WorldWideScience

Sample records for difference frequency generation

  1. Difference frequency generation spectroscopy as a vibrational optical activity measurement tool.

    Science.gov (United States)

    Cheon, Sangheon; Cho, Minhaeng

    2009-03-19

    Vibrational optical activity (VOA) of chiral molecules in condensed phases can be studied by using vibrational circular dichroism and Raman optical activity measurement techniques. Recently, IR-vis sum frequency generation has shown to be an alternative VOA measurement method. Such a three-wave-mixing method employing a polarization modulation technique can be a potentially useful VOA measurement tool. Here, a theoretical description of difference frequency generation (DFG) employing circularly polarized visible radiations is presented. Frequency scanning to obtain a VOA-DFG spectrum is achieved by controlling the difference between the two electronically nonresonant incident radiation frequencies. If the two incident beams are linearly polarized and their polarization directions are perpendicular to each other, one can selectively measure the all-electric-dipole-allowed chiral component of the DFG susceptibility. In addition, by using circularly polarized beams and taking the DFG difference intensity signal, which is defined as the difference between left and right circularly polarized DFG signals, additional chiral susceptibility components originating from the electric quadrupole transition can be measured. The DFG as a novel VOA measurement technique for solution samples containing chiral molecules will therefore be a useful coherent spectroscopic tool for determining absolute configuration of chiral molecules in condensed phases.

  2. High-order sum and difference-frequency generation in helium

    International Nuclear Information System (INIS)

    Crane, J.K.; Perry, M.D.

    1993-01-01

    High-order harmonic generation provides a new method for generating coherent, XUV radiation. These harmonics are characterized by a rapid, pertubative drop at low orders, followed by a broad plateau extending to photon energies of 150 eV in the lighter, rare gas atoms. An experimentally observed limit coincides with the theoretical limit for harmonic generation in neutral atoms given by the expression E c (eV)=IP(0)+3U p (I), where E c is the energy cutoff of the harmonic plateau, IP(O) is the field-free ionization potential and U p is the electron quiver energy at the maximum intensity, I seen by the atom. As part of an effort to develop this technique into a general purpose XUV source, extensive work to understand the phase-matching between the harmonic and driving fields, and the resulting effect on the conversion efficiency, angular distribution and spectral brightness has been undertaken at several. Though, certain aspects of the harmonically generated radiation such as the polarization, relative strength of a given harmonic, and the plateau extent, are defined by the single atom-field interaction. Specifically, the single-atom harmonic spectrum is determined primarily by the interaction of a driven, quasi-free electron with the atomic potential. Using two, independent fields one can affect the electron motion by controlling the relative strength, polarization, and phase of the fields and alter the harmonic spectrum. In this paper we discuss initial, two-color experiments where we drive the atom with two fields of different frequencies: 1053 nm (1ω) and 526 nm (2ω). In addition to the higher, odd harmonics, we observe sets of three additional peaks that we attribute to sum and difference-frequency generation between the two fields. By controlling the relative polarization between the two fields we can control the relative strength of the harmonic and mixing components, as well as the polarization of the output XUV photon

  3. Flattened optical frequency-locked multi-carrier generation by cascading one DML and one phase modulator driven by different RF frequency clocks

    International Nuclear Information System (INIS)

    Li, Xinying; Yu, Jianjun; Zhang, Junwen; Chi, Nan

    2013-01-01

    We propose a novel scheme for flattened optical frequency-locked multi-carrier generation based on one directly modulated laser (DML) and one phase modulator (PM) in cascade driven by different sinusoidal radio-frequency (RF) clocks. We experimentally demonstrate that when the clock frequencies for the cascaded DML and the PM are respectively 12.5 GHz and 25 GHz, over 24 optical subcarriers can be generated with 12.5-GHz frequency spacing and amplitude fluctuation less than 3 dB. Furthermore, the number of generated optical subcarriers can be further increased when we increase the driving power for the DML. (letter)

  4. Terahertz-wave surface-emitted difference-frequency generation without quasi-phase-matching technique.

    Science.gov (United States)

    Avetisyan, Yuri H

    2010-08-01

    A scheme of terahertz (THz)-wave surface-emitted difference-frequency generation (SEDFG), which lacks the drawbacks associated with the usage of periodically orientation-inverted structures, is proposed. It is shown that both material birefringence of the bulk LiNbO(3) crystal and modal birefringence of GaAs/AlAs waveguide are sufficient to obtain SEDFG up to a frequency of approximately 3THz. The simplicity of the proposed scheme, along with the fact that there is a much smaller THz-wave decay in nonlinear crystal, makes it a good candidate for the practical realization of efficient THz generation. The use of a GaAs waveguide with an oxidized AlAs layer is proposed for enhanced THz-wave SEDFG in the vicinity of the GaAs polariton resonance at 8THz.

  5. Injection-seeded tunable mid-infrared pulses generated by difference frequency mixing

    Science.gov (United States)

    Miyamoto, Yuki; Hara, Hideaki; Masuda, Takahiko; Hiraki, Takahiro; Sasao, Noboru; Uetake, Satoshi

    2017-03-01

    We report on the generation of nanosecond mid-infrared pulses having frequency tunability, a narrow linewidth, and a high pulse energy. These pulses are obtained by frequency mixing between injection-seeded near-infrared pulses in potassium titanyl arsenate crystals. A continuous-wave external cavity laser diode or a Ti:sapphire ring laser is used as a tunable seeding source for the near-infrared pulses. The typical energy of the generated mid-infrared pulses is in the range of 0.4-1 mJ/pulse. The tuning wavelength ranges from 3142 to 4806 nm. A narrow linewidth of 1.4 GHz and good frequency reproducibility of the mid-infrared pulses are confirmed by observing a rovibrational absorption line of gaseous carbon monoxide at 4587 nm.

  6. Capacitance-based frequency adjustment of micro piezoelectric vibration generator.

    Science.gov (United States)

    Mao, Xinhua; He, Qing; Li, Hong; Chu, Dongliang

    2014-01-01

    Micro piezoelectric vibration generator has a wide application in the field of microelectronics. Its natural frequency is unchanged after being manufactured. However, resonance cannot occur when the natural frequencies of a piezoelectric generator and the source of vibration frequency are not consistent. Output voltage of the piezoelectric generator will sharply decline. It cannot normally supply power for electronic devices. In order to make the natural frequency of the generator approach the frequency of vibration source, the capacitance FM technology is adopted in this paper. Different capacitance FM schemes are designed by different locations of the adjustment layer. The corresponding capacitance FM models have been established. Characteristic and effect of the capacitance FM have been simulated by the FM model. Experimental results show that the natural frequency of the generator could vary from 46.5 Hz to 42.4 Hz when the bypass capacitance value increases from 0 nF to 30 nF. The natural frequency of a piezoelectric vibration generator could be continuously adjusted by this method.

  7. Capacitance-Based Frequency Adjustment of Micro Piezoelectric Vibration Generator

    Directory of Open Access Journals (Sweden)

    Xinhua Mao

    2014-01-01

    Full Text Available Micro piezoelectric vibration generator has a wide application in the field of microelectronics. Its natural frequency is unchanged after being manufactured. However, resonance cannot occur when the natural frequencies of a piezoelectric generator and the source of vibration frequency are not consistent. Output voltage of the piezoelectric generator will sharply decline. It cannot normally supply power for electronic devices. In order to make the natural frequency of the generator approach the frequency of vibration source, the capacitance FM technology is adopted in this paper. Different capacitance FM schemes are designed by different locations of the adjustment layer. The corresponding capacitance FM models have been established. Characteristic and effect of the capacitance FM have been simulated by the FM model. Experimental results show that the natural frequency of the generator could vary from 46.5 Hz to 42.4 Hz when the bypass capacitance value increases from 0 nF to 30 nF. The natural frequency of a piezoelectric vibration generator could be continuously adjusted by this method.

  8. Spectral distribution of the efficiency of terahertz difference frequency generation upon collinear propagation of interacting waves in semiconductor crystals

    International Nuclear Information System (INIS)

    Orlov, Sergei N; Polivanov, Yurii N

    2007-01-01

    Dispersion phase matching curves and spectral distributions of the efficiency of difference frequency generation in the terahertz range are calculated for collinear propagation of interacting waves in zinc blende semiconductor crystals (ZnTe, CdTe, GaP, GaAs). The effect of the pump wavelength, the nonlinear crystal length and absorption in the terahertz range on the spectral distribution of the efficiency of difference frequency generation is analysed. (nonlinear optical phenomena)

  9. Narrowband widely tunable CW mid-infrared generator based on difference frequency generation in periodically poled KTP and KTA crystals

    Czech Academy of Sciences Publication Activity Database

    Baravets, Yauhen; Honzátko, Pavel; Todorov, Filip; Gladkov, Petar

    2016-01-01

    Roč. 48, č. 5 (2016), May ISSN 0306-8919 R&D Projects: GA MŠk LD14112 Grant - others:COST(XE) MP1204 Institutional support: RVO:67985882 Keywords : Fiber optics amplifiers * Difference-frequency generation * Mid-infrared tunable laser source Subject RIV: BH - Optics , Masers, Lasers Impact factor: 1.055, year: 2016

  10. Synchronous dual-wavelength pulse generation in coaxial pumping scheme and its application in terahertz difference frequency generation

    Science.gov (United States)

    Liu, Yang; Zhong, Kai; Mei, Jialin; Jin, Shuo; Ge, Meng; Xu, Degang; Yao, Jianquan

    2018-02-01

    A compact and flexible dual-wavelength laser with combined two laser crystals (a-cut and c-cut Nd:YLF) as the gain media under coaxially laser-diode (LD) end-pumping configuration was demonstrated and μW-level THz wave was generated based on difference frequency generation (DFG) in a GaSe crystal. The dynamics of coaxial pumping dualwavelength laser was theoretically investigated, showing that the power ratio and pulse interval for both wavelengths could be tuned by balancing the gains at both wavelengths via tuning pump focal position. Synchronized orthogonal 1047/1053 nm laser pulses were obtained and optimal power ratio was realized with the total output power of 2.92W at 5 kHz pumped by 10-W LD power. With an 8-mm-long GaSe crystal, 0.93 μW THz wave at 1.64 THz (182 μm) was generated. Such coaxially LD end-pumped lasers can be extended to various combinations of neodymium doped laser media to produce different THz wavelengths for costless and portable applications.

  11. Virtual Resonance and Frequency Difference Generation by van der Waals Interaction

    Science.gov (United States)

    Tetard, L.; Passian, A.; Eslami, S.; Jalili, N.; Farahi, R. H.; Thundat, T.

    2011-05-01

    The ability to explore the interior of materials for the presence of inhomogeneities was recently demonstrated by mode synthesizing atomic force microscopy [L. Tetard, A. Passian, and T. Thundat, Nature Nanotech. 5, 105 (2009).NNAABX1748-338710.1038/nnano.2009.454]. Proposing a semiempirical nonlinear force, we show that difference frequency ω- generation, regarded as the simplest synthesized mode, occurs optimally when the force is tuned to van der Waals form. From a parametric study of the probe-sample excitation, we show that the predicted ω- oscillation agrees well with experiments. We then introduce the concept of virtual resonance to show that probe oscillations at ω- can efficiently be enhanced.

  12. Resonant difference-frequency atomic force ultrasonic microscope

    Science.gov (United States)

    Cantrell, John H. (Inventor); Cantrell, Sean A. (Inventor)

    2010-01-01

    A scanning probe microscope and methodology called resonant difference-frequency atomic force ultrasonic microscopy (RDF-AFUM), employs an ultrasonic wave launched from the bottom of a sample while the cantilever of an atomic force microscope, driven at a frequency differing from the ultrasonic frequency by one of the contact resonance frequencies of the cantilever, engages the sample top surface. The nonlinear mixing of the oscillating cantilever and the ultrasonic wave in the region defined by the cantilever tip-sample surface interaction force generates difference-frequency oscillations at the cantilever contact resonance. The resonance-enhanced difference-frequency signals are used to create images of nanoscale near-surface and subsurface features.

  13. Harmonic generation with a dual frequency pulse.

    Science.gov (United States)

    Keravnou, Christina P; Averkiou, Michalakis A

    2014-05-01

    Nonlinear imaging was implemented in commercial ultrasound systems over the last 15 years offering major advantages in many clinical applications. In this work, pulsing schemes coupled with a dual frequency pulse are presented. The pulsing schemes considered were pulse inversion, power modulation, and power modulated pulse inversion. The pulse contains a fundamental frequency f and a specified amount of its second harmonic 2f. The advantages and limitations of this method were evaluated with both acoustic measurements of harmonic generation and theoretical simulations based on the KZK equation. The use of two frequencies in a pulse results in the generation of the sum and difference frequency components in addition to the other harmonic components. While with single frequency pulses, only power modulation and power modulated pulse inversion contained odd harmonic components, with the dual frequency pulse, pulse inversion now also contains odd harmonic components.

  14. Tunable narrow band difference frequency THz wave generation in DAST via dual seed PPLN OPG.

    Science.gov (United States)

    Dolasinski, Brian; Powers, Peter E; Haus, Joseph W; Cooney, Adam

    2015-02-09

    We report a widely tunable narrowband terahertz (THz) source via difference frequency generation (DFG). A narrowband THz source uses the output of dual seeded periodically poled lithium niobate (PPLN) optical parametric generators (OPG) combined in the nonlinear crystal 4-dimthylamino-N-methyl-4-stilbazolium-tosylate (DAST). We demonstrate a seamlessly tunable THZ output that tunes from 1.5 THz to 27 THz with a minimum bandwidth of 3.1 GHz. The effects of dispersive phase matching, two-photon absorption, and polarization were examined and compared to a power emission model that consisted of the current accepted parameters of DAST.

  15. Single-transducer dual-frequency ultrasound generation to enhance acoustic cavitation.

    Science.gov (United States)

    Liu, Hao-Li; Hsieh, Chao-Ming

    2009-03-01

    Dual- or multiple-frequency ultrasound stimulation is capable of effectively enhancing the acoustic cavitation effect over single-frequency ultrasound. Potential application of this sonoreactor design has been widely proposed such as on sonoluminescence, sonochemistry enhancement, and transdermal drug release enhancement. All currently available sonoreactor designs employed multiple piezoelectric transducers for generating single-frequency ultrasonic waves separately and then these waves were mixed and interfered in solutions. The purpose of this research is to propose a novel design of generating dual-frequency ultrasonic waves with single piezoelectric elements, thereby enhancing acoustic cavitation. Macroscopic bubbles were detected optically, and they were quantified at either a single-frequency or for different frequency combinations for determining their efficiency for enhancing acoustic cavitation. Visible bubbles were optically detected and hydrogen peroxide was measured to quantify acoustic cavitation. Test water samples with different gas concentrations and different power levels were used to determine the efficacy of enhancing acoustic cavitation of this design. The spectrum obtained from the backscattered signals was also recorded and examined to confirm the occurrence of stable cavitation. The results confirmed that single-element dual-frequency ultrasound stimulation can enhance acoustic cavitation. Under certain testing conditions, the generation of bubbles can be enhanced up to a level of five times higher than the generation of bubbles in single-frequency stimulation, and can increase the hydrogen peroxide production up to an increase of one fold. This design may serve as a useful alternative for future sonoreactor design owing to its simplicity to produce dual- or multiple-frequency ultrasound.

  16. Second harmonic generation and sum frequency generation

    International Nuclear Information System (INIS)

    Pellin, M.J.; Biwer, B.M.; Schauer, M.W.; Frye, J.M.; Gruen, D.M.

    1990-01-01

    Second harmonic generation and sum frequency generation are increasingly being used as in situ surface probes. These techniques are coherent and inherently surface sensitive by the nature of the mediums response to intense laser light. Here we will review these two techniques using aqueous corrosion as an example problem. Aqueous corrosion of technologically important materials such as Fe, Ni and Cr proceeds from a reduced metal surface with layer by layer growth of oxide films mitigated by compositional changes in the chemical makeup of the growing film. Passivation of the metal surface is achieved after growth of only a few tens of atomic layers of metal oxide. Surface Second Harmonic Generation and a related nonlinear laser technique, Sum Frequency Generation have demonstrated an ability to probe the surface composition of growing films even in the presence of aqueous solutions. 96 refs., 4 figs

  17. Wind Generation Participation in Power System Frequency Response: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Gevorgian, Vahan; Zhang, Yingchen

    2017-01-01

    The electrical frequency of an interconnected power system must be maintained close its nominal level at all times. Excessive under- and overfrequency excursions can lead to load shedding, instability, machine damage, and even blackouts. There is a rising concern in the electric power industry in recent years about the declining amount of inertia and primary frequency response (PFR) in many interconnections. This decline may continue due to increasing penetrations of inverter-coupled generation and the planned retirements of conventional thermal plants. Inverter-coupled variable wind generation is capable of contributing to PFR and inertia with a response that is different from that of conventional generation. It is not yet entirely understood how such a response will affect the system at different wind power penetration levels. The modeling work presented in this paper evaluates the impact of wind generation's provision of these active power control strategies on a large, synchronous interconnection. All simulations were conducted on the U.S. Western Interconnection with different levels of instantaneous wind power penetrations (up to 80%). The ability of wind power plants to provide PFR - and a combination of synthetic inertial response and PFR - significantly improved the frequency response performance of the system.

  18. Extremely frequency-widened terahertz wave generation using Cherenkov-type radiation.

    Science.gov (United States)

    Suizu, Koji; Koketsu, Kaoru; Shibuya, Takayuki; Tsutsui, Toshihiro; Akiba, Takuya; Kawase, Kodo

    2009-04-13

    Terahertz (THz) wave generation based on nonlinear frequency conversion is promising way for realizing a tunable monochromatic bright THz-wave source. Such a development of efficient and wide tunable THz-wave source depends on discovery of novel brilliant nonlinear crystal. Important factors of a nonlinear crystal for THz-wave generation are, 1. High nonlinearity and 2. Good transparency at THz frequency region. Unfortunately, many nonlinear crystals have strong absorption at THz frequency region. The fact limits efficient and wide tunable THz-wave generation. Here, we show that Cherenkov radiation with waveguide structure is an effective strategy for achieving efficient and extremely wide tunable THz-wave source. We fabricated MgO-doped lithium niobate slab waveguide with 3.8 microm of thickness and demonstrated difference frequency generation of THz-wave generation with Cherenkov phase matching. Extremely frequency-widened THz-wave generation, from 0.1 to 7.2 THz, without no structural dips successfully obtained. The tuning frequency range of waveguided Cherenkov radiation source was extremely widened compare to that of injection seeded-Terahertz Parametric Generator. The tuning range obtained in this work for THz-wave generation using lithium niobate crystal was the widest value in our knowledge. The highest THz-wave energy obtained was about 3.2 pJ, and the energy conversion efficiency was about 10(-5) %. The method can be easily applied for many conventional nonlinear crystals, results in realizing simple, reasonable, compact, high efficient and ultra broad band THz-wave sources.

  19. Spectral purity and tunability of terahertz quantum cascade laser sources based on intracavity difference-frequency generation.

    Science.gov (United States)

    Consolino, Luigi; Jung, Seungyong; Campa, Annamaria; De Regis, Michele; Pal, Shovon; Kim, Jae Hyun; Fujita, Kazuue; Ito, Akio; Hitaka, Masahiro; Bartalini, Saverio; De Natale, Paolo; Belkin, Mikhail A; Vitiello, Miriam Serena

    2017-09-01

    Terahertz sources based on intracavity difference-frequency generation in mid-infrared quantum cascade lasers (THz DFG-QCLs) have recently emerged as the first monolithic electrically pumped semiconductor sources capable of operating at room temperature across the 1- to 6-THz range. Despite tremendous progress in power output, which now exceeds 1 mW in pulsed and 10 μW in continuous-wave regimes at room temperature, knowledge of the major figure of merits of these devices for high-precision spectroscopy, such as spectral purity and absolute frequency tunability, is still lacking. By exploiting a metrological grade system comprising a terahertz frequency comb synthesizer, we measure, for the first time, the free-running emission linewidth (LW), the tuning characteristics, and the absolute center frequency of individual emission lines of these sources with an uncertainty of 4 × 10 -10 . The unveiled emission LW (400 kHz at 1-ms integration time) indicates that DFG-QCLs are well suited to operate as local oscillators and to be used for a variety of metrological, spectroscopic, communication, and imaging applications that require narrow-LW THz sources.

  20. DPOAE generation dependence on primary frequencies ratio

    Science.gov (United States)

    Botti, Teresa; Sisto, Renata; Moleti, Arturo; D'Amato, Luisa; Sanjust, Filippo

    2015-12-01

    Two different mechanisms are responsible for the DPOAE generation. The nonlinear distortion wave-fixed mechanism generates the DPOAE Zero-Latency (ZL) component, as a backward traveling wave from the "overlap" region. Linear reflection of the forward DP wave (IDP) generates the DPOAE Long-Latency (LL) component through a place-fixed mechanism. ZL and LL components add up vectorially to generate the DPOAE recorded in the ear canal. The 2f1 - f2 and 2f2 - f1 DPOAE intensity depends on the stimulus level and on the primary frequency ratio r = f2/f1, where f1 and f2 are the primary stimuli frequencies. Here we study the behavior of the ZL and LL DPOAE components as a function of r by both numerical and laboratory experiments, measuring DPAOEs with an equal primary levels (L1 = L2) paradigm in the range [35, 75] dB SPL, with r ranging in [1.1, 1.45]. Numerical simulations of a nonlocal nonlinear model have been performed without cochlear roughness, to suppress the linear reflection mechanism. In this way the model solution at the base represents the DPOAE ZL component, and the solution at the corresponding DPOAE tonotopic place corresponds to the IDP. This technique has been not effectual to study the 2f2 - f1 DPOAE, as a consequence of its generation mechanism. While the 2f1 - f2 generation place is known to be the tonotopic place x(f2), the 2f2 - f1 DPOAE one has to be assumed basal to its corresponding reflection place. That is because ZL components generated in x(f2) cannot significantly pass through their resonant place. Moreover increasing the ratio r, 2f2 - f1 ZL and LL generation place approach each other, because the overlap region of primary tones decreases. Consequently, the distinction between the two places becomes complicated. DPOAEs have been measured in six young normal-hearing subjects. DPOAE ZL and LL components have been separated by a time-frequency filtering method based on the wavelet transform 1. due to their different phase gradient delay

  1. Uniqueness: skews bit occurrence frequencies in randomly generated fingerprint libraries.

    Science.gov (United States)

    Chen, Nelson G

    2016-08-01

    Requiring that randomly generated chemical fingerprint libraries have unique fingerprints such that no two fingerprints are identical causes a systematic skew in bit occurrence frequencies, the proportion at which specified bits are set. Observed frequencies (O) at which each bit is set within the resulting libraries systematically differ from frequencies at which bits are set at fingerprint generation (E). Observed frequencies systematically skew toward 0.5, with the effect being more pronounced as library size approaches the compound space, which is the total number of unique possible fingerprints given the number of bit positions each fingerprint contains. The effect is quantified for varying library sizes as a fraction of the overall compound space, and for changes in the specified frequency E. The cause and implications for this systematic skew are subsequently discussed. When generating random libraries of chemical fingerprints, the imposition of a uniqueness requirement should either be avoided or taken into account.

  2. Forward and backward THz-wave difference frequency generations from a rectangular nonlinear waveguide.

    Science.gov (United States)

    Huang, Yen-Chieh; Wang, Tsong-Dong; Lin, Yen-Hou; Lee, Ching-Han; Chuang, Ming-Yun; Lin, Yen-Yin; Lin, Fan-Yi

    2011-11-21

    We report forward and backward THz-wave difference frequency generations at 197 and 469 μm from a PPLN rectangular crystal rod with an aperture of 0.5 (height in z) × 0.6 (width in y) mm(2) and a length of 25 mm in x. The crystal rod appears as a waveguide for the THz waves but as a bulk material for the optical mixing waves near 1.54 μm. We measured enhancement factors of 1.6 and 1.8 for the forward and backward THz-wave output powers, respectively, from the rectangular waveguide in comparison with those from a PPLN slab waveguide of the same length, thickness, and domain period under the same pump and signal intensity of 100 MW/cm(2). © 2011 Optical Society of America

  3. Generation of Mid-Infrared Frequency Combs for Spectroscopic Applications

    Science.gov (United States)

    Maser, Daniel L.

    Mid-infrared laser sources prove to be a valuable tool in exploring a vast array of phenomena, finding their way into applications ranging from trace gas detection to X-ray generation and carbon dating. Mid-infrared frequency combs, in particular, are well-suited for many of these applications, owing to their inherent low-noise and broadband nature. Frequency comb technology is well-developed in the near-infrared as a result of immense technological development by the telecommunication industry in silica fiber and the existence of readily-available glass dopants such as ytterbium and erbium that enable oscillators at 1 and 1.5 ?m. However, options become substantially more limited at longer wavelengths, as silica is no longer transparent and the components required in a mid-infrared frequency comb system (oscillators, fibers, and both fiber and free-space components) are far less technologically mature. This thesis explores several different approaches to generating frequency comb sources in the mid-infrared region, and the development of sources used in the nonlinear processes implemented to reach these wavelengths. An optical parametric oscillator, two approaches to difference frequency generation, and nonlinear spectral broadening in chip-scale waveguides are developed, characterized, and spectroscopic potential for these techniques is demonstrated. The source used for these nonlinear processes, the erbium-doped fiber amplifier, is also studied and discussed throughout the design and optimization process. The nonlinear optical processes critical to this work are numerically modeled and used to confirm and predict experimental behavior.

  4. Single-frequency blue light generation by single-pass sum-frequency generation in a coupled ring cavity tapered laser

    DEFF Research Database (Denmark)

    Jensen, Ole Bjarlin; Petersen, Paul Michael

    2013-01-01

    A generic approach for generation of tunable single frequency light is presented. 340 mW of near diffraction limited, single-frequency, and tunable blue light around 459 nm is generated by sum-frequency generation (SFG) between two tunable tapered diode lasers. One diode laser is operated in a ring...... cavity and another tapered diode laser is single-passed through a nonlinear crystal which is contained in the coupled ring cavity. Using this method, the single-pass conversion efficiency is more than 25%. In contrast to SFG in an external cavity, the system is entirely self-stabilized with no electronic...

  5. An amplitude modulated radio frequency plasma generator

    Science.gov (United States)

    Lei, Fan; Li, Xiaoping; Liu, Yanming; Liu, Donglin; Yang, Min; Xie, Kai; Yao, Bo

    2017-04-01

    A glow discharge plasma generator and diagnostic system has been developed to study the effects of rapidly variable plasmas on electromagnetic wave propagation, mimicking the plasma sheath conditions encountered in space vehicle reentry. The plasma chamber is 400 mm in diameter and 240 mm in length, with a 300-mm-diameter unobstructed clear aperture. Electron densities produced are in the mid 1010 electrons/cm3. An 800 W radio frequency (RF) generator is capacitively coupled through an RF matcher to an internally cooled stainless steel electrode to form the plasma. The RF power is amplitude modulated by a waveform generator that operates at different frequencies. The resulting plasma contains electron density modulations caused by the varying power levels. A 10 GHz microwave horn antenna pair situated on opposite sides of the chamber serves as the source and detector of probe radiation. The microwave power feed to the source horn is split and one portion is sent directly to a high-speed recording oscilloscope. On mixing this with the signal from the pickup horn antenna, the plasma-induced phase shift between the two signals gives the path-integrated electron density with its complete time dependent variation. Care is taken to avoid microwave reflections and extensive shielding is in place to minimize electronic pickup. Data clearly show the low frequency modulation of the electron density as well as higher harmonics and plasma fluctuations.

  6. Design of a GaP/Si composite waveguide for CW terahertz wave generation via difference frequency mixing.

    Science.gov (United States)

    Saito, Kyosuke; Tanabe, Tadao; Oyama, Yutaka

    2014-06-10

    We design a GaP/Si composite waveguide to achieve efficient terahertz (THz) wave generation under collinear phase-matched difference frequency mixing (DFM) between near-infrared light sources. This waveguide structure provides a strong mode confinement of both near-infrared sources and THz wave, resulting in an efficient mode overlapping. The numerical results show that the waveguide can produce guided THz wave (5.93 THz) with a power conversion efficiency of 6.6×10(-4)  W(-1). This value is larger than previously obtained with the bulk GaP crystal: 0.5×10(-9)  W(-1) [J. Lightwave Technol.27, 3057 (2009)]. Our proposed composite waveguide can be achieved by bridging the telecom wavelength and THz frequency region.

  7. Frequency-difference-dependent stochastic resonance in neural systems

    Science.gov (United States)

    Guo, Daqing; Perc, Matjaž; Zhang, Yangsong; Xu, Peng; Yao, Dezhong

    2017-08-01

    Biological neurons receive multiple noisy oscillatory signals, and their dynamical response to the superposition of these signals is of fundamental importance for information processing in the brain. Here we study the response of neural systems to the weak envelope modulation signal, which is superimposed by two periodic signals with different frequencies. We show that stochastic resonance occurs at the beat frequency in neural systems at the single-neuron as well as the population level. The performance of this frequency-difference-dependent stochastic resonance is influenced by both the beat frequency and the two forcing frequencies. Compared to a single neuron, a population of neurons is more efficient in detecting the information carried by the weak envelope modulation signal at the beat frequency. Furthermore, an appropriate fine-tuning of the excitation-inhibition balance can further optimize the response of a neural ensemble to the superimposed signal. Our results thus introduce and provide insights into the generation and modulation mechanism of the frequency-difference-dependent stochastic resonance in neural systems.

  8. Multiwatt-level continuous-wave midwave infrared generation using difference frequency mixing in periodically poled MgO-doped lithium niobate.

    Science.gov (United States)

    Guha, Shekhar; Barnes, Jacob O; Gonzalez, Leonel P

    2014-09-01

    Over 3.5 W of continuous-wave power at 3.4 μm was obtained by single-pass difference frequency mixing of 1.064 and 1.55 μm fiber lasers in a 5 cm long periodically poled lithium niobate crystal. Good agreement was obtained between the observed temperature dependence of the generated power and the prediction from focused Gaussian beam theory.

  9. Fast Hopping Frequency Generation in Digital CMOS

    CERN Document Server

    Farazian, Mohammad; Gudem, Prasad S

    2013-01-01

    Overcoming the agility limitations of conventional frequency synthesizers in multi-band OFDM ultra wideband is a key research goal in digital technology. This volume outlines a frequency plan that can generate all the required frequencies from a single fixed frequency, able to implement center frequencies with no more than two levels of SSB mixing. It recognizes the need for future synthesizers to bypass on-chip inductors and operate at low voltages to enable the increased integration and efficiency of networked appliances. The author examines in depth the architecture of the dividers that generate the necessary frequencies from a single base frequency and are capable of establishing a fractional division ratio.   Presenting the first CMOS inductorless single PLL 14-band frequency synthesizer for MB-OFDMUWB makes this volume a key addition to the literature, and with the synthesizer capable of arbitrary band-hopping in less than two nanoseconds, it operates well within the desired range on a 1.2-volt power s...

  10. Generation of optical frequencies out of the frequency comb of a femtosecond laser for DWDM telecommunication

    International Nuclear Information System (INIS)

    Kim, Y-J; Chun, B J; Kim, Y; Hyun, S; Kim, S-W

    2010-01-01

    We exploit the frequency comb of a fs laser as the frequency ruler to generate reference optical frequencies for multi-channel DWDM (dense wavelength-division-multiplexing) telecommunication. Our fiber-based scheme of single-mode extraction enables on-demand generation of optical frequencies within the telecommunication band with an absolute frequency uncertainty of 9.1×10 -13 . The linewidth of extracted optical modes is less than 1 Hz, and the instability is measured 2.3×10 -15 at 10 s averaging. This outstanding performance of optical frequency generation would lead to a drastic improvement of the spectral efficiency for the next-generation DWDM telecommunication

  11. Frequency-tunable terahertz wave generation via excitation of phonon-polaritons in GaP

    CERN Document Server

    Tanabé, T; Nishizawa, J I; Saitô, K; Kimura, T

    2003-01-01

    High-power, wide-frequency-tunable terahertz waves were generated based on difference-frequency generation in GaP crystals with small-angle noncollinear phase matching. The tunable frequency range was as wide as 0.5-7 THz, and the peak power remained high, near 100 mW, over most of the frequency region. The tuning properties were well described by the dispersion relationship for the phonon-polariton mode of GaP up to 6 THz. We measured the spectra of crystal polyethylene and crystal quartz with high resolution using this THz-wave source.

  12. Frequency-tunable terahertz wave generation via excitation of phonon-polaritons in GaP

    International Nuclear Information System (INIS)

    Tanabe, Tadao; Suto, Ken; Nishizawa, Jun-ichi; Saito, Kyosuke; Kimura, Tomoyuki

    2003-01-01

    High-power, wide-frequency-tunable terahertz waves were generated based on difference-frequency generation in GaP crystals with small-angle noncollinear phase matching. The tunable frequency range was as wide as 0.5-7 THz, and the peak power remained high, near 100 mW, over most of the frequency region. The tuning properties were well described by the dispersion relationship for the phonon-polariton mode of GaP up to 6 THz. We measured the spectra of crystal polyethylene and crystal quartz with high resolution using this THz-wave source

  13. Dynamics of microresonator frequency comb generation: models and stability

    Directory of Open Access Journals (Sweden)

    Hansson Tobias

    2016-06-01

    Full Text Available Microresonator frequency combs hold promise for enabling a new class of light sources that are simultaneously both broadband and coherent, and that could allow for a profusion of potential applications. In this article, we review various theoretical models for describing the temporal dynamics and formation of optical frequency combs. These models form the basis for performing numerical simulations that can be used in order to better understand the comb generation process, for example helping to identify the universal combcharacteristics and their different associated physical phenomena. Moreover, models allow for the study, design and optimization of comb properties prior to the fabrication of actual devices. We consider and derive theoretical formalisms based on the Ikeda map, the modal expansion approach, and the Lugiato-Lefever equation. We further discuss the generation of frequency combs in silicon resonators featuring multiphoton absorption and free-carrier effects. Additionally, we review comb stability properties and consider the role of modulational instability as well as of parametric instabilities due to the boundary conditions of the cavity. These instability mechanisms are the basis for comprehending the process of frequency comb formation, for identifying the different dynamical regimes and the associated dependence on the comb parameters. Finally, we also discuss the phenomena of continuous wave bi- and multistability and its relation to the observation of mode-locked cavity solitons.

  14. Highly efficient single-pass sum frequency generation by cascaded nonlinear crystals

    DEFF Research Database (Denmark)

    Hansen, Anders Kragh; Andersen, Peter E.; Jensen, Ole Bjarlin

    2015-01-01

    , despite differences in the phase relations of the involved fields. An unprecedented 5.5 W of continuous-wave diffraction-limited green light is generated from the single-pass sum frequency mixing of two diode lasers in two periodically poled nonlinear crystals (conversion efficiency 50%). The technique......The cascading of nonlinear crystals has been established as a simple method to greatly increase the conversion efficiency of single-pass second-harmonic generation compared to a single-crystal scheme. Here, we show for the first time that the technique can be extended to sum frequency generation...... is generally applicable and can be applied to any combination of fundamental wavelengths and nonlinear crystals....

  15. Investigation of Capacitively Coupled Argon Plasma Driven by Dual-Frequency with Different Frequency Configurations

    International Nuclear Information System (INIS)

    Yu Yiqing; Xin Yu; Ning Zhaoyuan; Lu Wenqi

    2011-01-01

    Low pressure argon dual-frequency (DF) capacitively coupled plasma (CCP) is generated by using different frequency configurations, such as 13.56/2, 27/2, 41/2, and 60/2 MHz. Characteristics of the plasma are investigated by using a floating double electrical probe and optical emission spectroscopy (OES). It is shown that in the DF-CCPs, the electron temperature T e decreases with the increase in exciting frequency, while the onset of 2 MHz induces a sudden increase in T e and the electron density increases basically with the increase in low frequency (LF) power. The intensity of 750.4 nm emission line increases with the LF power in the case of 13.56/2 MHz, while different tendencies of line intensity with the LF power appear for other configurations. The reason for this is also discussed.

  16. Soliton generation from a multi-frequency optical signal

    International Nuclear Information System (INIS)

    Panoiu, N-C; Mel'nikov, I V; Mihalache, D; Etrich, C; Lederer, F

    2002-01-01

    We present a comprehensive analysis of the generation of optical solitons in a monomode optical fibre from a superposition of soliton-like optical pulses at different frequencies. It is demonstrated that the structure of the emerging optical field is highly dependent on the number of input channels, the inter-channel frequency separation, the time shift between the pulses belonging to adjacent channels, and the polarization of the pulses. Also, it is found that there exists a critical frequency separation above which wavelength-division multiplexing with solitons is feasible and that this critical frequency increases with the number of transmission channels. Moreover, for the case in which only two channels are considered, we analyse the propagation of the emerging two-soliton solutions in the presence of several perturbations important for optical networks: bandwidth-limited amplification, nonlinear amplification, and amplitude and phase modulation. Finally, the influence of the birefringence of the fibre on the structure of the emerging optical field is discussed. (review article)

  17. A CMOS frequency generation module for 60-GHz applications

    International Nuclear Information System (INIS)

    Zhou Chunyuan; Zhang Lei; Wang Hongrui; Qian He

    2012-01-01

    A frequency generation module for 60-GHz transceivers and phased array systems is presented in this paper. It is composed of a divide-by-2 current mode logic divider (CML) and a doubler in push-push configuration. Benefiting from the CML structure and push-push configuration, the proposed frequency generation module has a wide operating frequency range to cover process, voltage, and temperature variation. It is implemented in a 90-nm CMOS process, and occupies a chip area of 0.64 × 0.65 mm 2 including pads. The measurement results show that the designed frequency generation module functions properly with input frequency over 15 GHz to 25 GHz. The whole chip dissipates 12.1 mW from a 1.2-V supply excluding the output buffers. (semiconductor integrated circuits)

  18. Broadband pulsed difference frequency generation laser source centered 3326 nm based on ring fiber lasers

    Science.gov (United States)

    Chen, Guangwei; Li, Wenlei

    2018-03-01

    A broadband pulsed mid-infrared difference frequency generation (DFG) laser source based on MgO-doped congruent LiNbO3 bulk is experimentally demonstrated, which employs a homemade pulsed ytterbium-doped ring fiber laser and a continuous wave erbium-doped ring fiber laser to act as seed sources. The experimental results indicate that the perfect phase match crystal temperature is about 74.5∘C. The maximum spectrum bandwidth of idler is about 60 nm with suitable polarization states of fundamental lights. The central wavelength of idlers varies from 3293 nm to 3333 nm over the crystal temperature ranges of 70.4-76∘C. A jump of central wavelength exists around crystal temperature of 72∘C with variation of about 30 nm. The conversion efficiency of DFG can be tuned with the crystal temperature and polarization states of fundamental lights.

  19. Optical generation of radio-frequency power

    International Nuclear Information System (INIS)

    Hietala, V.M.; Vawter, G.A.; Brennan, T.M.; Hammons, B.E.; Meyer, W.J.

    1994-11-01

    An optical technique for high-power radio-frequency (RF) signal generation is described. The technique uses a unique photodetector based on a traveling-wave design driven by an appropriately modulated light source. The traveling-wave photodetector (TWPD) exhibits simultaneously a theoretical quantum efficiency approaching 100 % and a very large electrical bandwidth. Additionally, it is capable of dissipating the high-power levels required for the RF generation technique. The modulated light source is formed by either the beating together of two lasers or by the direct modulation of a light source. A system example is given which predicts RF power levels of 100's of mW's at millimeter wave frequencies with a theoretical ''wall-plug'' efficiency approaching 34%

  20. Sensibility to Changes of Vibrational Modes of Excited Electron: Sum Frequency Signals Versus Difference Frequency Signals

    International Nuclear Information System (INIS)

    Gu Anna; Liang Xianting

    2011-01-01

    In this paper, we investigate a two electronic level system with vibrational modes coupled to a Brownian oscillator bath. The difference frequency generation (DFG) signals and sum frequency generation (SFG) signals are calculated. It is shown that, for the same model, the SFG signals are more sensitive than the DFG signals to the changes of the vibrational modes of the electronic two-level system. Because the SFG conversion efficiency can be improved by using the time-delay method, the findings in this paper predict that the SFG spectrum may probe the changes of the microstructure more effectively. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  1. THz-wave generation via difference frequency mixing in strained silicon based waveguide utilizing its second order susceptibility χ((2)).

    Science.gov (United States)

    Saito, Kyosuke; Tanabe, Tadao; Oyama, Yutaka

    2014-07-14

    Terahertz (THz) wave generation via difference frequency mixing (DFM) process in strain silicon membrane waveguides by introducing the straining layer is theoretically investigated. The Si(3)N(4) straining layer induces anisotropic compressive strain in the silicon core and results in the appearance of the bulk second order nonlinear susceptibility χ((2)) by breaking the crystal symmetry. We have proposed waveguide structures for THz wave generation under the DFM process by .using the modal birefringence in the waveguide core. Our simulations show that an output power of up to 0.95 mW can be achieved at 9.09 THz. The strained silicon optical device may open a widow in the field of the silicon-based active THz photonic device applications.

  2. Numerical study of the generation and propagation of ultralow-frequency waves by artificial ionospheric F region modulation at different latitudes

    Directory of Open Access Journals (Sweden)

    X. Xu

    2016-09-01

    Full Text Available Powerful high-frequency (HF radio waves can be used to efficiently modify the upper-ionospheric plasmas of the F region. The pressure gradient induced by modulated electron heating at ultralow-frequency (ULF drives a local oscillating diamagnetic ring current source perpendicular to the ambient magnetic field, which can act as an antenna radiating ULF waves. In this paper, utilizing the HF heating model and the model of ULF wave generation and propagation, we investigate the effects of both the background ionospheric profiles at different latitudes in the daytime and nighttime ionosphere and the modulation frequency on the process of the HF modulated heating and the subsequent generation and propagation of artificial ULF waves. Firstly, based on a relation among the radiation efficiency of the ring current source, the size of the spatial distribution of the modulated electron temperature and the wavelength of ULF waves, we discuss the possibility of the effects of the background ionospheric parameters and the modulation frequency. Then the numerical simulations with both models are performed to demonstrate the prediction. Six different background parameters are used in the simulation, and they are from the International Reference Ionosphere (IRI-2012 model and the neutral atmosphere model (NRLMSISE-00, including the High Frequency Active Auroral Research Program (HAARP; 62.39° N, 145.15° W, Wuhan (30.52° N, 114.32° E and Jicamarca (11.95° S, 76.87° W at 02:00 and 14:00 LT. A modulation frequency sweep is also used in the simulation. Finally, by analyzing the numerical results, we come to the following conclusions: in the nighttime ionosphere, the size of the spatial distribution of the modulated electron temperature and the ground magnitude of the magnetic field of ULF wave are larger, while the propagation loss due to Joule heating is smaller compared to the daytime ionosphere; the amplitude of the electron temperature

  3. Frequency dependence of quantum path interference in non-collinear high-order harmonic generation

    International Nuclear Information System (INIS)

    Zhong Shi-Yang; He Xin-Kui; Teng Hao; Ye Peng; Wang Li-Feng; He Peng; Wei Zhi-Yi

    2016-01-01

    High-order harmonic generation (HHG) driven by two non-collinear beams including a fundamental and its weak second harmonic is numerically studied. The interference of harmonics from adjacent electron quantum paths is found to be dependent on the relative delay of the driving pulse, and the dependences are different for different harmonic orders. This frequency dependence of the interference is attributed to the spatial frequency chirp in the HHG beam resulting from the harmonic dipole phase, which in turn provides a potential way to gain an insight into the generation of high-order harmonics. As an example, the intensity dependent dipole phase coefficient α is retrieved from the interference fringe. (paper)

  4. Simple method of generating and distributing frequency-entangled qudits

    Science.gov (United States)

    Jin, Rui-Bo; Shimizu, Ryosuke; Fujiwara, Mikio; Takeoka, Masahiro; Wakabayashi, Ryota; Yamashita, Taro; Miki, Shigehito; Terai, Hirotaka; Gerrits, Thomas; Sasaki, Masahide

    2016-11-01

    High-dimensional, frequency-entangled photonic quantum bits (qudits for d-dimension) are promising resources for quantum information processing in an optical fiber network and can also be used to improve channel capacity and security for quantum communication. However, up to now, it is still challenging to prepare high-dimensional frequency-entangled qudits in experiments, due to technical limitations. Here we propose and experimentally implement a novel method for a simple generation of frequency-entangled qudts with d\\gt 10 without the use of any spectral filters or cavities. The generated state is distributed over 15 km in total length. This scheme combines the technique of spectral engineering of biphotons generated by spontaneous parametric down-conversion and the technique of spectrally resolved Hong-Ou-Mandel interference. Our frequency-entangled qudits will enable quantum cryptographic experiments with enhanced performances. This distribution of distinct entangled frequency modes may also be useful for improved metrology, quantum remote synchronization, as well as for fundamental test of stronger violation of local realism.

  5. Towards a versatile active wavelength converter for all-optical networks based on quasi-phase matched intra-cavity difference-frequency generation.

    Science.gov (United States)

    Torregrosa, Adrián J; Maestre, Haroldo; Capmany, Juan

    2013-11-18

    The availability of reconfigurable all-optical wavelength converters for an efficient and flexible use of optical resources in WDM (wavelength division multiplexing) networks is still lacking at present. We propose and report preliminary results on a versatile active technique for multiple and tunable wavelength conversions in the 1500-1700 nm spectral region. The technique is based on combining broadband quasi-phase matched intra-cavity parametric single-pass difference-frequency generation close to degeneracy in a diode-pumped tunable laser. A periodically poled stoichiometric lithium tantalate crystal is used as the nonlinear medium, with a parametric pump wave generated in a continuous-wave self-injection locked Cr3+:LiCAF tunable laser operating at around 800 nm.

  6. Difference-frequency generation in the field of a few-cycle laser pulse propagating in a GaAs crystal with a domain structure

    International Nuclear Information System (INIS)

    Oganesyan, David L; Vardanyan, Aleksandr O; Oganesyan, G D

    2013-01-01

    Difference-frequency generation in a GaAs crystal with a periodic domain structure in the field of a few-cycle laser pulse is considered for the case of weakly pronounced material dispersion. The straight-line method is used to solve numerically the system of coupled nonlinear partial differential equations describing the evolution of the electric field of this laser pulse in GaAs crystals with periodic and chirped domain structures. It is shown that application of a GaAs crystal with a chirped domain structure makes it possible to control the frequency-modulation law for a broadband differencefrequency pulse. (nonlinear optical phenomena)

  7. On-electrode autonomous current generator for multi-frequency EIT

    International Nuclear Information System (INIS)

    Jivet, I; Dragoi, B

    2008-01-01

    The paper presents an autonomous programmable current generator module for multi-frequency EIT systems. The module incorporates all stages from the sine wave generation with frequency and amplitude tuning, D/A converter and filter, a high output resistance voltage-to-current converter to the associated digital communication and control. The paper presents in depth the original digital quadrature signal generator and the output current generator with a high resistance. The other main blocks of the design use current practice specifications, since recent technological solutions proposed in the literature were found appropriate. The proposed signal generator circuit, characterized by a very low complexity, is analyzed in its capacity to produce multiple accurate signals up to 1 MHz in frequency. The precision output current source uses a modified current conveyor of type CCII with a high output resistance and low distortion. The output current frequency spectrum and linearity parameters obtained in the simulations are also described. The simulation results indicate a good linearity and high output resistance with an acceptable output voltage swing. The calculated performance parameters are validated with simulations, and future work for the prototype fabrication of the IC is outlined

  8. State-space modeling of the radio frequency inductively-coupled plasma generator

    International Nuclear Information System (INIS)

    Dewangan, Rakesh Kumar; Punjabi, Sangeeta B; Mangalvedekar, H A; Lande, B K; Joshi, N K; Barve, D N

    2010-01-01

    Computational fluid dynamics models of RF-ICP are useful in understanding the basic transport phenomenon in an ICP torch under a wide variety of operating conditions. However, these models lack the ability to evaluate the effects of the plasma condition on the RF generator. In this paper, simulation of an induction plasma generator has been done using state space modelling by considering inductively coupled plasma as a part of RF network .The time dependent response of the RF-ICP generator circuit to given input excitation has been computed by extracting the circuit's state-space variables and their constraint matrices. MATLAB 7.1 software has been used to solve the state equations. The values of RF coil current, frequency and plasma power has been measured experimentally also at different plate bias voltage. The simulated model is able to predict RF coil current, frequency, plasma power, overall efficiency of the generator. The simulated and measured values are in agreement with each other. This model can prove useful as a design tool for the Induction plasma generator.

  9. Radiation pressure induced difference-sideband generation beyond linearized description

    OpenAIRE

    Xiong, Hao; Fan, Y. W.; Yang, X.; Wu, Y.

    2016-01-01

    We investigate radiation-pressure induced generation of the frequency components at the difference-sideband in an optomechanical system, which beyond the conventional linearized description of optomechanical interactions between cavity fields and the mechanical oscillation. We analytically calculate amplitudes of these signals, and identify a simple square-root law for both the upper and lower difference-sideband generation which can describe the dependence of the intensities of these signals...

  10. Radiation pressure induced difference-sideband generation beyond linearized description

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Hao, E-mail: haoxiong1217@gmail.com; Fan, Yu-Wan; Yang, Xiaoxue; Wu, Ying, E-mail: yingwu2@126.com [School of Physics, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2016-08-08

    We investigate radiation-pressure induced generation of the frequency components at the difference-sideband in an optomechanical system, which beyond the conventional linearized description of optomechanical interactions between cavity fields and the mechanical oscillation. We analytically calculate amplitudes of these signals, and identify a simple square-root law for both the upper and lower difference-sideband generation which can describe the dependence of the intensities of these signals on the pump power. Further calculation shows that difference-sideband generation can be greatly enhanced via achieving the matching conditions. The effect of difference-sideband generation, which may have potential application for manipulation of light, is especially suited for on-chip optomechanical devices, where nonlinear optomechanical interaction in the weak coupling regime is within current experimental reach.

  11. Frequency notching applicable to CMOS implementation of WLAN compatible IR-UWB pulse generators

    DEFF Research Database (Denmark)

    Shen, Ming; Mikkelsen, Jan H.; Jiang, Hao

    2012-01-01

    Due to overlapping frequency bands, IEEE 802.11a WLAN and Ultra Wide-Band systems potentially suffer from mutual interference problems. This paper proposes a method for inserting frequency notches into the IR-UWB power spectrum to ensure compatibility with WLAN systems. In contrast to conventional...... approaches where complicated waveform equations are used, the proposed method uses a dual-pulse frequency notching approach to achieve frequency suppression in selected bands. The proposed method offers a solution that is generically applicable to UWB pulse generators using different pulse waveforms...

  12. Efficiency of different methods of extra-cavity second harmonic generation of continuous wave single-frequency radiation.

    Science.gov (United States)

    Khripunov, Sergey; Kobtsev, Sergey; Radnatarov, Daba

    2016-01-20

    This work presents for the first time to the best of our knowledge a comparative efficiency analysis among various techniques of extra-cavity second harmonic generation (SHG) of continuous-wave single-frequency radiation in nonperiodically poled nonlinear crystals within a broad range of power levels. Efficiency of nonlinear radiation transformation at powers from 1 W to 10 kW was studied in three different configurations: with an external power-enhancement cavity and without the cavity in the case of single and double radiation pass through a nonlinear crystal. It is demonstrated that at power levels exceeding 1 kW, the efficiencies of methods with and without external power-enhancement cavities become comparable, whereas at even higher powers, SHG by a single or double pass through a nonlinear crystal becomes preferable because of the relatively high efficiency of nonlinear transformation and fairly simple implementation.

  13. Frequency-agile THz-wave generation and detection system using nonlinear frequency conversion at room temperature.

    Science.gov (United States)

    Guo, Ruixiang; Ikar'i, Tomofumi; Zhang, Jun; Minamide, Hiroaki; Ito, Hiromasa

    2010-08-02

    A surface-emitting THz parametric oscillator is set up to generate a narrow-linewidth, nanosecond pulsed THz-wave radiation. The THz-wave radiation is coherently detected using the frequency up-conversion in MgO: LiNbO(3) crystal. Fast frequency tuning and automatic achromatic THz-wave detection are achieved through a special optical design, including a variable-angle mirror and 1:1 telescope devices in the pump and THz-wave beams. We demonstrate a frequency-agile THz-wave parametric generation and THz-wave coherent detection system. This system can be used as a frequency-domain THz-wave spectrometer operated at room-temperature, and there are a high possible to develop into a real-time two-dimensional THz spectral imaging system.

  14. Characteristics of different frequency ranges in scanning electron microscope images

    International Nuclear Information System (INIS)

    Sim, K. S.; Nia, M. E.; Tan, T. L.; Tso, C. P.; Ee, C. S.

    2015-01-01

    We demonstrate a new approach to characterize the frequency range in general scanning electron microscope (SEM) images. First, pure frequency images are generated from low frequency to high frequency, and then, the magnification of each type of frequency image is implemented. By comparing the edge percentage of the SEM image to the self-generated frequency images, we can define the frequency ranges of the SEM images. Characterization of frequency ranges of SEM images benefits further processing and analysis of those SEM images, such as in noise filtering and contrast enhancement

  15. Characteristics of different frequency ranges in scanning electron microscope images

    Energy Technology Data Exchange (ETDEWEB)

    Sim, K. S., E-mail: kssim@mmu.edu.my; Nia, M. E.; Tan, T. L.; Tso, C. P.; Ee, C. S. [Faculty of Engineering and Technology, Multimedia University, 75450 Melaka (Malaysia)

    2015-07-22

    We demonstrate a new approach to characterize the frequency range in general scanning electron microscope (SEM) images. First, pure frequency images are generated from low frequency to high frequency, and then, the magnification of each type of frequency image is implemented. By comparing the edge percentage of the SEM image to the self-generated frequency images, we can define the frequency ranges of the SEM images. Characterization of frequency ranges of SEM images benefits further processing and analysis of those SEM images, such as in noise filtering and contrast enhancement.

  16. Frequency deviations and generation scheduling in the nordic system

    DEFF Research Database (Denmark)

    Li, Zhongwei; Samuelsson, Olaf; Garcia-Valle, Rodrigo

    2011-01-01

    to be considered, the disturbances caused to this control by the hourly dispatch of generation has received less attention and is the focus of this paper. Based on years of recorded PMU data, statistics of frequency events and analysis of frequency quality are made to demonstrate the relation between the frequency...

  17. Generation of continuously tunable, 5-12 {mu}m radiation by difference frequency mixing of output waves of a KTP optical parametric oscillator in a ZnGeP{sub 2} crystal

    Energy Technology Data Exchange (ETDEWEB)

    Haidar, S [Research Institute of Electrical Communication (RIEC), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai-shi 980-8577 (Japan); Miyamoto, K [Research Institute of Electrical Communication (RIEC), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai-shi 980-8577 (Japan); Ito, H [Research Institute of Electrical Communication (RIEC), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai-shi 980-8577 (Japan)

    2004-12-07

    Signal and idlers waves obtained from a Nd : YAG laser pumped KTP optical parametric oscillator (OPO) are difference frequency mixed in a ZnGeP{sub 2} (ZGP) crystal to generate radiation in the mid-infrared. The KTP OPO is operated in the type-II phase matching mode, and the extraordinary and ordinary waves are tunable from 1.76 {mu}m to 2.36 {mu}m and from 2.61 {mu}m to 1.90 {mu}m, respectively. The orthogonally polarized waves are difference frequency mixed in a ZGP crystal to generate mid-IR radiation tunable from 5 to 12 {mu}m.

  18. Measuring the photodetector frequency response for ultrasonic applications by a heterodyne system with difference- frequency servo control.

    Science.gov (United States)

    Koch, Christian

    2010-05-01

    A technique for the calibration of photodiodes in ultrasonic measurement systems using standard and cost-effective optical and electronic components is presented. A heterodyne system was realized using two commercially available distributed feedback lasers, and the required frequency stability and resolution were ensured by a difference-frequency servo control scheme. The frequency-sensitive element generating the error signal for the servo loop comprised a delay-line discriminator constructed from electronic elements. Measurements were carried out at up to 450 MHz, and the uncertainties of about 5% (k = 2) can be further reduced by improved radio frequency power measurement without losing the feature of using only simple elements. The technique initially dedicated to the determination of the frequency response of photodetectors applied in ultrasonic applications can be transferred to other application fields of optical measurements.

  19. Impact of protection settings of the distributed generation frequency under 1MW in the national electric system

    International Nuclear Information System (INIS)

    Alpizar Chavarria, Oscar

    2013-01-01

    A literature review is conducted to understand the distributed generation, the reason for the introduction into modern power systems and other distributed generation technologies based on renewable energies that have been installed around the country. The frequency protections of distributed generation equipment under 1MW are studied according to international standards like IEEE-1547 and specifications of equipment manufacturers. The influence of the recommended international standards settings are investigated for systems of distributed generation, the performance in frequency that have presented under some frequency perturbation, as well as the influence that can have on the national and regional electrical system, with different amounts of technologies included in the national system. The recommended settings are evaluated through simulations in PSSE program in the context of the behavior of the frequency in the national electric system [es

  20. Efficient yellow beam generation by intracavity sum frequency ...

    Indian Academy of Sciences (India)

    2014-02-06

    Feb 6, 2014 ... We present our studies on dual wavelength operation using a single Nd:YVO4 crystal and its intracavity sum frequency generation by considering the influence of the thermal lensing effect on the performance of the laser. A KTP crystal cut for type-II phase matching was used for intracavity sum frequency ...

  1. Practical system for the generation of pulsed quantum frequency combs.

    Science.gov (United States)

    Roztocki, Piotr; Kues, Michael; Reimer, Christian; Wetzel, Benjamin; Sciara, Stefania; Zhang, Yanbing; Cino, Alfonso; Little, Brent E; Chu, Sai T; Moss, David J; Morandotti, Roberto

    2017-08-07

    The on-chip generation of large and complex optical quantum states will enable low-cost and accessible advances for quantum technologies, such as secure communications and quantum computation. Integrated frequency combs are on-chip light sources with a broad spectrum of evenly-spaced frequency modes, commonly generated by four-wave mixing in optically-excited nonlinear micro-cavities, whose recent use for quantum state generation has provided a solution for scalable and multi-mode quantum light sources. Pulsed quantum frequency combs are of particular interest, since they allow the generation of single-frequency-mode photons, required for scaling state complexity towards, e.g., multi-photon states, and for quantum information applications. However, generation schemes for such pulsed combs have, to date, relied on micro-cavity excitation via lasers external to the sources, being neither versatile nor power-efficient, and impractical for scalable realizations of quantum technologies. Here, we introduce an actively-modulated, nested-cavity configuration that exploits the resonance pass-band characteristic of the micro-cavity to enable a mode-locked and energy-efficient excitation. We demonstrate that the scheme allows the generation of high-purity photons at large coincidence-to-accidental ratios (CAR). Furthermore, by increasing the repetition rate of the excitation field via harmonic mode-locking (i.e. driving the cavity modulation at harmonics of the fundamental repetition rate), we managed to increase the pair production rates (i.e. source efficiency), while maintaining a high CAR and photon purity. Our approach represents a significant step towards the realization of fully on-chip, stable, and versatile sources of pulsed quantum frequency combs, crucial for the development of accessible quantum technologies.

  2. The effect of electric field maximum on the Rabi flopping and generated higher frequency spectra

    International Nuclear Information System (INIS)

    Niu Yueping; Cui Ni; Xiang Yang; Li Ruxin; Gong Shangqing; Xu Zhizhan

    2008-01-01

    We investigate the effect of the electric field maximum on the Rabi flopping and the generated higher frequency spectra properties by solving Maxwell-Bloch equations without invoking any standard approximations. It is found that the maximum of the electric field will lead to carrier-wave Rabi flopping (CWRF) through reversion dynamics which will be more evident when the applied field enters the sub-one-cycle regime. Therefore, under the interaction of sub-one-cycle pulses, the Rabi flopping follows the transient electric field tightly through the oscillation and reversion dynamics, which is in contrast to the conventional envelope Rabi flopping. Complete or incomplete population inversion can be realized through the control of the carrier-envelope phase (CEP). Furthermore, the generated higher frequency spectra will be changed from distinct to continuous or irregular with the variation of the CEP. Our results demonstrate that due to the evident maximum behavior of the electric field, pulses with different CEP give rise to different CWRFs, and then different degree of interferences lead to different higher frequency spectral features.

  3. The frequency-independent control method for distributed generation systems

    DEFF Research Database (Denmark)

    Naderi, Siamak; Pouresmaeil, Edris; Gao, Wenzhong David

    2012-01-01

    In this paper a novel frequency-independent control method suitable for distributed generation (DG) is presented. This strategy is derived based on the . abc/. αβ transformation and . abc/. dq transformation of the ac system variables. The active and reactive currents injected by the DG are contr......In this paper a novel frequency-independent control method suitable for distributed generation (DG) is presented. This strategy is derived based on the . abc/. αβ transformation and . abc/. dq transformation of the ac system variables. The active and reactive currents injected by the DG...

  4. Stable optical frequency comb generation and applications in arbitrary waveform generation, signal processing and optical data mining

    Science.gov (United States)

    Ozharar, Sarper

    This thesis focuses on the generation and applications of stable optical frequency combs. Optical frequency combs are defined as equally spaced optical frequencies with a fixed phase relation among themselves. The conventional source of optical frequency combs is the optical spectrum of the modelocked lasers. In this work, we investigated alternative methods for optical comb generation, such as dual sine wave phase modulation, which is more practical and cost effective compared to modelocked lasers stabilized to a reference. Incorporating these comblines, we have generated tunable RF tones using the serrodyne technique. The tuning range was +/-1 MHz, limited by the electronic waveform generator, and the RF carrier frequency is limited by the bandwidth of the photodetector. Similarly, using parabolic phase modulation together with time division multiplexing, RF chirp extension has been realized. Another application of the optical frequency combs studied in this thesis is real time data mining in a bit stream. A novel optoelectronic logic gate has been developed for this application and used to detect an 8 bit long target pattern. Also another approach based on orthogonal Hadamard codes have been proposed and explained in detail. Also novel intracavity modulation schemes have been investigated and applied for various applications such as (a) improving rational harmonic modelocking for repetition rate multiplication and pulse to pulse amplitude equalization, (b) frequency skewed pulse generation for ranging and (c) intracavity active phase modulation in amplitude modulated modelocked lasers for supermode noise spur suppression and integrated jitter reduction. The thesis concludes with comments on the future work and next steps to improve some of the results presented in this work.

  5. A Study of Frequency Mixing Approaches for Eddy Current Testing of Steam Generator Tubes

    International Nuclear Information System (INIS)

    Jung, Hee Jun; Song, Sung Jin; Kim, Chang Hwan; Kim, Dae Kwang

    2009-01-01

    The multifrequency eddy current testing(ECT) have been proposed various frequency mixing algorithms. In this study, we compare these approaches to frequency mixing of ECT signals from steam generator tubes; time-domain optimization, discrete cosine transform-domain optimization. Specifically, in this study, two different frequency mixing algorithms, a time-domain optimization method and a discrete cosine transform(DCT) optimization method, are investigated using the experimental signals captured from the ASME standard tube. The DCT domain optimization method is computationally fast but produces larger amount of residue.

  6. Compact Tunable Narrowband Terahertz-Wave Source Based on Difference Frequency Generation Pumped by Dual Fiber Lasers in MgO:LiNbO3

    Science.gov (United States)

    Wada, Yoshio; Satoh, Takumi; Higashi, Yasuhiro; Urata, Yoshiharu

    2017-12-01

    We demonstrate a high-average-power, single longitudinal-mode, and tunable terahertz (THz)-wave source based on difference frequency generation (DFG) in a MgO:LiNbO3 (MgO:LN) crystal. The waves for DFG are generated using a pair of Yb-doped pulsed fiber lasers with a master oscillator power fiber amplifier configuration. The average power of the THz-wave output reaches 450 μW at 1.07 THz (280 μm) at a linewidth of 7.2 GHz, and the tunability ranges from 0.35 to 1.07 THz under the pulse repetition frequency of 500 kHz. A short burn-in test of the THz wave is also carried out, and the output power stability is within ± 5% of the averaged power without any active stabilizing technique. The combination of MgO:LN-DFG and stable and robust fiber laser sources is highly promising for the development of high-average-power THz-wave sources, particularly in the high transmission sub-THz region. This approach may enable new applications of THz-wave spectroscopy in imaging and remote sensing.

  7. Amino Acid Insertion Frequencies Arising from Photoproducts Generated Using Aliphatic Diazirines

    Science.gov (United States)

    Ziemianowicz, Daniel S.; Bomgarden, Ryan; Etienne, Chris; Schriemer, David C.

    2017-10-01

    Mapping proteins with chemical reagents and mass spectrometry can generate a measure of accessible surface area, which in turn can be used to support the modeling and refinement of protein structures. Photolytically generated carbenes are a promising class of reagent for this purpose. Substituent effects appear to influence surface mapping properties, allowing for a useful measure of design control. However, to use carbene labeling data in a quantitative manner for modeling activities, we require a better understanding of their inherent amino acid reactivity, so that incorporation data can be normalized. The current study presents an analysis of the amino acid insertion frequency of aliphatic carbenes generated by the photolysis of three different diazirines: 3,3'-azibutyl-1-ammonium, 3,3'-azibutan-1-ol, and 4,4'-azipentan-1-oate. Leveraging an improved photolysis system for single-shot labeling of sub-microliter frozen samples, we used EThCD to localize insertion products in a large population of labeled peptides. Counting statistics were drawn from data-dependent LC-MS2 experiments and used to estimate the frequencies of insertion as a function of amino acid. We observed labeling of all 20 amino acids over a remarkably narrow range of insertion frequencies. However, the nature of the substituent could influence relative insertion frequencies, within a general preference for larger polar amino acids. We confirm a large (6-fold) increase in labeling yield when carbenes were photogenerated in the solid phase (77 K) relative to the liquid phase (293 K), and we suggest that carbene labeling should always be conducted in the frozen state to avoid information loss in surface mapping experiments. [Figure not available: see fulltext.

  8. System and Method for Generating a Frequency Modulated Linear Laser Waveform

    Science.gov (United States)

    Pierrottet, Diego F. (Inventor); Petway, Larry B. (Inventor); Amzajerdian, Farzin (Inventor); Barnes, Bruce W. (Inventor); Lockard, George E. (Inventor); Hines, Glenn D. (Inventor)

    2017-01-01

    A system for generating a frequency modulated linear laser waveform includes a single frequency laser generator to produce a laser output signal. An electro-optical modulator modulates the frequency of the laser output signal to define a linear triangular waveform. An optical circulator passes the linear triangular waveform to a band-pass optical filter to filter out harmonic frequencies created in the waveform during modulation of the laser output signal, to define a pure filtered modulated waveform having a very narrow bandwidth. The optical circulator receives the pure filtered modulated laser waveform and transmits the modulated laser waveform to a target.

  9. Laser generated ultrasound sources using polymer nanocomposites for high frequency metrology

    KAUST Repository

    Rajagopal, Srinath

    2017-11-22

    Accurate characterization of ultrasound fields generated by diagnostic and therapeutic transducers is critical for patient safety. This requires hydrophones calibrated to a traceable standard and currently the upper calibration frequency range available to the user community is limited to a frequency of 40 MHz. However, the increasing use of high frequencies for both imaging and therapy necessitates calibrations to frequencies well beyond this range. For this to be possible, a source of high amplitude, broadband, quasi-planar and stable ultrasound fields is required. This is difficult to achieve using conventional piezoelectric sources, but laser generated ultrasound is a promising technique in this regard. In this study, various polymer-carbon nanotube nanocomposites (PNC) were fabricated and tested for their suitability for such an application by varying the polymer type, carbon nanotubes weight content in the polymer, and PNC thickness. A broadband hydrophone was used to measure the peak pressure and bandwidth of the laser generated ultrasound pulse. Peak-positive pressures of up to 8 MPa and −6dB bandwidths of up to 40 MHz were recorded. There is a nonlinear dependence of the peak pressure on the laser fluence and the bandwidth scales inversely proportionally to the peak pressure. The high-pressure plane waves generated from this preliminary investigation has demonstrated that laser generated ultrasound sources are a promising technique for high frequency calibration of hydrophones.

  10. Generation of frequency-chirped optical pulses with felix

    Energy Technology Data Exchange (ETDEWEB)

    Knippels, G.M.H.; Meer, A.F.G. van der; Mols, R.F.X.A.M. [FOM-Institute for Plasma Physics, Nieuwegein (Netherlands)] [and others

    1995-12-31

    Frequency-chirped optical pulses have been produced in the picosecond regime by varying the energy of the electron beam on a microsecond time scale. These pulses were then compressed close to their bandwidth limit by an external pulse compressor. The amount of chirp can be controlled by varying the sweep rate on the electron beam energy and by cavity desynchronisation. To examine the generated chirp we used the following diagnostics: a pulse compressor, a crossed beam autocorrelator, a multichannel electron spectrometer and multichannel optical spectrometer. The compressor is build entirely using reflective optics to permit broad band operation. The autocorrelator is currently operating from 6 {mu}m to 30 {mu}m with one single crystal. It has been used to measure pulses as short as 500 fs. All diagnostics are evacuated to prevent pulse shape distortion or pulse lengthening caused by absorption in ambient water vapour. Pulse length measurements and optical spectra will be presented for different electron beam sweep rates, showing the presence of a frequency chirp. Results on the compression of the optical pulses to their bandwidth limit are given for different electron sweep rates. More experimental results showing the dependence of the amount of chirp on cavity desynchronisation will be presented.

  11. Fast random-number generation using a diode laser's frequency noise characteristic

    Science.gov (United States)

    Takamori, Hiroki; Doi, Kohei; Maehara, Shinya; Kawakami, Kohei; Sato, Takashi; Ohkawa, Masashi; Ohdaira, Yasuo

    2012-02-01

    Random numbers can be classified as either pseudo- or physical-random, in character. Pseudo-random numbers are generated by definite periodicity, so, their usefulness in cryptographic applications is somewhat limited. On the other hand, naturally-generated physical-random numbers have no calculable periodicity, thereby making them ideal for the task. Diode lasers' considerable wideband noise gives them tremendous capacity for generating physical-random numbers, at a high rate of speed. We measured a diode laser's output with a fast photo detector, and evaluated the binary-numbers from the diode laser's frequency noise characteristics. We then identified and evaluated the binary-number-line's statistical properties. We also investigate the possibility that much faster physical-random number parallel-generation is possible, using separate outputs of different optical-path length and character, which we refer to as "coherence collapse".

  12. Modulating wind power plant output using different frequency modulation components for damping grid oscillations

    DEFF Research Database (Denmark)

    2017-01-01

    A method, controller, wind power plant, and computer program product are disclosed for operating a wind power plant comprising a plurality of wind turbines, the wind power plant producing a plant power output. The method comprises receiving a modulation request signal indicating a requested...... modulation of the plant power output, the requested modulation specifying a modulation frequency. The method further comprises generating a respective power reference signal for each of at least two wind turbines of the plurality of wind turbines selected to fulfill the requested modulation, Each generated...... power reference signal includes a respective modulation component corresponding to a portion of the requested modulation and having a frequency different than the modulation frequency....

  13. Dead-Time Generation in Six-Phase Frequency Inverter

    Directory of Open Access Journals (Sweden)

    Aurelijus Pitrėnas

    2016-06-01

    Full Text Available In this paper control of multi-phase induction drives is discussed. Structure of six-phase frequency inverter is examined. The article deals with dead-time generation circuits in six-phase frequency inverter for transistor control signals. Computer models of dead-time circuits is created using LTspice software package. Simulation results are compared with experimental results of the tested dead-time circuits. Parameters obtained in simulation results are close to the parameters obtained in experimental results.

  14. Diode-pumped dual-frequency microchip Nd : YAG laser with tunable frequency difference

    Energy Technology Data Exchange (ETDEWEB)

    Ren Cheng; Zhang Shulian, E-mail: ren-c06@mails.tsinghua.edu.c [State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments and Mechanology, Tsinghua University, Beijing 100084 (China)

    2009-08-07

    The diode-pumped dual-frequency microchip Nd : YAG laser with tunable frequency difference is presented. The gain medium used is a microchip 2 mm in thickness for miniaturized and integrated design. Two quarter-wave plates are placed into the laser cavity and the intra-cavity birefringence produces two orthogonally linearly polarized modes. The rotation of one of the two quarter-wave plates introduces a controlled and variable cavity birefringence which causes a variable frequency difference between the two orthogonally polarized modes. The frequency difference can be tuned through the whole cavity free spectral range. The obtained frequency difference ranges from 14 MHz to 1.5 GHz. The variation of the beat frequency over a period of 10 min is less than 10 kHz. The lock-in between modes is not found. Experimental results are presented, which match well with the theoretical analysis based on Jones matrices.

  15. Estimating Exceptionally Rare Germline and Somatic Mutation Frequencies via Next Generation Sequencing.

    Directory of Open Access Journals (Sweden)

    Jordan Eboreime

    Full Text Available We used targeted next generation deep-sequencing (Safe Sequencing System to measure ultra-rare de novo mutation frequencies in the human male germline by attaching a unique identifier code to each target DNA molecule. Segments from three different human genes (FGFR3, MECP2 and PTPN11 were studied. Regardless of the gene segment, the particular testis donor or the 73 different testis pieces used, the frequencies for any one of the six different mutation types were consistent. Averaging over the C>T/G>A and G>T/C>A mutation types the background mutation frequency was 2.6x10-5 per base pair, while for the four other mutation types the average background frequency was lower at 1.5x10-6 per base pair. These rates far exceed the well documented human genome average frequency per base pair (~10-8 suggesting a non-biological explanation for our data. By computational modeling and a new experimental procedure to distinguish between pre-mutagenic lesion base mismatches and a fully mutated base pair in the original DNA molecule, we argue that most of the base-dependent variation in background frequency is due to a mixture of deamination and oxidation during the first two PCR cycles. Finally, we looked at a previously studied disease mutation in the PTPN11 gene and could easily distinguish true mutations from the SSS background. We also discuss the limits and possibilities of this and other methods to measure exceptionally rare mutation frequencies, and we present calculations for other scientists seeking to design their own such experiments.

  16. Efficient frequency comb generation in AlGaAs-on-insulator

    DEFF Research Database (Denmark)

    Pu, Minhao; Ottaviano, Luisa; Semenova, Elizaveta

    2016-01-01

    The combination of nonlinear and integrated photonics enables Kerr frequency comb generation in stable chip-based microresonators. Such a comb system will revolutionize applications, including multi-wavelength lasers, metrology, and spectroscopy. Aluminum gallium arsenide (AlGaAs) exhibits very...... high material nonlinearity and low nonlinear loss. However, difficulties in device processing and low device effective nonlinearity made Kerr frequency comb generation elusive. Here, we demonstrate AlGaAs-on-insulator as a nonlinear platform at telecom wavelengths with an ultra-high device nonlinearity....... We show high-quality-factor (Q > 105) micro-resonators where optical parametric oscillations are achieved with milliwatt-level pump threshold powers, which paves the way for on-chip pumped comb generation....

  17. Review of single particle dynamics for third generation light sources through frequency map analysis

    Directory of Open Access Journals (Sweden)

    L. Nadolski

    2003-11-01

    Full Text Available Frequency map analysis [J. Laskar, Icarus 88, 266 (1990] is used here to analyze the transverse dynamics of four third generation synchrotron light sources: the ALS, the ESRF, the SOLEIL project, and Super-ACO. Time variations of the betatron tunes give additional information for the global dynamics of the beam. The main resonances are revealed; a one-to-one correspondence between the configuration space and the frequency space can be performed. We stress that the frequency maps, and therefore the dynamics optimization, are highly sensitive to sextupolar strengths and vary in a large amount from one machine to another. The frequency maps can thus be used to characterize the different machines.

  18. Implementation of bright six-partite entanglement by coupled intracavity sum frequency generation

    Science.gov (United States)

    Wang, Junfeng; Liu, Le; Liu, Yuzhu; Zhang, Yanan; Wu, Hongyan; Gong, Chengxuan; Zhang, Ruofan; Zhang, Houyuan; Fan, JingYu

    2018-04-01

    Bright six-partite continuous-variable (CV) entanglement generated by the coupled intracavity sum frequency generation is investigated. The entanglement characteristics of reflected pump fields and the output sum frequency fields are discussed theoretically in symmetric and asymmetric cases by applying van Loock and Furusawa criteria for multipartite CV entanglement. Such compact tunable multipartite CV entanglement, generated from an experimentally feasible coupled system, could be used in integrated quantum communication and networks.

  19. Generating multiple orbital angular momentum vortex beams using a metasurface in radio frequency domain

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Shixing; Li, Long, E-mail: lilong@mail.xidian.edu.cn, E-mail: gmshi@xidian.edu.cn; Shi, Guangming, E-mail: lilong@mail.xidian.edu.cn, E-mail: gmshi@xidian.edu.cn; Zhu, Cheng; Shi, Yan [National Key Laboratory of Antennas and Microwave Technology, School of Electronic Engineering, Collaborative Innovation Center of Information Sensing and Understanding, Xidian University, Xi' an 710071 (China)

    2016-06-13

    In this paper, an electromagnetic metasurface is designed, fabricated, and experimentally demonstrated to generate multiple orbital angular momentum (OAM) vortex beams in radio frequency domain. Theoretical formula of compensated phase-shift distribution is deduced and used to design the metasurface to produce multiple vortex radio waves in different directions with different OAM modes. The prototype of a practical configuration of square-patch metasurface is designed, fabricated, and measured to validate the theoretical analysis at 5.8 GHz. The simulated and experimental results verify that multiple OAM vortex waves can be simultaneously generated by using a single electromagnetic metasurface. The proposed method paves an effective way to generate multiple OAM vortex waves in radio and microwave wireless communication applications.

  20. Generation of continuous-wave single-frequency 1.5 W 378 nm radiation by frequency doubling of a Ti:sapphire laser.

    Science.gov (United States)

    Cha, Yong-Ho; Ko, Kwang-Hoon; Lim, Gwon; Han, Jae-Min; Park, Hyun-Min; Kim, Taek-Soo; Jeong, Do-Young

    2010-03-20

    We have generated continuous-wave single-frequency 1.5 W 378 nm radiation by frequency doubling a high-power Ti:sapphire laser in an external enhancement cavity. An LBO crystal that is Brewster-cut and antireflection coated on both ends is used for a long-term stable frequency doubling. By optimizing the input coupler's reflectivity, we could generate 1.5 W 378 nm radiation from a 5 W 756 nm Ti:sapphire laser. According to our knowledge, this is the highest CW frequency-doubled power of a Ti:sapphire laser.

  1. Different Solutions for the Generator-accelerator Module

    Science.gov (United States)

    Savin, E. A.; Matsievskiy, S. V.; Sobenin, N. P.; Zavadtsev, A. A.; Zavadtsev, D. A.

    The most important part of the particle accelerators [1] - is the power generator together with the whole feeding system [2]. All types of generators, such as klystrons, magnetrons, solid state generators cover their own field of power and pulse length values. For the last couple of year the Inductive Output Tubes (IOT) becomes very popular because of their comparative construction simplicity: it represents the klystron output cavity with the grid modulated electron beam injected in it. Now such IOTs are used with the superconductive particle accelerators at 700 MHz operating frequency with around 1MW output power. Higher frequencies problem - is the inability to apply high frequency modulated voltage to the grid. Thus we need to figure out some kind of RF gun. But this article is about the first steps of the geometry and beam dynamics simulation in the six beam S-band IOT, which will be used with the compact biperiodic accelerating structure.

  2. Sum frequency generation image reconstruction: Aliphatic membrane under spherical cap geometry

    Energy Technology Data Exchange (ETDEWEB)

    Volkov, Victor [Bereozovaya 2A, Konstantinovo, Moscow Region 140207 (Russian Federation)

    2014-10-07

    The article explores an opportunity to approach structural properties of phospholipid membranes using Sum Frequency Generation microscopy. To establish the principles of sum frequency generation image reconstruction in such systems, at first approach, we may adopt an idealistic spherical cap uniform assembly of hydrocarbon molecules. Quantum mechanical studies for decanoic acid (used here as a representative molecular system) provide necessary information on transition dipole moments and Raman tensors of the normal modes specific to methyl terminal – a typical moiety in aliphatic (and phospholipid) membranes. Relative degree of localization and frequencies of the normal modes of methyl terminals make nonlinearities of this moiety to be promising in structural analysis using Sum Frequency Generation imaging. Accordingly, the article describes derivations of relevant macroscopic nonlinearities and suggests a mapping procedure to translate amplitudes of the nonlinearities onto microscopy image plane according to geometry of spherical assembly, local molecular orientation, and optical geometry. Reconstructed images indicate a possibility to extract local curvature of bilayer envelopes of spherical character. This may have practical implications for structural extractions in membrane systems of practical relevance.

  3. Wind/PV Generation for Frequency Regulation and Oscillation Damping in the Eastern Interconnection

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yong [Univ. of Tennessee, Knoxville, TN (United States); Gracia, Jose R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hadley, Stanton W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Liu, Yilu [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2013-12-01

    This report presents the control of renewable energy sources, including the variable-speed wind generators and solar photovoltaic (PV) generators, for frequency regulation and inter-area oscillation damping in the U.S. Eastern Interconnection (EI). In this report, based on the user-defined wind/PV generator electrical control model and the 16,000-bus Eastern Interconnection dynamic model, the additional controllers for frequency regulation and inter-area oscillation damping are developed and incorporated and the potential contributions of renewable energy sources to the EI system frequency regulation and inter-area oscillation damping are evaluated.

  4. Trace gas absorption spectroscopy using laser difference-frequency spectrometer for environmental application

    Science.gov (United States)

    Chen, W.; Cazier, F.; Boucher, D.; Tittel, F. K.; Davies, P. B.

    2001-01-01

    A widely tunable infrared spectrometer based on difference frequency generation (DFG) has been developed for organic trace gas detection by laser absorption spectroscopy. On-line measurements of concentration of various hydrocarbons, such as acetylene, benzene, and ethylene, were investigated using high-resolution DFG trace gas spectroscopy for highly sensitive detection.

  5. Dense electro-optic frequency comb generated by two-stage modulation for dual-comb spectroscopy.

    Science.gov (United States)

    Wang, Shuai; Fan, Xinyu; Xu, Bingxin; He, Zuyuan

    2017-10-01

    An electro-optic frequency comb enables frequency-agile comb-based spectroscopy without using sophisticated phase-locking electronics. Nevertheless, dense electro-optic frequency combs over broad spans have yet to be developed. In this Letter, we propose a straightforward and efficient method for electro-optic frequency comb generation with a small line spacing and a large span. This method is based on two-stage modulation: generating an 18 GHz line-spacing comb at the first stage and a 250 MHz line-spacing comb at the second stage. After generating an electro-optic frequency comb covering 1500 lines, we set up an easily established mutually coherent hybrid dual-comb interferometer, which combines the generated electro-optic frequency comb and a free-running mode-locked laser. As a proof of concept, this hybrid dual-comb interferometer is used to measure the absorption and dispersion profiles of the molecular transition of H 13 CN with a spectral resolution of 250 MHz.

  6. System frequency support of permanent magnet synchronous generator-based wind power plant

    Science.gov (United States)

    Wu, Ziping

    With ever-increasing penetration of wind power into modern electric grids all over the world, a trending replacement of conventional synchronous generators by large wind power plants will likely result in the poor overall frequency regulation performance. On the other hand, permanent magnet synchronous generator wind Turbine System (PMSG-WTG) with full power back to back converters tends to become one of the most promising wind turbine technologies thanks to various advantages. It possesses a significant amount of kinetic energy stored in the rotating mass of turbine blades, which can be utilized to enhance the total inertia of power system. Additionally, the deloaded operation and decoupled control of active and reactive power make it possible for PMSG-WTG to provide a fast frequency regulation through full-power converter. First of all, a comprehensive and in-depth survey is conducted to analyze the motivations for incorporating the inertial response and frequency regulation of VSWT into the system frequency regulation. Besides, control classifications, fundamental control concepts and advanced control schemes implemented for auxiliary frequency support of individual WT or wind power plant are elaborated along with a comparison of the potential frequency regulation capabilities of four major types of WTs. Secondly, a Controls Advanced Research Turbine2-Permanent Magnet Synchronous Generator wind turbine (CART2-PMSG) integrated model representing the typical configuration and operation characteristics of PMSG-WT is established in Matlab/Simulink,. Meanwhile, two different rotor-side converter control schemes, including rotor speed-based control and active power-based control, are integrated into this CART2-PMSG integrated model to perform Maximum Power Point Tracking (MPPT) operation over a wide range of wind speeds, respectively. Thirdly, a novel comprehensive frequency regulation (CFR) control scheme is developed and implemented into the CART2-PMSG model based

  7. Effects of in vivo-like activation frequency on the length-dependent force generation of skeletal muscle fibre bundles

    NARCIS (Netherlands)

    Zuurbier, C. J.; Lee-de Groot, M. B.; van der Laarse, W. J.; Huijing, P. A.

    1998-01-01

    It is known that a range of firing frequencies can be observed during in vivo muscle activity, yet information is lacking as to how different in vivo-like frequencies may affect force generation of skeletal muscle. This study examined the effects of constant (CSF, constant within one contraction)

  8. Singly-resonant sum frequency generation of visible light in a semiconductor disk laser

    DEFF Research Database (Denmark)

    Andersen, Martin Thalbitzer; Schlosser, P.J.; Hastie, J.E.

    2009-01-01

    In this paper a generic approach for visible light generation is presented. It is based on sum frequency generation between a semiconductor disk laser and a solid-state laser, where the frequency mixing is achieved within the cavity of the semiconductor disk laser using a singlepass of the solid......-state laser light. This exploits the good beam quality and high intra-cavity power present in the semiconductor disk laser to achieve high conversion efficiency. Combining sum frequency mixing and semiconductor disk lasers in this manner allows in principle for generation of any wavelength within the visible...

  9. Multiple optical code-label processing using multi-wavelength frequency comb generator and multi-port optical spectrum synthesizer.

    Science.gov (United States)

    Moritsuka, Fumi; Wada, Naoya; Sakamoto, Takahide; Kawanishi, Tetsuya; Komai, Yuki; Anzai, Shimako; Izutsu, Masayuki; Kodate, Kashiko

    2007-06-11

    In optical packet switching (OPS) and optical code division multiple access (OCDMA) systems, label generation and processing are key technologies. Recently, several label processors have been proposed and demonstrated. However, in order to recognize N different labels, N separate devices are required. Here, we propose and experimentally demonstrate a large-scale, multiple optical code (OC)-label generation and processing technology based on multi-port, a fully tunable optical spectrum synthesizer (OSS) and a multi-wavelength electro-optic frequency comb generator. The OSS can generate 80 different OC-labels simultaneously and can perform 80-parallel matched filtering. We also demonstrated its application to OCDMA.

  10. Frequency comb generation in a continuously pumped optical parametric oscillator

    Science.gov (United States)

    Mosca, S.; Parisi, M.; Ricciardi, I.; Leo, F.; Hansson, T.; Erkintalo, M.; Maddaloni, P.; De Natale, P.; Wabnitz, S.; De Rosa, M.

    2018-02-01

    We demonstrate optical frequency comb generation in a continuously pumped optical parametric oscillator, in the parametric region around half of the pump frequency. We also model the dynamics of such quadratic combs using a single time-domain mean-field equation, and obtain simulation results that are in good agreement with experimentally observed spectra. Moreover, we numerically investigate the coherence properties of simulated combs, showing the existence of correlated and phase-locked combs. Our work could pave the way for a new class of frequency comb sources, which may enable straightforward access to new spectral regions and stimulate novel applications of frequency combs.

  11. Maximum generation power evaluation of variable frequency offshore wind farms when connected to a single power converter

    Energy Technology Data Exchange (ETDEWEB)

    Gomis-Bellmunt, Oriol; Sumper, Andreas [Centre d' Innovacio Tecnologica en Convertidors Estatics i Accionaments (CITCEA-UPC), Universitat Politecnica de Catalunya UPC, Av. Diagonal, 647, Pl. 2, 08028 Barcelona (Spain); IREC Catalonia Institute for Energy Research, Barcelona (Spain); Junyent-Ferre, Adria; Galceran-Arellano, Samuel [Centre d' Innovacio Tecnologica en Convertidors Estatics i Accionaments (CITCEA-UPC), Universitat Politecnica de Catalunya UPC, Av. Diagonal, 647, Pl. 2, 08028 Barcelona (Spain)

    2010-10-15

    The paper deals with the evaluation of power generated by variable and constant frequency offshore wind farms connected to a single large power converter. A methodology to analyze different wind speed scenarios and system electrical frequencies is presented and applied to a case study, where it is shown that the variable frequency wind farm concept (VF) with a single power converter obtains 92% of the total available power, obtained with individual power converters in each wind turbine (PC). The PC scheme needs multiple power converters implying drawbacks in terms of cost, maintenance and reliability. The VF scheme is also compared to a constant frequency scheme CF, and it is shown that a significant power increase of more than 20% can be obtained with VF. The case study considers a wind farm composed of four wind turbines based on synchronous generators. (author)

  12. Super fast physical-random number generation using laser diode frequency noises

    Science.gov (United States)

    Ushiki, Tetsuro; Doi, Kohei; Maehara, Shinya; Sato, Takashi; Ohkawa, Masashi; Ohdaira, Yasuo

    2011-02-01

    Random numbers can be classified as either pseudo- or physical-random in character. Pseudo-random numbers' periodicity renders them inappropriate for use in cryptographic applications, but naturally-generated physical-random numbers have no calculable periodicity, thereby making them ideally-suited to the task. The laser diode naturally produces a wideband "noise" signal that is believed to have tremendous capacity and great promise, for the rapid generation of physical-random numbers for use in cryptographic applications. We measured a laser diode's output, at a fast photo detector and generated physical-random numbers from frequency noises. We then identified and evaluated the binary-number-line's statistical properties. The result shows that physical-random number generation, at speeds as high as 40Gbps, is obtainable, using the laser diode's frequency noise characteristic.

  13. Comparison of Monolithic Optical Frequency Comb Generators Based on Passively Mode-Locked Lasers for Continuous Wave mm-Wave and Sub-THz Generation

    DEFF Research Database (Denmark)

    Criado, A. R.; de Dios, C.; Acedo, P.

    2012-01-01

    In this paper, two different Passive Mode-Locked Laser Diodes (PMLLD) structures, a Fabry–Perot cavity and a ring cavity laser are characterized and evaluated as monolithic Optical Frequency Comb Generators (OFCG) for CW sub-THz generation. An extensive characterization of the devices under study...... is carried out based on an automated measurement system that systematically evaluates the dynamic characteristics of the devices, focusing on the figures of merit that define the optimum performance of a pulsed laser source when considered as an OFCG. Sub-THz signals generated with both devices at 60 GHz...... topologies that can be used for the implementation of photonic integrated sub-THz CW generation....

  14. Autonomous generator based on Ni-Mn-Ga microactuator as a frequency selective element

    Directory of Open Access Journals (Sweden)

    Barandiaran J.M.

    2013-01-01

    Full Text Available In this work, we suggest the temperature-induced resistivity change at the martensitic transformation in the Ni-Mn-Ga ferromagnetic shape memory alloy as a driving mechanism enabling periodic signal generation. We demonstrated its practical importance by a design of the prototype of a low-frequency autonomous generator. A prominent feature of this new generator is a control of its frequency by the external magnetic field.

  15. Inherited differences in crossing over and gene conversion frequencies between wild strains of Sordaria fimicola from "Evolution Canyon".

    Science.gov (United States)

    Saleem, M; Lamb, B C; Nevo, E

    2001-12-01

    Recombination generates new combinations of existing genetic variation and therefore may be important in adaptation and evolution. We investigated whether there was natural genetic variation for recombination frequencies and whether any such variation was environment related and possibly adaptive. Crossing over and gene conversion frequencies often differed significantly in a consistent direction between wild strains of the fungus Sordaria fimicola isolated from a harsher or a milder microscale environment in "Evolution Canyon," Israel. First- and second-generation descendants from selfing the original strains from the harsher, more variable, south-facing slope had higher frequencies of crossing over in locus-centromere intervals and of gene conversion than those from the lusher north-facing slopes. There were some significant differences between strains within slopes, but these were less marked than between slopes. Such inherited variation could provide a basis for natural selection for optimum recombination frequencies in each environment. There were no significant differences in meiotic hybrid DNA correction frequencies between strains from the different slopes. The conversion analysis was made using only conversions to wild type, because estimations of conversion to mutant were affected by a high frequency of spontaneous mutation. There was no polarized segregation of chromosomes at meiosis I or of chromatids at meiosis II.

  16. Time-Frequency Analysis of Signals Generated by Rotating Machines

    Directory of Open Access Journals (Sweden)

    R. Zetik

    1999-06-01

    Full Text Available This contribution is devoted to the higher order time-frequency analyses of signals. Firstly, time-frequency representations of higher order (TFRHO are defined. Then L-Wigner distribution (LWD is given as a special case of TFRHO. Basic properties of LWD are illustrated based on the analysis of mono-component and multi-component synthetic signals and acoustical signals generated by rotating machine. The obtained results confirm usefulness of LWD application for the purpose of rotating machine condition monitoring.

  17. MODELING AND STUDY OF HYDROELECTRIC GENERATING SETS OF SMALL HYDRO POWER PLANTS WITH FREQUENCY-CONTROLLED PERMANENT MAGNET SYNCHRONOUS GENERATORS

    Directory of Open Access Journals (Sweden)

    R. I. Mustafayev

    2016-01-01

    Full Text Available Currently, the hydroelectric generating sets of small HPPs with Pelton turbines employ as their generating units conventional synchronous generators with electromagnetic excitation. To deal with the torque pulsatile behaviour, they generally install a supplementary flywheel on the system shaft that levels the pulsations. The Pelton turbine power output is adjusted by the needle changing water flow in the nozzle, whose advancement modifies the nozzle area and eventually – the flow. They limit the needle full stroke time to 20–40 sec. since quick shutting the nozzle for swift water flow reduction may result in pressure surges. For quick power adjustment so-called deflectors are employed, whose task is retraction of water jets from the Pelton turbine buckets. Thus, the mechanical method of power output regulation requires agreement between the needle stroke inside the turbine nozzles and the deflector. The paper offers employing frequency-controlled synchronous machines with permanent magnets qua generating units for the hydroelectric generating sets of small HPPs with Pelton turbines. The developed computer model reveals that this provides a higher level of adjustability towards rapid-changing loads in the grid. Furthermore, this will replace the power output mechanical control involving the valuable deflector drive and the turbine nozzle needles with electrical revolution rate and power output regulation by a frequency converter located in the generator stator circuit. Via frequency start, the controllable synchronous machine ensures stable operation of the hydroelectric generating set with negligibly small amount of water (energy carrier. Finally, in complete absence of water, the frequency-relay start facilitates shifting the generator operation to the synchronous capacitor mode, which the system operating parameter fluctograms obtained through computer modeling prove. 

  18. Filterless low-phase-noise frequency-quadrupled microwave generation based on a multimode optoelectronic oscillator

    Science.gov (United States)

    Teng, Yichao; Zhang, Pin; Zhang, Baofu; Chen, Yiwang

    2018-02-01

    A scheme to realize low-phase-noise frequency-quadrupled microwave generation without any filter is demonstrated. In this scheme, a multimode optoelectronic oscillator is mainly contributed by dual-parallel Mach-Zehnder modulators, fiber, photodetector, and microwave amplifier. The local source signal is modulated by a child MZM (MZMa), which is worked at maximum transmission point. Through properly adjusting the bias voltages of the other child MZM (MZMb) and the parent MZM (MZMc), optical carrier is effectively suppressed and second sidebands are retained, then the survived optical signal is fed back to the photodetector and MZMb to form an optoelectronic hybrid resonator and realize frequency-quadrupled signal generation. Due to the high Q-factor and mode selection effect of the optoelectronic hybrid resonator, compared with the source signal, the generated frequency-quadrupled signal has a lower phase noise. The approach has verified by experiments, and 18, 22, and 26 GHz frequency-quadrupled signal are generated by 4.5, 5.5, and 6.5 GHz local source signals. Compared with 4.5 GHz source signal, the phase noise of generated 18 GHz signal at 10 kHz frequency offset has 26.5 dB reduction.

  19. Laser generated ultrasound sources using polymer nanocomposites for high frequency metrology

    KAUST Repository

    Rajagopal, Srinath

    2017-11-22

    Accurate characterisation of ultrasound fields generated by diagnostic and therapeutic transducers is critical for patient safety. This requires hydrophones calibrated to a traceable standard. The existing implementation of the primary standard at the National Measurement Institutes, e.g., NPL and PTB, can provide accurate calibration to a maximum frequency of 40MHz. However, the increasing use of high frequencies for both imaging and therapy necessitates calibrations to frequencies well beyond this range. For this to be possible, a source of high amplitude, broadband, quasi-planar and stable ultrasound fields is required. This is difficult to achieve using conventional piezoelectric sources, but laser generated ultrasound is a promising technique in this regard. In this study various polymer-carbon nanotube nanocomposites (PNC) were fabricated and tested for their suitability for such an application.

  20. Estimation of allele frequency and association mapping using next-generation sequencing data

    DEFF Research Database (Denmark)

    Kim, Su Yeon; Lohmueller, Kirk E; Albrechtsen, Anders

    2011-01-01

    Estimation of allele frequency is of fundamental importance in population genetic analyses and in association mapping. In most studies using next-generation sequencing, a cost effective approach is to use medium or low-coverage data (e.g., frequency estimation...

  1. Binocular rivalry produced by temporal frequency differences

    Directory of Open Access Journals (Sweden)

    David eAlais

    2012-07-01

    Full Text Available Binocular rivalry occurs when each eye views images that are markedly different. Rather than seeing a binocular fusion of the two, each image is seen exclusively in a stochastic alternation of the monocular images. Here we examine whether temporal frequency differences will trigger binocular rivalry by presenting two random dot arrays that are spatially matched but which modulate temporally at two different rates and contained no net translation. We found that a perceptual alternation between the two temporal frequencies did indeed occur, provided the frequencies were sufficiently different, indicating that temporal information can produce binocular rivalry in the absence of spatial conflict. This finding is discussed with regard to the dependence of rivalry on conflict between spatial and temporal channels.

  2. Generation of THz frequency using PANDA ring resonator for THz imaging

    Directory of Open Access Journals (Sweden)

    Ong CT

    2012-02-01

    Full Text Available MA Jalil1, Afroozeh Abdolkarim2, T Saktioto2, CT Ong3, Preecha P Yupapin41Ibnu Sina Institute of Fundamental Science Studies, Nanotechnology Research Alliance, Universiti Teknologi Malaysia (UTM,81310, Johor Bahru, Malaysia; 2Institute of Advanced Photonics Science, Nanotechnology Research Alliance, Universiti Teknologi Malaysia (UTM, 81310, Johor Bahru, Malaysia; 3Department of Mathematics, Universiti Teknologi Malaysia 81310 Skudai, Johor Bahru, Malaysia; 4Nanoscale Science and Engineering Research Alliance (N'SERA, Advanced Research Center for Photonics, Faculty of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, ThailandAbstract: In this study, we have generated terahertz (THz frequency by a novel design of microring resonators for medical applications. The dense wavelength-division multiplexing can be generated and obtained by using a Gaussian pulse propagating within a modified PANDA ring resonator and an add/drop filter system. Our results show that the THz frequency region can be obtained between 40–50 THz. This area of frequency provides a reliable frequency band for THz pulsed imaging.Keywords: THz imaging, THz technology, MRRs, PANDA, add/drop filter

  3. Highly stable microwave carrier generation using a dual-frequency distributed feedback laser

    NARCIS (Netherlands)

    Khan, M.R.H.; Bernhardi, Edward; Marpaung, D.A.I.; Burla, M.; de Ridder, R.M.; Worhoff, Kerstin; Pollnau, Markus; Roeloffzen, C.G.H.

    2012-01-01

    Photonic generation of microwave carriers by using a dual-frequency distributed feedback waveguide laser in ytterbium-doped aluminum oxide is demonstrated. A highperformance optical frequency locked loop is implemented to stabilize the microwave carrier. This approach results in a microwave

  4. New Canonic Active RC Sinusoidal Oscillator Circuits Using Second-Generation Current Conveyors with Application as a Wide-Frequency Digitally Controlled Sinusoid Generator

    Directory of Open Access Journals (Sweden)

    Abhirup Lahiri

    2011-01-01

    Full Text Available This paper reports two new circuit topologies using second-generation current conveyors (CCIIs for realizing variable frequency sinusoidal oscillators with minimum passive components. The proposed topologies in this paper provide new realizations of resistance-controlled and capacitor-controlled variable frequency oscillators (VFOs using only four passive components. The first topology employs three CCIIs, while the second topology employs two CCIIs. The second topology provides an advantageous feature of frequency tuning through two grounded elements. Application of the proposed circuits as a wide-frequency range digitally controlled sinusoid generator is exhibited wherein the digital frequency control has been enabled by replacing both the capacitors by two identical variable binary capacitor banks tunable by means of the same binary code. SPICE simulations of the CMOS implementation of the oscillators using 0.35 μm TSMC CMOS technology parameters and bipolar implementation of the oscillators using process parameters for NR200N-2X (NPN and PR200N-2X (PNP of bipolar arrays ALA400-CBIC-R have validated their workability. One of the oscillators (with CMOS implementation is exemplified as a digitally controlled sinusoid generator with frequency generation from 25 kHz to 6.36 MHz, achieved by switching capacitors and with power consumption of 7 mW in the entire operating frequency range.

  5. A new approach to comparing binaural masking level differences at low and high frequencies

    NARCIS (Netherlands)

    Par, van de S.L.J.D.E.; Kohlrausch, A.G.

    1997-01-01

    A new experimental technique for studying binaural processing at high frequencies is introduced. Binaural masking level differences (BMLDs) for the conditions N0S and NS0 were measured for a tonal signal in narrow-band noise at 125, 250, and 4000 Hz. In addition, "transposed" stimuli were generated,

  6. RF-field generation in wide frequency range by electron beam

    International Nuclear Information System (INIS)

    Bogdanovich, B.; Nesterovich, A.; Minaev, S.

    1996-01-01

    A simple device for generating powerful RF oscillations in the frequency range of 100-250 MHz is considered. The two-gaps cavity is based on the quarter-wavelength coaxial line loaded by drift tubes. Frequency tuning is accomplished by using the movable shorting plunger. A permanent electron beam being modulated at the first gap return the energy at the second one. The additional tube with the permanent decelerating potential, introduced into the main drift tube, allows to decrease the drift tube length and keep the excitation conditions in frequency tuning. Both autogeneration and amplification modes are under consideration. RF-parameters of the cavity and experimental results are described. (author)

  7. Artificial E-region field-aligned plasma irregularities generated at pump frequencies near the second electron gyroharmonic

    Directory of Open Access Journals (Sweden)

    D. L. Hysell

    2009-07-01

    Full Text Available E region ionospheric modification experiments have been performed at HAARP using pump frequencies about 50 kHz above and below the second electron gyroharmonic frequency. Artificial E region field-aligned plasma density irregularities (FAIs were created and observed using the imaging coherent scatter radar near Homer, Alaska. Echoes from FAIs generated with pump frequencies above and below 2Ωe did not appear to differ significantly in experiments conducted on summer afternoons in 2008, and the resonance instability seemed to be at work in either case. We argue that upper hybrid wave trapping and resonance instability at pump frequencies below the second electron gyroharmonic frequency are permitted theoretically when the effects of finite parallel wavenumbers are considered. Echoes from a sporadic E layer were observed to be somewhat weaker when the pump frequency was 50 kHz below the second electron gyroharmonic frequency. This may indicate that finite parallel wavenumbers are inconsistent with wave trapping in thin sporadic E ionization layers.

  8. Phase-dependent quantum interference between different pathways in bichromatic harmonic generation

    International Nuclear Information System (INIS)

    Jun, Cai; Li-Ming, Wang; Hao-Xue, Qiao

    2009-01-01

    This paper studies the harmonic generation of the hydrogen atom subjected to a collinear bichromatic laser field by numerically solving the time-dependent Schrödinger equation using the split-operator pseudo-spectral method. By adding a frequency variation to the additional field, the contributions of different pathways to particular order harmonic generation can be isolated. The quantum interference pattern between harmonic pathways, which influences the harmonic intensity, is found to be either constructive or destructive with respect to different relative phase of the two field components. Detailed description of up to the 35th-order harmonics and the harmonic pathways for a wide range of field parameters is presented. (atomic and molecular physics)

  9. Self-consistent modeling of radio-frequency plasma generation in stellarators

    Energy Technology Data Exchange (ETDEWEB)

    Moiseenko, V. E., E-mail: moiseenk@ipp.kharkov.ua; Stadnik, Yu. S., E-mail: stadnikys@kipt.kharkov.ua [National Academy of Sciences of Ukraine, National Science Center Kharkov Institute of Physics and Technology (Ukraine); Lysoivan, A. I., E-mail: a.lyssoivan@fz-juelich.de [Royal Military Academy, EURATOM-Belgian State Association, Laboratory for Plasma Physics (Belgium); Korovin, V. B. [National Academy of Sciences of Ukraine, National Science Center Kharkov Institute of Physics and Technology (Ukraine)

    2013-11-15

    A self-consistent model of radio-frequency (RF) plasma generation in stellarators in the ion cyclotron frequency range is described. The model includes equations for the particle and energy balance and boundary conditions for Maxwell’s equations. The equation of charged particle balance takes into account the influx of particles due to ionization and their loss via diffusion and convection. The equation of electron energy balance takes into account the RF heating power source, as well as energy losses due to the excitation and electron-impact ionization of gas atoms, energy exchange via Coulomb collisions, and plasma heat conduction. The deposited RF power is calculated by solving the boundary problem for Maxwell’s equations. When describing the dissipation of the energy of the RF field, collisional absorption and Landau damping are taken into account. At each time step, Maxwell’s equations are solved for the current profiles of the plasma density and plasma temperature. The calculations are performed for a cylindrical plasma. The plasma is assumed to be axisymmetric and homogeneous along the plasma column. The system of balance equations is solved using the Crank-Nicholson scheme. Maxwell’s equations are solved in a one-dimensional approximation by using the Fourier transformation along the azimuthal and longitudinal coordinates. Results of simulations of RF plasma generation in the Uragan-2M stellarator by using a frame antenna operating at frequencies lower than the ion cyclotron frequency are presented. The calculations show that the slow wave generated by the antenna is efficiently absorbed at the periphery of the plasma column, due to which only a small fraction of the input power reaches the confinement region. As a result, the temperature on the axis of the plasma column remains low, whereas at the periphery it is substantially higher. This leads to strong absorption of the RF field at the periphery via the Landau mechanism.

  10. Frequency Control Strategy for Black Starts via PMSG-Based Wind Power Generation

    Directory of Open Access Journals (Sweden)

    Yi Tang

    2017-03-01

    Full Text Available The use of wind power generation (WPG as a source for black starts will significantly enhance the resiliency of power systems and shorten their recovery time from blackouts. Given that frequency stability is the most serious issue during the initial recovery period, virtual inertia control can enable wind turbines to provide frequency support to an external system. In this study, a general procedure of WPG participating in black starts is presented, and the key issues are discussed. The adaptability of existing virtual inertia control strategies is analyzed, and improvement work is performed. A new coordinated frequency control strategy is proposed based on the presented improvement work. A local power network with a permanent-magnet synchronous generator (PMSG-based wind farm is modeled and used to verify the effectiveness of the strategy.

  11. Observational study of generation conditions of substorm-associated low-frequency AKR emissions

    Directory of Open Access Journals (Sweden)

    A. Olsson

    2004-11-01

    Full Text Available It has lately been shown that low-frequency bursts of auroral kilometric radiation (AKR are nearly exclusively associated with substorm expansion phases. Here we study low-frequency AKR using Polar PWI and Interball POLRAD instruments to constrain its possible generation mechanisms. We find that there are more low-frequency AKR emission events during wintertime and equinoxes than during summertime. The dot-AKR emission radial distance range coincides well with the region where the deepest density cavities are seen statistically during Kp>2. We suggest that the dot-AKR emissions originate in the deepest density cavities during substorm onsets. The mechanism for generating dot-AKR is possibly strong Alfvén waves entering the cavity from the magnetosphere and changing their character to more inertial, which causes the Alfvén wave associated parallel electric field to increase. This field may locally accelerate electrons inside the cavity enough to produce low-frequency AKR emission. We use Interball IESP low-frequency wave data to verify that in about half of the cases the dot-AKR is accompanied by low-frequency wave activity containing a magnetic component, i.e. probably inertial Alfvén waves. Because of the observational geometry, this result is consistent with the idea that inertial Alfvén waves might always be present in the source region when dot-AKR is generated. The paper illustrates once more the importance of radio emissions as a powerful remote diagnostic tool of auroral processes, which is not only relevant for the Earth's magnetosphere but may be relevant in the future in studying extrasolar planets.

  12. High-precision and low-cost vibration generator for low-frequency calibration system

    Science.gov (United States)

    Li, Rui-Jun; Lei, Ying-Jun; Zhang, Lian-Sheng; Chang, Zhen-Xin; Fan, Kuang-Chao; Cheng, Zhen-Ying; Hu, Peng-Hao

    2018-03-01

    Low-frequency vibration is one of the harmful factors that affect the accuracy of micro-/nano-measuring machines because its amplitude is significantly small and it is very difficult to avoid. In this paper, a low-cost and high-precision vibration generator was developed to calibrate an optical accelerometer, which is self-designed to detect low-frequency vibration. A piezoelectric actuator is used as vibration exciter, a leaf spring made of beryllium copper is used as an elastic component, and a high-resolution, low-thermal-drift eddy current sensor is applied to investigate the vibrator’s performance. Experimental results demonstrate that the vibration generator can achieve steady output displacement with frequency range from 0.6 Hz to 50 Hz, an analytical displacement resolution of 3.1 nm and an acceleration range from 3.72 mm s-2 to 1935.41 mm s-2 with a relative standard deviation less than 1.79%. The effectiveness of the high-precision and low-cost vibration generator was verified by calibrating our optical accelerometer.

  13. Online frequency estimation with applications to engine and generator sets

    Science.gov (United States)

    Manngård, Mikael; Böling, Jari M.

    2017-07-01

    Frequency and spectral analysis based on the discrete Fourier transform is a fundamental task in signal processing and machine diagnostics. This paper aims at presenting computationally efficient methods for real-time estimation of stationary and time-varying frequency components in signals. A brief survey of the sliding time window discrete Fourier transform and Goertzel filter is presented, and two filter banks consisting of: (i) sliding time window Goertzel filters (ii) infinite impulse response narrow bandpass filters are proposed for estimating instantaneous frequencies. The proposed methods show excellent results on both simulation studies and on a case study using angular speed data measurements of the crankshaft of a marine diesel engine-generator set.

  14. Generation of artificial time-histories, rich in all frequencies, from given response spectra

    International Nuclear Information System (INIS)

    Levy, S.; Wilkinson, J.P.D.

    1975-01-01

    In order to apply the time-history method of seismic analysis, it is often desirable to generate a suitable artificial time-history from a given response spectrum. The method described allows the generation of such a time-history that is also rich in all frequencies in the spectrum. This richness is achieved by choosing a large number of closely-spaced frequency points such that the adjacent frequencies have their half-power points overlap. The adjacent frequencies satisfy the condition that the frequency interval Δf near a given frequency f is such that (Δf)/f<2c/csub(c) where c is the damping of the system and csub(c) is the critical damping. In developing an artificial time-history, it is desirable to specify the envelope and duration of the record, very often in such a manner as to reproduce the envelope property of a specific earthquake record, and such an option is available in the method described. Examples are given of the development of typical artificial time-histories from earthquake design response spectra and from floor response spectra

  15. Generation of ultra-wide and flat optical frequency comb based on electro absorption modulator

    Science.gov (United States)

    Ujjwal; Thangaraj, Jaisingh

    2018-05-01

    A novel technique is proposed for the generation of ultra-wide and flat optical frequency comb (OFC) based on serially cascading three stages of electro absorption modulators (EAMs) through sinusoidal radio frequency (RF) signals by setting frequencies at f GHz, f/2 GHz and f/4 GHz. Here, the first stage acts as subcarrier generator, the second stage acts as subcarrier doubler, and the third stage acts as subcarrier quadrupler. In addition, a higher number of subcarriers can easily be generated by adjusting the driving sinusoidal RF signal. In this paper, cascading three stages of EAMs driven by 50 GHz, 25 GHz and 12.5 GHz clock sources, we obtain 272 subcarriers with spacing of 2.5 GHz and power deviation within 1 dB. Theoretical analysis of serially cascaded EAMs for subcarrier generation is also investigated. Principal analysis and simulation of this technique are demonstrated.

  16. Numerical Investigation of Terahertz Emission Properties of Microring Difference-Frequency Resonators

    DEFF Research Database (Denmark)

    Iwaszczuk, Krzysztof; Bisgaard, Christer Zoffmann; Andronico, Alessio

    2013-01-01

    We investigate the electromagnetic design of whispering gallery mode (WGM) terahertz (THz) resonators. Terahertz radiation is generated by difference-frequency mixing of two electrically pumped high-order near-infrared laser WGM's at room temperature in the active cavity. Due to the leaky nature...... this symmetry by modification of the dielectric environment of the resonator, and demonstrate a fabrication-optimized structure based on a concentric grating design which efficiently couples the emitted radiation into a narrow, near-gaussian forward-propagating cone of well-defined linear or circular...

  17. Characterizing Fracture Property Using Resistivity Measured at Different Frequencies

    Energy Technology Data Exchange (ETDEWEB)

    Horne, Roland N. [Stanford Univ., CA (United States); Li, Kewen [Stanford Univ., CA (United States)

    2014-09-30

    The objective was to develop geophysical approaches to detecting and evaluating the fractures created or existing in EGS and other geothermal reservoirs by measuring the resistivity at different frequencies. This project has been divided into two phases: Phase I (first year): Proof of Concept – develop the resistivity approach and verify the effect of frequency on the resistivity in rocks with artificial or natural fractures over a wide range of frequencies. Phase II: Prototyping Part 1 (second year): measure the resistivity in rocks with fractures of different apertures, different length, and different configurations at different frequencies. Part 2 (third year): develop mathematical models and the resistivity method; infer the fracture properties using the measured resistivity data.

  18. Generation and control of optical frequency combs using cavity electromagnetically induced transparency

    Science.gov (United States)

    Li, Jiahua; Qu, Ye; Yu, Rong; Wu, Ying

    2018-02-01

    We explore theoretically the generation and all-optical control of optical frequency combs (OFCs) in photon transmission based on a combination of single-atom-cavity quantum electrodynamics (CQED) and electromagnetically induced transparency (EIT). Here an external control field is used to form the cavity dark mode of the CQED system. When the strengths of the applied EIT control field are appropriately tuned, enhanced comb generation can be achieved. We discuss the properties of the dark mode and clearly show that the formation of the dark mode enables the efficient generation of OFCs. In our approach, the comb spacing is determined by the beating frequency between the driving pump and seed lasers. Our demonstrated theory may pave the way towards all-optical coherent control of OFCs using a CQED architecture.

  19. Prediction of power system frequency response after generator outages using neural nets

    Energy Technology Data Exchange (ETDEWEB)

    Djukanovic, M B; Popovic, D P [Electrotechnicki Inst. ' Nikola Tesla' , Belgrade (Yugoslavia); Sobajic, D J; Pao, Y -H [Case Western Reserve Univ., Cleveland, OH (United States)

    1993-09-01

    A new methodology is presented for estimating the frequency behaviour of power systems necessary for an indication of under-frequency load shedding in steady-state security assessment. It is well known that large structural disturbances such as generator tripping or load outages can initiate cascading outages, system separation into islands, and even the complete breakup. The approach provides a fairly accurate method of estimating the system average frequency response without making simplifications or neglecting non-linearities and small time constants in the equations of generating units, voltage regulators and turbines. The efficiency of the new procedure is demonstrated using the New England power system model for a series of characteristic perturbations. The validity of the proposed approach is verified by comparison with the simulation of short-term dynamics including effects of control and automatic devices. (author)

  20. Quasi-B-mode generated by high-frequency gravitational waves and corresponding perturbative photon fluxes

    Energy Technology Data Exchange (ETDEWEB)

    Li, Fangyu, E-mail: cqufangyuli@hotmail.com [Institute of Gravitational Physics, Department of Physics, Chongqing University, Chongqing 400044 (China); Wen, Hao [Institute of Gravitational Physics, Department of Physics, Chongqing University, Chongqing 400044 (China); State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190 (China); Fang, Zhenyun [Institute of Gravitational Physics, Department of Physics, Chongqing University, Chongqing 400044 (China); Wei, Lianfu; Wang, Yiwen; Zhang, Miao [Quantum Optoelectronics Laboratory, Southwest Jiaotong University, Chengdu 610031 (China)

    2016-10-15

    Interaction of very low-frequency primordial (relic) gravitational waves (GWs) to cosmic microwave background (CMB) can generate B-mode polarization. Here, for the first time we point out that the electromagnetic (EM) response to high-frequency GWs (HFGWs) would produce quasi-B-mode distribution of the perturbative photon fluxes. We study the duality and high complementarity between such two B-modes, and it is shown that such two effects are from the same physical origin: the tensor perturbation of the GWs and not the density perturbation. Based on this quasi-B-mode in HFGWs and related numerical calculation, it is shown that the distinguishing and observing of HFGWs from the braneworld would be quite possible due to their large amplitude, higher frequency and very different physical behaviors between the perturbative photon fluxes and background photons, and the measurement of relic HFGWs may also be possible though face to enormous challenge.

  1. Broadband short pulse measurement by autocorrelation with a sum-frequency generation set-up

    International Nuclear Information System (INIS)

    Glotin, F.; Jaroszynski, D.; Marcouille, O.

    1995-01-01

    Previous spectral and laser pulse length measurements carried out on the CLIO FEL at wavelength λ=8.5 μm suggested that very short light pulses could be generated, about 500 fs wide (FWHM). For these measurements a Michelson interferometer with a Te crystal, as a non-linear detector, was used as a second order autocorrelation device. More recent measurements in similar conditions have confirmed that the laser pulses observed are indeed single: they are not followed by other pulses distant by the slippage length Nλ. As the single micropulse length is likely to depend on the slippage, more measurements at different wavelengths would be useful. This is not directly possible with our actual interferometer set-up, based on a phase-matched non-linear crystal. However, we can use the broadband non-linear medium provided by one of our users' experiments: Sum-Frequency Generation over surfaces. With such autocorrelation set-up, interference fringes are no more visible, but this is largely compensated by the frequency range provided. First tests at 8 μm have already been performed to validate the technic, leading to results similar to those obtained with our previous Michelson set-up

  2. Artificial E-region field-aligned plasma irregularities generated at pump frequencies near the second electron gyroharmonic

    Directory of Open Access Journals (Sweden)

    D. L. Hysell

    2009-07-01

    Full Text Available E region ionospheric modification experiments have been performed at HAARP using pump frequencies about 50 kHz above and below the second electron gyroharmonic frequency. Artificial E region field-aligned plasma density irregularities (FAIs were created and observed using the imaging coherent scatter radar near Homer, Alaska. Echoes from FAIs generated with pump frequencies above and below 2Ωe did not appear to differ significantly in experiments conducted on summer afternoons in 2008, and the resonance instability seemed to be at work in either case. We argue that upper hybrid wave trapping and resonance instability at pump frequencies below the second electron gyroharmonic frequency are permitted theoretically when the effects of finite parallel wavenumbers are considered. Echoes from a sporadic E layer were observed to be somewhat weaker when the pump frequency was 50 kHz below the second electron gyroharmonic frequency. This may indicate that finite parallel wavenumbers are inconsistent with wave trapping in thin sporadic E ionization layers.

  3. Efficient concept for generation of diffraction-limited green light by sum-frequency generation of spectrally combined tapered diode lasers

    DEFF Research Database (Denmark)

    Müller, André; Jensen, Ole Bjarlin; Hasler, Karl-Heinz

    2012-01-01

    In order to increase the power of visible diode laser systems in an efficient manner, we propose spectral beam combining with subsequent sum-frequency generation. We show that this approach, in comparison with second harmonic generation of single emitters, can enhance the available power signific......In order to increase the power of visible diode laser systems in an efficient manner, we propose spectral beam combining with subsequent sum-frequency generation. We show that this approach, in comparison with second harmonic generation of single emitters, can enhance the available power...... significantly. By combining two distributed Bragg reflector tapered diode lasers we achieve a 2.5–3.2 fold increase in power and a maximum of 3.9 W of diffraction-limited green light. At this power level, green diode laser systems have a high application potential, e.g., within the biomedical field. Our concept...

  4. Sum frequency generation for surface vibrational spectroscopy

    International Nuclear Information System (INIS)

    Hunt, J.H.; Guyot-Sionnest, P.; Shen, Y.R.

    1987-01-01

    Surface vibrational spectroscopy is one of the best means for characterizing molecular adsorbates. For this reason, many techniques have been developed in the past. However, most of them suffer from poor sensitivity, low spectral and temporal resolution, and applications limited to vacuum solid interfaces. Recently, the second harmonic generation (SHG) technique was proved repeatedly to be a simple but versatile surface probe. It is highly sensitive and surface specific; it is also capable of achieving high temporal, spatial, and spectral resolution. Being an optical technique, it can be applied to any interface accessible by light. The only serious drawback is its lack of molecular selectivity. An obvious remedy is the extension of the technique to IR-visible sum frequency generation (SFG). Surface vibrational spectroscopy with submonolayer sensitivity is then possible using SFG with the help of a tunable IR laser. The authors report here an SFG measurement of the C-H stretch vibration of monolayers of molecules at air-solid and air-liquid interfaces

  5. A Frequency Matching Method for Generation of a Priori Sample Models from Training Images

    DEFF Research Database (Denmark)

    Lange, Katrine; Cordua, Knud Skou; Frydendall, Jan

    2011-01-01

    This paper presents a Frequency Matching Method (FMM) for generation of a priori sample models based on training images and illustrates its use by an example. In geostatistics, training images are used to represent a priori knowledge or expectations of models, and the FMM can be used to generate...... new images that share the same multi-point statistics as a given training image. The FMM proceeds by iteratively updating voxel values of an image until the frequency of patterns in the image matches the frequency of patterns in the training image; making the resulting image statistically...... indistinguishable from the training image....

  6. Population genetical investigation of the level of mutagenesis and teratological events frequency in ecologically different regions of Kazakhstan

    International Nuclear Information System (INIS)

    Kashaganova, Zh.A.; Zhapbasov, R.; Kadyrova, N.Zh.; Karimbaeva, K.S.; Mamyrbaeva, A.N.; Altaeva, N.Z.

    2008-01-01

    Full text: Kazakhstan territory is unique including regions with radioactive pollution of Semipalatinsk nuclear test territory and storage of radioactive waste of uranium mines and metallurgy enterprises, and regions of drying Aral sea. These technogenic factors may cause some types of chromosome aberrations and developmental anomalies in mammals. The level of mutagenesis was estimated basing on chromosome aberrations and genomic mutation frequencies in bone marrow cells of natural rodents populations (Allactaga major Kern, Allactaga saltator Eversman, Cytellus eritrogenus Br.) and domestic animals (sheep, cattle, horse), which inhabit these regions. Sheep populations which are bred in the regions with different climatic conditions were used for teratological investigations. Different generations are met in the populations of mice family rodents caught in the nature. So studying the animals of different ages separately we can estimate the frequency of mutations in the animals of different age inhabiting the same radiation polluted regions. The frequency of chromosome abe rations in mice family rodents from such territories was twice as high as from the clear territories. In some animals chromosome aberration types characteristic for radiation mutagenesis (dicentrics, double acentric fragments) were found. High level of cytogenetical instability in somatic cells of agricultural animals which were bred on the pastures within former nuclear test territories for several generations may be caused by chronic radiation in low doses. The analysis of the spectrum of recorder chromosome aberrations in somatic cells and their dynamics in different animal species inhabiting for several generations these territories being chronically irradiated, allows us to investigate the direction of genetical evolution of mammals genofond structure induced by ecological factors. Comparative analysis of the frequencies of spontaneous abortuses, deadborn and newborn animals with innate

  7. Experimental demonstration of wavelength conversion between ps-pulses based on cascaded sum- and difference frequency generation (SFG+DFG) in LiNbO3 waveguides

    Science.gov (United States)

    Wang, Jian; Sun, Junqiang; Lou, Chuanhong; Sun, Qizhen

    2005-09-01

    All-optical wavelength conversion between ps-pulses based on cascaded sum- and difference frequency generation (SFG+DFG) is proposed and experimentally demonstrated in periodically poled LiNbO3 (PPLN) waveguides. The signal pulse with 40-GHz repetition rate and 1.57- ps pulse width is adopted. The converted idler wavelength can be tuned from 1527.4 to 1540.5nm as the signal wavelength is varied from 1561.9 to 1548.4nm. No obvious changes of the pulse shape and width, also no chirp are observed in the converted idler pulse. The results imply that single-to-multiple channel wavelength conversions can be achieved by appropriately tuning the two pump wavelengths.

  8. Generation of artificial time-histories, rich in all frequencies from given response spectra

    International Nuclear Information System (INIS)

    Levy, S.; Wilkinson, J.P.D.

    1975-01-01

    In order to apply the time-history method of seismic analysis, it is often desirable to generate a suitable artificial time-history from a given response spectrum. The method described in this paper allows the generation of such a time-history that is also rich in all frequencies in the spectrum. This richness is achieved by choosing a large number of closely-spaced frequency points such that the adjacent frequencies have their half-power points overlap. The adjacent frequencies satisfy the condition that the frequency interval Δf near a given frequency f is such that (Δf)/f<2c/csub(c) where c is the damping of the system and csub(c) is the critical damping. In developing an artificial time-history, it is desirable to specify the envelope and duration of the record, very often in such a manner as to reproduce the envelope property of a specific earthquake record, and such an option is available in the method described. Examples are given of the development of typical articifial time-histories from earthquake design response spectra and from floor response spectra. (Auth.)

  9. Distributed Generation Integration in the Electric Grid: Energy Storage System for Frequency Control

    Directory of Open Access Journals (Sweden)

    Maurizio Delfanti

    2014-01-01

    Full Text Available During the last few years generation from renewable energy sources (RESs has grown considerably in European electrical networks. Transmission system operators are greatly concerned about the impact of RESs on the operational security and efficiency of their networks and more in general of the ENTSO-E interconnected system. Grid codes are to be revised in order to harmonise the rules regarding the connection of RES power plants. A main issue concerns frequency control: frequency is greatly affected by RESs intermittency and its deviations must be limited as much as possible in order to guarantee a suitable level of power quality. To improve frequency stability, in the future, Grid codes could extend frequency control requirements also to RES units, whereas today they are applied only to conventional power plants. Energy storage systems can be a possible solution to increase the flexibility and performance of RES power plants: they allow generators to modulate their power injections without wasting renewable energy. In this paper, the authors studied the suitability of extending frequency control to RES units integrating them with energy storage systems. In particular, the paper focuses on the impact of frequency control on the storage lifetime by analysing the power charge/discharge in response to real frequency oscillations.

  10. Probing a molecular electronic transition by two-colour sum-frequency generation spectroscopy

    International Nuclear Information System (INIS)

    Humbert, C.; Dreesen, L.; Nihonyanagi, S.; Masuda, T.; Kondo, T.; Mani, A.A.; Uosaki, K.; Thiry, P.A.; Peremans, A.

    2003-01-01

    We demonstrate that a new emerging technique, two-colour sum-frequency generation (SFG) spectroscopy, can be used to probe the molecular electronic properties of self-assembled monolayers (SAMs). In the CH spectral range (2800-3200 cm -1 ), we show that the sum-frequency generation signal of a porphyrin alkanethiol derivative adsorbed on Pt(1 1 1) reaches a maximum intensity at ∼435 nm SFG wavelength. This wavelength corresponds to the porphyrin moiety specific π-π* molecular electronic transition which is called the Soret or B band. This resonant behaviour is not observed for 1-dodecanethiol SAMs, which are devoid of molecular electronic transition in the investigated visible spectral range

  11. Inherited and environmentally induced differences in mutation frequencies between wild strains of Sordaria fimicola from "Evolution Canyon".

    Science.gov (United States)

    Lamb, B C; Saleem, M; Scott, W; Thapa, N; Nevo, E

    1998-05-01

    We have studied whether there is natural genetic variation for mutation frequencies, and whether any such variation is environment-related. Mutation frequencies differed significantly between wild strains of the fungus Sordaria fimicola isolated from a harsher or a milder microscale environment in "Evolution Canyon," Israel. Strains from the harsher, drier, south-facing slope had higher frequencies of new spontaneous mutations and of accumulated mutations than strains from the milder, lusher, north-facing slope. Collective total mutation frequencies over many loci for ascospore pigmentation were 2.3, 3.5 and 4.4% for three strains from the south-facing slope, and 0.9, 1.1, 1.2, 1.3 and 1.3% for five strains from the north-facing slope. Some of this between-slope difference was inherited through two generations of selfing, with average spontaneous mutation frequencies of 1.9% for south-facing slope strains and 0.8% for north-facing slope strains. The remainder was caused by different frequencies of mutations arising in the original environments. There was also significant heritable genetic variation in mutation frequencies within slopes. Similar between-slope differences were found for ascospore germination-resistance to acriflavine, with much higher frequencies in strains from the south-facing slope. Such inherited variation provides a basis for natural selection for optimum mutation rates in each environment.

  12. Measurement of optical-beat frequency in a photoconductive terahertz-wave generator using microwave higher harmonics.

    Science.gov (United States)

    Murasawa, Kengo; Sato, Koki; Hidaka, Takehiko

    2011-05-01

    A new method for measuring optical-beat frequencies in the terahertz (THz) region using microwave higher harmonics is presented. A microwave signal was applied to the antenna gap of a photoconductive (PC) device emitting a continuous electromagnetic wave at about 1 THz by the photomixing technique. The microwave higher harmonics with THz frequencies are generated in the PC device owing to the nonlinearity of the biased photoconductance, which is briefly described in this article. Thirteen nearly periodic peaks in the photocurrent were observed when the microwave was swept from 16 to 20 GHz at a power of -48 dBm. The nearly periodic peaks are generated by the homodyne detection of the optical beat with the microwave higher harmonics when the frequency of the harmonics coincides with the optical-beat frequency. Each peak frequency and its peak width were determined by fitting a Gaussian function, and the order of microwave harmonics was determined using a coarse (i.e., lower resolution) measurement of the optical-beat frequency. By applying the Kalman algorithm to the peak frequencies of the higher harmonics and their standard deviations, the optical-beat frequency near 1 THz was estimated to be 1029.81 GHz with the standard deviation of 0.82 GHz. The proposed method is applicable to a conventional THz-wave generator with a photomixer.

  13. Mid-infrared frequency comb via coherent dispersive wave generation in silicon nitride nanophotonic waveguides

    Science.gov (United States)

    Guo, Hairun; Herkommer, Clemens; Billat, Adrien; Grassani, Davide; Zhang, Chuankun; Pfeiffer, Martin H. P.; Weng, Wenle; Brès, Camille-Sophie; Kippenberg, Tobias J.

    2018-06-01

    Mid-infrared optical frequency combs are of significant interest for molecular spectroscopy due to the large absorption of molecular vibrational modes on the one hand, and the ability to implement superior comb-based spectroscopic modalities with increased speed, sensitivity and precision on the other hand. Here, we demonstrate a simple, yet effective, method for the direct generation of mid-infrared optical frequency combs in the region from 2.5 to 4.0 μm (that is, 2,500-4,000 cm-1), covering a large fraction of the functional group region, from a conventional and compact erbium-fibre-based femtosecond laser in the telecommunication band (that is, 1.55 μm). The wavelength conversion is based on dispersive wave generation within the supercontinuum process in an unprecedented large-cross-section silicon nitride (Si3N4) waveguide with the dispersion lithographically engineered. The long-wavelength dispersive wave can perform as a mid-infrared frequency comb, whose coherence is demonstrated via optical heterodyne measurements. Such an approach can be considered as an alternative option to mid-infrared frequency comb generation. Moreover, it has the potential to realize compact dual-comb spectrometers. The generated combs also have a fine teeth-spacing, making them suitable for gas-phase analysis.

  14. Generation of green frequency comb from chirped χ{sup (2)} nonlinear photonic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Lai, C.-M. [Department of Electronic Engineering, Ming Chuan University, Taoyuan, Taiwan (China); Chang, K.-H.; Yang, Z.-Y.; Fu, S.-H.; Tsai, S.-T.; Hsu, C.-W.; Peng, L.-H. [Department of Electrical Engineering and Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei, Taiwan (China); Yu, N. E. [Advanced Photonics Research Institute, Gwangju Institute of Science and Technology, Gwangju (Korea, Republic of); Boudrioua, A. [LPL, CNRS - UMR 7538, Université Paris 13, Sorbone Paris Cité (France); Kung, A. H. [Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, Taiwan (China); Institute of Photonics Technologies, National Tsing Hua University, Hsinchu, Taiwan (China)

    2014-12-01

    Spectrally broad frequency comb generation over 510–555 nm range was reported on chirped quasi-phase-matching (QPM) χ{sup (2)} nonlinear photonic crystals of 12 mm length with periodicity stepwise increased from 5.9 μm to 7.1 μm. When pumped with nanosecond infrared (IR) frequency comb derived from a QPM optical parametric oscillator (OPO) and spanned over 1040 nm to 1090 nm wavelength range, the 520 nm to 545 nm up-converted green spectra were shown to consist of contributions from (a) second-harmonic generation among the signal or the idler modes, and (b) sum-frequency generation (SFG) from the neighboring pairs of the signal or the idler modes. These mechanisms led the up-converted green frequency comb to have the same mode spacing of 450 GHz as that in the IR-OPO pump comb. As the pump was further detuned from the aforementioned near-degeneracy point and moved toward the signal (1020–1040 nm) and the idler (1090–1110 nm) spectral range, the above QPM parametric processes were preserved in the chirped QPM devices to support up-converted green generation in the 510–520 nm and the 545–555 nm spectral regime. Additional 530–535 nm green spectral generation was also observed due to concurrence of multi-wavelength SFG processes between the (signal, idler) mode pairs. These mechanisms facilitate the chirped QPM device to support a single-pass up-conversion efficiency ∼10% when subject to an IR-OPO pump comb with 200 mW average power operated near- or off- the degeneracy point.

  15. Generation of a frequency comb and applications thereof

    Science.gov (United States)

    Hagmann, Mark J; Yarotski, Dmitry A

    2013-12-03

    Apparatus for generating a microwave frequency comb (MFC) in the DC tunneling current of a scanning tunneling microscope (STM) by fast optical rectification, cause by nonlinearity of the DC current vs. voltage curve for the tunneling junction, of regularly-spaced, short pulses of optical radiation from a focused mode-locked, ultrafast laser, directed onto the tunneling junction, is described. Application of the MFC to high resolution dopant profiling in semiconductors is simulated. Application of the MFC to other measurements is described.

  16. Quasi-B-mode generated by high-frequency gravitational waves and corresponding perturbative photon fluxes

    Directory of Open Access Journals (Sweden)

    F.Y. Fangyu Li

    2016-10-01

    Full Text Available Interaction of very low-frequency primordial (relic gravitational waves (GWs to cosmic microwave background (CMB can generate B-mode polarization. Here, for the first time we point out that the electromagnetic (EM response to high-frequency GWs (HFGWs would produce quasi-B-mode distribution of the perturbative photon fluxes. We study the duality and high complementarity between such two B-modes, and it is shown that such two effects are from the same physical origin: the tensor perturbation of the GWs and not the density perturbation. Based on this quasi-B-mode in HFGWs and related numerical calculation, it is shown that the distinguishing and observing of HFGWs from the braneworld would be quite possible due to their large amplitude, higher frequency and very different physical behaviors between the perturbative photon fluxes and background photons, and the measurement of relic HFGWs may also be possible though face to enormous challenge.

  17. Fast simulation of wind generation for frequency stability analysis in island power systems

    Energy Technology Data Exchange (ETDEWEB)

    Conroy, James [EirGrid, Dublin (Ireland)

    2010-07-01

    Frequency stability is a major issue for power system planning and operation in an island power system such as Ireland. As increasing amounts of variable speed wind generation are added to the system, this issue becomes more prominent, as variable speed wind generation does not provide an inherent inertial response. This lack of an inertial response means that simplified models for variable speed wind farms can be used for investigating frequency stability. EirGrid uses DIgSILENT Power Factory (as well as other software tools) to investigate frequency stability. In PowerFactory, an automation program has been created to convert detailed wind farm representation (as necessary for other types of analysis) to negative load models for frequency stability analysis. The advantage of this approach is much-improved simulation speed without loss of accuracy. This approach can also be to study future wind energy targets, and long-term simulation of voltage stability. (orig.)

  18. Generation of five phase-locked harmonics by implementing a divide-by-three optical frequency divider.

    Science.gov (United States)

    Suhaimi, Nurul Sheeda; Ohae, Chiaki; Gavara, Trivikramarao; Nakagawa, Ken'ichi; Hong, Feng-Lei; Katsuragawa, Masayuki

    2015-12-15

    We report the generation of five phase-locked harmonics, f₁:2403  nm, f₂:1201  nm, f₃:801  nm, f₄:600  nm, and f₅:480  nm with an exact frequency ratio of 1:2:3:4:5 by implementing a divide-by-three optical frequency divider in the high harmonic generation process. All five harmonics are generated coaxially with high phase coherence in time and space, which are applicable for various practical uses.

  19. New generation neonatal high frequency ventilators: effect of oscillatory frequency and working principles on performance.

    Science.gov (United States)

    Grazioli, Serge; Karam, Oliver; Rimensberger, Peter C

    2015-03-01

    Several new generation neonatal ventilators that incorporate conventional as well as high frequency ventilation (HFOV) have appeared on the market. Most of them offer the possibility to use HFOV in a volume-targeted mode, despite absence of any preclinical data. With a bench test, we evaluated the performances of 4 new neonatal HFOV devices and compared them to the SensorMedics HFOV device. Expiratory tidal volumes (V(T)) were measured for various ventilator settings and lung characteristics (ie, modifications of compliance and resistance of the system), to mimic several clinical conditions of pre-term and term infants. Increasing the frequency proportionally decreased the V(T) for all the ventilators, although the magnitude of the decrease was highly variable between ventilators. At 15 Hz and a pressure amplitude of 60 cm H2O, the delivered V(T) ranged from 3.5 to 5.9 mL between devices while simulating pre-term infant conditions and from 2.6 to 6.3 mL while simulating term infant conditions. Activating the volume-targeted mode in the 3 machines that offer this mode allowed the V(T) to remain constant over the range of frequencies and with changes of lung mechanical properties, for pre-term infant settings only while targeting a V(T) of 1 mL. These new generation neonatal ventilators were able to deliver adequate V(T) under pre-term infant, but not term infant respiratory system conditions. The clinical relevance of these findings will need to be determined by further studies. Copyright © 2015 by Daedalus Enterprises.

  20. Calibration of an audio frequency noise generator

    DEFF Research Database (Denmark)

    Diamond, Joseph M.

    1966-01-01

    a noise bandwidth Bn = π/2 × (3dB bandwidth). To apply this method to low audio frequencies, the noise bandwidth of the low Q parallel resonant circuit has been found, including the effects of both series and parallel damping. The method has been used to calibrate a General Radio 1390-B noise generator...... it is used for measurement purposes. The spectral density of a noise source may be found by measuring its rms output over a known noise bandwidth. Such a bandwidth may be provided by a passive filter using accurately known elements. For example, the parallel resonant circuit with purely parallel damping has...

  1. Sex differences in Hadza eating frequency by food type.

    Science.gov (United States)

    Berbesque, J Colette; Marlowe, Frank W; Crittenden, Alyssa N

    2011-01-01

    We investigate sex differences in frequencies of adults eating in a foraging population-the Hadza of Tanzania. We use eating frequency data from instantaneous scan observations of the Hadza, to see to how much sharing of foods taken back to camp compensates for the targeting of different foods by each sex while out foraging. Eating in camp differs by sex in terms of overall eating frequency, as well as in terms of diet composition (frequencies of eating each food type). We also control for sex-differences in time spent in camp and still find sex-differences in eating frequencies-women are observed eating significantly more frequently than men. There are also sex-differences in the eating frequencies of particular food types both with and without controlling for presence in camp. Finally, we use data on acquisition of each food type by sex and find that both sexes are more frequently observed eating women's foods in camp than men's foods. At least in the case of the Hadza, we see pronounced sex differences in the in-camp diet. Hadza men are eating a higher quality diet than are women, but women are able to eat far more frequently, and spend less time foraging than men. It is not yet clear whether a regular caloric intake of lower quality foods would be more beneficial for maintaining fecundity than a more variable diet consisting of higher quality foods. Copyright © 2011 Wiley-Liss, Inc.

  2. EVALUATION OF DIFFERENT FEEDING FREQUENCIES ON ...

    African Journals Online (AJOL)

    USER

    EVALUATION OF DIFFERENT FEEDING FREQUENCIES ON GROWTH .... using one-way analysis of variance (ANOVA) and ... SGR = Specific Growth Rate, FCR = Food Conversion Ratio, K = Condition Factor and SR = Survival Rate.

  3. Dynamic participation of doubly fed induction generator in automatic generation control

    Energy Technology Data Exchange (ETDEWEB)

    Bhatt, Praghnesh [Department of Electrical Engineering, Charotar Institute of Technology, Changa, Gujarat-388421 (India); Roy, Ranjit [Department of Electrical Engineering, S.V. National Institute of Technology, Surat, Gujarat-395007 (India); Ghoshal, S.P. [Department of Electrical Engineering, National Institute of Technology, Durgapur, West Bengal-713209 (India)

    2011-04-15

    Increasing levels of wind generation have resulted in an urgent need for the assessment of their impact on frequency control of power systems. The displacement of conventional generation with wind generation will result in erosion of system frequency. The paper analyzed the dynamic participation of doubly fed induction generator (DFIG) to system frequency responses of two-area interconnected power system having variety of conventional generating units. Frequency control support function responding proportionally to frequency deviation is proposed to take out the kinetic energy of turbine blades in order to improve the frequency response of the system. Impacts of different wind penetrations in the system and varying active power support from wind farm on frequency control have been investigated. Integral gains of AGC loop are optimized through craziness-based particle swarm optimization (CRPSO) in order to have optimal transient responses of area frequencies, tie-line power deviation and DFIG parameters. (author)

  4. Generation of frequencies of megahertz order with ultrasound

    International Nuclear Information System (INIS)

    Abrego, J.; Siles, S.; Cruz, A.; Azorin, J.

    2004-01-01

    At the present time, to international scale they have been observing a series of interactions with the matter that have not been possible to explain until the moment. Some effects are the calls ''hot points'' whose development generates temperatures of the order of 5000 C, pressures of 500 atmospheres and superior gradients of temperature to the 600 C/s. Experimentally, with the help of spectrum analyzers, it has been possible to detect the production of frequencies of 23 GHz, starting from an ultrasonic pulse of 5 MHz. Also, by means of ultrasonic excitement achievement the decoloration of a solution of methylene blue, effect that alone it had been achieved with gamma radiation the one that is very well-known as ionizing. Another observed interesting aspect is the generation of an electric current with ultrasonic excitement in deionized water and two electrodes. (Author)

  5. Broadband optical frequency comb generator based on driving N-cascaded modulators by Gaussian-shaped waveform

    Science.gov (United States)

    Hmood, Jassim K.; Harun, Sulaiman W.

    2018-05-01

    A new approach for realizing a wideband optical frequency comb (OFC) generator based on driving cascaded modulators by a Gaussian-shaped waveform, is proposed and numerically demonstrated. The setup includes N-cascaded MZMs, a single Gaussian-shaped waveform generator, and N-1 electrical time delayer. The first MZM is driven directly by a Gaussian-shaped waveform, while delayed replicas of the Gaussian-shaped waveform drive the other MZMs. An analytical model that describes the proposed OFC generator is provided to study the effect of number and chirp factor of cascaded MZM as well as pulse width on output spectrum. Optical frequency combs at frequency spacing of 1 GHz are generated by applying Gaussian-shaped waveform at pulse widths ranging from 200 to 400 ps. Our results reveal that, the number of comb lines is inversely proportional to the pulse width and directly proportional to both number and chirp factor of cascaded MZMs. At pulse width of 200 ps and chirp factor of 4, 67 frequency lines can be measured at output spectrum of two-cascaded MZMs setup. Whereas, increasing the number of cascaded stages to 3, 4, and 5, the optical spectra counts 89, 109 and 123 frequency lines; respectively. When the delay time is optimized, 61 comb lines can be achieved with power fluctuations of less than 1 dB for five-cascaded MZMs setup.

  6. Frequency modulation of high-order harmonic generation in an orthogonally polarized two-color laser field.

    Science.gov (United States)

    Li, Guicun; Zheng, Yinghui; Ge, Xiaochun; Zeng, Zhinan; Li, Ruxin

    2016-08-08

    We have experimentally investigated the frequency modulation of high-order harmonics in an orthogonally polarized two-color laser field consisting of a mid-infrared 1800nm fundamental pulse and its second harmonic pulse. It is demonstrated that the high harmonic spectra can be fine-tuned as we slightly change the relative delay of the two-color laser pulses. By analyzing the relative frequency shift of each harmonic at different two-color delays, the nonadiabatic spectral shift induced by the rapid variation of the intensity-dependent intrinsic dipole phase can be distinguished from the blueshift induced by the change of the refractive index during self-phase modulation (SPM). Our comprehensive analysis shows that the frequency modulation pattern is a reflection of the average emission time of high-order harmonic generation (HHG), thus offering a simple method to fine-tune the spectra of the harmonics on a sub-cycle time scale.

  7. Method for generation of THz frequency radiation and sensing of large amplitude material strain waves in piezoelectric materials

    Science.gov (United States)

    Reed, Evan J.; Armstrong, Michael R.

    2010-09-07

    Strain waves of THz frequencies can coherently generate radiation when they propagate past an interface between materials with different piezoelectric coefficients. Such radiation is of detectable amplitude and contains sufficient information to determine the time-dependence of the strain wave with unprecedented subpicosecond, nearly atomic time and space resolution.

  8. Physics of frequency-modulated comb generation in quantum-well diode lasers

    Science.gov (United States)

    Dong, Mark; Cundiff, Steven T.; Winful, Herbert G.

    2018-05-01

    We investigate the physical origin of frequency-modulated combs generated from single-section semiconductor diode lasers based on quantum wells, isolating the essential physics necessary for comb generation. We find that the two effects necessary for comb generation—spatial hole burning (leading to multimode operation) and four-wave mixing (leading to phase locking)—are indeed present in some quantum-well systems. The physics of comb generation in quantum wells is similar to that in quantum dot and quantum cascade lasers. We discuss the nature of the spectral phase and some important material parameters of these diode lasers.

  9. The relationship between technology acceptance and frequency of mobile commerce use amongst Generation Y consumers

    Directory of Open Access Journals (Sweden)

    Nobukhosi Dlodlo

    2013-05-01

    Research purpose: To examine the nature of the relationships that exist between technology acceptance and frequency of mobile commerce usage amongst Generation Y consumers. Motivation for the study: The Generation Y cohort has emerged as an important age-group due to its economic contribution to the economy. It is therefore essential that their attitudes and behaviour continue to receive empirical introspection, particularly since mobile commerce has gathered momentum as an important and arguably, the most popular medium for commercial transactions. In a global space that is technology based, it becomes imperative to investigate the interplay between mobile commerce acceptance dimensions and frequency of use amongst Generation Ys. Research design, approach and method: A survey was conducted with the aid of a structured self-administered questionnaire with a view to collecting primary data from a sample consisting of 204 Generation Y consumers. Main findings: There were positive correlations between frequency of use and five mobile commerce acceptance dimensions. Cronbach Alpha values ranged between 0.714 and 0.898, thereby indicating high internal consistency amongst the subscales as well as within the entire survey instrument. Correlation coefficients ranged between 0.164 and 0.677 at both the p < 0.01 and p < 0.05 significance levels (2-tailed test, indicating very high levels of association amongst the subscales. Predictive validity of the five subscales and the variable frequency of use resulted in positive and statistically-significant results that were established at an adjusted R2 value of 0.674. Practical/managerial implications: Marketers and business practitioners are presented with practical insights into dimensions that enhance frequency of use of mobile commerce technology amongst Generation Y consumers. Furthermore, an increased usage of mobile commerce technologies is projected to have a stimulus effect on profitability, sustainability and loyalty

  10. High-power continuous-wave mid-infrared radiation generated by difference frequency mixing of diode-laser-seeded fiber amplifiers and its application to dual-beam spectroscopy

    Science.gov (United States)

    Lancaster, D. G.; Richter, D.; Curl, R. F.; Tittel, F. K.; Goldberg, L.; Koplow, J.

    1999-01-01

    We report the generation of up to 0.7 mW of narrow-linewidth (radiation at 3.3 micrometers by difference frequency mixing of a Nd:YAG-seeded 1.6-W Yb fiber amplifier and a 1.5-micrometers diode-laser-seeded 0.6-W Er/Yb fiber amplifier in periodically poled LiNbO3. A conversion efficiency of 0.09%/W (0.47 mWW-2 cm-1) was achieved. A room-air CH4 spectrum acquired with a compact 80-m multipass cell and a dual-beam spectroscopic configuration indicates an absorption sensitivity of +/-2.8 x 10(-5) (+/-1 sigma), corresponding to a sub-parts-in-10(9) (ppb) CH4 sensitivity (0.8 ppb).

  11. On Frequency Combs in Monolithic Resonators

    Science.gov (United States)

    Savchenkov, A. A.; Matsko, A. B.; Maleki, L.

    2016-06-01

    Optical frequency combs have become indispensable in astronomical measurements, biological fingerprinting, optical metrology, and radio frequency photonic signal generation. Recently demonstrated microring resonator-based Kerr frequency combs point the way towards chip scale optical frequency comb generator retaining major properties of the lab scale devices. This technique is promising for integrated miniature radiofrequency and microwave sources, atomic clocks, optical references and femtosecond pulse generators. Here we present Kerr frequency comb development in a historical perspective emphasizing its similarities and differences with other physical phenomena. We elucidate fundamental principles and describe practical implementations of Kerr comb oscillators, highlighting associated solved and unsolved problems.

  12. A new approach to sum frequency generation of single-frequency blue light in a coupled ring cavity

    DEFF Research Database (Denmark)

    Jensen, Ole Bjarlin; Petersen, Paul Michael

    2014-01-01

    We present a generic approach for the generation of tunable single-frequency light and demonstrate generation of more than 300 mW tunable light around 460 nm. One tapered diode laser is operated in a coupled ring cavity containing the nonlinear crystal and another tapered diode laser is sent thro...... through the nonlinear crystal in a single pass. A high conversion efficiency of more than 25 % of the single-pass laser is enabled by the high circulating power in the coupled cavity. The system is entirely self-stabilized with no need for electronic locking....

  13. Theory of sum-frequency generation spectroscopy of adsorbed molecules using the density matrix method-broadband vibrational sum-frequency generation and applications

    International Nuclear Information System (INIS)

    Bonn, M; Ueba, H; Wolf, M

    2005-01-01

    A generalized theory of frequency- and time-resolved vibrational sum-frequency generation (SFG) spectroscopy of adsorbates at surfaces is presented using the density matrix formalism. Our theoretical treatment is specifically aimed at addressing issues that accompany the relatively novel SFG approach using broadband infrared pulses. The ultrashort duration of these pulses makes them ideally suited for time-resolved investigations, for which we present a complete theoretical treatment. A second key characteristic of these pulses is their large bandwidth and high intensity, which allow for highly non-linear effects, including vibrational ladder climbing of surface vibrations. We derive general expressions relating the density matrix to SFG spectra, and apply these expressions to specific experimental results by solving the coupled optical Bloch equations of the density matrix elements. Thus, we can theoretically reproduce recent experimentally demonstrated hot band SFG spectra using femtosecond broadband infrared excitation of carbon monoxide (CO) on a Ru(001) surface

  14. Applications of wind generation for power system frequency control, inter-area oscillations damping and parameter identification

    Science.gov (United States)

    Wilches-Bernal, Felipe

    Power systems around the world are experiencing a continued increase in wind generation as part of their energy mix. Because of its power electronics interface, wind energy conversion systems interact differently with the grid than conventional generation. These facts are changing the traditional dynamics that regulate power system behavior and call for a re-examination of traditional problems encountered in power systems like frequency response, inter-area oscillations and parameter identification. To address this need, realistic models for wind generation are necessary. The dissertation implements such models in a MATLAB-based flexible environment suited for power system research. The dissertation continues with an analysis of the frequency response of a test power system dependent mainly on a mode referred to as the frequency regulation mode. Using this test system it is shown that its frequency regulation capability is reduced with wind penetration levels of 25% and above. A controller for wind generation to restore the frequency response of the system is then presented. The proposed controller requires the WTG to operate in a deloaded mode, a condition that is obtained through pitching the wind turbine blades. Time simulations at wind penetration levels of 25% and 50% are performed to demonstrate the effectiveness of the proposed controller. Next, the dissertation evaluates how the inter-area oscillation of a two-machine power system is affected by wind integration. The assessment is performed based on the positioning of the WTG, the level of wind penetration, and the loading condition of the system. It is determined that integrating wind reduces the damping of the inter-area mode of the system when performed in an area that imports power. For this worst-case scenario, the dissertation proposes two controllers for wind generation to improve the damping of the inter-area mode. The first controller uses frequency as feedback signal for the active power control

  15. Coordinated control of wind generation and energy storage for power system frequency regulation

    Science.gov (United States)

    Baone, Chaitanya Ashok

    Large-scale centralized synchronous generators have long been the primary actors in exercising active power and frequency control, and much of the existing grid control framework is predicated upon their dynamic terminal characteristics. Important among these characteristics is the inertia of such generators. These play key roles in determining the electromechanical stability of the electric power grid. Modern wind generator systems are partially or fully connected to the grid through power electronic interfaces, and hence do not present the same level of inertial coupling. The absence of inertial frequency response from modern wind generator systems is a topic of growing concern in power engineering practice, as the penetration of wind generation is expected to grow dramatically in the next few years. Solutions proposed in the literature have sought to address this problem by seeking to mimic the inherent inertial response characteristics of traditional synchronous generators via control loops added to wind generators. Recent literature has raised concerns regarding this approach, and the work here will further examine its shortcomings, motivating approaches that seek to optimally design for the characteristics of the equipment exercising the control, rather than forcing new technologies to mimic the characteristics of synchronous machines. In particular, this work will develop a new approach to power system frequency regulation, with features suited to distributed energy storage devices such as grid-scale batteries and wind turbine speed and blade pitch control. The dynamic characteristics of these new technologies are treated along with existing mechanisms, such as synchronous machine governor control, to develop a comprehensive multi-input control design approach. To make the method practically feasible for geographically distributed power systems, an observer-based distributed control design utilizing phasor measurement unit (PMU) signals along with local

  16. Efficient generation of 3.5W laser light at 515nm by frequency doubling a single-frequency high power DBR tapered diode laser

    DEFF Research Database (Denmark)

    Jensen, Ole Bjarlin; Hansen, Anders Kragh; Müller, André

    2017-01-01

    More than 3.5 W of green light at 515 nm is generated by frequency doubling a single-frequency high power DBR tapered diode laser. The frequency doubling is performed in a cascade of PPMgLN and PPMgSLT crystals in order to reach high power and avoid thermal effects present in PPMgLN at high power...

  17. Occlusion culling and calculation for a computer generated hologram using spatial frequency index method

    International Nuclear Information System (INIS)

    Zhao, Kai; Yan, Xingpeng; Jiang, Xiaoyu; Huang, Yingqing

    2015-01-01

    A spatial frequency index method is proposed to cull occlusion and generate a hologram. Object points with the same spatial frequency are put into a set for their mutual occlusion. The hidden surfaces of the three-dimensional (3D) scene are quickly removed through culling the object points that are furthest from the hologram plane in the set. The phases of plane wave, which are only interrelated with the spatial frequencies, are precomputed and stored in a table. According to the spatial frequency of the object points, the phases of plane wave for generating fringes are obtained directly from the table. Three 3D scenes are chosen to verify the spatial frequency index method. Both numerical simulation and optical reconstruction are performed. Experimental results demonstrate that the proposed method can cull the hidden surfaces of the 3D scene correctly. The occlusion effect of the 3D scene can be well reproduced. The computational speed is better than that obtained using conventional methods but is still time-consuming. (paper)

  18. Inherent Difference in Saliency for Generators with Different PM Materials

    Directory of Open Access Journals (Sweden)

    Sandra Eriksson

    2014-01-01

    Full Text Available The inherent differences between salient and nonsalient electrical machines are evaluated for two permanent magnet generators with different configurations. The neodymium based (NdFeB permanent magnets (PMs in a generator are substituted with ferrite magnets and the characteristics of the NdFeB generator and the ferrite generator are compared through FEM simulations. The NdFeB generator is a nonsalient generator, whereas the ferrite machine is a salient-pole generator, with small saliency. The two generators have almost identical properties at rated load operation. However, at overload the behaviour differs between the two generators. The salient-pole, ferrite generator has lower maximum torque than the NdFeB generator and a larger voltage drop at high current. It is concluded that, for applications where overload capability is important, saliency must be considered and the generator design adapted according to the behaviour at overload operation. Furthermore, if the maximum torque is the design criteria, additional PM mass will be required for the salient-pole machine.

  19. On Frequency Combs in Monolithic Resonators

    Directory of Open Access Journals (Sweden)

    Savchenkov A. A.

    2016-06-01

    Full Text Available Optical frequency combs have become indispensable in astronomical measurements, biological fingerprinting, optical metrology, and radio frequency photonic signal generation. Recently demonstrated microring resonator-based Kerr frequency combs point the way towards chip scale optical frequency comb generator retaining major properties of the lab scale devices. This technique is promising for integrated miniature radiofrequency and microwave sources, atomic clocks, optical references and femtosecond pulse generators. Here we present Kerr frequency comb development in a historical perspective emphasizing its similarities and differences with other physical phenomena. We elucidate fundamental principles and describe practical implementations of Kerr comb oscillators, highlighting associated solved and unsolved problems.

  20. Research on Distributed PV Storage Virtual Synchronous Generator System and Its Static Frequency Characteristic Analysis

    Directory of Open Access Journals (Sweden)

    Xiangwu Yan

    2018-03-01

    Full Text Available The increasing penetration rate of grid connected renewable energy power generation reduces the primary frequency regulation capability of the system and poses a challenge to the security and stability of the power grid. In this paper, a distributed photovoltaic (PV storage virtual synchronous generator system is constructed, which realizes the external characteristics of synchronous generator/motor. For this kind of input/output bidirectional devices (e.g., renewable power generation/storage combined systems, pumped storage power stations, battery energy storage systems, and vehicle-to-grid electric vehicles, a synthesis analysis method for system power-frequency considering source-load static frequency characteristics (S-L analysis method is proposed in order to depict the system’s power balance dynamic adjustment process visually. Simultaneously, an inertia matching method is proposed to solve the problem of inertia matching in the power grid. Through the simulation experiment in MATLAB, the feasibility of the distributed PV storage synchronous virtual machine system is verified as well as the effectiveness of S-L analysis method and inertia matching method.

  1. Sum-Frequency Generation from Chiral Media and Interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Na [Univ. of California, Berkeley, CA (United States)

    2006-02-13

    Sum frequency generation (SFG), a second-order nonlinear optical process, is electric-dipole forbidden in systems with inversion symmetry. As a result, it has been used to study chiral media and interfaces, systems intrinsically lacking inversion symmetry. This thesis describes recent progresses in the applications of and new insights into SFG from chiral media and interfaces. SFG from solutions of chiral amino acids is investigated, and a theoretical model explaining the origin and the strength of the chiral signal in electronic-resonance SFG spectroscopy is discussed. An interference scheme that allows us to distinguish enantiomers by measuring both the magnitude and the phase of the chiral SFG response is described, as well as a chiral SFG microscope producing chirality-sensitive images with sub-micron resolution. Exploiting atomic and molecular parity nonconservation, the SFG process is also used to solve the Ozma problems. Sum frequency vibrational spectroscopy is used to obtain the adsorption behavior of leucine molecules at air-water interfaces. With poly(tetrafluoroethylene) as a model system, we extend the application of this surface-sensitive vibrational spectroscopy to fluorine-containing polymers.

  2. Sum-Frequency Generation from Chiral Media and Interfaces

    International Nuclear Information System (INIS)

    Ji, Na

    2006-01-01

    Sum frequency generation (SFG), a second-order nonlinear optical process, is electric-dipole forbidden in systems with inversion symmetry. As a result, it has been used to study chiral media and interfaces, systems intrinsically lacking inversion symmetry. This thesis describes recent progresses in the applications of and new insights into SFG from chiral media and interfaces. SFG from solutions of chiral amino acids is investigated, and a theoretical model explaining the origin and the strength of the chiral signal in electronic-resonance SFG spectroscopy is discussed. An interference scheme that allows us to distinguish enantiomers by measuring both the magnitude and the phase of the chiral SFG response is described, as well as a chiral SFG microscope producing chirality-sensitive images with sub-micron resolution. Exploiting atomic and molecular parity nonconservation, the SFG process is also used to solve the Ozma problems. Sum frequency vibrational spectroscopy is used to obtain the adsorption behavior of leucine molecules at air-water interfaces. With poly(tetrafluoroethylene) as a model system, we extend the application of this surface-sensitive vibrational spectroscopy to fluorine-containing polymers

  3. A plasma aerodynamic actuator supplied by a multilevel generator operating with different voltage waveforms

    International Nuclear Information System (INIS)

    Borghi, Carlo A; Cristofolini, Andrea; Grandi, Gabriele; Neretti, Gabriele; Seri, Paolo

    2015-01-01

    In this work a high voltage—high frequency generator for the power supply of a dielectric barrier discharge (DBD) plasma actuator for the aerodynamic control obtained by the electro-hydro-dynamic (EHD) interaction is described and tested. The generator can produce different voltage waveforms. The operating frequency is independent of the load characteristics and does not require impedance matching. The peak-to-peak voltage is 30 kV at a frequency up to 20 kHz and time variation rates up to 60 kV μs −1 . The performance of the actuator when supplied by several voltage waveforms is investigated. The tests have been performed in still air at atmospheric pressure. Voltage and current time behaviors have been measured. The evaluation of the energy delivered to the actuator allowed the estimation of the periods in which the plasma was ignited. Vibrational and rotational temperatures of the plasma have been estimated through spectroscopic acquisitions. The flow field induced in the region above the surface of the DBD actuator has been studied and the EHD conversion efficiency has been evaluated for the voltage waveforms investigated. The nearly sinusoidal multilevel voltage of the proposed generator and the sinusoidal voltage waveform of a conventional ac generator obtain comparable plasma features, EHD effects, and efficiencies. Inverse saw tooth waveform presents the highest effects and efficiency. The rectangular waveform generates suitable EHD effects but with the lowest efficiency. The voltage waveforms that induce plasmas with higher rotational temperatures are less efficient for the conversion of the electric into kinetic energy. (paper)

  4. Phase distortions in sum- and difference-frequency mixing in crystals

    International Nuclear Information System (INIS)

    Smith, A.V.; Bowers, M.S.

    1995-01-01

    We show that if two waves are incident on a quadratically nonlinear crystal, with the third wave generated entirely within the crystal, a phase-velocity mismatch (Δk ≠ 0) leads to intensity-dependent phase shifts of the generated wave only if there is walk-off, linear absorption, or significant diffraction of at least one of the waves as well as significant energy exchange among the waves. The result is frequency broadening and wave-front distortion of the generated wave. Although the induced phase distortions are usually quite small, they may be significant in applications that require high spectral resolution or pointing accuracy

  5. Generational differences in work ethic among 3 generations of registered nurses.

    Science.gov (United States)

    Jobe, Laura L

    2014-05-01

    The purpose of this study was to understand if differences in dimensions of work ethic exist among 3 generations of nurses working in an inpatient setting at an acute care facility. Generational differences are linked with increased turnover, with work ethic frequently cited as an important difference. The quantitative, quasi-experimental cross-sectional study recruited inpatient registered nurses from 2 teaching hospitals in a southern US metropolitan area to complete the Multidimensional Work Ethic Profile online. The 285 completed surveys indicated that similarities exist among the 3 generations, with statistically significant differences only in leisure, hard work, and delay of gratification dimensions. Understanding differences in work ethic dimensions could lead to strategies for improving the generational conflict. These results also lead to the conclusion that work ethic differences may not be the cause of the generational conflict among nurses.

  6. Generational Differences of Emotional Expression

    Institute of Scientific and Technical Information of China (English)

    李学勇

    2014-01-01

    As a kind of subjective psychological activity, emotion can only be known and perceived by a certain expressive form. Varies as the different main bodies, difference of emotional expression can be reflected not only among individuals but between generations. The old conceals their emotions inside, the young express their emotions boldly, and the middle-aged are rational and deep in their expressions. Facing and understanding such differences is the premise and foundation of the con-struction of a harmonious relationship between different generations.

  7. Sum-frequency nonlinear Cherenkov radiation generated on the boundary of bulk medium crystal.

    Science.gov (United States)

    Wang, Xiaojing; Cao, Jianjun; Zhao, Xiaohui; Zheng, Yuanlin; Ren, Huaijin; Deng, Xuewei; Chen, Xianfeng

    2015-12-14

    We demonstrated experimentally a method to generate the sum-frequency Nonlinear Cherenkov radiation (NCR) on the boundary of bulk medium by using two synchronized laser beam with wavelength of 1300 nm and 800 nm. It is also an evidence that the polarization wave is always confined to the boundary. Critical conditions of surface sum-frequency NCR under normal and anomalous dispersion condition is discussed.

  8. Multiple frequency generation by bunched solitons in Josephson tunnel junctions

    DEFF Research Database (Denmark)

    Lomdahl, P. S.; Sørensen, O. H.; Christiansen, Peter Leth

    1981-01-01

    A detailed numerical study of a long Josephson tunnel junction modeled by a perturbed sine-Gordon equation demonstrates the existence of a variety of bunched soliton configurations. Thus, on the third zero-field step of the V-I characteristic, two simultaneous adjacent frequencies are generated...... in a narrow bias current range. The analysis of the soliton modes provides an explanation of recent experimental observations....

  9. Generation, detection and spectroscopic studies of high-frequency nonequilibrium phonons in crystals

    International Nuclear Information System (INIS)

    Dennis, W.M.; Yen, W.M.

    2007-01-01

    In this article we will review studies conducted in the past two decades on the dynamic properties of high-frequency (THz) phonons generated monochromatically with high power far infrared (FIR) laser pulses using defect-induced phonon absorption and detected using a vibronic sideband spectrometer fashioned after that devised by Kaplyanskii, the honoree of this special issue. The temporal and spectral evolution of the phonon signature provides information on the mechanisms that dominate the relaxation of high-frequency phonons in real crystals

  10. Low threshold frequency comb generation in AlGaAs-on-insulator microresonator in the normal dispersion regime

    DEFF Research Database (Denmark)

    Kamel, Ayman Nassar; Pu, Minhao; Yvind, Kresten

    2017-01-01

    We present milli-Watt threshold frequency comb generation in AlGaAs-on-insulator integrated microresonators exhibiting normal GVD by employing the effects of mode interaction.......We present milli-Watt threshold frequency comb generation in AlGaAs-on-insulator integrated microresonators exhibiting normal GVD by employing the effects of mode interaction....

  11. Sum frequency generation of CO on (III) and polycrystalline platinum electrode surfaces: Evidence for SFG invisible surface CO

    Energy Technology Data Exchange (ETDEWEB)

    Baldelli, S.; Markovic, N.; Ross, P.; Shen, Y.R.; Somorjai, G.

    1999-10-21

    The vibrational spectroscopy sum frequency generation (SFG) is used to investigate the adsorption of carbon monoxide on the single crystal (111) and polycrystalline platinum surfaces. By varying the frequency and polarization of the light beams, different surface species of CO species are probed. SFG signal intensities for different polarization indicate that adsorbed CO polarizability is significantly perturbed from the gas-phase molecule. The SFG signal of CO disappears well below the main oxidation potential of CO to CO{sub 2}. The disappearance of the CO signal is interpreted as a transformation in the CO layer to a state which is invisible to SFG. The invisible state is suggested to be CO with the bond axis nearly parallel to the platinum surface.

  12. Ultrahigh-frequency surface acoustic wave generation for acoustic charge transport in silicon

    NARCIS (Netherlands)

    Büyükköse, S.; Vratzov, B.; van der Veen, Johan (CTIT); Santos, P.V.; van der Wiel, Wilfred Gerard

    2013-01-01

    We demonstrate piezo-electrical generation of ultrahigh-frequency surface acoustic waves on silicon substrates, using high-resolution UV-based nanoimprint lithography, hydrogen silsequioxane planarization, and metal lift-off. Interdigital transducers were fabricated on a ZnO layer sandwiched between

  13. Efficient generation of 509 nm light by sum-frequency mixing between two tapered diode lasers

    DEFF Research Database (Denmark)

    Tawfieq, Mahmoud; Jensen, Ole Bjarlin; Hansen, Anders Kragh

    2015-01-01

    We demonstrate a concept for visible laser sources based on sum-frequency generation of beam com- bined tapered diode lasers. In this specific case, a 1.7 W sum-frequency generated green laser at 509 nm is obtained, by frequency adding of 6.17 W from a 978 nm tapered diode laser with 8.06 W from...... a 1063 nm tapered diode laser, inside a periodically poled MgO doped lithium niobate crystal. This corresponds to an optical to optical conversion ef fi ciency of 12.1%. As an example of potential applica- tions, the generated nearly diffraction-limited green light is used for pumping a Ti:sapphire laser......, thus demonstrating good beam quality and power stability. The maximum output powers achieved when pumping the Ti:sapphire laser are 226 mW (CW) and 185 mW (mode-locked) at 1.7 W green pump power. The optical spectrum emitted by the mode-locked Ti:sapphire laser shows a spectral width of about 54 nm...

  14. High frequency source localization in a shallow ocean sound channel using frequency difference matched field processing.

    Science.gov (United States)

    Worthmann, Brian M; Song, H C; Dowling, David R

    2015-12-01

    Matched field processing (MFP) is an established technique for source localization in known multipath acoustic environments. Unfortunately, in many situations, particularly those involving high frequency signals, imperfect knowledge of the actual propagation environment prevents accurate propagation modeling and source localization via MFP fails. For beamforming applications, this actual-to-model mismatch problem was mitigated through a frequency downshift, made possible by a nonlinear array-signal-processing technique called frequency difference beamforming [Abadi, Song, and Dowling (2012). J. Acoust. Soc. Am. 132, 3018-3029]. Here, this technique is extended to conventional (Bartlett) MFP using simulations and measurements from the 2011 Kauai Acoustic Communications MURI experiment (KAM11) to produce ambiguity surfaces at frequencies well below the signal bandwidth where the detrimental effects of mismatch are reduced. Both the simulation and experimental results suggest that frequency difference MFP can be more robust against environmental mismatch than conventional MFP. In particular, signals of frequency 11.2 kHz-32.8 kHz were broadcast 3 km through a 106-m-deep shallow ocean sound channel to a sparse 16-element vertical receiving array. Frequency difference MFP unambiguously localized the source in several experimental data sets with average peak-to-side-lobe ratio of 0.9 dB, average absolute-value range error of 170 m, and average absolute-value depth error of 10 m.

  15. Sum-frequency generation echo and grating from interface

    International Nuclear Information System (INIS)

    Volkov, Victor

    2014-01-01

    The work addresses spectroscopy of fourth-order Sum Frequency Generation Echo and Grating responses as an experimental tool to study structure and dynamics at interfaces. First, it addresses experimental geometry to extract background-free fourth-order Echo and Grating responses. Further, the article provides the analytical expressions of the response functions for these nonlinearities. The derived expressions are used to model the χ (4) two-dimensional spectral responses of a hydrated methyl acetate, which resembles a hydrated carbonyl moiety at the polar outer side of a phospholipid membrane. Orientation, transition dipole moments, and Raman tensors are obtained from the results of classical and quantum calculations, respectively. The numerical studies for the nonlinear responses under different polarization schemes and timings suggest the possibility of securely factoring of spectral contributions of χ YYYZX and χ YYYZY macroscopic susceptibilities. As such, the nonlinearities provide an experimental perspective on orientation of a generic (low-symmetry) molecular system at interfaces. Besides, the spectral properties of the tensors may reflect correlations of the in-plane and out-of-plane field components specific to the interface. For the case of a phospholipid membrane, the experiment would address in-plane and out-of-plane anisotropy of hydrogen bonding and related dynamics

  16. Sum-frequency generation echo and grating from interface

    Energy Technology Data Exchange (ETDEWEB)

    Volkov, Victor [Bereozovaya 2A, Konstantinovo, Moscow Region 140207 (Russian Federation)

    2014-10-14

    The work addresses spectroscopy of fourth-order Sum Frequency Generation Echo and Grating responses as an experimental tool to study structure and dynamics at interfaces. First, it addresses experimental geometry to extract background-free fourth-order Echo and Grating responses. Further, the article provides the analytical expressions of the response functions for these nonlinearities. The derived expressions are used to model the χ{sup (4)} two-dimensional spectral responses of a hydrated methyl acetate, which resembles a hydrated carbonyl moiety at the polar outer side of a phospholipid membrane. Orientation, transition dipole moments, and Raman tensors are obtained from the results of classical and quantum calculations, respectively. The numerical studies for the nonlinear responses under different polarization schemes and timings suggest the possibility of securely factoring of spectral contributions of χ{sub YYYZX} and χ{sub YYYZY} macroscopic susceptibilities. As such, the nonlinearities provide an experimental perspective on orientation of a generic (low-symmetry) molecular system at interfaces. Besides, the spectral properties of the tensors may reflect correlations of the in-plane and out-of-plane field components specific to the interface. For the case of a phospholipid membrane, the experiment would address in-plane and out-of-plane anisotropy of hydrogen bonding and related dynamics.

  17. Generation of crystal-structure transverse patterns via a self-frequency-doubling laser.

    Science.gov (United States)

    Yu, Haohai; Zhang, Huaijin; Wang, Yicheng; Wang, Zhengping; Wang, Jiyang; Petrov, V

    2013-01-01

    Two-dimensional (2D) visible crystal-structure patterns analogous to the quantum harmonic oscillator (QHO) have been experimentally observed in the near- and far-fields of a self-frequency-doubling (SFD) microchip laser. Different with the fundamental modes, the localization of the SFD light is changed with the propagation. Calculation based on Hermite-Gaussian (HG) functions and second harmonic generation theory reproduces well the patterns both in the near- and far-field which correspond to the intensity distribution in coordinate and momentum spaces, respectively. Considering the analogy of wave functions of the transverse HG mode and 2D harmonic oscillator, we propose that the simple monolithic SFD lasers can be used for developing of new materials and devices and testing 2D quantum mechanical theories.

  18. Frequency and distribution of leakages in steam generators of gas-cooled reactors

    International Nuclear Information System (INIS)

    Bongratz, R.; Breitbach, G.; Wolters, J.

    1988-01-01

    In gas cooled reactors with graphitic primary circuit structures - such as HTR, AGR or Magnox - the water ingress is an event of great safety concern. Water or steam entering the primary circuit react with the hot graphite and carbon-oxide and hydrogen are produced. As the most important initiating event a leak in a steam generator must be taken into account. From the safety point of view as well as for availability reasons it is necessary to construct reliable boilers. Thus the occurrence of a boiler leak should be a rare event. In the context of a probabilistic safety study for an HTR-Project much effort was invested to get information about the frequency and the size distribution of tube failures in steam generators of gas cooled reactors. The main data base was the boiler tube failure statistics of United Kingdom gas cooled reactors. The data were selected and applied to a modern HTR steam generator design. A review of the data showed that the failure frequency is not connected with the load level (pressures, temperatures) or with the geometric size of the heating surface of the boiler. Design, construction, fabrication, examination and operation conditions have the greatest influence an the failure frequency but they are practically not to be quantified. The typical leak develops from smallest size. By erosion effects of the entering water or steam it is enlarged to perhaps some mm 2 , then usually it is detected by moisture monitors. Sudden tube breaks were not reported in the investigated period. As a rule boiler leaks in gas cooled reactors are much more, rare then leaks in steam generators of light water reactors and fossil fired boilers. (author)

  19. Generation of radio vortex beams with designable polarization using anisotropic frequency selective surface

    Science.gov (United States)

    Yang, Jin; Zhang, Cheng; Ma, Hui Feng; Zhao, Jie; Dai, Jun Yan; Yuan, Wei; Yang, Liu Xi; Cheng, Qiang; Cui, Tie Jun

    2018-05-01

    We propose a strategy to convert a linearly polarized wave from a single point source to an orbital angular momentum (OAM) wave by arbitrary polarization via an anisotropic frequency selective surface (FSS) in the microwave frequency. By tailoring the geometries of FSS elements, reflection-phases in x and y polarizations are engineered and encoded independently, which allows us to design the eventual polarization state of the generated OAM vortex beam by elaborately selecting individual coding sequences for each polarization. Two types of FSSs are designed and experimentally characterized to demonstrate the capability of OAM generation with circular and linear polarizations, respectively, showing excellent performance in a wide bandwidth from 14 to 16 GHz. This method provides opportunities for polarization multiplexing in microwave OAM communication systems.

  20. Finite-Difference Frequency-Domain Method in Nanophotonics

    DEFF Research Database (Denmark)

    Ivinskaya, Aliaksandra

    Optics and photonics are exciting, rapidly developing fields building their success largely on use of more and more elaborate artificially made, nanostructured materials. To further advance our understanding of light-matter interactions in these complicated artificial media, numerical modeling...... is often indispensable. This thesis presents the development of rigorous finite-difference method, a very general tool to solve Maxwell’s equations in arbitrary geometries in three dimensions, with an emphasis on the frequency-domain formulation. Enhanced performance of the perfectly matched layers...... is obtained through free space squeezing technique, and nonuniform orthogonal grids are built to greatly improve the accuracy of simulations of highly heterogeneous nanostructures. Examples of the use of the finite-difference frequency-domain method in this thesis range from simulating localized modes...

  1. Simultaneous rotational and vibrational CARS generation through a multiple-frequency combination technique

    International Nuclear Information System (INIS)

    Alden, M.; Bengtsson, P.E.; Edner, H.

    1987-01-01

    One most promising laser technique for probing combustion processes is coherent anti-Stokes Raman scattering (CARS), which due to its coherent nature and signal strength is applied in several real-world applications. Until today almost all CARS experiments are based on probing the population of molecular vibrational energy levels. However, there are several reasons rotational CARS, i.e. probing of rotational energy levels, may provide a complement to or even a better choice than vibrational CARS. Recently an alternative way to produce rotational CARS spectra is proposed, which is based on a multiple-frequency combination technique. The energy-level diagram for this process is presented. Two dye laser beams at ω/sub r/, and one fix frequency laser beam at ω/sub g/ are employed. ω/sub r,1/ and ω/sub r,2/ are two frequencies of many possible pairs with a frequency difference matching a rotational transition in a molecule. The excitation induced by ω/sub r,1/ and ω/sub r,2/ is then scattered by the narrowband ω/sub g/ beam resulting in a CARS beam ω/sub g/ at ω/sub g/ + ω/sub r,1/ - ω/sub r,2/. An interesting feature with this technique is that it is possible to generate simultaneously a rotational and vibrational CARS spectrum by using a double-folded boxcars phase matching approach. The authors believe that the proposed technique for producing rotational and vibration CARS spectra could be of interest, e.g., when measuring in highly turbulent flows. In this case the rotational CARS spectra could use for temperature measurements in the cooler parts, whereas vibrational CARS are to be preferred when measuring in the hotter parts

  2. A Switched Capacitor Based AC/DC Resonant Converter for High Frequency AC Power Generation

    Directory of Open Access Journals (Sweden)

    Cuidong Xu

    2015-09-01

    Full Text Available A switched capacitor based AC-DC resonant power converter is proposed for high frequency power generation output conversion. This converter is suitable for small scale, high frequency wind power generation. It has a high conversion ratio to provide a step down from high voltage to low voltage for easy use. The voltage conversion ratio of conventional switched capacitor power converters is fixed to n, 1/n or −1/n (n is the switched capacitor cell. In this paper, A circuit which can provide n, 1/n and 2n/m of the voltage conversion ratio is presented (n is stepping up the switched capacitor cell, m is stepping down the switching capacitor cell. The conversion ratio can be changed greatly by using only two switches. A resonant tank is used to assist in zero current switching, and hence the current spike, which usually exists in a classical switching switched capacitor converter, can be eliminated. Both easy operation and efficiency are possible. Principles of operation, computer simulations and experimental results of the proposed circuit are presented. General analysis and design methods are given. The experimental result verifies the theoretical analysis of high frequency AC power generation.

  3. Generation of artificial time-histories, rich in all frequencies, from given response spectra

    International Nuclear Information System (INIS)

    Levy, S.; Wilkinson, J.P.D.

    1976-01-01

    In the design of nuclear power plants, it has been found desirable in certain instances to use the time-history method of dynamic analysis to determine the plant response to seismic input. In the implementation of this method, it is necessary to determine an adequate representation of the excitation as a function of time. Because many design criteria are specified in terms of design response spectra one is faced with the problem of generating a time-history whose own response spectrum approximates as far as possible to the originally specified design response spectrum. One objective of this paper is to present a method of synthesizing such time-histories from a given design response spectrum. The design response spectra may be descriptive of floor responses at a particular location in a plant, or they may be descriptive of seismic ground motions at a plant site. The method described in this paper allows the generation of time histories that are rich in all frequencies in the spectrum. This richness is achieved by choosing a large number of closely-spaced frequency points such that the half-power points of adjacent frequencies overlap. Examples are given concerning seismic design response spectra, and a number of points are discussed concerning the effect of frequency spacing on convergence. (Auth.)

  4. Single frequency thermal wave radar: A next-generation dynamic thermography for quantitative non-destructive imaging over wide modulation frequency ranges.

    Science.gov (United States)

    Melnikov, Alexander; Chen, Liangjie; Ramirez Venegas, Diego; Sivagurunathan, Koneswaran; Sun, Qiming; Mandelis, Andreas; Rodriguez, Ignacio Rojas

    2018-04-01

    Single-Frequency Thermal Wave Radar Imaging (SF-TWRI) was introduced and used to obtain quantitative thickness images of coatings on an aluminum block and on polyetherketone, and to image blind subsurface holes in a steel block. In SF-TWR, the starting and ending frequencies of a linear frequency modulation sweep are chosen to coincide. Using the highest available camera frame rate, SF-TWRI leads to a higher number of sampled points along the modulation waveform than conventional lock-in thermography imaging because it is not limited by conventional undersampling at high frequencies due to camera frame-rate limitations. This property leads to large reduction in measurement time, better quality of images, and higher signal-noise-ratio across wide frequency ranges. For quantitative thin-coating imaging applications, a two-layer photothermal model with lumped parameters was used to reconstruct the layer thickness from multi-frequency SF-TWR images. SF-TWRI represents a next-generation thermography method with superior features for imaging important classes of thin layers, materials, and components that require high-frequency thermal-wave probing well above today's available infrared camera technology frame rates.

  5. Single frequency thermal wave radar: A next-generation dynamic thermography for quantitative non-destructive imaging over wide modulation frequency ranges

    Science.gov (United States)

    Melnikov, Alexander; Chen, Liangjie; Ramirez Venegas, Diego; Sivagurunathan, Koneswaran; Sun, Qiming; Mandelis, Andreas; Rodriguez, Ignacio Rojas

    2018-04-01

    Single-Frequency Thermal Wave Radar Imaging (SF-TWRI) was introduced and used to obtain quantitative thickness images of coatings on an aluminum block and on polyetherketone, and to image blind subsurface holes in a steel block. In SF-TWR, the starting and ending frequencies of a linear frequency modulation sweep are chosen to coincide. Using the highest available camera frame rate, SF-TWRI leads to a higher number of sampled points along the modulation waveform than conventional lock-in thermography imaging because it is not limited by conventional undersampling at high frequencies due to camera frame-rate limitations. This property leads to large reduction in measurement time, better quality of images, and higher signal-noise-ratio across wide frequency ranges. For quantitative thin-coating imaging applications, a two-layer photothermal model with lumped parameters was used to reconstruct the layer thickness from multi-frequency SF-TWR images. SF-TWRI represents a next-generation thermography method with superior features for imaging important classes of thin layers, materials, and components that require high-frequency thermal-wave probing well above today's available infrared camera technology frame rates.

  6. Tesla’s high voltage and high frequency generators with oscillatory circuits

    Directory of Open Access Journals (Sweden)

    Cvetić Jovan M.

    2016-01-01

    Full Text Available The principles that represent the basics of the work of the high voltage and high frequency generator with oscillating circuits will be discussed. Until 1891, Tesla made and used mechanical generators with a large number of extruded poles for the frequencies up to about 20 kHz. The first electric generators based on a new principle of a weakly coupled oscillatory circuits he used for the wireless signal transmission, for the study of the discharges in vacuum tubes, the wireless energy transmission, for the production of the cathode rays, that is x-rays and other experiments. Aiming to transfer the signals and the energy to any point of the surface of the Earth, in the late of 19th century, he had discovered and later patented a new type of high frequency generator called a magnifying transmitter. He used it to examine the propagation of electromagnetic waves over the surface of the Earth in experiments in Colorado Springs in the period 1899-1900. Tesla observed the formation of standing electromagnetic waves on the surface of the Earth by measuring radiated electric field from distant lightning thunderstorm. He got the idea to generate the similar radiation to produce the standing waves. On the one hand, signal transmission, i.e. communication at great distances would be possible and on the other hand, with more powerful and with at least three magnifying transmitters the wireless transmission of energy without conductors at any point of the Earth surface could also be achieved. The discovery of the standing waves on the surface of the Earth and the invention of the magnifying transmitter he claimed his greatest inventions. Less than two years later, at the end of 1901, he designed and started to build a much stronger magnifying transmitter on Long Island near New York City (the Wardenclyffe tower wishing to become a world telecommunication center. During the tower construction, he elaborated the plans for an even stronger transmitter based on

  7. Design Optimization and Evaluation of Different Wind Generator Systems

    DEFF Research Database (Denmark)

    Chen, Zhe; Li, Hui

    2008-01-01

    . In this paper, seven variable speed constant frequency (VSCF) wind generator systems are investigated, namely permanent magnet synchronous generators with the direct-driven (PMSG_DD), the single-stage gearbox (PMSG_1G) and three-stage gearbox (PMSG_3G) concepts, doubly fed induction generators with the three......With rapid development of wind power technologies and significant growth of wind power capacity installed worldwide, various wind generator systems have been developed and built. The objective of this paper is to evaluate various wind generator systems by optimization designs and comparisons......-stage gearbox (DFIG_3G) and with the single-stage gearbox (DFIG_1G), the electricity excited synchronous generator with the direct-driven (EESG_DD), and the VSCF squirrel cage induction generator with the three-stage gearbox (SCIG_3G). Firstly, the design models of wind turbines, three/single stage gearbox...

  8. Generation and Perceptual Implicit Memory: Different Generation Tasks Produce Different Effects on Perceptual Priming

    Science.gov (United States)

    Mulligan, Neil W.; Dew, Ilana T. Z.

    2009-01-01

    The generation manipulation has been critical in delineating differences between implicit and explicit memory. In contrast to past research, the present experiments indicate that generating from a rhyme cue produces as much perceptual priming as does reading. This is demonstrated for 3 visual priming tasks: perceptual identification, word-fragment…

  9. Circularly polarized infrared and visible sum-frequency-generation spectroscopy: Vibrational optical activity measurement

    International Nuclear Information System (INIS)

    Cheon, Sangheon; Cho, Minhaeng

    2005-01-01

    Vibrational optical activity spectroscopies utilizing either circularly polarized ir or circularly polarized visible beams were theoretically investigated by considering the infrared and visible sum-frequency-generation (IV-SFG) schemes. In addition to the purely electric dipole-allowed chiral component of the IV-SFG susceptibility, the polarizability-electric quadrupole hyperpolarizability term also contributes to the vibrationally resonant IV-SFG susceptibility. The circular-intensity-difference signal is shown to be determined by the interferences between the all-electric dipole-allowed chiral component and the polarizability-electric-dipole or electric-dipole-electric-quadrupole Raman optical activity tensor components. The circularly polarized SFG methods are shown to be potentially useful coherent spectroscopic tools for determining absolute configurations of chiral molecules in condensed phases

  10. Automatic frequency and phase alignment of in vivo J-difference-edited MR spectra by frequency domain correlation.

    Science.gov (United States)

    Wiegers, Evita C; Philips, Bart W J; Heerschap, Arend; van der Graaf, Marinette

    2017-12-01

    J-difference editing is often used to select resonances of compounds with coupled spins in 1 H-MR spectra. Accurate phase and frequency alignment prior to subtracting J-difference-edited MR spectra is important to avoid artefactual contributions to the edited resonance. In-vivo J-difference-edited MR spectra were aligned by maximizing the normalized scalar product between two spectra (i.e., the correlation over a spectral region). The performance of our correlation method was compared with alignment by spectral registration and by alignment of the highest point in two spectra. The correlation method was tested at different SNR levels and for a broad range of phase and frequency shifts. In-vivo application of the proposed correlation method showed reduced subtraction errors and increased fit reliability in difference spectra as compared with conventional peak alignment. The correlation method and the spectral registration method generally performed equally well. However, better alignment using the correlation method was obtained for spectra with a low SNR (down to ~2) and for relatively large frequency shifts. Our correlation method for simultaneously phase and frequency alignment is able to correct both small and large phase and frequency drifts and also performs well at low SNR levels.

  11. Generational differences among newly licensed registered nurses.

    Science.gov (United States)

    Keepnews, David M; Brewer, Carol S; Kovner, Christine T; Shin, Juh Hyun

    2010-01-01

    Responses of 2369 newly licensed registered nurses from 3 generational cohorts-Baby Boomers, Generation X, and Generation Y-were studied to identify differences in their characteristics, work-related experiences, and attitudes. These responses revealed significant differences among generations in: job satisfaction, organizational commitment, work motivation, work-to-family conflict, family-to-work conflict, distributive justice, promotional opportunities, supervisory support, mentor support, procedural justice, and perceptions of local job opportunities. Health organizations and their leaders need to anticipate intergenerational differences among newly licensed nurses and should provide for supportive working environments that recognize those differences. Orientation and residency programs for newly licensed nurses should be tailored to the varying needs of different generations. Future research should focus on evaluating the effectiveness of orientation and residency programs with regard to different generations so that these programs can be tailored to meet the varying needs of newly licensed nurses at the start of their careers. Copyright 2010 Mosby, Inc. All rights reserved.

  12. Dual-tone optical vector millimeter wave signal generated by frequency-nonupling the radio frequency 16-star quadrature-amplitude-modulation signal

    Science.gov (United States)

    Wu, Tonggen; Ma, Jianxin

    2017-12-01

    This paper proposes an original scheme to generate the photonic dual-tone optical millimeter wave (MMW) carrying the 16-star quadrature-amplitude-modulation (QAM) signal via an optical phase modulator (PM) and an interleaver with adaptive photonic frequency-nonupling without phase precoding. To enable the generated optical vector MMW signal to resist the power fading effect caused by the fiber chromatic dispersion, the modulated -5th- and +4th-order sidebands are selected from the output of the PM, which is driven by the precoding 16-star QAM signal. The modulation index of the PM is optimized to gain the maximum opto-electrical conversion efficiency. A radio over fiber link is built by simulation, and the simulated constellations and the bit error rate graph demonstrate that the frequency-nonupling 16-star QAM MMW signal has good transmission performance. The simulation results agree well with our theoretical results.

  13. Spike train generation and current-to-frequency conversion in silicon diodes

    Science.gov (United States)

    Coon, D. D.; Perera, A. G. U.

    1989-01-01

    A device physics model is developed to analyze spontaneous neuron-like spike train generation in current driven silicon p(+)-n-n(+) devices in cryogenic environments. The model is shown to explain the very high dynamic range (0 to the 7th) current-to-frequency conversion and experimental features of the spike train frequency as a function of input current. The devices are interesting components for implementation of parallel asynchronous processing adjacent to cryogenically cooled focal planes because of their extremely low current and power requirements, their electronic simplicity, and their pulse coding capability, and could be used to form the hardware basis for neural networks which employ biologically plausible means of information coding.

  14. High-power non linear frequency converted laser diodes

    DEFF Research Database (Denmark)

    Jensen, Ole Bjarlin; Andersen, Peter E.; Hansen, Anders Kragh

    2015-01-01

    We present different methods of generating light in the blue-green spectral range by nonlinear frequency conversion of tapered diode lasers achieving state-of-the-art power levels. In the blue spectral range, we show results using single-pass second harmonic generation (SHG) as well as cavity enh...... enhanced sum frequency generation (SFG) with watt-level output powers. SHG and SFG are also demonstrated in the green spectral range as a viable method to generate up to 4 W output power with high efficiency using different configurations....

  15. NMDA receptor antagonist-enhanced high frequency oscillations: are they generated broadly or regionally specific?

    Science.gov (United States)

    Olszewski, Maciej; Dolowa, Wioleta; Matulewicz, Pawel; Kasicki, Stefan; Hunt, Mark J

    2013-12-01

    Systemic administration of NMDA receptor antagonists, used to model schizophrenia, increase the power of high-frequency oscillations (130-180Hz, HFO) in a variety of neuroanatomical and functionally distinct brain regions. However, it is unclear whether HFO are independently and locally generated or instead spread from a distant source. To address this issue, we used local infusion of tetrodotoxin (TTX) to distinct brain areas to determine how accurately HFO recorded after injection of NMDAR antagonists reflect the activity actually generated at the electrode tip. Changes in power were evaluated in local field potentials (LFPs) recorded from the nucleus accumbens (NAc), prefrontal cortex and caudate and in electrocorticograms (ECoGs) from visual and frontal areas. HFO recorded in frontal and visual cortices (ECoGs) or in the prefrontal cortex, caudate (LFPs) co-varied in power and frequency with observed changes in the NAc. TTX infusion to the NAc immediately and profoundly reduced the power of accumbal HFO which correlated with changes in HFO recorded in distant cortical sites. In contrast, TTX infusion to the prefrontal cortex did not change HFO power recorded locally, although gamma power was reduced. A very similar result was found after TTX infusion to the caudate. These findings raise the possibility that the NAc is an important neural generator. Our data also support existing studies challenging the idea that high frequencies recorded in LFPs are necessarily generated at the recording site. Copyright © 2013 Elsevier B.V. and ECNP. All rights reserved.

  16. Nonlinear frequency conversion in fiber lasers

    DEFF Research Database (Denmark)

    Svane, Ask Sebastian

    The concept of nonlinear frequency conversion entails generating light at new frequencies other than those of the source light. The emission wavelength of typical fiber laser systems, relying on rare-earth dopants, are constrained within specific bands of the infrared region. By exploiting...... nonlinear processes, light from these specific wavelength bands can be used to generate light at new frequencies otherwise not obtainable by rare-earth elements. This thesis describes work covering Raman fiber lasers (RFLs) and amplifiers for nonlinear frequency down-conversion, and also the method...... of fiberoptic Cherenkov radiation (FCR) using ultrafast pulses as a means for generating tunable visible (VIS) light at higher frequencies. Two different polarization maintaining (PM) RFL cavities are studied with an emphasis on stability and spectral broadening. The cavities are formed by inscription of fiber...

  17. Generational differences in acute care nurses.

    Science.gov (United States)

    Widger, Kimberley; Pye, Christine; Cranley, Lisa; Wilson-Keates, Barbara; Squires, Mae; Tourangeau, Ann

    2007-01-01

    Generational differences in values, expectations and perceptions of work have been proposed as one basis for problems and solutions in recruitment and retention of nurses. This study used a descriptive design. A sample of 8207 registered nurses and registered practical nurses working in Ontario, Canada, acute care hospitals who responded to the Ontario Nurse Survey in 2003 were included in this study. Respondents were categorized as Baby Boomers, Generation X or Generation Y based on their birth year. Differences in responses among these three generations to questions about their own characteristics, employment circumstances, work environment and responses to the work environment were explored. There were statistically significant differences among the generations. Baby Boomers primarily worked full-time day shifts. Gen Y tended to be employed in teaching hospitals; Boomers worked more commonly in community hospitals. Baby Boomers were generally more satisfied with their jobs than Gen X or Gen Y nurses. Gen Y had the largest proportion of nurses with high levels of burnout in the areas of emotional exhaustion and depersonalization. Baby Boomers had the largest proportion of nurses with low levels of burnout. Nurse managers may be able to capitalize on differences in generational values and needs in designing appropriate interventions to enhance recruitment and retention of nurses.

  18. 1.5 W green light generation by single-pass second harmonic generation of a single-frequency tapered diode laser

    DEFF Research Database (Denmark)

    Jensen, Ole Bjarlin; Andersen, Peter E.; Sumpf, Bernd

    2009-01-01

    More than 1.5 W of green light at 531 nm is generated by singlepass second harmonic generation in periodically poled MgO:LiNbO3. The pump laser is a high power tapered laser with a distributed Bragg reflector etched in the ridge section of the laser to provide wavelength selectivity. The output...... power of the single-frequency tapered laser is 9.3 W in continuous wave operation. A conversion efficiency of 18.5 % was achieved in the experiments....

  19. Multi-pollutants sensors based on near-IR telecom lasers and mid-IR difference frequency generation: development and applications

    International Nuclear Information System (INIS)

    Cousin, J.

    2006-12-01

    At present the detection of VOC and other anthropic trace pollutants is an important challenge in the measurement of air quality. Infrared spectroscopy, allowing spectral regions rich in molecular absorption to be probed, is a suitable technique for in-situ monitoring of the air pollution. Thus the aim of this work was to develop instruments capable of detecting multiple pollutants for in-situ monitoring by IR spectroscopy. A first project benefited from the availability of the telecommunications lasers emitting in near-IR. This instrument was based on an external cavity diode laser (1500 - 1640 nm) in conjunction with a multipass cell (100 m). The detection sensitivity was optimised by employing a balanced detection and a sweep integration procedure. The instrument developed is deployable for in-situ measurements with a sensitivity of -8 cm -1 Hz -1/2 and allowed the quantification of chemical species such as CO 2 , CO, C 2 H 2 , CH 4 and the determination of the isotopic ratio 13 CO 2 / 12 CO 2 in combustion environment The second project consisted in mixing two near-IR fiber lasers in a non-linear crystal (PPLN) in order to produce a laser radiation by difference frequency generation in the middle-IR (3.15 - 3.43 μm), where the absorption bands of the molecules are the most intense. The first studies with this source were carried out on detection of ethylene (C 2 H 4 ) and benzene (C 6 H 6 ). Developments, characterizations and applications of these instruments in the near and middle IR are detailed and the advantages of the 2 spectral ranges is highlighted. (author)

  20. Accuracy of finite-difference harmonic frequencies in density functional theory.

    Science.gov (United States)

    Liu, Kuan-Yu; Liu, Jie; Herbert, John M

    2017-07-15

    Analytic Hessians are often viewed as essential for the calculation of accurate harmonic frequencies, but the implementation of analytic second derivatives is nontrivial and solution of the requisite coupled-perturbed equations engenders a sizable memory footprint for large systems, given that these equations are not required for energy and gradient calculations in density functional theory. Here, we benchmark the alternative approach to harmonic frequencies based on finite differences of analytic first derivatives, a procedure that is amenable to large-scale parallelization. Not only for absolute frequencies but also for isotopic and conformer-dependent frequency shifts in flexible molecules, we find that the finite-difference approach exhibits mean errors numbers. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  1. INVESTIGATION ON ESTABLISHED OPERATIONAL MODES OF FREQUENCY-CONTROLLED INDUCTION GENERATOR OF WIND POWER PLANTS

    Directory of Open Access Journals (Sweden)

    R. I. Mustafayev

    2014-01-01

    Full Text Available The paper proposes an analytical expression for calculating a manipulated variable of stator voltage in a frequency-controlled induction generator with a cage rotor of a wind power plant while regulating a constant value of the absolute slip of the generator. Comparison of the calculated results by the proposed expression and full differential equations of the generator (an equation of state at steady state has confirmed a high accuracy of the analytical expression.

  2. Determining generator parameters of Camargos hydroelectric power plant through frequency response measurement

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Sebastiao E.M. de; Padua Guarini, Antonio de [Centro de Pesquisas de Energia Eletrica (CEPEL), Rio de Janeiro, RJ (Brazil); Souza, Joao A. de; Valgas, Helio M; Pinto, Roberto del Giudice R. [Companhia Energetica de Minas Gerais (CEMIG), Belo Horizonte, MG (Brazil)

    1994-12-31

    This work describes the results of the set frequency response tests performed in the generator number 2, 6.9 kV, 25 MVA, of Camargos hydroelectric power plant, CEMIG, and the parameters relatives to determined structures of model. This tests are unpublished in Brazil. (author) 7 refs., 16 figs., 7 tabs.

  3. Exploiting elastic anharmonicity in aluminum nitride matrix for phase-synchronous frequency reference generation

    Science.gov (United States)

    Ghatge, Mayur; Tabrizian, Roozbeh

    2018-03-01

    A matrix of aluminum-nitride (AlN) waveguides is acoustically engineered to realize electrically isolated phase-synchronous frequency references through nonlinear wave-mixing. AlN rectangular waveguides are cross-coupled through a periodically perforated plate that is engineered to have a wide acoustic bandgap around a desirable frequency ( f1≈509 MHz). While the coupling plate isolates the matrix from resonant vibrations of individual waveguide constituents at f1, it is transparent to the third-order harmonic waves (3f1) that are generated through nonlinear wave-mixing. Therefore, large-signal excitation of the f1 mode in a constituent waveguide generates acoustic waves at 3f1 with an efficiency defined by elastic anharmonicity of the AlN film. The phase-synchronous propagation of the third harmonic through the matrix is amplified by a high quality-factor resonance mode at f2≈1529 MHz, which is sufficiently close to 3f1 (f2 ≅ 3f1). Such an architecture enables realization of frequency-multiplied and phase-synchronous, yet electrically and spectrally isolated, references for multi-band/carrier and spread-spectrum wireless communication systems.

  4. Metabolic costs of force generation for constant-frequency and catchlike-inducing electrical stimulation in human tibialis anterior muscle

    DEFF Research Database (Denmark)

    Ratkevicius, Aivaras; Quistorff, Bjørn

    2002-01-01

    -frequency trains, catchlike-inducing trains produced a faster force generation and were more effective in maintaining the force--time integral as well as peak force. However, ATP costs of force generation were similar for the catchlike-inducing and constant-frequency stimulation (6.7 plus/minus 1.1 and 6.6 plus......Metabolic costs of force generation were compared for constant-frequency and catchlike-inducing electrical stimulation. Repetitive catchlike-inducing trains consisted of 2 interpulse intervals (IPIs) at 12.5 ms, 1 IPI at 25 ms, and 5 IPIs at 50 ms. Constant-frequency trains consisted of 8 IPIs...... at 37.5 ms. One train was delivered to the peroneal nerve every 2.5 s for 36 times under ischemic conditions. Anaerobic adenosine triphosphate (ATP) turnover was determined using 31-phosphorus magnetic resonance spectroscopy (P-MRS) of the human tibialis anterior muscle. Compared with constant...

  5. Frequency Characteristics of Surface Wave Generated by Single-Line Pulsed Laser Beam with Two Kinds of Spatial Energy Profile Models: Gaussian and Square-Like

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Ho Geon; Kim, Myung Hwan; Choi, Sung Ho; Kim, Chung Seok; Jhang, Kyung Young [Hanyang University, Seoul (Korea, Republic of)

    2012-08-15

    Using a single-line pulsed laser beam is well known as a useful noncontact method to generate a directional surface acoustic wave. In this method, different laser beam energy profiles produce different waveforms and frequency characteristics. In this paper, we considered two typical kinds of laser beam energy profiles, Gaussian and square-like, to find out a difference in the frequency characteristics. To achieve this, mathematical models were proposed first for Gaussian laser beam profile and square-like respectively, both of which depended on the laser beam width. To verify the theoretical models, experimental setups with a cylindrical lens and a line-slit mask were respectively designed to produce a line laser beam with Gaussian spatial energy profile and square-like. The frequency responses of the theoretical models showed good agreement with experimental results in terms of the existence of harmonic frequency components and the shift of the first peak frequencies to low.

  6. C-V analysis at variable frequency of MOS structures with different gates, containing Hf-Doped Ta2O5

    International Nuclear Information System (INIS)

    Stojanovska-Georgievska, L.; Novkovski, N.; Atanassova, E.

    2012-01-01

    The quality of the interface between the insulating layer and the Si substrate in contemporary submicron MOS technology is a critical issue for device functioning. It is characterized through the electrically active defect centers, known as interface states. Their response to the frequency is discussed here, by analyzing capacitance-voltage and conductance-voltage curves. The C-V method is preferred in many cases, since it offers easy measurement, and it is applied to extract information about interface traps and fixed oxide charge, at different frequencies. This technique, related with frequency dependent G-V measurements, can be very useful in characterizing charge trapped in the dielectric and at the interface with Si. By extracting the value of frequency dependent flat band voltage, we have obtained the fixed oxide charges at flat band condition. A comparison between the results obtained by two different methods is made. The samples that are studied are metal-insulator-semiconductor (MIS) structures that include high-k dielectric as insulating layer (Hf doped Ta 2 O 5 ), with thickness of 8 nm, with different metal used as gate electrode. Here the influence of the top electrode on the generation and behavior of the traps in the oxide layer is discussed. The results show that the value of metal work function of the gate material is an issue that should be considered very carefully, especially in the case of high work function metal gates, when generation of extra positive charge than in the case of other metals is observed. (Author)

  7. Multi-pollutants sensors based on near-IR telecom lasers and mid-IR difference frequency generation: development and applications; Instruments de mesure multi-polluants par spectroscopie infrarouge bases sur des lasers fibres et par generation de difference de frequences: developpement et applications

    Energy Technology Data Exchange (ETDEWEB)

    Cousin, J

    2006-12-15

    At present the detection of VOC and other anthropic trace pollutants is an important challenge in the measurement of air quality. Infrared spectroscopy, allowing spectral regions rich in molecular absorption to be probed, is a suitable technique for in-situ monitoring of the air pollution. Thus the aim of this work was to develop instruments capable of detecting multiple pollutants for in-situ monitoring by IR spectroscopy. A first project benefited from the availability of the telecommunications lasers emitting in near-IR. This instrument was based on an external cavity diode laser (1500 - 1640 nm) in conjunction with a multipass cell (100 m). The detection sensitivity was optimised by employing a balanced detection and a sweep integration procedure. The instrument developed is deployable for in-situ measurements with a sensitivity of < 10{sup -8} cm{sup -1} Hz{sup -1/2} and allowed the quantification of chemical species such as CO{sub 2}, CO, C{sub 2}H{sub 2}, CH{sub 4} and the determination of the isotopic ratio {sup 13}CO{sub 2}/{sup 12}CO{sub 2} in combustion environment The second project consisted in mixing two near-IR fiber lasers in a non-linear crystal (PPLN) in order to produce a laser radiation by difference frequency generation in the middle-IR (3.15 - 3.43 {mu}m), where the absorption bands of the molecules are the most intense. The first studies with this source were carried out on detection of ethylene (C{sub 2}H{sub 4}) and benzene (C{sub 6}H{sub 6}). Developments, characterizations and applications of these instruments in the near and middle IR are detailed and the advantages of the 2 spectral ranges is highlighted. (author)

  8. Frequency comb generation by a continuous-wave-pumped optical parametric oscillator based on cascading quadratic nonlinearities.

    Science.gov (United States)

    Ulvila, Ville; Phillips, C R; Halonen, Lauri; Vainio, Markku

    2013-11-01

    We report optical frequency comb generation by a continuous-wave pumped optical parametric oscillator (OPO) without any active modulation. The OPO is configured as singly resonant with an additional nonlinear crystal (periodically poled MgO:LiNbO3) placed inside the OPO for phase mismatched second harmonic generation (SHG) of the resonating signal beam. The phase mismatched SHG causes cascading χ(2) nonlinearities, which can substantially increase the effective χ(3) nonlinearity in MgO:LiNbO3, leading to spectral broadening of the OPO signal beam via self-phase modulation. The OPO generates a stable 4 THz wide (-30 dB) frequency comb centered at 1.56 μm.

  9. Adaptation behavior of skilled infant bouncers to different spring frequencies

    Directory of Open Access Journals (Sweden)

    Olinda Habib Perez

    2015-05-01

    Full Text Available Infants explore their environments through repetitive movements that are constrained or facilitated by the environmental context. In this study, we evaluated how skilled bouncers adapted to bouncing in systems with four different spring conditions (natural frequencies of 0.9, 1.15, 1.27 and 1.56 Hz. Trunk kinematics and vertical ground reaction forces (VGRFs were recorded from three pre-walking infants (mean age 10.6 ±0.9 months. Bounce frequency, trunk displacement, peak VGRF, percent of time on the ground and time to peak force as a function of time on the ground were analyzed. In addition, infant bounce frequencies were compared to measured oscillations of an inert mass equivalent to each infant’s mass. All infants bounced above the natural frequency of the spring system in all conditions suggesting that they did not behave solely like mass-spring systems. Infants produced asymmetrical VGRF loading patterns suggesting that a timing component, such as bounce frequency, was regulated. Skilled infants consistently increased their bounce frequency as their vertical trunk displacement decreased; however, the mode for regulating bounce frequency differed from infant to infant.

  10. Self-generation of optical frequency comb in single section quantum dot Fabry-Perot lasers: a theoretical study.

    Science.gov (United States)

    Bardella, Paolo; Columbo, Lorenzo Luigi; Gioannini, Mariangela

    2017-10-16

    Optical Frequency Comb (OFC) generated by semiconductor lasers are currently widely used in the extremely timely field of high capacity optical interconnects and high precision spectroscopy. In the last decade, several experimental evidences of spontaneous OFC generation have been reported in single section Quantum Dot (QD) lasers. Here we provide a physical understanding of these self-organization phenomena by simulating the multi-mode dynamics of a single section Fabry-Perot (FP) QD laser using a Time-Domain Traveling-Wave (TDTW) model that properly accounts for coherent radiation-matter interaction in the semiconductor active medium and includes the carrier grating generated by the optical standing wave pattern in the laser cavity. We show that the latter is the fundamental physical effect at the origin of the multi-mode spectrum appearing just above threshold. A self-mode-locking regime associated with the emission of OFC is achieved for higher bias currents and ascribed to nonlinear phase sensitive effects as Four Wave Mixing (FWM). Our results explain in detail the behaviour observed experimentally by different research groups and in different QD and Quantum Dash (QDash) devices.

  11. A 60 GHz Frequency Generator Based on a 20 GHz Oscillator and an Implicit Multiplier

    NARCIS (Netherlands)

    Zong, Z.; Babaie, M.; Staszewski, R.B.

    2016-01-01

    This paper proposes a mm-wave frequency generation technique that improves its phase noise (PN) performance and power efficiency. The main idea is that a fundamental 20 GHz signal and its sufficiently strong third harmonic at 60 GHz are generated simultaneously in a single oscillator. The desired 60

  12. Frequency analysis of a two-stage planetary gearbox using two different methodologies

    Science.gov (United States)

    Feki, Nabih; Karray, Maha; Khabou, Mohamed Tawfik; Chaari, Fakher; Haddar, Mohamed

    2017-12-01

    This paper is focused on the characterization of the frequency content of vibration signals issued from a two-stage planetary gearbox. To achieve this goal, two different methodologies are adopted: the lumped-parameter modeling approach and the phenomenological modeling approach. The two methodologies aim to describe the complex vibrations generated by a two-stage planetary gearbox. The phenomenological model describes directly the vibrations as measured by a sensor fixed outside the fixed ring gear with respect to an inertial reference frame, while results from a lumped-parameter model are referenced with respect to a rotating frame and then transferred into an inertial reference frame. Two different case studies of the two-stage planetary gear are adopted to describe the vibration and the corresponding spectra using both models. Each case presents a specific geometry and a specific spectral structure.

  13. A three-lead, programmable, and microcontroller-based electrocardiogram generator with frequency domain characteristics of heart rate variability.

    Science.gov (United States)

    Wei, Ying-Chieh; Wei, Ying-Yu; Chang, Kai-Hsiung; Young, Ming-Shing

    2012-04-01

    The objective of this study is to design and develop a programmable electrocardiogram (ECG) generator with frequency domain characteristics of heart rate variability (HRV) which can be used to test the efficiency of ECG algorithms and to calibrate and maintain ECG equipment. We simplified and modified the three coupled ordinary differential equations in McSharry's model to a single differential equation to obtain the ECG signal. This system not only allows the signal amplitude, heart rate, QRS-complex slopes, and P- and T-wave position parameters to be adjusted, but can also be used to adjust the very low frequency, low frequency, and high frequency components of HRV frequency domain characteristics. The system can be tuned to function with HRV or not. When the HRV function is on, the average heart rate can be set to a value ranging from 20 to 122 beats per minute (BPM) with an adjustable variation of 1 BPM. When the HRV function is off, the heart rate can be set to a value ranging from 20 to 139 BPM with an adjustable variation of 1 BPM. The amplitude of the ECG signal can be set from 0.0 to 330 mV at a resolution of 0.005 mV. These parameters can be adjusted either via input through a keyboard or through a graphical user interface (GUI) control panel that was developed using LABVIEW. The GUI control panel depicts a preview of the ECG signal such that the user can adjust the parameters to establish a desired ECG morphology. A complete set of parameters can be stored in the flash memory of the system via a USB 2.0 interface. Our system can generate three different types of synthetic ECG signals for testing the efficiency of an ECG algorithm or calibrating and maintaining ECG equipment. © 2012 American Institute of Physics

  14. Frequency-agile dual-comb spectroscopy

    OpenAIRE

    Millot, Guy; Pitois, Stéphane; Yan, Ming; Hovannysyan, Tatevik; Bendahmane, Abdelkrim; Hänsch, Theodor W.; Picqué, Nathalie

    2015-01-01

    We propose a new approach to near-infrared molecular spectroscopy, harnessing advanced concepts of optical telecommunications and supercontinuum photonics. We generate, without mode-locked lasers, two frequency combs of slightly different repetition frequencies and moderate, but rapidly tunable, spectral span. The output of a frequency-agile continuous wave laser is split and sent into two electro-optic intensity modulators. Flat-top low-noise frequency combs are produced by wave-breaking in ...

  15. Spatial-frequency spectrum of patterns changes the visibility of spatial-phase differences

    Science.gov (United States)

    Lawton, T. B.

    1985-01-01

    It is shown that spatial-frequency components over a 4-octave range affected the visibility of spatial-phase differences. Contrast thresholds were measured for discrimination between two (+45- and -45-deg) spatial phases of a sinusoidal test grating added to a background grating. The background could contain one or several sinusoidal components, all in 0-deg phase. Phase differences between the test and the background were visible at lower contrasts when test and background frequencies were harmonically related than when they were not, when test and background frequencies were within 1 octave than when they were farther apart, when the fundamental frequency of the background was low than when it was high, and for some discriminations more than for others, after practice. The visibility of phase differences was not affected by additional components in the background if the fundamental and difference frequencies of the background remained unchanged. Observers' reports of their strategies gave information about the types of attentive processing that were used to discriminate phase differences. Attentive processing facilitated phase discrimination for multifrequency gratings spanning a much wider range of spatial frequencies than would be possible by using only local preattentive processing. These results were consistent with the visibility of phase differences being processed by some combination of even- and odd-symmetric simple cells tuned to a wide range of different spatial frequencies.

  16. New Canonic Active RC Sinusoidal Oscillator Circuits Using Second-Generation Current Conveyors with Application as a Wide-Frequency Digitally Controlled Sinusoid Generator

    OpenAIRE

    Abhirup Lahiri

    2011-01-01

    This paper reports two new circuit topologies using second-generation current conveyors (CCIIs) for realizing variable frequency sinusoidal oscillators with minimum passive components. The proposed topologies in this paper provide new realizations of resistance-controlled and capacitor-controlled variable frequency oscillators (VFOs) using only four passive components. The first topology employs three CCIIs, while the second topology employs two CCIIs. The second topology provides an advantag...

  17. Frequency up-conversion and spectral breaking of a high power microwave pulse propagation in a self-generated plasma

    International Nuclear Information System (INIS)

    Kuo, S.P.; Ren, A.

    1993-01-01

    The main concern of the propagation of high power microwave pulse is the energy loss of the pulse before reaching the destination. The loss is caused by self-generated plasma. There are two processes which are responsible for the energy loss (so called tail erosion). They are collisional damping and cutoff reflection. In very high power region, the cutoff reflection is much more severe than the collisional damping. A frequency up-conversion process may help to avoid the cutoff reflection of powerful electromagnetic pulse propagating in a self-generated plasma. Both chamber experiments and numerical simulation are performed. When the field amplitude only slightly exceeds the breakdown threshold field of the background gas, the result shows that the carrier frequency ω of the pulse shifts upward during the growth of local plasma frequency ωpe 2 . Thus, the self-generated plasma remains underdense to the pulse. However, the spectrum of the pulse starts to break up into two major peaks when the amplitude of the pulse is further increased. The frequency of one of the peaks is lower than the original carrier frequency and that of the other peak is higher than the original carrier frequency. These phenomena are observed both experimentally and numerically. The frequency down shift result is believed to be caused by damping mechanisms. Good agreement between the experimental results and the numerical simulation is obtained

  18. Lithographed Superconducting Resonator Development for Next-Generation Frequency Multiplexing Readout of Transition-Edge Sensors

    Science.gov (United States)

    Faramarzi, F.; De Haan, T.; Kusaka, A.; Lee, A.; Neuhauser, B.; Plambeck, R.; Raum, C.; Suzuki, A.; Westbrook, B.

    2018-03-01

    Ground-based cosmic microwave background (CMB) experiments are undergoing a period of exponential growth. Current experiments are observing with 1000-10,000 detectors, and the next-generation experiment (CMB stage 4) is proposing to deploy approximately 500,000 detectors. This order of magnitude increase in detector count will require a new approach for readout electronics. We have developed superconducting resonators for next-generation frequency-domain multiplexing (fMUX) readout architecture. Our goal is to reduce the physical size of resonators, such that resonators and detectors can eventually be integrated on a single wafer. To reduce the size of these resonators, we have designed spiral inductors and interdigitated capacitors that resonate around 10-100 MHz, an order of magnitude higher frequency compared to current fMUX readout systems. The higher frequency leads to a wider bandwidth and would enable higher multiplexing factor than the current ˜ 50 detectors per readout channel. We will report on the simulation, fabrication method, characterization technique, and measurement of quality factor of these resonators.

  19. SNP calling, genotype calling, and sample allele frequency estimation from new-generation sequencing data

    DEFF Research Database (Denmark)

    Nielsen, Rasmus; Korneliussen, Thorfinn Sand; Albrechtsen, Anders

    2012-01-01

    We present a statistical framework for estimation and application of sample allele frequency spectra from New-Generation Sequencing (NGS) data. In this method, we first estimate the allele frequency spectrum using maximum likelihood. In contrast to previous methods, the likelihood function is cal...... be extended to various other cases including cases with deviations from Hardy-Weinberg equilibrium. We evaluate the statistical properties of the methods using simulations and by application to a real data set....

  20. Finding flicker: Critical differences in temporal frequency capture attention

    Directory of Open Access Journals (Sweden)

    John eCass

    2011-11-01

    Full Text Available Rapid visual flicker is known to capture attention. Here we show slow flicker can also capture attention under reciprocal temporal conditions. Observers searched for a target line (vertical or horizontal among tilted distractors. Distractor lines were surrounded by luminance modulating annuli, all flickering sinusoidally at 1.3 or 12.1 Hz, while the target’s annulus flickered at frequencies within this range. Search times improved with increasing target/distractor frequency differences. For target-distractor frequency separations > 5 Hz reaction times were minimal with high frequency targets correctly identified more rapidly than low frequency targets (~400ms. Critically, however, at these optimal frequency separations search times for low and high frequency targets were unaffected by set size (slow flicker popped out from high flicker, and vice versa, indicating parallel and symmetric search performance when searching for high or low frequency targets. In a ‘cost’ experiment using 1.3 and 12.1 Hz flicker, the unique flickering annulus sometimes surrounded a distractor and, on other trials, surrounded the target. When centred on a distractor, the unique frequency produced a clear and symmetrical search cost. Together, these symmetric pop-out and search costs demonstrate that temporal frequency is a pre-attentive visual feature capable of capturing attention, and that it is relative rather than absolute frequencies that are critical. The shape of the search functions strongly suggest that early visual temporal frequency filters underlie these effects.

  1. Influence of nanoscale temperature rises on photoacoustic generation: Discrimination between optical absorbers based on thermal nonlinearity at high frequency.

    Science.gov (United States)

    Simandoux, Olivier; Prost, Amaury; Gateau, Jérôme; Bossy, Emmanuel

    2015-03-01

    In this work, we experimentally investigate thermal-based nonlinear photoacoustic generation as a mean to discriminate between different types of absorbing particles. The photoacoustic generation from solutions of dye molecules and gold nanospheres (same optical densities) was detected using a high frequency ultrasound transducer (20 MHz). Photoacoustic emission was observed with gold nanospheres at low fluence for an equilibrium temperature around 4 °C, where the linear photoacoustic effect in water vanishes, highlighting the nonlinear emission from the solution of nanospheres. The photoacoustic amplitude was also studied as a function of the equilibrium temperature from 2 °C to 20 °C. While the photoacoustic amplitude from the dye molecules vanished around 4 °C, the photoacoustic amplitude from the gold nanospheres remained significant over the whole temperature range. Our preliminary results suggest that in the context of high frequency photoacoustic imaging, nanoparticles may be discriminated from molecular absorbers based on nanoscale temperature rises.

  2. Ultraflat and broadband optical frequency comb generator based on cascaded two dual-electrode Mach-Zehnder modulators

    Science.gov (United States)

    Qu, Kun; Zhao, Shanghong; Li, Xuan; Tan, Qinggui; Zhu, Zihang

    2018-04-01

    A novel scheme for the generation of ultraflat and broadband optical frequency comb (OFC) is proposed based on cascaded two dual-electrode Mach-Zehnder modulators (DE-MZM). The first DE-MZM can generate a four-comb-line OFC, then the OFC is injected into the second DE-MZM as a carrier, which can increase the number of comb lines. Our modified scheme finally can generate a broadband OFC with high flatness by simply modifying the electrical power and the bias voltage of the DE-MZM. Theoretical analysis and simulation results reveal that a 16-comb-line OFC with a frequency spacing that two times the frequency of the RF signal can be obtained. The power fluctuation of the OFC lines is 0.48 dB and the unwanted-mode suppression ratio (UMSR) can reach 16.5 dB. Additionally, whether the bias drift of the DE-MZMs has little influence on the power fluctuation is also analyzed. These results demonstrate the robustness of our scheme and verify its good accuracy and high stability with perfect flatness.

  3. Natural frequency analysis of fluid conveying pipeline with different boundary conditions

    International Nuclear Information System (INIS)

    Huang Yimin; Liu Yongshou; Li Baohui; Li Yanjiang; Yue Zhufeng

    2010-01-01

    In this study, the natural frequency of fluid-structure interaction in pipeline conveying fluid is investigated by eliminated element-Galerkin method, and the natural frequency equations with different boundary conditions are obtained. Furthermore, the expressions of first natural frequency are simplified in the case of different boundary conditions. Taking into account the Coriolis force, as an example, the natural frequency of a straight pipe simply supported at both ends is studied. In a given boundary condition, the four components (mass, stiffness, length and flow velocity) which relate to the natural frequency of pipeline conveying fluid are studied in detail and the results indicate that the effect of Coriolis force on natural frequency is inappreciable. Then the relationship between natural frequency of the pipeline conveying fluid and that of Euler beam is analyzed. Finally, a dimensionless flow velocity and limit values are presented, and they can be used to estimate the effect of the flow velocity on natural frequency. All the conclusions are well suited to nuclear plant and other industry fields.

  4. Sum frequency generation for studying plasma-wall interactions

    International Nuclear Information System (INIS)

    Roke, Sylvie

    2010-01-01

    Interaction of a plasma with a surface results in chemical and physical restructuring of the surface as well as the plasma in the vicinity of the surface. Studying such a reorganization of the atoms and molecules in the surface layer requires optical tools that can penetrate the plasma environment. At the same time, surface specificity is required. Sum Frequency Generation (SFG) is an optical method that fulfills these requirements. SFG has been developed into a surface specific probe during the eighties and nineties. Nowadays SFG is routinely applied in the research of complex interfaces. In such experiments, liquid/gas, solid/gas, solid/liquid, or liquid/liquid interfaces are probed, and the chemical surface composition, orientational distribution, order and chirality can be retrieved. An application to investigate plasma-wall interactions is feasible too.

  5. Studies of Interfacial Regions by Sum-Frequency Generation with a Free-Electron Laser

    NARCIS (Netherlands)

    Eliel, E. R.; van der Ham, E. W. M.; Vrehen, Q. H. F.; Thooft, G. W.; Barmentlo, M.; Auerhammer, J. M.; van der Meer, A. F. G.; van Amersfoort, P. W.

    1995-01-01

    The use of a Free-Electron Laser (FEL) allows the study of (non)linear optical properties of materials over unsurpassed large spectral intervals. As an example, we report on the use of a FEL as the infrared source in spectroscopic infrared-visible Sum-Frequency Generation (SFG). Employing the

  6. Frequency dependence of polarization phase difference

    International Nuclear Information System (INIS)

    Rao, K.S.; Rao, Y.S.; Wang, J.R.

    1993-09-01

    Polarimetric AIRSAR data of July 13, 1990 acquired over Mahatango watershed area was processed for the identification of corn fields an forested areas. Polarization Phase Difference (PPD) values were computed for the corn fields at P-, L- and C- bands and studied as a function of frequency. The results compare well with the model calculations at 24 deg. incidence angle where as the locations of corn fields were computed to be at 35 deg. incidence angle. The discrepancy is attributed to lack of accurate ground truth and the undulating topography of the corn fields. Another study reported here deals with the usefulness of Polarization Index (PI) for the study of vegetation. PI was found to be dependent on frequency for corn fields where as for forest trees no such dependence was noticed. PI HH,HV is more useful parameter compared to PI HH,VV even for the study of corn fields. (author). 19 refs, 7 figs

  7. Demosaicking Based on Optimization and Projection in Different Frequency Bands

    Directory of Open Access Journals (Sweden)

    Omer OsamaA

    2008-01-01

    Full Text Available Abstract A fast and effective iterative demosaicking algorithm is described for reconstructing a full-color image from single-color filter array data. The missing color values are interpolated on the basis of optimization and projection in different frequency bands. A filter bank is used to decompose an initially interpolated image into low-frequency and high-frequency bands. In the low-frequency band, a quadratic cost function is minimized in accordance with the observation that the low-frequency components of chrominance slowly vary within an object region. In the high-frequency bands, the high-frequency components of the unknown values are projected onto the high-frequency components of the known values. Comparison of the proposed algorithm with seven state-of-the-art demosaicking algorithms showed that it outperforms all of them for 20 images on average in terms of objective quality and that it is competitive with them from the subjective quality and complexity points of view.

  8. The vibrational behaviour of the generator support structure for Koeberg nuclear power station at high frequencies

    International Nuclear Information System (INIS)

    Lee, D.E.

    1988-06-01

    The vibrational behaviour of the generator support structure at Koeberg nuclear power station at frequencies primarily in the region of 80 Hz to 110 Hz was examined. The effect of soil-structure interaction and the change in stiffness of the foundation soil was investigated. Vibration tests were performed on the generator support structure and the results were compared with a theoretical finite element analysis of the structure. By varying the soil-cement foundation stiffness it was possible to demonstrate the change in dynamic behaviour of the structure in the higher frequency band 80 Hz to 110 Hz. Comment has been made on the design code DIN 4024 in view of the findings of this thesis. It was concluded that the empirical rules regarding the inclusion of the foundation in an analysis specified by the code do not cover all cases and greater cognisance of the effect of the foundation stiffness on the vibration behaviour of such machine foundations is necessary. Obvious machine frequencies higher than the operational frequencies should be analysed where it is considered necessary. 24 refs., 25 tabs., 83 figs

  9. Frequency shifts in stimulated Raman scattering

    International Nuclear Information System (INIS)

    Zinth, W.; Kaiser, W.

    1980-01-01

    The nonresonant contributions to the nonlinear susceptibility chisup(()3) produce a frequency chirp during stimulated Raman scattering. In the case of transient stimulated Raman scattering, the spectrum of the generated Stokes pulse is found at higher frequencies than expected from spontaneous Raman data. The frequency difference can be calculated from the theory of stimulated Raman scattering. (orig.)

  10. Generation of tunable, high repetition rate frequency combs with equalized spectra using carrier injection based silicon modulators

    Science.gov (United States)

    Nagarjun, K. P.; Selvaraja, Shankar Kumar; Supradeepa, V. R.

    2016-03-01

    High repetition-rate frequency combs with tunable repetition rate and carrier frequency are extensively used in areas like Optical communications, Microwave Photonics and Metrology. A common technique for their generation is strong phase modulation of a CW-laser. This is commonly implemented using Lithium-Niobate based modulators. With phase modulation alone, the combs have poor spectral flatness and significant number of missing lines. To overcome this, a complex cascade of multiple intensity and phase modulators are used. A comb generator on Silicon based on these principles is desirable to enable on-chip integration with other functionalities while reducing power consumption and footprint. In this work, we analyse frequency comb generation in carrier injection based Silicon modulators. We observe an interesting effect in these comb generators. Enhanced absorption accompanying carrier injection, an undesirable effect in data modulators, shapes the amplitude here to enable high quality combs from a single modulator. Thus, along with reduced power consumption to generate a specific number of lines, the complexity has also been significantly reduced. We use a drift-diffusion solver and mode solver (Silvaco TCAD) along with Soref-Bennett relations to calculate the variations in refractive indices and absorption of an optimized Silicon PIN - waveguide modulator driven by an unbiased high frequency (10 Ghz) voltage signal. Our simulations demonstrate that with a device length of 1 cm, a driving voltage of 2V and minor shaping with a passive ring-resonator filter, we obtain 37 lines with a flatness better than 5-dB across the band and power consumption an order of magnitude smaller than Lithium-Niobate modulators.

  11. Research of hydroelectric generating set low-frequency vibration monitoring system based on optical fiber sensing

    Science.gov (United States)

    Min, Li; Zhang, Xiaolei; Zhang, Faxiang; Sun, Zhihui; Li, ShuJuan; Wang, Meng; Wang, Chang

    2017-10-01

    In order to satisfy hydroelectric generating set low-frequency vibration monitoring, the design of Passive low-frequency vibration monitoring system based on Optical fiber sensing in this paper. The hardware of the system adopts the passive optical fiber grating sensor and unbalanced-Michelson interferometer. The software system is used to programming by Labview software and finishing the control of system. The experiment show that this system has good performance on the standard vibration testing-platform and it meets system requirements. The frequency of the monitoring system can be as low as 0.2Hz and the resolution is 0.01Hz.

  12. Potential health effects of standing waves generated by low frequency noise

    Directory of Open Access Journals (Sweden)

    Stanislav Ziaran

    2013-01-01

    Full Text Available The main aim is to present the available updated knowledge regarding the potential health effects of standing waves generated by low frequency noise (LFN from an open window in a moving car where the negative effects of LFN induced by heating components and/or heating, ventilation and air-conditioning are assessed. Furthermore, the assessment of noise in chosen enclosed spaces, such as rooms, offices, and classrooms, or other LFN sources and their effect on the human being were investigated. These types of noise are responsible for disturbance during relaxation, sleep, mental work, education, and concentration, which may reflect negatively on the comfort and health of the population and on the mental state of people such as scientific staff and students. The assessment points out the most exposed areas, and analyzes the conditions of standing wave generation in these rooms caused by outdoor and/or indoor sources. Measurements were made for three different enclosed spaces (office, flat, and passenger car and sources (traffic specific noise at intersections, noise induced by pipe vibration, and aerodynamic noise and their operating conditions. For the detection of LFN, the A-weighted sound pressure level and vibration were measured and a fast Fourier transform analysis was used. The LFN sources are specified and the direct effects on the human are reported. Finally, this paper suggests the possibilities for the assessment of LFN and some possible measures that can be taken to prevent or reduce them.

  13. On-line low and high frequency acoustic leak detection and location for an automated steam generator protection system

    International Nuclear Information System (INIS)

    Gaubatz, D.C.; Gluekler, E.L.

    1990-01-01

    Two on-line acoustic leak detection systems were operated and installed on a 76 MW hockey stick steam generator in the Sodium Components Test Installation (SCTI) at the Energy Technology Engineering Center (ETEC) in Southern California. The low frequency system demonstrated the capability to detect and locate leaks, both intentional and unintentional. No false alarms were issued during the two year test program even with adjacent blasting activities, pneumatic drilling, shuttle rocket engine testing nearby, scrams of the SCTI facility, thermal/hydraulic transient testing, and pump/control valve operations. For the high frequency system the capability to detect water into sodium reactions was established utilizing frequencies as high as 300 kHz. The high frequency system appeared to be sensitive to noise generated by maintenance work and system valve operations. Subsequent development work which is incomplete as of this date showed much more promise for the high frequency system. (author). 13 figs

  14. Mid-Infrared Frequency-Agile Dual-Comb Spectroscopy

    Science.gov (United States)

    Luo, Pei-Ling; Yan, Ming; Iwakuni, Kana; Millot, Guy; Hänsch, Theodor W.; Picqué, Nathalie

    2016-06-01

    We demonstrate a new approach to mid-infrared dual-comb spectroscopy. It opens up new opportunities for accurate real-time spectroscopic diagnostics and it significantly simplifies the technique of dual-comb spectroscopy. Two mid-infrared frequency combs of slightly different repetition frequencies and moderate, but rapidly tunable, spectral span are generated in the 2800-3200 cm-1 region. The generators rely on electro-optic modulators, nonlinear fibers for spectral broadening and difference frequency generation and do not involve mode-locked lasers. Flat-top frequency combs span up to 10 cm-1 with a comb line spacing of 100 MHz (3×10-3 cm-1). The performance of the spectrometer without any phase-lock electronics or correction scheme is illustrated with spectra showing resolved comb lines and Doppler-limited spectra of methane. High precision on the spectroscopic parameter (line positions and intensities) determination is demonstrated for spectra measured on a millisecond time scale and it is validated with comparison with literature data. G. Millot, S. Pitois, M. Yan, T. Hovannysyan, A. Bendahmane, T.W. Hänsch, N. Picqué, Frequency-agile dual-comb spectroscopy, Nature Photonics 10, 27-30 (2016).

  15. Generation of single-frequency tunable green light in a coupled ring tapered diode laser cavity

    DEFF Research Database (Denmark)

    Jensen, Ole Bjarlin; Petersen, Paul Michael

    2013-01-01

    in the broad wavelength range from 1049 nm to 1093 nm and the beam propagation factor is improved from M2 = 2.8 to below 1.1. The laser frequency is automatically locked to the cavity resonance frequency using optical feedback. Furthermore, we show that this adaptive external cavity approach leads to efficient......We report the realization of a tapered diode laser operated in a coupled ring cavity that significantly improves the coherence properties of the tapered laser and efficiently generates tunable light at the second harmonic frequency. The tapered diode laser is tunable with single-frequency output...... frequency doubling. More than 500 mW green output power is obtained by placing a periodically poled LiNbO3 crystal in the external cavity. The single frequency green output from the laser system is tunable in the 530 nm to 533 nm range limited by the LiNbO3 crystal. The optical to optical conversion...

  16. Conceptual citation frequency - quantum mechanics and elementary particle physics

    International Nuclear Information System (INIS)

    Hurt, C.D.

    1986-01-01

    The differences in conceptual citation frequency are examined between quantum mechanics literature and elementary particle physics literature. Using a sample based on increments of 5 years, 7 contrast tests were generated over a literature period of 35 years. A Dunn planned comparison procedure indicated a statistical difference in years 5 and 10 but no differences were found in the remaining years. The results must be weighed against the time frames in which the literature was produced but clearly point to an initial difference in the two areas. Additional work is required to reevaluate the findings and to investigate the conceptual citation frequency issue further. The frequency distribution generated approximates a cumulative advantage process. (author)

  17. Finding Flicker: Critical Differences in Temporal Frequency Capture Attention

    OpenAIRE

    Cass, John; Van der Burg, Erik; Alais, David

    2011-01-01

    Rapid visual flicker is known to capture attention. Here we show slow flicker can also capture attention under reciprocal temporal conditions. Observers searched for a target line (vertical or horizontal) among tilted distractors. Distractor lines were surrounded by luminance modulating annuli, all flickering sinusoidally at 1.3 or 12.1 Hz, while the target’s annulus flickered at frequencies within this range. Search times improved with increasing target/distractor frequency differences. For ...

  18. Iterative normalization technique for reference sequence generation for zero-tail discrete fourier transform spread orthogonal frequency division multiplexing

    DEFF Research Database (Denmark)

    2017-01-01

    Systems, methods, apparatuses, and computer program products for generating sequences for zero-tail discrete fourier transform (DFT)-spread-orthogonal frequency division multiplexing (OFDM) (ZT DFT-s-OFDM) reference signals. One method includes adding a zero vector to an input sequence...... of each of the elements, converting the sequence to time domain, generating a zero-padded sequence by forcing a zero head and tail of the sequence, and repeating the steps until a final sequence with zero-tail and flat frequency response is obtained....

  19. Highly efficient deep ultraviolet generation by sum-frequency mixing ...

    Indian Academy of Sciences (India)

    Ultraviolet laser radiation; walk-off compensation; third harmonic generation; nonlinear optical material. ... Because of its large birefringence, BBO crystal permits the generation of UV radiation near 200 nm by THG ... A, B and C are three different configurations for THG, A – Single crystal, B – two crystals (B2 and B3 in.

  20. Frequency Control in Autonomous Power Systems With High Wind Power Penetration

    DEFF Research Database (Denmark)

    Margaris, Ioannis D.; Papathanassiou, Stavros A.; Hatziargyriou, Nikos D.

    2012-01-01

    This paper presents an investigation on wind turbine (WT) contribution to the frequency control of noninterconnected island systems. The capability of WTs to participate in the primary frequency control and offer primary reserve is discussed. The investigation includes both transient frequency...... of Rhodes Island has been selected as a study case, which includes different types of conventional generation and the three basic WT types, based on Active-Stall Induction Generator (ASIG), Doubly Fed Induction Generator (DFIG), and Permanent Magnet Synchronous Generator (PMSG)....

  1. Conformation, orientation and interaction in molecular monolayers: A surface second harmonic and sum frequency generation study

    International Nuclear Information System (INIS)

    Superfine, R.; Huang, J.Y.; Shen, Y.R.

    1988-12-01

    We have used sum frequency generation (SFG) to study the order in a silane monolayer before and after the deposition of a coadsorbed liquid crystal monolayer. We observe an increase in the order of the chain of the silane molecule induced by the interpenetration of the liquid crystal molecules. By using second harmonic generation (SHG) and SFG, we have studied the orientation and conformation of the liquid crystal molecule on clean and silane coated glass surfaces. On both surfaces, the biphenyl group is tilted by 70 degree with the alkyl chain end pointing away from the surface. The shift in the C-H stretch frequencies in the coadsorbed system indicates a significant interaction between molecules. 9 refs., 3 figs

  2. External-cavity high-power dual-wavelength tapered amplifier with tunable THz frequency difference

    DEFF Research Database (Denmark)

    Chi, Mingjun; Jensen, Ole Bjarlin; Petersen, Paul Michael

    2012-01-01

    A tunable 800 nm high-power dual-wavelength diode laser system with double-Littrow external-cavity feedback is demonstrated. The two wavelengths can be tuned individually, and the frequency difference of the two wavelengths is tunable from 0.5 to 5.0 THz. A maximum output power of 1.54 W is achie......A tunable 800 nm high-power dual-wavelength diode laser system with double-Littrow external-cavity feedback is demonstrated. The two wavelengths can be tuned individually, and the frequency difference of the two wavelengths is tunable from 0.5 to 5.0 THz. A maximum output power of 1.54 W...... is achieved with a frequency difference of 0.86 THz, the output power is higher than 1.3 W in the 5.0 THz range of frequency difference, and the amplified spontaneous emission intensity is more than 20 dB suppressed in the range of frequency difference. The beam quality factor M2 is 1.22±0.15 at an output...

  3. Cortical feedback signals generalise across different spatial frequencies of feedforward inputs.

    Science.gov (United States)

    Revina, Yulia; Petro, Lucy S; Muckli, Lars

    2017-09-22

    Visual processing in cortex relies on feedback projections contextualising feedforward information flow. Primary visual cortex (V1) has small receptive fields and processes feedforward information at a fine-grained spatial scale, whereas higher visual areas have larger, spatially invariant receptive fields. Therefore, feedback could provide coarse information about the global scene structure or alternatively recover fine-grained structure by targeting small receptive fields in V1. We tested if feedback signals generalise across different spatial frequencies of feedforward inputs, or if they are tuned to the spatial scale of the visual scene. Using a partial occlusion paradigm, functional magnetic resonance imaging (fMRI) and multivoxel pattern analysis (MVPA) we investigated whether feedback to V1 contains coarse or fine-grained information by manipulating the spatial frequency of the scene surround outside an occluded image portion. We show that feedback transmits both coarse and fine-grained information as it carries information about both low (LSF) and high spatial frequencies (HSF). Further, feedback signals containing LSF information are similar to feedback signals containing HSF information, even without a large overlap in spatial frequency bands of the HSF and LSF scenes. Lastly, we found that feedback carries similar information about the spatial frequency band across different scenes. We conclude that cortical feedback signals contain information which generalises across different spatial frequencies of feedforward inputs. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  4. Evaluation of high frequency ghost cavitation emissions for two different seismic air-gun arrays using numerical modelling

    Science.gov (United States)

    Khodabandeloo, Babak; Landrø, Martin

    2017-04-01

    Sound is deployed by marine mammals for variety of vital purposes such as finding food, communication, echolocation, etc. On the other hand human activities generate underwater noise. One major type of acoustic source is marine seismic acquisition which is carried out to image layers beneath the seabed exploiting reflected acoustic and elastic waves. Air-gun arrays are the most common and efficient marine seismic sources. Field measurements using broad band hydrophones have revealed that acoustic energies emitted by air-gun arrays contains frequencies from a few Hz up to tens of kHz. Frequencies below 200 Hz benefit seismic imaging and the rest is normally considered as wasted energy. On the other hand, the high frequency range (above 200 Hz) overlaps with hearing curves of many marine mammals and especially toothed whales and may have an impact on their behavior. A phenomenon called ghost cavitation is recently recognized to be responsible for a major part of these high frequencies (> 5 kHz). Acoustic pressure waves of individual air guns reflected from sea surface can cause the hydrostatic pressure to drop towards zero close to the source array. In these regions there is a high probability for water vapor cavity growth and subsequent collapse. We have simulated ghost cavitation cloud using numerical modelling and the results are validated by comparing with field measurements. The model is used to compare the amount of high frequency noise due to ghost cavitation for two different air gun arrays. Both of the arrays have three subarrays but the array distance for the one with 2730 in3 air volume is 6 meters and for the slightly bigger array (3250 in3 in air volume) the subarrays are separated by 8 meters. Simulation results indicate that the second array, despite larger subarray distance, generates stronger ghost cavitation signal.

  5. Vibrational sum frequency generation (SFG) spectroscopic study of crystalline cellulose in biomass

    Science.gov (United States)

    Kim, Seong H.; Lee, Christopher M.; Kafle, Kabindra; Park, Yong Bum; Xi, Xiaoning

    2013-09-01

    The noncentrosymmetry requirement of sum frequency generation (SFG) spectroscopy allows selective detection of crystalline cellulose in plant cell walls and lignocellulose biomass without spectral interferences from hemicelluloses and lignin. In addition, the phase synchronization requirement of the SFG process allows noninvasive investigation of spatial arrangement of crystalline cellulose microfibrils in the sample. This paper reviews how these principles are applied to reveal structural information of crystalline cellulose in plant cell walls and biomass.

  6. Generational Differences in Work-Family Conflict and Synergy

    OpenAIRE

    Beutell, Nicholas

    2013-01-01

    This paper examines differences in work-family conflict and synergy among the four generational groups represented in the contemporary workforce: Generation Y Generation X, Baby Boomers, and Matures using data from the 2008 National Study of the Changing Workforce (n = 3,502). Significant generational differences were found for work-family conflict (work interfering with family and family interfering with work) but not for work-family synergy. Mental health and job pressure were the best pred...

  7. MIR-difference-frequency laser spectrometer for CO detection in combustions

    Directory of Open Access Journals (Sweden)

    A. Khorsandi

    2003-06-01

    Full Text Available  Two continuous-wave (cw single mode diode-lasers (Toshiba TOLD 9150 and Sharp LT024MDO are applied as pump and signal sources to obtain difference-frequency generation (DFG in the mid-infrared (MIR region by using an AgGaS2 crystal with a length of 30 mm for 90° type I phase-matching. Tuneable MIR laser radiation around 5 µm is obtained with an output power in the order of hundred nW while the diode lasers are operated at 20 and 30 mW around their centre wavelengths 789 and 681 nm, respectively. To demonstrate the applicability of this MIR-DFG laser spectrometer we recorded the absorption spectrum of CO for the P(21 rotational line at 2055.4 cm-1 in a 10 cm long cell and in the flame of a McKenna burner in order to estimate the self-broadening coefficient of CO, the collisional-broadening of CO with CO2, and the CO concentration distribution in the flame.

  8. The Physics of Ultrabroadband Frequency Comb Generation and Optimized Combs for Measurements in Fundamental Physics

    Science.gov (United States)

    2016-07-02

    order phase-matched cascaded frequency gene , high harmonic generation, fine structure constant measurements, -envelope phase stabilization, ultra fast...MHz repetition rate are generated from a picosecond fiber laser (Pritel FFL-500) before amplifica- tion in an erbium- doped fiber amplifier (EDFA). The...width from 1 to 36 nm with central wavelength tunable over 1527–1550 nm. The pump pulses were combined with the seed and injected into 9.5 m of Ge- doped

  9. Toward a simple molecular understanding of sum frequency generation at air-water interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Noah-Vanhoucke, Joyce; Smith, Jared D.; Geissler, Phillip L.

    2009-01-13

    Second-order vibrational spectroscopies successfully isolate signals from interfaces, but they report on intermolecular structure in a complicated and indirect way. Here we adapt a perspective on vibrational response developed for bulk spectroscopies to explore the microscopic fluctuations to which sum frequency generation (SFG), a popular surface-specific measurement, is most sensitive. We focus exclusively on inhomogeneous broadening of spectral susceptibilities for OH stretching of HOD as a dilute solute in D{sub 2}O. Exploiting a simple connection between vibrational frequency shifts and an electric field variable, we identify several functions of molecular orientation whose averages govern SFG. The frequency-dependence of these quantities is well captured by a pair of averages, involving alignment of OH and OD bonds with the surface normal at corresponding values of the electric field. The approximate form we obtain for SFG susceptibility highlights a dramatic sensitivity to the way a simulated liquid slab is partitioned for calculating second-order response.

  10. The Advising Workplace: Generational Differences and Challenges

    Science.gov (United States)

    Gordon, Virginia; Steele, Peg

    2005-01-01

    The American workplace today is unlike any other in history because for the first time it is made up of four distinct generations. The advising workplaces on today's college campuses mirror this generational diversity. Four generations and their different perceptions of work attitudes and values, management expectations, communication patterns,…

  11. Microwave generation and frequency conversion using intense relativistic electron beams

    International Nuclear Information System (INIS)

    Buzzi, J.M.; Doucet, H.J.; Etlicher, B.

    1977-01-01

    Some aspects of the microwave generation and frequency conversion by relativistic electron beams are studied. Using an electron synchrotron maser, the excitation of microwaves by an annular relativistic electron beam propagating through a circular wave guide immersed in a longitudinal magnetic field is analyzed. This theoretical model is somewhat more realistic than the previous one because the guiding centers are not on the wave guide axis. Microwave reflection is observed on a R.E.B. front propagating into a gas filled waveguide. The frequency conversion from the incident X-band e.m. waves and the reflected Ka band observed signal is consistent with the Doppler model for β = 0.7. This value agrees with the average beam front velocity as measured from time-of-flight using two B/sub theta/ probes. The reflection is found to occur during the current rise time. With a low impedance device (2 Ω, 400 keV) a GW X-band emission has been observed using thin anodes and a gas filled waveguide. This emission is probably due to the self-fields of the beam and could be used as a diagnostic

  12. Clustering of Cochlear Oscillations in Frequency Plateaus as a Tool to Investigate SOAE Generation

    DEFF Research Database (Denmark)

    Epp, Bastian; Wit, Hero; van Dijk, Pim

    2016-01-01

    of coupled oscillators (OAM) [7] are also found in a transmission line model (TLM) which is able to generate realistic SOAEs [2] and if these frequency plateaus can be used to explain the formation of SOAEs. The simulations showed a clustering of oscillators along the simulated basilar membrane Both, the OAM...

  13. Generational Differences In Organizational Justice Perceptions: An Exploratory Investigation Across Three Generational Cohorts

    Directory of Open Access Journals (Sweden)

    Ledimo Ophillia

    2015-06-01

    Full Text Available Despite several reviews of generational differences across cohorts regarding their career stages in organizations, relatively few empirical investigations have been conducted to understand cohorts’ perceptions. Hence, there is paucity of studies that explored differences on the construct organizational justice across generational cohorts. The objective of this study was to explore the differences across three generational cohorts (Millennials, Generation X, and Baby Boomers on dimensions of the organizational justice measurement instrument (OJMI. Data was collected through the administration of OJMI to a random sample size of organizational employees (n = 289. Descriptive statistics and analysis of variance were conducted to interpret the data. These findings provide evidence that differences do exist across cohorts on dimensions of organizational justice. In terms of contributions and practical implications, insight gained from the findings may be used in proposing organizational development interventions to manage multigenerational employees as well as to conduct future research.

  14. Efficient generation of continuous-wave yellow-orange light using sum-frequency in periodically poled KTP

    DEFF Research Database (Denmark)

    Janousek, Jiri; Johansson, Sandra; Tidemand-Lichtenberg, Peter

    We present highly efficient sum-frequency generation between two CW 1064 and 1342 nm laser lines of two Nd:YVO4 lasers using periodically poled KTP. This is an all solid-state light source in the yellow-orange spectral range....

  15. Evidence for electron-based ion generation in radio-frequency ionization.

    Science.gov (United States)

    Olaitan, Abayomi D; Zekavat, Behrooz; Solouki, Touradj

    2016-01-01

    Radio-frequency ionization (RFI) is a novel ionization method coupled to mass spectrometry (MS) for analysis of semi-volatile and volatile organic compounds (VOCs). Despite the demonstrated capabilities of RFI MS for VOC analysis in both positive- and negative-ion modes, mechanism of RFI is not completely understood. Improved understanding of the ion generation process in RFI should expand its utility in MS. Here, we studied the possibility of electron emission in RFI using both direct charged particle current measurements and indirect electron detection in a 9.4-T Fourier transform-ion cyclotron resonance (FT-ICR) mass spectrometer. We show that RF-generated electrons can be trapped in the ICR cell and, subsequently, reacted with neutral hexafluorobenzene (C6 F6 ) molecules to generate C6 F6 (●-) . Intensity of observed C6 F6 (●-) species correlated with the number of trapped electrons and decreased as a function of electron quenching period. We also measured the electron attachment rate constant of hexafluorobenzene using a post-RF electron trapping experiment. Measured electron attachment rate constant of hexafluorobenzene (1.19 (±0.53) × 10(-9)  cm(3)  molecule(-1)  s(-1) ) for post-RF FT-ICR MS agreed with the previously reported value (1.60 (±0.30) × 10(-9)  cm(3)  molecule(-1)  s(-1) ) from low-pressure ICR MS measurements. Experimental results from direct and indirect electron measurements suggest that RFI process involves RF-generated electrons under ultrahigh vacuum conditions. Copyright © 2015 John Wiley & Sons, Ltd.

  16. Frequency Characteristics of Double-Walled Carbon Nanotube Resonator with Different Length

    Directory of Open Access Journals (Sweden)

    Jun-Ha LEE

    2016-05-01

    Full Text Available In this paper, we have conducted classical molecular dynamics simulations for DWCNTs of various wall lengths to investigate their use as ultrahigh frequency nano-mechanical resonators. We sought to determine the variations in the frequency of these resonators according to changes in the DWCNT wall lengths. For a double-walled carbon nanotube resonator with a shorter inner nanotube, the shorter inner nanotube can be considered to be a flexible core, and thus, the length influences the fundamental frequency. In this paper, we analyze the variation in frequency of ultra-high frequency nano-mechnical resonators constructed from DWCNTs with different wall lengths.DOI: http://dx.doi.org/10.5755/j01.ms.22.2.12951

  17. An Adaptive Model Predictive Load Frequency Control Method for Multi-Area Interconnected Power Systems with Photovoltaic Generations

    Directory of Open Access Journals (Sweden)

    Guo-Qiang Zeng

    2017-11-01

    Full Text Available As the penetration level of renewable distributed generations such as wind turbine generator and photovoltaic stations increases, the load frequency control issue of a multi-area interconnected power system becomes more challenging. This paper presents an adaptive model predictive load frequency control method for a multi-area interconnected power system with photovoltaic generation by considering some nonlinear features such as a dead band for governor and generation rate constraint for steam turbine. The dynamic characteristic of this system is formulated as a discrete-time state space model firstly. Then, the predictive dynamic model is obtained by introducing an expanded state vector, and rolling optimization of control signal is implemented based on a cost function by minimizing the weighted sum of square predicted errors and square future control values. The simulation results on a typical two-area power system consisting of photovoltaic and thermal generator have demonstrated the superiority of the proposed model predictive control method to these state-of-the-art control techniques such as firefly algorithm, genetic algorithm, and population extremal optimization-based proportional-integral control methods in cases of normal conditions, load disturbance and parameters uncertainty.

  18. Optical sum-frequency generation in a whispering-gallery-mode resonator

    International Nuclear Information System (INIS)

    Strekalov, Dmitry V; Kowligy, Abijith S; Huang, Yu-Ping; Kumar, Prem

    2014-01-01

    We demonstrate sum-frequency generation between a telecom wavelength and the Rb D2 line, achieved through natural phase matching in a nonlinear whispering gallery mode resonator. Due to the strong optical field confinement and ultra high Q of the cavity, the process saturates already at sub-mW pump peak power, at least two orders of magnitude lower than in existing waveguide-based devices. The experimental data are in agreement with the nonlinear dynamics and phase matching theory based on spherical geometry. Our experimental and theoretical results point toward a new platform for manipulating the color and quantum states of light waves for applications such as atomic memory based quantum networking and logic operations with optical signals. (paper)

  19. Sum Frequency Generation Vibrational Spectroscopy of Colloidal Platinum Nanoparticle Catalysts: Disordering versus Removal of Organic Capping

    KAUST Repository

    Krier, James M.; Michalak, William D.; Baker, L. Robert; An, Kwangjin; Komvopoulos, Kyriakos; Somorjai, Gabor A.

    2012-01-01

    Recent work with nanoparticle catalysts shows that size and shape control on the nanometer scale influences reaction rate and selectivity. Sum frequency generation (SFG) vibrational spectroscopy is a powerful tool for studying heterogeneous

  20. Far-infrared cw difference-frequency generation using vertically integrated and planar low temperature grown GaAs photomixers: application to H2S rotational spectrum up to 3 THz

    Science.gov (United States)

    Mouret, G.; Matton, S.; Bocquet, R.; Hindle, F.; Peytavit, E.; Lampin, J. F.; Lippens, D.

    2004-10-01

    The generation of continuous coherent THz radiation by mixing two cw Ti:Sa laser beams with a well-controlled frequency separation for a new scheme of vertically integrated low temperature grown GaAs (LTG-GaAs) spiral photomixer is reported. For this new photomixer device used in THz emission, the LTG-GaAs active layer is sandwiched between the two parallel metal plates of a high-speed photodetector loaded by a broadband spiral antenna. We have exploited the advantage of a higher delivered power in the low part of the spectrum (<2000 GHz), while a low RC time constant planar interdigitated detector was used at the upper frequency. The performances of the spectroscopic setup in terms of spectral resolution (5 MHz), tunability and frequency capability are assessed by measurements of the pure rotational spectra of hydrogen sulfide (H2S) up to 3000 GHz.

  1. In-phased second harmonic wave array generation with intra-Talbot-cavity frequency-doubling.

    Science.gov (United States)

    Hirosawa, Kenichi; Shohda, Fumio; Yanagisawa, Takayuki; Kannari, Fumihiko

    2015-03-23

    The Talbot cavity is one promising method to synchronize the phase of a laser array. However, it does not achieve the lowest array mode with the same phase but the highest array mode with the anti-phase between every two adjacent lasers, which is called out-phase locking. Consequently, their far-field images exhibit 2-peak profiles. We propose intra-Talbot-cavity frequency-doubling. By placing a nonlinear crystal in a Talbot cavity, the Talbot cavity generates an out-phased fundamental wave array, which is converted into an in-phase-locked second harmonic wave array at the nonlinear crystal. We demonstrate numerical calculations and experiments on intra-Talbot-cavity frequency-doubling and obtain an in-phase-locked second harmonic wave array for a Nd:YVO₄ array laser.

  2. Generation of three wide frequency bands within a single white-light cavity

    Science.gov (United States)

    Othman, Anas; Yevick, David; Al-Amri, M.

    2018-04-01

    We theoretically investigate the double-Λ scheme inside a Fabry-Pérot cavity employing a weak probe beam and two strong driving fields together with an incoherent pumping mechanism. By generating analytical expressions for the susceptibility and applying the white-light cavity conditions, we devise a procedure that reaches the white-light condition at a smaller gas density than the values typically cited in similar previous studies. Further, when the intensities of the two driving fields are equal, a single giant white band is obtained, while for unequal driving fields three white bands can be present in the cavity. Two additional techniques are then advanced for generating three white bands and a method is described for displacing the center frequency of the bands. Finally, some potential applications are suggested.

  3. Generational Differences in Work-Family Conflict and Synergy

    Directory of Open Access Journals (Sweden)

    Nicholas J. Beutell

    2013-06-01

    Full Text Available This paper examines differences in work-family conflict and synergy among the four generational groups represented in the contemporary workforce: Generation Y Generation X, Baby Boomers, and Matures using data from the 2008 National Study of the Changing Workforce (n = 3,502. Significant generational differences were found for work-family conflict (work interfering with family and family interfering with work but not for work-family synergy. Mental health and job pressure were the best predictors of work interfering with family conflict for each generational group. Work-family synergy presented a more complex picture. Work-family conflict and synergy were significantly related to job, marital, and life satisfaction. Implications and directions for future research are discussed.

  4. Generational differences in work-family conflict and synergy.

    Science.gov (United States)

    Beutell, Nicholas J

    2013-06-19

    This paper examines differences in work-family conflict and synergy among the four generational groups represented in the contemporary workforce: Generation Y Generation X, Baby Boomers, and Matures using data from the 2008 National Study of the Changing Workforce (n = 3,502). Significant generational differences were found for work-family conflict (work interfering with family and family interfering with work) but not for work-family synergy. Mental health and job pressure were the best predictors of work interfering with family conflict for each generational group. Work-family synergy presented a more complex picture. Work-family conflict and synergy were significantly related to job, marital, and life satisfaction. Implications and directions for future research are discussed.

  5. Generational Differences in Work-Family Conflict and Synergy

    Science.gov (United States)

    Beutell, Nicholas J.

    2013-01-01

    This paper examines differences in work-family conflict and synergy among the four generational groups represented in the contemporary workforce: Generation Y Generation X, Baby Boomers, and Matures using data from the 2008 National Study of the Changing Workforce (n = 3,502). Significant generational differences were found for work-family conflict (work interfering with family and family interfering with work) but not for work-family synergy. Mental health and job pressure were the best predictors of work interfering with family conflict for each generational group. Work-family synergy presented a more complex picture. Work-family conflict and synergy were significantly related to job, marital, and life satisfaction. Implications and directions for future research are discussed. PMID:23783221

  6. Role of Wind Power in Primary Frequency Response of an Interconnection: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Y. C.; Gevorgian, V.; Ela, E.; Singhvi, V.; Pourbeik, P.

    2013-09-01

    The electrical frequency of an interconnection must be maintained very close to its nominal level at all times. Large frequency deviations can lead to unintended consequences such as load shedding, instability, and machine damage, among others. Turbine governors of conventional generating units provide primary frequency response (PFR) to ensure that frequency deviations are not significant duringlarge transient events. Increasing penetrations of variable renewable generation, such as wind and solar power, and planned retirements of conventional thermal plants - and thus a reduction in the amount of suppliers with PFR capabilities - causes concerns about a decline of PFR and system inertia in North America. The capability of inverter-coupled wind generation technologies to contribute toPFR and inertia, if appropriately equipped with the necessary control features, can help alleviate concerns. However, these responses differ from those supplied by conventional generation and inertia, and it is not entirely understood how variable renewable generation will affect the system response at different penetration levels. This paper evaluates the impact of wind generation providing PFRand synthetic inertial response on a large interconnection.

  7. Time-Frequency Analysis of Boundary-Layer Instabilites Generated by Freestream Laser Perturbations

    Science.gov (United States)

    Chou, Amanda; Schneider, Steven P.

    2015-01-01

    A controlled disturbance is generated in the freestream of the Boeing/AFOSR Mach-6 Quiet Tunnel (BAM6QT) by focusing a high-powered Nd:YAG laser to create a laser-induced breakdown plasma. The plasma then cools, creating a freestream thermal disturbance that can be used to study receptivity. The freestream disturbance convects down-stream in the Mach-6 wind tunnel to interact with a flared cone model. The adverse pressure gradient created by the flare of the model is capable of generating second-mode instability waves that grow large and become nonlinear before experiencing natural transition in quiet flow. The freestream laser perturbation generates a wave packet in the boundary layer at the same frequency as the natural second mode, complicating time-independent analyses of the effect of the laser perturbation. The data show that the laser perturbation creates an instability wave packet that is larger than the natural waves on the sharp flared cone. The wave packet is still difficult to distinguish from the natural instabilities on the blunt flared cone.

  8. Study and development of different techniques for the generation, conversion, propagation, and radiation of high power microwaves for the electronic cyclotron frequency plasma heating

    International Nuclear Information System (INIS)

    Rebuffi, L.

    1987-10-01

    The development and optimization of a microwave technique, concerning the high frequency (electronic cyclotron frequency) plasma heating is presented. The experiments are effectuated on the Fontenay-aux-Roses TFR tokamak, with 660 kw whole power, during 100 msec, produced at 60 GHz. Low power tests are performed on the different transmission line components (there are 3, formed by metallic circular waveguides). The work also includes: the development of a lens formed by thin metallic plans; the study of slotted surface mirror; the development of a system for the accurate measurement (5.10 -6 ) of the gyrotronic frequency; a theory, based on the equivalent circuits method, generalized to the rotational and polarization mirrors; the development of a numerical simulation code. A practical scheme, for the optimization of the parameters concerning the optical transmission line project, is given. The results of this work can be applied to the experiment involving power levels, frequencies and times of impulsion increasingly higher (respectively about MW, 100 GHz and 10s) than the reported ones. Moreover, they can also be used in any experiment in the microwave field [fr

  9. Fusion of space-borne multi-baseline and multi-frequency interferometric results based on extended Kalman filter to generate high quality DEMs

    Science.gov (United States)

    Zhang, Xiaojie; Zeng, Qiming; Jiao, Jian; Zhang, Jingfa

    2016-01-01

    Repeat-pass Interferometric Synthetic Aperture Radar (InSAR) is a technique that can be used to generate DEMs. But the accuracy of InSAR is greatly limited by geometrical distortions, atmospheric effect, and decorrelations, particularly in mountainous areas, such as western China where no high quality DEM has so far been accomplished. Since each of InSAR DEMs generated using data of different frequencies and baselines has their own advantages and disadvantages, it is therefore very potential to overcome some of the limitations of InSAR by fusing Multi-baseline and Multi-frequency Interferometric Results (MMIRs). This paper proposed a fusion method based on Extended Kalman Filter (EKF), which takes the InSAR-derived DEMs as states in prediction step and the flattened interferograms as observations in control step to generate the final fused DEM. Before the fusion, detection of layover and shadow regions, low-coherence regions and regions with large height error is carried out because MMIRs in these regions are believed to be unreliable and thereafter are excluded. The whole processing flow is tested with TerraSAR-X and Envisat ASAR datasets. Finally, the fused DEM is validated with ASTER GDEM and national standard DEM of China. The results demonstrate that the proposed method is effective even in low coherence areas.

  10. Experience in connecting the power generating units of thermal power plants to automatic secondary frequency regulation within the united power system of Russia

    International Nuclear Information System (INIS)

    Zhukov, A. V.; Komarov, A. N.; Safronov, A. N.; Barsukov, I. V.

    2009-01-01

    The principles of central control of the power generating units of thermal power plants by automatic secondary frequency and active power overcurrent regulation systems, and the algorithms for interactions between automatic power control systems for the power production units in thermal power plants and centralized systems for automatic frequency and power regulation, are discussed. The order of switching the power generating units of thermal power plants over to control by a centralized system for automatic frequency and power regulation and by the Central Coordinating System for automatic frequency and power regulation is presented. The results of full-scale system tests of the control of power generating units of the Kirishskaya, Stavropol, and Perm GRES (State Regional Electric Power Plants) by the Central Coordinating System for automatic frequency and power regulation at the United Power System of Russia on September 23-25, 2008, are reported.

  11. Differences in citation frequency of clinical and basic science papers in cardiovascular research.

    Science.gov (United States)

    Opthof, Tobias

    2011-06-01

    In this article, a critical analysis is performed on differences in citation frequency of basic and clinical cardiovascular papers. It appears that the latter papers are cited at about 40% higher frequency. The differences between the largest number of citations of the most cited papers are even larger. It is also demonstrated that the groups of clinical and basic cardiovascular papers are also heterogeneous concerning citation frequency. It is concluded that none of the existing citation indicators appreciates these differences. At this moment these indicators should not be used for quality assessment of individual scientists and scientific niches with small numbers of scientists.

  12. High frequency seismic signal generated by landslides on complex topographies: from point source to spatially distributed sources

    Science.gov (United States)

    Mangeney, A.; Kuehnert, J.; Capdeville, Y.; Durand, V.; Stutzmann, E.; Kone, E. H.; Sethi, S.

    2017-12-01

    During their flow along the topography, landslides generate seismic waves in a wide frequency range. These so called landquakes can be recorded at very large distances (a few hundreds of km for large landslides). The recorded signals depend on the landslide seismic source and the seismic wave propagation. If the wave propagation is well understood, the seismic signals can be inverted for the seismic source and thus can be used to get information on the landslide properties and dynamics. Analysis and modeling of long period seismic signals (10-150s) have helped in this way to discriminate between different landslide scenarios and to constrain rheological parameters (e.g. Favreau et al., 2010). This was possible as topography poorly affects wave propagation at these long periods and the landslide seismic source can be approximated as a point source. In the near-field and at higher frequencies (> 1 Hz) the spatial extent of the source has to be taken into account and the influence of the topography on the recorded seismic signal should be quantified in order to extract information on the landslide properties and dynamics. The characteristic signature of distributed sources and varying topographies is studied as a function of frequency and recording distance.The time dependent spatial distribution of the forces applied to the ground by the landslide are obtained using granular flow numerical modeling on 3D topography. The generated seismic waves are simulated using the spectral element method. The simulated seismic signal is compared to observed seismic data from rockfalls at the Dolomieu Crater of Piton de la Fournaise (La Réunion).Favreau, P., Mangeney, A., Lucas, A., Crosta, G., and Bouchut, F. (2010). Numerical modeling of landquakes. Geophysical Research Letters, 37(15):1-5.

  13. Second-harmonic generation in shear wave beams with different polarizations

    Science.gov (United States)

    Spratt, Kyle S.; Ilinskii, Yurii A.; Zabolotskaya, Evgenia A.; Hamilton, Mark F.

    2015-10-01

    A coupled pair of nonlinear parabolic equations was derived by Zabolotskaya [1] that model the transverse components of the particle motion in a collimated shear wave beam propagating in an isotropic elastic solid. Like the KZK equation, the parabolic equation for shear wave beams accounts consistently for the leading order effects of diffraction, viscosity and nonlinearity. The nonlinearity includes a cubic nonlinear term that is equivalent to that present in plane shear waves, as well as a quadratic nonlinear term that is unique to diffracting beams. The work by Wochner et al. [2] considered shear wave beams with translational polarizations (linear, circular and elliptical), wherein second-order nonlinear effects vanish and the leading order nonlinear effect is third-harmonic generation by the cubic nonlinearity. The purpose of the current work is to investigate the quadratic nonlinear term present in the parabolic equation for shear wave beams by considering second-harmonic generation in Gaussian beams as a second-order nonlinear effect using standard perturbation theory. In order for second-order nonlinear effects to be present, a broader class of source polarizations must be considered that includes not only the familiar translational polarizations, but also polarizations accounting for stretching, shearing and rotation of the source plane. It is found that the polarization of the second harmonic generated by the quadratic nonlinearity is not necessarily the same as the polarization of the source-frequency beam, and we are able to derive a general analytic solution for second-harmonic generation from a Gaussian source condition that gives explicitly the relationship between the polarization of the source-frequency beam and the polarization of the second harmonic.

  14. Second-harmonic generation in shear wave beams with different polarizations

    Energy Technology Data Exchange (ETDEWEB)

    Spratt, Kyle S., E-mail: sprattkyle@gmail.com; Ilinskii, Yurii A.; Zabolotskaya, Evgenia A.; Hamilton, Mark F. [Applied Research Laboratories, The University of Texas at Austin, P. O. Box 8029, Austin, Texas 78713–8029, US (United States)

    2015-10-28

    A coupled pair of nonlinear parabolic equations was derived by Zabolotskaya [1] that model the transverse components of the particle motion in a collimated shear wave beam propagating in an isotropic elastic solid. Like the KZK equation, the parabolic equation for shear wave beams accounts consistently for the leading order effects of diffraction, viscosity and nonlinearity. The nonlinearity includes a cubic nonlinear term that is equivalent to that present in plane shear waves, as well as a quadratic nonlinear term that is unique to diffracting beams. The work by Wochner et al. [2] considered shear wave beams with translational polarizations (linear, circular and elliptical), wherein second-order nonlinear effects vanish and the leading order nonlinear effect is third-harmonic generation by the cubic nonlinearity. The purpose of the current work is to investigate the quadratic nonlinear term present in the parabolic equation for shear wave beams by considering second-harmonic generation in Gaussian beams as a second-order nonlinear effect using standard perturbation theory. In order for second-order nonlinear effects to be present, a broader class of source polarizations must be considered that includes not only the familiar translational polarizations, but also polarizations accounting for stretching, shearing and rotation of the source plane. It is found that the polarization of the second harmonic generated by the quadratic nonlinearity is not necessarily the same as the polarization of the source-frequency beam, and we are able to derive a general analytic solution for second-harmonic generation from a Gaussian source condition that gives explicitly the relationship between the polarization of the source-frequency beam and the polarization of the second harmonic.

  15. Second-harmonic generation in shear wave beams with different polarizations

    International Nuclear Information System (INIS)

    Spratt, Kyle S.; Ilinskii, Yurii A.; Zabolotskaya, Evgenia A.; Hamilton, Mark F.

    2015-01-01

    A coupled pair of nonlinear parabolic equations was derived by Zabolotskaya [1] that model the transverse components of the particle motion in a collimated shear wave beam propagating in an isotropic elastic solid. Like the KZK equation, the parabolic equation for shear wave beams accounts consistently for the leading order effects of diffraction, viscosity and nonlinearity. The nonlinearity includes a cubic nonlinear term that is equivalent to that present in plane shear waves, as well as a quadratic nonlinear term that is unique to diffracting beams. The work by Wochner et al. [2] considered shear wave beams with translational polarizations (linear, circular and elliptical), wherein second-order nonlinear effects vanish and the leading order nonlinear effect is third-harmonic generation by the cubic nonlinearity. The purpose of the current work is to investigate the quadratic nonlinear term present in the parabolic equation for shear wave beams by considering second-harmonic generation in Gaussian beams as a second-order nonlinear effect using standard perturbation theory. In order for second-order nonlinear effects to be present, a broader class of source polarizations must be considered that includes not only the familiar translational polarizations, but also polarizations accounting for stretching, shearing and rotation of the source plane. It is found that the polarization of the second harmonic generated by the quadratic nonlinearity is not necessarily the same as the polarization of the source-frequency beam, and we are able to derive a general analytic solution for second-harmonic generation from a Gaussian source condition that gives explicitly the relationship between the polarization of the source-frequency beam and the polarization of the second harmonic

  16. Optical frequency comb generation based on the dual-mode square microlaser and a nonlinear fiber loop

    Science.gov (United States)

    Weng, Hai-Zhong; Han, Jun-Yuan; Li, Qing; Yang, Yue-De; Xiao, Jin-Long; Qin, Guan-Shi; Huang, Yong-Zhen

    2018-05-01

    A novel approach using a dual-mode square microlaser as the pump source is demonstrated to produce wideband optical frequency comb (OFC). The enhanced nonlinear frequency conversion processes are accomplished in a nonlinear fiber loop, which can reduce the stimulated Brillouin scattering threshold and then generate a dual-mode Brillouin laser with improved optical signal-to-noise ratio. An OFC with 130 nm bandwidth and 76 GHz repetition rate is successfully generated under the four-wave mixing, and the number of the comb lines is enhanced by 26 times compared with the system without fiber loop. In addition, the repetition rate of the comb can be adjusted by changing the injection current of the microlaser. The pulse width of the comb spectrum is also compressed from 3 to 1 ps with an extra amplification-nonlinear process.

  17. Coupled Lugiato-Lefever equation for nonlinear frequency comb generation at an avoided crossing of a microresonator

    Science.gov (United States)

    D'Aguanno, Giuseppe; Menyuk, Curtis R.

    2017-03-01

    Guided-mode coupling in a microresonator generally manifests itself through avoided crossings of the corresponding resonances. This coupling can strongly modify the resonator local effective dispersion by creating two branches that have dispersions of opposite sign in spectral regions that would otherwise be characterized by either positive (normal) or negative (anomalous) dispersion. In this paper, we study, both analytically and computationally, the general properties of nonlinear frequency comb generation at an avoided crossing using the coupled Lugiato-Lefever equation. In particular, we find that bright solitons and broadband frequency combs can be excited when both branches are pumped for a suitable choice of the pump powers and the detuning parameters. A deterministic path for soliton generation is found. Contribution to the Topical Issue "Theory and applications of the Lugiato-Lefever Equation", edited by Yanne K. Chembo, Damia Gomila, Mustapha Tlidi, Curtis R. Menyuk.

  18. Differences in citation frequency of clinical and basic science papers in cardiovascular research

    NARCIS (Netherlands)

    Opthof, T.

    2011-01-01

    In this article, a critical analysis is performed on differences in citation frequency of basic and clinical cardiovascular papers. It appears that the latter papers are cited at about 40% higher frequency. The differences between the largest number of citations of the most cited papers are even

  19. Differences in citation frequency of clinical and basic science papers in cardiovascular research

    NARCIS (Netherlands)

    Opthof, Tobias

    In this article, a critical analysis is performed on differences in citation frequency of basic and clinical cardiovascular papers. It appears that the latter papers are cited at about 40% higher frequency. The differences between the largest number of citations of the most cited papers are even

  20. The generation of harmonics of the electron cyclotron half-frequency in a double-beam interaction experiment; Generation d'harmoniques de la demi-frequence giromagnetique electronique dans un systeme 'double-faisceau'

    Energy Technology Data Exchange (ETDEWEB)

    Olivain, J [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1966-06-01

    The generation of harmonics of the electron cyclotron half-frequency in a double-beam interaction experiment has been studied. A theoretical discussion is presented in which the transverse velocity distributions are represented by Dirac delta functions. The experimental measurements show the structure of the waves generated, for the fundamental mode (( {omega}={omega}/2).ce), i. e., their azimuthal wave number, wave length and radial profile of the oscillating potential, density and current. The quasi-electrostatic character of these waves has been established from these results by evaluating the ratio: vectorial product ({nabla}, E) / scalar product ({nabla}, E) which is always much smaller than unity. Measurements have also been made of the amplitudes and line-widths of several harmonics as well as the growth rate of the first of them. Finally, a number of observations have been made which show that nonlinear wave interactions play an important role in this system and which suggest an interpretation based on this mechanism for the generation of high order harmonics. (author) [French] Nous presentons les resultats obtenus sur la generation d'harmoniques de la demi-frequence giromagnetique electronique dans une experience interraction 'double-faisceau'. Nous discutons theoriquement ce systeme dans lequel les vitesses transversales sont introduites sous forme de distributions de Dirac. Les mesures experimentales ont permis, par le mode fondamental (({omega}={omega})/2.ce), de connaitre la structure des ondes engendrees (nombre d'onde 2 azimutal - longueur d'onde - profil radial du potentiel oscillant, amplitude des perturbations de potentiel, de densite et de courant). Le caractere quasi-electrostatique de ces ondes a pu etre etabli a partir de ces resultats en evaluant le rapport: produit vectoriel ({nabla}, E) / produit scalaire ({nabla}, E) qui reste toujours tres inferieur a l'unite. Les mesures ont egalement porte sur l'amplitude et la largeur des raies ainsi

  1. Compact field programmable gate array-based pulse-sequencer and radio-frequency generator for experiments with trapped atoms

    Energy Technology Data Exchange (ETDEWEB)

    Pruttivarasin, Thaned, E-mail: thaned.pruttivarasin@riken.jp [Quantum Metrology Laboratory, RIKEN, Wako-shi, Saitama 351-0198 (Japan); Katori, Hidetoshi [Quantum Metrology Laboratory, RIKEN, Wako-shi, Saitama 351-0198 (Japan); Innovative Space-Time Project, ERATO, JST, Bunkyo-ku, Tokyo 113-8656 (Japan); Department of Applied Physics, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656 (Japan)

    2015-11-15

    We present a compact field-programmable gate array (FPGA) based pulse sequencer and radio-frequency (RF) generator suitable for experiments with cold trapped ions and atoms. The unit is capable of outputting a pulse sequence with at least 32 transistor-transistor logic (TTL) channels with a timing resolution of 40 ns and contains a built-in 100 MHz frequency counter for counting electrical pulses from a photo-multiplier tube. There are 16 independent direct-digital-synthesizers RF sources with fast (rise-time of ∼60 ns) amplitude switching and sub-mHz frequency tuning from 0 to 800 MHz.

  2. Voltage and frequency control of wind-powered islanded microgrids based on induction generator and STATCOM

    DEFF Research Database (Denmark)

    Bouzid, Allal; Sicard, Pierre; Guerrero, Josep M.

    2015-01-01

    This paper presents a comprehensive modeling of a three-phase cage induction machine used as a self-excited squirrel-cage induction generator (SEIG), and discusses the regulation of the voltage and frequency of a self-excited SEIG based on the action of the static synchronous Compensator (STATCOM......). The STATCOM with the proposed controller consists of a three-phase voltage-sourced inverter and a DC voltage. The compensator can provide the active and reactive powers and regulate AC system bus voltage and the frequency, but also may enhance the load stability. Moreover, a feed forward control method...

  3. Alpha band frequency differences between low-trait and high-trait anxious individuals.

    Science.gov (United States)

    Ward, Richard T; Smith, Shelby L; Kraus, Brian T; Allen, Anna V; Moses, Michael A; Simon-Dack, Stephanie L

    2018-01-17

    Trait anxiety has been shown to cause significant impairments on attentional tasks. Current research has identified alpha band frequency differences between low-trait and high-trait anxious individuals. Here, we further investigated the underlying alpha band frequency differences between low-trait and high-trait anxious individuals during their resting state and the completion of an inhibition executive functioning task. Using human participants and quantitative electroencephalographic recordings, we measured alpha band frequency in individuals both high and low in trait anxiety during their resting state, and while they completed an Eriksen Flanker Task. Results indicated that high-trait anxious individuals exhibit a desynchronization in alpha band frequency from a resting state to when they complete the Eriksen Flanker Task. This suggests that high-trait anxious individuals maintain fewer attentional resources at rest and must martial resources for task performance as compared with low-trait anxious individuals, who appear to maintain stable cognitive resources between rest and task performance. These findings add to the cognitive neuroscience literature surrounding the role of alpha band frequency in low-trait and high-trait anxious individuals.

  4. Wideband and high-gain frequency stabilization of a 100-W injection-locked Nd:YAG laser for second-generation gravitational wave detectors.

    Science.gov (United States)

    Ohmae, Noriaki; Moriwaki, Shigenori; Mio, Norikatsu

    2010-07-01

    Second-generation gravitational wave detectors require a highly stable laser with an output power greater than 100 W to attain their target sensitivity. We have developed a frequency stabilization system for a 100-W injection-locked Nd:YAG (yttrium aluminum garnet) laser. By placing an external wideband electro-optic modulator used as a fast-frequency actuator in the optical path of the slave output, we can circumvent a phase delay in the frequency control loop originating from the pole of an injection-locked slave cavity. Thus, we have developed an electro-optic modulator made of a MgO-doped stoichiometric LiNbO(3) crystal. Using this modulator, we achieve a frequency control bandwidth of 800 kHz and a control gain of 180 dB at 1 kHz. These values satisfy the requirement for a laser frequency control loop in second-generation gravitational wave detectors.

  5. Control of Reactive Species Generated by Low-frequency Biased Nanosecond Pulse Discharge in Atmospheric Pressure Plasma Effluent

    Science.gov (United States)

    Takashima, Keisuke; Kaneko, Toshiro

    2016-09-01

    The control of hydroxyl radical and the other gas phase species generation in the ejected gas through air plasma (air plasma effluent) has been experimentally studied, which is a key to extend the range of plasma treatment. Nanosecond pulse discharge is known to produce high reduced electric field (E/N) discharge that leads to efficient generation of the reactive species than conventional low frequency discharge, while the charge-voltage cycle in the low frequency discharge is known to be well-controlled. In this study, the nanosecond pulse discharge biased with AC low frequency high voltage is used to take advantages of these discharges, which allows us to modulate the reactive species composition in the air plasma effluent. The utilization of the gas-liquid interface and the liquid phase chemical reactions between the modulated long-lived reactive species delivered from the air plasma effluent could realize efficient liquid phase chemical reactions leading to short-lived reactive species production far from the air plasma, which is crucial for some plasma agricultural applications.

  6. Localization by interaural time difference (ITD): Effects of interaural frequency mismatch

    International Nuclear Information System (INIS)

    Bonham, B.H.; Lewis, E.R.

    1999-01-01

    A commonly accepted physiological model for lateralization of low-frequency sounds by interaural time delay (ITD) stipulates that binaural comparison neurons receive input from frequency-matched channels from each ear. Here, the effects of hypothetical interaural frequency mismatches on this model are reported. For this study, the cat close-quote s auditory system peripheral to the binaural comparison neurons was represented by a neurophysiologically derived model, and binaural comparison neurons were represented by cross-correlators. The results of the study indicate that, for binaural comparison neurons receiving input from one cochlear channel from each ear, interaural CF mismatches may serve to either augment or diminish the effective difference in ipsilateral and contralateral axonal time delays from the periphery to the binaural comparison neuron. The magnitude of this increase or decrease in the effective time delay difference can be up to 400 μs for CF mismatches of 0.2 octaves or less for binaural neurons with CFs between 250 Hz and 2.5 kHz. For binaural comparison neurons with nominal CFs near 500 Hz, the 25-μs effective time delay difference caused by a 0.012-octave CF mismatch is equal to the ITD previously shown to be behaviorally sufficient for the cat to lateralize a low-frequency sound source. copyright 1999 Acoustical Society of America.

  7. Elastic frequency-domain finite-difference contrast source inversion method

    International Nuclear Information System (INIS)

    He, Qinglong; Chen, Yong; Han, Bo; Li, Yang

    2016-01-01

    In this work, we extend the finite-difference contrast source inversion (FD-CSI) method to the frequency-domain elastic wave equations, where the parameters describing the subsurface structure are simultaneously reconstructed. The FD-CSI method is an iterative nonlinear inversion method, which exhibits several strengths. First, the finite-difference operator only relies on the background media and the given angular frequency, both of which are unchanged during inversion. Therefore, the matrix decomposition is performed only once at the beginning of the iteration if a direct solver is employed. This makes the inversion process relatively efficient in terms of the computational cost. In addition, the FD-CSI method automatically normalizes different parameters, which could avoid the numerical problems arising from the difference of the parameter magnitude. We exploit a parallel implementation of the FD-CSI method based on the domain decomposition method, ensuring a satisfactory scalability for large-scale problems. A simple numerical example with a homogeneous background medium is used to investigate the convergence of the elastic FD-CSI method. Moreover, the Marmousi II model proposed as a benchmark for testing seismic imaging methods is presented to demonstrate the performance of the elastic FD-CSI method in an inhomogeneous background medium. (paper)

  8. Workplace Engagement and Generational Differences in Values

    Science.gov (United States)

    Schullery, Nancy M.

    2013-01-01

    This article summarizes literature on workplace engagement, an issue that affects organizations' financial results and individuals' personal lives. The newest of the four generations in the workplace, Millennials, were recently shown to have different values than the other two prevalent generations. Surveys taken by 16,000 high school seniors of…

  9. Analysis and electrical modelling of a cylindrical DBD configuration at different operating frequencies

    International Nuclear Information System (INIS)

    Valdivia-Barrientos, R; Pacheco-Sotelo, J; Pacheco-Pacheco, M; BenItez-Read, J S; Lopez-Callejas, R

    2006-01-01

    A dielectric barrier discharge generated by flowing inert gas (helium) ionized by a high-voltage source through a cylindrical reactor working at atmospheric pressure has been studied and an electrical model characterizing this discharge is proposed. A sinusoidal voltage of up to 2 kV peak to peak with frequencies from 10 to 125 kHz has been applied to the discharge electrodes. The proposed model considers the geometry of the reactor and dielectric materials. From experimental and analytical results, a semi-empirical relation of the breakdown voltage is presented as a function of the operating frequency. The microdischarge regime is characterized by a dynamic equivalent capacitance

  10. Sum Frequency Generation Studies of Hydrogenation Reactions on Platinum Nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Krier, James M. [Univ. of California, Berkeley, CA (United States)

    2013-08-31

    Sum Frequency Generation (SFG) vibrational spectroscopy is used to characterize intermediate species of hydrogenation reactions on the surface of platinum nanoparticle catalysts. In contrast to other spectroscopy techniques which operate in ultra-high vacuum or probe surface species after reaction, SFG collects information under normal conditions as the reaction is taking place. Several systems have been studied previously using SFG on single crystals, notably alkene hydrogenation on Pt(111). In this thesis, many aspects of SFG experiments on colloidal nanoparticles are explored for the first time. To address spectral interference by the capping agent (PVP), three procedures are proposed: UV cleaning, H2 induced disordering and calcination (core-shell nanoparticles). UV cleaning and calcination physically destroy organic capping while disordering reduces SFG signal through a reversible structural change by PVP.

  11. Frequency-Dependent Tidal Triggering of Low Frequency Earthquakes Near Parkfield, California

    Science.gov (United States)

    Xue, L.; Burgmann, R.; Shelly, D. R.

    2017-12-01

    The effect of small periodic stress perturbations on earthquake generation is not clear, however, the rate of low-frequency earthquakes (LFEs) near Parkfield, California has been found to be strongly correlated with solid earth tides. Laboratory experiments and theoretical analyses show that the period of imposed forcing and source properties affect the sensitivity to triggering and the phase relation of the peak seismicity rate and the periodic stress, but frequency-dependent triggering has not been quantitatively explored in the field. Tidal forcing acts over a wide range of frequencies, therefore the sensitivity to tidal triggering of LFEs provides a good probe to the physical mechanisms affecting earthquake generation. In this study, we consider the tidal triggering of LFEs near Parkfield, California since 2001. We find the LFEs rate is correlated with tidal shear stress, normal stress rate and shear stress rate. The occurrence of LFEs can also be independently modulated by groups of tidal constituents at semi-diurnal, diurnal and fortnightly frequencies. The strength of the response of LFEs to the different tidal constituents varies between LFE families. Each LFE family has an optimal triggering frequency, which does not appear to be depth dependent or systematically related to other known properties. This suggests the period of the applied forcing plays an important role in the triggering process, and the interaction of periods of loading history and source region properties, such as friction, effective normal stress and pore fluid pressure, produces the observed frequency-dependent tidal triggering of LFEs.

  12. Biomechanical characteristics of adults walking forward and backward in water at different stride frequencies.

    Science.gov (United States)

    Cadenas-Sánchez, Cristina; Arellano, Raúl; Taladriz, Sonia; López-Contreras, Gracia

    2016-01-01

    The aim of this study was to examine spatiotemporal characteristics and joint angles during forward and backward walking in water at low and high stride frequency. Eight healthy adults (22.1 ± 1.1 years) walked forward and backward underwater at low (50 pulses) and high frequency (80 pulses) at the xiphoid process level with arms crossed at the chest. The main differences observed were that the participants presented a greater speed (0.58 vs. 0.85 m/s) and more asymmetry of the step length (1.24 vs. 1.48) at high frequency whilst the stride and step length (0.84 vs. 0.7 m and 0.43 vs. 0.35 m, respectively) were lower compared to low frequency (P hip presented more flexion than during backward walking (ankle: 84.0 vs. 91.8º and hip: 22.8 vs. 8.0º; P hip were more flexed at low frequency than at high frequency (knee: 150.0 vs. 157.0º and hip: -12.2 vs. -14.5º; P water at different frequencies differ and contribute to a better understanding of this activity in training and rehabilitation.

  13. Frequency noise in frequency swept fiber laser

    DEFF Research Database (Denmark)

    Pedersen, Anders Tegtmeier; Rottwitt, Karsten

    2013-01-01

    This Letter presents a measurement of the spectral content of frequency shifted pulses generated by a lightwave synthesized frequency sweeper. We found that each pulse is shifted in frequency with very high accuracy. We also discovered that noise originating from light leaking through the acousto......- optical modulators and forward propagating Brillouin scattering appear in the spectrum. © 2013 Optical Society of America....

  14. An empirical assessment of generational differences in basic human values.

    Science.gov (United States)

    Lyons, Sean T; Duxbury, Linda; Higgins, Christopher

    2007-10-01

    This study assessed generational differences in human values as measured by the Schwartz Value Survey. It was proposed that the two most recent generations, Millennials and Generation Xers, would value Self-enhancement and Openness to Change more than the two older generations, Baby Boomers and Matures, while the two older generations would value Self-transcendence and Conservation more. The hypotheses were tested with a combined sample of Canadian knowledge workers and undergraduate business students (N = 1,194). Two hypotheses were largely supported, although an unexpectedly large difference was observed between Millennials and Generation Xers with respect to Openness to Change and Self-enhancement. The findings suggest that generation is a useful variable in examining differences in social values.

  15. Synthesis of High-Frequency Ground Motion Using Information Extracted from Low-Frequency Ground Motion

    Science.gov (United States)

    Iwaki, A.; Fujiwara, H.

    2012-12-01

    Broadband ground motion computations of scenario earthquakes are often based on hybrid methods that are the combinations of deterministic approach in lower frequency band and stochastic approach in higher frequency band. Typical computation methods for low-frequency and high-frequency (LF and HF, respectively) ground motions are the numerical simulations, such as finite-difference and finite-element methods based on three-dimensional velocity structure model, and the stochastic Green's function method, respectively. In such hybrid methods, LF and HF wave fields are generated through two different methods that are completely independent of each other, and are combined at the matching frequency. However, LF and HF wave fields are essentially not independent as long as they are from the same event. In this study, we focus on the relation among acceleration envelopes at different frequency bands, and attempt to synthesize HF ground motion using the information extracted from LF ground motion, aiming to propose a new method for broad-band strong motion prediction. Our study area is Kanto area, Japan. We use the K-NET and KiK-net surface acceleration data and compute RMS envelope at four frequency bands: 0.5-1.0 Hz, 1.0-2.0 Hz, 2.0-4.0 Hz, .0-8.0 Hz, and 8.0-16.0 Hz. Taking the ratio of the envelopes of adjacent bands, we find that the envelope ratios have stable shapes at each site. The empirical envelope-ratio characteristics are combined with low-frequency envelope of the target earthquake to synthesize HF ground motion. We have applied the method to M5-class earthquakes and a M7 target earthquake that occurred in the vicinity of Kanto area, and successfully reproduced the observed HF ground motion of the target earthquake. The method can be applied to a broad band ground motion simulation for a scenario earthquake by combining numerically-computed low-frequency (~1 Hz) ground motion with the empirical envelope ratio characteristics to generate broadband ground motion

  16. The research of characteristic difference of selected frequency luminescence for desert sand

    International Nuclear Information System (INIS)

    Liu Chao; Wei Mingjian; Li Huhou

    2011-01-01

    The characters of selected frequency luminescence of four groups of samples from Badain Jaran desert are measured by BG2003 luminescence spectrograph. The measurement subjects include selected frequency optical stimulate luminescence spectrum, selected frequency thermoluminescence spectrum and the dose response curve. A double-peak map is obtained by the result from all groups of data and spectrum. The difference is emerged between each group. The optical stimulate luminescence and thermoluminescence is applied in the measurement process. The dispersion of photon count on every response wavelength is analyzed. Based on the analysis, a better result can be gained by selected frequency thermoluminescence. (authors)

  17. Low Frequency Waves Detected in a Large Wave Flume under Irregular Waves with Different Grouping Factor and Combination of Regular Waves

    Directory of Open Access Journals (Sweden)

    Luigia Riefolo

    2018-02-01

    Full Text Available This paper describes a set of experiments undertaken at Universitat Politècnica de Catalunya in the large wave flume of the Maritime Engineering Laboratory. The purpose of this study is to highlight the effects of wave grouping and long-wave short-wave combinations regimes on low frequency generations. An eigen-value decomposition has been performed to discriminate low frequencies. In particular, measured eigen modes, determined through the spectral analysis, have been compared with calculated modes by means of eigen analysis. The low frequencies detection appears to confirm the dependence on groupiness of the modal amplitudes generated in the wave flume. Some evidence of the influence of low frequency waves on runup and transport patterns are shown. In particular, the generation and evolution of secondary bedforms are consistent with energy transferred between the standing wave modes.

  18. Sampling frequency affects ActiGraph activity counts

    DEFF Research Database (Denmark)

    Brønd, Jan Christian; Arvidsson, Daniel

    that is normally performed at frequencies higher than 2.5 Hz. With the ActiGraph model GT3X one has the option to select sample frequency from 30 to 100 Hz. This study investigated the effect of the sampling frequency on the ouput of the bandpass filter.Methods: A synthetic frequency sweep of 0-15 Hz was generated...... in Matlab and sampled at frequencies of 30-100 Hz. Also, acceleration signals during indoor walking and running were sampled at 30 Hz using the ActiGraph GT3X and resampled in Matlab to frequencies of 40-100 Hz. All data was processed with the ActiLife software.Results: Acceleration frequencies between 5......-15 Hz escaped the bandpass filter when sampled at 40, 50, 70, 80 and 100 Hz, while this was not the case when sampled at 30, 60 and 90 Hz. During the ambulatory activities this artifact resultet in different activity count output from the ActiLife software with different sampling frequency...

  19. Differences in motives between Millennial and Generation X medical students.

    Science.gov (United States)

    Borges, Nicole J; Manuel, R Stephen; Elam, Carol L; Jones, Bonnie J

    2010-06-01

    OBJECTIVES Three domains comprise the field of human assessment: ability, motive and personality. Differences in personality and cognitive abilities between generations have been documented, but differences in motive between generations have not been explored. This study explored generational differences in medical students regarding motives using the Thematic Apperception Test (TAT). METHODS Four hundred and twenty six students (97% response rate) at one medical school (Generation X = 229, Millennials = 197) who matriculated in 1995 & 1996 (Generation X) or in 2003 & 2004 (Millennials) wrote a story after being shown two TAT picture cards. Student stories for each TAT card were scored for different aspects of motives: Achievement, Affiliation, and Power. RESULTS A multiple analysis of variance (p Millennials' and Generation X-ers' needs for Power on both TAT cards and needs for Achievement and Affiliation on one TAT card. The main effect for gender was significant for both TAT cards regarding Achievement. No main effect for ethnicity was noted. CONCLUSIONS Differences in needs for Achievement, Affiliation and Power exist between Millennial and Generation X medical students. Generation X-ers scored higher on the motive of Power, whereas Millennials scored higher on the motives of Achievement and Affiliation.

  20. Beat-wave generation of plasmons in semiconductor plasmas

    International Nuclear Information System (INIS)

    Berezhiani, V.I.; Mahajan, S.M.

    1995-08-01

    It is shown that in semiconductor plasmas, it is possible to generate large amplitude plasma waves by the beating of two laser beams with frequency difference close to the plasma frequency. For narrow gap seimconductors (for example n-type InSb), the system can simulate the physics underlying beat wave generation in relativistic gaseous plasmas

  1. Eastern Frequency Response Study

    Energy Technology Data Exchange (ETDEWEB)

    Miller, N.W.; Shao, M.; Pajic, S.; D' Aquila, R.

    2013-05-01

    This study was specifically designed to investigate the frequency response of the Eastern Interconnection that results from large loss-of-generation events of the type targeted by the North American Electric Reliability Corp. Standard BAL-003 Frequency Response and Frequency Bias Setting (NERC 2012a), under possible future system conditions with high levels of wind generation.

  2. The human oculomotor response to simultaneous visual and physical movements at two different frequencies

    Science.gov (United States)

    Wall, C.; Assad, A.; Aharon, G.; Dimitri, P. S.; Harris, L. R.

    2001-01-01

    In order to investigate interactions in the visual and vestibular systems' oculomotor response to linear movement, we developed a two-frequency stimulation technique. Thirteen subjects lay on their backs and were oscillated sinusoidally along their z-axes at between 0.31 and 0.81 Hz. During the oscillation subjects viewed a large, high-contrast, visual pattern oscillating in the same direction as the physical motion but at a different, non-harmonically related frequency. The evoked eye movements were measured by video-oculography and spectrally analysed. We found significant signal level at the sum and difference frequencies as well as at other frequencies not present in either stimulus. The emergence of new frequencies indicates non-linear processing consistent with an agreement-detector system that have previously proposed.

  3. Adaptive frequency-difference matched field processing for high frequency source localization in a noisy shallow ocean.

    Science.gov (United States)

    Worthmann, Brian M; Song, H C; Dowling, David R

    2017-01-01

    Remote source localization in the shallow ocean at frequencies significantly above 1 kHz is virtually impossible for conventional array signal processing techniques due to environmental mismatch. A recently proposed technique called frequency-difference matched field processing (Δf-MFP) [Worthmann, Song, and Dowling (2015). J. Acoust. Soc. Am. 138(6), 3549-3562] overcomes imperfect environmental knowledge by shifting the signal processing to frequencies below the signal's band through the use of a quadratic product of frequency-domain signal amplitudes called the autoproduct. This paper extends these prior Δf-MFP results to various adaptive MFP processors found in the literature, with particular emphasis on minimum variance distortionless response, multiple constraint method, multiple signal classification, and matched mode processing at signal-to-noise ratios (SNRs) from -20 to +20 dB. Using measurements from the 2011 Kauai Acoustic Communications Multiple University Research Initiative experiment, the localization performance of these techniques is analyzed and compared to Bartlett Δf-MFP. The results show that a source broadcasting a frequency sweep from 11.2 to 26.2 kHz through a 106 -m-deep sound channel over a distance of 3 km and recorded on a 16 element sparse vertical array can be localized using Δf-MFP techniques within average range and depth errors of 200 and 10 m, respectively, at SNRs down to 0 dB.

  4. Generation of 46 W green-light by frequency doubling of 96 W picosecond unpolarized Yb-doped fiber amplifier

    Science.gov (United States)

    Qi, Yaoyao; Yu, Haijuan; Zhang, Jingyuan; Zhang, Ling; He, Chaojian; Lin, Xuechun

    2018-05-01

    We demonstrated a high efficiency and high average power picosecond green light source based on SHG (second harmonic generation) of an unpolarized ytterbium-doped fiber amplifier chain. Using single-pass frequency doubling in two temperature-tuned type-I phase-matching LBO crystals, we were able to generate 46 W, >70 ps pulses at 532 nm from a fundamental beam at 1064 nm, whose output is 96 W, 4.8 μJ, with a repetition frequency of 20 MHz and nearly diffraction limited. The optical conversion efficiency was ∼48% in a highly compact design. To the best of our knowledge, this is the first reported on ps green source through SHG of an unpolarized fiber laser with such a high output and high efficiency.

  5. Grid Frequency Extreme Event Analysis and Modeling: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Florita, Anthony R [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Clark, Kara [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Gevorgian, Vahan [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Folgueras, Maria [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Wenger, Erin [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-01

    Sudden losses of generation or load can lead to instantaneous changes in electric grid frequency and voltage. Extreme frequency events pose a major threat to grid stability. As renewable energy sources supply power to grids in increasing proportions, it becomes increasingly important to examine when and why extreme events occur to prevent destabilization of the grid. To better understand frequency events, including extrema, historic data were analyzed to fit probability distribution functions to various frequency metrics. Results showed that a standard Cauchy distribution fit the difference between the frequency nadir and prefault frequency (f_(C-A)) metric well, a standard Cauchy distribution fit the settling frequency (f_B) metric well, and a standard normal distribution fit the difference between the settling frequency and frequency nadir (f_(B-C)) metric very well. Results were inconclusive for the frequency nadir (f_C) metric, meaning it likely has a more complex distribution than those tested. This probabilistic modeling should facilitate more realistic modeling of grid faults.

  6. Theranostic multimodal potential of magnetic nanoparticles actuated by non-heating low frequency magnetic field in the new-generation nanomedicine

    Science.gov (United States)

    Golovin, Yuri I.; Klyachko, Natalia L.; Majouga, Alexander G.; Sokolsky, Marina; Kabanov, Alexander V.

    2017-02-01

    The scope of this review involves one of the most promising branches of new-generation biomedicine, namely magnetic nanotheranostics using remote control of functionalized magnetic nanoparticles (f-MNPs) by means of alternating magnetic fields (AMFs). The review is mainly focused on new approach which utilizes non-heating low frequency magnetic fields (LFMFs) for nanomechanical actuation of f-MNPs. This approach is compared to such traditional ones as magnetic resonance imaging (MRI) and radio-frequency (RF) magnetic hyperthermia (MH) which utilize high frequency heating AMF. The innovative principles and specific models of non-thermal magnetomechanical actuation of biostructures by MNP rotational oscillations in LFMF are described. The discussed strategy allows biodistribution monitoring in situ, delivering drugs to target tissues and releasing them with controlled rate, controlling biocatalytic reaction kinetics, inducing malignant cell apoptosis, and more. Optimization of both LFMF and f-MNP parameters may lead to dramatic improvement of treatment efficiency, locality, and selectivity on molecular or cellular levels and allow implementing both drug and drugless, i.e., pure nanomechanical therapy, in particular cancer therapy. The optimal parameters within this approach differ significantly from those used in MH or MRI because of the principal difference in the f-MNP actuation modes. It is shown that specifically designed high gradient, steady magnetic field enables diagnostic and therapeutic LFMF impact localization in the deep tissues within the area ranging from a millimeter to a few centimeters and 3D scanning of affected region, if necessary.

  7. Theranostic multimodal potential of magnetic nanoparticles actuated by non-heating low frequency magnetic field in the new-generation nanomedicine

    Energy Technology Data Exchange (ETDEWEB)

    Golovin, Yuri I., E-mail: nano@tsutmb.ru; Klyachko, Natalia L.; Majouga, Alexander G. [M.V. Lomonosov Moscow State University, Chemistry Faculty (Russian Federation); Sokolsky, Marina [University of North Carolina at Chapel Hill, Center for Nanotechnology in Drug Delivery, UNC Eshelman School of Pharmacy (United States); Kabanov, Alexander V. [M.V. Lomonosov Moscow State University, Chemistry Faculty (Russian Federation)

    2017-02-15

    The scope of this review involves one of the most promising branches of new-generation biomedicine, namely magnetic nanotheranostics using remote control of functionalized magnetic nanoparticles (f-MNPs) by means of alternating magnetic fields (AMFs). The review is mainly focused on new approach which utilizes non-heating low frequency magnetic fields (LFMFs) for nanomechanical actuation of f-MNPs. This approach is compared to such traditional ones as magnetic resonance imaging (MRI) and radio-frequency (RF) magnetic hyperthermia (MH) which utilize high frequency heating AMF. The innovative principles and specific models of non-thermal magnetomechanical actuation of biostructures by MNP rotational oscillations in LFMF are described. The discussed strategy allows biodistribution monitoring in situ, delivering drugs to target tissues and releasing them with controlled rate, controlling biocatalytic reaction kinetics, inducing malignant cell apoptosis, and more. Optimization of both LFMF and f-MNP parameters may lead to dramatic improvement of treatment efficiency, locality, and selectivity on molecular or cellular levels and allow implementing both drug and drugless, i.e., pure nanomechanical therapy, in particular cancer therapy. The optimal parameters within this approach differ significantly from those used in MH or MRI because of the principal difference in the f-MNP actuation modes. It is shown that specifically designed high gradient, steady magnetic field enables diagnostic and therapeutic LFMF impact localization in the deep tissues within the area ranging from a millimeter to a few centimeters and 3D scanning of affected region, if necessary.

  8. Radio frequency feedback method for parallelized droplet microfluidics

    KAUST Repository

    Conchouso Gonzalez, David

    2016-12-19

    This paper reports on a radio frequency micro-strip T-resonator that is integrated to a parallel droplet microfluidic system. The T-resonator works as a feedback system to monitor uniform droplet production and to detect, in real-time, any malfunctions due to channel fouling or clogging. Emulsions at different W/O flow-rate ratios are generated in a microfluidic device containing 8 parallelized generators. These emulsions are then guided towards the RF sensor, which is then read using a Network Analyzer to obtain the frequency response of the system. The proposed T-resonator shows frequency shifts of 45MHz for only 5% change in the emulsion\\'s water in oil content. These shifts can then be used as a feedback system to trigger alarms and notify production and quality control engineers about problems in the droplet generation process.

  9. Radio frequency feedback method for parallelized droplet microfluidics

    KAUST Repository

    Conchouso Gonzalez, David; Carreno, Armando Arpys Arevalo; McKerricher, Garret; Castro, David; Foulds, Ian G.

    2016-01-01

    This paper reports on a radio frequency micro-strip T-resonator that is integrated to a parallel droplet microfluidic system. The T-resonator works as a feedback system to monitor uniform droplet production and to detect, in real-time, any malfunctions due to channel fouling or clogging. Emulsions at different W/O flow-rate ratios are generated in a microfluidic device containing 8 parallelized generators. These emulsions are then guided towards the RF sensor, which is then read using a Network Analyzer to obtain the frequency response of the system. The proposed T-resonator shows frequency shifts of 45MHz for only 5% change in the emulsion's water in oil content. These shifts can then be used as a feedback system to trigger alarms and notify production and quality control engineers about problems in the droplet generation process.

  10. Beat-wave generation of plasmons in semiconductor plasmas

    International Nuclear Information System (INIS)

    Berezhiani, V.I.; Mahajan, S.M.

    1995-08-01

    It is shown that in semiconductor plasmas, it is possible to generate large amplitude plasma waves by the beating of two laser beams with frequency difference close to the plasma frequency. For narrow gap semiconductor (for example n-type InSb), the system can simulate the physics underlying beat wave generation in relativistic gaseous plasmas. (author). 7 refs

  11. LES-based generation of high-frequency fluctuation in wind turbulence obtained by meteorological model

    Science.gov (United States)

    Tamura, Tetsuro; Kawaguchi, Masaharu; Kawai, Hidenori; Tao, Tao

    2017-11-01

    The connection between a meso-scale model and a micro-scale large eddy simulation (LES) is significant to simulate the micro-scale meteorological problem such as strong convective events due to the typhoon or the tornado using LES. In these problems the mean velocity profiles and the mean wind directions change with time according to the movement of the typhoons or tornadoes. Although, a fine grid micro-scale LES could not be connected to a coarse grid meso-scale WRF directly. In LES when the grid is suddenly refined at the interface of nested grids which is normal to the mean advection the resolved shear stresses decrease due to the interpolation errors and the delay of the generation of smaller scale turbulence that can be resolved on the finer mesh. For the estimation of wind gust disaster the peak wind acting on buildings and structures has to be correctly predicted. In the case of meteorological model the velocity fluctuations have a tendency of diffusive variation without the high frequency component due to the numerically filtering effects. In order to predict the peak value of wind velocity with good accuracy, this paper proposes a LES-based method for generating the higher frequency components of velocity and temperature fields obtained by meteorological model.

  12. The Time-Frequency Signatures of Advanced Seismic Signals Generated by Debris Flows

    Science.gov (United States)

    Chu, C. R.; Huang, C. J.; Lin, C. R.; Wang, C. C.; Kuo, B. Y.; Yin, H. Y.

    2014-12-01

    The seismic monitoring is expected to reveal the process of debris flow from the initial area to alluvial fan, because other field monitoring techniques, such as the video camera and the ultrasonic sensor, are limited by detection range. For this reason, seismic approaches have been used as the detection system of debris flows over the past few decades. The analysis of the signatures of the seismic signals in time and frequency domain can be used to identify the different phases of debris flow. This study dedicates to investigate the different stages of seismic signals due to debris flow, including the advanced signal, the main front, and the decaying tail. Moreover, the characteristics of the advanced signals forward to the approach of main front were discussed for the warning purpose. This study presents a permanent system, composed by two seismometers, deployed along the bank of Ai-Yu-Zi Creek in Nantou County, which is one of the active streams with debris flow in Taiwan. The three axes seismometer with frequency response of 7 sec - 200 Hz was developed by the Institute of Earth Sciences (IES), Academia Sinica for the purpose to detect debris flow. The original idea of replacing the geophone system with the seismometer technique was for catching the advanced signals propagating from the upper reach of the stream before debris flow arrival because of the high sensitivity. Besides, the low frequency seismic waves could be also early detected because of the low attenuation. However, for avoiding other unnecessary ambient vibrations, the sensitivity of seismometer should be lower than the general seismometer for detecting teleseism. Three debris flows with different mean velocities were detected in 2013 and 2014. The typical triangular shape was obviously demonstrated in time series data and the spectrograms of the seismic signals from three events. The frequency analysis showed that enormous debris flow bearing huge boulders would induce low frequency seismic

  13. Quantum random flip-flop and its applications in random frequency synthesis and true random number generation

    Energy Technology Data Exchange (ETDEWEB)

    Stipčević, Mario, E-mail: mario.stipcevic@irb.hr [Photonics and Quantum Optics Research Unit, Center of Excellence for Advanced Materials and Sensing Devices, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb (Croatia)

    2016-03-15

    In this work, a new type of elementary logic circuit, named random flip-flop (RFF), is proposed, experimentally realized, and studied. Unlike conventional Boolean logic circuits whose action is deterministic and highly reproducible, the action of a RFF is intentionally made maximally unpredictable and, in the proposed realization, derived from a fundamentally random process of emission and detection of light quanta. We demonstrate novel applications of RFF in randomness preserving frequency division, random frequency synthesis, and random number generation. Possible usages of these applications in the information and communication technology, cryptographic hardware, and testing equipment are discussed.

  14. Chimera Type Behavior in Nonlocal Coupling System with Two Different Inherent Frequencies

    Science.gov (United States)

    Lin, Larry; Li, Ping-Cheng; Tseng, Hseng-Che

    2014-03-01

    From the research of Kuramoto and Strogatz, arrays of identical oscillators can display a remarkable pattern, named chimera state, in which phase-locked oscillators coexist with drifting ones in nonlocal coupling oscillator system. We consider further in this study, two groups of oscillators with different inherent frequencies and arrange them in a ring. When the difference of the inherent frequencies is within some specific parameter range, oscillators of nonlocal coupling system show two distinct chimera states. When the parameter value exceeds some threshold value, two chimera states disappear. They show different features. The statistical dynamic behavior of the system can be described by Kuramoto theory.

  15. Frequency of adverse events after vaccination with different vaccinia strains.

    Directory of Open Access Journals (Sweden)

    Mirjam Kretzschmar

    2006-08-01

    Full Text Available BACKGROUND: Large quantities of smallpox vaccine have been stockpiled to protect entire nations against a possible reintroduction of smallpox. Planning for an appropriate use of these stockpiled vaccines in response to a smallpox outbreak requires a rational assessment of the risks of vaccination-related adverse events, compared to the risk of contracting an infection. Although considerable effort has been made to understand the dynamics of smallpox transmission in modern societies, little attention has been paid to estimating the frequency of adverse events due to smallpox vaccination. Studies exploring the consequences of smallpox vaccination strategies have commonly used a frequency of approximately one death per million vaccinations, which is based on a study of vaccination with the New York City Board of Health (NYCBH strain of vaccinia virus. However, a multitude of historical studies of smallpox vaccination with other vaccinia strains suggest that there are strain-related differences in the frequency of adverse events after vaccination. Because many countries have stockpiled vaccine based on the Lister strain of vaccinia virus, a quantitative evaluation of the adverse effects of such vaccines is essential for emergency response planning. We conducted a systematic review and statistical analysis of historical data concerning vaccination against smallpox with different strains of vaccinia virus. METHODS AND FINDINGS: We analyzed historical vaccination data extracted from the literature. We extracted data on the frequency of postvaccinal encephalitis and death with respect to vaccinia strain and age of vaccinees. Using a hierarchical Bayesian approach for meta-analysis, we estimated the expected frequencies of postvaccinal encephalitis and death with respect to age at vaccination for smallpox vaccines based on the NYCBH and Lister vaccinia strains. We found large heterogeneity between findings from different studies and a time-period effect

  16. Generational Differences Impact On Leadership Style And Organizational Success

    OpenAIRE

    Mecca M. Salahuddin

    2011-01-01

    Many factors can affect organizational success. One factor that is important to organizational success is effective leadership.  Research has shown there are differences in leadership style among generations.  A cohort- group whose length approximates the span of life and boundaries and fixed by peer personality defines a generation.  The purpose of this paper is to review the current leadership styles and generational differences literature.  The paper examines whether th...

  17. Analyzing mobile WiMAX base station deployment under different frequency planning strategies

    Science.gov (United States)

    Salman, M. K.; Ahmad, R. B.; Ali, Ziad G.; Aldhaibani, Jaafar A.; Fayadh, Rashid A.

    2015-05-01

    The frequency spectrum is a precious resource and scarce in the communication markets. Therefore, different techniques are adopted to utilize the available spectrum in deploying WiMAX base stations (BS) in cellular networks. In this paper several types of frequency planning techniques are illustrated, and a comprehensive comparative study between conventional frequency reuse of 1 (FR of 1) and fractional frequency reuse (FFR) is presented. These techniques are widely used in network deployment, because they employ universal frequency (using all the available bandwidth) in their base station installation/configuration within network system. This paper presents a network model of 19 base stations in order to be employed in the comparison of the aforesaid frequency planning techniques. Users are randomly distributed within base stations, users' resource mapping and their burst profile selection are based on the measured signal to interference plus-noise ratio (SINR). Simulation results reveal that the FFR has advantages over the conventional FR of 1 in various metrics. 98 % of downlink resources (slots) are exploited when FFR is applied, whilst it is 81 % at FR of 1. Data rate of FFR has been increased to 10.6 Mbps, while it is 7.98 Mbps at FR of 1. The spectral efficiency is better enhanced (1.072 bps/Hz) at FR of 1 than FFR (0.808 bps/Hz), since FR of 1 exploits all the Bandwidth. The subcarrier efficiency shows how many data bits that can be carried by subcarriers under different frequency planning techniques, the system can carry more data bits under FFR (2.40 bit/subcarrier) than FR of 1 (1.998 bit/subcarrier). This study confirms that FFR can perform better than conventional frequency planning (FR of 1) which made it a strong candidate for WiMAX BS deployment in cellular networks.

  18. The driving frequency effects on the atmospheric pressure corona jet plasmas from low frequency to radio frequency

    International Nuclear Information System (INIS)

    Kim, Dan Bee; Jung, H.; Gweon, B.; Rhee, J. K.; Choe, W.; Moon, S. Y.

    2011-01-01

    Lately, the atmospheric pressure jet type corona plasma, which has been typically driven by dc to low frequency (LF: several tens of kHz), is often generated by using radio frequency of 13.56 MHz. Yet, the relationship between the plasma and its driving frequency has seldom been investigated. Hence, in this study, dependence of the atmospheric pressure corona plasma characteristics on the driving frequency was explored experimentally from LF to rf (5 kHz-13.56 MHz). The plasmas generated by the driving frequency under 2 MHz were cylindrical shape of several tens of millimeters long while the 13.56 MHz plasma is spherical and a few millimeters long. As the driving frequency was increased, the plasma length became shortened. At the lower driving frequencies (below 2 MHz), the plasmas existed as positive streamer and negative glow for each half period of the applied voltage, but the discharge was more continuous in time for the 13.56 MHz plasma. It was inferred from the measured I-V curves that the higher driving frequency induced higher discharge currents, and the gas temperature was increased as the driving frequency was increased.

  19. Direct generation of an optical vortex beam in a single-frequency Nd:YVO4 laser.

    Science.gov (United States)

    Kim, D J; Kim, J W

    2015-02-01

    A simple method for generating a Laguerre-Gaussian (LG) mode optical vortex beam with well-determined handedness in a single-frequency solid state laser end-pumped by a ring-shaped pump beam is reported. After investigating the intensity profile and the wavefront helicity of each longitudinal mode output to understand generation of the LG mode in a Nd:YVO4 laser resonator, selection of the wavefront handedness has been achieved simply by inserting and tilting an etalon in the resonator, which breaks the propagation symmetry of the Poynting vectors with opposite helicity. Simple calculation and the experimental results are discussed for supporting this selection mechanism.

  20. Frequency-dependent changes in the amplitude of low-frequency fluctuations in Internet gaming disorder

    Directory of Open Access Journals (Sweden)

    Xiao eLin

    2015-09-01

    Full Text Available Neuroimaging studies have revealed that the task-related functional brain activities are impaired in Internet gaming disorder (IGD subjects. However, little is known about the alternations in spontaneous brain activities about them. Recent studies have proposed that the brain activities of different frequency ranges are generated by different nervous activities and have different physiological and psychological functions. Thus, in this study, we set to explore the spontaneous brain activities in IGD subjects by measuring the fractional amplitude of low-frequency fluctuation (fALFF, to investigate band-specific changes of resting-state fALFF. We subdivided the frequency range into five bands based on literatures. Comparing to healthy controls, the IGD group showed decreased fALFF values in the cerebellum posterior lobe and increased fALFF values in superior temporal gyrus. Significant interactions between frequency bands and groups were found in the cerebellum, the anterior cingulate, the lingual gyrus, the middle temporal gyrus and the middle frontal gyrus. Those brain regions are proved related to the executive function and decision-making. These results revealed the changed spontaneous brain activity of IGD, which contributed to understanding the underlying pathophysiology of IGD.

  1. Spectrally- and Time-Resolved Sum Frequency Generation (STiR-SFG): a new tool for ultrafast hydrogen bond dynamics at interfaces.

    Science.gov (United States)

    Benderskii, Alexander; Bordenyuk, Andrey; Weeraman, Champika

    2006-03-01

    The recently developed spectrally- and time-resolved Sum Frequency Generation (STiR-SFG) is a surface-selective 3-wave mixing (IR+visible) spectroscopic technique capable of measuring ultrafast spectral evolution of vibrational coherences. A detailed description of this measurement will be presented, and a noniterative method or deconvolving the laser pulses will be introduced to obtain the molecular response function. STiR-SFG, combined with the frequency-domain SFG spectroscopy, was applied to study hydrogen bonding dynamics at aqueous interfaces (D2O/CaF2). Spectral dynamics of the OD-stretch on the 50-150 fs time scale provides real-time observation of ultrafast H-bond rearrangement. Tuning the IR wavelength to the blue or red side of the OD-stretch transition, we selectively monitor the dynamics of different sub-ensembles in the distribution of the H-bond structures. The blue-side excitation (weaker H-bonding) shows monotonic red-shift of the OD-frequency. In contrast, the red-side excitation (stronger H-bonding structures) produces a blue-shift and a recursion, which may indicate the presence of an underdamped intermolecular mode of interfacial water. Effect of electrolyte concentration on the H-bond dynamics will be discussed.

  2. High-resolution broadband terahertz spectroscopy via electronic heterodyne detection of photonically generated terahertz frequency comb.

    Science.gov (United States)

    Pavelyev, D G; Skryl, A S; Bakunov, M I

    2014-10-01

    We report an alternative approach to the terahertz frequency-comb spectroscopy (TFCS) based on nonlinear mixing of a photonically generated terahertz pulse train with a continuous wave signal from an electronic synthesizer. A superlattice is used as a nonlinear mixer. Unlike the standard TFCS technique, this approach does not require a complex double-laser system but retains the advantages of TFCS-high spectral resolution and wide bandwidth.

  3. On the generation of electromagnetic waves in the terahertz frequency range

    International Nuclear Information System (INIS)

    Namiot, V.A.; Shchurova, L.Yu.

    2011-01-01

    It is shown that a thin dielectric plate, which can act as an open dielectric waveguide, it is possible to produce amplification and generation of electromagnetic waves with frequencies in the terahertz range. For this purpose, we propose using a dielectric plate with a corrugated surface, in which case the electric field of the transverse electromagnetic wave in the waveguide has a periodic spatial structure in the local area near to the corrugation. Terahertz electromagnetic waves are excited by a beam of electrons moving in vacuum along the dielectric plate at a small distance from its corrugated surface. Corrugation period is chosen in order to ensure the most effective interaction of the electron beam with the first harmonic of the electric field induced by the corrugation. Amplification and generation of electromagnetic waves propagating in a dielectric waveguide is realized as a result of deceleration of the electron beam by a wave electric field induced by a corrugated dielectric surface in the zone near the corrugation. We discuss possible ways to create electron beams with the desired characteristics. We offer a way to stabilize the beam position above the plate, avoiding the bombardment of the plate by electrons. It is shown that it is possible to significantly increase the efficiency of the device through the recovery of energy that remains in the electrons after their interaction with the wave. -- Highlights: → We propose a scheme of a generator of radio waves in the terahertz range. → This scheme includes a corrugated dielectric plate, which can act as an open waveguide. → A strip electron beam is in vacuum near the dielectric corrugated surface. → Generation is achieved by converting electrons' energy into electromagnetic energy. → The waveguide wave extends perpendicularly to electron motion.

  4. Spindle frequency activity in the sleep EEG: individual differences and topographic distribution.

    Science.gov (United States)

    Werth, E; Achermann, P; Dijk, D J; Borbély, A A

    1997-11-01

    The brain topography of EEG power spectra in the frequency range of sleep spindles was investigated in 34 sleep recordings from 20 healthy young men. Referential (F3-A2, C3-A2, P3-A2 and O1-A2) and bipolar derivations (F3-C3, C3-P3 and P3-O1) along the anteroposterior axis were used. Sleep spindles gave rise to a distinct peak in the EEG power spectrum. The distribution of the peak frequencies pooled over subjects and derivations showed a bimodal pattern with modes at 11.5 and 13.0 Hz, and a trough at 12.25 Hz. The large inter-subject variation in peak frequency (range: 1.25 Hz) contrasted with the small intra-subject variation between derivations, non-REM sleep episodes and different nights. In some individuals and/or some derivations, only a single spindle peak was present. The topographic distributions from referential and bipolar recordings showed differences. The power showed a declining trend over consecutive non-REM sleep episodes in the low range of spindle frequency activity and a rising trend in the high range. The functional and topographic heterogeneity of sleep spindles in conjunction with the intra-subject stability of their frequency are important characteristics for the analysis of sleep regulation on the basis of the EEG.

  5. 303 nm continuous wave ultraviolet laser generated by intracavity frequency-doubling of diode-pumped Pr3+:LiYF4 laser

    Science.gov (United States)

    Zhu, Pengfei; Zhang, Chaomin; Zhu, Kun; Ping, Yunxia; Song, Pei; Sun, Xiaohui; Wang, Fuxin; Yao, Yi

    2018-03-01

    We demonstrate an efficient and compact ultraviolet laser at 303 nm generated by intracavity frequency doubling of a continuous wave (CW) laser diode-pumped Pr3+:YLiF4 laser at 607 nm. A cesium lithium borate (CLBO) crystal, cut for critical type I phase matching at room temperature, is used for second-harmonic generation (SHG) of the fundamental laser. By using an InGaN laser diode array emitting at 444.3 nm with a maximum incident power of 10 W, as high as 68 mW of CW output power at 303 nm is achieved. The output power stability in 4 h is better than 2.85%. To the best of our knowledge, this is high efficient UV laser generated by frequency doubling of an InGaN laser diode array pumped Pr3+:YLiF4 laser.

  6. The Frequency Spectral Properties of Electrode-Skin Contact Impedance on Human Head and Its Frequency-Dependent Effects on Frequency-Difference EIT in Stroke Detection from 10Hz to 1MHz.

    Directory of Open Access Journals (Sweden)

    Lin Yang

    Full Text Available Frequency-difference electrical impedance tomography (fdEIT reconstructs frequency-dependent changes of a complex impedance distribution. It has a potential application in acute stroke detection because there are significant differences in impedance spectra between stroke lesions and normal brain tissues. However, fdEIT suffers from the influences of electrode-skin contact impedance since contact impedance varies greatly with frequency. When using fdEIT to detect stroke, it is critical to know the degree of measurement errors or image artifacts caused by contact impedance. To our knowledge, no study has systematically investigated the frequency spectral properties of electrode-skin contact impedance on human head and its frequency-dependent effects on fdEIT used in stroke detection within a wide frequency band (10 Hz-1 MHz. In this study, we first measured and analyzed the frequency spectral properties of electrode-skin contact impedance on 47 human subjects' heads within 10 Hz-1 MHz. Then, we quantified the frequency-dependent effects of contact impedance on fdEIT in stroke detection in terms of the current distribution beneath the electrodes and the contact impedance imbalance between two measuring electrodes. The results showed that the contact impedance at high frequencies (>100 kHz significantly changed the current distribution beneath the electrode, leading to nonnegligible errors in boundary voltages and artifacts in reconstructed images. The contact impedance imbalance at low frequencies (<1 kHz also caused significant measurement errors. We conclude that the contact impedance has critical frequency-dependent influences on fdEIT and further studies on reducing such influences are necessary to improve the application of fdEIT in stroke detection.

  7. The Frequency Spectral Properties of Electrode-Skin Contact Impedance on Human Head and Its Frequency-Dependent Effects on Frequency-Difference EIT in Stroke Detection from 10Hz to 1MHz.

    Science.gov (United States)

    Yang, Lin; Dai, Meng; Xu, Canhua; Zhang, Ge; Li, Weichen; Fu, Feng; Shi, Xuetao; Dong, Xiuzhen

    2017-01-01

    Frequency-difference electrical impedance tomography (fdEIT) reconstructs frequency-dependent changes of a complex impedance distribution. It has a potential application in acute stroke detection because there are significant differences in impedance spectra between stroke lesions and normal brain tissues. However, fdEIT suffers from the influences of electrode-skin contact impedance since contact impedance varies greatly with frequency. When using fdEIT to detect stroke, it is critical to know the degree of measurement errors or image artifacts caused by contact impedance. To our knowledge, no study has systematically investigated the frequency spectral properties of electrode-skin contact impedance on human head and its frequency-dependent effects on fdEIT used in stroke detection within a wide frequency band (10 Hz-1 MHz). In this study, we first measured and analyzed the frequency spectral properties of electrode-skin contact impedance on 47 human subjects' heads within 10 Hz-1 MHz. Then, we quantified the frequency-dependent effects of contact impedance on fdEIT in stroke detection in terms of the current distribution beneath the electrodes and the contact impedance imbalance between two measuring electrodes. The results showed that the contact impedance at high frequencies (>100 kHz) significantly changed the current distribution beneath the electrode, leading to nonnegligible errors in boundary voltages and artifacts in reconstructed images. The contact impedance imbalance at low frequencies (<1 kHz) also caused significant measurement errors. We conclude that the contact impedance has critical frequency-dependent influences on fdEIT and further studies on reducing such influences are necessary to improve the application of fdEIT in stroke detection.

  8. Cortical activity during cued picture naming predicts individual differences in stuttering frequency.

    Science.gov (United States)

    Mock, Jeffrey R; Foundas, Anne L; Golob, Edward J

    2016-09-01

    Developmental stuttering is characterized by fluent speech punctuated by stuttering events, the frequency of which varies among individuals and contexts. Most stuttering events occur at the beginning of an utterance, suggesting neural dynamics associated with stuttering may be evident during speech preparation. This study used EEG to measure cortical activity during speech preparation in men who stutter, and compared the EEG measures to individual differences in stuttering rate as well as to a fluent control group. Each trial contained a cue followed by an acoustic probe at one of two onset times (early or late), and then a picture. There were two conditions: a speech condition where cues induced speech preparation of the picture's name and a control condition that minimized speech preparation. Across conditions stuttering frequency correlated to cue-related EEG beta power and auditory ERP slow waves from early onset acoustic probes. The findings reveal two new cortical markers of stuttering frequency that were present in both conditions, manifest at different times, are elicited by different stimuli (visual cue, auditory probe), and have different EEG responses (beta power, ERP slow wave). The cue-target paradigm evoked brain responses that correlated to pre-experimental stuttering rate. Copyright © 2016 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  9. Effects of Acute Sacral Neuromodulation at Different Frequencies on Bladder Overactivity in Pigs

    Directory of Open Access Journals (Sweden)

    Xing Li

    2017-06-01

    Full Text Available Purpose We investigated the effects of different stimulation frequencies on the inhibition of bladder overactivity by sacral neuromodulation (SNM in pigs. Methods Implant-driven stimulators were used to stimulate the S3 spinal nerve in 13 pigs. Cystometry was performed by infusing normal saline (NS or acetic acid (AA. SNM (pulse width, 210 µsec at frequencies ranging from 5 to 50 Hz was conducted at the intensity threshold at which observable perianal and/or tail movement was induced. Multiple cystometrograms were performed to determine the effects of different frequencies on the micturition reflex. Results AA-induced bladder overactivity significantly reduced the bladder capacity (BC to 34.4%±4.7% of the NS control level (354.4±35.9 mL (P0.05, but SNM at 15, 30, and 50 Hz significantly increased the BC to 54.5%±7.1%, 55.2%±6.5%, and 57.2%±6.1% of the NS control level (P0.05. Conclusions This study demonstrated that 15 Hz was an appropriate frequency for SNM and that frequencies higher than 15 Hz did not lead to better surgical outcomes.

  10. Comparison of four different models of vortex generators

    DEFF Research Database (Denmark)

    Fernandez, U.; Réthoré, Pierre-Elouan; Sørensen, Niels N.

    2012-01-01

    A detailed comparison between four different models of vortex generators is presented in this paper. To that end, a single Vortex Generator on a flat plate test case has been designed and solved by the following models. The first one is the traditional mesh-resolved VG and the second one, called...

  11. Continuous-wave sodium D2 resonance radiation generated in single-pass sum-frequency generation with periodically poled lithium niobate.

    Science.gov (United States)

    Yue, J; She, C-Y; Williams, B P; Vance, J D; Acott, P E; Kawahara, T D

    2009-04-01

    With two cw single-mode Nd:YAG lasers at 1064 and 1319 nm and a periodically poled lithium niobate crystal, 11 mW of 2 kHz/100 ms bandwidth single-mode tunable 589 nm cw radiation has been detected using single-pass sum-frequency generation. The demonstrated conversion efficiency is approximately 3.2%[W(-1) cm(-1)]. This compact solid-state light source has been used in a solid-state-dye laser hybrid sodium fluorescence lidar transmitter to measure temperatures and winds in the upper atmosphere (80-105 km); it is being implemented into the transmitter of a mobile all-solid-state sodium temperature and wind lidar under construction.

  12. Sum-frequency generation from molecular monolayers using 14 μm radiation from the FELIX free-electron laser

    International Nuclear Information System (INIS)

    Van der Ham, E.W.M.; Vrehen, Q.H.F.; Eliel, E.R.

    1995-01-01

    Sum-frequency generation (SFG) has developed into a widely applied tool for study of surfaces and interfaces where molecules are present. It combines the surface specificity of a second-order nonlinear optical technique with the power of a spectroscopic method, and it can be used under widely varying experimental conditions ranging from UHV to electrochemical cells. The important characteristic of SFG is that it allows one to study the average spatial orientation of a molecular bond in a monolayer of molecules at an interface. Until recently SFG measurements were confined to the frequency interval Y μ > 1700 cm -1 because of a lack of suitable laser sources at wave-lengths λ > 6 μm. So for most molecules only a few vibrational modes and thus intramolecular bonds can be studied. We have developed a universal sum-frequency spectrometer around the FELIX free-electron law that covers the complete molecular fingerprint since we can generate any IR wavelength between 2.75 and 110 fμ at the FELIX facility. We have used this setup for a series of exploratory SFG experiments in a frequency range that was hitherto unexplored in the study of molecular monolayers. We have studied thiol monolayers chemisorbed on a variety of noble metals (Au, Ag, Pt) where we focussed on the C-S stretch vibration at ν = 702 cm -1 (λ = 14.3 μm). We have found spectroscopic features revealing the presence of both the trane and gauche conformers of the adsorbed molecules. The present measurements open a whole new wavelength range for nonlinear optical studies of interfaces

  13. Opto-electronic device for frequency standard generation and terahertz-range optical demodulation based on quantum interference

    Science.gov (United States)

    Georgiades, Nikos P.; Polzik, Eugene S.; Kimble, H. Jeff

    1999-02-02

    An opto-electronic system and technique for comparing laser frequencies with large frequency separations, establishing new frequency standards, and achieving phase-sensitive detection at ultra high frequencies. Light responsive materials with multiple energy levels suitable for multi-photon excitation are preferably used for nonlinear mixing via quantum interference of different excitation paths affecting a common energy level. Demodulation of a carrier with a demodulation frequency up to 100's THZ can be achieved for frequency comparison and phase-sensitive detection. A large number of materials can be used to cover a wide spectral range including the ultra violet, visible and near infrared regions. In particular, absolute frequency measurement in a spectrum from 1.25 .mu.m to 1.66 .mu.m for fiber optics can be accomplished with a nearly continuous frequency coverage.

  14. GENERATIONAL DIFFERENCES IN WORK VALUES IN THE HOTEL INDUSTRY

    Directory of Open Access Journals (Sweden)

    Maria-Cristina IORGULESCU

    2015-11-01

    Full Text Available In the present working environment there are three different active generations, generally known as: Baby Boomers, Generation X and Generation Y. For the first time in history, three different generations have to cooperate in the workplace and are in direct competition for a job or a new managerial position. This situation creates new challenges in managing human resources in the hotel industry, where an excellent communication between all functional and operational departments is mandatory in order to deliver quality services. The paper aims to address these issues by presenting the main work values of employees in the Romanian hotel industry. The implications of the findings are discussed, considering the limitations of the empirical study presented and the future research directions.

  15. Optimal design of tilt carrier frequency computer-generated holograms to measure aspherics.

    Science.gov (United States)

    Peng, Jiantao; Chen, Zhe; Zhang, Xingxiang; Fu, Tianjiao; Ren, Jianyue

    2015-08-20

    Computer-generated holograms (CGHs) provide an approach to high-precision metrology of aspherics. A CGH is designed under the trade-off among size, mapping distortion, and line spacing. This paper describes an optimal design method based on the parametric model for tilt carrier frequency CGHs placed outside the interferometer focus points. Under the condition of retaining an admissible size and a tolerable mapping distortion, the optimal design method has two advantages: (1) separating the parasitic diffraction orders to improve the contrast of the interferograms and (2) achieving the largest line spacing to minimize sensitivity to fabrication errors. This optimal design method is applicable to common concave aspherical surfaces and illustrated with CGH design examples.

  16. Frequency mixing in boron carbide laser ablation plasmas

    Science.gov (United States)

    Oujja, M.; Benítez-Cañete, A.; Sanz, M.; Lopez-Quintas, I.; Martín, M.; de Nalda, R.; Castillejo, M.

    2015-05-01

    Nonlinear frequency mixing induced by a bichromatic field (1064 nm + 532 nm obtained from a Q-switched Nd:YAG laser) in a boron carbide (B4C) plasma generated through laser ablation under vacuum is explored. A UV beam at the frequency of the fourth harmonic of the fundamental frequency (266 nm) was generated. The dependence of the efficiency of the process as function of the intensities of the driving lasers differs from the expected behavior for four-wave mixing, and point toward a six-wave mixing process. The frequency mixing process was strongly favored for parallel polarizations of the two driving beams. Through spatiotemporal mapping, the conditions for maximum efficiency were found for a significant delay from the ablation event (200 ns), when the medium is expected to be a low-ionized plasma. No late components of the harmonic signal were detected, indicating a largely atomized medium.

  17. The Effect of Flow Frequency on Internet Addiction to Different Internet Usage Activities

    Science.gov (United States)

    Yang, Hui-Ling; Wu, Wei-Pang

    2017-01-01

    This study investigated the online flow frequency among college students in regard to different internet activities, and analyzed the effect of flow frequency on internet addiction. This study surveyed 525 undergraduate internet users in Taiwan by using convenience sampling to question participants. In this paper, analysis of variance (ANOVA) was…

  18. Frequency Synthesiser

    NARCIS (Netherlands)

    Drago, Salvatore; Sebastiano, Fabio; Leenaerts, Dominicus M.W.; Breems, Lucien J.; Nauta, Bram

    2016-01-01

    A low power frequency synthesiser circuit (30) for a radio transceiver, the synthesiser circuit comprising: a digital controlled oscillator configured to generate an output signal having a frequency controlled by an input digital control word (DCW); a feedback loop connected between an output and an

  19. Frequency synthesiser

    NARCIS (Netherlands)

    Drago, S.; Sebastiano, Fabio; Leenaerts, Dominicus Martinus Wilhelmus; Breems, Lucien Johannes; Nauta, Bram

    2010-01-01

    A low power frequency synthesiser circuit (30) for a radio transceiver, the synthesiser circuit comprising: a digital controlled oscillator configured to generate an output signal having a frequency controlled by an input digital control word (DCW); a feedback loop connected between an output and an

  20. Sum frequency and second harmonic generation from the surface of a liquid microjet

    International Nuclear Information System (INIS)

    Smolentsev, Nikolay; Chen, Yixing; Roke, Sylvie; Jena, Kailash C.; Brown, Matthew A.

    2014-01-01

    The use of a liquid microjet as a possible source of interest for Second Harmonic Generation (SHG) and Sum Frequency Generation (SFG) spectroscopy is examined. We measured non-resonant SHG scattering patterns from the air/water interface of a microjet of pure water and observe a strong enhancement of the SHG signal for certain scattering angles. These enhancements can be explained by the optical properties and the shape of the liquid microjet. SFG experiments at the surface of a liquid microjet of ethanol in air show that it is also possible to measure the coherent vibrational SFG spectrum of the ethanol/air interface in this way. Our findings are useful for future far-UV or X-ray based nonlinear optical surface experiments on liquid jets. In addition, combined X-ray photoelectron spectroscopy and SHG/SFG measurements are feasible, which will be very useful in improving our understanding of the molecular foundations of electrostatic and chemical surface properties and phenomena

  1. Sum frequency and second harmonic generation from the surface of a liquid microjet

    Energy Technology Data Exchange (ETDEWEB)

    Smolentsev, Nikolay; Chen, Yixing; Roke, Sylvie, E-mail: sylvie.roke@epfl.ch [Laboratory for Fundamental Biophotonics (LBP), Institute of Bioengineering (IBI), School of Engineering STI, École Polytechnique Fédérale de Lausanne EPFL, 1015 Lausanne (Switzerland); Jena, Kailash C. [Laboratory for Fundamental Biophotonics (LBP), Institute of Bioengineering (IBI), School of Engineering STI, École Polytechnique Fédérale de Lausanne EPFL, 1015 Lausanne (Switzerland); Department of Physics, Indian Institute of Technology Ropar, Rupnagar, 140001 (India); Brown, Matthew A. [Laboratory for Surface Science and Technology, Department of Materials, ETH Zürich, CH-8093 Zurich (Switzerland)

    2014-11-14

    The use of a liquid microjet as a possible source of interest for Second Harmonic Generation (SHG) and Sum Frequency Generation (SFG) spectroscopy is examined. We measured non-resonant SHG scattering patterns from the air/water interface of a microjet of pure water and observe a strong enhancement of the SHG signal for certain scattering angles. These enhancements can be explained by the optical properties and the shape of the liquid microjet. SFG experiments at the surface of a liquid microjet of ethanol in air show that it is also possible to measure the coherent vibrational SFG spectrum of the ethanol/air interface in this way. Our findings are useful for future far-UV or X-ray based nonlinear optical surface experiments on liquid jets. In addition, combined X-ray photoelectron spectroscopy and SHG/SFG measurements are feasible, which will be very useful in improving our understanding of the molecular foundations of electrostatic and chemical surface properties and phenomena.

  2. Sum frequency and second harmonic generation from the surface of a liquid microjet

    Science.gov (United States)

    Smolentsev, Nikolay; Chen, Yixing; Jena, Kailash C.; Brown, Matthew A.; Roke, Sylvie

    2014-11-01

    The use of a liquid microjet as a possible source of interest for Second Harmonic Generation (SHG) and Sum Frequency Generation (SFG) spectroscopy is examined. We measured non-resonant SHG scattering patterns from the air/water interface of a microjet of pure water and observe a strong enhancement of the SHG signal for certain scattering angles. These enhancements can be explained by the optical properties and the shape of the liquid microjet. SFG experiments at the surface of a liquid microjet of ethanol in air show that it is also possible to measure the coherent vibrational SFG spectrum of the ethanol/air interface in this way. Our findings are useful for future far-UV or X-ray based nonlinear optical surface experiments on liquid jets. In addition, combined X-ray photoelectron spectroscopy and SHG/SFG measurements are feasible, which will be very useful in improving our understanding of the molecular foundations of electrostatic and chemical surface properties and phenomena.

  3. The brain responses to different frequencies of binaural beat sounds on QEEG at cortical level.

    Science.gov (United States)

    Jirakittayakorn, Nantawachara; Wongsawat, Yodchanan

    2015-01-01

    Beat phenomenon is occurred when two slightly different frequency waves interfere each other. The beat can also occur in the brain by providing two slightly different frequency waves separately each ear. This is called binaural beat. The brain responses to binaural beat are in discussion process whether the brain side and the brain area. Therefore, this study aims to figure out the brain responses to binaural beat by providing different binaural beat frequencies on 250 carrier tone continuously for 30 minutes to participants and using quantitative electroencephalography (QEEG) to interpret the data. The result shows that different responses appear in different beat frequency. Left hemisphere dominance occur in 3 Hz beat within 15 minutes and 15 Hz beat within 5 minutes. Right hemisphere dominance occurs in 10 Hz beat within 25 minute. 6 Hz beat enhances all area of the brain within 10 minutes. 8 Hz and 25 Hz beats have no clearly responses while 40 Hz beat enhances the responses in frontal lobe. These brain responses can be used for brain modulation application to induce the brain activity in further studies.

  4. Optimizing signal output: effects of viscoelasticity and difference frequency on vibroacoustic radiation of tissue-mimicking phantoms

    Science.gov (United States)

    Namiri, Nikan K.; Maccabi, Ashkan; Bajwa, Neha; Badran, Karam W.; Taylor, Zachary D.; St. John, Maie A.; Grundfest, Warren S.; Saddik, George N.

    2018-02-01

    Vibroacoustography (VA) is an imaging technology that utilizes the acoustic response of tissues to a localized, low frequency radiation force to generate a spatially resolved, high contrast image. Previous studies have demonstrated the utility of VA for tissue identification and margin delineation in cancer tissues. However, the relationship between specimen viscoelasticity and vibroacoustic emission remains to be fully quantified. This work utilizes the effects of variable acoustic wave profiles on unique tissue-mimicking phantoms (TMPs) to maximize VA signal power according to tissue mechanical properties, particularly elasticity. A micro-indentation method was utilized to provide measurements of the elastic modulus for each biological replica. An inverse relationship was found between elastic modulus (E) and VA signal amplitude among homogeneous TMPs. Additionally, the difference frequency (Δf ) required to reach maximum VA signal correlated with specimen elastic modulus. Peak signal diminished with increasing Δf among the polyvinyl alcohol specimen, suggesting an inefficient vibroacoustic response by the specimen beyond a threshold of resonant Δf. Comparison of these measurements may provide additional information to improve tissue modeling, system characterization, as well as insights into the unique tissue composition of tumors in head and neck cancer patients.

  5. Biological effects in natural populations of small rodents in radiocontaminated areas. The frequency of bone marrow polyploid cells in bank voles in different years following the Chernobyl accident

    International Nuclear Information System (INIS)

    Ryabokon', N.I.

    1999-01-01

    On the basis of metaphase analysis results the peculiarities of dynamics of genome mutation frequency (polyploid cells) were studied in bone marrow of bank voles inhibiting the areas with different contamination level due to the Chernobyl accident (8-1526 kBq/m 2 for 137 Cs) in 1986-1991. Unexpectedly high frequencies of polyploid cells exceeding the pre-accidental level by factor of 10 1 -10 3 were recorded in all populations studied. Relationship between the frequency of parameter studied and the concentration of radionuclides incorporated in animal carcasses was proved. Statistically significant rise in the frequency of genome mutations with the time was revealed up to 1991, i.e. approximately to 12-th post-accidental animal generation [ru

  6. Combining different frequencies for electrical heating of saturated and unsaturated soil zones

    Energy Technology Data Exchange (ETDEWEB)

    Roland, U.; Holzer, F.; Kopinke, F.D. [Helmholtz Centre for Environmental Research - UFZ, Department of Environmental Engineering, Leipzig (Germany)

    2011-10-15

    In situ electrical heating of soil was studied applying different frequencies: low-frequency energy for resistive heating and radio-frequency energy for dielectric heating. Steep temperature gradients were observed for each heating mode under the condition of the coexistence of saturated and unsaturated soil zones. By combining the two heating modes, this undesired effect can be avoided, thus allowing efficient soil remediation especially when organic phases are accumulated at the capillary fringe. A parallel application of both frequencies was demonstrated as the most suitable method to reduce temperature gradients. By using electronic filters, both electric fields can be established by only one electrode array. This innovative concept is especially applicable for optimizing thermal remediation of light non-aqueous phase liquid contaminations or realizing thermally-enhanced electrokinetic removal of heavy metals. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. Analysis of Fatigue Life of PMMA at Different Frequencies Based on a New Damage Mechanics Model

    Directory of Open Access Journals (Sweden)

    Aifeng Huang

    2014-01-01

    Full Text Available Low-cycle fatigue tests at different frequencies and creep tests under different stress levels of Plexiglas Resist 45 were conducted. Correspondingly, the creep fracture time, S-N curves, cyclic creep, and hysteresis loop were obtained. These results showed that the fatigue life increases with frequency at low frequency domain. After analysis, it was found that fatigue life is dependent on the load rate and is affected by the creep damage. In addition, a new continuum damage mechanics (CDM model was established to analyze creep-fatigue life, where the damage increment nonlinear summation rule was proposed and the frequency modification was made on the fatigue damage evolution equation. Differential evolution (DE algorithm was employed to determine the parameters within the model. The proposed model described fatigue life under different frequencies, and the calculated results agreed well with the experimental results.

  8. Direct CFD Predictions of Low Frequency Sounds Generated by a Helicopter Main Rotor

    Science.gov (United States)

    Sim, Ben W.; Potsdam, Mark A.; Conner, Dave A.; Conner, Dave A.; Watts, Michael E.

    2010-01-01

    The use of CFD to directly predict helicopter main rotor noise is shown to be quite promising as an alternative mean for low frequency source noise evaluation. Results using existing state-of-the-art grid structures and finite-difference schemes demonstrated that small perturbation pressures, associated with acoustics radiation, can be extracted with some degree of fidelity. Accuracy of the predictions are demonstrated via comparing to predictions from conventional acoustic analogy-based models, and with measurements obtained from wind tunnel and flight tests for the MD-902 helicopter at several operating conditions. Findings show that the direct CFD approach is quite successfully in yielding low frequency results due to thickness and steady loading noise mechanisms. Mid-to-high frequency contents, due to blade-vortex interactions, are not predicted due to CFD modeling and grid constraints.

  9. Verification of voltage/ frequency requirement for emergency diesel generator in nuclear power plant using dynamic modeling

    International Nuclear Information System (INIS)

    Hur, J.S.; Roh, M.S.

    2013-01-01

    Full-text: One major cause of the plant shutdown is the loss of electrical power. The study is to comprehend the coping action against station blackout including emergency diesel generator, sequential loading of safety system and to ensure that the emergency diesel generator should meet requirements, especially voltage and frequency criteria using modeling tool. This paper also considered the change of the sequencing time and load capacity only for finding electrical design margin. However, the revision of load list must be verified with safety analysis. From this study, it is discovered that new load calculation is a key factor in EDG localization and in-house capability increase. (author)

  10. Multi-frequency response from a designed array of micromechanical cantilevers fabricated using a focused ion beam

    International Nuclear Information System (INIS)

    Ghatnekar-Nilsson, S; Graham, J; Hull, R; Montelius, L

    2006-01-01

    We demonstrate arrays of cantilevers with different lengths, fabricated by focused ion beam milling. The arrays of oscillators generate a spectrum of different resonant frequencies, where each frequency correlates to the corresponding individual cantilever. The frequency response from all the cantilevers is collected from a single measurement under the same environment and conditions for the entire array. The mass response of the system generated the same Δf/f 0 for the cantilevers, within 0.1% accuracy. We denote the method MFSAC: multi-frequency signal analysis from an array of cantilevers. The simultaneous detection of several frequencies in one spectrum has great benefits in mass sensor applications, offering the possibility for true label-free detection

  11. Magnetic nanoparticles colourization by a mixing-frequency method

    International Nuclear Information System (INIS)

    Tu, Liang; Wu, Kai; Klein, Todd; Wang, Jian-Ping

    2014-01-01

    Brownian and Néel relaxation of magnetic nanoparticles (MNPs) can be characterized by a highly sensitive mixing-frequency method using a search-coil based detection system. The unique magnetic properties of MNPs have been used for biomarkers detection. In this paper, we present a theory and implement an experimental detection scheme using the mixing-frequency method to identify different MNPs simultaneously. A low-frequency sinusoidal magnetic field is applied to saturate the MNPs periodically. A high-frequency sinusoidal magnetic field is then applied to generate mixing-frequency signals that are highly specific to the magnetization of MNPs. The spectra of each MNP can be defined as the complex magnetization of the MNPs over the field frequency. The magnetic spectra of various MNPs and magnetic beads have been characterized and compared. The differences between the MNPs spectra enable us to identify the individual MNPs at the same time. A test has been done to verify the ratio of two different MNPs in mixed samples based on the proposed theory. The experimental results show that the mixing-frequency method is a promising method for MNPs colourization. (paper)

  12. Smart microgrid hierarchical frequency control ancillary service provision based on virtual inertia concept: An integrated demand response and droop controlled distributed generation framework

    International Nuclear Information System (INIS)

    Rezaei, Navid; Kalantar, Mohsen

    2015-01-01

    Highlights: • Detailed formulation of the microgrid static and dynamic securities based on droop control and virtual inertia concepts. • Constructing a novel objective function using frequency excursion and rate of change of frequency profiles. • Ensuring the microgrid security subject to the microgrid economic and environmental policies. • Coordinated management of demand response and droop controlled distributed generation resources. • Precise scheduling of day-ahead hierarchical frequency control ancillary services using a scenario based stochastic programming. - Abstract: Low inertia stack, high penetration levels of renewable energy source and great ratio of power deviations in a small power delivery system put microgrid frequency at risk of instability. On the basis of the close coupling between the microgrid frequency and system security requirements, procurement of adequate ancillary services from cost-effective and environmental friendly resources is a great challenge requests an efficient energy management system. Motivated by this need, this paper presents a novel energy management system that is aimed to coordinately manage the demand response and distributed generation resources. The proposed approach is carried out by constructing a hierarchical frequency control structure in which the frequency dependent control functions of the microgrid components are modeled comprehensively. On the basis of the derived modeling, both the static and dynamic frequency securities of an islanded microgrid are provided in primary and secondary control levels. Besides, to cope with the low inertia stack of islanded microgrids, novel virtual inertia concept is devised based on the precise modeling of droop controlled distributed generation resources. The proposed approach is applied to typical test microgrid. Energy and hierarchical reserve resource are scheduled precisely using a scenario-based stochastic programming methodology. Moreover, analyzing the

  13. The Employment Expectations of Different Age Cohorts: Is Generation Y Really that Different?

    Science.gov (United States)

    Treuren, Gerry; Anderson, Kathryn

    2010-01-01

    If the existence of Generation Y is a viable explanation of employment behaviour, as is asserted in the burgeoning literature, then people between 18 and 33 (born between 1977 and 1992) will have markedly different approaches to work when compared with Generation X (1962 and 1976) and the Baby Boomers (1946 to 1961). This article reviews the…

  14. Determining In Situ Protein Conformation and Orientation from the Amide-I Sum-Frequency Generation Spectrum: Theory and Experiment

    NARCIS (Netherlands)

    Roeters, S.J.; van Dijk, C.N.; Torres Knoop, A.; Backus, E.H.G.; Campen, R.K.; Bonn, M.; Woutersen, S.

    2013-01-01

    Vibrational sum-frequency generation (VSFG) spectra of the amide-I band of proteins can give detailed insight into biomolecular processes near membranes. However, interpreting these spectra in terms of the conformation and orientation of a protein can be difficult, especially in the case of complex

  15. Generation and tunable enhancement of a sum-frequency signal in lithium niobate nanowires

    Science.gov (United States)

    Sergeyev, Anton; Reig Escalé, Marc; Grange, Rachel

    2017-02-01

    Recent developments in the fabrication of lithium niobate (LiNbO3) structures down to the nanoscale opens up novel applications of this versatile material in nonlinear optics. Current nonlinear optical studies in sub-micron waveguides are mainly restricted to the generation of second and third harmonics. In this work, we demonstrate the generation and waveguiding of the sum-frequency generation (SFG) signal in a single LiNbO3 nanowire with a cross-section of 517 nm  ×  654 nm. Furthermore, we enhance the guided SFG signal 17.9 times by means of modal phase matching. We also display tuning of the phase-matched wavelength by varying the nanowire cross-section and changing the polarization of the incident laser. The results prove that LiNbO3 nanowires can be successfully used for nonlinear wave-mixing applications and assisting the miniaturization of optical devices. , which features invited work from the best early-career researchers working within the scope of J Phys D. This project is part of the Journal of Physics series’ 50th anniversary celebrations in 2017. Rachel Grange was selected by the Editorial Board of J Phys D as an Emerging Leader.

  16. CAMAC based Test Signal Generator using Re-configurable device

    International Nuclear Information System (INIS)

    Sharma, Atish; Raval, Tushar; Srivastava, Amit K; Reddy, D Chenna

    2010-01-01

    There are many different types of signal generators, with different purposes and applications (and at varying levels of expense). In general, no device is suitable for all possible applications. Hence the selection of signal generator is as per requirements. For SST-1 Data Acquisition System requirements, we have developed a CAMAC based Test Signal Generator module using Re-configurable device (CPLD). This module is based on CAMAC interface but can be used for testing both CAMAC and PXI Data Acquisition Systems in SST-1 tokamak. It can also be used for other similar applications. Unlike traditional signal generators, which are embedded hardware, it is a flexible hardware unit, programmable through Graphical User Interface (GUI) developed in LabVIEW application development tool. The main aim of this work is to develop a signal generator for testing our data acquisition interface for a large number of channels simultaneously. The module front panel has various connectors like LEMO and D type connectors for signal interface. The module can be operated either in continuous signal generation mode or in triggered mode depending upon application. This can be done either by front panel switch or through CAMAC software commands (for remote operation). Similarly module reset and trigger generation operation can be performed either through front panel push button switch or through software CAMAC commands. The module has the facility to accept external TTL level trigger and clock through LEMO connectors. The module can also generate trigger and the clock signal, which can be delivered to other devices through LEMO connectors. The module generates two types of signals: Analog and digital (TTL level). The analog output (single channel) is generated from Digital to Analog Converter through CPLD for various types of waveforms like Sine, Square, Triangular and other wave shape that can vary in amplitude as well as in frequency. The module is quite useful to test up to 32 channels

  17. A novel transient rotor current control scheme of a doubly-fed induction generator equipped with superconducting magnetic energy storage for voltage and frequency support

    Science.gov (United States)

    Shen, Yang-Wu; Ke, De-Ping; Sun, Yuan-Zhang; Daniel, Kirschen; Wang, Yi-Shen; Hu, Yuan-Chao

    2015-07-01

    A novel transient rotor current control scheme is proposed in this paper for a doubly-fed induction generator (DFIG) equipped with a superconducting magnetic energy storage (SMES) device to enhance its transient voltage and frequency support capacity during grid faults. The SMES connected to the DC-link capacitor of the DFIG is controlled to regulate the transient dc-link voltage so that the whole capacity of the grid side converter (GSC) is dedicated to injecting reactive power to the grid for the transient voltage support. However, the rotor-side converter (RSC) has different control tasks for different periods of the grid fault. Firstly, for Period I, the RSC injects the demagnetizing current to ensure the controllability of the rotor voltage. Then, since the dc stator flux degenerates rapidly in Period II, the required demagnetizing current is low in Period II and the RSC uses the spare capacity to additionally generate the reactive (priority) and active current so that the transient voltage capability is corroborated and the DFIG also positively responds to the system frequency dynamic at the earliest time. Finally, a small amount of demagnetizing current is provided after the fault clearance. Most of the RSC capacity is used to inject the active current to further support the frequency recovery of the system. Simulations are carried out on a simple power system with a wind farm. Comparisons with other commonly used control methods are performed to validate the proposed control method. Project supported by the National Natural Science Foundation of China (Grant No. 51307124) and the Major Program of the National Natural Science Foundation of China (Grant No. 51190105).

  18. Modeling of Nanophotonic Resonators with the Finite-Difference Frequency-Domain Method

    DEFF Research Database (Denmark)

    Ivinskaya, Aliaksandra; Lavrinenko, Andrei; Shyroki, Dzmitry

    2011-01-01

    Finite-difference frequency-domain method with perfectly matched layers and free-space squeezing is applied to model open photonic resonators of arbitrary morphology in three dimensions. Treating each spatial dimension independently, nonuniform mesh of continuously varying density can be built ea...

  19. Photon wave function formalism for analysis of Mach–Zehnder interferometer and sum-frequency generation

    Energy Technology Data Exchange (ETDEWEB)

    Ritboon, Atirach, E-mail: atirach.3.14@gmail.com [School of Physics and Astronomy, University of Glasgow, Glasgow, G12 8QQ (United Kingdom); Department of Physics, Faculty of Science, Prince of Songkla University, Hat Yai 90112 (Thailand); Daengngam, Chalongrat, E-mail: chalongrat.d@psu.ac.th [Department of Physics, Faculty of Science, Prince of Songkla University, Hat Yai 90112 (Thailand); Pengpan, Teparksorn, E-mail: teparksorn.p@psu.ac.th [Department of Physics, Faculty of Science, Prince of Songkla University, Hat Yai 90112 (Thailand)

    2016-08-15

    Biakynicki-Birula introduced a photon wave function similar to the matter wave function that satisfies the Schrödinger equation. Its second quantization form can be applied to investigate nonlinear optics at nearly full quantum level. In this paper, we applied the photon wave function formalism to analyze both linear optical processes in the well-known Mach–Zehnder interferometer and nonlinear optical processes for sum-frequency generation in dispersive and lossless medium. Results by photon wave function formalism agree with the well-established Maxwell treatments and existing experimental verifications.

  20. Photon wave function formalism for analysis of Mach–Zehnder interferometer and sum-frequency generation

    International Nuclear Information System (INIS)

    Ritboon, Atirach; Daengngam, Chalongrat; Pengpan, Teparksorn

    2016-01-01

    Biakynicki-Birula introduced a photon wave function similar to the matter wave function that satisfies the Schrödinger equation. Its second quantization form can be applied to investigate nonlinear optics at nearly full quantum level. In this paper, we applied the photon wave function formalism to analyze both linear optical processes in the well-known Mach–Zehnder interferometer and nonlinear optical processes for sum-frequency generation in dispersive and lossless medium. Results by photon wave function formalism agree with the well-established Maxwell treatments and existing experimental verifications.

  1. Gyromagnetic nonlinear transmission line generator of high voltage pulses modulated at 4 GHz frequency with 1000 Hz pulse repetition rate

    International Nuclear Information System (INIS)

    Ulmasculov, M R; Sharypov, K A; Shunailov, S A; Shpak, V G; Yalandin, M I; Pedos, M S; Rukin, S N

    2017-01-01

    Results of testing of a generator based on a solid-state drive and the parallel gyromagnetic nonlinear transmission lines with external bias are presented. Stable rf-modulated high-voltage nanosecond pulses were shaped in each of the four channels in 1 s packets with 1000 Hz repetition frequencies. Pulse amplitude reaches -175 kV, at a modulation depth of rf-oscillations to 50 % and the effective frequency ∼4 GHz. (paper)

  2. Second harmonic generation at fatigue cracks by low-frequency Lamb waves: Experimental and numerical studies

    Science.gov (United States)

    Yang, Yi; Ng, Ching-Tai; Kotousov, Andrei; Sohn, Hoon; Lim, Hyung Jin

    2018-01-01

    This paper presents experimental and theoretical analyses of the second harmonic generation due to non-linear interaction of Lamb waves with a fatigue crack. Three-dimensional (3D) finite element (FE) simulations and experimental studies are carried out to provide physical insight into the mechanism of second harmonic generation. The results demonstrate that the 3D FE simulations can provide a reasonable prediction on the second harmonic generated due to the contact nonlinearity at the fatigue crack. The effect of the wave modes on the second harmonic generation is also investigated in detail. It is found that the magnitude of the second harmonic induced by the interaction of the fundamental symmetric mode (S0) of Lamb wave with the fatigue crack is much higher than that by the fundamental anti-symmetric mode (A0) of Lamb wave. In addition, a series of parametric studies using 3D FE simulations are conducted to investigate the effect of the fatigue crack length to incident wave wavelength ratio, and the influence of the excitation frequency on the second harmonic generation. The outcomes show that the magnitude and directivity pattern of the generated second harmonic depend on the fatigue crack length to incident wave wavelength ratio as well as the ratio of S0 to A0 incident Lamb wave amplitude. In summary, the findings of this study can further advance the use of second harmonic generation in damage detection.

  3. A piezoelectric micro generator worked at low frequency and high acceleration based on PZT and phosphor bronze bonding.

    Science.gov (United States)

    Tang, Gang; Yang, Bin; Hou, Cheng; Li, Guimiao; Liu, Jingquan; Chen, Xiang; Yang, Chunsheng

    2016-12-08

    Recently, piezoelectric energy harvesters (PEHs) have been paid a lot of attention by many researchers to convert mechanical energy into electrical and low level vibration. Currently, most of PEHs worked under high frequency and low level vibration. In this paper, we propose a micro cantilever generator based on the bonding of bulk PZT wafer and phosphor bronze, which is fabricated by MEMS technology, such as mechanical chemical thinning and etching. The experimental results show that the open-circuit output voltage, output power and power density of this fabricated prototype are 35 V, 321 μW and 8664 μW cm -3 at the resonant frequency of 100.8 Hz, respectively, when it matches an optimal loading resistance of 140 kΩ under the excitation of 3.0 g acceleration. The fabricated micro generator can obtain the open-circuit stable output voltage of 61.2 V when the vibration acceleration arrives at 7.0 g. Meanwhile, when this device is pasted on the vibrating vacuum pump, the output voltage is about 11 V. It demonstrates that this novel proposed device can scavenge high vibration level energy at low frequency for powering the inertial sensors in internet of things application.

  4. Resonant-frequency discharge in a multi-cell radio frequency cavity

    Energy Technology Data Exchange (ETDEWEB)

    Popovic, S; Upadhyay, J; Mammosser, J; Nikolic, M; Vuskovic, L

    2014-11-07

    We are reporting experimental results on microwave discharge operating at resonant frequency in a multi-cell radio frequency (RF) accelerator cavity. Although the discharge operated at room temperature, the setup was constructed so that it could be used for plasma generation and processing in fully assembled active superconducting radio-frequency (SRF) cryomodule (in situ operation). This discharge offers an efficient mechanism for removal of a variety of contaminants, organic or oxide layers, and residual particulates from the interior surface of RF cavities through the interaction of plasma-generated radicals with the cavity walls. We describe resonant RF breakdown conditions and address the problems related to generation and sustaining the multi-cell cavity plasma, which are breakdown and resonant detuning. We have determined breakdown conditions in the cavity, which was acting as a plasma vessel with distorted cylindrical geometry. We discuss the spectroscopic data taken during plasma removal of contaminants and use them to evaluate plasma parameters, characterize the process, and estimate the volatile contaminant product removal.

  5. An improved synchronous reference frame phase-locked loop for stand-alone variable speed constant frequency power generation systems

    DEFF Research Database (Denmark)

    Liu, Yi; Xu, Wei; Ke, Longzhang

    2017-01-01

    The phase-locked loop (PLL) based on conventional synchronous reference frame, i.e. dqPLL, is usually employed in grid-connected variable speed constant frequency (VSCF) power generation systems (PGSs). However, the voltage amplitude drop of stand-alone PGSs is often greater than that of the grid...

  6. Mercury Trapped Ion Frequency Standard for Ultra-Stable Reference Applications

    Science.gov (United States)

    Burt, Eric A. (Inventor); Hamell, Robert L. (Inventor); Tucker, Blake C. (Inventor); Larsen, Kameron (Inventor); Tjoelker, Robert L. (Inventor)

    2017-01-01

    An atomic clock including an ion trap assembly, a C-field coil positioned for generating a first magnetic field in the interrogation region of the ion trap assembly, a compensation coil positioned for generating a second magnetic field in the interrogation region, wherein the combination of the first and second magnetic fields produces an ion number-dependent second order Zeeman shift (Zeeman shift) in the resonance frequency that is opposite in sign to an ion number-dependent second order Doppler shift (Doppler shift) in the resonance frequency, the C-field coil has a radius selected using data indicating how changes in the radius affect an ion-number-dependent shift in the resonance frequency, such that a difference in magnitude between the Doppler shift and the Zeeman shift is controlled or reduced, and the resonance frequency, including the adjustment by the Zeeman shift, is used to obtain the frequency standard.

  7. A fractional-N frequency synthesizer-based multi-standard I/Q carrier generation system in 0.13 μm CMOS

    International Nuclear Information System (INIS)

    Lou Wenfeng; Geng Zhiqing; Feng Peng; Wu Nanjian

    2011-01-01

    This paper proposes a sigma-delta fractional-N frequency synthesizer-based multi-standard I/Q carrier generation system. With reasonable frequency planning, the system can be used in multi-standard wireless communication applications (GSM, WCDMA, GPRS, TD-SCDMA, WLAN (802.11a/b/g)). The implementation is achieved by a 0.13 μm RF CMOS process. The measured results demonstrate that three quadrature VCOs (QVCO) continuously cover the frequency from 3.1 to 6.1 GHz (65.2%), and through the successive divide-by-2 prescalers to achieve the frequency from 0.75 to 6.1 GHz continuously. The chip was fully integrated with the exception of an off-chip filter. The entire chip area is only 3.78 mm 2 , and the system consumes a 21.7 mA - 1.2 V supply without output buffers. The lock-in time of the PLL frequency synthesizer is less than 4 μs over the entire frequency range with a direct frequency presetting technique and the auxiliary non-volatile memory (NVM) can store the digital configuration signal of the system, including presetting signals to avoid the calibration process case by case. (semiconductor integrated circuits)

  8. A fractional-N frequency synthesizer-based multi-standard I/Q carrier generation system in 0.13 {mu}m CMOS

    Energy Technology Data Exchange (ETDEWEB)

    Lou Wenfeng; Geng Zhiqing; Feng Peng; Wu Nanjian, E-mail: nanjian@semi.ac.cn [Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083 (China)

    2011-06-15

    This paper proposes a sigma-delta fractional-N frequency synthesizer-based multi-standard I/Q carrier generation system. With reasonable frequency planning, the system can be used in multi-standard wireless communication applications (GSM, WCDMA, GPRS, TD-SCDMA, WLAN (802.11a/b/g)). The implementation is achieved by a 0.13 {mu}m RF CMOS process. The measured results demonstrate that three quadrature VCOs (QVCO) continuously cover the frequency from 3.1 to 6.1 GHz (65.2%), and through the successive divide-by-2 prescalers to achieve the frequency from 0.75 to 6.1 GHz continuously. The chip was fully integrated with the exception of an off-chip filter. The entire chip area is only 3.78 mm{sup 2}, and the system consumes a 21.7 mA - 1.2 V supply without output buffers. The lock-in time of the PLL frequency synthesizer is less than 4 {mu}s over the entire frequency range with a direct frequency presetting technique and the auxiliary non-volatile memory (NVM) can store the digital configuration signal of the system, including presetting signals to avoid the calibration process case by case. (semiconductor integrated circuits)

  9. Mutational jackpot events generate effective frequency-dependent selection in adapting populations

    Science.gov (United States)

    Hallatschek, Oskar

    The site-frequency spectrum is one the most easily measurable quantities that characterize the genetic diversity of a population. While most neutral models predict that site frequency spectra should decay with increasing frequency, a high-frequency uptick has been reported in many populations. Anomalies in the high-frequency tail are particularly unsettling because the highest frequencies can be measured with greatest accuracy. Here, we show that an uptick in the spectrum of neutral mutations generally arises when mutant frequencies are dominated by rare jackpot events, mutational events with large descendant numbers. This leads to an effective pattern of frequency-dependent selection (or unstable internal equilibrium at one half frequency) that causes an accumulation of high-frequency polymorphic sites. We reproduce the known uptick occurring for recurrent hitchhiking (genetic draft) as well as rapid adaptation, and (in the future) generalize the shape of the high-frequency tail to other scenarios that are dominated by jackpot events, such as frequent range expansions. We also tackle (in the future) the inverse approach to use the high-frequency uptick for learning about the tail of the offspring number distribution. Positively selected alleles need to surpass, typically, an u NSF Career Award (PoLS), NIH NIGMS R01, Simons Foundation.

  10. Career Stage and Generational Differences in Psychological Contracts

    Science.gov (United States)

    Hess, Narelle; Jepsen, Denise M.

    2009-01-01

    Purpose: The purpose of this paper is to determine how employees in different generational groups (or cohorts) and different career stages perceive their psychological contracts. Design/methodology/approach: A survey of 345 working adults included psychological contract obligations, incentives and importance and the cognitive responses of job…

  11. Generational Differences in Japanese Attitudes toward Women's Employment.

    Science.gov (United States)

    Engel, John W.

    Traditional ideals discourage Japanese women from working outside the home. This study was conducted to explore generational differences in Japanese attitudes toward women's employment and to interpret those differences in terms of social change. Questionnaires were distributed to approximately 900 Japanese men and women. Subjects were classified…

  12. Conditional flood frequency and catchment state: a simulation approach

    Science.gov (United States)

    Brettschneider, Marco; Bourgin, François; Merz, Bruno; Andreassian, Vazken; Blaquiere, Simon

    2017-04-01

    Catchments have memory and the conditional flood frequency distribution for a time period ahead can be seen as non-stationary: it varies with the catchment state and climatic factors. From a risk management perspective, understanding the link of conditional flood frequency to catchment state is a key to anticipate potential periods of higher flood risk. Here, we adopt a simulation approach to explore the link between flood frequency obtained by continuous rainfall-runoff simulation and the initial state of the catchment. The simulation chain is based on i) a three state rainfall generator applied at the catchment scale, whose parameters are estimated for each month, and ii) the GR4J lumped rainfall-runoff model, whose parameters are calibrated with all available data. For each month, a large number of stochastic realizations of the continuous rainfall generator for the next 12 months are used as inputs for the GR4J model in order to obtain a large number of stochastic realizations for the next 12 months. This process is then repeated for 50 different initial states of the soil moisture reservoir of the GR4J model and for all the catchments. Thus, 50 different conditional flood frequency curves are obtained for the 50 different initial catchment states. We will present an analysis of the link between the catchment states, the period of the year and the strength of the conditioning of the flood frequency compared to the unconditional flood frequency. A large sample of diverse catchments in France will be used.

  13. Finite-difference modeling and dispersion analysis of high-frequency love waves for near-surface applications

    Science.gov (United States)

    Luo, Y.; Xia, J.; Xu, Y.; Zeng, C.; Liu, J.

    2010-01-01

    Love-wave propagation has been a topic of interest to crustal, earthquake, and engineering seismologists for many years because it is independent of Poisson's ratio and more sensitive to shear (S)-wave velocity changes and layer thickness changes than are Rayleigh waves. It is well known that Love-wave generation requires the existence of a low S-wave velocity layer in a multilayered earth model. In order to study numerically the propagation of Love waves in a layered earth model and dispersion characteristics for near-surface applications, we simulate high-frequency (>5 Hz) Love waves by the staggered-grid finite-difference (FD) method. The air-earth boundary (the shear stress above the free surface) is treated using the stress-imaging technique. We use a two-layer model to demonstrate the accuracy of the staggered-grid modeling scheme. We also simulate four-layer models including a low-velocity layer (LVL) or a high-velocity layer (HVL) to analyze dispersive energy characteristics for near-surface applications. Results demonstrate that: (1) the staggered-grid FD code and stress-imaging technique are suitable for treating the free-surface boundary conditions for Love-wave modeling, (2) Love-wave inversion should be treated with extra care when a LVL exists because of a lack of LVL information in dispersions aggravating uncertainties in the inversion procedure, and (3) energy of high modes in a low-frequency range is very weak, so that it is difficult to estimate the cutoff frequency accurately, and "mode-crossing" occurs between the second higher and third higher modes when a HVL exists. ?? 2010 Birkh??user / Springer Basel AG.

  14. Adequacy of Frequency Reserves for High Wind Power Generation

    DEFF Research Database (Denmark)

    Das, Kaushik; Litong-Palima, Marisciel; Maule, Petr

    2017-01-01

    In this article, a new methodology is developed to assess the adequacy of frequency reserves to handle power imbalances caused by wind power forecast errors. The goal of this methodology is to estimate the adequate volume and speed of activation of frequency reserves required to handle power...

  15. Generational Differences as a Determinant of Women's Perspectives on Commitment

    Science.gov (United States)

    Stark, Marcella D.; Kirk, Amy Manning; Bruhn, Rick

    2012-01-01

    Differences between 116 graduate and undergraduate women, representing 4 generations (i.e., Baby Boomers, Transitionals, Generation Xers, and Millennials), were studied to categorize earliest awareness and definitions of commitment in relationships. More than 63% of participants in each generation viewed relationship commitment in terms of…

  16. Harmonic arbitrary waveform generator

    Science.gov (United States)

    Roberts, Brock Franklin

    2017-11-28

    High frequency arbitrary waveforms have applications in radar, communications, medical imaging, therapy, electronic warfare, and charged particle acceleration and control. State of the art arbitrary waveform generators are limited in the frequency they can operate by the speed of the Digital to Analog converters that directly create their arbitrary waveforms. The architecture of the Harmonic Arbitrary Waveform Generator allows the phase and amplitude of the high frequency content of waveforms to be controlled without taxing the Digital to Analog converters that control them. The Harmonic Arbitrary Waveform Generator converts a high frequency input, into a precision, adjustable, high frequency arbitrary waveform.

  17. Radio-frequency energy in fusion power generation

    International Nuclear Information System (INIS)

    Lawson, J.Q.; Becraft, W.R.; Hoffman, D.J.

    1983-01-01

    The history of radio-frequency (rf) energy in fusion experiments is reviewed, and the status of current efforts is described. Potential applications to tasks other than plasma heating are described, as are the research and development needs of rf energy technology

  18. Improvement of ISI techniques by multi-frequency eddy current testing method for steam generator tube in PWR plant

    International Nuclear Information System (INIS)

    Endo, Takashi; Kamimura, Takeo; Nishihara, Masatoshi; Araki, Yasuo; Fukui, Shigetaka.

    1982-05-01

    Eddy current flaw detection techniques are applied to the in-service inspection (ISI) of steam generator tubes in pressurized water reactors (PWR) plant. To improve the reliability and operating efficiency of the plants, efforts are being made to develop eddy current testing methods of various kinds. Multi-frequency eddy current testing method, one of new method, has recently been applied to actual heat exchanger tubes, contributing to the improvement of the detectability and signal evaluation of the ISI. The outline of multi-frequency eddy current testing method and its effects on the improvement of flaw detecting and signal evaluation accuracy are described. (author)

  19. Detection of admittivity anomaly on high-contrast heterogeneous backgrounds using frequency difference EIT.

    Science.gov (United States)

    Jang, J; Seo, J K

    2015-06-01

    This paper describes a multiple background subtraction method in frequency difference electrical impedance tomography (fdEIT) to detect an admittivity anomaly from a high-contrast background conductivity distribution. The proposed method expands the use of the conventional weighted frequency difference EIT method, which has been used limitedly to detect admittivity anomalies in a roughly homogeneous background. The proposed method can be viewed as multiple weighted difference imaging in fdEIT. Although the spatial resolutions of the output images by fdEIT are very low due to the inherent ill-posedness, numerical simulations and phantom experiments of the proposed method demonstrate its feasibility to detect anomalies. It has potential application in stroke detection in a head model, which is highly heterogeneous due to the skull.

  20. Stabilized soliton self-frequency shift and 0.1- PHz sideband generation in a photonic-crystal fiber with an air-hole-modified core.

    Science.gov (United States)

    Liu, Bo-Wen; Hu, Ming-Lie; Fang, Xiao-Hui; Li, Yan-Feng; Chai, Lu; Wang, Ching-Yue; Tong, Weijun; Luo, Jie; Voronin, Aleksandr A; Zheltikov, Aleksei M

    2008-09-15

    Fiber dispersion and nonlinearity management strategy based on a modification of a photonic-crystal fiber (PCF) core with an air hole is shown to facilitate optimization of PCF components for a stable soliton frequency shift and subpetahertz sideband generation through four-wave mixing. Spectral recoil of an optical soliton by a red-shifted dispersive wave, generated through a soliton instability induced by high-order fiber dispersion, is shown to stabilize the soliton self-frequency shift in a highly nonlinear PCF with an air-hole-modified core relative to pump power variations. A fiber with a 2.3-microm-diameter core modified with a 0.9-microm-diameter air hole is used to demonstrate a robust soliton self-frequency shift of unamplified 50-fs Ti: sapphire laser pulses to a central wavelength of about 960 nm, which remains insensitive to variations in the pump pulse energy within the range from 60 to at least 100 pJ. In this regime of frequency shifting, intense high- and low-frequency branches of dispersive wave radiation are simultaneously observed in the spectrum of PCF output. An air-hole-modified-core PCF with appropriate dispersion and nonlinearity parameters is shown to provide efficient four-wave mixing, giving rise to Stokes and anti-Stokes sidebands whose frequency shift relative to the pump wavelength falls within the subpetahertz range, thus offering an attractive source for nonlinear Raman microspectroscopy.

  1. High tension generator for corona barrier discharge

    International Nuclear Information System (INIS)

    Baltag, O.; Costandache, D.; Gheorghiu, M.; Paraschivescu, A.; Popa, G.

    2001-01-01

    Different types of high-voltage generators are in use for the study of low pressure (or atmospheric) discharges. Mostly used are the Tesla coils generators or the power generators working in linear or switching regime. The Tesla coils generators have the advantage of a simple bloc diagram. In exchange, they have a number of short-comings, such as: the difficulty in modifying the frequency of the high voltage pulses, generation of a high voltage and frequency pulse train, the amplitude is not constant.This paper presents a high-voltage generator meant to be used in the study of the dielectric barrier discharges (DBD). The bloc diagram is presented. Performances obtained are as follows: - Generated frequency: 10 Hz - 100 Hz, 100 Hz - 1 KHz, 1 KHz - 10 KHz; - High voltage pulses control: a single pulse from an internal or external generator; - Synchronization with the oscilloscope, variable delay: 5 μs - 0.1 s; - Output voltage: variable both smoothly and in steps: 1 kV -15 kV; - High voltage polarity: mono and bipolar; - Output power during the continuous duty: 300 VA (maximum 600 VA for a short time); - Pulse energy: 0.23 J; - Pulse duration: 4 μs - 50 μs

  2. A Tunable CW Orange Laser Based on a Cascaded MgO:PPLN Single-Pass Sum-Frequency Generation Module

    OpenAIRE

    Dismas K. Choge; Huai-Xi Chen; Bao-Lu Tian; Yi-Bin Xu; Guang-Wei Li; Wan-Guo Liang

    2018-01-01

    We report an all-solid-state continuous wave (CW) tunable orange laser based on cascaded single-pass sum-frequency generation with fundamental wavelengths at 1545.7 and 975.2 nm using two quasi-phase-matched (QPM) MgO-doped periodically poled lithium niobate (MgO:PPLN) crystals. Up to 10 mW of orange laser is generated in the cascaded module corresponding to a 10.4%/W nonlinear conversion efficiency. The orange output showed a temperature tuning rate of ~0.05 nm/°C, and the beam quality (M2) ...

  3. [Differences between generations: relevant for medical education in the Netherlands].

    Science.gov (United States)

    Busari, Jamiu O; Scheele, Fedde

    2015-01-01

    Provision of care is increasingly being tailored to patients' wishes, which means that insight into the ideas, norms and values of the care-consumer are required. This approach is also beginning to filter through into medical education. We can differentiate generations on the basis of shared opinions, because groups with shared experiences usually share the same values. This is a useful line of approach if we wish to serve different generations of consumers better. At the moment there are four different generations influencing the setup and division of the healthcare services and relevant to medical education in the coming decades. Future education methods will have to be in line with the wishes of the generation from which new doctors come. In order to achieve better care for patients it is important to give 'thinking in generations' more attention in medical education.

  4. Coupled-cluster sum-frequency generation nonlinear susceptibilities of methyl (CH3) and methylene (CH2) groups.

    Science.gov (United States)

    Tetsassi Feugmo, Conrard Giresse; Liégeois, Vincent; Champagne, Benoît

    2017-11-15

    The first vibrational sum frequency generation (SFG) spectra based on molecular properties calculated at the coupled cluster singles and doubles (CCSD) level of approximation have been simulated for interfacial model alkyl chains, providing benchmark data for comparisons with approximate methods, including density functional theory (DFT). The approach proceeds in three steps. In the first two steps, the molecular spectral properties are determined: the vibrational normal modes and frequencies and then the derivatives of the dipole moment and of the polarizability with respect to the normal coordinates. These derivatives are evaluated with a numerical differentiation approach, of which the accuracy was monitored using Romberg's procedure. Then, in the last step, a three-layer model is employed to evaluate the macroscopic second-order nonlinear optical responses and thereby the simulated SFG spectra of the alkyl interface. Results emphasize the following facts: (i) the dipole and polarizability derivatives calculated at the DFT level with the B3LYP exchange-correlation functional can differ, with respect to CCSD, by as much as ±10 to 20% and ±20 to 50% for the CH 3 and CH 2 vibrations, respectively; (ii) these differences are enhanced when considering the SFG intensities as well as their variations as a function of the experimental configuration (ppp versus ssp) and as a function of the tilt and rotation angles, defining the orientation of the alkyl chain at the interface; (iii) these differences originate from both the vibrational normal coordinates and the Cartesian derivatives of the dipole moment and polarizability; (iv) freezing the successive fragments of the alkyl chain strongly modifies the SFG spectrum and enables highlighting the delocalization effects between the terminal CH 3 group and its neighboring CH 2 units; and finally (v) going from the free chain to the free methyl model, and further to C 3v constraints on leads to large variations of two ratios

  5. Implant Materials Generate Different Peri-implant Inflammatory Factors

    OpenAIRE

    Olivares-Navarrete, Rene; Hyzy, Sharon L.; Slosar, Paul J.; Schneider, Jennifer M.; Schwartz, Zvi; Boyan, Barbara D.

    2015-01-01

    Study Design. An in vitro study examining factors produced by human mesenchymal stem cells on spine implant materials. Objective. The aim of this study was to examine whether the inflammatory microenvironment generated by cells on titanium-aluminum-vanadium (Ti-alloy, TiAlV) surfaces is affected by surface microtexture and whether it differs from that generated on poly-ether-ether-ketone (PEEK). Summary of Background Data. Histologically, implants fabricated from PEEK have a fibrous connectiv...

  6. Western Wind and Solar Integration Study Phase 3 – Frequency Response and Transient Stability

    Energy Technology Data Exchange (ETDEWEB)

    Miller, N. W. [GE Energy Management, Schenectady, NY (United States); Shao, M. [GE Energy Management, Schenectady, NY (United States); Pajic, S. [GE Energy Management, Schenectady, NY (United States); D' Aquila, R. [GE Energy Management, Schenectady, NY (United States)

    2014-12-01

    Power system operators and utilities worldwide have concerns about the impact of high-penetration wind and solar generation on electric grid reliability (EirGrid 2011b, Hydro-Quebec 2006, ERCOT 2010). The stability of North American grids under these conditions is a particular concern and possible impediment to reaching future renewable energy goals. Phase 3 of the Western Wind and Solar Integration Study (WWSIS-3) considers a 33% wind and solar annual energy penetration level that results in substantial changes to the characteristics of the bulk power system, including different power flow patterns, different commitment and dispatch of existing synchronous generation, and different dynamic behavior of wind and solar generation. WWSIS-3 evaluates two specific aspects of fundamental frequency system stability: frequency response and transient stability.

  7. Evaluation Of Different Power Conditioning Options For Stirling Generators

    Science.gov (United States)

    Garrigos, A.; Blanes, J. M.; Carrasco, J. A.; Maset, E.; Montalban, G.; Ejea, J.; Ferreres, A.; Sanchis, E.

    2011-10-01

    Free-piston Stirling engines are an interesting alternative for electrical power systems, especially in deep space missions where photovoltaic systems are not feasible. This kind of power generators contains two main parts, the Stirling machine and the linear alternator that converts the mechanical energy from the piston movement to electrical energy. Since the generated power is in AC form, several aspects should be assessed to use such kind of generators in a spacecraft power system: AC/DC topologies, power factor correction, power regulation techniques, integration into the power system, etc. This paper details power generator operation and explores different power conversion approaches.

  8. Cultural Differences in Perceiving Sounds Generated by Others: Self Matters

    Directory of Open Access Journals (Sweden)

    Liyu eCao

    2015-12-01

    Full Text Available Sensory consequences resulting from own movements receive different neural processing compared to externally generated sensory consequences (e.g., by a computer, leading to sensory attenuation, i.e., a reduction in perceived loudness or brain evoked responses. However, discrepant findings exist from different cultural regions about whether sensory attenuation is also present for sensory consequences generated by others. In this study, we performed a cross culture (between Chinese and British comparison on the processing of sensory consequences (perceived loudness from self and others compared to an external source in the auditory domain. We found a cultural difference in processing sensory consequences generated by others, with only Chinese and not British showing the sensory attenuation effect. Sensory attenuation in this case was correlated with independent self-construal scores. The sensory attenuation effect for self-generated sensory consequences was not replicated. However, a correlation with delusional ideation was observed for British. These findings are discussed with respects to mechanisms of sensory attenuation.

  9. FPGA implementation of high-frequency multiple PWM for variable voltage variable frequency controller

    Energy Technology Data Exchange (ETDEWEB)

    Boumaaraf, Abdelâali, E-mail: aboumaaraf@yahoo.fr [Université Abbès Laghrour, Laboratoire des capteurs, Instrumentations et procédés (LCIP), Khenchela (Algeria); University of Farhat Abbas Setif1, Sétif, 19000 (Algeria); Mohamadi, Tayeb [University of Farhat Abbas Setif1, Sétif, 19000 (Algeria); Gourmat, Laïd [Université Abbès Laghrour, Khenchela, 40000 (Algeria)

    2016-07-25

    In this paper, we present the FPGA implementation of the multiple pulse width modulation (MPWM) signal generation with repetition of data segments, applied to the variable frequency variable voltage systems and specially at to the photovoltaic water pumping system, in order to generate a signal command very easily between 10 Hz to 60 Hz with a small frequency and reduce the cost of the control system.

  10. Frequency Stability Improvement of Low Inertia Systems Using Synchronous Condensers

    DEFF Research Database (Denmark)

    Nguyen, Ha Thi; Yang, Guangya; Nielsen, Arne Hejde

    2016-01-01

    of converter interfaced components (wind turbine, HVDC, and Photovoltaic) may have negative effects on the stability of the power system. These components do not have enough inertia response to control frequency excursion, so the power grid can depend on few synchronous machines for frequency regulation...... and reduce the system inertia. Consequently, the frequency stability of the system will be easily jeopardized. To address these issues, the paper studies frequency characteristics of future Western Danish renewable-based system that uses a majority of wind turbine generators. Different scenarios of wind...

  11. Frequency conversion of structured light.

    Science.gov (United States)

    Steinlechner, Fabian; Hermosa, Nathaniel; Pruneri, Valerio; Torres, Juan P

    2016-02-15

    Coherent frequency conversion of structured light, i.e. the ability to manipulate the carrier frequency of a wave front without distorting its spatial phase and intensity profile, provides the opportunity for numerous novel applications in photonic technology and fundamental science. In particular, frequency conversion of spatial modes carrying orbital angular momentum can be exploited in sub-wavelength resolution nano-optics and coherent imaging at a wavelength different from that used to illuminate an object. Moreover, coherent frequency conversion will be crucial for interfacing information stored in the high-dimensional spatial structure of single and entangled photons with various constituents of quantum networks. In this work, we demonstrate frequency conversion of structured light from the near infrared (803 nm) to the visible (527 nm). The conversion scheme is based on sum-frequency generation in a periodically poled lithium niobate crystal pumped with a 1540-nm Gaussian beam. We observe frequency-converted fields that exhibit a high degree of similarity with the input field and verify the coherence of the frequency-conversion process via mode projection measurements with a phase mask and a single-mode fiber. Our results demonstrate the suitability of exploiting the technique for applications in quantum information processing and coherent imaging.

  12. Generating shaped femtosecond pulses in the far infrared using a spatial light modulator and difference frequency generation

    CSIR Research Space (South Africa)

    Botha, N

    2010-08-31

    Full Text Available Femtosecond pulse shaping can be done by different kinds of pulse shapers, such as liquid crystal spatial light modulators (LC SLM), acousto optic modulators (AOM) and deformable and movable mirrors. A few applications where pulse shaping...

  13. Performance Investigation of Millimeter Wave Generation Reliant on Stimulated Brillouin Scattering

    Science.gov (United States)

    Tickoo, Sheetal; Gupta, Amit

    2018-04-01

    In this work, photonic method of generating the millimeter waves has been done based on Brillouin scattering effect in optical fiber. Here different approaches are proposed to get maximum frequency shift in mm-wave region using only pumps, radio signals with Mach-Zehnder modulator. Moreover for generated signal validation, signals modulated and send to both wired and wireless medium in optical domain. It is observed that maximum shift of 300 GHz is realized using 60 GHz input sine wave. Basically a frequency doubler is proposed which double shift of input frequency and provide better SNR. For the future generation network system, the generation of millimeter waves makes them well reliable for the transmission of the data.

  14. Generational Differences among a Small Group of Hmong Americans

    Science.gov (United States)

    Vang, Pa Der

    2013-01-01

    Few studies have looked at the differences in culture, language, and educational attainments among generations of Hmong in the United States since the beginning of their immigration to the United States. This study of 195 Hmong participants examines the effects of generational status on Hmong immigrants across several factors including marriage…

  15. Forecasting Value-at-Risk Using High-Frequency Information

    Directory of Open Access Journals (Sweden)

    Huiyu Huang

    2013-06-01

    Full Text Available in the prediction of quantiles of daily Standard&Poor’s 500 (S&P 500 returns we consider how to use high-frequency 5-minute data. We examine methods that incorporate the high frequency information either indirectly, through combining forecasts (using forecasts generated from returns sampled at different intraday interval, or directly, through combining high frequency information into one model. We consider subsample averaging, bootstrap averaging, forecast averaging methods for the indirect case, and factor models with principal component approach, for both direct and indirect cases. We show that in forecasting the daily S&P 500 index return quantile (Value-at-Risk or VaR is simply the negative of it, using high-frequency information is beneficial, often substantially and particularly so, in forecasting downside risk. Our empirical results show that the averaging methods (subsample averaging, bootstrap averaging, forecast averaging, which serve as different ways of forming the ensemble average from using high-frequency intraday information, provide an excellent forecasting performance compared to using just low-frequency daily information.

  16. Preconditioned finite-difference frequency-domain for modelling periodic dielectric structures - comparisons with FDTD

    NARCIS (Netherlands)

    Chabory, A.; Hon, de B.P.; Schilders, W.H.A.; Tijhuis, A.G.

    2008-01-01

    Finite-difference techniques are very popular and versatile numerical tools in computational electromagnetics. In this paper, we propose a preconditioned finite-difference frequency-domain method (FDFD) to model periodic structures in 2D and 3D. The preconditioner follows from a modal decoupling

  17. Preconditioned finite-difference frequency-domain for modelling periodic dielectric structures : comparisons with FDTD

    NARCIS (Netherlands)

    Chabory, A.; Hon, de B.P.; Schilders, W.H.A.; Tijhuis, A.G.

    2008-01-01

    Finite-difference techniques are very popular and versatile numerical tools in computational electromagnetics. In this paper, we propose a preconditioned finite-difference frequency-domain method (FDFD) to model periodic structures in 2D and 3D. The preconditioner follows from a modal decoupling

  18. Transmit beamforming for optimal second-harmonic generation.

    Science.gov (United States)

    Hoilund-Kaupang, Halvard; Masoy, Svein-Erik

    2011-08-01

    A simulation study of transmit ultrasound beams from several transducer configurations is conducted to compare second-harmonic imaging at 3.5 MHz and 11 MHz. Second- harmonic generation and the ability to suppress near field echoes are compared. Each transducer configuration is defined by a chosen f-number and focal depth, and the transmit pressure is estimated to not exceed a mechanical index of 1.2. The medium resembles homogeneous muscle tissue with nonlinear elasticity and power-law attenuation. To improve computational efficiency, the KZK equation is utilized, and all transducers are circular-symmetric. Previous literature shows that second-harmonic generation is proportional to the square of the transmit pressure, and that transducer configurations with different transmit frequencies, but equal aperture and focal depth in terms of wavelengths, generate identical second-harmonic fields in terms of shape. Results verify this for a medium with attenuation f1. For attenuation f1.1, deviations are found, and the high frequency subsequently performs worse than the low frequency. The results suggest that high frequencies are less able to suppress near-field echoes in the presence of a heterogeneous body wall than low frequencies.

  19. Cross-generational effects on gender differences in psychoactive drug abuse and dependence.

    Science.gov (United States)

    Holdcraft, Laura C; Iacono, William G

    2004-05-10

    Studies of patients with cocaine and heroin use disorders have shown gender differences in prevalence, course, and outcome. These differences may be decreasing in successive generations. Less is known about gender differences in course and symptomatology for other illicit drug use disorders, especially in community samples. Participants (1323 men and 1384 women) who were biological or step-parents of twins and born in the 1940-1960s, from the Minnesota Twin-Family Study (MTFS) were divided into two cohorts based on the median birth year. A structured interview was used to assess DSM-III-R cannabis, amphetamine, cocaine and hallucinogen use disorders. There was a higher prevalence of each of these drug disorders and earlier onset of cannabis and amphetamine use disorders in later-born participants. For most drug use disorder categories, men and women were similar with respect to age of onset and severity of disorder but women had a shorter course of drug use disorders. Women with amphetamine disorders were atypical with respect to having a higher frequency of use but similar number of lifetime uses compared to men, and more emotional effects of amphetamine intoxication than men. In addition, women with amphetamine disorders were more likely to have anorexia nervosa than those without amphetamine disorders. These results have several implications for prevention, etiology and treatment.

  20. Different Mode of Afferents Determines the Frequency Range of High Frequency Activities in the Human Brain: Direct Electrocorticographic Comparison between Peripheral Nerve and Direct Cortical Stimulation.

    Directory of Open Access Journals (Sweden)

    Katsuya Kobayashi

    Full Text Available Physiological high frequency activities (HFA are related to various brain functions. Factors, however, regulating its frequency have not been well elucidated in humans. To validate the hypothesis that different propagation modes (thalamo-cortical vs. cortico-coritcal projections, or different terminal layers (layer IV vs. layer II/III affect its frequency, we, in the primary somatosensory cortex (SI, compared HFAs induced by median nerve stimulation with those induced by electrical stimulation of the cortex connecting to SI. We employed 6 patients who underwent chronic subdural electrode implantation for presurgical evaluation. We evaluated the HFA power values in reference to the baseline overriding N20 (earliest cortical response and N80 (late response of somatosensory evoked potentials (HFA(SEP(N20 and HFA(SEP(N80 and compared those overriding N1 and N2 (first and second responses of cortico-cortical evoked potentials (HFA(CCEP(N1 and HFA(CCEP(N2. HFA(SEP(N20 showed the power peak in the frequency above 200 Hz, while HFA(CCEP(N1 had its power peak in the frequency below 200 Hz. Different propagation modes and/or different terminal layers seemed to determine HFA frequency. Since HFA(CCEP(N1 and HFA induced during various brain functions share a similar broadband profile of the power spectrum, cortico-coritcal horizontal propagation seems to represent common mode of neural transmission for processing these functions.

  1. Energy conversion by ‘T-shaped’ cantilever type electromagnetic vibration based micro power generator from low frequency vibration sources

    International Nuclear Information System (INIS)

    Siddique, Abu Raihan Mohammad; Mahmud, Shohel; Van Heyst, Bill

    2017-01-01

    Highlights: • A T-shaped cantilever type electromagnetic vibration based MPG has been described. • The designed EVMPG is useful for low frequency based vibration sources. • Both experimental tests and theoretical analysis have been performed. • The final compact prototype was tested at different conditions of human movements. • The prototype can generate 35.2 mV and 0.22 mW at 7 Hz with 5.6 Ω. - Abstract: The design, development, and analyses of low-frequency vibration based T-shaped cantilever type electromagnetic micro power generators (EVMPGs) are presented in this paper. Four different configurations (Configurations A to D) of EVMPGs were designed and fabricated and subsequently characterized using detailed experimental and limited analytical techniques. Configuration A and B consisted of a single and a double cylindrical moving magnets (NdFeB), respectively, while Configuration C consisted of four rectangular moving magnets with respect to a fixed copper coil. In contrast, Configuration D used a moving coil between four rectangular magnets with a back-iron bar. The open circuit RMS voltage output was observed to be a maximum from Configuration D (98.2 mV at 6.29 Hz) with a base vibration acceleration of 0.8 m s"−"2. Therefore, Configuration D was selected for further experimental investigations, which included changing the back-iron bar thickness, changing the base acceleration level, and changing the air gap separation between the magnets in order to optimize this configuration. The maximum load RMS voltage and power outputs of Configuration D were 105.4 mV and 1.35 mW at 6.29 Hz for load resistance 8.2 Ω and a base acceleration of 0.8 m s"−"2 with a 4.2 mm back-iron bar when the air gap between the magnets was 20 mm. Finally, a small portable EVMPG prototype was developed based on the Configuration D and was tested at different human movement conditions (i.e., walking, quick walking, and running). The developed EVMPG prototype was capable of

  2. The evaluation of different environments in ultra-high frequency induction sintered powder metal compacts

    International Nuclear Information System (INIS)

    Cavdar, P. S.; Cavdar, U.

    2015-01-01

    The application of the iron based Powder Metal (PM) compacts in Ultra-High Frequency Induction Sintering (UHFIS) was reviewed for different environments. The three different environments: atmosphere, argon and vacuum were applied to the PM compacts. Iron based PM compacts were sintered at 1120 degree centigrade for a total of 550 seconds by using induction sintering machines with 2.8 kW power and 900 kHz frequency. Micro structural properties, densities, roughness and micro hardness values were obtained for all environments. The results were compared with each other. (Author)

  3. Frequency interleaving towards spectrally efficient directly detected optical OFDM for next-generation optical access networks.

    Science.gov (United States)

    Mehedy, Lenin; Bakaul, Masuduzzaman; Nirmalathas, Ampalavanapillai

    2010-10-25

    In this paper, we theoretically analyze and demonstrate that spectral efficiency of a conventional direct detection based optical OFDM system (DDO-OFDM) can be improved significantly using frequency interleaving of adjacent DDO-OFDM channels where OFDM signal band of one channel occupies the spectral gap of other channel and vice versa. We show that, at optimum operating condition, the proposed technique can effectively improve the spectral efficiency of the conventional DDO-OFDM system as much as 50%. We also show that such a frequency interleaved DDO-OFDM system, with a bit rate of 48 Gb/s within 25 GHz bandwidth, achieves sufficient power budget after transmission over 25 km single mode fiber to be used in next-generation time-division-multiplexed passive optical networks (TDM-PON). Moreover, by applying 64- quadrature amplitude modulation (QAM), the system can be further scaled up to 96 Gb/s with a power budget sufficient for 1:16 split TDM-PON.

  4. Wind Turbines Support Techniques during Frequency Drops — Energy Utilization Comparison

    Directory of Open Access Journals (Sweden)

    Ayman B. Attya

    2014-08-01

    Full Text Available The supportive role of wind turbines during frequency drops is still not clear enough, although there are many proposed algorithms. Most of the offered techniques make the wind turbine deviates from optimum power generation operation to special operation modes, to guarantee the availability of reasonable power support, when the system suffers frequency deviations. This paper summarizes the most dominant support algorithms and derives wind turbine power curves for each one. It also conducts a comparison from the point of view of wasted energy, with respect to optimum power generation. The authors insure the advantage of a frequency support algorithm, they previously presented, as it achieved lower amounts of wasted energy. This analysis is performed in two locations that are promising candidates for hosting wind farms in Egypt. Additionally, two different types of wind turbines from two different manufacturers are integrated. Matlab and Simulink are the implemented simulation environments.

  5. Electrothermal frequency reference

    NARCIS (Netherlands)

    Makinwa, K.A.A.; Kashmiri, S.M.

    2011-01-01

    An electrothermal frequency-locked loop (EFLL) circuit is described. This EFLL circuit includes an oscillator in a feedback loop. A drive circuit in the EFLL circuit generates a first signal having a fundamental frequency, and an electrothermal filter (ETF) in the EFLL circuit provides a second

  6. A numerical model for ocean ultra-low frequency noise: wave-generated acoustic-gravity and Rayleigh modes.

    Science.gov (United States)

    Ardhuin, Fabrice; Lavanant, Thibaut; Obrebski, Mathias; Marié, Louis; Royer, Jean-Yves; d'Eu, Jean-François; Howe, Bruce M; Lukas, Roger; Aucan, Jerome

    2013-10-01

    The generation of ultra-low frequency acoustic noise (0.1 to 1 Hz) by the nonlinear interaction of ocean surface gravity waves is well established. More controversial are the quantitative theories that attempt to predict the recorded noise levels and their variability. Here a single theoretical framework is used to predict the noise level associated with propagating pseudo-Rayleigh modes and evanescent acoustic-gravity modes. The latter are dominant only within 200 m from the sea surface, in shallow or deep water. At depths larger than 500 m, the comparison of a numerical noise model with hydrophone records from two open-ocean sites near Hawaii and the Kerguelen islands reveal: (a) Deep ocean acoustic noise at frequencies 0.1 to 1 Hz is consistent with the Rayleigh wave theory, in which the presence of the ocean bottom amplifies the noise by 10 to 20 dB; (b) in agreement with previous results, the local maxima in the noise spectrum support the theoretical prediction for the vertical structure of acoustic modes; and (c) noise level and variability are well predicted for frequencies up to 0.4 Hz. Above 0.6 Hz, the model results are less accurate, probably due to the poor estimation of the directional properties of wind-waves with frequencies higher than 0.3 Hz.

  7. Design and development of high voltage and high frequency center tapped transformer for HVDC test generator

    International Nuclear Information System (INIS)

    Thaker, Urmil; Saurabh Kumar; Amal, S.; Baruah, U.K.; Bhatt, Animesh

    2015-01-01

    A High Voltage center tapped transformer for high frequency application had been designed, fabricated, and tested. It was designed as a part of 200 kV HVDC Test Generator. The High Frequency operation of transformer increases power density. Therefore it is possible to reduce power supply volume. The step up ratio in High Voltage transformer is limited due to stray capacitance and leakage inductance. The limit was overcome by winding multi secondary outputs. Switching frequency of transformer was 15.8 kHz. Input and output voltages of transformer were 270V and 16.5kV-0V-16.5kV respectively. Power rating of transformer is 7kVA. High Voltage transformer with various winding and core arrangement was fabricated to check variation in electrical characteristics. The transformer used a ferrite core (E Type) and nylon insulated primary and secondary bobbins. Two set of E-E geometry cores had been stacked in order to achieve the estimated core volume. Compared with traditional high voltage transformer, this transformer had good thermal behavior, good line insulation properties and a high power density. In this poster, design procedures, development stages and test results of high voltage and high frequency transformer are presented. Results of various parameters such as transformer loss, temperature rise, insulation properties, impedance of primary and secondary winding, and voltage regulation are discussed. (author)

  8. Magneto-thermal-acoustic differential-frequency imaging of magnetic nanoparticle with magnetic spatial localization: a theoretical prediction

    Science.gov (United States)

    Piao, Daqing

    2017-02-01

    The magneto-thermo-acoustic effect that we predicted in 2013 refers to the generation of acoustic-pressure wave from magnetic nanoparticle (MNP) when thermally mediated under an alternating magnetic field (AMF) at a pulsed or frequency-chirped application. Several independent experimental studies have since validated magneto-thermoacoustic effect, and a latest report has discovered acoustic-wave generation from MNP at the second-harmonic frequency of the AMF when operating continuously. We propose that applying two AMFs with differing frequencies to MNP will produce acoustic-pressure wave at the summation and difference of the two frequencies, in addition to the two second-harmonic frequencies. Analysis of the specific absorption dynamics of the MNP when exposed to two AMFs of differing frequencies has shown some interesting patterns of acoustic-intensity at the multiple frequency components. The ratio of the acoustic-intensity at the summation-frequency over that of the difference-frequency is determined by the frequency-ratio of the two AMFs, but remains independent of the AMF strengths. The ratio of the acoustic-intensity at the summation- or difference-frequency over that at each of the two second-harmonic frequencies is determined by both the frequency-ratio and the field-strength-ratio of the two AMFs. The results indicate a potential strategy for localization of the source of a continuous-wave magneto-thermalacoustic signal by examining the frequency spectrum of full-field non-differentiating acoustic detection, with the field-strength ratio changed continuously at a fixed frequency-ratio. The practicalities and challenges of this magnetic spatial localization approach for magneto-thermo-acoustic imaging using a simple envisioned set of two AMFs arranged in parallel to each other are discussed.

  9. The assessment and evaluation of low-frequency noise near the region of infrasound

    Directory of Open Access Journals (Sweden)

    Stanislav Ziaran

    2014-01-01

    Full Text Available The main aim of this paper is to present recent knowledge about the assessment and evaluation of low-frequency sounds (noise and infrasound, close to the threshold of hearing, and identify their potential effect on human health and annoyance. Low-frequency noise generated by air flowing over a moving car with an open window was chosen as a typical scenario which can be subjectively assessed by people traveling by automobile. The principle of noise generated within the interior of the car and its effects on the comfort of the driver and passengers are analyzed at different velocities. An open window of a car at high velocity behaves as a source of specifically strong tonal low-frequency noise which is generally perceived as annoying. The interior noise generated by an open window of a passenger car was measured under different conditions: Driving on a highway and driving on a typical roadway. First, an octave-band analysis was used to assess the noise level and its impact on the driver′s comfort. Second, a fast Fourier transform (FFT analysis and one-third octave-band analysis were used for the detection of tonal low-frequency noise. Comparison between two different car makers was also done. Finally, the paper suggests some possibilities for scientifically assessing and evaluating low-frequency sounds in general, and some recommendations are introduced for scientific discussion, since sounds with strong low-frequency content (but not only strong engender greater annoyance than is predicted by an A-weighted sound pressure level.

  10. Generation and characterization of electron bunches with ramped current profiles in a dual-frequency superconducting linear accelerator.

    Science.gov (United States)

    Piot, P; Behrens, C; Gerth, C; Dohlus, M; Lemery, F; Mihalcea, D; Stoltz, P; Vogt, M

    2012-01-20

    We report on the successful experimental generation of electron bunches with ramped current profiles. The technique relies on impressing nonlinear correlations in the longitudinal phase space using a superconducing radio frequency linear accelerator operating at two frequencies and a current-enhancing dispersive section. The produced ~700-MeV bunches have peak currents of the order of a kilo-Ampère. Data taken for various accelerator settings demonstrate the versatility of the method and, in particular, its ability to produce current profiles that have a quasilinear dependency on the longitudinal (temporal) coordinate. The measured bunch parameters are shown, via numerical simulations, to produce gigavolt-per-meter peak accelerating electric fields with transformer ratios larger than 2 in dielectric-lined waveguides. © 2012 American Physical Society

  11. Multifunction waveform generator for EM receiver testing

    Science.gov (United States)

    Chen, Kai; Jin, Sheng; Deng, Ming

    2018-01-01

    In many electromagnetic (EM) methods - such as magnetotelluric, spectral-induced polarization (SIP), time-domain-induced polarization (TDIP), and controlled-source audio magnetotelluric (CSAMT) methods - it is important to evaluate and test the EM receivers during their development stage. To assess the performance of the developed EM receivers, controlled synthetic data that simulate the observed signals in different modes are required. In CSAMT and SIP mode testing, the waveform generator should use the GPS time as the reference for repeating schedule. Based on our testing, the frequency range, frequency precision, and time synchronization of the currently available function waveform generators on the market are deficient. This paper presents a multifunction waveform generator with three waveforms: (1) a wideband, low-noise electromagnetic field signal to be used for magnetotelluric, audio-magnetotelluric, and long-period magnetotelluric studies; (2) a repeating frequency sweep square waveform for CSAMT and SIP studies; and (3) a positive-zero-negative-zero signal that contains primary and secondary fields for TDIP studies. In this paper, we provide the principles of the above three waveforms along with a hardware design for the generator. Furthermore, testing of the EM receiver was conducted with the waveform generator, and the results of the experiment were compared with those calculated from the simulation and theory in the frequency band of interest.

  12. Generating three-parameter sensor

    Directory of Open Access Journals (Sweden)

    Filinyuk M. A.

    2014-08-01

    Full Text Available Generating sensors provide the possibility of getting remote information and its easy conversion into digital form. Typically, these are one-parameter sensors formed by combination of a primary transmitter (PT and a sine wave generator. Two-parameter sensors are not widely used as their implementation causes a problem with ambiguity output when measuring the PT. Nevertheless, the problem of creating miniature, thrifty multi-parameter RF sensors for different branches of science and industry remains relevant. Considering ways of designing RF sensors, we study the possibility of constructing a three-parameter microwave radio frequency range sensor, which is based on a two-stage three-parameter generalized immitance convertor (GIC. Resistive, inductive and capacitive PT are used as sensing elements. A mathematical model of the sensor, which describes the relation of the sensor parameters to the parameters of GIC and PT was developed. The basic parameters of the sensor, its transfer function and sensitivity were studied. It is shown that the maximum value of the power generated signal will be observed at a frequency of 175 MHz, and the frequency ranges depending on the parameters of the PT will be different. Research results and adequacy of the mathematical model were verified by the experiment. Error of the calculated dependences of the lasing frequency on PT parameters change, compared with the experimental data does not exceed 2 %. The relative sensitivity of the sensor based on two-stage GIC showed that for the resistive channel it is about 1.88, for the capacitive channel –1,54 and for the inductive channel –11,5. Thus, it becomes possible to increase the sensor sensitivity compared with the sensitivity of the PT almost 1,2—2 times, and by using the two stage GIC a multifunctional sensor is provided.

  13. System Frequency as Information Carrier in AC Power Systems

    DEFF Research Database (Denmark)

    Douglass, Philip James; Heussen, Kai; You, Shi

    2015-01-01

    Power generators contain control systems able to regulate system frequency, but the frequency setpoint values are only rarely modified from nominal values. This paper describes design considerations for a communication system from generators to frequency sensitive distributed energy resourc es (FS......-DER) using changes to frequency setpoint values of genera- tors. Signaling discrete system states by generating off-nominal system frequency values can be used as a novel narrowband unidirectional broadcast communications channel. This paper describes two protocols for utilizing off-nominal frequencies...... to carry information: First, a protocol for dispatching blocks of FS- DER that is suitable for systems restricted to relatively slow rates of change of frequency (ROCOF). Second, for systems that allow higher ROCOF values, the feasibility of using power generation resources as a power line communication...

  14. Generation of continuous-wave 194 nm laser for mercury ion optical frequency standard

    Science.gov (United States)

    Zou, Hongxin; Wu, Yue; Chen, Guozhu; Shen, Yong; Liu, Qu; Precision measurement; atomic clock Team

    2015-05-01

    194 nm continuous-wave (CW) laser is an essential part in mercury ion optical frequency standard. The continuous-wave tunable radiation sources in the deep ultraviolet (DUV) region of the spectrum is also serviceable in high-resolution spectroscopy with many atomic and molecular lines. We introduce a scheme to generate continuous-wave 194 nm radiation with SFM in a Beta Barium Borate (BBO) crystal here. The two source beams are at 718 nm and 266 nm, respectively. Due to the property of BBO, critical phase matching (CPM) is implemented. One bow-tie cavity is used to resonantly enhance the 718 nm beam while the 266 nm makes a single pass, which makes the configuration easy to implement. Considering the walk-off effect in CPM, the cavity mode is designed to be elliptical so that the conversion efficiency can be promoted. Since the 266 nm radiation is generated by a 532 nm laser through SHG in a BBO crystal with a large walk-off angle, the output mode is quite non-Gaussian. To improve mode matching, we shaped the 266 nm beam into Gaussian modes with a cylindrical lens and iris diaphragm. As a result, 2.05 mW 194 nm radiation can be generated. As we know, this is the highest power for 194 nm CW laser using SFM in BBO with just single resonance. The work is supported by the National Natural Science Foundation of China (Grant No. 91436103 and No. 11204374).

  15. Trade-off Analysis of Virtual Inertia and Fast Primary Frequency Control During Frequency Transients in a Converter Dominated Network

    DEFF Research Database (Denmark)

    Rezkalla, Michel M.N.; Marinelli, Mattia; Pertl, Michael

    2016-01-01

    Traditionally the electricity generation is based on rotating synchronous machines which provide inertia to the power system.The increasing share of converter connected energy sources reduces the available rotational inertia in the power system leading to faster frequency dynamics, which may cause...... more critical frequency excursions. Both, virtual inertia and fast primary control could serve as a solution to improvefrequency stability, however, their respective impacts on the system have different consequences, so that the trade-off is not straightforward. This study presents a comparative...... analysis of virtual inertiaand a fast primary control algorithms with respect to rate of change of frequency (ROCOF), frequency nadir and steady state value considering the effect of the dead time which is carried out by a sensitivity analysis. The investigation shows that the virtual inertia controller...

  16. Effects of different frequencies of transcutaneous electrical nerve stimulation on venous vascular reactivity

    International Nuclear Information System (INIS)

    Franco, O.S.; Paulitsch, F.S.; Pereira, A.P.C.; Teixeira, A.O.; Martins, C.N.; Silva, A.M.V.; Plentz, R.D.M.; Irigoyen, M.C.; Signori, L.U.

    2014-01-01

    Transcutaneous electrical nerve stimulation (TENS) is a type of therapy used primarily for analgesia, but also presents changes in the cardiovascular system responses; its effects are dependent upon application parameters. Alterations to the cardiovascular system suggest that TENS may modify venous vascular response. The objective of this study was to evaluate the effects of TENS at different frequencies (10 and 100 Hz) on venous vascular reactivity in healthy subjects. Twenty-nine healthy male volunteers were randomized into three groups: placebo (n=10), low-frequency TENS (10 Hz, n=9) and high-frequency TENS (100 Hz, n=10). TENS was applied for 30 min in the nervous plexus trajectory from the superior member (from cervical to dorsal region of the fist) at low (10 Hz/200 μs) and high frequency (100 Hz/200 μs) with its intensity adjusted below the motor threshold and intensified every 5 min, intending to avoid accommodation. Venous vascular reactivity in response to phenylephrine, acetylcholine (endothelium-dependent) and sodium nitroprusside (endothelium-independent) was assessed by the dorsal hand vein technique. The phenylephrine effective dose to achieve 70% vasoconstriction was reduced 53% (P<0.01) using low-frequency TENS (10 Hz), while in high-frequency stimulation (100 Hz), a 47% increased dose was needed (P<0.01). The endothelium-dependent (acetylcholine) and independent (sodium nitroprusside) responses were not modified by TENS, which modifies venous responsiveness, and increases the low-frequency sensitivity of α1-adrenergic receptors and shows high-frequency opposite effects. These changes represent an important vascular effect caused by TENS with implications for hemodynamics, inflammation and analgesia

  17. Tip-of-the-tongue states reveal age differences in the syllable frequency effect.

    Science.gov (United States)

    Farrell, Meagan T; Abrams, Lise

    2011-01-01

    Syllable frequency has been shown to facilitate production in some languages but has yielded inconsistent results in English and has never been examined in older adults. Tip-of-the-tongue (TOT) states represent a unique type of production failure where the phonology of a word is unable to be retrieved, suggesting that the frequency of phonological forms, like syllables, may influence the occurrence of TOT states. In the current study, we investigated the role of first-syllable frequency on TOT incidence and resolution in young (18-26 years of age), young-old (60-74 years of age), and old-old (75-89 years of age) adults. Data from 3 published studies were compiled, where TOTs were elicited by presenting definition-like questions and asking participants to respond with "Know," "Don't Know," or "TOT." Young-old and old-old adults, but not young adults, experienced more TOTs for words beginning with low-frequency first syllables relative to high-frequency first syllables. Furthermore, age differences in TOT incidence occurred only for words with low-frequency first syllables. In contrast, when a prime word with the same first syllable as the target was presented during TOT states, all age groups resolved more TOTs for words beginning with low-frequency syllables. These findings support speech production models that allow for bidirectional activation between conceptual, lexical, and phonological forms of words. Furthermore, the age-specific effects of syllable frequency provide insight into the progression of age-linked changes to phonological processes. (PsycINFO Database Record (c) 2010 APA, all rights reserved).

  18. Effects of different frequencies of transcutaneous electrical nerve stimulation on venous vascular reactivity

    Energy Technology Data Exchange (ETDEWEB)

    Franco, O.S.; Paulitsch, F.S.; Pereira, A.P.C.; Teixeira, A.O. [Universidade Federal do Rio Grande, Faculdade de Medicina, Programa de Pós-Graduação em Ciências da Saúde, Rio Grande, RS, Brasil, Programa de Pós-Graduação em Ciências da Saúde, Faculdade de Medicina, Universidade Federal do Rio Grande, Rio Grande, RS (Brazil); Martins, C.N. [Universidade Federal do Rio Grande, Instituto de Ciências Biológicas, Programa de Pós-Graduação em Fisiologia Animal Comparada, Rio Grande, RS, Brasil, Programa de Pós-Graduação em Fisiologia Animal Comparada, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, RS (Brazil); Silva, A.M.V. [Universidade Federal de Santa Maria, Departamento de Fisioterapia e Reabilitação, Santa Maria, RS, Brasil, Departamento de Fisioterapia e Reabilitação, Universidade Federal de Santa Maria, Santa Maria, RS (Brazil); Plentz, R.D.M. [Universidade Federal de Ciências da Saúde de Porto Alegre, Programa de Pós-Graduação em Ciências da Reabilitação, Programa de Pós-Graduação em Ciências da Saúde, Porto Alegre, RS, Brasil, Programa de Pós-Graduação em Ciências da Saúde, Programa de Pós-Graduação em Ciências da Reabilitação, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS (Brazil); Irigoyen, M.C. [Faculdade de Medicina, Universidade de São Paulo, Instituto do Coração, Unidade de Hipertensão, São Paulo, SP, Brasil, Unidade de Hipertensão, Instituto do Coração, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP (Brazil); Signori, L.U. [Universidade Federal do Rio Grande, Faculdade de Medicina, Programa de Pós-Graduação em Ciências da Saúde, Rio Grande, RS, Brasil, Programa de Pós-Graduação em Ciências da Saúde, Faculdade de Medicina, Universidade Federal do Rio Grande, Rio Grande, RS (Brazil); Universidade Federal do Rio Grande, Instituto de Ciências Biológicas, Programa de Pós-Graduação em Fisiologia Animal Comparada, Rio Grande, RS, Brasil, Programa de Pós-Graduação em Fisiologia Animal Comparada, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, RS (Brazil); Universidade Federal de Santa Maria, Departamento de Fisioterapia e Reabilitação, Santa Maria, RS, Brasil, Departamento de Fisioterapia e Reabilitação, Universidade Federal de Santa Maria, Santa Maria, RS (Brazil)

    2014-04-04

    Transcutaneous electrical nerve stimulation (TENS) is a type of therapy used primarily for analgesia, but also presents changes in the cardiovascular system responses; its effects are dependent upon application parameters. Alterations to the cardiovascular system suggest that TENS may modify venous vascular response. The objective of this study was to evaluate the effects of TENS at different frequencies (10 and 100 Hz) on venous vascular reactivity in healthy subjects. Twenty-nine healthy male volunteers were randomized into three groups: placebo (n=10), low-frequency TENS (10 Hz, n=9) and high-frequency TENS (100 Hz, n=10). TENS was applied for 30 min in the nervous plexus trajectory from the superior member (from cervical to dorsal region of the fist) at low (10 Hz/200 μs) and high frequency (100 Hz/200 μs) with its intensity adjusted below the motor threshold and intensified every 5 min, intending to avoid accommodation. Venous vascular reactivity in response to phenylephrine, acetylcholine (endothelium-dependent) and sodium nitroprusside (endothelium-independent) was assessed by the dorsal hand vein technique. The phenylephrine effective dose to achieve 70% vasoconstriction was reduced 53% (P<0.01) using low-frequency TENS (10 Hz), while in high-frequency stimulation (100 Hz), a 47% increased dose was needed (P<0.01). The endothelium-dependent (acetylcholine) and independent (sodium nitroprusside) responses were not modified by TENS, which modifies venous responsiveness, and increases the low-frequency sensitivity of α1-adrenergic receptors and shows high-frequency opposite effects. These changes represent an important vascular effect caused by TENS with implications for hemodynamics, inflammation and analgesia.

  19. Nonlinear optical response of a gold surface in the visible range: A study by two-color sum-frequency generation spectroscopy. I. Experimental determination.

    Science.gov (United States)

    Dalstein, L; Revel, A; Humbert, C; Busson, B

    2018-04-07

    We experimentally determine the effective nonlinear second-order susceptibility of gold over the visible spectral range. To reach that goal, we probe by vibrational two-color sum-frequency generation spectroscopy the methyl stretching region of a dodecanethiol self-assembled monolayer adsorbed on a gold film. The sum-frequency generation spectra show a remarkable shape reversal when the visible probe wavelength is tuned from 435 to 705 nm. After correcting from Fresnel effects, the methyl stretching vibrations serve as an internal reference, allowing to extract the dispersion of the absolute phase and relative amplitude of the effective nonlinear optical response of gold in the visible range.

  20. Primary Frequency Response with Aggregated DERs: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Guggilam, Swaroop S.; Dhople, Sairaj V.; Zhao, Changhong; Dall' Anese, Emiliano; Chen, Yu Christine

    2017-03-03

    Power networks have to withstand a variety of disturbances that affect system frequency, and the problem is compounded with the increasing integration of intermittent renewable generation. Following a large-signal generation or load disturbance, system frequency is arrested leveraging primary frequency control provided by governor action in synchronous generators. In this work, we propose a framework for distributed energy resources (DERs) deployed in distribution networks to provide (supplemental) primary frequency response. Particularly, we demonstrate how power-frequency droop slopes for individual DERs can be designed so that the distribution feeder presents a guaranteed frequency-regulation characteristic at the feeder head. Furthermore, the droop slopes are engineered such that injections of individual DERs conform to a well-defined fairness objective that does not penalize them for their location on the distribution feeder. Time-domain simulations for an illustrative network composed of a combined transmission network and distribution network with frequency-responsive DERs are provided to validate the approach.

  1. The Effect of the Different Frequency on Skin Depth of GPR Detection

    Directory of Open Access Journals (Sweden)

    Mohammed Mejbel Salih

    2017-05-01

    Full Text Available Today the utilization of Ground Penetration Radar are increasing with development civil works , the requirement is increase a low cost technique, time and accuracy, all these should be founded in same time to achieve the project with fullest. In this study will use GPR instrument with three frequency(500,800,1000 MHz,and applying the experiments in various medium with different object's materials for pipe that expected founded object underground for the purpose of extract the fixed data that serve who work interest in this field. This technique will help in solve problem of underground detection ,such as water leakage in underground pipe for different depth that considered complex and expensive problem in same time in urban life .The study contribute in solve issue of utilizing the suitable frequency with penetration for detection, this is clarify through the result gotten that refer to excellent outcome.

  2. Ion beam generated modes in the lower hybrid frequency range in a laboratory magnetoplasma

    Science.gov (United States)

    Van Compernolle, B.; Tripathi, S.; Gekelman, W. N.; Colestock, P. L.; Pribyl, P.

    2012-12-01

    The generation of waves by ion ring distributions is of great importance in many instances in space plasmas. They occur naturally in the magnetosphere through the interaction with substorms, or they can be man-made in ionospheric experiments by photo-ionization of neutral atoms injected perpendicular to the earth's magnetic field. The interaction of a fast ion beam with a low β plasma has been studied in the laboratory. Experiments were performed at the LArge Plasma Device (LAPD) at UCLA. The experiments were done in a Helium plasma (n ≃ 1012 \\ cm-3, B0 = 1000 G - 1800 G, fpe}/f{ce ≃ 1 - 5, Te = 0.25\\ eV, vte ≤ vA). The ion beam \\cite{Tripathi_ionbeam} is a Helium beam with energies ranging from 5 keV to 18 keV. The fast ion velocity is on the order of the Alfvén velocity. The beam is injected from the end of the machine, and spirals down the linear device. Waves were observed below fci in the shear Alfvén wave regime, and in a broad spectrum above fci in the lower hybrid frequency range, the focus of this paper. The wave spectra have distinct peaks close to ion cyclotron harmonics, extending out to the 100th harmonic in some cases. The wave generation was studied for various magnetic fields and background plasma densities, as well as for different beam energies and pitch angles. The waves were measured with 3-axis electric and magnetic probes. Detailed measurements of the perpendicular mode structure will be shown. Langmuir probes were used to measure density and temperature evolution due to the beam-plasma interaction. Retarding field energy analyzers captured the ion beam profiles. The work was performed at the LArge Plasma Device at the Basic Plasma Science Facility (BaPSF) at UCLA, funded by DOE/NSF.

  3. SMES application for frequency control during islanded microgrid operation

    Science.gov (United States)

    Kim, A.-Rong; Kim, Gyeong-Hun; Heo, Serim; Park, Minwon; Yu, In-Keun; Kim, Hak-Man

    2013-01-01

    This paper analyzes the operating characteristics of a superconducting magnetic energy storage (SMES) for the frequency control of an islanded microgrid operation. In the grid-connected mode of a microgrid, an imbalance between power supply and demand is solved by a power trade with the upstream power grid. The difference in the islanded mode is a critical problem because the microgrid is isolated from any power grid. For this reason, the frequency control during islanded microgrid operation is a challenging issue. A test microgrid in this paper consisted of a wind power generator, a PV generation system, a diesel generator and a load to test the feasibility of the SMES for controlling frequency during islanded operation as well as the transient state varying from the grid-connected mode to the islanded mode. The results show that the SMES contributes well for frequency control in the islanded operation. In addition, a dual and a single magnet type of SMES have been compared to demonstrate the control performance. The dual magnet has the same energy capacity as the single magnet, but there are two superconducting coils and each coil has half inductance of the single magnet. The effectiveness of the SMES application with the simulation results is discussed in detail.

  4. Effects of variations of stage and flux at different frequencies on the estimates using river stage tomography

    Science.gov (United States)

    Wang, Y. L.; Yeh, T. C. J.; Wen, J. C.

    2017-12-01

    This study is to investigate the ability of river stage tomography to estimate the spatial distribution of hydraulic transmissivity (T), storage coefficient (S), and diffusivity (D) in groundwater basins using information of groundwater level variations induced by periodic variations of stream stage, and infiltrated flux from the stream boundary. In order to accomplish this objective, the sensitivity and correlation of groundwater heads with respect to the hydraulic properties is first conducted to investigate the spatial characteristics of groundwater level in response to the stream variations at different frequencies. Results of the analysis show that the spatial distributions of the sensitivity of heads at an observation well in response to periodic river stage variations are highly correlated despite different frequencies. On the other hand, the spatial patterns of the sensitivity of the observed head to river flux boundaries at different frequencies are different. Specifically, the observed head is highly correlated with T at the region between the stream and observation well when the high-frequency periodic flux is considered. On the other hand, it is highly correlated with T at the region between monitoring well and the boundary opposite to the stream when the low-frequency periodic flux is prescribed to the stream. We also find that the spatial distributions of the sensitivity of observed head to S variation are highly correlated with all frequencies in spite of heads or fluxes stream boundary. Subsequently, the differences of the spatial correlations of the observed heads to the hydraulic properties under the head and flux boundary conditions are further investigated by an inverse model (i.e., successive stochastic linear estimator). This investigation uses noise-free groundwater and stream data of a synthetic aquifer, where aquifer heterogeneity is known exactly. The ability of river stage tomography is then tested with these synthetic data sets to

  5. Models for Numerical Evaluation of Variable Speed Different Wind Generator Systems

    DEFF Research Database (Denmark)

    Li, Hui; Chen, Zhe; Polinder, H.

    2007-01-01

    of different wind generator systems, the other presents the optimization results and evaluation of variable speed wind generator systems. In this report, firstly, it gives an overview of various wind generator topologies, including their advantages and disadvantages, market status and developing trends. Next...

  6. An Extended System Frequency Response Model Considering Wind Power Participation in Frequency Regulation

    Directory of Open Access Journals (Sweden)

    Yi Tang

    2017-11-01

    Full Text Available With increasing penetration of wind power into the power system, wind power participation in frequency regulation is regarded as a beneficial strategy to improve the dynamic frequency response characteristics of power systems. The traditional power system frequency response (SFR model, which only includes synchronous generators, is no longer suitable for power systems with high penetrated wind power. An extended SFR model, based on the reduced-order model of wind turbine generator (WTG and the traditional SFR model, is presented in this paper. In the extended SFR model, the reduced-order model of WTG with combined frequency control is deduced by employing small signal analysis theory. Afterwards, the stability analysis of a closed-loop control system for the extended SFR model is carried out. Time-domain simulations using a test system are performed to validate the effectiveness of the extended SFR model; this model can provide a simpler, clearer and faster way to analyze the dynamic frequency response characteristic for a high-wind integrated power systems. The impact of additional frequency control parameters and wind speed disturbances on the system dynamic frequency response characteristics are investigated.

  7. The effect of applying different water levels and irrigation frequencies in propagating rosemary (Rosmarinus officinalis L.

    Directory of Open Access Journals (Sweden)

    Javier Giovanni Álvarez Herrera

    2010-01-01

    Full Text Available Rosemary seedlings are obtained by vegetative propagation because the seeds present low viability. Despite being an expanding crop, there is little information on water consumption during the propagation stage. Water levels and irrigation frequencies were therefore applied using a completely randomised design having a 4 x 2 factorial arrangement. The first factor concerned irrigation frequency (4 and 8 days and the second concerned water level (0.6, 0.8, 1.0 and 1.2 evaporation inside the greenhouse. A 1.0 coefficient combined with 4-day irrigation frequency presented the best results regarding height (39.3 cm, fresh weight, dry weight and branch length (146 cm. Water level affected the fresh and dry weight of leaves regardless of frequency. Relative water content in leaves did not present differences due to environmental conditions minimising treatment effect. Rooting percent- tage showed no significant differences regarding irrigation frequency or water level. Irrigation frequency did not affect rosemary growing pattern because sphagnum retains high moisture content. The best branch number (34 was obtained with 1.0 coefficient and 4-day frequency, this being important from the production point of view because this is the material which is sold. Water management changes photoassimilate distribution in rosemary plants.

  8. Frequency response variation of two offshore wind park transformers with different tap changer positions

    DEFF Research Database (Denmark)

    Arana Aristi, Iván; Holbøll, Joachim; Sørensen, T

    2010-01-01

    This paper presents the results of several sweep frequency response analysis (SFRA) measurements performed on two identical offshore wind farm transformers. A comparison is made between the transformers based on different recommended measurements and procedures, different measurement systems...

  9. Radio Frequency Underwater Discharge Operation and Its Application to Congo Red Degradation

    International Nuclear Information System (INIS)

    Ji Liangliang; Zou Shuai; Shen Mingrong; Xin Yu

    2012-01-01

    Radio frequency (RF) underwater discharge operation was performed for different liquid conductivities driven by different frequencies ranging from 13.56 MHz to 60 MHz, and its application to organic degradation was investigated. The RF underwater discharge was observed to be generated within the bubble at electrode surface formed by RF and plasma heating. It was shown that the sizes of the bubbles and plasmas increased as the driving frequency and the input power went up. The breakdown voltage decreased rapidly with the increase of the water conductivity and driving frequency. Comparative experiments of the UV-VIS absorbance spectra of Congo Red solution before and after discharge suggested effective degradation of the organic dye due to the active species generated during the discharge, such as ·OH, ·O, ·H, etc. revealed by optical emission spectroscopy. The results show that higher exciting frequency and lower conductivity of the solution are more effective for organic degradation. With the combination of Fourier Transform Infrared Spectroscopy (FT-IR) and Liquid Chromatography-Mass Spectrometry (LC-MS) data, one possible degradation process was proposed and the main conceivable components and structures of the products were also presented.

  10. Low-Frequency Pulsed Current Versus Kilohertz-Frequency Alternating Current: A Scoping Literature Review.

    Science.gov (United States)

    Vaz, Marco Aurélio; Frasson, Viviane Bortoluzzi

    2018-04-01

    To compare the effectiveness of low-frequency pulsed current versus kilohertz-frequency alternating current in terms of evoked force, discomfort level, current intensity, and muscle fatigability; to discuss the physiological mechanisms of each neuromuscular electrical stimulation type; and to determine if kilohertz-frequency alternating current is better than low-frequency pulsed current for clinical treatment. Articles were obtained from PubMed, Scopus, Cochrane Central Register of Controlled Trials, CINAHL, MEDLINE, and SPORTSDiscus databases using the terms Russian current or kilohertz current or alternating current or pulsed current or Aussie current and torque or discomfort or fatigue or current intensity, and through citation tracking up to July 2017. Two independent reviewers selected studies comparing the use of the 2 neuromuscular electrical stimulation currents. Studies describing maximal current intensity tolerated and the main effects of the 2 different current types on discomfort, muscle force, and fatigability were independently reviewed. Data were systematized according to (1) methodology; (2) electrical current characteristics; and (3) outcomes on discomfort level, evoked force, current intensity, and muscle fatigability. The search revealed 15 articles comparing the 2 current types. Kilohertz-frequency alternated current generated equal or less force, similar discomfort, similar current intensity for maximal tolerated neuromuscular electrical stimulation, and more fatigue compared with low-frequency pulsed current. Similar submaximal levels of evoked force revealed higher discomfort and current intensity for kilohertz-frequency alternated current compared with low-frequency pulsed current. Available evidence does not support the idea that kilohertz-frequency alternated current is better than low-frequency pulsed current for strength training and rehabilitation. Copyright © 2017 American Congress of Rehabilitation Medicine. Published by Elsevier

  11. Inhibition of Salmonella typhi growth using extremely low frequency electromagnetic (ELF-EM) waves at resonance frequency.

    Science.gov (United States)

    Fadel, M A; Mohamed, S A; Abdelbacki, A M; El-Sharkawy, A H

    2014-08-01

    Typhoid is a serious disease difficult to be treated with conventional drugs. The aim of this study was to demonstrate a new method for the control of Salmonella typhi growth, through the interference with the bioelectric signals generated from the microbe during cell division by extremely low frequency electromagnetic waves (ELF-EMW-ELF-EM) at resonance frequency. Isolated Salmonella typhi was subjected to square amplitude modulated waves (QAMW) with different modulation frequencies from two generators with constant carrier frequency of 10 MHz, amplitude of 10 Vpp, modulating depth ± 2 Vpp and constant field strength of 200 V m(-1) at 37°C. Both the control and exposed samples were incubated at the same conditions during the experiment. The results showed that there was highly significant inhibition effect for Salm. typhi exposed to 0·8 Hz QAMW for a single exposure for 75 min. Dielectric relaxation, TEM and DNA results indicated highly significant changes in the molecular structure of the DNA and cellular membrane resulting from the exposure to the inhibiting EM waves. It was concluded that finding out the inhibiting resonance frequency of ELF-EM waves that deteriorates Salm. typhi growth will be promising method for the treatment of Salm. typhi infection either in vivo or in vitro. This new non-invasive technique for treatment of bacterial infections is of considerable interest for the use in medical and biotechnological applications. © 2014 The Society for Applied Microbiology.

  12. Multi-generational effects of propranolol on Daphnia magna at different environmental concentrations

    International Nuclear Information System (INIS)

    Jeong, Tae-Yong; Kim, Hyun Young; Kim, Sang Don

    2015-01-01

    To evaluate the effects of propranolol on Daphnia magna (D. magna), we employed a multi-generational exposure period for eight generations and an environmentally relevant low concentration with 1.5 ng/L, 0.2 μg/L and 26 μg/L to reflect a realistic exposure scenario. Physiological endpoints were checked, including growth, number of neonates, heart rate, frequency of abdominal appendage movement and malformation rate of neonates. In the results, growth and abdominal appendage movement were affected by environmental concentration during several generations, and the responses showed consistent tendencies of response increase with concentration increase. Heart rate was the only endpoint affected throughout all exposure generations. Inhibitory and acceleratory effects on heart rate, growth and abdominal appendage movement suggest that it is necessary to cover sub-lethal endpoints of non-targeted organisms in eco-toxicity study because the physiological responses were detected at much lower concentrations than the results of traditional toxicity tests, including environmental concentration. - Highlights: • Multi-generational exposure was conducted to evaluate the effect of propranolol on Daphnia magna. • Heart rate was the only endpoint affected throughout all exposure generations. • Growth and abdominal appendage movement were affected at environmental concentrations. • Time series fluctuations in responses appeared with no tendencies throughout all generations. • It is necessary to cover sub-organismal endpoints and long-term exposure in ecotoxicity test. - Heart rate, growth and abdominal appendage movement of D. magna were affected by the multigenerational exposure of propranolol at environmental levels.

  13. Observation of sum-frequency-generation-induced cascaded four-wave mixing using two crossing femtosecond laser pulses in a 0.1 mm beta-barium-borate crystal.

    Science.gov (United States)

    Liu, Weimin; Zhu, Liangdong; Fang, Chong

    2012-09-15

    We demonstrate the simultaneous generation of multicolor femtosecond laser pulses spanning the wavelength range from UV to near IR in a 0.1 mm Type I beta-barium borate crystal from 800 nm fundamental and weak IR super-continuum white light (SCWL) pulses. The multicolor broadband laser pulses observed are attributed to two concomitant cascaded four-wave mixing (CFWM) processes as corroborated by calculation: (1) directly from the two incident laser pulses; (2) by the sum-frequency generation (SFG) induced CFWM process (SFGFWM). The latter signal arises from the interaction between the frequency-doubled fundamental pulse (400 nm) and the SFG pulse generated in between the fundamental and IR-SCWL pulses. The versatility and simplicity of this spatially dispersed multicolor self-compressed laser pulse generation offer compact and attractive methods to conduct femtosecond stimulated Raman spectroscopy and time-resolved multicolor spectroscopy.

  14. Reducing scram frequency by modifying/eliminating steam generator low-low level reactor trip setpoint for Maanshan nuclear power plant

    International Nuclear Information System (INIS)

    Yuann, R.Y.; Chiang, S.C.; Hsiue, J.K.; Chen, P.C.

    1987-01-01

    The feasibility of modification/elimination of steam generator low-low level reactor trip setpoint is evaluated by using RETRAN-02 code for the purpose of reducing scram frequency in Maanshan 3-loop pressurized water reactor. The ANS Condition II event loss of normal feedwater and condition IV event feedwater system line break are the basis for steam generator low-low level reactor trip setpoint sensitivity analysis, including various initial reactor power levels, reactivity feedback coefficients, and system functions assumptions etc., have been performed for the two basis events with steam generator low-low level reactor trip setpoint at 0% narrow range and without this trip respectively. The feasibility of modifying/eliminating current steam generator low-low level reactor trip setpoint is then determined based on whether the analysis results meet with the ANS Condition II and IV acceptance criteria or not

  15. Novel high-frequency energy-efficient pulsed-dc generator for capacitively coupled plasma discharge

    Science.gov (United States)

    Mamun, Md Abdullah Al; Furuta, Hiroshi; Hatta, Akimitsu

    2018-03-01

    The circuit design, assembly, and operating tests of a high-frequency and high-voltage (HV) pulsed dc generator (PDG) for capacitively coupled plasma (CCP) discharge inside a vacuum chamber are reported. For capacitive loads, it is challenging to obtain sharp rectangular pulses with fast rising and falling edges, requiring intense current for quick charging and discharging. The requirement of intense current generally limits the pulse operation frequency. In this study, we present a new type of PDG consisting of a pair of half-resonant converters and a constant current-controller circuit connected with HV solid-state power switches that can deliver almost rectangular high voltage pulses with fast rising and falling edges for CCP discharge. A prototype of the PDG is assembled to modulate from a high-voltage direct current (HVdc) input into a pulsed HVdc output, while following an input pulse signal and a set current level. The pulse rise time and fall time are less than 500 ns and 800 ns, respectively, and the minimum pulse width is 1 µs. The maximum voltage for a negative pulse is 1000 V, and the maximum repetition frequency is 500 kHz. During the pulse on time, the plasma discharge current is controlled steadily at the set value. The half-resonant converters in the PDG perform recovery of the remaining energy from the capacitive load at every termination of pulse discharge. The PDG performed with a high energy efficiency of 85% from the HVdc input to the pulsed dc output at a repetition rate of 1 kHz and with stable plasma operation in various discharge conditions. The results suggest that the developed PDG can be considered to be more efficient for plasma processing by CCP.

  16. Novel high-frequency energy-efficient pulsed-dc generator for capacitively coupled plasma discharge.

    Science.gov (United States)

    Mamun, Md Abdullah Al; Furuta, Hiroshi; Hatta, Akimitsu

    2018-03-01

    The circuit design, assembly, and operating tests of a high-frequency and high-voltage (HV) pulsed dc generator (PDG) for capacitively coupled plasma (CCP) discharge inside a vacuum chamber are reported. For capacitive loads, it is challenging to obtain sharp rectangular pulses with fast rising and falling edges, requiring intense current for quick charging and discharging. The requirement of intense current generally limits the pulse operation frequency. In this study, we present a new type of PDG consisting of a pair of half-resonant converters and a constant current-controller circuit connected with HV solid-state power switches that can deliver almost rectangular high voltage pulses with fast rising and falling edges for CCP discharge. A prototype of the PDG is assembled to modulate from a high-voltage direct current (HVdc) input into a pulsed HVdc output, while following an input pulse signal and a set current level. The pulse rise time and fall time are less than 500 ns and 800 ns, respectively, and the minimum pulse width is 1 µs. The maximum voltage for a negative pulse is 1000 V, and the maximum repetition frequency is 500 kHz. During the pulse on time, the plasma discharge current is controlled steadily at the set value. The half-resonant converters in the PDG perform recovery of the remaining energy from the capacitive load at every termination of pulse discharge. The PDG performed with a high energy efficiency of 85% from the HVdc input to the pulsed dc output at a repetition rate of 1 kHz and with stable plasma operation in various discharge conditions. The results suggest that the developed PDG can be considered to be more efficient for plasma processing by CCP.

  17. Loads as a Resource: Frequency Responsive Demand

    Energy Technology Data Exchange (ETDEWEB)

    Kalsi, Karanjit [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lian, Jianming [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Marinovici, Laurentiu D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Elizondo, Marcelo A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhang, Wei [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Moya, Christian [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-10-08

    Frequency control plays an important role in preserving the power balance of a multi-machine power system. Generators modify their power output when a non-zero frequency deviation is presented in order to restore power balance across the network. However, with plans for large-scale penetration of renewable energy resources, performing primary frequency control using only supply-side resources becomes not only prohibitively expensive, but also technically difficult. Frequency control from the demand side or load control presents a novel and viable way for providing the desired frequency response. Loads can measure frequency locally and change their power consumption after a non-zero frequency deviation is presented in order to achieve power balance between generation and consumption. The specific objectives of this project are to: •Provide a framework to facilitate large-scale deployment of frequency responsive end-use devices •Systematically design decentralized frequency-based load control strategies for enhanced stability performance •Ensure applicability over wide range of operating conditions while accounting for unpredictable end-use behavior and physical device constraints •Test and validate control strategy using large-scale simulations and field demonstrations •Create a level-playing field for smart grid assets with conventional generators

  18. SMES application for frequency control during islanded microgrid operation

    International Nuclear Information System (INIS)

    Kim, A-Rong; Kim, Gyeong-Hun; Heo, Serim; Park, Minwon; Yu, In-Keun; Kim, Hak-Man

    2013-01-01

    Highlights: ► The operating characteristics of SMES for the frequency control of an islanded microgrid were investigated. ► The SMES contributes well for frequency control in the islanded operation. ► A dual and a single magnet type of SMES have been compared to demonstrate the performances. -- Abstract: This paper analyzes the operating characteristics of a superconducting magnetic energy storage (SMES) for the frequency control of an islanded microgrid operation. In the grid-connected mode of a microgrid, an imbalance between power supply and demand is solved by a power trade with the upstream power grid. The difference in the islanded mode is a critical problem because the microgrid is isolated from any power grid. For this reason, the frequency control during islanded microgrid operation is a challenging issue. A test microgrid in this paper consisted of a wind power generator, a PV generation system, a diesel generator and a load to test the feasibility of the SMES for controlling frequency during islanded operation as well as the transient state varying from the grid-connected mode to the islanded mode. The results show that the SMES contributes well for frequency control in the islanded operation. In addition, a dual and a single magnet type of SMES have been compared to demonstrate the control performance. The dual magnet has the same energy capacity as the single magnet, but there are two superconducting coils and each coil has half inductance of the single magnet. The effectiveness of the SMES application with the simulation results is discussed in detail

  19. SMES application for frequency control during islanded microgrid operation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, A-Rong, E-mail: haven21c@changwon.ac.kr [Changwon National University, Sarim-dong, Changwon 641-773 (Korea, Republic of); Kim, Gyeong-Hun; Heo, Serim; Park, Minwon [Changwon National University, Sarim-dong, Changwon 641-773 (Korea, Republic of); Yu, In-Keun, E-mail: yuik@changwon.ac.kr [Changwon National University, Sarim-dong, Changwon 641-773 (Korea, Republic of); Kim, Hak-Man [University of Incheon, Songdo-dong, Incheon 406-772 (Korea, Republic of)

    2013-01-15

    Highlights: ► The operating characteristics of SMES for the frequency control of an islanded microgrid were investigated. ► The SMES contributes well for frequency control in the islanded operation. ► A dual and a single magnet type of SMES have been compared to demonstrate the performances. -- Abstract: This paper analyzes the operating characteristics of a superconducting magnetic energy storage (SMES) for the frequency control of an islanded microgrid operation. In the grid-connected mode of a microgrid, an imbalance between power supply and demand is solved by a power trade with the upstream power grid. The difference in the islanded mode is a critical problem because the microgrid is isolated from any power grid. For this reason, the frequency control during islanded microgrid operation is a challenging issue. A test microgrid in this paper consisted of a wind power generator, a PV generation system, a diesel generator and a load to test the feasibility of the SMES for controlling frequency during islanded operation as well as the transient state varying from the grid-connected mode to the islanded mode. The results show that the SMES contributes well for frequency control in the islanded operation. In addition, a dual and a single magnet type of SMES have been compared to demonstrate the control performance. The dual magnet has the same energy capacity as the single magnet, but there are two superconducting coils and each coil has half inductance of the single magnet. The effectiveness of the SMES application with the simulation results is discussed in detail.

  20. Generation of picosecond pulses and frequency combs in actively mode locked external ring cavity quantum cascade lasers

    International Nuclear Information System (INIS)

    Wójcik, Aleksander K.; Belyanin, Alexey; Malara, Pietro; Blanchard, Romain; Mansuripur, Tobias S.; Capasso, Federico

    2013-01-01

    We propose a robust and reliable method of active mode locking of mid-infrared quantum cascade lasers and develop its theoretical description. Its key element is the use of an external ring cavity, which circumvents fundamental issues undermining the stability of mode locking in quantum cascade lasers. We show that active mode locking can give rise to the generation of picosecond pulses and phase-locked frequency combs containing thousands of the ring cavity modes

  1. Direct comparison of phase-sensitive vibrational sum frequency generation with maximum entropy method: case study of water.

    Science.gov (United States)

    de Beer, Alex G F; Samson, Jean-Sebastièn; Hua, Wei; Huang, Zishuai; Chen, Xiangke; Allen, Heather C; Roke, Sylvie

    2011-12-14

    We present a direct comparison of phase sensitive sum-frequency generation experiments with phase reconstruction obtained by the maximum entropy method. We show that both methods lead to the same complex spectrum. Furthermore, we discuss the strengths and weaknesses of each of these methods, analyzing possible sources of experimental and analytical errors. A simulation program for maximum entropy phase reconstruction is available at: http://lbp.epfl.ch/. © 2011 American Institute of Physics

  2. An optical modulation format generation scheme based on spectral filtering and frequency-to-time mapping

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ai-ling; ZHANG Yue; SONG Hong-yun; YAO Yuan; PAN Hong-gang

    2018-01-01

    An optical modulation format generation scheme based on spectral filtering and frequency-to-time mapping is experimentally demonstrated.Many modulation formats with continuously adjustable duty radio and bit rate can be formed by changing the dispersion of dispersion element and the bandwidth of shaped spectrum in this scheme.In the experiment,non-return-to-zero (NRZ) signal with bit rate of 29.41 Gbit/s and 1/2 duty ratio return-to-zero (RZ) signal with bit rate of 13.51 Gbit/s are obtained.The maximum bit rate of modulation format signal is also analyzed.

  3. H∞ robust control of load frequency in diesel-battery hybrid electric propulsion ship

    Directory of Open Access Journals (Sweden)

    LI Hongyue

    2017-05-01

    Full Text Available Considering the load frequency fluctuation in the shipboard integrated power system caused by such stochastic uncertainty as wind, wave and current, the battery is adopted here to compensate for the difference between diesel generator output power and ship demand power, and the secondary frequency control is used for the diesel generator to guarantee the power balance in the shipboard integrated power system and suppress the frequency fluctuation. The load frequency control problem is modeled as a state space equation, the robust controller is designed by selecting the appropriate sensitivity function and complementary sensitivity function based on the H∞ mixed sensitivity principle, and the controller is solved by the linear matrix inequality(LMIapproach. The amplitude frequency characteristics denote the reasonability of the designed controller and the design requirement is satisfied by the impact of the impulse signal. The simulation results show that, compared with the classical PI controller, the controller designed by the H∞ robust method can significantly suppress frequency fluctuation under stochastic uncertainty, and improve the power variation of the diesel generator, battery and state of charge(SOC. The robust stability and robust performance of the power system are also advanced.

  4. Lower Hybrid Frequency Range Waves Generated by Ion Polarization Drift Due to Electromagnetic Ion Cyclotron Waves: Analysis of an Event Observed by the Van Allen Probe B

    Science.gov (United States)

    Khazanov, G. V.; Boardsen, S.; Krivorutsky, E. N.; Engebretson, M. J.; Sibeck, D.; Chen, S.; Breneman, A.

    2017-01-01

    We analyze a wave event that occurred near noon between 07:03 and 07:08 UT on 23 February 2014 detected by the Van Allen Probes B spacecraft, where waves in the lower hybrid frequency range (LHFR) and electromagnetic ion cyclotron (EMIC) waves are observed to be highly correlated, with Pearson correlation coefficient of approximately 0.86. We assume that the correlation is the result of LHFR wave generation by the ions polarization drift in the electric field of the EMIC waves. To check this assumption the drift velocities of electrons and H+, He+, and O+ ions in the measured EMIC wave electric field were modeled. Then the LHFR wave linear instantaneous growth rates for plasma with these changing drift velocities and different plasma compositions were calculated. The time distribution of these growth rates, their frequency distribution, and the frequency dependence of the ratio of the LHFR wave power spectral density (PSD)parallel and perpendicular to the ambient magnetic eld to the total PSD were found. These characteristics of the growth rates were compared with the corresponding characteristics of the observed LHFR activity. Reasonable agreement between these features and the strong correlation between EMIC and LHFR energy densities support the assumption that the LHFR wave generation can be caused by the ions polarization drift in the electric field of an EMIC wave.

  5. Frequency-agile dual-comb spectroscopy

    Science.gov (United States)

    Millot, Guy; Pitois, Stéphane; Yan, Ming; Hovhannisyan, Tatevik; Bendahmane, Abdelkrim; Hänsch, Theodor W.; Picqué, Nathalie

    2016-01-01

    Spectroscopic gas sensing and its applications to, for example, trace detection or chemical kinetics, require ever more demanding measurement times, acquisition rates, sensitivities, precisions and broad tuning ranges. Here, we propose a new approach to near-infrared molecular spectroscopy, utilizing advanced concepts of optical telecommunications and supercontinuum photonics. We generate, without mode-locked lasers, two frequency combs of slightly different repetition frequencies and moderate, but rapidly tunable, spectral span. The output of a frequency-agile continuous-wave laser is split and sent into two electro-optic intensity modulators. Flat-top low-noise frequency combs are produced by wave-breaking in a nonlinear optical fibre of normal dispersion. With a dual-comb spectrometer, we record Doppler-limited spectra spanning 60 GHz within 13 μs and an 80 kHz refresh rate, at a tuning speed of 10 nm s-1. The sensitivity for weak absorption is enhanced by a long gas-filled hollow-core fibre. New opportunities for real-time diagnostics may be opened up, even outside the laboratory.

  6. Resolving high-frequency internal waves generated at an isolated coral atoll using an unstructured grid ocean model

    Science.gov (United States)

    Rayson, Matthew D.; Ivey, Gregory N.; Jones, Nicole L.; Fringer, Oliver B.

    2018-02-01

    We apply the unstructured grid hydrodynamic model SUNTANS to investigate the internal wave dynamics around Scott Reef, Western Australia, an isolated coral reef atoll located on the edge of the continental shelf in water depths of 500,m and more. The atoll is subject to strong semi-diurnal tidal forcing and consists of two relatively shallow lagoons separated by a 500 m deep, 2 km wide and 15 km long channel. We focus on the dynamics in this channel as the internal tide-driven flow and resulting mixing is thought to be a key mechanism controlling heat and nutrient fluxes into the reef lagoons. We use an unstructured grid to discretise the domain and capture both the complex topography and the range of internal wave length scales in the channel flow. The model internal wave field shows super-tidal frequency lee waves generated by the combination of the steep channel topography and strong tidal flow. We evaluate the model performance using observations of velocity and temperature from two through water-column moorings in the channel separating the two reefs. Three different global ocean state estimate datasets (global HYCOM, CSIRO Bluelink, CSIRO climatology atlas) were used to provide the model initial and boundary conditions, and the model outputs from each were evaluated against the field observations. The scenario incorporating the CSIRO Bluelink data performed best in terms of through-water column Murphy skill scores of water temperature and eastward velocity variability in the channel. The model captures the observed vertical structure of the tidal (M2) and super-tidal (M4) frequency temperature and velocity oscillations. The model also predicts the direction and magnitude of the M2 internal tide energy flux. An energy analysis reveals a net convergence of the M2 energy flux and a divergence of the M4 energy flux in the channel, indicating the channel is a region of either energy transfer to higher frequencies or energy loss to dissipation. This conclusion is

  7. Multimodal Broadband Vibrational Sum Frequency Generation (MM-BB-V-SFG) Spectrometer and Microscope.

    Science.gov (United States)

    Lee, Christopher M; Kafle, Kabindra; Huang, Shixin; Kim, Seong H

    2016-01-14

    A broadband sum frequency generation (BB-SFG) spectrometer with multimodal (MM) capabilities was constructed, which could be routinely reconfigured for tabletop experiments in reflection, transmission, and total internal reflection (TIR) geometries, as well as microscopic imaging. The system was constructed using a Ti:sapphire amplifier (800 nm, pulse width = 85 fs, repetition rate = 2 kHz), an optical parameter amplification (OPA) system for production of broadband IR pulses tunable between 1000 and 4000 cm(-1), and two Fabry-Pérot etalons arranged in series for production of narrowband 800 nm pulses. The key feature allowing the MM operation was the nearly collinear alignment of the visible (fixed, 800 nm) and infrared (tunable, 1000-4000 cm(-1)) pulses which were spatially separated. Physical insights discussed in this paper include the comparison of spectral bandwidth produced with 40 and 85 fs pump beams, the improvement of spectral resolution using etalons, the SFG probe volume in bulk analysis, the normalization of SFG signals, the stitching of multiple spectral segments, and the operation in different modes for air/liquid and adsorbate/solid interfaces, bulk samples, as well as spectral imaging combined with principle component analysis (PCA). The SFG spectral features obtained with the MM-BB-SFG system were compared with those obtained with picosecond-scanning-SFG system and high-resolution BB-SFG system (HR-BB-SFG) for dimethyl sulfoxide, α-pinene, and various samples containing cellulose (purified commercial products, Cladophora cell wall, cotton and flax fibers, and onion epidermis cell wall).

  8. The control of electron quantum trajectories on the high-order harmonic generation of CO and N2 molecules in the presence of a low frequency field.

    Science.gov (United States)

    Koushki, A M; Sadighi-Bonabi, R; Mohsen-Nia, M; Irani, E

    2018-04-14

    In the present work, an efficient method is theoretically investigated for extending high-order harmonics and ultrashort attosecond pulse generation in N 2 and CO molecules by using the time-dependent density functional theory approach. Our results show that by utilizing chirped laser field in the presence of a low frequency field, not only is the harmonic cutoff extended remarkably but also the single short quantum trajectory is selected to contribute to the harmonic spectra. When a low frequency field is added to the two-color chirped laser field, the long quantum trajectories are suppressed and only the short quantum trajectories contribute to the higher harmonic emission mechanism. As a result, the spectral modulation is significantly decreased and an intense ultrashort pulse can be generated from the supercontinuum region of high harmonics. With such a scheme, the isolated ultrashort attosecond pulses can be generated in length, velocity, and acceleration gauges. Furthermore, these results are explained by using the classical and quantum time-frequency analyses.

  9. Tangent hyperbolic circular frequency diverse array radars

    Directory of Open Access Journals (Sweden)

    Sarah Saeed

    2016-03-01

    Full Text Available Frequency diverse array (FDA with uniform frequency offset (UFO has been in spot light of research for past few years. Not much attention has been devoted to non-UFOs in FDA. This study investigates tangent hyperbolic (TH function for frequency offset selection scheme in circular FDAs (CFDAs. Investigation reveals a three-dimensional single-maximum beampattern, which promises to enhance system detection capability and signal-to-interference plus noise ratio. Furthermore, by utilising the versatility of TH function, a highly configurable type array system is achieved, where beampatterns of three different configurations of FDA can be generated, just by adjusting a single function parameter. This study further examines the utility of the proposed TH-CFDA in some practical radar scenarios.

  10. Generational Differences in the Perception of Corporate Culture in European Transport Enterprises

    Directory of Open Access Journals (Sweden)

    Rudolf Kampf

    2017-09-01

    Full Text Available The workforce of an enterprise consists of employees of various ages with different personality types. Members of each generation differ not only in their behaviour, but also in their attitudes and opinions. A manager should identify generational differences. Subsequently, the management style, leadership and employee motivation should be adapted forasmuch as well-motivated employees are able to affect the efficiency of enterprise processes in right way. The objective of the paper is to identify differences in perception of the preferred level of corporate culture in terms of various generations. Preferred level of corporate culture in six areas is evaluated using a questionnaire consisting of 24 questions. Sixty-four European transport enterprises are engaged in the survey. Following the outcomes, we find that all generations of respondents working in the European transport enterprises prefer clan corporate culture in the course of five years. This culture puts emphasis on employees, customers and traditions. Loyalty and teamwork are considered to be the essential tools for business success. Following the statistical verification using the ANOVA test, we can state that the hypothesis regarding the existence of generational differences in the perception of corporate culture was not confirmed.

  11. Generators for gearless wind energy converters

    Energy Technology Data Exchange (ETDEWEB)

    Grauers, A. [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Electric Power Engineering

    1996-12-01

    This paper discusses some design alternatives for directly driven generators, and one specific generator type is investigated for a wide range of rated power. First, the specification for a directly driven generator is presented, then different design alternatives are discussed. A radial-flux permanent magnet generator for frequency converter connection has been chosen for a more detailed investigation. The design, optimization and performance of that generator type are presented. Generators from 30 kW to 3 MW are designed and compared with conventional four-pole generators with gear. It is found that a directly driven generator can be more efficient than a conventional generator and gear and have a rather small diameter and a low active weight. 8 refs, 7 figs, 2 tabs

  12. Generational differences in male sexuality that may affect ...

    African Journals Online (AJOL)

    Objective: To determine generational differences in male sexuality, which could predispose men's female sexual partners to STDs/HlV. Design: Cross-sectional study. Setting: Harare, Zimbabwe. Subjects: Three hundred and ninety seven male adults aged eighteen years and above. Main outcome measures: Number of ...

  13. Resonant-frequency discharge in a multi-cell radio frequency cavity

    International Nuclear Information System (INIS)

    Popović, S.; Upadhyay, J.; Nikolić, M.; Vušković, L.; Mammosser, J.

    2014-01-01

    We are reporting experimental results on a microwave discharge operating at resonant frequency in a multi-cell radio frequency (RF) accelerator cavity. Although the discharge operated at room temperature, the setup was constructed so that it could be used for plasma generation and processing in fully assembled active superconducting radio-frequency cryo-module. This discharge offers a mechanism for removal of a variety of contaminants, organic or oxide layers, and residual particulates from the interior surface of RF cavities through the interaction of plasma-generated radicals with the cavity walls. We describe resonant RF breakdown conditions and address the issues related to resonant detuning due to sustained multi-cell cavity plasma. We have determined breakdown conditions in the cavity, which was acting as a plasma vessel with distorted cylindrical geometry. We discuss the spectroscopic data taken during plasma removal of contaminants and use them to evaluate plasma parameters, characterize the process, and estimate the volatile contaminant product removal

  14. A Pseudo Fractional-N Clock Generator with 50% Duty Cycle Output

    Science.gov (United States)

    Yang, Wei-Bin; Lo, Yu-Lung; Chao, Ting-Sheng

    A proposed pseudo fractional-N clock generator with 50% duty cycle output is presented by using the pseudo fractional-N controller for SoC chips and the dynamic frequency scaling applications. The different clock frequencies can be generated with the particular phase combinations of a four-stage voltage-controlled oscillator (VCO). It has been fabricated in a 0.13µm CMOS technology, and work with a supply voltage of 1.2V. According to measured results, the frequency range of the proposed pseudo fractional-N clock generator is from 71.4MHz to 1GHz and the peak-to-peak jitter is less than 5% of the output period. Duty cycle error rates of the output clock frequencies are from 0.8% to 2% and the measured power dissipation of the pseudo fractional-N controller is 146µW at 304MHz.

  15. Analysis of the Dynamic Performance of Self-Excited Induction Generators Employed in Renewable Energy Generation

    Directory of Open Access Journals (Sweden)

    Mohamed E. A. Farrag

    2014-01-01

    Full Text Available Incentives, such as the Feed-in-tariff are expected to lead to continuous increase in the deployment of Small Scale Embedded Generation (SSEG in the distribution network. Self-Excited Induction Generators (SEIG represent a significant segment of potential SSEG. The quality of SEIG output voltage magnitude and frequency is investigated in this paper to support the SEIG operation for different network operating conditions. The dynamic behaviour of the SEIG resulting from disconnection, reconnection from/to the grid and potential operation in islanding mode is studied in detail. The local load and reactive power supply are the key factors that determine the SEIG performance, as they have significant influence on the voltage and frequency change after disconnection from the grid. Hence, the aim of this work is to identify the optimum combination of the reactive power supply (essential for self excitation of the SEIG and the active load (essential for balancing power generation and demand. This is required in order to support the SEIG operation after disconnection from the grid, during islanding and reconnection to the grid. The results show that the generator voltage and speed (frequency can be controlled and maintained within the statuary limits. This will enable safe disconnection and reconnection of the SEIG from/to the grid and makes it easier to operate in islanding mode.

  16. Coordinated Primary and Secondary Control with Frequency-Bus-Signaling for Distributed Generation and Storage in Islanded Microgrids

    DEFF Research Database (Denmark)

    Wu, Dan; Tang, Fen; Dragicevic, Tomislav

    2013-01-01

    In this paper, a distributed coordinated control scheme based on frequency-bus-signaling (FBS) method for a low-voltage AC three phase microgrid is proposed. The control scheme is composed by two levels. Firstly a primary local control which is different for the DGs and the ESS is proposed. The ESS...... control is implemented to restore the frequency deviation produced by the primary ESS controller while preserving the coordinated control performance. Real-time simulation results show the feasibility of the proposed approach by showing the operation of the microgrid in different scenarios....

  17. Individual differences in frequency and saliency of speech-accompanying gestures: the role of cognitive abilities and empathy.

    Science.gov (United States)

    Chu, Mingyuan; Meyer, Antje; Foulkes, Lucy; Kita, Sotaro

    2014-04-01

    The present study concerns individual differences in gesture production. We used correlational and multiple regression analyses to examine the relationship between individuals' cognitive abilities and empathy levels and their gesture frequency and saliency. We chose predictor variables according to experimental evidence of the functions of gesture in speech production and communication. We examined 3 types of gestures: representational gestures, conduit gestures, and palm-revealing gestures. Higher frequency of representational gestures was related to poorer visual and spatial working memory, spatial transformation ability, and conceptualization ability; higher frequency of conduit gestures was related to poorer visual working memory, conceptualization ability, and higher levels of empathy; and higher frequency of palm-revealing gestures was related to higher levels of empathy. The saliency of all gestures was positively related to level of empathy. These results demonstrate that cognitive abilities and empathy levels are related to individual differences in gesture frequency and saliency.

  18. Flexible GaN for High Performance, Strainable Radio Frequency Devices (Postprint)

    Science.gov (United States)

    2017-11-02

    wireless systems where consumers will benefit significantly from the high power densities achievable in GaN devices.[8] Further complicating the...future strainable and conformal devices for transmission of radio-frequency (RF) signals over large distances for more efficient wireless communication... power density of traditional RF amplifier materials at different frequencies and wireless generation bands, as well as an image of the flexible GaN

  19. Synthesizing genetic sequential logic circuit with clock pulse generator.

    Science.gov (United States)

    Chuang, Chia-Hua; Lin, Chun-Liang

    2014-05-28

    Rhythmic clock widely occurs in biological systems which controls several aspects of cell physiology. For the different cell types, it is supplied with various rhythmic frequencies. How to synthesize a specific clock signal is a preliminary but a necessary step to further development of a biological computer in the future. This paper presents a genetic sequential logic circuit with a clock pulse generator based on a synthesized genetic oscillator, which generates a consecutive clock signal whose frequency is an inverse integer multiple to that of the genetic oscillator. An analogous electronic waveform-shaping circuit is constructed by a series of genetic buffers to shape logic high/low levels of an oscillation input in a basic sinusoidal cycle and generate a pulse-width-modulated (PWM) output with various duty cycles. By controlling the threshold level of the genetic buffer, a genetic clock pulse signal with its frequency consistent to the genetic oscillator is synthesized. A synchronous genetic counter circuit based on the topology of the digital sequential logic circuit is triggered by the clock pulse to synthesize the clock signal with an inverse multiple frequency to the genetic oscillator. The function acts like a frequency divider in electronic circuits which plays a key role in the sequential logic circuit with specific operational frequency. A cascaded genetic logic circuit generating clock pulse signals is proposed. Based on analogous implement of digital sequential logic circuits, genetic sequential logic circuits can be constructed by the proposed approach to generate various clock signals from an oscillation signal.

  20. All-solid-state quasi-CW yellow laser with intracavity self-Raman conversion and sum frequency generation

    International Nuclear Information System (INIS)

    Kananovich, A; Grabtchikov, A; Orlovich, V; Demidovich, A; Danailov, M

    2010-01-01

    Quasi continuous-wave (qCW) yellow emission (pulse duration 5 ms, repetition rate 20 Hz) at 559 nm is demonstrated through intracavity sum frequency generation (SFG) of Stokes and fundamental fields in Nd:YVO 4 diode pumped self-Raman laser for the first time. Average in pulse output power at 559 nm was 0.47 W for 22 W of pump power, which corresponds to 2.1% of diode-to-yellow efficiency. The pulsed mode of operation was due to diode pump modulation and was used to reduce thermal stress of the crystal

  1. Sum-Frequency-Generation-Based Laser Sidebands for Tunable Femtosecond Raman Spectroscopy in the Ultraviolet

    Directory of Open Access Journals (Sweden)

    Liangdong Zhu

    2015-04-01

    Full Text Available Femtosecond stimulated Raman spectroscopy (FSRS is an emerging molecular structural dynamics technique for functional materials characterization typically in the visible to near-IR range. To expand its applications we have developed a versatile FSRS setup in the ultraviolet region. We use the combination of a narrowband, ~400 nm Raman pump from a home-built second harmonic bandwidth compressor and a tunable broadband probe pulse from sum-frequency-generation-based cascaded four-wave mixing (SFG-CFWM laser sidebands in a thin BBO crystal. The ground state Raman spectrum of a laser dye Quinolon 390 in methanol that strongly absorbs at ~355 nm is systematically studied as a standard sample to provide previously unavailable spectroscopic characterization in the vibrational domain. Both the Stokes and anti-Stokes Raman spectra can be collected by selecting different orders of SFG-CFWM sidebands as the probe pulse. The stimulated Raman gain with the 402 nm Raman pump is >21 times larger than that with the 550 nm Raman pump when measured at the 1317 cm−1 peak for the aromatic ring deformation and ring-H rocking mode of the dye molecule, demonstrating that pre-resonance enhancement is effectively achieved in the unique UV-FSRS setup. This added tunability in the versatile and compact optical setup enables FSRS to better capture transient conformational snapshots of photosensitive molecules that absorb in the UV range.

  2. Frequency tripling with multimode-lasers

    International Nuclear Information System (INIS)

    Langer, H.; Roehr, H.; Wrobel, W.G.

    1978-10-01

    The presence of different modes with random phases in a laser beam leads to fluctuations in nonlinear optical interactions. This paper describes the influence of the linewidth of a dye laser on the generation of intensive Lyman-alpha radiation by frequency tripling. Using this Lyman-alpha source for resonance scattering on strongly doppler-broadened lines in fusion plasmas the detection limit of neutral hydrogen is nearly two orders higher with the multimode than the singlemode dye laser. (orig.) [de

  3. Limitations in THz Power Generation with Schottky Diode Varactor Frequency Multipliers

    DEFF Research Database (Denmark)

    Krozer, Viktor; Loata, G.; Grajal, J.

    2002-01-01

    , at increasing frequencies the power drops with f-3 instead of the f-2 predicted by theory. In this contribution we provide an overview of state-of-the-art results. A comparison with theoretically achievable multiplier performance reveals that the devices employed at higher frequencies are operating...... inefficiently and the design and fabrication capabilities have not reached the maturity encountered at lower THz frequencies....

  4. Environmental evaluation of different forms of electric energy generation

    International Nuclear Information System (INIS)

    Guena, Ana Maria de Oliveira; Aquino, Afonso Rodrigues de

    2007-01-01

    The development and implementation of other forms of energy generation caused local changes, where they were installed, giving rise to environmental impacts. This work presents an evaluation about different forms of electrical energy generation and the environmental impacts relative to each one of them. Five forms of electric energy generation were considered: thermoelectric, nuclear, hydroelectric, wind and solar energy. The implementation and the development of the petroleum industry in the world and in Brazil are presented. The geology of the oil, its extraction and quality improvement, besides details of the functioning of three types of thermoelectric power plants - coal, gas and oil - are also discussed. The specific as well as the environmental impacts they have in common are highlighted. The impacts originated from the deactivation of each one of them are also pointed out. Once outlined the environmental impacts from each form of electric energy generation, they were correlated and compared considering the area of the power plant implantation, the generation capacity, the efficiency, the power and the cost per kW. There is no totally clean form of electric energy generation. There is, however, generation without emission of gases responsible for the green house effect. Therefore, all forms of energy generation are important for a country; in other words, the best situation is the diversity of the energy matrix. (author)

  5. Efficient yellow beam generation by intracavity sum frequency ...

    Indian Academy of Sciences (India)

    2014-02-06

    Feb 6, 2014 ... petition leading to instability in the output sum frequency power and ... Nd:YVO4 crystal has been identified as one of the promising laser materials for diode ... very important to achieve small laser mode size as well as proper ...

  6. Generating an AC amplitude magnetic flux density value up to 150 μT at a frequency up to 100 kHz

    Science.gov (United States)

    Ulvr, Michal; Polonský, Jakub

    2017-05-01

    AC magnetic field analyzers with a triaxial coil probe are widely used by health and safety professionals, in manufacturing, and in service industries. For traceable calibration of these analyzers, it is important to be able to generate a stable, homogeneous reference AC magnetic flux density (MFD). In this paper, the generating of AC amplitude MFD value of 150 μT by single-layer Helmholtz type solenoid, described in previous work, was expanded up to a frequency of 100 kHz using the effect of serial resonance. A programmable capacitor array has been developed with a range of adjustable values from 50 pF to 51225 pF. In addition, the multi-layer search coil with a nominal area turns value of 1.3m2, used for adjusting AC MFD in the solenoid, has been modified by a transimpedance amplifier for use in a wider frequency range than up to 3 kHz. The possibility of using the programmable capacitor array up to 150 kHz has also been tested. An AC amplitude MFD value of 150 μT can be generated with expanded uncertainty better than 0.6% up to 100 kHz.

  7. Sum Frequency Generation Vibrational Spectroscopy and Kinetic Study of 2-Methylfuran and 2,5-Dimethylfuran Hydrogenation over 7 nm Platinum Cubic Nanoparticles

    KAUST Repository

    Aliaga, Cesar; Tsung, Chia-Kuang; Alayoglu, Selim; Komvopoulos, Kyriakos; Yang, Peidong; Somorjai, Gabor A.

    2011-01-01

    Sum frequency generation vibrational spectroscopy and kinetic measurements obtained from gas chromatography were used to study the adsorption and hydrogenation of 2-methylfuran (MF) and 2,5-dimethylfuran (DMF) over cubic Pt nanoparticles of 7 nm

  8. Quantitative Surface Chirality Detection with Sum Frequency Generation Vibrational Spectroscopy: Twin Polarization Angle Approach

    International Nuclear Information System (INIS)

    Wei, Feng; Xu, Yanyan; Guo, Yuan; Liu, Shi-lin; Wang, Hongfei

    2009-01-01

    Here we report a novel twin polarization angle (TPA) approach in the quantitative chirality detection with the surface sum-frequency generation vibrational spectroscopy (SFG-VS). Generally, the achiral contribution dominates the surface SFG-VS signal, and the pure chiral signal is usually two or three orders of magnitude smaller. Therefore, it has been difficult to make quantitative detection and analysis of the chiral contributions to the surface SFG-VS signal. In the TPA method, by varying together the polarization angles of the incoming visible light and the sum frequency signal at fixed s or p polarization of the incoming infrared beam, the polarization dependent SFG signal can give not only direct signature of the chiral contribution in the total SFG-VS signal, but also the accurate measurement of the chiral and achiral components in the surface SFG signal. The general description of the TPA method is presented and the experiment test of the TPA approach is also presented for the SFG-VS from the S- and R-limonene chiral liquid surfaces. The most accurate degree of chiral excess values thus obtained for the 2878 cm -1 spectral peak of the S- and R-limonene liquid surfaces are (23.7±0.4)% and (25.4±1.3)%, respectively.

  9. The different generation of nuclear reactors from Generation-1 to Generation-4

    International Nuclear Information System (INIS)

    Cognet, G.

    2010-01-01

    In this work author deals with the history of the development of nuclear reactors from Generation-1 to Generation-4. The fuel cycle and radioactive waste management as well as major accidents are presented, too.

  10. Proton-irradiation technology for high-frequency high-current silicon welding diode manufacturing

    Science.gov (United States)

    Lagov, P. B.; Drenin, A. S.; Zinoviev, M. A.

    2017-05-01

    Different proton irradiation regimes were tested to provide more than 20 kHz-frequency, soft reverse recovery “snap-less” behavior, low forward voltage drop and leakage current for 50 mm diameter 7 kA/400 V welding diode Al/Si/Mo structure. Silicon diode with such parameters is very suitable for high frequency resistance welding machines of new generation for robotic welding.

  11. Cutting-in control of the variable speed constant frequency wind power generator based on internal model controller

    Energy Technology Data Exchange (ETDEWEB)

    Guo Jindong; Xu Honghua; Zhao Dongli [Inst. of Electrical Engineering, CAS, BJ (China)

    2008-07-01

    The no-impact-current cutting-in-network control is the key of variable speed constant frequency (VSCF) wind power control system. Based on the stator flux linkage oriented control theory of doubly fed induction generator (DFIG), the field-oriented vector control technique and the internal model controller (IMC) are transplanted into the voltage control of DFIG and a novel cutting-in control strategy is obtained. The strategy does not need the exact inductor generator model, and has perfect performance without overshoot. The structure of the controller is simple, and the only parameter to be adjusted is directly related to system performance, so the strategy is easy to realize. Finally the strategy is studied by simulation using Matlab, the results of the simulation show that the control strategy can effectively control the stator voltage. (orig.)

  12. [Study the impacts of diagnosis on occupational noise-induced deafness after bring into the different high frequency hearing threshold weighted value].

    Science.gov (United States)

    Xue, L J; Yang, A C; Chen, H; Huang, W X; Guo, J J; Liang, X Y; Chen, Z Q; Zheng, Q L

    2017-11-20

    Objective: Study of the results and the degree on occupational noise-induced deafness in-to the different high frequency hearing threshold weighted value, in order to provide theoretical basis for the re-vision of diagnostic criteria on occupational noise-induced deafness. Methods: A retrospective study was con-ducted to investigate the cases on the diagnosis of occupational noise-induced deafness in Guangdong province hospital for occupational disease prevention and treatment from January 2016 to January 2017. Based on the re-sults of the 3 hearing test for each test interval greater than 3 days in the hospital, the best threshold of each frequency was obtained, and based on the diagnostic criteria of occupational noise deafness in 2007 edition, Chi square test, t test and variance analysis were used to measure SPSS21.0 data, their differences are tested among the means of speech frequency and the high frequency weighted value into different age group, noise ex-posure group, and diagnostic classification between different dimensions. Results: 1. There were totally 168 cases in accordance with the study plan, male 154 cases, female 14 cases, the average age was 41.18 ±6.07 years old. 2. The diagnosis rate was increased into the weighted value of different high frequency than the mean value of pure speech frequency, the weighted 4 kHz frequency increased by 13.69% (χ(2)=9.880, P =0.002) , 6 kHz increased by 15.47% (χ(2)=9.985, P =0.002) and 4 kHz+6 kHz increased by15.47% (χ(2)=9.985, P =0.002) , the difference was statistically significant. The diagnostic rate of different high threshold had no obvious differ-ence between the genders. 3. The age groups were divided into less than or equal to 40years old group (A group) and 40-50 years old group (group B) , there were higher the diagnostic rate between high frequency weighted 4 kHz (A group χ(2)=3.380, P =0.050; B group χ(2)=4.054, P =0.032) , weighted 6 kHz (A group χ(2)=6.362, P =0.012; B group χ(2

  13. Experimental and modeling study on relation of pedestrian step length and frequency under different headways

    Science.gov (United States)

    Zeng, Guang; Cao, Shuchao; Liu, Chi; Song, Weiguo

    2018-06-01

    It is important to study pedestrian stepping behavior and characteristics for facility design and pedestrian flow study due to pedestrians' bipedal movement. In this paper, data of steps are extracted based on trajectories of pedestrians from a single-file experiment. It is found that step length and step frequency will decrease 75% and 33%, respectively, when global density increases from 0.46 ped/m to 2.28 ped/m. With the increment of headway, they will first increase and then remain constant when the headway is beyond 1.16 m and 0.91 m, respectively. Step length and frequency under different headways can be described well by normal distributions. Meanwhile, relationships between step length and frequency under different headways exist. Step frequency decreases with the increment of step length. However, the decrease tendencies depend on headways as a whole. And there are two decrease tendencies: when the headway is between about 0.6 m and 1.0 m, the decrease rate of the step frequency will increase with the increment of step length; while it will decrease when the headway is beyond about 1.0 m and below about 0.6 m. A model is built based on the experiment results. In fundamental diagrams, the results of simulation agree well with those of experiment. The study can be helpful for understanding pedestrian stepping behavior and designing public facilities.

  14. Geographic differences in allele frequencies of susceptibility SNPs for cardiovascular disease

    Directory of Open Access Journals (Sweden)

    Kullo Iftikhar J

    2011-04-01

    Full Text Available Abstract Background We hypothesized that the frequencies of risk alleles of SNPs mediating susceptibility to cardiovascular diseases differ among populations of varying geographic origin and that population-specific selection has operated on some of these variants. Methods From the database of genome-wide association studies (GWAS, we selected 36 cardiovascular phenotypes including coronary heart disease, hypertension, and stroke, as well as related quantitative traits (eg, body mass index and plasma lipid levels. We identified 292 SNPs in 270 genes associated with a disease or trait at P -8. As part of the Human Genome-Diversity Project (HGDP, 158 (54.1% of these SNPs have been genotyped in 938 individuals belonging to 52 populations from seven geographic areas. A measure of population differentiation, FST, was calculated to quantify differences in risk allele frequencies (RAFs among populations and geographic areas. Results Large differences in RAFs were noted in populations of Africa, East Asia, America and Oceania, when compared with other geographic regions. The mean global FST (0.1042 for 158 SNPs among the populations was not significantly higher than the mean global FST of 158 autosomal SNPs randomly sampled from the HGDP database. Significantly higher global FST (P FST of 2036 putatively neutral SNPs. For four of these SNPs, additional evidence of selection was noted based on the integrated Haplotype Score. Conclusion Large differences in RAFs for a set of common SNPs that influence risk of cardiovascular disease were noted between the major world populations. Pairwise comparisons revealed RAF differences for at least eight SNPs that might be due to population-specific selection or demographic factors. These findings are relevant to a better understanding of geographic variation in the prevalence of cardiovascular disease.

  15. Rectennas at optical frequencies: How to analyze the response

    International Nuclear Information System (INIS)

    Joshi, Saumil; Moddel, Garret

    2015-01-01

    Optical rectennas, antenna-coupled diode rectifiers that receive optical-frequency electromagnetic radiation and convert it to DC output, have been proposed for use in harvesting electromagnetic radiation from a blackbody source. The operation of these devices is qualitatively different from that of lower-frequency rectennas, and their design requires a new approach. To that end, we present a method to determine the rectenna response to high frequency illumination. It combines classical circuit analysis with classical and quantum-based photon-assisted tunneling response of a high-speed diode. We demonstrate the method by calculating the rectenna response for low and high frequency monochromatic illumination, and for radiation from a blackbody source. Such a blackbody source can be a hot body generating waste heat, or radiation from the sun

  16. Rectennas at optical frequencies: How to analyze the response

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, Saumil; Moddel, Garret, E-mail: moddel@colorado.edu [Department of Electrical, Computer, and Energy Engineering, University of Colorado, Boulder, Colorado 80309-0425 (United States)

    2015-08-28

    Optical rectennas, antenna-coupled diode rectifiers that receive optical-frequency electromagnetic radiation and convert it to DC output, have been proposed for use in harvesting electromagnetic radiation from a blackbody source. The operation of these devices is qualitatively different from that of lower-frequency rectennas, and their design requires a new approach. To that end, we present a method to determine the rectenna response to high frequency illumination. It combines classical circuit analysis with classical and quantum-based photon-assisted tunneling response of a high-speed diode. We demonstrate the method by calculating the rectenna response for low and high frequency monochromatic illumination, and for radiation from a blackbody source. Such a blackbody source can be a hot body generating waste heat, or radiation from the sun.

  17. Rectennas at optical frequencies: How to analyze the response

    Science.gov (United States)

    Joshi, Saumil; Moddel, Garret

    2015-08-01

    Optical rectennas, antenna-coupled diode rectifiers that receive optical-frequency electromagnetic radiation and convert it to DC output, have been proposed for use in harvesting electromagnetic radiation from a blackbody source. The operation of these devices is qualitatively different from that of lower-frequency rectennas, and their design requires a new approach. To that end, we present a method to determine the rectenna response to high frequency illumination. It combines classical circuit analysis with classical and quantum-based photon-assisted tunneling response of a high-speed diode. We demonstrate the method by calculating the rectenna response for low and high frequency monochromatic illumination, and for radiation from a blackbody source. Such a blackbody source can be a hot body generating waste heat, or radiation from the sun.

  18. ColloInputGenerator

    DEFF Research Database (Denmark)

    2013-01-01

    This is a very simple program to help you put together input files for use in Gries' (2007) R-based collostruction analysis program. It basically puts together a text file with a frequency list of lexemes in the construction and inserts a column where you can add the corpus frequencies. It requires...... it as input for basic collexeme collostructional analysis (Stefanowitsch & Gries 2003) in Gries' (2007) program. ColloInputGenerator is, in its current state, based on programming commands introduced in Gries (2009). Projected updates: Generation of complete work-ready frequency lists....

  19. Derived flood frequency analysis using different model calibration strategies based on various types of rainfall-runoff data - a comparison

    Science.gov (United States)

    Haberlandt, U.; Radtke, I.

    2013-08-01

    Derived flood frequency analysis allows to estimate design floods with hydrological modelling for poorly observed basins considering change and taking into account flood protection measures. There are several possible choices about precipitation input, discharge output and consequently regarding the calibration of the model. The objective of this study is to compare different calibration strategies for a hydrological model considering various types of rainfall input and runoff output data sets. Event based and continuous observed hourly rainfall data as well as disaggregated daily rainfall and stochastically generated hourly rainfall data are used as input for the model. As output short hourly and longer daily continuous flow time series as well as probability distributions of annual maximum peak flow series are employed. The performance of the strategies is evaluated using the obtained different model parameter sets for continuous simulation of discharge in an independent validation period and by comparing the model derived flood frequency distributions with the observed one. The investigations are carried out for three mesoscale catchments in Northern Germany with the hydrological model HEC-HMS. The results show that: (i) the same type of precipitation input data should be used for calibration and application of the hydrological model, (ii) a model calibrated using a small sample of extreme values works quite well for the simulation of continuous time series with moderate length but not vice versa, (iii) the best performance with small uncertainty is obtained when stochastic precipitation data and the observed probability distribution of peak flows are used for model calibration. This outcome suggests to calibrate a hydrological model directly on probability distributions of observed peak flows using stochastic rainfall as input if its purpose is the application for derived flood frequency analysis.

  20. Different Styles for Different Needs – The Effect of Cognitive Styles on Idea Generation

    DEFF Research Database (Denmark)

    Lomberg, Carina; Kollmann, Tobias; Stockmann, Christoph

    2017-01-01

    Researchers are engaged in finding the precursors for innovation. Drawing on Kirton's Adaption-Innovation (KAI) Inventory, we explicitly test Kirton's central premise that cognitive styles differentiate between preferences for producing ideas in a certain way. We argue that the generation of either...... a magnitude or original ideas is governed by different underlying cognitive styles. In a study with 191 individuals, we find that the cognitive style originality associates with ideational fluency whereas the rule governance style associates with the generation of original ideas. By providing a cognitive...

  1. Comparison of frequency difference reconstruction algorithms for the detection of acute stroke using EIT in a realistic head-shaped tank

    International Nuclear Information System (INIS)

    Packham, B; Koo, H; Romsauerova, A; Holder, D S; Ahn, S; Jun, S C; McEwan, A

    2012-01-01

    Imaging of acute stroke might be possible using multi-frequency electrical impedance tomography (MFEIT) but requires absolute or frequency difference imaging. Simple linear frequency difference reconstruction has been shown to be ineffective in imaging with a frequency-dependant background conductivity; this has been overcome with a weighted frequency difference approach with correction for the background but this has only been validated for a cylindrical and hemispherical tank. The feasibility of MFEIT for imaging of acute stroke in a realistic head geometry was examined by imaging a potato perturbation against a saline background and a carrot-saline frequency-dependant background conductivity, in a head-shaped tank with the UCLH Mk2.5 MFEIT system. Reconstruction was performed with time difference (TD), frequency difference (FD), FD adjacent (FDA), weighted FD (WFD) and weighted FDA (WFDA) linear algorithms. The perturbation in reconstructed images corresponded to the true position to <9.5% of image diameter with an image SNR of >5.4 for all algorithms in saline but only for TD, WFDA and WFD in the carrot-saline background. No reliable imaging was possible with FD and FDA. This indicates that the WFD approach is also effective for a realistic head geometry and supports its use for human imaging in the future. (paper)

  2. RF current generation near the ion cyclotron frequency

    International Nuclear Information System (INIS)

    Watkins, J.G.

    1982-01-01

    An experiment has been conducted to measure unipolar currents driven by directional radio frequency waves in a cylindrical plasma mirror machine near the ion cyclotron frequency. The directional waves were launched using a four phase helical coupler which allowed the selection of both azimuthal mode number (m = +1) and direction of wave propagation. Plasma diagnostics include electron density measurements (4 mm microwave interferometer), electron temperature measurements (floating double probe), wave amplitude and coupling measurements (magnetic probes). RF power measurements (RF voltage and current probes) and RF driven plasma current measurements (Rogowski loops and current transformers). End electrodes provided a necessary external return path and an alternate method for measuring the current. Theoretical work includes an analytic approximation to the nonlinear problem of a particle in a traveling wave and computer simulations that extend this result. Nonlinear particle drifts other than trapping were found both with and without the presence of particle collisions

  3. Frequency selectivity at very low centre frequencies

    DEFF Research Database (Denmark)

    Orellana, Carlos Andrés Jurado; Pedersen, Christian Sejer; Marquardt, Torsten

    2010-01-01

    measurements based on OAE suppression techniques and notched-noise masking data psychophysically measured for centre frequencies in the range 50-125 Hz, this study examines how individual differences in frequency selectivity, as well as in masking, may occur at very low CFs due to individual differences...

  4. Electrical Stimulation Frequency and Skeletal Muscle Characteristics: Effects on Force and Fatigue

    Directory of Open Access Journals (Sweden)

    Maria Vromans

    2017-12-01

    Full Text Available This investigation aimed to determine the force and muscle surface electromyography (EMG responses to different frequencies of electrical stimulation (ES in two groups of muscles with different size and fiber composition (fast- and slow-twitch fiber proportions during a fatigue-inducing protocol. Progression towards fatigue was evaluated in the abductor pollicis brevis (APB and vastus lateralis (VL when activated by ES at three frequencies (10, 35, and 50Hz. Ten healthy adults (mean age: 23.2 ± 3.0 years were recruited; participants signed an IRB approved consent form prior to participation. Protocols were developed to 1 identify initial ES current intensity required to generate the 25% maximal voluntary contraction (MVC at each ES frequency and 2 evaluate changes in force and EMG activity during ES-induced contraction at each frequency while progressing towards fatigue. For both muscles, stimulation at 10Hz required higher current intensity of ES to generate the initial force. There was a significant decline in force in response to ES-induced fatigue for all frequencies and for both muscles (p<0.05. However, the EMG response was not consistent between muscles. During the progression towards fatigue, the APB displayed an initial drop in force followed by an increase in EMG activity and the VL displayed a decrease in EMG activity for all frequencies. Overall, it appeared that there were some significant interactions between muscle size and fiber composition during progression towards fatigue for different ES frequencies. It could be postulated that muscle characteristics (size and fiber composition should be considered when evaluating progression towards fatigue as EMG and force responses are not consistent between muscles.

  5. Barriers associated with frequency of leisure-time physical activity among Brazilian adults of different income strata.

    Science.gov (United States)

    Silva, K S; Del Duca, G F; Garcia, L M T; da Silva, J A; Bertuol, C; de Oliveira, E S A; de Barros, M V G; Nahas, M V

    2016-02-01

    This study aimed to estimate the prevalence of the main perceived barriers to leisure-time physical activity (LTPA) and their associations with the frequency of LTPA in a representative sample of industrial workers from Brazil (n = 47,477), according to their income strata (low income: ≤$US280, middle income: $US281-$US1400, and high income: ≥$US1401). Data were collected between 2006 and 2008 via questionnaires about the main perceived barrier to LTPA and the frequency of LTPA. Multinomial logistic regression was performed to evaluate differences among groups. There was a lower prevalence of regular practice of LTPA in the low- (15.8%) and middle-income strata (18.2%) than among the individuals of the high-income stratum (27.6%). A large proportion of workers who regularly participated in LTPA reported no barriers (low: 43.1%; middle: 46.8%; high: 51.6%). Additional obligations and fatigue were the two most common perceived barriers in all family income strata among participants who engaged in different frequencies of LTPA. The odds for all perceived barriers showed a positive trend related to frequency of LTPA (from regular to no LTPA), with higher values according to income. In summary, the ordering of the main perceived barriers to LTPA differed according to workers' income stratum and frequency of engaging in LTPA. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. Validation of a multi-frequency electrical impedance tomography (mfEIT) system KHU Mark1: impedance spectroscopy and time-difference imaging

    International Nuclear Information System (INIS)

    Oh, Tong In; Koo, Hwan; Lee, Kyung Heon; Kim, Sang Min; Woo, Eung Je; Lee, Jeehyun; Kim, Sung Wan; Seo, Jin Keun

    2008-01-01

    Validation and interpretation of reconstructed images using a multi-frequency electrical impedance tomography (mfEIT) requires a conductivity phantom including imaging objects with known complex conductivity (σ + iωε) spectra. We describe imaging experiments using the recently developed mfEIT system called the KHU Mark1 with the frequency range of 10 Hz to 500 kHz. Using a bio-impedance spectroscopy (BIS) system, we first measured complex conductivity spectra of different imaging objects including saline, agar, polyacrylamide, TX151, animal hide gelatin, banana and cucumber. Based on an analysis of how conductivity and permittivity affect measured complex boundary voltages, we suggested a new complex version of a multi-frequency time-difference image reconstruction algorithm. Imaging experiments were conducted to produce time-difference images of the objects at multiple frequencies using the proposed algorithm. Images of a conductor (stainless steel) and an insulator (acrylic plastic) were used to set a common scale bar to display all images. Comparing reconstructed time-difference images at multiple frequencies with measured complex conductivity spectra, we found that they showed an overall similarity in terms of changes in complex conductivity values with respect to frequency. However, primarily due to the limitation of the difference imaging algorithm, we suggest that multi-frequency time-difference images must be interpreted in terms of relative contrast changes with respect to frequency. We propose further imaging studies using biological tissues of known complex conductivity spectra and using human subjects to find clinical applications of the mfEIT system

  7. Controlling plasma properties under differing degrees of electronegativity using odd harmonic dual frequency excitation

    Science.gov (United States)

    Gibson, Andrew R.; Gans, Timo

    2017-11-01

    The charged particle dynamics in low-pressure oxygen plasmas excited by odd harmonic dual frequency waveforms (low frequency of 13.56 MHz and high frequency of 40.68 MHz) are investigated using a one-dimensional numerical simulation in regimes of both low and high electronegativity. In the low electronegativity regime, the time and space averaged electron and negative ion densities are approximately equal and plasma sustainment is dominated by ionisation at the sheath expansion for all combinations of low and high frequency and the phase shift between them. In the high electronegativity regime, the negative ion density is a factor of 15-20 greater than the low electronegativity cases. In these cases, plasma sustainment is dominated by ionisation inside the bulk plasma and at the collapsing sheath edge when the contribution of the high frequency to the overall voltage waveform is low. As the high frequency component contribution to the waveform increases, sheath expansion ionisation begins to dominate. It is found that the control of the average voltage drop across the plasma sheath and the average ion flux to the powered electrode are similar in both regimes of electronegativity, despite the differing electron dynamics using the considered dual frequency approach. This offers potential for similar control of ion dynamics under a range of process conditions, independent of the electronegativity. This is in contrast to ion control offered by electrically asymmetric waveforms where the relationship between the ion flux and ion bombardment energy is dependent upon the electronegativity.

  8. Dual-band frequency selective surface with large band separation and stable performance

    Science.gov (United States)

    Zhou, Hang; Qu, Shao-Bo; Peng, Wei-Dong; Lin, Bao-Qin; Wang, Jia-Fu; Ma, Hua; Zhang, Jie-Qiu; Bai, Peng; Wang, Xu-Hua; Xu, Zhuo

    2012-05-01

    A new technique of designing a dual-band frequency selective surface with large band separation is presented. This technique is based on a delicately designed topology of L- and Ku-band microwave filters. The two band-pass responses are generated by a capacitively-loaded square-loop frequency selective surface and an aperture-coupled frequency selective surface, respectively. A Faraday cage is located between the two frequency selective surface structures to eliminate undesired couplings. Based on this technique, a dual-band frequency selective surface with large band separation is designed, which possesses large band separation, high selectivity, and stable performance under various incident angles and different polarizations.

  9. Increased frequency of retinopathy of prematurity over the last decade and significant regional differences.

    Science.gov (United States)

    Holmström, Gerd; Tornqvist, Kristina; Al-Hawasi, Abbas; Nilsson, Åsa; Wallin, Agneta; Hellström, Ann

    2018-03-01

    Retinopathy of prematurity (ROP) causes childhood blindness globally in prematurely born infants. Although increased levels of oxygen supply lead to increased survival and reduced frequency of cerebral palsy, increased incidence of ROP is reported. With the help of a Swedish register for ROP, SWEDROP, national and regional incidences of ROP and frequencies of treatment were evaluated from 2008 to 2015 (n = 5734), as well as before and after targets of provided oxygen changed from 85-89% to 91-95% in 2014. Retinopathy of prematurity (ROP) was found in 31.9% (1829/5734) of all infants with a gestational age (GA) of <31 weeks at birth and 5.7% of the infants (329/5734) had been treated for ROP. Analyses of the national data revealed an increased incidence of ROP during the 8-year study period (p = 0.003), but there was no significant increase in the frequency of treatment. There were significant differences between the seven health regions of Sweden, regarding both incidence of ROP and frequency of treatment (p < 0.001). Comparison of regional data before and after the new oxygen targets revealed a significant increase in treated ROP in one region [OR: 2.24 (CI: 1.11-4.49), p = 0.024] and a borderline increase in one other [OR: 3.08 (CI: 0.99-9.60), p = 0.052]. The Swedish national ROP register revealed an increased incidence of ROP during an 8-year period and significant regional differences regarding the incidence of ROP and frequency of treatment. © 2017 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  10. Strings on a Violin: Location Dependence of Frequency Tuning in Active Dendrites.

    Science.gov (United States)

    Das, Anindita; Rathour, Rahul K; Narayanan, Rishikesh

    2017-01-01

    Strings on a violin are tuned to generate distinct sound frequencies in a manner that is firmly dependent on finger location along the fingerboard. Sound frequencies emerging from different violins could be very different based on their architecture, the nature of strings and their tuning. Analogously, active neuronal dendrites, dendrites endowed with active channel conductances, are tuned to distinct input frequencies in a manner that is dependent on the dendritic location of the synaptic inputs. Further, disparate channel expression profiles and differences in morphological characteristics could result in dendrites on different neurons of the same subtype tuned to distinct frequency ranges. Alternately, similar location-dependence along dendritic structures could be achieved through disparate combinations of channel profiles and morphological characteristics, leading to degeneracy in active dendritic spectral tuning. Akin to strings on a violin being tuned to different frequencies than those on a viola or a cello, different neuronal subtypes exhibit distinct channel profiles and disparate morphological characteristics endowing each neuronal subtype with unique location-dependent frequency selectivity. Finally, similar to the tunability of musical instruments to elicit distinct location-dependent sounds, neuronal frequency selectivity and its location-dependence are tunable through activity-dependent plasticity of ion channels and morphology. In this morceau, we explore the origins of neuronal frequency selectivity, and survey the literature on the mechanisms behind the emergence of location-dependence in distinct forms of frequency tuning. As a coda to this composition, we present some future directions for this exciting convergence of biophysical mechanisms that endow a neuron with frequency multiplexing capabilities.

  11. Sociodemographic differences in dietary habits described by food frequency questions--results from Denmark.

    Science.gov (United States)

    Dynesen, A W; Haraldsdóttir, J; Holm, L; Astrup, A

    2003-12-01

    To investigate whether a modest number of food frequency questions are sufficient to describe sociodemographic differences in dietary habits, and to identify sociodemographic characteristics of subjects adhering to food-based dietary guidelines operationalised in a "healthy-diet index". Cross-sectional population survey. A total of 480 men, 515 women, aged 15-90 y. Random sample of private telephone numbers drawn from regional telephone records, geographically stratified. Participation rate 62%. Computer-assisted telephone interviews, including six food frequency questions, a question on type of fat spreads used on bread, questions on seven sociodemographic variables. The summary of the healthy-diet index showed that the subjects who adhered to food-based dietary guidelines (top quintile) compared to those who did not (bottom quintile) were most often women (odds ratio (OR)=6.07; confidence interval (CI): 3.91-9.43, women vs men), of older age (OR=9.72; CI: 3.02-31.31, old age vs young), highly educated (OR=3.69; CI: 1.53-8.92, high education vs low) and living in multiperson households including children (OR=4.66; CI: 2.47-8.80, multiperson household vs single household). The results also showed that gender difference in dietary habits is associated with other sociodemographic variables. The selected food frequency questions proved sufficient to describe sociodemographic differences in dietary habits, and this method may be a valuable supplement to traditional quantitative dietary surveys in monitoring sociodemographic changes in eating patterns. The results also underline the influence of sociodemographic status on dietary habits. The Danish Nutrition Council funded the study.

  12. Net energy analysis of different electricity generation systems

    International Nuclear Information System (INIS)

    1994-07-01

    This document is a report on the net energy analysis of nuclear power and other electricity generation systems. The main objectives of this document are: To provide a comprehensive review of the state of knowledge on net energy analysis of nuclear and other energy systems for electricity generation; to address traditional questions such as whether nuclear power is a net energy producer or not. In addition, the work in progress on a renewed application of the net energy analysis method to environmental issues is also discussed. It is expected that this work could contribute to the overall comparative assessment of different energy systems which is an ongoing activity at the IAEA. 167 refs, 9 figs, 5 tabs

  13. Numerical investigations of single bubble oscillations generated by a dual frequency excitation

    International Nuclear Information System (INIS)

    Guédra, Matthieu; Inserra, Claude; Gilles, Bruno; Béra, Jean-Christophe

    2015-01-01

    The oscillations of a single bubble excited with a dual frequency acoustic field are numerically investigated. Computations are made for an air bubble in water exposed to an acoustic field with a linearly varying amplitude. The bubble response to an excitation containing two frequencies f 1 = 500 kHz and f 2 = 400 kHz at the same amplitude is compared to the monofrequency case where only f 1 is present. Time-frequency representations show a sharp transition in the bifrequency case, for which the low frequency component f 2 becomes resonant while the high frequency component f 1 is strongly attenuated. The temporal evolution of the power spectra reveals that the resonance of the low frequency component is correlated with the time varying mean radius of the bubble. It is also observed that the total power of the bubble response in the bifrequency case can reach almost twice the power obtained in the monofrequency case, which indicates a strong enhancement of the cavitating behavior of the bubble for this specific frequency combination. (paper)

  14. Childbearing Differences among Three Generations of U.S. Women

    Science.gov (United States)

    ... NCHS Childbearing Differences Among Three Generations of U.S. Women Recommend on Facebook Tweet Share Compartir NCHS Data ... System. Keywords: birth cohort, childlessness, total fertility rate Women born in 1935 had on average three births— ...

  15. Digital frequency domain multiplexing readout electronics for the next generation of millimeter telescopes

    Science.gov (United States)

    Bender, Amy N.; Cliche, Jean-François; de Haan, Tijmen; Dobbs, Matt A.; Gilbert, Adam J.; Montgomery, Joshua; Rowlands, Neil; Smecher, Graeme M.; Smith, Ken; Wilson, Andrew

    2014-07-01

    Frequency domain multiplexing (fMux) is an established technique for the readout of transition-edge sensor (TES) bolometers in millimeter-wavelength astrophysical instrumentation. In fMux, the signals from multiple detectors are read out on a single pair of wires reducing the total cryogenic thermal loading as well as the cold component complexity and cost of a system. The current digital fMux system, in use by POLARBEAR, EBEX, and the South Pole Telescope, is limited to a multiplexing factor of 16 by the dynamic range of the Superconducting Quantum Interference Device pre-amplifier and the total system bandwidth. Increased multiplexing is key for the next generation of large format TES cameras, such as SPT-3G and POLARBEAR2, which plan to have on the of order 15,000 detectors. Here, we present the next generation fMux readout, focusing on the warm electronics. In this system, the multiplexing factor increases to 64 channels per module (2 wires) while maintaining low noise levels and detector stability. This is achieved by increasing the system bandwidth, reducing the dynamic range requirements though active feedback, and digital synthesis of voltage biases with a novel polyphase filter algorithm. In addition, a version of the new fMux readout includes features such as low power consumption and radiation-hard components making it viable for future space-based millimeter telescopes such as the LiteBIRD satellite.

  16. Generational differences in distress, attitudes and incivility among nurses.

    Science.gov (United States)

    Leiter, Michael P; Price, Sheri L; Spence Laschinger, Heather K

    2010-11-01

    The first research objective was to replicate the finding of Leiter et al. [(2008)Journal of Nursing Management, 16, 100-109.] of Generation X nurses (n=338) reporting higher levels of distress than Baby Boomer nurses (n=139). The second objective was to test whether Generation X nurses reported more negative social environments at work than did Baby Boomer nurses. Negative social environments can influence the quality of work and the experience of distress for nurses. Generational differences in the experience of distress and collegiality have implications for the establishment of healthy workplaces, recruitment and retention. A questionnaire survey of nurses was organized by generation. Analyses of variance contrasted the scores on burnout, turnover intention, physical symptoms, supervisor incivility, coworker incivility and team civility. The results confirmed the hypotheses of Generation X nurses reporting more negative experiences than did Baby Boomer nurses on all measures. The negative quality of social encounters at work contributes to nurses' experience of distress and suggest conflicts of values with the dominant culture of their workplaces. Proactive initiatives to enhance the quality of collegiality can contribute to retention strategies. Building collegiality across generations can be especially useful. © 2010 The Authors. Journal compilation © 2010 Blackwell Publishing Ltd.

  17. Psychophysical and physiological responses to gratings with luminance and chromatic components of different spatial frequencies.

    Science.gov (United States)

    Cooper, Bonnie; Sun, Hao; Lee, Barry B

    2012-02-01

    Gratings that contain luminance and chromatic components of different spatial frequencies were used to study the segregation of signals in luminance and chromatic pathways. Psychophysical detection and discrimination thresholds to these compound gratings, with luminance and chromatic components of the one either half or double the spatial frequency of the other, were measured in human observers. Spatial frequency tuning curves for detection of compound gratings followed the envelope of those for luminance and chromatic gratings. Different grating types were discriminable at detection threshold. Fourier analysis of physiological responses of macaque retinal ganglion cells to compound waveforms showed chromatic information to be restricted to the parvocellular pathway and luminance information to the magnocellular pathway. Taken together, the human psychophysical and macaque physiological data support the strict segregation of luminance and chromatic information in independent channels, with the magnocellular and parvocellular pathways, respectively, serving as likely the physiological substrates. © 2012 Optical Society of America

  18. Digital substraction angiography (DSA) in a universal radiodiagnostic room with a novel multi-pulse high-frequency generator

    International Nuclear Information System (INIS)

    Ellegast, H.H.; Kloss, R.; Mayr, H.; Ammann, E.; Kuehnel, W.; Siemens A.G., Erlangen

    1985-01-01

    Application of digital subtraction angiography in a universal radiodiagnostic room can be implemented rapidly and reliably. The number of examinations could be increased without negative effects to conventional operations in this room. At optimum radiation hygiene and high-degree operational safety, the multipulse high-frequency generator with its DSA parameter automatic system guarantees a reproducibly good image quality equalling that of a special DSA facility. In this way, the examination room constitutes an economic solution for small-sized hospitals without any special angiography room, too. (orig.) [de

  19. Microring Diode Laser for THz Generation

    DEFF Research Database (Denmark)

    Mariani, S.; Andronico, A.; Favero, I.

    2013-01-01

    We report on the modeling and optical characterization of AlGaAs/InAs quantum-dot microring diode lasers designed for terahertz (THz) difference frequency generation (DFG) between two whispering gallery modes (WGMs) around 1.3 $\\mu$m. In order to investigate the spectral features of this active...

  20. Proton-irradiation technology for high-frequency high-current silicon welding diode manufacturing

    International Nuclear Information System (INIS)

    Lagov, P B; Drenin, A S; Zinoviev, M A

    2017-01-01

    Different proton irradiation regimes were tested to provide more than 20 kHz-frequency, soft reverse recovery “snap-less” behavior, low forward voltage drop and leakage current for 50 mm diameter 7 kA/400 V welding diode Al/Si/Mo structure. Silicon diode with such parameters is very suitable for high frequency resistance welding machines of new generation for robotic welding. (paper)