WorldWideScience

Sample records for differential absorption lidar

  1. Differential absorption and Raman lidar for water vapor profile measurements - A review

    Science.gov (United States)

    Grant, William B.

    1991-01-01

    Differential absorption lidar and Raman lidar have been applied to the range-resolved measurements of water vapor density for more than 20 years. Results have been obtained using both lidar techniques that have led to improved understanding of water vapor distributions in the atmosphere. This paper reviews the theory of the measurements, including the sources of systematic and random error; the progress in lidar technology and techniques during that period, including a brief look at some of the lidar systems in development or proposed; and the steps being taken to improve such lidar systems.

  2. Triple-Pulse Integrated Path Differential Absorption Lidar for Carbon Dioxide Measurement - Novel Lidar Technologies and Techniques with Path to Space

    Science.gov (United States)

    Singh, Upendra N.; Refaat, Tamer F.; Petros, Mulugeta

    2017-01-01

    The societal benefits of understanding climate change through identification of global carbon dioxide sources and sinks led to the desired NASA's active sensing of carbon dioxide emissions over nights, days, and seasons (ASCENDS) space-based missions of global carbon dioxide measurements. For more than 15 years, NASA Langley Research Center (LaRC) have developed several carbon dioxide active remote sensors using the differential absorption lidar (DIAL) technique operating at the two-micron wavelength. Currently, an airborne two-micron triple-pulse integrated path differential absorption (IPDA) lidar is under development. This IPDA lidar measures carbon dioxide as well as water vapor, the dominant interfering molecule on carbon dioxide remote sensing. Advancement of this triple-pulse IPDA lidar development is presented.

  3. Differential Absorption Lidar to Measure Subhourly Variation of Tropospheric Ozone Profiles

    Science.gov (United States)

    Kuang, Shi; Burris, John F.; Newchurch, Michael J.; Johnson, Steve; Long, Stephania

    2011-01-01

    A tropospheric ozone Differential Absorption Lidar system, developed jointly by The University of Alabama in Huntsville and the National Aeronautics and Space Administration, is making regular observations of ozone vertical distributions between 1 and 8 km with two receivers under both daytime and nighttime conditions using lasers at 285 and 291 nm. This paper describes the lidar system and analysis technique with some measurement examples. An iterative aerosol correction procedure reduces the retrieval error arising from differential aerosol backscatter in the lower troposphere. Lidar observations with coincident ozonesonde flights demonstrate that the retrieval accuracy ranges from better than 10% below 4 km to better than 20% below 8 km with 750-m vertical resolution and 10-min 17 temporal integration.

  4. Water vapor spectroscopy in the 815-nm wavelength region for Differential Absorption Lidar measurements

    Science.gov (United States)

    Ponsardin, Patrick; Browell, Edward V.

    1995-01-01

    The differential absorption lidar (DIAL) technique was first applied to the remote measurement of atmospheric water vapor profiles from airborne platforms in 1981. The successful interpretation of the lidar profiles relies strongly on an accurate knowledge of specific water vapor absorption line parameters: line strength, pressure broadening coefficient, pressure-induced shift coefficient and the respective temperature-dependence factors. NASA Langley Research Center has developed and is currently testing an autonomous airborne water vapor lidar system: LASE (Lidar Atmospheric Sensing Experiment). This DIAL system uses a Nd:YAG-pumped Ti:Sapphire laser seeded by a diode laser as a lidar transmitter. The tunable diode has been selected to operate in the 813-818 nm wavelength region. This 5-nm spectral interval offers a large distribution of strengths for temperature-insensitive water vapor absorption lines. In support of the LASE project, a series of spectroscopic measurements were conducted for the 16 absorption lines that have been identified for use in the LASE measurements. Prior to this work, the experimental data for this water vapor absorption band were limited - to our knowledge - to the line strengths and to the line positions.

  5. Water vapor differential absorption lidar development and evaluation

    Science.gov (United States)

    Browell, E. V.; Wilkerson, T. D.; Mcllrath, T. J.

    1979-01-01

    A ground-based differential absorption lidar (DIAL) system is described which has been developed for vertical range-resolved measurements of water vapor. The laser transmitter consists of a ruby-pumped dye laser, which is operated on a water vapor absorption line at 724.372 nm. Part of the ruby laser output is transmitted simultaneously with the dye laser output to determine atmospheric scattering and attenuation characteristics. The dye and ruby laser backscattered light is collected by a 0.5-m diam telescope, optically separated in the receiver package, and independently detected using photomultiplier tubes. Measurements of vertical water vapor concentration profiles using the DIAL system at night are discussed, and comparisons are made between the water vapor DIAL measurements and data obtained from locally launched rawinsondes. Agreement between these measurements was found to be within the uncertainty of the rawinsonde data to an altitude of 3 km. Theoretical simulations of this measurement were found to give reasonably accurate predictions of the random error of the DIAL measurements. Confidence in these calculations will permit the design of aircraft and Shuttle DIAL systems and experiments using simulation results as the basis for defining lidar system performance requirements

  6. Atmospheric pressure and temperature profiling using near IR differential absorption lidar

    Science.gov (United States)

    Korb, C. L.; Schwemmer, G. K.; Dombrowski, M.; Weng, C. Y.

    1983-01-01

    The present investigation is concerned with differential absorption lidar techniques for remotely measuring the atmospheric temperature and pressure profile, surface pressure, and cloud top pressure-height. The procedure used in determining the pressure is based on the conduction of high-resolution measurements of absorption in the wings of lines in the oxygen A band. Absorption with respect to these areas is highly pressure sensitive in connection with the mechanism of collisional line broadening. The method of temperature measurement utilizes a determination of the absorption at the center of a selected line in the oxygen A band which originates from a quantum state with high ground state energy.

  7. Airborne differential absorption lidar system for water vapor investigations

    Science.gov (United States)

    Browell, E. V.; Carter, A. F.; Wilkerson, T. D.

    1981-01-01

    Range-resolved water vapor measurements using the differential-absorption lidar (DIAL) technique is described in detail. The system uses two independently tunable optically pumped lasers operating in the near infrared with laser pulses of less than 100 microseconds separation, to minimize concentration errors caused by atmospheric scattering. Water vapor concentration profiles are calculated for each measurement by a minicomputer, in real time. The work is needed in the study of atmospheric motion and thermodynamics as well as in forestry and agriculture problems.

  8. Development of wavelength locking circuit for 1.53 micron water vapor monitoring coherent differential absorption LIDAR

    Science.gov (United States)

    Imaki, Masaharu; Kojima, Ryota; Kameyama, Shumpei

    2018-04-01

    We have studied a ground based coherent differential absorption LIDAR (DIAL) for vertical profiling of water vapor density using a 1.5μm laser wavelength. A coherent LIDAR has an advantage in daytime measurement compared with incoherent LIDAR because the influence of background light is greatly suppressed. In addition, the LIDAR can simultaneously measure wind speed and water vapor density. We had developed a wavelength locking circuit using the phase modulation technique and offset locking technique, and wavelength stabilities of 0.123 pm which corresponds to 16 MHz are realized. In this paper, we report the wavelength locking circuits for the 1.5 um wavelength.

  9. Validation of double-pulse 1572 nm integrated path differential absorption lidar measurement of carbon dioxide

    Science.gov (United States)

    Du, Juan; Liu, Jiqiao; Bi, Decang; Ma, Xiuhua; Hou, Xia; Zhu, Xiaolei; Chen, Weibiao

    2018-04-01

    A ground-based double-pulse 1572 nm integrated path differential absorption (IPDA) lidar was developed for carbon dioxide (CO2) column concentrations measurement. The lidar measured the CO2 concentrations continuously by receiving the scattered echo signal from a building about 1300 m away. The other two instruments of TDLAS and in-situ CO2 analyzer measured the CO2 concentrations on the same time. A CO2 concentration measurement of 430 ppm with 1.637 ppm standard error was achieved.

  10. Airborne Measurements of CO2 Column Absorption and Range Using a Pulsed Direct-Detection Integrated Path Differential Absorption Lidar

    Science.gov (United States)

    Abshire, James B.; Riris, Haris; Weaver, Clark J.; Mao, Jianping; Allan, Graham R.; Hasselbrack, William E.; Browell, Edward V.

    2013-01-01

    We report on airborne CO2 column absorption measurements made in 2009 with a pulsed direct-detection lidar operating at 1572.33 nm and utilizing the integrated path differential absorption technique. We demonstrated these at different altitudes from an aircraft in July and August in flights over four locations in the central and eastern United States. The results show clear CO2 line shape and absorption signals, which follow the expected changes with aircraft altitude from 3 to 13 km. The lidar measurement statistics were also calculated for each flight as a function of altitude. The optical depth varied nearly linearly with altitude, consistent with calculations based on atmospheric models. The scatter in the optical depth measurements varied with aircraft altitude as expected, and the median measurement precisions for the column varied from 0.9 to 1.2 ppm. The altitude range with the lowest scatter was 810 km, and the majority of measurements for the column within it had precisions between 0.2 and 0.9 ppm.

  11. Differential absorption lidar measurements of atmospheric water vapor using a pseudonoise code modulated AlGaAs laser. Thesis

    Science.gov (United States)

    Rall, Jonathan A. R.

    1994-01-01

    Lidar measurements using pseudonoise code modulated AlGaAs lasers are reported. Horizontal path lidar measurements were made at night to terrestrial targets at ranges of 5 and 13 km with 35 mW of average power and integration times of one second. Cloud and aerosol lidar measurements were made to thin cirrus clouds at 13 km altitude with Rayleigh (molecular) backscatter evident up to 9 km. Average transmitter power was 35 mW and measurement integration time was 20 minutes. An AlGaAs laser was used to characterize spectral properties of water vapor absorption lines at 811.617, 816.024, and 815.769 nm in a multipass absorption cell using derivative spectroscopy techniques. Frequency locking of an AlGaAs laser to a water vapor absorption line was achieved with a laser center frequency stability measured to better than one-fifth of the water vapor Doppler linewidth over several minutes. Differential absorption lidar measurements of atmospheric water vapor were made in both integrated path and range-resolved modes using an externally modulated AlGaAs laser. Mean water vapor number density was estimated from both integrated path and range-resolved DIAL measurements and agreed with measured humidity values to within 6.5 percent and 20 percent, respectively. Error sources were identified and their effects on estimates of water vapor number density calculated.

  12. Characterization of the EPRI Differential Absorption Lidar (DIAL) System. Final report. [For remote sensing of air pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Baumgartner, R.A.; Depp, J.G.; Evans, W.E.; Grant, W.B.; Hawley, J.G.; March, R.G.; Murray, E.R.; Proctor, E.K.

    1979-12-01

    SRI International designed and constructed a DIfferential Absorption Lidar (DIAL) to provide EPRI with a mobile field system for remote measurements of SO/sub 2/, NO/sub 3/, and O/sub 3/. After field testing the lidar was prepared for the sytem calibration testing where lidar measurements were compared to in situ profiles of SO/sub 2/, NO/sub 2/, and O/sub 3/. This two-week field program determined overall system accuracy and reliability in measuring varying ambient gas concentrations. The lidar was then returned to SRI for detailed subsystem performance evaluations. Improvements were made wherever possible, and the lidar was prepared for further systems tests. Tests were made using an NO/sub 2/ sample chamber to simulate a calibrated NO/sub 2/ plume, and ambient measured NO/sub 2/ concentrations were compared with values from a regional air pollutant monitoring station. Following the local calibration and the systems field tests, SRI evaluated the performance and reliability of the EPRI lidar. Based on that evaluation, SRI undertook a major analysis of possible system improvements. Although the remote measuring capability had been successfully demonstrated in the field program, SRI makes several recommendations for systems improvements which would increase the lidar accuracy and reliability.

  13. Column carbon dioxide and water vapor measurements by an airborne triple-pulse integrated path differential absorption lidar: novel lidar technologies and techniques with path to space

    Science.gov (United States)

    Singh, U. N.; Petros, M.; Refaat, T. F.; Yu, J.; Ismail, S.

    2017-09-01

    The 2-micron wavelength region is suitable for atmospheric carbon dioxide (CO2) measurements due to the existence of distinct absorption features for the gas at this wavelength region [1]. For more than 20 years, researchers at NASA Langley Research Center (LaRC) have developed several high-energy and high repetition rate 2-micron pulsed lasers [2]. Currently, LaRC team is engaged in designing, developing and demonstrating a triple-pulsed 2-micron direct detection Integrated Path Differential Absorption (IPDA) lidar to measure the weighted-average column dry-air mixing ratios of carbon dioxide (XCO2) and water vapor (XH2O) from an airborne platform [1, 3-5]. This novel technique allows measurement of the two most dominant greenhouse gases, simultaneously and independently, using a single instrument. This paper will provide status and details of the development of this airborne 2-micron triple-pulse IPDA lidar. The presented work will focus on the advancement of critical IPDA lidar components. Updates on the state-of-the-art triple-pulse laser transmitter will be presented including the status of seed laser locking, wavelength control, receiver and detector upgrades, laser packaging and lidar integration. Future plans for IPDA lidar ground integration, testing and flight validation will also be discussed. This work enables new Earth observation measurements, while reducing risk, cost, size, volume, mass and development time of required instruments.

  14. Compact Integrated DBR Laser Source for Absorption Lidar Instruments, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to demonstrate a compact integrated laser module that addresses the requirements of the laser source in a water vapor differential absorption lidar (DIAL)...

  15. Spaceborne profiling of atmospheric temperature and particle extinction with pure rotational Raman lidar and of relative humidity in combination with differential absorption lidar: performance simulations

    International Nuclear Information System (INIS)

    Di Girolamo, Paolo; Behrendt, Andreas; Wulfmeyer, Volker

    2006-01-01

    The performance of a spaceborne temperature lidar based on the pure rotational Raman (RR) technique in the UV has been simulated. Results show that such a system deployed onboard a low-Earth-orbit satellite would provide global-scale clear-sky temperature measurements in the troposphere and lower stratosphere with precisions that satisfy World Meteorological Organization (WMO) threshold observational requirements for numerical weather prediction and climate research applications. Furthermore, nighttime temperature measurements would still be within the WMO threshold observational requirements in the presence of several cloud structures. The performance of aerosol extinction measurements from space, which can be carried out simultaneously with temperature measurements by RR lidar, is also assessed. Furthermore, we discuss simulations of relative humidity measurements from space obtained from RR temperature measurements and water-vapor data measured with the differential absorption lidar (DIAL) technique

  16. A Water Vapor Differential Absorption LIDAR Design for Unpiloted Aerial Vehicles

    Science.gov (United States)

    DeYoung, Russell J.; Mead, Patricia F.

    2004-01-01

    This system study proposes the deployment of a water vapor Differential Absorption LIDAR (DIAL) system on an Altair unmanned aerial vehicle (UAV) platform. The Altair offers improved payload weight and volume performance, and longer total flight time as compared to other commercial UAV's. This study has generated a preliminary design for an Altair based water vapor DIAL system. The design includes a proposed DIAL schematic, a review of mechanical challenges such as temperature and humidity stresses on UAV deployed DIAL systems, an assessment of the available capacity for additional instrumentation (based on the proposed design), and an overview of possible weight and volume improvements associated with the use of customized electronic and computer hardware, and through the integration of advanced fiber-optic and laser products. The results of the study show that less than 17% of the available weight, less than 19% of the volume capacity, and approximately 11% of the electrical capacity is utilized by the proposed water vapor DIAL system on the Altair UAV.

  17. Pulsed Airborne Lidar Measurements of C02 Column Absorption

    Science.gov (United States)

    Abshire, James B.; Riris, Haris; Allan, Graham R.; Weaver, Clark J.; Mao, Jianping; Sun, Xiaoli; Hasselbrack, William E.; Rodriquez, Michael; Browell, Edward V.

    2011-01-01

    We report on airborne lidar measurements of atmospheric CO2 column density for an approach being developed as a candidate for NASA's ASCENDS mission. It uses a pulsed dual-wavelength lidar measurement based on the integrated path differential absorption (IPDA) technique. We demonstrated the approach using the CO2 measurement from aircraft in July and August 2009 over four locations. The results show clear CO2 line shape and absorption signals, which follow the expected changes with aircraft altitude from 3 to 13 km. The 2009 measurements have been analyzed in detail and the results show approx.1 ppm random errors for 8-10 km altitudes and approx.30 sec averaging times. Airborne measurements were also made in 2010 with stronger signals and initial analysis shows approx. 0.3 ppm random errors for 80 sec averaging times for measurements at altitudes> 6 km.

  18. Airborne differential absorption lidar system for measurements of atmospheric water vapor and aerosols

    Science.gov (United States)

    Carter, Arlen F.; Allen, Robert J.; Mayo, M. Neale; Butler, Carolyn F.; Grossman, Benoist E.; Ismail, Syed; Grant, William B.; Browell, Edward V.; Higdon, Noah S.; Mayor, Shane D.; hide

    1994-01-01

    An airborne differential absorption lidar (DIAL) system has been developed at the NASA Langley Research Center for remote measurements of atmospheric water vapor (H2O) and aerosols. A solid-state alexandrite laser with a 1-pm linewidth and greater than 99.85% spectral purity was used as the on-line transmitter. Solid-state avalanche photodiode detector technology has replaced photomultiplier tubes in the receiver system, providing an average increase by a factor of 1.5-2.5 in the signal-to-noise ratio of the H2O measurement. By incorporating advanced diagnostic and data-acquisition instrumentation into other subsystems, we achieved additional improvements in system operational reliability and measurement accuracy. Laboratory spectroscopic measurements of H2O absorption-line parameters were performed to reduce the uncertainties in our knowledge of the absorption cross sections. Line-center H2O absorption cross sections were determined, with errors of 3-6%, for more than 120 lines in the 720-nm region. Flight tests of the system were conducted during 1989-1991 on the NASA Wallops Flight Facility Electra aircraft, and extensive intercomparison measurements were performed with dew-point hygrometers and H2O radiosondes. The H2O distributions measured with the DIAL system differed by less than 10% from the profiles determined with the in situ probes in a variety of atmospheric conditions.

  19. Predictions of silicon avalanche photodiode detector performance in water vapor differential absorption lidar

    Science.gov (United States)

    Kenimer, R. L.

    1988-01-01

    Performance analyses are presented which establish that over most of the range of signals expected for a down-looking differential absorption lidar (DIAL) operated at 16 km the silicon avalanche photodiode (APD) is the preferred detector for DIAL measurements of atmospheric water vapor in the 730 nm spectral region. The higher quantum efficiency of the APD's, (0.8-0.9) compared to a photomultiplier's (0.04-0.18) more than offsets the higher noise of an APD receiver. In addition to offering lower noise and hence lower random error the APD's excellent linearity and impulse recovery minimize DIAL systematic errors attributable to the detector. Estimates of the effect of detector system parameters on overall random and systematic DIAL errors are presented, and performance predictions are supported by laboratory characterization data for an APD receiver system.

  20. Temperature sensitivity of differential absorption lidar measurements of water vapor in the 720-nm region

    Science.gov (United States)

    Browell, Edward V.; Ismail, Syed; Grossmann, Benoist E.

    1991-01-01

    Recently measured properties of water vapor (H2O) absorption lines have been used in calculations to evalute the temperature sensitivity of differential absorption lidar (Dial) H2O measurements. This paper estimates the temperature sensitivity of H2O lines in the 717-733-nm region for both H2O mixing ratio and number density measurements, and discusses the influence of the H2O line ground state energies E-double-prime, the H2O absorption linewidths, the linewidth temperature dependence parameter, and the atmospheric temperature and pressure variations with altitude and location on the temperature sensitivity calculations. Line parameters and temperature sensitivity calculations for 67 H2O lines in the 720-nm band are given which can be directly used in field experiments. Water vapor lines with E-double-prime values in the 100-300/cm range were found to be optimum for Dial measurements of H2O number densities, while E-double-prime values in the 250-500/cm range were found to be optimum for H2O mixing ratio measurements.

  1. 2-Micron Triple-Pulse Integrated Path Differential Absorption Lidar Development for Simultaneous Airborne Column Measurements of Carbon Dioxide and Water Vapor in the Atmosphere

    Science.gov (United States)

    Singh, Upendra N.; Petros, Mulugeta; Refaat, Tamer F.; Yu, Jirong

    2016-01-01

    For more than 15 years, NASA Langley Research Center (LaRC) has contributed in developing several 2-micron carbon dioxide active remote sensors using the DIAL technique. Currently, an airborne 2-micron triple-pulse integrated path differential absorption (IPDA) lidar is under development at NASA LaRC. This paper focuses on the advancement of the 2-micron triple-pulse IPDA lidar development. Updates on the state-of-the-art triple-pulse laser transmitter will be presented including the status of wavelength control, packaging and lidar integration. In addition, receiver development updates will also be presented, including telescope integration, detection systems and data acquisition electronics. Future plan for IPDA lidar system for ground integration, testing and flight validation will be presented.

  2. Airborne 2-Micron Double-Pulsed Integrated Path Differential Absorption Lidar for Column CO2 Measurement

    Science.gov (United States)

    Singh, Upendra N.; Yu, Jirong; Petros, Mulugeta; Refaat, Tamer F.; Remus, Ruben G.; Fay, James J.; Reithmaier, Karl

    2014-01-01

    Double-pulse 2-micron lasers have been demonstrated with energy as high as 600 millijouls and up to 10 Hz repetition rate. The two laser pulses are separated by 200 microseconds and can be tuned and locked separately. Applying double-pulse laser in DIAL system enhances the CO2 measurement capability by increasing the overlap of the sampled volume between the on-line and off-line. To avoid detection complicity, integrated path differential absorption (IPDA) lidar provides higher signal-to-noise ratio measurement compared to conventional range-resolved DIAL. Rather than weak atmospheric scattering returns, IPDA rely on the much stronger hard target returns that is best suited for airborne platforms. In addition, the IPDA technique measures the total integrated column content from the instrument to the hard target but with weighting that can be tuned by the transmitter. Therefore, the transmitter could be tuned to weight the column measurement to the surface for optimum CO2 interaction studies or up to the free troposphere for optimum transport studies. Currently, NASA LaRC is developing and integrating a double-Pulsed 2-micron direct detection IPDA lidar for CO2 column measurement from an airborne platform. The presentation will describe the development of the 2-micron IPDA lidar system and present the airborne measurement of column CO2 and will compare to in-situ measurement for various ground target of different reflectivity.

  3. Differential Absorption Measurements of Atmospheric Water Vapor with a Coherent Lidar at 2050.532 nm

    Science.gov (United States)

    Koch, Grady J.; Dharamsi, Amin; Davis, Richard E.; Petros, Mulugeta; McCarthy, John C.

    1999-01-01

    Wind and water vapor are two major factors driving the Earth's atmospheric circulation, and direct measurement of these factors is needed for better understanding of basic atmospheric science, weather forecasting, and climate studies. Coherent lidar has proved to be a valuable tool for Doppler profiling of wind fields, and differential absorption lidar (DIAL) has shown its effectiveness in profiling water vapor. These two lidar techniques are generally considered distinctly different, but this paper explores an experimental combination of the Doppler and DIAL techniques for measuring both wind and water vapor with an eye-safe wavelength based on a solid-state laser material. Researchers have analyzed and demonstrated coherent DIAL water vapor measurements at 10 micrometers wavelength based on CO2 lasers. The hope of the research presented here is that the 2 gm wavelength in a holmium or thulium-based laser may offer smaller packaging and more rugged operation that the CO2-based approach. Researchers have extensively modeled 2 um coherent lasers for water vapor profiling, but no published demonstration is known. Studies have also been made, and results published on the Doppler portion, of a Nd:YAG-based coherent DIAL operating at 1.12 micrometers. Eye-safety of the 1.12 micrometer wavelength may be a concern, whereas the longer 2 micrometer and 10 micrometer systems allow a high level of eyesafety.

  4. Remote sensing of methane emissions by combining optical similitude absorption spectroscopy (OSAS) and lidar

    Science.gov (United States)

    Galtier, Sandrine; Anselmo, Christophe; Welschinger, Jean-Yves; Cariou, Jean-Pierre; Sivignon, Jean-François; Miffre, Alain; Rairoux, Patrick

    2018-04-01

    Monitoring the emission of gases is difficult to achieve in industrial sites and in environments presenting poor infrastructures. Hence, robust methodologies should be developed and coupled to Lidar technology to allow remote sensing of gas emission. OSAS is a new methodology to evaluate gas concentration emission from spectrally integrated differential absorption measurements. Proof of concept of OSAS-Lidar for CH4 emission monitoring is here presented.

  5. Diode-laser-based water vapor differential absorption lidar (DIAL) profiler evaluation

    Science.gov (United States)

    Spuler, S.; Weckwerth, T.; Repasky, K. S.; Nehrir, A. R.; Carbone, R.

    2012-12-01

    We are in the process of evaluating the performance of an eye-safe, low-cost, diode-laser-based, water vapor differential absorption lidar (DIAL) profiler. This class of instrument may be capable of providing continuous water vapor and aerosol backscatter profiles at high vertical resolution in the atmospheric boundary layer (ABL) for periods of months to years. The technology potentially fills a national long term observing facility gap and could greatly benefit micro- and meso-meteorology, water cycle, carbon cycle and, more generally, biosphere-hydrosphere-atmosphere interaction research at both weather and climate variability time scales. For the evaluation, the Montana State University 3rd generation water vapor DIAL was modified to enable unattended operation for a period of several weeks. The performance of this V3.5 version DIAL was tested at MSU and NCAR in June and July of 2012. Further tests are currently in progress with Howard University at Beltsville, Maryland; and with the National Weather Service and Oklahoma University at Dallas/Fort Worth, Texas. The presentation will include a comparison of DIAL profiles against meteorological "truth" at the aforementioned locations including: radiosondes, Raman lidars, microwave and IR radiometers, AERONET and SUOMINET systems. Instrument reliability, uncertainty, systematic biases, detection height statistics, and environmental complications will be evaluated. Performance will be judged in the context of diverse scientific applications that range from operational weather prediction and seasonal climate variability, to more demanding climate system process studies at the land-canopy-ABL interface. Estimating the extent to which such research and operational applications can be satisfied with a low cost autonomous network of similar instruments is our principal objective.

  6. Development and operation of a real-time data acquisition system for the NASA-LaRC differential absorption lidar

    Science.gov (United States)

    Butler, C.

    1985-01-01

    Computer hardware and software of the NASA multipurpose differential absorption lidar (DIAL) sysatem were improved. The NASA DIAL system is undergoing development and experimental deployment for remote measurement of atmospheric trace gas concentration from ground and aircraft platforms. A viable DIAL system was developed with the capability of remotely measuring O3 and H2O concentrations from an aircraft platform. Test flights were successfully performed on board the NASA/Goddard Flight Center Electra aircraft from 1980 to 1984. Improvements on the DIAL data acquisition system (DAS) are described.

  7. Remote sensing of methane emissions by combining optical similitude absorption spectroscopy (OSAS and lidar

    Directory of Open Access Journals (Sweden)

    Galtier Sandrine

    2018-01-01

    Full Text Available Monitoring the emission of gases is difficult to achieve in industrial sites and in environments presenting poor infrastructures. Hence, robust methodologies should be developed and coupled to Lidar technology to allow remote sensing of gas emission. OSAS is a new methodology to evaluate gas concentration emission from spectrally integrated differential absorption measurements. Proof of concept of OSAS-Lidar for CH4 emission monitoring is here presented.

  8. Spectral control of an alexandrite laser for an airborne water-vapor differential absorption lidar system

    Science.gov (United States)

    Ponsardin, Patrick; Grossmann, Benoist E.; Browell, Edward V.

    1994-01-01

    A narrow-linewidth pulsed alexandrite laser has been greatly modified for improved spectral stability in an aircraft environment, and its operation has been evaluated in the laboratory for making water-vapor differential absorption lidar measurements. An alignment technique is described to achieve the optimum free spectral range ratio for the two etalons inserted in the alexandrite laser cavity, and the sensitivity of this ratio is analyzed. This technique drastically decreases the occurrence of mode hopping, which is commonly observed in a tunable, two-intracavity-etalon laser system. High spectral purity (greater than 99.85%) at 730 nm is demonstrated by the use of a water-vapor absorption line as a notch filter. The effective cross sections of 760-nm oxygen and 730-nm water-vapor absorption lines are measured at different pressures by using this laser, which has a finite linewidth of 0.02 cm(exp -1) (FWHM). It is found that for water-vapor absorption linewidths greater than 0.04 cm(exp -1) (HWHM), or for altitudes below 10 km, the laser line can be considered monochromatic because the measured effective absorption cross section is within 1% of the calculated monochromatic cross section. An analysis of the environmental sensitivity of the two intracavity etalons is presented, and a closed-loop computer control for active stabilization of the two intracavity etalons in the alexandrite laser is described. Using a water-vapor absorption line as a wavelength reference, we measure a long-term frequency drift (approximately 1.5 h) of less than 0.7 pm in the laboratory.

  9. Development of an Airborne Triple-Pulse 2-Micron Integrated Path Differential Absorption Lidar (IPDA) for Simultaneous Airborne Column Measurements of Carbon Dioxide and Water Vapor in the Atmosphere

    Science.gov (United States)

    Singh, Upendra N.; Petros, Mulugeta; Refaat, Tamer F.; Yu, Jirong; Antill, Charles W.; Remus, Ruben

    2016-01-01

    This presentation will provide status and details of an airborne 2-micron triple-pulse integrated path differential absorption (IPDA) lidar being developed at NASA Langley Research Center with support from NASA ESTO Instrument Incubator Program. The development of this active optical remote sensing IPDA instrument is targeted for measuring both atmospheric carbon dioxide and water vapor in the atmosphere from an airborne platform. This presentation will focus on the advancement of the 2-micron triple-pulse IPDA lidar development. Updates on the state-of-the-art triple-pulse laser transmitter will be presented including the status of seed laser locking, wavelength control, receiver and detector upgrades, laser packaging and lidar integration. Future plan for IPDA lidar system for ground integration, testing and flight validation will also be presented.

  10. Injection Seeded Laser for Formaldehyde Differential Fluorescence Lidar

    Directory of Open Access Journals (Sweden)

    Schwemmer G.

    2016-01-01

    Full Text Available We describe the design and development of an injection seeded Nd:YVO4 laser for use in a differential fluorescence lidar for measuring atmospheric formaldehyde profiles. A high repetition rate Q-switched laser is modified to accept injection seed input to spectrally narrow and tune the output. The third harmonic output is used to excite formaldehyde (HCHO fluorescence when tuned to a HCHO absorption line. Spectral confirmation is made with the use of a photoacoustic cell and grating spectrometer.

  11. Feasibility of tropospheric water vapor profiling using infrared heterodyne differential absorption lidar

    Energy Technology Data Exchange (ETDEWEB)

    Grund, C.J.; Hardesty, R.M. [National Oceanic and Atmospheric Administration Environmental Technology Laboratoy, Boulder, CO (United States); Rye, B.J. [Univ. of Colorado, Boulder, CO (United States)

    1996-04-01

    The development and verification of realistic climate model parameterizations for clouds and net radiation balance and the correction of other site sensor observations for interferences due to the presence of water vapor are critically dependent on water vapor profile measurements. In this study, we develop system performance models and examine the potential of infrared differential absoroption lidar (DIAL) to determine the concentration of water vapor.

  12. Theory and operation of the real-time data acquisition system for the NASA-LaRC differential absorption lidar (DIAL)

    Science.gov (United States)

    Butler, Carolyn; Spencer, Randall

    1988-01-01

    The improvement of computer hardware and software of the NASA Multipurpose Differential Absorption Lidar (DIAL) system is documented. The NASA DIAL system has undergone development and experimental deployment at NASA/Langley Res. Center for the remote measurement of atmospheric trace gas concentrations from ground and aircraft platforms. A viable DIAL system was developed capable of remotely measuring O3 and H2O concentrations from an aircraft platform. The DIAL Data Acquisition System (DAS) has undergone a number of improvements also. Due to the participation of the DIAL in the Global Tropospheric Experiment, modifications and improvements of the system were tested and used both in the lab and in air. Therefore, this is an operational manual for the DIAL DAS.

  13. Lidar Remote Sensing for Industry and Environment Monitoring

    Science.gov (United States)

    Singh, Upendra N. (Editor); Itabe, Toshikazu (Editor); Sugimoto, Nobuo (Editor)

    2000-01-01

    Contents include the following: 1. Keynote paper: Overview of lidar technology for industrial and environmental monitoring in Japan. 2. lidar technology I: NASA's future active remote sensing mission for earth science. Geometrical detector consideration s in laser sensing application (invited paper). 3. Lidar technology II: High-power femtosecond light strings as novel atmospheric probes (invited paper). Design of a compact high-sensitivity aerosol profiling lidar. 4. Lasers for lidars: High-energy 2 microns laser for multiple lidar applications. New submount requirement of conductively cooled laser diodes for lidar applications. 5. Tropospheric aerosols and clouds I: Lidar monitoring of clouds and aerosols at the facility for atmospheric remote sensing (invited paper). Measurement of asian dust by using multiwavelength lidar. Global monitoring of clouds and aerosols using a network of micropulse lidar systems. 6. Troposphere aerosols and clouds II: Scanning lidar measurements of marine aerosol fields at a coastal site in Hawaii. 7. Tropospheric aerosols and clouds III: Formation of ice cloud from asian dust particles in the upper troposphere. Atmospheric boundary layer observation by ground-based lidar at KMITL, Thailand (13 deg N, 100 deg. E). 8. Boundary layer, urban pollution: Studies of the spatial correlation between urban aerosols and local traffic congestion using a slant angle scanning on the research vessel Mirai. 9. Middle atmosphere: Lidar-observed arctic PSC's over Svalbard (invited paper). Sodium temperature lidar measurements of the mesopause region over Syowa Station. 10. Differential absorption lidar (dIAL) and DOAS: Airborne UV DIAL measurements of ozone and aerosols (invited paper). Measurement of water vapor, surface ozone, and ethylene using differential absorption lidar. 12. Space lidar I: Lightweight lidar telescopes for space applications (invited paper). Coherent lidar development for Doppler wind measurement from the International Space

  14. NAMMA LIDAR ATMOSPHERIC SENSING EXPERIMENT (LASE) V1

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA's Lidar Atmospheric Sensing Experiment (LASE) system using the DIAL (Differential Absorption Lidar) system was operated during the NASA African Monsoon...

  15. The study on the lidar's detection limit for Iodine Gas

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong-lyul; Baik, Seung-Hoon; Park, Seung-Kyu; Park, Nak-Gyu; Ahn, Yong-Jin [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    A powerful and reliable tool for range-resolved remote sensing of gas concentrations that has proven its capabilities in a variety of studies is the differential absorption lidar (DIAL). Differential absorption lidar (DIAL) is frequently used for atmospheric gas monitoring to detect impurities such as nitrogen dioxide, sulfur dioxide, iodine, and ozone. DIAL can measure air pollutant concentrations with a high spatial resolution by adopting two laser systems with different degrees of absorption between the two different wavelengths. The absorption of the reference wavelength is very weak, while the absorption of the other wavelength is very strong. In this paper, we measured the limit of detection capability of our designed DIAL system. The DIAL measurements were performed using a target iodine cell in the laboratory. We confirmed that the concentration of iodine gas ratio increased after the laser passed through the iodine cell. The system of DIAL(Differential Absorption Lidar) was effective to detect the iodine gas. We obtained the signals from the iodine target cell and the lidar signal from the iodine target cell was proportional to frequency locking ratios.

  16. NAMMA LIDAR ATMOSPHERIC SENSING EXPERIMENT (LASE) V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The NAMMA Lidar Atmospheric Sensing Experiment (LASE) dataset used the LASE system using the Differential Absorption Lidar (DIAL) system was operated during the NASA...

  17. Feasibility Study of Multi-Wavelength Differential Absorption LIDAR for CO2 Monitoring

    Directory of Open Access Journals (Sweden)

    Chengzhi Xiang

    2016-06-01

    Full Text Available To obtain a better understanding of carbon cycle and accurate climate prediction models, highly accurate and temporal resolution observation of atmospheric CO2 is necessary. Differential absorption LIDAR (DIAL remote sensing is a promising technology to detect atmospheric CO2. However, the traditional DIAL system is the dual-wavelength DIAL (DW-DIAL, which has strict requirements for wavelength accuracy and stability. Moreover, for on-line and off-line wavelengths, the system’s optical efficiency and the change of atmospheric parameters are assumed to be the same in the DW-DIAL system. This assumption inevitably produces measurement errors, especially under rapid aerosol changes. In this study, a multi-wavelength DIAL (MW-DIAL is proposed to map atmospheric CO2 concentration. The MW-DIAL conducts inversion with one on-line and multiple off-line wavelengths. Multiple concentrations of CO2 are then obtained through difference processing between the single on-line and each of the off-line wavelengths. In addition, the least square method is adopted to optimize inversion results. Consequently, the inversion concentration of CO2 in the MW-DIAL system is found to be the weighted average of the multiple concentrations. Simulation analysis and laboratory experiments were conducted to evaluate the inversion precision of MW-DIAL. For comparison, traditional DW-DIAL simulations were also conducted. Simulation analysis demonstrated that, given the drifting wavelengths of the laser, the detection accuracy of CO2 when using MW-DIAL is higher than that when using DW-DIAL, especially when the drift is large. A laboratory experiment was also performed to verify the simulation analysis.

  18. Progress towards an Autonomous Field Deployable Diode-Laser-Based Differential Absorption Lidar (DIAL for Profiling Water Vapor in the Lower Troposphere

    Directory of Open Access Journals (Sweden)

    Kevin S. Repasky

    2013-11-01

    Full Text Available A laser transmitter has been developed and incorporated into a micro-pulse differential absorption lidar (DIAL for water vapor profiling in the lower troposphere as an important step towards long-term autonomous field operation. The laser transmitter utilizes two distributed Bragg reflector (DBR diode lasers to injection seed a pulsed tapered semiconductor optical amplifier (TSOA, and is capable of producing up to 10 mJ of pulse energy with a 1 ms pulse duration and a 10 kHz pulse repetition frequency. The on-line wavelength of the laser transmitter can operate anywhere along the water vapor absorption feature centered at 828.187 nm (in vacuum depending on the prevailing atmospheric conditions, while the off-line wavelength operates at 828.287 nm. This laser transmitter has been incorporated into a DIAL instrument utilizing a 35.6 cm Schmidt-Cassegrain telescope and fiber coupled avalanche photodiode (APD operating in the photon counting mode. The performance of the DIAL instrument was demonstrated over a ten-day observation period. During this observation period, data from radiosondes were used to retrieve water vapor number density profiles for comparisons with the number density profiles retrieved from the DIAL data.

  19. Lidar sounding of volcanic plumes

    Science.gov (United States)

    Fiorani, Luca; Aiuppa, Alessandro; Angelini, Federico; Borelli, Rodolfo; Del Franco, Mario; Murra, Daniele; Pistilli, Marco; Puiu, Adriana; Santoro, Simone

    2013-10-01

    Accurate knowledge of gas composition in volcanic plumes has high scientific and societal value. On the one hand, it gives information on the geophysical processes taking place inside volcanos; on the other hand, it provides alert on possible eruptions. For this reasons, it has been suggested to monitor volcanic plumes by lidar. In particular, one of the aims of the FP7 ERC project BRIDGE is the measurement of CO2 concentration in volcanic gases by differential absorption lidar. This is a very challenging task due to the harsh environment, the narrowness and weakness of the CO2 absorption lines and the difficulty to procure a suitable laser source. This paper, after a review on remote sensing of volcanic plumes, reports on the current progress of the lidar system.

  20. Pulsed Lidar Measurements of Atmospheric CO2 Column Absorption and Range During the ASCENDS 2009-2011 Airborne Campaigns

    Science.gov (United States)

    Abshire, J. B.; Weaver, C. J.; Riris, H.; Mao, J.; Sun, X.; Allan, G. R.; Hasselbrack, W. E.; Browell, E. V.

    2012-01-01

    We have developed a pulsed lidar technique for measuring the tropospheric CO2 concentrations as a candidate for NASA's ASCENDS mission and have demonstrated the CO2 and O2 measurements from aircraft. Our technique uses two pulsed lasers allowing simultaneous measurement of a single CO2 absorption line near 1572 nm, O2 extinction in the Oxygen A-band, surface height and backscatter profile. The lasers are stepped in wavelength across the CO2 line and an O2 line doublet during the measurement. The column densities for the CO2 and O2 are estimated from the differential optical depths (DOD) of the scanned absorption lines via the IPDA technique. For the 2009 ASCENDS campaign we flew the CO2 lidar only on a Lear-25 aircraft, and measured the absorption line shapes of the CO2 line using 20 wavelength samples per scan. Measurements were made at stepped altitudes from 3 to 12.6 km over the Lamont OK, central Illinois, North Carolina, and over the Virginia Eastern Shore. Although the received signal energies were weaker than expected for ASCENDS, clear C02 line shapes were observed at all altitudes. Most flights had 5-6 altitude steps with 200-300 seconds of recorded measurements per step. We averaged every 10 seconds of measurements and used a cross-correlation approach to estimate the range to the scattering surface and the echo pulse energy at each wavelength. We then solved for the best-fit CO2 absorption line shape, and calculated the DOD of the fitted CO2 line, and computed its statistics at the various altitude steps. We compared them to CO2 optical depths calculated from spectroscopy based on HITRAN 2008 and the column number densities calculated from the airborne in-situ readings. The 2009 measurements have been analyzed in detail and they were similar on all flights. The results show clear CO2 line shape and absorption signals, which follow the expected changes with aircraft altitude from 3 to 13 km. They showed the expected nearly the linear dependence of DOD vs

  1. Opo lidar sounding of trace atmospheric gases in the 3 - 4 μm spectral range

    Science.gov (United States)

    Romanovskii, Oleg A.; Sadovnikov, Sergey A.; Kharchenko, Olga V.; Yakovlev, Semen V.

    2018-04-01

    The applicability of a KTA crystal-based laser system with optical parametric oscillators (OPO) generation to lidar sounding of the atmosphere in the spectral range 3-4 μm is studied in this work. A technique developed for lidar sounding of trace atmospheric gases (TAG) is based on differential absorption lidar (DIAL) method and differential optical absorption spectroscopy (DOAS). The DIAL-DOAS technique is tested to estimate its efficiency for lidar sounding of atmospheric trace gases. The numerical simulation performed shows that a KTA-based OPO laser is a promising source of radiation for remote DIAL-DOAS sounding of the TAGs under study along surface tropospheric paths. A possibility of using a PD38-03-PR photodiode for the DIAL gas analysis of the atmosphere is shown.

  2. Development of differential absorption lidar (DIAL) for detection of CO2, CH4 and PM in Alberta

    Science.gov (United States)

    Wojcik, Michael; Crowther, Blake; Lemon, Robert; Valupadas, Prasad; Fu, Long; Leung, Bonnie; Yang, Zheng; Huda, Quamrul; Chambers, Allan

    2005-05-01

    Rapid expansion of the oil and gas industry in Alberta, including the oil sands, has challenged the Alberta Government to keep pace in its efforts to monitor and mitigate the environmental impacts of development. The limitations of current monitoring systems has pushed the provincial government to seek out advanced sensing technologies such as satellite imagery and laser based sensors. The Space Dynamics Laboratory (SDL) of Utah State University, in cooperation with Alberta Environmental Monitoring, Evaluation and Reporting Agency (AEMERA), has developed North America's first mobile differential absorption lidar (DIAL) system designed specifically for emissions measurement. This instrument is housed inside a 36' trailer which allows for mobility to travel across Alberta to characterize source emissions and to locate fugitive leaks. DIAL is capable of measuring concentrations for carbon dioxide (CO2) and methane (CH4) at ranges of up to 3 km with a spatial resolution of 10 meters. DIAL can map both CO2 and CH4, as well as particulate matter (PM) in a linear fashion; by scanning the laser beam in both azimuth and elevation DIAL can create images of emissions in two dimensions. DIAL imagery may be used to understand and control production practices, characterize source emissions, determine emission factors, locate fugitive leaks, assess plume dispersion, and confirm air dispersion modeling. A system overview of the DIAL instrument and some representative results will be discussed.

  3. Atmospheric aerosol and gas sensing using Scheimpflug lidar

    Science.gov (United States)

    Mei, Liang; Brydegaard, Mikkel

    2015-04-01

    This work presents a new lidar technique for atmospheric remote sensing based on Scheimpflug principle, which describes the relationship between nonparallel image- and object-planes[1]. When a laser beam is transmitted into the atmosphere, the implication is that the backscattering echo of the entire illuminated probe volume can be in focus simultaneously without diminishing the aperture. The range-resolved backscattering echo can be retrieved by using a tilted line scan or two-dimensional CCD/CMOS camera. Rather than employing nanosecond-pulsed lasers, cascade detectors, and MHz signal sampling, all of high cost and complexity, we have developed a robust and inexpensive atmospheric lidar system based on compact laser diodes and array detectors. We present initial applications of the Scheimpflug lidar for atmospheric aerosol monitoring in bright sunlight, with a 3 W, 808 nm CW laser diode. Kilohertz sampling rates are also achieved with applications for wind speed and entomology [2]. Further, a proof-of-principle demonstration of differential absorption lidar (DIAL) based on the Scheimpflug lidar technique is presented [3]. By utilizing a 30 mW narrow band CW laser diode emitting at around 760 nm, the detailed shape of an oxygen absorption line can be resolved remotely with an integration time of 6 s and measurement cycle of 1 minute during night time. The promising results demonstrated in this work show potential for the Scheimpflug lidar technique for remote atmospheric aerosol and gas sensing, and renews hope for robust and realistic instrumentation for atmospheric lidar sensing. [1] F. Blais, "Review of 20 years of range sensor development," Journal of Electronic Imaging, vol. 13, pp. 231-243, Jan 2004. [2] M. Brydegaard, A. Gebru, and S. Svanberg, "Super resolution laser radar with blinking atmospheric particles - application to interacting flying insects " Progress In Electromagnetics Research, vol. 147, pp. 141-151, 2014. [3] L. Mei and M. Brydegaard

  4. Opo lidar sounding of trace atmospheric gases in the 3 – 4 μm spectral range

    Directory of Open Access Journals (Sweden)

    Romanovskii Oleg A.

    2018-01-01

    Full Text Available The applicability of a KTA crystal-based laser system with optical parametric oscillators (OPO generation to lidar sounding of the atmosphere in the spectral range 3–4 μm is studied in this work. A technique developed for lidar sounding of trace atmospheric gases (TAG is based on differential absorption lidar (DIAL method and differential optical absorption spectroscopy (DOAS. The DIAL-DOAS technique is tested to estimate its efficiency for lidar sounding of atmospheric trace gases. The numerical simulation performed shows that a KTA-based OPO laser is a promising source of radiation for remote DIAL-DOAS sounding of the TAGs under study along surface tropospheric paths. A possibility of using a PD38-03-PR photodiode for the DIAL gas analysis of the atmosphere is shown.

  5. BELINDA: Broadband Emission Lidar with Narrowband Determination of Absorption. A new concept for measuring water vapor and temperature profiles

    Science.gov (United States)

    Theopold, F. A.; Weitkamp, C.; Michaelis, W.

    1992-01-01

    We present a new concept for differential absorption lidar measurements of water vapor and temperature profiles. The idea is to use one broadband emission laser and a narrowband filter system for separation of the 'online' and 'offline' return signals. It is shown that BELINDA offers improvements as to laser emission shape and stability requirements, background suppression, and last and most important a significant reduction of the influence of Rayleigh scattering. A suitably designed system based on this concept is presented, capable of measuring water vapor or temperature profiles throughout the planetary boundary layer.

  6. A user friendly Lidar system based on LabVIEW

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Mats; Weibring, P.

    1996-09-01

    Mobile differential absorption lidar (DIAL) systems have been used for the last two decades. The lidar group in Lund has performed many DIAL measurements with a mobile lidar system which was first described in 1987. This report describes how that system was updated with the graphical programming language LabVIEW in order to get a user friendly system. The software controls the lidar system and analyses measurement data. The measurement results are shown as maps of species concentration. New electronics to support the new lidar program have also been installed. The report describes how all supporting electronics and the program work. A user manual for the new program is also given. 19 refs, 79 figs, 23 charts

  7. Lidar technologies for airborne and space-based applications

    International Nuclear Information System (INIS)

    Henson, T.D.; Schmitt, R.L.; Sobering, T.J.; Raymond, T.D.; Stephenson, D.A.

    1994-10-01

    This study identifies technologies required to extend the capabilities of airborne light detection and ranging (lidar) systems and establish the feasibility of autonomous space-based lidars. Work focused on technologies that enable the development of a lightweight, low power, rugged and autonomous Differential Absorption Lidar (DIAL) instruments. Applications for airborne or space-based DIAL include the measurement of water vapor profiles in support of climate research and processing-plant emissions signatures for environmental and nonproliferation monitoring. A computer-based lidar performance model was developed to allow trade studies to be performed on various technologies and system configurations. It combines input from the physics (absorption line strengths and locations) of the problem, the system requirements (weight, power, volume, accuracy), and the critical technologies available (detectors, lasers, filters) to produce the best conceptual design. Conceptual designs for an airborne and space-based water vapor DIAL, and a detailed design of a ground-based water vapor DIAL demonstration system were completed. Future work planned includes the final testing, integration, and operation of the demonstration system to prove the capability of the critical enabling technologies identified

  8. First measurements of a carbon dioxide plume from an industrial source using a ground based mobile differential absorption lidar.

    Science.gov (United States)

    Robinson, R A; Gardiner, T D; Innocenti, F; Finlayson, A; Woods, P T; Few, J F M

    2014-08-01

    The emission of carbon dioxide (CO2) from industrial sources is one of the main anthropogenic contributors to the greenhouse effect. Direct remote sensing of CO2 emissions using optical methods offers the potential for the identification and quantification of CO2 emissions. We report the development and demonstration of a ground based mobile differential absorption lidar (DIAL) able to measure the mass emission rate of CO2 in the plume from a power station. To our knowledge DIAL has not previously been successfully applied to the measurement of emission plumes of CO2 from industrial sources. A significant challenge in observing industrial CO2 emission plumes is the ability to discriminate and observe localised concentrations of CO2 above the locally observed background level. The objectives of the study were to modify our existing mobile infrared DIAL system to enable CO2 measurements and to demonstrate the system at a power plant to assess the feasibility of the technique for the identification and quantification of CO2 emissions. The results of this preliminary study showed very good agreement with the expected emissions calculated by the site. The detection limit obtained from the measurements, however, requires further improvement to provide quantification of smaller emitters of CO2, for example for the detection of fugitive emissions. This study has shown that in principle, remote optical sensing technology will have the potential to provide useful direct data on CO2 mass emission rates.

  9. Tropospheric ozone lidar intercomparison experiment, TROLIX '91, field phase report

    International Nuclear Information System (INIS)

    Boesenberg, J.; Ancellet, G.; Bergwerff, H.; Cossart, G. v.; Fiedler, J.; Jonge, C. de; Mellqvist, J.; Mitev, V.; Sonnemann, G.; Swart, D.; Wallinder, E.

    1993-01-01

    The Tropospheric Ozone Lidar Intercomparison Experiment TROLIX '91 has been initiated as part of the TESLAS subproject of the cooperative programme EUROTRAC. It has been performed in June 1991 at the Rijksinstitut voor Volksgezondheid en Milieuhygiene (RIVM) in Bilthoven, The Netherlands. The experiment was based on the simultaneous operation of different types of differential absorption lidars (DIAL), a special version of a Differential Optical Absorption Spectroscopy Instrument (DOAS), helicopter borne in situ instruments, and many other supporting measurements. After a short introduction to the general methodology the instruments are described, the experimental operations are explained, and a selection of data are presented. Some examples are given for the results of the intercomparison, as far as they have been available at the present stage of evaluation. The main purpose of this report, however, is to provide an overview over the material collected during the experiment, on order to facilitate further detailed studies in cooperation between the different groups which have participated. (orig.)

  10. Advanced Sine Wave Modulation of Continuous Wave Laser System for Atmospheric CO2 Differential Absorption Measurements

    Science.gov (United States)

    Campbell, Joel F.; Lin, Bing; Nehrir, Amin R.

    2014-01-01

    NASA Langley Research Center in collaboration with ITT Exelis have been experimenting with Continuous Wave (CW) laser absorption spectrometer (LAS) as a means of performing atmospheric CO2 column measurements from space to support the Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) mission.Because range resolving Intensity Modulated (IM) CW lidar techniques presented here rely on matched filter correlations, autocorrelation properties without side lobes or other artifacts are highly desirable since the autocorrelation function is critical for the measurements of lidar return powers, laser path lengths, and CO2 column amounts. In this paper modulation techniques are investigated that improve autocorrelation properties. The modulation techniques investigated in this paper include sine waves modulated by maximum length (ML) sequences in various hardware configurations. A CW lidar system using sine waves modulated by ML pseudo random noise codes is described, which uses a time shifting approach to separate channels and make multiple, simultaneous online/offline differential absorption measurements. Unlike the pure ML sequence, this technique is useful in hardware that is band pass filtered as the IM sine wave carrier shifts the main power band. Both amplitude and Phase Shift Keying (PSK) modulated IM carriers are investigated that exibit perfect autocorrelation properties down to one cycle per code bit. In addition, a method is presented to bandwidth limit the ML sequence based on a Gaussian filter implemented in terms of Jacobi theta functions that does not seriously degrade the resolution or introduce side lobes as a means of reducing aliasing and IM carrier bandwidth.

  11. Ground-based eye-safe networkable micro-pulse differential absorption and high spectral resolution lidar for water vapor and aerosol profiling in the lower troposphere

    Science.gov (United States)

    Repasky, K. S.; Spuler, S.; Hayman, M. M.; Bunn, C. E.

    2017-12-01

    Atmospheric water vapor is a greenhouse gas that is known to be a significant driver of weather and climate. Several National Research Council (NRC) reports have highlighted the need for improved water vapor measurements that can capture its spatial and temporal variability as a means to improve weather predictions. Researchers at Montana State University (MSU) and the National Center for Atmospheric Research (NCAR) have developed an eye-safe diode laser based micro-pulse differential absorption lidar (MP-DIAL) for water vapor profiling in the lower troposphere. The MP-DIAL is capable of long term unattended operation and is capable of monitoring water vapor in the lower troposphere in most weather conditions. Two MP-DIAL instruments are currently operational and have been deployed at the Front Range Air Pollution and Photochemistry Experiment (FRAPPE), the Plains elevated Convection at Night (PECAN) experiment, the Perdigão experiment, and the Land Atmosphere Feedback Experiment (LAFE). For each of these field experiments, the MP-DIAL was run unattended and provided near-continuous water vapor profiles, including periods of bright daytime clouds, from 300 m above the ground level to 4 km (or the cloud base) with 150 m vertical resolution and 5 minute temporal resolution. Three additional MP-DIAL instruments are currently under construction and will result in a network of five eye-safe MP-DIAL instruments for ground based weather and climate research experiments. Taking advantage of the broad spectral coverage and modularity or the diode based architecture, a high spectral resolution lidar (HSRL) measurement capabilities was added to the second MP-DIAL instrument. The HSRL capabilities will be operational during the deployment at the LAFE field experiment. The instrument architecture will be presented along with examples of data collected during recent field experiments.

  12. Development and Deployment of a Compact Eye-Safe Scanning Differential absorption Lidar (DIAL) for Spatial Mapping of Carbon Dioxide for Monitoring/Verification/Accounting at Geologic Sequestration Sites

    Energy Technology Data Exchange (ETDEWEB)

    Repasky, Kevin

    2014-03-31

    A scanning differential absorption lidar (DIAL) instrument for monitoring carbon dioxide has been developed. The laser transmitter uses two tunable discrete mode laser diodes (DMLD) operating in the continuous wave (cw) mode with one locked to the online absorption wavelength and the other operating at the offline wavelength. Two in-line fiber optic switches are used to switch between online and offline operation. After the fiber optic switch, an acousto- optic modulator (AOM) is used to generate a pulse train used to injection seed an erbium doped fiber amplifier (EDFA) to produce eye-safe laser pulses with maximum pulse energies of 66 {micro}J, a pulse repetition frequency of 15 kHz, and an operating wavelength of 1.571 {micro}m. The DIAL receiver uses a 28 cm diameter Schmidt-Cassegrain telescope to collect that backscattered light, which is then monitored using a photo-multiplier tube (PMT) module operating in the photon counting mode. The DIAL instrument has been operated from a laboratory environment on the campus of Montana State University, at the Zero Emission Research Technology (ZERT) field site located in the agricultural research area on the western end of the Montana State University campus, and at the Big Sky Carbon Sequestration Partnership site located in north-central Montana. DIAL data has been collected and profiles have been validated using a co-located Licor LI-820 Gas Analyzer point sensor.

  13. Measurements of Atmospheric CO2 Column in Cloudy Weather Conditions using An IM-CW Lidar at 1.57 Micron

    Science.gov (United States)

    Lin, Bing; Obland, Michael; Harrison, F. Wallace; Nehrir, Amin; Browell, Edward; Campbell, Joel; Dobler, Jeremy; Meadows, Bryon; Fan, Tai-Fang; Kooi, Susan; hide

    2015-01-01

    This study evaluates the capability of atmospheric CO2 column measurements under cloudy conditions using an airborne intensity-modulated continuous-wave integrated-path-differential-absorption lidar operating in the 1.57-m CO2 absorption band. The atmospheric CO2 column amounts from the aircraft to the tops of optically thick cumulus clouds and to the surface in the presence of optically thin clouds are retrieved from lidar data obtained during the summer 2011 and spring 2013 flight campaigns, respectively.

  14. Lidar/DIAL detection of acetone at 3.3 μm by a tunable OPO laser system

    Science.gov (United States)

    Puiu, A.; Fiorani, L.; Rosa, O.; Borelli, R.; Pistilli, M.; Palucci, A.

    2014-08-01

    In this paper we report, for the first time to our knowledge, on lidar/DIAL detection of acetone vapors at 3.3 μm by means of an optical parametric tunable laser system. After a preliminary spectroscopic study in an absorption cell, the feasibility of a differential absorption (DIAL) lidar for the detection of acetone vapors has been investigated in the laboratory, simulating the experimental conditions of a field campaign. Having in mind measurements in a real scenario, a study of possible atmospheric intereferents has been performed, looking for all known compounds that share acetone IR absorption in the spectral band selected for its detection. Possible interfering species from urban and industrial atmospheres were investigated and limits of acetone detection in both environments were identified. This study confirmed that a lidar system can detect a low concentration of acetone at considerable distances.

  15. A Compact Mobile Ozone Lidar for Atmospheric Ozone and Aerosol Profiling

    Science.gov (United States)

    De Young, Russell; Carrion, William; Pliutau, Denis

    2014-01-01

    A compact mobile differential absorption lidar (DIAL) system has been developed at NASA Langley Research Center to provide ozone, aerosol and cloud atmospheric measurements in a mobile trailer for ground-based atmospheric ozone air quality campaigns. This lidar is integrated into the Tropospheric Ozone Lidar Network (TOLNet) currently made up of four other ozone lidars across the country. The lidar system consists of a UV and green laser transmitter, a telescope and an optical signal receiver with associated Licel photon counting and analog channels. The laser transmitter consist of a Q-switched Nd:YLF inter-cavity doubled laser pumping a Ce:LiCAF tunable UV laser with all the associated power and lidar control support units on a single system rack. The system has been configured to enable mobile operation from a trailer and was deployed to Denver, CO July 15-August 15, 2014 supporting the DISCOVER-AQ campaign. Ozone curtain plots and the resulting science are presented.

  16. New laser design for NIR lidar applications

    Science.gov (United States)

    Vogelmann, H.; Trickl, T.; Perfahl, M.; Biggel, S.

    2018-04-01

    Recently, we quantified the very high spatio-temporal short term variability of tropospheric water vapor in a three dimensional study [1]. From a technical point of view this also depicted the general requirement of short integration times for recording water-vapor profiles with lidar. For this purpose, the only suitable technique is the differential absorption lidar (DIAL) working in the near-infrared (NIR) spectral region. The laser emission of most water vapor DIAL systems is generated by Ti:sapphire or alexandrite lasers. The water vapor absorption band at 817 nm is predominated for the use of Ti:sapphire. We present a new concept of transversely pumping in a Ti:Sapphire amplification stage as well as a compact laser design for the generation of single mode NIR pulses with two different DIAL wavelengths inside a single resonator. This laser concept allows for high output power due to repetitions rates up to 100Hz or even more. It is, because of its compactness, also suitable for mobile applications.

  17. CH4 IPDA Lidar mission data simulator and processor for MERLIN: prototype development at LMD/CNRS/Ecole Polytechnique

    Science.gov (United States)

    Olivier, Chomette; Armante, Raymond; Crevoisier, Cyril; Delahaye, Thibault; Edouart, Dimitri; Gibert, Fabien; Nahan, Frédéric; Tellier, Yoann

    2018-04-01

    The MEthane Remote sensing Lidar missioN (MERLIN), currently in phase C, is a joint cooperation between France and Germany on the development of a spatial Integrated Path Differential Absorption (IPDA) LIDAR (LIght Detecting And Ranging) to conduct global observations of atmospheric methane. This presentation will focus on the status of a LIDAR mission data simulator and processor developed at LMD (Laboratoire de Météorologie Dynamique), Ecole Polytechnique, France, for MERLIN to assess the performances in realistic observational situations.

  18. Lidar/DIAL detection of acetone at 3.3 μm by a tunable OPO laser system

    International Nuclear Information System (INIS)

    Puiu, A; Fiorani, L; Borelli, R; Pistilli, M; Palucci, A; Rosa, O

    2014-01-01

    In this paper we report, for the first time to our knowledge, on lidar/DIAL detection of acetone vapors at 3.3 μm by means of an optical parametric tunable laser system. After a preliminary spectroscopic study in an absorption cell, the feasibility of a differential absorption (DIAL) lidar for the detection of acetone vapors has been investigated in the laboratory, simulating the experimental conditions of a field campaign. Having in mind measurements in a real scenario, a study of possible atmospheric intereferents has been performed, looking for all known compounds that share acetone IR absorption in the spectral band selected for its detection. Possible interfering species from urban and industrial atmospheres were investigated and limits of acetone detection in both environments were identified. This study confirmed that a lidar system can detect a low concentration of acetone at considerable distances. (paper)

  19. CH4 IPDA Lidar mission data simulator and processor for MERLIN: prototype development at LMD/CNRS/Ecole Polytechnique

    Directory of Open Access Journals (Sweden)

    Olivier Chomette

    2018-01-01

    Full Text Available The MEthane Remote sensing Lidar missioN (MERLIN, currently in phase C, is a joint cooperation between France and Germany on the development of a spatial Integrated Path Differential Absorption (IPDA LIDAR (LIght Detecting And Ranging to conduct global observations of atmospheric methane. This presentation will focus on the status of a LIDAR mission data simulator and processor developed at LMD (Laboratoire de Météorologie Dynamique, Ecole Polytechnique, France, for MERLIN to assess the performances in realistic observational situations.

  20. Aerosol absorption profiling from the synergy of lidar and sun-photometry: the ACTRIS-2 campaigns in Germany, Greece and Cyprus

    Directory of Open Access Journals (Sweden)

    Tsekeri Alexandra

    2018-01-01

    Full Text Available Aerosol absorption profiling is crucial for radiative transfer calculations and climate modelling. Here, we utilize the synergy of lidar with sun-photometer measurements to derive the absorption coefficient and single scattering albedo profiles during the ACTRIS-2 campaigns held in Germany, Greece and Cyprus. The remote sensing techniques are compared with in situ measurements in order to harmonize and validate the different methodologies and reduce the absorption profiling uncertainties.

  1. Column CO2 Measurement From an Airborne Solid-State Double-Pulsed 2-Micron Integrated Path Differential Absorption Lidar

    Science.gov (United States)

    Singh, U. N.; Yu, J.; Petros, M.; Refaat, T. F.; Remus, R.; Fay, J.; Reithmaier, K.

    2014-01-01

    NASA LaRC is developing and integrating a double-Pulsed 2-micron direct detection IPDA lidar for CO2 column measurement from an airborne platform. The presentation will describe the development of the 2-micrometers IPDA lidar system and present the airborne measurement of column CO2 and will compare to in-situ measurement for various ground target of different reflectivity.

  2. LIDAR technology developments in support of ESA Earth observation missions

    Science.gov (United States)

    Durand, Yannig; Caron, Jérôme; Hélière, Arnaud; Bézy, Jean-Loup; Meynart, Roland

    2017-11-01

    Critical lidar technology developments have been ongoing at the European Space Agency (ESA) in support of EarthCARE (Earth Clouds, Aerosols, and Radiation Explorer), the 6th Earth Explorer mission, and A-SCOPE (Advanced Space Carbon and Climate Observation of Planet Earth), one of the candidates for the 7th Earth Explorer mission. EarthCARE is embarking an Atmospheric backscatter Lidar (ATLID) while A-SCOPE is based on a Total Column Differential Absorption Lidar. As EarthCARE phase B has just started, the pre-development activities, aiming at validating the technologies used in the flight design and at verifying the overall instrument performance, are almost completed. On the other hand, A-SCOPE pre-phase A has just finished. Therefore technology developments are in progress, addressing critical subsystems or components with the lowest TRL, selected in the proposed instrument concepts. The activities described in this paper span over a broad range, addressing all critical elements of a lidar from the transmitter to the receiver.

  3. Remote sensing of methane with OSAS-lidar on the 2ν3 band Q-branch: Experimental proof

    Science.gov (United States)

    Galtier, Sandrine; Anselmo, Christophe; Welschinger, Jean-Yves; Sivignon, J. F.; Cariou, Jean-Pierre; Miffre, Alain; Rairoux, Patrick

    2018-06-01

    Optical sensors based on absorption spectroscopy play a central role in the detection and monitoring of atmospheric trace gases. We here present for the first time the experimental demonstration of OSAS-Lidar on the remote sensing of CH4 in the atmosphere. This new methodology, the OSAS-Lidar, couples the Optical Similitude Absorption Spectroscopy (OSAS) methodology with a light detection and ranging device. It is based on the differential absorption of spectrally integrated signals following Beer Lambert-Bouguer law, which are range-resolved. Its novelty originates from the use of broadband laser spectroscopy and from the mathematical approach used to retrieve the trace gas concentration. We previously applied the OSAS methodology in laboratory on the 2ν3 methane absorption band, centered at the 1665 nm wavelength and demonstrated that the OSAS-methodology is almost independent from atmospheric temperature and pressure. In this paper, we achieve an OSAS-Lidar device capable of observing large concentrations of CH4 released from a methane source directly into the atmosphere. Comparison with a standard in-situ measurement device shows that the path-integrated concentrations retrieved from OSAS-Lidar methodology exhibit sufficient sensitivity (2 000 ppm m) and observational time resolution (1 s) to remotely sense methane leaks in the atmosphere. The coupling of OSAS-lidar with a wind measurement device opens the way to monitor time-resolved methane flux emissions, which is important in regards to future climate mitigation involving regional reduction of CH4 flux emissions.

  4. UV Lidar Receiver Analysis for Tropospheric Sensing of Ozone

    Science.gov (United States)

    Pliutau, Denis; DeYoung, Russell J.

    2013-01-01

    A simulation of a ground based Ultra-Violet Differential Absorption Lidar (UV-DIAL) receiver system was performed under realistic daytime conditions to understand how range and lidar performance can be improved for a given UV pulse laser energy. Calculations were also performed for an aerosol channel transmitting at 3 W. The lidar receiver simulation studies were optimized for the purpose of tropospheric ozone measurements. The transmitted lidar UV measurements were from 285 to 295 nm and the aerosol channel was 527-nm. The calculations are based on atmospheric transmission given by the HITRAN database and the Modern Era Retrospective Analysis for Research and Applications (MERRA) meteorological data. The aerosol attenuation is estimated using both the BACKSCAT 4.0 code as well as data collected during the CALIPSO mission. The lidar performance is estimated for both diffuseirradiance free cases corresponding to nighttime operation as well as the daytime diffuse scattered radiation component based on previously reported experimental data. This analysis presets calculations of the UV-DIAL receiver ozone and aerosol measurement range as a function of sky irradiance, filter bandwidth and laser transmitted UV and 527-nm energy

  5. Progress on Development of an Airborne Two-Micron IPDA Lidar for Water Vapor and Carbon Dioxide Column Measurements

    Science.gov (United States)

    Singh, Upendra N.; Petros, Mulugeta; Refaat, Tamer F.; Yu, Jirong; Antill, Charles W.; Taylor, Bryant D.; Bowen, Stephen C.; Welters, Angela M.; Remus, Ruben G.; Wong, Teh-Hwa; hide

    2014-01-01

    An airborne 2 micron triple-pulse integrated path differential absorption (IPDA) lidar is currently under development at NASA Langley Research Center (LaRC). This lidar targets both atmospheric carbon dioxide (CO2) and water vapor (H2O) column measurements, simultaneously. Advancements in the development of this IPDA lidar are presented in this paper. Updates on advanced two-micron triple-pulse high-energy laser transmitter will be given including packaging and lidar integration status. In addition, receiver development updates will also be presented. This includes a state-of-the-art detection system integrated at NASA Goddard Space Flight Center. This detection system is based on a newly developed HgCdTe (MCT) electron-initiated avalanche photodiode (e-APD) array. Future plan for IPDA lidar system for ground integration, testing and flight validation will be discussed.

  6. Lidar mapping of atmospheric atomic mercury in the Wanshan area, China.

    Science.gov (United States)

    Lian, Ming; Shang, Lihai; Duan, Zheng; Li, Yiyun; Zhao, Guangyu; Zhu, Shiming; Qiu, Guangle; Meng, Bo; Sommar, Jonas; Feng, Xinbin; Svanberg, Sune

    2018-05-08

    A novel mobile laser radar system was used for mapping gaseous atomic mercury (Hg 0 ) atmospheric pollution in the Wanshan district, south of Tongren City, Guizhou Province, China. This area is heavily impacted by legacy mercury from now abandoned mining activities. Differential absorption lidar measurements were supplemented by localized point monitoring using a Lumex RA-915M Zeeman modulation mercury analyzer. Range-resolved concentration measurements in different directions were performed. Concentrations in the lower atmospheric layers often exceeded levels of 100 ng/m 3 for March conditions with temperature ranging from 5 °C to 20 °C. A flux measurement of Hg 0 over a vertical cross section of 0.12 km 2 resulted in about 29 g/h. Vertical lidar sounding at night revealed quickly falling Hg 0 concentrations with height. This is the first lidar mapping demonstration in a heavily mercury-polluted area in China, illustrating the lidar potential in complementing point monitors. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Airborne Lidar for Simultaneous Measurement of Column CO2 and Water Vapor in the Atmosphere

    Science.gov (United States)

    Singh, Upendra N.; Petros, Mulugeta; Refaat, Tamer F.; Antill, Charles W.; Remus, Ruben; Yu, Jirong

    2016-01-01

    The 2-micron wavelength region is suitable for atmospheric carbon dioxide (CO2) measurements due to the existence of distinct absorption feathers for the gas at this particular wavelength. For more than 20 years, researchers at NASA Langley Research Center (LaRC) have developed several high-energy and high repetition rate 2-micron pulsed lasers. This paper will provide status and details of an airborne 2-micron triple-pulse integrated path differential absorption (IPDA) lidar. The development of this active optical remote sensing IPDA instrument is targeted for measuring both CO2 and water vapor (H2O) in the atmosphere from an airborne platform. This presentation will focus on the advancement of the 2-micron triple-pulse IPDA lidar development. Updates on the state-of-the-art triple-pulse laser transmitter will be presented including the status of seed laser locking, wavelength control, receiver telescope, detection system and data acquisition. Future plans for the IPDA lidar system for ground integration, testing and flight validation will also be presented.

  8. Development of an advanced Two-Micron triple-pulse IPDA lidar for carbon dioxide and water vapor measurements

    Science.gov (United States)

    Petros, Mulugeta; Refaat, Tamer F.; Singh, Upendra N.; Yu, Jirong; Antill, Charles; Remus, Ruben; Taylor, Bryant D.; Wong, Teh-Hwa; Reithmaier, Karl; Lee, Jane; Ismail, Syed; Davis, Kenneth J.

    2018-04-01

    An advanced airborne triple-pulse 2-μm integrated path differential absorption (IPDA) lidar is under development at NASA Langley Research Center that targets both carbon dioxide (CO2) and water vapor (H2O) measurements simultaneously and independently. This lidar is an upgrade to the successfully demonstrated CO2 2-μm double-pulse IPDA. Upgrades include high-energy, highrepetition rate 2-μm triple-pulse laser transmitter, innovative wavelength control and advanced HgCdTe (MCT) electron-initiated avalanche photodiode detection system. Ground testing and airborne validation plans are presented.

  9. Airborne differential absorption lidar for water vapour measurements in the upper troposphere and lower stratosphere in the spectral region around 940 nm

    Energy Technology Data Exchange (ETDEWEB)

    Poberaj, G.

    2000-07-01

    Two all-solid-state laser systems were developed and studied in detail to optimise their performance for an airborne water vapour differential absorption lidar (DIAL). Their special features are high average output powers and excellent spectral properties in the 940-nm spectral region relevant for monitoring very low water vapour contents in the upper troposphere and lower stratosphere. One system is an injection-seeded pulsed Ti:sapphire ring laser with a spectral bandwidth of 105 MHz and an average power of 1.1 W. The other system is an injection-seeded optical parametric oscillator (OPO) in a ring configuration. Using KTP as nonlinear crystal, a signal output with a spectral bandwidth of 140 MHz and an average power of 1.2 W was achieved. Both systems, the Ti:sapphire ring laser and the KTP OPO, possess spectral purity values higher than 99%. The pump source for these systems is a frequency doubled diode-pumped Nd:YAG laser operating at a repetition rate of 100 Hz. The KTP OPO system has been used as a transmitter in a new airborne water vapour DIAL instrument. For the first time, measurements of two-dimensional water vapour distributions with a high vertical (500 m) and horizontal (20 km) resolution across several potential vorticity streamers were performed. Very low water vapour mixing ratios (10-50 ppmv) and strong gradients were observed in the tropopause region. The sensitivity of the DIAL instrument in the centre of a stratospheric intrusion ranges from 3% in the near field to 12% in the far field (4 km). The first comparison experiments with in situ measuring instruments show a good agreement. Considerable differences are found between DIAL measurements and data obtained from the ECMWF operational analyses and a mesoscale numerical model. (orig.)

  10. Lidar instruments for ESA Earth observation missions

    Science.gov (United States)

    Hélière, Arnaud; Armandillo, Errico; Durand, Yannig; Culoma, Alain; Meynart, Roland

    2017-11-01

    The idea of deploying a lidar system on an Earthorbiting satellite stems from the need for continuously providing profiles of our atmospheric structure with high accuracy and resolution and global coverage. Interest in this information for climatology, meteorology and the atmospheric sciences in general is huge. Areas of application range from the determination of global warming and greenhouse effects, to monitoring the transport and accumulation of pollutants in the different atmospheric regions (such as the recent fires in Southeast Asia), to the assessment of the largely unknown microphysical properties and the structural dynamics of the atmosphere itself. Spaceborne lidar systems have been the subject of extensive investigations by the European Space Agency since mid 1970's, resulting in mission and instrument concepts, such as ATLID, the cloud backscatter lidar payload of the EarthCARE mission, ALADIN, the Doppler wind lidar of the Atmospheric Dynamics Mission (ADM) and more recently a water vapour Differential Absorption Lidar considered for the WALES mission. These studies have shown the basic scientific and technical feasibility of spaceborne lidars, but they have also demonstrated their complexity from the instrument viewpoint. As a result, the Agency undertook technology development in order to strengthen the instrument maturity. This is the case for ATLID, which benefited from a decade of technology development and supporting studies and is now studied in the frame of the EarthCARE mission. ALADIN, a Direct Detection Doppler Wind Lidar operating in the Ultra -Violet, will be the 1st European lidar to fly in 2007 as payload of the Earth Explorer Core Mission ADM. WALES currently studied at the level of a phase A, is based upon a lidar operating at 4 wavelengths in near infrared and aims to profile the water vapour in the lower part of the atmosphere with high accuracy and low bias. Lastly, the European Space Agency is extending the lidar instrument field

  11. HgCdTe Avalanche Photodiode Detectors for Airborne and Spaceborne Lidar at Infrared Wavelengths

    Science.gov (United States)

    Sun, Xiaoli; Abshire, James B.; Beck, Jeffrey D.; Mitra, Pradip; Reiff, Kirk; Yang, Guangning

    2017-01-01

    We report results from characterizing the HgCdTe avalanche photodiode (APD) sensorchip assemblies (SCA) developed for lidar at infrared wavelength using the high density vertically integrated photodiodes (HDVIP) technique. These devices demonstrated high quantum efficiency, typically greater than 90 between 0.8 micrometers and the cut-off wavelength, greater than 600 APD gain, near unity excess noise factor, 6-10 MHz electrical bandwidth and less than 0.5 fW/Hz(exp.1/2) noise equivalent power (NEP). The detectors provide linear analog output with a dynamic range of 2-3 orders of magnitude at a fixed APD gain without averaging, and over 5 orders of magnitude by adjusting the APD and preamplifier gain settings. They have been successfully used in airborne CO2 and CH4 integrated path differential absorption (IPDA) lidar as a precursor for space lidar applications.

  12. Lidar detection of carbon dioxide in volcanic plumes

    Science.gov (United States)

    Fiorani, Luca; Santoro, Simone; Parracino, Stefano; Maio, Giovanni; Del Franco, Mario; Aiuppa, Alessandro

    2015-06-01

    Volcanic gases give information on magmatic processes. In particular, anomalous releases of carbon dioxide precede volcanic eruptions. Up to now, this gas has been measured in volcanic plumes with conventional measurements that imply the severe risks of local sampling and can last many hours. For these reasons and for the great advantages of laser sensing, the thorough development of volcanic lidar has been undertaken at the Diagnostics and Metrology Laboratory (UTAPRAD-DIM) of the Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA). In fact, lidar profiling allows one to scan remotely volcanic plumes in a fast and continuous way, and with high spatial and temporal resolution. Two differential absorption lidar instruments will be presented in this paper: BILLI (BrIdge voLcanic LIdar), based on injection seeded Nd:YAG laser, double grating dye laser, difference frequency mixing (DFM) and optical parametric amplifier (OPA), and VULLI (VULcamed Lidar), based on injection seeded Nd:YAG laser and optical parametric oscillator (OPO). The first one is funded by the ERC (European Research Council) project BRIDGE and the second one by the ERDF (European Regional Development Fund) project VULCAMED. While VULLI has not yet been tested in a volcanic site, BILLI scanned the gas emitted by Pozzuoli Solfatara (Campi Flegrei volcanic area, Naples, Italy) during a field campaign carried out from 13 to 17 October 2014. Carbon dioxide concentration maps were retrieved remotely in few minutes in the crater area. Lidar measurements were in good agreement with well-established techniques, based on different operating principles. To our knowledge, it is the first time that carbon dioxide in a volcanic plume is retrieved by lidar, representing the first direct measurement of this kind ever performed on an active volcano and showing the high potential of laser remote sensing in geophysical research.

  13. Gas analysis within remote porous targets using LIDAR multi-scatter techniques

    Science.gov (United States)

    Guan, Z. G.; Lewander, M.; Grönlund, R.; Lundberg, H.; Svanberg, S.

    2008-11-01

    Light detection and ranging (LIDAR) experiments are normally pursued for range resolved atmospheric gas measurements or for analysis of solid target surfaces using fluorescence of laser-induced breakdown spectroscopy. In contrast, we now demonstrate the monitoring of free gas enclosed in pores of materials, subject to impinging laser radiation, employing the photons emerging back to the surface laterally of the injection point after penetrating the medium in heavy multiple scattering processes. The directly reflected light is blocked by a beam stop. The technique presented is a remote version of the newly introduced gas in scattering media absorption spectroscopy (GASMAS) technique, which so far was pursued with the injection optics and the detector in close contact with the sample. Feasibility measurements of LIDAR-GASMAS on oxygen in polystyrene foam were performed at a distance of 6 m. Multiple-scattering induced delays of the order of 50 ns, which corresponds to 15 m optical path length, were observed. First extensions to a range of 60 m are discussed. Remote observation of gas composition anomalies in snow using differential absorption LIDAR (DIAL) may find application in avalanche victim localization or for leak detection in snow-covered natural gas pipelines. Further, the techniques may be even more useful for short-range, non-intrusive GASMAS measurements, e.g., on packed food products.

  14. Advances in High Energy Solid-State Pulsed 2-Micron Lidar Development for Ground and Airborne Wind, Water Vapor and CO2 Measurements

    Science.gov (United States)

    Singh, Upendra N.; Yu, Jirong; Petros, Mulugeta; Refaat, Tamer; Kavaya, Michael J.; Remus, Ruben

    2015-01-01

    NASA Langley Research Center has a long history of developing 2-micron lasers. From fundamental spectroscopy research, theoretical prediction of new materials, laser demonstration and engineering of lidar systems, it has been a very successful program spanning around two decades. Successful development of 2-micron lasers has led to development of a state-of-the-art compact lidar transceiver for a pulsed coherent Doppler lidar system for wind measurement with an unprecedented laser pulse energy of 250 millijoules in a rugged package. This high pulse energy is produced by a Ho:Tm:LuLiF laser with an optical amplifier. While the lidar is meant for use as an airborne instrument, ground-based tests were carried out to characterize performance of the lidar. Atmospheric measurements will be presented, showing the lidar's capability for wind measurement in the atmospheric boundary layer and free troposphere. Lidar wind measurements are compared to a balloon sonde, showing good agreement between the two sensors. Similar architecture has been used to develop a high energy, Ho:Tm:YLF double-pulsed 2-micron Integrated Differential Absorption Lidar (IPDA) instrument based on direct detection technique that provides atmospheric column CO2 measurements. This instrument has been successfully used to measure atmospheric CO2 column density initially from a ground mobile lidar trailer, and then it was integrated on B-200 plane and 20 hours of flight measurement were made from an altitude ranging 1500 meters to 8000 meters. These measurements were compared to in-situ measurements and National Oceanic and Atmospheric Administration (NOAA) airborne flask measurement to derive the dry mixing ratio of the column CO2 by reflecting the signal by various reflecting surfaces such as land, vegetation, ocean surface, snow and sand. The lidar measurements when compared showed a very agreement with in-situ and airborne flask measurement. NASA Langley Research Center is currently developing a

  15. Performance Simulations for a Spaceborne Methane Lidar Mission

    Science.gov (United States)

    Kiemle, C.; Kawa, Stephan Randolph; Quatrevalet, Mathieu; Browell, Edward V.

    2014-01-01

    Future spaceborne lidar measurements of key anthropogenic greenhouse gases are expected to close current observational gaps particularly over remote, polar, and aerosol-contaminated regions, where actual in situ and passive remote sensing observation techniques have difficulties. For methane, a "Methane Remote Lidar Mission" was proposed by Deutsches Zentrum fuer Luft- und Raumfahrt and Centre National d'Etudes Spatiales in the frame of a German-French climate monitoring initiative. Simulations assess the performance of this mission with the help of Moderate Resolution Imaging Spectroradiometer and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations of the earth's surface albedo and atmospheric optical depth. These are key environmental parameters for integrated path differential absorption lidar which uses the surface backscatter to measure the total atmospheric methane column. Results showthat a lidar with an average optical power of 0.45W at 1.6 µm wavelength and a telescope diameter of 0.55 m, installed on a low Earth orbit platform(506 km), will measure methane columns at precisions of 1.2%, 1.7%, and 2.1% over land, water, and snow or ice surfaces, respectively, for monthly aggregated measurement samples within areas of 50 × 50 km2. Globally, the mean precision for the simulated year 2007 is 1.6%, with a standard deviation of 0.7%. At high latitudes, a lower reflectance due to snow and ice is compensated by denser measurements, owing to the orbital pattern. Over key methane source regions such as densely populated areas, boreal and tropical wetlands, or permafrost, our simulations show that the measurement precision will be between 1 and 2%.

  16. Proposed standardized definitions for vertical resolution and uncertainty in the NDACC lidar ozone and temperature algorithms - Part 2: Ozone DIAL uncertainty budget

    Science.gov (United States)

    Leblanc, Thierry; Sica, Robert J.; van Gijsel, Joanna A. E.; Godin-Beekmann, Sophie; Haefele, Alexander; Trickl, Thomas; Payen, Guillaume; Liberti, Gianluigi

    2016-08-01

    A standardized approach for the definition, propagation, and reporting of uncertainty in the ozone differential absorption lidar data products contributing to the Network for the Detection for Atmospheric Composition Change (NDACC) database is proposed. One essential aspect of the proposed approach is the propagation in parallel of all independent uncertainty components through the data processing chain before they are combined together to form the ozone combined standard uncertainty. The independent uncertainty components contributing to the overall budget include random noise associated with signal detection, uncertainty due to saturation correction, background noise extraction, the absorption cross sections of O3, NO2, SO2, and O2, the molecular extinction cross sections, and the number densities of the air, NO2, and SO2. The expression of the individual uncertainty components and their step-by-step propagation through the ozone differential absorption lidar (DIAL) processing chain are thoroughly estimated. All sources of uncertainty except detection noise imply correlated terms in the vertical dimension, which requires knowledge of the covariance matrix when the lidar signal is vertically filtered. In addition, the covariance terms must be taken into account if the same detection hardware is shared by the lidar receiver channels at the absorbed and non-absorbed wavelengths. The ozone uncertainty budget is presented as much as possible in a generic form (i.e., as a function of instrument performance and wavelength) so that all NDACC ozone DIAL investigators across the network can estimate, for their own instrument and in a straightforward manner, the expected impact of each reviewed uncertainty component. In addition, two actual examples of full uncertainty budget are provided, using nighttime measurements from the tropospheric ozone DIAL located at the Jet Propulsion Laboratory (JPL) Table Mountain Facility, California, and nighttime measurements from the JPL

  17. Sensitivity studies for a space-based methane lidar mission

    Directory of Open Access Journals (Sweden)

    C. Kiemle

    2011-10-01

    Full Text Available Methane is the third most important greenhouse gas in the atmosphere after water vapour and carbon dioxide. A major handicap to quantify the emissions at the Earth's surface in order to better understand biosphere-atmosphere exchange processes and potential climate feedbacks is the lack of accurate and global observations of methane. Space-based integrated path differential absorption (IPDA lidar has potential to fill this gap, and a Methane Remote Lidar Mission (MERLIN on a small satellite in polar orbit was proposed by DLR and CNES in the frame of a German-French climate monitoring initiative. System simulations are used to identify key performance parameters and to find an advantageous instrument configuration, given the environmental, technological, and budget constraints. The sensitivity studies use representative averages of the atmospheric and surface state to estimate the measurement precision, i.e. the random uncertainty due to instrument noise. Key performance parameters for MERLIN are average laser power, telescope size, orbit height, surface reflectance, and detector noise. A modest-size lidar instrument with 0.45 W average laser power and 0.55 m telescope diameter on a 506 km orbit could provide 50-km averaged methane column measurement along the sub-satellite track with a precision of about 1% over vegetation. The use of a methane absorption trough at 1.65 μm improves the near-surface measurement sensitivity and vastly relaxes the wavelength stability requirement that was identified as one of the major technological risks in the pre-phase A studies for A-SCOPE, a space-based IPDA lidar for carbon dioxide at the European Space Agency. Minimal humidity and temperature sensitivity at this wavelength position will enable accurate measurements in tropical wetlands, key regions with largely uncertain methane emissions. In contrast to actual passive remote sensors, measurements in Polar Regions will be possible and biases due to aerosol

  18. Lidar to lidar calibration of Ground-based Lidar

    DEFF Research Database (Denmark)

    Fernandez Garcia, Sergio; Courtney, Michael

    This report presents the result of the lidar to lidar calibration performed for ground-based lidar. Calibration is here understood as the establishment of a relation between the reference lidar wind speed measurements with measurement uncertainties provided by measurement standard and corresponding...... lidar wind speed indications with associated measurement uncertainties. The lidar calibration concerns the 10 minute mean wind speed measurements. The comparison of the lidar measurements of the wind direction with that from the reference lidar measurements are given for information only....

  19. Lidar to lidar calibration

    DEFF Research Database (Denmark)

    Fernandez Garcia, Sergio; Villanueva, Héctor

    This report presents the result of the lidar to lidar calibration performed for ground-based lidar. Calibration is here understood as the establishment of a relation between the reference lidar wind speed measurements with measurement uncertainties provided by measurement standard and corresponding...... lidar wind speed indications with associated measurement uncertainties. The lidar calibration concerns the 10 minute mean wind speed measurements. The comparison of the lidar measurements of the wind direction with that from the reference lidar measurements are given for information only....

  20. Airborne Two-Micron Double-Pulse IPDA Lidar Validation for Carbon Dioxide Measurements Over Land

    Science.gov (United States)

    Refaat, Tamer F.; Singh, Upendra N.; Yu, Jirong; Petros, Mulugeta; Remus, Ruben; Ismail, Syed

    2018-04-01

    An airborne double-pulse 2-μm Integrated Path Differential Absorption (IPDA) lidar has been developed at NASA LaRC for measuring atmospheric CO2. IPDA was validated using NASA B-200 aircraft over land and ocean under different conditions. IPDA evaluation for land vegetation returns, during full day background conditions, are presented. IPDA CO2 measurements compare well with model results driven from on-board insitu sensor data. These results also indicate that CO2 measurement bias is consistent with that from ocean surface returns.

  1. Tropospheric Ozone Source Attribution in Southern California during Summer 2014 Based on Lidar Measurements and Model Simulations

    Science.gov (United States)

    Granados Munoz, Maria Jose; Johnson, Matthew S.; Leblanc, Thierry

    2016-01-01

    In the past decades, significant efforts have been made to increase tropospheric ozone long-term monitoring. A large number of ground-based, airborne and space-borne instruments are currently providing valuable data to contribute to better understand tropospheric ozone budget and variability. Nonetheless, most of these instruments provide in-situ surface and column-integrated data, whereas vertically resolved measurements are still scarce. Besides ozonesondes and aircraft, lidar measurements have proven to be valuable tropospheric ozone profilers. Using the measurements from the tropospheric ozone differential absorption lidar (DIAL) located at the JPL Table Mountain Facility, California, and the GEOS-Chem and GEOS-5 model outputs, the impact of the North American monsoon on tropospheric ozone during summer 2014 is investigated. The influence of the Monsoon lightning-induced NOx will be evaluated against other sources (e.g. local anthropogenic emissions and the stratosphere) using also complementary data such as backward-trajectories analysis, coincident water vapor lidar measurements, and surface ozone in-situ measurements.

  2. Temporal correlation measurements of pulsed dual CO2 lidar returns. [for atmospheric pollution detection

    Science.gov (United States)

    Menyuk, N.; Killinger, D. K.

    1981-01-01

    A pulsed dual-laser direct-detection differential-absorption lidar DIAL system, operating near 10.6 microns, is used to measure the temporal correlation and statistical properties of backscattered returns from specular and diffuse topographic targets. Results show that atmospheric-turbulence fluctuations can effectively be frozen for pulse separation times on the order of 1-3 msec or less. The diffuse target returns, however, yielded a much lower correlation than that obtained with the specular targets; this being due to uncorrelated system noise effects and different statistics for the two types of target returns.

  3. Ultra-violet and visible absorption characterization of explosives by differential reflectometry.

    Science.gov (United States)

    Dubroca, Thierry; Moyant, Kyle; Hummel, Rolf E

    2013-03-15

    This study presents some optical properties of TNT (2,4,6-trinitrotoluene), RDX, HMX and tetryl, specifically their absorption spectra as a function of concentration in various solvents in the ultraviolet and visible portion of the electromagnetic spectrum. We utilize a standoff explosives detection method, called differential reflectometry (DR). TNT was diluted in six different solvents (acetone, acetonitrile, ethanol, ethyl acetate, methanol, and toluene), which allowed for a direct comparison of absorption features over a wide range of concentrations. A line-shape analysis was adopted with great accuracy (R(2)>0.99) to model the absorption features of TNT in differential reflectivity spectra. We observed a blue shift in the pertinent absorption band with decreasing TNT concentration for all solvents. Moreover, using this technique, it was found that for all utilized solvents the concentration of TNT as well as of RDX, HMX, and tetryl, measured as a function of the transition wavelength of the ultra-violet absorption edge in differential reflectivity spectra shows three distinct regions. A model is presented to explain this behavior which is based on intermolecular hydrogen bonding of explosives molecules with themselves (or lack thereof) at different concentrations. Other intermolecular forces such as dipole-dipole interactions, London dispersion forces and π-stacking contribute to slight variations in the resulting spectra, which were determined to be rather insignificant in comparison to hydrogen bonding. The results are aimed towards a better understanding of the DR spectra of explosives energetic materials. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Airborne Measurements of Atmospheric Pressure made Using an IPDA Lidar Operating in the Oxygen A-Band

    Science.gov (United States)

    Riris, Haris; Abshire, James B.; Stephen, Mark; Rodriquez, Michael; Allan, Graham; Hasselbrack, William; Mao, Jianping

    2012-01-01

    We report airborne measurements of atmospheric pressure made using an integrated path differential absorption (IPDA) lidar that operates in the oxygen A-band near 765 nm. Remote measurements of atmospheric temperature and pressure are needed for NASA s Active Sensing of CO2 Emissions Over Nights, Days, and Seasons (ASCENDS) mission to measure atmospheric CO2. Accurate measurements of tropospheric CO2 on a global scale are very important in order to better understand its sources and sinks and to improve our predictions of climate change. The goal of ASCENDS is to determine the CO2 dry mixing ratio with lidar measurements from space at a level of 1 ppm. Analysis to date shows that with current weather models, measurements of both the CO2 column density and the column density of dry air are needed. Since O2 is a stable molecule that uniformly mixed in the atmosphere, measuring O2 absorption in the atmosphere can be used to infer the dry air density. We have developed an airborne (IPDA) lidar for Oxygen, with support from the NASA ESTO IIP program. Our lidar uses DFB-based seed laser diodes, a pulsed modulator, a fiber laser amplifier, and a non-linear crystal to generate wavelength tunable 765 nm laser pulses with a few uJ/pulse energy. The laser pulse rate is 10 KHz, and average transmitted laser power is 20 mW. Our lidar steps laser pulses across a selected line O2 doublet near 764.7 nm in the Oxygen A-band. The direct detection lidar receiver uses a 20 cm diameter telescope, a Si APD detector in Geiger mode, and a multi-channel scalar to detect and record the time resolved laser backscatter in 40 separate wavelength channels. Subsequent analysis is used to estimate the transmission line shape of the doublet for the laser pulses reflected from the ground. Ground based data analysis allows averaging from 1 to 60 seconds to increase SNR in the transmission line shape of the doublet. Our retrieval algorithm fits the expected O2 lineshapes against the measurements and

  5. Atmospheric CO2 Concentration Measurements with Clouds from an Airborne Lidar

    Science.gov (United States)

    Mao, J.; Abshire, J. B.; Kawa, S. R.; Riris, H.; Allan, G. R.; Hasselbrack, W. E.; Numata, K.; Chen, J. R.; Sun, X.; DiGangi, J. P.; Choi, Y.

    2017-12-01

    Globally distributed atmospheric CO2 concentration measurements with high precision, low bias and full seasonal sampling are crucial to advance carbon cycle sciences. However, two thirds of the Earth's surface is typically covered by clouds, and passive remote sensing approaches from space are limited to cloud-free scenes. NASA Goddard is developing a pulsed, integrated-path differential absorption (IPDA) lidar approach to measure atmospheric column CO2 concentrations, XCO2, from space as a candidate for NASA's ASCENDS mission. Measurements of time-resolved laser backscatter profiles from the atmosphere also allow this technique to estimate XCO2 and range to cloud tops in addition to those to the ground with precise knowledge of the photon path-length. We demonstrate this measurement capability using airborne lidar measurements from summer 2017 ASCENDS airborne science campaign in Alaska. We show retrievals of XCO2 to ground and to a variety of cloud tops. We will also demonstrate how the partial column XCO2 to cloud tops and cloud slicing approach help resolving vertical and horizontal gradient of CO2 in cloudy conditions. The XCO2 retrievals from the lidar are validated against in situ measurements and compared to the Goddard Parameterized Chemistry Transport Model (PCTM) simulations. Adding this measurement capability to the future lidar mission for XCO2 will provide full global and seasonal data coverage and some information about vertical structure of CO2. This unique facility is expected to benefit atmospheric transport process studies, carbon data assimilation in models, and global and regional carbon flux estimation.

  6. Scattering and absorption differential cross sections for double ...

    Indian Academy of Sciences (India)

    The scattering and absorption differential cross sections for nonlinear QED process such as double photon Compton scattering have been measured as a function of independent final photon energy. The incident gamma photons are of 0.662 MeV in energy as produced by an 8 Ci137Cs radioactive source and thin ...

  7. Remote measurement of atmospheric pollutants with laser techniques

    Energy Technology Data Exchange (ETDEWEB)

    Corio, W; Querzola, B; Zanzottera, E

    1979-03-01

    Laser techniques for the remote sensing of atmospheric pollutants are reviewed, with attention given to lidars based on Rayleigh and Mie scattering, the Raman effect, or fluorescent scattering. Emphasis is placed on differential absorption lidars, which rely on Rayleigh or Mie scattering for measurements made in the IR or in the visible-UV range, respectively. A comprehensive air pollution monitoring program based on differential absorption lidars, together with systems using fluorescent backscattering and absorption measurements with topographic backscattering, is described.

  8. Weather and climate needs for Lidar observations from space and concepts for their realization. [wind, temperature, moisture, and pressure data needs

    Science.gov (United States)

    Atlas, D.; Korb, C. L.

    1980-01-01

    The spectrum of weather and climate needs for Lidar observations from space is discussed with emphasis on the requirements for wind, temperature, moisture, and pressure data. It is shown that winds are required to realistically depict all atmospheric scales in the tropics and the smaller scales at higher latitudes, where both temperature and wind profiles are necessary. The need for means to estimate air-sea exchanges of sensible and latent heat also is noted. A concept for achieving this through a combination of Lidar cloud top heights and IR cloud top temperatures of cloud streets formed during cold air outbreaks over the warmer ocean is outlined. Recent theoretical feasibility studies concerning the profiling of temperatures, pressure, and humidity by differential absorption Lidar (DIAL) from space and expected accuracies are reviewed. An alternative approach to Doppler Lidar wind measurements also is presented. The concept involves the measurement of the displacement of the aerosol backscatter pattern, at constant heights, between two successive scans of the same area, one ahead of the spacecraft and the other behind it a few minutes later. Finally, an integrated space Lidar system capable of measuring temperature, pressure, humidity, and winds which combines the DIAL methods with the aerosol pattern displacement concept is described.

  9. Lidar observations of low-level wind reversals over the Gulf of Lion and characterization of their impact on the water vapour variability

    Science.gov (United States)

    Di Girolamo, Paolo; Flamant, Cyrille; Cacciani, Marco; Summa, Donato; Stelitano, Dario; Richard, Evelyne; Ducrocq, Véronique; Fourrie, Nadia; Said, Frédérique

    2017-02-01

    Water vapour measurements from a ground-based Raman lidar and an airborne differential absorption lidar, complemented by high resolution numerical simulations from two mesoscale models (Arome-WMED and MESO-NH), are considered to investigate transition events from Mistral/Tramontane to southerly marine flow taking place over the Gulf of Lion in Southern France in the time frame September-October 2012, during the Hydrological Cycle in the Mediterranean Experiment (HyMeX) Special Observation Period 1 (SOP1). Low-level wind reversals associated with these transitions are found to have a strong impact on water vapour transport, leading to a large variability of the water vapour vertical and horizontal distribution. The high spatial and temporal resolution of the lidar data allow to monitor the time evolution of the three-dimensional water vapour field during these transitions from predominantly northerly Mistral/Tramontane flow to a predominantly southerly flow, allowing to identify the quite sharp separation between these flows, which is also quite well captured by the mesoscale models.

  10. Lidar: air pollution applications

    International Nuclear Information System (INIS)

    Collis, R.T.H.

    1977-01-01

    This introduction to the use of lidar in air pollution applications is mainly concerned with its capability to detect and monitor atmospheric particulates by elastic backscattering. Even when quite imperceptible to the eye, such particulates may be detected at ranges of several kilometers even by lidars of modest performance. This capability is valuable in connection with air pollution in the following ways: by mapping and tracking inhomogeneities in particulate concentration, atmospheric structure and motion may be monitored; measurements of the optical properties of the atmosphere provide an indication of turbidity or of particulate number or mass concentrations; and the capability of obtaining at a single point return signals from remote atmospheric volumes makes it possible to make range-resolved measurements of gaseous concentration along the path by using the resonant absorption of energy of appropriate wavelengths

  11. MERLIN: A French-German Space Lidar Mission Dedicated to Atmospheric Methane

    Directory of Open Access Journals (Sweden)

    Gerhard Ehret

    2017-10-01

    Full Text Available The MEthane Remote sensing Lidar missioN (MERLIN aims at demonstrating the spaceborne active measurement of atmospheric methane, a potent greenhouse gas, based on an Integrated Path Differential Absorption (IPDA nadir-viewing LIght Detecting and Ranging (Lidar instrument. MERLIN is a joint French and German space mission, with a launch currently scheduled for the timeframe 2021/22. The German Space Agency (DLR is responsible for the payload, while the platform (MYRIADE Evolutions product line is developed by the French Space Agency (CNES. The main scientific objective of MERLIN is the delivery of weighted atmospheric columns of methane dry-air mole fractions for all latitudes throughout the year with systematic errors small enough (<3.7 ppb to significantly improve our knowledge of methane sources from global to regional scales, with emphasis on poorly accessible regions in the tropics and at high latitudes. This paper presents the MERLIN objectives, describes the methodology and the main characteristics of the payload and of the platform, and proposes a first assessment of the error budget and its translation into expected uncertainty reduction of methane surface emissions.

  12. Lidar to lidar calibration phase 1

    DEFF Research Database (Denmark)

    Yordanova, Ginka; Courtney, Michael

    This report presents a feasibility study of a lidar to lidar (L2L) calibration procedure. Phase one of the project was conducted at Høvsøre, Denmark. Two windcubes were placed next to the 116m met mast and different methods were applied to obtain the sensing height error of the lidars. The purpose...... is to find the most consistent method and use it in a potential lidar to lidar calibration procedure....

  13. Airborne and Ground-Based Measurements Using a High-Performance Raman Lidar

    Science.gov (United States)

    Whiteman, David N.; Rush, Kurt; Rabenhorst, Scott; Welch, Wayne; Cadirola, Martin; McIntire, Gerry; Russo, Felicita; Adam, Mariana; Venable, Demetrius; Connell, Rasheen; hide

    2010-01-01

    -II measurements, along with numerical simulation, were used to determine that the likely reason for the suboptimal airborne aerosol extinction performance during theWAVES_2007 campaign was amisaligned interference filter. With full laser power and a properly tuned interference filter,RASL is shown to be capable ofmeasuring themain water vapor and aerosol parameters with temporal resolutions of between 2 and 45 s and spatial resolutions ranging from 30 to 330 m from a flight altitude of 8 km with precision of generally less than 10%, providing performance that is competitive with some airborne Differential Absorption Lidar (DIAL) water vapor and High Spectral Resolution Lidar (HSRL) aerosol instruments. The use of diode-pumped laser technology would improve the performance of an airborne Raman lidar and permit additional instrumentation to be carried on board a small research aircraft. The combined airborne and ground-based measurements presented here demonstrate a level of versatility in Raman lidar that may be impossible to duplicate with any other single lidar technique.

  14. Lidar to lidar calibration phase 2

    DEFF Research Database (Denmark)

    Yordanova, Ginka; Courtney, Michael

    This report presents the results from phase 2 of a lidar to lidar (L2L) calibration procedure. Phase two of the project included two measurement campaigns conducted at given sites. The purpose was to find out if the lidar-to-lidar calibration procedure can be conducted with similar results...

  15. A multiscale curvature algorithm for classifying discrete return LiDAR in forested environments

    Science.gov (United States)

    Jeffrey S. Evans; Andrew T. Hudak

    2007-01-01

    One prerequisite to the use of light detection and ranging (LiDAR) across disciplines is differentiating ground from nonground returns. The objective was to automatically and objectively classify points within unclassified LiDAR point clouds, with few model parameters and minimal postprocessing. Presented is an automated method for classifying LiDAR returns as ground...

  16. Lidar Measurements of Tropospheric Ozone in the Arctic

    Directory of Open Access Journals (Sweden)

    Seabrook Jeffrey

    2016-01-01

    Full Text Available This paper reports on differential absorption lidar (DIAL measurements of tropospheric ozone in the Canadian Arctic during springtime. Measurements at Eureka Weather Station revealed that mountains have a significant effect on the vertical structure of ozone above Ellesmere Island. Ozone depletion events were observed when air that had spent significant time near to the frozen surface of the Arctic Ocean reached Eureka. This air arrived at Eureka by flowing over the surrounding mountains. Surface level ozone depletions were not observed during periods when the flow of air from over the sea ice was blocked by mountains. In the case of blocking there was an enhancement in the amount of ozone near the surface as air from the mid troposphere descended in the lee of the mountains. Three case studies will be shown in the presentation, while one is described in this paper.

  17. Measurement of atmospheric CO2 column concentrations to cloud tops with a pulsed multi-wavelength airborne lidar

    Science.gov (United States)

    Mao, Jianping; Ramanathan, Anand; Abshire, James B.; Kawa, Stephan R.; Riris, Haris; Allan, Graham R.; Rodriguez, Michael; Hasselbrack, William E.; Sun, Xiaoli; Numata, Kenji; Chen, Jeff; Choi, Yonghoon; Yang, Mei Ying Melissa

    2018-01-01

    We have measured the column-averaged atmospheric CO2 mixing ratio to a variety of cloud tops by using an airborne pulsed multi-wavelength integrated-path differential absorption (IPDA) lidar. Airborne measurements were made at altitudes up to 13 km during the 2011, 2013 and 2014 NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) science campaigns flown in the United States West and Midwest and were compared to those from an in situ sensor. Analysis of the lidar backscatter profiles shows the average cloud top reflectance was ˜ 5 % for the CO2 measurement at 1572.335 nm except to cirrus clouds, which had lower reflectance. The energies for 1 µs wide laser pulses reflected from cloud tops were sufficient to allow clear identification of CO2 absorption line shape and then to allow retrievals of atmospheric column CO2 from the aircraft to cloud tops more than 90 % of the time. Retrievals from the CO2 measurements to cloud tops had minimal bias but larger standard deviations when compared to those made to the ground, depending on cloud top roughness and reflectance. The measurements show this new capability helps resolve CO2 horizontal and vertical gradients in the atmosphere. When used with nearby full-column measurements to ground, the CO2 measurements to cloud tops can be used to estimate the partial-column CO2 concentration below clouds, which should lead to better estimates of surface carbon sources and sinks. This additional capability of the range-resolved CO2 IPDA lidar technique provides a new benefit for studying the carbon cycle in future airborne and space-based CO2 missions.

  18. Measurement of Atmospheric CO2 Column Concentrations to Cloud Tops With a Pulsed Multi-Wavelength Airborne Lidar

    Science.gov (United States)

    Mao, Jianping; Ramanathan, Anand; Abshire, James B.; Kawa, Stephan R.; Riris, Haris; Allan, Graham R.; Rodriguez, Michael R.; Hasselbrack, William E.; Sun, Xiaoli; Numata, Kenji; hide

    2018-01-01

    We have measured the column-averaged atmospheric CO2 mixing ratio to a variety of cloud tops by using an airborne pulsed multi-wavelength integrated-path differential absorption (IPDA) lidar. Airborne measurements were made at altitudes up to 13 km during the 2011, 2013 and 2014 NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) science campaigns flown in the United States West and Midwest and were compared to those from an in situ sensor. Analysis of the lidar backscatter profiles shows the average cloud top reflectance was approx. 5% for the CO2 measurement at 1572.335 nm except to cirrus clouds, which had lower reflectance. The energies for 1 micro-s wide laser pulses reflected from cloud tops were sufficient to allow clear identification of CO2 absorption line shape and then to allow retrievals of atmospheric column CO2 from the aircraft to cloud tops more than 90% of the time. Retrievals from the CO2 measurements to cloud tops had minimal bias but larger standard deviations when compared to those made to the ground, depending on cloud top roughness and reflectance. The measurements show this new capability helps resolve CO2 horizontal and vertical gradients in the atmosphere. When used with nearby full-column measurements to ground, the CO2 measurements to cloud tops can be used to estimate the partial-column CO2 concentration below clouds, which should lead to better estimates of surface carbon sources and sinks. This additional capability of the range-resolved CO2 IPDA lidar technique provides a new benefit for studying the carbon cycle in future airborne and space-based CO2 missions.

  19. Optimal Decision Fusion for Urban Land-Use/Land-Cover Classification Based on Adaptive Differential Evolution Using Hyperspectral and LiDAR Data

    Directory of Open Access Journals (Sweden)

    Yanfei Zhong

    2017-08-01

    Full Text Available Hyperspectral images and light detection and ranging (LiDAR data have, respectively, the high spectral resolution and accurate elevation information required for urban land-use/land-cover (LULC classification. To combine the respective advantages of hyperspectral and LiDAR data, this paper proposes an optimal decision fusion method based on adaptive differential evolution, namely ODF-ADE, for urban LULC classification. In the ODF-ADE framework the normalized difference vegetation index (NDVI, gray-level co-occurrence matrix (GLCM and digital surface model (DSM are extracted to form the feature map. The three different classifiers of the maximum likelihood classifier (MLC, support vector machine (SVM and multinomial logistic regression (MLR are used to classify the extracted features. To find the optimal weights for the different classification maps, weighted voting is used to obtain the classification result and the weights of each classification map are optimized by the differential evolution algorithm which uses a self-adaptive strategy to obtain the parameter adaptively. The final classification map is obtained after post-processing based on conditional random fields (CRF. The experimental results confirm that the proposed algorithm is very effective in urban LULC classification.

  20. Experimental studies of a zeeman-tuned xenon laser differential absorption apparatus.

    Science.gov (United States)

    Linford, G J

    1973-06-01

    A Zeeman-tuned cw xenon laser differential absorption device is described. The xenon laser was tuned by axial magnetic fields up to 5500 G generated by an unusually large water-cooled dc solenoid. Xenon laser lines at 3.37 micro, 3.51 micro, and 3.99 micro were tuned over ranges of 6 A, 6 A, and 11 A, respectively. To date, this apparatus has been used principally to study the details of formaldehyde absorption lines lying near the 3 .508-micro xenon laser transition. These experiments revealed that the observed absorption spectrum of formaldehyde exhibits a sufficiently unique spectral structure that the present technique may readily be used to measure relative concentrations of formaldehyde in samples of polluted air.

  1. First Airborne IPDA Lidar Measurements of Methane and Carbon Dioxide Applying the DLR Greenhouse Gas Sounder CHARM-F

    Science.gov (United States)

    Amediek, A.; Ehret, G.; Fix, A.; Wirth, M.; Quatrevalet, M.; Büdenbender, C.; Kiemle, C.; Loehring, J.; Gerbig, C.

    2015-12-01

    First airborne measurement using CHARM-F, the four-wavelengths lidar for simultaneous soundings of atmospheric CO2 and CH4, were performed in Spring 2015 onboard the German research aircraft HALO. The lidar is designed in the IPDA (integrated path differential absorption) configuration using short double pulses, which gives column averaged gas mixing ratios between aircraft and ground. HALO's maximum flight altitude of 15 km and special features of the lidar, such as a relatively large laser ground spot, enable the CHARM-F system to be an airborne demonstrator for future spaceborne greenhouse gas lidars. Due to a high technological conformity this applies in particular to the French-German satellite mission MERLIN, the spaceborne methane IPDA lidar. The successfully completed flight measurements provide a valuable dataset, which supports the retrieval algorithm development for MERLIN notably. The flights covered different ground cover types, different orography types as well as the sea. Additionally, we captured different cloud conditions, at which the broken cloud case is a matter of particular interest. This dataset allows detailed analyses of measurement sensitivities, general studies on the IPDA principle and on technical details of the system. These activities are supported by another instrument onboard: a cavity ring down spectrometer, providing in-situ data of carbon dioxide, methane and water vapor with high accuracy and precision, which is ideal for validation purposes of the lidar. Additionally the onboard instrumentation of HALO gives information about pressure and temperature for cross-checking the ECMWF data, which are intended to be used for calculating the weighting function, the key quantity for the retrieval of gas column mixing ratios from the measured gas optical depths. In combination with dedicated descents into the boundary layer and subsequent ascents, a self-contained dataset for characterizations of CHARM-F is available.

  2. Airborne lidar reflectance measurements at 1.57 μm in support of the A-SCOPE mission for atmospheric CO2

    Directory of Open Access Journals (Sweden)

    J. Caron

    2009-11-01

    Full Text Available The characteristics of the lidar reflectance of the Earth's surface is an important issue for the IPDA lidar technique (integrated path differential absorption lidar which is the proposed method for the spaceborne measurement of atmospheric carbon dioxide within the framework of ESA's A-SCOPE project. Both, the absolute reflectance of the ground and its variations have an impact on the measurement sensitivity. The first aspect influences the instrument's signal to noise ratio, the second one can lead to retrieval errors, if the ground reflectance changes are strong on small scales. The investigation of the latter is the main purpose of this study. Airborne measurements of the lidar ground reflectance at 1.57 μm wavelength were performed in Central and Western Europe, including many typical land surface coverages as well as the open sea. The analyses of the data show, that the lidar ground reflectance is highly variable on a wide range of spatial scales. However, by means of the assumption of laser footprints in the order of several tens of meters, as planned for spaceborne systems, and by means of an averaging of the data it was shown, that this specific retrieval error is well below 1 ppm (CO2 column mixing ratio, and so compatible with the sensitivity requirements of spaceborne CO2 measurements. Several approaches for upscaling the data in terms of the consideration of larger laser footprints, compared to the one used here, are shown and discussed. Furthermore, the collected data are compared to MODIS ground reflectance data.

  3. Wide area methane emissions mapping with airborne IPDA lidar

    Science.gov (United States)

    Bartholomew, Jarett; Lyman, Philip; Weimer, Carl; Tandy, William

    2017-08-01

    Methane emissions from natural gas production, storage, and transportation are potential sources of greenhouse gas emissions. Methane leaks also constitute revenue loss potential from operations. Since 2013, Ball Aerospace has been developing advanced airborne sensors using integrated path differential absorption (IPDA) LIDAR instrumentation to identify methane, propane, and longer-chain alkanes in the lowest region of the atmosphere. Additional funding has come from the U.S. Department of Transportation, Pipeline and Hazardous Materials Administration (PHMSA) to upgrade instrumentation to a broader swath coverage of up to 400 meters while maintaining high spatial sampling resolution and geolocation accuracy. Wide area coverage allows efficient mapping of emissions from gathering and distribution networks, processing facilities, landfills, natural seeps, and other distributed methane sources. This paper summarizes the benefits of advanced instrumentation for aerial methane emission mapping, describes the operating characteristics and design of this upgraded IPDA instrumentation, and reviews technical challenges encountered during development and deployment.

  4. Measurement of atmospheric CO2 column concentrations to cloud tops with a pulsed multi-wavelength airborne lidar

    Directory of Open Access Journals (Sweden)

    J. Mao

    2018-01-01

    Full Text Available We have measured the column-averaged atmospheric CO2 mixing ratio to a variety of cloud tops by using an airborne pulsed multi-wavelength integrated-path differential absorption (IPDA lidar. Airborne measurements were made at altitudes up to 13 km during the 2011, 2013 and 2014 NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS science campaigns flown in the United States West and Midwest and were compared to those from an in situ sensor. Analysis of the lidar backscatter profiles shows the average cloud top reflectance was ∼ 5 % for the CO2 measurement at 1572.335 nm except to cirrus clouds, which had lower reflectance. The energies for 1 µs wide laser pulses reflected from cloud tops were sufficient to allow clear identification of CO2 absorption line shape and then to allow retrievals of atmospheric column CO2 from the aircraft to cloud tops more than 90 % of the time. Retrievals from the CO2 measurements to cloud tops had minimal bias but larger standard deviations when compared to those made to the ground, depending on cloud top roughness and reflectance. The measurements show this new capability helps resolve CO2 horizontal and vertical gradients in the atmosphere. When used with nearby full-column measurements to ground, the CO2 measurements to cloud tops can be used to estimate the partial-column CO2 concentration below clouds, which should lead to better estimates of surface carbon sources and sinks. This additional capability of the range-resolved CO2 IPDA lidar technique provides a new benefit for studying the carbon cycle in future airborne and space-based CO2 missions.

  5. Emerging solid-state laser technology by lidar/DIAL remote sensing

    Science.gov (United States)

    Killinger, Dennis

    1992-01-01

    Significant progress has been made in recent years in the development of new, solid-state laser sources. This talk will present an overview of some of the new developments in solid-state lasers, and their application toward lidar/DIAL measurements of the atmosphere. Newly emerging lasers such as Ho:YAG, Tm:YAG, OPO, and Ti:Sapphire will be covered, along with the spectroscopic parameters required for differential operational modes of atmospheric remote sensing including Doppler-Windshear lidar, Tunable laser detection of water/CO2, and broad linewidth OPO's for open path detection of pollutant hydrocarbon gases. Additional considerations of emerging laser technology for lidar/DIAL will also be covered.

  6. MERLIN: a Franco-German LIDAR space mission for atmospheric methane

    Science.gov (United States)

    Bousquet, P.; Ehret, G.; Pierangelo, C.; Marshall, J.; Bacour, C.; Chevallier, F.; Gibert, F.; Armante, R.; Crevoisier, C. D.; Edouart, D.; Esteve, F.; Julien, E.; Kiemle, C.; Alpers, M.; Millet, B.

    2017-12-01

    The Methane Remote Sensing Lidar Mission (MERLIN), currently in phase C, is a joint cooperation between France and Germany on the development, launch and operation of a space LIDAR dedicated to the retrieval of total weighted methane (CH4) atmospheric columns. Atmospheric methane is the second most potent anthropogenic greenhouse gas, contributing 20% to climate radiative forcing but also plying an important role in atmospheric chemistry as a precursor of tropospheric ozone and low-stratosphere water vapour. Its short lifetime ( 9 years) and the nature and variety of its anthropogenic sources also offer interesting mitigation options in regards to the 2° objective of the Paris agreement. For the first time, measurements of atmospheric composition will be performed from space thanks to an IPDA (Integrated Path Differential Absorption) LIDAR (Light Detecting And Ranging), with a precision (target ±27 ppb for a 50km aggregation along the trace) and accuracy (target recall the MERLIN objectives and mission characteristics. We also propose an end-to-end error analysis, from the causes of random and systematic errors of the instrument, of the platform and of the data treatment, to the error on methane emissions. To do so, we propose an OSSE analysis (observing system simulation experiment) to estimate the uncertainty reduction on methane emissions brought by MERLIN XCH4. The originality of our inversion system is to transfer both random and systematic errors from the observation space to the flux space, thus providing more realistic error reductions than usually provided in OSSE only using the random part of errors. Uncertainty reductions are presented using two different atmospheric transport models, TM3 and LMDZ, and compared with error reduction achieved with the GOSAT passive mission.

  7. Optimization of the GSFC TROPOZ DIAL retrieval using synthetic lidar returns and ozonesondes - Part 1: Algorithm validation

    Science.gov (United States)

    Sullivan, J. T.; McGee, T. J.; Leblanc, T.; Sumnicht, G. K.; Twigg, L. W.

    2015-10-01

    The main purpose of the NASA Goddard Space Flight Center TROPospheric OZone DIfferential Absorption Lidar (GSFC TROPOZ DIAL) is to measure the vertical distribution of tropospheric ozone for science investigations. Because of the important health and climate impacts of tropospheric ozone, it is imperative to quantify background photochemical ozone concentrations and ozone layers aloft, especially during air quality episodes. For these reasons, this paper addresses the necessary procedures to validate the TROPOZ retrieval algorithm and confirm that it is properly representing ozone concentrations. This paper is focused on ensuring the TROPOZ algorithm is properly quantifying ozone concentrations, and a following paper will focus on a systematic uncertainty analysis. This methodology begins by simulating synthetic lidar returns from actual TROPOZ lidar return signals in combination with a known ozone profile. From these synthetic signals, it is possible to explicitly determine retrieval algorithm biases from the known profile. This was then systematically performed to identify any areas that need refinement for a new operational version of the TROPOZ retrieval algorithm. One immediate outcome of this exercise was that a bin registration error in the correction for detector saturation within the original retrieval was discovered and was subsequently corrected for. Another noticeable outcome was that the vertical smoothing in the retrieval algorithm was upgraded from a constant vertical resolution to a variable vertical resolution to yield a statistical uncertainty of exercise was quite successful.

  8. Differentiable absorption of Hilbert C*-modules, connections and lifts of unbounded operators

    DEFF Research Database (Denmark)

    Kaad, Jens

    2017-01-01

    . The differentiable absorption theorem is then applied to construct densely defined connections (or correpondences) on Hilbert C∗C∗-modules. These connections can in turn be used to define selfadjoint and regular "lifts" of unbounded operators which act on an auxiliary Hilbert C∗C∗-module....

  9. Errors in spectroscopic measurements of SO2 due to nonexponential absorption of laser radiation, with application to the remote monitoring of atmospheric pollutants

    International Nuclear Information System (INIS)

    Brassington, D.J.; Moncrieff, T.M.; Felton, R.C.; Jolliffe, B.W.; Marx, B.R.; Rowley, W.R.C.; Woods, P.T.

    1984-01-01

    Methods of measuring the concentration of atmospheric pollutants by laser absorption spectroscopy, such as differential absorption lidar (DIAL) and integrated long-path techniques, all rely on the validity of Beer's exponential absorption law. It is shown here that departures from this law occur if the probing laser has a bandwidth larger than the wavelength scale of structure in the absorption spectrum of the pollutant. A comprehensive experimental and theoretical treatment of the errors resulting from these departures is presented for the particular case of SO 2 monitoring at approx.300 nm. It is shown that the largest error occurs where the initial calibration measurement of absorption cross section is made at low pressure, in which case errors in excess of 5% in the cross section could occur for laser bandwidths >0.01 nm. Atmospheric measurements by DIAL or long-path methods are in most cases affected less, because pressure broadening smears the spectral structure, but when measuring high concentrations errors can exceed 5%

  10. High resolution and high precision absorption spectroscopy using high finesse cavities: application to the study of molecules with atmospheric interest; Cavites de haute finesse pour la spectroscopie d'absorption haute sensibilite et haute precision: application a l'etude de molecules d'interet atmospherique

    Energy Technology Data Exchange (ETDEWEB)

    Motto-Ros, V

    2005-12-15

    High finesse cavities are used to measure very weak absorption features. Two different methodologies are investigated and applied to the study of molecules with atmospheric interest. First, Continuous Wave - Cavity Ring Down Spectroscopy (CW-CRDS) is used to study the atmospheric spectra of water vapour in the near infrared range. These measurements are performed for temperature and pressure of atmospheric relevance for DIAL applications (Differential Absorption Lidar). This study, financed by the European Space Agency (ESA), goes with the WALES mission (Water Vapour Lidar Experiment in Space). The experimental setup was conceived in order to control pressure, temperature and relative humidity conditions. A particular attention is done to characterize and describe the spectrometer. Then, measurements of red Oxygen B band are performed to demonstrate the huge performance of Optical Feedback Cavity Enhanced Absorption Spectroscopy (OF-CEAS). The desired optical feedback is obtained by light injection into the high finesse cavity through a glass plate placed inside the cavity and closed to the Brewster angle. We show a measurement dynamical range of 5 orders of magnitude (10{sup -5} to 10{sup -10} /cm) and a sensitivity of 10{sup -10} /cm/{radical} Hz. Also, sampling absorption spectra by the super linear cavity frequency comb allows very precise frequency measurements. This is demonstrated by the determination of Oxygen pressure shifts with an absolute accuracy of around 5 x 10{sup -5} cm{sup -1}/atm. To our knowledge, we provide the highest accuracy ever reported for this parameter. (author)

  11. Space-borne remote sensing of CO2 by IPDA lidar with heterodyne detection: random error estimation

    Science.gov (United States)

    Matvienko, G. G.; Sukhanov, A. Y.

    2015-11-01

    Possibilities of measuring the CO2 column concentration by spaceborne integrated path differential lidar (IPDA) signals in the near IR absorption bands are investigated. It is shown that coherent detection principles applied in the nearinfrared spectral region promise a high sensitivity for the measurement of the integrated dry air column mixing ratio of the CO2. The simulations indicate that for CO2 the target observational requirements (0.2%) for the relative random error can be met with telescope aperture 0.5 m, detector bandwidth 10 MHz, laser energy per impulse 0.3 mJ and averaging 7500 impulses. It should also be noted that heterodyne technique allows to significantly reduce laser power and receiver overall dimensions compared to direct detection.

  12. Identifying Methane Sources with an Airborne Pulsed IPDA Lidar System Operating near 1.65 µm

    Science.gov (United States)

    Yerasi, A.; Bartholomew, J.; Tandy, W., Jr.; Emery, W. J.

    2016-12-01

    Methane is a powerful greenhouse gas that is predicted to play an important role in future global climate trends. It would therefore be beneficial to locate areas that produce methane in significant amounts so that these trends can be better understood. In this investigation, some initial performance test results of a lidar system called the Advanced Leak Detector Lidar - Natural Gas (ALDL-NG) are discussed. The feasibility of applying its fundamental principle of operation to methane source identification is also explored. The ALDL-NG was originally created by the Ball Aerospace & Technologies Corp. to reveal leaks emanating from pipelines that transport natural gas, which is primarily composed of methane. It operates in a pulsed integrated path differential absorption (IPDA) configuration and it is carried by a piloted, single-engine aircraft. In order to detect the presence of natural gas leaks, the laser wavelengths of its online and offline channels operate in the 1.65 µm region. The functionality of the ALDL-NG was tested during a recent field campaign in Colorado. It was determined that the ambient concentration of methane in the troposphere ( 1.8 ppm) could indeed be retrieved from ALDL-NG data with a lower-than-expected uncertainty ( 0.2 ppm). Furthermore, when the ALDL-NG scanned over areas that were presumed to be methane sources (feedlots, landfills, etc.), significantly higher concentrations of methane were retrieved. These results are intriguing because the ALDL-NG was not specifically designed to observe anything beyond natural gas pipelines. Nevertheless, they strongly indicate that utilizing an airborne pulsed IPDA lidar system operating near 1.65 µm may very well be a viable technique for identifying methane sources. Perhaps future lidar systems could build upon the heritage of the ALDL-NG and measure methane concentration with even better precision for a variety of scientific applications.

  13. Heterodyne lidar for chemical sensing

    International Nuclear Information System (INIS)

    Oldenborg, Richard C.; Tiee, Joe J.; Shimada, Tsutomu; Wilson, Carl W.; Remelius, Dennis K.; Fox, Jay; Swim, Cynthia

    2004-01-01

    The overall objective is to assess the detection performance of LWIR (long wavelength infrared) coherent Lidar systems that potentially possess enhanced effluent detection capabilities. Previous work conducted by Los Alamos has demonstrated that infrared DIfferential Absorption Lidar (DIAL) is capable of detecting chemicals in plumes from long standoff ranges. Our DIAL approach relied on the reflectivity of topographical targets to provide a strong return signal. With the inherent advantage of applying heterodyne transceivers to approach single-photon detection in LWIR, it is projected that marked improvements in detection range or in spatial coverage can be attained. In some cases, the added photon detection sensitivity could be utilized for sensing 'soft targets', such as atmospheric and threat aerosols where return signal strength is drastically reduced, as opposed to topographical targets. This would allow range resolved measurements and could lead to the mitigation of the limiting source of noise due to spectral/spatial/temporal variability of the ground scene. The ability to distinguish normal variations in the background from true chemical signatures is crucial to the further development of sensitive remote chemical sensing technologies. One main difficulty in demonstrating coherent DIAL detection is the development of suitable heterodyne transceivers that can achieve rapid multi-wavelength tuning required for obtaining spectral signature information. LANL has recently devised a novel multi-wavelength heterodyne transceiver concept that addresses this issue. A 5-KHz prototype coherent CO 2 transceiver has been constructed and is being now used to help address important issues in remote CBW agent standoff detection. Laboratory measurements of signal-to-noise ratio (SNR) will be reported. Since the heterodyne detection scheme fundamentally has poor shot-to-shot signal statistics, in order to achieve sensitive detection limits, favorable averaging statistics

  14. Airborne Lidar Measurements of Atmospheric Pressure Made Using the Oxygen A-Band

    Science.gov (United States)

    Riris, Haris; Rodriquez, Michael D.; Allan, Graham R.; Hasselbrack, William E.; Mao, Jianping; Stephen, Mark A.; Abshire, James B.

    2012-01-01

    Accurate measurements of greenhouse gas mixing ratios on a global scale are currently needed to gain a better understanding of climate change and its possible impact on our planet. In order to remotely measure greenhouse gas concentrations in the atmosphere with regard to dry air, the air number density in the atmosphere is also needed in deriving the greenhouse gas concentrations. Since oxygen is stable and uniformly mixed in the atmosphere at 20.95%, the measurement of an oxygen absorption in the atmosphere can be used to infer the dry air density and used to calculate the dry air mixing ratio of a greenhouse gas, such as carbon dioxide or methane. OUT technique of measuring Oxygen uses integrated path differential absorption (IPDA) with an Erbium Doped Fiber Amplifier (EDF A) laser system and single photon counting module (SPCM). It measures the absorbance of several on- and off-line wavelengths tuned to an O2 absorption line in the A-band at 764.7 nm. The choice of wavelengths allows us to maximize the pressure sensitivity using the trough between two absorptions in the Oxygen A-band. Our retrieval algorithm uses ancillary meteorological and aircraft altitude information to fit the experimentally obtained lidar O2 line shapes to a model atmosphere and derives the pressure from the profiles of the two lines. We have demonstrated O2 measurements from the ground and from an airborne platform. In this paper we will report on our airborne measurements during our 2011 campaign for the ASCENDS program.

  15. Lidar Technology at the Goddard Laser and Electro-Optics Branch

    Science.gov (United States)

    Heaps, William S.; Obenschain, Arthur F. (Technical Monitor)

    2000-01-01

    Discovery-class orbiters now in the NASA planetary program. The purpose of the lidar is to continuously profile the water vapor and dust in the Mars atmosphere from orbit in order to quantify its dynamics, their relationship in the diurnal cycles, and to infer water vapor exchange with the Mars surface. To remotely measure the water-vapor height profiles, we will use the differential absorption lidar (DIAL) technique. We are also developing a laser sensor for measuring the total column content of CO2 in the atmosphere of the earth. CO2 is the principal greenhouse gas and has increased by roughly 80 ppm in the last century and a half. We will report our efforts in the development of the laser transmitter and photon counting detector components for a Mars Orbiting DIAL system and for the CO2 sounder.

  16. High resolution and high precision absorption spectroscopy using high finesse cavities: application to the study of molecules with atmospheric interest; Cavites de haute finesse pour la spectroscopie d'absorption haute sensibilite et haute precision: application a l'etude de molecules d'interet atmospherique

    Energy Technology Data Exchange (ETDEWEB)

    Motto-Ros, V.

    2005-12-15

    High finesse cavities are used to measure very weak absorption features. Two different methodologies are investigated and applied to the study of molecules with atmospheric interest. First, Continuous Wave - Cavity Ring Down Spectroscopy (CW-CRDS) is used to study the atmospheric spectra of water vapour in the near infrared range. These measurements are performed for temperature and pressure of atmospheric relevance for DIAL applications (Differential Absorption Lidar). This study, financed by the European Space Agency (ESA), goes with the WALES mission (Water Vapour Lidar Experiment in Space). The experimental setup was conceived in order to control pressure, temperature and relative humidity conditions. A particular attention is done to characterize and describe the spectrometer. Then, measurements of red Oxygen B band are performed to demonstrate the huge performance of Optical Feedback Cavity Enhanced Absorption Spectroscopy (OF-CEAS). The desired optical feedback is obtained by light injection into the high finesse cavity through a glass plate placed inside the cavity and closed to the Brewster angle. We show a measurement dynamical range of 5 orders of magnitude (10{sup -5} to 10{sup -10} /cm) and a sensitivity of 10{sup -10} /cm/{radical} Hz. Also, sampling absorption spectra by the super linear cavity frequency comb allows very precise frequency measurements. This is demonstrated by the determination of Oxygen pressure shifts with an absolute accuracy of around 5 x 10{sup -5} cm{sup -1}/atm. To our knowledge, we provide the highest accuracy ever reported for this parameter. (author)

  17. Intracavity upconversion for IR absorption lidar: Comparison of linear and ring cavity designs

    DEFF Research Database (Denmark)

    Meng, Lichun; Høgstedt, Lasse; Tidemand-Lichtenberg, Peter

    2017-01-01

    Upconversion detection is a promising technology for measurement of IR signals in the 1.5 μm–2 μm region used for lidar remote sensing [1-2]. In comparison to conventional InGaAs detector, the upconversion detector can achieve IR detection with better signal-to-noise ratio (SNR), not only due...

  18. Lidar calibration experiments

    DEFF Research Database (Denmark)

    Ejsing Jørgensen, Hans; Mikkelsen, T.; Streicher, J.

    1997-01-01

    detection to test the reproducibility and uncertainty of lidars. Lidar data were obtained from both single-ended and double-ended Lidar configurations. A backstop was introduced in one of the experiments and a new method was developed where information obtained from the backstop can be used in the inversion...... algorithm. Independent in-situ aerosol plume concentrations were obtained from a simultaneous tracer gas experiment with SF6, and comparisons with the two lidars were made. The study shows that the reproducibility of the lidars is within 15%, including measurements from both sides of a plume...

  19. Airborne Measurements of CO2 Column Concentration and Range Using a Pulsed Direct-Detection IPDA Lidar

    Science.gov (United States)

    Abshire, James B.; Ramanathan, Anand; Riris, Haris; Mao, Jianping; Allan, Graham R.; Hasselbrack, William E.; Weaver, Clark J.; Browell, Edward V.

    2013-01-01

    We have previously demonstrated a pulsed direct detection IPDA lidar to measure range and the column concentration of atmospheric CO2. The lidar measures the atmospheric backscatter profiles and samples the shape of the 1,572.33 nm CO2 absorption line. We participated in the ASCENDS science flights on the NASA DC-8 aircraft during August 2011 and report here lidar measurements made on four flights over a variety of surface and cloud conditions near the US. These included over a stratus cloud deck over the Pacific Ocean, to a dry lake bed surrounded by mountains in Nevada, to a desert area with a coal-fired power plant, and from the Rocky Mountains to Iowa, with segments with both cumulus and cirrus clouds. Most flights were to altitudes >12 km and had 5-6 altitude steps. Analyses show the retrievals of lidar range, CO2 column absorption, and CO2 mixing ratio worked well when measuring over topography with rapidly changing height and reflectivity, through thin clouds, between cumulus clouds, and to stratus cloud tops. The retrievals shows the decrease in column CO2 due to growing vegetation when flying over Iowa cropland as well as a sudden increase in CO2 concentration near a coal-fired power plant. For regions where the CO2 concentration was relatively constant, the measured CO2 absorption lineshape (averaged for 50 s) matched the predicted shapes to better than 1% RMS error. For 10 s averaging, the scatter in the retrievals was typically 2-3 ppm and was limited by the received signal photon count. Retrievals were made using atmospheric parameters from both an atmospheric model and from in situ temperature and pressure from the aircraft. The retrievals had no free parameters and did not use empirical adjustments, and >70% of the measurements passed screening and were used in analysis. The differences between the lidar-measured retrievals and in situ measured average CO2 column concentrations were 6 km.

  20. Differential Absorption as a Factor Influencing the Selective Toxicity of MCPA and MCPB

    Energy Technology Data Exchange (ETDEWEB)

    Kirkwood, R. C.; Robertson, M. M.; Smith, J. E. [University of Strathclyde, Glasgow (United Kingdom)

    1966-05-15

    Experiments were carried out with autoradiographic and counting techniques to determine if differential absorption was a factor influencing the selective toxicity of the foliar-applied herbicides, 4-chloro-2 methylphenoxyacetic acid (MCPA) and 4-(4-chloro-2-methylphenoxy) butyric acid (MCPB). Treatment of fat hen (Chenopodium album) which is susceptible to both herbicides and black bindweed (Polygonum convolvulus) which is resistant to both, showed that MCPA and MCPB were extensively translocated in the susceptible species; both, however, remained localized in the treated leaves of the resistant black bindweed. Further experiments using broad bean (Vicia faba) which was susceptible to MCPA and resistant to equivalent doses of MCPB showed that considerably more MCPA was translocated throughout the treated plants. Leaf flotation experiments suggested that differential penetration of bean leaf cuticle, may in part at least, explain this difference in toxicity. Greater uptake of MCPA after 6- and 8-h treatment periods was recorded and penetration of both herbicides was generally more rapid through the abaxial surface, reflecting the presence of stomata and the thinner cuticle of the under-surface. Further evidence of the action of cuticle as a selective barrier to herbicide penetration was obtained using cuticle isolated from tomato fruits and onion scale leaves. These results are to be confirmed using bean leaf cuticles. Whilst in the higher plants MCPA is more toxic than MCPB, previous work has shown that MCPB is a more effective inhibitor of lower organisms such as bacteria, fungi and algae. Treatment of mycelial discs of Aspergillus niger showed that absorption of MCPB was more rapid than MCPA, though the differential tended to diminish during the 20-h treatment period. Respiratory inhibition closely followed the uptake pattern. Repeated experiments using mitochondria isolated from A.niger mycelium have demonstrated that greater uptake of MCPB coincided with an

  1. Differential Optical-absorption Spectroscopy (doas) System For Urban Atmospheric-pollution Monitoring

    OpenAIRE

    Edner, H; Ragnarson, P; Spannare, S; Svanberg, Sune

    1993-01-01

    We describe a fully computer-controlled differential optical absorption spectroscopy system for atmospheric air pollution monitoring. A receiving optical telescope can sequentially tune in to light beams from a number of distant high-pressure Xe lamp light sources to cover the area of a medium-sized city. A beam-finding servosystem and automatic gain control permit unattended long-time monitoring. Using an astronomical code, we can also search and track celestial sources. Selected wavelength ...

  2. Ground-based DIAL and IPDA Systems for Remote Sensing of CO2, CH4, and H2O near 1.6 µm

    Science.gov (United States)

    Wagner, G. A.; Plusquellic, D. F.

    2017-12-01

    Integrated path differential absorption (IPDA) and differential absorption LIDAR (DIAL) are well established methods to monitor atmospheric constituents. At NIST, IPDA and DIAL systems have been developed as standoff systems and their overall performance has been evaluated through intercomparisons including the traceability to point sensor measurements. The all-fiber IPDA system is based on a low-power (Armstrong, and A. V. Smith, "150-mJ 1550-nm KTA OPO with Good Beam Quality and High Efficiency," SPIE, 5337, 71-80 (2004). 3. K. O. Douglass, S. E. Maxwell, D. F. Plusquellic, J. T. Hodges, R. D. van Zee, D. V. Samarov, J. R. Whetstone, "Construction of a High Power OPO Laser System for Differential Absorption LIDAR," SPIE, 8159, 81590D (2011).

  3. Analysis of Vertical Weighting Functions for Lidar Measurements of Atmospheric CO2 and O2

    Science.gov (United States)

    Kooi, S.; Mao, J.; Abshire, J. B.; Browell, E. V.; Weaver, C. J.; Kawa, S. R.

    2011-12-01

    Several NASA groups have developed integrated path differential absorption (IPDA) lidar approaches to measure atmospheric CO2 concentrations from space as a candidates for NASA's ASCENDS space mission. For example, the Goddard CO2 Sounder approach uses two pulsed lasers to simultaneously measure both CO2 and O2 absorption in the vertical path to the surface at a number of wavelengths across a CO2 line near 1572 nm and an O2 line doublet near 764 nm. The measurements of CO2 and O2 absorption allow computing their vertically weighted number densities and then their ratios for estimating CO2 concentration relative to dry air. Since both the CO2 and O2 densities and their absorption line-width decrease with altitude, the absorption response (or weighting function) varies with both altitude and absorption wavelength. We have used some standard atmospheres and HITRAN 2008 spectroscopy to calculate the vertical weighting functions for two CO2 lines near 1571 nm and the O2 lines near 764.7 and 1260 nm for candidate online wavelength selections for ASCENDS. For CO2, the primary candidate on-line wavelengths are 10-12 pm away from line center with the weighting function peaking in the atmospheric boundary layer to measure CO2 sources and sinks at the surface. Using another on-line wavelength 3-5 pm away from line center allows the weighting function to peak in the mid- to upper troposphere, which is sensitive to CO2 transport in the free atmosphere. The Goddard CO2 sounder team developed an airborne precursor version of a space instrument. During the summers of 2009, 2010 and 2011 it has participated in airborne measurement campaigns over a variety of different sites in the US, flying with other NASA ASCENDS lidar candidates along with accurate in-situ atmospheric sensors. All flights used altitude patterns with measurements at steps in altitudes between 3 and 13 km, along with spirals from 13 km altitude to near the surface. Measurements from in-situ sensors allowed an

  4. Making lidar more photogenic: creating band combinations from lidar information

    Science.gov (United States)

    Stoker, Jason M.

    2010-01-01

    Over the past five to ten years the use and applicability of light detection and ranging (lidar) technology has increased dramatically. As a result, an almost exponential amount of lidar data is being collected across the country for a wide range of applications, and it is currently the technology of choice for high resolution terrain model creation, 3-dimensional city and infrastructure modeling, forestry and a wide range of scientific applications (Lin and Mills, 2010). The amount of data that is being delivered across the country is impressive. For example, the U.S. Geological Survey’s (USGS) Center for Lidar Information Coordination and Knowledge (CLICK), which is a National repository of USGS and partner lidar point cloud datasets (Stoker et al., 2006), currently has 3.5 percent of the United States covered by lidar, and has approximately another 5 percent in the processing queue. The majority of data being collected by the commercial sector are from discrete-return systems, which collect billions of lidar points in an average project. There are also a lot of discussions involving a potential National-scale Lidar effort (Stoker et al., 2008).

  5. Feasibility study for airborne fluorescence/reflectivity lidar bathymetry

    Science.gov (United States)

    Steinvall, Ove; Kautsky, Hans; Tulldahl, Michael; Wollner, Erika

    2012-06-01

    There is a demand from the authorities to have good maps of the coastal environment for their exploitation and preservation of the coastal areas. The goal for environmental mapping and monitoring is to differentiate between vegetation and non-vegetated bottoms and, if possible, to differentiate between species. Airborne lidar bathymetry is an interesting method for mapping shallow underwater habitats. In general, the maximum depth range for airborne laser exceeds the possible depth range for passive sensors. Today, operational lidar systems are able to capture the bottom (or vegetation) topography as well as estimations of the bottom reflectivity using e.g. reflected bottom pulse power. In this paper we study the possibilities and advantages for environmental mapping, if laser sensing would be further developed from single wavelength depth sounding systems to include multiple emission wavelengths and fluorescence receiver channels. Our results show that an airborne fluorescence lidar has several interesting features which might be useful in mapping underwater habitats. An example is the laser induced fluorescence giving rise to the emission spectrum which could be used for classification together with the elastic lidar signal. In the first part of our study, vegetation and substrate samples were collected and their spectral reflectance and fluorescence were subsequently measured in laboratory. A laser wavelength of 532 nm was used for excitation of the samples. The choice of 532 nm as excitation wavelength is motivated by the fact that this wavelength is commonly used in bathymetric laser scanners and that the excitation wavelengths are limited to the visual region as e.g. ultraviolet radiation is highly attenuated in water. The second part of our work consisted of theoretical performance calculations for a potential real system, and comparison of separability between species and substrate signatures using selected wavelength regions for fluorescence sensing.

  6. Advanced intensity-modulation continuous-wave lidar techniques for ASCENDS CO2 column measurements

    Science.gov (United States)

    Campbell, Joel F.; Lin, Bing; Nehrir, Amin R.; Harrison, F. W.; Obland, Michael D.; Meadows, Byron

    2015-10-01

    Global atmospheric carbon dioxide (CO2) measurements for the NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) space mission are critical for improving our understanding of global CO2 sources and sinks. Advanced Intensity- Modulated Continuous-Wave (IM-CW) lidar techniques are investigated as a means of facilitating CO2 measurements from space to meet the ASCENDS measurement requirements. In recent numerical, laboratory and flight experiments we have successfully used the Binary Phase Shift Keying (BPSK) modulation technique to uniquely discriminate surface lidar returns from intermediate aerosol and cloud contamination. We demonstrate the utility of BPSK to eliminate sidelobes in the range profile as a means of making Integrated Path Differential Absorption (IPDA) column CO2 measurements in the presence of optically thin clouds, thereby eliminating the need to correct for sidelobe bias errors caused by the clouds. Furthermore, high accuracy and precision ranging to the surface as well as to the top of intermediate cloud layers, which is a requirement for the inversion of column CO2 number density measurements to column CO2 mixing ratios, has been demonstrated using new hyperfine interpolation techniques that takes advantage of the periodicity of the modulation waveforms. This approach works well for both BPSK and linear swept-frequency modulation techniques. The BPSK technique under investigation has excellent auto-correlation properties while possessing a finite bandwidth. A comparison of BPSK and linear swept-frequency is also discussed in this paper. These results are extended to include Richardson-Lucy deconvolution techniques to extend the resolution of the lidar beyond that implied by limit of the bandwidth of the modulation, where it is shown useful for making tree canopy measurements.

  7. Advanced Intensity-Modulation Continuous-Wave Lidar Techniques for ASCENDS O2 Column Measurements

    Science.gov (United States)

    Campbell, Joel F.; Lin, Bing; Nehrir, Amin R.; Harrison, F. Wallace; Obland, Michael D.; Meadows, Byron

    2015-01-01

    Global atmospheric carbon dioxide (CO2) measurements for the NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) space mission are critical for improving our understanding of global CO2 sources and sinks. Advanced Intensity- Modulated Continuous-Wave (IM-CW) lidar techniques are investigated as a means of facilitating CO2 measurements from space to meet the ASCENDS measurement requirements. In recent numerical, laboratory and flight experiments we have successfully used the Binary Phase Shift Keying (BPSK) modulation technique to uniquely discriminate surface lidar returns from intermediate aerosol and cloud contamination. We demonstrate the utility of BPSK to eliminate sidelobes in the range profile as a means of making Integrated Path Differential Absorption (IPDA) column CO2 measurements in the presence of optically thin clouds, thereby eliminating the need to correct for sidelobe bias errors caused by the clouds. Furthermore, high accuracy and precision ranging to the surface as well as to the top of intermediate cloud layers, which is a requirement for the inversion of column CO2 number density measurements to column CO2 mixing ratios, has been demonstrated using new hyperfine interpolation techniques that takes advantage of the periodicity of the modulation waveforms. This approach works well for both BPSK and linear swept-frequency modulation techniques. The BPSK technique under investigation has excellent auto-correlation properties while possessing a finite bandwidth. A comparison of BPSK and linear swept-frequency is also discussed in this paper. These results are extended to include Richardson-Lucy deconvolution techniques to extend the resolution of the lidar beyond that implied by limit of the bandwidth of the modulation, where it is shown useful for making tree canopy measurements.

  8. Analysis of elevation changes detected from multi-temporal LiDAR surveys in forested landslide terrain in western Oregon

    Science.gov (United States)

    Burns, W.J.; Coe, J.A.; Kaya, B.S.; Ma, Liwang

    2010-01-01

    We examined elevation changes detected from two successive sets of Light Detection and Ranging (LiDAR) data in the northern Coast Range of Oregon. The first set of LiDAR data was acquired during leafon conditions and the second set during leaf-off conditions. We were able to successfully identify and map active landslides using a differential digital elevation model (DEM) created from the two LiDAR data sets, but this required the use of thresholds (0.50 and 0.75 m) to remove noise from the differential elevation data, visual pattern recognition of landslideinduced elevation changes, and supplemental QuickBird satellite imagery. After mapping, we field-verified 88 percent of the landslides that we had mapped with high confidence, but we could not detect active landslides with elevation changes of less than 0.50 m. Volumetric calculations showed that a total of about 18,100 m3 of material was missing from landslide areas, probably as a result of systematic negative elevation errors in the differential DEM and as a result of removal of material by erosion and transport. We also examined the accuracies of 285 leaf-off LiDAR elevations at four landslide sites using Global Positioning System and total station surveys. A comparison of LiDAR and survey data indicated an overall root mean square error of 0.50 m, a maximum error of 2.21 m, and a systematic error of 0.09 m. LiDAR ground-point densities were lowest in areas with young conifer forests and deciduous vegetation, which resulted in extensive interpolations of elevations in the leaf-on, bare-earth DEM. For optimal use of multi-temporal LiDAR data in forested areas, we recommend that all data sets be flown during leaf-off seasons.

  9. Estimation of black carbon content for biomass burning aerosols from multi-channel Raman lidar data

    Science.gov (United States)

    Talianu, Camelia; Marmureanu, Luminita; Nicolae, Doina

    2015-04-01

    Biomass burning due to natural processes (forest fires) or anthropical activities (agriculture, thermal power stations, domestic heating) is an important source of aerosols with a high content of carbon components (black carbon and organic carbon). Multi-channel Raman lidars provide information on the spectral dependence of the backscatter and extinction coefficients, embedding information on the black carbon content. Aerosols with a high content of black carbon have large extinction coefficients and small backscatter coefficients (strong absorption), while aerosols with high content of organic carbon have large backscatter coefficients (weak absorption). This paper presents a method based on radiative calculations to estimate the black carbon content of biomass burning aerosols from 3b+2a+1d lidar signals. Data is collected at Magurele, Romania, at the cross-road of air masses coming from Ukraine, Russia and Greece, where burning events are frequent during both cold and hot seasons. Aerosols are transported in the free troposphere, generally in the 2-4 km altitude range, and reaches the lidar location after 2-3 days. Optical data are collected between 2011-2012 by a multi-channel Raman lidar and follows the quality assurance program of EARLINET. Radiative calculations are made with libRadTran, an open source radiative model developed by ESA. Validation of the retrievals is made by comparison to a co-located C-ToF Aerosol Mass Spectrometer. Keywords: Lidar, aerosols, biomass burning, radiative model, black carbon Acknowledgment: This work has been supported by grants of the Romanian National Authority for Scientific Research, Programme for Research- Space Technology and Advanced Research - STAR, project no. 39/2012 - SIAFIM, and by Romanian Partnerships in priority areas PNII implemented with MEN-UEFISCDI support, project no. 309/2014 - MOBBE

  10. Modulated Sine Waves for Differential Absorption Measurements Using a CW Laser System

    Science.gov (United States)

    Campbell, Joel F. (Inventor); Lin, Bing (Inventor); Nehrir, Amin R. (Inventor)

    2015-01-01

    A continuous wave Light Detection and Ranging (CW LiDAR) system utilizes two or more laser frequencies and time or range shifted pseudorandom noise (PN) codes to discriminate between the laser frequencies. The performance of these codes can be improved by subtracting out the bias before processing. The CW LiDAR system may be mounted to an artificial satellite orbiting the earth, and the relative strength of the return signal for each frequency can be utilized to determine the concentration of selected gases or other substances in the atmosphere.

  11. Systematic variations in multi-spectral lidar representations of canopy height profiles and gap probability

    Science.gov (United States)

    Chasmer, L.; Hopkinson, C.; Gynan, C.; Mahoney, C.; Sitar, M.

    2015-12-01

    Airborne and terrestrial lidar are increasingly used in forest attribute modeling for carbon, ecosystem and resource monitoring. The near infra-red wavelength at 1064nm has been utilised most in airborne applications due to, for example, diode manufacture costs, surface reflectance and eye safety. Foliage reflects well at 1064nm and most of the literature on airborne lidar forest structure is based on data from this wavelength. However, lidar systems also operate at wavelengths further from the visible spectrum (e.g. 1550nm) for eye safety reasons. This corresponds to a water absorption band and can be sensitive to attenuation if surfaces contain moisture. Alternatively, some systems operate in the visible range (e.g. 532nm) for specialised applications requiring simultaneous mapping of terrestrial and bathymetric surfaces. All these wavelengths provide analogous 3D canopy structure reconstructions and thus offer the potential to be combined for spatial comparisons or temporal monitoring. However, a systematic comparison of wavelength-dependent foliage profile and gap probability (index of transmittance) is needed. Here we report on two multispectral lidar missions carried out in 2013 and 2015 over conifer, deciduous and mixed stands in Ontario, Canada. The first used separate lidar sensors acquiring comparable data at three wavelengths, while the second used a single sensor with 3 integrated laser systems. In both cases, wavelenegths sampled were 532nm, 1064nm and 1550nm. The experiment revealed significant differences in proportions of returns at ground level, the vertical foliage distribution and gap probability across wavelengths. Canopy attenuation was greatest at 532nm due to photosynthetic plant tissue absorption. Relative to 1064nm, foliage was systematically undersampled at the 10% to 60% height percentiles at both 1550nm and 532nm (this was confirmed with coincident terrestrial lidar data). When using all returns to calculate gap probability, all

  12. Laser and optical techniques employed in enviromental monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Sunesson, A

    1988-03-01

    Monitoring of trace gases in the atmosphere has been performed with differential absorption lidar and differential optical absorption spectroscopy. A new mobile differential absorption lidar system has been constructed it is described in detail and examples of SO/sub 2/ and NO/sub 2/ measurements are given. Studies of the NO/sub 2/ concentration distribution in an urban area during a temperature inversion were performed. Detection of CI/sub 2/ with DIAL was investigated. Using a narrow-bandwidth laser system range-resolved measurements of NO and Hg were investigated. Mapping of NO and Hg plumes was performed. The use of mercury as a tracer gas for geothermal energy exploration was investigated during a field test in Iceland. Contrary to expectations very low mercury concentrations were detected. A high-resolution differential optical absorption system has been constructed and applied in longh-path monitoring of SO/sub 2/ and NO/sub 2/. Detection of atmospheric atomic mercury was investigated. A multipass absorption cell (White cell) has been constructed and used for spectroscopic measurements. Weak oxygen absorption lines in the vicinity of the Hg line were studied both with laser and optical techniques. (With 176 refs.)

  13. Intercomparison of ozone measurements between Lidar and ECC-sondes

    Energy Technology Data Exchange (ETDEWEB)

    Grabbe, G.C. [Max-Planck-Institut fuer Meteorologie, Hamburg (Germany); Boesenberg, J. [Max-Planck-Institut fuer Meteorologie, Hamburg (Germany); Dier, H. [Meteorologisches Obs., Lindenberg (Germany); Goersdorf, U. [Meteorologisches Obs., Lindenberg (Germany); Matthias, V. [Max-Planck-Institut fuer Meteorologie, Hamburg (Germany); Peters, G. [Meteorologisches Obs., Lindenberg (Germany); Schaberl, T. [Hamburg Univ. (Germany). Meteorologisches Inst.; Senff, C. [Hamburg Univ. (Germany). Meteorologisches Inst.

    1996-02-01

    An intercomparison experiment for measurements of ozone vertical profiles in the lower troposphere was performed using a ground-based ozone DIAL (DIfferential Absorption Lidar) and ECC-sondes (Electrochemical Concentration Cell) attached to tethered as well as free flying balloons, which took place in June of 1994. The tethered balloon was used for ozone soundings in the planetary boundary layer up to an altitude of 500 m, while in the free troposphere free flying balloons were used. For the time series of up to 90 min obtained with the tethersondes both averages and standard deviations are compared. The mean difference for all measurements amounted to 3.5 {mu}g/m{sup 3} only, corresponding to 3.5%. For the instantaneous profiles compared to the free flying sondes the differences were only marginally larger, with a mean value of 3.6 {mu}g/m{sup 3} corresponding to 4.1%. With two exceptions all averages for a single profile stayed below 7 {mu}g/m{sup 3}. Larger individual excursions were observed. In some cases, in particular in regions of steep aerosol gradients at layer boundaries, most probably the lidar values cause the deviation, while in other cases the ECC-sonde is suspected to yield erroneous results. For the measured standard deviation those retrieved from DIAL measurements are generally larger than measured by the ECC-sondes, especially in regions of inhomogeneous aerosol distribution. For the measurements reported here, this is attributed to residual errors in the aerosol correction of the DIAL measurements. The general agreement found in this intercomparison is regarded as excellent, DIAL is proven to be a very valuable tool for detailed studies of the ozone distribution in the lower troposphere. (orig.)

  14. Stratospheric temperature measurement with scanning Fabry-Perot interferometer for wind retrieval from mobile Rayleigh Doppler lidar.

    Science.gov (United States)

    Xia, Haiyun; Dou, Xiankang; Shangguan, Mingjia; Zhao, Ruocan; Sun, Dongsong; Wang, Chong; Qiu, Jiawei; Shu, Zhifeng; Xue, Xianghui; Han, Yuli; Han, Yan

    2014-09-08

    Temperature detection remains challenging in the low stratosphere, where the Rayleigh integration lidar is perturbed by aerosol contamination and ozone absorption while the rotational Raman lidar is suffered from its low scattering cross section. To correct the impacts of temperature on the Rayleigh Doppler lidar, a high spectral resolution lidar (HSRL) based on cavity scanning Fabry-Perot Interferometer (FPI) is developed. By considering the effect of the laser spectral width, Doppler broadening of the molecular backscatter, divergence of the light beam and mirror defects of the FPI, a well-behaved transmission function is proved to show the principle of HSRL in detail. Analysis of the statistical error of the HSRL is carried out in the data processing. A temperature lidar using both HSRL and Rayleigh integration techniques is incorporated into the Rayleigh Doppler wind lidar. Simultaneous wind and temperature detection is carried out based on the combined system at Delhi (37.371°N, 97.374°E; 2850 m above the sea level) in Qinghai province, China. Lower Stratosphere temperature has been measured using HSRL between 18 and 50 km with temporal resolution of 2000 seconds. The statistical error of the derived temperatures is between 0.2 and 9.2 K. The temperature profile retrieved from the HSRL and wind profile from the Rayleigh Doppler lidar show good agreement with the radiosonde data. Specifically, the max temperature deviation between the HSRL and radiosonde is 4.7 K from 18 km to 36 km, and it is 2.7 K between the HSRL and Rayleigh integration lidar from 27 km to 34 km.

  15. Double wavelength differential absorption as a technique for early diagnosis of breast cancer

    Science.gov (United States)

    Liger, Vladimir V.; Zybin, Alexander V.; Niemax, Kay; Kuritsyn, Yuri A.; Bolshov, Mikhail A.

    2005-08-01

    The double-wavelength differential molecular absorption technique with diode lasers is proposed for sensitive detection of functional status of breast tissues. The method is based on the measurement of the transmitted intensity differences of the two beams of diode lasers tuned to selected wavelengths within a broad absorption band of a human breast tissue within 700 - 800 nm spectral range. The strategy for the optimum selection of the diode laser wavelengths and initial adjustment of the detection scheme is developed. The method is demonstrated by the detection of the relative concentrations of two dyes, the optical properties of which are similar to those of a mixture of oxy- and deoxy- hemoglobin. The results of the first clinical tests of the proposed technique are briefly described.

  16. Lidar measurements of ozone and aerosol distributions during the 1992 airborne Arctic stratospheric expedition

    Science.gov (United States)

    Browell, Edward V.; Butler, Carolyn F.; Fenn, Marta A.; Grant, William B.; Ismail, Syed; Carter, Arlen F.

    1994-01-01

    The NASA Langley airborne differential absorption lidar system was operated from the NASA Ames DC-8 aircraft during the 1992 Airborne Arctic Stratospheric Expedition to investigate the distribution of stratospheric aerosols and ozone (O3) across the Arctic vortex from January to March 1992. Aerosols from the Mt. Pinatubo eruption were found outside and inside the Arctic vortex with distinctly different scattering characteristics and spatial distributions in the two regions. The aerosol and O3 distributions clearly identified the edge of the vortex and provided additional information on vortex dynamics and transport processes. Few polar stratospheric clouds were observed during the AASE-2; however, those that were found had enhanced scattering and depolarization over the background Pinatubo aerosols. The distribution of aerosols inside the vortex exhibited relatively minor changes during the AASE-2. Ozone depletion inside the vortex as limited to less than or equal to 20 percent in the altitude region from 15-20 km.

  17. Measurement and Study of Lidar Ratio by Using a Raman Lidar in Central China

    Directory of Open Access Journals (Sweden)

    Wei Wang

    2016-05-01

    Full Text Available We comprehensively evaluated particle lidar ratios (i.e., particle extinction to backscatter ratio at 532 nm over Wuhan in Central China by using a Raman lidar from July 2013 to May 2015. We utilized the Raman lidar data to obtain homogeneous aerosol lidar ratios near the surface through the Raman method during no-rain nights. The lidar ratios were approximately 57 ± 7 sr, 50 ± 5 sr, and 22 ± 4 sr under the three cases with obviously different pollution levels. The haze layer below 1.8 km has a large particle extinction coefficient (from 5.4e-4 m−1 to 1.6e-4 m−1 and particle backscatter coefficient (between 1.1e-05 m−1sr−1 and 1.7e-06 m−1sr−1 in the heavily polluted case. Furthermore, the particle lidar ratios varied according to season, especially between winter (57 ± 13 sr and summer (33 ± 10 sr. The seasonal variation in lidar ratios at Wuhan suggests that the East Asian monsoon significantly affects the primary aerosol types and aerosol optical properties in this region. The relationships between particle lidar ratios and wind indicate that large lidar ratio values correspond well with weak winds and strong northerly winds, whereas significantly low lidar ratio values are associated with prevailing southwesterly and southerly wind.

  18. Measurement and Study of Lidar Ratio by Using a Raman Lidar in Central China.

    Science.gov (United States)

    Wang, Wei; Gong, Wei; Mao, Feiyue; Pan, Zengxin; Liu, Boming

    2016-05-18

    We comprehensively evaluated particle lidar ratios (i.e., particle extinction to backscatter ratio) at 532 nm over Wuhan in Central China by using a Raman lidar from July 2013 to May 2015. We utilized the Raman lidar data to obtain homogeneous aerosol lidar ratios near the surface through the Raman method during no-rain nights. The lidar ratios were approximately 57 ± 7 sr, 50 ± 5 sr, and 22 ± 4 sr under the three cases with obviously different pollution levels. The haze layer below 1.8 km has a large particle extinction coefficient (from 5.4e-4 m(-1) to 1.6e-4 m(-1)) and particle backscatter coefficient (between 1.1e-05 m(-1)sr(-1) and 1.7e-06 m(-1)sr(-1)) in the heavily polluted case. Furthermore, the particle lidar ratios varied according to season, especially between winter (57 ± 13 sr) and summer (33 ± 10 sr). The seasonal variation in lidar ratios at Wuhan suggests that the East Asian monsoon significantly affects the primary aerosol types and aerosol optical properties in this region. The relationships between particle lidar ratios and wind indicate that large lidar ratio values correspond well with weak winds and strong northerly winds, whereas significantly low lidar ratio values are associated with prevailing southwesterly and southerly wind.

  19. The design, development, and test of balloonborne and groundbased lidar systems. Volume 3: Groundbased lidar systems

    Science.gov (United States)

    Shepherd, O.; Aurilio, G.; Bucknam, R. D.; Hurd, A. G.; Robertie, N. F.

    1991-06-01

    This is Volume 3 of a three volume final report on the design, development and test of balloonborne and groundbased lidar systems. Volume 1 describes the design and fabrication of a balloonborne CO2 coherent payload to measure the 10.6 micrometers backscatter from atmospheric aerosols as a function of altitude. Volume 2 describes the August 1987 flight test of Atmospheric Balloonborne Lidar Experiment, ABLE 2. In this volume we describe groundbased lidar development and measurements. A design was developed for installation of the ABLE lidar in the GL rooftop dome. A transportable shed was designed to house the ABLE lidar at the various remote measurement sites. Refurbishment and modification of the ABLE lidar were completed to permit groundbased lidar measurements of clouds and aerosols. Lidar field measurements were made at Ascension Island during SABLE 89. Lidar field measurements were made at Terciera, Azores during GABLE 90. These tasks have been successfully completed, and recommendations for further lidar measurements and data analysis have been made.

  20. Linear LIDAR versus Geiger-mode LIDAR: impact on data properties and data quality

    Science.gov (United States)

    Ullrich, A.; Pfennigbauer, M.

    2016-05-01

    LIDAR has become the inevitable technology to provide accurate 3D data fast and reliably even in adverse measurement situations and harsh environments. It provides highly accurate point clouds with a significant number of additional valuable attributes per point. LIDAR systems based on Geiger-mode avalanche photo diode arrays, also called single photon avalanche photo diode arrays, earlier employed for military applications, now seek to enter the commercial market of 3D data acquisition, advertising higher point acquisition speeds from longer ranges compared to conventional techniques. Publications pointing out the advantages of these new systems refer to the other category of LIDAR as "linear LIDAR", as the prime receiver element for detecting the laser echo pulses - avalanche photo diodes - are used in a linear mode of operation. We analyze the differences between the two LIDAR technologies and the fundamental differences in the data they provide. The limitations imposed by physics on both approaches to LIDAR are also addressed and advantages of linear LIDAR over the photon counting approach are discussed.

  1. Study of electron transition energies between anions and cations in spinel ferrites using differential UV–vis absorption spectra

    International Nuclear Information System (INIS)

    Xue, L.C.; Wu, L.Q.; Li, S.Q.; Li, Z.Z.; Tang, G.D.; Qi, W.H.; Ge, X.S.; Ding, L.L.

    2016-01-01

    It is very important to determine electron transition energies (E_t_r) between anions and different cations in order to understand the electrical transport and magnetic properties of a material. Many authors have analyzed UV–vis absorption spectra using the curve (αhν)"2 vs E, where α is the absorption coefficient and E(=hν) is the photon energy. Such an approach can give only two band gap energies for spinel ferrites. In this paper, using differential UV–vis absorption spectra, dα/dE vs E, we have obtained electron transition energies (E_t_r) between the anions and cations, Fe"2"+ and Fe"3"+ at the (A) and [B] sites and Ni"2"+ at the [B] sites for the (A)[B]_2O_4 spinel ferrite samples Co_xNi_0_._7_−_xFe_2_._3O_4 (0.0≤x≤0.3), Cr_xNi_0_._7Fe_2_._3_−_xO_4 (0.0≤x≤0.3) and Fe_3O_4. We suggest that the differential UV–vis absorption spectra should be accepted as a general analysis method for determining electron transition energies between anions and cations.

  2. Recovery of Forest Canopy Parameters by Inversion of Multispectral LiDAR Data

    Directory of Open Access Journals (Sweden)

    Andrew Wallace

    2012-02-01

    Full Text Available We describe the use of Bayesian inference techniques, notably Markov chain Monte Carlo (MCMC and reversible jump MCMC (RJMCMC methods, to recover forest structural and biochemical parameters from multispectral LiDAR (Light Detection and Ranging data. We use a variable dimension, multi-layered model to represent a forest canopy or tree, and discuss the recovery of structure and depth profiles that relate to photochemical properties. We first demonstrate how simple vegetation indices such as the Normalized Differential Vegetation Index (NDVI, which relates to canopy biomass and light absorption, and Photochemical Reflectance Index (PRI which is a measure of vegetation light use efficiency, can be measured from multispectral data. We further describe and demonstrate our layered approach on single wavelength real data, and on simulated multispectral data derived from real, rather than simulated, data sets. This evaluation shows successful recovery of a subset of parameters, as the complete recovery problem is ill-posed with the available data. We conclude that the approach has promise, and suggest future developments to address the current difficulties in parameter inversion.

  3. A comparison of Doppler lidar wind sensors for Earth-orbit global measurement applications

    Science.gov (United States)

    Menzies, Robert T.

    1985-01-01

    Now, there are four Doppler lidar configurations which are being promoted for the measurement of tropospheric winds: (1) the coherent CO2 Lidar, operating in the 9 micrometer region using a pulsed, atmospheric pressure CO2 gas discharge laser transmitter, and heterodyne detection; (2) the coherent Neodymium doped YAG or Glass Lidar, operating at 1.06 micrometers, using flashlamp or diode laser optical pumping of the solid state laser medium, and heterodyne detection; (3) the Neodymium doped YAG/Glass Lidar, operating at the doubled frequency (at 530 nm wavelength), again using flashlamp or diode laser pumping of the laser transmitter, and using a high resolution tandem Fabry-Perot filter and direct detection; and (4) the Raman shifted Xenon Chloride Lidar, operating at 350 nm wavelength, using a pulsed, atmospheric pressure XeCl gas discharge laser transmitter at 308 nm, Raman shifted in a high pressure hydrogen cell to 350 nm in order to avoid strong stratospheric ozone absorption, also using a high resolution tandem Fabry-Perot filter and direct detection. Comparisons of these four systems can include many factors and tradeoffs. The major portion of this comparison is devoted to efficiency. Efficiency comparisons are made by estimating the number of transmitted photons required for a single pulse wind velocity estimate of + or - 1 m/s accuracy in the middle troposphere, from an altitude of 800 km, which is assured to be reasonable for a polar orbiting platform.

  4. A comparison of mixing depths observed by ground-based wind profilers and an airborne lidar

    Energy Technology Data Exchange (ETDEWEB)

    White, A.B.; Senff, C. [Univ. of Colorado/NOAA Environmental Technology Lab., Cooperative Inst. for Research in Environmental Sciences, Boulder, CO (United States); Banta, R.M. [NOAA Environmental Technology Lab., Boulder, CO (United States)

    1997-10-01

    The mixing depth is one of the most important parameters in air pollution studies because it determines the vertical extent of the `box` in which pollutants are mixed and dispersed. During the 1995 Southern Oxidants Study (SOS95), scientists from the National Oceanic and Atmospheric Administration Environmental Technology Laboratory (NOAA/ETL) deployed four 915-MHz boundary-layer radar/wind profilers (hereafter radars) in and around the Nashville, Tennessee metropolitan area. Scientists from NOAA/ETL also operated an ultraviolet differential absorption lidar (DIAL) onboard a CASA-212 aircraft. Profiles from radar and DIAL can be used to derive estimates of the mixing depth. The methods used for both instruments are similar in that they depend on information derived from the backscattered power. However, different scattering mechanisms for the radar and DIAL mean that different tracers of mixing depth are measured. In this paper we compare the mixing depth estimates obtained from the radar and DIAL and discuss the similarities and differences that occur. (au)

  5. Atmospheric boundary layer CO2 remote sensing with a direct detection LIDAR instrument based on a widely tunable optical parametric source.

    Science.gov (United States)

    Cadiou, Erwan; Mammez, Dominique; Dherbecourt, Jean-Baptiste; Gorju, Guillaume; Pelon, Jacques; Melkonian, Jean-Michel; Godard, Antoine; Raybaut, Myriam

    2017-10-15

    We report on the capability of a direct detection differential absorption lidar (DIAL) for range resolved and integrated path (IPDIAL) remote sensing of CO 2 in the atmospheric boundary layer (ABL). The laser source is an amplified nested cavity optical parametric oscillator (NesCOPO) emitting approximately 8 mJ at the two measurement wavelengths selected near 2050 nm. Direct detection atmospheric measurements are taken from the ground using a 30 Hz frequency switching between emitted wavelengths. Results show that comparable precision measurements are achieved in DIAL and IPDIAL modes (not better than a few ppm) on high SNR targets such as near range ABL aerosol and clouds, respectively. Instrumental limitations are analyzed and degradation due to cloud scattering variability is discussed to explain observed DIAL and IPDIAL limitations.

  6. Automatic extraction of pavement markings on streets from point cloud data of mobile LiDAR

    International Nuclear Information System (INIS)

    Gao, Yang; Zhong, Ruofei; Liu, Xianlin; Tang, Tao; Wang, Liuzhao

    2017-01-01

    Pavement markings provide an important foundation as they help to keep roads users safe. Accurate and comprehensive information about pavement markings assists the road regulators and is useful in developing driverless technology. Mobile light detection and ranging (LiDAR) systems offer new opportunities to collect and process accurate pavement markings’ information. Mobile LiDAR systems can directly obtain the three-dimensional (3D) coordinates of an object, thus defining spatial data and the intensity of (3D) objects in a fast and efficient way. The RGB attribute information of data points can be obtained based on the panoramic camera in the system. In this paper, we present a novel method process to automatically extract pavement markings using multiple attribute information of the laser scanning point cloud from the mobile LiDAR data. This method process utilizes a differential grayscale of RGB color, laser pulse reflection intensity, and the differential intensity to identify and extract pavement markings. We utilized point cloud density to remove the noise and used morphological operations to eliminate the errors. In the application, we tested our method process on different sections of roads in Beijing, China, and Buffalo, NY, USA. The results indicated that both correctness ( p ) and completeness ( r ) were higher than 90%. The method process of this research can be applied to extract pavement markings from huge point cloud data produced by mobile LiDAR. (paper)

  7. Automatic extraction of pavement markings on streets from point cloud data of mobile LiDAR

    Science.gov (United States)

    Gao, Yang; Zhong, Ruofei; Tang, Tao; Wang, Liuzhao; Liu, Xianlin

    2017-08-01

    Pavement markings provide an important foundation as they help to keep roads users safe. Accurate and comprehensive information about pavement markings assists the road regulators and is useful in developing driverless technology. Mobile light detection and ranging (LiDAR) systems offer new opportunities to collect and process accurate pavement markings’ information. Mobile LiDAR systems can directly obtain the three-dimensional (3D) coordinates of an object, thus defining spatial data and the intensity of (3D) objects in a fast and efficient way. The RGB attribute information of data points can be obtained based on the panoramic camera in the system. In this paper, we present a novel method process to automatically extract pavement markings using multiple attribute information of the laser scanning point cloud from the mobile LiDAR data. This method process utilizes a differential grayscale of RGB color, laser pulse reflection intensity, and the differential intensity to identify and extract pavement markings. We utilized point cloud density to remove the noise and used morphological operations to eliminate the errors. In the application, we tested our method process on different sections of roads in Beijing, China, and Buffalo, NY, USA. The results indicated that both correctness (p) and completeness (r) were higher than 90%. The method process of this research can be applied to extract pavement markings from huge point cloud data produced by mobile LiDAR.

  8. Advancing Atmosphere-Ocean Remote Sensing with Spaceborne High Spectral Resolution Lidar

    Science.gov (United States)

    Hostetler, C. A.; Behrenfeld, M. J.; Chepfer, H.; Hu, Y.; Hair, J. W.; Trepte, C. R.; Winker, D. M.; Ferrare, R. A.; Burton, S. P.; Scarino, A. J.; Powell, K. A.; Michaud, J.

    2016-12-01

    More than 1600 publications employing observations from the CALIOP lidar on CALIPSO testify to the value of spaceborne lidar for aerosol and cloud remote sensing. Recent publications have shown the value of CALIOP data for retrievals of key ocean carbon cycle stocks. In this presentation we focus on the advantages of a more advanced technique, High Spectral Resolution Lidar (HSRL), for aerosol, cloud, and ocean remote sensing. An atmosphere-ocean optimized HSRL achieves greater accuracy over the standard backscatter lidar technique for retrievals of aerosol and cloud extinction and backscatter profiles, provides additional capability to retrieve aerosol and cloud microphysical parameters, and enables vertically-resolved characterization of scattering and absorption properties of suspended and dissolved materials in the ocean. Numerous publications highlight the synergy of coincident CALIOP and passive A-train observations for studies of aerosol-cloud radiative effects and cloud-climate feedback. Less appreciated is the complementarity that would exist between an optimized spaceborne lidar and passive ocean color. An optimized HSRL flown in formation with the Plankton, Aerosol, and ocean Ecosystem (PACE) mission would provide phytoplankton vertical distribution, which is needed for accurately estimating net primary productivity but absent in the PACE ocean color data. The HSRL would also provide data needed to improve atmospheric correction schemes in ocean color retrievals. Because lidar provides measurements both night and day, through tenuous clouds and aerosol layers, and in holes between clouds, the sampling achieved is highly complementary to passive radiometry, providing data in important high latitude regions where ocean color data are sparse or nonexistent. In this presentation we will discuss 1) relevant aerosol, cloud, and ocean retrievals from airborne HSRL field missions; 2) the advantages of an optimized spaceborne HSRL for aerosol, cloud, and ocean

  9. 2015 Lowndes County (GA) Lidar

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TASK NAME: NOAA OCM Lidar for Lowndes County, GA with the option to Collect Lidar in Cook and Tift Counties, GA Lidar Data Acquisition and Processing Production Task...

  10. 2015 OLC Lidar: Wasco, WA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — WSI collected Light Detection and Ranging (LiDAR) data for the Oregon LiDAR Consortium (OLC) Wasco County, WA, study area. The Oregon LiDAR Consortium's Wasco County...

  11. Estimating drizzle drop size and precipitation rate using two-colour lidar measurements

    Directory of Open Access Journals (Sweden)

    C. D. Westbrook

    2010-06-01

    Full Text Available A method to estimate the size and liquid water content of drizzle drops using lidar measurements at two wavelengths is described. The method exploits the differential absorption of infrared light by liquid water at 905 nm and 1.5 μm, which leads to a different backscatter cross section for water drops larger than ≈50 μm. The ratio of backscatter measured from drizzle samples below cloud base at these two wavelengths (the colour ratio provides a measure of the median volume drop diameter D0. This is a strong effect: for D0=200 μm, a colour ratio of ≈6 dB is predicted. Once D0 is known, the measured backscatter at 905 nm can be used to calculate the liquid water content (LWC and other moments of the drizzle drop distribution.

    The method is applied to observations of drizzle falling from stratocumulus and stratus clouds. High resolution (32 s, 36 m profiles of D0, LWC and precipitation rate R are derived. The main sources of error in the technique are the need to assume a value for the dispersion parameter μ in the drop size spectrum (leading to at most a 35% error in R and the influence of aerosol returns on the retrieval (≈10% error in R for the cases considered here. Radar reflectivities are also computed from the lidar data, and compared to independent measurements from a colocated cloud radar, offering independent validation of the derived drop size distributions.

  12. Let’s agree on the casing of Lidar

    Science.gov (United States)

    Deering, Carol; Stoker, Jason M.

    2014-01-01

    Is it lidar, Lidar, LiDAR, LIDAR, LiDar, LiDaR, or liDAR? A comprehensive review of the scientific/technical literature reveals seven different casings of this short form for light detection and ranging. And there could be more.

  13. 2012 MEGIS Topographic Lidar: Statewide Lidar Project Area 1 (Aroostook), Maine

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — LiDAR data is a remotely sensed high resolution elevation data collected by an airborne platform. The LiDAR sensor uses a combination of laser range finding, GPS...

  14. Systematic Relationships Between Lidar Observables and Sizes And Mineral Composition Of Dust Aerosols

    Science.gov (United States)

    Van Diedenhoven, Bastiaan; Stangl, Alexander; Perlwitz, Jan; Fridlind, Ann M.; Chowdhary, Jacek; Cairns, Brian

    2015-01-01

    The physical and chemical properties of soil dust aerosol particles fundamentally affect their interaction with climate, including shortwave absorption and radiative forcing, nucleation of cloud droplets and ice crystals, heterogeneous formation of sulfates and nitrates on the surface of dust particles, and atmospheric processing of iron into bioavailable forms that increase the productivity of marine phytoplankton. Lidar measurements, such as extinction-to-backscatter, color and depolarization ratios, are frequently used to distinguish between aerosol types with different physical and chemical properties. The chemical composition of aerosol particles determines their complex refractive index, hence affecting their backscattering properties. Here we present a study on how dust aerosol backscattering and depolarization properties at wavelengths of 355, 532 and 1064 nm are related to size and complex refractive index, which varies with the mineral composition of the dust. Dust aerosols are represented by collections of spheroids with a range of prolate and oblate aspect ratios and their optical properties are obtained using T-matrix calculations. We find simple, systematic relationships between lidar observables and the dust size and complex refractive index that may aid the use of space-based or airborne lidars for direct retrieval of dust properties or for the evaluation of chemical transport models using forward simulated lidar variables. In addition, we present first results on the spatial variation of forward-simulated lidar variables based on a dust model that accounts for the atmospheric cycle of eight different mineral types plus internal mixtures of seven mineral types with iron oxides, which was recently implemented in the NASA GISS Earth System ModelE2.

  15. Infrared differential absorption lidar for stand-off detection of ...

    Indian Academy of Sciences (India)

    2014-02-14

    Feb 14, 2014 ... was tested successfully with diethyl ether (DEE) (a toxic industrial chemical .... emitting ∼50 mJ energy (max. energy at peak wavelength) and tunable in .... [6] L D Hoffland, R J Piffath and J B Bouck, Opt. Eng. 24, 982 (1985).

  16. Spectral studies of ocean water with space-borne sensor SCIAMACHY using Differential Optical Absorption Spectroscopy (DOAS

    Directory of Open Access Journals (Sweden)

    M. Vountas

    2007-09-01

    Full Text Available Methods enabling the retrieval of oceanic parameter from the space borne instrumentation Scanning Imaging Absorption Spectrometer for Atmospheric ChartographY (SCIAMACHY using Differential Optical Absorption Spectroscopy (DOAS are presented. SCIAMACHY onboard ENVISAT measures back scattered solar radiation at a spectral resolution (0.2 to 1.5 nm. The DOAS method was used for the first time to fit modelled Vibrational Raman Scattering (VRS in liquid water and in situ measured phytoplankton absorption reference spectra to optical depths measured by SCIAMACHY. Spectral structures of VRS and phytoplankton absorption were clearly found in these optical depths. Both fitting approaches lead to consistent results. DOAS fits correlate with estimates of chlorophyll concentrations: low fit factors for VRS retrievals correspond to large chlorophyll concentrations and vice versa; large fit factors for phytoplankton absorption correspond with high chlorophyll concentrations and vice versa. From these results a simple retrieval technique taking advantage of both measurements is shown. First maps of global chlorophyll concentrations were compared to the corresponding MODIS measurements with very promising results. In addition, results from this study will be used to improve atmospheric trace gas DOAS-retrievals from visible wavelengths by including these oceanographic signatures.

  17. Monte Carlo analysis of radiative transport in oceanographic lidar measurements

    Energy Technology Data Exchange (ETDEWEB)

    Cupini, E.; Ferro, G. [ENEA, Divisione Fisica Applicata, Centro Ricerche Ezio Clementel, Bologna (Italy); Ferrari, N. [Bologna Univ., Bologna (Italy). Dipt. Ingegneria Energetica, Nucleare e del Controllo Ambientale

    2001-07-01

    The analysis of oceanographic lidar systems measurements is often carried out with semi-empirical methods, since there is only a rough understanding of the effects of many environmental variables. The development of techniques for interpreting the accuracy of lidar measurements is needed to evaluate the effects of various environmental situations, as well as of different experimental geometric configurations and boundary conditions. A Monte Carlo simulation model represents a tool that is particularly well suited for answering these important questions. The PREMAR-2F Monte Carlo code has been developed taking into account the main molecular and non-molecular components of the marine environment. The laser radiation interaction processes of diffusion, re-emission, refraction and absorption are treated. In particular are considered: the Rayleigh elastic scattering, produced by atoms and molecules with small dimensions with respect to the laser emission wavelength (i.e. water molecules), the Mie elastic scattering, arising from atoms or molecules with dimensions comparable to the laser wavelength (hydrosols), the Raman inelastic scattering, typical of water, the absorption of water, inorganic (sediments) and organic (phytoplankton and CDOM) hydrosols, the fluorescence re-emission of chlorophyll and yellow substances. PREMAR-2F is an extension of a code for the simulation of the radiative transport in atmospheric environments (PREMAR-2). The approach followed in PREMAR-2 was to combine conventional Monte Carlo techniques with analytical estimates of the probability of the receiver to have a contribution from photons coming back after an interaction in the field of view of the lidar fluorosensor collecting apparatus. This offers an effective mean for modelling a lidar system with realistic geometric constraints. The retrieved semianalytic Monte Carlo radiative transfer model has been developed in the frame of the Italian Research Program for Antarctica (PNRA) and it is

  18. Demonstration of a diode-laser-based high spectral resolution lidar (HSRL) for quantitative profiling of clouds and aerosols.

    Science.gov (United States)

    Hayman, Matthew; Spuler, Scott

    2017-11-27

    We present a demonstration of a diode-laser-based high spectral resolution lidar. It is capable of performing calibrated retrievals of aerosol and cloud optical properties at a 150 m range resolution with less than 1 minute integration time over an approximate range of 12 km during day and night. This instrument operates at 780 nm, a wavelength that is well established for reliable semiconductor lasers and detectors, and was chosen because it corresponds to the D2 rubidium absorption line. A heated vapor reference cell of isotopic rubidium 87 is used as an effective and reliable aerosol signal blocking filter in the instrument. In principle, the diode-laser-based high spectral resolution lidar can be made cost competitive with elastic backscatter lidar systems, yet delivers a significant improvement in data quality through direct retrieval of quantitative optical properties of clouds and aerosols.

  19. Balloonborne lidar payloads for remote sensing

    Science.gov (United States)

    Shepherd, O.; Aurilio, G.; Hurd, A. G.; Rappaport, S. A.; Reidy, W. P.; Rieder, R. J.; Bedo, D. E.; Swirbalus, R. A.

    1994-02-01

    A series of lidar experiments has been conducted using the Atmospheric Balloonborne Lidar Experiment payload (ABLE). These experiments included the measurement of atmospheric Rayleigh and Mie backscatter from near space (approximately 30 km) and Raman backscatter measurements of atmospheric constituents as a function of altitude. The ABLE payload consisted of a frequency-tripled Nd:YAG laser transmitter, a 50 cm receiver telescope, and filtered photodetectors in various focal plane configurations. The payload for lidar pointing, thermal control, data handling, and remote control of the lidar system. Comparison of ABLE performance with that of a space lidar shows significant performance advantages and cost effectiveness for balloonborne lidar systems.

  20. A Broad Bank Lidar for Precise Atmospheric CO2 Column Absorption Measurement from Space

    Science.gov (United States)

    Georgieva, E. M.; Heaps, W. S.; Huang, W.

    2010-01-01

    Accurate global measurement of carbon dioxide column with the aim of discovering and quantifying unknown sources and sinks has been a high priority for the last decade. In order to uncover the "missing sink" that is responsible for the large discrepancies in the budget the critical precision for a measurement from space needs to be on the order of 1 ppm. To better understand the CO2 budget and to evaluate its impact on global warming the National Research Council (NRC) in its recent decadal survey report (NACP) to NASA recommended a laser based total CO2 mapping mission in the near future. That's the goal of Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) mission - to significantly enhance the understanding of the role of CO2 in the global carbon cycle. Our current goal is to develop an ultra precise, inexpensive new lidar system for column measurements of CO2 changes in the lower atmosphere that uses a Fabry-Perot interferometer based system as the detector portion of the instrument and replaces the narrow band laser commonly used in lidars with a high power broadband source. This approach reduces the number of individual lasers used in the system and considerably reduces the risk of failure. It also tremendously reduces the requirement for wavelength stability in the source putting this responsibility instead on the Fabry- Perot subsystem.

  1. Lidar configurations for wind turbine control

    DEFF Research Database (Denmark)

    Mirzaei, Mahmood; Mann, Jakob

    2016-01-01

    Lidar sensors have proved to be very beneficial in the wind energy industry. They can be used for yaw correction, feed-forward pitch control and load verification. However, the current lidars are expensive. One way to reduce the price is to use lidars with few measurement points. Finding the best...... by the lidar is compared against the effective wind speed on a wind turbine rotor both theoretically and through simulations. The study provides some results to choose the best configuration of the lidar with few measurement points....

  2. IEA Wind Task 32: Wind lidar identifying and mitigating barriers to the adoption of wind lidar

    DEFF Research Database (Denmark)

    Clifton, Andrew; Clive, Peter; Gottschall, Julia

    2018-01-01

    IEA Wind Task 32 exists to identify and mitigate barriers to the adoption of lidar for wind energy applications. It leverages ongoing international research and development activities in academia and industry to investigate site assessment, power performance testing, controls and loads, and complex...... flows. Since its initiation in 2011, Task 32 has been responsible for several recommended practices and expert reports that have contributed to the adoption of ground-based, nacelle-based, and floating lidar by the wind industry. Future challenges include the development of lidar uncertainty models......, best practices for data management, and developing community-based tools for data analysis, planning of lidar measurements and lidar configuration. This paper describes the barriers that Task 32 identified to the deployment of wind lidar in each of these application areas, and the steps that have been...

  3. LIDAR Research & Development Lab

    Data.gov (United States)

    Federal Laboratory Consortium — The LIDAR Research and Development labs are used to investigate and improve LIDAR components such as laser sources, optical signal detectors and optical filters. The...

  4. Model of the Correlation between Lidar Systems and Wind Turbines for Lidar-Assisted Control

    DEFF Research Database (Denmark)

    Schlipf, David; Cheng, Po Wen; Mann, Jakob

    2013-01-01

    - or spinner-based lidar system. If on the one hand, the assumed correlation is overestimated, then the uncorrelated frequencies of the preview will cause unnecessary control action, inducing undesired loads. On the other hand, the benefits of the lidar-assisted controller will not be fully exhausted......, if correlated frequencies are filtered out. To avoid these miscalculations, this work presents a method to model the correlation between lidar systems and wind turbines using Kaimal wind spectra. The derived model accounts for different measurement configurations and spatial averaging of the lidar system......Investigations of lidar-assisted control to optimize the energy yield and to reduce loads of wind turbines have increased significantly in recent years. For this kind of control, it is crucial to know the correlation between the rotor effective wind speed and the wind preview provided by a nacelle...

  5. Mid-Infrared Lasers

    Data.gov (United States)

    National Aeronautics and Space Administration — Mid infrared solid state lasers for Differential Absorption Lidar (DIAL) systems required for understanding atmospheric chemistry are not available. This program...

  6. Calibration of Ground-based Lidar instrument

    DEFF Research Database (Denmark)

    Yordanova, Ginka; Gómez Arranz, Paula

    This report presents the result of the lidar calibration performed for the given Ground-based Lidar at DTU’s test site for large wind turbines at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement...... uncertainties provided by measurement standard and corresponding lidar wind speed indications with associated measurement uncertainties. The lidar calibration concerns the 10 minute mean wind speed measurements. The comparison of the lidar measurements of the wind direction with that from wind vanes...

  7. Advanced Intensity-Modulation Continuous-Wave Lidar Techniques for Column CO2 Measurements

    Science.gov (United States)

    Campbell, J. F.; Lin, B.; Obland, M. D.; Liu, Z.; Kooi, S. A.; Fan, T. F.; Nehrir, A. R.; Meadows, B.; Browell, E. V.

    2016-12-01

    Advanced Intensity-Modulation Continuous-Wave Lidar Techniques for Column CO2 MeasurementsJoel F. Campbell1, Bing Lin1, Michael D. Obland1, Zhaoyan Liu1, Susan Kooi2, Tai-Fang Fan2, Amin R. Nehrir1, Byron Meadows1, Edward V. Browell31NASA Langley Research Center, Hampton, VA 23681 2SSAI, NASA Langley Research Center, Hampton, VA 23681 3STARSS-II Affiliate, NASA Langley Research Center, Hampton, VA 23681 AbstractGlobal and regional atmospheric carbon dioxide (CO2) measurements for the NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) space mission and the Atmospheric Carbon and Transport (ACT) - America project are critical for improving our understanding of global CO2 sources and sinks. Advanced Intensity-Modulated Continuous-Wave (IM-CW) lidar techniques are investigated as a means of facilitating CO2 measurements from space and airborne platforms to meet the ASCENDS and ACT-America science measurement requirements. In recent numerical, laboratory and flight experiments we have successfully used the Binary Phase Shift Keying (BPSK) modulation technique to uniquely discriminate surface lidar returns from intermediate aerosol and cloud returns. We demonstrate the utility of BPSK to eliminate sidelobes in the range profile as a means of making Integrated Path Differential Absorption (IPDA) column CO2 measurements in the presence of optically thin clouds, thereby minimizing bias errors caused by the clouds. Furthermore, high accuracy and precision ranging to the surface as well as to the top of intermediate cloud layers, which is a requirement for the inversion of column CO2 number density measurements to column CO2 mixing ratios, has been demonstrated using new sub-meter hyperfine interpolation techniques that takes advantage of the periodicity of the modulation waveforms. The BPSK technique under investigation has excellent auto-correlation properties while possessing a finite bandwidth. These techniques are used in a new data processing

  8. 2013 Puget Sound LiDAR Consortium (PSLC) Topographic LiDAR: Tulalip Partnership

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In October 2012, WSI (Watershed Sciences, Inc.) was contracted by the Puget Sound LiDAR Consortium (PSLC)to collect Light Detection and Ranging (LiDAR) data on a...

  9. 2013 Puget Sound LiDAR Consortium (PSLC) Topographic LiDAR: Saddle Mountain

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In October 2013, WSI, a Quantum Spatial Company (QSI), was contracted by the Puget Sound LiDAR Consortium (PSLC) to collect Light Detection and Ranging (LiDAR) data...

  10. IEA Wind Task 32: Wind Lidar Identifying and Mitigating Barriers to the Adoption of Wind Lidar

    Directory of Open Access Journals (Sweden)

    Andrew Clifton

    2018-03-01

    Full Text Available IEA Wind Task 32 exists to identify and mitigate barriers to the adoption of lidar for wind energy applications. It leverages ongoing international research and development activities in academia and industry to investigate site assessment, power performance testing, controls and loads, and complex flows. Since its initiation in 2011, Task 32 has been responsible for several recommended practices and expert reports that have contributed to the adoption of ground-based, nacelle-based, and floating lidar by the wind industry. Future challenges include the development of lidar uncertainty models, best practices for data management, and developing community-based tools for data analysis, planning of lidar measurements and lidar configuration. This paper describes the barriers that Task 32 identified to the deployment of wind lidar in each of these application areas, and the steps that have been taken to confirm or mitigate the barriers. Task 32 will continue to be a meeting point for the international wind lidar community until at least 2020 and welcomes old and new participants.

  11. Cavity ring-down spectroscopy (CRDS) system for measuring atmospheric mercury using differential absorption

    Science.gov (United States)

    Pierce, A.; Obrist, D.; Moosmuller, H.; Moore, C.

    2012-04-01

    Atmospheric elemental mercury (Hg0) is a globally pervasive element that can be transported and deposited to remote ecosystems where it poses — particularly in its methylated form — harm to many organisms including humans. Current techniques for measurement of atmospheric Hg0 require several liters of sample air and several minutes for each analysis. Fast-response (i.e., 1 second or faster) measurements would improve our ability to understand and track chemical cycling of mercury in the atmosphere, including high frequency Hg0 fluctuations, sources and sinks, and chemical transformation processes. We present theory, design, challenges, and current results of our new prototype sensor based on cavity ring-down spectroscopy (CRDS) for fast-response measurement of Hg0 mass concentrations. CRDS is a direct absorption technique that implements path-lengths of multiple kilometers in a compact absorption cell using high-reflectivity mirrors, thereby improving sensitivity and reducing sample volume compared to conventional absorption spectroscopy. Our sensor includes a frequency-doubled, dye-laser emitting laser pulses tunable from 215 to 280 nm, pumped by a Q-switched, frequency tripled Nd:YAG laser with a pulse repetition rate of 50 Hz. We present how we successfully perform automated wavelength locking and stabilization of the laser to the peak Hg0 absorption line at 253.65 nm using an external isotopically-enriched mercury (202Hg0) cell. An emphasis of this presentation will be on the implementation of differential absorption measurement whereby measurements are alternated between the peak Hg0 absorption wavelength and a nearby wavelength "off" the absorption line. This can be achieved using a piezo electric tuning element that allows for pulse-by-pulse tuning and detuning of the laser "online" and "offline" of the Hg absorption line, and thereby allows for continuous correction of baseline extinction losses. Unexpected challenges with this approach included

  12. The application of UV LEDs for differential optical absorption spectroscopy

    Science.gov (United States)

    Geiko, Pavel P.; Smirnov, Sergey S.; Samokhvalov, Ignatii V.

    2018-04-01

    Modern UV LEDs represent a potentially very advantageous alternative to thermal light sources, in particular xenon arc lamps, which are the most common light sources in trace gas-analyzers. So, the light-emitting diodes are very attractive for use of as light sources for Long Path Differential Optical Absorption Spectroscopy (DOAS) measurements of trace gases in the open atmosphere. Recent developments in fibre-coupling telescope technology and the availability of ultraviolet light emitting diodes have now allowed us to construct a portable, long path DOAS instrument for use at remote locations and specifically for measuring degassing from active volcanic systems. First of all, we are talking about the measurement of sulphur dioxide, carbon disulphide and, oxides of chlorine and bromine. The parallel measurements of sulfur dioxide using a certified gas analyzer, were conducted and showed good correlation.

  13. Lidar Inter-Comparison Exercise Final Campaign Report

    Energy Technology Data Exchange (ETDEWEB)

    Protat, A [Australian Bureau of Meterology; Young, S

    2015-02-01

    The objective of this field campaign was to evaluate the performance of the new Leosphere R-MAN 510 lidar, procured by the Australian Bureau of Meteorology, by testing it against the MicroPulse Lidar (MPL) and Raman lidars, at the Darwin Atmospheric Radiation Measurement (ARM) site. This lidar is an eye-safe (355 nm), turn-key mini Raman lidar, which allows for the detection of aerosols and cloud properties, and the retrieval of particulate extinction profiles. To accomplish this evaluation, the R-MAN 510 lidar has been operated at the Darwin ARM site, next to the MPL, Raman lidar, and Vaisala ceilometer (VCEIL) for three months (from 20 January 2013 to 20 April 2013) in order to collect a sufficient sample size for statistical comparisons.

  14. 2015 OLC Lidar DEM: Wasco, WA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — WSI collected Light Detection and Ranging (LiDAR) data for the Oregon LiDAR Consortium (OLC) Wasco County, WA, study area. The Oregon LiDAR Consortium's Wasco County...

  15. Adaptive Data Processing Technique for Lidar-Assisted Control to Bridge the Gap between Lidar Systems and Wind Turbines: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Schlipf, David; Raach, Steffen; Haizmann, Florian; Cheng, Po Wen; Fleming, Paul; Scholbrock, Andrew, Krishnamurthy, Raghu; Boquet, Mathieu

    2015-12-14

    This paper presents first steps toward an adaptive lidar data processing technique crucial for lidar-assisted control in wind turbines. The prediction time and the quality of the wind preview from lidar measurements depend on several factors and are not constant. If the data processing is not continually adjusted, the benefit of lidar-assisted control cannot be fully exploited, or can even result in harmful control action. An online analysis of the lidar and turbine data are necessary to continually reassess the prediction time and lidar data quality. In this work, a structured process to develop an analysis tool for the prediction time and a new hardware setup for lidar-assisted control are presented. The tool consists of an online estimation of the rotor effective wind speed from lidar and turbine data and the implementation of an online cross correlation to determine the time shift between both signals. Further, initial results from an ongoing campaign in which this system was employed for providing lidar preview for feed-forward pitch control are presented.

  16. Collision, scattering and absorption differential cross-sections in double-photon Compton scattering

    International Nuclear Information System (INIS)

    Dewan, R.; Saddi, M.B.; Sandhu, B.S.; Singh, B.; Ghumman, B.S.

    2005-01-01

    The collision, scattering and absorption differential cross-sections of double-photon Compton scattering are measured experimentally for 0.662 MeV incident gamma photons. Two simultaneously emitted gamma quanta are investigated using a slow-fast coincidence technique having 25 ns resolving time. The coincidence spectra for different energy windows of one of the two final photons are recorded using HPGe detector. The experimental data do not suffer from inherent energy resolution of gamma detector and provide more faithful reproduction of the distribution under the full energy peak of recorded coincidence spectra. The present results are in agreement with the currently acceptable theory of this higher order process

  17. 2015 OLC Lidar: Chelan

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Quantum Spatial has collected Light Detection and Ranging (LiDAR) data for the Oregon LiDAR Consortium (OLC) Chelan FEMA study area. This study area is located in...

  18. 2009 Puget Sound LiDAR Consortium (PSLC) Topographic LiDAR: Lewis County, Washington

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Watershed Sciences, Inc. (WSI) collected Light Detection and Ranging (LiDAR) data for the Lewis County survey area for the Puget Sound LiDAR Consortium. This data...

  19. Charactering lidar optical subsystem using four quadrants method

    Science.gov (United States)

    Tian, Xiaomin; Liu, Dong; Xu, Jiwei; Wang, Zhenzhu; Wang, Bangxin; Wu, Decheng; Zhong, Zhiqing; Xie, Chenbo; Wang, Yingjian

    2018-02-01

    Lidar is a kind of active optical remote sensing instruments , can be applied to sound atmosphere with a high spatial and temporal resolution. Many parameter of atmosphere can be get by using different inverse algorithm with lidar backscatter signal. The basic setup of a lidar consist of a transmitter and a receiver. To make sure the quality of lidar signal data, the lidar must be calibrated before being used to measure the atmospheric variables. It is really significant to character and analyze lidar optical subsystem because a well equiped lidar optical subsystem contributes to high quality lidar signal data. we pay close attention to telecover test to character and analyze lidar optical subsystem.The telecover test is called four quadrants method consisting in dividing the telescope aperture in four quarants. when a lidar is well configured with lidar optical subsystem, the normalized signal from four qudrants will agree with each other on some level. Testing our WARL-II lidar by four quadrants method ,we find the signals of the four basically consistent with each other both in near range and in far range. But in detail, the signals in near range have some slight distinctions resulting from overlap function, some signals distinctions are induced by atmospheric instability.

  20. Receiver Signal to Noise Ratios for IPDA Lidars Using Sine-wave and Pulsed Laser Modulation and Direct Detections

    Science.gov (United States)

    Sun, Xiaoli; Abshire, James B.

    2011-01-01

    Integrated path differential absorption (IPDA) lidar can be used to remotely measure the column density of gases in the path to a scattering target [1]. The total column gas molecular density can be derived from the ratio of the laser echo signal power with the laser wavelength on the gas absorption line (on-line) to that off the line (off-line). 80th coherent detection and direct detection IPDA lidar have been used successfully in the past in horizontal path and airborne remote sensing measurements. However, for space based measurements, the signal propagation losses are often orders of magnitude higher and it is important to use the most efficient laser modulation and detection technique to minimize the average laser power and the electrical power from the spacecraft. This paper gives an analysis the receiver signal to noise ratio (SNR) of several laser modulation and detection techniques versus the average received laser power under similar operation environments. Coherent detection [2] can give the best receiver performance when the local oscillator laser is relatively strong and the heterodyne mixing losses are negligible. Coherent detection has a high signal gain and a very narrow bandwidth for the background light and detector dark noise. However, coherent detection must maintain a high degree of coherence between the local oscillator laser and the received signal in both temporal and spatial modes. This often results in a high system complexity and low overall measurement efficiency. For measurements through atmosphere the coherence diameter of the received signal also limits the useful size of the receiver telescope. Direct detection IPDA lidars are simpler to build and have fewer constraints on the transmitter and receiver components. They can use much larger size 'photon-bucket' type telescopes to reduce the demands on the laser transmitter. Here we consider the two most widely used direct detection IPDA lidar techniques. The first technique uses two CW

  1. The design, development, and test of balloonborne and groundbased lidar systems. Volume 1: Balloonborne coherent CO2 lidar system

    Science.gov (United States)

    Shepherd, O.; Aurilio, G.; Bucknam, R. D.; Hurd, A. G.; Rappaport, S. A.

    1991-06-01

    This is Volume 1 of a three volume final report on the design, development, and test of balloonborne and groundbased lidar systems. Volume 2 describes the flight test of Atmospheric Balloonborne Lidar Experiment, ABLE 2, which successfully made atmospheric density backscatter measurements during a flight over White Sands Missile Range. Volume 3 describes groundbased lidar development and measurements, including the design of a telescope dome lidar installation, the design of a transportable lidar shed for remote field sites, and field measurements of atmospheric and cloud backscatter from Ascension Island during SABLE 89 and Terciera, Azores during GABLE 90. In this volume, Volume 1, the design and fabrication of a balloonborne CO2 coherent lidar payload are described. The purpose of this payload is to measure, from altitudes greater than 20 km, the 10.6 micrometers backscatter from atmospheric aerosols as a function of altitude. Minor modifications to the lidar would provide for aerosol velocity measurements to be made. The lidar and payload system design was completed, and major components were fabricated and assembled. These tasks have been successfully completed, and recommendations for further lidar measurements and data analysis have been made.

  2. Semiconductor Laser Wind Lidar for Turbine Control

    DEFF Research Database (Denmark)

    Hu, Qi

    This thesis describes an experimentally oriented study of continuous wave (CW) coherent Doppler lidar system design. The main application is remote wind sensing for active wind turbine control using nacelle mounted lidar systems; and the primary focus is to devise an industrial instrument that can...... historical overview within the topic of wind lidar systems. Both the potential and the challenges of an industrialized wind lidar has been addressed here. Furthermore, the basic concept behind the heterodyne detection and a brief overview of the lidar signal processing is explained; and a simple...... investigation of the telescope truncation and lens aberrations is conducted, both numerically and experimentally. It is shown that these parameters dictate the spatial resolution of the lidar system, and have profound impact on the SNR. In this work, an all-semiconductor light source is used in the lidar design...

  3. Development of lidar techniques for environmental studies

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Mats

    1996-09-01

    The lidar group in Lund has performed many DIAL measurements with a mobile lidar system that was first described in 1987. The lidar system is based on a Nd:YAG-pumped dye laser. During the last few years the lidar group has focused on fluorescence imaging and mercury measurements in the troposphere. In 1994 we performed two campaigns: one fluorescence imaging measurement campaign outside Avignon, France and one unique lidar campaign at a mercury mine in Almaden, Spain. Both campaigns are described in this thesis. This thesis also describes how the mobile lidar system was updated with the graphical programming language LabVIEW to obtain a user friendly lidar system. The software controls the lidar system and analyses measured data. The measurement results are shown as maps of species concentration. All electronics and the major parts of the program are described. A new graphical technique to estimate wind speed from plumes is also discussed. First measurements have been performed with the new system. 31 refs, 19 figs, 1 tab

  4. Pressure Measurement in Supersonic Air Flow by Differential Absorptive Laser-Induced Thermal Acoustics

    Science.gov (United States)

    Hart, Roger C.; Herring, Gregory C.; Balla, Robert J.

    2007-01-01

    Nonintrusive, off-body flow barometry in Mach-2 airflow has been demonstrated in a large-scale supersonic wind tunnel using seedless laser-induced thermal acoustics (LITA). The static pressure of the gas flow is determined with a novel differential absorption measurement of the ultrasonic sound produced by the LITA pump process. Simultaneously, stream-wise velocity and static gas temperature of the same spatially-resolved sample volume were measured with this nonresonant time-averaged LITA technique. Mach number, temperature and pressure have 0.2%, 0.4%, and 4% rms agreement, respectively, in comparison with known free-stream conditions.

  5. Installation report - Lidar

    DEFF Research Database (Denmark)

    Georgieva Yankova, Ginka; Villanueva, Héctor

    The report describes the installation, configuration and data transfer for the ground-based lidar. The unit is provided by a customer but is installed and operated by DTU while in this project.......The report describes the installation, configuration and data transfer for the ground-based lidar. The unit is provided by a customer but is installed and operated by DTU while in this project....

  6. Frequency Stepped Pulse Train Modulated Wind Sensing Lidar

    DEFF Research Database (Denmark)

    Olesen, Anders Sig; Pedersen, Anders Tegtmeier; Rottwitt, Karsten

    2011-01-01

    of frequency shifts corresponding to a specific distance. The spatial resolution depends on the repetition rate of the pulses in the pulse train. Directional wind measurements are shown and compared to a CW lidar measurement. The carrier to noise ratio of the FSPT lidar compared to a CW lidar is discussed......In this paper a wind sensing lidar utilizing a Frequency Stepped Pulse Train (FSPT) is demonstrated. One of the advantages in the FSTP lidar is that it enables direct measurement of wind speed as a function of distance from the lidar. Theoretically the FSPT lidar continuously produces measurements...... as is the case with a CW lidar, but at the same time with a spatial resolution, and without the range ambiguity originating from e.g. clouds. The FSPT lidar utilizes a frequency sweeping source for generation of the FSPT. The source generates a pulse train where each pulse has an optical carrier frequency...

  7. HiRes camera and LIDAR ranging system for the Clementine mission

    Energy Technology Data Exchange (ETDEWEB)

    Ledebuhr, A.G.; Kordas, J.F.; Lewis, I.T. [and others

    1995-04-01

    Lawrence Livermore National Laboratory developed a space-qualified High Resolution (HiRes) imaging LIDAR (Light Detection And Ranging) system for use on the DoD Clementine mission. The Clementine mission provided more than 1.7 million images of the moon, earth, and stars, including the first ever complete systematic surface mapping of the moon from the ultra-violet to near-infrared spectral regions. This article describes the Clementine HiRes/LIDAR system, discusses design goals and preliminary estimates of on-orbit performance, and summarizes lessons learned in building and using the sensor. The LIDAR receiver system consists of a High Resolution (HiRes) imaging channel which incorporates an intensified multi-spectral visible camera combined with a Laser ranging channel which uses an avalanche photo-diode for laser pulse detection and timing. The receiver was bore sighted to a light-weight McDonnell-Douglas diode-pumped ND:YAG laser transmitter that emmitted 1.06 {micro}m wavelength pulses of 200 mJ/pulse and 10 ns pulse-width, The LIDAR receiver uses a common F/9.5 Cassegrain telescope assembly. The optical path of the telescope is split using a color-separating beamsplitter. The imaging channel incorporates a filter wheel assembly which spectrally selects the light which is imaged onto a custom 12 mm gated image intensifier fiber-optically-coupled into a 384 x 276 pixel frame transfer CCD FPA. The image intensifier was spectrally sensitive over the 0.4 to 0.8 {micro}m wavelength region. The six-position filter wheel contained 4 narrow spectral filters, one broadband and one blocking filter. At periselene (400 km) the HiRes/LIDAR imaged a 2.8 km swath width at 20-meter resolution. The LIDAR function detected differential signal return with a 40-meter range accuracy, with a maximum range capability of 640 km, limited by the bit counter in the range return counting clock.

  8. CALIBRATION OF LOW COST DIGITAL CAMERA USING DATA FROM SIMULTANEOUS LIDAR AND PHOTOGRAMMETRIC SURVEYS

    Directory of Open Access Journals (Sweden)

    E. Mitishita

    2012-07-01

    Full Text Available Digital photogrammetric products from the integration of imagery and lidar datasets are a reality nowadays. When the imagery and lidar surveys are performed together and the camera is connected to the lidar system, a direct georeferencing can be applied to compute the exterior orientation parameters of the images. Direct georeferencing of the images requires accurate interior orientation parameters to perform photogrammetric application. Camera calibration is a procedure applied to compute the interior orientation parameters (IOPs. Calibration researches have established that to obtain accurate IOPs, the calibration must be performed with same or equal condition that the photogrammetric survey is done. This paper shows the methodology and experiments results from in situ self-calibration using a simultaneous images block and lidar dataset. The calibration results are analyzed and discussed. To perform this research a test field was fixed in an urban area. A set of signalized points was implanted on the test field to use as the check points or control points. The photogrammetric images and lidar dataset of the test field were taken simultaneously. Four strips of flight were used to obtain a cross layout. The strips were taken with opposite directions of flight (W-E, E-W, N-S and S-N. The Kodak DSC Pro SLR/c digital camera was connected to the lidar system. The coordinates of the exposition station were computed from the lidar trajectory. Different layouts of vertical control points were used in the calibration experiments. The experiments use vertical coordinates from precise differential GPS survey or computed by an interpolation procedure using the lidar dataset. The positions of the exposition stations are used as control points in the calibration procedure to eliminate the linear dependency of the group of interior and exterior orientation parameters. This linear dependency happens, in the calibration procedure, when the vertical images and

  9. Development of Prototype Micro-Lidar using Narrow Linewidth Semiconductor Lasers for Mars Boundary Layer Wind and Dust Opacity Profiles

    Science.gov (United States)

    Menzies, Robert T.; Cardell, Greg; Chiao, Meng; Esproles, Carlos; Forouhar, Siamak; Hemmati, Hamid; Tratt, David

    1999-01-01

    We have developed a compact Doppler lidar concept which utilizes recent developments in semiconductor diode laser technology in order to be considered suitable for wind and dust opacity profiling in the Mars lower atmosphere from a surface location. The current understanding of the Mars global climate and meteorology is very limited, with only sparse, near-surface data available from the Viking and Mars Pathfinder landers, supplemented by long-range remote sensing of the Martian atmosphere. The in situ measurements from a lander-based Doppler lidar would provide a unique dataset particularly for the boundary layer. The coupling of the radiative properties of the lower atmosphere with the dynamics involves the radiative absorption and scattering effects of the wind-driven dust. Variability in solar irradiance, on diurnal and seasonal time scales, drives vertical mixing and PBL (planetary boundary layer) thickness. The lidar data will also contribute to an understanding of the impact of wind-driven dust on lander and rover operations and lifetime through an improvement in our understanding of Mars climatology. In this paper we discuss the Mars lidar concept, and the development of a laboratory prototype for performance studies, using, local boundary layer and topographic target measurements.

  10. The design, development, and test of balloonborne and groundbased lidar systems. Volume 2: Flight test of Atmospheric Balloon Lidar Experiment, ABLE 2

    Science.gov (United States)

    Shepherd, O.; Bucknam, R. D.; Hurd, A. G.; Sheehan, W. H.

    1991-06-01

    This is Volume 3 of a three volume final report on the design, development, and test of balloonborne and groundbased lidar systems. Volume 1 describes the design and fabrication of a balloonborne CO2 coherent payload to measure the 10.6 micrometers backscatter from atmospheric aerosols as a function of altitude. Volume 2 describes the Aug. 1987 flight test of Atmospheric Balloonborne Lidar Experiment, ABLE 2. In this volume we describe groundbased lidar development and measurements. A design was developed for installation of the ABLE lidar in the GL rooftop dome. A transportable shed was designed to house the ABLE lidar at the various remote measurement sites. Refurbishment and modification of the ABLE lidar were completed to permit groundbased lidar measurements of clouds and aerosols. Lidar field measurements were made at Ascension Island during SABLE 89. Lidar field measurements were made at Terciera, Azores during GABLE 90. These tasks were successfully completed, and recommendations for further lidar measurements and data analysis were made.

  11. Active Sensing Air Pressure Using Differential Absorption Barometric Radar

    Science.gov (United States)

    Lin, B.

    2016-12-01

    Tropical storms and other severe weathers cause huge life losses and property damages and have major impacts on public safety and national security. Their observations and predictions need to be significantly improved. This effort tries to develop a feasible active microwave approach that measures surface air pressure, especially over open seas, from space using a Differential-absorption BArometric Radar (DiBAR) operating at 50-55 GHz O2 absorption band in order to constrain assimilated dynamic fields of numerical weather Prediction (NWP) models close to actual conditions. Air pressure is the most important variable that drives atmospheric dynamics, and currently can only be measured by limited in-situ observations over oceans. Even over land there is no uniform coverage of surface air pressure measurements. Analyses show that with the proposed space radar the errors in instantaneous (averaged) pressure estimates can be as low as 4mb ( 1mb) under all weather conditions. NASA Langley research team has made substantial progresses in advancing the DiBAR concept. The feasibility assessment clearly shows the potential of surface barometry using existing radar technologies. The team has also developed a DiBAR system design, fabricated a Prototype-DiBAR (P-DiBAR) for proof-of-concept, conducted laboratory, ground and airborne P-DiBAR tests. The flight test results are consistent with the instrumentation goals. The precision and accuracy of radar surface pressure measurements are within the range of the theoretical analysis of the DiBAR concept. Observational system simulation experiments for space DiBAR performance based on the existing DiBAR technology and capability show substantial improvements in tropical storm predictions, not only for the hurricane track and position but also for the hurricane intensity. DiBAR measurements will provide us an unprecedented level of the prediction and knowledge on global extreme weather and climate conditions.

  12. 2006 MDEQ Camp Shelby, MS Lidar Survey

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This metadata record describes the acquisition and processing of bare earth lidar data, raw point cloud lidar data, lidar intensity data, and floodmap breaklines...

  13. Atmospheric pre-corrected differential absorption techniques to retrieve columnar water vapor: Application to AVIRIS 91/95 data

    Energy Technology Data Exchange (ETDEWEB)

    Schlaepfer, D. [Univ. of Zuerich (Switzerland). Dept. of Geography; Borel, C.C. [Los Alamos National Lab., NM (United States); Keller, J. [Paul Scherrer Institut, Villigen (Switzerland)] [and others

    1996-03-01

    Water vapor is one of the main forces for weather development as well as for mesoscale air transport processes. The monitoring of water vapor is therefore an important aim in remote sensing of the atmosphere. Current operational systems for water vapor detection use primarily the emission in the thermal infrared (AVHRR, GOES, ATSR, Meteosat) or in the microwave radiation bands (DMSP). The disadvantage of current satellite systems is either a coarse spatial (horizontal) resolution ranging from one to tens of kilometers or a limited insight into the lower atmosphere. Imaging spectrometry on the other hand measures total column water vapor contents at a high spatial horizontal resolution and has therefore the potential of filling these gaps. The sensors of the AVIRIS instrument are capable of acquiring hyperspectral data in 224 bands located in the visible and near infrared at 10 run resolution. This data includes information on constituents of the earth`s surface as well as of the atmosphere. The optical measurement of water vapor can be performed using sensor channels located in bands or lines of the absorption spectrum. The AVIRIS sensor has been used to retrieve water vapor and with less accuracy carbon dioxide, oxygen and ozone. To retrieve the water vapor amount, the so called differential absorption technique has been applied. The goal of this technique is to eliminate background factors by taking a ratio between channels within the absorption band and others besides the band. Various rationing methods on the basis of different channels and calculation techniques were developed. The influence of a trace gas of interest on the radiance at the sensor level is usually simulated by using radiative transfer codes. In this study, spectral transmittance and radiance are calculated by MODTRAN3 simulations with the new DISORT option. This work testS the best performing differential absorption techniques for imaging spectrometry of tropospheric water vapor.

  14. 2015 Puget Sound LiDAR Consortium (PSLC) LiDAR: WA DNR Lands (P1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In June 2014, WSI, a Quantum Spatial Inc. (QSI) company, was contracted by the Puget Sound LiDAR Consortium (PSLC) to collect Light Detection and Ranging (LiDAR)...

  15. 2014 Puget Sound LiDAR Consortium (PSLC) Topographic LiDAR: Willapa Valley (Delivery 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In January, 2014 WSI, a Quantum Spatial (QSI) company, was contracted by the Puget Sound LiDAR Consortium (PSLC) to collect Light Detection and Ranging (LiDAR) data...

  16. 2015 Puget Sound LiDAR Consortium (PSLC) LiDAR: WA DNR Lands (P2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In June 2014, WSI, a Quantum Spatial Inc. (QSI) company, was contracted by the Puget Sound LiDAR Consortium (PSLC) to collect Light Detection and Ranging (LiDAR)...

  17. Analytic descriptions of ion cyclotron absorption

    International Nuclear Information System (INIS)

    Bers, A.; Francis, G.; Fuchs, V.; Lashmore-Davies, C.N.; Ram, A.K.

    1987-05-01

    Analysis of energy propagation and absorption in ion-cyclotron heating of tokamak plasmas has relied on numerical solutions of fourth (and sixth) order differential equations for slab models of the plasma (poloidal) cross section. Realistic two-dimensional and fully toroidal geometry analyses would become quite unwieldy. It is shown here that the analysis of the slab model can be simplified considerably. A first-order differential equation is shown to describe the transmission coefficient for the fast wave, and it is solved analytically. A second order differential equation is shown to adequately describe both transmission and reflection. Conditions for ion absorption or mode conversion are derived. Including toroidal effects in propagation, conditions for electron absorption on the mode-converted ion-Bernstein waves are also described analytically

  18. Calibration Methods for a Space Borne Backscatter Lidar

    NARCIS (Netherlands)

    Kunz, G.J.

    1996-01-01

    Lidar returns from cloud decks and from the Earth's surface are useful for calibrating single scatter lidar signals from space. To this end analytical methods (forward and backward) are presented for inverting lidar waveforms in terms of the path integrated lidar retum and the transmission losses

  19. New Generation Lidar Technology and Applications

    Science.gov (United States)

    Spinhirne, James D.

    1999-01-01

    Lidar has been a tool for atmospheric research for several decades. Until recently routine operational use of lidar was not known. Problems have involved a lack of appropriate technology rather than a lack of applications. Within the last few years, lidar based on a new generation of solid state lasers and detectors have changed the situation. Operational applications for cloud and aerosol research applications are now well established. In these research applications, the direct height profiling capability of lidar is typically an adjunct to other types of sensing, both passive and active. Compact eye safe lidar with the sensitivity for ground based monitoring of all significant cloud and aerosol structure and the reliability to operate full time for several years is now in routine use. The approach is known as micro pulse lidar (MPL). For MPL the laser pulse repetition rate is in the kilohertz range and the pulse energies are in the micro-Joule range. The low pulse energy permits the systems to be eye safe and reliable with solid state lasers. A number of MPL systems have been deployed since 1992 at atmospheric research sites at a variety of global locations. Accurate monitoring of cloud and aerosol vertical distribution is a critical measurement for atmospheric radiation. An airborne application of lidar cloud and aerosol profiling is retrievals of parameters from combined lidar and passive sensing involving visible, infrared and microwave frequencies. A lidar based on a large pulse, solid state diode pumped ND:YAG laser has been deployed on the NASA ER-2 high altitude research aircraft along with multi-spectral visible/IR and microwave imaging radiometers since 1993. The system has shown high reliability in an extensive series of experimental projects for cloud remote sensing. The retrieval of cirrus radiation parameters is an effective application for combined lidar and passive sensing. An approved NASA mission will soon begin long term lidar observation of

  20. Satellite monitoring of different vegetation types by differential optical absorption spectroscopy (DOAS in the red spectral range

    Directory of Open Access Journals (Sweden)

    T. Wagner

    2007-01-01

    Full Text Available A new method for the satellite remote sensing of different types of vegetation and ocean colour is presented. In contrast to existing algorithms relying on the strong change of the reflectivity in the red and near infrared spectral region, our method analyses weak narrow-band (few nm reflectance structures (i.e. "fingerprint" structures of vegetation in the red spectral range. It is based on differential optical absorption spectroscopy (DOAS, which is usually applied for the analysis of atmospheric trace gas absorptions. Since the spectra of atmospheric absorption and vegetation reflectance are simultaneously included in the analysis, the effects of atmospheric absorptions are automatically corrected (in contrast to other algorithms. The inclusion of the vegetation spectra also significantly improves the results of the trace gas retrieval. The global maps of the results illustrate the seasonal cycles of different vegetation types. In addition to the vegetation distribution on land, they also show patterns of biological activity in the oceans. Our results indicate that improved sets of vegetation spectra might lead to more accurate and more specific identification of vegetation type in the future.

  1. 2012 USGS Lidar: Juneau (AK)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This task order is for planning, acquisition, processing, and derivative products of LiDAR data to be collected for Juneau, Alaska. LiDAR data, and derivative...

  2. Generic methodology for calibrating profiling nacelle lidars

    DEFF Research Database (Denmark)

    Borraccino, Antoine; Courtney, Michael; Wagner, Rozenn

    Improving power performance assessment by measuring at different heights has been demonstrated using ground-based profiling LIDARs. More recently, nacelle-mounted lidars studies have shown promising capabilities to assess power performance. Using nacelle lidars avoids the erection of expensive me...

  3. Iowa LiDAR Mapping Project

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — This is collection level metadata for LAS and ASCII data files from the statewide Iowa Lidar Project. The Iowa Light Detection and Ranging (LiDAR) Project collects...

  4. Clear-air lidar dark band

    Science.gov (United States)

    Girolamo, Paolo Di; Scoccione, Andrea; Cacciani, Marco; Summa, Donato; Schween, Jan H.

    2018-04-01

    This paper illustrates measurements carried out by the Raman lidar BASIL in the frame of HOPE, revealing the presence of a clear-air dark band phenomenon (i.e. the appearance of a minimum in lidar backscatter echoes) in the upper portion of the convective boundary layer. The phenomenon is clearly distinguishable in the lidar backscatter echoes at 1064 nm. This phenomenon is attributed to the presence of lignite aerosol particles advected from the surrounding open pit mines in the vicinity of the measuring site.

  5. Extending differential optical absorption spectroscopy for limb measurements in the UV

    Directory of Open Access Journals (Sweden)

    J. Puķīte

    2010-05-01

    Full Text Available Methods of UV/VIS absorption spectroscopy to determine the constituents in the Earth's atmosphere from measurements of scattered light are often based on the Beer-Lambert law, like e.g. Differential Optical Absorption Spectroscopy (DOAS. While the Beer-Lambert law is strictly valid for a single light path only, the relation between the optical depth and the concentration of any absorber can be approximated as linear also for scattered light observations at a single wavelength if the absorption is weak. If the light path distribution is approximated not to vary with wavelength, also linearity between the optical depth and the product of the cross-section and the concentration of an absorber can be assumed. These assumptions are widely made for DOAS applications for scattered light observations.

    For medium and strong absorption of scattered light (e.g. along very long light-paths like in limb geometry the relation between the optical depth and the concentration of an absorber is no longer linear. In addition, for broad wavelength intervals the differences in the travelled light-paths at different wavelengths become important, especially in the UV, where the probability for scattering increases strongly with decreasing wavelength.

    However, the DOAS method can be extended to cases with medium to strong absorptions and for broader wavelength intervals by the so called air mass factor modified (or extended DOAS and the weighting function modified DOAS. These approaches take into account the wavelength dependency of the slant column densities (SCDs, but also require a priori knowledge for the air mass factor or the weighting function from radiative transfer modelling.

    We describe an approach that considers the fitting results obtained from DOAS, the SCDs, as a function of wavelength and vertical optical depth and expands this function into a Taylor series of both quantities. The Taylor coefficients are then applied as

  6. 2014 OLC Lidar: Colville, WA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — WSI, a Quantum Spatial company, has collected Light Detection and Ranging (LiDAR) data for the Oregon LiDAR Consortium (OLC) Colville study area. This study area is...

  7. 2015 OLC Lidar DEM: Chelan

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Quantum Spatial has collected Light Detection and Ranging (LiDAR) data for the Oregon LiDAR Consortium (OLC) Chelan FEMA study area. This study area is located in...

  8. 2015 OLC Lidar: Okanogan WA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Quantum Spatial has collected Light Detection and Ranging (LiDAR) data for the Oregon LiDAR Consortium (OLC) Okanogan FEMA study area. This study area is located in...

  9. Occurrence and characteristics of mutual interference between LIDAR scanners

    Science.gov (United States)

    Kim, Gunzung; Eom, Jeongsook; Park, Seonghyeon; Park, Yongwan

    2015-05-01

    The LIDAR scanner is at the heart of object detection of the self-driving car. Mutual interference between LIDAR scanners has not been regarded as a problem because the percentage of vehicles equipped with LIDAR scanners was very rare. With the growing number of autonomous vehicle equipped with LIDAR scanner operated close to each other at the same time, the LIDAR scanner may receive laser pulses from other LIDAR scanners. In this paper, three types of experiments and their results are shown, according to the arrangement of two LIDAR scanners. We will show the probability that any LIDAR scanner will interfere mutually by considering spatial and temporal overlaps. It will present some typical mutual interference scenario and report an analysis of the interference mechanism.

  10. Methods from Information Extraction from LIDAR Intensity Data and Multispectral LIDAR Technology

    Science.gov (United States)

    Scaioni, M.; Höfle, B.; Baungarten Kersting, A. P.; Barazzetti, L.; Previtali, M.; Wujanz, D.

    2018-04-01

    LiDAR is a consolidated technology for topographic mapping and 3D reconstruction, which is implemented in several platforms On the other hand, the exploitation of the geometric information has been coupled by the use of laser intensity, which may provide additional data for multiple purposes. This option has been emphasized by the availability of sensors working on different wavelength, thus able to provide additional information for classification of surfaces and objects. Several applications ofmonochromatic and multi-spectral LiDAR data have been already developed in different fields: geosciences, agriculture, forestry, building and cultural heritage. The use of intensity data to extract measures of point cloud quality has been also developed. The paper would like to give an overview on the state-of-the-art of these techniques, and to present the modern technologies for the acquisition of multispectral LiDAR data. In addition, the ISPRS WG III/5 on `Information Extraction from LiDAR Intensity Data' has collected and made available a few open data sets to support scholars to do research on this field. This service is presented and data sets delivered so far as are described.

  11. METHODS FROM INFORMATION EXTRACTION FROM LIDAR INTENSITY DATA AND MULTISPECTRAL LIDAR TECHNOLOGY

    Directory of Open Access Journals (Sweden)

    M. Scaioni

    2018-04-01

    Full Text Available LiDAR is a consolidated technology for topographic mapping and 3D reconstruction, which is implemented in several platforms On the other hand, the exploitation of the geometric information has been coupled by the use of laser intensity, which may provide additional data for multiple purposes. This option has been emphasized by the availability of sensors working on different wavelength, thus able to provide additional information for classification of surfaces and objects. Several applications ofmonochromatic and multi-spectral LiDAR data have been already developed in different fields: geosciences, agriculture, forestry, building and cultural heritage. The use of intensity data to extract measures of point cloud quality has been also developed. The paper would like to give an overview on the state-of-the-art of these techniques, and to present the modern technologies for the acquisition of multispectral LiDAR data. In addition, the ISPRS WG III/5 on ‘Information Extraction from LiDAR Intensity Data’ has collected and made available a few open data sets to support scholars to do research on this field. This service is presented and data sets delivered so far as are described.

  12. Pramana – Journal of Physics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    2014-02-14

    ) carbon dioxide laser-based differential absorption lidar (DIAL) system capable of stand-off detection of chemical clouds in aerosol and vapour form upto about 200 m range in the atmosphere has been developed and ...

  13. 2006 Fulton County Georgia Lidar

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Light Detection and Ranging (LiDAR) LAS dataset is a survey of Fulton County. The Fulton County LiDAR Survey project area consists of approximately 690.5 square...

  14. 2014 Puget Sound LiDAR Consortium (PSLC) Topographic LiDAR: Cedar River Watershed (Delivery 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In September 2013, WSI, a Quantum Spatial company (QSI), was contracted by the Puget Sound LiDAR Consortium (PSLC) to collect Light Detection and Ranging (LiDAR)...

  15. 2014 Puget Sound LiDAR Consortium (PSLC) Topographic LiDAR: Cedar River Watershed (Delivery 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In September 2013, WSI, a Quantum Spatial company (QSI), was contracted by the Puget Sound LiDAR Consortium (PSLC) to collect Light Detection and Ranging (LiDAR)...

  16. SAR and LIDAR fusion: experiments and applications

    Science.gov (United States)

    Edwards, Matthew C.; Zaugg, Evan C.; Bradley, Joshua P.; Bowden, Ryan D.

    2013-05-01

    In recent years ARTEMIS, Inc. has developed a series of compact, versatile Synthetic Aperture Radar (SAR) systems which have been operated on a variety of small manned and unmanned aircraft. The multi-frequency-band SlimSAR has demonstrated a variety of capabilities including maritime and littoral target detection, ground moving target indication, polarimetry, interferometry, change detection, and foliage penetration. ARTEMIS also continues to build upon the radar's capabilities through fusion with other sensors, such as electro-optical and infrared camera gimbals and light detection and ranging (LIDAR) devices. In this paper we focus on experiments and applications employing SAR and LIDAR fusion. LIDAR is similar to radar in that it transmits a signal which, after being reflected or scattered by a target area, is recorded by the sensor. The differences are that a LIDAR uses a laser as a transmitter and optical sensors as a receiver, and the wavelengths used exhibit a very different scattering phenomenology than the microwaves used in radar, making SAR and LIDAR good complementary technologies. LIDAR is used in many applications including agriculture, archeology, geo-science, and surveying. Some typical data products include digital elevation maps of a target area and features and shapes extracted from the data. A set of experiments conducted to demonstrate the fusion of SAR and LIDAR data include a LIDAR DEM used in accurately processing the SAR data of a high relief area (mountainous, urban). Also, feature extraction is used in improving geolocation accuracy of the SAR and LIDAR data.

  17. A cloud masking algorithm for EARLINET lidar systems

    Science.gov (United States)

    Binietoglou, Ioannis; Baars, Holger; D'Amico, Giuseppe; Nicolae, Doina

    2015-04-01

    Cloud masking is an important first step in any aerosol lidar processing chain as most data processing algorithms can only be applied on cloud free observations. Up to now, the selection of a cloud-free time interval for data processing is typically performed manually, and this is one of the outstanding problems for automatic processing of lidar data in networks such as EARLINET. In this contribution we present initial developments of a cloud masking algorithm that permits the selection of the appropriate time intervals for lidar data processing based on uncalibrated lidar signals. The algorithm is based on a signal normalization procedure using the range of observed values of lidar returns, designed to work with different lidar systems with minimal user input. This normalization procedure can be applied to measurement periods of only few hours, even if no suitable cloud-free interval exists, and thus can be used even when only a short period of lidar measurements is available. Clouds are detected based on a combination of criteria including the magnitude of the normalized lidar signal and time-space edge detection performed using the Sobel operator. In this way the algorithm avoids misclassification of strong aerosol layers as clouds. Cloud detection is performed using the highest available time and vertical resolution of the lidar signals, allowing the effective detection of low-level clouds (e.g. cumulus humilis). Special attention is given to suppress false cloud detection due to signal noise that can affect the algorithm's performance, especially during day-time. In this contribution we present the details of algorithm, the effect of lidar characteristics (space-time resolution, available wavelengths, signal-to-noise ratio) to detection performance, and highlight the current strengths and limitations of the algorithm using lidar scenes from different lidar systems in different locations across Europe.

  18. Atmospheric Pre-Corrected Differential Absorption Techniques to Retrieve Columnar Water Vapor: Theory and Simulations

    Science.gov (United States)

    Borel, Christoph C.; Schlaepfer, Daniel

    1996-01-01

    Two different approaches exist to retrieve columnar water vapor from imaging spectrometer data: (1) Differential absorption techniques based on: (a) Narrow-Wide (N/W) ratio between overlapping spectrally wide and narrow channels; (b) Continuum Interpolated Band Ratio (CIBR) between a measurement channel and the weighted sum of two reference channels. (2) Non-linear fitting techniques which are based on spectral radiative transfer calculations. The advantage of the first approach is computational speed and of the second, improved retrieval accuracy. Our goal was to improve the accuracy of the first technique using physics based on radiative transfer. Using a modified version of the Duntley equation, we derived an "Atmospheric Pre-corrected Differential Absorption" (APDA) technique and described an iterative scheme to retrieve water vapor on a pixel-by-pixel basis. Next we compared both, the CIBR and the APDA using the Duntley equation for MODTRAN3 computed irradiances, transmissions and path radiance (using the DISORT option). This simulation showed that the CIBR is very sensitive to reflectance effects and that the APDA performs much better. An extensive data set was created with the radiative transfer code 6S over 379 different ground reflectance spectra. The calculated relative water vapor error was reduced significantly for the APDA. The APDA technique had about 8% (vs. over 35% for the CIBR) of the 379 spectra with a relative water vapor error of greater than +5%. The APDA has been applied to 1991 and 1995 AVIRIS scenes which visually demonstrate the improvement over the CIBR technique.

  19. Atmospheric pre-corrected differential absorption techniques to retrieve columnar water vapor: Theory and simulations

    Energy Technology Data Exchange (ETDEWEB)

    Borel, C.C.; Schlaepfer, D.

    1996-03-01

    Two different approaches exist to retrieve columnar water vapor from imaging spectrometer data: (1) Differential absorption techniques based on: (a) Narrow-Wide (N/W) ratio between overlapping spectrally wide and narrow channels (b) Continuum Interpolated Band Ratio (CIBR) between a measurement channel and the weighted sum of two reference channels; and (2) Non-linear fitting techniques which are based on spectral radiative transfer calculations. The advantage of the first approach is computational speed and of the second, improved retrieval accuracy. Our goal was to improve the accuracy of the first technique using physics based on radiative transfer. Using a modified version of the Duntley equation, we derived an {open_quote}Atmospheric Pre-corrected Differential Absorption{close_quote} (APDA) technique and described an iterative scheme to retrieve water vapor on a pixel-by-pixel basis. Next we compared both, the CIBR and the APDA using the Duntley equation for MODTRAN3 computed irradiances, transmissions and path radiance (using the DISORT option). This simulation showed that the CIBR is very sensitive to reflectance effects and that the APDA performs much better. An extensive data set was created with the radiative transfer code 6S over 379 different ground reflectance spectra. The calculated relative water vapor error was reduced significantly for the APDA. The APDA technique had about 8% (vs. over 35% for the CIBR) of the 379 spectra with a relative water vapor error of greater than {+-}5%. The APDA has been applied to 1991 and 1995 AVIRIS scenes which visually demonstrate the improvement over the CIBR technique.

  20. 2012 MEGIS Topographic Lidar: Statewide Lidar Project Areas 2 and 3 (Mid-Coastal Cleanup), Maine

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — LiDAR data is a remotely sensed high resolution elevation data collected by an airborne platform. The LiDAR sensor uses a combination of laser range finding, GPS...

  1. Standards – An Important Step for the (Public Use of Lidars

    Directory of Open Access Journals (Sweden)

    Althausen Dietrich

    2016-01-01

    Full Text Available Lidar standards are needed to ensure quality and lidar product control at the interface between lidar manufacturers and lidar users. Meanwhile three lidar standards have been published by German and international standardization organizations. This paper describes the cooperation between the lidar technique inventors, lidar instrument constructors, and lidar product users to establish useful standards. Presently a backscatter lidar standard is elaborated in Germany. Key points of this standard are presented here. Two German standards were already accepted as international standards by the International Organization for Standardization (ISO. Hence, German and international organizations for the establishment of lidar standards are introduced to encourage a cooperative work on lidar standards by lidar scientists.

  2. Turbulence estimation from a continuous-wave scanning lidar (SpinnerLidar)

    DEFF Research Database (Denmark)

    Barnhoorn, J.G.; Sjöholm, Mikael; Mikkelsen, Torben Krogh

    2017-01-01

    out, and 2) the mixing of velocity covariances from other components into the line-of-sight variance measurements. However, turbulence measurements based on upwind horizontal rotor plane scanning of the line-of-sight variance measurements combined with ensemble-averaged Doppler spectra width...... deviations averaged over 10-min sampling periods are compared. Lidar variances are inherently more prone to noise which always yields a positive bias. The 5.3 % higher turbulence level measured by the SpinnerLidar relative to the cup anemometer may equally well be attributed to truncation of turbulent...

  3. Saginaw Bay, MI LiDAR

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TASK NAME:(NRCS) Saginaw Bay, MI LiDAR LiDAR Data Acquisition and Processing Production Task USGS Contract No. G10PC00057 Task Order No. G11PD01254 Woolpert Order...

  4. An investigation of ozone and planetary boundary layer dynamics over the complex topography of Grenoble combining measurements and modeling

    OpenAIRE

    Couach , O.; Balin , I.; Jiménez , R.; Ristori , P.; Perego , S.; Kirchner , F.; Simeonov , V.; Calpini , B.; Van Den Bergh , H.

    2003-01-01

    This paper concerns an evaluation of ozone (O3) and planetary boundary layer (PBL) dynamics over the complex topography of the Grenoble region through a combination of measurements and mesoscale model (METPHOMOD) predictions for three days, during July 1999. The measurements of O3 and PBL structure were obtained with a Differential Absorption Lidar (DIAL) system, situated 20 km south of Grenoble at Vif (310 m ASL). The combined lidar observations ...

  5. Detection of Wind Evolution and Lidar Trajectory Optimization for Lidar-Assisted Wind Turbine Control

    Directory of Open Access Journals (Sweden)

    David Schlipf

    2015-11-01

    Full Text Available Recent developments in remote sensing are offering a promising opportunity to rethink conventional control strategies of wind turbines. With technologies such as lidar, the information about the incoming wind field - the main disturbance to the system - can be made available ahead of time. Initial field testing of collective pitch feedforward control shows, that lidar measurements are only beneficial if they are filtered properly to avoid harmful control action. However, commercial lidar systems developed for site assessment are usually unable to provide a usable signal for real time control. Recent research shows, that the correlation between the measurement of rotor effective wind speed and the turbine reaction can be modeled and that the model can be used to optimize a scan pattern. This correlation depends on several criteria such as turbine size, position of the measurements, measurement volume, and how the wind evolves on its way towards the rotor. In this work the longitudinal wind evolution is identified with the line-of-sight measurements of a pulsed lidar system installed on a large commercial wind turbine. This is done by staring directly into the inflowing wind during operation of the turbine and fitting the coherence between the wind at different measurement distances to an exponential model taking into account the yaw misalignment, limitation to line-of-sight measurements and the pulse volume. The identified wind evolution is then used to optimize the scan trajectory of a scanning lidar for lidar-assisted feedforward control in order to get the best correlation possible within the constraints of the system. Further, an adaptive filer is fitted to the modeled correlation to avoid negative impact of feedforward control because of uncorrelated frequencies of the wind measurement. The main results of the presented work are a first estimate of the wind evolution in front of operating wind turbines and an approach which manufacturers of

  6. Holographic Raman lidar

    International Nuclear Information System (INIS)

    Andersen, G.

    2000-01-01

    Full text: We have constructed a Raman lidar system that incorporates a holographic optical element. By resolving just 3 nitrogen lines in the Resonance Raman spectroscopy (RRS) spectrum, temperature fits as good as 1% at altitudes of 20km can be made in 30 minutes. Due to the narrowband selectivity of the HOE, the lidar provides measurements over a continuous 24hr period. By adding a 4th channel to capture the Rayleigh backscattered light, temperature profiles can be extended to 80km

  7. Pointing Verification Method for Spaceborne Lidars

    Directory of Open Access Journals (Sweden)

    Axel Amediek

    2017-01-01

    Full Text Available High precision acquisition of atmospheric parameters from the air or space by means of lidar requires accurate knowledge of laser pointing. Discrepancies between the assumed and actual pointing can introduce large errors due to the Doppler effect or a wrongly assumed air pressure at ground level. In this paper, a method for precisely quantifying these discrepancies for airborne and spaceborne lidar systems is presented. The method is based on the comparison of ground elevations derived from the lidar ranging data with high-resolution topography data obtained from a digital elevation model and allows for the derivation of the lateral and longitudinal deviation of the laser beam propagation direction. The applicability of the technique is demonstrated by using experimental data from an airborne lidar system, confirming that geo-referencing of the lidar ground spot trace with an uncertainty of less than 10 m with respect to the used digital elevation model (DEM can be obtained.

  8. Lidar-Radiometer Inversion Code (LIRIC) for the Retrieval of Vertical Aerosol Properties from Combined Lidar Radiometer Data: Development and Distribution in EARLINET

    Science.gov (United States)

    Chaikovsky, A.; Dubovik, O.; Holben, Brent N.; Bril, A.; Goloub, P.; Tanre, D.; Pappalardo, G.; Wandinger, U.; Chaikovskaya, L.; Denisov, S.; hide

    2015-01-01

    This paper presents a detailed description of LIRIC (LIdar-Radiometer Inversion Code)algorithm for simultaneous processing of coincident lidar and radiometric (sun photometric) observations for the retrieval of the aerosol concentration vertical profiles. As the lidar radiometric input data we use measurements from European Aerosol Re-search Lidar Network (EARLINET) lidars and collocated sun-photometers of Aerosol Robotic Network (AERONET). The LIRIC data processing provides sequential inversion of the combined lidar and radiometric data by the estimations of column-integrated aerosol parameters from radiometric measurements followed by the retrieval of height-dependent concentrations of fine and coarse aerosols from lidar signals using integrated column characteristics of aerosol layer as a priori constraints. The use of polarized lidar observations allows us to discriminate between spherical and non-spherical particles of the coarse aerosol mode. The LIRIC software package was implemented and tested at a number of EARLINET stations. Inter-comparison of the LIRIC-based aerosol retrievals was performed for the observations by seven EARLNET lidars in Leipzig, Germany on 25 May 2009. We found close agreement between the aerosol parameters derived from different lidars that supports high robustness of the LIRIC algorithm. The sensitivity of the retrieval results to the possible reduction of the available observation data is also discussed.

  9. Atmospheric lidar: legislative, scientific and technological aspects; Lidar atmosferico. Aspetti legislativi, scientifici e tecnologici

    Energy Technology Data Exchange (ETDEWEB)

    Barbini, R.; Colao, F.; Fiorani, L.; Palucci, A. [ENEA, Divisione Fisica Applicata, Centro Ricerche Frascati, Frascati, RM (Italy)

    2000-07-01

    The Atmospheric Lidar is one of the systems of the Mobile Laboratory of Laser Remote Sensing under development at the ENEA Research Center of Frascati. This technical report addresses the legislative, scientific and technological aspects that are the basis for the identification of the requirements, the definition of the architecture and the fixation of the specifications of the Atmospheric Lidar. The problems of air pollution are introduced in section 2. A summary of the Italian laws on that topic is then given. Section 4 provides a survey of the atmospheric measurements that can be achieved with the lidar. The sensitivity in the monitoring of pollutants is discussed in section 5. The other systems of the Mobile Laboratory of Laser Remote Sensing are shortly described in section 6. The last section is devoted to conclusions and perspectives. [Italian] Il lidar atmosferico e' uno dei sistemi del Laboratorio Mobile di Telerilevamento Laser in corso di realizzazione presso il Centro Ricerche di Frascati dell'ENEA. Questo rapporto tecnico discute gli aspetti legislativi, scientifici, tecnologici che sono alla base dell'individuazione dei requisiti, della definizione dell'architettura e della fissazione delle specifiche del Lidar atmosferico. La problematica dell'inquinamento dell'aria e' introdotta nella sezione 2. Segue un riassunto della legislazione italiana su tale tematica. La sezione 4 offre una panoramica delle misure atmosferiche realizzabili con il Lidar. La sensibilita' nel monitoraggio di inquinanti e' discussa nella sezione 5. Gli altri sistemi del Laboratorio Mobile di Telerilevamento Laser sono descritti brevemente nella sezione 6. L'ultima sezione e' dedicata alle conclusioni e alle prospettive.

  10. Nonlinear filtering for LIDAR signal processing

    Directory of Open Access Journals (Sweden)

    D. G. Lainiotis

    1996-01-01

    Full Text Available LIDAR (Laser Integrated Radar is an engineering problem of great practical importance in environmental monitoring sciences. Signal processing for LIDAR applications involves highly nonlinear models and consequently nonlinear filtering. Optimal nonlinear filters, however, are practically unrealizable. In this paper, the Lainiotis's multi-model partitioning methodology and the related approximate but effective nonlinear filtering algorithms are reviewed and applied to LIDAR signal processing. Extensive simulation and performance evaluation of the multi-model partitioning approach and its application to LIDAR signal processing shows that the nonlinear partitioning methods are very effective and significantly superior to the nonlinear extended Kalman filter (EKF, which has been the standard nonlinear filter in past engineering applications.

  11. Derivation of Sky-View Factors from LIDAR Data

    Science.gov (United States)

    Kidd, Christopher; Chapman, Lee

    2013-01-01

    The use of Lidar (Light Detection and Ranging), an active light-emitting instrument, is becoming increasingly common for a range of potential applications. Its ability to provide fine resolution spatial and vertical resolution elevation data makes it ideal for a wide range of studies. This paper demonstrates the capability of Lidar data to measure sky view factors (SVF). The Lidar data is used to generate a spatial map of SVFs which are then compared against photographically-derived SVF at selected point locations. At each location three near-surface elevations measurements were taken and compared with collocated Lidar-derived estimated. It was found that there was generally good agreement between the two methodologies, although with decreasing SVF the Lidar-derived technique tended to overestimate the SVF: this can be attributed in part to the spatial resolution of the Lidar sampling. Nevertheless, airborne Lidar systems can map sky view factors over a large area easily, improving the utility of such data in atmospheric and meteorological models.

  12. Automatic Locking of Laser Frequency to an Absorption Peak

    Science.gov (United States)

    Koch, Grady J.

    2006-01-01

    An electronic system adjusts the frequency of a tunable laser, eventually locking the frequency to a peak in the optical absorption spectrum of a gas (or of a Fabry-Perot cavity that has an absorption peak like that of a gas). This system was developed to enable precise locking of the frequency of a laser used in differential absorption LIDAR measurements of trace atmospheric gases. This system also has great commercial potential as a prototype of means for precise control of frequencies of lasers in future dense wavelength-division-multiplexing optical communications systems. The operation of this system is completely automatic: Unlike in the operation of some prior laser-frequency-locking systems, there is ordinarily no need for a human operator to adjust the frequency manually to an initial value close enough to the peak to enable automatic locking to take over. Instead, this system also automatically performs the initial adjustment. The system (see Figure 1) is based on a concept of (1) initially modulating the laser frequency to sweep it through a spectral range that includes the desired absorption peak, (2) determining the derivative of the absorption peak with respect to the laser frequency for use as an error signal, (3) identifying the desired frequency [at the very top (which is also the middle) of the peak] as the frequency where the derivative goes to zero, and (4) thereafter keeping the frequency within a locking range and adjusting the frequency as needed to keep the derivative (the error signal) as close as possible to zero. More specifically, the system utilizes the fact that in addition to a zero crossing at the top of the absorption peak, the error signal also closely approximates a straight line in the vicinity of the zero crossing (see Figure 2). This vicinity is the locking range because the linearity of the error signal in this range makes it useful as a source of feedback for a proportional + integral + derivative control scheme that

  13. Coherent Lidar Turbulence Measurement for Gust Load Alleviation

    Science.gov (United States)

    Bogue, Rodney K.; Ehernberger, L. J.; Soreide, David; Bagley, Hal

    1996-01-01

    Atmospheric turbulence adversely affects operation of commercial and military aircraft and is a design constraint. The airplane structure must be designed to survive the loads imposed by turbulence. Reducing these loads allows the airplane structure to be lighter, a substantial advantage for a commercial airplane. Gust alleviation systems based on accelerometers mounted in the airplane can reduce the maximum gust loads by a small fraction. These systems still represent an economic advantage. The ability to reduce the gust load increases tremendously if the turbulent gust can be measured before the airplane encounters it. A lidar system can make measurements of turbulent gusts ahead of the airplane, and the NASA Airborne Coherent Lidar for Advanced In-Flight Measurements (ACLAIM) program is developing such a lidar. The ACLAIM program is intended to develop a prototype lidar system for use in feasibility testing of gust load alleviation systems and other airborne lidar applications, to define applications of lidar with the potential for improving airplane performance, and to determine the feasibility and benefits of these applications. This paper gives an overview of the ACLAIM program, describes the lidar architecture for a gust alleviation system, and describes the prototype ACLAIM lidar system.

  14. IEA Task 32: Wind Lidar Systems for Wind Energy Deployment (LIDAR)

    Energy Technology Data Exchange (ETDEWEB)

    Kuhn, Martin; Trabucchi, Davide; Clifton, Andrew; Courtney, Mike; Rettenmeier, Andreas

    2016-05-25

    Under the International Energy Agency Wind Implementing Agreement (IEA Wind) Task 11, researchers started examining novel applications for remote sensing and the issues around them during the 51st topical expert meeting about remote sensing in January 2007. The 59th topical expert meeting organized by Task 11 in October 2009 was also dedicated to remote sensing, and the first draft of the Task's recommended practices on remote sensing was published in January 2013. The results of the Task 11 topical expert meetings provided solid groundwork for a new IEA Wind Task 32 on wind lidar technologies. Members of the wind community identified the need to consolidate the knowledge about wind lidar systems to facilitate their use, and to investigate how to exploit the advantages offered by this technology. This was the motivation that led to the start of IEA Wind Task 32 'Lidar Application for Wind Energy Deployment' in November 2011. The kick-off was meeting was held in May 2012.

  15. Lidar extinction measurement in the mid infrared

    Science.gov (United States)

    Mitev, Valentin; Babichenko, S.; Borelli, R.; Fiorani, L.; Grigorov, I.; Nuvoli, M.; Palucci, A.; Pistilli, M.; Puiu, Ad.; Rebane, Ott; Santoro, S.

    2014-11-01

    We present a lidar measurement of atmospheric extinction coefficient. The measurement is performed by inversion of the backscatter lidar signal at wavelengths 3'000nm and 3'500nm. The inversion of the backscatter lidar signal was performed with constant extinction-to-backscatter ration values of 104 and exponential factor 0.1.

  16. 2012 Puget Sound LiDAR Consortium (PSLC) Topographic LiDAR: Quinault River Watershed, Washington (Delivery 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Watershed Sciences, Inc. (WSI) collected Light Detection and Ranging (LiDAR) data on the Quinault watershed survey area for the Puget Sound LiDAR Consortium. This...

  17. Calibrating nacelle lidars

    Energy Technology Data Exchange (ETDEWEB)

    Courtney, M.

    2013-01-15

    Nacelle mounted, forward looking wind lidars are beginning to be used to provide reference wind speed measurements for the power performance testing of wind turbines. In such applications, a formal calibration procedure with a corresponding uncertainty assessment will be necessary. This report presents four concepts for performing such a nacelle lidar calibration. Of the four methods, two are found to be immediately relevant and are pursued in some detail. The first of these is a line of sight calibration method in which both lines of sight (for a two beam lidar) are individually calibrated by accurately aligning the beam to pass close to a reference wind speed sensor. A testing procedure is presented, reporting requirements outlined and the uncertainty of the method analysed. It is seen that the main limitation of the line of sight calibration method is the time required to obtain a representative distribution of radial wind speeds. An alternative method is to place the nacelle lidar on the ground and incline the beams upwards to bisect a mast equipped with reference instrumentation at a known height and range. This method will be easier and faster to implement and execute but the beam inclination introduces extra uncertainties. A procedure for conducting such a calibration is presented and initial indications of the uncertainties given. A discussion of the merits and weaknesses of the two methods is given together with some proposals for the next important steps to be taken in this work. (Author)

  18. Atmospheric Pre-Corrected Differential Absorption Techniques to Retrieve Columnar Water Vapor: Application to AVIRIS 91/95 Data

    Science.gov (United States)

    Schlaepfer, Daniel; Borel, Christoph C.; Keller, Johannes; Itten, Klaus I.

    1996-01-01

    Water vapor is one of the main forces for weather development as well as for mesoscale air transport processes. The monitoring of water vapor is therefore an important aim in remote sensing of the atmosphere. Current operational systems for water vapor detection use primarily the emission in the thermal infrared (AVHRR, GOES, ATSR, Meteosat) or in the microwave radiation bands (DMSP). The disadvantage of current satellite systems is either a coarse spatial (horizontal) resolution ranging from one to tens of kilometers or a limited insight into the lower atmosphere. Imaging spectrometry on the other hand measures total column water vapor contents at a high spatial horizontal resolution and has therefore the potential of filling these gaps. The sensors of the AVIRIS instrument are capable of acquiring hyperspectral data in 224 bands located in the visible and near infrared at 10 nm resolution. This data includes the information on constituents of the earth's surface as well as of the atmosphere. The optical measurement of water vapor can be performed using sensor channels located in bands or lines of the absorption spectrum. The AVIRIS sensor has been used to retrieve water vapor and with less accuracy carbon dioxide, oxygen and ozone. To retrieve the water vapor amount, the so called differential absorption technique has been applied. The goal of this technique is to eliminate background factors by taking a ratio between channels within the absorption band and others besides the band. Various ratioing methods on the basis of different channels and calculation techniques were developed. The influence of a trace gas of interest on the radiance at the sensor level is usually simulated by using radiative transfer codes. In this study, the spectral transmittance and radiance are calculated by MODTRAN3 simulations with the new DISORT option. The objective of this work is to test the best performing differential absorption techniques for imaging spectrometry of

  19. A Highly Sensitive Multi-Element HgCdTe E-APD Detector for IPDA Lidar Applications

    Science.gov (United States)

    Beck, Jeff; Welch, Terry; Mitra, Pradip; Reiff, Kirk; Sun, Xiaoli; Abshire, James

    2014-01-01

    An HgCdTe electron avalanche photodiode (e-APD) detector has been developed for lidar receivers, one application of which is integrated path differential absorption lidar measurements of such atmospheric trace gases as CO2 and CH4. The HgCdTe APD has a wide, visible to mid-wave-infrared, spectral response, high dynamic range, substantially improved sensitivity, and an expected improvement in operational lifetime. A demonstration sensor-chip assembly consisting of a 4.3 lm cutoff HgCdTe 4 9 4 APD detector array with 80 micrometer pitch pixels and a custom complementary metal-oxide-semiconductor readout integrated circuit was developed. For one typical array the APD gain was 654 at 12 V with corresponding gain normalized dark currents ranging from 1.2 fA to 3.2 fA. The 4 9 4 detector system was characterized at 77 K with a 1.55 micrometer wavelength, 1 microsecond wide, laser pulse. The measured unit gain detector photon conversion efficiency was 91.1%. At 11 V bias the mean measured APD gain at 77 K was 307.8 with sigma/mean uniformity of 1.23%. The average, noise-bandwidth normalized, system noise-equivalent power (NEP) was 1.04 fW/Hz(exp 1/2) with a sigma/mean of 3.8%. The measured, electronics-limited, bandwidth of 6.8 MHz was more than adequate for 1 microsecond pulse detection. The system had an NEP (3 MHz) of 0.4 fW/Hz(exp 1/2) at 12 V APD bias and a linear dynamic range close to 1000. A gain-independent quantum-limited SNR of 80% of full theoretical was indicative of a gain-independent excess noise factor very close to 1.0 and the expected APD mode quantum efficiency.

  20. Aerosol backscatter measurements at 10.6 microns with airborne and ground-based CO2 Doppler lidars over the Colorado High Plains. I - Lidar intercomparison

    Science.gov (United States)

    Bowdle, David A.; Rothermel, Jeffry; Vaughan, J. Michael; Brown, Derek W.; Post, Madison J.

    1991-01-01

    An airborne continuous-wave (CW) focused CO2 Doppler lidar and a ground-based pulsed CO2 Doppler lidar were to obtain seven pairs of comparative measurements of tropospheric aerosol backscatter profiles at 10.6-micron wavelength, near Denver, Colorado, during a 20-day period in July 1982. In regions of uniform backscatter, the two lidars show good agreement, with differences usually less than about 50 percent near 8-km altitude and less than a factor of 2 or 3 elsewhere but with the pulsed lidar often lower than the CW lidar. Near sharp backscatter gradients, the two lidars show poorer agreement, with the pulsed lidar usually higher than the CW lidar. Most discrepancies arise from a combination of atmospheric factors and instrument factors, particularly small-scale areal and temporal backscatter heterogeneity above the planetary boundary layer, unusual large-scale vertical backscatter structure in the upper troposphere and lower stratosphere, and differences in the spatial resolution, detection threshold, and noise estimation for the two lidars.

  1. Quality assessment of water cycle parameters in REMO by radar-lidar synergy

    Directory of Open Access Journals (Sweden)

    B. Hennemuth

    2008-01-01

    Full Text Available A comparison study of water cycle parameters derived from ground-based remote-sensing instruments and from the regional model REMO is presented. Observational data sets were collected during three measuring campaigns in summer/autumn 2003 and 2004 at Richard Aßmann Observatory, Lindenberg, Germany. The remote sensing instruments which were used are differential absorption lidar, Doppler lidar, ceilometer, cloud radar, and micro rain radar for the derivation of humidity profiles, ABL height, water vapour flux profiles, cloud parameters, and rain rate. Additionally, surface latent and sensible heat flux and soil moisture were measured. Error ranges and representativity of the data are discussed. For comparisons the regional model REMO was run for all measuring periods with a horizontal resolution of 18 km and 33 vertical levels. Parameter output was every hour. The measured data were transformed to the vertical model grid and averaged in time in order to better match with gridbox model values. The comparisons show that the atmospheric boundary layer is not adequately simulated, on most days it is too shallow and too moist. This is found to be caused by a wrong partitioning of energy at the surface, particularly a too large latent heat flux. The reason is obviously an overestimation of soil moisture during drying periods by the one-layer scheme in the model. The profiles of water vapour transport within the ABL appear to be realistically simulated. The comparison of cloud cover reveals an underestimation of low-level and mid-level clouds by the model, whereas the comparison of high-level clouds is hampered by the inability of the cloud radar to see cirrus clouds above 10 km. Simulated ABL clouds apparently have a too low cloud base, and the vertical extent is underestimated. The ice water content of clouds agree in model and observation whereas the liquid water content is unsufficiently derived from cloud radar reflectivity in the present study

  2. Intensity Modulation Techniques for Continuous-Wave Lidar for Column CO2 Measurements

    Science.gov (United States)

    Campbell, J. F.; Lin, B.; Obland, M. D.; Kooi, S. A.; Fan, T. F.; Meadows, B.; Browell, E. V.; Erxleben, W. H.; McGregor, D.; Dobler, J. T.; Pal, S.; O'Dell, C.

    2017-12-01

    Global and regional atmospheric carbon dioxide (CO2) measurements for the NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) space mission and the Atmospheric Carbon and Transport (ACT) - America project are critical for improving our understanding of global CO2 sources and sinks. Advanced Intensity-Modulated Continuous-Wave (IM-CW) lidar techniques are investigated as a means of facilitating CO2 measurements from space and airborne platforms to meet the ASCENDS and ACT-America science measurement requirements. In recent numerical, laboratory and flight experiments we have successfully used the Binary Phase Shift Keying (BPSK) and Linear Swept Frequency modulations to uniquely discriminate surface lidar returns from intermediate aerosol and cloud returns. We demonstrate the utility of BPSK to eliminate sidelobes in the range profile as a means of making Integrated Path Differential Absorption (IPDA) column CO2 measurements in the presence of optically thin clouds, thereby eliminating bias errors caused by the clouds. Furthermore, high accuracy and precision ranging to the surface as well as to the top of intermediate cloud layers, which is a requirement for the inversion of column CO2 number density measurements to column CO2 mixing ratios, has been demonstrated using new hyperfine interpolation techniques that take advantage of the periodicity of the modulation waveforms. This approach works well for both BPSK and linear swept-frequency modulation techniques and provides very high (at sub-meter level) range resolution. We compare BPSK to linear swept frequency and introduce a new technique to eliminate sidelobes in situations from linear swept frequency where the SNR is high with results that rival BPSK. We also investigate the effects of non-linear modulators, which can in some circumstances degrade the orthogonality of the waveforms, and show how to avoid this. These techniques are used in a new data processing architecture written in

  3. Can Wind Lidars Measure Turbulence?

    DEFF Research Database (Denmark)

    Sathe, Ameya; Mann, Jakob; Gottschall, Julia

    2011-01-01

    Modeling of the systematic errors in the second-order moments of wind speeds measured by continuous-wave (ZephIR) and pulsed (WindCube) lidars is presented. These lidars use the conical scanning technique to measure the velocity field. The model captures the effect of volume illumination and coni...

  4. Lidar signal-to-noise ratio improvements: Considerations and techniques

    Science.gov (United States)

    Hassebo, Yasser Y.

    The primary objective of this study is to improve lidar signal-to-noise ratio (SNR) and hence extend attainable lidar ranges through reduction of the sky background noise (BGP), which dominates other sources of noise in daytime operations. This is particularly important for Raman lidar techniques where the Raman backscattered signal of interest is relatively weak compared with the elastic backscatter lidars. Two approaches for reduction of sky background noise are considered: (1) Improvements in lidar SNR by optimization of the design of the lidar receiver were examined by a series of simulations. This part of the research concentrated on biaxial lidar systems, where overlap between laser beam and receiver field of view (FOV) is an important aspect of noise considerations. The first optimized design evolved is a wedge shaped aperture. While this design has the virtue of greatly reducing background light, it is difficult to implement practically, requiring both changes in area and position with lidar range. A second more practical approach, which preserves some of the advantages of the wedge design, was also evolved. This uses a smaller area circular aperture optimally located in the image plane for desired ranges. Simulated numerical results for a biaxial lidar have shown that the best receiver parameters selection is one using a small circular aperture (field stop) with a small telescope focal length f, to ensure the minimum FOV that accepts all return signals over the entire lidar range while at the same time minimizing detected BGP and hence maximizing lidar SNR and attainable lidar ranges. The improvement in lidar SNR was up to 18%. (2) A polarization selection technique was implemented to reduce sky background signal for linearly polarized monostatic elastic backscatter lidar measurements. The technique takes advantage of naturally occurring polarization properties in scattered sky light, and then ensures that both the lidar transmitter and receiver track and

  5. Multiangle lidar observations of the Atmosphere

    Science.gov (United States)

    Lalitkumar Prakash, Pawar; Choukiker, Yogesh Kumar; Raghunath, K.

    2018-04-01

    Atmospheric Lidars are used extensively to get aerosol parameters like backscatter coefficient, backscatter ratio etc. National Atmospheric Research Laboratory, Gadanki (13°N, 79°E), India has a powerful lidar which has alt-azimuth capability. Inversion method is applied to data from observations of lidar system at different azimuth and elevation angles. Data Analysis is described and Observations in 2D and 3D format are discussed. Presence of Cloud and the variation of backscatter parameters are seen in an interesting manner.

  6. LIDAR for atmosphere research over Africa

    CSIR Research Space (South Africa)

    Sivakumar, V

    2008-11-01

    Full Text Available d’aéronomie, CNRS, Paris, France 1Email: SVenkataraman@csir.co.za – www.csir.co.za K-6665 [www.kashangroup.com] Lidar for atmospheric studies: The CSIR’s laser research into monitoring various pollutants in the lower atmosphere via... to lidar applications for atmosphere studies including pollutant monitoring. The following salient features emanated from the survey: • Around 80% of the lidars are in the northern hemisphere • Of the 20% in the southern hemisphere region...

  7. 2012 Oregon Lidar Consortium (OLC) Lidar: Keno (OR)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Watershed Sciences, Inc. (WSI) collected Light Detection and Ranging (LiDAR) data of the Oregon Keno Study Area for the Oregon Department of Geology and Mineral...

  8. Laser remote sensing of water vapor: Raman lidar development

    International Nuclear Information System (INIS)

    Goldsmith, J.E.M.; Lapp, M.; Bisson, S.E.; Melfi, S.H.; Whiteman, D.N.; Ferrare, R.A.; Evans, K.D.

    1994-01-01

    The goal of this research is the development of a critical design for a Raman lidar system optimized to match ARM Program needs for profiling atmospheric water vapor at CART sites. This work has emphasized the development of enhanced daytime capabilities using Raman lidar techniques. This abstract touches briefly on the main components of the research program, summarizing results of the efforts. A detailed Raman lidar instrument model has been developed to predict the daytime and nighttime performance capabilities of Raman lidar systems. The model simulates key characteristics of the lidar system, using realistic atmospheric profiles, modeled background sky radiance, and lidar system parameters based on current instrument capabilities. The model is used to guide development of lidar systems based on both the solar-blind concept and the narrowband, narrow field-of-view concept for daytime optimization

  9. Sensitivity analysis of nacelle lidar free stream wind speed measurements to wind-induction reconstruction model and lidar range configuration

    DEFF Research Database (Denmark)

    Svensson, Elin; Borraccino, Antoine; Meyer Forsting, Alexander Raul

    The sensitivity of nacelle lidar wind speed measurements to wind-induction models and lidar range configurations is studied using experimental data from the Nørrekær Enge (NKE) measurement campaign and simulated lidar data from Reynold-Averaged Navier Stokes (RANS) aerodynamic computational fluid...... the ZDM was configured to measure at five distances. From the configured distances, a large number of range configurations were created and systematically tested to determine the sensitivity of the reconstructed wind speeds to the number of ranges, minimum range and maximum range in the range......) of the fitting residuals. The results demonstrate that it is not possible to use RANS CFD simulated lidar data to determine optimal range configurations for real-time nacelle lidars due to their perfect (unrealistic) representation of the simulated flow field. The recommended range configurations are therefore...

  10. 2007 USGS Lidar: Canyon Fire (CA)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This Southern California Light Detection and Ranging (LiDAR) data is to provide high accuracy LIDAR data. These datasets will be the initial acquisition to support...

  11. Spaceborne Lidar in the Study of Marine Systems.

    Science.gov (United States)

    Hostetler, Chris A; Behrenfeld, Michael J; Hu, Yongxiang; Hair, Johnathan W; Schulien, Jennifer A

    2018-01-03

    Satellite passive ocean color instruments have provided an unbroken ∼20-year record of global ocean plankton properties, but this measurement approach has inherent limitations in terms of spatial-temporal sampling and ability to resolve vertical structure within the water column. These limitations can be addressed by coupling ocean color data with measurements from a spaceborne lidar. Airborne lidars have been used for decades to study ocean subsurface properties, but recent breakthroughs have now demonstrated that plankton properties can be measured with a satellite lidar. The satellite lidar era in oceanography has arrived. Here, we present a review of the lidar technique, its applications in marine systems, a perspective on what can be accomplished in the near future with an ocean- and atmosphere-optimized satellite lidar, and a vision for a multiplatform virtual constellation of observational assets that would enable a three-dimensional reconstruction of global ocean ecosystems.

  12. Spaceborne Lidar in the Study of Marine Systems

    Science.gov (United States)

    Hostetler, Chris A.; Behrenfeld, Michael J.; Hu, Yongxiang; Hair, Johnathan W.; Schulien, Jennifer A.

    2018-01-01

    Satellite passive ocean color instruments have provided an unbroken ˜20-year record of global ocean plankton properties, but this measurement approach has inherent limitations in terms of spatial-temporal sampling and ability to resolve vertical structure within the water column. These limitations can be addressed by coupling ocean color data with measurements from a spaceborne lidar. Airborne lidars have been used for decades to study ocean subsurface properties, but recent breakthroughs have now demonstrated that plankton properties can be measured with a satellite lidar. The satellite lidar era in oceanography has arrived. Here, we present a review of the lidar technique, its applications in marine systems, a perspective on what can be accomplished in the near future with an ocean- and atmosphere-optimized satellite lidar, and a vision for a multiplatform virtual constellation of observational assets that would enable a three-dimensional reconstruction of global ocean ecosystems.

  13. A New Framework for Quantifying Lidar Uncertainty

    Energy Technology Data Exchange (ETDEWEB)

    Newman, Jennifer, F.; Clifton, Andrew; Bonin, Timothy A.; Churchfield, Matthew J.

    2017-03-24

    As wind turbine sizes increase and wind energy expands to more complex and remote sites, remote sensing devices such as lidars are expected to play a key role in wind resource assessment and power performance testing. The switch to remote sensing devices represents a paradigm shift in the way the wind industry typically obtains and interprets measurement data for wind energy. For example, the measurement techniques and sources of uncertainty for a remote sensing device are vastly different from those associated with a cup anemometer on a meteorological tower. Current IEC standards discuss uncertainty due to mounting, calibration, and classification of the remote sensing device, among other parameters. Values of the uncertainty are typically given as a function of the mean wind speed measured by a reference device. However, real-world experience has shown that lidar performance is highly dependent on atmospheric conditions, such as wind shear, turbulence, and aerosol content. At present, these conditions are not directly incorporated into the estimated uncertainty of a lidar device. In this presentation, we propose the development of a new lidar uncertainty framework that adapts to current flow conditions and more accurately represents the actual uncertainty inherent in lidar measurements under different conditions. In this new framework, sources of uncertainty are identified for estimation of the line-of-sight wind speed and reconstruction of the three-dimensional wind field. These sources are then related to physical processes caused by the atmosphere and lidar operating conditions. The framework is applied to lidar data from an operational wind farm to assess the ability of the framework to predict errors in lidar-measured wind speed.

  14. Multiangle lidar observations of the Atmosphere

    Directory of Open Access Journals (Sweden)

    Lalitkumar Prakash Pawar

    2018-01-01

    Full Text Available Atmospheric Lidars are used extensively to get aerosol parameters like backscatter coefficient, backscatter ratio etc. National Atmospheric Research Laboratory, Gadanki (13°N, 79°E, India has a powerful lidar which has alt-azimuth capability. Inversion method is applied to data from observations of lidar system at different azimuth and elevation angles. Data Analysis is described and Observations in 2D and 3D format are discussed. Presence of Cloud and the variation of backscatter parameters are seen in an interesting manner.

  15. Wind measurement via direct detection lidar

    Science.gov (United States)

    Afek, I.; Sela, N.; Narkiss, N.; Shamai, G.; Tsadka, S.

    2013-10-01

    Wind sensing Lidar is considered a promising technology for high quality wind measurements required for various applications such as hub height wind resource assessment, power curve measurements and advanced, real time, forward looking turbine control. Until recently, the only available Lidar technology was based on coherent Doppler shift detection, whose market acceptance has been slow primarily due to its exuberant price. Direct detection Lidar technology provides an alternative to remote sensing of wind by incorporating high precision measurement, a robust design and an affordable price tag.

  16. 2014 OLC Lidar DEM: Colville, WA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — WSI, a Quantum Spatial company, has collected Light Detection and Ranging (LiDAR) data for the Oregon LiDAR Consortium (OLC) Colville study area. This study area is...

  17. Object Classification Using Airborne Multispectral LiDAR Data

    Directory of Open Access Journals (Sweden)

    PAN Suoyan

    2018-02-01

    Full Text Available Airborne multispectral LiDAR system,which obtains surface geometry and spectral data of objects,simultaneously,has become a fast effective,large-scale spatial data acquisition method.Multispectral LiDAR data are characteristics of completeness and consistency of spectrum and spatial geometric information.Support vector machine (SVM,a machine learning method,is capable of classifying objects based on small samples.Therefore,by means of SVM,this paper performs land cover classification using multispectral LiDAR data. First,all independent point cloud with different wavelengths are merged into a single point cloud,where each pixel contains the three-wavelength spectral information.Next,the merged point cloud is converted into range and intensity images.Finally,land-cover classification is performed by means of SVM.All experiments were conducted on the Optech Titan multispectral LiDAR data,containing three individual point cloud collected by 532 nm,1024 nm,and 1550 nm laser beams.Experimental results demonstrate that ①compared to traditional single-wavelength LiDAR data,multispectral LiDAR data provide a promising solution to land use and land cover applications;②SVM is a feasible method for land cover classification of multispectral LiDAR data.

  18. 2014 PSLC Lidar: City of Redmond

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In February 2014, Quantum Spatial (QSI) was contracted by the Puget Sound LiDAR Consortium (PSLC) to collect Light Detection and Ranging (LiDAR) data for the City of...

  19. 2014 Horry County, South Carolina Lidar

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set is comprised of lidar point cloud data. This project required lidar data to be acquired over Horry County, South Carolina. The total area of the Horry...

  20. Elevation - LIDAR Survey - Roseau County, Minnesota

    Data.gov (United States)

    Army Corps of Engineers, Department of the Army, Department of Defense — LIDAR Data for Roseau County Minnesota. This project consists of approximately 87 square miles of LIDAR mapping in Roseau County, Minnesota at two sites: area 1,...

  1. 2006 Volusia County Florida LiDAR

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset is the lidar data for Volusia County, Florida, approximately 1,432 square miles, acquired in early March of 2006. A total of 143 flight lines of Lidar...

  2. 3D pulsed chaos lidar system.

    Science.gov (United States)

    Cheng, Chih-Hao; Chen, Chih-Ying; Chen, Jun-Da; Pan, Da-Kung; Ting, Kai-Ting; Lin, Fan-Yi

    2018-04-30

    We develop an unprecedented 3D pulsed chaos lidar system for potential intelligent machinery applications. Benefited from the random nature of the chaos, conventional CW chaos lidars already possess excellent anti-jamming and anti-interference capabilities and have no range ambiguity. In our system, we further employ self-homodyning and time gating to generate a pulsed homodyned chaos to boost the energy-utilization efficiency. Compared to the original chaos, we show that the pulsed homodyned chaos improves the detection SNR by more than 20 dB. With a sampling rate of just 1.25 GS/s that has a native sampling spacing of 12 cm, we successfully achieve millimeter-level accuracy and precision in ranging. Compared with two commercial lidars tested side-by-side, namely the pulsed Spectroscan and the random-modulation continuous-wave Lidar-lite, the pulsed chaos lidar that is in compliance with the class-1 eye-safe regulation shows significantly better precision and a much longer detection range up to 100 m. Moreover, by employing a 2-axis MEMS mirror for active laser scanning, we also demonstrate real-time 3D imaging with errors of less than 4 mm in depth.

  3. Geospatial Absorption and Regional Effects

    Directory of Open Access Journals (Sweden)

    IOAN MAC

    2009-01-01

    Full Text Available The geospatial absorptions are characterized by a specific complexity both in content and in their phenomenological and spatial manifestation fields. Such processes are differentiated according to their specificity to pre-absorption, absorption or post-absorption. The mechanisms that contribute to absorption are extremely numerous: aggregation, extension, diffusion, substitution, resistivity (resilience, stratification, borrowings, etc. Between these mechanisms frequent relations are established determining an amplification of the process and of its regional effects. The installation of the geographic osmosis phenomenon in a given territory (a place for example leads to a homogenization of the geospatial state and to the installation of the regional homogeneity.

  4. Complex terrain and wind lidars

    Energy Technology Data Exchange (ETDEWEB)

    Bingoel, F.

    2009-08-15

    This thesis includes the results of a PhD study about complex terrain and wind lidars. The study mostly focuses on hilly and forested areas. Lidars have been used in combination with cups, sonics and vanes, to reach the desired vertical measurement heights. Several experiments are performed in complex terrain sites and the measurements are compared with two different flow models; a linearised flow model LINCOM and specialised forest model SCADIS. In respect to the lidar performance in complex terrain, the results showed that horizontal wind speed errors measured by a conically scanning lidar can be of the order of 3-4% in moderately-complex terrain and up to 10% in complex terrain. The findings were based on experiments involving collocated lidars and meteorological masts, together with flow calculations over the same terrains. The lidar performance was also simulated with the commercial software WAsP Engineering 2.0 and was well predicted except for some sectors where the terrain is particularly steep. Subsequently, two experiments were performed in forested areas; where the measurements are recorded at a location deep-in forest and at the forest edge. Both sites were modelled with flow models and the comparison of the measurement data with the flow model outputs showed that the mean wind speed calculated by LINCOM model was only reliable between 1 and 2 tree height (h) above canopy. The SCADIS model reported better correlation with the measurements in forest up to approx6h. At the forest edge, LINCOM model was used by allocating a slope half-in half out of the forest based on the suggestions of previous studies. The optimum slope angle was reported as 17 deg.. Thus, a suggestion was made to use WAsP Engineering 2.0 for forest edge modelling with known limitations and the applied method. The SCADIS model worked better than the LINCOM model at the forest edge but the model reported closer results to the measurements at upwind than the downwind and this should be

  5. 2012 USGS Lidar: Elwha River (WA)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TASK NAME: Elwha River, WA LiDAR LiDAR Data Acquisition and Processing Production Task USGS Contract No. G10PC00057 Task Order No. G11PD01088 Woolpert Order No....

  6. Lidar data used in the COFIN project

    DEFF Research Database (Denmark)

    Ejsing Jørgensen, Hans; Nielsen, Morten

    1999-01-01

    This report presents the Lidar data used in the COFIN project. The Lidar data have been obtained from several ground level dispersion experiments over flat and complex terrain. The method for treating the data and the conditons under which the data wereobtained are described in detail. Finally we...... describe the Tools to extract and visualize the Lidar data. Data, report, and visualisation tools are available on the Risø FTP server....

  7. Field Measurements of Water Continuum and Water Dimer Absorption by Active Long Path Differential Optical Absorption Spectroscopy (DOAS)

    OpenAIRE

    Lotter, Andreas

    2006-01-01

    Water vapor plays an important role in Earth's radiative budget since water molecules strongly absorb the incoming solar shortwave and the outgoing thermal infrared radiation. Superimposed on the water monomer absorption, a water continuum absorption has long been recognized, but its true nature still remains controversial. On the one hand, this absorption is explained by a deformation of the line shape of the water monomer absorption lines as a consequence of a molecular collision. One the o...

  8. Airborne lidar measurements of aerosol spatial distribution and optical properties over the Atlantic Ocean during a European pollution outbreak of ACE-2[Special issue with manuscripts related to the second Aerosol Characterization Experiment (ACE-2), 16 June-25 July 1997

    Energy Technology Data Exchange (ETDEWEB)

    Flamant, Cyrille; Pelon, Jaques; Trouillet, Vincent; Bruneau, Didier [CNRS-UPMC-UVSQ, Paris (France). Service d' Aeronomie; Chazette, Patrick; Leon, J.F. [CEA-CNRS, Gif-sur-Yvette (France). Lab. des Sciences du Climat et de l' Environment; Quinn, P.K.; Bates, T.S.; Johnson, James [National Oceanic and Atmospheric Administration, Seattle, WA (United States). Pacific Marine Environmental Lab.; Frouin, Robert [Scripps Inst. of Oceanography, La Jolla, CA (United States); Livingston, John [SRI International, Menlo Park, CA (United States)

    2000-04-01

    Airborne lidar measurements of the aerosol spatial distribution and optical properties associated with an European pollution outbreak which occurred during the Second Aerosol Characterization Experiment (ACE-2) are presented. Size distribution spectra measured over the ocean near Sagres (Portugal), on-board the Research Vessel Vodyanitsky and on-board the Avion de Recherche Atmospherique et Teledetection (ARAT) have been used to parameterize the aerosol vertical distribution. This parameterization, which is essential to the analysis of airborne lidar measurements, has been validated via closure experiments on extinction coefficient profiles and aerosol optical depth (AOD). During the studied event, AOD's retrieved from lidar measurements at 0.73 {mu}m range between 0.055 and 0.10. The parameterized aerosol vertical distribution has been used to shift AOD retrievals from 0.73 to 0.55 {mu}m to enable comparison with other remote sensing instruments. At the latter wavelength, AOD's retrieved from lidar measurements range between 0.08 and 0.14. An agreement better than 20% is obtained between AOD's derived from lidar and sunphotometer measurements made at the same time and place over the ocean near the coast. However, large differences are observed with the AOD estimated from Meteosat imagery in the same area. These differences are thought to be caused by large uncertainties associated with the Meteosat sensitivity for small AOD's or by the presence of thin scattered clouds. Lidar-derived particulate extinction profiles and scattering coefficient profiles measured by a nephelometer mounted on the ARAT, in a different part of the plume, were found in good agreement, which could be an indication that absorption by pollution aerosols is small and/or that soot is present in small amounts in the European pollution plume. Lidar measurements have also been used to differentiate the contribution of different aerosol layers to the total AOD. It is shown that

  9. Optimizing Lidar Scanning Strategies for Wind Energy Measurements (Invited)

    Science.gov (United States)

    Newman, J. F.; Bonin, T. A.; Klein, P.; Wharton, S.; Chilson, P. B.

    2013-12-01

    Environmental concerns and rising fossil fuel prices have prompted rapid development in the renewable energy sector. Wind energy, in particular, has become increasingly popular in the United States. However, the intermittency of available wind energy makes it difficult to integrate wind energy into the power grid. Thus, the expansion and successful implementation of wind energy requires accurate wind resource assessments and wind power forecasts. The actual power produced by a turbine is affected by the wind speeds and turbulence levels experienced across the turbine rotor disk. Because of the range of measurement heights required for wind power estimation, remote sensing devices (e.g., lidar) are ideally suited for these purposes. However, the volume averaging inherent in remote sensing technology produces turbulence estimates that are different from those estimated by a sonic anemometer mounted on a standard meteorological tower. In addition, most lidars intended for wind energy purposes utilize a standard Doppler beam-swinging or Velocity-Azimuth Display technique to estimate the three-dimensional wind vector. These scanning strategies are ideal for measuring mean wind speeds but are likely inadequate for measuring turbulence. In order to examine the impact of different lidar scanning strategies on turbulence measurements, a WindCube lidar, a scanning Halo lidar, and a scanning Galion lidar were deployed at the Southern Great Plains Atmospheric Radiation Measurement (ARM) site in Summer 2013. Existing instrumentation at the ARM site, including a 60-m meteorological tower and an additional scanning Halo lidar, were used in conjunction with the deployed lidars to evaluate several user-defined scanning strategies. For part of the experiment, all three scanning lidars were pointed at approximately the same point in space and a tri-Doppler analysis was completed to calculate the three-dimensional wind vector every 1 second. In another part of the experiment, one of

  10. Infrastructure Investment Protection with LiDAR

    Science.gov (United States)

    2012-10-15

    The primary goal of this research effort was to explore the wide variety of uses of LiDAR technology and to evaluate their : applicability to NCDOT practices. NCDOT can use this information about LiDAR in determining how and when the : technology can...

  11. 2013 NRCS-USGS Lidar: Lauderdale (MS)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TASK NAME:NRCS LAUDERDALE MS 0.7M NPS LIDAR. LiDAR Data Acquisition and Processing Production Task. USGS Contract No. G10PC00057. Task Order No. G12PD000125 Woolpert...

  12. 2014 USGS/NRCS Lidar: Central MS

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TASK NAME: USGS-NRCS Laurel MS 0.7m NPS LIDAR Lidar Data Acquisition and Processing Production Task USGS Contract No. G10PC00057 Task Order No. G13PD01086 Woolpert...

  13. Lidar-based mapping of flood control levees in south Louisiana

    Science.gov (United States)

    Thatcher, Cindy A.; Lim, Samsung; Palaseanu-Lovejoy, Monica; Danielson, Jeffrey J.; Kimbrow, Dustin R.

    2016-01-01

    Flood protection in south Louisiana is largely dependent on earthen levees, and in the aftermath of Hurricane Katrina the state’s levee system has received intense scrutiny. Accurate elevation data along the levees are critical to local levee district managers responsible for monitoring and maintaining the extensive system of non-federal levees in coastal Louisiana. In 2012, high resolution airborne lidar data were acquired over levees in Lafourche Parish, Louisiana, and a mobile terrestrial lidar survey was conducted for selected levee segments using a terrestrial lidar scanner mounted on a truck. The mobile terrestrial lidar data were collected to test the feasibility of using this relatively new technology to map flood control levees and to compare the accuracy of the terrestrial and airborne lidar. Metrics assessing levee geometry derived from the two lidar surveys are also presented as an efficient, comprehensive method to quantify levee height and stability. The vertical root mean square error values of the terrestrial lidar and airborne lidar digital-derived digital terrain models were 0.038 m and 0.055 m, respectively. The comparison of levee metrics derived from the airborne and terrestrial lidar-based digital terrain models showed that both types of lidar yielded similar results, indicating that either or both surveying techniques could be used to monitor geomorphic change over time. Because airborne lidar is costly, many parts of the USA and other countries have never been mapped with airborne lidar, and repeat surveys are often not available for change detection studies. Terrestrial lidar provides a practical option for conducting repeat surveys of levees and other terrain features that cover a relatively small area, such as eroding cliffs or stream banks, and dunes.

  14. Telescope aperture optimization for spacebased coherent wind lidar

    Science.gov (United States)

    Ge, Xian-ying; Zhu, Jun; Cao, Qipeng; Zhang, Yinchao; Yin, Huan; Dong, Xiaojing; Wang, Chao; Zhang, Yongchao; Zhang, Ning

    2015-08-01

    Many studies have indicated that the optimum measurement approach for winds from space is a pulsed coherent wind lidar, which is an active remote sensing tool with the characteristics that high spatial and temporal resolutions, real-time detection, high mobility, facilitated control and so on. Because of the significant eye safety, efficiency, size, and lifetime advantage, 2μm wavelength solid-state laser lidar systems have attracted much attention in spacebased wind lidar plans. In this paper, the theory of coherent detection is presented and a 2μm wavelength solid-state laser lidar system is introduced, then the ideal aperture is calculated from signal-to-noise(SNR) view at orbit 400km. However, considering real application, even if the lidar hardware is perfectly aligned, the directional jitter of laser beam, the attitude change of the lidar in the long round trip time of the light from the atmosphere and other factors can bring misalignment angle. So the influence of misalignment angle is considered and calculated, and the optimum telescope diameter(0.45m) is obtained as the misalignment angle is 4 μrad. By the analysis of the optimum aperture required for spacebased coherent wind lidar system, we try to present the design guidance for the telescope.

  15. Applications of KHZ-CW Lidar in Ecological Entomology

    Science.gov (United States)

    Malmqvist, Elin; Brydegaard, Mikkel

    2016-06-01

    The benefits of kHz lidar in ecological entomology are explained. Results from kHz-measurements on insects, carried out with a CW-lidar system, employing the Scheimpflug principle to obtain range resolution, are presented. A method to extract insect events and analyze the large amount of lidar data is also described.

  16. Airborne Measurements of Atmospheric Methane Using Pulsed Laser Transmitters

    Science.gov (United States)

    Numata, Kenji; Riris, Haris; Wu, Stewart; Gonzalez, Brayler; Rodriguez, Michael; Hasselbrack, William; Fahey, Molly; Yu, Anthony; Stephen, Mark; Mao, Jianping; hide

    2016-01-01

    Atmospheric methane (CH4) is the second most important anthropogenic greenhouse gas with approximately 25 times the radiative forcing of carbon dioxide (CO2) per molecule. At NASA Goddard Space Flight Center (GSFC) we have been developing a laser-based technology needed to remotely measure CH4 from orbit. We report on our development effort for the methane lidar, especially on our laser transmitters and recent airborne demonstration. Our lidar transmitter is based on an optical parametric process to generate near infrared laser radiation at 1651 nanometers, coincident with a CH4 absorption. In an airborne flight campaign in the fall of 2015, we tested two kinds of laser transmitters --- an optical parametric amplifier (OPA) and an optical parametric oscillator (OPO). The output wavelength of the lasers was rapidly tuned over the CH4 absorption by tuning the seed laser to sample the CH4 absorption line at several wavelengths. This approach uses the same Integrated Path Differential Absorption (IPDA) technique we have used for our CO2 lidar for ASCENDS. The two laser transmitters were successfully operated in the NASAs DC-8 aircraft, measuring methane from 3 to 13 kilometers with high precision.

  17. INTERACT-II campaign:comparison of commercial lidars and ceilometers with advanced multi-wavelength Raman lidars

    Science.gov (United States)

    Rosoldi, Marco; Madonna, Fabio; Pappalardo, Gelsomina; Vande Hey, Joshua; Zheng, Yunhui; Vaisala Team

    2017-04-01

    Knowledge of aerosol spatio-temporal distribution in troposphere is essential for the study of climate and air quality. For this purpose, global scale high resolution continuous measurements of tropospheric aerosols are needed. Global coverage high resolution networks of ground-based low-cost and low-maintenance remote sensing instruments, such as commercial automatic lidars and ceilometers, can strongly contribute to this scientific mission. Therefore, it is very interesting for scientific community to understand to which extent these instruments are able to provide reliable aerosol measurements and fill in the geographical gaps of existing networks of the advanced lidars, like EARLINET (European Aerosol Research LIdar NETwork). The INTERACT-II (INTERcomparison of Aerosol and Cloud Tracking) campaign, carried out at CIAO (CNR-IMAA Atmospheric Observatory) in Tito Scalo, Potenza, Italy (760m a.s.l., 40.60°N, 15.72°E), aims to evaluate the performances of commercial automatic lidars and ceilometers for tropospheric aerosol profiling. The campaign has been performed in the period from July 2016 to January 2017 in the framework of ACTRIS-2 (Aerosol Clouds Trace gases Research InfraStructure) H2020 research infrastructure project. Besides the commercial ceilometers operational at CIAO (VAISALA CT25K and Luftt CHM15k), the performance of a CL51 VAISALA ceilometer, a Campbell CS135 ceilometer and a mini-Micro Pulse Lidar (MPL) have been assessed using the EARLINET multi-wavelengths Raman lidars operative at CIAO as reference. Following a similar approach used in the first INTERACT campaign (Madonna et al., AMT 2015), attenuated backscatter coefficient profiles and signals obtained from all the instruments have been compared, over a vertical resolution of 60 meters and a temporal integration ranging between 1 and 2 hours, depending on the observed atmospheric scenario. CIAO lidars signals have been processed using the EARLINET Single Calculus Chain (SCC) also with the

  18. Software design of control system of CCD side-scatter lidar

    Science.gov (United States)

    Kuang, Zhiqiang; Liu, Dong; Deng, Qian; Zhang, Zhanye; Wang, Zhenzhu; Yu, Siqi; Tao, Zongming; Xie, Chenbo; Wang, Yingjian

    2018-03-01

    Because of the existence of blind zone and transition zone, the application of backscattering lidar in near-ground is limited. The side-scatter lidar equipped with the Charge Coupled Devices (CCD) can separate the transmitting and receiving devices to avoid the impact of the geometric factors which is exited in the backscattering lidar and, detect the more precise near-ground aerosol signals continuously. Theories of CCD side-scatter lidar and the design of control system are introduced. The visible control of laser and CCD and automatic data processing method of the side-scatter lidar are developed by using the software of Visual C #. The results which are compared with the calibration of the atmospheric aerosol lidar data show that signals from the CCD side- scatter lidar are convincible.

  19. An Aerosol Extinction-to-Backscatter Ratio Database Derived from the NASA Micro-Pulse Lidar Network: Applications for Space-based Lidar Observations

    Science.gov (United States)

    Welton, Ellsworth J.; Campbell, James R.; Spinhime, James D.; Berkoff, Timothy A.; Holben, Brent; Tsay, Si-Chee; Bucholtz, Anthony

    2004-01-01

    Backscatter lidar signals are a function of both backscatter and extinction. Hence, these lidar observations alone cannot separate the two quantities. The aerosol extinction-to-backscatter ratio, S, is the key parameter required to accurately retrieve extinction and optical depth from backscatter lidar observations of aerosol layers. S is commonly defined as 4*pi divided by the product of the single scatter albedo and the phase function at 180-degree scattering angle. Values of S for different aerosol types are not well known, and are even more difficult to determine when aerosols become mixed. Here we present a new lidar-sunphotometer S database derived from Observations of the NASA Micro-Pulse Lidar Network (MPLNET). MPLNET is a growing worldwide network of eye-safe backscatter lidars co-located with sunphotometers in the NASA Aerosol Robotic Network (AERONET). Values of S for different aerosol species and geographic regions will be presented. A framework for constructing an S look-up table will be shown. Look-up tables of S are needed to calculate aerosol extinction and optical depth from space-based lidar observations in the absence of co-located AOD data. Applications for using the new S look-up table to reprocess aerosol products from NASA's Geoscience Laser Altimeter System (GLAS) will be discussed.

  20. Multi-wavelength Ocean Profiling and Atmospheric Lidar

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to build and demonstrate the world's first multi-wavelength ocean-profiling high spectral resolution lidar (HSRL). The lidar will provide profiles of...

  1. 2012 Oregon Lidar Consortium (OLC) Lidar DEM: Keno (OR)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Watershed Sciences, Inc. (WSI) collected Light Detection and Ranging (LiDAR) data of the Oregon Keno Study Area for the Oregon Department of Geology and Mineral...

  2. Shipborne LiDAR system for coastal change monitoring

    Science.gov (United States)

    Kim, chang hwan; Park, chang hong; Kim, hyun wook; hyuck Kim, won; Lee, myoung hoon; Park, hyeon yeong

    2016-04-01

    Coastal areas, used as human utilization areas like leisure space, medical care, ports and power plants, etc., are regions that are continuously changing and interconnected with oceans and land and the sea level has risen by about 8cm (1.9mm / yr) due to global warming from 1964 year to 2006 year in Korea. Coastal erosion due to sea-level rise has caused the problem of marine ecosystems and loss of tourism resources, etc. Regular monitoring of coastal erosion is essential at key locations with such volatility. But the survey method of land mobile LiDAR (light detection and ranging) system has much time consuming and many restrictions. For effective monitoring beach erosion, KIOST (Korea Institute of Ocean Science & Technology) has constructed a shipborne mobile LiDAR system. The shipborne mobile LiDAR system comprised a land mobile LiDAR (RIEGL LMS-420i), an INS (inertial navigation system, MAGUS Inertial+), a RTKGPS (LEICA GS15 GS25), and a fixed platform. The shipborne mobile LiDAR system is much more effective than a land mobile LiDAR system in the measuring of fore shore areas without shadow zone. Because the vessel with the shipborne mobile LiDAR system is continuously moved along the shoreline, it is possible to efficiently survey a large area in a relatively short time. Effective monitoring of the changes using the constructed shipborne mobile LiDAR system for seriously eroded coastal areas will be able to contribute to coastal erosion management and response.

  3. Light Detection and Ranging (LIDAR) From Space - Laser Altimeters

    Science.gov (United States)

    Sun, Xiaoli

    2016-01-01

    Light detection and ranging, or lidar, is like radar but atoptical wavelengths. The principle of operation and theirapplications in remote sensing are similar. Lidars havemany advantages over radars in instrument designs andapplications because of the much shorter laser wavelengthsand narrower beams. The lidar transmitters and receiveroptics are much smaller than radar antenna dishes. Thespatial resolution of lidar measurement is much finer thanthat of radar because of the much smaller footprint size onground. Lidar measurements usually give a better temporalresolution because the laser pulses can be much narrowerthan radio frequency (RF) signals. The major limitation oflidar is the ability to penetrate clouds and ground surfaces.

  4. 2010 ARRA Lidar: 4 Southeast Counties (MI)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TASK NAME: Southeast Michigan LiDAR LiDAR Data Acquisition and Processing Production Task- Monroe, St. Clair, Macomb, and Livingston Counties SEMCOG CONTRACT:...

  5. Wind turbine control applications of turbine-mounted LIDAR

    International Nuclear Information System (INIS)

    Bossanyi, E A; Kumar, A; Hugues-Salas, O

    2014-01-01

    In recent years there has been much interest in the possible use of LIDAR systems for improving the performance of wind turbine controllers, by providing preview information about the approaching wind field. Various potential benefits have been suggested, and experimental measurements have sometimes been used to claim surprising gains in performance. This paper reports on an independent study which has used detailed analytical methods for two main purposes: firstly to try to evaluate the likely benefits of LIDAR-assisted control objectively, and secondly to provide advice to LIDAR manufacturers about the characteristics of LIDAR systems which are most likely to be of value for this application. Many different LIDAR configurations were compared: as a general conclusion, systems should be able to sample at least 10 points every second, reasonably distributed around the swept area, and allowing a look-ahead time of a few seconds. An important conclusion is that the main benefit of the LIDAR will be to enhance of collective pitch control to reduce thrust-related fatigue loads; there is some indication that extreme loads can also be reduced, but this depends on other considerations which are discussed in the paper. LIDAR-assisted individual pitch control, optimal C p tracking and yaw control were also investigated, but the benefits over conventional methods are less clear

  6. Calibration of Ground -based Lidar instrument

    DEFF Research Database (Denmark)

    Villanueva, Héctor; Yordanova, Ginka

    This report presents the result of the lidar calibration performed for the given Ground-based Lidar at DTU’s test site for large wind turbines at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement...

  7. Lidar investigations of atmospheric aerosols over Sofia

    International Nuclear Information System (INIS)

    Dreischuh, T.; Deleva, A.; Peshev, Z.; Grigorov, I.; Kolarov, G.; Stoyanov, D.

    2016-01-01

    An overview is given of the laser remote sensing of atmospheric aerosols and related processes over the Sofia area performed in the Institute of Electronics, Bulgarian Academy of Sciences, during the last three years. Results from lidar investigations of the optical characteristics of atmospheric aerosols obtained in the frame of the European Aerosol Research Lidar Network, as well as from the lidar mapping of near-surface aerosol fields for remote monitoring of atmospheric pollutants are presented and discussed in this paper.

  8. Gas in scattering media absorption spectroscopy - GASMAS

    Science.gov (United States)

    Svanberg, Sune

    2008-09-01

    An overview of the new field of Gas in Scattering Media Absorption Spectroscopy (GASMAS) is presented. GASMAS combines narrow-band diode-laser spectroscopy with diffuse media optical propagation. While solids and liquids have broad absorption features, free gas in pores and cavities in the material is characterized by sharp spectral signatures, typically 10,000 times sharper than those of the host material. Many applications in materials science, food packaging, pharmaceutics and medicine have been demonstrated. So far molecular oxygen and water vapour have been studied around 760 and 935 nm, respectively. Liquid water, an important constituent in many natural materials, such as tissue, has a low absorption at such wavelengths, allowing propagation. Polystyrene foam, wood, fruits, food-stuffs, pharmaceutical tablets, and human sinus cavities have been studied. Transport of gas in porous media can readily be studied by first immersing the material in, e.g., pure nitrogen, and then observing the rate at which normal air, containing oxygen, reinvades the material. The conductance of the sinus connective passages can be measured in this way by flushing the nasal cavity with nitrogen. Also other dynamic processes such as drying of materials can be studied. The techniques have also been extended to remote-sensing applications (LIDAR-GASMAS).

  9. 2008 St. Johns County, FL Countywide Lidar

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Airborne terrestrial LiDAR was collected for St. Johns County, FL. System Parameters/Flight Plan. The LiDAR system acquisition parameters were developed based on a...

  10. 2015 Oregon Department Forestry Lidar: Northwest OR

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — GeoTerra, Inc. was selected by Oregon Department of Forestry to provide Lidar remote sensing data including LAZ files of the classified Lidar points and surface...

  11. Power curve measurement with a nacelle mounted lidar

    DEFF Research Database (Denmark)

    Wagner, Rozenn; Friis Pedersen, Troels; Courtney, Michael

    2014-01-01

    is tested. A pulsed lidar prototype, measuring horizontally, was installed on the nacelle of a multi-megawatt wind turbine. A met mast with a top-mounted cup anemometer standing at two rotor diameters in front of the turbine was used as a reference. After a data-filtering step, the comparison of the 10 min......Nacelle-based lidars are an attractive alternative to conventional mast base reference wind instrumentation where the erection of a mast is expensive, for example offshore. In this paper, the use of this new technology for the specific application of wind turbine power performance measurement...... in wind speed measurements. A lower scatter in the power curve was observed for the lidar than for the mast. Since the lidar follows the turbine nacelle as it yaws, it always measures upwind. The wind measured by the lidar therefore shows a higher correlation with the turbine power fluctuations than...

  12. LIDAR and atmosphere remote sensing [DST Space Science Initiatives

    CSIR Research Space (South Africa)

    Venkataraman, S

    2009-04-01

    Full Text Available Energy Source included in the measurement. Slide 2 © CSIR 2008 www.csir.co.za The observer can control the source Eg. Radar, Lidar, Sodar, Sonar etc. (b) Passive remote sensors. Energy source is not included in the measurement... Instrument Passive Slide 3 © CSIR 2008 www.csir.co.za Active LiDAR Principle • LIDAR (Light Detection and Ranging) • LiDAR employs a laser as a source of pulsed energy • Lasers are advantageous because – checkbld Monochromatic...

  13. 2009 Bayfield County Lake Superior Lidar Survey

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The LIDAR survey presents digital elevation data sets of a bald earth surface model and 2ft interval contours covering Bayfield County, Wisconsin. The LIDAR data was...

  14. 2007 South Carolina DNR Lidar: Dorchester County

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Woolpert Inc. conducted a LiDAR survey to acquire LiDAR capable of producing a DEM for orthophoto rectification and able to support 2-foot contour specifications....

  15. 2015 OLC FEMA Lidar: Snake River, ID

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Quantum Spatial has collected Light Detection and Ranging (LiDAR) data for the Oregon LiDAR Consortium (OLC) Snake River FEMA study area. This study area is located...

  16. 2007 South Carolina DNR Lidar: Anderson County

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The LiDAR data acquisition was executed in 5 sessions, from March 7 to March 9, 2007. The airborne GPS (ABGPS) base stations supporting the LiDAR acquisition...

  17. 2011 South Carolina DNR Lidar: York County

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Towill Inc. collected LiDAR for over 3,500 square miles in York, Pickens, Anderson, and Oconee Counties in South Carolina. This metadata covers the LiDAR produced...

  18. 2012 NRCS-USGS Tupelo, MS Lidar Survey

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — LiDAR data is a remotely sensed high resolution elevation data collected by an airborne platform. The LiDAR sensor uses a combination of laser range finding, GPS...

  19. Gluing for Raman lidar systems using the lamp mapping technique.

    Science.gov (United States)

    Walker, Monique; Venable, Demetrius; Whiteman, David N

    2014-12-20

    In the context of combined analog and photon counting (PC) data acquisition in a Lidar system, glue coefficients are defined as constants used for converting an analog signal into a virtual PC signal. The coefficients are typically calculated using Lidar profile data taken under clear, nighttime conditions since, in the presence of clouds or high solar background, it is difficult to obtain accurate glue coefficients from Lidar backscattered data. Here we introduce a new method in which we use the lamp mapping technique (LMT) to determine glue coefficients in a manner that does not require atmospheric profiles to be acquired and permits accurate glue coefficients to be calculated when adequate Lidar profile data are not available. The LMT involves scanning a halogen lamp over the aperture of a Lidar receiver telescope such that the optical efficiency of the entire detection system is characterized. The studies shown here involve two Raman lidar systems; the first from Howard University and the second from NASA/Goddard Space Flight Center. The glue coefficients determined using the LMT and the Lidar backscattered method agreed within 1.2% for the water vapor channel and within 2.5% for the nitrogen channel for both Lidar systems. We believe this to be the first instance of the use of laboratory techniques for determining the glue coefficients for Lidar data analysis.

  20. 2013-2014 USGS Lidar: Olympic Peninsula (WA)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TASK NAME: USGS Olympic Peninsula Washington LIDAR LiDAR Data Acquisition and Processing Production Task USGS Contract No. G10PC00057 Task Order No. G13PD00849...

  1. 2015 OLC Lidar DEM: Big Wood, ID

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Quantum Spatial has collected Light Detection and Ranging (LiDAR) data for the Oregon LiDAR Consortium (OLC) Big Wood 2015 study area. This study area is located in...

  2. Elevation - LiDAR Survey - Roseau County, Minnesota

    Data.gov (United States)

    Army Corps of Engineers, Department of the Army, Department of Defense — LIDAR Data for Roseau County Minnesota. This project consists of approximately 87 square miles of LIDAR mapping in Roseau County, Minnesota at two sites: area 1,...

  3. 2012-2013 Puget Sound LiDAR Consortium (PSLC) Topographic LiDAR: Hoh River Watershed, Washington (Deliveries 1 and 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Watershed Sciences, Inc. (WSI) collected Light Detection and Ranging (LiDAR) data on the Hoh River watershed survey area for the Puget Sound LiDAR Consortium and the...

  4. Detecting wind turbine wakes with nacelle lidars

    DEFF Research Database (Denmark)

    Held, D. P.; Larvol, A.; Mann, Jakob

    2017-01-01

    variance is used as a detection parameter for wakes. A one month long measurement campaign, where a continuous-wave lidar on a turbine has been exposed to multiple wake situations, is used to test the detection capabilities. The results show that it is possible to identify situation where a downstream...... turbine is in wake by comparing the peak widths. The used lidar is inexpensive and brings instalments on every turbine within economical reach. Thus, the information gathered by the lidars can be used for improved control at wind farm level....

  5. Dickinson County, MI LIDAR_LAS_1.2

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TASK NAME:(NRCS) Dickinson County, MI LIDAR LiDAR Data Acquisition and Processing Production Task USGS Contract No. G10PC00057 Task Order No. G12PD00721 Woolpert...

  6. Interference-free mid-IR laser absorption detection of methane

    International Nuclear Information System (INIS)

    Pyun, Sung Hyun; Cho, Jungwan; Davidson, David F; Hanson, Ronald K

    2011-01-01

    A novel, mid-IR scanned-wavelength laser absorption diagnostic was developed for time-resolved, interference-free, absorption measurement of methane concentration. A differential absorption (peak minus valley) scheme was used that takes advantage of the structural differences of the absorption spectrum of methane and other hydrocarbons. A peak and valley wavelength pair was selected to maximize the differential cross-section (σ peak minus valley ) of methane for the maximum signal-to-noise ratio, and to minimize that of the interfering absorbers. Methane cross-sections at the peak and valley wavelengths were measured over a range of temperatures, 1000 to 2000 K, and pressures 1.3 to 5.4 atm. The cross-sections of the interfering absorbers were assumed constant over the small wavelength interval between the methane peak and valley features. Using this diagnostic, methane concentration time histories during n-heptane pyrolysis were measured behind reflected shock waves in a shock tube. The differential absorption scheme efficiently rejected the absorption interference and successfully recovered the vapor-phase methane concentration. These measurements allowed the comparison with methane concentration time-history simulations derived from a current n-heptane reaction mechanism (Sirjean et al 2009 A high-temperature chemical kinetic model of n-alkane oxidation JetSurF version 1.0)

  7. 2005 Mississippi Merged LiDAR Data (2005 LiDAR data merged with 2005 Post-Katrina LiDAR data to create a bare-earth product for flood plain mapping in coastal Mississippi).

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Pre- and post-hurricane Katrina LiDAR datasets of Hancock, Harrison, and Jackson Counties, MS, were merged into a seamless coverage by URS. The pre-Katrina LiDAR...

  8. NASA ESTO Lidar Technologies Investment Strategy: 2016 Decadal Update

    Science.gov (United States)

    Valinia, Azita; Komar, George J.; Tratt, David M.; Lotshaw, William T.; Gaab, Kevin M.

    2017-01-01

    The NASA Earth Science Technology Office (ESTO) recently updated its investment strategy in the area of lidar technologies as it pertains to NASA's Earth Science measurement goals in the next decade. The last ESTO lidar strategy was documented in 2006. The current (2016) report assesses the state-of-the-art in lidar technologies a decade later. Lidar technology maturation in the past decade has been evaluated, and the ESTO investment strategy is updated and laid out in this report according to current NASA Earth science measurement needs and new emerging technologies.

  9. 2006 South Carolina DNR Lidar: Aiken County

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The LiDAR data acquisition was executed in five sessions, on March 15, 16 & 17, 2006, using a Leica ALS50 LiDAR System. Specific details about the ALS50 system...

  10. LIDAR Wind Speed Measurements of Evolving Wind Fields

    Energy Technology Data Exchange (ETDEWEB)

    Simley, E.; Pao, L. Y.

    2012-07-01

    Light Detection and Ranging (LIDAR) systems are able to measure the speed of incoming wind before it interacts with a wind turbine rotor. These preview wind measurements can be used in feedforward control systems designed to reduce turbine loads. However, the degree to which such preview-based control techniques can reduce loads by reacting to turbulence depends on how accurately the incoming wind field can be measured. Past studies have assumed Taylor's frozen turbulence hypothesis, which implies that turbulence remains unchanged as it advects downwind at the mean wind speed. With Taylor's hypothesis applied, the only source of wind speed measurement error is distortion caused by the LIDAR. This study introduces wind evolution, characterized by the longitudinal coherence of the wind, to LIDAR measurement simulations to create a more realistic measurement model. A simple model of wind evolution is applied to a frozen wind field used in previous studies to investigate the effects of varying the intensity of wind evolution. LIDAR measurements are also evaluated with a large eddy simulation of a stable boundary layer provided by the National Center for Atmospheric Research. Simulation results show the combined effects of LIDAR errors and wind evolution for realistic turbine-mounted LIDAR measurement scenarios.

  11. Processing LiDAR Data to Predict Natural Hazards

    Science.gov (United States)

    Fairweather, Ian; Crabtree, Robert; Hager, Stacey

    2008-01-01

    ELF-Base and ELF-Hazards (wherein 'ELF' signifies 'Extract LiDAR Features' and 'LiDAR' signifies 'light detection and ranging') are developmental software modules for processing remote-sensing LiDAR data to identify past natural hazards (principally, landslides) and predict future ones. ELF-Base processes raw LiDAR data, including LiDAR intensity data that are often ignored in other software, to create digital terrain models (DTMs) and digital feature models (DFMs) with sub-meter accuracy. ELF-Hazards fuses raw LiDAR data, data from multispectral and hyperspectral optical images, and DTMs and DFMs generated by ELF-Base to generate hazard risk maps. Advanced algorithms in these software modules include line-enhancement and edge-detection algorithms, surface-characterization algorithms, and algorithms that implement innovative data-fusion techniques. The line-extraction and edge-detection algorithms enable users to locate such features as faults and landslide headwall scarps. Also implemented in this software are improved methodologies for identification and mapping of past landslide events by use of (1) accurate, ELF-derived surface characterizations and (2) three LiDAR/optical-data-fusion techniques: post-classification data fusion, maximum-likelihood estimation modeling, and hierarchical within-class discrimination. This software is expected to enable faster, more accurate forecasting of natural hazards than has previously been possible.

  12. Forest Biomass Mapping From Lidar and Radar Synergies

    Science.gov (United States)

    Sun, Guoqing; Ranson, K. Jon; Guo, Z.; Zhang, Z.; Montesano, P.; Kimes, D.

    2011-01-01

    The use of lidar and radar instruments to measure forest structure attributes such as height and biomass at global scales is being considered for a future Earth Observation satellite mission, DESDynI (Deformation, Ecosystem Structure, and Dynamics of Ice). Large footprint lidar makes a direct measurement of the heights of scatterers in the illuminated footprint and can yield accurate information about the vertical profile of the canopy within lidar footprint samples. Synthetic Aperture Radar (SAR) is known to sense the canopy volume, especially at longer wavelengths and provides image data. Methods for biomass mapping by a combination of lidar sampling and radar mapping need to be developed. In this study, several issues in this respect were investigated using aircraft borne lidar and SAR data in Howland, Maine, USA. The stepwise regression selected the height indices rh50 and rh75 of the Laser Vegetation Imaging Sensor (LVIS) data for predicting field measured biomass with a R(exp 2) of 0.71 and RMSE of 31.33 Mg/ha. The above-ground biomass map generated from this regression model was considered to represent the true biomass of the area and used as a reference map since no better biomass map exists for the area. Random samples were taken from the biomass map and the correlation between the sampled biomass and co-located SAR signature was studied. The best models were used to extend the biomass from lidar samples into all forested areas in the study area, which mimics a procedure that could be used for the future DESDYnI Mission. It was found that depending on the data types used (quad-pol or dual-pol) the SAR data can predict the lidar biomass samples with R2 of 0.63-0.71, RMSE of 32.0-28.2 Mg/ha up to biomass levels of 200-250 Mg/ha. The mean biomass of the study area calculated from the biomass maps generated by lidar- SAR synergy 63 was within 10% of the reference biomass map derived from LVIS data. The results from this study are preliminary, but do show the

  13. Development of a Dynamic Lidar Uncertainty Framework

    Energy Technology Data Exchange (ETDEWEB)

    Newman, Jennifer [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Clifton, Andrew [WindForS; Bonin, Timothy [CIRES/NOAA ESRL; Choukulkar, Aditya [CIRES/NOAA ESRL; Brewer, W. Alan [NOAA ESRL; Delgado, Ruben [University of Maryland Baltimore County

    2017-08-07

    As wind turbine sizes increase and wind energy expands to more complex and remote sites, remote-sensing devices such as lidars are expected to play a key role in wind resource assessment and power performance testing. The switch to remote-sensing devices represents a paradigm shift in the way the wind industry typically obtains and interprets measurement data for wind energy. For example, the measurement techniques and sources of uncertainty for a remote-sensing device are vastly different from those associated with a cup anemometer on a meteorological tower. Current IEC standards for quantifying remote sensing device uncertainty for power performance testing consider uncertainty due to mounting, calibration, and classification of the remote sensing device, among other parameters. Values of the uncertainty are typically given as a function of the mean wind speed measured by a reference device and are generally fixed, leading to climatic uncertainty values that apply to the entire measurement campaign. However, real-world experience and a consideration of the fundamentals of the measurement process have shown that lidar performance is highly dependent on atmospheric conditions, such as wind shear, turbulence, and aerosol content. At present, these conditions are not directly incorporated into the estimated uncertainty of a lidar device. In this presentation, we describe the development of a new dynamic lidar uncertainty framework that adapts to current flow conditions and more accurately represents the actual uncertainty inherent in lidar measurements under different conditions. In this new framework, sources of uncertainty are identified for estimation of the line-of-sight wind speed and reconstruction of the three-dimensional wind field. These sources are then related to physical processes caused by the atmosphere and lidar operating conditions. The framework is applied to lidar data from a field measurement site to assess the ability of the framework to predict

  14. GRIP LIDAR ATMOSPHERIC SENSING EXPERIMENT (LASE) V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GRIP Lidar Atmospheric Sensing Experiment (LASE) dataset was collected by NASA's Lidar Atmospheric Sensing Experiment (LASE) system, which is an airborne...

  15. Study of laser radar system using the differential absorption method for detection of air pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Inomata, H; Igarashi, T

    1975-11-01

    A laser radar system using the differential absorption method for remote measurement of atmospheric NO/sub 2/ and SO/sub 2/ is studied. A simultaneous two-wavelength dye laser for the transmitter and a simultaneous two-wavelength signal processer for the receiver are developed. In using this technique, one laser shot allows the determination of NO/sub 2/ concentrations with an uncertainty equivalent to 44 ppM times the range interval (in meters). It seems that the technique is most promising for a range-resolved measurement of ambient molecular pollutants, since it has the advantage of canceling the effect of atmospheric variation in a measurement when atmospheric aerosols are used as a distributed reflector.

  16. Wind Ressources in Complex Terrain investigated with Synchronized Lidar Measurements

    Science.gov (United States)

    Mann, J.; Menke, R.; Vasiljevic, N.

    2017-12-01

    The Perdigao experiment was performed by a number of European and American universities in Portugal 2017, and it is probably the largest field campaign focussing on wind energy ressources in complex terrain ever conducted. 186 sonic anemometers on 50 masts, 20 scanning wind lidars and a host of other instruments were deployed. The experiment is a part of an effort to make a new European wind atlas. In this presentation we investigate whether scanning the wind speed over ridges in this complex terrain with multiple Doppler lidars can lead to an efficient mapping of the wind resources at relevant positions. We do that by having pairs of Doppler lidars scanning 80 m above the ridges in Perdigao. We compare wind resources obtained from the lidars and from the mast-mounted sonic anemometers at 80 m on two 100 m masts, one on each of the two ridges. In addition, the scanning lidar measurements are also compared to profiling lidars on the ridges. We take into account the fact that the profiling lidars may be biased due to the curvature of the streamlines over the instrument, see Bingol et al, Meteorolog. Z. vol. 18, pp. 189-195 (2009). We also investigate the impact of interruptions of the lidar measurements on the estimated wind resource. We calculate the relative differences of wind along the ridge from the lidar measurements and compare those to the same obtained from various micro-scale models. A particular subject investigated is how stability affects the wind resources. We often observe internal gravity waves with the scanning lidars during the night and we quantify how these affect the relative wind speed on the ridges.

  17. Evaluating lidar point densities for effective estimation of aboveground biomass

    Science.gov (United States)

    Wu, Zhuoting; Dye, Dennis G.; Stoker, Jason M.; Vogel, John M.; Velasco, Miguel G.; Middleton, Barry R.

    2016-01-01

    The U.S. Geological Survey (USGS) 3D Elevation Program (3DEP) was recently established to provide airborne lidar data coverage on a national scale. As part of a broader research effort of the USGS to develop an effective remote sensing-based methodology for the creation of an operational biomass Essential Climate Variable (Biomass ECV) data product, we evaluated the performance of airborne lidar data at various pulse densities against Landsat 8 satellite imagery in estimating above ground biomass for forests and woodlands in a study area in east-central Arizona, U.S. High point density airborne lidar data, were randomly sampled to produce five lidar datasets with reduced densities ranging from 0.5 to 8 point(s)/m2, corresponding to the point density range of 3DEP to provide national lidar coverage over time. Lidar-derived aboveground biomass estimate errors showed an overall decreasing trend as lidar point density increased from 0.5 to 8 points/m2. Landsat 8-based aboveground biomass estimates produced errors larger than the lowest lidar point density of 0.5 point/m2, and therefore Landsat 8 observations alone were ineffective relative to airborne lidar for generating a Biomass ECV product, at least for the forest and woodland vegetation types of the Southwestern U.S. While a national Biomass ECV product with optimal accuracy could potentially be achieved with 3DEP data at 8 points/m2, our results indicate that even lower density lidar data could be sufficient to provide a national Biomass ECV product with accuracies significantly higher than that from Landsat observations alone.

  18. Four-wavelength lidar evaluation of particle characteristics and aerosol densities

    Science.gov (United States)

    Uthe, E. E.; Livingston, J. M.; Delateur, S. A.; Nielsen, N. B.

    1985-06-01

    The SRI International four-wavelength (0.53, 1.06, 3.8, 10.6 micron) lidar systems was used during the SNOW-ONE-B and Smoke Week XI/SNOW-TWO field experiments to validate its capabilities in assessing obscurant optical and physical properties. The lidar viewed along a horizontal path terminated by a passive reflector. Data examples were analyzed in terms of time-dependent transmission, wavelength dependence of optical depth, and range-resolved extinction coefficients. Three methods were used to derive extinction data from the lidar signatures. These were target method, Klett method and experimental data method. The results of the field and analysis programs are reported in the journal and conference papers that are appended to this report, and include: comparison study of lidar extinction methods, submitted to applied optics, error analysis of lidar solution techniques for range-resolved extinction coefficients based on observational data, smoke/obscurants symposium 9, Four--Wavelength Lidar Measurements from smoke week 6/SNOW-TWO, smoke/obscurants symposium 8, SNOW-ONE-B multiple-wavelength lidar measurements. Snow symposium 3, and lidar applications for obscurant evaluations, smoke/obscurants Symposium 7. The report also provides a summary of background work leading to this project, and of project results.

  19. LIDAR and atmosphere remote sensing

    CSIR Research Space (South Africa)

    Venkataraman, S

    2008-05-01

    Full Text Available using state of the art Light Detection And Ranging (LiDAR) instrumentation and other active and passive remote sensing tools. First “Lidar Field Campaign” • 2-day measurement campaign at University of Pretoria • First 23-hour continuous measurement... head2rightCirrus cloud morphology and dynamics. Atmospheric Research in Southern Africa and Indian Ocean (ARSAIO) Slide 24 © CSIR 2008 www.csir.co.za Middle atmosphere dynamics and thermal structure: comparative studies from...

  20. Underwater lidar system: design challenges and application in pollution detection

    Science.gov (United States)

    Gupta, Pradip; Sankolli, Swati; Chakraborty, A.

    2016-05-01

    The present remote sensing techniques have imposed limitations in the applications of LIDAR Technology. The fundamental sampling inadequacy of the remote sensing data obtained from satellites is that they cannot resolve in the third spatial dimension, the vertical. This limits our possibilities of measuring any vertical variability in the water column. Also the interaction between the physical and biological process in the oceans and their effects at subsequent depths cannot be modeled with present techniques. The idea behind this paper is to introduce underwater LIDAR measurement system by using a LIDAR mounted on an Autonomous Underwater Vehicle (AUV). The paper introduces working principles and design parameters for the LIDAR mounted AUV (AUV-LIDAR). Among several applications the papers discusses the possible use and advantages of AUV-LIDAR in water pollution detection through profiling of Dissolved Organic Matter (DOM) in water bodies.

  1. Quantifying TOLNet Ozone Lidar Accuracy During the 2014 DISCOVER-AQ and FRAPPE Campaigns

    Science.gov (United States)

    Wang, Lihua; Newchurch, Michael J.; Alvarez, Raul J., II; Berkoff, Timothy A.; Brown, Steven S.; Carrion, William; De Young, Russell J.; Johnson, Bryan J.; Ganoe, Rene; Gronoff, Guillaume; hide

    2017-01-01

    The Tropospheric Ozone Lidar Network (TOLNet) is a unique network of lidar systems that measure high-resolution atmospheric profiles of ozone. The accurate characterization of these lidars is necessary to determine the uniformity of the network calibration. From July to August 2014, three lidars, the TROPospheric OZone (TROPOZ) lidar, the Tunable Optical Profiler for Aerosol and oZone (TOPAZ) lidar, and the Langley Mobile Ozone Lidar (LMOL), of TOLNet participated in the Deriving Information on Surface conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) mission and the Front Range Air Pollution and Photochemistry Experiment (FRAPPA) to measure ozone variations from the boundary layer to the top of the troposphere. This study presents the analysis of the intercomparison between the TROPOZ, TOPAZ, and LMOL lidars, along with comparisons between the lidars and other in situ ozone instruments including ozonesondes and a P-3B airborne chemiluminescence sensor. The TOLNet lidars measured vertical ozone structures with an accuracy generally better than +/-15 % within the troposphere. Larger differences occur at some individual altitudes in both the near-field and far-field range of the lidar systems, largely as expected. In terms of column average, the TOLNet lidars measured ozone with an accuracy better than +/-5 % for both the intercomparison between the lidars and between the lidars and other instruments. These results indicate that these three TOLNet lidars are suitable for use in air quality, satellite validation, and ozone modeling efforts.

  2. Assessment and Optimization of Lidar Measurement Availability for Wind Turbine Control: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Davoust, S.; Jehu, A.; Bouillet, M.; Bardon, M.; Vercherin, B.; Scholbrock, A.; Fleming, P.; Wright, A.

    2014-05-01

    Turbine-mounted lidars provide preview measurements of the incoming wind field. By reducing loads on critical components and increasing the potential power extracted from the wind, the performance of wind turbine controllers can be improved [2]. As a result, integrating a light detection and ranging (lidar) system has the potential to lower the cost of wind energy. This paper presents an evaluation of turbine-mounted lidar availability. Availability is a metric which measures the proportion of time the lidar is producing controller-usable data, and is essential when a wind turbine controller relies on a lidar. To accomplish this, researchers from Avent Lidar Technology and the National Renewable Energy Laboratory first assessed and modeled the effect of extreme atmospheric events. This shows how a multirange lidar delivers measurements for a wide variety of conditions. Second, by using a theoretical approach and conducting an analysis of field feedback, we investigated the effects of the lidar setup on the wind turbine. This helps determine the optimal lidar mounting position at the back of the nacelle, and establishes a relationship between availability, turbine rpm, and lidar sampling time. Lastly, we considered the role of the wind field reconstruction strategies and the turbine controller on the definition and performance of a lidar's measurement availability.

  3. Automated integration of lidar into the LANDFIRE product suite

    Science.gov (United States)

    Peterson, Birgit; Nelson, Kurtis; Seielstad, Carl; Stoker, Jason M.; Jolly, W. Matt; Parsons, Russell

    2015-01-01

    Accurate information about three-dimensional canopy structure and wildland fuel across the landscape is necessary for fire behaviour modelling system predictions. Remotely sensed data are invaluable for assessing these canopy characteristics over large areas; lidar data, in particular, are uniquely suited for quantifying three-dimensional canopy structure. Although lidar data are increasingly available, they have rarely been applied to wildland fuels mapping efforts, mostly due to two issues. First, the Landscape Fire and Resource Planning Tools (LANDFIRE) program, which has become the default source of large-scale fire behaviour modelling inputs for the US, does not currently incorporate lidar data into the vegetation and fuel mapping process because spatially continuous lidar data are not available at the national scale. Second, while lidar data are available for many land management units across the US, these data are underutilized for fire behaviour applications. This is partly due to a lack of local personnel trained to process and analyse lidar data. This investigation addresses these issues by developing the Creating Hybrid Structure from LANDFIRE/lidar Combinations (CHISLIC) tool. CHISLIC allows individuals to automatically generate a suite of vegetation structure and wildland fuel parameters from lidar data and infuse them into existing LANDFIRE data sets. CHISLIC will become available for wider distribution to the public through a partnership with the U.S. Forest Service’s Wildland Fire Assessment System (WFAS) and may be incorporated into the Wildland Fire Decision Support System (WFDSS) with additional design and testing. WFAS and WFDSS are the primary systems used to support tactical and strategic wildland fire management decisions.

  4. 2015 USGS Lidar: 3DEP Co-Op South Central MS

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Mississippi Coastal QL2 Lidar with 3DEP Extension Lidar 0.7m NPS Lidar Data Acquisition and Processing Production Task USGS Contract No. G10PC00057 Task Order No....

  5. Lightweight Inexpensive Ozone Lidar Telescope Using a Plastic Fresnel Lens

    Science.gov (United States)

    DeYoung, Russell J.; Notari, Anthony; Carrion, William; Pliutau, Denis

    2014-01-01

    An inexpensive lightweight ozone lidar telescope was designed, constructed and operated during an ozone lidar field campaign. This report summarizes the design parameters and performance of the plastic Fresnel lens telescope and shows the ozone lidar performance compared to Zemax calculations.

  6. An Improved Calibration Method for a Rotating 2D LIDAR System.

    Science.gov (United States)

    Zeng, Yadan; Yu, Heng; Dai, Houde; Song, Shuang; Lin, Mingqiang; Sun, Bo; Jiang, Wei; Meng, Max Q-H

    2018-02-07

    This paper presents an improved calibration method of a rotating two-dimensional light detection and ranging (R2D-LIDAR) system, which can obtain the 3D scanning map of the surroundings. The proposed R2D-LIDAR system, composed of a 2D LIDAR and a rotating unit, is pervasively used in the field of robotics owing to its low cost and dense scanning data. Nevertheless, the R2D-LIDAR system must be calibrated before building the geometric model because there are assembled deviation and abrasion between the 2D LIDAR and the rotating unit. Hence, the calibration procedures should contain both the adjustment between the two devices and the bias of 2D LIDAR itself. The main purpose of this work is to resolve the 2D LIDAR bias issue with a flat plane based on the Levenberg-Marquardt (LM) algorithm. Experimental results for the calibration of the R2D-LIDAR system prove the reliability of this strategy to accurately estimate sensor offsets with the error range from -15 mm to 15 mm for the performance of capturing scans.

  7. Methodology for obtaining wind gusts using Doppler lidar

    DEFF Research Database (Denmark)

    Suomi, Irene; Gryning, Sven-Erik; O'Connor, Ewan J.

    2017-01-01

    reduced the bias in the Doppler lidar gust factors from 0.07 to 0.03 and can be improved further to reduce the bias by using a realistic estimate of turbulence. Wind gust measurements are often prone to outliers in the time series, because they represent the maximum of a (moving-averaged) horizontal wind...... detection also outperformed the traditional Doppler lidar quality assurance method based on carrier-to-noise ratio, by removing additional unrealistic outliers present in the time series.......A new methodology is proposed for scaling Doppler lidar observations of wind gusts to make them comparable with those observed at a meteorological mast. Doppler lidars can then be used to measure wind gusts in regions and heights where traditional meteorological mast measurements are not available...

  8. Detectors for LIDAR type Thomson scattering diagnostics

    International Nuclear Information System (INIS)

    Hirsch, K.

    1991-04-01

    A report on the capability of the microchannel plate photomultiplier type (ITT F4128) presently used at the JET LIDAR Thomson Scattering System is given. Detailed investigation on time response, low noise amplification, shutter ratio, gating behaviour, linear mode of operation and saturation pulse recovery carried out during the design phase for LIDAR are presented. New investigation with respect to dc- and gated operation showed no measurable changes in sensitivity of this MCP photomultiplier. Comparing this type of detector with other MCP photomultipliers and with streak cameras some detection schemes for future LIDAR type diagnostic are proposed. (orig.)

  9. An error reduction algorithm to improve lidar turbulence estimates for wind energy

    Directory of Open Access Journals (Sweden)

    J. F. Newman

    2017-02-01

    Full Text Available Remote-sensing devices such as lidars are currently being investigated as alternatives to cup anemometers on meteorological towers for the measurement of wind speed and direction. Although lidars can measure mean wind speeds at heights spanning an entire turbine rotor disk and can be easily moved from one location to another, they measure different values of turbulence than an instrument on a tower. Current methods for improving lidar turbulence estimates include the use of analytical turbulence models and expensive scanning lidars. While these methods provide accurate results in a research setting, they cannot be easily applied to smaller, vertically profiling lidars in locations where high-resolution sonic anemometer data are not available. Thus, there is clearly a need for a turbulence error reduction model that is simpler and more easily applicable to lidars that are used in the wind energy industry. In this work, a new turbulence error reduction algorithm for lidars is described. The Lidar Turbulence Error Reduction Algorithm, L-TERRA, can be applied using only data from a stand-alone vertically profiling lidar and requires minimal training with meteorological tower data. The basis of L-TERRA is a series of physics-based corrections that are applied to the lidar data to mitigate errors from instrument noise, volume averaging, and variance contamination. These corrections are applied in conjunction with a trained machine-learning model to improve turbulence estimates from a vertically profiling WINDCUBE v2 lidar. The lessons learned from creating the L-TERRA model for a WINDCUBE v2 lidar can also be applied to other lidar devices. L-TERRA was tested on data from two sites in the Southern Plains region of the United States. The physics-based corrections in L-TERRA brought regression line slopes much closer to 1 at both sites and significantly reduced the sensitivity of lidar turbulence errors to atmospheric stability. The accuracy of machine

  10. Moving Beyond 2% Uncertainty: A New Framework for Quantifying Lidar Uncertainty

    Energy Technology Data Exchange (ETDEWEB)

    Newman, Jennifer F.; Clifton, Andrew

    2017-03-08

    Remote sensing of wind using lidar is revolutionizing wind energy. However, current generations of wind lidar are ascribed a climatic value of uncertainty, which is based on a poor description of lidar sensitivity to external conditions. In this presentation, we show how it is important to consider the complete lidar measurement process to define the measurement uncertainty, which in turn offers the ability to define a much more granular and dynamic measurement uncertainty. This approach is a progression from the 'white box' lidar uncertainty method.

  11. The marbll experiment: towards a martian wind lidar

    Directory of Open Access Journals (Sweden)

    Määttänen Anni

    2018-01-01

    Full Text Available Operating a lidar on Mars would fulfill the need of accessing wind and aerosol profiles in the atmospheric boundary layer. This is the purpose of the MARs Boundary Layer Lidar (MARBLL instrument. We report recent developments of this compact direct-detection wind lidar designed to operate from the surface of Mars. A new laser source has been developed and an azimuthal scanning capability has been added. Preliminary results of a field campaign are presented.

  12. Fractal properties and denoising of lidar signals from cirrus clouds

    NARCIS (Netherlands)

    Heuvel, J.C. van den; Driesenaar, M.L.; Lerou, R.J.L.

    2000-01-01

    Airborne lidar signals of cirrus clouds are analyzed to determine the cloud structure. Climate modeling and numerical weather prediction benefit from accurate modeling of cirrus clouds. Airborne lidar measurements of the European Lidar in Space Technology Experiment (ELITE) campaign were analyzed by

  13. On mean wind and turbulence profile measurements from ground-based wind lidars

    DEFF Research Database (Denmark)

    Mikkelsen, Torben

    2009-01-01

    Two types of wind lidar?s have become available for ground-based vertical mean wind and turbulence profiling. A continuous wave (CW) wind lidar, and a pulsed wind lidar. Although they both are build upon the same recent 1.55 μ telecom fibre technology, they possess fundamental differences between...... their temporal and spatial resolution capabilities. A literature review of the two lidar systems spatial and temporal resolution characteristics will be presented, and the implication for the two lidar types vertical profile measurements of mean wind and turbulence in the lower atmospheric boundary layer...

  14. Analysis of inflow parameters using LiDARs

    NARCIS (Netherlands)

    Giyanani, A.H.; Bierbooms, W.A.A.M.; Van Bussel, G.J.W.

    2014-01-01

    Remote sensing of the atmospheric variables with the use of LiDAR is a relatively new technique for wind resource assessment and oncoming wind prediction in wind energy. The validation of LiDAR measurements and comparisons with other sensing elements thus, is of high importance for further

  15. Quantification of Greenhouse Gas Emission Rates from strong Point Sources by Airborne IPDA-Lidar Measurements: Methodology and Experimental Results

    Science.gov (United States)

    Ehret, G.; Amediek, A.; Wirth, M.; Fix, A.; Kiemle, C.; Quatrevalet, M.

    2016-12-01

    We report on a new method and on the first demonstration to quantify emission rates from strong greenhouse gas (GHG) point sources using airborne Integrated Path Differential Absorption (IPDA) Lidar measurements. In order to build trust in the self-reported emission rates by countries, verification against independent monitoring systems is a prerequisite to check the reported budget. A significant fraction of the total anthropogenic emission of CO2 and CH4 originates from localized strong point sources of large energy production sites or landfills. Both are not monitored with sufficiently accuracy by the current observation system. There is a debate whether airborne remote sensing could fill in the gap to infer those emission rates from budgeting or from Gaussian plume inversion approaches, whereby measurements of the GHG column abundance beneath the aircraft can be used to constrain inverse models. In contrast to passive sensors, the use of an active instrument like CHARM-F for such emission verification measurements is new. CHARM-F is a new airborne IPDA-Lidar devised for the German research aircraft HALO for the simultaneous measurement of the column-integrated dry-air mixing ratio of CO2 and CH4 commonly denoted as XCO2 und XCH4, respectively. It has successfully been tested in a serious of flights over Central Europe to assess its performance under various reflectivity conditions and in a strongly varying topography like the Alps. The analysis of a methane plume measured in crosswind direction of a coal mine ventilation shaft revealed an instantaneous emission rate of 9.9 ± 1.7 kt CH4 yr-1. We discuss the methodology of our point source estimation approach and give an outlook on the CoMet field experiment scheduled in 2017 for the measurement of anthropogenic and natural GHG emissions by a combination of active and passive remote sensing instruments on research aircraft.

  16. Lidars as an operational tool for meteorology and advanced atmospheric research

    Science.gov (United States)

    Simeonov, Valentin; Dinoev, Todor; Serikov, Ilya; Froidevaux, Martin; Bartlome, Marcel; Calpini, Bertrand; Bobrovnikov, Sergei; Ristori, Pablo; van den Bergh, Hubert; Parlange, Marc; Archinov, Yury

    2010-05-01

    The talk will present the concept and observation results of three advanced lidar systems developed recently at the Swiss federal Institute of Technology- Lausanne (EPFL) Switzerland. Two of the systems are Raman lidars for simultaneous water vapor, temperature and aerosol observations and the third one is an ozone UV DIAL system. The Ranan lidars use vibrational water vapor and nitrogen signals to derive water vapor mixing ratio and temperature, aerosol extinction and backscatter are measured using pure-rotational Raman and elastic signals. The first Raman lidar (RALMO) is a fully automated, water vapor /temperature/aerosol lidar developed for operational use by the Swiss meteorological office (MeteoSiss). The lidar supplies water vapor mixing ratio and temperature plus aerosol extinction and backscatter coefficients at 355 nm. The operational range of the lidar is 100-7000 m (night time) and 100- 5000 m (daytime) with time resolution of 30 min. The spatial resolution varies with height from 25 to 300 m in order to maintain the maximum measurement error of 10%. The system is designed to provide long-term database with minimal instrument-induced variations in time of the measured parameters. The lidar has been in regular operation in the main aerological station of Meteoswiss- Payerne since September 2008. The second Raman lidar is a new generation, solar-blind system with an operational range 10-500 m and high spatial (1.5 m) and temporal (1 s) resolutions designed for simultaneous humidity, temperature, and aerosol measurements in the lower atmosphere. To maintain the measurement accuracy while operating with fixed spatial and temporal resolution, the receiver is designed to provide lower than ten dynamic range of the signals within the distance range of the lidar. The lidar has 360° azimuth and 240°elevation scanning ability. The lidar was used in two field campaigns aiming to study the structure of the lower atmosphere over complex terrains and, in particular

  17. TOLNet ozone lidar intercomparison during the discover-aq and frappé campaigns

    Science.gov (United States)

    Newchurch, Michael J.; Alvarez, Raul J.; Berkoff, Timothy A.; Carrion, William; DeYoung, Russell J.; Ganoe, Rene; Gronoff, Guillaume; Kirgis, Guillaume; Kuang, Shi; Langford, Andy O.; Leblanc, Thierry; McGee, Thomas J.; Pliutau, Denis; Senff, Christoph; Sullivan, John T.; Sumnicht, Grant; Twigg, Laurence W.; Wang, Lihua

    2018-04-01

    The Tropospheric Ozone Lidar Network (TOLNet) is a unique network of lidar systems that measure atmospheric profiles of ozone and aerosols, to contribute to air-quality studies, atmospheric modeling, and satellite validation efforts. The accurate characterization of these lidars is of critical interest, and is necessary to determine cross-instrument calibration uniformity. From July to August 2014, three lidars, the TROPospheric OZone (TROPOZ) lidar, the Tunable Optical Profiler for Aerosol and oZone (TOPAZ) lidar, and the Langley Mobile Ozone Lidar (LMOL), of TOLNet participated in the "Deriving Information on Surface conditions from Column and Vertically Resolved Observations Relevant to Air Quality" (DISCOVER-AQ) mission and the "Front Range Air Pollution and Photochemistry Éxperiment" (FRAPPÉ) to measure sub-hourly ozone variations from near the surface to the top of the troposphere. Although large differences occur at few individual altitudes in the near field and far field range, the TOLNet lidars agree with each other within ±4%. These results indicate excellent measurement accuracy for the TOLNet lidars that is suitable for use in air-quality and ozone modeling efforts.

  18. Raster Vs. Point Cloud LiDAR Data Classification

    Science.gov (United States)

    El-Ashmawy, N.; Shaker, A.

    2014-09-01

    Airborne Laser Scanning systems with light detection and ranging (LiDAR) technology is one of the fast and accurate 3D point data acquisition techniques. Generating accurate digital terrain and/or surface models (DTM/DSM) is the main application of collecting LiDAR range data. Recently, LiDAR range and intensity data have been used for land cover classification applications. Data range and Intensity, (strength of the backscattered signals measured by the LiDAR systems), are affected by the flying height, the ground elevation, scanning angle and the physical characteristics of the objects surface. These effects may lead to uneven distribution of point cloud or some gaps that may affect the classification process. Researchers have investigated the conversion of LiDAR range point data to raster image for terrain modelling. Interpolation techniques have been used to achieve the best representation of surfaces, and to fill the gaps between the LiDAR footprints. Interpolation methods are also investigated to generate LiDAR range and intensity image data for land cover classification applications. In this paper, different approach has been followed to classifying the LiDAR data (range and intensity) for land cover mapping. The methodology relies on the classification of the point cloud data based on their range and intensity and then converted the classified points into raster image. The gaps in the data are filled based on the classes of the nearest neighbour. Land cover maps are produced using two approaches using: (a) the conventional raster image data based on point interpolation; and (b) the proposed point data classification. A study area covering an urban district in Burnaby, British Colombia, Canada, is selected to compare the results of the two approaches. Five different land cover classes can be distinguished in that area: buildings, roads and parking areas, trees, low vegetation (grass), and bare soil. The results show that an improvement of around 10 % in the

  19. All-Fiber Airborne Coherent Doppler Lidar to Measure Wind Profiles

    Directory of Open Access Journals (Sweden)

    Liu Jiqiao

    2016-01-01

    Full Text Available An all-fiber airborne pulsed coherent Doppler lidar (CDL prototype at 1.54μm is developed to measure wind profiles in the lower troposphere layer. The all-fiber single frequency pulsed laser is operated with pulse energy of 300μJ, pulse width of 400ns and pulse repetition rate of 10kHz. To the best of our knowledge, it is the highest pulse energy of all-fiber eye-safe single frequency laser that is used in airborne coherent wind lidar. The telescope optical diameter of monostatic lidar is 100 mm. Velocity-Azimuth-Display (VAD scanning is implemented with 20 degrees elevation angle in 8 different azimuths. Real-time signal processing board is developed to acquire and process the heterodyne mixing signal with 10000 pulses spectra accumulated every second. Wind profiles are obtained every 20 seconds. Several experiments are implemented to evaluate the performance of the lidar. We have carried out airborne wind lidar experiments successfully, and the wind profiles are compared with aerological theodolite and ground based wind lidar. Wind speed standard error of less than 0.4m/s is shown between airborne wind lidar and balloon aerological theodolite.

  20. Wind field reconstruction from nacelle-mounted lidar short-range measurements

    Directory of Open Access Journals (Sweden)

    A. Borraccino

    2017-05-01

    Full Text Available Profiling nacelle lidars probe the wind at several heights and several distances upstream of the rotor. The development of such lidar systems is relatively recent, and it is still unclear how to condense the lidar raw measurements into useful wind field characteristics such as speed, direction, vertical and longitudinal gradients (wind shear. In this paper, we demonstrate an innovative method to estimate wind field characteristics using nacelle lidar measurements taken within the induction zone. Model-fitting wind field reconstruction techniques are applied to nacelle lidar measurements taken at multiple distances close to the rotor, where a wind model is combined with a simple induction model. The method allows robust determination of free-stream wind characteristics. The method was applied to experimental data obtained with two different types of nacelle lidar (five-beam Demonstrator and ZephIR Dual Mode. The reconstructed wind speed was within 0.5 % of the wind speed measured with a mast-top-mounted cup anemometer at 2.5 rotor diameters upstream of the turbine. The technique described in this paper overcomes measurement range limitations of the currently available nacelle lidar technology.

  1. Comparisons of Simultaneously Acquired Airborne Sfm Photogrammetry and Lidar

    Science.gov (United States)

    Larsen, C. F.

    2014-12-01

    Digital elevation models (DEMs) created using images from a consumer DSLR camera are compared against simultaneously acquired LiDAR on a number of airborne mapping projects across Alaska, California and Utah. The aircraft used is a Cessna 180, and is equipped with the University of Alaska Geophysical Institute (UAF-GI) scanning airborne LiDAR system. This LiDAR is the same as described in Johnson et al, 2013, and is the principal instrument used for NASA's Operation IceBridge flights in Alaska. The system has been in extensive use since 2009, and is particularly well characterized with dozens of calibration flights and a careful program of boresight angle determination and monitoring. The UAF-GI LiDAR has a precision of +/- 8 cm and accuracy of +/- 15 cm. The photogrammetry DEM simultaneously acquired with the LiDAR relies on precise shutter timing using an event marker input to the IMU associated with the LiDAR system. The photo positions are derived from the fully coupled GPS/IMU processing, which samples at 100 Hz and is able to directly calculate the antenna to image plane offset displacements from the full orientation data. This use of the GPS/IMU solution means that both the LiDAR and Cessna 180 photogrammetry DEM share trajectory input data, however no orientation data nor ground control is used for the photorammetry processing. The photogrammetry DEMs are overlaid on the LiDAR point cloud and analyzed for horizontal shifts or warps relative to the LiDAR. No warping or horizontal shifts have been detectable for a number of photogrammetry DEMs. Vertical offsets range from +/- 30 cm, with a typical standard deviation about that mean of 10 cm or better. LiDAR and photogrammetry function inherently differently over trees and brush, and direct comparisons between the two methods show much larger differences over vegetated areas. Finally, the differences in flight patterns associated with the two methods will be discussed, highlighting the photogrammetry

  2. The ITER Thomson scattering core LIDAR diagnostic

    NARCIS (Netherlands)

    Naylor, G.A.; Scannell, R.; Beurskens, M.; Walsh, M.J.; Pastor, I.; Donné, A.J.H.; Snijders, B.; Biel, W.; Meszaros, B.; Giudicotti, L.; Pasqualotto, R.; Marot, L.

    2012-01-01

    The central electron temperature and density of the ITER plasma may be determined by Thomson scattering. A LIDAR topology is proposed in order to minimize the port access required of the ITER vacuum vessel. By using a LIDAR technique, a profile of the electron temperature and density can be

  3. The long term stability of lidar calibrations

    DEFF Research Database (Denmark)

    Courtney, Michael; Gayle Nygaard, Nicolai

    Wind lidars are now used extensively for wind resource measurements. One of the requirements for the data to be accepted in support of project financing (so-called ‘banka-bility’) is to demonstrate the long-term stability of lidar cali-brations. Calibration results for six Leosphere WindCube li...

  4. Calibration of scanning Lidar

    DEFF Research Database (Denmark)

    Gómez Arranz, Paula; Courtney, Michael

    This report describes the tests carried out on a scanning lidar at the DTU Test Station for large wind turbines, Høvsøre. The tests were divided in two parts. In the first part, the purpose was to obtain wind speed calibrations at two heights against two cup anemometers mounted on a mast. Additio......This report describes the tests carried out on a scanning lidar at the DTU Test Station for large wind turbines, Høvsøre. The tests were divided in two parts. In the first part, the purpose was to obtain wind speed calibrations at two heights against two cup anemometers mounted on a mast...

  5. Low-pass parabolic FFT filter for airborne and satellite lidar signal processing.

    Science.gov (United States)

    Jiao, Zhongke; Liu, Bo; Liu, Enhai; Yue, Yongjian

    2015-10-14

    In order to reduce random errors of the lidar signal inversion, a low-pass parabolic fast Fourier transform filter (PFFTF) was introduced for noise elimination. A compact airborne Raman lidar system was studied, which applied PFFTF to process lidar signals. Mathematics and simulations of PFFTF along with low pass filters, sliding mean filter (SMF), median filter (MF), empirical mode decomposition (EMD) and wavelet transform (WT) were studied, and the practical engineering value of PFFTF for lidar signal processing has been verified. The method has been tested on real lidar signal from Wyoming Cloud Lidar (WCL). Results show that PFFTF has advantages over the other methods. It keeps the high frequency components well and reduces much of the random noise simultaneously for lidar signal processing.

  6. Novel Methods for Measuring LiDAR

    Science.gov (United States)

    Ayrey, E.; Hayes, D. J.; Fraver, S.; Weiskittel, A.; Cook, B.; Kershaw, J.

    2017-12-01

    The estimation of forest biometrics from airborne LiDAR data has become invaluable for quantifying forest carbon stocks, forest and wildlife ecology research, and sustainable forest management. The area-based approach is arguably the most common method for developing enhanced forest inventories from LiDAR. It involves taking a series of vertical height measurements of the point cloud, then using those measurements with field measured data to develop predictive models. Unfortunately, there is considerable variation in methodology for collecting point cloud data, which can vary in pulse density, seasonality, canopy penetrability, and instrument specifications. Today there exists a wealth of public LiDAR data, however the variation in acquisition parameters makes forest inventory prediction by traditional means unreliable across the different datasets. The goal of this project is to test a series of novel point cloud measurements developed along a conceptual spectrum of human interpretability, and then to use the best measurements to develop regional enhanced forest inventories on Northern New England's and Atlantic Canada's public LiDAR. Similarly to a field-based inventory, individual tree crowns are being segmented, and summary statistics are being used as covariates. Established competition and structural indices are being generated using each tree's relationship to one another, whilst existing allometric equations are being used to estimate diameter and biomass of each tree measured in the LiDAR. Novel metrics measuring light interception, clusteredness, and rugosity are also being measured as predictors. On the other end of the human interpretability spectrum, convolutional neural networks are being employed to directly measure both the canopy height model, and the point clouds by scanning each using two and three dimensional kernals trained to identify features useful for predicting biological attributes such as biomass. Predictive models will be trained and

  7. New generation lidar systems for eye safe full time observations

    Science.gov (United States)

    Spinhirne, James D.

    1995-01-01

    The traditional lidar over the last thirty years has typically been a big pulse low repetition rate system. Pulse energies are in the 0.1 to 1.0 J range and repetition rates from 0.1 to 10 Hz. While such systems have proven to be good research tools, they have a number of limitations that prevent them from moving beyond lidar research to operational, application oriented instruments. These problems include a lack of eye safety, very low efficiency, poor reliability, lack of ruggedness and high development and operating costs. Recent advances in solid state laser, detectors and data systems have enabled the development of a new generation of lidar technology that meets the need for routine, application oriented instruments. In this paper the new approaches to operational lidar systems will be discussed. Micro pulse lidar (MPL) systems are currently in use, and their technology is highlighted. The basis and current development of continuous wave (CW) lidar and potential of other technical approaches is presented.

  8. An Improved Calibration Method for a Rotating 2D LIDAR System

    Directory of Open Access Journals (Sweden)

    Yadan Zeng

    2018-02-01

    Full Text Available This paper presents an improved calibration method of a rotating two-dimensional light detection and ranging (R2D-LIDAR system, which can obtain the 3D scanning map of the surroundings. The proposed R2D-LIDAR system, composed of a 2D LIDAR and a rotating unit, is pervasively used in the field of robotics owing to its low cost and dense scanning data. Nevertheless, the R2D-LIDAR system must be calibrated before building the geometric model because there are assembled deviation and abrasion between the 2D LIDAR and the rotating unit. Hence, the calibration procedures should contain both the adjustment between the two devices and the bias of 2D LIDAR itself. The main purpose of this work is to resolve the 2D LIDAR bias issue with a flat plane based on the Levenberg–Marquardt (LM algorithm. Experimental results for the calibration of the R2D-LIDAR system prove the reliability of this strategy to accurately estimate sensor offsets with the error range from −15 mm to 15 mm for the performance of capturing scans.

  9. GRIP DOPPLER AEROSOL WIND LIDAR (DAWN) V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GRIP Doppler Aerosol WiNd Lidar (DAWN) Dataset was collected by the Doppler Aerosol WiNd (DAWN), a pulsed lidar, which operated aboard a NASA DC-8 aircraft...

  10. 2009 - 2011 CA Coastal Conservancy Coastal Lidar Project

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Light Detection and Ranging (LiDAR) data is remotely sensed high-resolution elevation data collected by an airborne collection platform. This LiDAR dataset is a...

  11. 2015 Oregon Department Forestry Lidar DEM: Northwest OR

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — GeoTerra, Inc. was selected by Oregon Department of Forestry to provide Lidar remote sensing data including LAZ files of the classified Lidar points and surface...

  12. Aerosol characteristics inversion based on the improved lidar ratio profile with the ground-based rotational Raman-Mie lidar

    Science.gov (United States)

    Ji, Hongzhu; Zhang, Yinchao; Chen, Siying; Chen, He; Guo, Pan

    2018-06-01

    An iterative method, based on a derived inverse relationship between atmospheric backscatter coefficient and aerosol lidar ratio, is proposed to invert the lidar ratio profile and aerosol extinction coefficient. The feasibility of this method is investigated theoretically and experimentally. Simulation results show the inversion accuracy of aerosol optical properties for iterative method can be improved in the near-surface aerosol layer and the optical thick layer. Experimentally, as a result of the reduced insufficiency error and incoherence error, the aerosol optical properties with higher accuracy can be obtained in the near-surface region and the region of numerical derivative distortion. In addition, the particle component can be distinguished roughly based on this improved lidar ratio profile.

  13. What Good is Raman Water Vapor Lidar?

    Science.gov (United States)

    Whitman, David

    2011-01-01

    Raman lidar has been used to quantify water vapor in the atmosphere for various scientific studies including mesoscale meteorology and satellite validation. Now the international networks of NDACC and GRUAN have interest in using Raman water vapor lidar for detecting trends in atmospheric water vapor concentrations. What are the data needs for addressing these very different measurement challenges. We will review briefly the scientific needs for water vapor accuracy for each of these three applications and attempt to translate that into performance specifications for Raman lidar in an effort to address the question in the title of "What good is Raman water vapor Iidar."

  14. Water-vapor absorption line measurements in the 940-nm band by using a Raman-shifted dye laser

    Science.gov (United States)

    Chu, Zhiping; Wilkerson, Thomas D.; Singh, Upendra N.

    1993-01-01

    We report water-vapor absorption line measurements that are made by using the first Stokes radiation (930-982 nm) with HWHM 0.015/cm generated by a narrow-linewidth, tunable dye laser. Forty-five absorption line strengths are measured with an uncertainty of 6 percent and among them are fourteen strong lines that are compared with previous measurements for the assessment of spectral purity of the light source. Thirty air-broadened linewidths are measured with 8 percent uncertainty at ambient atmospheric pressure with an average of 0.101/cm. The lines are selected for the purpose of temperature-sensitive or temperature-insensitive lidar measurements. Results for these line strengths and linewidths are corrected for broadband radiation and finite laser linewidth broadening effects and compared with the high-resolution transmission molecular absorption.

  15. New lidar challenges for gas hazard management in industrial environments

    Science.gov (United States)

    Cézard, Nicolas; Liméry, Anasthase; Bertrand, Johan; Le Méhauté, Simon; Benoit, Philippe; Fleury, Didier; Goular, Didier; Planchat, Christophe; Valla, Matthieu; Augère, Béatrice; Dolfi-Bouteyre, Agnès.

    2017-10-01

    The capability of Lidars to perform range-resolved gas profiles makes them an appealing choice for many applications. In order to address new remote sensing challenges, arising from industrial contexts, Onera currently develops two lidar systems, one Raman and one DIAL. On the Raman side, a high spatial-resolution multi-channel Raman Lidar is developed in partnership with the French National Radioactive Waste Management Agency (Andra). This development aims at enabling future monitoring of hydrogen gas and water vapor profiles inside disposal cells containing radioactive wastes. We report on the development and first tests of a three-channel Raman Lidar (H2, H2O, N2) designed to address this issue. Simultaneous hydrogen and water vapor profiles have been successfully performed along a 5m-long gas cell with 1m resolution at a distance of 85 m. On the DIAL side, a new instrumental concept is being explored and developed in partnership with Total E and P. The objective is to perform methane plume monitoring and flux assessment in the vicinity of industrials plants or platforms. For flux assessment, both gas concentration and air speed must be profiled by lidar. Therefore, we started developing a bi-function, all-fiber, coherent DIAL/Doppler Lidar. The first challenge was to design and build an appropriate fiber laser source. The achieved demonstrator delivers 200 W peak power, polarized, spectrally narrow (<15 MHz), 110 ns pulses of light out of a monomode fiber at 1645 nm. It fulfills the requirements for a future implementation in a bi-function Dial/Doppler lidar with km-range expectation. We report on the laser and lidar architecture, and on first lidar tests at 1645 nm.

  16. Airborne lidar detection of an underwater thermal vent

    Science.gov (United States)

    Roddewig, Michael R.; Churnside, James H.; Shaw, Joseph A.

    2017-07-01

    We report the lidar detection of an underwater feature that appears to be a thermal vent in Yellowstone Lake, Yellowstone National Park, USA, with the Montana State University Fish Lidar. The location of the detected vent was 30 m from the closest vent identified in a United States Geological Survey of Yellowstone Lake in 2008. A second possible vent is also presented, and the appearance of both vents in the lidar data is compared to descriptions of underwater thermal vents in Yellowstone Lake from the geological literature.

  17. Waveform LiDAR across forest biomass gradients

    Science.gov (United States)

    Montesano, P. M.; Nelson, R. F.; Dubayah, R.; Sun, G.; Ranson, J.

    2011-12-01

    Detailed information on the quantity and distribution of aboveground biomass (AGB) is needed to understand how it varies across space and changes over time. Waveform LiDAR data is routinely used to derive the heights of scattering elements in each illuminated footprint, and the vertical structure of vegetation is related to AGB. Changes in LiDAR waveforms across vegetation structure gradients can demonstrate instrument sensitivity to land cover transitions. A close examination of LiDAR waveforms in footprints across a forest gradient can provide new insight into the relationship of vegetation structure and forest AGB. In this study we use field measurements of individual trees within Laser Vegetation Imaging Sensor (LVIS) footprints along transects crossing forest to non-forest gradients to examine changes in LVIS waveform characteristics at sites with low (field AGB measurements to original and adjusted LVIS waveforms to detect the forest AGB interval along a forest - non-forest transition in which the LVIS waveform lose the ability to discern differences in AGB. Our results help identify the lower end the forest biomass range that a ~20m footprint waveform LiDAR can detect, which can help infer accumulation of biomass after disturbances and during forest expansion, and which can guide the use of LiDAR within a multi-sensor fusion biomass mapping approach.

  18. Atmospheric Turbulence Estimates from a Pulsed Lidar

    Science.gov (United States)

    Pruis, Matthew J.; Delisi, Donald P.; Ahmad, Nash'at N.; Proctor, Fred H.

    2013-01-01

    Estimates of the eddy dissipation rate (EDR) were obtained from measurements made by a coherent pulsed lidar and compared with estimates from mesoscale model simulations and measurements from an in situ sonic anemometer at the Denver International Airport and with EDR estimates from the last observation time of the trailing vortex pair. The estimates of EDR from the lidar were obtained using two different methodologies. The two methodologies show consistent estimates of the vertical profiles. Comparison of EDR derived from the Weather Research and Forecast (WRF) mesoscale model with the in situ lidar estimates show good agreement during the daytime convective boundary layer, but the WRF simulations tend to overestimate EDR during the nighttime. The EDR estimates from a sonic anemometer located at 7.3 meters above ground level are approximately one order of magnitude greater than both the WRF and lidar estimates - which are from greater heights - during the daytime convective boundary layer and substantially greater during the nighttime stable boundary layer. The consistency of the EDR estimates from different methods suggests a reasonable ability to predict the temporal evolution of a spatially averaged vertical profile of EDR in an airport terminal area using a mesoscale model during the daytime convective boundary layer. In the stable nighttime boundary layer, there may be added value to EDR estimates provided by in situ lidar measurements.

  19. 2015 OLC FEMA Lidar DEM: Snake River, ID

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Quantum Spatial has collected Light Detection and Ranging (LiDAR) data for the Oregon LiDAR Consortium (OLC) Snake River FEMA study area. This study area is located...

  20. 2012 NOAA Fisheries Topographic Lidar: Bridge Creek, Oregon

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set is an LAZ (compressed LAS) format file containing LIDAR point cloud data. This data set is an LAZ (compressed LAS) format file containing LIDAR point...

  1. Landslides Mapped from LIDAR Imagery, Kitsap County, Washington

    Science.gov (United States)

    McKenna, Jonathan P.; Lidke, David J.; Coe, Jeffrey A.

    2008-01-01

    Landslides are a recurring problem on hillslopes throughout the Puget Lowland, Washington, but can be difficult to identify in the densely forested terrain. However, digital terrain models of the bare-earth surface derived from LIght Detection And Ranging (LIDAR) data express topographic details sufficiently well to identify landslides. Landslides and escarpments were mapped using LIDAR imagery and field checked (when permissible and accessible) throughout Kitsap County. We relied almost entirely on derivatives of LIDAR data for our mapping, including topographic-contour, slope, and hill-shaded relief maps. Each mapped landslide was assigned a level of 'high' or 'moderate' confidence based on the LIDAR characteristics and on field observations. A total of 231 landslides were identified representing 0.8 percent of the land area of Kitsap County. Shallow debris topples along the coastal bluffs and large (>10,000 m2) landslide complexes are the most common types of landslides. The smallest deposit mapped covers an area of 252 m2, while the largest covers 0.5 km2. Previous mapping efforts that relied solely on field and photogrammetric methods identified only 57 percent of the landslides mapped by LIDAR (61 percent high confidence and 39 percent moderate confidence), although nine landslides previously identified were not mapped during this study. The remaining 43 percent identified using LIDAR have 13 percent high confidence and 87 percent moderate confidence. Coastal areas are especially susceptible to landsliding; 67 percent of the landslide area that we mapped lies within 500 meters of the present coastline. The remaining 33 percent are located along drainages farther inland. The LIDAR data we used for mapping have some limitations including (1) rounding of the interface area between low slope surfaces and vertical faces (that is, along the edges of steep escarpments) which results in scarps being mapped too far headward (one or two meters), (2) incorrect laser

  2. Optical Backscattering Measured by Airborne Lidar and Underwater Glider

    Directory of Open Access Journals (Sweden)

    James H. Churnside

    2017-04-01

    Full Text Available The optical backscattering from particles in the ocean is an important quantity that has been measured by remote sensing techniques and in situ instruments. In this paper, we compare estimates of this quantity from airborne lidar with those from an in situ instrument on an underwater glider. Both of these technologies allow much denser sampling of backscatter profiles than traditional ship surveys. We found a moderate correlation (R = 0.28, p < 10−5, with differences that are partially explained by spatial and temporal sampling mismatches, variability in particle composition, and lidar retrieval errors. The data suggest that there are two different regimes with different scattering properties. For backscattering coefficients below about 0.001 m−1, the lidar values were generally greater than the glider values. For larger values, the lidar was generally lower than the glider. Overall, the results are promising and suggest that airborne lidar and gliders provide comparable and complementary information on optical particulate backscattering.

  3. 2013 Puget Sound LiDAR Consortium (PSLC) Topographic LiDAR: Nooksack

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In July 2012, WSI (Watershed Sciences, Inc.) was contracted by the Puget Sound LiDARConsortium (PSLC) to collect Light Detection and Ranging (LiDAR) data on a...

  4. 2013 Puget Sound LiDAR Consortium (PSLC) Topographic LiDAR: Entiat

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In October 2012, WSI (Watershed Sciences, Inc.) was contracted by the Puget Sound LiDARConsortium (PSLC) to collect Light Detection and Ranging (LiDAR) data for the...

  5. A spinner-integrated wind lidar for enhanced wind turbine control

    DEFF Research Database (Denmark)

    Mikkelsen, Torben; Angelou, Nikolas; Hansen, Kasper Hjorth

    2013-01-01

    A field test with a continuous wave wind lidar (ZephIR) installed in the rotating spinner of a wind turbine for unimpeded preview measurements of the upwind approaching wind conditions is described. The experimental setup with the wind lidar on the tip of the rotating spinner of a large 80 m roto...... of the spinner lidar data, is investigated. Finally, the potential for enhancing turbine control and performance based on wind lidar preview measurements in combination with feed-forward enabled turbine controllers is discussed. Copyright © 2012 John Wiley & Sons, Ltd....

  6. Turbulence measurement with a two-beam nacelle lidar

    DEFF Research Database (Denmark)

    Wagner, Rozenn; Sathe, Ameya; Mioullet, A.

    The analysis of the turbulence intensity measurement is performed for a lidar measuring horizontally with two beams. First the turbulence intensity measured by such a system was evaluated theoretically. The Mann model of turbulence was used to evaluate the true value of the turbulence intensity...... of the wind speed and the main effects of the lidar measurement principles on turbulence intensity measurement were modeled: - A lidar senses the wind speed over the probe volume acting as a low pass-filter and thus cannot resolve high frequency turbulence; - The horizontal wind speed is retrieved from...... the combination of the radial speeds measured along two line-of-sights with different orientations; this results in the contamination of the lidar turbulence intensity measurement from the transverse component of the wind field. Secondly, the theoretical results were compared to experimental measurements. A two...

  7. Fusion of LiDAR and aerial imagery for the estimation of downed tree volume using Support Vector Machines classification and region based object fitting

    Science.gov (United States)

    Selvarajan, Sowmya

    The study classifies 3D small footprint full waveform digitized LiDAR fused with aerial imagery to downed trees using Support Vector Machines (SVM) algorithm. Using small footprint waveform LiDAR, airborne LiDAR systems can provide better canopy penetration and very high spatial resolution. The small footprint waveform scanner system Riegl LMS-Q680 is addition with an UltraCamX aerial camera are used to measure and map downed trees in a forest. The various data preprocessing steps helped in the identification of ground points from the dense LiDAR dataset and segment the LiDAR data to help reduce the complexity of the algorithm. The haze filtering process helped to differentiate the spectral signatures of the various classes within the aerial image. Such processes, helped to better select the features from both sensor data. The six features: LiDAR height, LiDAR intensity, LiDAR echo, and three image intensities are utilized. To do so, LiDAR derived, aerial image derived and fused LiDAR-aerial image derived features are used to organize the data for the SVM hypothesis formulation. Several variations of the SVM algorithm with different kernels and soft margin parameter C are experimented. The algorithm is implemented to classify downed trees over a pine trees zone. The LiDAR derived features provided an overall accuracy of 98% of downed trees but with no classification error of 86%. The image derived features provided an overall accuracy of 65% and fusion derived features resulted in an overall accuracy of 88%. The results are observed to be stable and robust. The SVM accuracies were accompanied by high false alarm rates, with the LiDAR classification producing 58.45%, image classification producing 95.74% and finally the fused classification producing 93% false alarm rates The Canny edge correction filter helped control the LiDAR false alarm to 35.99%, image false alarm to 48.56% and fused false alarm to 37.69% The implemented classifiers provided a powerful tool for

  8. Optical analysis of trapped Gas—Gas in Scattering Media Absorption Spectroscopy

    Science.gov (United States)

    Svanberg, S.

    2010-01-01

    An overview of the new field of Gas in Scattering Media Absorption Spectroscopy (GASMAS) is presented. The technique investigates sharp gas spectral signatures, typically 10000 times sharper than those of the host material, in which the gas is trapped in pores or cavities. The presence of pores causes strong multiple scattering. GASMAS combines narrow-band diode-laser spectroscopy, developed for atmospheric gas monitoring, with diffuse media optical propagation, well-known from biomedical optics. Several applications in materials science, food packaging, pharmaceutics and medicine have been demonstrated. So far molecular oxygen and water vapour have been studied around 760 and 935 nm, respectively. Liquid water, an important constituent in many natural materials, such as tissue, has a low absorption at such wavelengths, and this is also true for haemoglobin, making propagation possible in many natural materials. Polystyrene foam, wood, fruits, food-stuffs, pharmaceutical tablets, and human sinus cavities (frontal, maxillary and mastoideal) have been studied, demonstrating new possibilities for characterization and diagnostics. Transport of gas in porous media (diffusion) can be studied by first subjecting the material to, e.g., pure nitrogen, and then observing the rate at which normal, oxygen-containing air, reinvades the material. The conductance of the passages connecting a sinus with the nasal cavity can be objectively assessed by observing the oxygen gas dynamics when flushing the nose with nitrogen. Drying of materials, when liquid water is replaced by air and water vapour, is another example of dynamic processes which can be studied. The technique has also been extended to remote-sensing applications (LIDAR-GASMAS or Multiple-Scattering LIDAR).

  9. Research and development of commercial lidar systems in romania: critical review of the ESYRO lidar systems developed by sc enviroscopy SRL (ESYRO)

    Science.gov (United States)

    Mihai Cazacu, Marius; Tudose, Ovidiu; Balanici, Dragos; Balin, Ioan

    2018-04-01

    This paper is shortly presenting the two basic lidar system configurations respectively a micro-lidar and a multi-wavelength lidar systems developed by SC EnviroScopY SRL (ESYRO) from Iasi - Romania in the last decade. Furthermore in addition to the comparative analysis of the two technical configurations the examples of various tests and the capability of the two systems to perform are here presented. Measurements samples of aerosols, clouds, PBL, depolarization and Saharan dust are also illustrated.

  10. LIDAR Thomson scattering

    International Nuclear Information System (INIS)

    1991-07-01

    This collection contains 21 papers on the application and development of LIDAR (Light Detection and Ranging) Thomson scattering techniques for the determination of spatially resolved electron temperature and density in magnetic confinement experiments, particularly tokamaks. Refs, figs and tabs

  11. Lidar 2009 - IMG

    Data.gov (United States)

    Kansas Data Access and Support Center — ESRI Grids 1 meter resolution are created from the ground classified lidar points. The tiles are delivered in 5,000m by 5,000m tiles. The ESRI grids are exported to...

  12. Project ABLE: (Atmospheric Balloonborne Lidar Experiment)

    Science.gov (United States)

    Shepherd, O.; Aurilio, G.; Bucknam, R. D.; Hurd, A. G.; Sheehan, W. H.

    1985-03-01

    Project ABLE (Atmospheric Balloonborne Lidar Experiment) is part of the A.F. Geophysics Laboratory's continuing interest in developing techniques for making remote measurements of atmospheric quantities such as density, pressure, temperatures, and wind motions. The system consists of a balloonborne lidar payload designed to measure neutral molecular density as a function of altitude from ground level to 70 km. The lidar provides backscatter data at the doubled and tripled frequencies of a Nd:YAG laser, which will assist in the separation of the molecular and aerosol contributions and subsequent determination of molecular and aerosol contributions and subsequent determination of molecular density vs altitude. The object of this contract was to fabricate and operate in a field test a balloonborne lidar experiment capable of performing nighttime atmospheric density measurements up to 70 km altitude with a resolution of 150 meters. The payload included a frequency-doubled and -tripled Nd:YAG laser with outputs at 355 and 532 nm; a telescoped receiver with PMT detectors; a command-controlled optical pointing system; and support system, including thermal control, telmetry, command, and power. Successful backscatter measurements were made during field operations which included a balloon launch from Roswell, NM and a flight over the White Sands Missile Range.

  13. Optimum efficiency lidar sensing of multilayer hydrometeors through a turbid atmosphere

    Science.gov (United States)

    Evgenieva, Ts T.; Gurdev, L. L.

    2018-03-01

    The detected lidar return power is a basic factor determining the brightness of the detected lidar images and the signal-to-noise ratio (SNR) of a given measurement. At equal other characteristics, the laser radiation wavelength should influence the lidar return signal and assume an optimum value depending on the specificity of the objects investigated. As such a problem had not been considered systematically, we recently began developing a modeling approach to solving it, based on evaluating the mean and the noisy lidar profiles and the SNR profile of the measurement along the lidar line of sight by using the lidar equation and well known realistic models of the atmospheric objects and background. The main purpose of the present work is to estimate by numerical modeling the detectability of the lidar return from different distances and multilayer cirrus clouds, depending on the laser radiation wavelengths. The results obtained confirm the expectations that at a higher atmospheric turbidity, a relatively higher sensing efficiency (return power) is achievable by longer-wavelength laser radiation, within the NIR range.

  14. Application of a multiple scattering model to estimate optical depth, lidar ratio and ice crystal effective radius of cirrus clouds observed with lidar.

    Science.gov (United States)

    Gouveia, Diego; Baars, Holger; Seifert, Patric; Wandinger, Ulla; Barbosa, Henrique; Barja, Boris; Artaxo, Paulo; Lopes, Fabio; Landulfo, Eduardo; Ansmann, Albert

    2018-04-01

    Lidar measurements of cirrus clouds are highly influenced by multiple scattering (MS). We therefore developed an iterative approach to correct elastic backscatter lidar signals for multiple scattering to obtain best estimates of single-scattering cloud optical depth and lidar ratio as well as of the ice crystal effective radius. The approach is based on the exploration of the effect of MS on the molecular backscatter signal returned from above cloud top.

  15. 2006 OSIP OGRIP: Upland Counties LiDAR Survey

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The 2006 OSIP digital LiDAR data was collected during the months of March and May (leaf-off conditions). The LiDAR covers the entire land area of the northern tier...

  16. Augmented Reality Based Doppler Lidar Data Visualization: Promises and Challenges

    Directory of Open Access Journals (Sweden)

    Cherukuru N. W.

    2016-01-01

    As a proof of concept, we used the lidar data from a recent field campaign and developed a smartphone application to view the lidar scan in augmented reality. In this paper, we give a brief methodology of this feasibility study, present the challenges and promises of using AR technology in conjunction with Doppler wind lidars.

  17. a Universal De-Noising Algorithm for Ground-Based LIDAR Signal

    Science.gov (United States)

    Ma, Xin; Xiang, Chengzhi; Gong, Wei

    2016-06-01

    Ground-based lidar, working as an effective remote sensing tool, plays an irreplaceable role in the study of atmosphere, since it has the ability to provide the atmospheric vertical profile. However, the appearance of noise in a lidar signal is unavoidable, which leads to difficulties and complexities when searching for more information. Every de-noising method has its own characteristic but with a certain limitation, since the lidar signal will vary with the atmosphere changes. In this paper, a universal de-noising algorithm is proposed to enhance the SNR of a ground-based lidar signal, which is based on signal segmentation and reconstruction. The signal segmentation serving as the keystone of the algorithm, segments the lidar signal into three different parts, which are processed by different de-noising method according to their own characteristics. The signal reconstruction is a relatively simple procedure that is to splice the signal sections end to end. Finally, a series of simulation signal tests and real dual field-of-view lidar signal shows the feasibility of the universal de-noising algorithm.

  18. Tropospheric ozone seasonal and long-term variability as seen by lidar and surface measurements at the JPL-Table Mountain Facility, California

    Directory of Open Access Journals (Sweden)

    M. J. Granados-Muñoz

    2016-07-01

    Full Text Available A combined surface and tropospheric ozone climatology and interannual variability study was performed for the first time using co-located ozone photometer measurements (2013–2015 and tropospheric ozone differential absorption lidar measurements (2000–2015 at the Jet Propulsion Laboratory Table Mountain Facility (TMF; elev. 2285 m, in California. The surface time series were investigated both in terms of seasonal and diurnal variability. The observed surface ozone is typical of high-elevation remote sites, with small amplitude of the seasonal and diurnal cycles, and high ozone values, compared to neighboring lower altitude stations representative of urban boundary layer conditions. The ozone mixing ratio ranges from 45 ppbv in the winter morning hours to 65 ppbv in the spring and summer afternoon hours. At the time of the lidar measurements (early night, the seasonal cycle observed at the surface is similar to that observed by lidar between 3.5 and 9 km. Above 9 km, the local tropopause height variation with time and season impacts significantly the ozone lidar observations. The frequent tropopause folds found in the vicinity of TMF (27 % of the time, mostly in winter and spring produce a dual-peak vertical structure in ozone within the fold layer, characterized by higher-than-average values in the bottom half of the fold (12–14 km, and lower-than-averaged values in the top half of the fold (14–18 km. This structure is consistent with the expected origin of the air parcels within the fold, i.e., mid-latitude stratospheric air folding down below the upper tropospheric sub-tropical air. The influence of the tropopause folds extends down to 5 km, increasing the ozone content in the troposphere. No significant signature of interannual variability could be observed on the 2000–2015 de-seasonalized lidar time series, with only a statistically non-significant positive anomaly during the years 2003–2007. Our trend analysis

  19. Alexandrite Lidar Receiver

    National Research Council Canada - National Science Library

    Wilkerson, Thomas

    2000-01-01

    ...". The chosen vendor, Orca Photonics, In. (Redmond, WA), in close collaboration with USU personnel, built a portable, computerized lidar system that not only is suitable as a receiver for a near IR alexandrite laser, but also contains an independent Nd...

  20. 2015 USGS Lidar DEM: 3DEP Co-Op South Central MS

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Mississippi Coastal QL2 Lidar with 3DEP Extension Lidar 0.7m NPS Lidar Data Acquisition and Processing Production Task USGS Contract No. G10PC00057 Task Order No....

  1. LiDAR utility for natural resource managers

    Science.gov (United States)

    Andrew Thomas Hudak; Jeffrey Scott Evans; Alistair Mattthew Stuart. Smith

    2009-01-01

    Applications of LiDAR remote sensing are exploding, while moving from the research to the operational realm. Increasingly, natural resource managers are recognizing the tremendous utility of LiDAR-derived information to make improved decisions. This review provides a cross-section of studies, many recent, that demonstrate the relevance of LiDAR across a suite of...

  2. Suwannee River Water Management District Lidar: Falmouth (FL)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Light Detection and Ranging (LiDAR) dataset is a survey of the Suwannee River G12PD00242 1.0 Meter LiDAR Survey area 5 in north-central Florida and encompasses...

  3. 2011 Puget Sound LiDAR Consortium (PSLC) Topographic LiDAR: Rattlesnake

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Watershed Sciences, Inc. (WSI) collected Light Detection and Ranging (LiDAR) data on six days between September 15th and November 5th, and from November 6th - 13th,...

  4. Application of a multiple scattering model to estimate optical depth, lidar ratio and ice crystal effective radius of cirrus clouds observed with lidar.

    Directory of Open Access Journals (Sweden)

    Gouveia Diego

    2018-01-01

    Full Text Available Lidar measurements of cirrus clouds are highly influenced by multiple scattering (MS. We therefore developed an iterative approach to correct elastic backscatter lidar signals for multiple scattering to obtain best estimates of single-scattering cloud optical depth and lidar ratio as well as of the ice crystal effective radius. The approach is based on the exploration of the effect of MS on the molecular backscatter signal returned from above cloud top.

  5. Study on environmental test technology of LiDAR used for vehicle

    Science.gov (United States)

    Wang, Yi; Yang, Jianfeng; Ou, Yong

    2018-03-01

    With the development of intelligent driving, the LiDAR used for vehicle plays an important role in it, in some extent LiDAR is the key factor of intelligent driving. And environmental adaptability is one critical factor of quality, it relates success or failure of LiDAR. This article discusses about the environment and its effects on LiDAR used for vehicle, it includes analysis of any possible environment that vehicle experiences, and environmental test design.

  6. Voxel-Based LIDAR Analysis and Applications

    Science.gov (United States)

    Hagstrom, Shea T.

    One of the greatest recent changes in the field of remote sensing is the addition of high-quality Light Detection and Ranging (LIDAR) instruments. In particular, the past few decades have been greatly beneficial to these systems because of increases in data collection speed and accuracy, as well as a reduction in the costs of components. These improvements allow modern airborne instruments to resolve sub-meter details, making them ideal for a wide variety of applications. Because LIDAR uses active illumination to capture 3D information, its output is fundamentally different from other modalities. Despite this difference, LIDAR datasets are often processed using methods appropriate for 2D images and that do not take advantage of its primary virtue of 3-dimensional data. It is this problem we explore by using volumetric voxel modeling. Voxel-based analysis has been used in many applications, especially medical imaging, but rarely in traditional remote sensing. In part this is because the memory requirements are substantial when handling large areas, but with modern computing and storage this is no longer a significant impediment. Our reason for using voxels to model scenes from LIDAR data is that there are several advantages over standard triangle-based models, including better handling of overlapping surfaces and complex shapes. We show how incorporating system position information from early in the LIDAR point cloud generation process allows radiometrically-correct transmission and other novel voxel properties to be recovered. This voxelization technique is validated on simulated data using the Digital Imaging and Remote Sensing Image Generation (DIRSIG) software, a first-principles based ray-tracer developed at the Rochester Institute of Technology. Voxel-based modeling of LIDAR can be useful on its own, but we believe its primary advantage is when applied to problems where simpler surface-based 3D models conflict with the requirement of realistic geometry. To

  7. Lidars for Wind Tunnels - an IRPWind Joint Experiment Project

    DEFF Research Database (Denmark)

    Sjöholm, Mikael; Vignaroli, Andrea; Angelou, Nikolas

    2017-01-01

    Measurement campaigns with continuous-wave Doppler Lidars (Light detection and ranging) developed at DTU Wind Energy in Denmark were performed in two very different wind tunnels. Firstly, a measurement campaign in a small icing wind tunnel chamber at VTT in Finland was performed with high frequency...... used in blind test comparisons for wind turbine wake modelers. These Lidar measurement activities constitute the Joint Experiment Project” L4WT - Lidars for Wind Tunnels, with applications to wakes and atmospheric icing in a prospective Nordic Network” with the aim of gaining and sharing knowledge...... about possibilities and limitations with lidar instrumentation in wind tunnels, which was funded by the IRPWind project within the community of the European Energy Research Alliance (EERA) Joint Programme on Wind Energy....

  8. Assessing Structure and Condition of Temperate And Tropical Forests: Fusion of Terrestrial Lidar and Airborne Multi-Angle and Lidar Remote Sensing

    Science.gov (United States)

    Saenz, Edward J.

    Forests provide vital ecosystem functions and services that maintain the integrity of our natural and human environment. Understanding the structural components of forests (extent, tree density, heights of multi-story canopies, biomass, etc.) provides necessary information to preserve ecosystem services. Increasingly, remote sensing resources have been used to map and monitor forests globally. However, traditional satellite and airborne multi-angle imagery only provide information about the top of the canopy and little about the forest structure and understory. In this research, we investigative the use of rapidly evolving lidar technology, and how the fusion of aerial and terrestrial lidar data can be utilized to better characterize forest stand information. We further apply a novel terrestrial lidar methodology to characterize a Hemlock Woolly Adelgid infestation in Harvard Forest, Massachusetts, and adapt a dynamic terrestrial lidar sampling scheme to identify key structural vegetation profiles of tropical rainforests in La Selva, Costa Rica.

  9. Saver.net lidar network in southern South America

    Science.gov (United States)

    Ristori, Pablo; Otero, Lidia; Jin, Yoshitaka; Barja, Boris; Shimizu, Atsushi; Barbero, Albane; Salvador, Jacobo; Bali, Juan Lucas; Herrera, Milagros; Etala, Paula; Acquesta, Alejandro; Quel, Eduardo; Sugimoto, Nobuo; Mizuno, Akira

    2018-04-01

    The South American Environmental Risk Management Network (SAVER-Net) is an instrumentation network, mainly composed by lidars, to provide real-time information for atmospheric hazards and risk management purposes in South America. This lidar network have been developed since 2012 and all its sampling points are expected to be fully implemented by 2017. This paper describes the network's status and configuration, the data acquisition and processing scheme (protocols and data levels), as well as some aspects of the scientific networking in Latin American Lidar Network (LALINET). Similarly, the paper lays out future plans on the operation and integration to major international collaborative efforts.

  10. Halo mass dependence of H I and O VI absorption: evidence for differential kinematics

    Energy Technology Data Exchange (ETDEWEB)

    Mathes, Nigel L.; Churchill, Christopher W.; Nielsen, Nikole M.; Trujillo-Gomez, Sebastian [New Mexico State University, Las Cruces, NM 88003 (United States); Kacprzak, Glenn G. [Swinburne University of Technology, Victoria 3122 (Australia); Charlton, Jane; Muzahid, Sowgat [The Pennsylvania State University, University Park, PA 16802 (United States)

    2014-09-10

    We studied a sample of 14 galaxies (0.1 < z < 0.7) using HST/WFPC2 imaging and high-resolution HST/COS or HST/STIS quasar spectroscopy of Lyα, Lyβ, and O VI λλ1031, 1037 absorption. The galaxies, having 10.8 ≤ log (M {sub h}/M {sub ☉}) ≤ 12.2, lie within D = 300 kpc of quasar sightlines, probing out to D/R {sub vir} = 3. When the full range of M {sub h} and D/R {sub vir} of the sample are examined, ∼40% of the H I absorbing clouds can be inferred to be escaping their host halo. The fraction of bound clouds decreases as D/R {sub vir} increases such that the escaping fraction is ∼15% for D/R {sub vir} < 1, ∼45% for 1 ≤ D/R {sub vir} < 2, and ∼90% for 2 ≤ D/R {sub vir} < 3. Adopting the median mass log M {sub h}/M {sub ☉} = 11.5 to divide the sample into 'higher' and 'lower' mass galaxies, we find a mass dependency for the hot circumgalactic medium kinematics. To our survey limits, O VI absorption is found in only ∼40% of the H I clouds in and around lower mass halos as compared to ∼85% around higher mass halos. For D/R {sub vir} < 1, lower mass halos have an escape fraction of ∼65%, whereas higher mass halos have an escape fraction of ∼5%. For 1 ≤ D/R {sub vir} < 2, the escape fractions are ∼55% and ∼35% for lower mass and higher mass halos, respectively. For 2 ≤ D/R {sub vir} < 3, the escape fraction for lower mass halos is ∼90%. We show that it is highly likely that the absorbing clouds reside within 4R {sub vir} of their host galaxies and that the kinematics are dominated by outflows. Our finding of 'differential kinematics' is consistent with the scenario of 'differential wind recycling' proposed by Oppenheimer et al. We discuss the implications for galaxy evolution, the stellar to halo mass function, and the mass-metallicity relationship of galaxies.

  11. Comparison of Two Independent LIDAR-Based Pitch Control Designs

    Energy Technology Data Exchange (ETDEWEB)

    Dunne, F.; Schlipf, D.; Pao, L. Y.

    2012-08-01

    Two different lidar-based feedforward controllers have previously been designed for the NREL 5 MW wind turbine model under separate studies. Feedforward controller A uses a finite-impulse-response design, with 5 seconds of preview, and three rotating lidar measurements. Feedforward controller B uses a static-gain design, with the preview time defined by the pitch actuator dynamics, a simulation of a real nacelle-based scanning lidar system, and a lowpass filter defined by the lidar configuration. These controllers are now directly compared under the same lidar configuration, in terms of fatigue load reduction, rotor speed regulation, and power capture. The various differences in design choices are discussed and compared. We also compare frequency plots of individual pitch feedforward and collective pitch feedforward load reductions, and we see that individual pitch feedforward is effective mainly at the once-per-revolution and twice-per-revolution frequencies. We also explain how to determine the required preview time by breaking it down into separate parts, and we then compare it to the expected preview time available.

  12. Complex Urban LiDAR Data Set

    OpenAIRE

    Jeong, Jinyong; Cho, Younggun; Shin, Young-Sik; Roh, Hyunchul; Kim, Ayoung

    2018-01-01

    This paper presents a Light Detection and Ranging (LiDAR) data set that targets complex urban environments. Urban environments with high-rise buildings and congested traffic pose a significant challenge for many robotics applications. The presented data set is unique in the sense it is able to capture the genuine features of an urban environment (e.g. metropolitan areas, large building complexes and underground parking lots). Data of two-dimensional (2D) and threedimensional (3D) LiDAR, which...

  13. 2005 Puget Sound LiDAR Consortium (PSLC) Topographic LiDAR: Lewis County

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Terrapoint collected Light Detection and Ranging (LiDAR) data for the Lewis County project of 2005. The project site covered approximately 223 square miles, divided...

  14. Study on the influence of attitude angle on lidar wind measurement results

    Science.gov (United States)

    Han, Xiaochen; Dou, Peilin; Xue, Yangyang

    2017-11-01

    When carrying on wind profile measurement of offshore wind farm by shipborne Doppler lidar technique, the ship platform often produces motion response under the action of ocean environment load. In order to measure the performance of shipborne lidar, this paper takes two lidar wind measurement results as the research object, simulating the attitude of the ship in the ocean through the three degree of freedom platform, carrying on the synchronous observation test of the wind profile, giving an example of comparing the wind measurement data of two lidars, and carrying out the linear regression statistical analysis for all the experimental correlation data. The results show that the attitude angle will affect the precision of the lidar, The influence of attitude angle on the accuracy of lidar is uncertain. It is of great significance to the application of shipborne Doppler lidar wind measurement technology in the application of wind resources assessment in offshore wind power projects.

  15. LiDAR Vegetation Investigation and Signature Analysis System (LVISA)

    Science.gov (United States)

    Höfle, Bernhard; Koenig, Kristina; Griesbaum, Luisa; Kiefer, Andreas; Hämmerle, Martin; Eitel, Jan; Koma, Zsófia

    2015-04-01

    Our physical environment undergoes constant changes in space and time with strongly varying triggers, frequencies, and magnitudes. Monitoring these environmental changes is crucial to improve our scientific understanding of complex human-environmental interactions and helps us to respond to environmental change by adaptation or mitigation. The three-dimensional (3D) description of the Earth surface features and the detailed monitoring of surface processes using 3D spatial data have gained increasing attention within the last decades, such as in climate change research (e.g., glacier retreat), carbon sequestration (e.g., forest biomass monitoring), precision agriculture and natural hazard management. In all those areas, 3D data have helped to improve our process understanding by allowing quantifying the structural properties of earth surface features and their changes over time. This advancement has been fostered by technological developments and increased availability of 3D sensing systems. In particular, LiDAR (light detection and ranging) technology, also referred to as laser scanning, has made significant progress and has evolved into an operational tool in environmental research and geosciences. The main result of LiDAR measurements is a highly spatially resolved 3D point cloud. Each point within the LiDAR point cloud has a XYZ coordinate associated with it and often additional information such as the strength of the returned backscatter. The point cloud provided by LiDAR contains rich geospatial, structural, and potentially biochemical information about the surveyed objects. To deal with the inherently unorganized datasets and the large data volume (frequently millions of XYZ coordinates) of LiDAR datasets, a multitude of algorithms for automatic 3D object detection (e.g., of single trees) and physical surface description (e.g., biomass) have been developed. However, so far the exchange of datasets and approaches (i.e., extraction algorithms) among LiDAR users

  16. Lidar 2009 - All Returns

    Data.gov (United States)

    Kansas Data Access and Support Center — LIDAR-derived binary (.las) files containing classified points of all returns. We have 3 classifications Unclassified, Ground, Low points. The average Ground Sample...

  17. Measurements of stratospheric Pinatubo aerosol extinction profiles by a Raman lidar

    International Nuclear Information System (INIS)

    Abo, Makoto; Nagasawa, Chikao.

    1992-01-01

    The Raman lidar has been used for remote measurements of water vapor, ozone and atmospheric temperature in the lower troposphere because the Raman cross section is three orders smaller than the Rayleigh cross section. The authors estimated the extinction coefficients of the Pinatubo volcanic aerosol in the stratosphere using a Raman lidar. If the precise aerosol extinction coefficients are derived, the backscatter coefficient of a Mie scattering lidar will be more accurately estimated. The Raman lidar has performed to measure density profiles of some species using Raman scattering. Here the authors used a frequency-doubled Nd:YAG laser for transmitter and received nitrogen vibrational Q-branch Raman scattering signal. Ansmann et al. (1990) derived tropospherical aerosol extinction profiles with a Raman lidar. The authors think that this method can apply to dense stratospheric aerosols such as Pinatubo volcanic aerosols. As dense aerosols are now accumulated in the stratosphere by Pinatubo volcanic eruption, the error of Ramen lidar signal regarding the fluctuation of air density can be ignored

  18. 2005 Puget Sound LiDAR Consortium (PSLC) Topographic LiDAR: Olympic Peninsula

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Terrapoint collected Light Detection and Ranging (LiDAR) data for the Olympic Peninsula project of 2005, totaling approximately 114.59 sq mi: 24.5 for Clallam...

  19. Design validation of an eye-safe scanning aerosol lidar with the Center for Lidar and Atmospheric Sciences Students (CLASS) at Hampton University

    Science.gov (United States)

    Richter, Dale A.; Higdon, N. S.; Ponsardin, Patrick L.; Sanchez, David; Chyba, Thomas H.; Temple, Doyle A.; Gong, Wei; Battle, Russell; Edmondson, Mika; Futrell, Anne; Harper, David; Haughton, Lincoln; Johnson, Demetra; Lewis, Kyle; Payne-Baggott, Renee S.

    2002-01-01

    ITTs Advanced Engineering and Sciences Division and the Hampton University Center for Lidar and Atmospheric Sciences Students (CLASS) team have worked closely to design, fabricate and test an eye-safe, scanning aerosol-lidar system that can be safely deployed and used by students form a variety of disciplines. CLASS is a 5-year undergraduate- research training program funded by NASA to provide hands-on atmospheric-science and lidar-technology education. The system is based on a 1.5 micron, 125 mJ, 20 Hz eye-safe optical parametric oscillator (OPO) and will be used by the HU researchers and students to evaluate the biological impact of aerosols, clouds, and pollution a variety of systems issues. The system design tasks we addressed include the development of software to calculate eye-safety levels and to model lidar performance, implementation of eye-safety features in the lidar transmitter, optimization of the receiver using optical ray tracing software, evaluation of detectors and amplifiers in the near RI, test of OPO and receiver technology, development of hardware and software for laser and scanner control and video display of the scan region.

  20. LIDAR Products, State of Rhode Island: LIDAR for the North East – ARRA and LiDAR for the North East Part II; LiDAR was collected in the Winter and Spring 2011 at a 1 meter or better nominal post spacing (1m GSD) for approximately 1,074 square miles of Rhode Island, whi, Published in 2012, 1:9600 (1in=800ft) scale, Rhode Island and Providence Plantations.

    Data.gov (United States)

    NSGIC State | GIS Inventory — LIDAR Products dataset current as of 2012. State of Rhode Island: LIDAR for the North East – ARRA and LiDAR for the North East Part II; LiDAR was collected in the...

  1. The new scanning iron lidar, current state and future developments

    Science.gov (United States)

    Lautenbach, J.; Höffner, J.; Menzel, P.; Keller, P.

    2005-08-01

    This paper gives an update on the design and developments of the new scanning Doppler iron temperature lidar. Continuous temperature profiles in the altitude range from 50 to 105 km are derived by using the iron resonance and Rayleigh backscatter signal of this lidar. We show a common volume measurement with the well established potassium and Rayleigh-Mie-Raman (RMR) lidar at the Leibniz-Institute of Atmospheric Physics (IAP) in Kühlungsborn (Germany, 54°N). The iron lidar temperatures match quite well and have an uncertainty of 0.4K at the top of the iron layer. Improvements for daylight capability are under development and will be pointed out.

  2. 2006 FEMA New Jersey Flood Mitigation Lidar: Highlands Area

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Light Detection and Ranging (LiDAR) data is remotely sensed high-resolution elevation data collected by an airborne collection platform. LiDAR was flown for...

  3. 2010 USGS Lidar: Southeastern Michigan (Hillsdale, Jackson, Lenawee Counties)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TASK NAME: Lake Erie LiDAR Priority Area 1 LiDAR Data Acquisition and Processing Production Task- Jackson, Hillsdale, and Lenawee Counties USGS Contract No....

  4. Differential Absorption Lidar (DIAL) Measurements of Atmospheric Water Vapor Utilizing Robotic Aircraft

    Science.gov (United States)

    Hoang, Ngoc; DeYoung, Russell J.; Prasad, Coorg R.; Laufer, Gabriel

    1998-01-01

    A new unpiloted air vehicle (UAV) based water vapor DIAL system will be described. This system is expected to offer lower operating costs, longer test duration and severe weather capabilities. A new high-efficiency, compact, light weight, diode-pumped, tunable Cr:LiSAF laser will be developed to meet the UAV payload weight and size limitations and its constraints in cooling capacity, physical size and payload. Similarly, a new receiver system using a single mirror telescope and an avalanche photo diode (APD) will be developed. Projected UAV parameters are expected to allow operation at altitudes up to 20 km, endurance of 24 hrs and speed of 400 km/hr. At these conditions measurements of water vapor at an uncertainty of 2-10% with a vertical resolution of 200 m and horizontal resolution of 10 km will be possible.

  5. Investigation of turbulence measurements with a continuous wave, conically scanning LiDAR

    DEFF Research Database (Denmark)

    Wagner, Rozenn; Mikkelsen, Torben; Courtney, Michael

    averaging is done in two steps: 1) the weighted averaging of the wind speed in the probe volume of the laser beam; 2) the averaging of the wind speeds occurring on the circular path described by the conically scanning lidar. Therefore the standard deviation measured by a lidar resolves only the turbulence...... of a continuous wave, conically scanning Zephir lidar. First, the wind speed standard deviation measured by such a lidar gives on average 80% of the standard deviation measured by a cup anemometer. This difference is due to the spatial averaging inherently made by a cw conically scanning lidar. The spatial...

  6. Aerosol and cloud observations from the Lidar In-space Technology Experiment

    Science.gov (United States)

    Winker, D. M.

    1995-01-01

    The Lidar In-Space Technology Experiment (LITE) is a backscatter lidar built by NASA Langley Research Center to fly on the Space Shuttle. The purpose of the program was to develop the engineering processes required for space lidar and to demonstrate applications of space lidar to remote sensing of the atmosphere. The instrument was flown on Discovery in September 1994. Global observations of clouds and aerosols were made between the latitudes of 57 deg N and 57 deg S during 10 days of the mission.

  7. Time series analysis of continuous-wave coherent Doppler Lidar wind measurements

    DEFF Research Database (Denmark)

    Sjöholm, Mikael; Mikkelsen, Torben; Mann, Jakob

    2008-01-01

    The influence of spatial volume averaging of a focused 1.55 mu m continuous-wave coherent Doppler Lidar on observed wind turbulence measured in the atmospheric surface layer over homogeneous terrain is described and analysed. Comparison of Lidar-measured turbulent spectra with spectra simultaneou......The influence of spatial volume averaging of a focused 1.55 mu m continuous-wave coherent Doppler Lidar on observed wind turbulence measured in the atmospheric surface layer over homogeneous terrain is described and analysed. Comparison of Lidar-measured turbulent spectra with spectra...

  8. Lidar-based Research and Innovation at DTU Wind Energy - a Review

    Science.gov (United States)

    Mikkelsen, T.

    2014-06-01

    As wind turbines during the past decade have increased in size so have the challenges met by the atmospheric boundary-layer meteorologists and the wind energy society to measure and characterize the huge-volume wind fields surpassing and driving them. At the DTU Wind Energy test site "Østerild" for huge wind turbines, the hub-height of a recently installed 8 MW Vestas V164 turbine soars 143 meters up above the ground, and its rotor of amazing 164 meters in diameter make the turbine tips flicker 225 meters into the sky. Following the revolution in photonics-based telecommunication at the turn of the Millennium new fibre-based wind lidar technologies emerged and DTU Wind Energy, at that time embedded within Rise National Laboratory, began in collaboration with researchers from wind lidar companies to measure remote sensed wind profiles and turbulence structures within the atmospheric boundary layer with the emerging, at that time new, all-fibre-based 1.55 μ coherent detection wind lidars. Today, ten years later, DTU Wind Energy routinely deploys ground-based vertical profilers instead of met masts for high-precision measurements of mean wind profiles and turbulence profiles. At the departments test site "Høvsøre" DTU Wind Energy also routinely calibrate and accredit wind lidar manufactures wind lidars. Meanwhile however, new methodologies for power curve assessment based on ground-based and nacelle based lidars have also emerged. For improving the turbines power curve assessments and for advancing their control with feed-forward wind measurements experience has also been gained with wind lidars installed on turbine nacelles and integrated into the turbines rotating spinners. A new mobile research infrastructure WindScanner.dk has also emerged at DTU Wind Energy. Wind and turbulence fields are today scanned from sets of three simultaneously in space and time synchronized scanning lidars. One set consists of three fast scanning continuous-wave based wind lidars

  9. Toepassingen van de LIDAR-meettechniek in atmosferisch onderzoek

    NARCIS (Netherlands)

    Salemink; H.W.M.; Maanen; E.A.van*

    1985-01-01

    De ontwikkeling van de menglaaghoogte kan zeer wel met lidar gevolgd worden. De resultaten komen overeen met die verkregen met een klassieke acdar-opstelling. Het nadeel van acdar is echter dat deze de menglaaghoogte tot maximaal 600 m kan volgen, terwijl lidar een bereik van 3 km ruimschoots

  10. 2003 Oahu Coastline Lidar

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — LIDAR data is remotely sensed high-resolution elevation data collected by an airborne collection platform. Using a combination of laser rangefinding, GPS positioning...

  11. Eye-safe diode laser Doppler lidar with a MEMS beam-scanner

    DEFF Research Database (Denmark)

    Hu, Qi; Pedersen, Christian; Rodrigo, Peter John

    2016-01-01

    We present a novel Doppler lidar that employs a cw diode laser operating at 1.5 μm and a micro-electro-mechanical-system scanning mirror (MEMS-SM). In this work, two functionalities of the lidar system are demonstrated. Firstly, we describe the capability to effectively steer the lidar probe beam...

  12. Bayfield Co. QL2 LiDAR (2015-16) - DEM

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Bayfield County lidar project area covers approximately 1681 square miles plus a 100 meter buffer around the county boundary. The lidar data was acquired at a...

  13. Manitowoc Co. QL2 LiDAR (2015-16) - DEM

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Manitowoc County lidar project area covers approximately 602 square miles plus a 100 meter buffer around the county boundary. The lidar data was acquired at a...

  14. DOAS (differential optical absorption spectroscopy) urban pollution measurements

    Science.gov (United States)

    Stevens, Robert K.; Vossler, T. L.

    1991-05-01

    During July and August of 1990, a differential optical absorption spectrometer (DOAS) made by OPSIS Inc. was used to measure gaseous air pollutants over three separate open paths in Atlanta, GA. Over path 1 (1099 m) and path 2 (1824 m), ozone (03), sulfur dioxide (SO2) nitrogen dioxide (NO2), nitrous acid (HNO2) formaldehyde (HCHO), benzene, toluene, and o-xylene were measured. Nitric oxide (NO) and ammonia (NH3) were monitored over path 3 (143 m). The data quality and data capture depended on the compound being measured and the path over which it was measured. Data quality criteria for each compound were chosen such that the average relative standard deviation would be less than 25%. Data capture ranged from 43% for o-xylene for path 1 to 95% for ozone for path 2. Benzene, toluene, and o-xylene concentrations measured over path 2, which crossed over an interstate highway, were higher than concentrations measured over path 1, implicating emissions from vehicles on the highway as a significant source of these compounds. Federal Reference Method (FRN) instruments were located near the DOAS light receivers and measurements of 03, NO2, and NO were made concurrently with the DOAS. Correlation coefficients greater than 0.85 were obtained between the DOAS and FRM's; however, there was a difference between the mean values obtained by the two methods for 03 and NO. A gas chromatograph for measuring volatile organic compounds was operated next to the FRN's. Correlation coefficients of about 0.66 were obtained between the DOAS and GC measurements of benzene and o- xylene. However, the correlation coefficient between the DOAS and GC measurements of toluene averaged only 0.15 for the two DOAS measurement paths. The lack of correlation and other factors indicate the possibility of a localized source of toluene near the GC. In general, disagreements between the two measurement methods could be caused by atmospheric inhomogeneities or interferences in the DOAS and other methods.

  15. Saver.net lidar network in southern South America

    Directory of Open Access Journals (Sweden)

    Ristori Pablo

    2018-01-01

    Full Text Available The South American Environmental Risk Management Network (SAVER-Net is an instrumentation network, mainly composed by lidars, to provide real-time information for atmospheric hazards and risk management purposes in South America. This lidar network have been developed since 2012 and all its sampling points are expected to be fully implemented by 2017. This paper describes the network’s status and configuration, the data acquisition and processing scheme (protocols and data levels, as well as some aspects of the scientific networking in Latin American Lidar Network (LALINET. Similarly, the paper lays out future plans on the operation and integration to major international collaborative efforts.

  16. LiDAR error estimation with WAsP engineering

    DEFF Research Database (Denmark)

    Bingöl, Ferhat; Mann, Jakob; Foussekis, D.

    2008-01-01

    The LiDAR measurements, vertical wind profile in any height between 10 to 150m, are based on assumption that the measured wind is a product of a homogenous wind. In reality there are many factors affecting the wind on each measurement point which the terrain plays the main role. To model Li......DAR measurements and predict possible error in different wind directions for a certain terrain we have analyzed two experiment data sets from Greece. In both sites LiDAR and met. mast data have been collected and the same conditions are simulated with Riso/DTU software, WAsP Engineering 2.0. Finally measurement...

  17. Urban forest topographical mapping using UAV LIDAR

    Science.gov (United States)

    Putut Ash Shidiq, Iqbal; Wibowo, Adi; Kusratmoko, Eko; Indratmoko, Satria; Ardhianto, Ronni; Prasetyo Nugroho, Budi

    2017-12-01

    Topographical data is highly needed by many parties, such as government institution, mining companies and agricultural sectors. It is not just about the precision, the acquisition time and data processing are also carefully considered. In relation with forest management, a high accuracy topographic map is necessary for planning, close monitoring and evaluating forest changes. One of the solution to quickly and precisely mapped topography is using remote sensing system. In this study, we test high-resolution data using Light Detection and Ranging (LiDAR) collected from unmanned aerial vehicles (UAV) to map topography and differentiate vegetation classes based on height in urban forest area of University of Indonesia (UI). The semi-automatic and manual classifications were applied to divide point clouds into two main classes, namely ground and vegetation. There were 15,806,380 point clouds obtained during the post-process, in which 2.39% of it were detected as ground.

  18. Turbulence characterization from a forward-looking nacelle lidar

    DEFF Research Database (Denmark)

    Peña, Alfredo; Mann, Jakob; Dimitrov, Nikolay Krasimirov

    2017-01-01

    of lidars were installed on the nacelle of a wind turbine. Comparison of the lidar-based along-wind unfiltered variances with those from a cup anemometer installed on a meteorological mast close to the turbine shows a bias of just 2 %. The ratios of the unfiltered and filtered radial velocity variances...

  19. Remote sensing of sulphur dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Hamilton, P M [Central Electricity Research Lab., Leatherhead, England; Varey, R H; Millan, M M

    1978-01-01

    A discussion showed that only correlation spectrometry and differential lidar are sensitive enough to measure trace amounts of SO/sub 2/. The correlation spectrometer measures line integrals of concentration, or burdens, by analyzing incident uv radiation for absorption by SO/sub 2/. It has been widely used to measure vertical burdens against a skylight background and emission rates from traverses of a plume near its source, which are limited by the accuracy of the associated wind speed rather than by the spectrometer. Comprehensive measurements of horizontal dispersion and its dependence on times of travel and sampling have also been obtained from traverses farther downwind. The differential lidar provides range-resolved measurements of concentration by reflecting pulses of laser light at two wavelengths with different absorption coefficients from particles along the line of sight. It offers a sensitivity of a few ppB to ranges over 1 km with resolution in space and time of 1000 m and 10 sec. The instrument has already been demonstrated in prototype form and is now being developed for operational use. Table, graphs, and 39 references are included.

  20. EARLINET Single Calculus Chain - technical - Part 1: Pre-processing of raw lidar data

    Science.gov (United States)

    D'Amico, Giuseppe; Amodeo, Aldo; Mattis, Ina; Freudenthaler, Volker; Pappalardo, Gelsomina

    2016-02-01

    In this paper we describe an automatic tool for the pre-processing of aerosol lidar data called ELPP (EARLINET Lidar Pre-Processor). It is one of two calculus modules of the EARLINET Single Calculus Chain (SCC), the automatic tool for the analysis of EARLINET data. ELPP is an open source module that executes instrumental corrections and data handling of the raw lidar signals, making the lidar data ready to be processed by the optical retrieval algorithms. According to the specific lidar configuration, ELPP automatically performs dead-time correction, atmospheric and electronic background subtraction, gluing of lidar signals, and trigger-delay correction. Moreover, the signal-to-noise ratio of the pre-processed signals can be improved by means of configurable time integration of the raw signals and/or spatial smoothing. ELPP delivers the statistical uncertainties of the final products by means of error propagation or Monte Carlo simulations. During the development of ELPP, particular attention has been payed to make the tool flexible enough to handle all lidar configurations currently used within the EARLINET community. Moreover, it has been designed in a modular way to allow an easy extension to lidar configurations not yet implemented. The primary goal of ELPP is to enable the application of quality-assured procedures in the lidar data analysis starting from the raw lidar data. This provides the added value of full traceability of each delivered lidar product. Several tests have been performed to check the proper functioning of ELPP. The whole SCC has been tested with the same synthetic data sets, which were used for the EARLINET algorithm inter-comparison exercise. ELPP has been successfully employed for the automatic near-real-time pre-processing of the raw lidar data measured during several EARLINET inter-comparison campaigns as well as during intense field campaigns.

  1. Laser safety in design of near-infrared scanning LIDARs

    Science.gov (United States)

    Zhu, X.; Elgin, D.

    2015-05-01

    3D LIDARs (Light Detection and Ranging) with 1.5μm nanosecond pulse lasers have been increasingly used in different applications. The main reason for their popularity is that these LIDARs have high performance while at the same time can be made eye-safe. Because the laser hazard effect on eyes or skin at this wavelength region (industrial mining applications. We have incorporated the laser safety requirements in the LIDAR design and conducted laser safety analysis for different operational scenarios. While 1.5μm is normally said to be the eye-safe wavelength, in reality a high performance 3D LIDAR needs high pulse energy, small beam size and high pulse repetition frequency (PRF) to achieve long range, high resolution and high density images. The resulting radiant exposure of its stationary beam could be many times higher than the limit for a Class 1 laser device. Without carefully choosing laser and scanning parameters, including field-of-view, scan speed and pattern, a scanning LIDAR can't be eye- or skin-safe based only on its wavelength. This paper discusses the laser safety considerations in the design of eye-safe scanning LIDARs, including laser pulse energy, PRF, beam size and scanning parameters in two basic designs of scanning mechanisms, i.e. galvanometer based scanner and Risley prism based scanner. The laser safety is discussed in terms of device classification, nominal ocular hazard distance (NOHD) and safety glasses optical density (OD).

  2. 2014 U.S. Geological Survey CMGP LiDAR: Post Sandy (New Jersey)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TASK NAME: USGS New Jersey CMGP Sandy Lidar 0.7 Meter NPS LIDAR lidar Data Acquisition and Processing Production Task USGS Contract No. G10PC00057 Task Order No....

  3. Design of differential optical absorption spectroscopy long-path telescopes based on fiber optics.

    Science.gov (United States)

    Merten, André; Tschritter, Jens; Platt, Ulrich

    2011-02-10

    We present a new design principle of telescopes for use in the spectral investigation of the atmosphere and the detection of atmospheric trace gases with the long-path differential optical absorption spectroscopy (DOAS) technique. A combination of emitting and receiving fibers in a single bundle replaces the commonly used coaxial-Newton-type combination of receiving and transmitting telescope. This very simplified setup offers a higher light throughput and simpler adjustment and allows smaller instruments, which are easier to handle and more portable. The higher transmittance was verified by ray-tracing calculations, which result in a theoretical factor threefold improvement in signal intensity compared with the old setup. In practice, due to the easier alignment and higher stability, up to factor of 10 higher signal intensities were found. In addition, the use of a fiber optic light source provides a better spectral characterization of the light source, which results in a lower detection limit for trace gases studied with this instrument. This new design will greatly enhance the usability and the range of applications of active DOAS instruments.

  4. Meteorology and lidar data from the URAHFREP field trials

    DEFF Research Database (Denmark)

    Ott, Søren; Ejsing Jørgensen, Hans

    2002-01-01

    to the HF release. The instrumentation included various types of HF sensors, thermocouple arrays, a fully instrumented release rig, a passive smokemachine, a meteorological mast and a lidar backscatter system. This report deals exclusively with the meteorological data and the lidar data. The trials cover...... a range meteorological conditions. These include neutral conditions with relatively highwindspeed and low humidity as well as unstable conditions with low windspeed and high humidity, the most favorable conditions for lift-off to occur. The lidar was used to scan vertical cross-plume slices 100 meter...

  5. 2014 USGS CMGP Lidar: Post Sandy (Long Island, NY)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TASK NAME: Long Island New York Sandy LIDAR lidar Data Acquisition and Processing Production Task USGS Contract No. G10PC00057 Task Order No. G14PD00296 Woolpert...

  6. Quantification of Greenhouse Gas Emission Rates from strong Point Sources by Space-borne IPDA Lidar Measurements: Results from a Sensitivity Analysis Study

    Science.gov (United States)

    Ehret, G.; Kiemle, C.; Rapp, M.

    2017-12-01

    The practical implementation of the Paris Agreement (COP21) vastly profit from an independent, reliable and global measurement system of greenhouse gas emissions, in particular of CO2, in order to complement and cross-check national efforts. Most fossil-fuel CO2 emitters emanate from large sources such as cities and power plants. These emissions increase the local CO2 abundance in the atmosphere by 1-10 parts per million (ppm) which is a signal that is significantly larger than the variability from natural sources and sinks over the local source domain. Despite these large signals, they are only sparsely sampled by the ground-based network which calls for satellite measurements. However, none of the existing and forthcoming passive satellite instruments, operating in the NIR spectral domain, can measure CO2 emissions at night time or in low sunlight conditions and in high latitude regions in winter times. The resulting sparse coverage of passive spectrometers is a serious limitation, particularly for the Northern Hemisphere, since these regions exhibit substantial emissions during the winter as well as other times of the year. In contrast, CO2 measurements by an Integrated Path Differential Absorption (IPDA) Lidar are largely immune to these limitations and initial results from airborne application look promising. In this study, we discuss the implication for a space-borne IPDA Lidar system. A Gaussian plume model will be used to simulate the CO2-distribution of large power plants downstream to the source. The space-borne measurements are simulated by applying a simple forward model based on Gaussian error distribution. Besides the sampling frequency, the sampling geometry (e.g. measurement distance to the emitting source) and the error of the measurement itself vastly impact on the flux inversion performance. We will discuss the results by incorporating Gaussian plume and mass budget approaches to quantify the emission rates.

  7. 2005 Puget Sound LiDAR Consortium (PSLC) Topographic LiDAR: Lower Columbia River

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Terrapoint, on behalf of multiple agencies, collected topographic lidar of the Lower Columbia River area. Field data collection took place between the dates of...

  8. Effect of multiple scattering on lidar measurements

    International Nuclear Information System (INIS)

    Cohen, A.

    1977-01-01

    The lidar equation in its standard form involves the assumption that the scattered irradiance reaching the lidar receiver has been only singly scattered. However, in the cases of scattering from clouds and thick aerosol layers, it is shown that multiple scattering cannot be neglected. An experimental method for the detection of multiple scattering by depolarization measurement techniques is discussed. One method of theoretical calculations of double-scattering is presented and discussed

  9. A new air quality modelling approach at the regional scale using lidar data assimilation

    International Nuclear Information System (INIS)

    Wang, Y.

    2013-01-01

    Assimilation of lidar observations for air quality modelling is investigated via the development of a new model, which assimilates ground-based lidar network measurements using optimal interpolation (OI) in a chemistry transport model. First, a tool for assimilating PM 10 (particulate matter with a diameter lower than 10 μm) concentration measurements on the vertical is developed in the air quality modelling platform POLYPHEMUS. It is applied to western Europe for one month from 15 July to 15 August 2001 to investigate the potential impact of future ground-based lidar networks on analysis and short-term forecasts (the description of the future) of PM 10 . The efficiency of assimilating lidar network measurements is compared to the efficiency of assimilating concentration measurements from the AirBase ground network, which includes about 500 stations in western Europe. A sensitivity study on the number and location of required lidars is also performed to help define an optimal lidar network for PM 10 forecasts. Secondly, a new model for simulating normalised lidar signals (PR 2 ) is developed and integrated in POLYPHEMUS. Simulated lidar signals are compared to hourly ground-based mobile and in-situ lidar observations performed during the MEGAPOLI (Mega-cities: Emissions, urban, regional and Global Atmospheric Pollution and climate effects, and Integrated tools for assessment and mitigation) summer experiment in July 2009. It is found that the model correctly reproduces the vertical distribution of aerosol optical properties and their temporal variability. Additionally, two new algorithms for assimilating lidar signals are presented and evaluated during MEGAPOLI. The aerosol simulations without and with lidar data assimilation are evaluated using the AIRPARIF (a regional operational network in charge of air quality survey around the Paris area) database to demonstrate the feasibility and the usefulness of assimilating lidar profiles for aerosol forecasts. Finally

  10. 2013 Suwannee River Water Management District Lidar: Greenville (FL)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Light Detection and Ranging (LiDAR) dataset is a survey of Suwannee River G12PD00242 1.0 Meter LiDAR Survey Area 3, Classified Point Cloud, in north-central...

  11. Wayne and Washtenaw Counties 1.0 PPSM LiDAR

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TASK NAME: Wayne and Washtenaw Counties 1.0 PPSM LiDAR LiDAR Data Acquisition and Processing Production Task USGS CONTRACT: 07CRCN0006 TASK ORDER NUMBER: G09PD00300...

  12. 2013 Suwannee River Water Management District Lidar: Bell (FL)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Light Detection and Ranging (LiDAR) dataset is a survey of Suwannee River G13PD00141 1.0 Meter LiDAR Survey Area 4, Classified Point Cloud, in north-central...

  13. 2013 Suwannee River Water Management District Lidar: Mayo (FL)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Light Detection and Ranging (LiDAR) dataset is a survey of Suwannee River G12PD00242 1.0 Meter LiDAR Survey Area 4, Classified Point Cloud, in north-central...

  14. 2013 Suwannee River Water Management District Lidar: Obrien (FL)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Light Detection and Ranging (LiDAR) dataset is a survey of Suwannee River G13PD00141 1.0 Meter LiDAR Survey Area 1, Classified Point Cloud, in north-central...

  15. 2004 Puget Sound LiDAR Consortium (PSLC) Topographic LiDAR: Portland, Oregon

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The all returns ASCII files contain the X,Y,Z values of all the LiDAR returns collected during the survey mission. In addition each return also has a time stamp,...

  16. LIDAR TS for ITER core plasma. Part II: simultaneous two wavelength LIDAR TS

    Science.gov (United States)

    Gowers, C.; Nielsen, P.; Salzmann, H.

    2017-12-01

    We have shown recently, and in more detail at this conference (Salzmann et al) that the LIDAR approach to ITER core TS measurements requires only two mirrors in the inaccessible port plug area of the machine. This leads to simplified and robust alignment, lower risk of mirror damage by plasma contamination and much simpler calibration, compared with the awkward and vulnerable optical geometry of the conventional imaging TS approach, currently under development by ITER. In the present work we have extended the simulation code used previously to include the case of launching two laser pulses, of different wavelengths, simultaneously in LIDAR geometry. The aim of this approach is to broaden the choice of lasers available for the diagnostic. In the simulation code it is assumed that two short duration (300 ps) laser pulses of different wavelengths, from an Nd:YAG laser are launched through the plasma simultaneously. The temperature and density profiles are deduced in the usual way but from the resulting combined scattered signals in the different spectral channels of the single spectrometer. The spectral response and quantum efficiencies of the detectors used in the simulation are taken from catalogue data for commercially available Hamamatsu MCP-PMTs. The response times, gateability and tolerance to stray light levels of this type of photomultiplier have already been demonstrated in the JET LIDAR system and give sufficient spatial resolution to meet the ITER specification. Here we present the new simulation results from the code. They demonstrate that when the detectors are combined with this two laser, LIDAR approach, the full range of the specified ITER core plasma Te and ne can be measured with sufficient accuracy. So, with commercially available detectors and a simple modification of a Nd:YAG laser similar to that currently being used in the design of the conventional ITER core TS design mentioned above, the ITER requirements can be met.

  17. Characterizing the Vertical Distribution of Aerosols using Ground-based Multiwavelength Lidar Data

    Science.gov (United States)

    Ferrare, R. A.; Thorsen, T. J.; Clayton, M.; Mueller, D.; Chemyakin, E.; Burton, S. P.; Goldsmith, J.; Holz, R.; Kuehn, R.; Eloranta, E. W.; Marais, W.; Newsom, R. K.; Liu, X.; Sawamura, P.; Holben, B. N.; Hostetler, C. A.

    2016-12-01

    Observations of aerosol optical and microphysical properties are critical for developing and evaluating aerosol transport model parameterizations and assessing global aerosol-radiation impacts on climate. During the Combined HSRL And Raman lidar Measurement Study (CHARMS), we investigated the synergistic use of ground-based Raman lidar and High Spectral Resolution Lidar (HSRL) measurements to retrieve aerosol properties aloft. Continuous (24/7) operation of these co-located lidars during the ten-week CHARMS mission (mid-July through September 2015) allowed the acquisition of a unique, multiwavelength ground-based lidar dataset for studying aerosol properties above the Southern Great Plains (SGP) site. The ARM Raman lidar measured profiles of aerosol backscatter, extinction and depolarization at 355 nm as well as profiles of water vapor mixing ratio and temperature. The University of Wisconsin HSRL simultaneously measured profiles of aerosol backscatter, extinction and depolarization at 532 nm and aerosol backscatter at 1064 nm. Recent advances in both lidar retrieval theory and algorithm development demonstrate that vertically-resolved retrievals using such multiwavelength lidar measurements of aerosol backscatter and extinction can help constrain both the aerosol optical (e.g. complex refractive index, scattering, etc.) and microphysical properties (e.g. effective radius, concentrations) as well as provide qualitative aerosol classification. Based on this work, the NASA Langley Research Center (LaRC) HSRL group developed automated algorithms for classifying and retrieving aerosol optical and microphysical properties, demonstrated these retrievals using data from the unique NASA/LaRC airborne multiwavelength HSRL-2 system, and validated the results using coincident airborne in situ data. We apply these algorithms to the CHARMS multiwavelength (Raman+HSRL) lidar dataset to retrieve aerosol properties above the SGP site. We present some profiles of aerosol effective

  18. The Micro-Pulse Lidar Network (MPLNET): A Federated Network of Micro-pulse Lidars and AERONET Sunphotometers

    Science.gov (United States)

    Welton, Ellsworth J.; Campbell, James R.; Spinhirne, James D.; Berkoff, Timothy A.; Holben, Brent; Tsay, Si-Chee

    2004-01-01

    We present the formation of a new global-ground based eye-safe lidar network, the NASA Micro-Pulse Lidar Network (MPLNET). The aim of MPLNET is to acquire long- term observations of aerosol and cloud vertical profiles at unique geographic sites within the NASA Aerosol Robotic Network (AERONET). MPLNET utilizes standard instrumentation and data processing algorithms for efficient network operations and direct comparison of data between each site. The micro-pulse lidar is eye-safe, compact, and commercially available, and most easily allows growth of the network without sacrificing standardized instrumentation goals. Network growth follows a federated approach, pioneered by AERONET, wherein independent research groups may join MPLNET with their own instrument and site. MPLNET sites produce not only vertical profile data, but also column-averaged products already available from AERONET (aerosol optical depth, sky radiance, size distributions). Algorithms are presented for each MPLNET data product. Real-time Level 1 data products (next-day) include daily lidar signal images from the surface to -2Okm, and Level 1.5 aerosol extinction profiles at times co-incident with AERONET observations. Quality assured Level 2 aerosol extinction profiles are generated after screening the Level 1.5 results and removing bad data. Level 3 products include continuous day/night aerosol extinction profiles, and are produced using Level 2 calibration data. Rigorous uncertainty calculations are presented for all data products. Analysis of MPLNET data show the MPL and our analysis routines are capable of successfully retrieving aerosol profiles, with the strenuous accounting of uncertainty necessary for accurate interpretation of the results.

  19. Remote Sensing Global Surface Air Pressure Using Differential Absorption BArometric Radar (DiBAR)

    Science.gov (United States)

    Lin, Bing; Harrah, Steven; Lawrence, Wes; Hu, Yongxiang; Min, Qilong

    2016-01-01

    Tropical storms and severe weathers are listed as one of core events that need improved observations and predictions in World Meteorological Organization and NASA Decadal Survey (DS) documents and have major impacts on public safety and national security. This effort tries to observe surface air pressure, especially over open seas, from space using a Differential-absorption BArometric Radar (DiBAR) operating at the 50-55 gigahertz O2 absorption band. Air pressure is among the most important variables that affect atmospheric dynamics, and currently can only be measured by limited in-situ observations over oceans. Analyses show that with the proposed space radar the errors in instantaneous (averaged) pressure estimates can be as low as approximately 4 millibars (approximately 1 millibar under all weather conditions). With these sea level pressure measurements, the forecasts of severe weathers such as hurricanes will be significantly improved. Since the development of the DiBAR concept about a decade ago, NASA Langley DiBAR research team has made substantial progress in advancing the concept. The feasibility assessment clearly shows the potential of sea surface barometry using existing radar technologies. The team has developed a DiBAR system design, fabricated a Prototype-DiBAR (P-DiBAR) for proof-of-concept, conducted lab, ground and airborne P-DiBAR tests. The flight test results are consistent with the instrumentation goals. Observational system simulation experiments for space DiBAR performance based on the existing DiBAR technology and capability show substantial improvements in tropical storm predictions, not only for the hurricane track and position but also for the hurricane intensity. DiBAR measurements will lead us to an unprecedented level of the prediction and knowledge on global extreme weather and climate conditions.

  20. Estimating tropical forest structure using LIDAR AND X-BAND INSAR

    Science.gov (United States)

    Palace, M. W.; Treuhaft, R. N.; Keller, M. M.; Sullivan, F.; Roberto dos Santos, J.; Goncalves, F. G.; Shimbo, J.; Neumann, M.; Madsen, S. N.; Hensley, S.

    2013-12-01

    Tropical forests are considered the most structurally complex of all forests and are experiencing rapid change due to anthropogenic and climatic factors. The high carbon stocks and fluxes make understanding tropical forests highly important to both regional and global studies involving ecosystems and climate. Large and remote areas in the tropics are prime targets for the use of remotely sensed data. Radar and lidar have previously been used to estimate forest structure, with an emphasis on biomass. These two remote sensing methods have the potential to yield much more information about forest structure, specifically through the use of X-band radar and waveform lidar data. We examined forest structure using both field-based and remotely sensed data in the Tapajos National Forest, Para, Brazil. We measured multiple structural parameters for about 70 plots in the field within a 25 x 15 km area that have TanDEM-X single-pass horizontally and vertically polarized radar interferometric data. High resolution airborne lidar were collected over a 22 sq km portion of the same area, within which 33 plots were co-located. Preliminary analyses suggest that X-band interferometric coherence decreases by about a factor of 2 (from 0.95 to 0.45) with increasing field-measured vertical extent (average heights of 7-25 m) and biomass (10-430 Mg/ha) for a vertical wavelength of 39 m, further suggesting, as has been observed at C-band, that interferometric synthetic aperture radar (InSAR) is substantially more sensitive to forest structure/biomass than SAR. Unlike InSAR coherence versus biomass, SAR power at X-band versus biomass shows no trend. Moreover, airborne lidar coherence at the same vertical wavenumbers as InSAR is also shown to decrease as a function of biomass, as well. Although the lidar coherence decrease is about 15% more than the InSAR, implying that lidar penetrates more than InSAR, these preliminary results suggest that X-band InSAR may be useful for structure and

  1. Aircraft Wake Vortex Measurement with Coherent Doppler Lidar

    Directory of Open Access Journals (Sweden)

    Wu Songhua

    2016-01-01

    Full Text Available Aircraft vortices are generated by the lift-producing surfaces of the aircraft. The variability of near-surface conditions can change the drop rate and cause the cell of the wake vortex to twist and contort unpredictably. The pulsed Coherent Doppler Lidar Detection and Ranging is an indispensable access to real aircraft vortices behavior which transmitting a laser beam and detecting the radiation backscattered by atmospheric aerosol particles. Experiments for Coherent Doppler Lidar measurement of aircraft wake vortices has been successfully carried out at the Beijing Capital International Airport (BCIA. In this paper, the authors discuss the Lidar system, the observation modes carried out in the measurements at BCIA and the characteristics of vortices.

  2. Applications of Telecommunication Transceiver Architectures in All-Fiber Coherent Detection Lidars

    DEFF Research Database (Denmark)

    Abari, Cyrus F.

    . As a result, the new fiber-optic technology was quickly adopted in these lidars. Although coherent detection lidars, especially all-fiber coherent detection lidars, have benefited from the technology available in coherent fiber-optic communications, a considerable gap (in both research and technology) seems...... enable the possibility for performance improvements in existing lidars but also pave the way for the application of coherent detection lidars in areas where their presence was neither plausible nor easy to realize. This thesis, composed of an introduction and four scientific paper and one manuscript...... approaches to signal processing, necessary for the estimation of mean velocity from the spectra, are discussed and the associated advantages and disadvantages such as the signal to noise ratio and signal processing overhead are discussed. The performance of the system proposed paper I is put to test...

  3. Lidar Investigation of Aerosol Pollution Distribution near a Coal Power Plant

    Science.gov (United States)

    Mitsev, TS.; Kolarov, G.

    1992-01-01

    Using aerosol lidars with high spatial and temporal resolution with the possibility of real-time data interpretation can solve a large number of ecological problems related to the aerosol-field distribution and variation and the structure of convective flows. Significantly less expensive specialized lidars are used in studying anthropogenic aerosols in the planetary boundary layer. Here, we present results of lidar measurements of the mass-concentration field around a coal-fired power plant with intensive local aerosol sources. We studied the pollution evolution as a function of the emission dynamics and the presence of retaining layers. The technique used incorporates complex analysis of three types of lidar mapping: horizontal map of the aerosol field, vertical cross-section map, and a series of profiles along a selected path. The lidar-sounding cycle was performed for the time of atmosphere's quasi-stationarity.

  4. Lidar investigation of aerosol pollution distribution near a coal power plant

    International Nuclear Information System (INIS)

    Mitsev, T.S.; Kolarov, G.

    1992-01-01

    Using aerosol lidars with high spatial and temporal resolution with the possibility of real-time data interpretation can solve a large number of ecological problems related to the aerosol-field distribution and variation and the structure of convective flows. Significantly less expensive specialized lidars are used in studying anthropogenic aerosols in the planetary boundary layer. Here, results are presented of lidar measurements of the mass-concentration field around a coal-fired power plant with intensive local aerosol sources. The authors studied the pollution evolution as a function of the emission dynamics and the presence of retaining layers. The technique used incorporates complex analysis of three types of lidar mapping: horizontal map of the aerosol field, vertical cross-section map, and a series of profiles along a selected path. The lidar-sounding cycle was performed for the time of atmosphere's quasi-stationarity

  5. Special Relativity Corrections for Space-Based Lidars

    Science.gov (United States)

    RaoGudimetla, Venkata S.; Kavaya, Michael J.

    1999-01-01

    The theory of special relativity is used to analyze some of the physical phenomena associated with space-based coherent Doppler lidars aimed at Earth and the atmosphere. Two important cases of diffuse scattering and retroreflection by lidar targets are treated. For the case of diffuse scattering, we show that for a coaligned transmitter and receiver on the moving satellite, there is no angle between transmitted and returned radiation. However, the ray that enters the receiver does not correspond to a retroreflected ray by the target. For the retroreflection case there is misalignment between the transmitted ray and the received ray. In addition, the Doppler shift in the frequency and the amount of tip for the receiver aperture when needed are calculated, The error in estimating wind because of the Doppler shift in the frequency due to special relativity effects is examined. The results are then applied to a proposed space-based pulsed coherent Doppler lidar at NASA's Marshall Space Flight Center for wind and aerosol backscatter measurements. The lidar uses an orbiting spacecraft with a pulsed laser source and measures the Doppler shift between the transmitted and the received frequencies to determine the atmospheric wind velocities. We show that the special relativity effects are small for the proposed system.

  6. 2013 USGS-NRCS Lidar: Maine (Cumberland, Kennebec and York)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TASK NAME: NRCS Maine 0.7M NPS LIDAR LiDAR Data Acquisition and Processing Production Task USGS Contract No. G10PC00057 Task Order No. G13PD00954 Woolpert Order No....

  7. Excess noise in Lidar Thomson scattering methods

    International Nuclear Information System (INIS)

    Smith, R J; Drake, L A P; Lestz, J B

    2012-01-01

    Fundamental detection limits for the Lidar Thomson scattering technique and in particular pulsed polarimetry are presented for the first time for the long wavelength limit of incoherent Thomson scattering. Pulsed polarimetry generalizes Lidar Thomson scattering to include local magnetic field sensing. The implication for these techniques is explored for two experimental regimes where shot limited detection no longer applies: tokamaks of ITER size and cm-size wire Z pinch plasmas of High Energy Density (HED) science. The utility and importance of developing Lidar Thomson scattering at longer wavelengths for the magnetic fusion program is illustrated by a study of sightline (local) polarimetry measurements on a 15MA ITER scenario. Polarimetric measurements in the far infrared regime are shown to reach sensitivities that are instructive and useful but with a complex behaviour that make spatially resolved measurements all but mandatory.

  8. Atmospheric lidar: Legal, scientific and technological aspects

    International Nuclear Information System (INIS)

    Barbini, R.; Colao, F.; Fiorani, L.; Palucci, A.

    2000-01-01

    The Atmospheric Lidar is one of the systems of the Mobile Laboratory of Laser Remote Sensing under development at the ENEA Research Center of Frascati. This technical report addresses the legislative, scientific and technological aspects that are the basis for the identification of the requirements, the definition of the architecture and the fixation of the specifications of the Atmospheric Lidar. The problems of air pollution are introduced in section 2. A summary of the Italian laws on that topic is then given. Section 4 provides a survey of the atmospheric measurements that can be achieved with the lidar. The sensitivity in the monitoring of pollutants is discussed in section 5. The other systems of the Mobile Laboratory of Laser Remote Sensing are shortly described in section 6. The last section is devoted to conclusions and perspectives [it

  9. Lidar and Dial application for detection and identification: a proposal to improve safety and security

    International Nuclear Information System (INIS)

    Gaudio, P.; Malizia, A.; Gelfusa, M.; Parracino, S.; Poggi, L.A.; Lungaroni, M.; Ciparisse, J.F.; Giovanni, D. Di; Cenciarelli, O.; Carestia, M.; Peluso, E.; Gabbarini, V.; Talebzadeh, S.; Bellecci, C.; Murari, A.

    2017-01-01

    Nowadays the intentional diffusion in air (both in open and confined environments) of chemical contaminants is a dramatic source of risk for the public health worldwide. The needs of a high-tech networks composed by software, diagnostics, decision support systems and cyber security tools are urging all the stakeholders (military, public, research and academic entities) to create innovative solutions to face this problem and improve both safety and security. The Quantum Electronics and Plasma Physics (QEP) Research Group of the University of Rome Tor Vergata is working since the 1960s on the development of laser-based technologies for the stand-off detection of contaminants in the air. Up to now, four demonstrators have been developed (two LIDAR-based and two DIAL-based) and have been used in experimental campaigns during all 2015. These systems and technologies can be used together to create an innovative solution to the problem of public safety and security: the creation of a network composed by detection systems: A low cost LIDAR based system has been tested in an urban area to detect pollutants coming from urban traffic, in this paper the authors show the results obtained in the city of Crotone (south of Italy). This system can be used as a first alarm and can be coupled with an identification system to investigate the nature of the threat. A laboratory dial based system has been used in order to create a database of absorption spectra of chemical substances that could be release in atmosphere, these spectra can be considered as the fingerprints of the substances that have to be identified. In order to create the database absorption measurements in cell, at different conditions, are in progress and the first results are presented in this paper.

  10. Lidar and Dial application for detection and identification: a proposal to improve safety and security

    Science.gov (United States)

    Gaudio, P.; Malizia, A.; Gelfusa, M.; Murari, A.; Parracino, S.; Poggi, L. A.; Lungaroni, M.; Ciparisse, J. F.; Di Giovanni, D.; Cenciarelli, O.; Carestia, M.; Peluso, E.; Gabbarini, V.; Talebzadeh, S.; Bellecci, C.

    2017-01-01

    Nowadays the intentional diffusion in air (both in open and confined environments) of chemical contaminants is a dramatic source of risk for the public health worldwide. The needs of a high-tech networks composed by software, diagnostics, decision support systems and cyber security tools are urging all the stakeholders (military, public, research & academic entities) to create innovative solutions to face this problem and improve both safety and security. The Quantum Electronics and Plasma Physics (QEP) Research Group of the University of Rome Tor Vergata is working since the 1960s on the development of laser-based technologies for the stand-off detection of contaminants in the air. Up to now, four demonstrators have been developed (two LIDAR-based and two DIAL-based) and have been used in experimental campaigns during all 2015. These systems and technologies can be used together to create an innovative solution to the problem of public safety and security: the creation of a network composed by detection systems: A low cost LIDAR based system has been tested in an urban area to detect pollutants coming from urban traffic, in this paper the authors show the results obtained in the city of Crotone (south of Italy). This system can be used as a first alarm and can be coupled with an identification system to investigate the nature of the threat. A laboratory dial based system has been used in order to create a database of absorption spectra of chemical substances that could be release in atmosphere, these spectra can be considered as the fingerprints of the substances that have to be identified. In order to create the database absorption measurements in cell, at different conditions, are in progress and the first results are presented in this paper.

  11. Demystifying LiDAR technologies for temperate rainforest in the Pacific Northwest

    Science.gov (United States)

    Rhonda Mazza; Demetrios Gatziolis

    2013-01-01

    Light detection and ranging (LiDAR), also known as airborne laser scanning, is a rapidly emerging technology for remote sensing. Used to help map, monitor, and assess natural resources, LiDAR data were first embraced by forestry professionals in Scandinavia as a tool for conducting forest inventories in the mid to late 1990s. Thus early LiDAR theory and applications...

  12. Combining Lidar and Synthetic Aperture Radar Data to Estimate Forest Biomass: Status and Prospects

    Directory of Open Access Journals (Sweden)

    Sanna Kaasalainen

    2015-01-01

    Full Text Available Research activities combining lidar and radar remote sensing have increased in recent years. The main focus in combining lidar-radar forest remote sensing has been on the retrieval of the aboveground biomass (AGB, which is a primary variable related to carbon cycle in land ecosystems, and has therefore been identified as an essential climate variable. In this review, we summarize the studies combining lidar and radar in estimating forest AGB. We discuss the complementary use of lidar and radar according to the relevance of the added value. The most promising prospects for combining lidar and radar data are in the use of lidar-derived ground elevations for improving large-area biomass estimates from radar, and in upscaling of lidar-based AGB data across large areas covered by spaceborne radar missions.

  13. 2003 Puget Sound LiDAR Consortium (PSLC) Topographic LiDAR: Snohomish County, Washington

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TerraPoint surveyed and created this data for the Puget Sound LiDAR Consortium under contract. The area surveyed is approximately 167 square miles and covers a...

  14. Modelling lidar volume-averaging and its significance to wind turbine wake measurements

    Science.gov (United States)

    Meyer Forsting, A. R.; Troldborg, N.; Borraccino, A.

    2017-05-01

    Lidar velocity measurements need to be interpreted differently than conventional in-situ readings. A commonly ignored factor is “volume-averaging”, which refers to lidars not sampling in a single, distinct point but along its entire beam length. However, especially in regions with large velocity gradients, like the rotor wake, can it be detrimental. Hence, an efficient algorithm mimicking lidar flow sampling is presented, which considers both pulsed and continous-wave lidar weighting functions. The flow-field around a 2.3 MW turbine is simulated using Detached Eddy Simulation in combination with an actuator line to test the algorithm and investigate the potential impact of volume-averaging. Even with very few points discretising the lidar beam is volume-averaging captured accurately. The difference in a lidar compared to a point measurement is greatest at the wake edges and increases from 30% one rotor diameter (D) downstream of the rotor to 60% at 3D.

  15. Raman lidar water vapor profiling over Warsaw, Poland

    Science.gov (United States)

    Stachlewska, Iwona S.; Costa-Surós, Montserrat; Althausen, Dietrich

    2017-09-01

    Water vapor mixing ratio and relative humidity profiles were derived from the multi-wavelength Raman PollyXT lidar at the EARLINET site in Warsaw, using the Rayleigh molecular extinction calculation based on atmospheric temperature and pressure from three different sources: i) the standard atmosphere US 62, ii) the Global Data Assimilation System (GDAS) model output, and iii) the WMO 12374 radiosoundings launched at Legionowo. With each method, 136 midnight relative humidity profiles were obtained for lidar observations from July 2013 to August 2015. Comparisons of these profiles showed in favor of the latter method (iii), but it also indicated that the other two data sources could replace it, if necessary. Such use was demonstrated for an automated retrieval of water vapor mixing ratio from dusk until dawn on 19/20 March 2015; a case study related to an advection of biomass burning aerosol from forest fires over Ukraine. Additionally, an algorithm that applies thresholds to the radiosounding relative humidity profiles to estimate macro-physical cloud vertical structure was used for the first time on the Raman lidar relative humidity profiles. The results, based on a subset of 66 profiles, indicate that below 6 km cloud bases/tops can be successfully obtained in 53% and 76% cases from lidar and radiosounding profiles, respectively. Finally, a contribution of the lidar derived mean relative humidity to cloudy conditions within the range of 0.8 to 6.2 km, in comparison to clear-sky conditions, was estimated.

  16. Statistical-uncertainty-based adaptive filtering of lidar signals

    International Nuclear Information System (INIS)

    Fuehrer, P. L.; Friehe, C. A.; Hristov, T. S.; Cooper, D. I.; Eichinger, W. E.

    2000-01-01

    An adaptive filter signal processing technique is developed to overcome the problem of Raman lidar water-vapor mixing ratio (the ratio of the water-vapor density to the dry-air density) with a highly variable statistical uncertainty that increases with decreasing photomultiplier-tube signal strength and masks the true desired water-vapor structure. The technique, applied to horizontal scans, assumes only statistical horizontal homogeneity. The result is a variable spatial resolution water-vapor signal with a constant variance out to a range limit set by a specified signal-to-noise ratio. The technique was applied to Raman water-vapor lidar data obtained at a coastal pier site together with in situ instruments located 320 m from the lidar. The micrometerological humidity data were used to calibrate the ratio of the lidar gains of the H 2 O and the N 2 photomultiplier tubes and set the water-vapor mixing ratio variance for the adaptive filter. For the coastal experiment the effective limit of the lidar range was found to be approximately 200 m for a maximum noise-to-signal variance ratio of 0.1 with the implemented data-reduction procedure. The technique can be adapted to off-horizontal scans with a small reduction in the constraints and is also applicable to other remote-sensing devices that exhibit the same inherent range-dependent signal-to-noise ratio problem. (c) 2000 Optical Society of America

  17. Development of Rayleigh Doppler lidar for measuring middle atmosphere winds

    Science.gov (United States)

    Raghunath, K.; Patra, A. K.; Narayana Rao, D.

    Interpretation of most of the middle and upper atmospheric dynamical and chemical data relies on the climatological description of the wind field Rayleigh Doppler lidar is one instrument which monitors wind profiles continuously though continuity is limited to clear meteorological conditions in the middle atmosphere A Doppler wind lidar operating in incoherent mode gives excellent wind and temperature information at these altitudes with necessary spectral sensitivity It observes atmospheric winds by measuring the spectral shift of the scattered light due to the motions of atmospheric molecules with background winds and temperature by spectral broadening The presentation is about the design and development of Incoherent Doppler lidar to obtain wind information in the height regions of 30-65 km The paper analyses and describes various types of techniques that can be adopted viz Edge technique and Fringe Imaging technique The paper brings out the scientific objectives configuration simulations error sources and technical challenges involved in the development of Rayleigh Doppler lidar The presentation also gives a novel technique for calibrating the lidar

  18. 2004 Alaska Lidar Mapping

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The data sets are generated using the OPTECH ALTM 70 kHz LIDAR system mounted onboard AeroMap's twin-engine Cessna 320 aircraft. Classified data sets such as this...

  19. Development, Field Testing, and Evaluation of LIDAR Assisted Controls

    Energy Technology Data Exchange (ETDEWEB)

    Ehrmann, Robert [Asltom Power Inc.; Wang, Na [National Renewable Energy Lab. (NREL), Golden, CO (United States); Scholbrock, Andrew [National Renewable Energy Lab. (NREL), Golden, CO (United States); Guadayol, Marc [Alstom Power Inc.; Wright, Alan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Arora, Dhiraj [Alstom Power Inc.

    2015-05-18

    Typical wind turbines utilize feedback controllers which have a delayed response to winds peed disturbances. A nacelle mounted LIght Detection and Ranging(LIDAR) system measures a preview wind signal in front of the turbine. This can be included in a feed-forward control system, improving turbine pitch command for incoming variations in wind speed. The overall aim is reduced blade and tower fatigue, and potentially improved annual energy production. To be successful, the LIDAR must yield accurate wind speed measurements. Therefore, a LIDAR was characterized against a nearby met tower and turbine wind speed estimator. Results indicate good correlation between measurements.

  20. Lidar system for air-pollution monitoring over urban areas

    Science.gov (United States)

    Moskalenko, Irina V.; Shcheglov, Djolinard A.; Molodtsov, Nikolai A.

    1997-05-01

    The atmospheric environmental situation over the urban area of a large city is determined by a complex combination of anthropogenic pollution and meteorological factors. The efficient way to provide three-dimensional mapping of gaseous pollutants over wide areas is utilization of lidar systems employing tunable narrowband transmitters. The paper presented describes activity of RRC 'Kurchatov Institute' in the field of lidar atmospheric monitoring. The project 'mobile remote sensing system based on tunable laser transmitter for environmental monitoring' is developed under financial support of International Scientific and Technology Center (Moscow). The objective of the project is design, construction and field testing of a DIAL-technique system. The lidar transmitter consists of an excimer laser pumping dye laser, BBO crystal frequency doubler, and scanning flat mirror. Sulfur dioxide and atomic mercury have been selected as pollutants for field tests of the lidar system under development. A recent large increase in Moscow traffic stimulated taking into consideration also the remote sensing of lower troposphere ozone because of the photochemical smog problem. The status of the project is briefly discussed. The current activity includes also collecting of environmental data relevant to lidar remote sensing. Main attention is paid to pollutant concentration levels over Moscow city and Moscow district areas.

  1. A Study on Factors Affecting Airborne LiDAR Penetration

    Directory of Open Access Journals (Sweden)

    Wei-Chen Hsu

    2015-01-01

    Full Text Available This study uses data from different periods, areas and parameters of airborne LiDAR (light detection and ranging surveys to understand the factors that influence airborne LiDAR penetration rate. A discussion is presented on the relationships between these factors and LiDAR penetration rate. The results show that the flight height above ground level (AGL does not have any relationship with the penetration rate. There are some factors that should have larger influence. For example, the laser is affected by a wet ground surface by reducing the number of return echoes. The field of view (FOV has a slightly negative correlation with the penetration rate, which indicates that the laser incidence angle close to zero should achieve the best penetration. The vegetation cover rate also shows a negative correlation with the penetration rate, thus bare ground and reduced vegetation in the aftermath of a typhoon also cause high penetration rate. More return echoes could be extracted from the full-waveform system, thereby effectively improving the penetration rate. This study shows that full-waveform LiDAR is an effective method for increasing the number of surface reflected echoes. This study suggests avoiding LiDAR survey employment directly following precipitation to prevent laser echo reduction.

  2. LIDAR wind speed measurements from a rotating spinner (SpinnerEx 2009)

    Energy Technology Data Exchange (ETDEWEB)

    Angelou, N.; Mikkelsen, Torben; Hansen, Kasper H.; Sjoeholm, M.; Harris, M.

    2010-08-15

    In the context of the increasing application of remote sensing techniques in wind energy, the feasibility of upwind observations via a spinner-mounted wind lidar was tested during the SpinnerEx 2009 experiment. The objective was to install a QinetiQ (Natural Power) ZephIR lidar in the rotating spinner of a MW-sized wind turbine, and investigate the approaching wind fields from this vantage point. Time series of wind speed measurements from the lidar with 50 Hz sampling rate were successfully obtained for approximately 60 days, during the measurement campaign lasting from April to August 2009. In this report, information is given regarding the experimental setup and the lidar's operation parameters. The geometrical model used for the reconstruction of the scanning pattern of the lidar is described. This model takes into account the lidar's pointing direction, the spinner axis's vertical tilt and the wind turbine's yaw relative to the mean wind speed direction. The data analysis processes are documented. A methodology for the calculation of the yaw misalignment of the wind turbine relative to the wind direction, as a function of various averaging times, is proposed, using the lidar's instantaneous line-of-sight radial wind speed measurements. Two different setups have been investigated in which the approaching wind field was measured at distances of 0.58 OE and 1.24 OE rotor diameters upwind, respectively. For both setups, the instantaneous yaw misalignment of the turbine has been estimated from the lidar measurements. Data from an adjacent meteorological mast as well as data logged within the wind turbine's control system were used to evaluate the results. (author)

  3. Tunable solid-state laser technology for applications to scientific and technological experiments from space

    Science.gov (United States)

    Allario, F.; Taylor, L. V.

    1986-01-01

    Current plans for the Earth Observing System (EOS) include development of a lidar facility to conduct scientific experiments from a polar orbiting platforms. A recommended set of experiments were scoped, which includes techniques of atmospheric backscatter (Lidar), Differential Absorption Lidar (DIAL), altimetry, and retroranging. Preliminary assessments of the resources (power, weight, volume) required by the Eos Lidar Facility were conducted. A research program in tunable solid state laser technology was developed, which includes laser materials development, modeling and experiments on the physics of solid state laser materials, and development of solid state laser transmitters with a strong focus on Eos scientific investigations. Some of the system studies that were conducted which highlight the payoff of solid state laser technology for the Eos scientific investigations will be discussed. Additionally, a summary of some promising research results which have recently emerged from the research program will be presented.

  4. NOSQL FOR STORAGE AND RETRIEVAL OF LARGE LIDAR DATA COLLECTIONS

    Directory of Open Access Journals (Sweden)

    J. Boehm

    2015-08-01

    Full Text Available Developments in LiDAR technology over the past decades have made LiDAR to become a mature and widely accepted source of geospatial information. This in turn has led to an enormous growth in data volume. The central idea for a file-centric storage of LiDAR point clouds is the observation that large collections of LiDAR data are typically delivered as large collections of files, rather than single files of terabyte size. This split of the dataset, commonly referred to as tiling, was usually done to accommodate a specific processing pipeline. It makes therefore sense to preserve this split. A document oriented NoSQL database can easily emulate this data partitioning, by representing each tile (file in a separate document. The document stores the metadata of the tile. The actual files are stored in a distributed file system emulated by the NoSQL database. We demonstrate the use of MongoDB a highly scalable document oriented NoSQL database for storing large LiDAR files. MongoDB like any NoSQL database allows for queries on the attributes of the document. As a specialty MongoDB also allows spatial queries. Hence we can perform spatial queries on the bounding boxes of the LiDAR tiles. Inserting and retrieving files on a cloud-based database is compared to native file system and cloud storage transfer speed.

  5. Nosql for Storage and Retrieval of Large LIDAR Data Collections

    Science.gov (United States)

    Boehm, J.; Liu, K.

    2015-08-01

    Developments in LiDAR technology over the past decades have made LiDAR to become a mature and widely accepted source of geospatial information. This in turn has led to an enormous growth in data volume. The central idea for a file-centric storage of LiDAR point clouds is the observation that large collections of LiDAR data are typically delivered as large collections of files, rather than single files of terabyte size. This split of the dataset, commonly referred to as tiling, was usually done to accommodate a specific processing pipeline. It makes therefore sense to preserve this split. A document oriented NoSQL database can easily emulate this data partitioning, by representing each tile (file) in a separate document. The document stores the metadata of the tile. The actual files are stored in a distributed file system emulated by the NoSQL database. We demonstrate the use of MongoDB a highly scalable document oriented NoSQL database for storing large LiDAR files. MongoDB like any NoSQL database allows for queries on the attributes of the document. As a specialty MongoDB also allows spatial queries. Hence we can perform spatial queries on the bounding boxes of the LiDAR tiles. Inserting and retrieving files on a cloud-based database is compared to native file system and cloud storage transfer speed.

  6. 2000 Puget Sound LiDAR Consortium (PSLC) Topographic LiDAR: Kitsap Peninsula, Washington

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TerraPoint surveyed and created this data for the Puget Sound LiDAR Consortium under contract. The area surveyed is approximately 1,146 square miles and covers part...

  7. 2003 Puget Sound LiDAR Consortium (PSLC) Topographic LiDAR: Lewis County, Washington

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TerraPoint surveyed and created this data for the Puget Sound LiDAR Consortium under contract. The area surveyed is approximately 100 square miles and covers part of...

  8. Lidar-based Research and Innovation at DTU Wind Energy – a Review

    International Nuclear Information System (INIS)

    Mikkelsen, T

    2014-01-01

    As wind turbines during the past decade have increased in size so have the challenges met by the atmospheric boundary-layer meteorologists and the wind energy society to measure and characterize the huge-volume wind fields surpassing and driving them. At the DTU Wind Energy test site ''Østerild'' for huge wind turbines, the hub-height of a recently installed 8 MW Vestas V164 turbine soars 143 meters up above the ground, and its rotor of amazing 164 meters in diameter make the turbine tips flicker 225 meters into the sky. Following the revolution in photonics-based telecommunication at the turn of the Millennium new fibre-based wind lidar technologies emerged and DTU Wind Energy, at that time embedded within Rise National Laboratory, began in collaboration with researchers from wind lidar companies to measure remote sensed wind profiles and turbulence structures within the atmospheric boundary layer with the emerging, at that time new, all-fibre-based 1.55 μ coherent detection wind lidars. Today, ten years later, DTU Wind Energy routinely deploys ground-based vertical profilers instead of met masts for high-precision measurements of mean wind profiles and turbulence profiles. At the departments test site ''Høvsøre'' DTU Wind Energy also routinely calibrate and accredit wind lidar manufactures wind lidars. Meanwhile however, new methodologies for power curve assessment based on ground-based and nacelle based lidars have also emerged. For improving the turbines power curve assessments and for advancing their control with feed-forward wind measurements experience has also been gained with wind lidars installed on turbine nacelles and integrated into the turbines rotating spinners. A new mobile research infrastructure WindScanner.dk has also emerged at DTU Wind Energy. Wind and turbulence fields are today scanned from sets of three simultaneously in space and time synchronized scanning lidars. One set consists of three fast

  9. Retrieval interval mapping, a tool to optimize the spectral retrieval range in differential optical absorption spectroscopy

    Science.gov (United States)

    Vogel, L.; Sihler, H.; Lampel, J.; Wagner, T.; Platt, U.

    2012-06-01

    Remote sensing via differential optical absorption spectroscopy (DOAS) has become a standard technique to identify and quantify trace gases in the atmosphere. The technique is applied in a variety of configurations, commonly classified into active and passive instruments using artificial and natural light sources, respectively. Platforms range from ground based to satellite instruments and trace-gases are studied in all kinds of different environments. Due to the wide range of measurement conditions, atmospheric compositions and instruments used, a specific challenge of a DOAS retrieval is to optimize the parameters for each specific case and particular trace gas of interest. This becomes especially important when measuring close to the detection limit. A well chosen evaluation wavelength range is crucial to the DOAS technique. It should encompass strong absorption bands of the trace gas of interest in order to maximize the sensitivity of the retrieval, while at the same time minimizing absorption structures of other trace gases and thus potential interferences. Also, instrumental limitations and wavelength depending sources of errors (e.g. insufficient corrections for the Ring effect and cross correlations between trace gas cross sections) need to be taken into account. Most often, not all of these requirements can be fulfilled simultaneously and a compromise needs to be found depending on the conditions at hand. Although for many trace gases the overall dependence of common DOAS retrieval on the evaluation wavelength interval is known, a systematic approach to find the optimal retrieval wavelength range and qualitative assessment is missing. Here we present a novel tool to determine the optimal evaluation wavelength range. It is based on mapping retrieved values in the retrieval wavelength space and thus visualize the consequence of different choices of retrieval spectral ranges, e.g. caused by slightly erroneous absorption cross sections, cross correlations and

  10. An evaluation of the WindEye wind lidar

    DEFF Research Database (Denmark)

    Dellwik, Ebba; Sjöholm, Mikael; Mann, Jakob

    Prevision of the wind field by remote sensing wind lidars has the potential to improve the performance of wind turbines. The functionality of a WindEye lidar developed by Windar Photonics A/S (Denmark) for the wind energy market was tested in a two months long field experiment. The WindEye sensor...... with a high accuracy during the whole campaign....

  11. Doppler lidar mounted on a wind turbine nacelle - UPWIND deliverable D6.7.1

    Energy Technology Data Exchange (ETDEWEB)

    Angelou, N.; Mann, J.; Courtney, M.; Sjoeholm, M.

    2010-12-15

    A ZephIR prototype wind lidar manufactured by QinetiQ was mounted on the nacelle of a Vestas V27 wind turbine and measurements of the incoming wind flow towards the rotor of the wind turbine were acquired for approximately 3 months (April - June 2009). The objective of this experiment was the investigation of the turbulence attenuation induced in the lidar measurements. In this report are presented results from data analysis over a 21-hour period (2009-05-05 12:00 - 2009-05-06 09:00). During this period the wind turbine was not operating and the line-of-sight of the lidar was aligned with the wind direction. The analysis included a correlation study between the ZephIR lidar and a METEK sonic anemometer. The correlation analysis was performed using both 10 minutes and 10 Hz wind speed values. The spectral transfer function which describes the turbulence attenuation, which is induced in the lidar measurements, was estimated by means of spectral analysis. An attempt to increase the resolution of the wind speed measurements of a cw lidar was performed, through the deconvolution of the lidar signal. A theoretical model of such a procedure is presented in this report. A simulation has validated the capability of the algorithm to deconvolve and consequently increase the resolution of the lidar system. However the proposed method was not efficient when applied to real lidar wind speed measurements, probably due to the effect, that the wind direction fluctuations along the lidar's line-of-sight have, on the lidar measurements. (Author)

  12. Typical Applications of Airborne LIDAR Technolagy in Geological Investigation

    Science.gov (United States)

    Zheng, X.; Xiao, C.

    2018-05-01

    The technology of airborne light detection and ranging (LiDAR), also referred to as Airborne Laser Scanning, is widely used for high-resolution topographic data acquisition (even under forest cover) with sub-meter planimetric and vertical accuracy. This contribution constructs the real digital terrain model to provide the direct observation data for the landscape analysis in geological domains. Based on the advantage of LiDAR, the authors mainly deal with the applications of LiDAR data to such fields as surface land collapse, landslide and fault structure extraction. The review conclusion shows that airborne LiDAR technology is becoming an indispensable tool for above mentioned issues, especially in the local and large scale investigations of micro-topography. The technology not only can identify the surface collapse, landslide boundary and subtle faulted landform, but also be able to extract the filling parameters of collapsed surface, the geomorphic parameters of landslide stability evaluation and cracks. This technology has extensive prospect of applications in geological investigation.

  13. TYPICAL APPLICATIONS OF AIRBORNE LIDAR TECHNOLAGY IN GEOLOGICAL INVESTIGATION

    Directory of Open Access Journals (Sweden)

    X. Zheng

    2018-05-01

    Full Text Available The technology of airborne light detection and ranging (LiDAR, also referred to as Airborne Laser Scanning, is widely used for high-resolution topographic data acquisition (even under forest cover with sub-meter planimetric and vertical accuracy. This contribution constructs the real digital terrain model to provide the direct observation data for the landscape analysis in geological domains. Based on the advantage of LiDAR, the authors mainly deal with the applications of LiDAR data to such fields as surface land collapse, landslide and fault structure extraction. The review conclusion shows that airborne LiDAR technology is becoming an indispensable tool for above mentioned issues, especially in the local and large scale investigations of micro-topography. The technology not only can identify the surface collapse, landslide boundary and subtle faulted landform, but also be able to extract the filling parameters of collapsed surface, the geomorphic parameters of landslide stability evaluation and cracks. This technology has extensive prospect of applications in geological investigation.

  14. APPLICABILITY ANALYSIS OF CLOTH SIMULATION FILTERING ALGORITHM FOR MOBILE LIDAR POINT CLOUD

    Directory of Open Access Journals (Sweden)

    S. Cai

    2018-04-01

    Full Text Available Classifying the original point clouds into ground and non-ground points is a key step in LiDAR (light detection and ranging data post-processing. Cloth simulation filtering (CSF algorithm, which based on a physical process, has been validated to be an accurate, automatic and easy-to-use algorithm for airborne LiDAR point cloud. As a new technique of three-dimensional data collection, the mobile laser scanning (MLS has been gradually applied in various fields, such as reconstruction of digital terrain models (DTM, 3D building modeling and forest inventory and management. Compared with airborne LiDAR point cloud, there are some different features (such as point density feature, distribution feature and complexity feature for mobile LiDAR point cloud. Some filtering algorithms for airborne LiDAR data were directly used in mobile LiDAR point cloud, but it did not give satisfactory results. In this paper, we explore the ability of the CSF algorithm for mobile LiDAR point cloud. Three samples with different shape of the terrain are selected to test the performance of this algorithm, which respectively yields total errors of 0.44 %, 0.77 % and1.20 %. Additionally, large area dataset is also tested to further validate the effectiveness of this algorithm, and results show that it can quickly and accurately separate point clouds into ground and non-ground points. In summary, this algorithm is efficient and reliable for mobile LiDAR point cloud.

  15. Small Imaging Depth LIDAR and DCNN-Based Localization for Automated Guided Vehicle.

    Science.gov (United States)

    Ito, Seigo; Hiratsuka, Shigeyoshi; Ohta, Mitsuhiko; Matsubara, Hiroyuki; Ogawa, Masaru

    2018-01-10

    We present our third prototype sensor and a localization method for Automated Guided Vehicles (AGVs), for which small imaging LIght Detection and Ranging (LIDAR) and fusion-based localization are fundamentally important. Our small imaging LIDAR, named the Single-Photon Avalanche Diode (SPAD) LIDAR, uses a time-of-flight method and SPAD arrays. A SPAD is a highly sensitive photodetector capable of detecting at the single-photon level, and the SPAD LIDAR has two SPAD arrays on the same chip for detection of laser light and environmental light. Therefore, the SPAD LIDAR simultaneously outputs range image data and monocular image data with the same coordinate system and does not require external calibration among outputs. As AGVs travel both indoors and outdoors with vibration, this calibration-less structure is particularly useful for AGV applications. We also introduce a fusion-based localization method, named SPAD DCNN, which uses the SPAD LIDAR and employs a Deep Convolutional Neural Network (DCNN). SPAD DCNN can fuse the outputs of the SPAD LIDAR: range image data, monocular image data and peak intensity image data. The SPAD DCNN has two outputs: the regression result of the position of the SPAD LIDAR and the classification result of the existence of a target to be approached. Our third prototype sensor and the localization method are evaluated in an indoor environment by assuming various AGV trajectories. The results show that the sensor and localization method improve the localization accuracy.

  16. Augmented Reality Based Doppler Lidar Data Visualization: Promises and Challenges

    Science.gov (United States)

    Cherukuru, N. W.; Calhoun, R.

    2016-06-01

    Augmented reality (AR) is a technology in which the enables the user to view virtual content as if it existed in real world. We are exploring the possibility of using this technology to view radial velocities or processed wind vectors from a Doppler wind lidar, thus giving the user an ability to see the wind in a literal sense. This approach could find possible applications in aviation safety, atmospheric data visualization as well as in weather education and public outreach. As a proof of concept, we used the lidar data from a recent field campaign and developed a smartphone application to view the lidar scan in augmented reality. In this paper, we give a brief methodology of this feasibility study, present the challenges and promises of using AR technology in conjunction with Doppler wind lidars.

  17. 2005 Puget Sound LiDAR Consortium (PSLC) Topographic LiDAR: North Puget Sound Lowlands

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Terrapoint collected Light Detection and Ranging (LiDAR) data contributing to the Puget Sound Lowlands project of 2005. Arlington, City of Snohomish, Snohomish...

  18. Lidar Penetration Depth Observations for Constraining Cloud Longwave Feedbacks

    Science.gov (United States)

    Vaillant de Guelis, T.; Chepfer, H.; Noel, V.; Guzman, R.; Winker, D. M.; Kay, J. E.; Bonazzola, M.

    2017-12-01

    Satellite-borne active remote sensing Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations [CALIPSO; Winker et al., 2010] and CloudSat [Stephens et al., 2002] provide direct measurements of the cloud vertical distribution, with a very high vertical resolution. The penetration depth of the laser of the lidar Z_Opaque is directly linked to the LongWave (LW) Cloud Radiative Effect (CRE) at Top Of Atmosphere (TOA) [Vaillant de Guélis et al., in review]. In addition, this measurement is extremely stable in time making it an excellent observational candidate to verify and constrain the cloud LW feedback mechanism [Chepfer et al., 2014]. In this work, we present a method to decompose the variations of the LW CRE at TOA using cloud properties observed by lidar [GOCCP v3.0; Guzman et al., 2017]. We decompose these variations into contributions due to changes in five cloud properties: opaque cloud cover, opaque cloud altitude, thin cloud cover, thin cloud altitude, and thin cloud emissivity [Vaillant de Guélis et al., in review]. We apply this method, in the real world, to the CRE variations of CALIPSO 2008-2015 record, and, in climate model, to LMDZ6 and CESM simulations of the CRE variations of 2008-2015 period and of the CRE difference between a warm climate and the current climate. In climate model simulations, the same cloud properties as those observed by CALIOP are extracted from the CFMIP Observation Simulator Package (COSP) [Bodas-Salcedo et al., 2011] lidar simulator [Chepfer et al., 2008], which mimics the observations that would be performed by the lidar on board CALIPSO satellite. This method, when applied on multi-model simulations of current and future climate, could reveal the altitude of cloud opacity level observed by lidar as a strong constrain for cloud LW feedback, since the altitude feedback mechanism is physically explainable and the altitude of cloud opacity accurately observed by lidar.

  19. Flood Modeling Using a Synthesis of Multi-Platform LiDAR Data

    Directory of Open Access Journals (Sweden)

    Ryan M. Csontos

    2013-09-01

    Full Text Available This study examined the utility of a high resolution ground-based (mobile and terrestrial Light Detection and Ranging (LiDAR dataset (0.2 m point-spacing supplemented with a coarser resolution airborne LiDAR dataset (5 m point-spacing for use in a flood inundation analysis. The techniques for combining multi-platform LiDAR data into a composite dataset in the form of a triangulated irregular network (TIN are described, and quantitative comparisons were made to a TIN generated solely from the airborne LiDAR dataset. For example, a maximum land surface elevation difference of 1.677 m and a mean difference of 0.178 m were calculated between the datasets based on sample points. Utilizing the composite and airborne LiDAR-derived TINs, a flood inundation comparison was completed using a one-dimensional steady flow hydraulic modeling analysis. Quantitative comparisons of the water surface profiles and depth grids indicated an underestimation of flooding extent, volume, and maximum flood height using the airborne LiDAR data alone. A 35% increase in maximum flood height was observed using the composite LiDAR dataset. In addition, the extents of the water surface profiles generated from the two datasets were found to be statistically significantly different. The urban and mountainous characteristics of the study area as well as the density (file size of the high resolution ground based LiDAR data presented both opportunities and challenges for flood modeling analyses.

  20. Mapping Urban Tree Canopy Cover Using Fused Airborne LIDAR and Satellite Imagery Data

    Science.gov (United States)

    Parmehr, Ebadat G.; Amati, Marco; Fraser, Clive S.

    2016-06-01

    Urban green spaces, particularly urban trees, play a key role in enhancing the liveability of cities. The availability of accurate and up-to-date maps of tree canopy cover is important for sustainable development of urban green spaces. LiDAR point clouds are widely used for the mapping of buildings and trees, and several LiDAR point cloud classification techniques have been proposed for automatic mapping. However, the effectiveness of point cloud classification techniques for automated tree extraction from LiDAR data can be impacted to the point of failure by the complexity of tree canopy shapes in urban areas. Multispectral imagery, which provides complementary information to LiDAR data, can improve point cloud classification quality. This paper proposes a reliable method for the extraction of tree canopy cover from fused LiDAR point cloud and multispectral satellite imagery data. The proposed method initially associates each LiDAR point with spectral information from the co-registered satellite imagery data. It calculates the normalised difference vegetation index (NDVI) value for each LiDAR point and corrects tree points which have been misclassified as buildings. Then, region growing of tree points, taking the NDVI value into account, is applied. Finally, the LiDAR points classified as tree points are utilised to generate a canopy cover map. The performance of the proposed tree canopy cover mapping method is experimentally evaluated on a data set of airborne LiDAR and WorldView 2 imagery covering a suburb in Melbourne, Australia.

  1. Beyond 3-D: The New Spectrum of Lidar Applications for Earth and Ecological Sciences

    Science.gov (United States)

    Eitel, Jan U. H.; Hofle, Bernhard; Vierling, Lee A.; Abellan, Antonio; Asner, Gregory P.; Deems, Jeffrey S.; Glennie, Craig L.; Joerg, Phillip C.; LeWinter, Adam L.; Magney, Troy S.; hide

    2016-01-01

    Capturing and quantifying the world in three dimensions (x,y,z) using light detection and ranging (lidar) technology drives fundamental advances in the Earth and Ecological Sciences (EES). However, additional lidar dimensions offer the possibility to transcend basic 3-D mapping capabilities, including i) the physical time (t) dimension from repeat lidar acquisition and ii) laser return intensity (LRI?) data dimension based on the brightness of single- or multi-wavelength (?) laser returns. The additional dimensions thus add to the x,y, and z dimensions to constitute the five dimensions of lidar (x,y,z, t, LRI?1... ?n). This broader spectrum of lidar dimensionality has already revealed new insights across multiple EES topics, and will enable a wide range of new research and applications. Here, we review recent advances based on repeat lidar collections and analysis of LRI data to highlight novel applications of lidar remote sensing beyond 3-D. Our review outlines the potential and current challenges of time and LRI information from lidar sensors to expand the scope of research applications and insights across the full range of EES applications.

  2. Optimization of eyesafe avalanche photodiode lidar for automobile safety and autonomous navigation systems

    Science.gov (United States)

    Williams, George M.

    2017-03-01

    Newly emerging accident-reducing, driver-assistance, and autonomous-navigation technology for automobiles is based on real-time three-dimensional mapping and object detection, tracking, and classification using lidar sensors. Yet, the lack of lidar sensors suitable for meeting application requirements appreciably limits practical widespread use of lidar in trucking, public livery, consumer cars, and fleet automobiles. To address this need, a system-engineering perspective to eyesafe lidar-system design for high-level advanced driver-assistance sensor systems and a design trade study including 1.5-μm spot-scanned, line-scanned, and flash-lidar systems are presented. A cost-effective lidar instrument design is then proposed based on high-repetition-rate diode-pumped solid-state lasers and high-gain, low-excess-noise InGaAs avalanche photodiode receivers and focal plane arrays. Using probabilistic receiver-operating-characteristic analysis, derived from measured component performance, a compact lidar system is proposed that is capable of 220 m ranging with 5-cm accuracy, which can be readily scaled to a 360-deg field of regard.

  3. 2008 Florida Division of Emergency Management Lidar: Middle Suwannee River

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — LiDAR Survey for the Suwannee River Water Management District (SRWMD), Florida. The LiDAR aerial acquisition was conducted in January of 2008, and the breaklines and...

  4. Development of atmospheric polarization LIDAR System

    International Nuclear Information System (INIS)

    Ghalumyan, A.S.; Ghazaryan, V.R.

    2016-01-01

    LIDAR (Light Detection And Ranging) system sensitive to the polarization of the backscattered signal is being developed in Yerevan Physics Institute. The system is designed primarily for remote sensing of the atmospheric electric fields. At present, the system is being tuned for measuring vertical atmospheric backscatter profiles of aerosols and hydrometeors, analyze the depolarization ratio of elastic backscattered laser beams and investigate the influence of external factors on the beam polarization. In this paper, we describe the complete LIDAR system – the laser transmitter, receiving telescope and the polarization separator. The data acquisition and processing techniques are also described. (author)

  5. Registration of vehicle based panoramic image and LiDAR point cloud

    Science.gov (United States)

    Chen, Changjun; Cao, Liang; Xie, Hong; Zhuo, Xiangyu

    2013-10-01

    Higher quality surface information would be got when data from optical images and LiDAR were integrated, owing to the fact that optical images and LiDAR point cloud have unique characteristics that make them preferable in many applications. While most previous works focus on registration of pinhole perspective cameras to 2D or 3D LiDAR data. In this paper, a method for the registration of vehicle based panoramic image and LiDAR point cloud is proposed. Using the translation among panoramic image, single CCD image, laser scanner and Position and Orientation System (POS) along with the GPS/IMU data, precise co-registration between the panoramic image and the LiDAR point cloud in the world system is achieved. Results are presented under a real world data set collected by a new developed Mobile Mapping System (MMS) integrated with a high resolution panoramic camera, two laser scanners and a POS.

  6. Nitrogen concentration estimation with hyperspectral LiDAR

    Directory of Open Access Journals (Sweden)

    O. Nevalainen

    2013-10-01

    Full Text Available Agricultural lands have strong impact on global carbon dynamics and nitrogen availability. Monitoring changes in agricultural lands require more efficient and accurate methods. The first prototype of a full waveform hyperspectral Light Detection and Ranging (LiDAR instrument has been developed at the Finnish Geodetic Institute (FGI. The instrument efficiently combines the benefits of passive and active remote sensing sensors. It is able to produce 3D point clouds with spectral information included for every point which offers great potential in the field of remote sensing of environment. This study investigates the performance of the hyperspectral LiDAR instrument in nitrogen estimation. The investigation was conducted by finding vegetation indices sensitive to nitrogen concentration using hyperspectral LiDAR data and validating their performance in nitrogen estimation. The nitrogen estimation was performed by calculating 28 published vegetation indices to ten oat samples grown in different fertilization conditions. Reference data was acquired by laboratory nitrogen concentration analysis. The performance of the indices in nitrogen estimation was determined by linear regression and leave-one-out cross-validation. The results indicate that the hyperspectral LiDAR instrument holds a good capability to estimate plant biochemical parameters such as nitrogen concentration. The instrument holds much potential in various environmental applications and provides a significant improvement to the remote sensing of environment.

  7. Remote sensing of sulphur dioxide emissions of sea-going vessels through lidar; Zwaveldioxide-uitstoot van zeeschepen op afstand gemeten met lidar

    Energy Technology Data Exchange (ETDEWEB)

    Berkhout, A J.C.; Swart, D P.J.; Van der Hoff, G R; Bergwerff, J B

    2011-12-15

    RIVM developed an instrument to measure from the shore sulphur dioxide emissions of passing sea-going vessels. This instrument uses the lidar technique (Light Detection And Ranging). The instrument uses a laser beam to scan the exhaust plume from a passing ship and determine the emission, unnoticed. It was used from 2006 to 2008 to measure sulphur dioxide emissions from a large number of ships sailing on the Westerscheldt estuary and on the North Sea Canal. The highest measured emission was 37 gram per second. The total emission of sulphur dioxide in the Netherlands has been declining for many years. Since 2006, emissions from ocean shipping are declining as well, but not as fast as those from other sources. Therefore, the contribution from ocean shipping is gaining importance. In 2010, 55 percent of the Dutch sulphur dioxide emissions originated with sea-going vessels. In 1990, this was 21 percent. Sea-going ships are not allowed to use sulphur-rich fuel in territorial waters and at the North Sea. This relatively cheap fuel may be on board, though, for use elsewhere at sea. To what extent ship owners comply with this ban is not known. Traditional measurement methods involve taking fuel samples on board. This requires someone boarding the ship. The crew therefore knows a measurement is taking place and can adjust the type of fuel used. Moreover, with traditional methods, only a few ships per day can be checked. Lidar is not yet recognised as a law enforcement instrument. Therefore, no fines can be imposed based on lidar measurements only. The lidar may be used, though, to identify possible offenders. A law enforcement official may then board that ship to ascertain that the law was breached. When used in this way, the use of the lidar is cost-effective even now. This is because the lidar can measure almost all passing ships. Expensive patrol ships can then be directed to only visit those ships that are the most likely offenders. Moreover, this greatly increases the

  8. Doppler Lidar Vector Retrievals and Atmospheric Data Visualization in Mixed/Augmented Reality

    Science.gov (United States)

    Cherukuru, Nihanth Wagmi

    Environmental remote sensing has seen rapid growth in the recent years and Doppler wind lidars have gained popularity primarily due to their non-intrusive, high spatial and temporal measurement capabilities. While lidar applications early on, relied on the radial velocity measurements alone, most of the practical applications in wind farm control and short term wind prediction require knowledge of the vector wind field. Over the past couple of years, multiple works on lidars have explored three primary methods of retrieving wind vectors viz., using homogeneous windfield assumption, computationally extensive variational methods and the use of multiple Doppler lidars. Building on prior research, the current three-part study, first demonstrates the capabilities of single and dual Doppler lidar retrievals in capturing downslope windstorm-type flows occurring at Arizona's Barringer Meteor Crater as a part of the METCRAX II field experiment. Next, to address the need for a reliable and computationally efficient vector retrieval for adaptive wind farm control applications, a novel 2D vector retrieval based on a variational formulation was developed and applied on lidar scans from an offshore wind farm and validated with data from a cup and vane anemometer installed on a nearby research platform. Finally, a novel data visualization technique using Mixed Reality (MR)/ Augmented Reality (AR) technology is presented to visualize data from atmospheric sensors. MR is an environment in which the user's visual perception of the real world is enhanced with live, interactive, computer generated sensory input (in this case, data from atmospheric sensors like Doppler lidars). A methodology using modern game development platforms is presented and demonstrated with lidar retrieved wind fields. In the current study, the possibility of using this technology to visualize data from atmospheric sensors in mixed reality is explored and demonstrated with lidar retrieved wind fields as well as

  9. TENSOR MODELING BASED FOR AIRBORNE LiDAR DATA CLASSIFICATION

    Directory of Open Access Journals (Sweden)

    N. Li

    2016-06-01

    Full Text Available Feature selection and description is a key factor in classification of Earth observation data. In this paper a classification method based on tensor decomposition is proposed. First, multiple features are extracted from raw LiDAR point cloud, and raster LiDAR images are derived by accumulating features or the “raw” data attributes. Then, the feature rasters of LiDAR data are stored as a tensor, and tensor decomposition is used to select component features. This tensor representation could keep the initial spatial structure and insure the consideration of the neighborhood. Based on a small number of component features a k nearest neighborhood classification is applied.

  10. Space-Based CO2 Active Optical Remote Sensing using 2-μm Triple-Pulse IPDA Lidar

    Science.gov (United States)

    Singh, Upendra; Refaat, Tamer; Ismail, Syed; Petros, Mulugeta

    2017-04-01

    Sustained high-quality column CO2 measurements from space are required to improve estimates of regional and global scale sources and sinks to attribute them to specific biogeochemical processes for improving models of carbon-climate interactions and to reduce uncertainties in projecting future change. Several studies show that space-borne CO2 measurements offer many advantages particularly over high altitudes, tropics and southern oceans. Current satellite-based sensing provides rapid CO2 monitoring with global-scale coverage and high spatial resolution. However, these sensors are based on passive remote sensing, which involves limitations such as full seasonal and high latitude coverage, poor sensitivity to the lower atmosphere, retrieval complexities and radiation path length uncertainties. CO2 active optical remote sensing is an alternative technique that has the potential to overcome these limitations. The need for space-based CO2 active optical remote sensing using the Integrated Path Differential Absorption (IPDA) lidar has been advocated by the Advanced Space Carbon and Climate Observation of Planet Earth (A-Scope) and Active Sensing of CO2 Emission over Nights, Days, and Seasons (ASCENDS) studies in Europe and the USA. Space-based IPDA systems can provide sustained, high precision and low-bias column CO2 in presence of thin clouds and aerosols while covering critical regions such as high latitude ecosystems, tropical ecosystems, southern ocean, managed ecosystems, urban and industrial systems and coastal systems. At NASA Langley Research Center, technology developments are in progress to provide high pulse energy 2-μm IPDA that enables optimum, lower troposphere weighted column CO2 measurements from space. This system provides simultaneous ranging; information on aerosol and cloud distributions; measurements over region of broken clouds; and reduces influences of surface complexities. Through the continual support from NASA Earth Science Technology Office

  11. Observation of stratospheric ozone with NIES lidar system in Tsukuba, Japan

    International Nuclear Information System (INIS)

    Nakane, H.; Hayashida, S.; Sasano, Y.; Sugimoto, N.; Matsui, I.; Minato, A.

    1992-01-01

    Lidars are expected to play important roles in an international monitoring network of the stratosphere such as the Network for the Detection of Stratospheric Change (NDSC). The National Institute for Environmental Studies (NIES) in Tsukuba constructed an ozone lidar system in March 1988 and started observation in August 1988. The lidar system has a 2-m telescope and injection locked XeCl and XeF excimer lasers which can measure ozone profiles (15-45 km) and temperature profiles (30-80 km). From December 1991, lidar observations have been carried out in which the second Stokes line of the stimulated Raman scattering of a KrF laser has been used. Ozone profiles obtained with the NIES lidar system are compared with the data provided by the SAGE II satellite sensor. Results showed good agreement for the individual and the zonal mean profiles. Variations of ozone with various time scales at each altitude can be studied using the data obtained with the NIES ozone lidar system. Seasonal variations are easily found at 20 km, 30 km, and 35 km, which are qualitatively understood as a result of dynamical and photochemical effects. Systematic errors of ozone profiles due to the Pinatubo stratospheric aerosols have been detected using multi-wavelength observation

  12. Combining satellite photographs and raster lidar data for channel connectivity in tidal marshes.

    Science.gov (United States)

    Li, Zhi; Hodges, Ben

    2017-04-01

    High resolution airborne lidar is capable of providing topographic detail down to the 1 x 1 m scale or finer over large tidal marshes of a river delta. Such data sets can be challenging to develop and ground-truth due to the inherent complexities of the environment, the relatively small changes in elevation throughout a marsh, and practical difficulties in accessing the variety of flooded, dry, and muddy regions. Standard lidar point-cloud processing techniques (as typically applied in large lidar data collection program) have a tendency to mis-identify narrow channels and water connectivity in a marsh, which makes it difficult to directly use such data for modeling marsh flows. Unfortunately, it is not always practical, or even possible, to access the point cloud and re-analyze the raw lidar data when discrepancies have been found in a raster work product. Faced with this problem in preparing a model of the Trinity River delta (Texas, USA), we developed an approach to integrating analysis of a lidar-based raster with satellite images. Our primary goal was to identify the clear land/water boundaries needed to identify channelization in the available rasterized lidar data. The channel extraction method uses pixelized satellite photographs that are stretched/distorted with image-processing techniques to match identifiable control features in both lidar and photographic data sets. A kmeans clustering algorithm was applied cluster pixels based on their colors, which is effective in separating land and water in a satellite photograph. The clustered image was matched to the lidar data such that the combination shows the channel network. In effect, we are able to use the fact that the satellite photograph is higher resolution than the lidar data, and thus provides connectivity in the clustering at a finer scale. The principal limitation of the method is the where the satellite image and lidar suffer from similar problems For example, vegetation overhanging a narrow

  13. Study on analysis from sources of error for Airborne LIDAR

    Science.gov (United States)

    Ren, H. C.; Yan, Q.; Liu, Z. J.; Zuo, Z. Q.; Xu, Q. Q.; Li, F. F.; Song, C.

    2016-11-01

    With the advancement of Aerial Photogrammetry, it appears that to obtain geo-spatial information of high spatial and temporal resolution provides a new technical means for Airborne LIDAR measurement techniques, with unique advantages and broad application prospects. Airborne LIDAR is increasingly becoming a new kind of space for earth observation technology, which is mounted by launching platform for aviation, accepting laser pulses to get high-precision, high-density three-dimensional coordinate point cloud data and intensity information. In this paper, we briefly demonstrates Airborne laser radar systems, and that some errors about Airborne LIDAR data sources are analyzed in detail, so the corresponding methods is put forwarded to avoid or eliminate it. Taking into account the practical application of engineering, some recommendations were developed for these designs, which has crucial theoretical and practical significance in Airborne LIDAR data processing fields.

  14. Coaxial direct-detection lidar-system

    DEFF Research Database (Denmark)

    2014-01-01

    The invention relates to a coaxial direct-detection LIDAR system for measuring velocity, temperature and/or particulate density. The system comprises a laser source for emitting a laser light beam having a lasing center frequency along an emission path. The system further comprises an optical....... Finally, the system comprises a detector system arranged to receive the return signal from the optical delivery system, the detector system comprising a narrowband optical filter and a detector, the narrowband optical filter having a filter center frequency of a pass-band, wherein the center lasing...... frequency and/or the center filter frequency may be scanned. The invention further relates to an aircraft airspeed measurement device, and a wind turbine airspeed measurement device comprising the LIDAR system....

  15. Optimizing Lidars for Wind Turbine Control Applications—Results from the IEA Wind Task 32 Workshop

    Directory of Open Access Journals (Sweden)

    Eric Simley

    2018-06-01

    Full Text Available IEA Wind Task 32 serves as an international platform for the research community and industry to identify and mitigate barriers to the use of lidars in wind energy applications. The workshop “Optimizing Lidar Design for Wind Energy Applications” was held in July 2016 to identify lidar system properties that are desirable for wind turbine control applications and help foster the widespread application of lidar-assisted control (LAC. One of the main barriers this workshop aimed to address is the multidisciplinary nature of LAC. Since lidar suppliers, wind turbine manufacturers, and researchers typically focus on their own areas of expertise, it is possible that current lidar systems are not optimal for control purposes. This paper summarizes the results of the workshop, addressing both practical and theoretical aspects, beginning with a review of the literature on lidar optimization for control applications. Next, barriers to the use of lidar for wind turbine control are identified, such as availability and reliability concerns, followed by practical suggestions for mitigating those barriers. From a theoretical perspective, the optimization of lidar scan patterns by minimizing the error between the measurements and the rotor effective wind speed of interest is discussed. Frequency domain methods for directly calculating measurement error using a stochastic wind field model are reviewed and applied to the optimization of several continuous wave and pulsed Doppler lidar scan patterns based on commercially-available systems. An overview of the design process for a lidar-assisted pitch controller for rotor speed regulation highlights design choices that can impact the usefulness of lidar measurements beyond scan pattern optimization. Finally, using measurements from an optimized scan pattern, it is shown that the rotor speed regulation achieved after optimizing the lidar-assisted control scenario via time domain simulations matches the performance

  16. Coherent Doppler lidar for automated space vehicle, rendezvous, station-keeping and capture

    Science.gov (United States)

    Dunkin, James A.

    1991-01-01

    Recent advances in eye-safe, short wavelength solid-state lasers offer real potential for the development of compact, reliable, light-weight, efficient coherent lidar. Laser diode pumping of these devices has been demonstrated, thereby eliminating the need for flash lamp pumping, which has been a major drawback to the use of these lasers in space based applications. Also these lasers now have the frequency stability required to make them useful in coherent lidar, which offers all of the advantages of non-coherent lidar, but with the additional advantage that direct determination of target velocity is possible by measurement of the Doppler shift. By combining the Doppler velocity measurement capability with the inherent high angular resolution and range accuracy of lidar it is possible to construct Doppler images of targets for target motion assessment. A coherent lidar based on a Tm,Ho:YAG 2-micrometer wavelength laser was constructed and successfully field tested on atmospheric targets in 1990. This lidar incorporated an all solid state (laser diode pumped) master oscillator, in conjunction with a flash lamp pumped slave oscillator. Solid-state laser technology is rapidly advancing, and with the advent of high efficiency, high power, semiconductor laser diodes as pump sources, all-solid-state, coherent lidars are a real possibility in the near future. MSFC currently has a feasibility demonstration effort under way which will involve component testing, and preliminary design of an all-solid-state, coherent lidar for automatic rendezvous, and capture. This two year effort, funded by the Director's Discretionary Fund is due for completion in 1992.

  17. Practical model for the calculation of multiply scattered lidar returns

    International Nuclear Information System (INIS)

    Eloranta, E.W.

    1998-01-01

    An equation to predict the intensity of the multiply scattered lidar return is presented. Both the scattering cross section and the scattering phase function can be specified as a function of range. This equation applies when the cloud particles are larger than the lidar wavelength. This approximation considers photon trajectories with multiple small-angle forward-scattering events and one large-angle scattering that directs the photon back toward the receiver. Comparisons with Monte Carlo simulations, exact double-scatter calculations, and lidar data demonstrate that this model provides accurate results. copyright 1998 Optical Society of America

  18. Capability of Raman lidar for monitoring the variation of atmospheric CO2 profile

    International Nuclear Information System (INIS)

    Zhao Peitao; Hu Shunxing; Su Jia; Cao Kaifa; Hu Huanling; Zhang Yinchao; Wang Lian; Zhao Yuefeng

    2008-01-01

    Lidar (Light detection and ranging) has special capabilities for remote sensing of many different behaviours of the atmosphere. One of the techniques which show a great deal of promise for several applications is Raman scattering. The detecting capability, including maximum operation range and minimum detectable gas concentration is one of the most significant parameters for lidar remote sensing of pollutants. In this paper, based on the new method for evaluating the capabilities of a Raman lidar system, we present an evaluation of detecting capability of Raman lidar for monitoring atmospheric CO 2 in Hefei. Numerical simulations about the influence of atmospheric conditions on lidar detecting capability were carried out, and a conclusion can be drawn that the maximum difference of the operation ranges caused by the weather conditions alone can reach about 0.4 to 0.5km with a measuring precision within 30ppmv. The range of minimum detectable concentration caused by the weather conditions alone can reach about 20 to 35 ppmv in vertical direction for 20000 shots at a distance of 1 km on the assumption that other parameters are kept constant. The other corresponding parameters under different conditions are also given. The capability of Raman lidar operated in vertical direction was found to be superior to that operated in horizontal direction. During practical measurement with the Raman lidar whose hardware components were fixed, aerosol scattering extinction effect would be a significant factor that influenced the capability of Raman lidar. This work may be a valuable reference for lidar system designing, measurement accuracy improving and data processing

  19. Lidar-Based Rock-Fall Hazard Characterization of Cliffs

    Science.gov (United States)

    Collins, Brian D.; Greg M.Stock,

    2017-01-01

    Rock falls from cliffs and other steep slopes present numerous challenges for detailed geological characterization. In steep terrain, rock-fall source areas are both dangerous and difficult to access, severely limiting the ability to make detailed structural and volumetric measurements necessary for hazard assessment. Airborne and terrestrial lidar survey methods can provide high-resolution data needed for volumetric, structural, and deformation analyses of rock falls, potentially making these analyses straightforward and routine. However, specific methods to collect, process, and analyze lidar data of steep cliffs are needed to maximize analytical accuracy and efficiency. This paper presents observations showing how lidar data sets should be collected, filtered, registered, and georeferenced to tailor their use in rock fall characterization. Additional observations concerning surface model construction, volumetric calculations, and deformation analysis are also provided.

  20. Conically scanning lidar error in complex terrain

    Directory of Open Access Journals (Sweden)

    Ferhat Bingöl

    2009-05-01

    Full Text Available Conically scanning lidars assume the flow to be homogeneous in order to deduce the horizontal wind speed. However, in mountainous or complex terrain this assumption is not valid implying a risk that the lidar will derive an erroneous wind speed. The magnitude of this error is measured by collocating a meteorological mast and a lidar at two Greek sites, one hilly and one mountainous. The maximum error for the sites investigated is of the order of 10 %. In order to predict the error for various wind directions the flows at both sites are simulated with the linearized flow model, WAsP Engineering 2.0. The measurement data are compared with the model predictions with good results for the hilly site, but with less success at the mountainous site. This is a deficiency of the flow model, but the methods presented in this paper can be used with any flow model.