylome, transcriptome, and chromatin immunoprecipitation assays using NB cell lines and clinical samples clarified that the NTRK1 P1 and P2 promoter regions were regulated differently by DNA methylation and EZH2-related histone modifications. The NTRK1 transcript variants 1/2, which were regulated by EZH2-related H3K27me3 modifications at the P1 promoter region, were strongly expressed in favorable, but not unfavorable NB. The depletion and inhibition of EZH2 successfully induced NTRK1 transcripts and functional proteins. Collectively, these results indicate that EZH2 plays important roles in preventing the differentiation of NB cells and also

  20. Integrated analysis of miRNA and mRNA expression profiles in tilapia gonads at an early stage of sex differentiation.

    Science.gov (United States)

    Tao, Wenjing; Sun, Lina; Shi, Hongjuan; Cheng, Yunying; Jiang, Dongneng; Fu, Beide; Conte, Matthew A; Gammerdinger, William J; Kocher, Thomas D; Wang, Deshou

    2016-05-04

    MicroRNAs (miRNAs) represent a second regulatory network that has important effects on gene expression and protein translation during biological process. However, the possible role of miRNAs in the early stages of fish sex differentiation is not well understood. In this study, we carried an integrated analysis of miRNA and mRNA expression profiles to explore their possibly regulatory patterns at the critical stage of sex differentiation in tilapia. We identified 279 pre-miRNA genes in tilapia genome, which were highly conserved in other fish species. Based on small RNA library sequencing, we identified 635 mature miRNAs in tilapia gonads, in which 62 and 49 miRNAs showed higher expression in XX and XY gonads, respectively. The predicted targets of these sex-biased miRNAs (e.g., miR-9, miR-21, miR-30a, miR-96, miR-200b, miR-212 and miR-7977) included genes encoding key enzymes in steroidogenic pathways (Cyp11a1, Hsd3b, Cyp19a1a, Hsd11b) and key molecules involved in vertebrate sex differentiation (Foxl2, Amh, Star1, Sf1, Dmrt1, and Gsdf). These genes also showed sex-biased expression in tilapia gonads at 5 dah. Some miRNAs (e.g., miR-96 and miR-737) targeted multiple genes involved in steroid synthesis, suggesting a complex miRNA regulatory network during early sex differentiation in this fish. The sequence and expression patterns of most miRNAs in tilapia are conserved in fishes, indicating the basic functions of vertebrate miRNAs might share a common evolutionary origin. This comprehensive analysis of miRNA and mRNA at the early stage of molecular sex differentiation in tilapia XX and XY gonads lead to the discovery of differentially expressed miRNAs and their putative targets, which will facilitate studies of the regulatory network of molecular sex determination and differentiation in fishes.

  1. Biomineralization, life-time of odontogenic cells and differential expression of the two homeobox genes MSX-1 and DLX-2 in transgenic mice.

    Science.gov (United States)

    Lézot, F; Thomas, B; Hotton, D; Forest, N; Orestes-Cardoso, S; Robert, B; Sharpe, P; Berdal, A

    2000-03-01

    Msx and Dlx homeobox genes encode for transcription factors that control early morphogenesis. More specifically, Msx-1, Msx-2, and Dlx-2 homeobox genes contribute to the initial patterning of the dentition. The present study is devoted to the potential role of those homeobox genes during the late formation of mineralized tissues, using the rodent incisor as an experimental system. The continuously erupting mandibular incisor allows (1) the coinvestigation of the whole sequences of amelogenesis and dentinogenesis, aligned along the main dental axis in a single sample in situ and (2) the differential characterization of transcripts generated by epithelial and ectomesenchymal odontogenic cells. Northern blot experiments on microdissected cells showed the continuing expression of Msx-2 and Dlx-2 in the later stages of dental biomineralization, differentially in epithelial and ectomesenchymal compartments. Transgenic mice produced with LacZ reporter constructs for Dlx-2 and Msx-1 were used to detect different components of the gene expression patterns with the sensitive beta-galactosidase histoenzymology. The results show a prominent epithelial involvement of Dlx-2, with stage-specific variations in the cells involved in enamel formation. Quantitative analyses identified specific modulations of Dlx-2 expression in ameloblasts depending on the anatomical sites of the incisor, showing more specifically an inverse linear relationship between the Dlx-2 promoter activity level and enamel thickness. This investigation extends the role of homeoproteins to postmitotic stages, which would control secretory cell activity, in a site-specific manner as shown here for Dlx-2.

  2. Radicicol, a heat shock protein 90 inhibitor, inhibits differentiation and adipogenesis in 3T3-L1 preadipocytes

    Energy Technology Data Exchange (ETDEWEB)

    He, Yonghan [Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, 157 Baojian Road, Harbin 150081 (China); Aquatic and Crop Resource Development, Life Sciences Branch, National Research Council Canada, Charlottetown, PE, Canada C1A 4P3 (Canada); State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223 (China); Li, Ying [Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, 157 Baojian Road, Harbin 150081 (China); Zhang, Shuocheng [Aquatic and Crop Resource Development, Life Sciences Branch, National Research Council Canada, Charlottetown, PE, Canada C1A 4P3 (Canada); Perry, Ben [Aquatic and Crop Resource Development, Life Sciences Branch, National Research Council Canada, Charlottetown, PE, Canada C1A 4P3 (Canada); Department of Biomedical Sciences, University of Prince Edward Island, 550 University Avenue, Charlottetown, PE, Canada C1A 4P3 (Canada); Zhao, Tiantian [Aquatic and Crop Resource Development, Life Sciences Branch, National Research Council Canada, Charlottetown, PE, Canada C1A 4P3 (Canada); Department of Psychology, University of Toronto, 1265 Military Trail, Toronto, ON, Canada M1C 1A4 (Canada); Wang, Yanwen, E-mail: yanwen.wang@nrc.ca [Aquatic and Crop Resource Development, Life Sciences Branch, National Research Council Canada, Charlottetown, PE, Canada C1A 4P3 (Canada); Department of Biomedical Sciences, University of Prince Edward Island, 550 University Avenue, Charlottetown, PE, Canada C1A 4P3 (Canada); Sun, Changhao, E-mail: sun2002changhao@yahoo.com [Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, 157 Baojian Road, Harbin 150081 (China)

    2013-06-28

    Highlights: •Radicicol suppressed intracellular fat accumulation in 3T3-L1 adipocytes. •Radicicol inhibited the expression of FAS and FABP4. •Radicicol blocked cell cycle at the G1-S phase during cell differentiation. •Radicicol inhibited the PDK1/Akt pathway in adipocyte differentiation. -- Abstract: Heat shock protein 90 (Hsp90) is involved in various cellular processes, such as cell proliferation, differentiation and apoptosis. As adipocyte differentiation plays a critical role in obesity development, the present study investigated the effect of an Hsp90 inhibitor radicicol on the differentiation of 3T3-L1 preadipocytes and potential mechanisms. The cells were treated with different concentrations of radicicol during the first 8 days of cell differentiation. Adipogenesis, the expression of adipogenic transcriptional factors, differentiation makers and cell cycle were determined. It was found that radicicol dose-dependently decreased intracellular fat accumulation through down-regulating the expression of peroxisome proliferator-activated receptor γ (PPAR{sub γ}) and CCAAT element binding protein α (C/EBP{sub α}), fatty acid synthase (FAS) and fatty acid-binding protein 4 (FABP4). Flow cytometry analysis revealed that radicicol blocked cell cycle at G1-S phase. Radicicol redcued the phosphorylation of Akt while showing no effect on β-catenin expression. Radicicol decreased the phosphorylation of phosphoinositide-dependent kinase 1 (PDK1). The results suggest that radicicol inhibited 3T3-L1 preadipocyte differentiation through affecting the PDK1/Akt pathway and subsequent inhibition of mitotic clonal expansion and the expression/activity of adipogenic transcriptional factors and their downstream adipogenic proteins.

  3. Radicicol, a heat shock protein 90 inhibitor, inhibits differentiation and adipogenesis in 3T3-L1 preadipocytes

    International Nuclear Information System (INIS)

    He, Yonghan; Li, Ying; Zhang, Shuocheng; Perry, Ben; Zhao, Tiantian; Wang, Yanwen; Sun, Changhao

    2013-01-01

    Highlights: •Radicicol suppressed intracellular fat accumulation in 3T3-L1 adipocytes. •Radicicol inhibited the expression of FAS and FABP4. •Radicicol blocked cell cycle at the G1-S phase during cell differentiation. •Radicicol inhibited the PDK1/Akt pathway in adipocyte differentiation. -- Abstract: Heat shock protein 90 (Hsp90) is involved in various cellular processes, such as cell proliferation, differentiation and apoptosis. As adipocyte differentiation plays a critical role in obesity development, the present study investigated the effect of an Hsp90 inhibitor radicicol on the differentiation of 3T3-L1 preadipocytes and potential mechanisms. The cells were treated with different concentrations of radicicol during the first 8 days of cell differentiation. Adipogenesis, the expression of adipogenic transcriptional factors, differentiation makers and cell cycle were determined. It was found that radicicol dose-dependently decreased intracellular fat accumulation through down-regulating the expression of peroxisome proliferator-activated receptor γ (PPAR γ ) and CCAAT element binding protein α (C/EBP α ), fatty acid synthase (FAS) and fatty acid-binding protein 4 (FABP4). Flow cytometry analysis revealed that radicicol blocked cell cycle at G1-S phase. Radicicol redcued the phosphorylation of Akt while showing no effect on β-catenin expression. Radicicol decreased the phosphorylation of phosphoinositide-dependent kinase 1 (PDK1). The results suggest that radicicol inhibited 3T3-L1 preadipocyte differentiation through affecting the PDK1/Akt pathway and subsequent inhibition of mitotic clonal expansion and the expression/activity of adipogenic transcriptional factors and their downstream adipogenic proteins

  4. Homeobox protein MSX-1 inhibits expression of bone morphogenetic protein 2, bone morphogenetic protein 4, and lymphoid enhancer-binding factor 1 via Wnt/β-catenin signaling to prevent differentiation of dental mesenchymal cells during the late bell stage.

    Science.gov (United States)

    Feng, Xiao-Yu; Wu, Xiao-Shan; Wang, Jin-Song; Zhang, Chun-Mei; Wang, Song-Lin

    2018-02-01

    Homeobox protein MSX-1 (hereafter referred to as MSX-1) is essential for early tooth-germ development. Tooth-germ development is arrested at bud stage in Msx1 knockout mice, which prompted us to study the functions of MSX-1 beyond this stage. Here, we investigated the roles of MSX-1 during late bell stage. Mesenchymal cells of the mandibular first molar were isolated from mice at embryonic day (E)17.5 and cultured in vitro. We determined the expression levels of β-catenin, bone morphogenetic protein 2 (Bmp2), Bmp4, and lymphoid enhancer-binding factor 1 (Lef1) after knockdown or overexpression of Msx1. Our findings suggest that knockdown of Msx1 promoted expression of Bmp2, Bmp4, and Lef1, resulting in elevated differentiation of odontoblasts, which was rescued by blocking the expression of these genes. In contrast, overexpression of Msx1 decreased the expression of Bmp2, Bmp4, and Lef1, leading to a reduction in odontoblast differentiation. The regulation of Bmp2, Bmp4, and Lef1 by Msx1 was mediated by the Wnt/β-catenin signaling pathway. Additionally, knockdown of Msx1 impaired cell proliferation and slowed S-phase progression, while overexpression of Msx1 also impaired cell proliferation and prolonged G1-phase progression. We therefore conclude that MSX-1 maintains cell proliferation by regulating transition of cells from G1-phase to S-phase and prevents odontoblast differentiation by inhibiting expression of Bmp2, Bmp4, and Lef1 at the late bell stage via the Wnt/β-catenin signaling pathway. © 2017 Eur J Oral Sci.

  5. Differential Gene Expression Patterns in Chicken Cardiomyocytes during Hydrogen Peroxide-Induced Apoptosis.

    Science.gov (United States)

    Wan, Chunyun; Xiang, Jinmei; Li, Youwen; Guo, Dingzong

    2016-01-01

    Hydrogen peroxide (H2O2) is both an exogenous and endogenous cytotoxic agent that can reliably induce apoptosis in numerous cell types for studies on apoptosis signaling pathways. However, little is known of these apoptotic processes in myocardial cells of chicken, a species prone to progressive heart failure. Sequencing of mRNA transcripts (RNA-Seq) allows for the identification of differentially expressed genes under various physiological and pathological conditions to elucidate the molecular pathways involved, including cellular responses to exogenous and endogenous toxins. We used RNA-seq to examine genes differentially expressed during H2O2-induced apoptosis in primary cultures of embryonic chicken cardiomyocytes. Following control or H2O2 treatment, RNA was extracted and sequencing performed to identify novel transcripts up- or downregulated in the H2O2 treatment group and construct protein-protein interaction networks. Of the 19,268 known and 2,160 novel transcripts identified in both control and H2O2 treatment groups, 4,650 showed significant differential expression. Among them, 55.63% were upregulated and 44.37% downregulated. Initiation of apoptosis by H2O2 was associated with upregulation of caspase-8, caspase-9, and caspase-3, and downregulation of anti-apoptotic genes API5 and TRIA1. Many other differentially expressed genes were associated with metabolic pathways (including 'Fatty acid metabolism', 'Alanine, aspartate, and glutamate metabolism', and 'Biosynthesis of unsaturated fatty acids') and cell signaling pathways (including 'PPAR signaling pathway', 'Adipocytokine signaling pathway', 'TGF-beta signaling pathway', 'MAPK signaling pathway', and 'p53 signaling pathway'). In chicken cardiomyocytes, H2O2 alters the expression of numerous genes linked to cell signaling and metabolism as well as genes directly associated with apoptosis. In particular, H2O2 also affects the biosynthesis and processing of proteins and unsaturated fatty acids. These

  6. Sphingosine 1-phosphate receptor activation enhances BMP-2-induced osteoblast differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Chieri [Division of Rheumatology, Department of Internal Medicine, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501 (Japan); Iwasaki, Tsuyoshi, E-mail: tsuyo-i@huhs.ac.jp [Division of Pharmacotherapy, Department of Pharmacy, School of Pharmacy, Hyogo University of Health Sciences, 1-3-6 Minatojima, Chuo-ku, Kobe 650-8530 (Japan); Kitano, Sachie; Tsunemi, Sachi; Sano, Hajime [Division of Rheumatology, Department of Internal Medicine, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501 (Japan)

    2012-06-22

    Highlights: Black-Right-Pointing-Pointer We investigated the role of S1P signaling for osteoblast differentiation. Black-Right-Pointing-Pointer Both S1P and FTY enhanced BMP-2-stimulated osteoblast differentiation by C2C12 cells. Black-Right-Pointing-Pointer S1P signaling enhanced BMP-2-stimulated Smad and ERK phosphorylation by C2C12 cells. Black-Right-Pointing-Pointer MEK/ERK signaling is a pathway underlying S1P signaling for osteoblast differentiation. -- Abstract: We previously demonstrated that sphingosine 1-phosphate (S1P) receptor-mediated signaling induced proliferation and prostaglandin productions by synovial cells from rheumatoid arthritis (RA) patients. In the present study we investigated the role of S1P receptor-mediated signaling for osteoblast differentiation. We investigated osteoblast differentiation using C2C12 myoblasts, a cell line derived from murine satellite cells. Osteoblast differentiation was induced by the treatment of bone morphogenic protein (BMP)-2 in the presence or absence of either S1P or FTY720 (FTY), a high-affinity agonist of S1P receptors. Osteoblast differentiation was determined by osteoblast-specific transcription factor, Runx2 mRNA expression, alkaline phosphatase (ALP) activity and osteocalcin production by the cells. Smad1/5/8 and extracellular signal-regulated kinase (ERK) 1/2 phosphorylation was examined by Western blotting. Osteocalcin production by C2C12 cells were determined by ELISA. Runx2 expression and ALP activity by BMP-2-stimulated C2C12 cells were enhanced by addition of either S1P or FTY. Both S1P and FTY enhanced BMP-2-induced ERK1/2 and Smad1/5/8 phosphorylation. The effect of FTY was stronger than that of S1P. S1P receptor-mediated signaling on osteoblast differentiation was inhibited by addition of mitogen-activated protein kinase/ERK kinase (MEK) 1/2 inhibitor, indicating that the S1P receptor-mediated MEK1/2-ERK1/2 signaling pathway enhanced BMP-2-Smad signaling. These results indicate that S1P

  7. Ectopic expression and knocking-down of LINE-1 mRNA in human mesenchymal stem cells: impact on in vitro osteogenic and adipogenic differentiation

    KAUST Repository

    Atinbayeva, Nazerke

    2018-05-01

    There are two classes of transposable elements: DNA transposons and retrotransposons. DNA transposons spread in the genome by “cut and paste” mechanism. In contrast, retrotransposons use copy and paste strategy involving RNA and retrotranscriptase mediated mechanism; these include long interspersed nuclear elements-1 (LINE-1, L1) and short interspersed nuclear elements (SINE). In mammals, in order to maintain genome integrity both types of transposons are tightly repressed. However, some copies of retrotransposons are still active in germ cells contributing to natural variation. Surprisingly, recent reports indicate that also somatic cells support L1 reactivation in early development, in particular in the brain leading to mosaicism. However, whether L1 retrotransposition is a part of other cell lineage developmental programs and its functional significance in the context of cell differentiation remain to be elucidated. To address this question, I investigated whether L1 retrotransposition was occurring during in vitro osteogenic and adipogenic differentiation of bone marrow derived human mesenchymal stem cells (hMSCs). Interestingly, clinical observations have revealed loss of bone density in HIV-infected individuals treated with nucleoside analogs that inhibit HIV retrotranscriptase, as well as the endogenous one encoded by L1s. This observation made us to hypothesize that transposable elements played a positive role in post-natal bone homeostasis. I found that while adipogenesis is “retrotransposition free”, osteogenic differentiation is a “retrotransposition-prone” process and its inhibition blocks its genetic program. Indeed, L1 DNA content does not change during adipogenic differentiation and that of retrotranscriptase does not have any effect on the acquisition of a terminally differentiated phenotype. In contrast, soon after MSCs commitment into pre-osteoblasts, L1 retrotransposable elements increase their expression and actively transpose

  8. CHD1 regulates cell fate determination by activation of differentiation-induced genes.

    Science.gov (United States)

    Baumgart, Simon J; Najafova, Zeynab; Hossan, Tareq; Xie, Wanhua; Nagarajan, Sankari; Kari, Vijayalakshmi; Ditzel, Nicholas; Kassem, Moustapha; Johnsen, Steven A

    2017-07-27

    The coordinated temporal and spatial activation of gene expression is essential for proper stem cell differentiation. The Chromodomain Helicase DNA-binding protein 1 (CHD1) is a chromatin remodeler closely associated with transcription and nucleosome turnover downstream of the transcriptional start site (TSS). In this study, we show that CHD1 is required for the induction of osteoblast-specific gene expression, extracellular-matrix mineralization and ectopic bone formation in vivo. Genome-wide occupancy analyses revealed increased CHD1 occupancy around the TSS of differentiation-activated genes. Furthermore, we observed that CHD1-dependent genes are mainly induced during osteoblast differentiation and are characterized by higher levels of CHD1 occupancy around the TSS. Interestingly, CHD1 depletion resulted in increased pausing of RNA Polymerase II (RNAPII) and decreased H2A.Z occupancy close to the TSS, but not at enhancer regions. These findings reveal a novel role for CHD1 during osteoblast differentiation and provide further insights into the intricacies of epigenetic regulatory mechanisms controlling cell fate determination. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  9. An augmented reality C-arm for intraoperative assessment of the mechanical axis: a preclinical study.

    Science.gov (United States)

    Fallavollita, Pascal; Brand, Alexander; Wang, Lejing; Euler, Ekkehard; Thaller, Peter; Navab, Nassir; Weidert, Simon

    2016-11-01

    Determination of lower limb alignment is a prerequisite for successful orthopedic surgical treatment. Traditional methods include the electrocautery cord, alignment rod, or axis board which rely solely on C-arm fluoroscopy navigation and are radiation intensive. To assess a new augmented reality technology in determining lower limb alignment. A camera-augmented mobile C-arm (CamC) technology was used to create a panorama image consisting of hip, knee, and ankle X-rays. Twenty-five human cadaver legs were used for validation with random varus or valgus deformations. Five clinicians performed experiments that consisted in achieving acceptable mechanical axis deviation. The applicability of the CamC technology was assessed with direct comparison to ground-truth CT. A t test, Pearson's correlation, and ANOVA were used to determine statistical significance. The value of Pearson's correlation coefficient R was 0.979 which demonstrates a strong positive correlation between the CamC and ground-truth CT data. The analysis of variance produced a p value equal to 0.911 signifying that clinician expertise differences were not significant with regard to the type of system used to assess mechanical axis deviation. All described measurements demonstrated valid measurement of lower limb alignment. With minimal effort, clinicians required only 3 X-ray image acquisitions using the augmented reality technology to achieve reliable mechanical axis deviation.

  10. PRDM14 is expressed in germ cell tumors with constitutive overexpression altering human germline differentiation and proliferation

    Directory of Open Access Journals (Sweden)

    Joanna J. Gell

    2018-03-01

    Full Text Available Germ cell tumors (GCTs are a heterogeneous group of tumors occurring in gonadal and extragonadal locations. GCTs are hypothesized to arise from primordial germ cells (PGCs, which fail to differentiate. One recently identified susceptibility loci for human GCT is PR (PRDI-BF1 and RIZ domain proteins 14 (PRDM14. PRDM14 is expressed in early primate PGCs and is repressed as PGCs differentiate. To examine PRDM14 in human GCTs we profiled human GCT cell lines and patient samples and discovered that PRDM14 is expressed in embryonal carcinoma cell lines, embryonal carcinomas, seminomas, intracranial germinomas and yolk sac tumors, but is not expressed in teratomas. To model constitutive overexpression in human PGCs, we generated PGC-like cells (PGCLCs from human pluripotent stem cells (PSCs and discovered that elevated expression of PRDM14 does not block early PGC formation. Instead, we show that elevated PRDM14 in PGCLCs causes proliferation and differentiation defects in the germline. Keywords: Germ cell tumor, PRDM14, Cell differentiation, Primordial germ cell, Proliferation

  11. HIF-1α as a Regulator of BMP2-Induced Chondrogenic Differentiation, Osteogenic Differentiation, and Endochondral Ossification in Stem Cells

    Directory of Open Access Journals (Sweden)

    Nian Zhou

    2015-04-01

    Full Text Available Background/Aims: Joint cartilage defects are difficult to treat due to the limited self-repair capacities of cartilage. Cartilage tissue engineering based on stem cells and gene enhancement is a potential alternative for cartilage repair. Bone morphogenetic protein 2 (BMP2 has been shown to induce chondrogenic differentiation in mesenchymal stem cells (MSCs; however, maintaining the phenotypes of MSCs during cartilage repair since differentiation occurs along the endochondral ossification pathway. In this study, hypoxia inducible factor, or (HIF-1α, was determined to be a regulator of BMP2-induced chondrogenic differentiation, osteogenic differentiation, and endochondral bone formation. Methods: BMP2 was used to induce chondrogenic and osteogenic differentiation in stem cells and fetal limb development. After HIF-1α was added to the inducing system, any changes in the differentiation markers were assessed. Results: HIF-1α was found to potentiate BMP2-induced Sox9 and the expression of chondrogenesis by downstream markers, and inhibit Runx2 and the expression of osteogenesis by downstream markers in vitro. In subcutaneous stem cell implantation studies, HIF-1α was shown to potentiate BMP2-induced cartilage formation and inhibit endochondral ossification during ectopic bone/cartilage formation. In the fetal limb culture, HIF-1α and BMP2 synergistically promoted the expansion of the proliferating chondrocyte zone and inhibited chondrocyte hypertrophy and endochondral ossification. Conclusion: The results of this study indicated that, when combined with BMP2, HIF-1α induced MSC differentiation could become a new method of maintaining cartilage phenotypes during cartilage tissue engineering.

  12. α-Mangostin Improves Glucose Uptake and Inhibits Adipocytes Differentiation in 3T3-L1 Cells via PPARγ, GLUT4, and Leptin Expressions

    Directory of Open Access Journals (Sweden)

    Muhammad Taher

    2015-01-01

    Full Text Available Obesity has been often associated with the occurrence of cardiovascular diseases, type 2 diabetes, and cancer. The development of obesity is also accompanied by significant differentiation of preadipocytes into adipocytes. In this study, we investigated the activity of α-mangostin, a major xanthone component isolated from the stem bark of G. malaccensis, on glucose uptake and adipocyte differentiation of 3T3-L1 cells focusing on PPARγ, GLUT4, and leptin expressions. α-Mangostin was found to inhibit cytoplasmic lipid accumulation and adipogenic differentiation. Cells treated with 50 μM of α-mangostin reduced intracellular fat accumulation dose-dependently up to 44.4% relative to MDI-treated cells. Analyses of 2-deoxy-D-[3H] glucose uptake activity showed that α-mangostin significantly improved the glucose uptake (P<0.05 with highest activity found at 25 μM. In addition, α-mangostin increased the amount of free fatty acids (FFA released. The highest glycerol release level was observed at 50 μM of α-mangostin. qRT-PCR analysis showed reduced lipid accumulation via inhibition of PPARγ gene expression. Induction of glucose uptake and free fatty acid release by α-mangostin were accompanied by increasing mRNA expression of GLUT4 and leptin. These evidences propose that α-mangostin might be possible candidate for the effective management of obesity in future.

  13. YB1/p32, a nuclear Y-box binding protein 1, is a novel regulator of myoblast differentiation that interacts with Msx1 homeoprotein

    Energy Technology Data Exchange (ETDEWEB)

    Song, Young Joon [Department of Biological Sciences, College of Natural Science, Inha University, 253 Yonghyun-dong, Nam-Gu, Incheon, Korea, 402-751 (Korea, Republic of); Lee, Hansol, E-mail: hlee@inha.ac.kr [Department of Biological Sciences, College of Natural Science, Inha University, 253 Yonghyun-dong, Nam-Gu, Incheon, Korea, 402-751 (Korea, Republic of)

    2010-02-15

    Precisely controlled cellular differentiation is essential for the proper development of vertebrate embryo and deregulated differentiation is a major cause of many human congenital diseases as well as cancer. Msx1 is a member of the homeoprotein family implicated in these processes, which inhibits the differentiation of skeletal muscle and other cell types, presumably by regulating transcription of target genes through interaction with other cellular factors. We presently show that YB1/p32, a nuclear Y-box binding protein 1, interacts with Msx1 homeoprotein and functions as a regulator of C2C12 myoblast differentiation. We demonstrate that YB1/p32 functionally interacts with Msx1 through its N-terminal region and colocalizes with Msx1 at the nuclear periphery. Moreover, we find that YB1/p32 is competent for inhibition of C2C12 myoblast differentiation, which is correlated with its activity as a negative regulator of MyoD gene expression and binding to the MyoD core enhancer region (CER). Furthermore, YB1/p32 cooperates with Msx1 in transcriptional repression and knocking down the expression of endogenous YB1 attenuates the effects of Msx1. Taken together, our study has uncovered a new function of YB1/p32, a regulator of skeletal muscle differentiation.

  14. YB1/p32, a nuclear Y-box binding protein 1, is a novel regulator of myoblast differentiation that interacts with Msx1 homeoprotein

    International Nuclear Information System (INIS)

    Song, Young Joon; Lee, Hansol

    2010-01-01

    Precisely controlled cellular differentiation is essential for the proper development of vertebrate embryo and deregulated differentiation is a major cause of many human congenital diseases as well as cancer. Msx1 is a member of the homeoprotein family implicated in these processes, which inhibits the differentiation of skeletal muscle and other cell types, presumably by regulating transcription of target genes through interaction with other cellular factors. We presently show that YB1/p32, a nuclear Y-box binding protein 1, interacts with Msx1 homeoprotein and functions as a regulator of C2C12 myoblast differentiation. We demonstrate that YB1/p32 functionally interacts with Msx1 through its N-terminal region and colocalizes with Msx1 at the nuclear periphery. Moreover, we find that YB1/p32 is competent for inhibition of C2C12 myoblast differentiation, which is correlated with its activity as a negative regulator of MyoD gene expression and binding to the MyoD core enhancer region (CER). Furthermore, YB1/p32 cooperates with Msx1 in transcriptional repression and knocking down the expression of endogenous YB1 attenuates the effects of Msx1. Taken together, our study has uncovered a new function of YB1/p32, a regulator of skeletal muscle differentiation.

  15. Differential expression analysis of genic male sterility by cDNA-AFLP in maize

    International Nuclear Information System (INIS)

    Zhang Linbi; Rong Tingzhao; Pan Guangtang; Cao Moju

    2009-01-01

    The differential expression of male sterility induced by space flight with male fertility was studied using cDNA-AFLP technology. Total RNA was isolated from anther of male sterility and male fertility. Nine differential expression cDNA fragments were obtained with 16 primer combinations. The differential cDNA fragments were eluted, cloned and sequenced. Then half-quantitative RT-PCR was used to stuy the differential expressions of 4 development stages between sterility and fertility. Sequencing analysis shown 2 fragments from male sterility might be novel genes. Four fragments from male fertility were homology as chalcone and stilbene synthases, putative acyl CoA dehydrogenase, putative protein kinases and putative glycine decarboxylase. All these proteins might participate in the energy metabolisms, substance metabolisms or signal pollen development, Z8 took on increasing expression during the middle period of pollen development. These results just met the demand of more energy and more substance during the pollen development. (authors)

  16. CCAR1 is required for Ngn3-mediated endocrine differentiation

    International Nuclear Information System (INIS)

    Lu, Chung-Kuang; Lai, Yi-Chyi; Lin, Yung-Fu; Chen, Hau-Ren; Chiang, Ming-Ko

    2012-01-01

    Highlights: ► We identify CCAR1 to directly interact with Ngn3. ► CCAR1 is co-localized with Ngn3 in the nucleus. ► CCAR1 cooperates with Ngn3 in activating NeuroD expression. ► CCAR1 is required for Ngn3-mediated PANC-1 transdifferentiation. -- Abstract: Neurogenin3 (Ngn3) is a basic helix-loop-helix transcription factor that specifies pancreatic endocrine cell fates during pancreas development. It can also initiate a transdifferentiation program when expressed in pancreatic exocrine and ductal cells. However, how Ngn3 initiates a transcriptional cascade to achieve endocrine differentiation is still poorly understood. Here, we show that cell cycle and apoptosis regulator 1 (CCAR1), which is a transcriptional coactivator for nuclear receptors, also interacts with Ngn3. The association between Ngn3 and CCAR1 was verified by pull-down assays and co-immunoprecipitation analyses. Using gene reporter assays, we found that CCAR1 is essential for Ngn3 to activate the expression of the reporter genes containing the NeuroD promoter. Moreover, down-regulation of endogenous CCAR1 in the PANC-1 pancreatic ductal cell line inhibits the transdifferentiation program initiated by Ngn3. CCAR1 is, therefore, a novel partner of Ngn3 in mediating endocrine differentiation.

  17. Inhibitor of DNA binding 1 (Id1) induces differentiation and proliferation of mouse embryonic carcinoma P19CL6 cells

    International Nuclear Information System (INIS)

    Meng, Qingzhen; Jia, Zhuqing; Wang, Weiping; Li, Binhong; Ma, Kangtao; Zhou, Chunyan

    2011-01-01

    Highlights: → Id1 was upregulated during the cardiac differentiation process of P19CL6 cells. → Id1 upregulated expression of cardiac specific genes Gata4, α-MHC and ISL1. → Id1 promoted proliferation of P19CL6 cells. → Overexpression of Id1 increased activity of TOP flash. → Wnt3a or LiCl treatment promoted Id1 expression in P19CL6 cells. -- Abstract: The inhibitor of DNA binding (Id) family of genes encodes negative regulators of basic helix-loop-helix transcription factors and has been implicated in such diverse cellular processes as differentiation, proliferation, apoptosis and migration. Id knockout mouse embryos display multiple cardiac defects but the specific role of Id1 in cardiac differentiation is unclear. In the present study, we investigated the function of Id1 in DMSO-induced P19CL6 cells, a widely-accepted cell model of cardiac differentiation. We found that Id1 was upregulated during the cardiac differentiation of P19CL6 cells. The expression of cardiac specific marker genes, Gata4, α-MHC and ISL1, was upregulated in P19CL6 cells stably transfected with Id1 (P19CL6-Id1) during cardiac differentiation. The overexpression of Id1 reduced the number of cells in G1 phase and increased the cell population in G2, M and S phases, while knockdown of Id1 increased the number of cells in G1 phase from 48.6 ± 2.51% to 62.2 ± 1.52% at day 0 of cardiac induction, and from 52.5 ± 3.41% to 63.7 ± 1.02% at day 3 after cardiac induction, indicating that Id1 promoted proliferation of P19CL6 cells. Luciferase assays showed that the activity of TOP flash was higher in P19CL6-Id1 cells than wildtype P19CL6 cells, while Id1 expression was also upregulated in P19CL6 cells treated with Wnt3a or LiCl. This indicates that there may be positive feedback between Id1 and Wnt signaling which plays an important role in cardiac differentiation.

  18. Differential Expression of microRNAs in the Ovaries from Letrozole-Induced Rat Model of Polycystic Ovary Syndrome.

    Science.gov (United States)

    Li, Dandan; Li, Chunjin; Xu, Ying; Xu, Duo; Li, Hongjiao; Gao, Liwei; Chen, Shuxiong; Fu, Lulu; Xu, Xin; Liu, Yongzheng; Zhang, Xueying; Zhang, Jingshun; Ming, Hao; Zheng, Lianwen

    2016-04-01

    Polycystic ovary syndrome (PCOS) is a complex and heterogeneous endocrine disorder. To understand the pathogenesis of PCOS, we established rat models of PCOS induced by letrozole and employed deep sequencing to screen the differential expression of microRNAs (miRNAs) in PCOS rats and control rats. We observed vaginal smear and detected ovarian pathological alteration and hormone level changes in PCOS rats. Deep sequencing showed that a total of 129 miRNAs were differentially expressed in the ovaries from letrozole-induced rat model compared with the control, including 49 miRNAs upregulated and 80 miRNAs downregulated. Furthermore, the differential expression of miR-201-5p, miR-34b-5p, miR-141-3p, and miR-200a-3p were confirmed by real-time polymerase chain reaction. Bioinformatic analysis revealed that these four miRNAs were predicted to target a large set of genes with different functions. Pathway analysis supported that the miRNAs regulate oocyte meiosis, mitogen-activated protein kinase (MAPK) signaling, phosphoinositide 3-kinase/Akt (PI3K-Akt) signaling, Rap1 signaling, and Notch signaling. These data indicate that miRNAs are differentially expressed in rat PCOS model and the differentially expressed miRNA are involved in the etiology and pathophysiology of PCOS. Our findings will help identify miRNAs as novel diagnostic markers and therapeutic targets for PCOS.

  19. Differentially expressed proteins on postoperative 3 days healing in rabbit Achilles tendon rupture model after early kinesitherapy.

    Science.gov (United States)

    Jialili, Ainuer; Jielile, Jiasharete; Abudoureyimu, Shajidan; Sabirhazi, Gulnur; Redati, Darebai; Bai, Jing-Ping; Bin, Liang; Duisabai, Sailike; Aishan, Jiangaguli; Kasimu, Haxiaobieke

    2011-04-01

    Surgical repair of Achilles tendon (AT) rupture should immediately be followed by active tendon mobilization. The optimal time as to when the mobilization should begin is important yet controversial. Early kinesitherapy leads to reduced rehabilitation period. However, an insight into the detailed mechanism of this process has not been gained. Proteomic technique can be used to separate and purify the proteins by differential expression profile which is related to the function of different proteins, but research in the area of proteomic analysis of AT 3 days after repair has not been studied so far. Forty-seven New Zealand white rabbits were randomized into 3 groups. Group A (immobilization group, n equal to 16) received postoperative cast immobilization; Group B (early motion group, n equal to 16) received early active motion treatments immediately following the repair of AT rupture from tenotomy. Another 15 rabbits served as control group (Group C). The AT samples were prepared 3 days following the microsurgery. The proteins were separated employing two-dimensional polyacrylamide gel electrophoresis (2D-PAGE). PDQuest software version 8.0 was used to identify differentially expressed proteins, followed by peptide mass fingerprint (PMF) and tandem mass spectrum analysis, using the National Center for Biotechnology Information (NCBI) protein database retrieval and then for bioinformatics analysis. A mean of 446.33, 436.33 and 462.67 protein spots on Achilles tendon samples of 13 rabbits in Group A, 14 rabbits in Group B and 13 rabbits in Group C were successfully detected in the 2D-PAGE. There were 40, 36 and 79 unique proteins in Groups A, B and C respectively. Some differentially expressed proteins were enzyme with the gel, matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). We successfully identified 9 and 11 different proteins in Groups A and B, such as GAPDH, phosphoglycerate kinase 1, pro-alpha-1 type 1 collagen

  20. Differential expression of caveolin-1 in human myometrial and uterine leiomyoma smooth muscle.

    Science.gov (United States)

    Zhou, Yu; Ren, Yuanyuan; Cui, Lihua; Li, Zongjin; Zhu, Yingjun; Lin, Wanjun; Wang, Yuebing

    2014-11-01

    Uterine leiomyomas, the most common neoplasms of the female genital tract, are benign tumors of the uterus arising from the smooth muscle cells (SMCs) of the myometrium with an involvement of estrogen. Caveolin-1 (Cav-1), a major protein component in caveolae membrane lipid rafts, is down-regulated in several estrogen-related cancer cells, and overexpression of Cav-1 inhibits proliferation of cancer cells and vascular SMCs as well. Therefore, we hypothesize that Cav-1 is down-regulated in human uterine leiomyoma. Western blot using tissues from clinical patients showed that Cav-1 expression was significantly lower or undetectable in uterine leiomyoma compared with their matched myometrium (P leiomyomas was also significantly lower as detected by reverse transcription-quantitative polymerase chain reaction analysis (P = .001). To further study the underlying mechanism, we performed primary cell culture, and found that the expression of Cav-1 remained low in cultured leiomyoma SMCs (P = .009). Serum withdrawal did not change Cav-1 expression in leiomyoma SMCs, but increased expression in myometrial SMCs (P = .006). 17-β estradiol inhibited the expression of Cav-1 protein (P = .047) and mRNA (P = .007) in leiomyoma SMCs, whereas it stimulated expression in myometrial SMCs (P = .043). 17-β estradiol, although activating the mitogen-activated protein kinase pathway in both SMCs, did not stimulate their proliferation. We conclude that human uterine leiomyomas in vitro express low levels of Cav-1, which may result from estrogen inhibition. This effect of estrogen may contribute to the pathogenesis of uterine leiomyoma. Further studies in vivo are needed to verify these results. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. CDH1 regulates E2F1 degradation in response to differentiation signals in keratinocytes.

    Science.gov (United States)

    Singh, Randeep K; Dagnino, Lina

    2017-01-17

    The E2F1 transcription factor plays key roles in skin homeostasis. In the epidermis, E2F1 expression is essential for normal proliferation of undifferentiated keratinocytes, regeneration after injury and DNA repair following UV radiation-induced photodamage. Abnormal E2F1 expression promotes nonmelanoma skin carcinoma. In addition, E2F1 must be downregulated for proper keratinocyte differentiation, but the relevant mechanisms involved remain poorly understood. We show that differentiation signals induce a series of post-translational modifications in E2F1 that are jointly required for its downregulation. Analysis of the structural determinants that govern these processes revealed a central role for S403 and T433. In particular, substitution of these two amino acid residues with non-phosphorylatable alanine (E2F1 ST/A) interferes with E2F1 nuclear export, K11- and K48-linked polyubiquitylation and degradation in differentiated keratinocytes. In contrast, replacement of S403 and T433 with phosphomimetic aspartic acid to generate a pseudophosphorylated E2F1 mutant protein (E2F1 ST/D) generates a protein that is regulated in a manner indistinguishable from that of wild type E2F1. Cdh1 is an activating cofactor that interacts with the anaphase-promoting complex/cyclosome (APC/C) ubiquitin E3 ligase, promoting proteasomal degradation of various substrates. We found that Cdh1 associates with E2F1 in keratinocytes. Inhibition or RNAi-mediated silencing of Cdh1 prevents E2F1 degradation in response to differentiation signals. Our results reveal novel regulatory mechanisms that jointly modulate post-translational modifications and downregulation of E2F1, which are necessary for proper epidermal keratinocyte differentiation.

  2. Effect of Wnt-1 inducible signaling pathway protein-2 (WISP-2/CCN5), a downstream protein of Wnt signaling, on adipocyte differentiation

    International Nuclear Information System (INIS)

    Inadera, Hidekuni; Shimomura, Akiko; Tachibana, Shinjiro

    2009-01-01

    Wnt signaling negatively regulates adipocyte differentiation, and ectopic expression of Wnt-1 in 3T3-L1 cells induces several downstream molecules of Wnt signaling, including Wnt-1 inducible signaling pathway protein (WISP)-2. In this study, we examined the role of WISP-2 in the process of adipocyte differentiation using an in vitro cell culture system. In the differentiation of 3T3-L1 cells, WISP-2 expression was observed in growing cells and declined thereafter. In the mitotic clonal expansion phase of adipocyte differentiation, WISP-2 expression was transiently down-regulated concurrently with up-regulation of CCAAT/enhancer-binding protein δ expression. Treatment of 3T3-L1 cells in the differentiation medium with lithium, an activator of Wnt signaling, inhibited the differentiation process with concomitant induction of WISP-2. Treatment of differentiated cells with lithium induced de-differentiation as evidenced by profound reduction of peroxisome proliferator-activator receptor γ expression and concomitant induction of WISP-2. However, de-differentiation of differentiated cells induced by tumor necrosis factor-α did not induce WISP-2 expression. To directly examine the effect of WISP-2 on adipocyte differentiation, 3T3-L1 cells were infected with a retrovirus carrying WISP-2. Although forced expression of WISP-2 inhibited preadipocyte proliferation, it had no effect on adipocyte differentiation. Thus, although WISP-2 is a downstream protein of Wnt signaling, the role of WISP-2 on adipocyte differentiation may be marginal, at least in this in vitro culture model.

  3. Differential marker expression by cultures rich in mesenchymal stem cells

    Science.gov (United States)

    2013-01-01

    Background Mesenchymal stem cells have properties that make them amenable to therapeutic use. However, the acceptance of mesenchymal stem cells in clinical practice requires standardized techniques for their specific isolation. To date, there are no conclusive marker (s) for the exclusive isolation of mesenchymal stem cells. Our aim was to identify markers differentially expressed between mesenchymal stem cell and non-stem cell mesenchymal cell cultures. We compared and contrasted the phenotype of tissue cultures in which mesenchymal stem cells are rich and rare. By initially assessing mesenchymal stem cell differentiation, we established that bone marrow and breast adipose cultures are rich in mesenchymal stem cells while, in our hands, foreskin fibroblast and olfactory tissue cultures contain rare mesenchymal stem cells. In particular, olfactory tissue cells represent non-stem cell mesenchymal cells. Subsequently, the phenotype of the tissue cultures were thoroughly assessed using immuno-fluorescence, flow-cytometry, proteomics, antibody arrays and qPCR. Results Our analysis revealed that all tissue cultures, regardless of differentiation potential, demonstrated remarkably similar phenotypes. Importantly, it was also observed that common mesenchymal stem cell markers, and fibroblast-associated markers, do not discriminate between mesenchymal stem cell and non-stem cell mesenchymal cell cultures. Examination and comparison of the phenotypes of mesenchymal stem cell and non-stem cell mesenchymal cell cultures revealed three differentially expressed markers – CD24, CD108 and CD40. Conclusion We indicate the importance of establishing differential marker expression between mesenchymal stem cells and non-stem cell mesenchymal cells in order to determine stem cell specific markers. PMID:24304471

  4. Role of IGF1R in breast cancer subtypes, stemness, and lineage differentiation

    Directory of Open Access Journals (Sweden)

    Susan M Farabaugh

    2015-04-01

    Full Text Available Insulin-like growth factor (IGF signaling is fundamental for growth and survival. A large body of evidence (laboratory, epidemiological, and clinical implicates the exploitation of this pathway in cancer. Up to 50% of breast tumors express the activated form of the IGF1 receptor (IGF1R. Breast cancers are categorized into subtypes based upon hormone and ERRB2 receptor expression and/or gene expression profiling. Even though IGF1R influences tumorigenic phenotypes and drug resistance across all breast cancer subtypes, it has specific expression and function in each. In some subtypes, IGF1R levels correlate with a favorable prognosis, while in others it is associated with recurrence and poor prognosis, suggesting different actions based upon cellular and molecular contexts. In this review, we examine IGF1R expression and function as it relates to breast cancer subtype and therapy-acquired resistance. Additionally, we discuss the role of IGF1R in stem cell maintenance and lineage differentiation and how these cell fate influences may alter the differentiation potential and cellular composition of breast tumors.

  5. Native human autoantibodies targeting GIPC1 identify differential expression in malignant tumors of the breast and ovary

    International Nuclear Information System (INIS)

    Yavelsky, Victoria; Chan, Gerald; Kalantarov, Gavreel; Trakht, Ilya; Lobel, Leslie; Rohkin, Sarit; Shaco-Levy, Ruthy; Tzikinovsky, Alina; Amir, Tamar; Kohn, Hila; Delgado, Berta; Rabinovich, Alex; Piura, Benjamin

    2008-01-01

    We have been studying the native humoral immune response to cancer and have isolated a library of fully human autoantibodies to a variety of malignancies. We previously described the isolation and characterization of two fully human monoclonal antibodies, 27.F7 and 27.B1, from breast cancer patients that target the protein known as GIPC1, an accessory PDZ-domain binding protein involved in regulation of G-protein signaling. Human monoclonal antibodies, 27.F7 and 27.B1, to GIPC1 demonstrate specific binding to malignant breast cancer tissue with no reactivity with normal breast tissue. The current study employs cELISA, flow cytometry, Western blot analysis as well as immunocytochemistry, and immunohistochemistry. Data is analyzed statistically with the Fisher one-tail and two-tail tests for two independent samples. By screening several other cancer cell lines with 27.F7 and 27.B1 we found consistently strong staining of other human cancer cell lines including SKOV-3 (an ovarian cancer cell line). To further clarify the association of GIPC1 with breast and ovarian cancer we carefully studied 27.F7 and 27.B1 using immunocytochemical and immunohistochemical techniques. An immunohistochemical study of normal ovarian tissue, benign, borderline and malignant ovarian serous tumors, and different types of breast cancer revealed high expression of GIPC1 protein in neoplastic cells. Interestingly, antibodies 27.F7 and 27.B1 demonstrate differential staining of borderline ovarian tumors. Examination of different types of breast cancer demonstrates that the level of GIPC1 expression depends on tumor invasiveness and displays a higher expression than in benign tumors. The present pilot study demonstrates that the GIPC1 protein is overexpressed in ovarian and breast cancer, which may provide an important diagnostic and prognostic marker and will constitute the basis for further study of the role that this protein plays in malignant diseases. In addition, this study suggests that

  6. Differential expression of IGFBPs in Laron syndrome-derived lymphoblastoid cell lines: Potential correlation with reduced cancer incidence.

    Science.gov (United States)

    Somri, Lina; Sarfstein, Rive; Lapkina-Gendler, Lena; Nagaraj, Karthik; Laron, Zvi; Bach, Leon A; Werner, Haim

    2018-04-01

    Laron syndrome (LS), or primary growth hormone (GH) insensitivity, is a growth disorder that results from mutation of the GH-receptor (GHR) gene leading to congenital insulin-like growth factor-1 (IGF-1) deficiency. Recent epidemiological studies have shown that LS patients are protected from cancer development. Genome-wide profiling identified genes and signaling pathways that are differentially represented in LS patients, and that may contribute to cancer protection. The present study was aimed at evaluating the hypothesis that IGF binding proteins (IGFBPs) are differentially expressed in LS, most probably as a result of low circulating levels of IGF-1. Furthermore, we postulated that IGFBPs might be differentially regulated by oxidative stress in this condition and, therefore, may contribute to cancer evasion. Our results show that IGFBP-3, which is predominantly protective, was highly expressed in LS-derived lymphoblastoid cells in comparison to control cells from the same ethnic group. On the other hand, levels of IGFBP-2, -4, -5, and -6 were diminished in LS patients, as demonstrated by RQ-PCR, Western immunoblots and confocal immunofluorescence. In addition, our data provide evidence for a pattern of IGFBP response to H 2 O 2 treatment that might be associated with distinct expression of apoptosis markers (BCL2, pro-caspase-9, pro-caspase-3) in LS. In summary, differential expression of specific IGFBPs in LS might be correlated with cellular mechanisms underlying cancer protection and, probably, additional phenotypes due to congenital IGF-1 deficiency. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Fisetin induces Sirt1 expression while inhibiting early adipogenesis in 3T3-L1 cells.

    Science.gov (United States)

    Kim, Sang Chon; Kim, Yoo Hoon; Son, Sung Wook; Moon, Eun-Yi; Pyo, Suhkneung; Um, Sung Hee

    2015-11-27

    Fisetin (3,7,3',4'-tetrahydroxyflavone) is a naturally found flavonol in many fruits and vegetables and is known to have anti-aging, anti-cancer and anti-viral effects. However, the effects of fisetin on early adipocyte differentiation and the epigenetic regulator controlling adipogenic transcription factors remain unclear. Here, we show that fisetin inhibits lipid accumulation and suppresses the expression of PPARγ in 3T3-L1 cells. Fisetin suppressed early stages of preadipocyte differentiation, and induced expression of Sirt1. Depletion of Sirt1 abolished the inhibitory effects of fisetin on intracellular lipid accumulation and on PPARγ expression. Mechanistically, fisetin facilitated Sirt1-mediated deacetylation of PPARγ and FoxO1, and enhanced the association of Sirt1 with the PPARγ promoter, leading to suppression of PPARγ transcriptional activity, thereby repressing adipogenesis. Lowering Sirt1 levels reversed the effects of fisetin on deacetylation of PPARγ and increased PPARγ transactivation. Collectively, our results suggest the effects of fisetin in increasing Sirt1 expression and in epigenetic control of early adipogenesis. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Aryl hydrocarbon receptor (AhR-mediated perturbations in gene expression during early stages of CD4+ T-cell differentiation

    Directory of Open Access Journals (Sweden)

    Diana eRohlman

    2012-08-01

    Full Text Available Activation of the aryl hydrocarbon receptor (AhR by its prototypic ligand, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD, mediates potent suppression of T-cell dependent immune responses. The suppressive effects of TCDD occur early during CD4+ T-cell differentiation in the absence of effects on proliferation and have recently been associated with the induction of AhR-dependent regulatory T-cells (Treg. Since AhR functions as a ligand-activated transcription factor, changes in gene expression induced by TCDD during the early stages of CD4+ T-cell differentiation are likely to reflect fundamental mechanisms of AhR action. A custom panel of genes associated with T-cell differentiation was used to query changes in gene expression induced by exposure to 1 nM TCDD. CD4+ T-cells from AhR+/+ and AhR-/- mice were cultured with cytokines known to polarize the differentiation of T-cells to various effector lineages. Treatment with TCDD induced expression of Cyp1a1, Cyp1b1 and Ahrr in CD4+ T-cells from AhR+/+ mice under all culture conditions, validating the presence and activation of AhR in these cells. The highest levels of AhR activation occurred under Th17 conditions at 24 hours and Tr1 conditions at 48 hours. Unexpectedly, expression levels of most genes associated with early T-cell differentiation were unaltered by AhR activation, including lineage-specific genes that drive CD4+ T-cell polarization. The major exception was AhR-dependent up-regulation of Il22 that was seen under all culture conditions. Independent of TCDD, AhR down-regulated the expression of Il17a and Rorc based on increased expression of these genes in AhR-deficient cells across culture conditions. These findings are consistent with a role for AhR in down-regulation of inflammatory immune responses and implicate IL-22 as a potential contributor to the immunosuppressive effects of TCDD.

  9. Network-based differential gene expression analysis suggests cell cycle related genes regulated by E2F1 underlie the molecular difference between smoker and non-smoker lung adenocarcinoma

    Science.gov (United States)

    2013-01-01

    Background Differential gene expression (DGE) analysis is commonly used to reveal the deregulated molecular mechanisms of complex diseases. However, traditional DGE analysis (e.g., the t test or the rank sum test) tests each gene independently without considering interactions between them. Top-ranked differentially regulated genes prioritized by the analysis may not directly relate to the coherent molecular changes underlying complex diseases. Joint analyses of co-expression and DGE have been applied to reveal the deregulated molecular modules underlying complex diseases. Most of these methods consist of separate steps: first to identify gene-gene relationships under the studied phenotype then to integrate them with gene expression changes for prioritizing signature genes, or vice versa. It is warrant a method that can simultaneously consider gene-gene co-expression strength and corresponding expression level changes so that both types of information can be leveraged optimally. Results In this paper, we develop a gene module based method for differential gene expression analysis, named network-based differential gene expression (nDGE) analysis, a one-step integrative process for prioritizing deregulated genes and grouping them into gene modules. We demonstrate that nDGE outperforms existing methods in prioritizing deregulated genes and discovering deregulated gene modules using simulated data sets. When tested on a series of smoker and non-smoker lung adenocarcinoma data sets, we show that top differentially regulated genes identified by the rank sum test in different sets are not consistent while top ranked genes defined by nDGE in different data sets significantly overlap. nDGE results suggest that a differentially regulated gene module, which is enriched for cell cycle related genes and E2F1 targeted genes, plays a role in the molecular differences between smoker and non-smoker lung adenocarcinoma. Conclusions In this paper, we develop nDGE to prioritize

  10. Inhibitory receptor expression depends more dominantly on differentiation and activation than exhaustion of human CD8 T cells

    Directory of Open Access Journals (Sweden)

    Amandine eLegat

    2013-12-01

    Full Text Available Under conditions of chronic antigen stimulation, such as persistent viral infection and cancer, CD8 T cells may diminish effector function, which has been termed exhaustion. Expression of inhibitory Receptors (iRs is often regarded as a hallmark of exhaustion. Here we studied the expression of eight different iRs by CD8 T cells of healthy humans, including CTLA-4, PD1, TIM3, LAG3, 2B4, BTLA, CD160 and KLRG-1. We show that many iRs are expressed upon activation, and with progressive differentiation to effector cells, even in absence of long-term (chronic antigenic stimulation. In particular, we evaluated the direct relationship between iR expression and functionality in CD8 T cells by using anti-CD3 and anti-CD28 stimulation to stimulate all cells and differentiation subsets. We observed a striking upregulation of certain iRs following the cytokine production wave, in agreement with the notion that iRs function as a negative feedback mechanism. Intriguingly, we found no major impairment of cytokine production in cells positive for a broad array of iRs, as previously shown for PD1 in healthy donors. Rather, the expression of the various iRs strongly correlated with T cell differentiation or activation states, or both. Furthermore, we analyzed CD8 T cells from lymph nodes (LNs of melanoma patients. Interestingly, we found altered iR expression and lower cytokine production by T cells from metastatic LNs, but also from non-metastatic LNs, likely due to mechanisms which are not related to exhaustion. Together, our data shows that expression of iRs per se does not mark dysfunctional cells, but is rather tightly linked to activation and differentiation. This study highlights the importance of considering the status of activation and differentiation for the study and the clinical monitoring of CD8 T cells.

  11. Protein tyrosine phosphatase 1B (PTP1B) is required for cardiac lineage differentiation of mouse embryonic stem cells.

    Science.gov (United States)

    Eshkiki, Zahra Shokati; Ghahremani, Mohammad Hossein; Shabani, Parisa; Firuzjaee, Sattar Gorgani; Sadeghi, Asie; Ghanbarian, Hossein; Meshkani, Reza

    2017-01-01

    Protein tyrosine phosphatase 1B (PTP1B) has been shown to regulate multiple cellular events such as differentiation, cell growth, and proliferation; however, the role of PTP1B in differentiation of embryonic stem (ES) cells into cardiomyocytes remains unexplored. In the present study, we investigated the effects of PTP1B inhibition on differentiation of ES cells into cardiomyocytes. PTP1B mRNA and protein levels were increased during the differentiation of ES cells into cardiomyocytes. Accordingly, a stable ES cell line expressing PTP1B shRNA was established. In vitro, the number and size of spontaneously beating embryoid bodies were significantly decreased in PTP1B-knockdown cells, compared with the control cells. Decreased expression of cardiac-specific markers Nkx2-5, MHC-α, cTnT, and CX43, as assessed by real-time PCR analysis, was further confirmed by immunocytochemistry of the markers. The results also showed that PTP1B inhibition induced apoptosis in both differentiated and undifferentiated ES cells, as presented by increasing the level of cleaved caspase-3, cytochrome C, and cleaved PARP. Further analyses revealed that PTP1B inhibition did not change proliferation and pluripotency of undifferentiated ES cells. Taken together, the data presented here suggest that PTP1B is essential for proper differentiation of ES cells into cardiomyocytes.

  12. Sirtuin1 promotes osteogenic differentiation through downregulation of peroxisome proliferator-activated receptor γ in MC3T3-E1 cells

    International Nuclear Information System (INIS)

    Qu, Bo; Ma, Yuan; Yan, Ming; Gong, Kai; Liang, Feng; Deng, Shaolin; Jiang, Kai; Ma, Zehui; Pan, Xianming

    2016-01-01

    Osteoporosis is a skeletal disorder characterized by bone loss, resulting in architectural deterioration of the skeleton, decreased bone strength and an increased risk of fragility fractures. Strengthening osteogenesis is an effective way to relieve osteoporosis. Sirtuin1 (Sirt1) is a nicotinamide adenine dinucleotide (NAD"+)-dependent deacetylase, which is reported to be involved in improving osteogenesis. Sirt1 targets peroxisome proliferator-activated receptor γ (PPARγ) in the regulation of adipose tissues; however, the molecular mechanism of Sirt1 in osteogenic differentiation is still unknown. PPARγ tends to induce more adipogenic differentiation rather than osteogenic differentiation. Hence, we hypothesized that Sirt1 facilitates osteogenic differentiation through downregulation of PPARγ signaling. Mouse pre-osteoblastic MC3T3-E1 cells were cultured under osteogenic medium. Sirt1 was overexpressed through plasmid transfection. The results showed that high expression of Sirt1 was associated with increased osteogenic differentiation, as indicated by quantitative PCR and Western blot analysis of osteogenic markers, and Von Kossa staining. Sirt1 overexpression also directly and negatively regulated the expression of PPARγ and its downstream molecules. Use of the PPARγ agonist Rosiglitazone, reversed the effects of Sirt1 on osteogenic differentiation. Using constructed luciferase plasmids, we demonstrated a role of Sirt1 in inhibiting PPARγ–induced activity and expression of adipocyte–specific genes, including acetyl-coenzyme A carboxylase (Acc) and fatty acid binding protein 4 (Fabp4). The interaction between Sirt1 and PPARγ was further confirmed using co-immunoprecipitation analysis. Together, these results reveal a novel mechanism for Sirt1 in osteogenic differentiation through downregulation of PPARγ activity. These findings suggest that the Sirt1–PPARγ pathway may represent a potential target for enhancement of osteogenesis and treatment of

  13. Sirtuin1 promotes osteogenic differentiation through downregulation of peroxisome proliferator-activated receptor γ in MC3T3-E1 cells

    Energy Technology Data Exchange (ETDEWEB)

    Qu, Bo [Department of Orthopaedics, Chengdu Military General Hospital, Chengdu 610083 (China); Ma, Yuan [Department of Neurosurgery, Chengdu Military General Hospital, Chengdu 610083 (China); Yan, Ming [Department of Orthopaedics, Xijing Hospital of The Fourth Military Medical University, Xi’an 710032 (China); Gong, Kai; Liang, Feng; Deng, Shaolin; Jiang, Kai; Ma, Zehui [Department of Orthopaedics, Chengdu Military General Hospital, Chengdu 610083 (China); Pan, Xianming, E-mail: xianmingpanxj@163.com [Department of Orthopaedics, Chengdu Military General Hospital, Chengdu 610083 (China)

    2016-09-09

    Osteoporosis is a skeletal disorder characterized by bone loss, resulting in architectural deterioration of the skeleton, decreased bone strength and an increased risk of fragility fractures. Strengthening osteogenesis is an effective way to relieve osteoporosis. Sirtuin1 (Sirt1) is a nicotinamide adenine dinucleotide (NAD{sup +})-dependent deacetylase, which is reported to be involved in improving osteogenesis. Sirt1 targets peroxisome proliferator-activated receptor γ (PPARγ) in the regulation of adipose tissues; however, the molecular mechanism of Sirt1 in osteogenic differentiation is still unknown. PPARγ tends to induce more adipogenic differentiation rather than osteogenic differentiation. Hence, we hypothesized that Sirt1 facilitates osteogenic differentiation through downregulation of PPARγ signaling. Mouse pre-osteoblastic MC3T3-E1 cells were cultured under osteogenic medium. Sirt1 was overexpressed through plasmid transfection. The results showed that high expression of Sirt1 was associated with increased osteogenic differentiation, as indicated by quantitative PCR and Western blot analysis of osteogenic markers, and Von Kossa staining. Sirt1 overexpression also directly and negatively regulated the expression of PPARγ and its downstream molecules. Use of the PPARγ agonist Rosiglitazone, reversed the effects of Sirt1 on osteogenic differentiation. Using constructed luciferase plasmids, we demonstrated a role of Sirt1 in inhibiting PPARγ–induced activity and expression of adipocyte–specific genes, including acetyl-coenzyme A carboxylase (Acc) and fatty acid binding protein 4 (Fabp4). The interaction between Sirt1 and PPARγ was further confirmed using co-immunoprecipitation analysis. Together, these results reveal a novel mechanism for Sirt1 in osteogenic differentiation through downregulation of PPARγ activity. These findings suggest that the Sirt1–PPARγ pathway may represent a potential target for enhancement of osteogenesis and treatment

  14. The splicing regulator PTBP1 controls the activity of the transcription factor Pbx1 during neuronal differentiation.

    Science.gov (United States)

    Linares, Anthony J; Lin, Chia-Ho; Damianov, Andrey; Adams, Katrina L; Novitch, Bennett G; Black, Douglas L

    2015-12-24

    The RNA-binding proteins PTBP1 and PTBP2 control programs of alternative splicing during neuronal development. PTBP2 was found to maintain embryonic splicing patterns of many synaptic and cytoskeletal proteins during differentiation of neuronal progenitor cells (NPCs) into early neurons. However, the role of the earlier PTBP1 program in embryonic stem cells (ESCs) and NPCs was not clear. We show that PTBP1 controls a program of neuronal gene expression that includes the transcription factor Pbx1. We identify exons specifically regulated by PTBP1 and not PTBP2 as mouse ESCs differentiate into NPCs. We find that PTBP1 represses Pbx1 exon 7 and the expression of the neuronal Pbx1a isoform in ESCs. Using CRISPR-Cas9 to delete regulatory elements for exon 7, we induce Pbx1a expression in ESCs, finding that this activates transcription of neuronal genes. Thus, PTBP1 controls the activity of Pbx1 to suppress its neuronal transcriptional program prior to induction of NPC development.

  15. Differentially expressed microRNAs in diapausing versus HCl-treated Bombyx embryos.

    Directory of Open Access Journals (Sweden)

    Wentao Fan

    Full Text Available Differentially expressed microRNAs were detected to explore the molecular mechanisms of diapause termination. The total small RNA of diapause-destined silkworm eggs and HCl-treated eggs was extracted and then sequenced using HiSeq high-throughput method. 44 novel miRNAs were discovered. Compared to those in the diapause-destined eggs, 61 miRNAs showed significant changes in the acid-treated eggs, with 23 being up-regulated and 38 being down-regulated. The potential target genes of differentially expressed miRNAs were predicted by miRanda. Gene Ontology and KEGG pathway enrichment analysis of these potential target genes revealed that they were mainly located within cells and organelles, involved in cellular and metabolic processes, and participated in protein production, processing and transportation. Two differentially expressed genes, Bombyx mori SDH and Bmo-miR-2761-3p, were further analyzed with qRT-PCR. BmSDH was significantly up-regulated in the HCl-treated eggs, while Bmo-miR-2761-3p was down-regulated. These results suggested that these two genes were well coordinated in silkworm eggs. Dual luciferase reporter assay demonstrated that Bmo-miR-2761-3p inhibited the expression of BmSDH.

  16. Wnt/β-catenin signaling changes C2C12 myoblast proliferation and differentiation by inducing Id3 expression

    International Nuclear Information System (INIS)

    Zhang, Long; Shi, Songting; Zhang, Juan; Zhou, Fangfang; Dijke, Peter ten

    2012-01-01

    Highlights: ► Expression of Id3 but not Id1 is induced by Wnt3a stimulation in C2C12 cells. ► Wnt3a induces Id3 expression via canonical Wnt/β-catenin pathway. ► Wnt3a-induced Id3 expression does not depend on BMP signaling activation. ► Induction of Id3 expression is critical determinant in Wnt3a-induced cell proliferation and differentiation. -- Abstract: Canonical Wnt signaling plays important roles in regulating cell proliferation and differentiation. In this study, we report that inhibitor of differentiation (Id)3 is a Wnt-inducible gene in mouse C2C12 myoblasts. Wnt3a induced Id3 expression in a β-catenin-dependent manner. Bone morphogenetic protein (BMP) also potently induced Id3 expression. However, Wnt-induced Id3 expression occurred independent of the BMP/Smad pathway. Functional studies showed that Id3 depletion in C2C12 cells impaired Wnt3a-induced cell proliferation and alkaline phosphatase activity, an early marker of osteoblast cells. Id3 depletion elevated myogenin induction during myogenic differentiation and partially impaired Wnt3a suppressed myogenin expression in C2C12 cells. These results suggest that Id3 is an important Wnt/β-catenin induced gene in myoblast cell fate determination.

  17. Differential Regulation of Gene Expression of Alveolar Epithelial Cell Markers in Human Lung Adenocarcinoma-Derived A549 Clones

    Directory of Open Access Journals (Sweden)

    Hiroshi Kondo

    2015-01-01

    Full Text Available Stem cell therapy appears to be promising for restoring damaged or irreparable lung tissue. However, establishing a simple and reproducible protocol for preparing lung progenitor populations is difficult because the molecular basis for alveolar epithelial cell differentiation is not fully understood. We investigated an in vitro system to analyze the regulatory mechanisms of alveolus-specific gene expression using a human alveolar epithelial type II (ATII cell line, A549. After cloning A549 subpopulations, each clone was classified into five groups according to cell morphology and marker gene expression. Two clones (B7 and H12 were further analyzed. Under serum-free culture conditions, surfactant protein C (SPC, an ATII marker, was upregulated in both H12 and B7. Aquaporin 5 (AQP5, an ATI marker, was upregulated in H12 and significantly induced in B7. When the RAS/MAPK pathway was inhibited, SPC and thyroid transcription factor-1 (TTF-1 expression levels were enhanced. After treatment with dexamethasone (DEX, 8-bromoadenosine 3′5′-cyclic monophosphate (8-Br-cAMP, 3-isobutyl-1-methylxanthine (IBMX, and keratinocyte growth factor (KGF, surfactant protein B and TTF-1 expression levels were enhanced. We found that A549-derived clones have plasticity in gene expression of alveolar epithelial differentiation markers and could be useful in studying ATII maintenance and differentiation.

  18. A novel Atoh1 "self-terminating" mouse model reveals the necessity of proper Atoh1 level and duration for hair cell differentiation and viability.

    Directory of Open Access Journals (Sweden)

    Ning Pan

    Full Text Available Atonal homolog1 (Atoh1 is a bHLH transcription factor essential for inner ear hair cell differentiation. Targeted expression of Atoh1 at various stages in development can result in hair cell differentiation in the ear. However, the level and duration of Atoh1 expression required for proper hair cell differentiation and maintenance remain unknown. We generated an Atoh1 conditional knockout (CKO mouse line using Tg(Atoh1-cre, in which the cre expression is driven by an Atoh1 enhancer element that is regulated by Atoh1 protein to "self-terminate" its expression. The mutant mice show transient, limited expression of Atoh1 in all hair cells in the ear. In the organ of Corti, reduction and delayed deletion of Atoh1 result in progressive loss of almost all the inner hair cells and the majority of the outer hair cells within three weeks after birth. The remaining cells express hair cell marker Myo7a and attract nerve fibers, but do not differentiate normal stereocilia bundles. Some Myo7a-positive cells persist in the cochlea into adult stages in the position of outer hair cells, flanked by a single row of pillar cells and two to three rows of disorganized Deiters cells. Gene expression analyses of Atoh1, Barhl1 and Pou4f3, genes required for survival and maturation of hair cells, reveal earlier and higher expression levels in the inner compared to the outer hair cells. Our data show that Atoh1 is crucial for hair cell mechanotransduction development, viability, and maintenance and also suggest that Atoh1 expression level and duration may play a role in inner vs. outer hair cell development. These genetically engineered Atoh1 CKO mice provide a novel model for establishing critical conditions needed to regenerate viable and functional hair cells with Atoh1 therapy.

  19. Anagrelide represses GATA-1 and FOG-1 expression without interfering with thrombopoietin receptor signal transduction.

    Science.gov (United States)

    Ahluwalia, M; Donovan, H; Singh, N; Butcher, L; Erusalimsky, J D

    2010-10-01

     Anagrelide is a selective inhibitor of megakaryocytopoiesis used to treat thrombocytosis in patients with chronic myeloproliferative disorders. The effectiveness of anagrelide in lowering platelet counts is firmly established, but its primary mechanism of action remains elusive.  Here, we have evaluated whether anagrelide interferes with the major signal transduction cascades stimulated by thrombopoietin in the hematopoietic cell line UT-7/mpl and in cultured CD34(+) -derived human hematopoietic cells. In addition, we have used quantitative mRNA expression analysis to assess whether the drug affects the levels of known transcription factors that control megakaryocytopoiesis.  In UT-7/mpl cells, anagrelide (1μm) did not interfere with MPL-mediated signaling as monitored by its lack of effect on JAK2 phosphorylation. Similarly, the drug did not affect the phosphorylation of STAT3, ERK1/2 or AKT in either UT-7/mpl cells or primary hematopoietic cells. In contrast, during thrombopoietin-induced megakaryocytic differentiation of normal hematopoietic cultures, anagrelide (0.3μm) reduced the rise in the mRNA levels of the transcription factors GATA-1 and FOG-1 as well as those of the downstream genes encoding FLI-1, NF-E2, glycoprotein IIb and MPL. However, the drug showed no effect on GATA-2 or RUNX-1 mRNA expression. Furthermore, anagrelide did not diminish the rise in GATA-1 and FOG-1 expression during erythropoietin-stimulated erythroid differentiation. Cilostamide, an exclusive and equipotent phosphodiesterase III (PDEIII) inhibitor, did not alter the expression of these genes.  Anagrelide suppresses megakaryocytopoiesis by reducing the expression levels of GATA-1 and FOG-1 via a PDEIII-independent mechanism that is differentiation context-specific and does not involve inhibition of MPL-mediated early signal transduction events. © 2010 International Society on Thrombosis and Haemostasis.

  20. Loss of the Podocyte-Expressed Transcription Factor Tcf21/Pod1 Results in Podocyte Differentiation Defects and FSGS

    DEFF Research Database (Denmark)

    Maezawa, Yoshiro; Onay, Tuncer; Scott, Rizaldy P

    2014-01-01

    Podocytes are terminally differentiated cells with an elaborate cytoskeleton and are critical components of the glomerular barrier. We identified a bHLH transcription factor, Tcf21, that is highly expressed in developing and mature podocytes. Because conventional Tcf21 knockout mice die in the pe...

  1. Association of breast cancer risk with genetic variants showing differential allelic expression

    DEFF Research Database (Denmark)

    Hamdi, Yosr; Soucy, Penny; Adoue, Véronique

    2016-01-01

    There are significant inter-individual differences in the levels of gene expression. Through modulation of gene expression, cis-acting variants represent an important source of phenotypic variation. Consequently, cis-regulatory SNPs associated with differential allelic expression are functional...

  2. Differential expression levels of collagen 1A2, tissue inhibitor of metalloproteinase 4, and cathepsin B in intracranial aneurysms.

    Science.gov (United States)

    Babu, R Arun; Paul, Pradip; Purushottam, Meera; Srinivas, Dwarakanath; Somanna, Sampath; Jain, Sanjeev

    2016-01-01

    Intracranial aneurysms (IAs) express a variety of differentially expressed genes when compared to the normal artery. The aim of this study was to evaluate the expression level of a few genes in the aneurysm wall and to correlate them with various clinicoradiological factors. The mRNA level of collagen 1A2 (COL1A2), tissue inhibitor of metalloproteinase 4 (TIMP4), and cathepsin B (CTSB) genes were studied in 23 aneurysmal walls and 19 superficial temporal arteries harvested from 23 patients undergoing clipping of IAs, by real-time polymerase chain reaction method. The mean fold change of COL1A2 gene between the aneurysm sample and the superficial temporal artery (STA) sample was 2.46 ± 0.12, that of TIMP4 gene was 0.31 ± 0, and that of CTSB gene was 31.47 ± 39.01. There was a positive correlation of TIMP4 expression level with maximum diameter of aneurysm (P = 0.008) and fundus of aneurysm (P = 0.012). The mean fold change of CTSB of patients who had preoperative hydrocephalus in the computed tomogram (CT) scan of the head at admission was 56.16 and that of the patients who did not have hydrocephalus was 13.51 (P = 0.008). The mean fold change of CTSB of patients who developed fresh postoperative deficits or worsening of the preexisting deficits was 23.64 and that of the patients who did not develop was 42.22 (P = 0.039). COL1A2 gene and CTSB genes were overexpressed, and TIMP4 gene was underexpressed in the aneurysmal sac compared to STA and their expression levels were associated with a few clinicoradiological factors.

  3. Differential expression of miRNAs by macrophages infected with virulent and avirulent Mycobacterium tuberculosis.

    Science.gov (United States)

    Das, Kishore; Saikolappan, Sankaralingam; Dhandayuthapani, Subramanian

    2013-12-01

    MicroRNAs (miRNAs) are small non-coding RNAs which post-transcriptionally regulate a wide range of biological processes that include cellular differentiation, development, immunity and apoptosis. There is a growing body of evidences that bacteria modulate immune responses by altering the expression of host miRNAs. Since macrophages are immune cells associated with innate and adaptive immunity, we investigated whether Mycobacterium tuberculosis infection affects miRNAs of macrophages. THP-1 macrophages infected with virulent (H37Rv) and avirulent (H37Ra) strains of M. tuberculosis were analyzed for changes in miRNAs' expression using microarray. This revealed that nine miRNA genes (miR-30a, miR-30e, miR-155, miR-1275, miR-3665, miR-3178, miR-4484, miR-4668-5p and miR-4497) were differentially expressed between THP-1cells infected with M. tuberculosis H37Rv and M. tuberculosis H37Ra strains. Additional characterization of these genes is likely to provide insights into their role in the pathogenesis of tuberculosis. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Differential gene expression profiling of human adipose stem cells differentiating into smooth muscle-like cells by TGFβ1/BMP4

    Energy Technology Data Exchange (ETDEWEB)

    Elçin, Ayşe Eser; Parmaksiz, Mahmut; Dogan, Arin; Seker, Sukran; Durkut, Serap; Dalva, Klara; Elçin, Yaşar Murat, E-mail: elcinmurat@gmail.com

    2017-03-15

    Regenerative repair of the vascular system is challenging from the perspectives of translational medicine and tissue engineering. There are fundamental hurdles in front of creating bioartificial arteries, which involve recaputilation of the three-layered structure under laboratory settings. Obtaining and maintaining smooth muscle characteristics is an important limitation, as the transdifferentiated cells fail to display mature phenotype. This study aims to shed light on the smooth muscle differentiation of human adipose stem cells (hASCs). To this end, we first acquired hASCs from lipoaspirate samples. Upon characterization, the cells were induced to differentiate into smooth muscle (SM)-like cells using a variety of inducer combinations. Among all, TGFβ1/BMP4 combination had the highest differentiation efficiency, based on immunohistochemical analyses. hSM-like cell samples were compared to hASCs and to the positive control, human coronary artery-smooth muscle cells (hCA-SMCs) through gene transcription profiling. Microarray findings revealed the activation of gene groups that function in smooth muscle differentiation, signaling pathways, extracellular modeling and cell proliferation. Our results underline the effectiveness of the growth factors and suggest some potential variables for detecting the SM-like cell characteristics. Evidence in transcriptome level was used to evaluate the TGFβ1/BMP4 combination as a previously unexplored effector for the smooth muscle differentiation of adipose stem cells. - Highlights: • Human adipose stem cells (hASCs) were isolated, characterized and cultured. • Growth factor combinations were evaluated for their effectiveness in differentiation using IHC. • hASCs were differentiated into smooth muscle (SM)-like cells using TGF-β1 and BMP4 combination. • Microarray analysis was performed for hASCs, SM-like cells and coronary artery-SMCs. • Microarray data was used to perform hierarchical clustering and interpretation

  5. The NO signaling pathway differentially regulates KCC3a and KCC3b mRNA expression.

    Science.gov (United States)

    Di Fulvio, Mauricio; Lauf, Peter K; Adragna, Norma C

    2003-11-01

    Nitric oxide (NO) donors and protein kinase G (PKG) acutely up-regulate K-Cl cotransporter-1 and -3 (KCC1 and KCC3) mRNA expression in vascular smooth muscle cells (VSMCs). Here, we report the presence, relative abundance, and regulation by sodium nitroprusside (SNP) of the novel KCC3a and KCC3b mRNAs, in primary cultures of rat VSMCs. KCC3a and KCC3b mRNAs were expressed in an approximate 3:1 ratio, as determined by semiquantitative RT-PCR analysis. SNP as well as YC-1 and 8-Br-cGMP, a NO-independent stimulator of soluble guanylyl cyclase (sGC) and PKG, respectively, increased KCC3a and KCC3b mRNA expression by 2.5-fold and 8.1-fold in a time-dependent manner, following a differential kinetics. Stimulation of the NO/sGC/PKG signaling pathway with either SNP, YC-1, or 8-Br-cGMP decreased the KCC3a/KCC3b ratio from 3.0+/-0.4 to 0.9+/-0.1. This is the first report on a differential regulation by the NO/sGC/PKG signaling pathway of a cotransporter and of KCC3a and KCC3b mRNA expression.

  6. The changing integrin expression and a role for integrin β8 in the chondrogenic differentiation of mesenchymal stem cells.

    Directory of Open Access Journals (Sweden)

    Vanessa L S LaPointe

    Full Text Available Many cartilage tissue engineering approaches aim to differentiate human mesenchymal stem cells (hMSCs into chondrocytes and develop cartilage in vitro by targeting cell-matrix interactions. We sought to better inform the design of cartilage tissue engineering scaffolds by understanding how integrin expression changes during chondrogenic differentiation. In three models of in vitro chondrogenesis, we studied the temporal change of cartilage phenotype markers and integrin subunits during the differentiation of hMSCs. We found that transcript expression of most subunits was conserved across the chondrogenesis models, but was significantly affected by the time-course of differentiation. In particular, ITGB8 was up-regulated and its importance in chondrogenesis was further established by a knockdown of integrin β8, which resulted in a non-hyaline cartilage phenotype, with no COL2A1 expression detected. In conclusion, we performed a systematic study of the temporal changes of integrin expression during chondrogenic differentiation in multiple chondrogenesis models, and revealed a role for integrin β8 in chondrogenesis. This work enhances our understanding of the changing adhesion requirements of hMSCs during chondrogenic differentiation and underlines the importance of integrins in establishing a cartilage phenotype.

  7. The Changing Integrin Expression and a Role for Integrin β8 in the Chondrogenic Differentiation of Mesenchymal Stem Cells

    Science.gov (United States)

    LaPointe, Vanessa L. S.; Verpoorte, Amanda; Stevens, Molly M.

    2013-01-01

    Many cartilage tissue engineering approaches aim to differentiate human mesenchymal stem cells (hMSCs) into chondrocytes and develop cartilage in vitro by targeting cell-matrix interactions. We sought to better inform the design of cartilage tissue engineering scaffolds by understanding how integrin expression changes during chondrogenic differentiation. In three models of in vitro chondrogenesis, we studied the temporal change of cartilage phenotype markers and integrin subunits during the differentiation of hMSCs. We found that transcript expression of most subunits was conserved across the chondrogenesis models, but was significantly affected by the time-course of differentiation. In particular, ITGB8 was up-regulated and its importance in chondrogenesis was further established by a knockdown of integrin β8, which resulted in a non-hyaline cartilage phenotype, with no COL2A1 expression detected. In conclusion, we performed a systematic study of the temporal changes of integrin expression during chondrogenic differentiation in multiple chondrogenesis models, and revealed a role for integrin β8 in chondrogenesis. This work enhances our understanding of the changing adhesion requirements of hMSCs during chondrogenic differentiation and underlines the importance of integrins in establishing a cartilage phenotype. PMID:24312400

  8. Proteins Differentially Expressed in the Pancreas of Hepatic Alcohol Dehydrogenase-Deficient Deer Mice Fed Ethanol For 3 Months.

    Science.gov (United States)

    Bhopale, Kamlesh K; Amer, Samir M; Kaphalia, Lata; Soman, Kizhake V; Wiktorowicz, John E; Shakeel Ansari, Ghulam A; Kaphalia, Bhupendra S

    2017-07-01

    The aim of this study was to identify differentially expressed proteins in the pancreatic tissue of hepatic alcohol dehydrogenase-deficient deer mice fed ethanol to understand metabolic basis and mechanism of alcoholic chronic pancreatitis. Mice were fed liquid diet containing 3.5 g% ethanol daily for 3 months, and differentially expressed pancreatic proteins were identified by protein separation using 2-dimensional gel electrophoresis and identification by mass spectrometry. Nineteen differentially expressed proteins were identified by applying criteria established for protein identification in proteomics. An increased abundance was found for ribosome-binding protein 1, 60S ribosomal protein L31-like isoform 1, histone 4, calcium, and adenosine triphosphate (ATP) binding proteins and the proteins involved in antiapoptotic processes and endoplasmic reticulum function, stress, and/or homeostasis. Low abundance was found for endoA cytokeratin, 40S ribosomal protein SA, amylase 2b isoform precursor, serum albumin, and ATP synthase subunit β and the proteins involved in cell motility, structure, and conformation. Chronic ethanol feeding in alcohol dehydrogenase-deficient deer mice differentially expresses pancreatic functional and structural proteins, which can be used to develop biomarker(s) of alcoholic chronic pancreatitis, particularly amylase 2b precursor, and 60 kDa heat shock protein and those involved in ATP synthesis and blood osmotic pressure.

  9. Bioinformatics analysis of differentially expressed proteins in prostate cancer based on proteomics data

    Directory of Open Access Journals (Sweden)

    Chen C

    2016-03-01

    Full Text Available Chen Chen,1 Li-Guo Zhang,1 Jian Liu,1 Hui Han,1 Ning Chen,1 An-Liang Yao,1 Shao-San Kang,1 Wei-Xing Gao,1 Hong Shen,2 Long-Jun Zhang,1 Ya-Peng Li,1 Feng-Hong Cao,1 Zhi-Guo Li3 1Department of Urology, North China University of Science and Technology Affiliated Hospital, 2Department of Modern Technology and Education Center, 3Department of Medical Research Center, International Science and Technology Cooperation Base of Geriatric Medicine, North China University of Science and Technology, Tangshan, People’s Republic of China Abstract: We mined the literature for proteomics data to examine the occurrence and metastasis of prostate cancer (PCa through a bioinformatics analysis. We divided the differentially expressed proteins (DEPs into two groups: the group consisting of PCa and benign tissues (P&b and the group presenting both high and low PCa metastatic tendencies (H&L. In the P&b group, we found 320 DEPs, 20 of which were reported more than three times, and DES was the most commonly reported. Among these DEPs, the expression levels of FGG, GSN, SERPINC1, TPM1, and TUBB4B have not yet been correlated with PCa. In the H&L group, we identified 353 DEPs, 13 of which were reported more than three times. Among these DEPs, MDH2 and MYH9 have not yet been correlated with PCa metastasis. We further confirmed that DES was differentially expressed between 30 cancer and 30 benign tissues. In addition, DEPs associated with protein transport, regulation of actin cytoskeleton, and the extracellular matrix (ECM–receptor interaction pathway were prevalent in the H&L group and have not yet been studied in detail in this context. Proteins related to homeostasis, the wound-healing response, focal adhesions, and the complement and coagulation pathways were overrepresented in both groups. Our findings suggest that the repeatedly reported DEPs in the two groups may function as potential biomarkers for detecting PCa and predicting its aggressiveness. Furthermore

  10. MAGE-A1, GAGE and NY-ESO-1 cancer/testis antigen expression during human gonadal development

    DEFF Research Database (Denmark)

    Gjerstorff, Morten F; Kock, Kirsten; Nielsen, Ole

    2007-01-01

    BACKGROUND: Cancer/testis antigens (CTAs) are expressed in several cancers and during normal adult male germ cell differentiation. Little is known about their role in fetal development of human germ cells. METHODS: We examined expression of the CTAs MAGE-A1, GAGE and NY-ESO-1 in fetal gonads...

  11. Cardiac C-arm computed tomography using a 3D + time ROI reconstruction method with spatial and temporal regularization

    Energy Technology Data Exchange (ETDEWEB)

    Mory, Cyril, E-mail: cyril.mory@philips.com [Université de Lyon, CREATIS, CNRS UMR5220, Inserm U1044, INSA-Lyon, Université Lyon 1, F-69621 Villeurbanne Cedex (France); Philips Research Medisys, 33 rue de Verdun, 92156 Suresnes (France); Auvray, Vincent; Zhang, Bo [Philips Research Medisys, 33 rue de Verdun, 92156 Suresnes (France); Grass, Michael; Schäfer, Dirk [Philips Research, Röntgenstrasse 24–26, D-22335 Hamburg (Germany); Chen, S. James; Carroll, John D. [Department of Medicine, Division of Cardiology, University of Colorado Denver, 12605 East 16th Avenue, Aurora, Colorado 80045 (United States); Rit, Simon [Université de Lyon, CREATIS, CNRS UMR5220, Inserm U1044, INSA-Lyon, Université Lyon 1 (France); Centre Léon Bérard, 28 rue Laënnec, F-69373 Lyon (France); Peyrin, Françoise [Université de Lyon, CREATIS, CNRS UMR5220, Inserm U1044, INSA-Lyon, Université Lyon 1, F-69621 Villeurbanne Cedex (France); X-ray Imaging Group, European Synchrotron, Radiation Facility, BP 220, F-38043 Grenoble Cedex (France); Douek, Philippe; Boussel, Loïc [Université de Lyon, CREATIS, CNRS UMR5220, Inserm U1044, INSA-Lyon, Université Lyon 1 (France); Hospices Civils de Lyon, 28 Avenue du Doyen Jean Lépine, 69500 Bron (France)

    2014-02-15

    Purpose: Reconstruction of the beating heart in 3D + time in the catheter laboratory using only the available C-arm system would improve diagnosis, guidance, device sizing, and outcome control for intracardiac interventions, e.g., electrophysiology, valvular disease treatment, structural or congenital heart disease. To obtain such a reconstruction, the patient's electrocardiogram (ECG) must be recorded during the acquisition and used in the reconstruction. In this paper, the authors present a 4D reconstruction method aiming to reconstruct the heart from a single sweep 10 s acquisition. Methods: The authors introduce the 4D RecOnstructiOn using Spatial and TEmporal Regularization (short 4D ROOSTER) method, which reconstructs all cardiac phases at once, as a 3D + time volume. The algorithm alternates between a reconstruction step based on conjugate gradient and four regularization steps: enforcing positivity, averaging along time outside a motion mask that contains the heart and vessels, 3D spatial total variation minimization, and 1D temporal total variation minimization. Results: 4D ROOSTER recovers the different temporal representations of a moving Shepp and Logan phantom, and outperforms both ECG-gated simultaneous algebraic reconstruction technique and prior image constrained compressed sensing on a clinical case. It generates 3D + time reconstructions with sharp edges which can be used, for example, to estimate the patient's left ventricular ejection fraction. Conclusions: 4D ROOSTER can be applied for human cardiac C-arm CT, and potentially in other dynamic tomography areas. It can easily be adapted to other problems as regularization is decoupled from projection and back projection.

  12. Cardiac C-arm computed tomography using a 3D + time ROI reconstruction method with spatial and temporal regularization

    International Nuclear Information System (INIS)

    Mory, Cyril; Auvray, Vincent; Zhang, Bo; Grass, Michael; Schäfer, Dirk; Chen, S. James; Carroll, John D.; Rit, Simon; Peyrin, Françoise; Douek, Philippe; Boussel, Loïc

    2014-01-01

    Purpose: Reconstruction of the beating heart in 3D + time in the catheter laboratory using only the available C-arm system would improve diagnosis, guidance, device sizing, and outcome control for intracardiac interventions, e.g., electrophysiology, valvular disease treatment, structural or congenital heart disease. To obtain such a reconstruction, the patient's electrocardiogram (ECG) must be recorded during the acquisition and used in the reconstruction. In this paper, the authors present a 4D reconstruction method aiming to reconstruct the heart from a single sweep 10 s acquisition. Methods: The authors introduce the 4D RecOnstructiOn using Spatial and TEmporal Regularization (short 4D ROOSTER) method, which reconstructs all cardiac phases at once, as a 3D + time volume. The algorithm alternates between a reconstruction step based on conjugate gradient and four regularization steps: enforcing positivity, averaging along time outside a motion mask that contains the heart and vessels, 3D spatial total variation minimization, and 1D temporal total variation minimization. Results: 4D ROOSTER recovers the different temporal representations of a moving Shepp and Logan phantom, and outperforms both ECG-gated simultaneous algebraic reconstruction technique and prior image constrained compressed sensing on a clinical case. It generates 3D + time reconstructions with sharp edges which can be used, for example, to estimate the patient's left ventricular ejection fraction. Conclusions: 4D ROOSTER can be applied for human cardiac C-arm CT, and potentially in other dynamic tomography areas. It can easily be adapted to other problems as regularization is decoupled from projection and back projection

  13. Differential Gene Expression in Gonadotropin-Releasing Hormone Neurons of Male and Metestrous Female Mice.

    Science.gov (United States)

    Vastagh, Csaba; Rodolosse, Annie; Solymosi, Norbert; Farkas, Imre; Auer, Herbert; Sárvári, Miklós; Liposits, Zsolt

    2015-01-01

    Gonadotropin-releasing hormone (GnRH) neurons play a pivotal role in the regulation of the hypothalamic-pituitary gonadal axis in a sex-specific manner. We hypothesized that the differences seen in reproductive functions of males and females are associated with a sexually dimorphic gene expression profile of GnRH neurons. We compared the transcriptome of GnRH neurons obtained from intact metestrous female and male GnRH-green fluorescent protein transgenic mice. About 1,500 individual GnRH neurons from each sex were sampled with laser capture microdissection followed by whole-transcriptome amplification for gene expression profiling. Under stringent selection criteria (fold change >1.6, adjusted p value 0.01), Affymetrix Mouse Genome 430 PM array analysis identified 543 differentially expressed genes. Sexual dimorphism was most apparent in gene clusters associated with synaptic communication, signal transduction, cell adhesion, vesicular transport and cell metabolism. To validate microarray results, 57 genes were selected, and 91% of their differential expression was confirmed by real-time PCR. Similarly, 88% of microarray results were confirmed with PCR from independent samples obtained by patch pipette harvesting and pooling of 30 GnRH neurons from each sex. We found significant differences in the expression of genes involved in vesicle priming and docking (Syt1, Cplx1), GABAergic (Gabra3, Gabrb3, Gabrg2) and glutamatergic (Gria1, Grin1, Slc17a6) neurotransmission, peptide signaling (Sstr3, Npr2, Cxcr4) and the regulation of intracellular ion homeostasis (Cacna1, Cacnb1, Cacng5, Kcnq2, Kcnc1). The striking sexual dimorphism of the GnRH neuron transcriptome we report here contributes to a better understanding of the differences in cellular mechanisms of GnRH neurons in the two sexes. © 2015 S. Karger AG, Basel.

  14. In vitro differentiation of bone marrow stromal cells into neurons and glial cells and differential protein expression in a two-compartment bone marrow stromal cell/neuron co-culture system.

    Science.gov (United States)

    Qi, Xu; Shao, Ming; Peng, Haisheng; Bi, Zhenggang; Su, Zhiqiang; Li, Hulun

    2010-07-01

    This study was performed to establish a bone marrow stromal cell (BMSC)/neuron two-compartment co-culture model in which differentiation of BMSCs into neurons could occur without direct contact between the two cell types, and to investigate protein expression changes during differentiation of this entirely BMSC-derived population. Cultured BMSCs isolated from Wistar rats were divided into three groups: BMSC culture, BMSC/neuron co-culture and BMSC/neuron two-compartment co-culture. Cells were examined for neuron-specific enolase (NSE) and glial fibrillary acidic protein (GFAP) expression. The electrophysiological behavior of the BMSCs was examined using patch clamping. Proteins that had significantly different expression levels in BMSCs cultured alone and co-cultured with neurons were studied using a protein chip-mass spectroscopy technique. Expression of NSE and GFAP were significantly higher in co-culture cells than in two-compartment co-culture cells, and significantly higher in both co-culture groups than in BMSCs cultured alone. Five proteins showed significant changes in expression during differentiation: TIP39_RAT and CALC_RAT underwent increases, and INSL6_RAT, PNOC_RAT and PCSK1_RAT underwent decreases in expression. We conclude that BMSCs can differentiate into neurons during both contact co-culture with neurons and two-compartment co-culture with neurons. The rate at which BMSCs differentiated into neurons was higher in contact co-culture than in non-contact co-culture.

  15. Nonlinear differential equations with exact solutions expressed via the Weierstrass function

    NARCIS (Netherlands)

    Kudryashov, NA

    2004-01-01

    A new problem is studied, that is to find nonlinear differential equations with special solutions expressed via the Weierstrass function. A method is discussed to construct nonlinear ordinary differential equations with exact solutions. The main step of our method is the assumption that nonlinear

  16. Suppression of MicroRNA let-7a Expression by Agmatine Regulates Neural Stem Cell Differentiation.

    Science.gov (United States)

    Song, Juhyun; Oh, Yumi; Kim, Jong Youl; Cho, Kyoung Joo; Lee, Jong Eun

    2016-11-01

    Neural stem cells (NSCs) effectively reverse some severe central nervous system (CNS) disorders, due to their ability to differentiate into neurons. Agmatine, a biogenic amine, has cellular protective effects and contributes to cellular proliferation and differentiation in the CNS. Recent studies have elucidated the function of microRNA let-7a (let-7a) as a regulator of cell differentiation with roles in regulating genes associated with CNS neurogenesis. This study aimed to investigate whether agmatine modulates the expression of crucial regulators of NSC differentiation including DCX, TLX, c-Myc, and ERK by controlling let-7a expression. Our data suggest that high levels of let-7a promoted the expression of TLX and c-Myc, as well as repressed DCX and ERK expression. In addition, agmatine attenuated expression of TLX and increased expression of ERK by negatively regulating let-7a. Our study therefore enhances the present understanding of the therapeutic potential of NSCs in CNS disorders.

  17. Alteration of microRNA expression of human dental pulp cells during odontogenic differentiation.

    Science.gov (United States)

    Gong, Qimei; Wang, Runfu; Jiang, Hongwei; Lin, Zhengmei; Ling, Junqi

    2012-10-01

    MicroRNAs (miRNAs) play momentous roles in various biological processes including cell differentiation. However, little is known about the role of miRNAs in human dental pulp cells (hDPCs) during odontogenic differentiation. The aims of this study were to investigate the expression of miRNAs in the primary culture of hDPCs when incubated in odontogenic medium. The potential characteristics of hDPCs were investigated by miRNA microarray and real-time reverse transcriptase polymerase chain reaction. Bioinformatics (ie, target prediction, Gene Ontology analysis, and Kyoto Encyclopedia of Genes and Genomes mapping tools) were applied for predicting the complementary target genes of miRNAs and their biological functions. A total of 22 miRNAs were differentially expressed in which 12 miRNAs up-regulated and 10 miRNAs down-regulated in differentiated hDPCs compared with the control. The target genes of differential miRNAs were predicted to associate with several biological functions and signaling pathways including the mitogen-activated protein kinase (MAPK) and the Wnt signaling pathway. The differential expression miRNAs may be involved in governing hDPC odontogenic differentiation, thus contributing to the future investigations of regulatory mechanisms in reparative dentin formation and dental pulp regeneration. Copyright © 2012 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  18. Nutlin-3 down-regulates retinoblastoma protein expression and inhibits muscle cell differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Walsh, Erica M. [Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118 (United States); Niu, MengMeng; Bergholz, Johann [Center of Growth, Metabolism and Aging, College of Life Sciences, Sichuan University, Chengdu, 610014 China (China); Jim Xiao, Zhi-Xiong, E-mail: jxiao@bu.edu [Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118 (United States); Center of Growth, Metabolism and Aging, College of Life Sciences, Sichuan University, Chengdu, 610014 China (China)

    2015-05-29

    The p53 tumor suppressor gene plays a critical role in regulation of proliferation, cell death and differentiation. The MDM2 oncoprotein is a major negative regulator for p53 by binding to and targeting p53 for proteasome-mediated degradation. The small molecule inhibitor, nutlin-3, disrupts MDM2-p53 interaction resulting in stabilization and activation of p53 protein. We have previously shown that nutlin-3 activates p53, leading to MDM2 accumulation as concomitant of reduced retinoblastoma (Rb) protein stability. It is well known that Rb is important in muscle development and myoblast differentiation and that rhabdomyosarcoma (RMS), or cancer of the skeletal muscle, typically harbors MDM2 amplification. In this study, we show that nutlin-3 inhibited myoblast proliferation and effectively prevented myoblast differentiation, as evidenced by lack of expression of muscle differentiation markers including myogenin and myosin heavy chain (MyHC), as well as a failure to form multinucleated myotubes, which were associated with dramatic increases in MDM2 expression and decrease in Rb protein levels. These results indicate that nutlin-3 can effectively inhibit muscle cell differentiation. - Highlights: • Nutlin-3 inhibits myoblast proliferation and prevents differentiation into myotubes. • Nutlin-3 increases MDM2 expression and down-regulates Rb protein levels. • This study has implication in nutlin-3 treatment of rhabdomyosarcomas.

  19. KAP1 regulates type I interferon/STAT1-mediated IRF-1 gene expression

    International Nuclear Information System (INIS)

    Kamitani, Shinya; Ohbayashi, Norihiko; Ikeda, Osamu; Togi, Sumihito; Muromoto, Ryuta; Sekine, Yuichi; Ohta, Kazuhide; Ishiyama, Hironobu; Matsuda, Tadashi

    2008-01-01

    Signal transducers and activators of transcription (STATs) mediate cell proliferation, differentiation, and survival in immune responses, hematopoiesis, neurogenesis, and other biological processes. Recently, we showed that KAP1 is a novel STAT-binding partner that regulates STAT3-mediated transactivation. KAP1 is a universal co-repressor protein for the KRAB zinc finger protein superfamily of transcriptional repressors. In this study, we found KAP1-dependent repression of interferon (IFN)/STAT1-mediated signaling. We also demonstrated that endogenous KAP1 associates with endogenous STAT1 in vivo. Importantly, a small-interfering RNA-mediated reduction in KAP1 expression enhanced IFN-induced STAT1-dependent IRF-1 gene expression. These results indicate that KAP1 may act as an endogenous regulator of the IFN/STAT1 signaling pathway

  20. A function for Rac1 in the terminal differentiation and pigmentation of hair

    DEFF Research Database (Denmark)

    Behrendt, Kristina; Klatte, Jennifer; Pofahl, Ruth

    2012-01-01

    in the regulation of terminal hair follicle differentiation. To address this, we have expressed a constitutively active mutant of Rac1, L61Rac1, only in the basal epidermal layer and outer root sheath of mice possessing an epidermis-specific deletion of endogenous Rac1, which experience severe hair loss......The small GTPase Rac1 is ubiquitously expressed in proliferating and differentiating layers of the epidermis and hair follicles. Previously, Rac1 was shown to regulate stem cell behaviour in these compartments. We have asked whether Rac1 has, in addition, a specific, stem-cell-independent function....... The resulting 'rescue' mice exhibited a hair coat throughout their lives. Therefore, expression of Rac1 activity in the keratin-14-positive compartment of the skin is sufficient for the formation of hair follicles and hair in normal quantities. The quality of hair formed in rescue mice was, however, not normal...

  1. Distribution of cellular HSV-1 receptor expression in human brain.

    Science.gov (United States)

    Lathe, Richard; Haas, Juergen G

    2017-06-01

    Herpes simplex virus type 1 (HSV-1) is a neurotropic virus linked to a range of acute and chronic neurological disorders affecting distinct regions of the brain. Unusually, HSV-1 entry into cells requires the interaction of viral proteins glycoprotein D (gD) and glycoprotein B (gB) with distinct cellular receptor proteins. Several different gD and gB receptors have been identified, including TNFRSF14/HVEM and PVRL1/nectin 1 as gD receptors and PILRA, MAG, and MYH9 as gB receptors. We investigated the expression of these receptor molecules in different areas of the adult and developing human brain using online transcriptome databases. Whereas all HSV-1 receptors showed distinct expression patterns in different brain areas, the Allan Brain Atlas (ABA) reported increased expression of both gD and gB receptors in the hippocampus. Specifically, for PVRL1, TNFRFS14, and MYH9, the differential z scores for hippocampal expression, a measure of relative levels of increased expression, rose to 2.9, 2.9, and 2.5, respectively, comparable to the z score for the archetypical hippocampus-enriched mineralocorticoid receptor (NR3C2, z = 3.1). These data were confirmed at the Human Brain Transcriptome (HBT) database, but HBT data indicate that MAG expression is also enriched in hippocampus. The HBT database allowed the developmental pattern of expression to be investigated; we report that all HSV1 receptors markedly increase in expression levels between gestation and the postnatal/adult periods. These results suggest that differential receptor expression levels of several HSV-1 gD and gB receptors in the adult hippocampus are likely to underlie the susceptibility of this brain region to HSV-1 infection.

  2. Clinical and pathological significance of ROS1 expression in intrahepatic cholangiocarcinoma

    International Nuclear Information System (INIS)

    Lee, Kyung-Hun; Lee, Kyoung-Bun; Kim, Tae-Yong; Han, Sae-Won; Oh, Do-Youn; Im, Seock-Ah; Kim, Tae-You; Yi, Nam-Joon; Lee, Kwang-Woong; Suh, Kyung-Suk; Jang, Ja-June; Bang, Yung-Jue

    2015-01-01

    More knowledge about genetic and molecular features of cholangiocarcinoma is needed to develop effective therapeutic strategies. We investigated the clinical and pathological significance of ROS1 expression in intrahepatic cholangiocarcinoma. One hundred ninety-four patients with curatively resected intrahepatic cholangiocarcinoma were included in this study. Tumor tissue specimens were collected and analyzed for ROS1 gene rearrangement using fluorescence in situ hybridization (FISH) and ROS1 protein expression using immunohistochemistry (IHC). ROS1 immunohistochemistry was positive (moderate or strong staining) in 72 tumors (37.1 %). ROS1 protein expression was significantly correlated with well differentiated tumors, papillary or mucinous histology, oncocytic/hepatoid or intestinal type tumors, and periductal infiltrating or intraductal growing tumors (vs. mass-forming cholangiocarcinoma). ROS-expressing tumors were associated with better disease-free survival (30.1 months for ROS1 expression (+) tumors vs. 9.0 months for ROS1 (−) tumors, p = 0.006). Moreover, ROS1 expression was an independent predictor of better disease-free survival in a multivariate analysis (HR 0.607, 95 % CI 0.377–0.976; p = 0.039). Although break-apart FISH was successfully performed in 102 samples, a split pattern indicative of ROS1 gene rearrangement was not found in the examined samples. ROS1 protein expression was associated with well-differentiated histology and better survival in our patients with resected intrahepatic cholangiocarcinoma. ROS1 gene rearrangement by break-apart FISH was not found in the examined samples

  3. Temporal expression pattern of genes during the period of sex differentiation in human embryonic gonads

    DEFF Research Database (Denmark)

    Mamsen, Linn S; Ernst, Emil H; Borup, Rehannah

    2017-01-01

    The precise timing and sequence of changes in expression of key genes and proteins during human sex-differentiation and onset of steroidogenesis was evaluated by whole-genome expression in 67 first trimester human embryonic and fetal ovaries and testis and confirmed by qPCR and immunohistochemistry...... (IHC). SRY/SOX9 expression initiated in testis around day 40 pc, followed by initiation of AMH and steroidogenic genes required for androgen production at day 53 pc. In ovaries, gene expression of RSPO1, LIN28, FOXL2, WNT2B, and ETV5, were significantly higher than in testis, whereas GLI1...... was significantly higher in testis than ovaries. Gene expression was confirmed by IHC for GAGE, SOX9, AMH, CYP17A1, LIN28, WNT2B, ETV5 and GLI1. Gene expression was not associated with the maternal smoking habits. Collectively, a precise temporal determination of changes in expression of key genes involved in human...

  4. Wnt3a induces the expression of acetylcholinesterase during osteoblast differentiation via the Runx2 transcription factor.

    Science.gov (United States)

    Xu, Miranda L; Bi, Cathy W C; Liu, Etta Y L; Dong, Tina T X; Tsim, Karl W K

    2017-07-28

    Acetylcholinesterase (AChE) hydrolyzes acetylcholine to terminate cholinergic transmission in neurons. Apart from this AChE activity, emerging evidence suggests that AChE could also function in other, non-neuronal cells. For instance, in bone, AChE exists as a proline-rich membrane anchor (PRiMA)-linked globular form in osteoblasts, in which it is proposed to play a noncholinergic role in differentiation. However, this hypothesis is untested. Here, we found that in cultured rat osteoblasts, AChE expression was increased in parallel with osteoblastic differentiation. Because several lines of evidence indicate that AChE activity in osteoblast could be triggered by Wnt/β-catenin signaling, we added recombinant human Wnt3a to cultured osteoblasts and found that this addition induced expression of the ACHE gene and protein product. This Wnt3a-induced AChE expression was blocked by the Wnt-signaling inhibitor Dickkopf protein-1 (DKK-1). We hypothesized that the Runt-related transcription factor 2 (Runx2), a downstream transcription factor in Wnt/β-catenin signaling, is involved in AChE regulation in osteoblasts, confirmed by the identification of a Runx2-binding site in the ACHE gene promoter, further corroborated by ChIP. Of note, Runx2 overexpression in osteoblasts induced AChE expression and activity of the ACHE promoter tagged with the luciferase gene. Moreover, deletion of the Runx2-binding site in the ACHE promoter reduced its activity during osteoblastic differentiation, and addition of 5-azacytidine and trichostatin A to differentiating osteoblasts affected AChE expression, suggesting epigenetic regulation of the ACHE gene. We conclude that AChE plays a role in osteoblastic differentiation and is regulated by both Wnt3a and Runx2. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Role Differentiation in Groups: The Relationship Between Instrumental and Expressive Leadership.

    Science.gov (United States)

    Rees, C. Roger; Segal, Mady Wechsler

    1984-01-01

    Examined the degree of differentiation between instrumental and expressive leadership roles in two natural groups (N=101). Results showed a relatively high degree of leadership role integration with several members of each group fulfilling both instrumental and expressive leadership roles. (LLL)

  6. Active form Notch4 promotes the proliferation and differentiation of 3T3-L1 preadipocytes

    Energy Technology Data Exchange (ETDEWEB)

    Lai, Peng-Yeh [Institute of Molecular Biology and Department of Life Science, National Chung Cheng University, Chiayi 621, Taiwan, ROC (China); Tsai, Chong-Bin [Institute of Molecular Biology and Department of Life Science, National Chung Cheng University, Chiayi 621, Taiwan, ROC (China); Department of Ophthalmology, Chiayi Christian Hospital, Chiayi 600, Taiwan, ROC (China); Tseng, Min-Jen, E-mail: biomjt@ccu.edu.tw [Institute of Molecular Biology and Department of Life Science, National Chung Cheng University, Chiayi 621, Taiwan, ROC (China)

    2013-01-18

    Highlights: ► Notch4IC modulates the ERK pathway and cell cycle to promote 3T3-L1 proliferation. ► Notch4IC facilitates 3T3-L1 differentiation by up-regulating proadipogenic genes. ► Notch4IC promotes proliferation during the early stage of 3T3-L1 adipogenesis. ► Notch4IC enhances differentiation during subsequent stages of 3T3-L1 adipogenesis. -- Abstract: Adipose tissue is composed of adipocytes, which differentiate from precursor cells in a process called adipogenesis. Many signal molecules are involved in the transcriptional control of adipogenesis, including the Notch pathway. Previous adipogenic studies of Notch have focused on Notch1 and HES1; however, the role of other Notch receptors in adipogenesis remains unclear. Q-RT-PCR analyses showed that the augmentation of Notch4 expression during the differentiation of 3T3-L1 preadipocytes was comparable to that of Notch1. To elucidate the role of Notch4 in adipogenesis, the human active form Notch4 (N4IC) was transiently transfected into 3T3-L1 cells. The expression of HES1, Hey1, C/EBPδ and PPARγ was up-regulated, and the expression of Pref-1, an adipogenic inhibitor, was down-regulated. To further characterize the effect of N4IC in adipogenesis, stable cells expressing human N4IC were established. The expression of N4IC promoted proliferation and enhanced differentiation of 3T3-L1 cells compared with those of control cells. These data suggest that N4IC promoted proliferation through modulating the ERK pathway and the cell cycle during the early stage of 3T3-L1 adipogenesis and facilitated differentiation through up-regulating adipogenic genes such as C/EBPα, PPARγ, aP2, LPL and HSL during the middle and late stages of 3T3-L1 adipogenesis.

  7. Differentially-Expressed Genes Associated with Faster Growth of the Pacific Abalone, Haliotis discus hannai.

    Science.gov (United States)

    Choi, Mi-Jin; Kim, Gun-Do; Kim, Jong-Myoung; Lim, Han Kyu

    2015-11-18

    The Pacific abalone Haliotis discus hannai is used for commercial aquaculture in Korea. We examined the transcriptome of Pacific abalone Haliotis discus hannai siblings using NGS technology to identify genes associated with high growth rates. Pacific abalones grown for 200 days post-fertilization were divided into small-, medium-, and large-size groups with mean weights of 0.26 ± 0.09 g, 1.43 ± 0.405 g, and 5.24 ± 1.09 g, respectively. RNA isolated from the soft tissues of each group was subjected to RNA sequencing. Approximately 1%-3% of the transcripts were differentially expressed in abalones, depending on the growth rate. RT-PCR was carried out on thirty four genes selected to confirm the relative differences in expression detected by RNA sequencing. Six differentially-expressed genes were identified as associated with faster growth of the Pacific abalone. These include five up-regulated genes (including one specific to females) encoding transcripts homologous to incilarin A, perlucin, transforming growth factor-beta-induced protein immunoglobulin-heavy chain 3 (ig-h3), vitelline envelope zona pellucida domain 4, and defensin, and one down-regulated gene encoding tomoregulin in large abalones. Most of the transcripts were expressed predominantly in the hepatopancreas. The genes identified in this study will lead to development of markers for identification of high-growth-rate abalones and female abalones.

  8. Differentially-Expressed Genes Associated with Faster Growth of the Pacific Abalone, Haliotis discus hannai

    Directory of Open Access Journals (Sweden)

    Mi-Jin Choi

    2015-11-01

    Full Text Available The Pacific abalone Haliotis discus hannai is used for commercial aquaculture in Korea. We examined the transcriptome of Pacific abalone Haliotis discus hannai siblings using NGS technology to identify genes associated with high growth rates. Pacific abalones grown for 200 days post-fertilization were divided into small-, medium-, and large-size groups with mean weights of 0.26 ± 0.09 g, 1.43 ± 0.405 g, and 5.24 ± 1.09 g, respectively. RNA isolated from the soft tissues of each group was subjected to RNA sequencing. Approximately 1%–3% of the transcripts were differentially expressed in abalones, depending on the growth rate. RT-PCR was carried out on thirty four genes selected to confirm the relative differences in expression detected by RNA sequencing. Six differentially-expressed genes were identified as associated with faster growth of the Pacific abalone. These include five up-regulated genes (including one specific to females encoding transcripts homologous to incilarin A, perlucin, transforming growth factor-beta-induced protein immunoglobulin-heavy chain 3 (ig-h3, vitelline envelope zona pellucida domain 4, and defensin, and one down-regulated gene encoding tomoregulin in large abalones. Most of the transcripts were expressed predominantly in the hepatopancreas. The genes identified in this study will lead to development of markers for identification of high-growth-rate abalones and female abalones.

  9. Isolation and differentiation of chondrocytic cells derived from human embryonic stem cells using dlk1/FA1 as a novel surface marker

    DEFF Research Database (Denmark)

    Harkness, Linda; Taipaleenmaki, Hanna; Mahmood, Amer

    2009-01-01

    of dlk1/FA1 as a novel surface marker for chondroprogenitor cells during hESC differentiation. We found that, Dlk1/FA1 is expressed specifically in cells undergoing transition from proliferating to prehypertrophic chondrocytes during endochondral ossification of the mouse limb. In hESC cells, dlk1/FA1...... was not expressed by undifferentiated hESC, but expressed during in vitro embryoid bodies (hEBs) formation upon down-regulation of undifferentiated markers e.g. Oct 3/4. Similarly, dlk1/FA1 was expressed in chondrocytic cells during in vivo teratoma formation. Interestingly, treatment of hEBs with Activin B......, a member of TGF-ss family, markedly increased Dlk1 expression in association with up-regulation of the mesoderm-specific markers (e.g. FOXF1, KDR and VE-cadherin) and SOX9. dlk1/FA1(+) cells isolated by fluorescence activated cell sorting (FACS) were capable of differentiating into chondrocytic cells when...

  10. Snail1 Expression Is Required for Sarcomagenesis

    Directory of Open Access Journals (Sweden)

    Lorena Alba-Castellón

    2014-05-01

    Full Text Available Snail1 transcriptional repressor is a major inducer of epithelial-to mesenchymal transition but is very limitedly expressed in adult animals. We have previously demonstrated that Snail1 is required for the maintenance of mesenchymal stem cells (MSCs, preventing their premature differentiation. Now, we show that Snail1 controls the tumorigenic properties of mesenchymal cells. Increased Snail1 expression provides tumorigenic capabilities to fibroblastic cells; on the contrary, Snail1 depletion decreases tumor growth. Genetic depletion of Snail1 in MSCs that are deficient in p53 tumor suppressor downregulates MSC markers and prevents the capability of these cells to originate sarcomas in immunodeficient SCID mice. Notably, an analysis of human sarcomas shows that, contrarily to epithelial tumors, these neoplasms display high Snail1 expression. This is particularly clear for undifferentiated tumors, which are associated with poor outcome. Together, our results indicate a role for Snail1 in the generation of sarcomas.

  11. Evaluation of interpolation methods for surface-based motion compensated tomographic reconstruction for cardiac angiographic C-arm data

    International Nuclear Information System (INIS)

    Müller, Kerstin; Schwemmer, Chris; Hornegger, Joachim; Zheng Yefeng; Wang Yang; Lauritsch, Günter; Rohkohl, Christopher; Maier, Andreas K.; Schultz, Carl; Fahrig, Rebecca

    2013-01-01

    Purpose: For interventional cardiac procedures, anatomical and functional information about the cardiac chambers is of major interest. With the technology of angiographic C-arm systems it is possible to reconstruct intraprocedural three-dimensional (3D) images from 2D rotational angiographic projection data (C-arm CT). However, 3D reconstruction of a dynamic object is a fundamental problem in C-arm CT reconstruction. The 2D projections are acquired over a scan time of several seconds, thus the projection data show different states of the heart. A standard FDK reconstruction algorithm would use all acquired data for a filtered backprojection and result in a motion-blurred image. In this approach, a motion compensated reconstruction algorithm requiring knowledge of the 3D heart motion is used. The motion is estimated from a previously presented 3D dynamic surface model. This dynamic surface model results in a sparse motion vector field (MVF) defined at control points. In order to perform a motion compensated reconstruction, a dense motion vector field is required. The dense MVF is generated by interpolation of the sparse MVF. Therefore, the influence of different motion interpolation methods on the reconstructed image quality is evaluated. Methods: Four different interpolation methods, thin-plate splines (TPS), Shepard's method, a smoothed weighting function, and a simple averaging, were evaluated. The reconstruction quality was measured on phantom data, a porcine model as well as on in vivo clinical data sets. As a quality index, the 2D overlap of the forward projected motion compensated reconstructed ventricle and the segmented 2D ventricle blood pool was quantitatively measured with the Dice similarity coefficient and the mean deviation between extracted ventricle contours. For the phantom data set, the normalized root mean square error (nRMSE) and the universal quality index (UQI) were also evaluated in 3D image space. Results: The quantitative evaluation of all

  12. BMP-2 Induced Expression of Alx3 That Is a Positive Regulator of Osteoblast Differentiation.

    Directory of Open Access Journals (Sweden)

    Takashi Matsumoto

    Full Text Available Bone morphogenetic proteins (BMPs regulate many aspects of skeletal development, including osteoblast and chondrocyte differentiation, cartilage and bone formation, and cranial and limb development. Among them, BMP-2, one of the most potent osteogenic signaling molecules, stimulates osteoblast differentiation, while it inhibits myogenic differentiation in C2C12 cells. To evaluate genes involved in BMP-2-induced osteoblast differentiation, we performed cDNA microarray analyses to compare BMP-2-treated and -untreated C2C12 cells. We focused on Alx3 (aristaless-like homeobox 3 which was clearly induced during osteoblast differentiation. Alx3, a homeobox gene related to the Drosophilaaristaless gene, has been linked to developmental functions in craniofacial structures and limb development. However, little is known about its direct relationship with bone formation. In the present study, we focused on the mechanisms of Alx3 gene expression and function during osteoblast differentiation induced by BMP-2. In C2C12 cells, BMP-2 induced increase of Alx3 gene expression in both time- and dose-dependent manners through the BMP receptors-mediated SMAD signaling pathway. In addition, silencing of Alx3 by siRNA inhibited osteoblast differentiation induced by BMP-2, as showed by the expressions of alkaline phosphatase (Alp, Osteocalcin, and Osterix, while over-expression of Alx3 enhanced osteoblast differentiation induced by BMP-2. These results indicate that Alx3 expression is enhanced by BMP-2 via the BMP receptors mediated-Smad signaling and that Alx3 is a positive regulator of osteoblast differentiation induced by BMP-2.

  13. Expression and clinical implication of Beclin1, HMGB1, p62, survivin, BRCA1 and ERCC1 in epithelial ovarian tumor tissues.

    Science.gov (United States)

    Ju, L-L; Zhao, C Y; Ye, K-F; Yang, H; Zhang, J

    2016-05-01

    The aim of the present study is to investigate the differential expression of Beclin1, HMGB1, p62, survivin, ERCC1 and BRCA1 protein in epithelial ovarian cancer (EOC) and to evaluate the relationship between autophagy and platinum resistance of EOC patients during platinum-based chemotherapy with the protein expression. Expression of Beclin1, HMGB1, p62, survivin, ERCC1 and BRCA1 were detected with immunohistochemistry in 60 patients, including 39 with epithelial ovarian cancer (EOC), 13 benign epithelial ovarian tumor tissue (BET) and 8 borderline ovarian tumor tissue. Beclin, p62 and ERCC1 expression was significantly higher in the EOC than the BET (p0.05). BRCA1 expression was lower in EOC than BET (pepithelial ovarian cancer.

  14. bHLH-O proteins balance the self-renewal and differentiation of Drosophila neural stem cells by regulating Earmuff expression.

    Science.gov (United States)

    Li, Xiaosu; Chen, Rui; Zhu, Sijun

    2017-11-15

    Balancing self-renewal and differentiation of stem cells requires differential expression of self-renewing factors in two daughter cells generated from the asymmetric division of the stem cells. In Drosophila type II neural stem cell (or neuroblast, NB) lineages, the expression of the basic helix-loop-helix-Orange (bHLH-O) family proteins, including Deadpan (Dpn) and E(spl) proteins, is required for maintaining the self-renewal and identity of type II NBs, whereas the absence of these self-renewing factors is essential for the differentiation of intermediate neural progenitors (INPs) generated from type II NBs. Here, we demonstrate that Dpn maintains type II NBs by suppressing the expression of Earmuff (Erm). We provide evidence that Dpn and E(spl) proteins suppress Erm by directly binding to C-sites and N-boxes in the cis-regulatory region of erm. Conversely, the absence of bHLH-O proteins in INPs allows activation of erm and Erm-mediated maturation of INPs. Our results further suggest that Pointed P1 (PntP1) mediates the dedifferentiation of INPs resulting from the loss of Erm or overexpression of Dpn or E(spl) proteins. Taken together, these findings reveal mechanisms underlying the regulation of the maintenance of type II NBs and differentiation of INPs through the differential expression of bHLH-O family proteins. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Expression of the transcription factor Evi-1 in human erythroleukemia cell lines and in leukemias.

    Science.gov (United States)

    Fontenay-Roupie, M; Bouscary, D; Melle, J; Viguié, F; Picard, F; Guesnu, M; Dreyfus, F

    1997-02-01

    The Evi-1 proto-oncogene is a zinc finger DNA binding protein. Although activation of the Evi-1 gene has been associated with chromosomal rearrangements of the 3q25-q28 region, ectopic expression of Evi-1 could also be observed in acute myelogenous leukemias and myelodysplastic syndromes without cytogenetic abnormalities of the 3q26 locus. In this study, human erythroleukemic cell lines were screened for the expression of Evi-1 mRNA by northern blotting. Evi-1 was expressed in all the erythroid cell lines, whether undifferentiated (K 562, HEL, LAMA 84) or exhibiting spontaneous terminal erythroid differentiation (KU 812, JK-1). Evi-1 mRNA levels were constant or elevated in hemoglobin-synthesizing KU 812 or K 562 cells in response to erythropoietin or hemin treatment, respectively. In human acute myeloblastic leukemias (AML), 11/30 expressed Evi-1 by RT-PCR. Among these cases, 4/6 erythroleukemias without abnormalities of the 3q25-q28 region were found positive. The presence of acidophilic erythroblasts (15-47% of bone marrow cells) accounted for the existence of a terminal erythroid differentiation in all Evi-1-positive AML M6, whereas one negative case was poorly differentiated and referred to as AML M6 variant. These results suggest that Evi-1 mRNA expression can coexist with erythroid differentiation.

  16. Human pancreatic islet-derived extracellular vesicles modulate insulin expression in 3D-differentiating iPSC clusters.

    Directory of Open Access Journals (Sweden)

    Diana Ribeiro

    Full Text Available It has been suggested that extracellular vesicles (EVs can mediate crosstalk between hormones and metabolites within pancreatic tissue. However, the possible effect of pancreatic EVs on stem cell differentiation into pancreatic lineages remains unknown. Herein, human islet-derived EVs (h-Islet-EVs were isolated, characterized and subsequently added to human induced pluripotent stem cell (iPSC clusters during pancreatic differentiation. The h-islet-EVs had a mean size of 117±7 nm and showed positive expression of CD63 and CD81 EV markers as measured by ELISA. The presence of key pancreatic transcription factor mRNA, such as NGN3, MAFA and PDX1, and pancreatic hormone proteins such as C-peptide and glucagon, were confirmed in h-Islet-EVs. iPSC clusters were differentiated in suspension and at the end stages of the differentiation protocol, the mRNA expression of the main pancreatic transcription factors and pancreatic hormones was increased. H-Islet-EVs were supplemented to the iPSC clusters in the later stages of differentiation. It was observed that h-Islet-EVs were able to up-regulate the intracellular levels of C-peptide in iPSC clusters in a concentration-dependent manner. The effect of h-Islet-EVs on the differentiation of iPSC clusters cultured in 3D-collagen hydrogels was also assessed. Although increased mRNA expression for pancreatic markers was observed when culturing the iPSC clusters in 3D-collagen hydrogels, delivery of EVs did not affect the insulin or C-peptide intracellular content. Our results provide new information on the role of h-Islet-EVs in the regulation of insulin expression in differentiating iPSC clusters, and are highly relevant for pancreatic tissue engineering applications.

  17. Identification of salt-stress induced differentially expressed genes in ...

    African Journals Online (AJOL)

    Identification of salt-stress induced differentially expressed genes in barley leaves using the annealingcontrol- primer-based GeneFishing technique. S Lee, K Lee, K Kim, GJ Choi, SH Yoon, HC Ji, S Seo, YC Lim, N Ahsan ...

  18. Role of Dicer1 in thyroid cell proliferation and differentiation.

    Science.gov (United States)

    Penha, Ricardo Cortez Cardoso; Sepe, Romina; De Martino, Marco; Esposito, Francesco; Pellecchia, Simona; Raia, Maddalena; Del Vecchio, Luigi; Decaussin-Petrucci, Myriam; De Vita, Gabriella; Pinto, Luis Felipe Ribeiro; Fusco, Alfredo

    2017-01-01

    DICER1 plays a central role in the biogenesis of microRNAs and it is important for normal development. Altered microRNA expression and DICER1 dysregulation have been described in several types of tumors, including thyroid carcinomas. Recently, our group identified a new somatic mutation (c.5438A>G; E1813G) within DICER1 gene of an unknown function. Herein, we show that DICER1 is overexpressed, at mRNA level, in a significant-relative number of papillary (70%) and anaplastic (42%) thyroid carcinoma samples, whereas is drastically downregulated in all the analyzed human thyroid carcinoma cell lines (TPC-1, BCPAP, FRO and 8505c) in comparison with normal thyroid tissue samples. Conversely, DICER1 is downregulated, at protein level, in PTC in comparison with normal thyroid tissues. Our data also reveals that DICER1 overexpression positively regulates thyroid cell proliferation, whereas its silencing impairs thyroid cell differentiation. The expression of DICER1 gene mutation (c.5438A>G; E1813G) negatively affects the microRNA machinery and cell proliferation as well as upregulates DICER1 protein levels of thyroid cells but has no impact on thyroid differentiation. In conclusion, DICER1 protein is downregulated in papillary thyroid carcinomas and affects thyroid proliferation and differentiation, while DICER1 gene mutation (c.5438A>G; E1813G) compromises the DICER1 wild-type-mediated microRNA processing and cell proliferation.

  19. Inhibition of STAT3 Expression and Signaling in Resveratrol-Differentiated Medulloblastoma Cells

    Directory of Open Access Journals (Sweden)

    Li-Jun Yu

    2008-07-01

    Full Text Available In this study, the potential influence of resveratrol (3,5,4′-trihydroxy-trans-stilbene in signal transducer and activator of transcription 3 (STAT3 signaling of medulloblastoma cells was evaluated by checking the status of STAT3 signaling and its downstream gene expression in two medulloblastoma cell lines (UW228-2 and UW228-3 with and without resveratrol treatment. The results revealed that resveratrol induced neuronal differentiation of medulloblastoma cells. Signal transducer and activator of transcription 3 expression and phosphorylation were detected in normally cultured UW228-2 and UW228-3 cells that were apparently attenuated after resveratrol treatment. The expression of STAT3 downstream genes, survivin, cyclin D1, Cox-2, and c-Myc, was suppressed but Bcl-2 was enhanced by resveratrol. Meanwhile, the production and secretion of leukemia inhibitory factor, a STAT3 activator, became active in resveratrol-treated cells. To further ascertain the significance of STAT3 signaling for medulloblastoma cells, AG490, a selective inhibitor of STAT3 phosphorylation, was used to treat UW228-3 cells. Phosphorylation of STAT3 was inhibited by AG490 accompanied with growth suppression, differentiation-like changes, and down-regulation of survivin, cyclin D1, Cox-2, and c-Myc. Our data thus suggest the importance of STAT3 signaling in maintenance and survival of medulloblastoma cells. This signaling may be the major target of resveratrol. Enhanced leukemia inhibitory factor and Bcl-2 expressions in resveratrol-treated cells might reflect a compensatory response to the loss of STAT3 function.

  20. [Cloning and characterization of genes differentially expressed in human dental pulp cells and gingival fibroblasts].

    Science.gov (United States)

    Wang, Zhong-dong; Wu, Ji-nan; Zhou, Lin; Ling, Jun-qi; Guo, Xi-min; Xiao, Ming-zhen; Zhu, Feng; Pu, Qin; Chai, Yu-bo; Zhao, Zhong-liang

    2007-02-01

    To study the biological properties of human dental pulp cells (HDPC) by cloning and analysis of genes differentially expressed in HDPC in comparison with human gingival fibroblasts (HGF). HDPC and HGF were cultured and identified by immunocytochemistry. HPDC and HGF subtractive cDNA library was established by PCR-based modified subtractive hybridization, genes differentially expressed by HPDC were cloned, sequenced and compared to find homogeneous sequence in GenBank by BLAST. Cloning and sequencing analysis indicate 12 genes differentially expressed were obtained, in which two were unknown genes. Among the 10 known genes, 4 were related to signal transduction, 2 were related to trans-membrane transportation (both cell membrane and nuclear membrane), and 2 were related to RNA splicing mechanisms. The biological properties of HPDC are determined by the differential expression of some genes and the growth and differentiation of HPDC are associated to the dynamic protein synthesis and secretion activities of the cell.

  1. Differential gene expression in human granulosa cells from recombinant FSH versus human menopausal gonadotropin ovarian stimulation protocols

    Directory of Open Access Journals (Sweden)

    Bietz Mandi G

    2010-03-01

    Full Text Available Abstract Background The study was designed to test the hypothesis that granulosa cell (GC gene expression response differs between recombinant FSH and human menopausal gonadotropin (hMG stimulation regimens. Methods Females Results After exclusions, 1736 genes exhibited differential expression between groups. Over 400 were categorized as signal transduction genes, ~180 as transcriptional regulators, and ~175 as enzymes/metabolic genes. Expression of selected genes was confirmed by RT-PCR. Differentially expressed genes included A kinase anchor protein 11 (AKAP11, bone morphogenetic protein receptor II (BMPR2, epidermal growth factor (EGF, insulin-like growth factor binding protein (IGFBP-4, IGFBP-5, and hypoxia-inducible factor (HIF-1 alpha. Conclusions Results suggest that major differences exist in the mechanism by which pure FSH alone versus FSH/LH regulate gene expression in preovulatory GC that could impact oocyte maturity and developmental competence.

  2. The effect of delta-like 1 homologue on the proliferation and odontoblastic differentiation in human dental pulp stem cells.

    Science.gov (United States)

    Qi, Shengcai; Yan, Yanhong; Wen, Yue; Li, Jialiang; Wang, Jing; Chen, Fubo; Tang, Xiaoshan; Shang, Guangwei; Xu, Yuanzhi; Wang, Raorao

    2017-06-01

    This study aimed to investigate the functions of delta-like homologue 1 (DLK1) in the proliferation and differentiation of human dental pulp stem cells (hDPSCs). Immunohistochemical analysis was used to determine the expression of alkaline phosphatase (ALP), dentin sialophosphoprotein (DSPP), DLK1, NOTCH1 and p-ERK1/2 in the mouse first maxillary molar. Recombinant lentivirus was constructed to overexpress DLK1 stably in hDPSCs. The cell viability and proliferation of hDPSCs were examined by CCK8 and EdU incorporation assay respectively. The odontoblastic differentiation of hDPSCs was determined by detection of ALPase activity assay, ALP and alizarin red staining and the expression of mineralization-related genes including ALP, DSPP and dental matrix protein. The mRNA and protein levels of DLK1 and p-ERK1/2 protein expression were detected. ERK inhibitor was used to test the differentiation effect of DLK1 on hDPSCs. Delta-like homologue 1 was highly expressed on the odontoblasts and dental pulp cells on the first maxillary molar; the expression of p-ERK1/2 is similar with the DLK1 in the same process. The expression level of DLK1 increased significantly after the odontoblastic induction of hDPSCs. DLK1 overexpression increased the proliferation ability of hDPSCs and inhibited odontoblastic differentiation of hDPSCs. The protein level of p-ERK1/2 significantly increased in hDPSCs/dlk1-oe group. ERK signalling pathway inhibitor reversed the odontoblastic differentiation effects of DLK1 on hDPSCs. The proliferation of hDPSCs was promoted after DLK1 overexpression. DLK1 inhibited the odontoblastic differentiation of hDPSCs, which maybe through ERK signalling pathway. © 2017 John Wiley & Sons Ltd.

  3. Despite differential gene expression profiles pediatric MDS derived mesenchymal stromal cells display functionality in vitro.

    Science.gov (United States)

    Calkoen, F G J; Vervat, C; van Pel, M; de Haas, V; Vijfhuizen, L S; Eising, E; Kroes, W G M; 't Hoen, P A C; van den Heuvel-Eibrink, M M; Egeler, R M; van Tol, M J D; Ball, L M

    2015-03-01

    Pediatric myelodysplastic syndrome (MDS) is a heterogeneous disease covering a spectrum ranging from aplasia (RCC) to myeloproliferation (RAEB(t)). In adult-type MDS there is increasing evidence for abnormal function of the bone-marrow microenvironment. Here, we extensively studied the mesenchymal stromal cells (MSCs) derived from children with MDS. MSCs were expanded from the bone-marrow of 17 MDS patients (RCC: n=10 and advanced MDS: n=7) and pediatric controls (n=10). No differences were observed with respect to phenotype, differentiation capacity, immunomodulatory capacity or hematopoietic support. mRNA expression analysis by Deep-SAGE revealed increased IL-6 expression in RCC- and RAEB(t)-MDS. RCC-MDS MSC expressed increased levels of DKK3, a protein associated with decreased apoptosis. RAEB(t)-MDS revealed increased CRLF1 and decreased DAPK1 expressions. This pattern has been associated with transformation in hematopoietic malignancies. Genes reported to be differentially expressed in adult MDS-MSC did not differ between MSC of pediatric MDS and controls. An altered mRNA expression profile, associated with cell survival and malignant transformation, of MSC derived from children with MDS strengthens the hypothesis that the micro-environment is of importance in this disease. Our data support the understanding that pediatric and adult MDS are two different diseases. Further evaluation of the pathways involved might reveal additional therapy targets. Copyright © 2015. Published by Elsevier B.V.

  4. Small suitability of the DLEC1, MLH1 and TUSC4 mRNA expression analysis as potential prognostic or differentiating markers for NSCLC patients in the Polish population.

    Science.gov (United States)

    Kordiak, Jacek; Czarnecka, Karolina H; Pastuszak-Lewandoska, Dorota; Antczak, Adam; Migdalska-Sęk, Monika; Nawrot, Ewa; Domańska-Senderowska, Daria; Kiszałkiewicz, Justyna; Brzeziańska-Lasota, Ewa

    2017-06-01

    According to the latest data, lung cancer is one of the most common cancer worldwide, men contributing nearly 21.2% and women 8.6% of all diagnosed cancers. Late detection of tumour drastically reduces the chance for a cure. Thus, it is important to search for candidate biomarkers for screening of early stage nonsmall cell lung carcinoma (NSCLC). Tumour suppressor genes, DLEC1, TUSC4 and MLH1, localized on 3p21 are recognized to play a role in NSCLC carcinogenesis. The aim of this study was to assess the relationship between the DLEC1, TUSC4 and MLH1 mRNA expression, and clinical features of NSCLC patients, tobacco addiction, and tumour histopathological characteristics. The DLEC1, TUSC4 and MLH1 expression was analysed in lung tumour tissue samples obtained from 69 patients diagnosed with NSCLC: squamous cell carcinoma (n = 34), adenocarcinoma (n = 24), large cell carcinoma (n = 5), carcinoma adenosquamosum (n = 5). A decreased gene expression (RQ MLH1 in 50.7% and for TUSC4 in 26% of NSCLC samples. DLEC1 was decreased in more aggressive subtypes: large cell carcinoma and adenocarcinoma-squamous cell carcinoma. The simultaneous downregulation of two of the studied genes, DLEC1 andMLH1,was observed in 30.4% of NSCLCsamples, highlighting the importance of these two genes in lung carcinogenesis. We found no correlation between the DLEC1, TUSC4 and MLH1 gene expression and NSCLC patient characteristics (gender, age and smoking) or cancer histopathology. No significant differences in the gene expression among NSCLC subtypes indicate the weakness of DLEC1, TUSC4 and MLH1 expression analysis as potential differentiating markers of NSCLC subtypes in the Polish population.

  5. Voltage-gated sodium channel expression and action potential generation in differentiated NG108-15 cells.

    Science.gov (United States)

    Liu, Jinxu; Tu, Huiyin; Zhang, Dongze; Zheng, Hong; Li, Yu-Long

    2012-10-25

    The generation of action potential is required for stimulus-evoked neurotransmitter release in most neurons. Although various voltage-gated ion channels are involved in action potential production, the initiation of the action potential is mainly mediated by voltage-gated Na+ channels. In the present study, differentiation-induced changes of mRNA and protein expression of Na+ channels, Na+ currents, and cell membrane excitability were investigated in NG108-15 cells. Whole-cell patch-clamp results showed that differentiation (9 days) didn't change cell membrane excitability, compared to undifferentiated state. But differentiation (21 days) induced the action potential generation in 45.5% of NG108-15 cells (25/55 cells). In 9-day-differentiated cells, Na+ currents were mildly increased, which was also found in 21-day differentiated cells without action potential. In 21-day differentiated cells with action potential, Na+ currents were significantly enhanced. Western blot data showed that the expression of Na+ channels was increased with differentiated-time dependent manner. Single-cell real-time PCR data demonstrated that the expression of Na+ channel mRNA was increased by 21 days of differentiation in NG108-15 cells. More importantly, the mRNA level of Na+ channels in cells with action potential was higher than that in cells without action potential. Differentiation induces expression of voltage-gated Na+ channels and action potential generation in NG108-15 cells. A high level of the Na+ channel density is required for differentiation-triggered action potential generation.

  6. TET1 knockdown inhibits the odontogenic differentiation potential of human dental pulp cells.

    Science.gov (United States)

    Rao, Li-Jia; Yi, Bai-Cheng; Li, Qi-Meng; Xu, Qiong

    2016-06-30

    Human dental pulp cells (hDPCs) possess the capacity to differentiate into odontoblast-like cells and generate reparative dentin in response to exogenous stimuli or injury. Ten-eleven translocation 1 (TET1) is a novel DNA methyldioxygenase that plays an important role in the promotion of DNA demethylation and transcriptional regulation in several cell lines. However, the role of TET1 in the biological functions of hDPCs is unknown. To investigate the effect of TET1 on the proliferation and odontogenic differentiation potential of hDPCs, a recombinant shRNA lentiviral vector was used to knock down TET1 expression in hDPCs. Following TET1 knockdown, TET1 was significantly downregulated at both the mRNA and protein levels. Proliferation of the hDPCs was suppressed in the TET1 knockdown groups. Alkaline phosphatase activity, the formation of mineralized nodules, and the expression levels of DSPP and DMP1 were all reduced in the TET1-knockdown hDPCs undergoing odontogenic differentiation. Based on these results, we concluded that TET1 knockdown can prevent the proliferation and odontogenic differentiation of hDPCs, which suggests that TET1 may play an important role in dental pulp repair and regeneration.

  7. Differential expression of growth factors in irradiated mouse testes

    International Nuclear Information System (INIS)

    Mauduit, Claire; Siah, Ahmed; Foch, Marie; Chapet, Olivier; Clippe, Sebastien; Gerard, Jean-Pierre; Benahmed, Mohamed

    2001-01-01

    Purpose: By using as an experimental model the male mouse gonad, which contains both radiosensitive (germ) and radioresistant (somatic) cells, we have studied the growth factor (and/or receptor) expression of transforming growth factor-β receptor (TGFβ RI), stem cell factor (SCF), c-kit, Fas-L, Fas, tumor necrosis factor receptor (TNF R55), and leukemia inhibiting factor receptor (LIF-R) after local irradiation. Methods and Materials: Adult male mice were locally irradiated on the testes. Induction of apoptosis in the different testicular cell types following X-ray radiation was identified by the TdT-mediated dUTP Nick End Labeling (TUNEL) approach. Growth factor expression was evidenced by semiquantitative RT-PCR and Western blot analyses. Results: Apoptosis, identified through the TUNEL approach, occurred in radiosensitive testicular (premeotic) germ cells with the following kinetics: the number of apoptotic cells increased after 24 h (p<0.001) and was maximal 48 h after a 2-Gy ionizing radiation (p<0.001). Apoptotic cells were no longer observed 72 h after a 2-Gy irradiation. The number of apoptotic cells increased with the dose of irradiation (1-4 Gy). In the seminiferous tubules, the growth factor expression in premeiotic radiosensitive germ cells was modulated by irradiation. Indeed Fas, c-kit, and LIF-R expression, which occurs in (radiosensitive) germ cells, decreased 24 h after a 2-Gy irradiation, and the maximal decrease was observed with a 4-Gy irradiation. The decrease in Stra8 expression occurred earlier, at 4 h after a 2-Gy irradiation. In addition, a significant (p<0.03) decrease in Stra8 mRNA levels was observed at the lowest dose used (0.5 Gy, 48 h). Moreover, concerning a growth factor receptor, such as TGFβ RI, which is expressed both in radiosensitive and radioresistant cells, we observed a differential expression depending on the cell radiosensitivity after irradiation. Indeed, TGFβ RI expression was increased after irradiation in

  8. Designed Surface Topographies Control ICAM-1 Expression in Tonsil-Derived Human Stromal Cells

    Directory of Open Access Journals (Sweden)

    Aliaksei S. Vasilevich

    2018-06-01

    Full Text Available Fibroblastic reticular cells (FRCs, the T-cell zone stromal cell subtype in the lymph nodes, create a scaffold for adhesion and migration of immune cells, thus allowing them to communicate. Although known to be important for the initiation of immune responses, studies about FRCs and their interactions have been impeded because FRCs are limited in availability and lose their function upon culture expansion. To circumvent these limitations, stromal cell precursors can be mechanotranduced to form mature FRCs. Here, we used a library of designed surface topographies to trigger FRC differentiation from tonsil-derived stromal cells (TSCs. Undifferentiated TSCs were seeded on a TopoChip containing 2176 different topographies in culture medium without differentiation factors, then monitored cell morphology and the levels of ICAM-1, a marker of FRC differentiation. We identified 112 and 72 surfaces that upregulated and downregulated, respectively, ICAM-1 expression. By monitoring cell morphology, and expression of the FRC differentiation marker ICAM-1 via image analysis and machine learning, we discovered correlations between ICAM-1 expression, cell shape and design of surface topographies and confirmed our findings by using flow cytometry. Our findings confirmed that TSCs are mechano-responsive cells and identified particular topographies that can be used to improve FRC differentiation protocols.

  9. Genome-wide identification of differentially expressed genes under water deficit stress in upland cotton (Gossypium hirsutum L.).

    Science.gov (United States)

    Park, Wonkeun; Scheffler, Brian E; Bauer, Philip J; Campbell, B Todd

    2012-06-15

    Cotton is the world's primary fiber crop and is a major agricultural commodity in over 30 countries. Like many other global commodities, sustainable cotton production is challenged by restricted natural resources. In response to the anticipated increase of agricultural water demand, a major research direction involves developing crops that use less water or that use water more efficiently. In this study, our objective was to identify differentially expressed genes in response to water deficit stress in cotton. A global expression analysis using cDNA-Amplified Fragment Length Polymorphism was conducted to compare root and leaf gene expression profiles from a putative drought resistant cotton cultivar grown under water deficit stressed and well watered field conditions. We identified a total of 519 differentially expressed transcript derived fragments. Of these, 147 transcript derived fragment sequences were functionally annotated according to their gene ontology. Nearly 70 percent of transcript derived fragments belonged to four major categories: 1) unclassified, 2) stress/defense, 3) metabolism, and 4) gene regulation. We found heat shock protein-related and reactive oxygen species-related transcript derived fragments to be among the major parts of functional pathways induced by water deficit stress. Also, twelve novel transcripts were identified as both water deficit responsive and cotton specific. A subset of differentially expressed transcript derived fragments was verified using reverse transcription-polymerase chain reaction. Differential expression analysis also identified five pairs of duplicated transcript derived fragments in which four pairs responded differentially between each of their two homologues under water deficit stress. In this study, we detected differentially expressed transcript derived fragments from water deficit stressed root and leaf tissues in tetraploid cotton and provided their gene ontology, functional/biological distribution, and

  10. Network Analysis for the Identification of Differentially Expressed Hub Genes Using Myogenin Knock-down Muscle Satellite Cells.

    Directory of Open Access Journals (Sweden)

    Adeel Malik

    Full Text Available Muscle, a multinucleate syncytium formed by the fusion of mononuclear myoblasts, arises from quiescent progenitors (satellite cells via activation of muscle-specific transcription factors (MyoD, Myf5, myogenin: MYOG, and MRF4. Subsequent to a decline in Pax7, induction in the expression of MYOG is a hallmark of myoblasts that have entered the differentiation phase following cell cycle withdrawal. It is evident that MYOG function cannot be compensated by any other myogenic regulatory factors (MRFs. Despite a plethora of information available regarding MYOG, the mechanism by which MYOG regulates muscle cell differentiation has not yet been identified. Using an RNA-Seq approach, analysis of MYOG knock-down muscle satellite cells (MSCs have shown that genes associated with cell cycle and division, DNA replication, and phosphate metabolism are differentially expressed. By constructing an interaction network of differentially expressed genes (DEGs using GeneMANIA, cadherin-associated protein (CTNNA2 was identified as the main hub gene in the network with highest node degree. Four functional clusters (modules or communities were identified in the network and the functional enrichment analysis revealed that genes included in these clusters significantly contribute to skeletal muscle development. To confirm this finding, in vitro studies revealed increased expression of CTNNA2 in MSCs on day 12 compared to day 10. Expression of CTNNA2 was decreased in MYOG knock-down cells. However, knocking down CTNNA2, which leads to increased expression of extracellular matrix (ECM genes (type I collagen α1 and type I collagen α2 along with myostatin (MSTN, was not found significantly affecting the expression of MYOG in C2C12 cells. We therefore propose that MYOG exerts its regulatory effects by acting upstream of CTNNA2, which in turn regulates the differentiation of C2C12 cells via interaction with ECM genes. Taken together, these findings highlight a new

  11. ISL1 protein transduction promotes cardiomyocyte differentiation from human embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Hananeh Fonoudi

    Full Text Available BACKGROUND: Human embryonic stem cells (hESCs have the potential to provide an unlimited source of cardiomyocytes, which are invaluable resources for drug or toxicology screening, medical research, and cell therapy. Currently a number of obstacles exist such as the insufficient efficiency of differentiation protocols, which should be overcome before hESC-derived cardiomyocytes can be used for clinical applications. Although the differentiation efficiency can be improved by the genetic manipulation of hESCs to over-express cardiac-specific transcription factors, these differentiated cells are not safe enough to be applied in cell therapy. Protein transduction has been demonstrated as an alternative approach for increasing the efficiency of hESCs differentiation toward cardiomyocytes. METHODS: We present an efficient protocol for the differentiation of hESCs in suspension by direct introduction of a LIM homeodomain transcription factor, Islet1 (ISL1 recombinant protein into the cells. RESULTS: We found that the highest beating clusters were derived by continuous treatment of hESCs with 40 µg/ml recombinant ISL1 protein during days 1-8 after the initiation of differentiation. The treatment resulted in up to a 3-fold increase in the number of beating areas. In addition, the number of cells that expressed cardiac specific markers (cTnT, CONNEXIN 43, ACTININ, and GATA4 doubled. This protocol was also reproducible for another hESC line. CONCLUSIONS: This study has presented a new, efficient, and reproducible procedure for cardiomyocytes differentiation. Our results will pave the way for scaled up and controlled differentiation of hESCs to be used for biomedical applications in a bioreactor culture system.

  12. Delta-like 1/fetal antigen-1 (Dlk1/FA1) is a novel regulator of chondrogenic cell differentiation via inhibition of the Akt kinase-dependent pathway

    DEFF Research Database (Denmark)

    Chen, Li; Qanie, Diyako; Jafari, Abbas

    2011-01-01

    Delta-like 1 (Dlk1, also known as fetal antigen-1, FA1) is a member of Notch/Delta family that inhibits adipocyte and osteoblast differentiation; however, its role in chondrogenesis is still not clear. Thus, we overexpressed Dlk1/FA1 in mouse embryonic ATDC5 cells and tested its effects...... on chondrogenic differentiation. Dlk1/FA1 inhibited insulin-induced chondrogenic differentiation as evidenced by reduction of cartilage nodule formation and gene expression of aggrecan, collagen Type II and X. Similar effects were obtained either by using Dlk1/FA1-conditioned medium or by addition of a purified......, secreted, form of Dlk1 (FA1) directly to the induction medium. The inhibitory effects of Dlk1/FA1 were dose-dependent and occurred irrespective of the chondrogenic differentiation stage: proliferation, differentiation, maturation, or hypertrophic conversion. Overexpression or addition of the Dlk1/FA1...

  13. Induction of NFATc2 expression by interleukin 6 promotes T helper type 2 differentiation.

    Science.gov (United States)

    Diehl, Sean; Chow, Chi-Wing; Weiss, Linda; Palmetshofer, Alois; Twardzik, Thomas; Rounds, Laura; Serfling, Edgar; Davis, Roger J; Anguita, Juan; Rincón, Mercedes

    2002-07-01

    Interleukin (IL)-6 is produced by professional antigen-presenting cells (APCs) such as B cells, macrophages, and dendritic cells. It has been previously shown that APC-derived IL-6 promotes the differentiation of naive CD4+ T cells into effector T helper type 2 (Th2) cells. Here, we have studied the molecular mechanism for IL-6-mediated Th2 differentiation. During the activation of CD4+ T cells, IL-6 induces the production of IL-4, which promotes the differentiation of these cells into effector Th2 cells. Regulation of IL-4 gene expression by IL-6 is mediated by nuclear factor of activated T cells (NFAT), as inhibition of NFAT prevents IL-6-driven IL-4 production and Th2 differentiation. IL-6 upregulates NFAT transcriptional activity by increasing the levels of NFATc2. The ability of IL-6 to promote Th2 differentiation is impaired in CD4+ T cells that lack NFATc2, demonstrating that NFATc2 is required for regulation of IL-4 gene expression by IL-6. Regulation of NFATc2 expression and NFAT transcriptional activity represents a novel pathway by which IL-6 can modulate gene expression.

  14. Ihh/Gli2 signaling promotes osteoblast differentiation by regulating Runx2 expression and function.

    Science.gov (United States)

    Shimoyama, Atsuko; Wada, Masahiro; Ikeda, Fumiyo; Hata, Kenji; Matsubara, Takuma; Nifuji, Akira; Noda, Masaki; Amano, Katsuhiko; Yamaguchi, Akira; Nishimura, Riko; Yoneda, Toshiyuki

    2007-07-01

    Genetic and cell biological studies have indicated that Indian hedgehog (Ihh) plays an important role in bone development and osteoblast differentiation. However, the molecular mechanism by which Ihh regulates osteoblast differentiation is complex and remains to be fully elucidated. In this study, we investigated the role of Ihh signaling in osteoblast differentiation using mesenchymal cells and primary osteoblasts. We observed that Ihh stimulated alkaline phosphatase (ALP) activity, osteocalcin expression, and calcification. Overexpression of Gli2- but not Gli3-induced ALP, osteocalcin expression, and calcification of these cells. In contrast, dominant-negative Gli2 markedly inhibited Ihh-dependent osteoblast differentiation. Ihh treatment or Gli2 overexpression also up-regulated the expression of Runx2, an essential transcription factor for osteoblastogenesis, and enhanced the transcriptional activity and osteogenic action of Runx2. Coimmunoprecipitation analysis demonstrated a physical interaction between Gli2 and Runx2. Moreover, Ihh or Gli2 overexpression failed to increase ALP activity in Runx2-deficient mesenchymal cells. Collectively, these results suggest that Ihh regulates osteoblast differentiation of mesenchymal cells through up-regulation of the expression and function of Runx2 by Gli2.

  15. Expression of Iron-Related Proteins Differentiate Non-Cancerous and Cancerous Breast Tumors

    Directory of Open Access Journals (Sweden)

    Sara Pizzamiglio

    2017-02-01

    Full Text Available We have previously reported hepcidin and ferritin increases in the plasma of breast cancer patients, but not in patients with benign breast disease. We hypothesized that these differences in systemic iron homeostasis may reflect alterations in different iron-related proteins also play a key biochemical and regulatory role in breast cancer. Thus, here we explored the expression of a bundle of molecules involved in both iron homeostasis and tumorigenesis in tissue samples. Enzyme-linked immunosorbent assay (ELISA or reverse-phase protein array (RPPA, were used to measure the expression of 20 proteins linked to iron processes in 24 non-cancerous, and 56 cancerous, breast tumors. We found that cancerous tissues had higher level of hepcidin than benign lesions (p = 0.012. The univariate analysis of RPPA data highlighted the following seven proteins differentially expressed between non-cancerous and cancerous breast tissue: signal transducer and transcriptional activator 5 (STAT5, signal transducer and activator of transcription 3 (STAT3, bone morphogenetic protein 6 (BMP6, cluster of differentiation 74 (CD74, transferrin receptor (TFRC, inhibin alpha (INHA, and STAT5_pY694. These findings were confirmed for STAT5, STAT3, BMP6, CD74 and INHA when adjusting for age. The multivariate statistical analysis indicated an iron-related 10-protein panel effective in separating non-cancerous from cancerous lesions including STAT5, STAT5_pY694, myeloid differentiation factor 88 (MYD88, CD74, iron exporter ferroportin (FPN, high mobility group box 1 (HMGB1, STAT3_pS727, TFRC, ferritin heavy chain (FTH, and ferritin light chain (FTL. Our results showed an association between some iron-related proteins and the type of tumor tissue, which may provide insight in strategies for using iron chelators to treat breast cancer.

  16. Analysis of mesenchymal stem cell differentiation in vitro using classification association rule mining.

    Science.gov (United States)

    Wang, Weiqi; Wang, Yanbo Justin; Bañares-Alcántara, René; Coenen, Frans; Cui, Zhanfeng

    2009-12-01

    In this paper, data mining is used to analyze the data on the differentiation of mammalian Mesenchymal Stem Cells (MSCs), aiming at discovering known and hidden rules governing MSC differentiation, following the establishment of a web-based public database containing experimental data on the MSC proliferation and differentiation. To this effect, a web-based public interactive database comprising the key parameters which influence the fate and destiny of mammalian MSCs has been constructed and analyzed using Classification Association Rule Mining (CARM) as a data-mining technique. The results show that the proposed approach is technically feasible and performs well with respect to the accuracy of (classification) prediction. Key rules mined from the constructed MSC database are consistent with experimental observations, indicating the validity of the method developed and the first step in the application of data mining to the study of MSCs.

  17. PPARγ isoforms differentially regulate metabolic networks to mediate mouse prostatic epithelial differentiation.

    Science.gov (United States)

    Strand, D W; Jiang, M; Murphy, T A; Yi, Y; Konvinse, K C; Franco, O E; Wang, Y; Young, J D; Hayward, S W

    2012-08-09

    Recent observations indicate prostatic diseases are comorbidities of systemic metabolic dysfunction. These discoveries revealed fundamental questions regarding the nature of prostate metabolism. We previously showed that prostate-specific ablation of PPARγ in mice resulted in tumorigenesis and active autophagy. Here, we demonstrate control of overlapping and distinct aspects of prostate epithelial metabolism by ectopic expression of individual PPARγ isoforms in PPARγ knockout prostate epithelial cells. Expression and activation of either PPARγ 1 or 2 reduced de novo lipogenesis and oxidative stress and mediated a switch from glucose to fatty acid oxidation through regulation of genes including Pdk4, Fabp4, Lpl, Acot1 and Cd36. Differential effects of PPARγ isoforms included decreased basal cell differentiation, Scd1 expression and triglyceride fatty acid desaturation and increased tumorigenicity by PPARγ1. In contrast, PPARγ2 expression significantly increased basal cell differentiation, Scd1 expression and AR expression and responsiveness. Finally, in confirmation of in vitro data, a PPARγ agonist versus high-fat diet (HFD) regimen in vivo confirmed that PPARγ agonization increased prostatic differentiation markers, whereas HFD downregulated PPARγ-regulated genes and decreased prostate differentiation. These data provide a rationale for pursuing a fundamental metabolic understanding of changes to glucose and fatty acid metabolism in benign and malignant prostatic diseases associated with systemic metabolic stress.

  18. Collagen-derived dipeptide prolyl-hydroxyproline promotes differentiation of MC3T3-E1 osteoblastic cells

    International Nuclear Information System (INIS)

    Kimira, Yoshifumi; Ogura, Kana; Taniuchi, Yuri; Kataoka, Aya; Inoue, Naoki; Sugihara, Fumihito; Nakatani, Sachie; Shimizu, Jun; Wada, Masahiro; Mano, Hiroshi

    2014-01-01

    Highlights: • Pro-Hyp did not affect MC3T3-E1 cell proliferation and matrix mineralization. • Pro-Hyp significantly increased alkaline phosphatase activity. • Pro-Hyp significantly upregulated gene expression of Runx2, Osterix, and Col1α1. - Abstract: Prolyl-hydroxyproline (Pro-Hyp) is one of the major constituents of collagen-derived dipeptides. The objective of this study was to investigate the effects of Pro-Hyp on the proliferation and differentiation of MC3T3-E1 osteoblastic cells. Addition of Pro-Hyp did not affect MC3T3-E1 cell proliferation and matrix mineralization but alkaline phosphatase activity was significantly increased. Furthermore, cells treated with Pro-Hyp significantly upregulated gene expression of Runx2, Osterix, and Col1α1. These results indicate that Pro-Hyp promotes osteoblast differentiation. This study demonstrates for the first time that Pro-Hyp has a positive effect on osteoblast differentiation with upregulation of Runx2, Osterix, and Collα1 gene expression

  19. Divalent Metal Ions Induced Osteogenic Differentiation of MC3T3E1

    Science.gov (United States)

    Wang, Guoshou; Su, Wenta; Chen, Pohung; Huang, Teyang

    2017-12-01

    Biomaterial scaffolds blended with biochemical signal molecules with adequate osteoinductive and osteoconductive properties have attracted significant interest in bone tissue engineering regeneration. The divalent metal ions can gradually release from the scaffold into the culture medium and then induced osteoblastic differentiation of MC3T3E1. These MC3T3E1 cells expressed high activity of alkaline phosphatase, bone-related gene expression of collagen type I, Runx2, osteopontin, osteocalcin, and significantly enhanced deposited minerals on scaffold after 21 days of culture. This experiment provided a useful inducer for osteogenic differentiation in bone repair.

  20. Knockdown of CDK2AP1 in human embryonic stem cells reduces the threshold of differentiation.

    Directory of Open Access Journals (Sweden)

    Khaled N Alsayegh

    Full Text Available Recent studies have suggested a role for the Cyclin Dependent Kinase-2 Associated Protein 1 (CDK2AP1 in stem cell differentiation and self-renewal. In studies with mouse embryonic stem cells (mESCs derived from generated mice embryos with targeted deletion of the Cdk2ap1 gene, CDK2AP1 was shown to be required for epigenetic silencing of Oct4 during differentiation, with deletion resulting in persistent self-renewal and reduced differentiation potential. Differentiation capacity was restored in these cells following the introduction of a non-phosphorylatible form of the retinoblastoma protein (pRb or exogenous Cdk2ap1. In this study, we investigated the role of CDK2AP1 in human embryonic stem cells (hESCs. Using a shRNA to reduce its expression in hESCs, we found that CDK2AP1 knockdown resulted in a significant reduction in the expression of the pluripotency genes, OCT4 and NANOG. We also found that CDK2AP1 knockdown increased the number of embryoid bodies (EBs formed when differentiation was induced. In addition, the generated EBs had significantly higher expression of markers of all three germ layers, indicating that CDK2AP1 knockdown enhanced differentiation. CDK2AP1 knockdown also resulted in reduced proliferation and reduced the percentage of cells in the S phase and increased cells in the G2/M phase of the cell cycle. Further investigation revealed that a higher level of p53 protein was present in the CDK2AP1 knockdown hESCs. In hESCs in which p53 and CDK2AP1 were simultaneously downregulated, OCT4 and NANOG expression was not affected and percentage of cells in the S phase of the cell cycle was not reduced. Taken together, our results indicate that the knockdown of CDK2AP1 in hESCs results in increased p53 and enhances differentiation and favors it over a self-renewal fate.