WorldWideScience

Sample records for differentiable vector fields

  1. Vector Fields and Flows on Differentiable Stacks

    DEFF Research Database (Denmark)

    A. Hepworth, Richard

    2009-01-01

    This paper introduces the notions of vector field and flow on a general differentiable stack. Our main theorem states that the flow of a vector field on a compact proper differentiable stack exists and is unique up to a uniquely determined 2-cell. This extends the usual result on the existence...... of vector fields....

  2. Vector fields and differential operators: noncommutative case

    International Nuclear Information System (INIS)

    Borowiec, A.

    1997-01-01

    A notion of Cartan pairs as an analogy of vector fields in the realm of noncommutative geometry has been proposed previously. In this paper an outline is given of the construction of a noncommutative analogy of the algebra of differential operators as well as its (algebraic) Fock space realization. Co-universal vector fields and covariant derivatives will also be discussed

  3. Lagrangian vector field and Lagrangian formulation of partial differential equations

    Directory of Open Access Journals (Sweden)

    M.Chen

    2005-01-01

    Full Text Available In this paper we consider the Lagrangian formulation of a system of second order quasilinear partial differential equations. Specifically we construct a Lagrangian vector field such that the flows of the vector field satisfy the original system of partial differential equations.

  4. Center type performance of differentiable vector fields in R2

    International Nuclear Information System (INIS)

    Rabanal, Roland

    2007-08-01

    Let X : R 2 / D → R 2 be a differentiable vector field, where D is compact. If the eigenvalues of the jacobian matrix DX z are (nonzero) purely imaginary, for all z element of R 2 / D . Then, X + v has a center type performance at infinity, for some v element of R 2 . More precisely, X + v has a periodic trajectory Γ subset of R2/ D which is surrounding D such that in the unbounded component of (R 2 / D )/ Γ all the trajectories of X + v are nontrivial cycles. In the case of global vector fields Y : R 2 → R 2 with Y (0) = 0, we prove that such eigenvalue condition implies the topological equivalency of Y with the linear vector field (x, y) → (-y, x). (author)

  5. Vector network analyzer ferromagnetic resonance spectrometer with field differential detection

    Science.gov (United States)

    Tamaru, S.; Tsunegi, S.; Kubota, H.; Yuasa, S.

    2018-05-01

    This work presents a vector network analyzer ferromagnetic resonance (VNA-FMR) spectrometer with field differential detection. This technique differentiates the S-parameter by applying a small binary modulation field in addition to the DC bias field to the sample. By setting the modulation frequency sufficiently high, slow sensitivity fluctuations of the VNA, i.e., low-frequency components of the trace noise, which limit the signal-to-noise ratio of the conventional VNA-FMR spectrometer, can be effectively removed, resulting in a very clean FMR signal. This paper presents the details of the hardware implementation and measurement sequence as well as the data processing and analysis algorithms tailored for the FMR spectrum obtained with this technique. Because the VNA measures a complex S-parameter, it is possible to estimate the Gilbert damping parameter from the slope of the phase variation of the S-parameter with respect to the bias field. We show that this algorithm is more robust against noise than the conventional algorithm based on the linewidth.

  6. Understanding Vector Fields.

    Science.gov (United States)

    Curjel, C. R.

    1990-01-01

    Presented are activities that help students understand the idea of a vector field. Included are definitions, flow lines, tangential and normal components along curves, flux and work, field conservation, and differential equations. (KR)

  7. Complex Polynomial Vector Fields

    DEFF Research Database (Denmark)

    The two branches of dynamical systems, continuous and discrete, correspond to the study of differential equations (vector fields) and iteration of mappings respectively. In holomorphic dynamics, the systems studied are restricted to those described by holomorphic (complex analytic) functions...... or meromorphic (allowing poles as singularities) functions. There already exists a well-developed theory for iterative holomorphic dynamical systems, and successful relations found between iteration theory and flows of vector fields have been one of the main motivations for the recent interest in holomorphic...... vector fields. Since the class of complex polynomial vector fields in the plane is natural to consider, it is remarkable that its study has only begun very recently. There are numerous fundamental questions that are still open, both in the general classification of these vector fields, the decomposition...

  8. Complex Polynomial Vector Fields

    DEFF Research Database (Denmark)

    Dias, Kealey

    vector fields. Since the class of complex polynomial vector fields in the plane is natural to consider, it is remarkable that its study has only begun very recently. There are numerous fundamental questions that are still open, both in the general classification of these vector fields, the decomposition...... of parameter spaces into structurally stable domains, and a description of the bifurcations. For this reason, the talk will focus on these questions for complex polynomial vector fields.......The two branches of dynamical systems, continuous and discrete, correspond to the study of differential equations (vector fields) and iteration of mappings respectively. In holomorphic dynamics, the systems studied are restricted to those described by holomorphic (complex analytic) functions...

  9. Vector Differential Calculus

    OpenAIRE

    HITZER, Eckhard MS

    2002-01-01

    This paper treats the fundamentals of the vector differential calculus part of universal geometric calculus. Geometric calculus simplifies and unifies the structure and notation of mathematics for all of science and engineering, and for technological applications. In order to make the treatment self-contained, I first compile all important geometric algebra relationships,which are necesssary for vector differential calculus. Then differentiation by vectors is introduced and a host of major ve...

  10. Differential Galois theory and non-integrability of planar polynomial vector fields

    Science.gov (United States)

    Acosta-Humánez, Primitivo B.; Lázaro, J. Tomás; Morales-Ruiz, Juan J.; Pantazi, Chara

    2018-06-01

    We study a necessary condition for the integrability of the polynomials vector fields in the plane by means of the differential Galois Theory. More concretely, by means of the variational equations around a particular solution it is obtained a necessary condition for the existence of a rational first integral. The method is systematic starting with the first order variational equation. We illustrate this result with several families of examples. A key point is to check whether a suitable primitive is elementary or not. Using a theorem by Liouville, the problem is equivalent to the existence of a rational solution of a certain first order linear equation, the Risch equation. This is a classical problem studied by Risch in 1969, and the solution is given by the "Risch algorithm". In this way we point out the connection of the non integrability with some higher transcendent functions, like the error function.

  11. Fractal vector optical fields.

    Science.gov (United States)

    Pan, Yue; Gao, Xu-Zhen; Cai, Meng-Qiang; Zhang, Guan-Lin; Li, Yongnan; Tu, Chenghou; Wang, Hui-Tian

    2016-07-15

    We introduce the concept of a fractal, which provides an alternative approach for flexibly engineering the optical fields and their focal fields. We propose, design, and create a new family of optical fields-fractal vector optical fields, which build a bridge between the fractal and vector optical fields. The fractal vector optical fields have polarization states exhibiting fractal geometry, and may also involve the phase and/or amplitude simultaneously. The results reveal that the focal fields exhibit self-similarity, and the hierarchy of the fractal has the "weeding" role. The fractal can be used to engineer the focal field.

  12. Vector Fields on Product Manifolds

    OpenAIRE

    Kurz, Stefan

    2011-01-01

    This short report establishes some basic properties of smooth vector fields on product manifolds. The main results are: (i) On a product manifold there always exists a direct sum decomposition into horizontal and vertical vector fields. (ii) Horizontal and vertical vector fields are naturally isomorphic to smooth families of vector fields defined on the factors. Vector fields are regarded as derivations of the algebra of smooth functions.

  13. Hyperbolic-symmetry vector fields.

    Science.gov (United States)

    Gao, Xu-Zhen; Pan, Yue; Cai, Meng-Qiang; Li, Yongnan; Tu, Chenghou; Wang, Hui-Tian

    2015-12-14

    We present and construct a new kind of orthogonal coordinate system, hyperbolic coordinate system. We present and design a new kind of local linearly polarized vector fields, which is defined as the hyperbolic-symmetry vector fields because the points with the same polarization form a series of hyperbolae. We experimentally demonstrate the generation of such a kind of hyperbolic-symmetry vector optical fields. In particular, we also study the modified hyperbolic-symmetry vector optical fields with the twofold and fourfold symmetric states of polarization when introducing the mirror symmetry. The tight focusing behaviors of these vector fields are also investigated. In addition, we also fabricate micro-structures on the K9 glass surfaces by several tightly focused (modified) hyperbolic-symmetry vector fields patterns, which demonstrate that the simulated tightly focused fields are in good agreement with the fabricated micro-structures.

  14. Multi-task Vector Field Learning.

    Science.gov (United States)

    Lin, Binbin; Yang, Sen; Zhang, Chiyuan; Ye, Jieping; He, Xiaofei

    2012-01-01

    Multi-task learning (MTL) aims to improve generalization performance by learning multiple related tasks simultaneously and identifying the shared information among tasks. Most of existing MTL methods focus on learning linear models under the supervised setting. We propose a novel semi-supervised and nonlinear approach for MTL using vector fields. A vector field is a smooth mapping from the manifold to the tangent spaces which can be viewed as a directional derivative of functions on the manifold. We argue that vector fields provide a natural way to exploit the geometric structure of data as well as the shared differential structure of tasks, both of which are crucial for semi-supervised multi-task learning. In this paper, we develop multi-task vector field learning (MTVFL) which learns the predictor functions and the vector fields simultaneously. MTVFL has the following key properties. (1) The vector fields MTVFL learns are close to the gradient fields of the predictor functions. (2) Within each task, the vector field is required to be as parallel as possible which is expected to span a low dimensional subspace. (3) The vector fields from all tasks share a low dimensional subspace. We formalize our idea in a regularization framework and also provide a convex relaxation method to solve the original non-convex problem. The experimental results on synthetic and real data demonstrate the effectiveness of our proposed approach.

  15. Estimation of Motion Vector Fields

    DEFF Research Database (Denmark)

    Larsen, Rasmus

    1993-01-01

    This paper presents an approach to the estimation of 2-D motion vector fields from time varying image sequences. We use a piecewise smooth model based on coupled vector/binary Markov random fields. We find the maximum a posteriori solution by simulated annealing. The algorithm generate sample...... fields by means of stochastic relaxation implemented via the Gibbs sampler....

  16. Simplified Representation of Vector Fields

    NARCIS (Netherlands)

    Telea, Alexandru; Wijk, Jarke J. van

    1999-01-01

    Vector field visualization remains a difficult task. Although many local and global visualization methods for vector fields such as flow data exist, they usually require extensive user experience on setting the visualization parameters in order to produce images communicating the desired insight. We

  17. Meromorphic Vector Fields and Circle Packings

    DEFF Research Database (Denmark)

    Dias, Kealey

    The objective of the Ph.D. project is to initiate a classification of bifurcations of meromorphic vector fields and to clarify their relation to circle packings. Technological applications are to image analysis and to effective grid generation using discrete conformal mappings. The two branches...... of dynamical systems, continuous and discrete, correspond to the study of differential equations (vector fields) and iteration of mappings respectively. In holomorphic dynamics, the systems studied are restricted to those described by holomorphic (complex analytic) functions or meromorphic (allowing poles...... as singularities) functions. There already exists a well-developed theory for iterative holomorphic dynamical systems, and successful relations found between iteration theory and flows of vector fields have been one of the main motivations for the recent interest in holomorphic vector fields. Restricting...

  18. Stable piecewise polynomial vector fields

    Directory of Open Access Journals (Sweden)

    Claudio Pessoa

    2012-09-01

    Full Text Available Let $N={y>0}$ and $S={y<0}$ be the semi-planes of $mathbb{R}^2$ having as common boundary the line $D={y=0}$. Let $X$ and $Y$ be polynomial vector fields defined in $N$ and $S$, respectively, leading to a discontinuous piecewise polynomial vector field $Z=(X,Y$. This work pursues the stability and the transition analysis of solutions of $Z$ between $N$ and $S$, started by Filippov (1988 and Kozlova (1984 and reformulated by Sotomayor-Teixeira (1995 in terms of the regularization method. This method consists in analyzing a one parameter family of continuous vector fields $Z_{epsilon}$, defined by averaging $X$ and $Y$. This family approaches $Z$ when the parameter goes to zero. The results of Sotomayor-Teixeira and Sotomayor-Machado (2002 providing conditions on $(X,Y$ for the regularized vector fields to be structurally stable on planar compact connected regions are extended to discontinuous piecewise polynomial vector fields on $mathbb{R}^2$. Pertinent genericity results for vector fields satisfying the above stability conditions are also extended to the present case. A procedure for the study of discontinuous piecewise vector fields at infinity through a compactification is proposed here.

  19. Null vectors in superconformal quantum field theory

    International Nuclear Information System (INIS)

    Huang Chaoshang

    1993-01-01

    The superspace formulation of the N=1 superconformal field theory and superconformal Ward identities are used to give a precise definition of fusion. Using the fusion procedure, superconformally covariant differential equations are derived and consequently a complete and straightforward algorithm for finding null vectors in Verma modules of the Neveu-Schwarz algebra is given. (orig.)

  20. Vector field embryogeny.

    Directory of Open Access Journals (Sweden)

    Till Steiner

    Full Text Available We present a novel approach toward evolving artificial embryogenies, which omits the graph representation of gene regulatory networks and directly shapes the dynamics of a system, i.e., its phase space. We show the feasibility of the approach by evolving cellular differentiation, a basic feature of both biological and artificial development. We demonstrate how a spatial hierarchy formulation can be integrated into the framework and investigate the evolution of a hierarchical system. Finally, we show how the framework allows the investigation of allometry, a biological phenomenon, and its role for evolution. We find that direct evolution of allometric change, i.e., the evolutionary adaptation of the speed of system states on transient trajectories in phase space, is advantageous for a cellular differentiation task.

  1. Elliptic-symmetry vector optical fields.

    Science.gov (United States)

    Pan, Yue; Li, Yongnan; Li, Si-Min; Ren, Zhi-Cheng; Kong, Ling-Jun; Tu, Chenghou; Wang, Hui-Tian

    2014-08-11

    We present in principle and demonstrate experimentally a new kind of vector fields: elliptic-symmetry vector optical fields. This is a significant development in vector fields, as this breaks the cylindrical symmetry and enriches the family of vector fields. Due to the presence of an additional degrees of freedom, which is the interval between the foci in the elliptic coordinate system, the elliptic-symmetry vector fields are more flexible than the cylindrical vector fields for controlling the spatial structure of polarization and for engineering the focusing fields. The elliptic-symmetry vector fields can find many specific applications from optical trapping to optical machining and so on.

  2. Vector fields on nonorientable surfaces

    Directory of Open Access Journals (Sweden)

    Ilie Barza

    2003-01-01

    X, and the space of vector fields on X are proved by using a symmetrisation process. An example related to the normal derivative on the border of the Möbius strip supports the nontriviality of the concepts introduced in this paper.

  3. On vector fields having properties of Reeb fields

    OpenAIRE

    Hajduk, Boguslaw; Walczak, Rafal

    2011-01-01

    We study constructions of vector fields with properties which are characteristic to Reeb vector fields of contact forms. In particular, we prove that all closed oriented odd-dimensional manifold have geodesible vector fields.

  4. Gauge structure of neutral-vector field theory. [Massive vector fields, massless limits

    Energy Technology Data Exchange (ETDEWEB)

    Kubo, R; Yokoyama, [Hiroshima univ., Takehara (Japan). Research Inst. for Theoretical Physics

    1975-03-01

    General aspects of gauge structure of neutral-vector field theory are investigated from an extended standpoint, where massive vector fields are treated in a form corresponding to the electromagnetic fields in a general gauge formalism reported previously. All results obtained are shown to have unique massless limits. It is shown that a generalized q-number gauge transformation for fields makes the theory invariant in cooperation with a simultaneous transformation for relevant gauge parameters. A method of differentiation with respect to a gauge variable is found to clarify some essential features of the gauge structure. Two possible types of gauge structure also emerge correspondingly to the massless case. A neutral-vector field theory proposed in a preceding paper is included in the present framework as the most preferable case.

  5. Problems of vector Lagrangians in field theories

    International Nuclear Information System (INIS)

    Krivsky, I.Yu.; Simulik, V.M.

    1997-01-01

    A vector Lagrange approach to the Dirac spinor field and the relationship between the vector Lagrangians for the spinor and electromagnetic fields are considered. A vector Lagrange approach for the system of interacting electromagnetic B=(B μ υ)=(E-bar,H-bar) and spinor Ψ fields is constructed. New Lagrangians (scalar and vector) for electromagnetic field in terms of field strengths are found. The foundations of two new QED models are formulated

  6. Vector fields and gravity on the lattice

    International Nuclear Information System (INIS)

    Khatsymovsky, V.M.

    1988-01-01

    The problem of discretization of vector field on Regge lattice is considered. Our approach is based on geometrical interpretation of the vector field as the field of infinitesimal coordinate transformation. A discrete version of the vector field action is obtained as a particular case of the continuum action, and it is shown to have the true continuum limit

  7. Diagnostics of vector magnetic fields

    Science.gov (United States)

    Stenflo, J. O.

    1985-01-01

    It is shown that the vector magnetic fields derived from observations with a filter magnetograph will be severely distorted if the spatially unresolved magnetic structure is not properly accounted for. Thus the apparent vector field will appear much more horizontal than it really is, but this distortion is strongly dependent on the area factor and the temperature line weakenings. As the available fluxtube models are not sufficiently well determined, it is not possible to correct the filter magnetograph observations for these effects in a reliable way, although a crude correction is of course much better than no correction at all. The solution to this diagnostic problem is to observe simultaneously in suitable combinations of spectral lines, and/or use Stokes line profiles recorded with very high spectral resolution. The diagnostic power of using a Fourier transform spectrometer for polarimetry is shown and some results from I and V spectra are illustrated. The line asymmetries caused by mass motions inside the fluxtubes adds an extra complication to the diagnostic problem, in particular as there are indications that the motions are nonstationary in nature. The temperature structure appears to be a function of fluxtube diameter, as a clear difference between plage and network fluxtubes was revealed. The divergence of the magnetic field with height plays an essential role in the explanation of the Stokes V asymmetries (in combination with the mass motions). A self consistent treatment of the subarcsec field geometry may be required to allow an accurate derivation of the spatially averaged vector magnetic field from spectrally resolved data.

  8. Transversals of Complex Polynomial Vector Fields

    DEFF Research Database (Denmark)

    Dias, Kealey

    Vector fields in the complex plane are defined by assigning the vector determined by the value P(z) to each point z in the complex plane, where P is a polynomial of one complex variable. We consider special families of so-called rotated vector fields that are determined by a polynomial multiplied...... by rotational constants. Transversals are a certain class of curves for such a family of vector fields that represent the bifurcation states for this family of vector fields. More specifically, transversals are curves that coincide with a homoclinic separatrix for some rotation of the vector field. Given...... a concrete polynomial, it seems to take quite a bit of work to prove that it is generic, i.e. structurally stable. This has been done for a special class of degree d polynomial vector fields having simple equilibrium points at the d roots of unity, d odd. In proving that such vector fields are generic...

  9. Visualizing vector field topology in fluid flows

    Science.gov (United States)

    Helman, James L.; Hesselink, Lambertus

    1991-01-01

    Methods of automating the analysis and display of vector field topology in general and flow topology in particular are discussed. Two-dimensional vector field topology is reviewed as the basis for the examination of topology in three-dimensional separated flows. The use of tangent surfaces and clipping in visualizing vector field topology in fluid flows is addressed.

  10. Introduction to Vector Field Visualization

    Science.gov (United States)

    Kao, David; Shen, Han-Wei

    2010-01-01

    Vector field visualization techniques are essential to help us understand the complex dynamics of flow fields. These can be found in a wide range of applications such as study of flows around an aircraft, the blood flow in our heart chambers, ocean circulation models, and severe weather predictions. The vector fields from these various applications can be visually depicted using a number of techniques such as particle traces and advecting textures. In this tutorial, we present several fundamental algorithms in flow visualization including particle integration, particle tracking in time-dependent flows, and seeding strategies. For flows near surfaces, a wide variety of synthetic texture-based algorithms have been developed to depict near-body flow features. The most common approach is based on the Line Integral Convolution (LIC) algorithm. There also exist extensions of LIC to support more flexible texture generations for 3D flow data. This tutorial reviews these algorithms. Tensor fields are found in several real-world applications and also require the aid of visualization to help users understand their data sets. Examples where one can find tensor fields include mechanics to see how material respond to external forces, civil engineering and geomechanics of roads and bridges, and the study of neural pathway via diffusion tensor imaging. This tutorial will provide an overview of the different tensor field visualization techniques, discuss basic tensor decompositions, and go into detail on glyph based methods, deformation based methods, and streamline based methods. Practical examples will be used when presenting the methods; and applications from some case studies will be used as part of the motivation.

  11. Weaving Knotted Vector Fields with Tunable Helicity.

    Science.gov (United States)

    Kedia, Hridesh; Foster, David; Dennis, Mark R; Irvine, William T M

    2016-12-30

    We present a general construction of divergence-free knotted vector fields from complex scalar fields, whose closed field lines encode many kinds of knots and links, including torus knots, their cables, the figure-8 knot, and its generalizations. As finite-energy physical fields, they represent initial states for fields such as the magnetic field in a plasma, or the vorticity field in a fluid. We give a systematic procedure for calculating the vector potential, starting from complex scalar functions with knotted zero filaments, thus enabling an explicit computation of the helicity of these knotted fields. The construction can be used to generate isolated knotted flux tubes, filled by knots encoded in the lines of the vector field. Lastly, we give examples of manifestly knotted vector fields with vanishing helicity. Our results provide building blocks for analytical models and simulations alike.

  12. Manipulating the cell differentiation through lentiviral vectors.

    Science.gov (United States)

    Coppola, Valeria; Galli, Cesare; Musumeci, Maria; Bonci, Désirée

    2010-01-01

    The manipulation of cell differentiation is important to create new sources for the treatment of degenerative diseases or solve cell depletion after aggressive therapy against cancer. In this chapter, the use of a tissue-specific promoter lentiviral vector to obtain a myocardial pure lineage from murine embryonic stem cells (mES) is described in detail. Since the cardiac isoform of troponin I gene product is not expressed in skeletal or other muscle types, short mouse cardiac troponin proximal promoter is used to drive reporter genes. Cells are infected simultaneously with two lentiviral vectors, the first expressing EGFP to monitor the transduction efficiency, and the other expressing a puromycin resistance gene to select the specific cells of interest. This technical approach describes a method to obtain a pure cardiomyocyte population and can be applied to other lineages of interest.

  13. Measurements of Solar Vector Magnetic Fields

    Science.gov (United States)

    Hagyard, M. J. (Editor)

    1985-01-01

    Various aspects of the measurement of solar magnetic fields are presented. The four major subdivisions of the study are: (1) theoretical understanding of solar vector magnetic fields; (3) techniques for interpretation of observational data; and (4) techniques for data display.

  14. Measurements of Solar Vector Magnetic Fields

    International Nuclear Information System (INIS)

    Hagyard, M.J.

    1985-05-01

    Various aspects of the measurement of solar magnetic fields are presented. The four major subdivisions of the study are: (1) theoretical understanding of solar vector magnetic fields; (3) techniques for interpretation of observational data; and (4) techniques for data display

  15. Clifford Fourier transform on vector fields.

    Science.gov (United States)

    Ebling, Julia; Scheuermann, Gerik

    2005-01-01

    Image processing and computer vision have robust methods for feature extraction and the computation of derivatives of scalar fields. Furthermore, interpolation and the effects of applying a filter can be analyzed in detail and can be advantages when applying these methods to vector fields to obtain a solid theoretical basis for feature extraction. We recently introduced the Clifford convolution, which is an extension of the classical convolution on scalar fields and provides a unified notation for the convolution of scalar and vector fields. It has attractive geometric properties that allow pattern matching on vector fields. In image processing, the convolution and the Fourier transform operators are closely related by the convolution theorem and, in this paper, we extend the Fourier transform to include general elements of Clifford Algebra, called multivectors, including scalars and vectors. The resulting convolution and derivative theorems are extensions of those for convolution and the Fourier transform on scalar fields. The Clifford Fourier transform allows a frequency analysis of vector fields and the behavior of vector-valued filters. In frequency space, vectors are transformed into general multivectors of the Clifford Algebra. Many basic vector-valued patterns, such as source, sink, saddle points, and potential vortices, can be described by a few multivectors in frequency space.

  16. Euclidean fields: vector mesons and photons

    International Nuclear Information System (INIS)

    Loffelholz, J.

    1979-01-01

    Free transverse vector fields of mass >= 0 are studied. The model is related to the usual free vector meson and electromagnetic quantum field theories by extension of the field operators from transverse to arbitrary test functions. The one-particle states in transverse gauge and their localization are described. Reflexion positivity is proved and derived are free Feynman-Kac-Nelson formulas. An Euclidean approach to a photon field in a spherical world using dilatation covariance and inversions is given

  17. Vector fields satisfying the barycenter property

    Directory of Open Access Journals (Sweden)

    Lee Manseob

    2018-04-01

    Full Text Available We show that if a vector field X has the C1 robustly barycenter property then it does not have singularities and it is Axiom A without cycles. Moreover, if a generic C1-vector field has the barycenter property then it does not have singularities and it is Axiom A without cycles. Moreover, we apply the results to the divergence free vector fields. It is an extension of the results of the barycenter property for generic diffeomorphisms and volume preserving diffeomorphisms [1].

  18. Versatile generation of optical vector fields and vector beams using a non-interferometric approach.

    Science.gov (United States)

    Tripathi, Santosh; Toussaint, Kimani C

    2012-05-07

    We present a versatile, non-interferometric method for generating vector fields and vector beams which can produce all the states of polarization represented on a higher-order Poincaré sphere. The versatility and non-interferometric nature of this method is expected to enable exploration of various exotic properties of vector fields and vector beams. To illustrate this, we study the propagation properties of some vector fields and find that, in general, propagation alters both their intensity and polarization distribution, and more interestingly, converts some vector fields into vector beams. In the article, we also suggest a modified Jones vector formalism to represent vector fields and vector beams.

  19. Magnetic vector field tag and seal

    Science.gov (United States)

    Johnston, Roger G.; Garcia, Anthony R.

    2004-08-31

    One or more magnets are placed in a container (preferably on objects inside the container) and the magnetic field strength and vector direction are measured with a magnetometer from at least one location near the container to provide the container with a magnetic vector field tag and seal. The location(s) of the magnetometer relative to the container are also noted. If the position of any magnet inside the container changes, then the measured vector fields at the these locations also change, indicating that the tag has been removed, the seal has broken, and therefore that the container and objects inside may have been tampered with. A hollow wheel with magnets inside may also provide a similar magnetic vector field tag and seal. As the wheel turns, the magnets tumble randomly inside, removing the tag and breaking the seal.

  20. Transitive Lie algebras of vector fields: an overview

    NARCIS (Netherlands)

    Draisma, J.

    2011-01-01

    This overview paper is intended as a quick introduction to Lie algebras of vector fields. Originally introduced in the late 19th century by Sophus Lie to capture symmetries of ordinary differential equations, these algebras, or infinitesimal groups, are a recurring theme in 20th-century research on

  1. Massive vector fields and black holes

    International Nuclear Information System (INIS)

    Frolov, V.P.

    1977-04-01

    A massive vector field inside the event horizon created by the static sources located outside the black hole is investigated. It is shown that the back reaction of such a field on the metric near r = 0 cannot be neglected. The possibility of the space-time structure changing near r = 0 due to the external massive field is discussed

  2. Vector supersymmetry in topological field theories

    International Nuclear Information System (INIS)

    Gieres, F.; Grimstrup, J.; Pisar, T.; Schweda, M.

    2000-01-01

    We present a simple derivation of vector supersymmetry transformations for topological field theories of Schwarz- and Witten-type. Our method is similar to the derivation of BRST-transformations from the so-called horizontality conditions or Russian formulae. We show that this procedure reproduces in a concise way the known vector supersymmetry transformations of various topological models and we use it to obtain some new transformations of this type for 4d topological YM-theories in different gauges. (author)

  3. Determination of key parameters of vector multifractal vector fields

    Science.gov (United States)

    Schertzer, D. J. M.; Tchiguirinskaia, I.

    2017-12-01

    For too long time, multifractal analyses and simulations have been restricted to scalar-valued fields (Schertzer and Tchiguirinskaia, 2017a,b). For instance, the wind velocity multifractality has been mostly analysed in terms of scalar structure functions and with the scalar energy flux. This restriction has had the unfortunate consequences that multifractals were applicable to their full extent in geophysics, whereas it has inspired them. Indeed a key question in geophysics is the complexity of the interactions between various fields or they components. Nevertheless, sophisticated methods have been developed to determine the key parameters of scalar valued fields. In this communication, we first present the vector extensions of the universal multifractal analysis techniques to multifractals whose generator belong to a Levy-Clifford algebra (Schertzer and Tchiguirinskaia, 2015). We point out further extensions noting the increased complexity. For instance, the (scalar) index of multifractality becomes a matrice. Schertzer, D. and Tchiguirinskaia, I. (2015) `Multifractal vector fields and stochastic Clifford algebra', Chaos: An Interdisciplinary Journal of Nonlinear Science, 25(12), p. 123127. doi: 10.1063/1.4937364. Schertzer, D. and Tchiguirinskaia, I. (2017) `An Introduction to Multifractals and Scale Symmetry Groups', in Ghanbarian, B. and Hunt, A. (eds) Fractals: Concepts and Applications in Geosciences. CRC Press, p. (in press). Schertzer, D. and Tchiguirinskaia, I. (2017b) `Pandora Box of Multifractals: Barely Open ?', in Tsonis, A. A. (ed.) 30 Years of Nonlinear Dynamics in Geophysics. Berlin: Springer, p. (in press).

  4. The Lie Bracket of Adapted Vector Fields on Wiener Spaces

    International Nuclear Information System (INIS)

    Driver, B. K.

    1999-01-01

    Let W(M) be the based (at o element of M) path space of a compact Riemannian manifold M equipped with Wiener measure ν . This paper is devoted to considering vector fields on W(M) of the form X s h (σ )=P s (σ)h s (σ ) where P s (σ ) denotes stochastic parallel translation up to time s along a Wiener path σ element of W(M) and {h s } i sanelementof [0,1] is an adapted T o M -valued process on W(M). It is shown that there is a large class of processes h (called adapted vector fields) for which we may view X h as first-order differential operators acting on functions on W(M) . Moreover, if h and k are two such processes, then the commutator of X h with X k is again a vector field on W(M) of the same form

  5. Optical currents in vector fields

    DEFF Research Database (Denmark)

    Angelsky, O. V.; Gorsky, M. P.; Maksimyak, P. P.

    2011-01-01

    The influence of phase relations and the degree of mutual coherence of superimposing waves in the arrangements of twowave superposition on the characteristics of the microparticle's motion has been analyzed. The prospects of studying temporal coherence using the proposed approach are made. For th....... For the first time, we have shown experimentally the possibility of diagnostics the optical currents in liquids caused by polarization characteristics of an optical field alone, using test metallic particles of nanoscale....

  6. The optical analogy for vector fields

    Science.gov (United States)

    Parker, E. N. (Editor)

    1991-01-01

    This paper develops the optical analogy for a general vector field. The optical analogy allows the examination of certain aspects of a vector field that are not otherwise readily accessible. In particular, in the cases of a stationary Eulerian flow v of an ideal fluid and a magnetostatic field B, the vectors v and B have surface loci in common with their curls. The intrinsic discontinuities around local maxima in absolute values of v and B take the form of vortex sheets and current sheets, respectively, the former playing a fundamental role in the development of hydrodyamic turbulence and the latter playing a major role in heating the X-ray coronas of stars and galaxies.

  7. Polynomial Vector Fields in One Complex Variable

    DEFF Research Database (Denmark)

    Branner, Bodil

    In recent years Adrien Douady was interested in polynomial vector fields, both in relation to iteration theory and as a topic on their own. This talk is based on his work with Pierrette Sentenac, work of Xavier Buff and Tan Lei, and my own joint work with Kealey Dias.......In recent years Adrien Douady was interested in polynomial vector fields, both in relation to iteration theory and as a topic on their own. This talk is based on his work with Pierrette Sentenac, work of Xavier Buff and Tan Lei, and my own joint work with Kealey Dias....

  8. Vector Fields European user group meeting

    CERN Multimedia

    2007-01-01

    The "Vector Fields European user group meeting" will take place at CERN on 26 and 27 September 2007. Within this framework two workshops are organized at the CERN Training Centre: 24 September 2007
 Modelling Magnets with Opera 25 September 2007
Modelling of Charged Particle Beam Devices with Opera If you are interested in attending the workshop or the user group meeting please contact Julie Shepherd (Vector Fields) or Pierre Baehler (CERN) directly at: Julie.Shepherd@vectorfields.co.uk, +44 (0) 1865 854933 or +44 (0) 1865 370151 Pierre.Baehler@cern.ch, 75016 / 160156.

  9. ESTIMATING ELECTRIC FIELDS FROM VECTOR MAGNETOGRAM SEQUENCES

    International Nuclear Information System (INIS)

    Fisher, G. H.; Welsch, B. T.; Abbett, W. P.; Bercik, D. J.

    2010-01-01

    Determining the electric field distribution on the Sun's photosphere is essential for quantitative studies of how energy flows from the Sun's photosphere, through the corona, and into the heliosphere. This electric field also provides valuable input for data-driven models of the solar atmosphere and the Sun-Earth system. We show how observed vector magnetogram time series can be used to estimate the photospheric electric field. Our method uses a 'poloidal-toroidal decomposition' (PTD) of the time derivative of the vector magnetic field. These solutions provide an electric field whose curl obeys all three components of Faraday's Law. The PTD solutions are not unique; the gradient of a scalar potential can be added to the PTD electric field without affecting consistency with Faraday's Law. We then present an iterative technique to determine a potential function consistent with ideal MHD evolution; but this field is also not a unique solution to Faraday's Law. Finally, we explore a variational approach that minimizes an energy functional to determine a unique electric field, a generalization of Longcope's 'Minimum Energy Fit'. The PTD technique, the iterative technique, and the variational technique are used to estimate electric fields from a pair of synthetic vector magnetograms taken from an MHD simulation; and these fields are compared with the simulation's known electric fields. The PTD and iteration techniques compare favorably to results from existing velocity inversion techniques. These three techniques are then applied to a pair of vector magnetograms of solar active region NOAA AR8210, to demonstrate the methods with real data. Careful examination of the results from all three methods indicates that evolution of the magnetic vector by itself does not provide enough information to determine the true electric field in the photosphere. Either more information from other measurements, or physical constraints other than those considered here are necessary to find

  10. Circular Conditional Autoregressive Modeling of Vector Fields.

    Science.gov (United States)

    Modlin, Danny; Fuentes, Montse; Reich, Brian

    2012-02-01

    As hurricanes approach landfall, there are several hazards for which coastal populations must be prepared. Damaging winds, torrential rains, and tornadoes play havoc with both the coast and inland areas; but, the biggest seaside menace to life and property is the storm surge. Wind fields are used as the primary forcing for the numerical forecasts of the coastal ocean response to hurricane force winds, such as the height of the storm surge and the degree of coastal flooding. Unfortunately, developments in deterministic modeling of these forcings have been hindered by computational expenses. In this paper, we present a multivariate spatial model for vector fields, that we apply to hurricane winds. We parameterize the wind vector at each site in polar coordinates and specify a circular conditional autoregressive (CCAR) model for the vector direction, and a spatial CAR model for speed. We apply our framework for vector fields to hurricane surface wind fields for Hurricane Floyd of 1999 and compare our CCAR model to prior methods that decompose wind speed and direction into its N-S and W-E cardinal components.

  11. Linearization of germs of hyperbolic vector fields

    NARCIS (Netherlands)

    Bonckaert, P; Naudot, [No Value; Yang, JZ

    2003-01-01

    We develop a normal form to express asymptotically a conjugacy between a germ of resonant vector field and its linear part. We show that such an asymptotic expression can be written in terms of functions of the Logarithmic Mourtada type. To cite this article: P Bonckaert et al., C. R. Acad. Sci.

  12. Normal equivariant forms of vector fields

    International Nuclear Information System (INIS)

    Sanchez Bringas, F.

    1992-07-01

    We prove a theorem of linearization of type Siegel and a theorem of normal forms of type Poincare-Dulac for germs of holomorphic vector fields in the origin of C 2 , Γ -equivariants, where Γ is a finite subgroup of GL (2,C). (author). 5 refs

  13. Inferring Lower Boundary Driving Conditions Using Vector Magnetic Field Observations

    Science.gov (United States)

    Schuck, Peter W.; Linton, Mark; Leake, James; MacNeice, Peter; Allred, Joel

    2012-01-01

    Low-beta coronal MHD simulations of realistic CME events require the detailed specification of the magnetic fields, velocities, densities, temperatures, etc., in the low corona. Presently, the most accurate estimates of solar vector magnetic fields are made in the high-beta photosphere. Several techniques have been developed that provide accurate estimates of the associated photospheric plasma velocities such as the Differential Affine Velocity Estimator for Vector Magnetograms and the Poloidal/Toroidal Decomposition. Nominally, these velocities are consistent with the evolution of the radial magnetic field. To evolve the tangential magnetic field radial gradients must be specified. In addition to estimating the photospheric vector magnetic and velocity fields, a further challenge involves incorporating these fields into an MHD simulation. The simulation boundary must be driven, consistent with the numerical boundary equations, with the goal of accurately reproducing the observed magnetic fields and estimated velocities at some height within the simulation. Even if this goal is achieved, many unanswered questions remain. How can the photospheric magnetic fields and velocities be propagated to the low corona through the transition region? At what cadence must we observe the photosphere to realistically simulate the corona? How do we model the magnetic fields and plasma velocities in the quiet Sun? How sensitive are the solutions to other unknowns that must be specified, such as the global solar magnetic field, and the photospheric temperature and density?

  14. The significance of vector magnetic field measurements

    Science.gov (United States)

    Hagyard, M. J.

    1990-01-01

    Observations of four flaring solar active regions, obtained during 1980-1986 with the NASA Marshall vector magnetograph (Hagyard et al., 1982 and 1985), are presented graphically and characterized in detail, with reference to nearly simultaneous Big Bear Solar Observatory and USAF ASW H-alpha images. It is shown that the flares occurred where local photospheric magnetic fields differed most from the potential field, with initial brightening on either side of a magnetic-neutral line near the point of maximum angular shear (rather than that of maximum magnetic-field strength, typically 1 kG or greater). Particular emphasis is placed on the fact that these significant nonpotential features were detected only by measuring all three components of the vector magnetic field.

  15. Screening vector field modifications of general relativity

    International Nuclear Information System (INIS)

    Beltrán Jiménez, Jose; Delvas Fróes, André Luís; Mota, David F.

    2013-01-01

    A screening mechanism for conformal vector–tensor modifications of general relativity is proposed. The conformal factor depends on the norm of the vector field and makes the field to vanish in high dense regions, whereas drives it to a non-null value in low density environments. Such process occurs due to a spontaneous symmetry breaking mechanism and gives rise to both the screening of fifth forces as well as Lorentz violations. The cosmology and local constraints are also computed

  16. ``Massless'' vector field in de Sitter universe

    Science.gov (United States)

    Garidi, T.; Gazeau, J.-P.; Rouhani, S.; Takook, M. V.

    2008-03-01

    We proceed to the quantization of the massless vector field in the de Sitter (dS) space. This work is the natural continuation of a previous article devoted to the quantization of the dS massive vector field [J. P. Gazeau and M. V. Takook, J. Math. Phys. 41, 5920 (2000); T. Garidi et al., ibid. 43, 6379 (2002).] The term ``massless'' is used by reference to conformal invariance and propagation on the dS lightcone whereas ``massive'' refers to those dS fields which unambiguously contract to Minkowskian massive fields at zero curvature. Due to the combined occurrences of gauge invariance and indefinite metric, the covariant quantization of the massless vector field requires an indecomposable representation of the de Sitter group. We work with the gauge fixing corresponding to the simplest Gupta-Bleuler structure. The field operator is defined with the help of coordinate-independent de Sitter waves (the modes). The latter are simple to manipulate and most adapted to group theoretical approaches. The physical states characterized by the divergencelessness condition are, for instance, easy to identify. The whole construction is based on analyticity requirements in the complexified pseudo-Riemannian manifold for the modes and the two-point function.

  17. ''Massless'' vector field in de Sitter universe

    International Nuclear Information System (INIS)

    Garidi, T.; Gazeau, J.-P.; Rouhani, S.; Takook, M. V.

    2008-01-01

    We proceed to the quantization of the massless vector field in the de Sitter (dS) space. This work is the natural continuation of a previous article devoted to the quantization of the dS massive vector field [J. P. Gazeau and M. V. Takook, J. Math. Phys. 41, 5920 (2000); T. Garidi et al., ibid. 43, 6379 (2002).] The term ''massless'' is used by reference to conformal invariance and propagation on the dS lightcone whereas ''massive'' refers to those dS fields which unambiguously contract to Minkowskian massive fields at zero curvature. Due to the combined occurrences of gauge invariance and indefinite metric, the covariant quantization of the massless vector field requires an indecomposable representation of the de Sitter group. We work with the gauge fixing corresponding to the simplest Gupta-Bleuler structure. The field operator is defined with the help of coordinate-independent de Sitter waves (the modes). The latter are simple to manipulate and most adapted to group theoretical approaches. The physical states characterized by the divergencelessness condition are, for instance, easy to identify. The whole construction is based on analyticity requirements in the complexified pseudo-Riemannian manifold for the modes and the two-point function

  18. On spectral resolutions of differential vector-operators

    International Nuclear Information System (INIS)

    Ashurov, R.R.; Sokolov, M.S.

    2004-04-01

    We show that spectral resolutions of differential vector-operators may be represented as a specific direct sum integral operator with a kernel written in terms of generalized vector-operator eigenfunctions. Then we prove that a generalized eigenfunction measurable with respect to the spectral parameter may be decomposed using a set of analytical defining systems of coordinate operators. (author)

  19. Perturbations of ultralight vector field dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Cembranos, J.A.R.; Maroto, A.L.; Jareño, S.J. Núñez [Departamento de Física Teórica I, Universidad Complutense de Madrid, E-28040 Madrid (Spain)

    2017-02-13

    We study the dynamics of cosmological perturbations in models of dark matter based on ultralight coherent vector fields. Very much as for scalar field dark matter, we find two different regimes in the evolution: for modes with k{sup 2}≪Hma, we have a particle-like behaviour indistinguishable from cold dark matter, whereas for modes with k{sup 2}≫Hma, we get a wave-like behaviour in which the sound speed is non-vanishing and of order c{sub s}{sup 2}≃k{sup 2}/m{sup 2}a{sup 2}. This implies that, also in these models, structure formation could be suppressed on small scales. However, unlike the scalar case, the fact that the background evolution contains a non-vanishing homogeneous vector field implies that, in general, the evolution of the three kinds of perturbations (scalar, vector and tensor) can no longer be decoupled at the linear level. More specifically, in the particle regime, the three types of perturbations are actually decoupled, whereas in the wave regime, the three vector field perturbations generate one scalar-tensor and two vector-tensor perturbations in the metric. Also in the wave regime, we find that a non-vanishing anisotropic stress is present in the perturbed energy-momentum tensor giving rise to a gravitational slip of order (Φ−Ψ)/Φ∼c{sub s}{sup 2}. Moreover in this regime the amplitude of the tensor to scalar ratio of the scalar-tensor modes is also h/Φ∼c{sub s}{sup 2}. This implies that small-scale density perturbations are necessarily associated to the presence of gravity waves in this model. We compare their spectrum with the sensitivity of present and future gravity waves detectors.

  20. Properties of invariant modelling and invariant glueing of vector fields

    International Nuclear Information System (INIS)

    Petukhov, V.R.

    1987-01-01

    Invariant modelling and invariant glueing of both continuous (rates and accelerations) and descrete vector fields, gradient and divergence cases are considered. The following appendices are discussed: vector fields in crystals, crystal disclinations, topological charges and their fields

  1. Antisymmetric tensor generalizations of affine vector fields.

    Science.gov (United States)

    Houri, Tsuyoshi; Morisawa, Yoshiyuki; Tomoda, Kentaro

    2016-02-01

    Tensor generalizations of affine vector fields called symmetric and antisymmetric affine tensor fields are discussed as symmetry of spacetimes. We review the properties of the symmetric ones, which have been studied in earlier works, and investigate the properties of the antisymmetric ones, which are the main theme in this paper. It is shown that antisymmetric affine tensor fields are closely related to one-lower-rank antisymmetric tensor fields which are parallelly transported along geodesics. It is also shown that the number of linear independent rank- p antisymmetric affine tensor fields in n -dimensions is bounded by ( n + 1)!/ p !( n - p )!. We also derive the integrability conditions for antisymmetric affine tensor fields. Using the integrability conditions, we discuss the existence of antisymmetric affine tensor fields on various spacetimes.

  2. Multifractal vector fields and stochastic Clifford algebra.

    Science.gov (United States)

    Schertzer, Daniel; Tchiguirinskaia, Ioulia

    2015-12-01

    In the mid 1980s, the development of multifractal concepts and techniques was an important breakthrough for complex system analysis and simulation, in particular, in turbulence and hydrology. Multifractals indeed aimed to track and simulate the scaling singularities of the underlying equations instead of relying on numerical, scale truncated simulations or on simplified conceptual models. However, this development has been rather limited to deal with scalar fields, whereas most of the fields of interest are vector-valued or even manifold-valued. We show in this paper that the combination of stable Lévy processes with Clifford algebra is a good candidate to bridge up the present gap between theory and applications. We show that it indeed defines a convenient framework to generate multifractal vector fields, possibly multifractal manifold-valued fields, based on a few fundamental and complementary properties of Lévy processes and Clifford algebra. In particular, the vector structure of these algebra is much more tractable than the manifold structure of symmetry groups while the Lévy stability grants a given statistical universality.

  3. Multifractal vector fields and stochastic Clifford algebra

    Energy Technology Data Exchange (ETDEWEB)

    Schertzer, Daniel, E-mail: Daniel.Schertzer@enpc.fr; Tchiguirinskaia, Ioulia, E-mail: Ioulia.Tchiguirinskaia@enpc.fr [University Paris-Est, Ecole des Ponts ParisTech, Hydrology Meteorology and Complexity HM& Co, Marne-la-Vallée (France)

    2015-12-15

    In the mid 1980s, the development of multifractal concepts and techniques was an important breakthrough for complex system analysis and simulation, in particular, in turbulence and hydrology. Multifractals indeed aimed to track and simulate the scaling singularities of the underlying equations instead of relying on numerical, scale truncated simulations or on simplified conceptual models. However, this development has been rather limited to deal with scalar fields, whereas most of the fields of interest are vector-valued or even manifold-valued. We show in this paper that the combination of stable Lévy processes with Clifford algebra is a good candidate to bridge up the present gap between theory and applications. We show that it indeed defines a convenient framework to generate multifractal vector fields, possibly multifractal manifold-valued fields, based on a few fundamental and complementary properties of Lévy processes and Clifford algebra. In particular, the vector structure of these algebra is much more tractable than the manifold structure of symmetry groups while the Lévy stability grants a given statistical universality.

  4. The vector structure of active magnetic fields

    Science.gov (United States)

    Parker, E. N.

    1985-01-01

    Observations are needed to show the form of the strains introduced into the fields above the surface of the Sun. The longitudinal component alone does not provide the basic information, so that it has been necessary in the past to use the filamentary structure observed in H sub alpha to supplement the longitudinal information. Vector measurements provide the additional essential information to determine the strains, with the filamentary structure available as a check for consistency. It is to be expected, then, that vector measurements will permit a direct mapping of the strains imposed on the magnetic fields of active regions. It will be interesting to study the relation of those strains to the emergence of magnetic flux, flares, eruptive prominences, etc. In particular we may hope to study the relaxation of the strains via the dynamical nonequilibrium.

  5. Efficient morse decompositions of vector fields.

    Science.gov (United States)

    Chen, Guoning; Mischaikow, Konstantin; Laramee, Robert S; Zhang, Eugene

    2008-01-01

    Existing topology-based vector field analysis techniques rely on the ability to extract the individual trajectories such as fixed points, periodic orbits, and separatrices that are sensitive to noise and errors introduced by simulation and interpolation. This can make such vector field analysis unsuitable for rigorous interpretations. We advocate the use of Morse decompositions, which are robust with respect to perturbations, to encode the topological structures of a vector field in the form of a directed graph, called a Morse connection graph (MCG). While an MCG exists for every vector field, it need not be unique. Previous techniques for computing MCG's, while fast, are overly conservative and usually results in MCG's that are too coarse to be useful for the applications. To address this issue, we present a new technique for performing Morse decomposition based on the concept of tau-maps, which typically provides finer MCG's than existing techniques. Furthermore, the choice of tau provides a natural tradeoff between the fineness of the MCG's and the computational costs. We provide efficient implementations of Morse decomposition based on tau-maps, which include the use of forward and backward mapping techniques and an adaptive approach in constructing better approximations of the images of the triangles in the meshes used for simulation.. Furthermore, we propose the use of spatial tau-maps in addition to the original temporal tau-maps. These techniques provide additional trade-offs between the quality of the MCGs and the speed of computation. We demonstrate the utility of our technique with various examples in the plane and on surfaces including engine simulation data sets.

  6. Time-varying vector fields and their flows

    CERN Document Server

    Jafarpour, Saber

    2014-01-01

    This short book provides a comprehensive and unified treatment of time-varying vector fields under a variety of regularity hypotheses, namely finitely differentiable, Lipschitz, smooth, holomorphic, and real analytic. The presentation of this material in the real analytic setting is new, as is the manner in which the various hypotheses are unified using functional analysis. Indeed, a major contribution of the book is the coherent development of locally convex topologies for the space of real analytic sections of a vector bundle, and the development of this in a manner that relates easily to classically known topologies in, for example, the finitely differentiable and smooth cases. The tools used in this development will be of use to researchers in the area of geometric functional analysis.

  7. On Discrete Killing Vector Fields and Patterns on Surfaces

    KAUST Repository

    Ben-Chen, Mirela; Butscher, Adrian; Solomon, Justin; Guibas, Leonidas

    2010-01-01

    , and show how to discretize these concepts for generating such vector fields on a triangulated mesh. We discuss the properties of approximate Killing Vector Fields, and propose an application to utilize them for texture and geometry synthesis. Journal

  8. Skew differential fields, differential and difference equations

    NARCIS (Netherlands)

    van der Put, M

    2004-01-01

    The central question is: Let a differential or difference equation over a field K be isomorphic to all its Galois twists w.r.t. the group Gal(K/k). Does the equation descend to k? For a number of categories of equations an answer is given.

  9. Conformal Vector Fields on Doubly Warped Product Manifolds and Applications

    Directory of Open Access Journals (Sweden)

    H. K. El-Sayied

    2016-01-01

    Full Text Available This article aimed to study and explore conformal vector fields on doubly warped product manifolds as well as on doubly warped spacetime. Then we derive sufficient conditions for matter and Ricci collineations on doubly warped product manifolds. A special attention is paid to concurrent vector fields. Finally, Ricci solitons on doubly warped product spacetime admitting conformal vector fields are considered.

  10. n-Characteristic Vector Fields of Contact Manifoldss

    OpenAIRE

    Hassanzadeh, Babak

    2017-01-01

    In present paper we define and study $n$-characteristic vector fields. We present definition of Tanaka-Webster connection, then use it for studying the behavior of $n$-characteristic vector fields. Also we show some results about of these vector fields by Tanaka-Webster connection.

  11. On a class of vector fields

    Directory of Open Access Journals (Sweden)

    Galimzian G. Islamov

    2015-12-01

    Full Text Available It is shown that a simple postulate “The displacement field of the vacuum is a normalized electric field”, is equivalent to three parametric representation of the displacement field of the vacuum: $$ u(x;t = P(x \\cos k(xt + Q(x \\sin k(xt. $$ Here $t$ — time; $k(x$ — frequency vibrations at the point of three-dimensional Euclidean space; $P(x, Q(x$ — a pair of stationary orthonormal vector fields; $(k,P, Q$ — parameter list of the displacement field. In this case, the normalization factor has dimension $T^{-2}$. The speed of the displacement field $$ v(x;t = \\frac{\\partial u(x;t}{\\partial t} = k(x(Q(x \\cos k(xt - P(x \\sin k(xt. $$ The electric field corresponding to this distribution of the displacement field of vacuum, is given by the formula $$ E(x;t = -\\frac{\\partial v(x;t}{\\partial t} = k^2(xu(x;t. $$ Moreover, the magnetic induction $$ B(x;t = \\mathop{\\mathrm{rot }} v(x; t. $$ These constructions are used in the determination of local and global solutions of Maxwell's equations describing the dynamics of electromagnetic fields.

  12. Generation of arbitrary vector fields based on a pair of orthogonal elliptically polarized base vectors.

    Science.gov (United States)

    Xu, Danfeng; Gu, Bing; Rui, Guanghao; Zhan, Qiwen; Cui, Yiping

    2016-02-22

    We present an arbitrary vector field with hybrid polarization based on the combination of a pair of orthogonal elliptically polarized base vectors on the Poincaré sphere. It is shown that the created vector field is only dependent on the latitude angle 2χ but is independent on the longitude angle 2ψ on the Poincaré sphere. By adjusting the latitude angle 2χ, which is related to two identical waveplates in a common path interferometric arrangement, one could obtain arbitrary type of vector fields. Experimentally, we demonstrate the generation of such kind of vector fields and confirm the distribution of state of polarization by the measurement of Stokes parameters. Besides, we investigate the tight focusing properties of these vector fields. It is found that the additional degree of freedom 2χ provided by arbitrary vector field with hybrid polarization allows one to control the spatial structure of polarization and to engineer the focusing field.

  13. Differential form representation of stochastic electromagnetic fields

    Directory of Open Access Journals (Sweden)

    M. Haider

    2017-09-01

    Full Text Available In this work, we revisit the theory of stochastic electromagnetic fields using exterior differential forms. We present a short overview as well as a brief introduction to the application of differential forms in electromagnetic theory. Within the framework of exterior calculus we derive equations for the second order moments, describing stochastic electromagnetic fields. Since the resulting objects are continuous quantities in space, a discretization scheme based on the Method of Moments (MoM is introduced for numerical treatment. The MoM is applied in such a way, that the notation of exterior calculus is maintained while we still arrive at the same set of algebraic equations as obtained for the case of formulating the theory using the traditional notation of vector calculus. We conclude with an analytic calculation of the radiated electric field of two Hertzian dipole, excited by uncorrelated random currents.

  14. Differential form representation of stochastic electromagnetic fields

    Science.gov (United States)

    Haider, Michael; Russer, Johannes A.

    2017-09-01

    In this work, we revisit the theory of stochastic electromagnetic fields using exterior differential forms. We present a short overview as well as a brief introduction to the application of differential forms in electromagnetic theory. Within the framework of exterior calculus we derive equations for the second order moments, describing stochastic electromagnetic fields. Since the resulting objects are continuous quantities in space, a discretization scheme based on the Method of Moments (MoM) is introduced for numerical treatment. The MoM is applied in such a way, that the notation of exterior calculus is maintained while we still arrive at the same set of algebraic equations as obtained for the case of formulating the theory using the traditional notation of vector calculus. We conclude with an analytic calculation of the radiated electric field of two Hertzian dipole, excited by uncorrelated random currents.

  15. Gauge anomaly with vector and axial-vector fields in 6D curved space

    Science.gov (United States)

    Yajima, Satoshi; Eguchi, Kohei; Fukuda, Makoto; Oka, Tomonori

    2018-03-01

    Imposing the conservation equation of the vector current for a fermion of spin 1/2 at the quantum level, a gauge anomaly for the fermion coupling with non-Abelian vector and axial-vector fields in 6D curved space is expressed in tensorial form. The anomaly consists of terms that resemble the chiral U(1) anomaly and the commutator terms that disappear if the axial-vector field is Abelian.

  16. Stability of Vector Functional Differential Equations: A Survey | Gil ...

    African Journals Online (AJOL)

    This paper is a survey of the recent results of the author on the stability of linear and nonlinear vector differential equations with delay. Explicit conditions for the exponential and absolute stabilities are derived. Moreover, solution estimates for the considered equations are established. They provide the bounds for the regions ...

  17. Comments on conformal Killing vector fields and quantum field theory

    International Nuclear Information System (INIS)

    Brown, M.R.; Ottewill, A.C.; Siklos, S.T.C.

    1982-01-01

    We give a comprehensive analysis of those vacuums for flat and conformally flat space-times which can be defined by timelike, hypersurface-orthogonal, conformal Killing vector fields. We obtain formulas for the difference in stress-energy density between any two such states and display the correspondence with the renormalized stress tensors. A brief discussion is given of the relevance of these results to quantum-mechanical measurements made by noninertial observers moving through flat space

  18. Vector optical fields with bipolar symmetry of linear polarization.

    Science.gov (United States)

    Pan, Yue; Li, Yongnan; Li, Si-Min; Ren, Zhi-Cheng; Si, Yu; Tu, Chenghou; Wang, Hui-Tian

    2013-09-15

    We focus on a new kind of vector optical field with bipolar symmetry of linear polarization instead of cylindrical and elliptical symmetries, enriching members of family of vector optical fields. We design theoretically and generate experimentally the demanded vector optical fields and then explore some novel tightly focusing properties. The geometric configurations of states of polarization provide additional degrees of freedom assisting in engineering the field distribution at the focus to the specific applications such as lithography, optical trapping, and material processing.

  19. Robust point matching via vector field consensus.

    Science.gov (United States)

    Jiayi Ma; Ji Zhao; Jinwen Tian; Yuille, Alan L; Zhuowen Tu

    2014-04-01

    In this paper, we propose an efficient algorithm, called vector field consensus, for establishing robust point correspondences between two sets of points. Our algorithm starts by creating a set of putative correspondences which can contain a very large number of false correspondences, or outliers, in addition to a limited number of true correspondences (inliers). Next, we solve for correspondence by interpolating a vector field between the two point sets, which involves estimating a consensus of inlier points whose matching follows a nonparametric geometrical constraint. We formulate this a maximum a posteriori (MAP) estimation of a Bayesian model with hidden/latent variables indicating whether matches in the putative set are outliers or inliers. We impose nonparametric geometrical constraints on the correspondence, as a prior distribution, using Tikhonov regularizers in a reproducing kernel Hilbert space. MAP estimation is performed by the EM algorithm which by also estimating the variance of the prior model (initialized to a large value) is able to obtain good estimates very quickly (e.g., avoiding many of the local minima inherent in this formulation). We illustrate this method on data sets in 2D and 3D and demonstrate that it is robust to a very large number of outliers (even up to 90%). We also show that in the special case where there is an underlying parametric geometrical model (e.g., the epipolar line constraint) that we obtain better results than standard alternatives like RANSAC if a large number of outliers are present. This suggests a two-stage strategy, where we use our nonparametric model to reduce the size of the putative set and then apply a parametric variant of our approach to estimate the geometric parameters. Our algorithm is computationally efficient and we provide code for others to use it. In addition, our approach is general and can be applied to other problems, such as learning with a badly corrupted training data set.

  20. Spectral Analysis of Vector Magnetic Field Profiles

    Science.gov (United States)

    Parker, Robert L.; OBrien, Michael S.

    1997-01-01

    We investigate the power spectra and cross spectra derived from the three components of the vector magnetic field measured on a straight horizontal path above a statistically stationary source. All of these spectra, which can be estimated from the recorded time series, are related to a single two-dimensional power spectral density via integrals that run in the across-track direction in the wavenumber domain. Thus the measured spectra must obey a number of strong constraints: for example, the sum of the two power spectral densities of the two horizontal field components equals the power spectral density of the vertical component at every wavenumber and the phase spectrum between the vertical and along-track components is always pi/2. These constraints provide powerful checks on the quality of the measured data; if they are violated, measurement or environmental noise should be suspected. The noise due to errors of orientation has a clear characteristic; both the power and phase spectra of the components differ from those of crustal signals, which makes orientation noise easy to detect and to quantify. The spectra of the crustal signals can be inverted to obtain information about the cross-track structure of the field. We illustrate these ideas using a high-altitude Project Magnet profile flown in the southeastern Pacific Ocean.

  1. Multiscale vector fields for image pattern recognition

    Science.gov (United States)

    Low, Kah-Chan; Coggins, James M.

    1990-01-01

    A uniform processing framework for low-level vision computing in which a bank of spatial filters maps the image intensity structure at each pixel into an abstract feature space is proposed. Some properties of the filters and the feature space are described. Local orientation is measured by a vector sum in the feature space as follows: each filter's preferred orientation along with the strength of the filter's output determine the orientation and the length of a vector in the feature space; the vectors for all filters are summed to yield a resultant vector for a particular pixel and scale. The orientation of the resultant vector indicates the local orientation, and the magnitude of the vector indicates the strength of the local orientation preference. Limitations of the vector sum method are discussed. Investigations show that the processing framework provides a useful, redundant representation of image structure across orientation and scale.

  2. Parallel Vector Fields and Einstein Equations of Gravity | Mahara ...

    African Journals Online (AJOL)

    In this paper, we prove that no nontrivial timelike or spacelike parallel vector field exists in a region where the gravitational field created by macroscopic bodies and governed by Einstein's equations does not vanish. In other words, we prove that the existence of such vector fields in a region implies the vanishing of the ...

  3. Tensor and vector analysis with applications to differential geometry

    CERN Document Server

    Springer, C E

    2012-01-01

    Concise and user-friendly, this college-level text assumes only a knowledge of basic calculus in its elementary and gradual development of tensor theory. The introductory approach bridges the gap between mere manipulation and a genuine understanding of an important aspect of both pure and applied mathematics.Beginning with a consideration of coordinate transformations and mappings, the treatment examines loci in three-space, transformation of coordinates in space and differentiation, tensor algebra and analysis, and vector analysis and algebra. Additional topics include differentiation of vect

  4. Differential pseudoconnections and field theories

    International Nuclear Information System (INIS)

    Modugno, Marco; Ragionieri, Rodolfo; Stefani, Gianna

    1981-01-01

    Several general field theories have been successful in describing fundamental physical fields by a unique schema. Our purpose is to present the first step of an attempt based on differential pseudoconnections on jet bundles. In this paper we are dealing with the essential elements of such an approach and with the testing of a certain number of important examples. We define a 'differential pseudoconnection of order k' on a bundle p:E→M as a translation morphism on the affine bundle. Such concept is a generalization of usual connections. Then we study in the framework of jet spaces several important differential operators used in physics. In this context an interest arises naturally for the second order affine differential equations, called 'special'. Particular cases of special equations are both the geodesics equation (an ordinary equation) and any Kind of Laplace equation (a partial equation) even modified by the addition of physical terms. So special equations are candidate to fit a lot of fundamental physical fields

  5. The Curl of a Vector Field: Beyond the Formula

    Science.gov (United States)

    Burch, Kimberly Jordan; Choi, Youngna

    2006-01-01

    It has been widely acknowledged that there is some discrepancy in the teaching of vector calculus in mathematics courses and other applied fields. The curl of a vector field is one topic many students can calculate without understanding its significance. In this paper, we explain the origin of the curl after presenting the standard mathematical…

  6. Space-times carrying a quasirecurrent pairing of vector fields

    International Nuclear Information System (INIS)

    Rosca, R.; Ianus, S.

    1977-01-01

    A quasirecurrent pairing of vector fields(X 1 ,X 2 ,) defined previously by Rosca (C.R. Acad. Sci. 282 (1976)) is investigated on a space-time in two cases: (1) X 1 is spacelike and X 2 is timelike; (2) X 1 is null and X 2 is spacelike. The physical interpretation of these vector fields is given. (author)

  7. Avoiding ergodicity and turbulence in R3 vector fields

    International Nuclear Information System (INIS)

    Ancochea, J.M.; Campoamor-Stursberg, R.; Gonzalez-Gascon, F.

    2003-01-01

    We show that analytic R 3 vector fields having the property of being transversal to either analytic functions or foliations F 2 , or parallel to a foliation, are free from ergodicity and turbulence. The absence of turbulence and ergodicity via induced vector fields is also proven

  8. Design of 2D Time-Varying Vector Fields

    KAUST Repository

    Chen, Guoning; Kwatra, Vivek; Wei, Li-Yi; Hansen, Charles D.; Zhang, Eugene

    2012-01-01

    Design of time-varying vector fields, i.e., vector fields that can change over time, has a wide variety of important applications in computer graphics. Existing vector field design techniques do not address time-varying vector fields. In this paper, we present a framework for the design of time-varying vector fields, both for planar domains as well as manifold surfaces. Our system supports the creation and modification of various time-varying vector fields with desired spatial and temporal characteristics through several design metaphors, including streamlines, pathlines, singularity paths, and bifurcations. These design metaphors are integrated into an element-based design to generate the time-varying vector fields via a sequence of basis field summations or spatial constrained optimizations at the sampled times. The key-frame design and field deformation are also introduced to support other user design scenarios. Accordingly, a spatial-temporal constrained optimization and the time-varying transformation are employed to generate the desired fields for these two design scenarios, respectively. We apply the time-varying vector fields generated using our design system to a number of important computer graphics applications that require controllable dynamic effects, such as evolving surface appearance, dynamic scene design, steerable crowd movement, and painterly animation. Many of these are difficult or impossible to achieve via prior simulation-based methods. In these applications, the time-varying vector fields have been applied as either orientation fields or advection fields to control the instantaneous appearance or evolving trajectories of the dynamic effects. © 1995-2012 IEEE.

  9. Design of 2D time-varying vector fields.

    Science.gov (United States)

    Chen, Guoning; Kwatra, Vivek; Wei, Li-Yi; Hansen, Charles D; Zhang, Eugene

    2012-10-01

    Design of time-varying vector fields, i.e., vector fields that can change over time, has a wide variety of important applications in computer graphics. Existing vector field design techniques do not address time-varying vector fields. In this paper, we present a framework for the design of time-varying vector fields, both for planar domains as well as manifold surfaces. Our system supports the creation and modification of various time-varying vector fields with desired spatial and temporal characteristics through several design metaphors, including streamlines, pathlines, singularity paths, and bifurcations. These design metaphors are integrated into an element-based design to generate the time-varying vector fields via a sequence of basis field summations or spatial constrained optimizations at the sampled times. The key-frame design and field deformation are also introduced to support other user design scenarios. Accordingly, a spatial-temporal constrained optimization and the time-varying transformation are employed to generate the desired fields for these two design scenarios, respectively. We apply the time-varying vector fields generated using our design system to a number of important computer graphics applications that require controllable dynamic effects, such as evolving surface appearance, dynamic scene design, steerable crowd movement, and painterly animation. Many of these are difficult or impossible to achieve via prior simulation-based methods. In these applications, the time-varying vector fields have been applied as either orientation fields or advection fields to control the instantaneous appearance or evolving trajectories of the dynamic effects.

  10. Design of 2D Time-Varying Vector Fields

    KAUST Repository

    Chen, Guoning

    2012-10-01

    Design of time-varying vector fields, i.e., vector fields that can change over time, has a wide variety of important applications in computer graphics. Existing vector field design techniques do not address time-varying vector fields. In this paper, we present a framework for the design of time-varying vector fields, both for planar domains as well as manifold surfaces. Our system supports the creation and modification of various time-varying vector fields with desired spatial and temporal characteristics through several design metaphors, including streamlines, pathlines, singularity paths, and bifurcations. These design metaphors are integrated into an element-based design to generate the time-varying vector fields via a sequence of basis field summations or spatial constrained optimizations at the sampled times. The key-frame design and field deformation are also introduced to support other user design scenarios. Accordingly, a spatial-temporal constrained optimization and the time-varying transformation are employed to generate the desired fields for these two design scenarios, respectively. We apply the time-varying vector fields generated using our design system to a number of important computer graphics applications that require controllable dynamic effects, such as evolving surface appearance, dynamic scene design, steerable crowd movement, and painterly animation. Many of these are difficult or impossible to achieve via prior simulation-based methods. In these applications, the time-varying vector fields have been applied as either orientation fields or advection fields to control the instantaneous appearance or evolving trajectories of the dynamic effects. © 1995-2012 IEEE.

  11. Student difficulties regarding symbolic and graphical representations of vector fields

    Directory of Open Access Journals (Sweden)

    Laurens Bollen

    2017-08-01

    Full Text Available The ability to switch between various representations is an invaluable problem-solving skill in physics. In addition, research has shown that using multiple representations can greatly enhance a person’s understanding of mathematical and physical concepts. This paper describes a study of student difficulties regarding interpreting, constructing, and switching between representations of vector fields, using both qualitative and quantitative methods. We first identified to what extent students are fluent with the use of field vector plots, field line diagrams, and symbolic expressions of vector fields by conducting individual student interviews and analyzing in-class student activities. Based on those findings, we designed the Vector Field Representations test, a free response assessment tool that has been given to 196 second- and third-year physics, mathematics, and engineering students from four different universities. From the obtained results we gained a comprehensive overview of typical errors that students make when switching between vector field representations. In addition, the study allowed us to determine the relative prevalence of the observed difficulties. Although the results varied greatly between institutions, a general trend revealed that many students struggle with vector addition, fail to recognize the field line density as an indication of the magnitude of the field, confuse characteristics of field lines and equipotential lines, and do not choose the appropriate coordinate system when writing out mathematical expressions of vector fields.

  12. Student difficulties regarding symbolic and graphical representations of vector fields

    Science.gov (United States)

    Bollen, Laurens; van Kampen, Paul; Baily, Charles; Kelly, Mossy; De Cock, Mieke

    2017-12-01

    The ability to switch between various representations is an invaluable problem-solving skill in physics. In addition, research has shown that using multiple representations can greatly enhance a person's understanding of mathematical and physical concepts. This paper describes a study of student difficulties regarding interpreting, constructing, and switching between representations of vector fields, using both qualitative and quantitative methods. We first identified to what extent students are fluent with the use of field vector plots, field line diagrams, and symbolic expressions of vector fields by conducting individual student interviews and analyzing in-class student activities. Based on those findings, we designed the Vector Field Representations test, a free response assessment tool that has been given to 196 second- and third-year physics, mathematics, and engineering students from four different universities. From the obtained results we gained a comprehensive overview of typical errors that students make when switching between vector field representations. In addition, the study allowed us to determine the relative prevalence of the observed difficulties. Although the results varied greatly between institutions, a general trend revealed that many students struggle with vector addition, fail to recognize the field line density as an indication of the magnitude of the field, confuse characteristics of field lines and equipotential lines, and do not choose the appropriate coordinate system when writing out mathematical expressions of vector fields.

  13. Classification of complex polynomial vector fields in one complex variable

    DEFF Research Database (Denmark)

    Branner, Bodil; Dias, Kealey

    2010-01-01

    This paper classifies the global structure of monic and centred one-variable complex polynomial vector fields. The classification is achieved by means of combinatorial and analytic data. More specifically, given a polynomial vector field, we construct a combinatorial invariant, describing...... the topology, and a set of analytic invariants, describing the geometry. Conversely, given admissible combinatorial and analytic data sets, we show using surgery the existence of a unique monic and centred polynomial vector field realizing the given invariants. This is the content of the Structure Theorem......, the main result of the paper. This result is an extension and refinement of Douady et al. (Champs de vecteurs polynomiaux sur C. Unpublished manuscript) classification of the structurally stable polynomial vector fields. We further review some general concepts for completeness and show that vector fields...

  14. On Discrete Killing Vector Fields and Patterns on Surfaces

    KAUST Repository

    Ben-Chen, Mirela

    2010-09-21

    Symmetry is one of the most important properties of a shape, unifying form and function. It encodes semantic information on one hand, and affects the shape\\'s aesthetic value on the other. Symmetry comes in many flavors, amongst the most interesting being intrinsic symmetry, which is defined only in terms of the intrinsic geometry of the shape. Continuous intrinsic symmetries can be represented using infinitesimal rigid transformations, which are given as tangent vector fields on the surface - known as Killing Vector Fields. As exact symmetries are quite rare, especially when considering noisy sampled surfaces, we propose a method for relaxing the exact symmetry constraint to allow for approximate symmetries and approximate Killing Vector Fields, and show how to discretize these concepts for generating such vector fields on a triangulated mesh. We discuss the properties of approximate Killing Vector Fields, and propose an application to utilize them for texture and geometry synthesis. Journal compilation © 2010 The Eurographics Association and Blackwell Publishing Ltd.

  15. Covariant differential calculus on the quantum exterior vector space

    International Nuclear Information System (INIS)

    Parashar, P.; Soni, S.K.

    1992-01-01

    We formulate a differential calculus on the quantum exterior vector space spanned by the generators of a non-anticommutative algebra satisfying r ij = θ i θ j +B kl ij θ k θ l =0 i, j=1, 2, ..., n. and (θ i ) 2 =(θ j ) 2 =...=(θ n ) 2 =0, where B kl ij is the most general matrix defined in terms of complex deformation parameters. Following considerations analogous to those of Wess and Zumino, we are able to exhibit covariance of our calculus under ( 2 n )+1 parameter deformation of GL(n) and explicitly check that the non-anticommutative differential calculus satisfies the general constraints given by them, such as the 'linear' conditions dr ij ≅0 and the 'quadratic' condition r ij x n ≅0 where x n =dθ n are the differentials of the variables. (orig.)

  16. Gaussian vector fields on triangulated surfaces

    DEFF Research Database (Denmark)

    Ipsen, John H

    2016-01-01

    proven to be very useful to resolve the complex interplay between in-plane ordering of membranes and membrane conformations. In the present work we have developed a procedure for realistic representations of Gaussian models with in-plane vector degrees of freedoms on a triangulated surface. The method...

  17. The divergence theorem for unbounded vector fields

    OpenAIRE

    De Pauw, Thierry; Pfeffer, Washek F.

    2007-01-01

    In the context of Lebesgue integration, we derive the divergence theorem for unbounded vector. elds that can have singularities at every point of a compact set whose Minkowski content of codimension greater than two is. nite. The resulting integration by parts theorem is applied to removable sets of holomorphic and harmonic functions.

  18. Measuring magnetic field vector by stimulated Raman transitions

    International Nuclear Information System (INIS)

    Wang, Wenli; Wei, Rong; Lin, Jinda; Wang, Yuzhu; Dong, Richang; Zou, Fan; Chen, Tingting

    2016-01-01

    We present a method for measuring the magnetic field vector in an atomic fountain by probing the line strength of stimulated Raman transitions. The relative line strength for a Λ-type level system with an existing magnetic field is theoretically analyzed. The magnetic field vector measured by our proposed method is consistent well with that by the traditional bias magnetic field method with an axial resolution of 6.1 mrad and a radial resolution of 0.16 rad. Dependences of the Raman transitions on laser polarization schemes are also analyzed. Our method offers the potential advantages for magnetic field measurement without requiring additional bias fields, beyond the limitation of magnetic field intensity, and extending the spatial measurement range. The proposed method can be widely used for measuring magnetic field vector in other precision measurement fields.

  19. Interpolation of vector fields from human cardiac DT-MRI

    International Nuclear Information System (INIS)

    Yang, F; Zhu, Y M; Rapacchi, S; Robini, M; Croisille, P; Luo, J H

    2011-01-01

    There has recently been increased interest in developing tensor data processing methods for the new medical imaging modality referred to as diffusion tensor magnetic resonance imaging (DT-MRI). This paper proposes a method for interpolating the primary vector fields from human cardiac DT-MRI, with the particularity of achieving interpolation and denoising simultaneously. The method consists of localizing the noise-corrupted vectors using the local statistical properties of vector fields, removing the noise-corrupted vectors and reconstructing them by using the thin plate spline (TPS) model, and finally applying global TPS interpolation to increase the resolution in the spatial domain. Experiments on 17 human hearts show that the proposed method allows us to obtain higher resolution while reducing noise, preserving details and improving direction coherence (DC) of vector fields as well as fiber tracking. Moreover, the proposed method perfectly reconstructs azimuth and elevation angle maps.

  20. The index of a vector field under blow ups

    International Nuclear Information System (INIS)

    Seade, J.

    1991-08-01

    A useful technique when studying the behaviour of holomorphic vector fields around their isolated singularities is that of blowing up the singular points. On the other hand, the most basic invariant of a vector field with isolated singularities is its local index, as defined by Poincare and Hopf. It is thus natural to ask how does the index of a vector field behaves under blowing ups? The purpose of this work is to study and answer this question, by taking a rather general point of view and bearing in mind that complex manifolds have a powerful birational invariant, the Todd genus. 20 refs

  1. Visualizing Vector Fields Using Line Integral Convolution and Dye Advection

    Science.gov (United States)

    Shen, Han-Wei; Johnson, Christopher R.; Ma, Kwan-Liu

    1996-01-01

    We present local and global techniques to visualize three-dimensional vector field data. Using the Line Integral Convolution (LIC) method to image the global vector field, our new algorithm allows the user to introduce colored 'dye' into the vector field to highlight local flow features. A fast algorithm is proposed that quickly recomputes the dyed LIC images. In addition, we introduce volume rendering methods that can map the LIC texture on any contour surface and/or translucent region defined by additional scalar quantities, and can follow the advection of colored dye throughout the volume.

  2. Reciprocity relationships in vector acoustics and their application to vector field calculations.

    Science.gov (United States)

    Deal, Thomas J; Smith, Kevin B

    2017-08-01

    The reciprocity equation commonly stated in underwater acoustics relates pressure fields and monopole sources. It is often used to predict the pressure measured by a hydrophone for multiple source locations by placing a source at the hydrophone location and calculating the field everywhere for that source. A similar equation that governs the orthogonal components of the particle velocity field is needed to enable this computational method to be used for acoustic vector sensors. This paper derives a general reciprocity equation that accounts for both monopole and dipole sources. This vector-scalar reciprocity equation can be used to calculate individual components of the received vector field by altering the source type used in the propagation calculation. This enables a propagation model to calculate the received vector field components for an arbitrary number of source locations with a single model run for each vector field component instead of requiring one model run for each source location. Application of the vector-scalar reciprocity principle is demonstrated with analytic solutions for a range-independent environment and with numerical solutions for a range-dependent environment using a parabolic equation model.

  3. Derivatives, forms and vector fields on the κ-deformed Euclidean space

    International Nuclear Information System (INIS)

    Dimitrijevic, Marija; Moeller, Lutz; Tsouchnika, Efrossini

    2004-01-01

    The model of κ-deformed space is an interesting example of a noncommutative space, since it allows a deformed symmetry. In this paper, we present new results concerning different sets of derivatives on the coordinate algebra of κ-deformed Euclidean space. We introduce a differential calculus with two interesting sets of one-forms and higher-order forms. The transformation law of vector fields is constructed in accordance with the transformation behaviour of derivatives. The crucial property of the different derivatives, forms and vector fields is that in an n-dimensional spacetime there are always n of them. This is the key difference with respect to conventional approaches, in which the differential calculus is (n + 1)-dimensional. This work shows that derivative-valued quantities such as derivative-valued vector fields appear in a generic way on noncommutative spaces

  4. Differential algebras in field theory

    International Nuclear Information System (INIS)

    Stora, R.

    1988-01-01

    The applications of differential algebras, as mathematical tools, in field theory are reviewed. The Yang-Mills theories are recalled and the free bosonic string model is treated. Moreover, in the scope of the work, the following topics are discussed: the Faddeev Popov fixed action, in a Feynman like gauge; the structure of local anomalies, including the algebric and the topological theories; the problem of quantizing a degenerate state; and the zero mode problem, in the treatment of the bosonic string conformal gauge. The analysis leads to the conclusion that not much is known about situations where a non involutive distribution is involved

  5. Validation of SplitVectors Encoding for Quantitative Visualization of Large-Magnitude-Range Vector Fields.

    Science.gov (United States)

    Henan Zhao; Bryant, Garnett W; Griffin, Wesley; Terrill, Judith E; Jian Chen

    2017-06-01

    We designed and evaluated SplitVectors, a new vector field display approach to help scientists perform new discrimination tasks on large-magnitude-range scientific data shown in three-dimensional (3D) visualization environments. SplitVectors uses scientific notation to display vector magnitude, thus improving legibility. We present an empirical study comparing the SplitVectors approach with three other approaches - direct linear representation, logarithmic, and text display commonly used in scientific visualizations. Twenty participants performed three domain analysis tasks: reading numerical values (a discrimination task), finding the ratio between values (a discrimination task), and finding the larger of two vectors (a pattern detection task). Participants used both mono and stereo conditions. Our results suggest the following: (1) SplitVectors improve accuracy by about 10 times compared to linear mapping and by four times to logarithmic in discrimination tasks; (2) SplitVectors have no significant differences from the textual display approach, but reduce cluttering in the scene; (3) SplitVectors and textual display are less sensitive to data scale than linear and logarithmic approaches; (4) using logarithmic can be problematic as participants' confidence was as high as directly reading from the textual display, but their accuracy was poor; and (5) Stereoscopy improved performance, especially in more challenging discrimination tasks.

  6. Non-existence of limit cycles for planar vector fields

    Directory of Open Access Journals (Sweden)

    Jaume Gine

    2014-03-01

    Full Text Available This article presents sufficient conditions for the non-existence of limit cycles for planar vector fields. Classical methods for the nonexistence of limit cycles are connected with the theory developed here.

  7. Lipschitz estimates for convex functions with respect to vector fields

    Directory of Open Access Journals (Sweden)

    Valentino Magnani

    2012-12-01

    Full Text Available We present Lipschitz continuity estimates for a class of convex functions with respect to Hörmander vector fields. These results have been recently obtained in collaboration with M. Scienza, [22].

  8. 2D Vector Field Simplification Based on Robustness

    KAUST Repository

    Skraba, Primoz; Wang, Bei; Chen, Guoning; Rosen, Paul

    2014-01-01

    Vector field simplification aims to reduce the complexity of the flow by removing features in order of their relevance and importance, to reveal prominent behavior and obtain a compact representation for interpretation. Most existing simplification

  9. Invariant hyperplanes and Darboux integrability of polynomial vector fields

    International Nuclear Information System (INIS)

    Zhang Xiang

    2002-01-01

    This paper is composed of two parts. In the first part, we provide an upper bound for the number of invariant hyperplanes of the polynomial vector fields in n variables. This result generalizes those given in Artes et al (1998 Pac. J. Math. 184 207-30) and Llibre and Rodriguez (2000 Bull. Sci. Math. 124 599-619). The second part gives an extension of the Darboux theory of integrability to polynomial vector fields on algebraic varieties

  10. Creation of a new vector field and focusing engineering

    OpenAIRE

    Wang, Xi-Lin; Chen, Jing; Li, Yongnan; Ding, Jianping; Guo, Cheng-Shan; Wang, Hui-Tian

    2009-01-01

    Recently many methods have been proposed to create the vector fields, due to the academic interest and a variety of attractive applications such as for particle acceleration, optical trapping, particle manipulation, and fluorescence imaging. For the most of the created vector fields, the spatial distribution in states of polarization (SoPs) is dependent of azimuthal angle only. It is very interesting and crucial that if we can introduce the radial controlling freedom, which undoubtedly opens ...

  11. Attenuated Vector Tomography -- An Approach to Image Flow Vector Fields with Doppler Ultrasonic Imaging

    International Nuclear Information System (INIS)

    Huang, Qiu; Peng, Qiyu; Huang, Bin; Cheryauka, Arvi; Gullberg, Grant T.

    2008-01-01

    The measurement of flow obtained using continuous wave Doppler ultrasound is formulated as a directional projection of a flow vector field. When a continuous ultrasound wave bounces against a flowing particle, a signal is backscattered. This signal obtains a Doppler frequency shift proportional to the speed of the particle along the ultrasound beam. This occurs for each particle along the beam, giving rise to a Doppler velocity spectrum. The first moment of the spectrum provides the directional projection of the flow along the ultrasound beam. Signals reflected from points further away from the detector will have lower amplitude than signals reflected from points closer to the detector. The effect is very much akin to that modeled by the attenuated Radon transform in emission computed tomography.A least-squares method was adopted to reconstruct a 2D vector field from directional projection measurements. Attenuated projections of only the longitudinal projections of the vector field were simulated. The components of the vector field were reconstructed using the gradient algorithm to minimize a least-squares criterion. This result was compared with the reconstruction of longitudinal projections of the vector field without attenuation. If attenuation is known, the algorithm was able to accurately reconstruct both components of the full vector field from only one set of directional projection measurements. A better reconstruction was obtained with attenuation than without attenuation implying that attenuation provides important information for the reconstruction of flow vector fields.This confirms previous work where we showed that knowledge of the attenuation distribution helps in the reconstruction of MRI diffusion tensor fields from fewer than the required measurements. In the application of ultrasound the attenuation distribution is obtained with pulse wave transmission computed tomography and flow information is obtained with continuous wave Doppler

  12. Involutive distributions of operator-valued evolutionary vector fields and their affine geometry

    NARCIS (Netherlands)

    Kiselev, A.V.; van de Leur, J.W.

    2010-01-01

    We generalize the notion of a Lie algebroid over infinite jet bundle by replacing the variational anchor with an N-tuple of differential operators whose images in the Lie algebra of evolutionary vector fields of the jet space are subject to collective commutation closure. The linear space of such

  13. Superconformal algebra and central extension of meromorphic vector fields with multipoles on super-Riemann sphere

    International Nuclear Information System (INIS)

    Wang Shikun; Xu Kaiwen.

    1989-12-01

    The superconformal algebras of meromorphic vector fields with multipoles, the central extension and the relevant abelian differential of the third kind on super Riemann sphere were constructed. The background of our theory is concerned with the interaction of closed superstrings. (author). 9 refs

  14. Superconformal algebra on meromorphic vector fields with three poles on super-Riemann sphere

    International Nuclear Information System (INIS)

    Wang Shikun; Xu Kaiwen.

    1989-07-01

    Based upon the Riemann-Roch theorem, we construct superconformal algebra of meromorphic vector fields with three poles and the relevant abelian differential of the third kind on super Riemann sphere. The algebra includes two Ramond sectors as subalgebra, and implies a picture of interaction of three superstrings. (author). 14 refs

  15. Controllability of linear vector fields on Lie groups

    International Nuclear Information System (INIS)

    Ayala, V.; Tirao, J.

    1994-11-01

    In this paper, we shall deal with a linear control system Σ defined on a Lie group G with Lie algebra g. The dynamic of Σ is determined by the drift vector field which is an element in the normalizer of g in the Lie algebra of all smooth vector field on G and by the control vectors which are elements in g considered as left-invariant vector fields. We characterize the normalizer of g identifying vector fields on G with C ∞ -functions defined on G into g. For this class of control systems we study algebraic conditions for the controllability problem. Indeed, we prove that if the drift vector field has a singularity then the Lie algebra rank condition is necessary for the controllability property, but in general this condition does not determine this property. On the other hand, we show that the rank (ad-rank) condition is sufficient for the controllability of Σ. In particular, we extend the fundamental Kalman's theorem when G is an Abelian connected Lie group. Our work is related with a paper of L. Markus and we also improve his results. (author). 7 refs

  16. Inclusive and differential vector boson (W, Z) measurements from CMS

    CERN Document Server

    Ocalan, Kadir

    2018-01-01

    Weak vector boson (W, Z) production is one of the most prominent hard scattering processes at the LHC. Measurements of W and Z boson provide precision tests for the Standard Model including substantial inputs for parton distribution functions. The latest results on W and Z boson and their productions in association with jets are presented based on proton-proton collision data recorded by the CMS detector at center-of-mass energies of 8 TeV and 13 TeV. Precision measurements involving inclusive and differential production cross sections and their ratios for W and Z boson are reported as well as for W and Z boson produced in association with jets. The results are compared to predictions from various Monte Carlo event generators and theoretical calculations.

  17. How the geomagnetic field vector reverses polarity

    Science.gov (United States)

    Prevot, M.; Mankinen, E.A.; Gromme, C.S.; Coe, R.S.

    1985-01-01

    A highly detailed record of both the direction and intensity of the Earth's magnetic field as it reverses has been obtained from a Miocene volcanic sequence. The transitional field is low in intensity and is typically non-axisymmetric. Geomagnetic impulses corresponding to astonishingly high rates of change of the field sometimes occur, suggesting that liquid velocity within the Earth's core increases during geomagnetic reversals. ?? 1985 Nature Publishing Group.

  18. Stable solutions of inflation driven by vector fields

    Energy Technology Data Exchange (ETDEWEB)

    Emami, Razieh [Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon (Hong Kong); Mukohyama, Shinji [Center for Gravitational Physics, Yukawa Institute for Theoretical Physics, Kyoto University, 606-8502, Kyoto (Japan); Namba, Ryo [Department of Physics, McGill University, Montréal, QC, H3A 2T8 (Canada); Zhang, Ying-li, E-mail: iasraziehm@ust.hk, E-mail: shinji.mukohyama@yukawa.kyoto-u.ac.jp, E-mail: namba@physics.mcgill.ca, E-mail: yingli@bao.ac.cn [National Astronomy Observatories, Chinese Academy of Science, Beijing 100012 (China)

    2017-03-01

    Many models of inflation driven by vector fields alone have been known to be plagued by pathological behaviors, namely ghost and/or gradient instabilities. In this work, we seek a new class of vector-driven inflationary models that evade all of the mentioned instabilities. We build our analysis on the Generalized Proca Theory with an extension to three vector fields to realize isotropic expansion. We obtain the conditions required for quasi de-Sitter solutions to be an attractor analogous to the standard slow-roll one and those for their stability at the level of linearized perturbations. Identifying the remedy to the existing unstable models, we provide a simple example and explicitly show its stability. This significantly broadens our knowledge on vector inflationary scenarios, reviving potential phenomenological interests for this class of models.

  19. Stable solutions of inflation driven by vector fields

    International Nuclear Information System (INIS)

    Emami, Razieh; Mukohyama, Shinji; Namba, Ryo; Zhang, Ying-li

    2017-01-01

    Many models of inflation driven by vector fields alone have been known to be plagued by pathological behaviors, namely ghost and/or gradient instabilities. In this work, we seek a new class of vector-driven inflationary models that evade all of the mentioned instabilities. We build our analysis on the Generalized Proca Theory with an extension to three vector fields to realize isotropic expansion. We obtain the conditions required for quasi de-Sitter solutions to be an attractor analogous to the standard slow-roll one and those for their stability at the level of linearized perturbations. Identifying the remedy to the existing unstable models, we provide a simple example and explicitly show its stability. This significantly broadens our knowledge on vector inflationary scenarios, reviving potential phenomenological interests for this class of models.

  20. Design and Modeling of a Novel Torque Vectoring Differential System

    Directory of Open Access Journals (Sweden)

    Chen Yu-Fan

    2017-01-01

    Full Text Available In this paper, a new concept torque vectoring differential (TVD system is presented. It is shown that the structure and the mechanism of the system, the operating methods, and the parameters design by a simulation program, i.e. SimulationX. First of all, the structure of the new TVD system is introduced, as well as the relevant mechanic equations. Second, we attempt to verify the feasibility and accuracy of SimulationX through establishing a simple mechanical model by MATLAB, so that the further modeling and simulation results of the new TVD system will be credible. Then, the simulation results at the setting conditions are presented. Finally, the sensitivity of the design parameters is analyzed, including adjusting the braking torque and the dimensions of the gear sets in the differential. According to these results, the characteristics of the new TVD system can be derived in order to develop the whole system with vehicle dynamic model in the next stage.

  1. Quantum κ-deformed differential geometry and field theory

    Science.gov (United States)

    Mercati, Flavio

    2016-03-01

    I introduce in κ-Minkowski noncommutative spacetime the basic tools of quantum differential geometry, namely bicovariant differential calculus, Lie and inner derivatives, the integral, the Hodge-∗ and the metric. I show the relevance of these tools for field theory with an application to complex scalar field, for which I am able to identify a vector-valued four-form which generalizes the energy-momentum tensor. Its closedness is proved, expressing in a covariant form the conservation of energy-momentum.

  2. Computation of Surface Integrals of Curl Vector Fields

    Science.gov (United States)

    Hu, Chenglie

    2007-01-01

    This article presents a way of computing a surface integral when the vector field of the integrand is a curl field. Presented in some advanced calculus textbooks such as [1], the technique, as the author experienced, is simple and applicable. The computation is based on Stokes' theorem in 3-space calculus, and thus provides not only a means to…

  3. A Chargeless Complex Vector Matter Field in Supersymmetric Scenario

    Directory of Open Access Journals (Sweden)

    L. P. Colatto

    2015-01-01

    Full Text Available We construct and study a formulation of a chargeless complex vector matter field in a supersymmetric framework. To this aim we combine two nochiral scalar superfields in order to take the vector component field to build the chargeless complex vector superpartner where the respective field strength transforms into matter fields by a global U1 gauge symmetry. For the aim of dealing with consistent terms without breaking the global U1 symmetry we imposes a choice to the complex combination revealing a kind of symmetry between the choices and eliminates the extra degrees of freedom which is consistent with the supersymmetry. As the usual case the mass supersymmetric sector contributes as a complement to dynamics of the model. We obtain the equations of motion of the Proca’s type field for the chiral spinor fields and for the scalar field on the mass-shell which show the same mass as expected. This work establishes the first steps to extend the analysis of charged massive vector field in a supersymmetric scenario.

  4. Linearized interactions of scalar and vector fields with the higher spin field in AdSD

    International Nuclear Information System (INIS)

    Mkrtchyan, K.

    2011-01-01

    The explicit form of linearized gauge and generalized 'Weyl invariant' interactions of scalar and general higher even spin fields in the AdS D space is reviewed. Also a linearized interaction of vector field with general higher even spin gauge field is obtained. It is shown that the gauge-invariant action of linearized vector field interacting with the higher spin field also includes the whole tower of invariant actions for couplings of the same vector field with the gauge fields of smaller even spin

  5. Managing focal fields of vector beams with multiple polarization singularities.

    Science.gov (United States)

    Han, Lei; Liu, Sheng; Li, Peng; Zhang, Yi; Cheng, Huachao; Gan, Xuetao; Zhao, Jianlin

    2016-11-10

    We explore the tight focusing behavior of vector beams with multiple polarization singularities, and analyze the influences of the number, position, and topological charge of the singularities on the focal fields. It is found that the ellipticity of the local polarization states at the focal plane could be determined by the spatial distribution of the polarization singularities of the vector beam. When the spatial location and topological charge of singularities have even-fold rotation symmetry, the transverse fields at the focal plane are locally linearly polarized. Otherwise, the polarization state becomes a locally hybrid one. By appropriately arranging the distribution of the polarization singularities in the vector beam, the polarization distributions of the focal fields could be altered while the intensity maintains unchanged.

  6. Combinatorial vector fields and the valley structure of fitness landscapes.

    Science.gov (United States)

    Stadler, Bärbel M R; Stadler, Peter F

    2010-12-01

    Adaptive (downhill) walks are a computationally convenient way of analyzing the geometric structure of fitness landscapes. Their inherently stochastic nature has limited their mathematical analysis, however. Here we develop a framework that interprets adaptive walks as deterministic trajectories in combinatorial vector fields and in return associate these combinatorial vector fields with weights that measure their steepness across the landscape. We show that the combinatorial vector fields and their weights have a product structure that is governed by the neutrality of the landscape. This product structure makes practical computations feasible. The framework presented here also provides an alternative, and mathematically more convenient, way of defining notions of valleys, saddle points, and barriers in landscape. As an application, we propose a refined approximation for transition rates between macrostates that are associated with the valleys of the landscape.

  7. Vector optical fields with polarization distributions similar to electric and magnetic field lines.

    Science.gov (United States)

    Pan, Yue; Li, Si-Min; Mao, Lei; Kong, Ling-Jun; Li, Yongnan; Tu, Chenghou; Wang, Pei; Wang, Hui-Tian

    2013-07-01

    We present, design and generate a new kind of vector optical fields with linear polarization distributions modeling to electric and magnetic field lines. The geometric configurations of "electric charges" and "magnetic charges" can engineer the spatial structure and symmetry of polarizations of vector optical field, providing additional degrees of freedom assisting in controlling the field symmetry at the focus and allowing engineering of the field distribution at the focus to the specific applications.

  8. The local structure of a Liouville vector field

    International Nuclear Information System (INIS)

    Ciriza, E.

    1990-05-01

    In this work we investigate the local structure of a Liouville vector field ξ of a Kaehler manifold (P,Ω) which vanishes on an isotropic submanifold Q of P. Some of the eigenvalues of its linear part at the singular points are zero and the remaining ones are in resonance. We show that there is a C 1 -smooth linearizing conjugation between the Liouville vector field ξ and its linear part. To do this we construct Darboux coordinates adapted to the unstable foliation which is provided by the Centre Manifold Theorem. We then apply recent linearization results due to G. Sell. (author). 11 refs

  9. Generalized Proca action for an Abelian vector field

    International Nuclear Information System (INIS)

    Allys, Erwan; Peter, Patrick; Rodríguez, Yeinzon

    2016-01-01

    We revisit the most general theory for a massive vector field with derivative self-interactions, extending previous works on the subject to account for terms having trivial total derivative interactions for the longitudinal mode. In the flat spacetime (Minkowski) case, we obtain all the possible terms containing products of up to five first-order derivatives of the vector field, and provide a conjecture about higher-order terms. Rendering the metric dynamical, we covariantize the results and add all possible terms implying curvature

  10. 2013 CIME Course Vector-valued Partial Differential Equations and Applications

    CERN Document Server

    Marcellini, Paolo

    2017-01-01

    Collating different aspects of Vector-valued Partial Differential Equations and Applications, this volume is based on the 2013 CIME Course with the same name which took place at Cetraro, Italy, under the scientific direction of John Ball and Paolo Marcellini. It contains the following contributions: The pullback equation (Bernard Dacorogna), The stability of the isoperimetric inequality (Nicola Fusco), Mathematical problems in thin elastic sheets: scaling limits, packing, crumpling and singularities (Stefan Müller), and Aspects of PDEs related to fluid flows (Vladimir Sverák). These lectures are addressed to graduate students and researchers in the field.

  11. Vector fields in a tight laser focus: comparison of models.

    Science.gov (United States)

    Peatross, Justin; Berrondo, Manuel; Smith, Dallas; Ware, Michael

    2017-06-26

    We assess several widely used vector models of a Gaussian laser beam in the context of more accurate vector diffraction integration. For the analysis, we present a streamlined derivation of the vector fields of a uniformly polarized beam reflected from an ideal parabolic mirror, both inside and outside of the resulting focus. This exact solution to Maxwell's equations, first developed in 1920 by V. S. Ignatovsky, is highly relevant to high-intensity laser experiments since the boundary conditions at a focusing optic dictate the form of the focus in a manner analogous to a physical experiment. In contrast, many models simply assume a field profile near the focus and develop the surrounding vector fields consistent with Maxwell's equations. In comparing the Ignatovsky result with popular closed-form analytic vector models of a Gaussian beam, we find that the relatively simple model developed by Erikson and Singh in 1994 provides good agreement in the paraxial limit. Models involving a Lax expansion introduce a divergences outside of the focus while providing little if any improvement in the focal region. Extremely tight focusing produces a somewhat complicated structure in the focus, and requires the Ignatovsky model for accurate representation.

  12. Vector field statistical analysis of kinematic and force trajectories.

    Science.gov (United States)

    Pataky, Todd C; Robinson, Mark A; Vanrenterghem, Jos

    2013-09-27

    When investigating the dynamics of three-dimensional multi-body biomechanical systems it is often difficult to derive spatiotemporally directed predictions regarding experimentally induced effects. A paradigm of 'non-directed' hypothesis testing has emerged in the literature as a result. Non-directed analyses typically consist of ad hoc scalar extraction, an approach which substantially simplifies the original, highly multivariate datasets (many time points, many vector components). This paper describes a commensurately multivariate method as an alternative to scalar extraction. The method, called 'statistical parametric mapping' (SPM), uses random field theory to objectively identify field regions which co-vary significantly with the experimental design. We compared SPM to scalar extraction by re-analyzing three publicly available datasets: 3D knee kinematics, a ten-muscle force system, and 3D ground reaction forces. Scalar extraction was found to bias the analyses of all three datasets by failing to consider sufficient portions of the dataset, and/or by failing to consider covariance amongst vector components. SPM overcame both problems by conducting hypothesis testing at the (massively multivariate) vector trajectory level, with random field corrections simultaneously accounting for temporal correlation and vector covariance. While SPM has been widely demonstrated to be effective for analyzing 3D scalar fields, the current results are the first to demonstrate its effectiveness for 1D vector field analysis. It was concluded that SPM offers a generalized, statistically comprehensive solution to scalar extraction's over-simplification of vector trajectories, thereby making it useful for objectively guiding analyses of complex biomechanical systems. © 2013 Published by Elsevier Ltd. All rights reserved.

  13. Interactive exploratory visualization of 2D vector fields

    NARCIS (Netherlands)

    Isenberg, Tobias; Everts, Maarten H.; Grubert, Jens; Carpendale, Sheelagh

    In this paper we present several techniques to interactively explore representations of 2D vector fields. Through a set of simple hand postures used on large, touch-sensitive displays, our approach allows individuals to custom design glyphs (arrows, lines, etc.) that best reveal patterns of the

  14. Desingularization strategies for three-dimensional vector fields

    CERN Document Server

    Torres, Felipe Cano

    1987-01-01

    For a vector field #3, where Ai are series in X, the algebraic multiplicity measures the singularity at the origin. In this research monograph several strategies are given to make the algebraic multiplicity of a three-dimensional vector field decrease, by means of permissible blowing-ups of the ambient space, i.e. transformations of the type xi=x'ix1, 2s. A logarithmic point of view is taken, marking the exceptional divisor of each blowing-up and by considering only the vector fields which are tangent to this divisor, instead of the whole tangent sheaf. The first part of the book is devoted to the logarithmic background and to the permissible blowing-ups. The main part corresponds to the control of the algorithms for the desingularization strategies by means of numerical invariants inspired by Hironaka's characteristic polygon. Only basic knowledge of local algebra and algebraic geometry is assumed of the reader. The pathologies we find in the reduction of vector fields are analogous to pathologies in the pro...

  15. Off disk-center potential field calculations using vector magnetograms

    Science.gov (United States)

    Venkatakrishnan, P.; Gary, G. Allen

    1989-01-01

    A potential field calculation for off disk-center vector magnetograms that uses all the three components of the measured field is investigated. There is neither any need for interpolation of grid points between the image plane and the heliographic plane nor for an extension or a truncation to a heliographic rectangle. Hence, the method provides the maximum information content from the photospheric field as well as the most consistent potential field independent of the viewing angle. The introduction of polarimetric noise produces a less tolerant extrapolation procedure than using the line-of-sight extrapolation, but the resultant standard deviation is still small enough for the practical utility of this method.

  16. Determination of Coronal Magnetic Fields from Vector Magnetograms

    Science.gov (United States)

    Mikic, Zoran

    1997-01-01

    During the course of the present contract we developed an 'evolutionary technique' for the determination of force-free coronal magnetic fields from vector magnetograph observations. The method can successfully generate nonlinear force- free fields (with non-constant-a) that match vector magnetograms. We demonstrated that it is possible to determine coronal magnetic fields from photospheric measurements, and we applied it to vector magnetograms of active regions. We have also studied theoretical models of coronal fields that lead to disruptions. Specifically, we have demonstrated that the determination of force-free fields from exact boundary data is a well-posed mathematical problem, by verifying that the computed coronal field agrees with an analytic force-free field when boundary data for the analytic field are used; demonstrated that it is possible to determine active-region coronal magnetic fields from photospheric measurements, by computing the coronal field above active region 5747 on 20 October 1989, AR6919 on 15 November 1991, and AR7260 on 18 August 1992, from data taken with the Stokes Polarimeter at Mees Solar Observatory, University of Hawaii; started to analyze active region 7201 on 19 June 1992 using measurements made with the Advanced Stokes Polarimeter at NSO/Sac Peak; investigated the effects of imperfections in the photospheric data on the computed coronal magnetic field; documented the coronal field structure of AR5747 and compared it to the morphology of footpoint emission in a flare, showing that the 'high- pressure' H-alpha footpoints are connected by coronal field lines; shown that the variation of magnetic field strength along current-carrying field lines is significantly different from the variation in a potential field, and that the resulting near-constant area of elementary flux tubes is consistent with observations; begun to develop realistic models of coronal fields which can be used to study flare trigger mechanisms; demonstrated that

  17. Magnetic monopole and vector field of the spin 0

    International Nuclear Information System (INIS)

    Pantyushin, A.A.

    2001-01-01

    The motion of electrically charged particles in uniform magnetic field by time is considered. It is found out that additional force acting on eclectically charged particle from the spin 0 vector field side is proportional to the magnetic field. Proportion coefficient is equal to eg/4π (g - unknown parameter, determining of the rate and character of source non-preservation) - the analogue of constant thin structure α=e 2 /4π. Obtained results give evidence to suppose that for explanation of indicated experiments the monopole introduction is not essential

  18. Relativistic gravitation from massless systems of scalar and vector fields

    International Nuclear Information System (INIS)

    Fonseca Teixeira, A.F. da.

    1979-01-01

    Under the laws of Einstein's gravitational theory, a massless system consisting of the diffuse sources of two fields is discussed. One fields is scalar, of long range, the other is a vector field of short range. A proportionality between the sources is assumed. Both fields are minimally coupled to gravitation, and contribute positive definitely to the time component of the energy momentum tensor. A class of static, spherically symmetric solutions of the equations is obtained, in the weak field limit. The solutions are regular everywhere, stable, and can represent large or small physical systems. The gravitational field presents a Schwarzschild-type asymptotic behavior. The dependence of the energy on the various parameters characterizing the system is discussed in some detail. (Author) [pt

  19. New techniques in 3D scalar and vector field visualization

    International Nuclear Information System (INIS)

    Max, N.; Crawfis, R.; Becker, B.

    1993-01-01

    At Lawrence Livermore National Laboratory (LLNL) we have recently developed several techniques for volume visualization of scalar and vector fields, all of which use back-to-front compositing. The first renders volume density clouds by compositing polyhedral volume cells or their faces. The second is a ''splatting'' scheme which composites textures used to reconstruct the scalar or vector fields. One version calculates the necessary texture values in software, and another takes advantage of hardware texture mapping. The next technique renders contour surface polygons using semi-transparent textures, which adjust appropriately when the surfaces deform in a flow, or change topology. The final one renders the ''flow volume'' of smoke or dye tracer swept out by a fluid flowing through a small generating polygon. All of these techniques are applied to a climate model data set, to visualize cloud density and wind velocity

  20. New techniques in 3D scalar and vector field visualization

    Energy Technology Data Exchange (ETDEWEB)

    Max, N.; Crawfis, R.; Becker, B.

    1993-05-05

    At Lawrence Livermore National Laboratory (LLNL) we have recently developed several techniques for volume visualization of scalar and vector fields, all of which use back-to-front compositing. The first renders volume density clouds by compositing polyhedral volume cells or their faces. The second is a ``splatting`` scheme which composites textures used to reconstruct the scalar or vector fields. One version calculates the necessary texture values in software, and another takes advantage of hardware texture mapping. The next technique renders contour surface polygons using semi-transparent textures, which adjust appropriately when the surfaces deform in a flow, or change topology. The final one renders the ``flow volume`` of smoke or dye tracer swept out by a fluid flowing through a small generating polygon. All of these techniques are applied to a climate model data set, to visualize cloud density and wind velocity.

  1. Electric field vector measurements in a surface ionization wave discharge

    International Nuclear Information System (INIS)

    Goldberg, Benjamin M; Adamovich, Igor V; Lempert, Walter R; Böhm, Patrick S; Czarnetzki, Uwe

    2015-01-01

    This work presents the results of time-resolved electric field vector measurements in a short pulse duration (60 ns full width at half maximum), surface ionization wave discharge in hydrogen using a picosecond four-wave mixing technique. Electric field vector components are measured separately, using pump and Stokes beams linearly polarized in the horizontal and vertical planes, and a polarizer placed in front of the infrared detector. The time-resolved electric field vector is measured at three different locations across the discharge gap, and for three different heights above the alumina ceramic dielectric surface, ∼100, 600, and 1100 μm (total of nine different locations). The results show that after breakdown, the discharge develops as an ionization wave propagating along the dielectric surface at an average speed of 1 mm ns −1 . The surface ionization wave forms near the high voltage electrode, close to the dielectric surface (∼100 μm). The wave front is characterized by significant overshoot of both vertical and horizontal electric field vector components. Behind the wave front, the vertical field component is rapidly reduced. As the wave propagates along the dielectric surface, it also extends further away from the dielectric surface, up to ∼1 mm near the grounded electrode. The horizontal field component behind the wave front remains quite significant, to sustain the electron current toward the high voltage electrode. After the wave reaches the grounded electrode, the horizontal field component experiences a secondary rise in the quasi-dc discharge, where it sustains the current along the near-surface plasma sheet. The measurement results indicate presence of a cathode layer formed near the grounded electrode with significant cathode voltage fall, ≈3 kV, due to high current density in the discharge. The peak reduced electric field in the surface ionization wave is 85–95 Td, consistent with dc breakdown field estimated from the Paschen

  2. Lovelock vacua with a recurrent null vector field

    Czech Academy of Sciences Publication Activity Database

    Ortaggio, Marcello

    2018-01-01

    Roč. 97, č. 4 (2018), č. článku 044051. ISSN 2470-0010 R&D Projects: GA ČR GA13-10042S Institutional support: RVO:67985840 Keywords : Lovelock gravity * recurrent null vector field Subject RIV: BA - General Mathematics OBOR OECD: Applied mathematics Impact factor: 4.568, year: 2016 https://journals.aps.org/prd/abstract/10.1103/PhysRevD.97.044051

  3. Algebraic characterization of vector supersymmetry in topological field theories

    International Nuclear Information System (INIS)

    Vilar, L.C.Q.; Ventura, O.S.; Sasaki, C.A.G.; Sorella, S.P.

    1997-01-01

    An algebraic cohomological characterization of a class of linearly broken Ward identities is provided. The examples of the topological vector supersymmetry and of the Landau ghost equation are discussed in detail. The existence of such a linearly broken Ward identities turns out to be related to BRST exact anti-field dependent cocycles with negative ghost number, according to the cohomological reformulation of the Noether theorem given by M. Henneaux et al. (author)

  4. Algebraic characterization of vector supersymmetry in topological field theories

    Energy Technology Data Exchange (ETDEWEB)

    Vilar, L.C.Q.; Ventura, O.S.; Sasaki, C.A.G. [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil); Sorella, S.P. [Universidade do Estado, Rio de Janeiro, RJ (Brazil). Inst. de Fisica. Dept. de Fisica Teorica

    1997-01-01

    An algebraic cohomological characterization of a class of linearly broken Ward identities is provided. The examples of the topological vector supersymmetry and of the Landau ghost equation are discussed in detail. The existence of such a linearly broken Ward identities turns out to be related to BRST exact anti-field dependent cocycles with negative ghost number, according to the cohomological reformulation of the Noether theorem given by M. Henneaux et al. (author). 32 refs., 5 tabs.

  5. Lovelock vacua with a recurrent null vector field

    Czech Academy of Sciences Publication Activity Database

    Ortaggio, Marcello

    2018-01-01

    Roč. 97, č. 4 (2018), č. článku 044051. ISSN 2470-0010 R&D Projects: GA ČR GA13-10042S Institutional support: RVO:67985840 Keywords : Lovelock gravity * recurrent null vector field Subject RIV: BA - General Mathematics OBOR OECD: Applied mathematics Impact factor: 4.568, year: 2016 https://journals. aps .org/prd/abstract/10.1103/PhysRevD.97.044051

  6. Rotation invariants of vector fields from orthogonal moments

    Czech Academy of Sciences Publication Activity Database

    Yang, B.; Kostková, Jitka; Flusser, Jan; Suk, Tomáš; Bujack, R.

    2018-01-01

    Roč. 74, č. 1 (2018), s. 110-121 ISSN 0031-3203 R&D Projects: GA ČR GA15-16928S Institutional support: RVO:67985556 Keywords : Vector field * Total rotation * Invariants * Gaussian–Hermite moments * Zernike moments * Numerical stability Subject RIV: JD - Computer Applications, Robotics Impact factor: 4.582, year: 2016 http://library.utia.cas.cz/separaty/2017/ZOI/flusser-0478329.pdf

  7. Improvement of vector compensation method for vehicle magnetic distortion field

    Energy Technology Data Exchange (ETDEWEB)

    Pang, Hongfeng, E-mail: panghongfeng@126.com; Zhang, Qi; Li, Ji; Luo, Shitu; Chen, Dixiang; Pan, Mengchun; Luo, Feilu

    2014-03-15

    Magnetic distortions such as eddy-current field and low frequency magnetic field have not been considered in vector compensation methods. A new compensation method is proposed to suppress these magnetic distortions and improve compensation performance, in which the magnetic distortions related to measurement vectors and time are considered. The experimental system mainly consists of a three-axis fluxgate magnetometer (DM-050), an underwater vehicle and a proton magnetometer, in which the scalar value of magnetic field is obtained with the proton magnetometer and considered to be the true value. Comparing with traditional compensation methods, experimental results show that the magnetic distortions can be further reduced by two times. After compensation, error intensity and RMS error are reduced from 11684.013 nT and 7794.604 nT to 16.219 nT and 5.907 nT respectively. It suggests an effective way to improve the compensation performance of magnetic distortions. - Highlights: • A new vector compensation method is proposed for vehicle magnetic distortion. • The proposed model not only includes magnetometer error but also considers magnetic distortion. • Compensation parameters are computed directly by solving nonlinear equations. • Compared with traditional methods, the proposed method is not related with rotation angle rate. • Error intensity and RMS error can be reduced to 1/2 of the error with traditional methods.

  8. Improvement of vector compensation method for vehicle magnetic distortion field

    International Nuclear Information System (INIS)

    Pang, Hongfeng; Zhang, Qi; Li, Ji; Luo, Shitu; Chen, Dixiang; Pan, Mengchun; Luo, Feilu

    2014-01-01

    Magnetic distortions such as eddy-current field and low frequency magnetic field have not been considered in vector compensation methods. A new compensation method is proposed to suppress these magnetic distortions and improve compensation performance, in which the magnetic distortions related to measurement vectors and time are considered. The experimental system mainly consists of a three-axis fluxgate magnetometer (DM-050), an underwater vehicle and a proton magnetometer, in which the scalar value of magnetic field is obtained with the proton magnetometer and considered to be the true value. Comparing with traditional compensation methods, experimental results show that the magnetic distortions can be further reduced by two times. After compensation, error intensity and RMS error are reduced from 11684.013 nT and 7794.604 nT to 16.219 nT and 5.907 nT respectively. It suggests an effective way to improve the compensation performance of magnetic distortions. - Highlights: • A new vector compensation method is proposed for vehicle magnetic distortion. • The proposed model not only includes magnetometer error but also considers magnetic distortion. • Compensation parameters are computed directly by solving nonlinear equations. • Compared with traditional methods, the proposed method is not related with rotation angle rate. • Error intensity and RMS error can be reduced to 1/2 of the error with traditional methods

  9. Initial geomagnetic field model from Magsat vector data

    Science.gov (United States)

    Langel, R. A.; Mead, G. D.; Lancaster, E. R.; Estes, R. H.; Fabiano, E. B.

    1980-01-01

    Magsat data from the magnetically quiet days of November 5-6, 1979, were used to derive a thirteenth degree and order spherical harmonic geomagnetic field model, MGST(6/80). The model utilized both scalar and high-accuracy vector data and fit that data with root-mean-square deviations of 8.2, 6.9, 7.6 and 7.4 nT for the scalar magnitude, B(r), B(theta), and B(phi), respectively. The model includes the three first-order coefficients of the external field. Comparison with averaged Dst indicates that zero Dst corresponds with 25 nT of horizontal field from external sources. When compared with earlier models, the earth's dipole moment continues to decrease at a rate of about 26 nT/yr. Evaluation of earlier models with Magsat data shows that the scalar field at the Magsat epoch is best predicted by the POGO(2/72) model but that the WC80, AWC/75 and IGS/75 are better for predicting vector fields.

  10. Localization of vector field on dynamical domain wall

    Directory of Open Access Journals (Sweden)

    Masafumi Higuchi

    2017-03-01

    Full Text Available In the previous works (arXiv:1202.5375 and arXiv:1402.1346, the dynamical domain wall, where the four dimensional FRW universe is embedded in the five dimensional space–time, has been realized by using two scalar fields. In this paper, we consider the localization of vector field in three formulations. The first formulation was investigated in the previous paper (arXiv:1510.01099 for the U(1 gauge field. In the second formulation, we investigate the Dvali–Shifman mechanism (arXiv:hep-th/9612128, where the non-abelian gauge field is confined in the bulk but the gauge symmetry is spontaneously broken on the domain wall. In the third formulation, we investigate the Kaluza–Klein modes coming from the five dimensional graviton. In the Randall–Sundrum model, the graviton was localized on the brane. We show that the (5,μ components (μ=0,1,2,3 of the graviton are also localized on the domain wall and can be regarded as the vector field on the domain wall. There are, however, some corrections coming from the bulk extra dimension if the domain wall universe is expanding.

  11. Massive Vector Fields in Rotating Black-Hole Spacetimes: Separability and Quasinormal Modes.

    Science.gov (United States)

    Frolov, Valeri P; Krtouš, Pavel; Kubizňák, David; Santos, Jorge E

    2018-06-08

    We demonstrate the separability of the massive vector (Proca) field equation in general Kerr-NUT-AdS black-hole spacetimes in any number of dimensions, filling a long-standing gap in the literature. The obtained separated equations are studied in more detail for the four-dimensional Kerr geometry and the corresponding quasinormal modes are calculated. Two of the three independent polarizations of the Proca field are shown to emerge from the separation ansatz and the results are found in an excellent agreement with those of the recent numerical study where the full coupled partial differential equations were tackled without using the separability property.

  12. An example of a vector field with the oriented shadowing property

    OpenAIRE

    Tikhomirov, Sergey

    2014-01-01

    We consider shadowing properties for vector fields corresponding to different type of reparametrisations. We give an example of a vector field which has the oriented shadowing properties, but does not have the standard shadowing property.

  13. Hawking radiation of a vector field and gravitational anomalies

    International Nuclear Information System (INIS)

    Murata, Keiju; Miyamoto, Umpei

    2007-01-01

    Recently, the relation between Hawking radiation and gravitational anomalies has been used to estimate the flux of Hawking radiation for a large class of black objects. In this paper, we extend the formalism, originally proposed by Robinson and Wilczek, to the Hawking radiation of vector particles (photons). It is explicitly shown, with the Hamiltonian formalism, that the theory of an electromagnetic field on d-dimensional spherical black holes reduces to one of an infinite number of massive complex scalar fields on 2-dimensional spacetime, for which the usual anomaly-cancellation method is available. It is found that the total energy emitted from the horizon for the electromagnetic field is just (d-2) times that for a scalar field. The results support the picture that Hawking radiation can be regarded as an anomaly eliminator on horizons. Possible extensions and applications of the analysis are discussed

  14. Vector electric field measurement via position-modulated Kelvin probe force microscopy

    Science.gov (United States)

    Dwyer, Ryan P.; Smieska, Louisa M.; Tirmzi, Ali Moeed; Marohn, John A.

    2017-10-01

    High-quality spatially resolved measurements of electric fields are critical to understanding charge injection, charge transport, and charge trapping in semiconducting materials. Here, we report a variation of frequency-modulated Kelvin probe force microscopy that enables spatially resolved measurements of the electric field. We measure electric field components along multiple directions simultaneously by employing position modulation and lock-in detection in addition to numeric differentiation of the surface potential. We demonstrate the technique by recording linescans of the in-plane electric field vector in the vicinity of a patch of trapped charge in a 2,7-diphenyl[1]benzothieno[3,2-b][1]benzothiophene (DPh-BTBT) organic field-effect transistor. This technique is simple to implement and should be especially useful for studying electric fields in spatially inhomogeneous samples like organic transistors and photovoltaic blends.

  15. Algebras of Complete Hörmander Vector Fields, and Lie-Group Construction

    Directory of Open Access Journals (Sweden)

    Andrea Bonfiglioli

    2014-12-01

    Full Text Available The aim of this note is to characterize the Lie algebras g of the analytic vector fields in RN which coincide with the Lie algebras of the (analytic Lie groups defined on RN (with its usual differentiable structure. We show that such a characterization amounts to asking that: (i g is N-dimensional; (ii g admits a set of Lie generators which are complete vector fields; (iii g satisfies Hörmander’s rank condition. These conditions are necessary, sufficient and mutually independent. Our approach is constructive, in that for any such g we show how to construct a Lie group G = (RN, * whose Lie algebra is g. We do not make use of Lie’s Third Theorem, but we only exploit the Campbell-Baker-Hausdorff-Dynkin Theorem for ODE’s.

  16. Killing vector fields in three dimensions: a method to solve massive gravity field equations

    Energy Technology Data Exchange (ETDEWEB)

    Guerses, Metin, E-mail: gurses@fen.bilkent.edu.t [Department of Mathematics, Faculty of Sciences, Bilkent University, 06800 Ankara (Turkey)

    2010-10-21

    Killing vector fields in three dimensions play an important role in the construction of the related spacetime geometry. In this work we show that when a three-dimensional geometry admits a Killing vector field then the Ricci tensor of the geometry is determined in terms of the Killing vector field and its scalars. In this way we can generate all products and covariant derivatives at any order of the Ricci tensor. Using this property we give ways to solve the field equations of topologically massive gravity (TMG) and new massive gravity (NMG) introduced recently. In particular when the scalars of the Killing vector field (timelike, spacelike and null cases) are constants then all three-dimensional symmetric tensors of the geometry, the Ricci and Einstein tensors, their covariant derivatives at all orders, and their products of all orders are completely determined by the Killing vector field and the metric. Hence, the corresponding three-dimensional metrics are strong candidates for solving all higher derivative gravitational field equations in three dimensions.

  17. Efficient and Enhanced Diffusion of Vector Field for Active Contour Model

    OpenAIRE

    Liu, Guoqi; Sun, Lin; Liu, Shangwang

    2015-01-01

    Gradient vector flow (GVF) is an important external force field for active contour models. Various vector fields based on GVF have been proposed. However, these vector fields are obtained with many iterations and have difficulty in capturing the whole image area. On the other hand, the ability to converge to deep and complex concavity with these vector fields is also needed to improve. In this paper, by analyzing the diffusion equation of GVF, a normalized set is defined and a dynamically nor...

  18. VECTOR MAGNETIC FIELDS AND ELECTRIC CURRENTS FROM THE IMAGING VECTOR MAGNETOGRAPH

    International Nuclear Information System (INIS)

    Li Jing; Mickey, Don; Van Ballegooijen, A. A.

    2009-01-01

    First, we describe a general procedure to produce high-quality vector magnetograms using the Imaging Vector Magnetograph (IVM) at Mees Solar Observatory. Two IVM effects are newly discussed and taken into account: (1) the central wavelength of the Fabry-Perot is found to drift with time as a result of undiagnosed thermal or mechanical instabilities in the instrument; (2) the Stokes V-sign convention built into the IVM is found to be opposite to the conventional definition used in the study of radiative transfer of polarized radiation. At the spatial resolution 2'' x 2'', the Stokes Q, U, V uncertainty reaches ∼1 x 10 -3 to 5 x 10 -4 in time-averaged data over 1 hr in the quiet Sun. When vector magnetic fields are inferred from the time-averaged Stokes spectral images of FeI 6302.5 A, the resulting uncertainties are on the order of 10 G for the longitudinal fields (B || ), 40 G for the transverse field strength (B perpendicular ) and ∼9 0 for the magnetic azimuth (φ). The magnetic field inversion used in this work is the 'Triplet' code, which was developed and implemented in the IVM software package by the late B. J. LaBonte. The inversion code is described in detail in the Appendix. Second, we solve for the absolute value of the vertical electric current density, |J z |, accounting for the above IVM problems, for two different active regions. One is a single sunspot region (NOAA 10001 observed on 2002 June 20) while the other is a more complex, quadrupolar region (NOAA10030 observed on 2002 July 15). We use a calculation that does not require disambiguation of 180 0 in the transverse field directions. The |J z | uncertainty is on the order of ∼7.0 mA m -2 . The vertical current density increases with increasing vertical magnetic field. The rate of increase is about 1-2 times as large in the quadrupolar NOAA 10030 region as in the simple NOAA 10001, and it is more spatially variable over NOAA 10030 than over NOAA 10001.

  19. ON THE INSTABILITY OF SOLUTIONS TO A NONLINEAR VECTOR DIFFERENTIAL EQUATION OF FOURTH ORDER

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    This paper presents a new result related to the instability of the zero solution to a nonlinear vector differential equation of fourth order.Our result includes and improves an instability result in the previous literature,which is related to the instability of the zero solution to a nonlinear scalar differential equation of fourth order.

  20. Helicons in uniform fields. II. Poynting vector and angular momenta

    Science.gov (United States)

    Stenzel, R. L.; Urrutia, J. M.

    2018-03-01

    The orbital and spin angular momenta of helicon modes have been determined quantitatively from laboratory experiments. The current density is obtained unambiguously from three dimensional magnetic field measurements. The only approximation made is to obtain the electric field from Hall Ohm's law which is usually the case for low frequency whistler modes. This allows the evaluation of the Poynting vector from which the angular momentum is obtained. Comparing two helicon modes (m = 0 and m = 1), one can separate the contribution of angular momentum of a rotating and non-rotating wave field. The orbital angular momentum is important to assess the wave-particle interaction by the transverse Doppler shift of rotating waves which has not been considered so far.

  1. HEIGHT VARIATION OF THE VECTOR MAGNETIC FIELD IN SOLAR SPICULES

    Energy Technology Data Exchange (ETDEWEB)

    Suárez, D. Orozco; Ramos, A. Asensio; Bueno, J. Trujillo, E-mail: dorozco@iac.es [Instituto de Astrofísica de Canarias, E-38205 La Laguna, Tenerife (Spain)

    2015-04-20

    Proving the magnetic configuration of solar spicules has hitherto been difficult due to the lack of spatial resolution and image stability during off-limb ground-based observations. We report spectropolarimetric observations of spicules taken in the He i 1083 nm spectral region with the Tenerife Infrared Polarimeter II at the German Vacuum Tower Telescope of the Observatorio del Teide (Tenerife, Canary Islands, Spain). The data provide the variation with geometrical height of the Stokes I, Q, U, and V profiles, whose encoded information allows the determination of the magnetic field vector by means of the HAZEL inversion code. The inferred results show that the average magnetic field strength at the base of solar spicules is about 80 gauss, and then it decreases rapidly with height to about 30 gauss at a height of 3000 km above the visible solar surface. Moreover, the magnetic field vector is close to vertical at the base of the chromosphere and has mid-inclinations (about 50°) above 2 Mm height.

  2. Observations of vector magnetic fields in flaring active regions

    Science.gov (United States)

    Chen, Jimin; Wang, Haimin; Zirin, Harold; Ai, Guoxiang

    1994-01-01

    We present vector magnetograph data of 6 active regions, all of which produced major flares. Of the 20 M-class (or above) flares, 7 satisfy the flare conditions prescribed by Hagyard (high shear and strong transverse fields). Strong photospheric shear, however, is not necessarily a condition for a flare. We find an increase in the shear for two flares, a 6-deg shear increase along the neutral line after a X-2 flare and a 13-deg increase after a M-1.9 flare. For other flares, we did not detect substantial shear changes.

  3. The intermittency of vector fields and random-number generators

    Science.gov (United States)

    Kalinin, A. O.; Sokoloff, D. D.; Tutubalin, V. N.

    2017-09-01

    We examine how well natural random-number generators can reproduce the intermittency phenomena that arise in the transfer of vector fields in random media. A generator based on the analysis of financial indices is suggested as the most promising random-number generator. Is it shown that even this generator, however, fails to reproduce the phenomenon long enough to confidently detect intermittency, while the C++ generator successfully solves this problem. We discuss the prospects of using shell models of turbulence as the desired generator.

  4. The Local Stellar Velocity Field via Vector Spherical Harmonics

    Science.gov (United States)

    Markarov, V. V.; Murphy, D. W.

    2007-01-01

    We analyze the local field of stellar tangential velocities for a sample of 42,339 nonbinary Hipparcos stars with accurate parallaxes, using a vector spherical harmonic formalism. We derive simple relations between the parameters of the classical linear model (Ogorodnikov-Milne) of the local systemic field and low-degree terms of the general vector harmonic decomposition. Taking advantage of these relationships, we determine the solar velocity with respect to the local stars of (V(sub X), V(sub Y), V(sub Z)) (10.5, 18.5, 7.3) +/- 0.1 km s(exp -1) not corrected for the asymmetric drift with respect to the local standard of rest. If only stars more distant than 100 pc are considered, the peculiar solar motion is (V(sub X), V(sub Y), V(sub Z)) (9.9, 15.6, 6.9) +/- 0.2 km s(exp -1). The adverse effects of harmonic leakage, which occurs between the reflex solar motion represented by the three electric vector harmonics in the velocity space and higher degree harmonics in the proper-motion space, are eliminated in our analysis by direct subtraction of the reflex solar velocity in its tangential components for each star. The Oort parameters determined by a straightforward least-squares adjustment in vector spherical harmonics are A=14.0 +/- 1.4, B=13.1 +/- 1.2, K=1.1 +/- 1.8, and C=2.9 +/- 1.4 km s(exp -1) kpc(exp -1). The physical meaning and the implications of these parameters are discussed in the framework of a general linear model of the velocity field. We find a few statistically significant higher degree harmonic terms that do not correspond to any parameters in the classical linear model. One of them, a third-degree electric harmonic, is tentatively explained as the response to a negative linear gradient of rotation velocity with distance from the Galactic plane, which we estimate at approximately -20 km s(exp -1) kpc(exp -1). A similar vertical gradient of rotation velocity has been detected for more distant stars representing the thick disk (z greater than 1 kpc

  5. 2D Vector Field Simplification Based on Robustness

    KAUST Repository

    Skraba, Primoz

    2014-03-01

    Vector field simplification aims to reduce the complexity of the flow by removing features in order of their relevance and importance, to reveal prominent behavior and obtain a compact representation for interpretation. Most existing simplification techniques based on the topological skeleton successively remove pairs of critical points connected by separatrices, using distance or area-based relevance measures. These methods rely on the stable extraction of the topological skeleton, which can be difficult due to instability in numerical integration, especially when processing highly rotational flows. These geometric metrics do not consider the flow magnitude, an important physical property of the flow. In this paper, we propose a novel simplification scheme derived from the recently introduced topological notion of robustness, which provides a complementary view on flow structure compared to the traditional topological-skeleton-based approaches. Robustness enables the pruning of sets of critical points according to a quantitative measure of their stability, that is, the minimum amount of vector field perturbation required to remove them. This leads to a hierarchical simplification scheme that encodes flow magnitude in its perturbation metric. Our novel simplification algorithm is based on degree theory, has fewer boundary restrictions, and so can handle more general cases. Finally, we provide an implementation under the piecewise-linear setting and apply it to both synthetic and real-world datasets. © 2014 IEEE.

  6. Multiresolution and Explicit Methods for Vector Field Analysis and Visualization

    Science.gov (United States)

    Nielson, Gregory M.

    1997-01-01

    This is a request for a second renewal (3d year of funding) of a research project on the topic of multiresolution and explicit methods for vector field analysis and visualization. In this report, we describe the progress made on this research project during the second year and give a statement of the planned research for the third year. There are two aspects to this research project. The first is concerned with the development of techniques for computing tangent curves for use in visualizing flow fields. The second aspect of the research project is concerned with the development of multiresolution methods for curvilinear grids and their use as tools for visualization, analysis and archiving of flow data. We report on our work on the development of numerical methods for tangent curve computation first.

  7. Involutive co-distributions preserved by transitive families of vector fields

    International Nuclear Information System (INIS)

    Ayala Bravo, V.

    1994-06-01

    This paper leads with integrability conditions of involutive co-distributions defined on co-tangent bundle of a differentiable manifold M. Via Frobenius's integrability theorem, the analysis is aimed at the search for conditions so that this type of co-distributions preserved by transitive families of vector fields in M. We rely on the work of Lobry, Sussmann, Matsuda and Stefan. The type of situation studies comes up naturally in weak-observability problems and weakly-minimal realizations of arbitrary control systems. (author). 10 refs

  8. Vector condensate and AdS soliton instability induced by a magnetic field

    International Nuclear Information System (INIS)

    Cai, Rong-Gen; Li, Li; Li, Li-Fang; Wu, You

    2014-01-01

    We continue to study the holographic p-wave superconductor model in the Einstein-Maxwell-complex vector field theory with a non-minimal coupling between the complex vector field and the Maxwell field. In this paper we work in the AdS soliton background which describes a conformal field theory in the confined phase and focus on the probe approximation. We find that an applied magnetic field can lead to the condensate of the vector field and the AdS soliton instability. As a result, a vortex lattice structure forms in the spatial directions perpendicular to the applied magnetic field. As a comparison, we also discuss the vector condensate in the Einstein-SU(2) Yang-Mills theory and find that in the setup of the present paper, the Einstein-Maxwell-complex vector field model is a generalization of the SU(2) model in the sense that the vector field has a general mass and gyromagnetic ratio

  9. Gauge theories of Yang-Mills vector fields coupled to antisymmetric tensor fields

    International Nuclear Information System (INIS)

    Anco, Stephen C.

    2003-01-01

    A non-Abelian class of massless/massive nonlinear gauge theories of Yang-Mills vector potentials coupled to Freedman-Townsend antisymmetric tensor potentials is constructed in four space-time dimensions. These theories involve an extended Freedman-Townsend-type coupling between the vector and tensor fields, and a Chern-Simons mass term with the addition of a Higgs-type coupling of the tensor fields to the vector fields in the massive case. Geometrical, field theoretic, and algebraic aspects of the theories are discussed in detail. In particular, the geometrical structure mixes and unifies features of Yang-Mills theory and Freedman-Townsend theory formulated in terms of Lie algebra valued curvatures and connections associated to the fields and nonlinear field strengths. The theories arise from a general determination of all possible geometrical nonlinear deformations of linear Abelian gauge theory for one-form fields and two-form fields with an Abelian Chern-Simons mass term in four dimensions. For this type of deformation (with typical assumptions on the allowed form considered for terms in the gauge symmetries and field equations), an explicit classification of deformation terms at first-order is obtained, and uniqueness of deformation terms at all higher orders is proven. This leads to a uniqueness result for the non-Abelian class of theories constructed here

  10. Relativistic theory of vector mesons in laser fields

    Energy Technology Data Exchange (ETDEWEB)

    Becker, W; Mitter, H [Tuebingen Univ. (F.R. Germany). Inst. fuer Theoretische Physik

    1975-01-01

    The relativistic wave equation for a particle with spin 1 and an anomalous magnetic moment ..mu.. in an external wave field is reduced to a set of coupled ordinary differential equations for three amplitudes, which multiply the exponential known from the spin 0 case. These amplitudes are constant for ..mu..=1 (and not ..mu..=0). Exact solutions are given for a linear polarized laser wave of finite pulse shape and for an infinitely extended plane wave with circular polarization. In contrast to the situation in a constant magnetic field there are no internal inconsistencies.

  11. Derivative self-interactions for a massive vector field

    Energy Technology Data Exchange (ETDEWEB)

    Beltrán Jiménez, Jose, E-mail: jose.beltran@cpt.univ-mrs.fr [CPT, Aix Marseille Université, UMR 7332, 13288 Marseille (France); Heisenberg, Lavinia, E-mail: lavinia.heisenberg@eth-its.ethz.ch [Institute for Theoretical Studies, ETH Zurich, Clausiusstrasse 47, 8092 Zurich (Switzerland)

    2016-06-10

    In this work we revisit the construction of theories for a massive vector field with derivative self-interactions such that only the 3 desired polarizations corresponding to a Proca field propagate. We start from the decoupling limit by constructing healthy interactions containing second derivatives of the Stueckelberg field with itself and also with the transverse modes. The resulting interactions can then be straightforwardly generalized beyond the decoupling limit. We then proceed to a systematic construction of the interactions by using the Levi–Civita tensors. Both approaches lead to a finite family of allowed derivative self-interactions for the Proca field. This construction allows us to show that some higher order terms recently introduced as new interactions trivialize in 4 dimensions by virtue of the Cayley–Hamilton theorem. Moreover, we discuss how the resulting derivative interactions can be written in a compact determinantal form, which can also be regarded as a generalization of the Born-Infeld lagrangian for electromagnetism. Finally, we generalize our results for a curved background and give the necessary non-minimal couplings guaranteeing that no additional polarizations propagate even in the presence of gravity.

  12. Approximating second-order vector differential operators on distorted meshes in two space dimensions

    International Nuclear Information System (INIS)

    Hermeline, F.

    2008-01-01

    A new finite volume method is presented for approximating second-order vector differential operators in two space dimensions. This method allows distorted triangle or quadrilateral meshes to be used without the numerical results being too much altered. The matrices that need to be inverted are symmetric positive definite therefore, the most powerful linear solvers can be applied. The method has been tested on a few second-order vector partial differential equations coming from elasticity and fluids mechanics areas. These numerical experiments show that it is second-order accurate and locking-free. (authors)

  13. On the non-Gaussian correlation of the primordial curvature perturbation with vector fields

    DEFF Research Database (Denmark)

    Kumar Jain, Rajeev; Sloth, Martin Snoager

    2013-01-01

    We compute the three-point cross-correlation function of the primordial curvature perturbation generated during inflation with two powers of a vector field in a model where conformal invariance is broken by a direct coupling of the vector field with the inflaton. If the vector field is identified...... with the electromagnetic field, this correlation would be a non-Gaussian signature of primordial magnetic fields generated during inflation. We find that the signal is maximized for the flattened configuration where the wave number of the curvature perturbation is twice that of the vector field and in this limit...

  14. On scalar and vector fields coupled to the energy-momentum tensor

    Science.gov (United States)

    Jiménez, Jose Beltrán; Cembranos, Jose A. R.; Sánchez Velázquez, Jose M.

    2018-05-01

    We consider theories for scalar and vector fields coupled to the energy-momentum tensor. Since these fields also carry a non-trivial energy-momentum tensor, the coupling prescription generates self-interactions. In analogy with gravity theories, we build the action by means of an iterative process that leads to an infinite series, which can be resumed as the solution of a set of differential equations. We show that, in some particular cases, the equations become algebraic and that is also possible to find solutions in the form of polynomials. We briefly review the case of the scalar field that has already been studied in the literature and extend the analysis to the case of derivative (disformal) couplings. We then explore theories with vector fields, distinguishing between gauge-and non-gauge-invariant couplings. Interactions with matter are also considered, taking a scalar field as a proxy for the matter sector. We also discuss the ambiguity introduced by superpotential (boundary) terms in the definition of the energy-momentum tensor and use them to show that it is also possible to generate Galileon-like interactions with this procedure. We finally use collider and astrophysical observations to set constraints on the dimensionful coupling which characterises the phenomenology of these models.

  15. Vectors

    DEFF Research Database (Denmark)

    Boeriis, Morten; van Leeuwen, Theo

    2017-01-01

    should be taken into account in discussing ‘reactions’, which Kress and van Leeuwen link only to eyeline vectors. Finally, the question can be raised as to whether actions are always realized by vectors. Drawing on a re-reading of Rudolf Arnheim’s account of vectors, these issues are outlined......This article revisits the concept of vectors, which, in Kress and van Leeuwen’s Reading Images (2006), plays a crucial role in distinguishing between ‘narrative’, action-oriented processes and ‘conceptual’, state-oriented processes. The use of this concept in image analysis has usually focused...

  16. Non-gaussianity from the trispectrum and vector field perturbations

    International Nuclear Information System (INIS)

    Valenzuela-Toledo, Cesar A.; Rodriguez, Yeinzon

    2010-01-01

    We use the δN formalism to study the trispectrum T ζ of the primordial curvature perturbation ζ when the latter is generated by vector field perturbations, considering the tree-level and one-loop contributions. The order of magnitude of the level of non-gaussianity in the trispectrum, τ NL , is calculated in this scenario and related to the order of magnitude of the level of non-gaussianity in the bispectrum, f NL , and the level of statistical anisotropy in the power spectrum, g ζ . Such consistency relations will put under test this scenario against future observations. Comparison with the expected observational bound on τ NL from WMAP, for generic inflationary models, is done.

  17. Non-gaussianity from the trispectrum and vector field perturbations

    Energy Technology Data Exchange (ETDEWEB)

    Valenzuela-Toledo, Cesar A., E-mail: cavalto@ciencias.uis.edu.c [Escuela de Fisica, Universidad Industrial de Santander, Ciudad Universitaria, Bucaramanga (Colombia); Rodriguez, Yeinzon, E-mail: yeinzon.rodriguez@uan.edu.c [Escuela de Fisica, Universidad Industrial de Santander, Ciudad Universitaria, Bucaramanga (Colombia); Centro de Investigaciones, Universidad Antonio Narino, Cra 3 Este 47A-15, Bogota D.C. (Colombia)

    2010-03-01

    We use the deltaN formalism to study the trispectrum T{sub z}eta of the primordial curvature perturbation zeta when the latter is generated by vector field perturbations, considering the tree-level and one-loop contributions. The order of magnitude of the level of non-gaussianity in the trispectrum, tau{sub NL}, is calculated in this scenario and related to the order of magnitude of the level of non-gaussianity in the bispectrum, f{sub NL}, and the level of statistical anisotropy in the power spectrum, g{sub z}eta. Such consistency relations will put under test this scenario against future observations. Comparison with the expected observational bound on tau{sub NL} from WMAP, for generic inflationary models, is done.

  18. General projective relativity and the vector-tensor gravitational field

    International Nuclear Information System (INIS)

    Arcidiacono, G.

    1986-01-01

    In the general projective relativity, the induced 4-dimensional metric is symmetric in three cases, and we obtain the vector-tensor, the scalar-tensor, and the scalar-vector-tensor theories of gravitation. In this work we examine the vector-tensor theory, similar to the Veblen's theory, but with a different physical interpretation

  19. Towards a physics on fractals: Differential vector calculus in three-dimensional continuum with fractal metric

    Science.gov (United States)

    Balankin, Alexander S.; Bory-Reyes, Juan; Shapiro, Michael

    2016-02-01

    One way to deal with physical problems on nowhere differentiable fractals is the mapping of these problems into the corresponding problems for continuum with a proper fractal metric. On this way different definitions of the fractal metric were suggested to account for the essential fractal features. In this work we develop the metric differential vector calculus in a three-dimensional continuum with a non-Euclidean metric. The metric differential forms and Laplacian are introduced, fundamental identities for metric differential operators are established and integral theorems are proved by employing the metric version of the quaternionic analysis for the Moisil-Teodoresco operator, which has been introduced and partially developed in this paper. The relations between the metric and conventional operators are revealed. It should be emphasized that the metric vector calculus developed in this work provides a comprehensive mathematical formalism for the continuum with any suitable definition of fractal metric. This offers a novel tool to study physics on fractals.

  20. Lovelock vacua with a recurrent null vector field

    Science.gov (United States)

    Ortaggio, Marcello

    2018-02-01

    Vacuum solutions of Lovelock gravity in the presence of a recurrent null vector field (a subset of Kundt spacetimes) are studied. We first discuss the general field equations, which constrain both the base space and the profile functions. While choosing a "generic" base space puts stronger constraints on the profile, in special cases there also exist solutions containing arbitrary functions (at least for certain values of the coupling constants). These and other properties (such as the p p - waves subclass and the overlap with VSI, CSI and universal spacetimes) are subsequently analyzed in more detail in lower dimensions n =5 , 6 as well as for particular choices of the base manifold. The obtained solutions describe various classes of nonexpanding gravitational waves propagating, e.g., in Nariai-like backgrounds M2×Σn -2. An Appendix contains some results about general (i.e., not necessarily Kundt) Lovelock vacua of Riemann type III/N and of Weyl and traceless-Ricci type III/N. For example, it is pointed out that for theories admitting a triply degenerate maximally symmetric vacuum, all the (reduced) field equations are satisfied identically, giving rise to large classes of exact solutions.

  1. Differentiated neuroprogenitor cells incubated with human or canine adenovirus, or lentiviral vectors have distinct transcriptome profiles.

    Directory of Open Access Journals (Sweden)

    Stefania Piersanti

    Full Text Available Several studies have demonstrated the potential for vector-mediated gene transfer to the brain. Helper-dependent (HD human (HAd and canine (CAV-2 adenovirus, and VSV-G-pseudotyped self-inactivating HIV-1 vectors (LV effectively transduce human brain cells and their toxicity has been partly analysed. However, their effect on the brain homeostasis is far from fully defined, especially because of the complexity of the central nervous system (CNS. With the goal of dissecting the toxicogenomic signatures of the three vectors for human neurons, we transduced a bona fide human neuronal system with HD-HAd, HD-CAV-2 and LV. We analysed the transcriptional response of more than 47,000 transcripts using gene chips. Chip data showed that HD-CAV-2 and LV vectors activated the innate arm of the immune response, including Toll-like receptors and hyaluronan circuits. LV vector also induced an IFN response. Moreover, HD-CAV-2 and LV vectors affected DNA damage pathways--but in opposite directions--suggesting a differential response of the p53 and ATM pathways to the vector genomes. As a general response to the vectors, human neurons activated pro-survival genes and neuron morphogenesis, presumably with the goal of re-establishing homeostasis. These data are complementary to in vivo studies on brain vector toxicity and allow a better understanding of the impact of viral vectors on human neurons, and mechanistic approaches to improve the therapeutic impact of brain-directed gene transfer.

  2. Tracking differentiating neural progenitors in pluripotent cultures using microRNA-regulated lentiviral vectors.

    Science.gov (United States)

    Sachdeva, Rohit; Jönsson, Marie E; Nelander, Jenny; Kirkeby, Agnete; Guibentif, Carolina; Gentner, Bernhard; Naldini, Luigi; Björklund, Anders; Parmar, Malin; Jakobsson, Johan

    2010-06-22

    In this study, we have used a microRNA-regulated lentiviral reporter system to visualize and segregate differentiating neuronal cells in pluripotent cultures. Efficient suppression of transgene expression, specifically in undifferentiated pluripotent cells, was achieved by using a lentiviral vector expressing a fluorescent reporter gene regulated by microRNA-292. Using this strategy, it was possible to track progeny from murine ES, human ES cells, and induced pluripotent stem cells as they differentiated toward the neural lineage. In addition, this strategy was successfully used to FACS purify neuronal progenitors for molecular analysis and transplantation. FACS enrichment reduced tumor formation and increased survival of ES cell-derived neuronal progenitors after transplantation. The properties and versatility of the microRNA-regulated vectors allows broad use of these vectors in stem cell applications.

  3. On the existence of polynomial Lyapunov functions for rationally stable vector fields

    DEFF Research Database (Denmark)

    Leth, Tobias; Wisniewski, Rafal; Sloth, Christoffer

    2018-01-01

    This paper proves the existence of polynomial Lyapunov functions for rationally stable vector fields. For practical purposes the existence of polynomial Lyapunov functions plays a significant role since polynomial Lyapunov functions can be found algorithmically. The paper extents an existing result...... on exponentially stable vector fields to the case of rational stability. For asymptotically stable vector fields a known counter example is investigated to exhibit the mechanisms responsible for the inability to extend the result further....

  4. Applications of the Local Algebras of Vector Fields to the Modelling of Physical Phenomena

    OpenAIRE

    Bayak, Igor V.

    2015-01-01

    In this paper we discuss the local algebras of linear vector fields that can be used in the mathematical modelling of physical space by building the dynamical flows of vector fields on eight-dimensional cylindrical or toroidal manifolds. It is shown that the topological features of the vector fields obey the Dirac equation when moving freely within the surface of a pseudo-sphere in the eight-dimensional pseudo-Euclidean space.

  5. Flat structure and potential vector fields related with algebraic solutions to Painlevé VI equation

    Directory of Open Access Journals (Sweden)

    Mitsuo Kato

    2018-01-01

    Full Text Available A potential vector field is a solution of an extended WDVV equation which is a generalization of a WDVV equation. It is expected that potential vector fields corresponding to algebraic solutions of Painlevé VI equation can be written by using polynomials or algebraic functions explicitly. The purpose of this paper is to construct potential vector fields corresponding to more than thirty non-equivalent algebraic solutions.

  6. Manipulation of dielectric Rayleigh particles using highly focused elliptically polarized vector fields.

    Science.gov (United States)

    Gu, Bing; Xu, Danfeng; Rui, Guanghao; Lian, Meng; Cui, Yiping; Zhan, Qiwen

    2015-09-20

    Generation of vectorial optical fields with arbitrary polarization distribution is of great interest in areas where exotic optical fields are desired. In this work, we experimentally demonstrate the versatile generation of linearly polarized vector fields, elliptically polarized vector fields, and circularly polarized vortex beams through introducing attenuators in a common-path interferometer. By means of Richards-Wolf vectorial diffraction method, the characteristics of the highly focused elliptically polarized vector fields are studied. The optical force and torque on a dielectric Rayleigh particle produced by these tightly focused vector fields are calculated and exploited for the stable trapping of dielectric Rayleigh particles. It is shown that the additional degree of freedom provided by the elliptically polarized vector field allows one to control the spatial structure of polarization, to engineer the focusing field, and to tailor the optical force and torque on a dielectric Rayleigh particle.

  7. The dynamic response and perturbation of magnetic field vector of orthotropic cylinders under various shock loads

    International Nuclear Information System (INIS)

    Dai, H.L.; Wang, X.

    2006-01-01

    In this paper, an analytical method is introduced to solve the problem for the dynamic stress-focusing and centred-effect of perturbation of the magnetic field vector in orthotropic cylinders under thermal and mechanical shock loads. Analytical expressions for the dynamic stresses and the perturbation of the magnetic field vector are obtained by means of finite Hankel transforms and Laplace transforms. The response histories of dynamic stresses and the perturbation of the field vector are also obtained. In practical examples, the dynamic focusing effect on both magnetoelastic stress and perturbation of the axial magnetic field vector in an orthotropic cylinder subjected to various shock loads is presented and discussed

  8. 3D magnetization vector inversion based on fuzzy clustering: inversion algorithm, uncertainty analysis, and application to geology differentiation

    Science.gov (United States)

    Sun, J.; Li, Y.

    2017-12-01

    Magnetic data contain important information about the subsurface rocks that were magnetized in the geological history, which provides an important avenue to the study of the crustal heterogeneities associated with magmatic and hydrothermal activities. Interpretation of magnetic data has been widely used in mineral exploration, basement characterization and large scale crustal studies for several decades. However, interpreting magnetic data has been often complicated by the presence of remanent magnetizations with unknown magnetization directions. Researchers have developed different methods to deal with the challenges posed by remanence. We have developed a new and effective approach to inverting magnetic data for magnetization vector distributions characterized by region-wise consistency in the magnetization directions. This approach combines the classical Tikhonov inversion scheme with fuzzy C-means clustering algorithm, and constrains the estimated magnetization vectors to a specified small number of possible directions while fitting the observed magnetic data to within noise level. Our magnetization vector inversion recovers both the magnitudes and the directions of the magnetizations in the subsurface. Magnetization directions reflect the unique geological or hydrothermal processes applied to each geological unit, and therefore, can potentially be used for the purpose of differentiating various geological units. We have developed a practically convenient and effective way of assessing the uncertainty associated with the inverted magnetization directions (Figure 1), and investigated how geological differentiation results might be affected (Figure 2). The algorithm and procedures we have developed for magnetization vector inversion and uncertainty analysis open up new possibilities of extracting useful information from magnetic data affected by remanence. We will use a field data example from exploration of an iron-oxide-copper-gold (IOCG) deposit in Brazil to

  9. Differential Detector for Measuring Radiation Fields

    International Nuclear Information System (INIS)

    Broide, A.; Marcus, E.; Brandys, I.; Schwartz, A.; Wengrowicz, U.; Levinson, S.; Seif, R.; Sattinger, D.; Kadmon, Y.; Tal, N.

    2004-01-01

    In case of a nuclear accident, it is essential to determine the source of radioactive contamination in order to analyze the risk to the environment and to the population. The radiation source may be a radioactive plume on the air or an area on the ground contaminated with radionuclides. Most commercial radiation detectors measure only the radiation field intensity but are unable to differentiate between the radiation sources. Consequently, this limitation causes a real problem in analyzing the potential risk to the near-by environment, since there is no data concerning the contamination ratios in the air and on the ground and this prevents us from taking the required steps to deal with the radiation event. This work presents a GM-tube-based Differential Detector, which enables to determine the source of contamination

  10. ACHIEVING CONSISTENT DOPPLER MEASUREMENTS FROM SDO /HMI VECTOR FIELD INVERSIONS

    International Nuclear Information System (INIS)

    Schuck, Peter W.; Antiochos, S. K.; Leka, K. D.; Barnes, Graham

    2016-01-01

    NASA’s Solar Dynamics Observatory is delivering vector magnetic field observations of the full solar disk with unprecedented temporal and spatial resolution; however, the satellite is in a highly inclined geosynchronous orbit. The relative spacecraft–Sun velocity varies by ±3 km s −1 over a day, which introduces major orbital artifacts in the Helioseismic Magnetic Imager (HMI) data. We demonstrate that the orbital artifacts contaminate all spatial and temporal scales in the data. We describe a newly developed three-stage procedure for mitigating these artifacts in the Doppler data obtained from the Milne–Eddington inversions in the HMI pipeline. The procedure ultimately uses 32 velocity-dependent coefficients to adjust 10 million pixels—a remarkably sparse correction model given the complexity of the orbital artifacts. This procedure was applied to full-disk images of AR 11084 to produce consistent Dopplergrams. The data adjustments reduce the power in the orbital artifacts by 31 dB. Furthermore, we analyze in detail the corrected images and show that our procedure greatly improves the temporal and spectral properties of the data without adding any new artifacts. We conclude that this new procedure makes a dramatic improvement in the consistency of the HMI data and in its usefulness for precision scientific studies.

  11. Global (and Local) Analyticity for Second Order Operators Constructed from Rigid Vector Fields on Products of Tori

    OpenAIRE

    Tartakoff, David S.

    1994-01-01

    We prove global analytic hypoellipticity on a product of tori for partial differential operators which are constructed as rigid (variable coefficient) quadratic polynomials in real vector fields satisfying the H\\"ormander condition and where $P$ satisfies a `maximal' estimate. We also prove an analyticity result that is local in some variables and global in others for operators whose prototype is $$ P= \\left({\\partial \\over {\\partial x_1}}\\right)^2 + \\left({\\partial \\over {\\partial x_2}}\\righ...

  12. Topological invariants and the dynamics of an axial vector torsion field

    International Nuclear Information System (INIS)

    Drechsler, W.

    1983-01-01

    A generalized throry of gravitation is discussed which is based on a Riemann-Cartan space-time, U 4 , with an axial vector torsion field. Besides Einstein's equations determining the metric of the U 4 a system of nonlinear field equations is established coupling an axial vector source current to the axial vector torsion field. The properties of the solutions of these equations are discussed assuming a London-type condition relating the axial current and torsion field. To characterize the solutions use is made of the Euler and Pontrjagin forms and the associated quadratic curvature invariants for the U 4 space-time. It is found that there exists for a Riemann-Cartan space-time a relation between the zeros of the axial vector torsion field and the singularities of the Pontrjagin invariant, which is analogous to the well-known Hopf relation between the zeros of vector fields and the Euler characteristic. (author)

  13. ON A PROLONGATION CONSTRUCTION FOR LOCAL NON-DIVERGENT VECTOR FIELDS ON Rn

    Directory of Open Access Journals (Sweden)

    A. M. Lukatsky

    2015-01-01

    Full Text Available The problem of a prolongation of non-divergent vector field, defined in a vicinity of zero in Rn t, to a finite non-divergent vector field on Rn is considered. Explicit formulas for the elements of the simple Lie algebra of non-divergent vector from the well-known Cartan series are obtained. This construction allows to move from the Euler equations for the ideal incompressible fluid to the Euler equations on finite-dimensional Lie groups.

  14. Enumeration of Combinatorial Classes of Single Variable Complex Polynomial Vector Fields

    DEFF Research Database (Denmark)

    Dias, Kealey

    A vector field in the space of degree d monic, centered single variable complex polynomial vector fields has a combinatorial structure which can be fully described by a combinatorial data set consisting of an equivalence relation and a marked subset on the integers mod 2d-2, satisfying certain...

  15. A Note on the First Integrals of Vector Fields with Integrating Factors and Normalizers

    Directory of Open Access Journals (Sweden)

    Jaume Llibre

    2012-06-01

    Full Text Available We prove a sufficient condition for the existence of explicit first integrals for vector fields which admit an integrating factor. This theorem recovers and extends previous results in the literature on the integrability of vector fields which are volume preserving and possess nontrivial normalizers. Our approach is geometric and coordinate-free and hence it works on any smooth orientable manifold.

  16. Cobordism Obstructions to Vector Fields and a Generalization of Lin's Theorem

    DEFF Research Database (Denmark)

    Svane, Anne Marie

    Atiyah and Dupont have studied the existence of linearly independent vector fields on manifolds by means of K-theory. They obtained the complete conditions for up to three independent vector fields. In the thesis, we try to copy their approach using certain spectra related to cobordism theory. We...

  17. Limit sets and global dynamic for 2-D divergence-free vector fields

    International Nuclear Information System (INIS)

    Marzougui, H.

    2004-08-01

    T. Ma and S. Wang studied the global structure of regular divergence-free vector fields on compact surfaces with or without boundary. This paper extends their study to the general case of divergence-free vector fields (regular or not) on closed surfaces and gives as a consequence a simple proof of their results. (author)

  18. Existence of 121 limit cycles in a perturbed planar polynomial Hamiltonian vector field of degree 11

    International Nuclear Information System (INIS)

    Wang, S.; Yu, P.

    2006-01-01

    In this article, a systematic procedure has been explored to studying general Z q -equivariant planar polynomial Hamiltonian vector fields for the maximal number of closed orbits and the maximal number of limit cycles after perturbation. Following the procedure by taking special consideration of Z 12 -equivariant vector fields of degree 11, the maximal of 99 closed orbits are obtained under a well-defined coefficient group. Consequently, perturbation parameter control in limit cycle computation leads to the existence of 121 limit cycles in the perturbed Hamiltonian vector field, which gives rise to the lower bound of Hilbert number of 11th-order systems as H(11) ≥ 11 2 . Two conjectures are proposed regarding the maximal number of closed orbits for equivariant polynomial Hamiltonian vector fields and the maximal number of limit cycles bifurcated from the well defined Hamiltonian vector fields after perturbation

  19. Discovering and understanding the vector field using simulation in android app

    Science.gov (United States)

    Budi, A.; Muliyati, D.

    2018-05-01

    An understanding of vector field’s concepts are fundamental parts of the electrodynamics course. In this paper, we use a simple simulation that can be used to show qualitative imaging results as a variation of the vector field. Android application packages the simulation with consideration of the efficiency of use during the lecture. In addition, this simulation also trying to cover the divergences and curl concepts from the same conditions that students have a complete understanding and can distinguish concepts that have been described only mathematically. This simulation is designed to show the relationship between the field magnitude and its potential. This application can show vector field simulations in various conditions that help to improve students’ understanding of vector field concepts and their relation to particle existence around the field vector.

  20. The Scalar, Vector and Tensor Fields in Theory of Elasticity and Plasticity

    Directory of Open Access Journals (Sweden)

    František FOJTÍK

    2014-06-01

    Full Text Available This article is devoted to an analysis of scalar, vector and tensor fields, which occur in the loaded and deformed bodies. The aim of this article is to clarify and simplify the creation of an understandable idea of some elementary concepts and quantities in field theories, such as, for example equiscalar levels, scalar field gradient, Hamilton operator, divergence, rotation and gradient of vector or tensor and others. Applications of those mathematical terms are shown in simple elasticity and plasticity tasks. We hope that content of our article might help technicians to make their studies of necessary mathematical chapters of vector and tensor analysis and field theories easier.

  1. Proliferation and differentiation of Trypanosoma cruzi inside its vector have a new trigger: redox status.

    Directory of Open Access Journals (Sweden)

    Natália P Nogueira

    Full Text Available Trypanosoma cruzi proliferate and differentiate inside different compartments of triatomines gut that is the first environment encountered by T. cruzi. Due to its complex life cycle, the parasite is constantly exposed to reactive oxygen species (ROS. We tested the influence of the pro-oxidant molecules H2O2 and the superoxide generator, Paraquat, as well as, metabolism products of the vector, with distinct redox status, in the proliferation and metacyclogenesis. These molecules are heme, hemozoin and urate. We also tested the antioxidants NAC and GSH. Heme induced the proliferation of epimastigotes and impaired the metacyclogenesis. β-hematin, did not affect epimastigote proliferation but decreased parasite differentiation. Conversely, we show that urate, GSH and NAC dramatically impaired epimastigote proliferation and during metacyclogenesis, NAC and urate induced a significant increment of trypomastigotes and decreased the percentage of epimastigotes. We also quantified the parasite loads in the anterior and posterior midguts and in the rectum of the vector by qPCR. The treatment with the antioxidants increased the parasite loads in all midgut sections analyzed. In vivo, the group of vectors fed with reduced molecules showed an increment of trypomastigotes and decreased epimastigotes when analyzed by differential counting. Heme stimulated proliferation by increasing the cell number in the S and G2/M phases, whereas NAC arrested epimastigotes in G1 phase. NAC greatly increased the percentage of trypomastigotes. Taken together, these data show a shift in the triatomine gut microenvironment caused by the redox status may also influence T. cruzi biology inside the vector. In this scenario, oxidants act to turn on epimastigote proliferation while antioxidants seem to switch the cycle towards metacyclogenesis. This is a new insight that defines a key role for redox metabolism in governing the parasitic life cycle.

  2. Differential calculi on quantum vector spaces with Hecke-type relations

    International Nuclear Information System (INIS)

    Baez, J.C.

    1991-01-01

    From a vector space V equipped with a Yang-Baxter operator R one may form the r-symmetric algebra S R V=TV/ , which is a quantum vector space in the sense of Manin, and the associated quantum matrix algebra M R V=T(End(V))/ -1 >. In the case when R satisfies a Hecke-type identity R 2 =(1-q)R+q, we construct a differential calculus Ω R V for S R V which agrees with that constructed by Pusz, Woronowicz, Wess, and Zumino when R is essentially the R-matrix of GL q (n). Elements of Ω R V may be regarded as differential forms on the quantum vector space S R V. We show that Ω R V is M R V-covariant in the sense that there is a coaction Φ * :Ω R V→M R VxΩ R V with Φ * d=(1xd)Φ * extending the natural coaction Φ:S R V→M R VxS R V. (orig.)

  3. Differential profiles of direct and indirect modification of vector feeding behaviour by a plant virus.

    Science.gov (United States)

    He, Wen-Bo; Li, Jie; Liu, Shu-Sheng

    2015-01-08

    Plant viruses interact with their insect vectors directly and indirectly via host plants, and this tripartite interaction may produce fitness benefits to both the vectors and the viruses. Our previous studies show that the Middle East-Asia Minor 1 (MEAM1) species of the whitefly Bemisia tabaci complex improved its performance on tobacco plants infected by the Tomato yellow leaf curl China virus (TYLCCNV), which it transmits, although virus infection of the whitefly per se reduced its performance. Here, we use electrical penetration graph recording to investigate the direct and indirect effects of TYLCCNV on the feeding behaviour of MEAM1. When feeding on either cotton, a non-host of TYLCCNV, or uninfected tobacco, a host of TYLCCNV, virus-infection of the whiteflies impeded their feeding. Interestingly, when viruliferous whiteflies fed on virus-infected tobacco, their feeding activities were no longer negatively affected; instead, the virus promoted whitefly behaviour related to rapid and effective sap ingestion. Our findings show differential profiles of direct and indirect modification of vector feeding behaviour by a plant virus, and help to unravel the behavioural mechanisms underlying a mutualistic relationship between an insect vector and a plant virus that also has features reminiscent of an insect pathogen.

  4. Motion Vector field improvement for picture rate conversion with reduced Halo

    NARCIS (Netherlands)

    Mertens, M.J.W.; Haan, de G.; Girod, B.; Bouman, C.A.; Steinbach, E.G.

    2001-01-01

    The quality of the interpolated images in picture rate upconversion is predominantly dependent on the accuracy of the motion vector fields. Block based MEs typically yield incorrect vectors in occlusion areas, which leads to an annoying halo in the upconverted video sequences. In the past we have

  5. Correlation between topological structure and its properties in dynamic singular vector fields.

    Science.gov (United States)

    Vasilev, Vasyl; Soskin, Marat

    2016-04-20

    A new technique for establishment of topology measurements for static and dynamic singular vector fields is elaborated. It is based on precise measurement of the 3D landscape of ellipticity distribution for a checked singular optical field with C points on the tops of ellipticity hills. Vector fields possess three-component topology: areas with right-hand (RH) and left-hand (LH) ellipses, and delimiting those L lines as the singularities of handedness. The azimuth map of polarization ellipses is common for both RH and LH ellipses of vector fields and do not feel L lines. The strict rules were confirmed experimentally, which define the connection between the sign of underlying optical vortices and morphological parameters of upper-lying C points. Percolation phenomena explain their realization in-between singular vector fields and long duration of their chains of 103  s order.

  6. Nonparaxial propagation and focusing properties of azimuthal-variant vector fields diffracted by an annular aperture.

    Science.gov (United States)

    Gu, Bing; Xu, Danfeng; Pan, Yang; Cui, Yiping

    2014-07-01

    Based on the vectorial Rayleigh-Sommerfeld integrals, the analytical expressions for azimuthal-variant vector fields diffracted by an annular aperture are presented. This helps us to investigate the propagation behaviors and the focusing properties of apertured azimuthal-variant vector fields under nonparaxial and paraxial approximations. The diffraction by a circular aperture, a circular disk, or propagation in free space can be treated as special cases of this general result. Simulation results show that the transverse intensity, longitudinal intensity, and far-field divergence angle of nonparaxially apertured azimuthal-variant vector fields depend strongly on the azimuthal index, the outer truncation parameter and the inner truncation parameter of the annular aperture, as well as the ratio of the waist width to the wavelength. Moreover, the multiple-ring-structured intensity pattern of the focused azimuthal-variant vector field, which originates from the diffraction effect caused by an annular aperture, is experimentally demonstrated.

  7. VECTOR TOMOGRAPHY FOR THE CORONAL MAGNETIC FIELD. II. HANLE EFFECT MEASUREMENTS

    International Nuclear Information System (INIS)

    Kramar, M.; Inhester, B.; Lin, H.; Davila, J.

    2013-01-01

    In this paper, we investigate the feasibility of saturated coronal Hanle effect vector tomography or the application of vector tomographic inversion techniques to reconstruct the three-dimensional magnetic field configuration of the solar corona using linear polarization measurements of coronal emission lines. We applied Hanle effect vector tomographic inversion to artificial data produced from analytical coronal magnetic field models with equatorial and meridional currents and global coronal magnetic field models constructed by extrapolation of real photospheric magnetic field measurements. We tested tomographic inversion with only Stokes Q, U, electron density, and temperature inputs to simulate observations over large limb distances where the Stokes I parameters are difficult to obtain with ground-based coronagraphs. We synthesized the coronal linear polarization maps by inputting realistic noise appropriate for ground-based observations over a period of two weeks into the inversion algorithm. We found that our Hanle effect vector tomographic inversion can partially recover the coronal field with a poloidal field configuration, but that it is insensitive to a corona with a toroidal field. This result demonstrates that Hanle effect vector tomography is an effective tool for studying the solar corona and that it is complementary to Zeeman effect vector tomography for the reconstruction of the coronal magnetic field

  8. Fully-differential NNLO predictions for vector-boson pair production with MATRIX

    CERN Document Server

    Wiesemann, Marius; Kallweit, Stefan; Rathlev, Dirk

    2016-01-01

    We review the computations of the next-to-next-to-leading order (NNLO) QCD corrections to vector-boson pair production processes in proton–proton collisions and their implementation in the numerical code MATRIX. Our calculations include the leptonic decays of W and Z bosons, consistently taking into account all spin correlations, off-shell effects and non-resonant contributions. For massive vector-boson pairs we show inclusive cross sections, applying the respective mass windows chosen by ATLAS and CMS to define Z bosons from their leptonic decay products, as well as total cross sections for stable bosons. Moreover, we provide samples of differential distributions in fiducial phase-space regions inspired by typical selection cuts used by the LHC experiments. For the vast majority of measurements, the inclusion of NNLO corrections significantly improves the agreement of the Standard Model predictions with data.

  9. Effective field theory and unitarity in vector boson scattering

    International Nuclear Information System (INIS)

    Sekulla, Marco; Kilian, Wolfgang; Ohl, Thorsten; Reuter, Juergen

    2016-10-01

    Weak vector boson scattering at high energies will be one of the key measurements in current and upcoming LHC runs. It is most sensitive to any new physics associated with electroweak symmetry breaking. However, a conventional EFT analysis will fail at high energies. To address this problem, we present a parameter-free prescription valid for arbitrary perturbative and non-perturbative models: the T-matrix unitarization. We describe its implementation as an asymptotically consistent reference model matched to the low-energy effective theory. We show examples of typical observables of vector-boson scattering at the LHC in our unitarized framework. For many strongly-coupled models like composite Higgs models, dimension-8 operators might be actually the leading operators. In addition to those longitudinal and transversal dimension eight EFT operators, the effects of generic tensor and scalar resonances within simplified models are considered.

  10. Differentiation of Glioblastoma and Lymphoma Using Feature Extraction and Support Vector Machine.

    Science.gov (United States)

    Yang, Zhangjing; Feng, Piaopiao; Wen, Tian; Wan, Minghua; Hong, Xunning

    2017-01-01

    Differentiation of glioblastoma multiformes (GBMs) and lymphomas using multi-sequence magnetic resonance imaging (MRI) is an important task that is valuable for treatment planning. However, this task is a challenge because GBMs and lymphomas may have a similar appearance in MRI images. This similarity may lead to misclassification and could affect the treatment results. In this paper, we propose a semi-automatic method based on multi-sequence MRI to differentiate these two types of brain tumors. Our method consists of three steps: 1) the key slice is selected from 3D MRIs and region of interests (ROIs) are drawn around the tumor region; 2) different features are extracted based on prior clinical knowledge and validated using a t-test; and 3) features that are helpful for classification are used to build an original feature vector and a support vector machine is applied to perform classification. In total, 58 GBM cases and 37 lymphoma cases are used to validate our method. A leave-one-out crossvalidation strategy is adopted in our experiments. The global accuracy of our method was determined as 96.84%, which indicates that our method is effective for the differentiation of GBM and lymphoma and can be applied in clinical diagnosis. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  11. A late time accelerated FRW model with scalar and vector fields via Noether symmetry

    Directory of Open Access Journals (Sweden)

    Babak Vakili

    2014-11-01

    Full Text Available We study the evolution of a three-dimensional minisuperspace cosmological model by the Noether symmetry approach. The phase space variables turn out to correspond to the scale factor of a flat Friedmann–Robertson–Walker (FRW model, a scalar field with potential function V(ϕ with which the gravity part of the action is minimally coupled and a vector field of its kinetic energy is coupled with the scalar field by a coupling function f(ϕ. Then, the Noether symmetry of such a cosmological model is investigated by utilizing the behavior of the corresponding Lagrangian under the infinitesimal generator of the desired symmetry. We explicitly calculate the form of the coupling function between the scalar and the vector fields and also the scalar field potential function for which such symmetry exists. Finally, by means of the corresponding Noether current, we integrate the equations of motion and obtain exact solutions for the scale factor, scalar and vector fields. It is shown that the resulting cosmology is an accelerated expansion universe for which its expansion is due to the presence of the vector field in the early times, while the scalar field is responsible of its late time expansion. Keywords: Noether symmetry, Scalar field cosmology, Vector field cosmology

  12. The principal part of plane vector fields with fixed Newton diagram

    International Nuclear Information System (INIS)

    Berezovskaya, F.

    1991-09-01

    Considering the main part of a plane vector field in a neighbourhood of a singular point 0(0,0) it is well known that if the singularity real parts of eigenvalues are non-zero, the linear part of the vector field provides the topological normal form and tangents of all the o-curves. The problem is to find the main part of a plane vector field which would provide the topological orbital normal form in a neighbourhood of singular point and asymptotics of all characteristics trajectories. In this work the solution to the problem for the generic ease of so-called nondegenerate vector fields, using Newton diagram is given. 13 refs, 5 figs

  13. Local normal vector field formulation for periodic scattering problems formulated in the spectral domain

    NARCIS (Netherlands)

    van Beurden, M.C.; Setija, Irwan

    2017-01-01

    We present two adapted formulations, one tailored to isotropic media and one for general anisotropic media, of the normal vector field framework previously introduced to improve convergence near arbitrarily shaped material interfaces in spectral simulation methods for periodic scattering geometries.

  14. Spherical cap modelling of Orsted magnetic field vectors over southern Africa

    CSIR Research Space (South Africa)

    Kotze, PB

    2001-01-01

    Full Text Available Vector magnetic field observations by the Orsted satellite during geomagnetic quiet conditions around January 1, 2000, have been employed to derive a spherical cap harmonic model (Haines, 1985) over the southern African region between 10 degrees...

  15. Mathematical Methods for Engineers and Scientists 2 Vector Analysis, Ordinary Differential Equations and Laplace Transforms

    CERN Document Server

    Tang, Kwong-Tin

    2007-01-01

    Pedagogical insights gained through 30 years of teaching applied mathematics led the author to write this set of student-oriented books. Topics such as complex analysis, matrix theory, vector and tensor analysis, Fourier analysis, integral transforms, ordinary and partial differential equations are presented in a discursive style that is readable and easy to follow. Numerous clearly stated, completely worked out examples together with carefully selected problem sets with answers are used to enhance students' understanding and manipulative skill. The goal is to make students comfortable and confident in using advanced mathematical tools in junior, senior, and beginning graduate courses.

  16. Realization of vector fields for quantum groups as pseudodifferential operators on quantum spaces

    International Nuclear Information System (INIS)

    Chu, Chong-Sun; Zumino, B.

    1995-01-01

    The vector fields of the quantum Lie algebra are described for the quantum groups GL q (n), SL q (N) and SO q (N) as pseudodifferential operators on the linear quantum spaces covariant under the corresponding quantum group. Their expressions are simple and compact. It is pointed out that these vector fields satisfy certain characteristic polynomial identities. The real forms SU q (N) and SO q (N,R) are discussed in detail

  17. Oscillatory regime in the multidimensional homogeneous cosmological models induced by a vector field

    International Nuclear Information System (INIS)

    Benini, R; Kirillov, A A; Montani, Giovanni

    2005-01-01

    We show that in multidimensional gravity, vector fields completely determine the structure and properties of singularity. It turns out that in the presence of a vector field the oscillatory regime exists in all spatial dimensions and for all homogeneous models. By analysing the Hamiltonian equations we derive the Poincare return map associated with the Kasner indexes and fix the rules according to which the Kasner vectors rotate. In correspondence to a four-dimensional spacetime, the oscillatory regime here constructed overlaps the usual Belinski-Khalatnikov-Liftshitz one

  18. Theory of charged vector mesons interacting with the electromagnetic field

    International Nuclear Information System (INIS)

    Lee, T.D.; Yang, C.N.

    1983-01-01

    It is shown that starting from the usual canonical formalism for the electromagnetic interaction of a charged vector meson with arbitrary magnetic moment one is led to a set of rules for Feynman diagrams, which appears to contain terms that are both infinite and noncovariant. These difficulties, however, can be circumvented by introducing a xi-limiting process which depends on a dimensionless positive parameter xi → 0. Furthermore, by using the mathematical artifice of a negative metric the theory becomes renormalizable (for xi > 0)

  19. On the use of the Kodama vector field in spherically symmetric dynamical problems

    Energy Technology Data Exchange (ETDEWEB)

    Racz, Istvan [MTA KFKI, Reszecske- es Magfizikai Kutatointezet, H-1121 Budapest, Konkoly Thege Miklos ut 29-33, (Hungary)

    2006-01-07

    It is shown that by making use of the Kodama vector field, as a preferred time evolution vector field, in spherically symmetric dynamical systems unexpected simplifications arise. In particular, the evolution equations relevant for the case of a massless scalar field minimally coupled to gravity are investigated. The simplest form of these equations in the 'canonical gauge' is known to possess the character of a mixed first-order elliptic-hyperbolic system. The advantages related to the use of the Kodama vector field are twofold although they show up simultaneously. First, it is found that the true degrees of freedom separate. Second, a subset of the field equations possessing the form of a first-order symmetric hyperbolic system for these preferred degrees of freedom is singled out. It is also demonstrated, in the appendix, that the above results generalize straightforwardly to the case of a generic self-interacting scalar field.

  20. Resolving the 180-degree ambiguity in vector magnetic field measurements: The 'minimum' energy solution

    Science.gov (United States)

    Metcalf, Thomas R.

    1994-01-01

    I present a robust algorithm that resolves the 180-deg ambiguity in measurements of the solar vector magnetic field. The technique simultaneously minimizes both the divergence of the magnetic field and the electric current density using a simulated annealing algorithm. This results in the field orientation with approximately minimum free energy. The technique is well-founded physically and is simple to implement.

  1. Vector magnetic field microscopy using nitrogen vacancy centers in diamond

    NARCIS (Netherlands)

    Maertz, B.J.; Wijnheijmer, A.P.; Fuchs, G.D.; Nowakowski, M.E.; Awschalom, D.D.

    2010-01-01

    The localized spin triplet ground state of a nitrogen vacancy (NV) center in diamond can be used in atomic-scale detection of local magnetic fields. Here we present a technique using ensembles of these defects in diamond to image fields around magnetic structures. We extract the local magnetic field

  2. Collapse dynamics of a vector vortex optical field with inhomogeneous states of polarization

    International Nuclear Information System (INIS)

    Chen, Rui-Pin; Zhao, Ting-Yu; Zhang, Xiaobo; Zhong, Li-Xin; Chew, Khian-Hooi

    2015-01-01

    Based on a pair of coupled 2D nonlinear Schrödinger equations, the collapse dynamics of a vector field with hybrid states of polarization (SoP) in a Kerr medium is demonstrated. The critical power for an optical field to collapse is present, and the full vectorial numerical simulations provide detailed information about the evolution and partial collapse of the vector field in a Kerr medium. Our results reveal that the optical field prefers to collapse in linearly-polarization, as a result of the self-focusing effect difference in linearly, elliptically and circularly polarized components. The SoP in the field cross-section changes and propagates with a spiral trajectory when the vector beams are imposed with a vortex. The vectorial effect on the collapse of a vector optical field can prevail over the noise even though it reaches 10% amplitude of the optical field. The unique feature of these structured collapses of a vector optical field may lead to new phenomena in the interaction of light with matter. (paper)

  3. Non-Gaussianity and statistical anisotropy from vector field populated inflationary models

    CERN Document Server

    Dimastrogiovanni, Emanuela; Matarrese, Sabino; Riotto, Antonio

    2010-01-01

    We present a review of vector field models of inflation and, in particular, of the statistical anisotropy and non-Gaussianity predictions of models with SU(2) vector multiplets. Non-Abelian gauge groups introduce a richer amount of predictions compared to the Abelian ones, mostly because of the presence of vector fields self-interactions. Primordial vector fields can violate isotropy leaving their imprint in the comoving curvature fluctuations zeta at late times. We provide the analytic expressions of the correlation functions of zeta up to fourth order and an analysis of their amplitudes and shapes. The statistical anisotropy signatures expected in these models are important and, potentially, the anisotropic contributions to the bispectrum and the trispectrum can overcome the isotropic parts.

  4. Representation and display of vector field topology in fluid flow data sets

    Science.gov (United States)

    Helman, James; Hesselink, Lambertus

    1989-01-01

    The visualization of physical processes in general and of vector fields in particular is discussed. An approach to visualizing flow topology that is based on the physics and mathematics underlying the physical phenomenon is presented. It involves determining critical points in the flow where the velocity vector vanishes. The critical points, connected by principal lines or planes, determine the topology of the flow. The complexity of the data is reduced without sacrificing the quantitative nature of the data set. By reducing the original vector field to a set of critical points and their connections, a representation of the topology of a two-dimensional vector field that is much smaller than the original data set but retains with full precision the information pertinent to the flow topology is obtained. This representation can be displayed as a set of points and tangent curves or as a graph. Analysis (including algorithms), display, interaction, and implementation aspects are discussed.

  5. A vector model for off-axis hysteresis loops using anisotropy field

    International Nuclear Information System (INIS)

    Jamali, Ali; Torre, Edward Della; Cardelli, Ermanno; ElBidweihy, Hatem; Bennett, Lawrence H.

    2016-01-01

    A model for the off-axis vector magnetization of a distribution of uniaxial particles is presented. Recent work by the authors decomposed the magnetization into two components and modeled the total vector magnetization as their vector sum. In this paper, to account for anisotropy, the direction of the reversible magnetization component is specified by the vector sum of the applied field and an effective anisotropy field. The formulation of the new anisotropy field (AF) model is derived and its results are discussed considering (i) oscillation and rotational modes, (ii) lag angle, and (iii) unitary magnetization. The advantages of the AF model are outlined by comparing its results to the results of the classical Stoner–Wohlfarth model.

  6. A vector model for off-axis hysteresis loops using anisotropy field

    Energy Technology Data Exchange (ETDEWEB)

    Jamali, Ali, E-mail: alijamal@gwu.edu [Electrical and Computer Engineering Department, The George Washington University, Washington, D.C. 20052 (United States); Torre, Edward Della [Electrical and Computer Engineering Department, The George Washington University, Washington, D.C. 20052 (United States); Cardelli, Ermanno [Department of Engineering, University of Perugia, Perugia (Italy); ElBidweihy, Hatem [Electrical and Computer Engineering Department, United States Naval Academy, Annapolis, MD 21402 (United States); Bennett, Lawrence H. [Electrical and Computer Engineering Department, The George Washington University, Washington, D.C. 20052 (United States)

    2016-11-15

    A model for the off-axis vector magnetization of a distribution of uniaxial particles is presented. Recent work by the authors decomposed the magnetization into two components and modeled the total vector magnetization as their vector sum. In this paper, to account for anisotropy, the direction of the reversible magnetization component is specified by the vector sum of the applied field and an effective anisotropy field. The formulation of the new anisotropy field (AF) model is derived and its results are discussed considering (i) oscillation and rotational modes, (ii) lag angle, and (iii) unitary magnetization. The advantages of the AF model are outlined by comparing its results to the results of the classical Stoner–Wohlfarth model.

  7. Eco-geographical differentiation among Colombian populations of the Chagas disease vector Triatoma dimidiata (Hemiptera: Reduviidae).

    Science.gov (United States)

    Gómez-Palacio, Andrés; Triana, Omar; Jaramillo-O, Nicolás; Dotson, Ellen M; Marcet, Paula L

    2013-12-01

    Triatoma dimidiata is currently the main vector of Chagas disease in Mexico, most Central American countries and several zones of Ecuador and Colombia. Although this species has been the subject of several recent phylogeographic studies, the relationship among different populations within the species remains unclear. To elucidate the population genetic structure of T. dimidiata in Colombia, we analyzed individuals from distinct geographical locations using the cytochrome c oxidase subunit 1 gene and 7 microsatellite loci. A clear genetic differentiation was observed among specimens from three Colombian eco-geographical regions: Inter Andean Valleys, Caribbean Plains and Sierra Nevada de Santa Marta mountain (SNSM). Additionally, evidence of genetic subdivision was found within the Caribbean Plains region as well as moderate gene flow between the populations from the Caribbean Plains and SNSM regions. The genetic differentiation found among Colombian populations correlates, albeit weakly, with an isolation-by-distance model (IBD). The genetic heterogeneity among Colombian populations correlates with the eco-epidemiological and morphological traits observed in this species across regions within the country. Such genetic and epidemiological diversity should be taken into consideration for the development of vector control strategies and entomological surveillance. Copyright © 2013. Published by Elsevier B.V.

  8. Solar monochromatic images in magneto-sensitive spectral lines and maps of vector magnetic fields

    Science.gov (United States)

    Shihui, Y.; Jiehai, J.; Minhan, J.

    1985-01-01

    A new method which allows by use of the monochromatic images in some magneto-sensitive spectra line to derive both the magnetic field strength as well as the angle between magnetic field lines and line of sight for various places in solar active regions is described. In this way two dimensional maps of vector magnetic fields may be constructed. This method was applied to some observational material and reasonable results were obtained. In addition, a project for constructing the three dimensional maps of vector magnetic fields was worked out.

  9. Vector magnetic field changes associated with X-class flares

    Science.gov (United States)

    Wang, Haimin; Ewell, M. W., Jr.; Zirin, H.; Ai, Guoxiang

    1994-01-01

    We present high-resolution transverse and longitudinal magnetic field measurements bracketing five X-class solar flares. We show that the magnetic shear, defined as the angular difference between the measured field and calculated potential field, actually increases after all of these flares. In each case, the shear is shown to increase along a substantial portion of the magnetic neutral line. For two of the cases, we have excellent time resolution, on the order of several minutes, and we demonstrate that the shear increase is impulsive. We briefly discuss the theoretical implications of our results.

  10. Inflationary buildup of a vector field condensate and its cosmological consequences

    International Nuclear Information System (INIS)

    Sanchez, Juan C. Bueno; Dimopoulos, Konstantinos

    2014-01-01

    Light vector fields during inflation obtain a superhorizon perturbation spectrum when their conformal invariance is appropriately broken. Such perturbations, by means of some suitable mechanism (e.g. the vector curvaton mechanism), can contribute to the curvatue perturbation in the Universe and produce characteristic signals, such as statistical anisotropy, on the microwave sky, most recently surveyed by the Planck satellite mission. The magnitude of such characteristic features crucially depends on the magnitude of the vector condensate generated during inflation. However, in the vast majority of the literature the expectation value of this condensate has so-far been taken as a free parameter, lacking a definite prediction or a physically motivated estimate. In this paper, we study the stochastic evolution of the vector condensate and obtain an estimate for its magnitude. Our study is mainly focused in the supergravity inspired case when the kinetic function and mass of the vector boson is time-varying during inflation, but other cases are also explored such as a parity violating axial theory or a non-minimal coupling between the vector field and gravity. As an example, we apply our findings in the context of the vector curvaton mechanism and contrast our results with current observations

  11. Investigation of optical currents in coherent and partially coherent vector fields

    DEFF Research Database (Denmark)

    Angelsky, O. V.; Gorsky, M. P.; Maksimyak, P. P.

    2011-01-01

    We present the computer simulation results of the spatial distri-bution of the Poynting vector and illustrate motion of micro and nanopar-ticles in spatially inhomogeneously polarized fields. The influence of phase relations and the degree of mutual coherence of superimposing waves...... by polarization characteristics of an optical field alone, using nanoscale me-tallic particles has been shown experimentally....

  12. A median filter approach for correcting errors in a vector field

    Science.gov (United States)

    Schultz, H.

    1985-01-01

    Techniques are presented for detecting and correcting errors in a vector field. These methods employ median filters which are frequently used in image processing to enhance edges and remove noise. A detailed example is given for wind field maps produced by a spaceborne scatterometer. The error detection and replacement algorithm was tested with simulation data from the NASA Scatterometer (NSCAT) project.

  13. Critical Point Cancellation in 3D Vector Fields: Robustness and Discussion.

    Science.gov (United States)

    Skraba, Primoz; Rosen, Paul; Wang, Bei; Chen, Guoning; Bhatia, Harsh; Pascucci, Valerio

    2016-02-29

    Vector field topology has been successfully applied to represent the structure of steady vector fields. Critical points, one of the essential components of vector field topology, play an important role in describing the complexity of the extracted structure. Simplifying vector fields via critical point cancellation has practical merit for interpreting the behaviors of complex vector fields such as turbulence. However, there is no effective technique that allows direct cancellation of critical points in 3D. This work fills this gap and introduces the first framework to directly cancel pairs or groups of 3D critical points in a hierarchical manner with a guaranteed minimum amount of perturbation based on their robustness, a quantitative measure of their stability. In addition, our framework does not require the extraction of the entire 3D topology, which contains non-trivial separation structures, and thus is computationally effective. Furthermore, our algorithm can remove critical points in any subregion of the domain whose degree is zero and handle complex boundary configurations, making it capable of addressing challenging scenarios that may not be resolved otherwise. We apply our method to synthetic and simulation datasets to demonstrate its effectiveness.

  14. Visualization of Morse connection graphs for topologically rich 2D vector fields.

    Science.gov (United States)

    Szymczak, Andrzej; Sipeki, Levente

    2013-12-01

    Recent advances in vector field topologymake it possible to compute its multi-scale graph representations for autonomous 2D vector fields in a robust and efficient manner. One of these representations is a Morse Connection Graph (MCG), a directed graph whose nodes correspond to Morse sets, generalizing stationary points and periodic trajectories, and arcs - to trajectories connecting them. While being useful for simple vector fields, the MCG can be hard to comprehend for topologically rich vector fields, containing a large number of features. This paper describes a visual representation of the MCG, inspired by previous work on graph visualization. Our approach aims to preserve the spatial relationships between the MCG arcs and nodes and highlight the coherent behavior of connecting trajectories. Using simulations of ocean flow, we show that it can provide useful information on the flow structure. This paper focuses specifically on MCGs computed for piecewise constant (PC) vector fields. In particular, we describe extensions of the PC framework that make it more flexible and better suited for analysis of data on complex shaped domains with a boundary. We also describe a topology simplification scheme that makes our MCG visualizations less ambiguous. Despite the focus on the PC framework, our approach could also be applied to graph representations or topological skeletons computed using different methods.

  15. The Evolution of Vector Magnetic Field Associated with Major Flares ...

    Indian Academy of Sciences (India)

    great enhancement in the non-potential field several hours before an .... conclusion is similar with that from daily evolution view – no sudden change happened. ... Jain, R., Hanaoka, Y., Sakurai, T. et al., Solar flares with remote brightening as ...

  16. Nanoscale electric and magnetic optical vector fields: mapping & injection

    NARCIS (Netherlands)

    le Feber, Boris

    2015-01-01

    Nanophotonic structures, which offer a sub-wavelength control over light and nearby emitters, promise to advance, for example, our ability to harvest light, process information and detect (bio-) chemical compounds. In general, the optical field distributions near nanophotonic structures are much

  17. First measurement of the helicity-dependent (vector)({gamma})(vector)(p){yields}p{eta} differential cross-section

    Energy Technology Data Exchange (ETDEWEB)

    Ahrens, J.; Arends, H.J.; Aulenbacher, K.; Beck, R.; Drechsel, D.; Harrach, D. van; Heid, E. [Institut fuer Kernphysik, Universitaet Mainz, D-55099 Mainz (Germany); Altieri, S. [INFN, Sezione di Pavia, I-27100 Pavia (Italy); Dipartimento di Fisica Nucleare e Teorica, Universita di Pavia, I-27100 Pavia (Italy); Annand, J.R.M. [Department of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ (United Kingdom); Anton, G. [Physikalisches Institut, Universitaet Erlangen-Nuernberg, D-91058 Erlangen (Germany); Bradtke, C.; Goertz, S.; Harmsen, J. [Institut fuer Experimentalphysik, Ruhr-Universitaet Bochum, D-44801 Bochum (Germany); Braghieri, A. [INFN, Sezione di Pavia, I-27100 Pavia (Italy); d' Hose, N. [CEA Saclay, DSM/DAPNIA/SPhN, F-91191 Gif-sur-Yvette Cedex (France); Dutz, H. [Physikalisches Institut, Universitaet Bonn, D-53115 Bonn (Germany); Grabmayr, P. [Physikalisches Institut, Universitaet Tuebingen, D-72076 Tuebingen (Germany); Hansen, K. [Department of Physics, University of Lund, Lund (Sweden); Hasegawa, S. [Department of Physics, Nagoya University, Chikusa-ku, Nagoya (Japan); Hasegawa, T. [Faculty of Engineering, Miyazaki University, Miyazaki (Japan); Helbing, K.; Holvoet, H.; Van Hoorebeke, L.; Horikawa, N.; Iwata, T.; Jahn, O.; Jennewein, P.; Kageya, T.; Kiel, B.; Klein, F.; Kondratiev, R.; Kossert, K.; Krimmer, J.; Lang, M.; Lannoy, B.; Leukel, R.; Lisin, V.; Matsuda, T.; McGeorge, J.C.; Meier, A.; Menze, D.; Meyer, W.; Michel, T.; Naumann, J.; Panzeri, A.; Pedroni, P.; Pinelli, T.; Preobrajenski, I.; Radtke, E.; Reichert, E.; Reicherz, G.; Rohlof, Ch.; Rosner, G.; Ryckbosch, D.; Sauer, M.; Schoch, B.; Schumacher, M.; Seitz, B.; Speckner, T.; Takabayashi, N.; Tamas, G.; Thomas, A.; Van de Vyver, R.; Wakai, A.; Weihofen, W.; Wissmann, F.; Zapadtka, F.; Zeitler, G.

    2003-06-01

    The helicity dependence of the (vector)({gamma})(vector)(p){yields}p{eta} reaction has been measured for the first time at a center-of-mass angle {theta}{sup *}{sub {eta}}=70 in the photon energy range from 780 MeV to 790 MeV. The experiment, performed at the Mainz microtron MAMI, used a 4{pi}-detector system, a circularly polarized, tagged photon beam, and a longitudinally polarized frozen-spin target. The helicity 3/2 cross-section is found to be small and the results for helicity 1/2 agree with predictions from the MAID analysis. (orig.)

  18. First measurement of the helicity-dependent vector gamma)vector(p)->p eta differential cross-section

    CERN Document Server

    Ahrens, J; Aulenbacher, K; Beck, R; Drechsel, D; Von Harrach, D; Heid, E; Altieri, S; Annand, J R M; Anton, G; Bradtke, C; Görtz, S; Harmsen, J; Braghieri, A; D'Hose, N; Dutz, H; Grabmayr, P; Hansen, K; Hasegawa, S; Hasegawa, T; Helbing, K; Holvoet, H; Van Hoorebeke, L; Horikawa, N; Iwata, T; Jahn, O; Jennewein, P; Kageya, T; Kiel, B; Klein, F; Kondratiev, R; Kossert, K; Krimmer, J; Lang, M; Lannoy, B; Leukel, R; Lisin, V; Matsuda, T; McGeorge, J C; Meier, A; Menze, D; Meyer, Werner T; Michel, T; Naumann, J; Panzeri, A; Pedroni, P; Pinelli, T; Preobrajenski, I; Radtke, E; Reichert, E; Reicherz, G; Rohlof, C; Rosner, G; Ryckbosch, D; Sauer, M C; Schoch, B; Schumacher, M; Seitz, B; Speckner, T; Takabayashi, N; Tamas, G; Thomas, A; Van De Vyver, R; Wakai, A; Weihofen, W; Wissmann, F; Zapadtka, F; Zeitler, G

    2003-01-01

    The helicity dependence of the vector(gamma)vector(p)->p eta reaction has been measured for the first time at a center-of-mass angle theta sup * subeta=70 in the photon energy range from 780 MeV to 790 MeV. The experiment, performed at the Mainz microtron MAMI, used a 4 pi-detector system, a circularly polarized, tagged photon beam, and a longitudinally polarized frozen-spin target. The helicity 3/2 cross-section is found to be small and the results for helicity 1/2 agree with predictions from the MAID analysis. (orig.)

  19. Identification of cardiac rhythm features by mathematical analysis of vector fields.

    Science.gov (United States)

    Fitzgerald, Tamara N; Brooks, Dana H; Triedman, John K

    2005-01-01

    Automated techniques for locating cardiac arrhythmia features are limited, and cardiologists generally rely on isochronal maps to infer patterns in the cardiac activation sequence during an ablation procedure. Velocity vector mapping has been proposed as an alternative method to study cardiac activation in both clinical and research environments. In addition to the visual cues that vector maps can provide, vector fields can be analyzed using mathematical operators such as the divergence and curl. In the current study, conduction features were extracted from velocity vector fields computed from cardiac mapping data. The divergence was used to locate ectopic foci and wavefront collisions, and the curl to identify central obstacles in reentrant circuits. Both operators were applied to simulated rhythms created from a two-dimensional cellular automaton model, to measured data from an in situ experimental canine model, and to complex three-dimensional human cardiac mapping data sets. Analysis of simulated vector fields indicated that the divergence is useful in identifying ectopic foci, with a relatively small number of vectors and with errors of up to 30 degrees in the angle measurements. The curl was useful for identifying central obstacles in reentrant circuits, and the number of velocity vectors needed increased as the rhythm became more complex. The divergence was able to accurately identify canine in situ pacing sites, areas of breakthrough activation, and wavefront collisions. In data from human arrhythmias, the divergence reliably estimated origins of electrical activity and wavefront collisions, but the curl was less reliable at locating central obstacles in reentrant circuits, possibly due to the retrospective nature of data collection. The results indicate that the curl and divergence operators applied to velocity vector maps have the potential to add valuable information in cardiac mapping and can be used to supplement human pattern recognition.

  20. Optimality Conditions in Differentiable Vector Optimization via Second-Order Tangent Sets

    International Nuclear Information System (INIS)

    Jimenez, Bienvenido; Novo, Vicente

    2004-01-01

    We provide second-order necessary and sufficient conditions for a point to be an efficient element of a set with respect to a cone in a normed space, so that there is only a small gap between necessary and sufficient conditions. To this aim, we use the common second-order tangent set and the asymptotic second-order cone utilized by Penot. As an application we establish second-order necessary conditions for a point to be a solution of a vector optimization problem with an arbitrary feasible set and a twice Frechet differentiable objective function between two normed spaces. We also establish second-order sufficient conditions when the initial space is finite-dimensional so that there is no gap with necessary conditions. Lagrange multiplier rules are also given

  1. Structured caustic vector vortex optical field: manipulating optical angular momentum flux and polarization rotation.

    Science.gov (United States)

    Chen, Rui-Pin; Chen, Zhaozhong; Chew, Khian-Hooi; Li, Pei-Gang; Yu, Zhongliang; Ding, Jianping; He, Sailing

    2015-05-29

    A caustic vector vortex optical field is experimentally generated and demonstrated by a caustic-based approach. The desired caustic with arbitrary acceleration trajectories, as well as the structured states of polarization (SoP) and vortex orders located in different positions in the field cross-section, is generated by imposing the corresponding spatial phase function in a vector vortex optical field. Our study reveals that different spin and orbital angular momentum flux distributions (including opposite directions) in different positions in the cross-section of a caustic vector vortex optical field can be dynamically managed during propagation by intentionally choosing the initial polarization and vortex topological charges, as a result of the modulation of the caustic phase. We find that the SoP in the field cross-section rotates during propagation due to the existence of the vortex. The unique structured feature of the caustic vector vortex optical field opens the possibility of multi-manipulation of optical angular momentum fluxes and SoP, leading to more complex manipulation of the optical field scenarios. Thus this approach further expands the functionality of an optical system.

  2. Vector tomography for reconstructing electric fields with non-zero divergence in bounded domains

    Science.gov (United States)

    Koulouri, Alexandra; Brookes, Mike; Rimpiläinen, Ville

    2017-01-01

    In vector tomography (VT), the aim is to reconstruct an unknown multi-dimensional vector field using line integral data. In the case of a 2-dimensional VT, two types of line integral data are usually required. These data correspond to integration of the parallel and perpendicular projection of the vector field along the integration lines and are called the longitudinal and transverse measurements, respectively. In most cases, however, the transverse measurements cannot be physically acquired. Therefore, the VT methods are typically used to reconstruct divergence-free (or source-free) velocity and flow fields that can be reconstructed solely from the longitudinal measurements. In this paper, we show how vector fields with non-zero divergence in a bounded domain can also be reconstructed from the longitudinal measurements without the need of explicitly evaluating the transverse measurements. To the best of our knowledge, VT has not previously been used for this purpose. In particular, we study low-frequency, time-harmonic electric fields generated by dipole sources in convex bounded domains which arise, for example, in electroencephalography (EEG) source imaging. We explain in detail the theoretical background, the derivation of the electric field inverse problem and the numerical approximation of the line integrals. We show that fields with non-zero divergence can be reconstructed from the longitudinal measurements with the help of two sparsity constraints that are constructed from the transverse measurements and the vector Laplace operator. As a comparison to EEG source imaging, we note that VT does not require mathematical modeling of the sources. By numerical simulations, we show that the pattern of the electric field can be correctly estimated using VT and the location of the source activity can be determined accurately from the reconstructed magnitudes of the field.

  3. Apparatus and method for transfer of information by means of a curl-free magnetic vector potential field

    International Nuclear Information System (INIS)

    Gelinas, R.C.

    1984-01-01

    A system for transmission of information using a curl-free magnetic vector potential radiation field. The system includes current-carrying apparatus for generating a magnetic vector potential field with a curl-free component coupled to apparatus for modulating the current applied to the field generating apparatus. Receiving apparatus includes a detector with observable properties that vary with the application of an applied curl-free magnetic vector potential field. Analyzing apparatus for determining the information content of modulation imposed on the curl-free vector potential field can be established in materials that are not capable of transmitting more common electromagnetic radiation

  4. Energy-momentum tensor of intermediate vector bosons in an external electromagnetic field

    International Nuclear Information System (INIS)

    Mostepanenko, V.M.; Sokolov, I.Yu.

    1988-01-01

    Expressions are obtained for the canonical and metric energy-momentum tensors of the vector field of intermediate bosons in an external electromagnetic field. It is shown that in the case of a gyromagnetic ratio not equal to unity the energy-momentum tensor cannot be symmetrized on its indices, and an additional term proportional to the anomalous magnetic moment appears in the conservation laws. A modification of the canonical formalism for scalar and vector fields in an external field is proposed in accordance with which the Hamiltonian density is equal to the 00 component of the energy-momentum tensor. An expression for the energy-momentum tensor of a closed system containing a gauge field of intermediate bosons and an electromagnetic field is obtained

  5. Vector-field statistics for the analysis of time varying clinical gait data.

    Science.gov (United States)

    Donnelly, C J; Alexander, C; Pataky, T C; Stannage, K; Reid, S; Robinson, M A

    2017-01-01

    In clinical settings, the time varying analysis of gait data relies heavily on the experience of the individual(s) assessing these biological signals. Though three dimensional kinematics are recognised as time varying waveforms (1D), exploratory statistical analysis of these data are commonly carried out with multiple discrete or 0D dependent variables. In the absence of an a priori 0D hypothesis, clinicians are at risk of making type I and II errors in their analyis of time varying gait signatures in the event statistics are used in concert with prefered subjective clinical assesment methods. The aim of this communication was to determine if vector field waveform statistics were capable of providing quantitative corroboration to practically significant differences in time varying gait signatures as determined by two clinically trained gait experts. The case study was a left hemiplegic Cerebral Palsy (GMFCS I) gait patient following a botulinum toxin (BoNT-A) injection to their left gastrocnemius muscle. When comparing subjective clinical gait assessments between two testers, they were in agreement with each other for 61% of the joint degrees of freedom and phases of motion analysed. For tester 1 and tester 2, they were in agreement with the vector-field analysis for 78% and 53% of the kinematic variables analysed. When the subjective analyses of tester 1 and tester 2 were pooled together and then compared to the vector-field analysis, they were in agreement for 83% of the time varying kinematic variables analysed. These outcomes demonstrate that in principle, vector-field statistics corroborates with what a team of clinical gait experts would classify as practically meaningful pre- versus post time varying kinematic differences. The potential for vector-field statistics to be used as a useful clinical tool for the objective analysis of time varying clinical gait data is established. Future research is recommended to assess the usefulness of vector-field analyses

  6. Vector magnetic field observations with the Haleakala polarimeter

    Science.gov (United States)

    Mickey, D. L.

    1985-01-01

    Several enhancements were recently made to the Haleakala polarimeter. Linear array detectors provide simultaneous resolution over a 3-A wavelength range, with spectral resolution of 40 mA. Optical fibers are now used to carry the intensity-modulated light from the rotating quarter-wave plate polarimeter to the echelle spectrometer, permitting its removal from the spar to a more stable environment. These changes, together with improved quarter-wave plates, reduced systematic errors to a few parts in 10,000 for routine observations. Examples of Stokes profiles and derived magnetic field maps are presented.

  7. Lefschetz thimbles in fermionic effective models with repulsive vector-field

    Science.gov (United States)

    Mori, Yuto; Kashiwa, Kouji; Ohnishi, Akira

    2018-06-01

    We discuss two problems in complexified auxiliary fields in fermionic effective models, the auxiliary sign problem associated with the repulsive vector-field and the choice of the cut for the scalar field appearing from the logarithmic function. In the fermionic effective models with attractive scalar and repulsive vector-type interaction, the auxiliary scalar and vector fields appear in the path integral after the bosonization of fermion bilinears. When we make the path integral well-defined by the Wick rotation of the vector field, the oscillating Boltzmann weight appears in the partition function. This "auxiliary" sign problem can be solved by using the Lefschetz-thimble path-integral method, where the integration path is constructed in the complex plane. Another serious obstacle in the numerical construction of Lefschetz thimbles is caused by singular points and cuts induced by multivalued functions of the complexified scalar field in the momentum integration. We propose a new prescription which fixes gradient flow trajectories on the same Riemann sheet in the flow evolution by performing the momentum integration in the complex domain.

  8. DIRECT OBSERVATION OF SOLAR CORONAL MAGNETIC FIELDS BY VECTOR TOMOGRAPHY OF THE CORONAL EMISSION LINE POLARIZATIONS

    International Nuclear Information System (INIS)

    Kramar, M.; Lin, H.; Tomczyk, S.

    2016-01-01

    We present the first direct “observation” of the global-scale, 3D coronal magnetic fields of Carrington Rotation (CR) Cycle 2112 using vector tomographic inversion techniques. The vector tomographic inversion uses measurements of the Fe xiii 10747 Å Hanle effect polarization signals by the Coronal Multichannel Polarimeter (CoMP) and 3D coronal density and temperature derived from scalar tomographic inversion of Solar Terrestrial Relations Observatory (STEREO)/Extreme Ultraviolet Imager (EUVI) coronal emission lines (CELs) intensity images as inputs to derive a coronal magnetic field model that best reproduces the observed polarization signals. While independent verifications of the vector tomography results cannot be performed, we compared the tomography inverted coronal magnetic fields with those constructed by magnetohydrodynamic (MHD) simulations based on observed photospheric magnetic fields of CR 2112 and 2113. We found that the MHD model for CR 2112 is qualitatively consistent with the tomography inverted result for most of the reconstruction domain except for several regions. Particularly, for one of the most noticeable regions, we found that the MHD simulation for CR 2113 predicted a model that more closely resembles the vector tomography inverted magnetic fields. In another case, our tomographic reconstruction predicted an open magnetic field at a region where a coronal hole can be seen directly from a STEREO-B/EUVI image. We discuss the utilities and limitations of the tomographic inversion technique, and present ideas for future developments

  9. An improved exact inversion formula for solenoidal fields in cone beam vector tomography

    Science.gov (United States)

    Katsevich, Alexander; Rothermel, Dimitri; Schuster, Thomas

    2017-06-01

    In this paper we present an improved inversion formula for the 3D cone beam transform of vector fields supported in the unit ball which is exact for solenoidal fields. It is well known that only the solenoidal part of a vector field can be determined from the longitudinal ray transform of a vector field in cone beam geometry. The inversion formula, as it was developed in Katsevich and Schuster (2013 An exact inversion formula for cone beam vector tomography Inverse Problems 29 065013), consists of two parts. The first part is of the filtered backprojection type, whereas the second part is a costly 4D integration and very inefficient. In this article we tackle this second term and obtain an improved formula, which is easy to implement and saves one order of integration. We also show that the first part contains all information about the curl of the field, whereas the second part has information about the boundary values. More precisely, the second part vanishes if the solenoidal part of the original field is tangential at the boundary. A number of numerical tests presented in the paper confirm the theoretical results and the exactness of the formula. Also, we obtain an inversion algorithm that works for general convex domains.

  10. Scale transformation and massless limit in neutral-vector field theory. [Gauge transformation unified theory

    Energy Technology Data Exchange (ETDEWEB)

    Kubo, R; Takahashi, Y; Yokoyama, K

    1975-01-01

    In a wide class of neutral vector field theories, in which massive and massless fields are described in a unified way and a unique massless limit exists to quantum electrodynamics in covariant gauges, the commutability of the scale transformation and the massless limit is examined. It is shown that there occurs no anomaly with respect to the assignment for scale dimensions of relevant fields. Connection of scale transformation and gauge transformation is also discussed.

  11. Signed zeros of Gaussian vector fields - density, correlation functions and curvature

    CERN Document Server

    Foltin, G

    2003-01-01

    We calculate correlation functions of the (signed) density of zeros of Gaussian distributed vector fields. We are able to express correlation functions of arbitrary order through the curvature tensor of a certain abstract Riemann Cartan or Riemannian manifold. As an application, we discuss one- and two-point functions. The zeros of a two-dimensional Gaussian vector field model the distribution of topological defects in the high-temperature phase of two-dimensional systems with orientational degrees of freedom, such as superfluid films, thin superconductors and liquid crystals.

  12. Field Method for Integrating the First Order Differential Equation

    Institute of Scientific and Technical Information of China (English)

    JIA Li-qun; ZHENG Shi-wang; ZHANG Yao-yu

    2007-01-01

    An important modern method in analytical mechanics for finding the integral, which is called the field-method, is used to research the solution of a differential equation of the first order. First, by introducing an intermediate variable, a more complicated differential equation of the first order can be expressed by two simple differential equations of the first order, then the field-method in analytical mechanics is introduced for solving the two differential equations of the first order. The conclusion shows that the field-method in analytical mechanics can be fully used to find the solutions of a differential equation of the first order, thus a new method for finding the solutions of the first order is provided.

  13. High-quality and interactive animations of 3D time-varying vector fields.

    Science.gov (United States)

    Helgeland, Anders; Elboth, Thomas

    2006-01-01

    In this paper, we present an interactive texture-based method for visualizing three-dimensional unsteady vector fields. The visualization method uses a sparse and global representation of the flow, such that it does not suffer from the same perceptual issues as is the case for visualizing dense representations. The animation is made by injecting a collection of particles evenly distributed throughout the physical domain. These particles are then tracked along their path lines. At each time step, these particles are used as seed points to generate field lines using any vector field such as the velocity field or vorticity field. In this way, the animation shows the advection of particles while each frame in the animation shows the instantaneous vector field. In order to maintain a coherent particle density and to avoid clustering as time passes, we have developed a novel particle advection strategy which produces approximately evenly-spaced field lines at each time step. To improve rendering performance, we decouple the rendering stage from the preceding stages of the visualization method. This allows interactive exploration of multiple fields simultaneously, which sets the stage for a more complete analysis of the flow field. The final display is rendered using texture-based direct volume rendering.

  14. Symbolic computer vector analysis

    Science.gov (United States)

    Stoutemyer, D. R.

    1977-01-01

    A MACSYMA program is described which performs symbolic vector algebra and vector calculus. The program can combine and simplify symbolic expressions including dot products and cross products, together with the gradient, divergence, curl, and Laplacian operators. The distribution of these operators over sums or products is under user control, as are various other expansions, including expansion into components in any specific orthogonal coordinate system. There is also a capability for deriving the scalar or vector potential of a vector field. Examples include derivation of the partial differential equations describing fluid flow and magnetohydrodynamics, for 12 different classic orthogonal curvilinear coordinate systems.

  15. Field Equations for Abelian Vector Fields in the Bianchi Type I Metric in the Framework of Teleparallel Gravity

    International Nuclear Information System (INIS)

    Triyanta; Zen, F. P.; Supardi; Wardaya, A. Y.

    2010-01-01

    Gauge theory, under the framework of quantum field theory, has successfully described three fundamental interactions: electromagnetic, weak, and strong interactions. Problems of describing the gravitational interaction in a similar manner has not been satisfied yet until now. Teleparallel gravity (TG) is one proposal describing gravitational field as a gauge field. This theory is quite new and it is equivalent to Einstein's general relativity. But as gravitational field in TG is expressed by torsion, rather than curvature, it gives an alternative framework for solving problems on gravity. This paper will present solution of the dynamical equation of abelian vector fields under the framework of TG in the Bianchi type I spacetime.

  16. Anomalous scaling of a passive vector advected by the Navier-Stokes velocity field

    International Nuclear Information System (INIS)

    Jurcisinova, E; Jurcisin, M; Remecky, R

    2009-01-01

    Using the field theoretic renormalization group and the operator-product expansion, the model of a passive vector field (a weak magnetic field in the framework of the kinematic MHD) advected by the velocity field which is governed by the stochastic Navier-Stokes equation with the Gaussian random stirring force δ-correlated in time and with the correlator proportional to k 4-d-2ε is investigated to the first order in ε (one-loop approximation). It is shown that the single-time correlation functions of the advected vector field have anomalous scaling behavior and the corresponding exponents are calculated in the isotropic case, as well as in the case with the presence of large-scale anisotropy. The hierarchy of the anisotropic critical dimensions is briefly discussed and the persistence of the anisotropy inside the inertial range is demonstrated on the behavior of the skewness and hyperskewness (dimensionless ratios of correlation functions) as functions of the Reynolds number Re. It is shown that even though the present model of a passive vector field advected by the realistic velocity field is mathematically more complicated than, on one hand, the corresponding models of a passive vector field advected by 'synthetic' Gaussian velocity fields and, on the other hand, than the corresponding model of a passive scalar quantity advected by the velocity field driven by the stochastic Navier-Stokes equation, the final one-loop approximate asymptotic scaling behavior of the single-time correlation or structure functions of the advected fields of all models are defined by the same anomalous dimensions (up to normalization)

  17. Tailored optical vector fields for ultrashort-pulse laser induced complex surface plasmon structuring.

    Science.gov (United States)

    Ouyang, J; Perrie, W; Allegre, O J; Heil, T; Jin, Y; Fearon, E; Eckford, D; Edwardson, S P; Dearden, G

    2015-05-18

    Precise tailoring of optical vector beams is demonstrated, shaping their focal electric fields and used to create complex laser micro-patterning on a metal surface. A Spatial Light Modulator (SLM) and a micro-structured S-waveplate were integrated with a picosecond laser system and employed to structure the vector fields into radial and azimuthal polarizations with and without a vortex phase wavefront as well as superposition states. Imprinting Laser Induced Periodic Surface Structures (LIPSS) elucidates the detailed vector fields around the focal region. In addition to clear azimuthal and radial plasmon surface structures, unique, variable logarithmic spiral micro-structures with a pitch Λ ∼1μm, not observed previously, were imprinted on the surface, confirming unambiguously the complex 2D focal electric fields. We show clearly also how the Orbital Angular Momentum(OAM) associated with a helical wavefront induces rotation of vector fields along the optic axis of a focusing lens and confirmed by the observed surface micro-structures.

  18. Evolution of vector magnetic fields and the August 27 1990 X-3 flare

    Science.gov (United States)

    Wang, Haimin

    1992-01-01

    Vector magnetic fields in an active region of the sun are studied by means of continuous observations of magnetic-field evolution emphasizing magnetic shear build-up. The vector magnetograms are shown to measure magnetic fields correctly based on concurrent observations and a comparison of the transverse field with the H alpha fibril structure. The morphology and velocity pattern are examined, and these data and the shear build-up suggest that the active region's two major footprints are separated by a region with flows, new flux emergence, and several neutral lines. The magnetic shear appears to be caused by the collision and shear motion of two poles of opposite polarities. The transverse field is shown to turn from potential to sheared during the process of flux cancellation, and this effect can be incorporated into existing models of magnetic flux cancellation.

  19. Achievement of needle-like focus by engineering radial-variant vector fields.

    Science.gov (United States)

    Gu, Bing; Wu, Jia-Lu; Pan, Yang; Cui, Yiping

    2013-12-16

    We present and demonstrate a novel method for engineering the radial-variant polarization on the incident field to achieve a needle of transversally polarized field without any pupil filters. We generate a new kind of localized linearly-polarized vector fields with distributions of states of polarization (SoPs) describing by the radius to the power p and explore its tight focusing, nonparaxial focusing, and paraxial focusing properties. By tuning the power p, we obtain the needle-like focal field with hybrid SoPs and give the formula for describing the length of the needle. Experimentally, we systematically investigate both the intensity distributions and the polarization evolution of the optical needle by paraxial focusing the generated vector field. Such an optical needle, which enhances the light-matter interaction, has intriguing applications in optical microma-chining and nonlinear optics.

  20. Effect of a spiral phase on a vector optical field with hybrid polarization states

    International Nuclear Information System (INIS)

    Chen, Rui-Pin; Zhao, Tingyu; Zhong, Li-Xin; Chew, Khian-Hooi; Gu, Bing; Zhou, Guoquan

    2015-01-01

    The propagation dynamics of a vector field with inhomogeneous states of polarization (SoP) imposed a vortex is studied using the angular spectrum method. The evolution of SoP in the cross section of the field during propagation is analyzed numerically by the Stokes polarization parameters. The results indicate that SoP in the field cross section rotate along the propagation axis during propagation due to the existence of a vortex. In addition, the interaction between the phase singularity and the polarization singularity leads to the creation or annihilation of the optical field in the central region. In particular, the distributions of the transverse energy flow and both spin and orbital optical angular momentum fluxes in the cross section of the vortex vector optical field depend sensitively on both the vortex and polarization topology charges. (paper)

  1. The multiparametric deformation of GL(n) and the covariant differential calculus on the quantum vector space

    International Nuclear Information System (INIS)

    Schirrmacher, A.

    1991-01-01

    A n(n-1)/2+1 parameter solution of the Yang Baxter equation is presented giving rise to the quantum Group GL x;qij (n). Determinant and inverse are constructed. The group acts covariantly on a quantum vector space of non-commutative coordinates. The associated exterior space can be identified with the differentials exhibiting a multiparameter deformed differential calculus following the construction of Wess and Zumino. (orig.)

  2. On the Lamb vector divergence as a momentum field diagnostic employed in turbulent channel flow

    Science.gov (United States)

    Hamman, Curtis W.; Kirby, Robert M.; Klewicki, Joseph C.

    2006-11-01

    Vorticity, enstrophy, helicity, and other derived field variables provide invaluable information about the kinematics and dynamics of fluids. However, whether or not derived field variables exist that intrinsically identify spatially localized motions having a distinct capacity to affect a time rate of change of linear momentum is seldom addressed in the literature. The purpose of the present study is to illustrate the unique attributes of the divergence of the Lamb vector in order to qualify its potential for characterizing such spatially localized motions. Toward this aim, we describe the mathematical properties, near-wall behavior, and scaling characteristics of the divergence of the Lamb vector for turbulent channel flow. When scaled by inner variables, the mean divergence of the Lamb vector merges to a single curve in the inner layer, and the fluctuating quantities exhibit a strong correlation with the Bernoulli function throughout much of the inner layer.

  3. Differentiability and continuity of quantum fields on a lattice

    International Nuclear Information System (INIS)

    deLyra, J.L.; Foong, S.K.; Gallivan, T.E.

    1991-01-01

    The differentiability and continuity properties of quantized bosonic fields on a lattice are examined. It is shown for free fields that, in the continuum limit, the dominant configurations in the functional integral become discontinuous when the spacetime dimension is greater than 1. It is argued that the same is true for interacting fields. This is unlike the one-dimensional case of quantum mechanics, in which the dominant configurations are continuous but not differentiable. As a consequence of this discontinuity, classically equivalent actions may produce inequivalent quantum field theories upon functional-integral quantization

  4. Migration transformation of two-dimensional magnetic vector and tensor fields

    DEFF Research Database (Denmark)

    Zhdanov, Michael; Cai, Hongzhu; Wilson, Glenn

    2012-01-01

    We introduce a new method of rapid interpretation of magnetic vector and tensor field data, based on ideas of potential field migration which extends the general principles of seismic and electromagnetic migration to potential fields. 2-D potential field migration represents a direct integral...... to the downward continuation of a well-behaved analytical function. We present case studies for imaging of SQUID-based magnetic tensor data acquired over a magnetite skarn at Tallawang, Australia. The results obtained from magnetic tensor field migration agree very well with both Euler deconvolution and the known...

  5. Ghost instabilities of cosmological models with vector fields nonminimally coupled to the curvature

    International Nuclear Information System (INIS)

    Himmetoglu, Burak; Peloso, Marco; Contaldi, Carlo R.

    2009-01-01

    We prove that many cosmological models characterized by vectors nonminimally coupled to the curvature (such as the Turner-Widrow mechanism for the production of magnetic fields during inflation, and models of vector inflation or vector curvaton) contain ghosts. The ghosts are associated with the longitudinal vector polarization present in these models and are found from studying the sign of the eigenvalues of the kinetic matrix for the physical perturbations. Ghosts introduce two main problems: (1) they make the theories ill defined at the quantum level in the high energy/subhorizon regime (and create serious problems for finding a well-behaved UV completion), and (2) they create an instability already at the linearized level. This happens because the eigenvalue corresponding to the ghost crosses zero during the cosmological evolution. At this point the linearized equations for the perturbations become singular (we show that this happens for all the models mentioned above). We explicitly solve the equations in the simplest cases of a vector without a vacuum expectation value in a Friedmann-Robertson-Walker geometry, and of a vector with a vacuum expectation value plus a cosmological constant, and we show that indeed the solutions of the linearized equations diverge when these equations become singular.

  6. First Use of Synoptic Vector Magnetograms for Global Nonlinear, Force-Free Coronal Magnetic Field Models

    Science.gov (United States)

    Tadesse, T.; Wiegelmann, T.; Gosain, S.; MacNeice, P.; Pevtsov, A. A.

    2014-01-01

    Context. The magnetic field permeating the solar atmosphere is generally thought to provide the energy for much of the activity seen in the solar corona, such as flares, coronal mass ejections (CMEs), etc. To overcome the unavailability of coronal magnetic field measurements, photospheric magnetic field vector data can be used to reconstruct the coronal field. Currently, there are several modelling techniques being used to calculate three-dimensional field lines into the solar atmosphere. Aims. For the first time, synoptic maps of a photospheric-vector magnetic field synthesized from the vector spectromagnetograph (VSM) on Synoptic Optical Long-term Investigations of the Sun (SOLIS) are used to model the coronal magnetic field and estimate free magnetic energy in the global scale. The free energy (i.e., the energy in excess of the potential field energy) is one of the main indicators used in space weather forecasts to predict the eruptivity of active regions. Methods. We solve the nonlinear force-free field equations using an optimization principle in spherical geometry. The resulting threedimensional magnetic fields are used to estimate the magnetic free energy content E(sub free) = E(sub nlfff) - E(sub pot), which is the difference of the magnetic energies between the nonpotential field and the potential field in the global solar corona. For comparison, we overlay the extrapolated magnetic field lines with the extreme ultraviolet (EUV) observations by the atmospheric imaging assembly (AIA) on board the Solar Dynamics Observatory (SDO). Results. For a single Carrington rotation 2121, we find that the global nonlinear force-free field (NLFFF) magnetic energy density is 10.3% higher than the potential one. Most of this free energy is located in active regions.

  7. Vector tomography for reconstructing electric fields with non-zero divergence in bounded domains

    Energy Technology Data Exchange (ETDEWEB)

    Koulouri, Alexandra, E-mail: koulouri@uni-muenster.de [Institute for Computational and Applied Mathematics, University of Münster, Einsteinstrasse 62, D-48149 Münster (Germany); Department of Electrical and Electronic Engineering, Imperial College London, Exhibition Road, London SW7 2BT (United Kingdom); Brookes, Mike [Department of Electrical and Electronic Engineering, Imperial College London, Exhibition Road, London SW7 2BT (United Kingdom); Rimpiläinen, Ville [Institute for Biomagnetism and Biosignalanalysis, University of Münster, Malmedyweg 15, D-48149 Münster (Germany); Department of Mathematics, University of Auckland, Private bag 92019, Auckland 1142 (New Zealand)

    2017-01-15

    In vector tomography (VT), the aim is to reconstruct an unknown multi-dimensional vector field using line integral data. In the case of a 2-dimensional VT, two types of line integral data are usually required. These data correspond to integration of the parallel and perpendicular projection of the vector field along the integration lines and are called the longitudinal and transverse measurements, respectively. In most cases, however, the transverse measurements cannot be physically acquired. Therefore, the VT methods are typically used to reconstruct divergence-free (or source-free) velocity and flow fields that can be reconstructed solely from the longitudinal measurements. In this paper, we show how vector fields with non-zero divergence in a bounded domain can also be reconstructed from the longitudinal measurements without the need of explicitly evaluating the transverse measurements. To the best of our knowledge, VT has not previously been used for this purpose. In particular, we study low-frequency, time-harmonic electric fields generated by dipole sources in convex bounded domains which arise, for example, in electroencephalography (EEG) source imaging. We explain in detail the theoretical background, the derivation of the electric field inverse problem and the numerical approximation of the line integrals. We show that fields with non-zero divergence can be reconstructed from the longitudinal measurements with the help of two sparsity constraints that are constructed from the transverse measurements and the vector Laplace operator. As a comparison to EEG source imaging, we note that VT does not require mathematical modeling of the sources. By numerical simulations, we show that the pattern of the electric field can be correctly estimated using VT and the location of the source activity can be determined accurately from the reconstructed magnitudes of the field. - Highlights: • Vector tomography is used to reconstruct electric fields generated by dipole

  8. SINGLE VERSUS MULTIPLE TRIAL VECTORS IN CLASSICAL DIFFERENTIAL EVOLUTION FOR OPTIMIZING THE QUANTIZATION TABLE IN JPEG BASELINE ALGORITHM

    Directory of Open Access Journals (Sweden)

    B Vinoth Kumar

    2017-07-01

    Full Text Available Quantization Table is responsible for compression / quality trade-off in baseline Joint Photographic Experts Group (JPEG algorithm and therefore it is viewed as an optimization problem. In the literature, it has been found that Classical Differential Evolution (CDE is a promising algorithm to generate the optimal quantization table. However, the searching capability of CDE could be limited due to generation of single trial vector in an iteration which in turn reduces the convergence speed. This paper studies the performance of CDE by employing multiple trial vectors in a single iteration. An extensive performance analysis has been made between CDE and CDE with multiple trial vectors in terms of Optimization process, accuracy, convergence speed and reliability. The analysis report reveals that CDE with multiple trial vectors improves the convergence speed of CDE and the same is confirmed using a statistical hypothesis test (t-test.

  9. Differential attractiveness of humans to the African malaria vector Anopheles gambiae Giles : effects of host characteristics and parasite infection

    NARCIS (Netherlands)

    Mukabana, W.R.

    2002-01-01

    The results of a series of studies designed to understand the principal factors that determine the differential attractiveness of humans to the malaria vector Anopheles

  10. Gravitational lensing due to dark matter modelled by a vector field

    International Nuclear Information System (INIS)

    Kiselev, V V; Yudin, D I

    2006-01-01

    The specified constant 4-vector field reproducing the spherically symmetric stationary metric of a cold dark matter halo in the region of flat rotation curves results in a constant angle of light deflection at small impact distances. The effective deflecting mass is a factor π/2 greater than the dark matter mass. The perturbation of deflection picture due to the halo edge is evaluated

  11. Flavor-singlet axial-vector current in quark model within background field

    International Nuclear Information System (INIS)

    Chen Kun; Yan Mulin

    1993-01-01

    The flavor-singlet axial-vector current is calculated in a quark model within pseudoscalar background-field through the Seeley-DeWitt coefficients. This current is responsible for the quark spin content of proton and is of O(1) in the large-N e expansion

  12. Normal forms of invariant vector fields under a finite group action

    International Nuclear Information System (INIS)

    Sanchez Bringas, F.

    1992-07-01

    Let Γ be a finite subgroup of GL(n,C). This subgroup acts on the space of germs of holomorphic vector fields vanishing at the origin in C n . We prove a theorem of invariant conjugation to a normal form and linearization for the subspace of invariant elements and we give a description of these normal forms in dimension n=2. (author)

  13. Codimension-one tangency bifurcations of global Poincare maps of four-dimensional vector fields

    NARCIS (Netherlands)

    Krauskopf, B.; Lee, C.M.; Osinga, H.M.

    2009-01-01

    When one considers a Poincarreturn map on a general unbounded (n - 1)-dimensional section for a vector field in R-n there are typically points where the flow is tangent to the section. The only notable exception is when the system is (equivalent to) a periodically forced system. The tangencies can

  14. Second level semi-degenerate fields in W{sub 3} Toda theory: matrix element and differential equation

    Energy Technology Data Exchange (ETDEWEB)

    Belavin, Vladimir [I.E. Tamm Department of Theoretical Physics, P.N. Lebedev Physical Institute,Leninsky Avenue 53, 119991 Moscow (Russian Federation); Department of Quantum Physics, Institute for Information Transmission Problems,Bolshoy Karetny per. 19, 127994 Moscow (Russian Federation); Moscow Institute of Physics and Technology,Dolgoprudnyi, 141700 Moscow region (Russian Federation); Cao, Xiangyu [LPTMS, CNRS (UMR 8626), Université Paris-Saclay,15 rue Georges Clémenceau, 91405 Orsay (France); Estienne, Benoit [LPTHE, CNRS and Université Pierre et Marie Curie, Sorbonne Universités,4 Place Jussieu, 75252 Paris Cedex 05 (France); Santachiara, Raoul [LPTMS, CNRS (UMR 8626), Université Paris-Saclay,15 rue Georges Clémenceau, 91405 Orsay (France)

    2017-03-02

    In a recent study we considered W{sub 3} Toda 4-point functions that involve matrix elements of a primary field with the highest-weight in the adjoint representation of sl{sub 3}. We generalize this result by considering a semi-degenerate primary field, which has one null vector at level two. We obtain a sixth-order Fuchsian differential equation for the conformal blocks. We discuss the presence of multiplicities, the matrix elements and the fusion rules.

  15. On the achievable field sensitivity of a segmented annular detector for differential phase contrast measurements

    Energy Technology Data Exchange (ETDEWEB)

    Schwarzhuber, Felix, E-mail: felix.schwarzhuber@ur.de; Melzl, Peter; Zweck, Josef

    2017-06-15

    Highlights: • Practical guide to calibrate a DPC setup considering geometrical parameters. • Optimizing the field sensitivity of a segmented annular DPC detector. • Determination of maximum electric and magnetic field sensitivity of a DPC setup. - Abstract: Differential phase contrast microscopy measures minute deflections of the electron probe due to electric and/or magnetic fields, using a position sensitive device. Although recently, pixelated detectors have become available which also serve as a position sensitive device, the most frequently used detector is a four-segmented annular semiconducting detector ring (or variations thereof), where the difference signals of opposing detector elements represent the components of the deflection vector. This deflection vector can be used directly to quantitatively determine the deflecting field, provided the specimen’s thickness is known. While there exist many measurements of both electric and magnetic fields, even at an atomic level, until now the question of the smallest clearly resolvable field value for this detector has not yet been answered. This paper treats the problem theoretically first, leading to a calibration factor κ which depends solely on simple, experimentally accessible parameters and relates the deflecting field to the measured deflection vector. In a second step, the calibration factor for our combination of microscope and detector is determined experimentally for various combinations of camera length, condenser aperture and spot size to determine the optimum setup. From this optimized condition we determine the minimum change in field which leads to a clearly measurable signal change for both HMSTEM and LMSTEM operation. A strategy is described which allows the experimenter to choose the setup giving the highest field sensitivity. Quantification problems due to scattering processes in the specimen are addressed and ways are shown to choose a setup which is less sensitive to these artefacts.

  16. On the achievable field sensitivity of a segmented annular detector for differential phase contrast measurements

    International Nuclear Information System (INIS)

    Schwarzhuber, Felix; Melzl, Peter; Zweck, Josef

    2017-01-01

    Highlights: • Practical guide to calibrate a DPC setup considering geometrical parameters. • Optimizing the field sensitivity of a segmented annular DPC detector. • Determination of maximum electric and magnetic field sensitivity of a DPC setup. - Abstract: Differential phase contrast microscopy measures minute deflections of the electron probe due to electric and/or magnetic fields, using a position sensitive device. Although recently, pixelated detectors have become available which also serve as a position sensitive device, the most frequently used detector is a four-segmented annular semiconducting detector ring (or variations thereof), where the difference signals of opposing detector elements represent the components of the deflection vector. This deflection vector can be used directly to quantitatively determine the deflecting field, provided the specimen’s thickness is known. While there exist many measurements of both electric and magnetic fields, even at an atomic level, until now the question of the smallest clearly resolvable field value for this detector has not yet been answered. This paper treats the problem theoretically first, leading to a calibration factor κ which depends solely on simple, experimentally accessible parameters and relates the deflecting field to the measured deflection vector. In a second step, the calibration factor for our combination of microscope and detector is determined experimentally for various combinations of camera length, condenser aperture and spot size to determine the optimum setup. From this optimized condition we determine the minimum change in field which leads to a clearly measurable signal change for both HMSTEM and LMSTEM operation. A strategy is described which allows the experimenter to choose the setup giving the highest field sensitivity. Quantification problems due to scattering processes in the specimen are addressed and ways are shown to choose a setup which is less sensitive to these artefacts.

  17. Cryogenic STM in 3D vector magnetic fields realized through a rotatable insert.

    Science.gov (United States)

    Trainer, C; Yim, C M; McLaren, M; Wahl, P

    2017-09-01

    Spin-polarized scanning tunneling microscopy (SP-STM) performed in vector magnetic fields promises atomic scale imaging of magnetic structure, providing complete information on the local spin texture of a sample in three dimensions. Here, we have designed and constructed a turntable system for a low temperature STM which in combination with a 2D vector magnet provides magnetic fields of up to 5 T in any direction relative to the tip-sample geometry. This enables STM imaging and spectroscopy to be performed at the same atomic-scale location and field-of-view on the sample, and most importantly, without experiencing any change on the tip apex before and after field switching. Combined with a ferromagnetic tip, this enables us to study the magnetization of complex magnetic orders in all three spatial directions.

  18. In-Flight spacecraft magnetic field monitoring using scalar/vector gradiometry

    DEFF Research Database (Denmark)

    Primdahl, Fritz; Risbo, Torben; Merayo, José M.G.

    2006-01-01

    Earth magnetic field mapping from planetary orbiting satellites requires a spacecraft magnetic field environment control program combined with the deployment of the magnetic sensors on a boom in order to reduce the measurement error caused by the local spacecraft field. Magnetic mapping missions...... (Magsat, Oersted, CHAMP, SAC-C MMP and the planned ESA Swarm project) carry a vector magnetometer and an absolute scalar magnetometer for in-flight calibration of the vector magnetometer scale values and for monitoring of the inter-axes angles and offsets over time intervals from months to years...... sensors onboard the Oersted satellite. For Oersted, a large difference between the pre-flight determined spacecraft magnetic field and the in-flight estimate exists causing some concern about the general applicability of the dual sensors technique....

  19. Antiferromagnetic Ising model decorated with D-vector spins: Transversal and longitudinal local fields effects

    International Nuclear Information System (INIS)

    Vasconcelos Dos Santos, R.J.; Coutinho, S.

    1995-01-01

    The effect of a local field acting on decorating classical D-vector bond spins of an antiferromagnetic Ising model on the square lattice is studied for both the annealed isotropic and the axial decorated cases. In both models the effect on the phase diagrams of the transversal and the longitudinal components of the local field acting on the decorating spins are fully analyzed and discussed

  20. Consistent Feature Extraction From Vector Fields: Combinatorial Representations and Analysis Under Local Reference Frames

    Energy Technology Data Exchange (ETDEWEB)

    Bhatia, Harsh [Univ. of Utah, Salt Lake City, UT (United States)

    2015-05-01

    This dissertation presents research on addressing some of the contemporary challenges in the analysis of vector fields—an important type of scientific data useful for representing a multitude of physical phenomena, such as wind flow and ocean currents. In particular, new theories and computational frameworks to enable consistent feature extraction from vector fields are presented. One of the most fundamental challenges in the analysis of vector fields is that their features are defined with respect to reference frames. Unfortunately, there is no single “correct” reference frame for analysis, and an unsuitable frame may cause features of interest to remain undetected, thus creating serious physical consequences. This work develops new reference frames that enable extraction of localized features that other techniques and frames fail to detect. As a result, these reference frames objectify the notion of “correctness” of features for certain goals by revealing the phenomena of importance from the underlying data. An important consequence of using these local frames is that the analysis of unsteady (time-varying) vector fields can be reduced to the analysis of sequences of steady (timeindependent) vector fields, which can be performed using simpler and scalable techniques that allow better data management by accessing the data on a per-time-step basis. Nevertheless, the state-of-the-art analysis of steady vector fields is not robust, as most techniques are numerical in nature. The residing numerical errors can violate consistency with the underlying theory by breaching important fundamental laws, which may lead to serious physical consequences. This dissertation considers consistency as the most fundamental characteristic of computational analysis that must always be preserved, and presents a new discrete theory that uses combinatorial representations and algorithms to provide consistency guarantees during vector field analysis along with the uncertainty

  1. Stokes profile analysis and vector magnetic fields. I. Inversion of photospheric lines

    International Nuclear Information System (INIS)

    Skumanich, A.; Lites, B.W.

    1987-01-01

    Improvements are proposed for the Auer et al. (1977) method for the analytic inversion of Stokes profiles via nonlinear least squares. The introduction of additional physics into the Mueller absorption matrix (by including damping wings and magnetooptical birefringence, and by decoupling the intensity profile from the three-vector polarization profile in the analysis) is found to result in a more robust inversion method, providing more reliable and accurate estimates of sunspot vector magnetic fields without significant loss of economy. The method is applied to sunspot observations obtained with the High Altitude Observatory polarimeter. 29 references

  2. Lagrangian analysis of vector and tensor fields: Algorithmic foundations and applications in medical imaging and computational fluid dynamics

    OpenAIRE

    Ding, Zi'ang

    2016-01-01

    Both vector and tensor fields are important mathematical tools used to describe the physics of many phenomena in science and engineering. Effective vector and tensor field visualization techniques are therefore needed to interpret and analyze the corresponding data and achieve new insight into the considered problem. This dissertation is concerned with the extraction of important structural properties from vector and tensor datasets. Specifically, we present a unified approach for the charact...

  3. Vector magnetic fields in sunspots. I - Stokes profile analysis using the Marshall Space Flight Center magnetograph

    Science.gov (United States)

    Balasubramaniam, K. S.; West, E. A.

    1991-01-01

    The Marshall Space Flight Center (MSFC) vector magnetograph is a tunable filter magnetograph with a bandpass of 125 mA. Results are presented of the inversion of Stokes polarization profiles observed with the MSFC vector magnetograph centered on a sunspot to recover the vector magnetic field parameters and thermodynamic parameters of the spectral line forming region using the Fe I 5250.2 A spectral line using a nonlinear least-squares fitting technique. As a preliminary investigation, it is also shown that the recovered thermodynamic parameters could be better understood if the fitted parameters like Doppler width, opacity ratio, and damping constant were broken down into more basic quantities like temperature, microturbulent velocity, or density parameter.

  4. A Lower Bound on the Differential Entropy of Log-Concave Random Vectors with Applications

    Directory of Open Access Journals (Sweden)

    Arnaud Marsiglietti

    2018-03-01

    Full Text Available We derive a lower bound on the differential entropy of a log-concave random variable X in terms of the p-th absolute moment of X. The new bound leads to a reverse entropy power inequality with an explicit constant, and to new bounds on the rate-distortion function and the channel capacity. Specifically, we study the rate-distortion function for log-concave sources and distortion measure d ( x , x ^ = | x − x ^ | r , with r ≥ 1 , and we establish that the difference between the rate-distortion function and the Shannon lower bound is at most log ( π e ≈ 1 . 5 bits, independently of r and the target distortion d. For mean-square error distortion, the difference is at most log ( π e 2 ≈ 1 bit, regardless of d. We also provide bounds on the capacity of memoryless additive noise channels when the noise is log-concave. We show that the difference between the capacity of such channels and the capacity of the Gaussian channel with the same noise power is at most log ( π e 2 ≈ 1 bit. Our results generalize to the case of a random vector X with possibly dependent coordinates. Our proof technique leverages tools from convex geometry.

  5. Geometric Representations of Condition Queries on Three-Dimensional Vector Fields

    Science.gov (United States)

    Henze, Chris

    1999-01-01

    Condition queries on distributed data ask where particular conditions are satisfied. It is possible to represent condition queries as geometric objects by plotting field data in various spaces derived from the data, and by selecting loci within these derived spaces which signify the desired conditions. Rather simple geometric partitions of derived spaces can represent complex condition queries because much complexity can be encapsulated in the derived space mapping itself A geometric view of condition queries provides a useful conceptual unification, allowing one to intuitively understand many existing vector field feature detection algorithms -- and to design new ones -- as variations on a common theme. A geometric representation of condition queries also provides a simple and coherent basis for computer implementation, reducing a wide variety of existing and potential vector field feature detection techniques to a few simple geometric operations.

  6. The derivation of vector magnetic fields from Stokes profiles - Integral versus least squares fitting techniques

    Science.gov (United States)

    Ronan, R. S.; Mickey, D. L.; Orrall, F. Q.

    1987-01-01

    The results of two methods for deriving photospheric vector magnetic fields from the Zeeman effect, as observed in the Fe I line at 6302.5 A at high spectral resolution (45 mA), are compared. The first method does not take magnetooptical effects into account, but determines the vector magnetic field from the integral properties of the Stokes profiles. The second method is an iterative least-squares fitting technique which fits the observed Stokes profiles to the profiles predicted by the Unno-Rachkovsky solution to the radiative transfer equation. For sunspot fields above about 1500 gauss, the two methods are found to agree in derived azimuthal and inclination angles to within about + or - 20 deg.

  7. Unsupervised segmentation of lung fields in chest radiographs using multiresolution fractal feature vector and deformable models.

    Science.gov (United States)

    Lee, Wen-Li; Chang, Koyin; Hsieh, Kai-Sheng

    2016-09-01

    Segmenting lung fields in a chest radiograph is essential for automatically analyzing an image. We present an unsupervised method based on multiresolution fractal feature vector. The feature vector characterizes the lung field region effectively. A fuzzy c-means clustering algorithm is then applied to obtain a satisfactory initial contour. The final contour is obtained by deformable models. The results show the feasibility and high performance of the proposed method. Furthermore, based on the segmentation of lung fields, the cardiothoracic ratio (CTR) can be measured. The CTR is a simple index for evaluating cardiac hypertrophy. After identifying a suspicious symptom based on the estimated CTR, a physician can suggest that the patient undergoes additional extensive tests before a treatment plan is finalized.

  8. Magnetic field vector and electron density diagnostics from linear polarization measurements in 14 solar prominences

    Science.gov (United States)

    Bommier, V.

    1986-01-01

    The Hanle effect is the modification of the linear polarization parameters of a spectral line due to the effect of the magnetic field. It has been successfully applied to the magnetic field vector diagnostic in solar prominences. The magnetic field vector is determined by comparing the measured polarization to the polarization computed, taking into account all the polarizing and depolarizing processes in line formation and the depolarizing effect of the magnetic field. The method was applied to simultaneous polarization measurements in the Helium D3 line and in the hydrogen beta line in 14 prominences. Four polarization parameters are measured, which lead to the determination of the three coordinates of the magnetic field vector and the electron density, owing to the sensitivity of the hydrogen beta line to the non-negligible effect of depolarizing collisions with electrons and protons of the medium. A mean value of 1.3 x 10 to the 10th power cu. cm. is derived in 14 prominences.

  9. Phase portraits of cubic polynomial vector fields of Lotka-Volterra type having a rational first integral of degree 2

    International Nuclear Information System (INIS)

    Cairo, Laurent; Llibre, Jaume

    2007-01-01

    We classify all the global phase portraits of the cubic polynomial vector fields of Lotka-Volterra type having a rational first integral of degree 2. For such vector fields there are exactly 28 different global phase portraits in the Poincare disc up to a reversal of sense of all orbits

  10. Near-field/far-field array manifold of an acoustic vector-sensor near a reflecting boundary.

    Science.gov (United States)

    Wu, Yue Ivan; Lau, Siu-Kit; Wong, Kainam Thomas

    2016-06-01

    The acoustic vector-sensor (a.k.a. the vector hydrophone) is a practical and versatile sound-measurement device, with applications in-room, open-air, or underwater. It consists of three identical uni-axial velocity-sensors in orthogonal orientations, plus a pressure-sensor-all in spatial collocation. Its far-field array manifold [Nehorai and Paldi (1994). IEEE Trans. Signal Process. 42, 2481-2491; Hawkes and Nehorai (2000). IEEE Trans. Signal Process. 48, 2981-2993] has been introduced into the technical field of signal processing about 2 decades ago, and many direction-finding algorithms have since been developed for this acoustic vector-sensor. The above array manifold is subsequently generalized for outside the far field in Wu, Wong, and Lau [(2010). IEEE Trans. Signal Process. 58, 3946-3951], but only if no reflection-boundary is to lie near the acoustic vector-sensor. As for the near-boundary array manifold for the general case of an emitter in the geometric near field, the far field, or anywhere in between-this paper derives and presents that array manifold in terms of signal-processing mathematics. Also derived here is the corresponding Cramér-Rao bound for azimuth-elevation-distance localization of an incident emitter, with the reflected wave shown to play a critical role on account of its constructive or destructive summation with the line-of-sight wave. The implications on source localization are explored, especially with respect to measurement model mismatch in maximum-likelihood direction finding and with regard to the spatial resolution between coexisting emitters.

  11. Infrared Dual-Line Hanle Diagnostic of the Coronal Vector Magnetic Field

    Energy Technology Data Exchange (ETDEWEB)

    Dima, Gabriel I.; Kuhn, Jeffrey R. [Institute for Astronomy, University of Hawaii, Pukalani, HI (United States); Berdyugina, Svetlana V., E-mail: gdima@hawaii.edu [Institute for Astronomy, University of Hawaii, Pukalani, HI (United States); Kiepenheuer Institut fuer Sonnenphysik, Freiburg (Germany); Predictive Science Inc., San Diego, CA (United States)

    2016-04-20

    Measuring the coronal vector magnetic field is still a major challenge in solar physics. This is due to the intrinsic weakness of the field (e.g., ~4G at a height of 0.1R⊙ above an active region) and the large thermal broadening of coronal emission lines. We propose using concurrent linear polarization measurements of near-infrared forbidden and permitted lines together with Hanle effect models to calculate the coronal vector magnetic field. In the unsaturated Hanle regime both the direction and strength of the magnetic field affect the linear polarization, while in the saturated regime the polarization is insensitive to the strength of the field. The relatively long radiative lifetimes of coronal forbidden atomic transitions implies that the emission lines are formed in the saturated Hanle regime and the linear polarization is insensitive to the strength of the field. By combining measurements of both forbidden and permitted lines, the direction and strength of the field can be obtained. For example, the SiX 1.4301 μm line shows strong linear polarization and has been observed in emission over a large field-of-view (out to elongations of 0.5 R⊙). Here we describe an algorithm that combines linear polarization measurements of the SiX 1.4301 μm forbidden line with linear polarization observations of the HeI 1.0830 μm permitted coronal line to obtain the vector magnetic field. To illustrate the concept we assume that the emitting gas for both atomic transitions is located in the plane of the sky. The further development of this method and associated tools will be a critical step toward interpreting the high spectral, spatial and temporal infrared spectro-polarimetric measurements that will be possible when the Daniel K. Inouye Solar Telescope (DKIST) is completed in 2019.

  12. Classification of Teleparallel Homothetic Vector Fields in Cylindrically Symmetric Static Space-Times in Teleparallel Theory of Gravitation

    International Nuclear Information System (INIS)

    Shabbir, Ghulam; Khan, Suhail

    2010-01-01

    In this paper we classify cylindrically symmetric static space-times according to their teleparallel homothetic vector fields using direct integration technique. It turns out that the dimensions of the teleparallel homothetic vector fields are 4, 5, 7 or 11, which are the same in numbers as in general relativity. In case of 4, 5 or 7 proper teleparallel homothetic vector fields exist for the special choice to the space-times. In the case of 11 teleparallel homothetic vector fields the space-time becomes Minkowski with all the zero torsion components. Teleparallel homothetic vector fields in this case are exactly the same as in general relativity. It is important to note that this classification also covers the plane symmetric static space-times. (general)

  13. Strong-field non-sequential ionization: The vector momentum distribution of multiply charged Ne ions

    International Nuclear Information System (INIS)

    Rottke, H.; Trump, C.; Wittmann, M.; Korn, G.; Becker, W.; Hoffmann, K.; Sandner, W.; Moshammer, R.; Feuerstein, B.; Dorn, A.; Schroeter, C.D.; Ullrich, J.; Schmitt, W.

    2000-01-01

    COLTRIMS (COLd Target Recoil-Ion Momentum Spectroscopy) was used to measure the vector momentum distribution of Ne n+ (n=1,2,3) ions formed in ultrashort (30 fsec) high-intensity (≅10 15 W/cm 2 ) laser pulses with center wavelength at 795 nm. To a high degree of accuracy the length of the Ne n+ ion momentum vector is equal to the length of the total momentum vector of the n photoelectrons released, with both vectors pointing into opposite directions. At a light intensity where non-sequential ionization of the atom dominates the Ne 2+ and Ne 3+ momentum distributions show distinct maxima at 4.0 a.u. and 7.5 a.u. along the polarization axis of the linearly polarized light beam. First, this is a clear signature of non-sequential multiple ionization. Second, it indicates that instantaneous emission of two (or more) electrons at electric field strength maxima of the light wave can be ruled out as main mechanism of non-sequential strong-field multiple ionization. In contrast, this experimental result is in accordance with the kinematical constraints of the 'rescattering model'

  14. Synthetic sex pheromone attracts the leishmaniasis vector Lutzomyia longipalpis (Diptera: Psychodidae) to traps in the field.

    Science.gov (United States)

    Bray, D P; Bandi, K K; Brazil, R P; Oliveira, A G; Hamilton, J G C

    2009-05-01

    Improving vector control remains a key goal in reducing the world's burden of infectious diseases. More cost-effective approaches to vector control are urgently needed, particularly because vaccines are unavailable and treatment is prohibitively expensive. The causative agent of American visceral leishmaniasis (AVL), Leishmania chagasi, Cunha and Chagas (Kinetoplastida: Trypanosomatidae), is transmitted between animal and human hosts by blood-feeding female sand flies attracted to mating aggregations formed on or above host animals by male-produced sex pheromones. Our results show the potential of using synthetic pheromones to control populations of Lutzomyia longipalpis Lutz and Neiva (Diptera: Psychodidae), the sand fly vector of one of the world's most important neglected diseases, AVL. We showed that a synthetic pheromone, (+/-)-9-methylgermacrene-B, produced from a low-cost plant intermediate, attracted females in the laboratory. By formulating dispensers that released this pheromone at a rate similar to that released by aggregating males, we were able to attract flies of both sexes to traps in the field. These dispensers worked equally well when deployed with mechanical light traps and inexpensive sticky traps. If deployed effectively, pheromone-based traps could be used to decrease AVL transmission rates through specific targeting and reduction of L. longipalpis populations. This is the first study to show attraction of a human disease-transmitting insect to a synthetic pheromone in the field, showing the general applicability of this novel approach for developing new tools for use in vector control.

  15. Synthetic Sex Pheromone Attracts the Leishmaniasis Vector Lutzomyia longipalpis (Diptera: Psychodidae) to Traps in the Field

    Science.gov (United States)

    Bray, D. P.; Bandi, K. K.; Brazil, R. P.; Oliveira, A. G.; Hamilton, J.G.C.

    2011-01-01

    Improving vector control remains a key goal in reducing the world’s burden of infectious diseases. More cost-effective approaches to vector control are urgently needed, particularly as vaccines are unavailable and treatment is prohibitively expensive. The causative agent of AVL, Leishmania chagasi, Cunha and Chagas (Kinetoplastida: Trypanosomatidae) is transmitted between animal and human hosts by blood-feeding female sand flies, attracted to mating aggregations formed on or above host animals by male-produced sex pheromones. Our results demonstrate the potential of using synthetic pheromones to control populations of Lutzomyia longipalpis Lutz and Neiva (Diptera: Psychodidae), the sand fly vector of one of the world’s most important neglected diseases, American visceral leishmaniasis (AVL). We showed that a synthetic pheromone, (±)-9-methylgermacrene-B, produced from a low-cost plant intermediate, attracted females in the laboratory. Then by formulating dispensers that released this pheromone at a rate similar to that released by aggregating males, we were able to attract flies of both sexes to traps in the field. These dispensers worked equally well when deployed with mechanical light traps and inexpensive sticky traps. If deployed effectively, pheromone-based traps could be used to decrease AVL transmission rates through specific targeting and reduction of L. longipalpis populations. This is the first study to show attraction of a human disease-transmitting insect to a synthetic pheromone in the field, demonstrating the general applicability of this novel approach for developing new tools for use in vector control. PMID:19496409

  16. Boundary conditions and dualities: vector fields in AdS/CFT

    International Nuclear Information System (INIS)

    Marolf, Donald; Ross, Simo F.

    2006-01-01

    In AdS, scalar fields with masses slightly above the Breitenlohner-Freedman bound admit a variety of possible boundary conditions which are reflected in the Lagrangian of the dual field theory. Generic small changes in the AdS boundary conditions correspond to deformations of the dual field theory by multi-trace operators. Here we extend this discussion to the case of vector gauge fields in the bulk spacetime using the results of Ishibashi and Wald [hep-th/0402184]. As in the context of scalar fields, general boundary conditions for vector fields involve multi-trace deformations which lead to renormalization-group flows. Such flows originate in ultra-violet CFTs which give new gauge/gravity dualities. At least for AdS 4 /CFT 3 , the dual of the bulk photon appears to be a propagating gauge field instead of the usual R-charge current. Applying similar reasoning to tensor fields suggests the existence of a duality between string theory on AdS 4 and a quantum gravity theory in three dimensions

  17. Optimization of Transverse Oscillating Fields for Vector Velocity Estimation with Convex Arrays

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt

    2013-01-01

    A method for making Vector Flow Images using the transverse oscillation (TO) approach on a convex array is presented. The paper presents optimization schemes for TO fields for convex probes and evaluates their performance using Field II simulations and measurements using the SARUS experimental...... from 90 to 45 degrees in steps of 15 degrees. The optimization routine changes the lateral oscillation period lx to yield the best possible estimates based on the energy ratio between positive and negative spatial frequencies in the ultrasound field. The basic equation for lx gives 1.14 mm at 40 mm...

  18. Combined tangential-normal vector elements for computing electric and magnetic fields

    International Nuclear Information System (INIS)

    Sachdev, S.; Cendes, Z.J.

    1993-01-01

    A direct method for computing electric and magnetic fields in two dimensions is developed. This method determines both the fields and fluxes directly from Maxwell's curl and divergence equations without introducing potential functions. This allows both the curl and the divergence of the field to be set independently in all elements. The technique is based on a new type of vector finite element that simultaneously interpolates to the tangential component of the electric or the magnetic field and the normal component of the electric or magnetic flux. Continuity conditions are imposed across element edges simply by setting like variables to be the same across element edges. This guarantees the continuity of the field and flux at the mid-point of each edge and that for all edges the average value of the tangential component of the field and of the normal component of the flux is identical

  19. A Genealogy of Convex Solids Via Local and Global Bifurcations of Gradient Vector Fields

    Science.gov (United States)

    Domokos, Gábor; Holmes, Philip; Lángi, Zsolt

    2016-12-01

    Three-dimensional convex bodies can be classified in terms of the number and stability types of critical points on which they can balance at rest on a horizontal plane. For typical bodies, these are non-degenerate maxima, minima, and saddle points, the numbers of which provide a primary classification. Secondary and tertiary classifications use graphs to describe orbits connecting these critical points in the gradient vector field associated with each body. In previous work, it was shown that these classifications are complete in that no class is empty. Here, we construct 1- and 2-parameter families of convex bodies connecting members of adjacent primary and secondary classes and show that transitions between them can be realized by codimension 1 saddle-node and saddle-saddle (heteroclinic) bifurcations in the gradient vector fields. Our results indicate that all combinatorially possible transitions can be realized in physical shape evolution processes, e.g., by abrasion of sedimentary particles.

  20. On the electromagnetic fields, Poynting vector, and peak power radiated by lightning return strokes

    Science.gov (United States)

    Krider, E. P.

    1992-01-01

    The initial radiation fields, Poynting vector, and total electromagnetic power that a vertical return stroke radiates into the upper half space have been computed when the speed of the stroke, nu, is a significant fraction of the speed of light, c, assuming that at large distances and early times the source is an infinitesimal dipole. The initial current is also assumed to satisfy the transmission-line model with a constant nu and to be perpendicular to an infinite, perfectly conducting ground. The effect of a large nu is to increase the radiation fields by a factor of (1-beta-sq cos-sq theta) exp -1, where beta = nu/c and theta is measured from the vertical, and the Poynting vector by a factor of (1-beta-sq cos-sq theta) exp -2.

  1. Deformation structure analysis of material at fatigue on the basis of the vector field

    Science.gov (United States)

    Kibitkin, Vladimir V.; Solodushkin, Andrey I.; Pleshanov, Vasily S.

    2017-12-01

    In the paper, spatial distributions of deformation, circulation, and shear amplitudes and shear angles are obtained from the displacement vector field measured by the DIC technique. This vector field and its characteristics of shears and vortices are given as an example of such approach. The basic formulae are also given. The experiment shows that honeycomb deformation structures can arise in the center of a macrovortex at developed plastic flow. The spatial distribution of local circulation and shears is discovered, which coincides with the deformation structure but their amplitudes are different. The analysis proves that the spatial distribution of shear angles is a result of maximum tangential and normal stresses. The anticlockwise circulation of most local vortices obeys the normal Gaussian law in the area of interest.

  2. Foliated vector fields, the Godbillon-Vey invariant and the invariant I(F)

    International Nuclear Information System (INIS)

    Banyaga, A.; Landa, Alain Musesa

    2004-03-01

    We prove that if the invariant I(F) constructed in 'An invariant of contact structures and transversally oriented foliations', Ann. Global Analysis and Geom. 14(1996) 427-441 (A. Banyaga), through the Lie algebra of infinitesimal automorphisms of transversally oriented foliations F is trivial, then the Godbillon-Vey invariant GV (F) of F is also trivial, but that the converse is not true. For codimension one foliations, the restrictions I τ , (F) of I(F) to the Lie subalgebra of vector fields tangent to the leaves is the Reeb class R(F) of F. We also prove that if there exists a foliated vector field which is everywhere transverse to a codimension one foliation, then the Reeb class R(F) is trivial, hence so is the GV(F) invariant. (author)

  3. Double gauge invariance and covariantly-constant vector fields in Weyl geometry

    Science.gov (United States)

    Kassandrov, Vladimir V.; Rizcallah, Joseph A.

    2014-08-01

    The wave equation and equations of covariantly-constant vector fields (CCVF) in spaces with Weyl nonmetricity turn out to possess, in addition to the canonical conformal-gauge, a gauge invariance of another type. On a Minkowski metric background, the CCVF system alone allows us to pin down the Weyl 4-metricity vector, identified herein with the electromagnetic potential. The fundamental solution is given by the ordinary Lienard-Wiechert field, in particular, by the Coulomb distribution for a charge at rest. Unlike the latter, however, the magnitude of charge is necessarily unity, "elementary", and charges of opposite signs correspond to retarded and advanced potentials respectively, thus establishing a direct connection between the particle/antiparticle asymmetry and the "arrow of time".

  4. Non-Gaussianity at tree and one-loop levels from vector field perturbations

    International Nuclear Information System (INIS)

    Valenzuela-Toledo, Cesar A.; Rodriguez, Yeinzon; Lyth, David H.

    2009-01-01

    We study the spectrum P ζ and bispectrum B ζ of the primordial curvature perturbation ζ when the latter is generated by scalar and vector field perturbations. The tree-level and one-loop contributions from vector field perturbations are worked out considering the possibility that the one-loop contributions may be dominant over the tree-level terms [both (either) in P ζ and (or) in B ζ ] and vice versa. The level of non-Gaussianity in the bispectrum, f NL , is calculated and related to the level of statistical anisotropy in the power spectrum, g ζ . For very small amounts of statistical anisotropy in the power spectrum, the level of non-Gaussianity may be very high, in some cases exceeding the current observational limit.

  5. Comparative Visualization of Vector Field Ensembles Based on Longest Common Subsequence

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Richen; Guo, Hanqi; Zhang, Jiang; Yuan, Xiaoru

    2016-04-19

    We propose a longest common subsequence (LCS) based approach to compute the distance among vector field ensembles. By measuring how many common blocks the ensemble pathlines passing through, the LCS distance defines the similarity among vector field ensembles by counting the number of sharing domain data blocks. Compared to the traditional methods (e.g. point-wise Euclidean distance or dynamic time warping distance), the proposed approach is robust to outlier, data missing, and sampling rate of pathline timestep. Taking the advantages of smaller and reusable intermediate output, visualization based on the proposed LCS approach revealing temporal trends in the data at low storage cost, and avoiding tracing pathlines repeatedly. Finally, we evaluate our method on both synthetic data and simulation data, which demonstrate the robustness of the proposed approach.

  6. Internal and external potential-field estimation from regional vector data at varying satellite altitude

    Science.gov (United States)

    Plattner, Alain; Simons, Frederik J.

    2017-10-01

    When modelling satellite data to recover a global planetary magnetic or gravitational potential field, the method of choice remains their analysis in terms of spherical harmonics. When only regional data are available, or when data quality varies strongly with geographic location, the inversion problem becomes severely ill-posed. In those cases, adopting explicitly local methods is to be preferred over adapting global ones (e.g. by regularization). Here, we develop the theory behind a procedure to invert for planetary potential fields from vector observations collected within a spatially bounded region at varying satellite altitude. Our method relies on the construction of spatiospectrally localized bases of functions that mitigate the noise amplification caused by downward continuation (from the satellite altitude to the source) while balancing the conflicting demands for spatial concentration and spectral limitation. The `altitude-cognizant' gradient vector Slepian functions (AC-GVSF) enjoy a noise tolerance under downward continuation that is much improved relative to the `classical' gradient vector Slepian functions (CL-GVSF), which do not factor satellite altitude into their construction. Furthermore, venturing beyond the realm of their first application, published in a preceding paper, in the present article we extend the theory to being able to handle both internal and external potential-field estimation. Solving simultaneously for internal and external fields under the limitation of regional data availability reduces internal-field artefacts introduced by downward-continuing unmodelled external fields, as we show with numerical examples. We explain our solution strategies on the basis of analytic expressions for the behaviour of the estimation bias and variance of models for which signal and noise are uncorrelated, (essentially) space- and band-limited, and spectrally (almost) white. The AC-GVSF are optimal linear combinations of vector spherical harmonics

  7. On parasupersymmetric oscillators and relativistic vector mesons in constant magnetic fields

    Science.gov (United States)

    Debergh, Nathalie; Beckers, Jules

    1995-01-01

    Johnson-Lippmann considerations on oscillators and their connection with the minimal coupling schemes are visited in order to introduce a new Sakata-Taketani equation describing vector mesons in interaction with a constant magnetic field. This new proposal, based on a specific parasupersymmetric oscillator-like system, is characterized by real energies as opposed to previously pointed out relativistic equations corresponding to this interacting context.

  8. Localization of periodic orbits of polynomial vector fields of even degree by linear functions

    Energy Technology Data Exchange (ETDEWEB)

    Starkov, Konstantin E. [CITEDI-IPN, Av. del Parque 1310, Mesa de Otay, Tijuana, BC (Mexico)] e-mail: konst@citedi.mx

    2005-08-01

    This paper is concerned with the localization problem of periodic orbits of polynomial vector fields of even degree by using linear functions. Conditions of the localization of all periodic orbits in sets of a simple structure are obtained. Our results are based on the solution of the conditional extremum problem and the application of homogeneous polynomial forms of even degrees. As examples, the Lanford system, the jerky system with one quadratic monomial and a quartically perturbed harmonic oscillator are considered.

  9. Localization of periodic orbits of polynomial vector fields of even degree by linear functions

    International Nuclear Information System (INIS)

    Starkov, Konstantin E.

    2005-01-01

    This paper is concerned with the localization problem of periodic orbits of polynomial vector fields of even degree by using linear functions. Conditions of the localization of all periodic orbits in sets of a simple structure are obtained. Our results are based on the solution of the conditional extremum problem and the application of homogeneous polynomial forms of even degrees. As examples, the Lanford system, the jerky system with one quadratic monomial and a quartically perturbed harmonic oscillator are considered

  10. Visualizing Robustness of Critical Points for 2D Time-Varying Vector Fields

    KAUST Repository

    Wang, B.

    2013-06-01

    Analyzing critical points and their temporal evolutions plays a crucial role in understanding the behavior of vector fields. A key challenge is to quantify the stability of critical points: more stable points may represent more important phenomena or vice versa. The topological notion of robustness is a tool which allows us to quantify rigorously the stability of each critical point. Intuitively, the robustness of a critical point is the minimum amount of perturbation necessary to cancel it within a local neighborhood, measured under an appropriate metric. In this paper, we introduce a new analysis and visualization framework which enables interactive exploration of robustness of critical points for both stationary and time-varying 2D vector fields. This framework allows the end-users, for the first time, to investigate how the stability of a critical point evolves over time. We show that this depends heavily on the global properties of the vector field and that structural changes can correspond to interesting behavior. We demonstrate the practicality of our theories and techniques on several datasets involving combustion and oceanic eddy simulations and obtain some key insights regarding their stable and unstable features. © 2013 The Author(s) Computer Graphics Forum © 2013 The Eurographics Association and Blackwell Publishing Ltd.

  11. Robustness-Based Simplification of 2D Steady and Unsteady Vector Fields.

    Science.gov (United States)

    Skraba, Primoz; Bei Wang; Guoning Chen; Rosen, Paul

    2015-08-01

    Vector field simplification aims to reduce the complexity of the flow by removing features in order of their relevance and importance, to reveal prominent behavior and obtain a compact representation for interpretation. Most existing simplification techniques based on the topological skeleton successively remove pairs of critical points connected by separatrices, using distance or area-based relevance measures. These methods rely on the stable extraction of the topological skeleton, which can be difficult due to instability in numerical integration, especially when processing highly rotational flows. In this paper, we propose a novel simplification scheme derived from the recently introduced topological notion of robustness which enables the pruning of sets of critical points according to a quantitative measure of their stability, that is, the minimum amount of vector field perturbation required to remove them. This leads to a hierarchical simplification scheme that encodes flow magnitude in its perturbation metric. Our novel simplification algorithm is based on degree theory and has minimal boundary restrictions. Finally, we provide an implementation under the piecewise-linear setting and apply it to both synthetic and real-world datasets. We show local and complete hierarchical simplifications for steady as well as unsteady vector fields.

  12. Visualizing Robustness of Critical Points for 2D Time-Varying Vector Fields

    KAUST Repository

    Wang, B.; Rosen, P.; Skraba, P.; Bhatia, H.; Pascucci, V.

    2013-01-01

    Analyzing critical points and their temporal evolutions plays a crucial role in understanding the behavior of vector fields. A key challenge is to quantify the stability of critical points: more stable points may represent more important phenomena or vice versa. The topological notion of robustness is a tool which allows us to quantify rigorously the stability of each critical point. Intuitively, the robustness of a critical point is the minimum amount of perturbation necessary to cancel it within a local neighborhood, measured under an appropriate metric. In this paper, we introduce a new analysis and visualization framework which enables interactive exploration of robustness of critical points for both stationary and time-varying 2D vector fields. This framework allows the end-users, for the first time, to investigate how the stability of a critical point evolves over time. We show that this depends heavily on the global properties of the vector field and that structural changes can correspond to interesting behavior. We demonstrate the practicality of our theories and techniques on several datasets involving combustion and oceanic eddy simulations and obtain some key insights regarding their stable and unstable features. © 2013 The Author(s) Computer Graphics Forum © 2013 The Eurographics Association and Blackwell Publishing Ltd.

  13. Robustness-Based Simplification of 2D Steady and Unsteady Vector Fields

    KAUST Repository

    Skraba, Primoz

    2015-08-01

    © 2015 IEEE. Vector field simplification aims to reduce the complexity of the flow by removing features in order of their relevance and importance, to reveal prominent behavior and obtain a compact representation for interpretation. Most existing simplification techniques based on the topological skeleton successively remove pairs of critical points connected by separatrices, using distance or area-based relevance measures. These methods rely on the stable extraction of the topological skeleton, which can be difficult due to instability in numerical integration, especially when processing highly rotational flows. In this paper, we propose a novel simplification scheme derived from the recently introduced topological notion of robustness which enables the pruning of sets of critical points according to a quantitative measure of their stability, that is, the minimum amount of vector field perturbation required to remove them. This leads to a hierarchical simplification scheme that encodes flow magnitude in its perturbation metric. Our novel simplification algorithm is based on degree theory and has minimal boundary restrictions. Finally, we provide an implementation under the piecewise-linear setting and apply it to both synthetic and real-world datasets. We show local and complete hierarchical simplifications for steady as well as unsteady vector fields.

  14. Robustness-Based Simplification of 2D Steady and Unsteady Vector Fields

    KAUST Repository

    Skraba, Primoz; Wang, Bei; Chen, Guoning; Rosen, Paul

    2015-01-01

    © 2015 IEEE. Vector field simplification aims to reduce the complexity of the flow by removing features in order of their relevance and importance, to reveal prominent behavior and obtain a compact representation for interpretation. Most existing simplification techniques based on the topological skeleton successively remove pairs of critical points connected by separatrices, using distance or area-based relevance measures. These methods rely on the stable extraction of the topological skeleton, which can be difficult due to instability in numerical integration, especially when processing highly rotational flows. In this paper, we propose a novel simplification scheme derived from the recently introduced topological notion of robustness which enables the pruning of sets of critical points according to a quantitative measure of their stability, that is, the minimum amount of vector field perturbation required to remove them. This leads to a hierarchical simplification scheme that encodes flow magnitude in its perturbation metric. Our novel simplification algorithm is based on degree theory and has minimal boundary restrictions. Finally, we provide an implementation under the piecewise-linear setting and apply it to both synthetic and real-world datasets. We show local and complete hierarchical simplifications for steady as well as unsteady vector fields.

  15. The Vector Electric Field Instrument on the C/NOFS Satellite

    Science.gov (United States)

    Pfaff, R.; Kujawski, J.; Uribe, P.; Bromund, K.; Fourre, R.; Acuna, M.; Le, G.; Farrell, W.; Holzworth, R.; McCarthy, M.; hide

    2008-01-01

    We provide an overview of the Vector Electric Field Instrument (VEFI) on the Air Force Communication/Navigation Outage Forecasting System (C/NOFS) satellite, a mission designed to understand, model, and forecast the presence of equatorial ionospheric irregularities. VEFI is a NASA GSFC instrument designed 1) to investigate the role of the ambient electric fields in initiating nighttime ionospheric density depletions and turbulence; 2) to determine the electric fields associated with abrupt, large amplitude, density depletions and 3) to quantify the spectrum of the wave electric fields and plasma densities (irregularities) associated with density depletions or Equatorial Spread-F. The VEFI instrument includes a vector electric field double probe detector, a Langmuir trigger probe, a flux gate magnetometer, a lightning detector and associated electronics. The heart of the instrument is the set of double probe detectors designed to measure DC and AC electric fields using 6 identical, mutually orthogonal, deployable 9.5 m booms tipped with 10 cm diameter spheres containing embedded preamplifiers. A description of the instrument and its sensors will be presented. If available, representative measurements will be provided.

  16. On the (1 + 3) threading of spacetime with respect to an arbitrary timelike vector field

    Energy Technology Data Exchange (ETDEWEB)

    Bejancu, Aurel [Kuwait University, Department of Mathematics, P.O.Box 5969, Safat (Kuwait); Calin, Constantin [Technical University ' ' Gh.Asachi' ' , Department of Mathematics, Iasi (Romania)

    2015-04-15

    We develop a newapproach on the (1 + 3) threading of spacetime (M, g) with respect to a congruence of curves defined by an arbitrary timelike vector field. The study is based on spatial tensor fields and on theRiemannian spatial connection ∇*, which behave as 3D geometric objects. We obtain new formulas for local components of the Ricci tensor field of (M, g) with respect to the threading frame field, in terms of the Ricci tensor field of ∇* and of kinematic quantities. Also, new expressions for time covariant derivatives of kinematic quantities are stated. In particular, a new form of Raychaudhuri's equation enables us to prove Lemma 6.3, which completes a well-known lemma used in the proof of the Penrose-Hawking singularity theorems. Finally, we apply the new (1 + 3) formalism to the study of the dynamics of a Kerr-Newman black hole. (orig.)

  17. A stochastic differential equation framework for the turbulent velocity field

    DEFF Research Database (Denmark)

    Barndorff-Nielsen, Ole Eiler; Schmiegel, Jürgen

    We discuss a stochastic differential equation, as a modelling framework for the turbulent velocity field, that is capable of capturing basic stylized facts of the statistics of velocity increments. In particular, we focus on the evolution of the probability density of velocity increments...

  18. Differential algebras in field theory and their anomalies: two examples

    International Nuclear Information System (INIS)

    Stora, R.

    1986-06-01

    The expression of gauge symmetries in local field theory proceeds via the construction of some differential algebras as was remarked some ten years ago. The construction relevant to Yang Mills theories is recalled. As another popular example, we have chosen to describe the covariant quantization of the free bosonic string in the metric background gauge

  19. Quantization of the minimal and non-minimal vector field in curved space

    OpenAIRE

    Toms, David J.

    2015-01-01

    The local momentum space method is used to study the quantized massive vector field (the Proca field) with the possible addition of non-minimal terms. Heat kernel coefficients are calculated and used to evaluate the divergent part of the one-loop effective action. It is shown that the naive expression for the effective action that one would write down based on the minimal coupling case needs modification. We adopt a Faddeev-Jackiw method of quantization and consider the case of an ultrastatic...

  20. Development of Techniques for Visualization of Scalar and Vector Fields in the Immersive Environment

    Science.gov (United States)

    Bidasaria, Hari B.; Wilson, John W.; Nealy, John E.

    2005-01-01

    Visualization of scalar and vector fields in the immersive environment (CAVE - Cave Automated Virtual Environment) is important for its application to radiation shielding research at NASA Langley Research Center. A complete methodology and the underlying software for this purpose have been developed. The developed software has been put to use for the visualization of the earth s magnetic field, and in particular for the study of the South Atlantic Anomaly. The methodology has also been put to use for the visualization of geomagnetically trapped protons and electrons within Earth's magnetosphere.

  1. Topological events on the lines of circular polarization in nonparaxial vector optical fields.

    Science.gov (United States)

    Freund, Isaac

    2017-02-01

    In nonparaxial vector optical fields, the following topological events are shown to occur in apparent violation of charge conservation: as one translates the observation plane along a line of circular polarization (a C line), the points on the line (C points) are seen to change not only the signs of their topological charges, but also their handedness, and, at turning points on the line, paired C points with the same topological charge and opposite handedness are seen to nucleate. These counter-intuitive events cannot occur in paraxial fields.

  2. Radiation self-polarization of electrons moving in a magnetic field. [Vector spin operator, relaxation time

    Energy Technology Data Exchange (ETDEWEB)

    Bagrov, V G; Dorofeev, O F; Sokolov, A A; Ternov, I M; Khalilov, V R [Moskovskij Gosudarstvennyj Univ. (USSR)

    1975-03-11

    When electrons move in a magnetic field, synchrotron radiation gives rise to transitions accompanied by the electron spin reorientation. In this case, it is essential that the transition probability depends on the spin orientation; as a result electron polarization takes place with the spin orientation being predominantly opposite to the direction of the magnetic field. This effect has been called ''radiative self-polarization of electrons''. The present work is concerned with the question how the choice of the spin operator will affect the self-polarization degree and relaxation time. The problem has been solved for a vector spin operator.

  3. Changes in measured vector magnetic fields when transformed into heliographic coordinates

    Science.gov (United States)

    Hagyard, M. J.

    1987-01-01

    The changes that occur in measured magnetic fields when they are transformed into a heliographic coordinate system are investigated. To carry out this investigation, measurements of the vector magnetic field of an active region that was observed at 1/3 the solar radius from disk center are taken, and the observed field is transformed into heliographic coordinates. Differences in the calculated potential field that occur when the heliographic normal component of the field is used as the boundary condition rather than the observed line-of-sight component are also examined. The results of this analysis show: (1) that the observed fields of sunspots more closely resemble the generally accepted picture of the distribution of umbral fields if they are displayed in heliographic coordinates; (2) that the differences in the potential calculations are less than 200 G in field strength and 20 deg in field azimuth outside sunspots; and (3) that differences in the two potential calculations in the sunspot areas are no more than 400 G in field strength but range from 60 to 80 deg in field azimuth in localized umbral areas.

  4. Initial Results from the Vector Electric Field Investigation on the C/NOFS Satellite

    Science.gov (United States)

    Pfaff, R.; Rowland, D.; Acuna, M.; Le, G.; Farrell, W.; Holzworth, R.; Wilson, G.; Burke, W.; Freudenreich, H.; Bromund, K.; hide

    2009-01-01

    Initial results are presented from the Vector Electric Field Investigation (VEFI) on the Air Force Communication/Navigation Outage Forecasting System (C/NOFS) satellite, a mission designed to understand, model, and forecast the presence of equatorial ionospheric irregularities. The VEFI instrument includes a vector DC electric field detector, a fixed-bias Langmuir probe operating in the ion saturation regime, a flux gate magnetometer, an optical lightning detector, and associated electronics including a burst memory. The DC electric field detector has revealed zonal and meridional electric fields that undergo a diurnal variation, typically displaying eastward and outward-directed fields during the day and westward and downward-directed fields at night. In general, the measured DC electric field amplitudes are in the 0.5-2 mV/m range, corresponding to I3 x B drifts of the order of 30-150 m/s. What is surprising is the high degree of large-scale (10's to 100's of km) structure in the DC electric field, particularly at night, regardless of whether well-defined spread-F plasma density depletions are present. The spread-F density depletions and corresponding electric fields that have been detected thus far have displayed a preponderance to appear between midnight and dawn. Associated with the narrow plasma depletions that are detected are broad spectra of electric field and plasma density irregularities for which a full vector set of measurements is available for detailed study. On some occasions, localized regions of low frequency (field broadband irregularities have been detected, suggestive of filamentary currents, although there is no one-to-one correspondence of these waves with the observed plasma density depletions, at least within the data examined thus far. Finally, the data set includes a wide range of ELF/VLF/HF waves corresponding to a variety of plasma waves, in particular banded ELF hiss, whistlers, and lower hybrid wave turbulence triggered by lightning

  5. Estimation of 3-D conduction velocity vector fields from cardiac mapping data.

    Science.gov (United States)

    Barnette, A R; Bayly, P V; Zhang, S; Walcott, G P; Ideker, R E; Smith, W M

    2000-08-01

    A method to estimate three-dimensional (3-D) conduction velocity vector fields in cardiac tissue is presented. The speed and direction of propagation are found from polynomial "surfaces" fitted to space-time (x, y, z, t) coordinates of cardiac activity. The technique is applied to sinus rhythm and paced rhythm mapped with plunge needles at 396-466 sites in the canine myocardium. The method was validated on simulated 3-D plane and spherical waves. For simulated data, conduction velocities were estimated with an accuracy of 1%-2%. In experimental data, estimates of conduction speeds during paced rhythm were slower than those found during normal sinus rhythm. Vector directions were also found to differ between different types of beats. The technique was able to distinguish between premature ventricular contractions and sinus beats and between sinus and paced beats. The proposed approach to computing velocity vector fields provides an automated, physiological, and quantitative description of local electrical activity in 3-D tissue. This method may provide insight into abnormal conduction associated with fatal ventricular arrhythmias.

  6. Cloud field classification based upon high spatial resolution textural features. II - Simplified vector approaches

    Science.gov (United States)

    Chen, D. W.; Sengupta, S. K.; Welch, R. M.

    1989-01-01

    This paper compares the results of cloud-field classification derived from two simplified vector approaches, the Sum and Difference Histogram (SADH) and the Gray Level Difference Vector (GLDV), with the results produced by the Gray Level Cooccurrence Matrix (GLCM) approach described by Welch et al. (1988). It is shown that the SADH method produces accuracies equivalent to those obtained using the GLCM method, while the GLDV method fails to resolve error clusters. Compared to the GLCM method, the SADH method leads to a 31 percent saving in run time and a 50 percent saving in storage requirements, while the GLVD approach leads to a 40 percent saving in run time and an 87 percent saving in storage requirements.

  7. Superradiant Instability and Backreaction of Massive Vector Fields around Kerr Black Holes.

    Science.gov (United States)

    East, William E; Pretorius, Frans

    2017-07-28

    We study the growth and saturation of the superradiant instability of a complex, massive vector (Proca) field as it extracts energy and angular momentum from a spinning black hole, using numerical solutions of the full Einstein-Proca equations. We concentrate on a rapidly spinning black hole (a=0.99) and the dominant m=1 azimuthal mode of the Proca field, with real and imaginary components of the field chosen to yield an axisymmetric stress-energy tensor and, hence, spacetime. We find that in excess of 9% of the black hole's mass can be transferred into the field. In all cases studied, the superradiant instability smoothly saturates when the black hole's horizon frequency decreases to match the frequency of the Proca cloud that spontaneously forms around the black hole.

  8. Population differentiation of the Chagas disease vector Triatoma maculata (Erichson, 1848) from Colombia and Venezuela.

    Science.gov (United States)

    Monsalve, Yoman; Panzera, Francisco; Herrera, Leidi; Triana-Chávez, Omar; Gómez-Palacio, Andrés

    2016-06-01

    The emerging vector of Chagas disease, Triatoma maculata (Hemiptera, Reduviidae), is one of the most widely distributed Triatoma species in northern South America. Despite its increasing relevance as a vector, no consistent picture of the magnitude of genetic and phenetic diversity has yet been developed. Here, several populations of T. maculata from eleven Colombia and Venezuela localities were analyzed based on the morphometry of wings and the mitochondrial NADH dehydrogenase subunit 4 (ND4) gene sequences. Our results showed clear morphometric and genetic differences among Colombian and Venezuelan populations, indicating high intraspecific diversity. Inter-population divergence is suggested related to East Cordillera in Colombia. Analyses of other populations from Colombia, Venezuela, and Brazil from distinct eco-geographic regions are still needed to understand its systematics and phylogeography as well as its actual role as a vector of Chagas disease. © 2016 The Society for Vector Ecology.

  9. Hairy Slices: Evaluating the Perceptual Effectiveness of Cutting Plane Glyphs for 3D Vector Fields.

    Science.gov (United States)

    Stevens, Andrew H; Butkiewicz, Thomas; Ware, Colin

    2017-01-01

    Three-dimensional vector fields are common datasets throughout the sciences. Visualizing these fields is inherently difficult due to issues such as visual clutter and self-occlusion. Cutting planes are often used to overcome these issues by presenting more manageable slices of data. The existing literature provides many techniques for visualizing the flow through these cutting planes; however, there is a lack of empirical studies focused on the underlying perceptual cues that make popular techniques successful. This paper presents a quantitative human factors study that evaluates static monoscopic depth and orientation cues in the context of cutting plane glyph designs for exploring and analyzing 3D flow fields. The goal of the study was to ascertain the relative effectiveness of various techniques for portraying the direction of flow through a cutting plane at a given point, and to identify the visual cues and combinations of cues involved, and how they contribute to accurate performance. It was found that increasing the dimensionality of line-based glyphs into tubular structures enhances their ability to convey orientation through shading, and that increasing their diameter intensifies this effect. These tube-based glyphs were also less sensitive to visual clutter issues at higher densities. Adding shadows to lines was also found to increase perception of flow direction. Implications of the experimental results are discussed and extrapolated into a number of guidelines for designing more perceptually effective glyphs for 3D vector field visualizations.

  10. Arrows as anchors: An analysis of the material features of electric field vector arrows

    Science.gov (United States)

    Gire, Elizabeth; Price, Edward

    2014-12-01

    Representations in physics possess both physical and conceptual aspects that are fundamentally intertwined and can interact to support or hinder sense making and computation. We use distributed cognition and the theory of conceptual blending with material anchors to interpret the roles of conceptual and material features of representations in students' use of representations for computation. We focus on the vector-arrows representation of electric fields and describe this representation as a conceptual blend of electric field concepts, physical space, and the material features of the representation (i.e., the physical writing and the surface upon which it is drawn). In this representation, spatial extent (e.g., distance on paper) is used to represent both distances in coordinate space and magnitudes of electric field vectors. In conceptual blending theory, this conflation is described as a clash between the input spaces in the blend. We explore the benefits and drawbacks of this clash, as well as other features of this representation. This analysis is illustrated with examples from clinical problem-solving interviews with upper-division physics majors. We see that while these intermediate physics students make a variety of errors using this representation, they also use the geometric features of the representation to add electric field contributions and to organize the problem situation productively.

  11. Arrows as anchors: An analysis of the material features of electric field vector arrows

    Directory of Open Access Journals (Sweden)

    Elizabeth Gire

    2014-08-01

    Full Text Available Representations in physics possess both physical and conceptual aspects that are fundamentally intertwined and can interact to support or hinder sense making and computation. We use distributed cognition and the theory of conceptual blending with material anchors to interpret the roles of conceptual and material features of representations in students’ use of representations for computation. We focus on the vector-arrows representation of electric fields and describe this representation as a conceptual blend of electric field concepts, physical space, and the material features of the representation (i.e., the physical writing and the surface upon which it is drawn. In this representation, spatial extent (e.g., distance on paper is used to represent both distances in coordinate space and magnitudes of electric field vectors. In conceptual blending theory, this conflation is described as a clash between the input spaces in the blend. We explore the benefits and drawbacks of this clash, as well as other features of this representation. This analysis is illustrated with examples from clinical problem-solving interviews with upper-division physics majors. We see that while these intermediate physics students make a variety of errors using this representation, they also use the geometric features of the representation to add electric field contributions and to organize the problem situation productively.

  12. On the Reduction of Vector and Axial-Vector Fields in a Meson Effective Action at O(p4)

    International Nuclear Information System (INIS)

    Bel'kov, A.A.; Lanev, A.V.; Schaale, A.

    1994-01-01

    Starting from an effective NJL-type quark interaction we have derived an effective meson action for the pseudoscalar sector. The vector and axial-vector degrees of freedom have been integrated out, applying the static equations of motion. As the results we have found a (reduced) pseudoscalar meson Lagrangian of the Gasser-Leutwyler type with modified structure coefficients L i . This method has been also used to construct the reduced weak and electromagnetic-weak currents. The application of the reduced Lagrangian and currents has been considered in physical processes. 36 refs., 1 fig., 1 tab

  13. The Vector Electric Field Investigation on the C/NOFS Satellite

    Science.gov (United States)

    Pfaff, R.; Acuna, M.; Kujawski, J.; Fourre, R.; Uribe, P.; Hunsaker, F.; Rowland, D.; Le, G.; Farrell, W.; Maynard, N.; hide

    2008-01-01

    We provide an overview of the Vector Electric Field Investigation (VEFI) on the Air Force Communication/Navigation Outage Forecasting System (C/NOFS) satellite, a mission designed to understand, model, and forecast the presence of equatorial ionospheric irregularities. VEFI is a NASA/GSFC instrument funded by the Air Force Research Laboratory whose main objectives are to: 1) investigate the role of the ambient electric fields in initiating nighttime ionospheric density depletions and turbulence; 2) determine the quasi-DC electric fields associated with abrupt, large amplitude, density depletions, and 3) quantify the spectrum of the wave electric fields and plasma densities (irregularities) associated with density depletions typically referred to as equatorial spread-F. The VEFI instrument includes a vector electric field double probe detector, a fixed-bias Langmuir probe operating in the ion saturation regime, a flux-gate magnetometer, an optical lightning detector, and associated electronics. The heart of the instrument is the set of detectors designed to measure DC and AC electric fields using 6 identical booms that provide 3 axis, 20-m tip-to-tip orthogonal double probes. Each probe extends a 10 cm diameter sphere containing an embedded preamplifier. VEFI also includes a burst memory that enables snapshots of data from 1-8 channels of selected instruments to be sampled at rates of up to 32 kHz each. The bursts may be triggered by the detection of density depletions, intense electric field wave activity in a given band, lightning detector pulses, or an event at a pre-determined time or location. All VEFI instrument components are working exceptionally well. A description of the instrument, its sensors, and their sampling frequencies and sensitivities will be presented. Representative measurements will be shown.

  14. Establishment of a large semi-field system for experimental study of African malaria vector ecology and control in Tanzania

    NARCIS (Netherlands)

    Ferguson, H.M.; Ng'habi, K.R.; Walder, T.; Kadungula, D.; Moore, S.J.; Lyimo, I.; Russell, T.L.; Urassa, H.; Mshinda, H.; Killeen, G.F.; Knols, B.G.J.

    2008-01-01

    Background - Medical entomologists increasingly recognize that the ability to make inferences between laboratory experiments of vector biology and epidemiological trends observed in the field is hindered by a conceptual and methodological gap occurring between these approaches which prevents

  15. 3D vector distribution of the electro-magnetic fields on a random gold film

    Science.gov (United States)

    Canneson, Damien; Berini, Bruno; Buil, Stéphanie; Hermier, Jean-Pierre; Quélin, Xavier

    2018-05-01

    The 3D vector distribution of the electro-magnetic fields at the very close vicinity of the surface of a random gold film is studied. Such films are well known for their properties of light confinement and large fluctuations of local density of optical states. Using Finite-Difference Time-Domain simulations, we show that it is possible to determine the local orientation of the electro-magnetic fields. This allows us to obtain a complete characterization of the fields. Large fluctuations of their amplitude are observed as previously shown. Here, we demonstrate large variations of their direction depending both on the position on the random gold film, and on the distance to it. Such characterization could be useful for a better understanding of applications like the coupling of point-like dipoles to such films.

  16. Focusing behavior of the fractal vector optical fields designed by fractal lattice growth model.

    Science.gov (United States)

    Gao, Xu-Zhen; Pan, Yue; Zhao, Meng-Dan; Zhang, Guan-Lin; Zhang, Yu; Tu, Chenghou; Li, Yongnan; Wang, Hui-Tian

    2018-01-22

    We introduce a general fractal lattice growth model, significantly expanding the application scope of the fractal in the realm of optics. This model can be applied to construct various kinds of fractal "lattices" and then to achieve the design of a great diversity of fractal vector optical fields (F-VOFs) combinating with various "bases". We also experimentally generate the F-VOFs and explore their universal focusing behaviors. Multiple focal spots can be flexibly enginnered, and the optical tweezers experiment validates the simulated tight focusing fields, which means that this model allows the diversity of the focal patterns to flexibly trap and manipulate micrometer-sized particles. Furthermore, the recovery performance of the F-VOFs is also studied when the input fields and spatial frequency spectrum are obstructed, and the results confirm the robustness of the F-VOFs in both focusing and imaging processes, which is very useful in information transmission.

  17. Z3 model of Saturns magnetic field and the Pioneer 11 vector helium magnetometer observations

    International Nuclear Information System (INIS)

    Connerney, J.E.P.; Acuna, M.H.; Ness, N.F.

    1984-05-01

    Magnetic field observations obtained by the Pioneer 11 vector helium magnetometer are compared with the Z(sub 3) model magnetic field. These Pioneer 11 observations, obtained at close-in radial distances, constitute an important and independent test of the Z(sub 3) zonal harmonic model, which was derived from Voyager 1 and Voyager 2 fluxgate magnetometer observations. Differences between the Pioneer 11 magnetometer and the Z(sub 3) model field are found to be small (approximately 1%) and quantitatively consistent with the expected instrumental accuracy. A detailed examination of these differences in spacecraft payload coordinates shows that they are uniquely associated with the instrument frame of reference and operation. A much improved fit to the Pioneer 11 observations is obtained by rotation of the instrument coordinate system about the spacecraft spin axis by 1.4 degree. With this adjustment, possibly associated with an instrumental phase lag or roll attitude error, the Pioneer 11 vector helium magnetometer observations are fully consistent with the Voyager Z(sub 3) model

  18. Vector-like fields, messenger mixing and the Higgs mass in gauge mediation

    Energy Technology Data Exchange (ETDEWEB)

    Fischler, Willy; Tangarife, Walter [Department of Physics and Texas Cosmology Center,The University of Texas at Austin,TX 78712 (United States)

    2014-05-30

    In order to generate, in the context of gauge mediation, a Higgs mass around 126 GeV that avoids the little hierarchy problem, we explore a set of models where the messengers are directly coupled to new vector-like fields at the TeV scale in addition to the usual low energy degrees of freedom. We find that in this context, stop masses lighter than 2 TeV and large A-terms are generated, thereby improving issues of fine tuning.

  19. A program for computing cohomology of Lie superalgebras of vector fields

    International Nuclear Information System (INIS)

    Kornyak, V.V.

    1998-01-01

    An algorithm and its C implementation for computing the cohomology of Lie algebras and superalgebras is described. When elaborating the algorithm we paid primary attention to cohomology in trivial, adjoint and coadjoint modules for Lie algebras and superalgebras of the formal vector fields. These algebras have found many applications to modern supersymmetric models of theoretical and mathematical physics. As an example, we present 3- and 5-cocycles from the cohomology in the trivial module for the Poisson algebra Po (2), as found by computer

  20. The inference of vector magnetic fields from polarization measurements with limited spectral resolution

    Science.gov (United States)

    Lites, B. W.; Skumanich, A.

    1985-01-01

    A method is presented for recovery of the vector magnetic field and thermodynamic parameters from polarization measurement of photospheric line profiles measured with filtergraphs. The method includes magneto-optic effects and may be utilized on data sampled at arbitrary wavelengths within the line profile. The accuracy of this method is explored through inversion of synthetic Stokes profiles subjected to varying levels of random noise, instrumental wave-length resolution, and line profile sampling. The level of error introduced by the systematic effect of profile sampling over a finite fraction of the 5 minute oscillation cycle is also investigated. The results presented here are intended to guide instrumental design and observational procedure.

  1. New techniques for the scientific visualization of three-dimensional multi-variate and vector fields

    Energy Technology Data Exchange (ETDEWEB)

    Crawfis, Roger A. [Univ. of California, Davis, CA (United States)

    1995-10-01

    Volume rendering allows us to represent a density cloud with ideal properties (single scattering, no self-shadowing, etc.). Scientific visualization utilizes this technique by mapping an abstract variable or property in a computer simulation to a synthetic density cloud. This thesis extends volume rendering from its limitation of isotropic density clouds to anisotropic and/or noisy density clouds. Design aspects of these techniques are discussed that aid in the comprehension of scientific information. Anisotropic volume rendering is used to represent vector based quantities in scientific visualization. Velocity and vorticity in a fluid flow, electric and magnetic waves in an electromagnetic simulation, and blood flow within the body are examples of vector based information within a computer simulation or gathered from instrumentation. Understand these fields can be crucial to understanding the overall physics or physiology. Three techniques for representing three-dimensional vector fields are presented: Line Bundles, Textured Splats and Hair Splats. These techniques are aimed at providing a high-level (qualitative) overview of the flows, offering the user a substantial amount of information with a single image or animation. Non-homogenous volume rendering is used to represent multiple variables. Computer simulations can typically have over thirty variables, which describe properties whose understanding are useful to the scientist. Trying to understand each of these separately can be time consuming. Trying to understand any cause and effect relationships between different variables can be impossible. NoiseSplats is introduced to represent two or more properties in a single volume rendering of the data. This technique is also aimed at providing a qualitative overview of the flows.

  2. A vector field method on the distorted Fourier side and decay for wave equations with potentials

    CERN Document Server

    Donninger, Roland

    2016-01-01

    The authors study the Cauchy problem for the one-dimensional wave equation \\partial_t^2 u(t,x)-\\partial_x^2 u(t,x)+V(x)u(t,x)=0. The potential V is assumed to be smooth with asymptotic behavior V(x)\\sim -\\tfrac14 |x|^{-2}\\mbox{ as } |x|\\to \\infty. They derive dispersive estimates, energy estimates, and estimates involving the scaling vector field t\\partial_t+x\\partial_x, where the latter are obtained by employing a vector field method on the âeoedistortedâe Fourier side. In addition, they prove local energy decay estimates. Their results have immediate applications in the context of geometric evolution problems. The theory developed in this paper is fundamental for the proof of the co-dimension 1 stability of the catenoid under the vanishing mean curvature flow in Minkowski space; see Donninger, Krieger, Szeftel, and Wong, âeoeCodimension one stability of the catenoid under the vanishing mean curvature flow in Minkowski spaceâe, preprint arXiv:1310.5606 (2013).

  3. Amount of gauge transformations in neutral-vector field theory. [Renormalization, free Lagrangian density

    Energy Technology Data Exchange (ETDEWEB)

    Kubo, R; Yokoyama, K

    1974-11-01

    The purpose of this work is to study the structure of c-number gauge transformation in connection with renormalization problem. In the wide theory of neutral vector fields, there is the gauge structure described essentially by free Lagrangian density. The c-number gauge transformation makes the Lagrangian invariant correspondingly to the usual case of quantum electrodynamics. The c-number transformation can be used to derive relationships among all relevant renormalization constants in the case of interacting fields. In the presence of interaction, total Lagrangian density L is written as L=L/sub 0/+L/sub 1/+L/sub 2/, where L/sub 1/ is given from matter-field Lagrangian density, and L/sub 2/ denotes necessary additional counter terms. In order to conserve the gauge structure, the form of L is invariant under the gauge transformation. Since L matter is self-adjoining, L/sub 1/ remains invariant by itself under the transformation. The form of L/sub 2/ is finally given from the observation that L/sub 3/ cannot contain wave-function renormalization constants. Since L/sub 2/ is invariant under q-number gauge transformation, this transformation in unrenormalized form makes the present L form-invariant. Therefore, together with the above results, auxiliary fields produce the q-number gauge transformation for renormalized fields.

  4. Autonomous dynamic obstacle avoidance for bacteria-powered microrobots (BPMs with modified vector field histogram.

    Directory of Open Access Journals (Sweden)

    Hoyeon Kim

    Full Text Available In order to broaden the use of microrobots in practical fields, autonomous control algorithms such as obstacle avoidance must be further developed. However, most previous studies of microrobots used manual motion control to navigate past tight spaces and obstacles while very few studies demonstrated the use of autonomous motion. In this paper, we demonstrated a dynamic obstacle avoidance algorithm for bacteria-powered microrobots (BPMs using electric field in fluidic environments. A BPM consists of an artificial body, which is made of SU-8, and a high dense layer of harnessed bacteria. BPMs can be controlled using externally applied electric fields due to the electrokinetic property of bacteria. For developing dynamic obstacle avoidance for BPMs, a kinematic model of BPMs was utilized to prevent collision and a finite element model was used to characteristic the deformation of an electric field near the obstacle walls. In order to avoid fast moving obstacles, we modified our previously static obstacle avoidance approach using a modified vector field histogram (VFH method. To validate the advanced algorithm in experiments, magnetically controlled moving obstacles were used to intercept the BPMs as the BPMs move from the initial position to final position. The algorithm was able to successfully guide the BPMs to reach their respective goal positions while avoiding the dynamic obstacles.

  5. Autonomous dynamic obstacle avoidance for bacteria-powered microrobots (BPMs) with modified vector field histogram.

    Science.gov (United States)

    Kim, Hoyeon; Cheang, U Kei; Kim, Min Jun

    2017-01-01

    In order to broaden the use of microrobots in practical fields, autonomous control algorithms such as obstacle avoidance must be further developed. However, most previous studies of microrobots used manual motion control to navigate past tight spaces and obstacles while very few studies demonstrated the use of autonomous motion. In this paper, we demonstrated a dynamic obstacle avoidance algorithm for bacteria-powered microrobots (BPMs) using electric field in fluidic environments. A BPM consists of an artificial body, which is made of SU-8, and a high dense layer of harnessed bacteria. BPMs can be controlled using externally applied electric fields due to the electrokinetic property of bacteria. For developing dynamic obstacle avoidance for BPMs, a kinematic model of BPMs was utilized to prevent collision and a finite element model was used to characteristic the deformation of an electric field near the obstacle walls. In order to avoid fast moving obstacles, we modified our previously static obstacle avoidance approach using a modified vector field histogram (VFH) method. To validate the advanced algorithm in experiments, magnetically controlled moving obstacles were used to intercept the BPMs as the BPMs move from the initial position to final position. The algorithm was able to successfully guide the BPMs to reach their respective goal positions while avoiding the dynamic obstacles.

  6. Microsatellite data suggest significant population structure and differentiation within the malaria vector Anopheles darlingi in Central and South America

    Directory of Open Access Journals (Sweden)

    Achee Nicole L

    2008-03-01

    Full Text Available Abstract Background Anopheles darlingi is the most important malaria vector in the Neotropics. An understanding of A. darlingi's population structure and contemporary gene flow patterns is necessary if vector populations are to be successfully controlled. We assessed population genetic structure and levels of differentiation based on 1,376 samples from 31 localities throughout the Peruvian and Brazilian Amazon and Central America using 5–8 microsatellite loci. Results We found high levels of polymorphism for all of the Amazonian populations (mean RS = 7.62, mean HO = 0.742, and low levels for the Belize and Guatemalan populations (mean RS = 4.3, mean HO = 0.457. The Bayesian clustering analysis revealed five population clusters: northeastern Amazonian Brazil, southeastern and central Amazonian Brazil, western and central Amazonian Brazil, Peruvian Amazon, and the Central American populations. Within Central America there was low non-significant differentiation, except for between the populations separated by the Maya Mountains. Within Amazonia there was a moderate level of significant differentiation attributed to isolation by distance. Within Peru there was no significant population structure and low differentiation, and some evidence of a population expansion. The pairwise estimates of genetic differentiation between Central America and Amazonian populations were all very high and highly significant (FST = 0.1859 – 0.3901, P DA and FST distance-based trees illustrated the main division to be between Central America and Amazonia. Conclusion We detected a large amount of population structure in Amazonia, with three population clusters within Brazil and one including the Peru populations. The considerable differences in Ne among the populations may have contributed to the observed genetic differentiation. All of the data suggest that the primary division within A. darlingi corresponds to two white gene genotypes between Amazonia (genotype 1

  7. Algorithms for Computing the Magnetic Field, Vector Potential, and Field Derivatives for a Thin Solenoid with Uniform Current Density

    Energy Technology Data Exchange (ETDEWEB)

    Walstrom, Peter Lowell [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-08-07

    A numerical algorithm for computing the field components Br and Bz and their r and z derivatives with open boundaries in cylindrical coordinates for radially thin solenoids with uniform current density is described in this note. An algorithm for computing the vector potential Aθ is also described. For the convenience of the reader, derivations of the final expressions from their defining integrals are given in detail, since their derivations are not all easily found in textbooks. Numerical calculations are based on evaluation of complete elliptic integrals using the Bulirsch algorithm cel. The (apparently) new feature of the algorithms described in this note applies to cases where the field point is outside of the bore of the solenoid and the field-point radius approaches the solenoid radius. Since the elliptic integrals of the third kind normally used in computing Bz and Aθ become infinite in this region of parameter space, fields for points with the axial coordinate z outside of the ends of the solenoid and near the solenoid radius are treated by use of elliptic integrals of the third kind of modified argument, derived by use of an addition theorem. Also, the algorithms also avoid the numerical difficulties the textbook solutions have for points near the axis arising from explicit factors of 1/r or 1/r2 in the some of the expressions.

  8. Genetic differentiation in populations of Aedes aegypti (Diptera, Culicidae dengue vector from the Brazilian state of Maranhão

    Directory of Open Access Journals (Sweden)

    Andrelina Alves de Sousa

    2017-01-01

    Full Text Available Aedes (Stegomyia aegypti is the vector responsible for the transmission of the viruses that cause zika, yellow and chikungunya fevers, the four dengue fever serotypes (DENV – 1, 2, 3, 4, and hemorrhagic dengue fever in tropical and subtropical regions around the world. The present study investigated the genetic differentiation of the 15 populations of this vector in the Brazilian state of Maranhão, based on the mitochondrial ND4 marker. A total of 177 sequences were obtained for Aedes aegypti, with a fragment of 337 bps, 15 haplotypes, 15 polymorphics sites, haplotype diversity of h = 0.6938, and nucleotide diversity of π = 0.01486. The neutrality tests (D and Fs were not significant. The AMOVA revealed that most of the variation (58.47% was found within populations, with FST = 0.41533 (p < 0.05. Possible isolation by distance was tested and a significant correlation coefficient (r = 0.3486; p = 0.0040 was found using the Mantel test. The phylogenetic relationships among the 15 haplotypes indicated the existence of two distinct clades. This finding, together with the population parameters, was consistent with a pattern of genetic structuring that underpinned the genetic differentiation of the study populations in Maranhão, and was characterized by the presence of distinct lineages of Aedes aegypti. Keywords: Gene flow, Mitochondrial DNA, ND4

  9. Genetic differentiation in populations of Aedes aegypti (Diptera, Culicidae dengue vector from the Brazilian state of Maranhão

    Directory of Open Access Journals (Sweden)

    Andrelina Alves de Sousa

    Full Text Available ABSTRACT Aedes (Stegomyia aegypti is the vector responsible for the transmission of the viruses that cause zika, yellow and chikungunya fevers, the four dengue fever serotypes (DENV - 1, 2, 3, 4, and hemorrhagic dengue fever in tropical and subtropical regions around the world. The present study investigated the genetic differentiation of the 15 populations of this vector in the Brazilian state of Maranhão, based on the mitochondrial ND4 marker. A total of 177 sequences were obtained for Aedes aegypti, with a fragment of 337 bps, 15 haplotypes, 15 polymorphics sites, haplotype diversity of h = 0.6938, and nucleotide diversity of π = 0.01486. The neutrality tests (D and Fs were not significant. The AMOVA revealed that most of the variation (58.47% was found within populations, with FST = 0.41533 (p < 0.05. Possible isolation by distance was tested and a significant correlation coefficient (r = 0.3486; p = 0.0040 was found using the Mantel test. The phylogenetic relationships among the 15 haplotypes indicated the existence of two distinct clades. This finding, together with the population parameters, was consistent with a pattern of genetic structuring that underpinned the genetic differentiation of the study populations in Maranhão, and was characterized by the presence of distinct lineages of Aedes aegypti.

  10. A Novel Rotor and Stator Magnetic Fields Direct-Orthogonalized Vector Control Scheme for the PMSM Servo System

    Directory of Open Access Journals (Sweden)

    Shi-Xiong Zhang

    2014-02-01

    Full Text Available Permanent Magnet Synchronous motor (PMSM has received widespread acceptance in recent years. In this paper, a new rotor and stator Magnetic Fields Direct-Orthogonalized Vector Control (MFDOVC scheme is proposed for PMSM servo system. This method simplified the complex calculation of traditional vector control, a part of the system resource is economized. At the same time, through the simulation illustration validation, the performance of PMSM servo system with the proposed MFDOVC scheme can achieve the same with the complex traditional vector control method, but much simpler calculation is implemented using the proposed method.

  11. Differentiation of Human Mesenchymal Stem Cells into Insulin Producing Cells by Using A Lentiviral Vector Carrying PDX1.

    Science.gov (United States)

    Allahverdi, Amir; Abroun, Saied; Jafarian, Arefeh; Soleimani, Masoud; Taghikhani, Mohammad; Eskandari, Fatemeh

    2015-01-01

    Type I diabetes is an immunologically-mediated devastation of insulin producing cells (IPCs) in the pancreatic islet. Stem cells that produce β-cells are a new promising tool. Adult stem cells such as mesenchymal stem cells (MSCs) are self renewing multi potent cells showing capabilities to differentiate into ectodermal, mesodermal and endodermal tissues. Pancreatic and duodenal homeobox factor 1 (PDX1) is a master regulator gene required for embryonic development of the pancreas and is crucial for normal pancreatic islets activities in adults. We induced the over-expression of the PDX1 gene in human bone marrow MSCs (BM-MSCs) by Lenti-PDX1 in order to generate IPCs. Next, we examine the ability of the cells by measuring insulin/c-peptide production and INSULIN and PDX1 gene expressions. After transduction, MSCs changed their morphology at day 5 and gradually differentiated into IPCs. INSULIN and PDX1 expressions were confirmed by real time polymerase chain reaction (RT-PCR) and immunostaining. IPC secreted insulin and C-peptide in the media that contained different glucose concentrations. MSCs differentiated into IPCs by genetic manipulation. Our result showed that lentiviral vectors could deliver PDX1 gene to MSCs and induce pancreatic differentiation.

  12. SOLAR FLARE PREDICTION USING SDO/HMI VECTOR MAGNETIC FIELD DATA WITH A MACHINE-LEARNING ALGORITHM

    International Nuclear Information System (INIS)

    Bobra, M. G.; Couvidat, S.

    2015-01-01

    We attempt to forecast M- and X-class solar flares using a machine-learning algorithm, called support vector machine (SVM), and four years of data from the Solar Dynamics Observatory's Helioseismic and Magnetic Imager, the first instrument to continuously map the full-disk photospheric vector magnetic field from space. Most flare forecasting efforts described in the literature use either line-of-sight magnetograms or a relatively small number of ground-based vector magnetograms. This is the first time a large data set of vector magnetograms has been used to forecast solar flares. We build a catalog of flaring and non-flaring active regions sampled from a database of 2071 active regions, comprised of 1.5 million active region patches of vector magnetic field data, and characterize each active region by 25 parameters. We then train and test the machine-learning algorithm and we estimate its performances using forecast verification metrics with an emphasis on the true skill statistic (TSS). We obtain relatively high TSS scores and overall predictive abilities. We surmise that this is partly due to fine-tuning the SVM for this purpose and also to an advantageous set of features that can only be calculated from vector magnetic field data. We also apply a feature selection algorithm to determine which of our 25 features are useful for discriminating between flaring and non-flaring active regions and conclude that only a handful are needed for good predictive abilities

  13. Extended differential geometry as a basis for physical field theory

    International Nuclear Information System (INIS)

    Bruce, M.H.

    1984-01-01

    An extension of Riemann differential geometry is considered as a broadened uniform basis for physical field theory. The requirements for such a theory are set and interpreted as a generalized Ricci calculus capable of supporting certain physical affine motions and metric constraints. Both tensor and spinor languages are considered and a variational calculus is formulated within the geometry. The dominant emergent feature is the replacement of ordinary derivatives by generalized differential operators involving the usual Christoffel symbols as well as more general connection parameters. Then the Euler-Lagrange equations with constraints may be regarded as a general differential geometry and an action principle is formulated to give equations of motion in terms of generalized momentum operations. A cononical momentum tensor is employed which yields, by a generalized boundary variations of the action a set of conservation laws. The formulation is then applied to such diverse topics as the generalizing of the Dirac equation, the Lorentz and radiation terms for a charged particle, the relativistic rotator, and considerations on a geometric origin for the the Einstein energy density tensor

  14. Vector analysis

    CERN Document Server

    Brand, Louis

    2006-01-01

    The use of vectors not only simplifies treatments of differential geometry, mechanics, hydrodynamics, and electrodynamics, but also makes mathematical and physical concepts more tangible and easy to grasp. This text for undergraduates was designed as a short introductory course to give students the tools of vector algebra and calculus, as well as a brief glimpse into these subjects' manifold applications. The applications are developed to the extent that the uses of the potential function, both scalar and vector, are fully illustrated. Moreover, the basic postulates of vector analysis are brou

  15. Velocity Vector Field Visualization of Flow in Liquid Acquisition Device Channel

    Science.gov (United States)

    McQuillen, John B.; Chao, David F.; Hall, Nancy R.; Zhang, Nengli

    2012-01-01

    A capillary flow liquid acquisition device (LAD) for cryogenic propellants has been developed and tested in NASA Glenn Research Center to meet the requirements of transferring cryogenic liquid propellants from storage tanks to an engine in reduced gravity environments. The prototypical mesh screen channel LAD was fabricated with a mesh screen, covering a rectangular flow channel with a cylindrical outlet tube, and was tested with liquid oxygen (LOX). In order to better understand the performance in various gravity environments and orientations at different liquid submersion depths of the screen channel LAD, a series of computational fluid dynamics (CFD) simulations of LOX flow through the LAD screen channel was undertaken. The resulting velocity vector field visualization for the flow in the channel has been used to reveal the gravity effects on the flow in the screen channel.

  16. The Casimir interaction of a massive vector field between concentric spherical bodies

    International Nuclear Information System (INIS)

    Teo, L.P.

    2011-01-01

    The Casimir interaction energy due to the vacuum fluctuations of a massive vector field between two perfectly conducting concentric spherical bodies is computed. The TE contribution to the Casimir interaction energy is a direct generalization of the massless case but the TM contribution is much more complicated. Each TM mode is a linear combination of a transverse mode which is the generalization of a TM mode in the massless case and a longitudinal mode that does not appear in the massless case. In contrast to the case of two parallel perfectly conducting plates, there are no TM discrete modes that vanish identically in the perfectly conducting spherical bodies. Numerical simulations show that the Casimir interaction force between the two bodies is always attractive.

  17. Regularity results for the minimum time function with Hörmander vector fields

    Science.gov (United States)

    Albano, Paolo; Cannarsa, Piermarco; Scarinci, Teresa

    2018-03-01

    In a bounded domain of Rn with boundary given by a smooth (n - 1)-dimensional manifold, we consider the homogeneous Dirichlet problem for the eikonal equation associated with a family of smooth vector fields {X1 , … ,XN } subject to Hörmander's bracket generating condition. We investigate the regularity of the viscosity solution T of such problem. Due to the presence of characteristic boundary points, singular trajectories may occur. First, we characterize these trajectories as the closed set of all points at which the solution loses point-wise Lipschitz continuity. Then, we prove that the local Lipschitz continuity of T, the local semiconcavity of T, and the absence of singular trajectories are equivalent properties. Finally, we show that the last condition is satisfied whenever the characteristic set of {X1 , … ,XN } is a symplectic manifold. We apply our results to several examples.

  18. Simplest bifurcation diagrams for monotone families of vector fields on a torus

    Science.gov (United States)

    Baesens, C.; MacKay, R. S.

    2018-06-01

    In part 1, we prove that the bifurcation diagram for a monotone two-parameter family of vector fields on a torus has to be at least as complicated as the conjectured simplest one proposed in Baesens et al (1991 Physica D 49 387–475). To achieve this, we define ‘simplest’ by sequentially minimising the numbers of equilibria, Bogdanov–Takens points, closed curves of centre and of neutral saddle, intersections of curves of centre and neutral saddle, Reeb components, other invariant annuli, arcs of rotational homoclinic bifurcation of horizontal homotopy type, necklace points, contractible periodic orbits, points of neutral horizontal homoclinic bifurcation and half-plane fan points. We obtain two types of simplest case, including that initially proposed. In part 2, we analyse the bifurcation diagram for an explicit monotone family of vector fields on a torus and prove that it has at most two equilibria, precisely four Bogdanov–Takens points, no closed curves of centre nor closed curves of neutral saddle, at most two Reeb components, precisely four arcs of rotational homoclinic connection of ‘horizontal’ homotopy type, eight horizontal saddle-node loop points, two necklace points, four points of neutral horizontal homoclinic connection, and two half-plane fan points, and there is no simultaneous existence of centre and neutral saddle, nor contractible homoclinic connection to a neutral saddle. Furthermore, we prove that all saddle-nodes, Bogdanov–Takens points, non-neutral and neutral horizontal homoclinic bifurcations are non-degenerate and the Hopf condition is satisfied for all centres. We also find it has four points of degenerate Hopf bifurcation. It thus provides an example of a family satisfying all the assumptions of part 1 except the one of at most one contractible periodic orbit.

  19. Differential Microbial Diversity in Drosophila melanogaster: Are Fruit Flies Potential Vectors of Opportunistic Pathogens?

    Directory of Open Access Journals (Sweden)

    Luis A. Ramírez-Camejo

    2017-01-01

    Full Text Available Drosophila melanogaster has become a model system to study interactions between innate immunity and microbial pathogens, yet many aspects regarding its microbial community and interactions with pathogens remain unclear. In this study wild D. melanogaster were collected from tropical fruits in Puerto Rico to test how the microbiota is distributed and to compare the culturable diversity of fungi and bacteria. Additionally, we investigated whether flies are potential vectors of human and plant pathogens. Eighteen species of fungi and twelve species of bacteria were isolated from wild flies. The most abundant microorganisms identified were the yeast Candida inconspicua and the bacterium Klebsiella sp. The yeast Issatchenkia hanoiensis was significantly more common internally than externally in flies. Species richness was higher in fungi than in bacteria, but diversity was lower in fungi than in bacteria. The microbial composition of flies was similar internally and externally. We identified a variety of opportunistic human and plant pathogens in flies such as Alcaligenes faecalis, Aspergillus flavus, A. fumigatus, A. niger, Fusarium equiseti/oxysporum, Geotrichum candidum, Klebsiella oxytoca, Microbacterium oxydans, and Stenotrophomonas maltophilia. Despite its utility as a model system, D. melanogaster can be a vector of microorganisms that represent a potential risk to plant and public health.

  20. On the 4D generalized Proca action for an Abelian vector field

    Energy Technology Data Exchange (ETDEWEB)

    Allys, Erwan [Institut d’Astrophysique de Paris, UMR 7095, UPMC Université Paris 6 et CNRS,98 bis boulevard Arago, 75014 Paris (France); Almeida, Juan P. Beltrán [Departamento de Física, Universidad Antonio Nariño,Cra 3 Este # 47A-15, Bogotá D.C. 110231 (Colombia); Peter, Patrick [Institut d’Astrophysique de Paris, UMR 7095, UPMC Université Paris 6 et CNRS,98 bis boulevard Arago, 75014 Paris (France); Institut Lagrange de Paris,UPMC Université Paris 6 et CNRS,Sorbonne Universités, Paris (France); Rodríguez, Yeinzon [Centro de Investigaciones en Ciencias Básicas y Aplicadas, Universidad Antonio Nariño, Cra 3 Este # 47A-15, Bogotá D.C. 110231 (Colombia); Escuela de Física, Universidad Industrial de Santander,Ciudad Universitaria, Bucaramanga 680002 (Colombia); Simons Associate at The Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11, I-34151, Trieste (Italy)

    2016-09-19

    We summarize previous results on the most general Proca theory in 4 dimensions containing only first-order derivatives in the vector field (second-order at most in the associated Stückelberg scalar) and having only three propagating degrees of freedom with dynamics controlled by second-order equations of motion. Discussing the Hessian condition used in previous works, we conjecture that, as in the scalar galileon case, the most complete action contains only a finite number of terms with second-order derivatives of the Stückelberg field describing the longitudinal mode, which is in agreement with the results of http://dx.doi.org/10.1088/1475-7516/2014/05/015 and http://dx.doi.org/10.1016/j.physletb.2016.04.017 and complements those of http://dx.doi.org/10.1088/1475-7516/2016/02/004. We also correct and complete the parity violating sector, obtaining an extra term on top of the arbitrary function of the field A{sub μ}, the Faraday tensor F{sub μν} and its Hodge dual F-tilde{sub μν}.

  1. Effectiveness of methoprene, an insect growth regulator, against malaria vectors in Fars, Iran: a field study.

    Science.gov (United States)

    Darabi, H; Vatandoost, H; Abaei, M R; Gharibi, O; Pakbaz, F

    2011-01-01

    Methoprene, an insect growth regulator, was evaluated under field conditions against the main malaria vectors in the Islamic Republic of Iran. The effect of 5, 10 and 20 kg ha(-1) concentration ofmethoprene granule formulation and 100 and 200 mL ha(-1) concentration of EC formulation was measured to determine any changes in Anophelini larval abundance and IE ratio in both rice fields and artificial ponds. In artificial ponds, granular methoprene at a dose of 20 kg ha(-1) inhibited adult emergence by 77.1% after 1 day and 65.9% after 3 days. The emulsifiable concentrate formulation of methoprene at 200 mL ha(-1) inhibited adult emergence by 83.7% after 1 day and 32.2% after 3 days. In rice fields, inhibition of emergence was 44.3% at 20 kg ha(-1) granule and 35.8% for emulsifiable concentrate at 200 mL ha(-1) after 3 days. The results vary depending on the mosquito species, treatment methods, breeding places and type of formulation.

  2. On the 4D generalized Proca action for an Abelian vector field

    International Nuclear Information System (INIS)

    Allys, Erwan; Almeida, Juan P. Beltrán; Peter, Patrick; Rodríguez, Yeinzon

    2016-01-01

    We summarize previous results on the most general Proca theory in 4 dimensions containing only first-order derivatives in the vector field (second-order at most in the associated Stückelberg scalar) and having only three propagating degrees of freedom with dynamics controlled by second-order equations of motion. Discussing the Hessian condition used in previous works, we conjecture that, as in the scalar galileon case, the most complete action contains only a finite number of terms with second-order derivatives of the Stückelberg field describing the longitudinal mode, which is in agreement with the results of http://dx.doi.org/10.1088/1475-7516/2014/05/015 and http://dx.doi.org/10.1016/j.physletb.2016.04.017 and complements those of http://dx.doi.org/10.1088/1475-7516/2016/02/004. We also correct and complete the parity violating sector, obtaining an extra term on top of the arbitrary function of the field A_μ, the Faraday tensor F_μ_ν and its Hodge dual F-tilde_μ_ν.

  3. Algorithms for Computing the Magnetic Field, Vector Potential, and Field Derivatives for Circular Current Loops in Cylindrical Coordinates

    Energy Technology Data Exchange (ETDEWEB)

    Walstrom, Peter Lowell [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-08-24

    A numerical algorithm for computing the field components Br and Bz and their r and z derivatives with open boundaries in cylindrical coordinates for circular current loops is described. An algorithm for computing the vector potential is also described. For the convenience of the reader, derivations of the final expressions from their defining integrals are given in detail, since their derivations (especially for the field derivatives) are not all easily found in textbooks. Numerical calculations are based on evaluation of complete elliptic integrals using the Bulirsch algorithm cel. Since cel can evaluate complete elliptic integrals of a fairly general type, in some cases the elliptic integrals can be evaluated without first reducing them to forms containing standard Legendre forms. The algorithms avoid the numerical difficulties that many of the textbook solutions have for points near the axis because of explicit factors of 1=r or 1=r2 in the some of the expressions.

  4. Scalar-vector bootstrap

    Energy Technology Data Exchange (ETDEWEB)

    Rejon-Barrera, Fernando [Institute for Theoretical Physics, University of Amsterdam,Science Park 904, Postbus 94485, 1090 GL, Amsterdam (Netherlands); Robbins, Daniel [Department of Physics, Texas A& M University,TAMU 4242, College Station, TX 77843 (United States)

    2016-01-22

    We work out all of the details required for implementation of the conformal bootstrap program applied to the four-point function of two scalars and two vectors in an abstract conformal field theory in arbitrary dimension. This includes a review of which tensor structures make appearances, a construction of the projectors onto the required mixed symmetry representations, and a computation of the conformal blocks for all possible operators which can be exchanged. These blocks are presented as differential operators acting upon the previously known scalar conformal blocks. Finally, we set up the bootstrap equations which implement crossing symmetry. Special attention is given to the case of conserved vectors, where several simplifications occur.

  5. Field evaluation of picaridin repellents reveals differences in repellent sensitivity between Southeast Asian vectors of malaria and arboviruses.

    Directory of Open Access Journals (Sweden)

    Karel Van Roey

    2014-12-01

    Full Text Available Scaling up of insecticide treated nets has contributed to a substantial malaria decline. However, some malaria vectors, and most arbovirus vectors, bite outdoors and in the early evening. Therefore, topically applied insect repellents may provide crucial additional protection against mosquito-borne pathogens. Among topical repellents, DEET is the most commonly used, followed by others such as picaridin. The protective efficacy of two formulated picaridin repellents against mosquito bites, including arbovirus and malaria vectors, was evaluated in a field study in Cambodia. Over a period of two years, human landing collections were performed on repellent treated persons, with rotation to account for the effect of collection place, time and individual collector. Based on a total of 4996 mosquitoes collected on negative control persons, the overall five hour protection rate was 97.4% [95%CI: 97.1-97.8%], not decreasing over time. Picaridin 20% performed equally well as DEET 20% and better than picaridin 10%. Repellents performed better against Mansonia and Culex spp. as compared to aedines and anophelines. A lower performance was observed against Aedes albopictus as compared to Aedes aegypti, and against Anopheles barbirostris as compared to several vector species. Parity rates were higher in vectors collected on repellent treated person as compared to control persons. As such, field evaluation shows that repellents can provide additional personal protection against early and outdoor biting malaria and arbovirus vectors, with excellent protection up to five hours after application. The heterogeneity in repellent sensitivity between mosquito genera and vector species could however impact the efficacy of repellents in public health programs. Considering its excellent performance and potential to protect against early and outdoor biting vectors, as well as its higher acceptability as compared to DEET, picaridin is an appropriate product to evaluate the

  6. Field evaluation of picaridin repellents reveals differences in repellent sensitivity between Southeast Asian vectors of malaria and arboviruses.

    Science.gov (United States)

    Van Roey, Karel; Sokny, Mao; Denis, Leen; Van den Broeck, Nick; Heng, Somony; Siv, Sovannaroth; Sluydts, Vincent; Sochantha, Tho; Coosemans, Marc; Durnez, Lies

    2014-12-01

    Scaling up of insecticide treated nets has contributed to a substantial malaria decline. However, some malaria vectors, and most arbovirus vectors, bite outdoors and in the early evening. Therefore, topically applied insect repellents may provide crucial additional protection against mosquito-borne pathogens. Among topical repellents, DEET is the most commonly used, followed by others such as picaridin. The protective efficacy of two formulated picaridin repellents against mosquito bites, including arbovirus and malaria vectors, was evaluated in a field study in Cambodia. Over a period of two years, human landing collections were performed on repellent treated persons, with rotation to account for the effect of collection place, time and individual collector. Based on a total of 4996 mosquitoes collected on negative control persons, the overall five hour protection rate was 97.4% [95%CI: 97.1-97.8%], not decreasing over time. Picaridin 20% performed equally well as DEET 20% and better than picaridin 10%. Repellents performed better against Mansonia and Culex spp. as compared to aedines and anophelines. A lower performance was observed against Aedes albopictus as compared to Aedes aegypti, and against Anopheles barbirostris as compared to several vector species. Parity rates were higher in vectors collected on repellent treated person as compared to control persons. As such, field evaluation shows that repellents can provide additional personal protection against early and outdoor biting malaria and arbovirus vectors, with excellent protection up to five hours after application. The heterogeneity in repellent sensitivity between mosquito genera and vector species could however impact the efficacy of repellents in public health programs. Considering its excellent performance and potential to protect against early and outdoor biting vectors, as well as its higher acceptability as compared to DEET, picaridin is an appropriate product to evaluate the epidemiological

  7. Introduction to partial differential equations with applications

    CERN Document Server

    Zachmanoglou, E C

    1988-01-01

    This text explores the essentials of partial differential equations as applied to engineering and the physical sciences. Discusses ordinary differential equations, integral curves and surfaces of vector fields, the Cauchy-Kovalevsky theory, more. Problems and answers.

  8. A Note on Classification of Spatially Homogeneous Rotating Space-Times According to Their Teleparallel Killing Vector Fields in Teleparallel Theory of Gravitation

    International Nuclear Information System (INIS)

    Shabbir, Ghulam; Khan, Suhail; Ali, Amjad

    2011-01-01

    In this paper we classify spatially homogeneous rotating space-times according to their teleparallel Killing vector fields using direct integration technique. It turns out that the dimension of the teleparallel Killing vector fields is 5 or 10. In the case of 10 teleparallel Killing vector fields the space-time becomes Minkowski and all the torsion components are zero. Teleparallel Killing vector fields in this case are exactly the same as in general relativity. In the cases of 5 teleparallel Killing vector fields we get two more conservation laws in the teleparallel theory of gravitation. Here we also discuss some well-known examples of spatially homogeneous rotating space-times according to their teleparallel Killing vector fields. (general)

  9. Classification of Kantowski-Sachs and Bianchi Type III Space-Times According to Their Killing Vector Fields in Teleparallel Theory of Gravitation

    International Nuclear Information System (INIS)

    Shabbir, Ghulam; Khan, Suhail

    2010-01-01

    In this paper we classify Kantowski-Sachs and Bianchi type III space-times according to their teleparallel Killing vector fields using direct integration technique. It turns out that the dimension of the teleparallel Killing vector fields are 4 or 6, which are the same in numbers as in general relativity. In case of 4 the teleparallel Killing vector fields are multiple of the corresponding Killing vector fields in general relativity by some function of t. In the case of 6 Killing vector fields the metric functions become constants and the Killing vector fields in this case are exactly the same as in general relativity. Here we also discuss the Lie algebra in each case. (general)

  10. Parallel computation of automatic differentiation applied to magnetic field calculations

    International Nuclear Information System (INIS)

    Hinkins, R.L.; Lawrence Berkeley Lab., CA

    1994-09-01

    The author presents a parallelization of an accelerator physics application to simulate magnetic field in three dimensions. The problem involves the evaluation of high order derivatives with respect to two variables of a multivariate function. Automatic differentiation software had been used with some success, but the computation time was prohibitive. The implementation runs on several platforms, including a network of workstations using PVM, a MasPar using MPFortran, and a CM-5 using CMFortran. A careful examination of the code led to several optimizations that improved its serial performance by a factor of 8.7. The parallelization produced further improvements, especially on the MasPar with a speedup factor of 620. As a result a problem that took six days on a SPARC 10/41 now runs in minutes on the MasPar, making it feasible for physicists at Lawrence Berkeley Laboratory to simulate larger magnets

  11. Trochoidal X-ray Vector Radiography: Directional dark-field without grating stepping

    Science.gov (United States)

    Sharma, Y.; Bachche, S.; Kageyama, M.; Kuribayashi, M.; Pfeiffer, F.; Lasser, T.; Momose, A.

    2018-03-01

    X-ray Vector Radiography (XVR) is an imaging technique that reveals the orientations of sub-pixel sized structures within a sample. Several dark-field radiographs are acquired by rotating the sample around the beam propagation direction and stepping one of the gratings to several positions for every pose of the sample in an X-ray grating interferometry setup. In this letter, we present a method of performing XVR of a continuously moving sample without the need of any grating motion. We reconstruct the orientations within a sample by analyzing the change in the background moire fringes caused by the sample moving and simultaneously rotating in plane (trochoidal trajectory) across the detector field-of-view. Avoiding the motion of gratings provides significant advantages in terms of stability and repeatability, while the continuous motion of the sample makes this kind of system adaptable for industrial applications such as the scanning of samples on a conveyor belt. Being the first step in the direction of utilizing advanced sample trajectories to replace grating motion, this work also lays the foundations for a full three dimensional reconstruction of scattering function without grating motion.

  12. Transient rotation of photospheric vector magnetic fields associated with a solar flare.

    Science.gov (United States)

    Xu, Yan; Cao, Wenda; Ahn, Kwangsu; Jing, Ju; Liu, Chang; Chae, Jongchul; Huang, Nengyi; Deng, Na; Gary, Dale E; Wang, Haimin

    2018-01-03

    As one of the most violent eruptions on the Sun, flares are believed to be powered by magnetic reconnection. The fundamental physics involving the release, transfer, and deposition of energy have been studied extensively. Taking advantage of the unprecedented resolution provided by the 1.6 m Goode Solar Telescope, here, we show a sudden rotation of vector magnetic fields, about 12-20° counterclockwise, associated with a flare. Unlike the permanent changes reported previously, the azimuth-angle change is transient and cospatial/temporal with Hα emission. The measured azimuth angle becomes closer to that in potential fields suggesting untwist of flare loops. The magnetograms were obtained in the near infrared at 1.56 μm, which is minimally affected by flare emission and no intensity profile change was detected. We believe that these transient changes are real and discuss the possible explanations in which the high-energy electron beams or Alfve'n waves play a crucial role.

  13. [INVITED] Magnetic field vector sensor by a nonadiabatic tapered Hi-Bi fiber and ferrofluid nanoparticles

    Science.gov (United States)

    Layeghi, Azam; Latifi, Hamid

    2018-06-01

    A magnetic field vector sensor based on super-paramagnetic fluid and tapered Hi-Bi fiber (THB) in fiber loop mirror (FLM) is proposed. A two-dimensional detection of external magnetic field (EMF) is experimentally demonstrated and theoretically simulated by Jones matrix to analyze the physical operation in detail. A birefringence is obtained due to magnetic fluid (MF) in applied EMF. By surrounding the THB with MF, a tunable birefringence of MF affect the transmission of the sensor. Slow and fast axes of this obtained birefringence are determined by the direction of applied EMF. In this way, the transmission response of the sensor is depended on the angle between the EMF orientation and the main axes of polarization maintaining fiber (PMF) in FLM. The wavelength shift and intensity shift versus EMF orientation show a sinusoidal behavior, while the applied EMF is constant. Also, the changes in the intensity of EMF in a certain direction results in wavelength shift in the sensor spectrum. The maximum wavelength sensitivity of 214 pm/mT is observed.

  14. Robot Training With Vector Fields Based on Stroke Survivors' Individual Movement Statistics.

    Science.gov (United States)

    Wright, Zachary A; Lazzaro, Emily; Thielbar, Kelly O; Patton, James L; Huang, Felix C

    2018-02-01

    The wide variation in upper extremity motor impairments among stroke survivors necessitates more intelligent methods of customized therapy. However, current strategies for characterizing individual motor impairments are limited by the use of traditional clinical assessments (e.g., Fugl-Meyer) and simple engineering metrics (e.g., goal-directed performance). Our overall approach is to statistically identify the range of volitional movement capabilities, and then apply a robot-applied force vector field intervention that encourages under-expressed movements. We investigated whether explorative training with such customized force fields would improve stroke survivors' (n = 11) movement patterns in comparison to a control group that trained without forces (n = 11). Force and control groups increased Fugl-Meyer UE scores (average of 1.0 and 1.1, respectively), which is not considered clinically meaningful. Interestingly, participants from both groups demonstrated dramatic increases in their range of velocity during exploration following only six days of training (average increase of 166.4% and 153.7% for the Force and Control group, respectively). While both groups showed evidence of improvement, we also found evidence that customized forces affected learning in a systematic way. When customized forces were active, we observed broader distributions of velocity that were not present in the controls. Second, we found that these changes led to specific changes in unassisted motion. In addition, while the shape of movement distributions changed significantly for both groups, detailed analysis of the velocity distributions revealed that customized forces promoted a greater proportion of favorable changes. Taken together, these results provide encouraging evidence that patient-specific force fields based on individuals' movement statistics can be used to create new movement patterns and shape them in a customized manner. To the best of our knowledge, this paper is the first

  15. Host-seeking behavior and dispersal of Triatoma infestans, a vector of Chagas disease, under semi-field conditions.

    Directory of Open Access Journals (Sweden)

    Ricardo Castillo-Neyra

    2015-01-01

    Full Text Available Chagas disease affects millions of people in Latin America. The control of this vector-borne disease focuses on halting transmission by reducing or eliminating insect vector populations. Most transmission of Trypanosoma cruzi, the causative agent of Chagas disease, involves insects living within or very close to households and feeding mostly on domestic animals. As animal hosts can be intermittently present it is important to understand how host availability can modify transmission risk to humans and to characterize the host-seeking dispersal of triatomine vectors on a very fine scale. We used a semi-field system with motion-detection cameras to characterize the dispersal of Triatoma infestans, and compare the behavior of vector populations in the constant presence of hosts (guinea pigs, and after the removal of the hosts. The emigration rate - net insect population decline in original refuge - following host removal was on average 19.7% of insects per 10 days compared to 10.2% in constant host populations (p = 0.029. However, dispersal of T. infestans occurred in both directions, towards and away from the initial location of the hosts. The majority of insects that moved towards the original location of guinea pigs remained there for 4 weeks. Oviposition and mortality were observed and analyzed in the context of insect dispersal, but only mortality was higher in the group where animal hosts were removed (p-value <0.01. We discuss different survival strategies associated with the observed behavior and its implications for vector control. Removing domestic animals in infested areas increases vector dispersal from the first day of host removal. The implications of these patterns of vector dispersal in a field setting are not yet known but could result in movement towards human rooms.

  16. Optical electromagnetic vector-field modeling for the accurate analysis of finite diffractive structures of high complexity

    DEFF Research Database (Denmark)

    Dridi, Kim; Bjarklev, Anders Overgaard

    1999-01-01

    An electromagnetic vector-field modle for design of optical components based on the finite-difference-time-domain method and radiation integrals in presented. Its ability to predict the optical electromagnetic dynamics in structures with complex material distribution is demonstrated. Theoretical...

  17. Polarization Control with Plasmonic Antenna Tips: A Universal Approach to Optical Nanocrystallography and Vector-Field Imaging

    Science.gov (United States)

    Park, Kyoung-Duck; Raschke, Markus B.

    2018-05-01

    Controlling the propagation and polarization vectors in linear and nonlinear optical spectroscopy enables to probe the anisotropy of optical responses providing structural symmetry selective contrast in optical imaging. Here we present a novel tilted antenna-tip approach to control the optical vector-field by breaking the axial symmetry of the nano-probe in tip-enhanced near-field microscopy. This gives rise to a localized plasmonic antenna effect with significantly enhanced optical field vectors with control of both \\textit{in-plane} and \\textit{out-of-plane} components. We use the resulting vector-field specificity in the symmetry selective nonlinear optical response of second-harmonic generation (SHG) for a generalized approach to optical nano-crystallography and -imaging. In tip-enhanced SHG imaging of monolayer MoS$_2$ films and single-crystalline ferroelectric YMnO$_3$, we reveal nano-crystallographic details of domain boundaries and domain topology with enhanced sensitivity and nanoscale spatial resolution. The approach is applicable to any anisotropic linear and nonlinear optical response, and provides for optical nano-crystallographic imaging of molecular or quantum materials.

  18. Maxima of the scattering cross section, the wave vector being quasi orthogonal to the confining magnetic field

    International Nuclear Information System (INIS)

    Meyer, R.-L.

    1975-01-01

    The evolution of the scattering cross section maximas of an electromagnetic wave by a magnetoplasma, the angle between the wave vector and the confining magnetic field approaching π/2 were computed. It is shown that the maximas are shifted toward the roots of the electrostatic dispersion relation in perpendicular propagation. These roots are not exactly the electron cyclotron harmonics [fr

  19. Shallow and Deep-Seated Landslide Differentiation Using Support Vector Machines: A Case Study of the Chuetsu Area, Japan

    Directory of Open Access Journals (Sweden)

    Jie Dou

    2015-01-01

    Full Text Available Landslides are one of the most destructive geological disasters affecting Japan every year, resulting in huge losses in life and property. Numerous susceptibility studies have been conducted to minimize the risk of landslides; however, most of these studies do not differentiate landslide types. This study examines the differences in landslide depth, volume and the risk imposed between shallow and deep-seated landslide types. Shallow and deep-seated landslide prediction is useful in utilizing emergency resources by prioritizing target areas while responding to sediment related disasters. This study utilizes a 2-m DEM derived from airborne Light detection and ranging (Lidar, geological information and support vector machines (SVMs to study the 1225 landslides triggered by the M 6.8 Chuetsu earthquake in Japan and the successive aftershocks. Ten factors, including elevation, slope, aspect, curvature, lithology, distance from the nearest geologic boundary, density of geologic boundaries, distance from drainage network, the compound topographic index (CTI and the stream power index (SPI derived from the DEM and a geological map were analyzed. Iterated over 10 random instances the average training and testing accuracy of landslide type prediction was found to be 89.2 and 77.8%, respectively. We also found that the overall accuracy of SVMs does not rapidly decrease with a decrease in training samples. The trained model was then used to prepare a map showing probable future landslides differentiated into shallow and deep-seated landslides.

  20. Support vector machine-based differentiation between aggressive and chronic periodontitis using microbial profiles.

    Science.gov (United States)

    Feres, Magda; Louzoun, Yoram; Haber, Simi; Faveri, Marcelo; Figueiredo, Luciene C; Levin, Liran

    2018-02-01

    The existence of specific microbial profiles for different periodontal conditions is still a matter of debate. The aim of this study was to test the hypothesis that 40 bacterial species could be used to classify patients, utilising machine learning, into generalised chronic periodontitis (ChP), generalised aggressive periodontitis (AgP) and periodontal health (PH). Subgingival biofilm samples were collected from patients with AgP, ChP and PH and analysed for their content of 40 bacterial species using checkerboard DNA-DNA hybridisation. Two stages of machine learning were then performed. First of all, we tested whether there was a difference between the composition of bacterial communities in PH and in disease, and then we tested whether a difference existed in the composition of bacterial communities between ChP and AgP. The data were split in each analysis to 70% train and 30% test. A support vector machine (SVM) classifier was used with a linear kernel and a Box constraint of 1. The analysis was divided into two parts. Overall, 435 patients (3,915 samples) were included in the analysis (PH = 53; ChP = 308; AgP = 74). The variance of the healthy samples in all principal component analysis (PCA) directions was smaller than that of the periodontally diseased samples, suggesting that PH is characterised by a uniform bacterial composition and that the bacterial composition of periodontally diseased samples is much more diverse. The relative bacterial load could distinguish between AgP and ChP. An SVC classifier using a panel of 40 bacterial species was able to distinguish between PH, AgP in young individuals and ChP. © 2017 FDI World Dental Federation.

  1. Homogeneous collapsing star: Tensor and vector harmonics for matter and field asymmetries

    International Nuclear Information System (INIS)

    Gerlach, U.H.; Sengupta, U.K.

    1978-01-01

    For the space-time of the interior of a homogeneous collapsing star complete sets of orthogonal vector and tensor harmonics are presented. Their relationship to the set of vector and tensor harmonics for a generic spherically symmetric space-time is exhibited

  2. An adaptive radiotherapy planning strategy for bladder cancer using deformation vector fields

    International Nuclear Information System (INIS)

    Vestergaard, Anne; Kallehauge, Jesper Folsted; Petersen, Jørgen Breede Baltzer; Høyer, Morten; Søndergaard, Jimmi; Muren, Ludvig Paul

    2014-01-01

    Purpose: Adaptive radiotherapy (ART) has considerable potential in treatment of bladder cancer due to large inter-fractional changes in shape and size of the target. The aim of this study was to compare our clinically applied method for plan library creation that involves manual bladder delineations (Clin-ART) with a method using the deformation vector fields (DVFs) resulting from intensity-based deformable image registrations (DVF-based ART). Materials and methods: The study included thirteen patients with urinary bladder cancer who had daily cone beam CTs (CBCTs) acquired for set-up. In both ART strategies investigated, three plan selection volumes were generated using the CBCTs from the first four fractions; in Clin-ART boolean combinations of delineated bladders were used, while the DVF-based strategy applied combinations of the mean and standard deviation of patient-specific DVFs. The volume ratios (VRs) of the course-averaged PTV for the two ART strategies relative the non-adaptive PTV were calculated. Results: Both Clin-ART and DVF-based ART considerably reduced the course-averaged PTV, compared to non-adaptive RT. The VR for DVF-based ART was lower than for Clin-ART (0.65 vs. 0.73; p < 0.01). Conclusions: DVF-based ART for bladder irradiation has a considerable normal tissue sparing potential surpassing our already highly conformal clinically applied ART strategy

  3. An adaptive radiotherapy planning strategy for bladder cancer using deformation vector fields.

    Science.gov (United States)

    Vestergaard, Anne; Kallehauge, Jesper Folsted; Petersen, Jørgen Breede Baltzer; Høyer, Morten; Søndergaard, Jimmi; Muren, Ludvig Paul

    2014-09-01

    Adaptive radiotherapy (ART) has considerable potential in treatment of bladder cancer due to large inter-fractional changes in shape and size of the target. The aim of this study was to compare our clinically applied method for plan library creation that involves manual bladder delineations (Clin-ART) with a method using the deformation vector fields (DVFs) resulting from intensity-based deformable image registrations (DVF-based ART). The study included thirteen patients with urinary bladder cancer who had daily cone beam CTs (CBCTs) acquired for set-up. In both ART strategies investigated, three plan selection volumes were generated using the CBCTs from the first four fractions; in Clin-ART boolean combinations of delineated bladders were used, while the DVF-based strategy applied combinations of the mean and standard deviation of patient-specific DVFs. The volume ratios (VRs) of the course-averaged PTV for the two ART strategies relative the non-adaptive PTV were calculated. Both Clin-ART and DVF-based ART considerably reduced the course-averaged PTV, compared to non-adaptive RT. The VR for DVF-based ART was lower than for Clin-ART (0.65 vs. 0.73; p<0.01). DVF-based ART for bladder irradiation has a considerable normal tissue sparing potential surpassing our already highly conformal clinically applied ART strategy. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  4. Achieving Consistent Doppler Measurements from SDO/HMI Vector Field Inversions

    Science.gov (United States)

    Schuck, Peter W.; Antiochos, S. K.; Leka, K. D.; Barnes, Graham

    2016-01-01

    NASA's Solar Dynamics Observatory is delivering vector magnetic field observations of the full solar disk with unprecedented temporal and spatial resolution; however, the satellite is in a highly inclined geosynchronous orbit. The relative spacecraft-Sun velocity varies by +/-3 kms-1 over a day, which introduces major orbital artifacts in the Helioseismic Magnetic Imager (HMI) data. We demonstrate that the orbital artifacts contaminate all spatial and temporal scales in the data. We describe a newly developed three-stage procedure for mitigating these artifacts in the Doppler data obtained from the Milne-Eddington inversions in the HMI pipeline. The procedure ultimately uses 32 velocity-dependent coefficients to adjust 10 million pixels-a remarkably sparse correction model given the complexity of the orbital artifacts. This procedure was applied to full-disk images of AR 11084 to produce consistent Dopplergrams. The data adjustments reduce the power in the orbital artifacts by 31 dB. Furthermore, we analyze in detail the corrected images and show that our procedure greatly improves the temporal and spectral properties of the data without adding any new artifacts. We conclude that this new procedure makes a dramatic improvement in the consistency of the HMI data and in its usefulness for precision scientific studies.

  5. Reservoir rock permeability prediction using support vector regression in an Iranian oil field

    International Nuclear Information System (INIS)

    Saffarzadeh, Sadegh; Shadizadeh, Seyed Reza

    2012-01-01

    Reservoir permeability is a critical parameter for the evaluation of hydrocarbon reservoirs. It is often measured in the laboratory from reservoir core samples or evaluated from well test data. The prediction of reservoir rock permeability utilizing well log data is important because the core analysis and well test data are usually only available from a few wells in a field and have high coring and laboratory analysis costs. Since most wells are logged, the common practice is to estimate permeability from logs using correlation equations developed from limited core data; however, these correlation formulae are not universally applicable. Recently, support vector machines (SVMs) have been proposed as a new intelligence technique for both regression and classification tasks. The theory has a strong mathematical foundation for dependence estimation and predictive learning from finite data sets. The ultimate test for any technique that bears the claim of permeability prediction from well log data is the accurate and verifiable prediction of permeability for wells where only the well log data are available. The main goal of this paper is to develop the SVM method to obtain reservoir rock permeability based on well log data. (paper)

  6. New Multigrid Method Including Elimination Algolithm Based on High-Order Vector Finite Elements in Three Dimensional Magnetostatic Field Analysis

    Science.gov (United States)

    Hano, Mitsuo; Hotta, Masashi

    A new multigrid method based on high-order vector finite elements is proposed in this paper. Low level discretizations in this method are obtained by using low-order vector finite elements for the same mesh. Gauss-Seidel method is used as a smoother, and a linear equation of lowest level is solved by ICCG method. But it is often found that multigrid solutions do not converge into ICCG solutions. An elimination algolithm of constant term using a null space of the coefficient matrix is also described. In three dimensional magnetostatic field analysis, convergence time and number of iteration of this multigrid method are discussed with the convectional ICCG method.

  7. ABCXYZ: vector potential (A) and magnetic field (B) code (C) for Cartesian (XYZ) geometry using general current elements

    International Nuclear Information System (INIS)

    Anderson, D.V.; Breazeal, J.; Finan, C.H.; Johnston, B.M.

    1976-01-01

    ABCXYZ is a computer code for obtaining the Cartesian components of the vector potential and the magnetic field on an observed grid from an arrangement of current-carrying wires. Arbitrary combinations of straight line segments, arcs, and loops are allowed in the specification of the currents. Arbitrary positions and orientations of the current-carrying elements are also allowed. Specification of the wire diameter permits the computation of well-defined fields, even in the interiors of the conductors. An optical feature generates magnetic field lines. Extensive graphical and printed output is available to the user including contour, grid-line, and field-line plots. 12 figures, 1 table

  8. On particle creation by black holes. [Quantum mechanical state vector, gravitational collapse, Hermition scalar field, density matrix

    Energy Technology Data Exchange (ETDEWEB)

    Wald, R M [Chicago Univ., Ill. (USA). Lab. for Astrophysics and Space Research

    1975-11-01

    Hawking's analysis of particle creation by black holes is extended by explicity obtaining the expression for the quantum mechanical state vector PSI which results from particle creation starting from the vacuum during gravitational collapse. We first discuss the quantum field theory of a Hermitian scalar field in an external potential or in a curved but asymptotically flat spacetime with no horizon present. Making the necessary modification for the case when a horizon is present, we apply this theory for a massless Hermitian scalar field to get the state vector describing the steady state emission at late times for particle creation during gravitational collapse to a Schwarzschild black hole. We find that the state vector describing particle creation from the vacuum decomposes into a simple product of state vectors for each individual mode. The density matrix describing emission of particles to infinity by this particle creation process is found to be identical to that of black body emission. Thus, black hole emission agrees in complete detail with black body emission (orig./BJ).

  9. An MHD Simulation of Solar Active Region 11158 Driven with a Time-dependent Electric Field Determined from HMI Vector Magnetic Field Measurement Data

    Science.gov (United States)

    Hayashi, Keiji; Feng, Xueshang; Xiong, Ming; Jiang, Chaowei

    2018-03-01

    For realistic magnetohydrodynamics (MHD) simulation of the solar active region (AR), two types of capabilities are required. The first is the capability to calculate the bottom-boundary electric field vector, with which the observed magnetic field can be reconstructed through the induction equation. The second is a proper boundary treatment to limit the size of the sub-Alfvénic simulation region. We developed (1) a practical inversion method to yield the solar-surface electric field vector from the temporal evolution of the three components of magnetic field data maps, and (2) a characteristic-based free boundary treatment for the top and side sub-Alfvénic boundary surfaces. We simulate the temporal evolution of AR 11158 over 16 hr for testing, using Solar Dynamics Observatory/Helioseismic Magnetic Imager vector magnetic field observation data and our time-dependent three-dimensional MHD simulation with these two features. Despite several assumptions in calculating the electric field and compromises for mitigating computational difficulties at the very low beta regime, several features of the AR were reasonably retrieved, such as twisting field structures, energy accumulation comparable to an X-class flare, and sudden changes at the time of the X-flare. The present MHD model can be a first step toward more realistic modeling of AR in the future.

  10. An introduction to vectors, vector operators and vector analysis

    CERN Document Server

    Joag, Pramod S

    2016-01-01

    Ideal for undergraduate and graduate students of science and engineering, this book covers fundamental concepts of vectors and their applications in a single volume. The first unit deals with basic formulation, both conceptual and theoretical. It discusses applications of algebraic operations, Levi-Civita notation, and curvilinear coordinate systems like spherical polar and parabolic systems and structures, and analytical geometry of curves and surfaces. The second unit delves into the algebra of operators and their types and also explains the equivalence between the algebra of vector operators and the algebra of matrices. Formulation of eigen vectors and eigen values of a linear vector operator are elaborated using vector algebra. The third unit deals with vector analysis, discussing vector valued functions of a scalar variable and functions of vector argument (both scalar valued and vector valued), thus covering both the scalar vector fields and vector integration.

  11. Effective genetic modification and differentiation of hMSCs upon controlled release of rAAV vectors using alginate/poloxamer composite systems.

    Science.gov (United States)

    Díaz-Rodríguez, P; Rey-Rico, A; Madry, H; Landin, M; Cucchiarini, M

    2015-12-30

    Viral vectors are common tools in gene therapy to deliver foreign therapeutic sequences in a specific target population via their natural cellular entry mechanisms. Incorporating such vectors in implantable systems may provide strong alternatives to conventional gene transfer procedures. The goal of the present study was to generate different hydrogel structures based on alginate (AlgPH155) and poloxamer PF127 as new systems to encapsulate and release recombinant adeno-associated viral (rAAV) vectors. Inclusion of rAAV in such polymeric capsules revealed an influence of the hydrogel composition and crosslinking temperature upon the vector release profiles, with alginate (AlgPH155) structures showing the fastest release profiles early on while over time vector release was more effective from AlgPH155+PF127 [H] capsules crosslinked at a high temperature (50°C). Systems prepared at room temperature (AlgPH155+PF127 [C]) allowed instead to achieve a more controlled release profile. When tested for their ability to target human mesenchymal stem cells, the different systems led to high transduction efficiencies over time and to gene expression levels in the range of those achieved upon direct vector application, especially when using AlgPH155+PF127 [H]. No detrimental effects were reported on either cell viability or on the potential for chondrogenic differentiation. Inclusion of PF127 in the capsules was also capable of delaying undesirable hypertrophic cell differentiation. These findings are of promising value for the further development of viral vector controlled release strategies. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. High-efficiency and flexible generation of vector vortex optical fields by a reflective phase-only spatial light modulator.

    Science.gov (United States)

    Cai, Meng-Qiang; Wang, Zhou-Xiang; Liang, Juan; Wang, Yan-Kun; Gao, Xu-Zhen; Li, Yongnan; Tu, Chenghou; Wang, Hui-Tian

    2017-08-01

    The scheme for generating vector optical fields should have not only high efficiency but also flexibility for satisfying the requirements of various applications. However, in general, high efficiency and flexibility are not compatible. Here we present and experimentally demonstrate a solution to directly, flexibly, and efficiently generate vector vortex optical fields (VVOFs) with a reflective phase-only liquid crystal spatial light modulator (LC-SLM) based on optical birefringence of liquid crystal molecules. To generate the VVOFs, this approach needs in principle only a half-wave plate, an LC-SLM, and a quarter-wave plate. This approach has some advantages, including a simple experimental setup, good flexibility, and high efficiency, making the approach very promising in some applications when higher power is need. This approach has a generation efficiency of 44.0%, which is much higher than the 1.1% of the common path interferometric approach.

  13. Development of software-hardware complex for investigation of the vector field of speeds in the cyclone-separator

    Science.gov (United States)

    Borisov, A.

    2018-05-01

    The current issue of studying the vector velocity field in a cyclone-separator with a screw insert is considered in the article. Modeling of the velocity vector field in SolidWorks was carried out, tangential, axial and radial velocities were investigated. Also, a software and hardware complex was developed that makes it possible to obtain data on the speed inside a cyclone separator. The results of the experiment showed that on flour dusts the efficiency of the cyclone separator in question was more than 99.5%, with an air flow rate of 376 m3 / h, 472 m3 / h and 516 m3 / h, and ΔP less than 600 Pa. The velocity in the inlet branch of the screw insert was 18-20 m / s, and at the exit of the screw insert the airflow velocity is 50-70 m / s.

  14. Wage Differentials by Field of Study--The Case of German University Graduates

    Science.gov (United States)

    Grave, Barbara S.; Goerlitz, Katja

    2012-01-01

    Using data on German university graduates, this paper analyzes wage differentials by field of study at labor market entry and five to six years later. At both points of time, graduates from arts/humanities have lower average monthly wages compared to other fields. Blinder-Oaxaca decompositions show that these wage differentials can be explained…

  15. Noether charges for self-interacting quantum field theories in curved spacetimes with a Killing-vector

    International Nuclear Information System (INIS)

    Hollands, S.

    2001-01-01

    We consider a self-interacting, perturbative Klein-Gordon quantum field in a curved spacetime admitting a Killing vector field. We show that the action of this spacetime symmetry on interacting field operators can be implemented by a Noether charge which arises, in a certain sense, as a surface integral over the time-component of some interacting Noether current-density associated with the Killing field. The proof of this involves the demonstration of a corresponding set of Ward identities. Our work is based on the perturbative construction by Brunetti and Fredenhagen (Commun. Math. Phys. 208 (2000) 623-661) of self-interacting quantum field theories in general globally hyperbolic spacetimes. (orig.)

  16. Systematic optimization of exterior measurement locations for the determination of interior magnetic field vector components in inaccessible regions

    Energy Technology Data Exchange (ETDEWEB)

    Nouri, N.; Plaster, B.

    2014-12-11

    An experiment may face the challenge of real-time determination of the magnetic field vector components present within some interior region of the experimental apparatus over which it is impossible to directly measure the field components during the operation of the experiment. As a solution to this problem, we propose a general concept which provides for a unique determination of the field components within such an interior region solely from exterior measurements at fixed discrete locations. The method is general and does not require the field to possess any type of symmetry. We describe our systematic approach for optimizing the locations of these exterior measurements which maximizes their sensitivity to successive terms in a multipole expansion of the field.

  17. Relation of the Dsub(st) index to the azimuth component of the interplanetary magnetic field vector during separate storms

    International Nuclear Information System (INIS)

    Kovalevskij, I.V.; Levitin, A.E.; Fedoseeva, M.K.

    1984-01-01

    A relation between the index Dsub(st) and azimuthal component Bsub(y) of interplanetary magnetic field (IMF) vector during several magnetic storms with Dsub(st) > 100nT is discussed. It is established that the relation between Dsub(st) index and Bsub(y) and Esub(z) component of electric interplanetary field (EIF) is closed than the relation between Dsub(st) and Bsub(z) component of IMF and Esub(y) component of EIF. Correlation coefficients of Dsub(st) and Bsub(y) and Esub(z) differ but slightly from each other

  18. Vector-free and transgene-free human iPS cells differentiate into functional neurons and enhance functional recovery after ischemic stroke in mice.

    Directory of Open Access Journals (Sweden)

    Osama Mohamad

    Full Text Available Stroke is a leading cause of human death and disability in the adult population in the United States and around the world. While stroke treatment is limited, stem cell transplantation has emerged as a promising regenerative therapy to replace or repair damaged tissues and enhance functional recovery after stroke. Recently, the creation of induced pluripotent stem (iPS cells through reprogramming of somatic cells has revolutionized cell therapy by providing an unlimited source of autologous cells for transplantation. In addition, the creation of vector-free and transgene-free human iPS (hiPS cells provides a new generation of stem cells with a reduced risk of tumor formation that was associated with the random integration of viral vectors seen with previous techniques. However, the potential use of these cells in the treatment of ischemic stroke has not been explored. In the present investigation, we examined the neuronal differentiation of vector-free and transgene-free hiPS cells and the transplantation of hiPS cell-derived neural progenitor cells (hiPS-NPCs in an ischemic stroke model in mice. Vector-free hiPS cells were maintained in feeder-free and serum-free conditions and differentiated into functional neurons in vitro using a newly developed differentiation protocol. Twenty eight days after transplantation in stroke mice, hiPS-NPCs showed mature neuronal markers in vivo. No tumor formation was seen up to 12 months after transplantation. Transplantation of hiPS-NPCs restored neurovascular coupling, increased trophic support and promoted behavioral recovery after stroke. These data suggest that using vector-free and transgene-free hiPS cells in stem cell therapy are safe and efficacious in enhancing recovery after focal ischemic stroke in mice.

  19. Laboratory and field evaluation of medicinal plant extracts against filarial vector, Culex quinquefasciatus Say (Diptera: Culicidae)

    Science.gov (United States)

    In this study, chemical extracts of Jatropha curcas, Hyptis suaveolens, Abutilon indicum, and Leucas aspera were tested for toxicity to larvae of the filariasis vector Culex quinquefasciatus. Respective median lethal concentrations (LC50) for hexane, chloroform, ethyl acetate, and methanol extracts...

  20. Chromatic discrimination: differential contributions from two adapting fields

    Science.gov (United States)

    Cao, Dingcai; Lu, Yolanda H.

    2012-01-01

    To test whether a retinal or cortical mechanism sums contributions from two adapting fields to chromatic discrimination, L/M discrimination was measured with a test annulus surrounded by an inner circular field and an outer rectangular field. A retinal summation mechanism predicted that the discrimination pattern would not change with a change in the fixation location. Therefore, the fixation was set either in the inner or the outer field in two experiments. When one of the adapting fields was “red” and the other was “green,” the adapting field where the observer fixated always had a stronger influence on chromatic discrimination. However, when one adapting field was “white” and the other was red or green, the white field always weighted more heavily than the other adapting field in determining discrimination thresholds, whether the white field or the fixation was in the inner or outer adapting field. These results suggest that a cortical mechanism determines the relative contributions from different adapting fields. PMID:22330364

  1. A Search for Vector Magnetic Field Variations Associated with the M-Class Flares of 1991 June 10 in AR 6659

    Science.gov (United States)

    Hagyard, Mona J.; Stark, B. A.; Venkatakrishnan, P.

    1998-01-01

    A careful analysis of a 6-hour time sequence of vector magnetograms of AR 6659, observed on 1991 June 10 with the MSFC vector magnetograph, has revealed only minor changes in the vector magnetic field azimuths in the vicinity of two M-class flares, and the association of these changes with the flares is not unambiguous. In this paper we present our analysis of the data which includes comparison of vector magnetograms prior to and during the flares, calculation of distributions of the rms variation of the azimuth at each pixel in the field of view of the active region, and examination of the variation with time of the azimuths at every pixel covered by the main flare emissions as observed with the H-alpha telescope coaligned with the vector magnetograph. We also present results of an analysis of evolutionary changes in the azimuth over the field of view of the active region.

  2. A new approach for weed control in a cucurbit field employing an attenuated potyvirus-vector for herbicide resistance.

    Science.gov (United States)

    Shiboleth, Y M; Arazi, T; Wang, Y; Gal-On, A

    2001-12-14

    Expression of bar, a phosphinothricin acetyltransferase, in plant tissues, leads to resistance of these plants to glufosinate ammonium based herbicides. We have created a bar expressing, attenuated zucchini yellow mosaic potyvirus-vector, AGII-Bar, to enable herbicide use in cucurbit fields. The parental vector, ZYMV-AGII, has been rendered environmentally safe by both disease-symptom attenuation and aphid-assisted virus transmission abolishment. The recombinant AGII-Bar virus-encoding cDNA, when inoculated on diverse cucurbits was highly infectious, accumulated to similar levels as AGII, and elicited attenuated AGII-like symptoms. Potted cucurbits inoculated with AGII-Bar became herbicide resistant about a week post-inoculation. Herbicide resistance was sustained in squash over a period of at least 26 days and for at least 60 days in cucumber grown in a net-house under commercial conditions. To test the applicability of AGII-Bar use in a weed-infested field, a controlled experiment including more than 450 plants inoculated with this construct, was performed. Different dosages of glufosinate ammonium were sprayed, 2 weeks after planting, on the foliage of melons, cucumbers, squash, and watermelons. AGII-Bar provided protection to all inoculated plants, of every variety tested, at each dosage applied, including the highest doses that totally eradicated weeds. This study demonstrates that AGII-Bar can be utilized to facilitate weed control in cucurbits and exemplifies the practical potential of attenuated virus-vector use in agriculture.

  3. Flare research with the NASA/MSFC vector magnetograph - Observed characteristics of sheared magnetic fields that produce flares

    Science.gov (United States)

    Moore, R. L.; Hagyard, M. J.; Davis, J. M.

    1987-01-01

    The present MSFC Vector Magnetograph has sufficient spatial resolution (2.7 arcsec pixels) and sensitivity to the transverse field (the noise level is about 100 gauss) to map the transverse field in active regions accurately enough to reveal key aspects of the sheared magnetic fields commonly found at flare sites. From the measured shear angle along the polarity inversion line in sites that flared and in other shear sites that didn't flare, evidence is found that a sufficient condition for a flare to occur in 1000 gauss fields in and near sunspots is that both: (1) the maximum shear angle exceed 85 degrees; and (2) the extent of strong shear (shear angle of greater than 80 degrees) exceed 10,000 km.

  4. Differentiated-effect shims for medium field levels and saturation

    International Nuclear Information System (INIS)

    Richie, A.

    1976-01-01

    The arrangement of shims on the upstream and downstream ends of magnets may be based on the independent effects of variations in the geometric length and degree of saturation at the edges of the poles. This technique can be used to match the bending strength of an accelerator's magnets at two field levels (medium fields and maximum fields) and thus save special procedures (mixing the laminations, local compensation for errors by arranging the magnets in the appropriate order) and special devices (for instance, correcting dipoles) solely for correcting bending strengths at low field levels. (Auth.)

  5. An investigation into the vector ellipticity of extremely low frequency magnetic fields from appliances in UK homes

    Science.gov (United States)

    Ainsbury, Elizabeth A.; Conein, Emma; Henshaw, Denis L.

    2005-07-01

    Elliptically polarized magnetic fields induce higher currents in the body compared with their plane polarized counterparts. This investigation examines the degree of vector ellipticity of extremely low frequency magnetic fields (ELF-MFs) in the home, with regard to the adverse health effects reportedly associated with ELF-MFs, for instance childhood leukaemia. Tri-axial measurements of the magnitude and phase of the 0-3000 Hz magnetic fields, produced by 226 domestic mains-fed appliances of 32 different types, were carried out in 16 homes in Worcestershire in the summer of 2004. Magnetic field strengths were low, with average (RMS) values of 0.03 ± 0.02 µT across all residences. In contrast, background field ellipticities were high, on average 47 ± 11%. Microwave and electric ovens produced the highest ellipticities: mean respective values of 21 ± 21% and 21 ± 17% were observed 20 cm away from these appliances. There was a negative correlation between field strength and field polarization, which we attribute to the higher relative field contribution close to each individual (single-phase) appliance. The measurements demonstrate that domestic magnetic fields are extremely complex and cannot simply be characterized by traditional measurements such as time-weighted average or peak exposure levels. We conclude that ellipticity should become a relevant metric for future epidemiological studies of health and ELF-MF exposure. This work is supported by the charity CHILDREN with LEUKAEMIA, registered charity number 298405.

  6. An investigation into the vector ellipticity of extremely low frequency magnetic fields from appliances in UK homes

    International Nuclear Information System (INIS)

    Ainsbury, Elizabeth A; Conein, Emma; Henshaw, Denis L

    2005-01-01

    Elliptically polarized magnetic fields induce higher currents in the body compared with their plane polarized counterparts. This investigation examines the degree of vector ellipticity of extremely low frequency magnetic fields (ELF-MFs) in the home, with regard to the adverse health effects reportedly associated with ELF-MFs, for instance childhood leukaemia. Tri-axial measurements of the magnitude and phase of the 0-3000 Hz magnetic fields, produced by 226 domestic mains-fed appliances of 32 different types, were carried out in 16 homes in Worcestershire in the summer of 2004. Magnetic field strengths were low, with average (RMS) values of 0.03 ± 0.02 μT across all residences. In contrast, background field ellipticities were high, on average 47 ± 11%. Microwave and electric ovens produced the highest ellipticities: mean respective values of 21 ± 21% and 21 ± 17% were observed 20 cm away from these appliances. There was a negative correlation between field strength and field polarization, which we attribute to the higher relative field contribution close to each individual (single-phase) appliance. The measurements demonstrate that domestic magnetic fields are extremely complex and cannot simply be characterized by traditional measurements such as time-weighted average or peak exposure levels. We conclude that ellipticity should become a relevant metric for future epidemiological studies of health and ELF-MF exposure

  7. Flare activity, sunspot motions, and the evolution of vector magnetic fields in Hale region 17244

    Science.gov (United States)

    Neidig, Donald F.; Hagyard, Mona J.; Machado, Marcos E.; Smith, Jesse B., Jr.

    1986-01-01

    The magnetic and dynamical circumstances leading to the 1B/M4 flare of November 5, 1980 are studied, and a strong association is found between the buildup of magnetic shear and the onset of flare activity within the active region. The development of shear, as observed directly in vector magnetograms, is consistent in detail with the dynamical history of the active region and identifies the precise location of the optical and hard-X-ray kernels of the flare emission.

  8. First report of the infection of insecticide-resistant malaria vector mosquitoes with an entomopathogenic fungus under field conditions

    Science.gov (United States)

    2011-01-01

    Background Insecticide-resistant mosquitoes are compromising the ability of current mosquito control tools to control malaria vectors. A proposed new approach for mosquito control is to use entomopathogenic fungi. These fungi have been shown to be lethal to both insecticide-susceptible and insecticide-resistant mosquitoes under laboratory conditions. The goal of this study was to see whether entomopathogenic fungi could be used to infect insecticide-resistant malaria vectors under field conditions, and to see whether the virulence and viability of the fungal conidia decreased after exposure to ambient African field conditions. Methods This study used the fungus Beauveria bassiana to infect the insecticide-resistant malaria vector Anopheles gambiae s.s (Diptera: Culicidae) VKPER laboratory colony strain. Fungal conidia were applied to polyester netting and kept under West African field conditions for varying periods of time. The virulence of the fungal-treated netting was tested 1, 3 and 5 days after net application by exposing An. gambiae s.s. VKPER mosquitoes in WHO cone bioassays carried out under field conditions. In addition, the viability of B. bassiana conidia was measured after up to 20 days exposure to field conditions. Results The results show that B. bassiana infection caused significantly increased mortality with the daily risk of dying being increased by 2.5× for the fungus-exposed mosquitoes compared to the control mosquitoes. However, the virulence of the B. bassiana conidia decreased with increasing time spent exposed to the field conditions, the older the treatment on the net, the lower the fungus-induced mortality rate. This is likely to be due to the climate because laboratory trials found no such decline within the same trial time period. Conidial viability also decreased with increasing exposure to the net and natural abiotic environmental conditions. After 20 days field exposure the conidial viability was 30%, but the viability of control

  9. Alternating current electric field effects on neural stem cell viability and differentiation.

    Science.gov (United States)

    Matos, Marvi A; Cicerone, Marcus T

    2010-01-01

    Methods utilizing stem cells hold tremendous promise for tissue engineering applications; however, many issues must be worked out before these therapies can be routinely applied. Utilization of external cues for preimplantation expansion and differentiation offers a potentially viable approach to the use of stem cells in tissue engineering. The studies reported here focus on the response of murine neural stem cells encapsulated in alginate hydrogel beads to alternating current electric fields. Cell viability and differentiation was studied as a function of electric field magnitude and frequency. We applied fields of frequency (0.1-10) Hz, and found a marked peak in neural stem cell viability under oscillatory electric fields with a frequency of 1 Hz. We also found an enhanced propensity for astrocyte differentiation over neuronal differentiation in the 1 Hz cultures, as compared to the other field frequencies we studied. Published 2010 American Institute of Chemical Engineers

  10. Numerical investigation of renormalization group equations in a model of vector field advected by anisotropic stochastic environment

    International Nuclear Information System (INIS)

    Busa, J.; Ajryan, Eh.A.; Jurcisinova, E.; Jurcisin, M.; Remecky, R.

    2009-01-01

    Using the field-theoretic renormalization group, the influence of strong uniaxial small-scale anisotropy on the stability of inertial-range scaling regimes in a model of passive transverse vector field advected by an incompressible turbulent flow is investigated. The velocity field is taken to have a Gaussian statistics with zero mean and defined noise with finite time correlations. It is shown that the inertial-range scaling regimes are given by the existence of infrared stable fixed points of the corresponding renormalization group equations with some angle integrals. The analysis of integrals is given. The problem is solved numerically and the borderline spatial dimension d e (1,3] below which the stability of the scaling regime is not present is found as a function of anisotropy parameters

  11. BDDC Algorithms with deluxe scaling and adaptive selection of primal constraints for Raviart-Thomas vector fields

    KAUST Repository

    Oh, Duk-Soon; Widlund, Olof B.; Zampini, Stefano; Dohrmann, Clark R.

    2017-01-01

    A BDDC domain decomposition preconditioner is defined by a coarse component, expressed in terms of primal constraints, a weighted average across the interface between the subdomains, and local components given in terms of solvers of local subdomain problems. BDDC methods for vector field problems discretized with Raviart-Thomas finite elements are introduced. The methods are based on a deluxe type of weighted average and an adaptive selection of primal constraints developed to deal with coefficients with high contrast even inside individual subdomains. For problems with very many subdomains, a third level of the preconditioner is introduced.

  12. BDDC Algorithms with deluxe scaling and adaptive selection of primal constraints for Raviart-Thomas vector fields

    KAUST Repository

    Oh, Duk-Soon

    2017-06-13

    A BDDC domain decomposition preconditioner is defined by a coarse component, expressed in terms of primal constraints, a weighted average across the interface between the subdomains, and local components given in terms of solvers of local subdomain problems. BDDC methods for vector field problems discretized with Raviart-Thomas finite elements are introduced. The methods are based on a deluxe type of weighted average and an adaptive selection of primal constraints developed to deal with coefficients with high contrast even inside individual subdomains. For problems with very many subdomains, a third level of the preconditioner is introduced.

  13. Solar magnetic field studies using the 12 micron emission lines. II - Stokes profiles and vector field samples in sunspots

    Science.gov (United States)

    Hewagama, Tilak; Deming, Drake; Jennings, Donald E.; Osherovich, Vladimir; Wiedemann, Gunter; Zipoy, David; Mickey, Donald L.; Garcia, Howard

    1993-01-01

    Polarimetric observations at 12 microns of two sunpots are reported. The horizontal distribution of parameters such as magnetic field strength, inclination, azimuth, and magnetic field filling factors are presented along with information about the height dependence of the magnetic field strength. Comparisons with contemporary magnetostatic sunspot models are made. The magnetic data are used to estimate the height of 12 micron line formation. From the data, it is concluded that within a stable sunspot there are no regions that are magnetically filamentary, in the sense of containing both strong-field and field-free regions.

  14. The MAGSAT vector magnetometer: A precision fluxgate magnetometer for the measurement of the geomagnetic field

    Science.gov (United States)

    Acuna, M. H.; Scearce, C. S.; Seek, J.; Scheifele, J.

    1978-01-01

    A description of the precision triaxial fluxgate magnetometer to be flown aboard the MAGSAT spacecraft is presented. The instrument covers the range of + or - 64,000 nT with a resolution of + or - 0.5 nT, an intrinsic accuracy of + or - 0.001% of full scale and an angular alignment stability of the order of 2 seconds of arc. It was developed at NASA's Goddard Space Flight Center and represents the state-of-the-art in precision vector magnetometers developed for spaceflight use.

  15. The C*-algebra of a vector bundle and fields of Cuntz algebras

    OpenAIRE

    Vasselli, Ezio

    2004-01-01

    We study the Pimsner algebra associated with the module of continuous sections of a Hilbert bundle, and prove that it is a continuous bundle of Cuntz algebras. We discuss the role of such Pimsner algebras w.r.t. the notion of inner endomorphism. Furthermore, we study bundles of Cuntz algebras carrying a global circle action, and assign to them a class in the representable KK-group of the zero-grade bundle. We compute such class for the Pimsner algebra of a vector bundle.

  16. Temporal dynamics of iris yellow spot virus and its vector, Thrips tabaci (Thysanoptera: Thripidae), in seeded and transplanted onion fields.

    Science.gov (United States)

    Hsu, Cynthia L; Hoepting, Christine A; Fuchs, Marc; Shelton, Anthony M; Nault, Brian A

    2010-04-01

    Onion thrips, Thrips tabaci (Lindeman) (Thysanoptera: Thripidae), can reduce onion bulb yield and transmit iris yellow spot virus (IYSV) (Bunyaviridae: Tospovirus), which can cause additional yield losses. In New York, onions are planted using seeds and imported transplants. IYSV is not seed transmitted, but infected transplants have been found in other U.S. states. Transplants are also larger than seeded onions early in the season, and thrips, some of which may be viruliferous, may preferentially colonize larger plants. Limited information is available on the temporal dynamics of IYSV and its vector in onion fields. In 2007 and 2008, T. tabaci and IYSV levels were monitored in six seeded and six transplanted fields. We found significantly more thrips in transplanted fields early in the season, but by the end of the season seeded fields had higher levels of IYSV. The percentage of sample sites with IYSV-infected plants remained low (fields. The densities of adult and larval thrips in August and September were better predictors of final IYSV levels than early season thrips densities. For 2007 and 2008, the time onions were harvested may have been more important in determining IYSV levels than whether the onions were seeded or transplanted. Viruliferous thrips emigrating from harvested onion fields into nonharvested ones may be increasing the primary spread of IYSV in late-harvested onions. Managing T. tabaci populations before harvest, and manipulating the spatial arrangement of fields based on harvest date could mitigate the spread of IYSV.

  17. Toward the classification of differential calculi on κ-Minkowski space and related field theories

    Energy Technology Data Exchange (ETDEWEB)

    Jurić, Tajron; Meljanac, Stjepan; Pikutić, Danijel [Ruđer Bošković Institute, Theoretical Physics Division,Bijenička c.54, HR-10002 Zagreb (Croatia); Štrajn, Rina [Dipartimento di Matematica e Informatica, Università di Cagliari,viale Merello 92, I-09123 Cagliari (Italy); INFN, Sezione di Cagliari,Cagliari (Italy)

    2015-07-13

    Classification of differential forms on κ-Minkowski space, particularly, the classification of all bicovariant differential calculi of classical dimension is presented. By imposing super-Jacobi identities we derive all possible differential algebras compatible with the κ-Minkowski algebra for time-like, space-like and light-like deformations. Embedding into the super-Heisenberg algebra is constructed using non-commutative (NC) coordinates and one-forms. Particularly, a class of differential calculi with an undeformed exterior derivative and one-forms is considered. Corresponding NC differential calculi are elaborated. Related class of new Drinfeld twists is proposed. It contains twist leading to κ-Poincaré Hopf algebra for light-like deformation. Corresponding super-algebra and deformed super-Hopf algebras, as well as the symmetries of differential algebras are presented and elaborated. Using the NC differential calculus, we analyze NC field theory, modified dispersion relations, and discuss further physical applications.

  18. Observations of vector magnetic fields with a magneto-optic filter

    Science.gov (United States)

    Cacciani, Alessandro; Varsik, John; Zirin, Harold

    1990-01-01

    The use of the magnetooptic filter to observe solar magnetic fields in the potassium line at 7699 A is described. The filter has been used in the Big Bear videomagnetograph since October 23. It gives a high sensitivity and dynamic range for longitudnal magnetic fields and enables measurement of transverse magnetic fields using the sigma component. Examples of the observations are presented.

  19. Differential bare field drainage properties from airborne microwave observations

    International Nuclear Information System (INIS)

    Bernard, R.; Soars, J.V.; Vidal-Madjar, D.

    1986-01-01

    Time variations of the surface soil moisture can be monitored using active microwave remote sensing. With the existence of airborne systems, it is now possible to estimate this variable on a regional scale. Data from a helicopter-borne scatterometer show that the surface water content reductions during a 9-day period are quite different from one field to another. A simple model describing the water budget of the soil surface layer due to evaporation and drainage is applied. From this model, a pseudo diffusivity can be calculated for each field using only the remotely sensed data. This new parameter gives a quantitative estimate of the observed drying heterogeneities. (author)

  20. Towards 2D field-flow fractionation - Vector separation over slanted open cavities

    Science.gov (United States)

    Bernate, Jorge A.; Yang, Mengfei; Zhao, Hong; Risbud, Sumedh; Paul, Colin; Dallas, Matthew; Konstantopoulos, Konstantinos; Drazer, German; Shaqfeh, Eric S. G.

    2013-11-01

    Planar microfluidic platforms for vector chromatography, in which different species fan out in different directions and can be continuously sorted, are particularly promising for the high throughput separation of multicomponent mixtures. We carry out a computational study of the vector separation of dilute suspensions of rigid and flexible particles transported by a pressure-driven flow over an array of slanted open cavities. The numerical scheme is based on a Stokes flow boundary integral equation method. The simulations are performed in a periodic system without lateral confinement, relevant to microfluidic devices with negligible recirculation in the main channel. We study the deflection of rigid spherical particles, of flexible capsules as a model of white and red blood cells, and of rigid discoidal particles as a model of platelets. We characterize the deflection of different particles as a function of their size, shape, shear elasticity, their release position, and the geometric parameters of the channel. The simulations provide insight into the separation mechanism and allow the optimization of specific devices depending on the application. Good agreement with experiments is observed.

  1. Amplified fragment length polymorphism and pulsed field gel electrophoresis for subspecies differentiation of Serpulina pilosicoli

    DEFF Research Database (Denmark)

    Møller, Kristian; Jensen, Tim Kåre; Boye, Mette

    1999-01-01

    Pulsed field gel electrophoresis (PFGE) and amplified fragment length polymorphism (AFLP) were compared for their ability to differentiate between 50 porcine Serpulina pilosicoli isolates. Both techniques were highly sensitive, dividing the isolates into 36 and 38 groups, respectively. Due...

  2. Learning color receptive fields and color differential structure

    NARCIS (Netherlands)

    ter Haar Romenij, B.M.

    2016-01-01

    In this paper we study the role of brain plasticity, and investigate the emergence and self-emergence of receptive fields from scalar and color natural images by principal component analysis of image patches. We describe the classical experiment on localized PCA on center-surround weighted patches

  3. Differential Gender Performance on the Major Field Test-Business

    Science.gov (United States)

    Bielinska-Kwapisz, Agnieszka; Brown, F. William

    2013-01-01

    The Major Field Test in Business (MFT-B), a standardized assessment test of business knowledge among undergraduate business seniors, is widely used to measure student achievement. Many previous studies analyzing scores on the MFT-B report gender differences on the exam even after controlling for student's aptitude, general intellectual ability,…

  4. Differential equation for genus-two characters in arbitrary rational conformal field theories

    International Nuclear Information System (INIS)

    Mathur, S.D.; Sen, A.

    1989-01-01

    We develop a general method for deriving ordinary differential equations for the genus-two ''characters'' of an arbitrary rational conformal field theory using the hyperelliptic representation of the genus-two moduli space. We illustrate our method by explicitly deriving the character differential equations for k=1 SU(2), G 2 , and F 4 WZW models. Our method provides an intrinsic definition of conformal field theories on higher genus Riemann surfaces. (orig.)

  5. TH-CD-207A-05: Lung Surface Deformation Vector Fields Prediction by Monitoring Respiratory Surrogate Signals

    International Nuclear Information System (INIS)

    Nasehi Tehrani, J; Wang, J; McEwan, A

    2016-01-01

    Purpose: In this study, we developed and evaluated a method for predicting lung surface deformation vector fields (SDVFs) based on surrogate signals such as chest and abdomen motion at selected locations and spirometry measurements. Methods: A Patient-specific 3D triangular surface mesh of the lung region at end-expiration (EE) phase was obtained by threshold-based segmentation method. For each patient, a spirometer recorded the flow volume changes of the lungs; and 192 selected points at a regular spacing of 2cm X 2cm matrix points over a total area of 34cm X 24cm on the surface of chest and abdomen was used to detect chest wall motions. Preprocessing techniques such as QR factorization with column pivoting (QRCP) were employed to remove redundant observations of the chest and abdominal area. To create a statistical model between the lung surface and the corresponding surrogate signals, we developed a predictive model based on canonical ridge regression (CRR). Two unique weighting vectors were selected for each vertex on the surface of the lung, and they were optimized during the training process using the all other phases of 4D-CT except the end-inspiration (EI) phase. These parameters were employed to predict the vertices locations of a testing data set, which was the EI phase of 4D-CT. Results: For ten lung cancer patients, the deformation vector field of each vertex of lung surface mesh was estimated from the external motion at selected positions on the chest wall surface plus spirometry measurements. The average estimation of 98th percentile of error was less than 1 mm (AP= 0.85, RL= 0.61, and SI= 0.82). Conclusion: The developed predictive model provides a non-invasive approach to derive lung boundary condition. Together with personalized biomechanical respiration modelling, the proposed model can be used to derive the lung tumor motion during radiation therapy accurately from non-invasive measurements.

  6. Laboratory and field efficacy of Pedalium murex and predatory copepod, Mesocyclops longisetus on rural malaria vector, Anopheles culicifacies

    Directory of Open Access Journals (Sweden)

    Thangadurai Chitra

    2013-04-01

    Full Text Available Objective: To test the potentiality of the leaf extract of Pedalium murex (P. murex and predatory copepod Mesocyclops longisetus (M. longisetus in individual and combination in controlling the rural malarial vector, Anopheles culicifacies (An. culicifacies in laboratory and field studies. Methods: P. murex leaves were collected from in and around Erode, Tamilnadu, India. The active compounds were extracted with 300 mL of methanol for 8 h in a Soxhlet apparatus. Laboratory studies on larvicidal and pupicidal effects of methanolic extract of P. murex tested against the rural malarial vector, An. culicifacies were significant. Results: Evaluated lethal concentrations (LC50 of P. murex extract were 2.68, 3.60, 4.50, 6.44 and 7.60 mg/L for I, II, III, IV and pupae of An. culicifacies, respectively. Predatory copepod, M. longisetus was examined for their predatory efficacy against the malarial vector, An. culicifacies. M. longisetus showed effective predation on the early instar (47% and 36% on I and II instar when compared with the later ones (3% and 1% on III and IV instar. Predatory efficacy of M. longisetus was increased (70% and 45% on I and II instar when the application was along with the P. murex extract. Conclusions: Predator survival test showed that the methanolic extract of P. murex is non-toxic to the predatory copepod, M. longisetus. Experiments were also conducted to evaluate the efficacy of methanolic extract of P. murex and M. longisetus in the direct breeding sites (paddy fields of An. culicifacies. Reduction in larval density was very high and sustained for a long time in combined treatment of P. murex and M. longisetus.

  7. TH-CD-207A-05: Lung Surface Deformation Vector Fields Prediction by Monitoring Respiratory Surrogate Signals

    Energy Technology Data Exchange (ETDEWEB)

    Nasehi Tehrani, J; Wang, J [UT Southwestern Medical Center, Dallas, TX (United States); McEwan, A [The University of Sydney, Sydney, New South Wales (Australia)

    2016-06-15

    Purpose: In this study, we developed and evaluated a method for predicting lung surface deformation vector fields (SDVFs) based on surrogate signals such as chest and abdomen motion at selected locations and spirometry measurements. Methods: A Patient-specific 3D triangular surface mesh of the lung region at end-expiration (EE) phase was obtained by threshold-based segmentation method. For each patient, a spirometer recorded the flow volume changes of the lungs; and 192 selected points at a regular spacing of 2cm X 2cm matrix points over a total area of 34cm X 24cm on the surface of chest and abdomen was used to detect chest wall motions. Preprocessing techniques such as QR factorization with column pivoting (QRCP) were employed to remove redundant observations of the chest and abdominal area. To create a statistical model between the lung surface and the corresponding surrogate signals, we developed a predictive model based on canonical ridge regression (CRR). Two unique weighting vectors were selected for each vertex on the surface of the lung, and they were optimized during the training process using the all other phases of 4D-CT except the end-inspiration (EI) phase. These parameters were employed to predict the vertices locations of a testing data set, which was the EI phase of 4D-CT. Results: For ten lung cancer patients, the deformation vector field of each vertex of lung surface mesh was estimated from the external motion at selected positions on the chest wall surface plus spirometry measurements. The average estimation of 98th percentile of error was less than 1 mm (AP= 0.85, RL= 0.61, and SI= 0.82). Conclusion: The developed predictive model provides a non-invasive approach to derive lung boundary condition. Together with personalized biomechanical respiration modelling, the proposed model can be used to derive the lung tumor motion during radiation therapy accurately from non-invasive measurements.

  8. Regulation of epithelial differentiation in rat intestine by intraluminal delivery of an adenoviral vector or silencing RNA coding for Schlafen 3.

    Directory of Open Access Journals (Sweden)

    Pavlo L Kovalenko

    Full Text Available Although we stimulate enterocytic proliferation to ameliorate short gut syndrome or mucosal atrophy, less effort has been directed at enterocytic differentiation. Schlafen 3 (Slfn3 is a poorly understood protein induced during IEC-6 enterocytic differentiation. We hypothesized that exogenous manipulation of Slfn3 would regulate enterocytic differentiation in vivo. Adenoviral vector coding for Slfn3 cDNA (Ad-GFP-Slfn3 or silencing RNA for Slfn3 (siSlfn3 was introduced intraluminally into rat intestine. We assessed Slfn3, villin, sucrase-isomaltase (SI, Dpp4, and Glut2 by qRT-PCR, Western blot, and immunohistochemistry. We also studied Slfn3 and these differentiation markers in atrophic defunctionalized jejunal mucosa and the crypt-villus axis of normal jejunum. Ad-GFP-Slfn3 but not Ad-GFP increased Slfn3, villin and Dpp4 expression in human Caco-2 intestinal epithelial cells. Injecting Ad-GFP-Slfn3 into rat jejunum in vivo increased mucosal Slfn3 mRNA three days later vs. intraluminal Ad-GFP. This Slfn3 overexpression was associated with increases in all four differentiation markers. Injecting siSlfn3 into rat jejunum in vivo substantially reduced Slfn3 and all four intestinal mucosal differentiation markers three days later, as well as Dpp4 specific activity. Endogenous Slfn3 was reduced in atrophic mucosa from a blind-end Roux-en-Y anastomosis in parallel with differentiation marker expression together with AKT and p38 signaling. Slfn3 was more highly expressed in the villi than the crypts, paralleling Glut2, SI and Dpp4. Slfn3 is a key intracellular regulator of rat enterocytic differentiation. Understanding how Slfn3 works may identify targets to promote enterocytic differentiation and maintain mucosal function in vivo, facilitating enteral nutrition and improving survival in patients with mucosal atrophy or short gut syndrome.

  9. Field-induced negative differential spin lifetime in silicon.

    Science.gov (United States)

    Li, Jing; Qing, Lan; Dery, Hanan; Appelbaum, Ian

    2012-04-13

    We show that the electric-field-induced thermal asymmetry between the electron and lattice systems in pure silicon substantially impacts the identity of the dominant spin relaxation mechanism. Comparison of empirical results from long-distance spin transport devices with detailed Monte Carlo simulations confirms a strong spin depolarization beyond what is expected from the standard Elliott-Yafet theory even at low temperatures. The enhanced spin-flip mechanism is attributed to phonon emission processes during which electrons are scattered between conduction band valleys that reside on different crystal axes. This leads to anomalous behavior, where (beyond a critical field) reduction of the transit time between spin-injector and spin-detector is accompanied by a counterintuitive reduction in spin polarization and an apparent negative spin lifetime.

  10. Creation of vector bosons by an electric field in curved spacetime

    International Nuclear Information System (INIS)

    Kangal, E. Ersin; Yanar, Hilmi; Havare, Ali; Sogut, Kenan

    2014-01-01

    We investigate the creation rate of massive spin-1 bosons in the de Sitter universe by a time-dependent electric field via the Duffin–Kemmer–Petiau (DKP) equation. Complete solutions are given by the Whittaker functions and particle creation rate is computed by using the Bogoliubov transformation technique. We analyze the influence of the electric field on the particle creation rate for the strong and vanishing electric fields. We show that the electric field amplifies the creation rate of charged, massive spin-1 particles. This effect is analyzed by considering similar calculations performed for scalar and spin-1/2 particles. -- Highlights: •Duffin–Kemmer–Petiau equation is solved exactly in the presence of an electrical field. •Solutions were made in (1+1)-dimensional curved spacetime. •Particle creation rate for the de Sitter model is calculated. •Pure gravitational or pure electrical field effect on the creation rate is analyzed

  11. The photospheric vector magnetic field of a sunspot and its vertical gradient

    Science.gov (United States)

    Hagyard, M. J.; West, E. A.; Tandberg-Hanssen, E.; Smith, J. E.; Henze, W., Jr.; Beckers, J. M.; Bruner, E. C.; Hyder, C. L.; Gurman, J. B.; Shine, R. A.

    1981-01-01

    The results of direct comparisons of photospheric and transition region line-of-sight field observations of sunspots using the SMM UV spectrometer and polarimeter are reported. The analysis accompanying the data is concentrated on demonstrating that the sunspot concentrated magnetic field extends into the transition region. An observation of a sunspot on Oct. 23, 1980 at the S 18 E 03 location is used as an example. Maximum field strengths ranged from 2030-2240 gauss for large and small umbrae viewed and inclination of the field to the line-of-sight was determined for the photosphere and transition region. The distribution of the magnetic field over the sunspot and variation of the line-of-sight gradient are discussed, as are the magnitudes and gradients of the photospheric field across the penumbral-photospheric boundaries.

  12. Differential transgene expression in brain cells in vivo and in vitro from AAV-2 vectors with small transcriptional control units

    International Nuclear Information System (INIS)

    Kuegler, S.; Lingor, P.; Schoell, U.; Zolotukhin, S.; Baehr, M.

    2003-01-01

    Adeno-associated- (AAV) based vectors are promising tools for gene therapy applications in several organs, including the brain, but are limited by their small genome size. Two short promoters, the human synapsin 1 gene promoter (hSYN) and the murine cytomegalovirus immediate early promoter (mCMV), were evaluated in bicistronic AAV-2 vectors for their expression profiles in cultured primary brain cells and in the rat brain. Whereas transgene expression from the hSYN promoter was exclusively neuronal, the murine CMV promoter targeted expression mainly to astrocytes in vitro and showed weak transgene expression in vivo in retinal and cortical neurons, but strong expression in thalamic neurons. We propose that neuron specific transgene expression in combination with enhanced transgene capacity will further substantially improve AAV based vector technology

  13. Medical Entomology: A Reemerging Field of Research to Better Understand Vector-Borne Infectious Diseases.

    Science.gov (United States)

    Laroche, Maureen; Bérenger, Jean-Michel; Delaunay, Pascal; Charrel, Remi; Pradines, Bruno; Berger, Franck; Ranque, Stéphane; Bitam, Idir; Davoust, Bernard; Raoult, Didier; Parola, Philippe

    2017-08-15

    In the last decade, the Chikungunya and Zika virus outbreaks have turned public attention to the possibility of the expansion of vector-borne infectious diseases worldwide. Medical entomology is focused on the study of arthropods involved in human health. We review here some of the research approaches taken by the medical entomology team of the University Hospital Institute (UHI) Méditerranée Infection of Marseille, France, with the support of recent or representative studies. We propose our approaches to technical innovations in arthropod identification and the detection of microorganisms in arthropods, the use of arthropods as epidemiological or diagnostic tools, entomological investigations around clinical cases or within specific populations, and how we have developed experimental models to decipher the interactions between arthropods, microorganisms, and humans. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.

  14. Functional differential equation approach to the large N expansion and mean field perturbation theory

    International Nuclear Information System (INIS)

    Bender, C.M.; Cooper, F.

    1985-01-01

    An apparent difference between formulating mean field perturbation theory for lambdaphi 4 field theory via path integrals or via functional differential equations when there are external sources present is shown not to exist when mean field theory is considered as the N = 1 limit of the 0(N)lambdaphi 4 field theory. A simply method is given for determining the 1/N expansion for the Green's functions in the presence of external sources by directly solving the functional differential equations order by order in 1/N. The 1/N expansion for the effective action GAMMA(phi,chi) is obtained by directly integrating the functional differential equations for the fields phi and chi (equivalent1/2lambda/Nphi/sub α/phi/sup α/-μ 2 ) in the presence of two external sources j = -deltaGAMMA/deltaphi, S = -deltaGAMMA/deltachi

  15. A rotating hairy AdS3 black hole with the metric having only one Killing vector field

    International Nuclear Information System (INIS)

    Iizuka, Norihiro; Ishibashi, Akihiro; Maeda, Kengo

    2015-01-01

    We perturbatively construct a three-dimensional rotating AdS black hole with a real scalar hair. We choose the mass of a scalar field slightly above the Breitenlohner-Freedman bound and impose a general boundary condition for the bulk scalar field at AdS infinity. We first show that rotating BTZ black holes are unstable against scalar field perturbations under our more general boundary condition. Next we construct a rotating hairy black hole perturbatively with respect to a small amplitude ϵ of the scalar field, up to O(ϵ 4 ). Our hairy black hole is stationary and exhibits no dissipation, but the lumps of the non-linearly perturbed geometry break axial symmetry, thus providing the first example of a rotating black hole whose metric admits only one Killing vector field. Furthermore, we numerically show that the entropy of our hairy black hole is larger than that of the BTZ black hole with the same energy and the angular momentum. We briefly discuss if our rotating hairy black hole in lumpy geometry could be the endpoint of the instability.

  16. A vector-based system for the differentiation of mouse embryonic stem cells toward germ-line cells

    Directory of Open Access Journals (Sweden)

    Reza Ebrahimzadeh-Vesal

    2014-08-01

    Conclusion: In this study, we demonstrated the in vitro generation of mouse embryonic stem cells to germ cells by using a backbone vector containing the fusion gene Stra8-EGFP. The Stra8 gene is a retinoic acid-responsive protein and is able to regulate meiotic initiation.

  17. Larval nutrition differentially affects adult fitness and Plasmodium development in the malaria vectors Anopheles gambiae and Anopheles stephensi

    NARCIS (Netherlands)

    Takken, W.; Smallegange, R.C.; Vigneau, A.J.; Johnston, V.; Brown, M.; Mordue-Luntz, A.J.; Billingsley, P.F.

    2013-01-01

    BACKGROUND: Mosquito fitness is determined largely by body size and nutritional reserves. Plasmodium infections in the mosquito and resultant transmission of malaria parasites might be compromised by the vector's nutritional status. We studied the effects of nutritional stress and malaria parasite

  18. Universality in passively advected hydrodynamic fields : the case of a passive vector with pressure

    NARCIS (Netherlands)

    Benzi, R.; Biferale, L.; Toschi, F.

    2001-01-01

    Universality of statistical properties of passive quantities advected by turbulent velocity fields at changing the passive forcing mechanism is discussed. In particular, we concentrate on the statistical properties of an hydrodynamic system with pressure. We present theoretical arguments and

  19. Students' performance in accounting: differential effect of field dependence-independence as a learning style.

    Science.gov (United States)

    Bernardi, Richard A

    2003-08-01

    This study examined the differential moderating effects associated with field dependence-independence and perceptions of stress on students' performance after controlling for SAT Mathematics and Verbal scores as well as students' actual effort on homework. The average performance of 178 third-year accounting majors over three examinations was used to evaluate their understanding of financial accounting. The students also took the Group Embedded Figures Test. While the data indicate that the most significant variables were students' effort, SAT Verbal scores, and their perceptions of stress, these variables were differentially associated with students' performance depending upon whether the student was classified as a field-independent or field-dependent learner.

  20. Equations of motion of higher-spin gauge fields as a free differential algebra

    International Nuclear Information System (INIS)

    Vasil'ev, M.A.

    1988-01-01

    It is shown that the introduction of auxiliary dynamical variables that generalize the gravitational Weyl tensor permits one to reduce the equations of motion of free massless fields of all spins in the anti-de Sitter O(3,2) space to a form characteristic of free differential algebras. The equations of motion of auxiliary gauge fields introduced previously are modified analogously. Arguments are presented to the effect that the equations of motion of interacting massless fields of all spins should be described in terms of a free differential algebra which is a deformation of a known free differential algebra generated by 1- and 0-forms in the adjoint representation of a nonabelian superalgebra of higher spins and auxiliary fields

  1. Semi-field assessment of the BG-Malaria trap for monitoring the African malaria vector, Anopheles arabiensis.

    Directory of Open Access Journals (Sweden)

    Elis P A Batista

    Full Text Available Odour-baited technologies are increasingly considered for effective monitoring of mosquito populations and for the evaluation of vector control interventions. The BG-Malaria trap (BGM, which is an upside-down variant of the widely used BG-Sentinel trap (BGS, has been demonstrated to be effective to sample the Brazilian malaria vector, Anopheles darlingi. We evaluated the BGM as an improved method for sampling the African malaria vectors, Anopheles arabiensis. Experiments were conducted inside a large semi-field cage to compare trapping efficiencies of BGM and BGS traps, both baited with the synthetic attractant, Ifakara blend, supplemented with CO2. We then compared BGMs baited with either of four synthetic mosquito lures, Ifakara blend, Mbita blend, BG-lure or CO2, and an unbaited BGM. Lastly, we compared BGMs baited with the Ifakara blend dispensed via either nylon strips, BG cartridges (attractant-infused microcapsules encased in cylindrical plastic cartridge or BG sachets (attractant-infused microcapsules encased in plastic sachets. All tests were conducted between 6P.M. and 7A.M., with 200-600 laboratory-reared An. arabiensis released nightly in the test chamber. The median number of An. arabiensis caught by the BGM per night was 83, IQR:(73.5-97.75, demonstrating clear superiority over BGS (median catch = 32.5 (25.25-37.5. Compared to unbaited controls, BGMs baited with Mbita blend caught most mosquitoes (45 (29.5-70.25, followed by BGMs baited with CO2 (42.5 (27.5-64, Ifakara blend (31 (9.25-41.25 and BG lure (16 (4-22. BGM caught 51 (29.5-72.25 mosquitoes/night, when the attractants were dispensed using BG-Cartridges, compared to BG-Sachet (29.5 (24.75-40.5, and nylon strips (27 (19.25-38.25, in all cases being significantly superior to unbaited controls (p < 000.1. The findings demonstrate potential of the BGM as a sampling tool for African malaria vectors over the standard BGS trap. Its efficacy can be optimized by selecting

  2. Spin Chirality of Cu3 and V3 Nanomagnets. 1. Rotation Behavior of Vector Chirality, Scalar Chirality, and Magnetization in the Rotating Magnetic Field, Magnetochiral Correlations.

    Science.gov (United States)

    Belinsky, Moisey I

    2016-05-02

    The rotation behavior of the vector chirality κ, scalar chirality χ, and magnetization M in the rotating magnetic field H1 is considered for the V3 and Cu3 nanomagnets, in which the Dzialoshinsky-Moriya coupling is active. The polar rotation of the field H1 of the given strength H1 results in the energy spectrum characterized by different vector and scalar chiralities in the ground and excited states. The magnetochiral correlations between the vector and scalar chiralities, energy, and magnetization in the rotating field were considered. Under the uniform polar rotation of the field H1, the ground-state chirality vector κI performs sawtooth oscillations and the magnetization vector MI performs the sawtooth oscillating rotation that is accompanied by the correlated transformation of the scalar chirality χI. This demonstrates the magnetochiral effect of the joint rotation behavior and simultaneous frustrations of the spin chiralities and magnetization in the rotating field, which are governed by the correlation between the chiralities and magnetization.

  3. Vector solution for the mean electromagnetic fields in a layer of random particles

    Science.gov (United States)

    Lang, R. H.; Seker, S. S.; Levine, D. M.

    1986-01-01

    The mean electromagnetic fields are found in a layer of randomly oriented particles lying over a half space. A matrix-dyadic formulation of Maxwell's equations is employed in conjunction with the Foldy-Lax approximation to obtain equations for the mean fields. A two variable perturbation procedure, valid in the limit of small fractional volume, is then used to derive uncoupled equations for the slowly varying amplitudes of the mean wave. These equations are solved to obtain explicit expressions for the mean electromagnetic fields in the slab region in the general case of arbitrarily oriented particles and arbitrary polarization of the incident radiation. Numerical examples are given for the application to remote sensing of vegetation.

  4. The Levi-Civita Tensor and Identities in Vector Analysis. Vector Field Identities. Modules and Monographs in Undergraduate Mathematics and Its Applications Project. UMAP Unit 427.

    Science.gov (United States)

    Yiu, Chang-li; Wilde, Carroll O.

    Vector analysis is viewed to play a key role in many branches of engineering and the physical sciences. This unit is geared towards deriving identities and establishing "machinery" to make derivations a routine task. It is noted that the module is not an applications unit, but has as its primary objective the goal of providing science,…

  5. Method of estimating horizontal vectors of ionospheric electric field deduced from HF Doppler data

    International Nuclear Information System (INIS)

    Tsutsui, M.; Ogawa, T.; Kamide, Y.; Kroehl, H.W.; Hausman, B.A.

    1988-01-01

    An HF Doppler method for estimating the time variations of the horizontal electric field in the ionosphere is presented which takes into account, for long-lasting variations in the electric field, the effect of electron decay due to attachment and/or recombination processes. The method is applied to an isolated substorm event, using equivalent ionospheric current systems deduced from worldwide magnetometer data in the estimations. The present results are found to agree with data deduced from current systems and high latitude electrojet activity. 18 references

  6. Differential effects of biochar on soils within an eroded field

    Science.gov (United States)

    Schumacher, Thomas; Chintala, Rajesh; Sandhu, Saroop; Kumar, Sandeep; Clay, Dave; Gelderman, Ron; Papiernik, Sharon; Malo, Douglas; Clay, Sharon; Julson, Jim

    2015-04-01

    Future uses of biochar will in part be dependent not only on the effects of biochar on soil processes but also on the availability and economics of biochar production. If pyrolysis for production of bio-oil and syngas becomes wide-spread, biochar as a by-product of bio-oil production will be widely available and relatively inexpensive compared to the production of biochar as primary product. Biochar produced as a by-product of optimized bio-oil production using regionally available feedstocks was examined for properties and for use as an amendment targeted to contrasting soils within an eroded field in an on-farm study initiated in 2013 at Brookings, South Dakota, USA. Three plant based biochar materials produced from carbon optimized gasification of corn stover (Zea mays L.), Ponderosa pine (Pinus ponderosa Lawson and C. Lawson) wood residue, and switchgrass (Panicum virgatum L.) were applied at a 1% (w/w) rate to a Maddock soil (Sandy, Mixed, Frigid Entic Hapludolls) located in an eroded upper landscape position and a Brookings soil (Fine-Silty, Mixed, Superactive, Frigid Pachic Hapludolls) located in a depositional landscape position. The cropping system within this agricultural landscape was a corn (Zea mays L.) and soybean (Glycine max L.) rotation. Biochar physical and chemical properties for each of the feedstocks were determined including pH, surface area, surface charge potential, C-distribution, ash content, macro and micro nutrient composition. Yields, nutrient content, and carbon isotope ratio measurements were made on the harvested seed. Soil physical properties measured included water retention, bulk density, and water infiltration from a ponded double ring infiltrometer. Laboratory studies were conducted to determine the effects of biochar on partitioning of nitrate and phosphorus at soil surface exchange complex and the extracellular enzymes activity of C and N cycles. Crop yields were increased only in the Maddock soil. Biochar interacted with each

  7. Supergravity inspired vector curvaton

    International Nuclear Information System (INIS)

    Dimopoulos, Konstantinos

    2007-01-01

    It is investigated whether a massive Abelian vector field, whose gauge kinetic function is growing during inflation, can be responsible for the generation of the curvature perturbation in the Universe. Particle production is studied and it is shown that the vector field can obtain a scale-invariant superhorizon spectrum of perturbations with a reasonable choice of kinetic function. After inflation the vector field begins coherent oscillations, during which it corresponds to pressureless isotropic matter. When the vector field dominates the Universe, its perturbations give rise to the observed curvature perturbation following the curvaton scenario. It is found that this is possible if, after the end of inflation, the mass of the vector field increases at a phase transition at temperature of order 1 TeV or lower. Inhomogeneous reheating, whereby the vector field modulates the decay rate of the inflaton, is also studied

  8. Polarization coupling of vector Bessel–Gaussian beams

    International Nuclear Information System (INIS)

    Takeuchi, Ryushi; Kozawa, Yuichi; Sato, Shunichi

    2013-01-01

    We report polarization coupling of radial and azimuthal electric field components of a vector light beam as predicted by the fact that the vector Helmholtz equation is expressed as coupled differential equations in cylindrical coordinates. To clearly observe the polarization variation of a beam as it propagates, higher order transverse modes of a vector Bessel–Gaussian beam were generated by a gain distribution modulation technique, which created a narrow ring-shaped gain region in a Nd:YVO 4 crystal. The polarization coupling was confirmed by the observation that the major polarization component of a vector Bessel–Gaussian beam alternates between radial and azimuthal components along with the propagation. (paper)

  9. Reconstruction of coupling architecture of neural field networks from vector time series

    Science.gov (United States)

    Sysoev, Ilya V.; Ponomarenko, Vladimir I.; Pikovsky, Arkady

    2018-04-01

    We propose a method of reconstruction of the network coupling matrix for a basic voltage-model of the neural field dynamics. Assuming that the multivariate time series of observations from all nodes are available, we describe a technique to find coupling constants which is unbiased in the limit of long observations. Furthermore, the method is generalized for reconstruction of networks with time-delayed coupling, including the reconstruction of unknown time delays. The approach is compared with other recently proposed techniques.

  10. Genetic variability in biochemical characters of Brazilian field populations of the Leishmania vector, Lutzomyia longipalpis (Diptera: Psychodidae).

    Science.gov (United States)

    Mukhopadhyay, J; Ghosh, K; Rangel, E F; Munstermann, L E

    1998-12-01

    The phlebotomine sand fly Lutzomyia longipalpis is the insect vector of visceral leishmaniasis, a protozoan disease of increasing incidence and distribution in Central and South America. Electrophoretic allele frequencies of 15 enzyme loci were compared among the L. longipalpis populations selected across its distribution range in Brazil. The mean heterozygosity of two colonized geographic strains (one each from Colombia and Brazil) were 6% and 13% respectively, with 1.6-1.9 alleles detected per locus. In contrast, among the seven widely separated field populations, the mean heterozygosity ranged from 11% to 16% with 2.1-2.9 alleles per locus. No locus was recovered that was diagnostic for any of the field populations. Allelic frequency differences among five field strains from the Amazon basin and eastern coastal Brazil were very low, with Nei's genetic distances of less than 0.01 separating them. The two inland and southerly samples from Minas Gerais (Lapinha) and Bahia (Jacobina) states were more distinctive with genetic distances of 0.024-0.038 and 0.038-0.059, respectively, when compared with the five other samples. These differences were the consequence of several high frequency alleles (glycerol-3-phosphate dehydrogenase [Gpd1.69] and phosphoglucomutase [Pgm1.69]) relatively uncommon in other strains. The low genetic distances, absence of diagnostic loci, and the distribution of genes in geographic space indicate L. longipalpis of Brazil to be a single, but genetically heterogeneous, polymorphic species.

  11. Field differential equations for a potential flow from a Hamilton type variational principle

    International Nuclear Information System (INIS)

    Fierros Palacios, A.

    1992-01-01

    The same theoretical frame that was used to solve the problem of the field equations for a viscous fluid is utilized in this work. The purpose is to obtain the differential field equations for a potential flow from the Lagrangian formalism as in classical field theory. An action functional is introduced as a space-time integral over a region of three-dimensional Euclidean space, of a Lagrangian density as a function of certain field variables. A Hamilton type extremum action principle is postulated with adequate boundary conditions, and a set of differential field equations is derived. A particular Lagrangian density of the T-V type leads to the wave equation for the velocity potential. (Author)

  12. Full-vector geomagnetic field records from the East Eifel, Germany

    Science.gov (United States)

    Monster, Marilyn W. L.; Langemeijer, Jaap; Wiarda, Laura R.; Dekkers, Mark J.; Biggin, Andy J.; Hurst, Elliot A.; Groot, Lennart V. de

    2018-01-01

    To create meaningful models of the geomagnetic field, high-quality directional and intensity input data are needed. However, while it is fairly straightforward to obtain directional data, intensity data are much scarcer, especially for periods before the Holocene. Here, we present data from twelve flows (age range ∼ 200 to ∼ 470 ka) in the East Eifel volcanic field (Germany). These sites had been previously studied and are resampled to further test the recently proposed multi-method palaeointensity approach. Samples are first subjected to classic palaeomagnetic and rock magnetic analyses to optimise the subsequent palaeointensity experiments. Four different palaeointensity methods - IZZI-Thellier, the multispecimen method, calibrated pseudo-Thellier, and microwave-Thellier - are being used in the present study. The latter should be considered as supportive because only one or two specimens per site could be processed. Palaeointensities obtained for ten sites pass our selection criteria: two sites are successful with a single approach, four sites with two approaches, three more sites work with three approaches, and one site with all four approaches. Site-averaged intensity values typically range between 30 and 35 μT. No typically low palaeointensity values are found, in line with paleodirectional results which are compatible with regular palaeosecular variation of the Earth's magnetic field. Results from different methods are remarkably consistent and generally agree well with the values previously reported. They appear to be below the average for the Brunhes chron; there are no indications for relatively higher palaeointensities for units younger than 300 ka. However, our young sites could be close in age, and therefore may not represent the average intensity of the paleofield. Three of our sites are even considered coeval; encouragingly, these do yield the same palaeointensity within uncertainty bounds.

  13. Magnetic Field-Vector Measurements in Quiescent Prominences via the Hanle Effect: Analysis of Prominences Observed at Pic-Du-Midi and at Sacramento Peak

    Science.gov (United States)

    Bommier, V.; Leroy, J. L.; Sahal-Brechot, S.

    1985-01-01

    The Hanle effect method for magnetic field vector diagnostics has now provided results on the magnetic field strength and direction in quiescent prominences, from linear polarization measurements in the He I E sub 3 line, performed at the Pic-du-Midi and at Sacramento Peak. However, there is an inescapable ambiguity in the field vector determination: each polarization measurement provides two field vector solutions symmetrical with respect to the line-of-sight. A statistical analysis capable of solving this ambiguity was applied to the large sample of prominences observed at the Pic-du-Midi (Leroy, et al., 1984); the same method of analysis applied to the prominences observed at Sacramento Peak (Athay, et al., 1983) provides results in agreement on the most probable magnetic structure of prominences; these results are detailed. The statistical results were confirmed on favorable individual cases: for 15 prominences observed at Pic-du-Midi, the two-field vectors are pointing on the same side of the prominence, and the alpha angles are large enough with respect to the measurements and interpretation inaccuracies, so that the field polarity is derived without any ambiguity.

  14. Vector Network Coding

    OpenAIRE

    Ebrahimi, Javad; Fragouli, Christina

    2010-01-01

    We develop new algebraic algorithms for scalar and vector network coding. In vector network coding, the source multicasts information by transmitting vectors of length L, while intermediate nodes process and combine their incoming packets by multiplying them with L X L coding matrices that play a similar role as coding coefficients in scalar coding. Our algorithms for scalar network jointly optimize the employed field size while selecting the coding coefficients. Similarly, for vector co...

  15. Vector Network Coding Algorithms

    OpenAIRE

    Ebrahimi, Javad; Fragouli, Christina

    2010-01-01

    We develop new algebraic algorithms for scalar and vector network coding. In vector network coding, the source multicasts information by transmitting vectors of length L, while intermediate nodes process and combine their incoming packets by multiplying them with L x L coding matrices that play a similar role as coding c in scalar coding. Our algorithms for scalar network jointly optimize the employed field size while selecting the coding coefficients. Similarly, for vector coding, our algori...

  16. Stress-energy tensors for vector fields outside a static black hole

    International Nuclear Information System (INIS)

    Barrios, F.A.; Vaz, C.

    1989-01-01

    We obtain new, approximate stress-energy tensors to describe gauge fields in the neighborhood of a Schwarzschild black hole. We assume that the coefficient of ∇ 2 R in the trace anomaly is correctly given by ζ-function regularization. Our approximation differs from that of Page and of Brown and Ottewill and relies upon a new, improved ansatz for the form of the stress-energy tensor in the ultrastatic optical metric of the black hole. The Israel-Hartle-Hawking thermal tensor is constructed to be regular on the horizon and possess the correct asymptotic behavior. Our approximation of Unruh's tensor is likewise constructed to be regular on the future horizon and exhibit a luminosity which agrees with Page's numerically obtained value. Geometric expressions for the approximate tensors are given, and the approximate energy density of the thermal tensor on the horizon is compared with recent numerical estimates

  17. Modelling Gene Flow between Fields of White Clover with Honeybees as Pollen Vectors

    DEFF Research Database (Denmark)

    Løjtnant, Christina; Boelt, Birte; Clausen, Sabine Karin

    2012-01-01

    The portion-dilution model is a parametric restatement of the conventional view of animal pollination; it predicts the level of pollinator-mediated gene dispersal. In this study, the model was applied to white clover (Trifolium repens) and its most frequent pollinator, the honeybee (Apis mellifera......). One of the three parameters in the portion-dilution model is the mean number of flowers a pollinator visits in one foraging bout. An alternative method to estimate this parameter was developed that was not depending on pollinator hive-seeking behaviour. The new estimation method, based on nectar......% with an estimated 95% percentile of 70%. The results show that the European Union threshold limit of 0.9% GM admixture for food and feed will likely be exceeded at times and especially organic farmers that do not accept GM admixture and often have clover and clover–grass fields might face challenges with admixture...

  18. Full-Vector Geomagnetic Field Records for the Late Quaternary from El Hierro and the Eifel

    Science.gov (United States)

    Monster, M.; de Groot, L. V.; Dekkers, M. J.; van Galen, J. P.; Kuiper, K.; Langemeijer, J.; Wiarda, L. R.

    2015-12-01

    Twenty-eight flows in the age range of c. 100 to c. 500 ka were sampled on the island of El Hierro (Canary Islands, Spain) and twelve in the Eifel (Germany). All sites from the Eifel had been previously dated, whereas the ages of the El Hierro flows were approximated by stratigraphic and directional coherency with a dated section c. 4 km to the north-east. Additionally, seven flows were dated using the ThermoFisher Helix multi-collector mass spectrometer at VU University Amsterdam (the Netherlands). The rocks were subjected to standard rock magnetic and palaeomagnetic experiments. Palaeodirections were obtained using both thermal and alternating-field demagnetisation techniques. Apart from two sites that appear to have been struck by lightning, all sites yielded reliable palaeodirections. Absolute palaeointensities were obtained using three different methods: IZZI-Thellier, the multispecimen protocol and the calibrated pseudo-Thellier technique. Nineteen sites from El Hierro and all twelve sites from the Eifel passed the selection criteria for one or more of these methods, with the pseudo-Thellier technique having the highest success rate (c. 35% for El Hierro and 55% for the Eifel). The palaeointensities obtained for El Hierro were mostly between 20 and 40 μT and for the Eifel between 20 and 50 μT, both with a tendency to be somewhat low compared to the present-day field of c. 39 μT and c. 49 μT, respectively. The pseudo-Thellier and multispecimen methods generally yielded lower palaeointensities than IZZI-Thellier, but no clear trend was visible.

  19. The effect of line damping, magneto-optics and parasitic light on the derivation of sunspot vector magnetic fields

    Science.gov (United States)

    Skumanich, A.; Lites, B. W.

    1985-01-01

    The least square fitting of Stokes observations of sunspots using a Milne-Eddington-Unno model appears to lead, in many circumstances, to various inconsistencies such as anomalously large doppler widths and, hence, small magnetic fields which are significantly below those inferred solely from the Zeeman splitting in the intensity profile. It is found that the introduction of additional physics into the model such as the inclusion of damping wings and magneto-optic birefrigence significantly improves the fit to Stokes parameters. Model fits excluding the intensity profile, i.e., of both magnitude as well as spectral shape of the polarization parameters alone, suggest that parasitic light in the intensity profile may also be a source of inconsistencies. The consequences of the physical changes on the vector properties of the field derived from the Fe I lambda 6173 line for the 17 November 1975 spot as well as on the thermodynamic state are discussed. A Doppler width delta lambda (D) - 25mA is bound to be consistent with a low spot temperature and microturbulence, and a damping constant of a = 0.2.

  20. Phase field theory of proper displacive phase transformations: Structural anisotropy and directional flexibility, a vector model, and the transformation kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Rao Weifeng [Department of Materials Science and Engineering, Rutgers University, 607 Taylor Road, Piscataway, NJ 08854 (United States); Khachaturyan, Armen G., E-mail: khach@jove.rutgers.edu [Department of Materials Science and Engineering, Rutgers University, 607 Taylor Road, Piscataway, NJ 08854 (United States)

    2011-06-15

    A phase field theory of proper displacive transformations is developed to address the microstructure evolution and its response to applied fields in decomposing and martensitic systems. The theory is based on the explicit equation for the non-equilibrium free energy function of the transformation strain obtained by a consistent separation of the total strain into transformation and elastic strains. The transformation strain is considered to be a relaxing long-range order parameter evolving in accordance with the system energetics rather than as a fixed material constant used in the conventional Eshelby theory of coherent inclusions. The elastic strain is defined as a coherency strain recovering the crystal lattice compatibility. The obtained free energy function of the transformation strain leads to the concepts of structural anisotropy and directional flexibility of low symmetry phases. The formulated vector model of displacive transformation makes apparent a similarity between proper displacive transformation and ferromagnetic/ferroelectric transformation and, in particular, a similarity between the structural anisotropy and magnetic/polar anisotropy of ferromagnetic/ferroelectric materials. It even predicts the feasibility of a glass-like structural state with unlimited directional flexibility of the transformation strain that is conceptually similar to a ferromagnetic glass. The thermodynamics of the equilibrium between low symmetry phases and the thermodynamic conditions leading to the formation of adaptive states are formulated.

  1. Introduction to differentiable manifolds

    CERN Document Server

    Auslander, Louis

    2009-01-01

    The first book to treat manifold theory at an introductory level, this text surveys basic concepts in the modern approach to differential geometry. The first six chapters define and illustrate differentiable manifolds, and the final four chapters investigate the roles of differential structures in a variety of situations.Starting with an introduction to differentiable manifolds and their tangent spaces, the text examines Euclidean spaces, their submanifolds, and abstract manifolds. Succeeding chapters explore the tangent bundle and vector fields and discuss their association with ordinary diff

  2. Identification of Algerian Field-Caught Phlebotomine Sand Fly Vectors by MALDI-TOF MS.

    Directory of Open Access Journals (Sweden)

    Ismail Lafri

    2016-01-01

    Full Text Available Phlebotomine sand flies are known to transmit Leishmania parasites, bacteria and viruses that affect humans and animals in many countries worldwide. Precise sand fly identification is essential to prevent phlebotomine-borne diseases. Over the past two decades, progress in matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS has emerged as an accurate tool for arthropod identification. The objective of the present study was to investigate the usefulness of MALDI-TOF MS as a tool for identifying field-caught phlebotomine.Sand flies were captured in four sites in north Algeria. A subset was morphologically and genetically identified. Six species were found in these areas and a total of 28 stored frozen specimens were used for the creation of the reference spectrum database. The relevance of this original method for sand fly identification was validated by two successive blind tests including the morphological identification of 80 new specimens which were stored at -80°C, and 292 unknown specimens, including engorged specimens, which were preserved under different conditions. Intra-species reproducibility and inter-species specificity of the protein profiles were obtained, allowing us to distinguish specimens at the gender level. Querying of the sand fly database using the MS spectra from the blind test groups revealed concordant results between morphological and MALDI-TOF MS identification. However, MS identification results were less efficient for specimens which were engorged or stored in alcohol. Identification of 362 phlebotomine sand flies, captured at four Algerian sites, by MALDI-TOF MS, revealed that the subgenus Larroussius was predominant at all the study sites, except for in M'sila where P. (Phlebotomus papatasi was the only sand fly species detected.The present study highlights the application of MALDI-TOF MS for monitoring sand fly fauna captured in the field. The low cost, reliability and

  3. Identification of Algerian Field-Caught Phlebotomine Sand Fly Vectors by MALDI-TOF MS.

    Science.gov (United States)

    Lafri, Ismail; Almeras, Lionel; Bitam, Idir; Caputo, Aurelia; Yssouf, Amina; Forestier, Claire-Lise; Izri, Arezki; Raoult, Didier; Parola, Philippe

    2016-01-01

    Phlebotomine sand flies are known to transmit Leishmania parasites, bacteria and viruses that affect humans and animals in many countries worldwide. Precise sand fly identification is essential to prevent phlebotomine-borne diseases. Over the past two decades, progress in matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) has emerged as an accurate tool for arthropod identification. The objective of the present study was to investigate the usefulness of MALDI-TOF MS as a tool for identifying field-caught phlebotomine. Sand flies were captured in four sites in north Algeria. A subset was morphologically and genetically identified. Six species were found in these areas and a total of 28 stored frozen specimens were used for the creation of the reference spectrum database. The relevance of this original method for sand fly identification was validated by two successive blind tests including the morphological identification of 80 new specimens which were stored at -80°C, and 292 unknown specimens, including engorged specimens, which were preserved under different conditions. Intra-species reproducibility and inter-species specificity of the protein profiles were obtained, allowing us to distinguish specimens at the gender level. Querying of the sand fly database using the MS spectra from the blind test groups revealed concordant results between morphological and MALDI-TOF MS identification. However, MS identification results were less efficient for specimens which were engorged or stored in alcohol. Identification of 362 phlebotomine sand flies, captured at four Algerian sites, by MALDI-TOF MS, revealed that the subgenus Larroussius was predominant at all the study sites, except for in M'sila where P. (Phlebotomus) papatasi was the only sand fly species detected. The present study highlights the application of MALDI-TOF MS for monitoring sand fly fauna captured in the field. The low cost, reliability and rapidity of MALDI

  4. [In vitro differentiation of synovial-derived mesenchymal stem cells infected by adenovirus vector mediated by bone morphogenetic protein 2/7 genes into fibrocartilage cells in rabbits].

    Science.gov (United States)

    Fu, Peiliang; Zhang, Lei; Wu, Haishan; Cong, Ruijun; Chen, Song; Ding, Zheru; Hu, Kaimen

    2013-03-01

    To investigate the feasibility of rabbit synovial-derived mesenchymal stem cells (SMSCs) differentiating into fibrocartilage cells by the recombinant adenovirus vector mediated by bone morphogenetic protein 2/7 (BMP-2/7) genes in vitro. SMSCs were isolated and purified from 3-month-old New Zealand white rabbits [male or female, weighing (2.1 +/- 0.3) kg]; the morphology was observed; the cells were identified with immunocytological fluorescent staining, flow cytometry, and cell cycles. The adipogenic, osteogenic, and chondrogenic differentiations were detected. The recombinant plasmid of pAdTrack-BMP-2-internal ribosome entry site (IRES)-BMP-7 was constructed and then was used to infect SMSCs. The cell DNA content and the oncogenicity were tested to determine the safety. Then infected SMSCs were cultured in incomplete chondrogenic medium in vitro. Chondrogenic differentiation of infected SMSCs was detected by RT-PCR, immunofluorescent staining, and toluidine blue staining. SMSCs expressed surface markers of stem cells, and had multi-directional potential. The transfection efficiency of SMSCs infected by recombinant plasmid of pAdTrack-BMP-2-IRES-BMP-7 was about 70%. The safety results showed that infected SMSCs had normal double time, normal chromosome number, and normal DNA content and had no oncogenicity. At 21 days after cultured in incomplete chondrocyte medium, RT-PCR results showed SMSCs had increased expressions of collegan type I and collegan type II, particularly collegan type II; the expressions of RhoA and Sox-9 increased obviously. Immunofluorescent staining and toluidine blue staining showed differentiation of SMSCs into fibrocartilage cells. It is safe to use pAdTrack-BMP-2-IRES-BMP-7 for infecting SMSCs. SMSCs infected by pAdTrack-BMP-2-IRES-BMP-7 can differentiate into fibrocartilage cells spontaneously in vitro.

  5. Vector hysteresis models

    Czech Academy of Sciences Publication Activity Database

    Krejčí, Pavel

    1991-01-01

    Roč. 2, - (1991), s. 281-292 ISSN 0956-7925 Keywords : vector hysteresis operator * hysteresis potential * differential inequality Subject RIV: BA - General Mathematics http://www.math.cas.cz/~krejci/b15p.pdf

  6. Effects of Pulsed Electromagnetic Field on Differentiation of HUES-17 Human Embryonic Stem Cell Line

    Directory of Open Access Journals (Sweden)

    Yi-Lin Wu

    2014-08-01

    Full Text Available Electromagnetic fields are considered to potentially affect embryonic development, but the mechanism is still unknown. In this study, human embryonic stem cell (hESC line HUES-17 was applied to explore the mechanism of exposure on embryonic development to pulsed electromagnetic field (PEMF for 400 pulses at different electric field intensities and the differentiation of HUES-17 cells was observed after PEMF exposure. The expression of alkaline phosphatase (AP, stage-specific embryonic antigen-3 (SSEA-3, SSEA-4 and the mRNA level and protein level of Oct4, Sox2 and Nanog in HUES-17 cells remained unchanged after PEMF exposure at the electric field intensities of 50, 100, 200 or 400 kV/m. Four hundred pulses PEMF exposure at the electric field intensities of 50, 100, 200 or 400 kV/m did not affect the differentiation of HUES-17 cells. The reason why electromagnetic fields affect embryonic development may be due to other mechanisms rather than affecting the differentiation of embryonic stem cells.

  7. Theory of insulated gate field effect transistor with negative differential electron mobility

    International Nuclear Information System (INIS)

    Furman, A.S.

    1995-09-01

    We study the consequences of negative differential electron mobility in FETs using the field model and the gradual channel approximation. We find that the FET may show convective or absolute instability. The fluctuations growths is governed by diffusion law with negative effective diffusion coefficient. (author). 4 refs, 2 figs

  8. Indirect measurement of the magnetocaloric effect using a novel differential scanning calorimeter with magnetic field

    DEFF Research Database (Denmark)

    Jeppesen, Stinus; Linderoth, Søren; Pryds, Nini

    2008-01-01

    A simple and high-sensitivity differential scanning calorimeter (DSC) unit operating under magnetic field has been built for indirect determination of the magnetocaloric effect. The principle of the measuring unit in the calorimeter is based on Peltier elements as heat flow sensors. The high...

  9. Differential control of Yersinia pestis biofilm formation in vitro and in the flea vector by two c-di-GMP diguanylate cyclases.

    Directory of Open Access Journals (Sweden)

    Yi-Cheng Sun

    2011-04-01

    Full Text Available Yersinia pestis forms a biofilm in the foregut of its flea vector that promotes transmission by flea bite. As in many bacteria, biofilm formation in Y. pestis is controlled by intracellular levels of the bacterial second messenger c-di-GMP. Two Y. pestis diguanylate cyclase (DGC enzymes, encoded by hmsT and y3730, and one phosphodiesterase (PDE, encoded by hmsP, have been shown to control biofilm production in vitro via their opposing c-di-GMP synthesis and degradation activities, respectively. In this study, we provide further evidence that hmsT, hmsP, and y3730 are the only three genes involved in c-di-GMP metabolism in Y. pestis and evaluated the two DGCs for their comparative roles in biofilm formation in vitro and in the flea vector. As with HmsT, the DGC activity of Y3730 depended on a catalytic GGDEF domain, but the relative contribution of the two enzymes to the biofilm phenotype was influenced strongly by the environmental niche. Deletion of y3730 had a very minor effect on in vitro biofilm formation, but resulted in greatly reduced biofilm formation in the flea. In contrast, the predominant effect of hmsT was on in vitro biofilm formation. DGC activity was also required for the Hms-independent autoaggregation phenotype of Y. pestis, but was not required for virulence in a mouse model of bubonic plague. Our results confirm that only one PDE (HmsP and two DGCs (HmsT and Y3730 control c-di-GMP levels in Y. pestis, indicate that hmsT and y3730 are regulated post-transcriptionally to differentially control biofilm formation in vitro and in the flea vector, and identify a second c-di-GMP-regulated phenotype in Y. pestis.

  10. Ecological differentiation of members of the Culex pipiens complex, potential vectors of West Nile virus and Rift Valley fever virus in Algeria.

    Science.gov (United States)

    Amara Korba, Raouf; Alayat, Moufida Saoucen; Bouiba, Lazhari; Boudrissa, Abdelkarim; Bouslama, Zihad; Boukraa, Slimane; Francis, Frederic; Failloux, Anna-Bella; Boubidi, Saïd Chaouki

    2016-08-17

    We investigated the ecological differentiation of two members of the Culex pipiens complex, Cx. p. pipiens form pipiens and Cx. p. pipiens form molestus in three sites, El-Kala, M'Sila and Tinerkouk in Algeria. These two forms are the most widespread mosquito vectors in temperate regions exhibiting important behavioural and physiological differences. Nevertheless, this group of potential vectors has been poorly studied, particularly in North Africa. Ten larval populations of Cx. p. pipiens were sampled from various above- and underground habitats in three zones representing the three bioclimatic regions in Algeria. The reproduction characteristics were also investigated in the laboratory to define the rates of autogeny and stenogamy. Identification of Cx. p. pipiens members present in Algeria was achieved using a molecular analysis with the microsatellite CQ11 locus. We detected larvae of Cx. p. pipiens in all areas suggesting that the species is a ubiquitous mosquito well adapted to various environments. To our knowledge, this study provides the first molecular evidence of the presence of the Cx. p. pipiens form molestus and hybrids (molestus/pipiens) in Algeria with a high proportion of molestus form (48.3 %) in comparison with hybrids (36.8 %) and pipiens form (14.9 %). Some unexpected correlations between the proportion of forms pipiens, molestus and hybrids, and mosquito biological characteristics were observed suggesting some epigenetic effects controlling Cx. p. pipiens mating and reproduction. Consequences for pathogen transmission are discussed.

  11. Instruction-Based Clinical Eye-Tracking Study on the Visual Interpretation of Divergence: How Do Students Look at Vector Field Plots?

    Science.gov (United States)

    Klein, P.; Viiri, J.; Mozaffari, S.; Dengel, A.; Kuhn, J.

    2018-01-01

    Relating mathematical concepts to graphical representations is a challenging task for students. In this paper, we introduce two visual strategies to qualitatively interpret the divergence of graphical vector field representations. One strategy is based on the graphical interpretation of partial derivatives, while the other is based on the flux…

  12. Seedling protection and field practices for management of insect vectors and viral diseases of hot pepper (Capsicum chinense Jacq.) in Uganda

    DEFF Research Database (Denmark)

    Karungi, J.; Obua, T.; Kyamanywa, S.

    2013-01-01

    The focus of this study was on nursery and field management of seed and insect vectors of viruses on hot pepper. Seedlings raised from hypochlorite-treated seeds under a net tunnel nursery were compared with seedlings raised from untreated seeds in an open nursery. The two groups of seedlings were...

  13. Differential effects on kidney and liver growth of a non-viral hGH-expression vector in hypophysectomized mice

    DEFF Research Database (Denmark)

    Khamaisi, Mogher; Søndergaard, Morten; Segev, Yael

    2007-01-01

    Non-viral gene transfer was investigated as a potential modality for the treatment of growth hormone deficiency (GHD) using hypophysectomized (Hx) mice as a model. Hx mice were injected with a control plasmid or a plasmid containing the human (h) GH gene driven by a ubiquitin promoter, or left...... and serum IGF-I levels, has differential effects on renal growth and glomerular volume. The potential effects of such excess glomerular growth induced by this intervention require further investigation....

  14. A differential algebraic integration algorithm for symplectic mappings in systems with three-dimensional magnetic field

    International Nuclear Information System (INIS)

    Chang, P.; Lee, S.Y.; Yan, Y.T.

    2006-01-01

    A differential algebraic integration algorithm is developed for symplectic mapping through a three-dimensional (3-D) magnetic field. The self-consistent reference orbit in phase space is obtained by making a canonical transformation to eliminate the linear part of the Hamiltonian. Transfer maps from the entrance to the exit of any 3-D magnetic field are then obtained through slice-by-slice symplectic integration. The particle phase-space coordinates are advanced by using the integrable polynomial procedure. This algorithm is a powerful tool to attain nonlinear maps for insertion devices in synchrotron light source or complicated magnetic field in the interaction region in high energy colliders

  15. A Differential Algebraic Integration Algorithm for Symplectic Mappings in Systems with Three-Dimensional Magnetic Field

    International Nuclear Information System (INIS)

    Chang, P

    2004-01-01

    A differential algebraic integration algorithm is developed for symplectic mapping through a three-dimensional (3-D) magnetic field. The self-consistent reference orbit in phase space is obtained by making a canonical transformation to eliminate the linear part of the Hamiltonian. Transfer maps from the entrance to the exit of any 3-D magnetic field are then obtained through slice-by-slice symplectic integration. The particle phase-space coordinates are advanced by using the integrable polynomial procedure. This algorithm is a powerful tool to attain nonlinear maps for insertion devices in synchrotron light source or complicated magnetic field in the interaction region in high energy colliders

  16. Constants of motion for the planar orbit of a charged particle in a static and uniform magnetic field: the magnetic Laplace–Runge–Lenz vector

    International Nuclear Information System (INIS)

    Velasco-Martínez, D; Kunold, A; Cardoso, J L; Ibarra-Sierra, V G; Sandoval-Santana, J C

    2014-01-01

    In this paper we introduce an alternative approach to studying the motion of a planar charged particle subject to a static uniform magnetic field. It is well known that an electric charge under a uniform magnetic field has a planar motion if its initial velocity is perpendicular to the magnetic field. Although some constants of motion (CsM), as the energy and the angular momentum, have been widely discussed for this system, others have been neglected. We find that the angular momentum, the generator of the magnetic translations and the magnetic Laplace–Runge–Lenz vector are CsM for this particular system. We show also that these three quantities form an orthogonal basis of vectors. The present work addresses many aspects of the motion of a charged particle in a magnetic field that should be useful for students and tutors of the classical mechanics courses at the senior undergraduate level. (paper)

  17. A combined vector potential-scalar potential method for FE computation of 3D magnetic fields in electrical devices with iron cores

    Science.gov (United States)

    Wang, R.; Demerdash, N. A.

    1991-01-01

    A method of combined use of magnetic vector potential based finite-element (FE) formulations and magnetic scalar potential (MSP) based formulations for computation of three-dimensional magnetostatic fields is introduced. In this method, the curl-component of the magnetic field intensity is computed by a reduced magnetic vector potential. This field intensity forms the basic of a forcing function for a global magnetic scalar potential solution over the entire volume of the region. This method allows one to include iron portions sandwiched in between conductors within partitioned current-carrying subregions. The method is most suited for large-scale global-type 3-D magnetostatic field computations in electrical devices, and in particular rotating electric machinery.

  18. Brane vector phenomenology

    International Nuclear Information System (INIS)

    Clark, T.E.; Love, S.T.; Nitta, Muneto; Veldhuis, T. ter; Xiong, C.

    2009-01-01

    Local oscillations of the brane world are manifested as massive vector fields. Their coupling to the Standard Model can be obtained using the method of nonlinear realizations of the spontaneously broken higher-dimensional space-time symmetries, and to an extent, are model independent. Phenomenological limits on these vector field parameters are obtained using LEP collider data and dark matter constraints

  19. Osteoblastic differentiation and stress response of human mesenchymal stem cells exposed to alternating current electric fields

    Directory of Open Access Journals (Sweden)

    Kaplan David L

    2011-01-01

    Full Text Available Abstract Background Electric fields are integral to many biological events, from maintaining cellular homeostasis to embryonic development to healing. The application of electric fields offers substantial therapeutic potential, while optimal dosing regimens and the underlying mechanisms responsible for the positive clinical impact are poorly understood. Methods The purpose of this study was to track the differentiation profile and stress response of human bone marrow derived mesenchymal stem cells (hMSCs undergoing osteogenic differentiation during exposure to a 20 mV/cm, 60 kHz electric field. Morphological and biochemical changes were imaged using endogenous two-photon excited fluorescence (TPEF and quantitatively assessed through eccentricity calculations and extraction of the redox ratio from NADH, FAD and lipofuscin contributions. Real time reverse transcriptase-polymerase chain reactions (RT-PCR were used to track osteogenic differentiation markers, namely alkaline phosphatase (ALP and collagen type 1 (col1, and stress response markers, such as heat shock protein 27 (hsp27 and heat shock protein 70 (hsp70. Comparisons of collagen deposition between the stimulated hMSCs and controls were examined through second harmonic generation (SHG imaging. Results Quantitative differences in cell morphology, as described through an eccentricity ratio, were found on days 2 and days 5 (p Conclusions Electrical stimulation is a useful tool to improve hMSC osteogenic differentiation, while heat shock proteins may reveal underlying mechanisms, and optical non-invasive imaging may be used to monitor the induced morphological and biochemical changes.

  20. Establishment of a self-propagating population of the African malaria vector Anopheles arabiensis under semi-field conditions

    NARCIS (Netherlands)

    Ng'habi, K.R.N.; Mwasheshi, D.; Knols, B.G.J.; Ferguson, H.M.

    2010-01-01

    Background: The successful control of insect disease vectors relies on a thorough understanding of their ecology and behaviour. However, knowledge of the ecology of many human disease vectors lags behind that of agricultural pests. This is partially due to the paucity of experimental tools for

  1. A low-cost repellent for malaria vectors in the Americas: results of two field trials in Guatemala and Peru.

    Science.gov (United States)

    Moore, Sarah J; Darling, Samuel T; Sihuincha, Moisés; Padilla, Norma; Devine, Gregor J

    2007-08-01

    The cost of mosquito repellents in Latin America has discouraged their wider use among the poor. To address this problem, a low-cost repellent was developed that reduces the level of expensive repellent actives by combining them with inexpensive fixatives that appear to slow repellent evaporation. The chosen actives were a mixture of para-menthane-diol (PMD) and lemongrass oil (LG). To test the efficacy of the repellent, field trials were staged in Guatemala and Peru. Repellent efficacy was determined by human-landing catches on volunteers who wore the experimental repellents, control, or 15% DEET. The studies were conducted using a balanced Latin Square design with volunteers, treatments, and locations rotated each night. In Guatemala, collections were performed for two hours, commencing three hours after repellent application. The repellent provided >98% protection for five hours after application, with a biting pressure of >100 landings per person/hour. The 15% DEET control provided lower protection at 92% (p 46 landings per person/hour. The 20% DEET control provided significantly lower protection at 64% (p < 0.0001). In both locations, the PMD/LG repellent provided excellent protection up to six hours after application against a wide range of disease vectors including Anopheles darlingi. The addition of fixatives to the repellent extended its longevity while enhancing efficacy and significantly reducing its cost to malaria-endemic communities.

  2. A low-cost repellent for malaria vectors in the Americas: results of two field trials in Guatemala and Peru

    Directory of Open Access Journals (Sweden)

    Sihuincha Moisés

    2007-08-01

    Full Text Available Abstract Background The cost of mosquito repellents in Latin America has discouraged their wider use among the poor. To address this problem, a low-cost repellent was developed that reduces the level of expensive repellent actives by combining them with inexpensive fixatives that appear to slow repellent evaporation. The chosen actives were a mixture of para-menthane-diol (PMD and lemongrass oil (LG. Methods To test the efficacy of the repellent, field trials were staged in Guatemala and Peru. Repellent efficacy was determined by human-landing catches on volunteers who wore the experimental repellents, control, or 15% DEET. The studies were conducted using a balanced Latin Square design with volunteers, treatments, and locations rotated each night. Results In Guatemala, collections were performed for two hours, commencing three hours after repellent application. The repellent provided >98% protection for five hours after application, with a biting pressure of >100 landings per person/hour. The 15% DEET control provided lower protection at 92% (p 46 landings per person/hour. The 20% DEET control provided significantly lower protection at 64% (p Conclusion In both locations, the PMD/LG repellent provided excellent protection up to six hours after application against a wide range of disease vectors including Anopheles darlingi. The addition of fixatives to the repellent extended its longevity while enhancing efficacy and significantly reducing its cost to malaria-endemic communities.

  3. Differential Larval Toxicity and Oviposition Altering Activity of Some Indigenous Plant Extracts against Dengue and Chikungunya Vector Aedes albopictus.

    Directory of Open Access Journals (Sweden)

    Ruchi Yadav

    2014-12-01

    Full Text Available Mosquitoes are well known as vectors of several disease causing pathogens. The extensive use of synthetic insecticides in the mosquito control strategies resulted to the development of pesticide resistance and fostered environmental deterioration. Hence in recent years plants become alternative source of mosquito control agents. The present study assessed the larvicidal and oviposition altering activity of six different plants species-Alstonia scholaris, Callistemon viminalis, Hyptis suaveolens, Malvastrum coromandelianum, Prosopis juliflora, Vernonia cinerea against Aedes albopictus mosquito in laboratory.Leaf extracts of all the six plants species in five different solvents of various polarities were used in the range of 20-400ppm for larval bioassay and 50,100 and 200ppm for cage bioassay (for the study of oviposition behavior against Ae. albopictus. The larval mortality data were recorded after 24 h and subjected to Probit analysis to determine the lethal concentrations (LC50, while OAI (Oviposition activity index was calculated for oviposition altering activity of the plant extracts.Vernonia cinerea extract in acetone and C. viminalis extract in isopropanol were highly effective against Aedes albopictus larvae with LC50 value 64.57, 71.34ppm respectively. Acetone extract of P. juliflora found to be strong oviposition-deterrent which inhibited >2 fold egg laying (OAI-0.466 at 100ppm.Vernonia cinerea and C. viminallis leaf extracts have the potential to be used as larvicide and P. juliflora as an oviposition-deterrent for the control of Ae. albopictus mosquito.

  4. Differential Larval Toxicity and Oviposition Altering Activity of Some Indigenous Plant Extracts against Dengue and Chikungunya Vector Aedes albopictus

    Science.gov (United States)

    Yadav, Ruchi; Tyagi, Varun; Tikar, Sachin N; Sharma, Ajay K; Mendki, Murlidhar J; Jain, Ashok K; Sukumaran, Devanathan

    2014-01-01

    Background: Mosquitoes are well known as vectors of several disease causing pathogens. The extensive use of synthetic insecticides in the mosquito control strategies resulted to the development of pesticide resistance and fostered environmental deterioration. Hence in recent years plants become alternative source of mosquito control agents. The present study assessed the larvicidal and oviposition altering activity of six different plants species-Alstonia scholaris, Callistemon viminalis, Hyptis suaveolens, Malvastrum coromandelianum, Prosopis juliflora, Vernonia cinerea against Aedes albopictus mosquito in laboratory. Methods: Leaf extracts of all the six plants species in five different solvents of various polarities were used in the range of 20–400ppm for larval bioassay and 50,100 and 200ppm for cage bioassay (for the study of oviposition behavior) against Ae. albopictus. The larval mortality data were recorded after 24 h and subjected to Probit analysis to determine the lethal concentrations (LC50), while OAI (Oviposition activity index) was calculated for oviposition altering activity of the plant extracts. Results: Vernonia cinerea extract in acetone and C. viminalis extract in isopropanol were highly effective against Aedes albopictus larvae with LC50 value 64.57, 71.34ppm respectively. Acetone extract of P. juliflora found to be strong oviposition-deterrent which inhibited >2 fold egg laying (OAI-0.466) at 100ppm. Conclusion: Vernonia cinerea and C. viminallis leaf extracts have the potential to be used as larvicide and P. juliflora as an oviposition-deterrent for the control of Ae. albopictus mosquito. PMID:26114131

  5. Infinite-Dimensional Symmetry Algebras as a Help Toward Solutions of the Self-Dual Field Equations with One Killing Vector

    Science.gov (United States)

    Finley, Daniel; McIver, John K.

    2002-12-01

    The sDiff(2) Toda equation determines all self-dual, vacuum solutions of the Einstein field equations with one rotational Killing vector. Some history of the searches for non-trivial solutions is given, including those that begin with the limit as n → ∞ of the An Toda lattice equations. That approach is applied here to the known prolongation structure for the Toda lattice, hoping to use Bäcklund transformations to generate new solutions. Although this attempt has not yet succeeded, new faithful (tangent-vector) realizations of A∞ are described, and a direct approach via the continuum Lie algebras of Saveliev and Leznov is given.

  6. Differentiation of several interstitial lung disease patterns in HRCT images using support vector machine: role of databases on performance

    Science.gov (United States)

    Kale, Mandar; Mukhopadhyay, Sudipta; Dash, Jatindra K.; Garg, Mandeep; Khandelwal, Niranjan

    2016-03-01

    Interstitial lung disease (ILD) is complicated group of pulmonary disorders. High Resolution Computed Tomography (HRCT) considered to be best imaging technique for analysis of different pulmonary disorders. HRCT findings can be categorised in several patterns viz. Consolidation, Emphysema, Ground Glass Opacity, Nodular, Normal etc. based on their texture like appearance. Clinician often find it difficult to diagnosis these pattern because of their complex nature. In such scenario computer-aided diagnosis system could help clinician to identify patterns. Several approaches had been proposed for classification of ILD patterns. This includes computation of textural feature and training /testing of classifier such as artificial neural network (ANN), support vector machine (SVM) etc. In this paper, wavelet features are calculated from two different ILD database, publically available MedGIFT ILD database and private ILD database, followed by performance evaluation of ANN and SVM classifiers in terms of average accuracy. It is found that average classification accuracy by SVM is greater than ANN where trained and tested on same database. Investigation continued further to test variation in accuracy of classifier when training and testing is performed with alternate database and training and testing of classifier with database formed by merging samples from same class from two individual databases. The average classification accuracy drops when two independent databases used for training and testing respectively. There is significant improvement in average accuracy when classifiers are trained and tested with merged database. It infers dependency of classification accuracy on training data. It is observed that SVM outperforms ANN when same database is used for training and testing.

  7. Mean-field theory of differential rotation in density stratified turbulent convection

    Science.gov (United States)

    Rogachevskii, I.

    2018-04-01

    A mean-field theory of differential rotation in a density stratified turbulent convection has been developed. This theory is based on the combined effects of the turbulent heat flux and anisotropy of turbulent convection on the Reynolds stress. A coupled system of dynamical budget equations consisting in the equations for the Reynolds stress, the entropy fluctuations and the turbulent heat flux has been solved. To close the system of these equations, the spectral approach, which is valid for large Reynolds and Péclet numbers, has been applied. The adopted model of the background turbulent convection takes into account an increase of the turbulence anisotropy and a decrease of the turbulent correlation time with the rotation rate. This theory yields the radial profile of the differential rotation which is in agreement with that for the solar differential rotation.

  8. [Application of support vector machine-recursive feature elimination algorithm in Raman spectroscopy for differential diagnosis of benign and malignant breast diseases].

    Science.gov (United States)

    Zhang, Haipeng; Fu, Tong; Zhang, Zhiru; Fan, Zhimin; Zheng, Chao; Han, Bing

    2014-08-01

    To explore the value of application of support vector machine-recursive feature elimination (SVM-RFE) method in Raman spectroscopy for differential diagnosis of benign and malignant breast diseases. Fresh breast tissue samples of 168 patients (all female; ages 22-75) were obtained by routine surgical resection from May 2011 to May 2012 at the Department of Breast Surgery, the First Hospital of Jilin University. Among them, there were 51 normal tissues, 66 benign and 51 malignant breast lesions. All the specimens were assessed by Raman spectroscopy, and the SVM-RFE algorithm was used to process the data and build the mathematical model. Mahalanobis distance and spectral residuals were used as discriminating criteria to evaluate this data-processing method. 1 800 Raman spectra were acquired from the fresh samples of human breast tissues. Based on spectral profiles, the presence of 1 078, 1 267, 1 301, 1 437, 1 653, and 1 743 cm(-1) peaks were identified in the normal tissues; and 1 281, 1 341, 1 381, 1 417, 1 465, 1 530, and 1 637 cm(-1) peaks were found in the benign and malignant tissues. The main characteristic peaks differentiating benign and malignant lesions were 1 340 and 1 480 cm(-1). The accuracy of SVM-RFE in discriminating normal and malignant lesions was 100.0%, while that in the assessment of benign lesions was 93.0%. There are distinct differences among the Raman spectra of normal, benign and malignant breast tissues, and SVM-RFE method can be used to build differentiation model of breast lesions.

  9. A Stochastic Maximum Principle for a Stochastic Differential Game of a Mean-Field Type

    Energy Technology Data Exchange (ETDEWEB)

    Hosking, John Joseph Absalom, E-mail: j.j.a.hosking@cma.uio.no [University of Oslo, Centre of Mathematics for Applications (CMA) (Norway)

    2012-12-15

    We construct a stochastic maximum principle (SMP) which provides necessary conditions for the existence of Nash equilibria in a certain form of N-agent stochastic differential game (SDG) of a mean-field type. The information structure considered for the SDG is of a possible asymmetric and partial type. To prove our SMP we take an approach based on spike-variations and adjoint representation techniques, analogous to that of S. Peng (SIAM J. Control Optim. 28(4):966-979, 1990) in the optimal stochastic control context. In our proof we apply adjoint representation procedures at three points. The first-order adjoint processes are defined as solutions to certain mean-field backward stochastic differential equations, and second-order adjoint processes of a first type are defined as solutions to certain backward stochastic differential equations. Second-order adjoint processes of a second type are defined as solutions of certain backward stochastic equations of a type that we introduce in this paper, and which we term conditional mean-field backward stochastic differential equations. From the resulting representations, we show that the terms relating to these second-order adjoint processes of the second type are of an order such that they do not appear in our final SMP equations. A comparable situation exists in an article by R. Buckdahn, B. Djehiche, and J. Li (Appl. Math. Optim. 64(2):197-216, 2011) that constructs a SMP for a mean-field type optimal stochastic control problem; however, the approach we take of using these second-order adjoint processes of a second type to deal with the type of terms that we refer to as the second form of quadratic-type terms represents an alternative to a development, to our setting, of the approach used in their article for their analogous type of term.

  10. A Stochastic Maximum Principle for a Stochastic Differential Game of a Mean-Field Type

    International Nuclear Information System (INIS)

    Hosking, John Joseph Absalom

    2012-01-01

    We construct a stochastic maximum principle (SMP) which provides necessary conditions for the existence of Nash equilibria in a certain form of N-agent stochastic differential game (SDG) of a mean-field type. The information structure considered for the SDG is of a possible asymmetric and partial type. To prove our SMP we take an approach based on spike-variations and adjoint representation techniques, analogous to that of S. Peng (SIAM J. Control Optim. 28(4):966–979, 1990) in the optimal stochastic control context. In our proof we apply adjoint representation procedures at three points. The first-order adjoint processes are defined as solutions to certain mean-field backward stochastic differential equations, and second-order adjoint processes of a first type are defined as solutions to certain backward stochastic differential equations. Second-order adjoint processes of a second type are defined as solutions of certain backward stochastic equations of a type that we introduce in this paper, and which we term conditional mean-field backward stochastic differential equations. From the resulting representations, we show that the terms relating to these second-order adjoint processes of the second type are of an order such that they do not appear in our final SMP equations. A comparable situation exists in an article by R. Buckdahn, B. Djehiche, and J. Li (Appl. Math. Optim. 64(2):197–216, 2011) that constructs a SMP for a mean-field type optimal stochastic control problem; however, the approach we take of using these second-order adjoint processes of a second type to deal with the type of terms that we refer to as the second form of quadratic-type terms represents an alternative to a development, to our setting, of the approach used in their article for their analogous type of term.

  11. Equations of motion of interacting massless fields of all spins as a free differential algebra

    Energy Technology Data Exchange (ETDEWEB)

    Vasiliev, M A

    1988-08-11

    It is argued that the equations of motion of interacting massless fields of all spins s=0, 1, ..., infinity can naturally be formulated in terms of a free differential algebra (FDA) constructed from one-forms and zero-forms that belong both to the adjoint representation of the infinite-dimensional superalgebra of higher spins and auxiliary fields proposed previously. This FDA is found explicitly in the first non-trivial order in the zero-forms. Various properties of the proposed FDA are discussed including the ways for incorporating internal (Yang-Mills) gauge symmetries via associative algebras.

  12. Magnetic-field-controlled negative differential conductance in scanning tunneling spectroscopy of graphene npn junction resonators

    Science.gov (United States)

    Li, Si-Yu; Liu, Haiwen; Qiao, Jia-Bin; Jiang, Hua; He, Lin

    2018-03-01

    Negative differential conductance (NDC), characterized by the decreasing current with increasing voltage, has attracted continuous attention for its various novel applications. The NDC typically exists in a certain range of bias voltages for a selected system and controlling the regions of NDC in curves of current versus voltage (I -V ) is experimentally challenging. Here, we demonstrate a magnetic-field-controlled NDC in scanning tunneling spectroscopy of graphene npn junction resonators. The magnetic field not only can switch on and off the NDC, but also can continuously tune the regions of the NDC in the I -V curves. In the graphene npn junction resonators, magnetic fields generate sharp and pronounced Landau-level peaks with the help of the Klein tunneling of massless Dirac fermions. A tip of scanning tunneling microscope induces a relatively shift of the Landau levels in graphene beneath the tip. Tunneling between the misaligned Landau levels results in the magnetic-field-controlled NDC.

  13. Effective field theory with differential operator technique for dynamic phase transition in ferromagnetic Ising model

    International Nuclear Information System (INIS)

    Kinoshita, Takehiro; Fujiyama, Shinya; Idogaki, Toshihiro; Tokita, Masahiko

    2009-01-01

    The non-equilibrium phase transition in a ferromagnetic Ising model is investigated by use of a new type of effective field theory (EFT) which correctly accounts for all the single-site kinematic relations by differential operator technique. In the presence of a time dependent oscillating external field, with decrease of the temperature the system undergoes a dynamic phase transition, which is characterized by the period averaged magnetization Q, from a dynamically disordered state Q = 0 to the dynamically ordered state Q ≠ 0. The results of the dynamic phase transition point T c determined from the behavior of the dynamic magnetization and the Liapunov exponent provided by EFT are improved than that of the standard mean field theory (MFT), especially for the one dimensional lattice where the standard MFT gives incorrect result of T c = 0 even in the case of zero external field.

  14. Application research of computational mass-transfer differential equation in MBR concentration field simulation.

    Science.gov (United States)

    Li, Chunqing; Tie, Xiaobo; Liang, Kai; Ji, Chanjuan

    2016-01-01

    After conducting the intensive research on the distribution of fluid's velocity and biochemical reactions in the membrane bioreactor (MBR), this paper introduces the use of the mass-transfer differential equation to simulate the distribution of the chemical oxygen demand (COD) concentration in MBR membrane pool. The solutions are as follows: first, use computational fluid dynamics to establish a flow control equation model of the fluid in MBR membrane pool; second, calculate this model by adopting direct numerical simulation to get the velocity field of the fluid in membrane pool; third, combine the data of velocity field to establish mass-transfer differential equation model for the concentration field in MBR membrane pool, and use Seidel iteration method to solve the equation model; last but not least, substitute the real factory data into the velocity and concentration field model to calculate simulation results, and use visualization software Tecplot to display the results. Finally by analyzing the nephogram of COD concentration distribution, it can be found that the simulation result conforms the distribution rule of the COD's concentration in real membrane pool, and the mass-transfer phenomenon can be affected by the velocity field of the fluid in membrane pool. The simulation results of this paper have certain reference value for the design optimization of the real MBR system.

  15. Application of support vector regression for optimization of vibration flow field of high-density polyethylene melts characterized by small angle light scattering

    Science.gov (United States)

    Xian, Guangming

    2018-03-01

    In this paper, the vibration flow field parameters of polymer melts in a visual slit die are optimized by using intelligent algorithm. Experimental small angle light scattering (SALS) patterns are shown to characterize the processing process. In order to capture the scattered light, a polarizer and an analyzer are placed before and after the polymer melts. The results reported in this study are obtained using high-density polyethylene (HDPE) with rotation speed at 28 rpm. In addition, support vector regression (SVR) analytical method is introduced for optimization the parameters of vibration flow field. This work establishes the general applicability of SVR for predicting the optimal parameters of vibration flow field.

  16. Insecticide resistance profile of Anopheles gambiae from a phase II field station in Cové, southern Benin: implications for the evaluation of novel vector control products.

    Science.gov (United States)

    Ngufor, Corine; N'Guessan, Raphael; Fagbohoun, Josias; Subramaniam, Krishanthi; Odjo, Abibatou; Fongnikin, Augustin; Akogbeto, Martin; Weetman, David; Rowland, Mark

    2015-11-18

    Novel indoor residual spraying (IRS) and long-lasting insecticidal net (LLIN) products aimed at improving the control of pyrethroid-resistant malaria vectors have to be evaluated in Phase II semi-field experimental studies against highly pyrethroid-resistant mosquitoes. To better understand their performance it is necessary to fully characterize the species composition, resistance status and resistance mechanisms of the vector populations in the experimental hut sites. Bioassays were performed to assess phenotypic insecticide resistance in the malaria vector population at a newly constructed experimental hut site in Cové, a rice growing area in southern Benin, being used for WHOPES Phase II evaluation of newly developed LLIN and IRS products. The efficacy of standard WHOPES-approved pyrethroid LLIN and IRS products was also assessed in the experimental huts. Diagnostic genotyping techniques and microarray studies were performed to investigate the genetic basis of pyrethroid resistance in the Cové Anopheles gambiae population. The vector population at the Cové experimental hut site consisted of a mixture of Anopheles coluzzii and An. gambiae s.s. with the latter occurring at lower frequencies (23 %) and only in samples collected in the dry season. There was a high prevalence of resistance to pyrethroids and DDT (>90 % bioassay survival) with pyrethroid resistance intensity reaching 200-fold compared to the laboratory susceptible An. gambiae Kisumu strain. Standard WHOPES-approved pyrethroid IRS and LLIN products were ineffective in the experimental huts against this vector population (8-29 % mortality). The L1014F allele frequency was 89 %. CYP6P3, a cytochrome P450 validated as an efficient metabolizer of pyrethroids, was over-expressed. Characterizing pyrethroid resistance at Phase II field sites is crucial to the accurate interpretation of the performance of novel vector control products. The strong levels of pyrethroid resistance at the Cové experimental hut

  17. Debye series analysis of internal and near-surface fields for a homogeneous sphere illuminated by an axicon-generated vector Bessel beam

    International Nuclear Information System (INIS)

    Qin, Shitong; Li, Renxian; Yang, Ruiping; Ding, Chunying

    2017-01-01

    The interaction of an axicon-generated vector Bessel beam (AGVBB) with a homogeneous sphere is investigated in the framework of generalized Lorenz-Mie theory (GLMT). An analytical expression of beam shape coefficients (BSCs) is derived using angular spectrum decomposition method (ASDM), and the scattering coefficients are expanded using Debye series (DSE) in order to isolate the contribution of single scattering process. The internal and near-surface electric fields are numerically analyzed, and the effect of beam location, polarization, order of beam, half-cone angle, and scattering process (namely Debye mode p) are mainly discussed. Numerical results show that a curve formed by extreme peaks can be observed, and the electric fields can be locally enhanced after the interaction of AGVBBs with the particle. Internal and near-surface fields, especially its local enhancement, are very sensitive to the beam parameters, including polarization, order, half-cone angle, etc. The internal fields can also be enhanced by various scattering process (or Debye mode p). Such results have important applications in various fields, including particle sizing, optical tweezers, etc. - Highlights: • Debye series is employed to the analysis of internal and near-surface fields for a sphere illuminated by a vector Bessel beam. • Analytical expressions of BSCs for vector Bessel beams with selected polarizations are derived using ASDM. • The local enhancement of internal and near-surface fields is investigated. • The polarization, order, half-cone angle of the beam affect the local enhancement. • The local enhancement of internal fields is sensitive to the scattering process.

  18. Custodial vector model

    Science.gov (United States)

    Becciolini, Diego; Franzosi, Diogo Buarque; Foadi, Roshan; Frandsen, Mads T.; Hapola, Tuomas; Sannino, Francesco

    2015-07-01

    We analyze the Large Hadron Collider (LHC) phenomenology of heavy vector resonances with a S U (2 )L×S U (2 )R spectral global symmetry. This symmetry partially protects the electroweak S parameter from large contributions of the vector resonances. The resulting custodial vector model spectrum and interactions with the standard model fields lead to distinct signatures at the LHC in the diboson, dilepton, and associated Higgs channels.

  19. Low magnification differential phase contrast imaging of electric fields in crystals with fine electron probes

    Energy Technology Data Exchange (ETDEWEB)

    Taplin, D.J. [School of Physics and Astronomy, Monash University, Clayton, Victoria 3800 (Australia); Shibata, N. [Institute of Engineering Innovation, School of Engineering, University of Tokyo, Tokyo 113-8656 (Japan); Weyland, M. [Monash Centre for Electron Microscopy, Monash University, Clayton, Victoria 3800 (Australia); Department of Materials Science and Engineering, Monash University, Clayton, Victoria 3800 (Australia); Findlay, S.D., E-mail: scott.findlay@monash.edu [School of Physics and Astronomy, Monash University, Clayton, Victoria 3800 (Australia)

    2016-10-15

    To correlate atomistic structure with longer range electric field distribution within materials, it is necessary to use atomically fine electron probes and specimens in on-axis orientation. However, electric field mapping via low magnification differential phase contrast imaging under these conditions raises challenges: electron scattering tends to reduce the beam deflection due to the electric field strength from what simple models predict, and other effects, most notably crystal mistilt, can lead to asymmetric intensity redistribution in the diffraction pattern which is difficult to distinguish from that produced by long range electric fields. Using electron scattering simulations, we explore the effects of such factors on the reliable interpretation and measurement of electric field distributions. In addition to these limitations of principle, some limitations of practice when seeking to perform such measurements using segmented detector systems are also discussed. - Highlights: • Measuring electric fields by on-axis electron diffraction is explored by simulation. • Electron channelling reduces deflection predicted by the phase object approximation. • First moment measurements cannot distinguish electric fields from specimen mistilt. • Segmented detector estimates are fairly insensitive to camera length and orientation.

  20. Measurement of the topological charge and index of vortex vector optical fields with a space-variant half-wave plate.

    Science.gov (United States)

    Liu, Gui-Geng; Wang, Ke; Lee, Yun-Han; Wang, Dan; Li, Ping-Ping; Gou, Fangwang; Li, Yongnan; Tu, Chenghou; Wu, Shin-Tson; Wang, Hui-Tian

    2018-02-15

    Vortex vector optical fields (VVOFs) refer to a kind of vector optical field with an azimuth-variant polarization and a helical phase, simultaneously. Such a VVOF is defined by the topological index of the polarization singularity and the topological charge of the phase vortex. We present a simple method to measure the topological charge and index of VVOFs by using a space-variant half-wave plate (SV-HWP). The geometric phase grating of the SV-HWP diffracts a VVOF into ±1 orders with orthogonally left- and right-handed circular polarizations. By inserting a polarizer behind the SV-HWP, the two circular polarization states project into the linear polarization and then interfere with each other to form the interference pattern, which enables the direct measurement of the topological charge and index of VVOFs.