THE FOURIER SERIES MODEL IN MAP ANALYSIS.
During the past several years the double Fourier Series has been applied to the analysis of contour-type maps as an alternative to the more commonly...used polynomial model. The double Fourier Series has high potential in the study of areal variations, inasmuch as a succession of trend maps based on...and it is shown that the double Fourier Series can be used to summarize the directional properties of areally-distributed data. An Appendix lists
Fourier Analysis with Respect to Bilinear Maps
Institute of Scientific and Technical Information of China (English)
O.BLASCO; J.M.CALABUIG
2009-01-01
Several results about convolution and about Fourier coefficients for X-valued functions defined on the torus satisfying the condition sup‖y‖=1∫π-π‖B(f(eiθ),y)‖dθ/2π＜∞ for a bounded bilinear map B:X ×Y →Z are presented and some applications are given.
Wang, Jimin; Askerka, Mikhail; Brudvig, Gary W; Batista, Victor S
2017-02-10
Understanding structure-function relations in photosystem II (PSII) is important for the development of biomimetic photocatalytic systems. X-ray crystallography, computational modeling, and spectroscopy have played central roles in elucidating the structure and function of PSII. Recent breakthroughs in femtosecond X-ray crystallography offer the possibility of collecting diffraction data from the X-ray free electron laser (XFEL) before radiation damage of the sample, thereby overcoming the main challenge of conventional X-ray diffraction methods. However, the interpretation of XFEL data from PSII intermediates is challenging because of the issues regarding data-processing, uncertainty on the precise positions of light oxygen atoms next to heavy metal centers, and different kinetics of the S-state transition in microcrystals compared to solution. Here, we summarize recent advances and outstanding challenges in PSII structure-function determination with emphasis on the implementation of quantum mechanics/molecular mechanics techniques combined with isomorphous difference Fourier maps, direct methods, and high-resolution spectroscopy.
Menenti, M.; Azzali, S.; Verhoef, W.; Van Swol, R.
1993-01-01
Examples are presented of applications of a fast Fourier transform algorithm to analyze time series of images of Normalized Difference Vegetation Index values. The results obtained for a case study on Zambia indicated that differences in vegetation development among map units of an existing agroclimatic map were not significant, while reliable differences were observed among the map units obtained using the Fourier analysis.
Energy Technology Data Exchange (ETDEWEB)
Rodriguez G, A.; Bowtell, R.; Mansfield, P. [Area de Procesamiento Digital de Senales e Imagenes Biomedicas. Universidad Autonoma Metropolitana Iztapalapa. Mexico D.F. 09340 Mexico (Mexico)
1998-12-31
Velocity maps were studied combining Doyle and Mansfield method (1986) with each of the following transforms: Fourier, window Fourier and wavelet (Mexican hat). Continuous wavelet transform was compared against the two Fourier transform to determine which technique is best suited to study blood maps generated by Half Fourier Echo-Planar Imaging. Coefficient images were calculated and plots of the pixel intensity variation are presented. Finally, contour maps are shown to visualize the behavior of the blood flow in the cardiac chambers for the wavelet technique. (Author)
Quantization maps, algebra representation, and non-commutative Fourier transform for Lie groups
Energy Technology Data Exchange (ETDEWEB)
Guedes, Carlos; Oriti, Daniele [Max Planck Institute for Gravitational Physics (Albert Einstein Institute), Am Mühlenberg 1, 14476 Potsdam (Germany); Raasakka, Matti [Max Planck Institute for Gravitational Physics (Albert Einstein Institute), Am Mühlenberg 1, 14476 Potsdam (Germany); LIPN, Institut Galilée, Université Paris-Nord, 99, av. Clement, 93430 Villetaneuse (France)
2013-08-15
The phase space given by the cotangent bundle of a Lie group appears in the context of several models for physical systems. A representation for the quantum system in terms of non-commutative functions on the (dual) Lie algebra, and a generalized notion of (non-commutative) Fourier transform, different from standard harmonic analysis, has been recently developed, and found several applications, especially in the quantum gravity literature. We show that this algebra representation can be defined on the sole basis of a quantization map of the classical Poisson algebra, and identify the conditions for its existence. In particular, the corresponding non-commutative star-product carried by this representation is obtained directly from the quantization map via deformation quantization. We then clarify under which conditions a unitary intertwiner between such algebra representation and the usual group representation can be constructed giving rise to the non-commutative plane waves and consequently, the non-commutative Fourier transform. The compact groups U(1) and SU(2) are considered for different choices of quantization maps, such as the symmetric and the Duflo map, and we exhibit the corresponding star-products, algebra representations, and non-commutative plane waves.
Adaptive motion mapping in pancreatic SBRT patients using Fourier transforms
Jones, Bernard L; Miften, Moyed
2015-01-01
Recent studies suggest that 4DCT is unable to accurately measure respiratory-induced pancreatic tumor motion. In this work, we assessed the daily motion of pancreatic tumors treated with SBRT, and developed adaptive strategies to predict and account for this motion. The daily motion trajectory of pancreatic tumors during CBCT acquisition was calculated using a model which reconstructs the instantaneous 3D position in each 2D CBCT projection image. We developed a metric (termed "Spectral Coherence," SC) based on the Fourier frequency spectrum of motion in the SI direction, and analyzed the ability of SC to predict motion-based errors and classify patients according to motion characteristics. The amplitude of daily motion exceeded the predictions of pre-treatment 4DCT imaging by an average of 3.0 mm, 2.3 mm, and 3.5 mm in the AP, LR, and SI directions. SC was correlated with daily motion differences and tumor dose coverage. In a simulated adaptive protocol, target margins were adjusted based on SC, resulting in...
Opto-digital image encryption by using Baker mapping and 1-D fractional Fourier transform
Liu, Zhengjun; Li, She; Liu, Wei; Liu, Shutian
2013-03-01
We present an optical encryption method based on the Baker mapping in one-dimensional fractional Fourier transform (1D FrFT) domains. A thin cylinder lens is controlled by computer for implementing 1D FrFT at horizontal direction or vertical direction. The Baker mapping is introduced to scramble the amplitude distribution of complex function. The amplitude and phase of the output of encryption system are regarded as encrypted image and key. Numerical simulation has been performed for testing the validity of this encryption scheme.
Full-turn symplectic map from a generator in a Fourier-spline basis
Energy Technology Data Exchange (ETDEWEB)
Berg, J.S.; Warnock, R.L.; Ruth, R.D. [Stanford Linear Accelerator Center, Menlo Park, CA (United States); Forest, E. [Lawrence Berkeley Lab., CA (United States)
1993-04-01
Given an arbitrary symplectic tracking code, one can construct a full-turn symplectic map that approximates the result of the code to high accuracy. The map is defined implicitly by a mixed-variable generating function. The implicit definition is no great drawback in practice, thanks to an efficient use of Newton`s method to solve for the explicit map at each iteration. The generator is represented by a Fourier series in angle variables, with coefficients given as B-spline functions of action variables. It is constructed by using results of single-turn tracking from many initial conditions. The method has been appliedto a realistic model of the SSC in three degrees of freedom. Orbits can be mapped symplectically for 10{sup 7} turns on an IBM RS6000 model 320 workstation, in a run of about one day.
Energy Technology Data Exchange (ETDEWEB)
Dishberger, Debra McLean
1983-04-01
This report represents a continuation of gravity work in the Cascade Mountains of Washington supported by the Division of Geology and Earth Resources since 1974. The purpose of this research has been collection of baseline gravity data for use in geothermal resource evaluation. Results of the Division's gravity studies to date are given in Danes and Phillips (1983a, 1983b). One of the problems encountered when analyzing gravity data is distinguishing between those parts of the data that represent geologic structures of interest, and those that do not. In many cases, the features of interest are relatively small, near-surface features, such as those sought in mineral, petroleum, or geothermal exploration. Gravity anomalies caused by such structures may be distorted or masked by anomalies caused by larger, deeper geologic structures. Gravity anomalies caused by relatively shallow, small geologic structures are termed residual anomalies. Those due to broad, deep-seated features can be described as regional anomalies. The purpose of this report is to describe a Fourier analysis method for separating residual and regional gravity anomalies from a complete Bouguer gravity anomaly field. The technique has been applied to gravity data from the Southern Cascade Mountains, Washington. Residual gravity anomaly maps at a scale of 1:250,000 are presented for various regional wavelength filters, and a power spectrum of the frequency components in the South Cascade gravity data is displayed. No attempt is made to interpret the results of this study in terms of geologic structures.
Vibrational mapping of sinonasal lesions by Fourier transform infrared imaging spectroscopy
Giorgini, Elisabetta; Sabbatini, Simona; Conti, Carla; Rubini, Corrado; Rocchetti, Romina; Re, Massimo; Vaccari, Lisa; Mitri, Elisa; Librando, Vito
2015-12-01
Fourier transform infrared imaging (FTIRI) is a powerful tool for analyzing biochemical changes in tumoral tissues. The head and neck region is characterized by a great variety of lesions, with different degrees of malignancy, which are often difficult to diagnose. Schneiderian papillomas are sinonasal benign neoplasms arising from the Schneiderian mucosa; they can evolve into malignant tumoral lesions (squamous cell carcinoma). In addition, they can sometimes be confused with the more common inflammatory polyps. Therefore, an early and definitive diagnosis of this pathology is mandatory. Progressing in our research on the study of oral cavity lesions, 15 sections consisting of inflammatory sinonasal polyps, benign Schneiderian papillomas, and sinonasal undifferentiated carcinomas were analyzed using FTIRI. To allow a rigorous description of these pathologies and to gain objective diagnosis, the epithelial layer and the adjacent connective tissue of each section were separately investigated by following a multivariate analysis approach. According to the nature of the lesion, interesting modifications were detected in the average spectra of the different tissue components, above all in the lipid and protein patterns. Specific band-area ratios acting as spectral markers of the different pathologies were also highlighted.
Fourier transform spectroscopy around 3 microns with a broad difference frequency comb
Meek, Samuel A; Guelachvili, Guy; Hänsch, Theodor W; Picqué, Nathalie
2013-01-01
We characterize a new mid-infrared frequency comb generator based on difference frequency generation around 3.2 microns. High power per comb mode (>10-7 W/mode) is obtained over a broad spectral span (>700 nm). The source is used for direct absorption spectroscopy with a Michelson-based Fourier transform interferometer.
Shen, S C; Li, J S; Huang, M C
2014-06-02
Fourier series and an energy mapping method were used in this study to design a lens that produces a light pattern of multiple concentric circles (LPMCC) for a light-emitting diode (LED) fishing lamp. Fourier series were used to represent the light intensity distribution curve (LIDC) of the LPMCC light pattern. Energy mapping involves performing angular energy mapping based on the LIDCs of an LED light source and LPMCC to design a freeform lens. Type I and Type II LPMCC lenses were designed according to the phototaxis behavior of fish to create a LPMCC light pattern of interleaving light-dark zones that attracts fish shoals to stay in an area for a long period. The experimental results indicated that, in comparing the LIDCs of the Type I and II lenses with the respective simulation values, the normalized cross-correlation (NCC) value reached 96%. According to a 24-hour observation of the phototaxis of Poecilia reticulata to evaluate the effectiveness of the proposed light pattern to attract fish, when a fish shoal was habituated to a light source that emitted constant illumination light, it gradually moved away from the intense light zone and hovered around the junction of the light and dark zones. In the future, the design used in this study can be applied to LED fishing lamps to replace traditional fishing lamps.
Elson, Lee S.; Froidevaux, Lucien
1993-01-01
Fourier analysis has been applied to data obtained from limb viewing instruments on the Upper Atmosphere Research Satellite. A coordinate system rotation facilitates the efficient computation of Fourier transforms in the temporal and longitudinal domains. Fields such as ozone (O3), chlorine monoxide (ClO), temperature, and water vapor have been transformed by this process. The transforms have been inverted to provide maps of these quantities at selected times, providing a method of accurate time interpolation. Maps obtained by this process show evidence of both horizontal and vertical transport of important trace species such as O3 and ClO. An examination of the polar regions indicates that large-scale planetary variations are likely to play a significant role in transporting midstratospheric O3 into the polar regions. There is also evidence that downward transport occurs, providing a means of moving O3 into the polar vortex at lower altitudes. The transforms themselves show the structure and propagation characteristics of wave variations.
Directory of Open Access Journals (Sweden)
Radhakrishna Bettadapura
2015-10-01
Full Text Available There continue to be increasing occurrences of both atomistic structure models in the PDB (possibly reconstructed from X-ray diffraction or NMR data, and 3D reconstructed cryo-electron microscopy (3D EM maps (albeit at coarser resolution of the same or homologous molecule or molecular assembly, deposited in the EMDB. To obtain the best possible structural model of the molecule at the best achievable resolution, and without any missing gaps, one typically aligns (match and fits the atomistic structure model with the 3D EM map. We discuss a new algorithm and generalized framework, named PF(2 fit (Polar Fast Fourier Fitting for the best possible structural alignment of atomistic structures with 3D EM. While PF(2 fit enables only a rigid, six dimensional (6D alignment method, it augments prior work on 6D X-ray structure and 3D EM alignment in multiple ways: Scoring. PF(2 fit includes a new scoring scheme that, in addition to rewarding overlaps between the volumes occupied by the atomistic structure and 3D EM map, rewards overlaps between the volumes complementary to them. We quantitatively demonstrate how this new complementary scoring scheme improves upon existing approaches. PF(2 fit also includes two scoring functions, the non-uniform exterior penalty and the skeleton-secondary structure score, and implements the scattering potential score as an alternative to traditional Gaussian blurring. Search. PF(2 fit utilizes a fast polar Fourier search scheme, whose main advantage is the ability to search over uniformly and adaptively sampled subsets of the space of rigid-body motions. PF(2 fit also implements a new reranking search and scoring methodology that considerably improves alignment metrics in results obtained from the initial search.
A Novel Model of Interaural Time Difference Based on Spatial Fourier Analysis
Institute of Scientific and Technical Information of China (English)
ZHONG Xiao-Li; XIE Bo-Sun
2007-01-01
Based on the spatial Fourier analysis, a statistical model of the individualized interaural time difference (ITD) is derived from the head-related transfer function database for a Chinese subject. The model reflects the spatial left-right symmetry and front-back asymmetry of ITD. Moreover, by using three anatomical parameters of head and pinna, the model is able to predict individualized ITD in the horizontal plane. Performance of the four subjects outside the database demonstrates that the mean of the total error is less than 20 us, while the lateral performance is inferior to that at other directions.
Directory of Open Access Journals (Sweden)
Qiu Bo
2008-01-01
Full Text Available Binaural cue coding (BCC is an efficient technique for spatial audio rendering by using the side information such as interchannel level difference (ICLD, interchannel time difference (ICTD, and interchannel correlation (ICC. Of the side information, the ICTD plays an important role to the auditory spatial image. However, inaccurate estimation of the ICTD may lead to the audio quality degradation. In this paper, we develop a novel ICTD estimation algorithm based on the nonuniform discrete Fourier transform (NDFT and integrate it with the BCC approach to improve the decoded auditory image. Furthermore, a new subjective assessment method is proposed for the evaluation of auditory image widths of decoded signals. The test results demonstrate that the NDFT-based scheme can achieve much wider and more externalized auditory image than the existing BCC scheme based on the discrete Fourier transform (DFT. It is found that the present technique, regardless of the image width, does not deteriorate the sound quality at the decoder compared to the traditional scheme without ICTD estimation.
Directory of Open Access Journals (Sweden)
Bo Qiu
2008-05-01
Full Text Available Binaural cue coding (BCC is an efficient technique for spatial audio rendering by using the side information such as interchannel level difference (ICLD, interchannel time difference (ICTD, and interchannel correlation (ICC. Of the side information, the ICTD plays an important role to the auditory spatial image. However, inaccurate estimation of the ICTD may lead to the audio quality degradation. In this paper, we develop a novel ICTD estimation algorithm based on the nonuniform discrete Fourier transform (NDFT and integrate it with the BCC approach to improve the decoded auditory image. Furthermore, a new subjective assessment method is proposed for the evaluation of auditory image widths of decoded signals. The test results demonstrate that the NDFT-based scheme can achieve much wider and more externalized auditory image than the existing BCC scheme based on the discrete Fourier transform (DFT. It is found that the present technique, regardless of the image width, does not deteriorate the sound quality at the decoder compared to the traditional scheme without ICTD estimation.
Iterative Fourier transform algorithm: different approaches to diffractive optical element design
Skeren, Marek; Richter, Ivan; Fiala, Pavel
2002-10-01
This contribution focuses on the study and comparison of different design approaches for designing phase-only diffractive optical elements (PDOEs) for different possible applications in laser beam shaping. Especially, new results and approaches, concerning the iterative Fourier transform algorithm, are analyzed, implemented, and compared. Namely, various approaches within the iterative Fourier transform algorithm (IFTA) are analyzed for the case of phase-only diffractive optical elements with quantizied phase levels (either binary or multilevel structures). First, the general scheme of the IFTA iterative approach with partial quantization is briefly presented and discussed. Then, the special assortment of the general IFTA scheme is given with respect to quantization constraint strategies. Based on such a special classification, the three practically interesting approaches are chosen, further-analyzed, and compared to eachother. The performance of these algorithms is compared in detail in terms of the signal-to-noise ratio characteristic developments with respect to the numberof iterations, for various input diffusive-type objects chose. Also, the performance is documented on the complex spectra developments for typical computer reconstruction results. The advantages and drawbacks of all approaches are discussed, and a brief guide on the choice of a particular approach for typical design tasks is given. Finally, the two ways of amplitude elimination within the design procedure are considered, namely the direct elimination and partial elimination of the amplitude of the complex hologram function.
Hannah, S. R.; Palazotto, A. N.
1978-01-01
A new trigonometric approach to the finite difference calculus was applied to the problem of beam buckling as represented by virtual work and equilibrium equations. The trigonometric functions were varied by adjusting a wavelength parameter in the approximating Fourier series. Values of the critical force obtained from the modified approach for beams with a variety of boundary conditions were compared to results using the conventional finite difference method. The trigonometric approach produced significantly more accurate approximations for the critical force than the conventional approach for a relatively wide range in values of the wavelength parameter; and the optimizing value of the wavelength parameter corresponded to the half-wavelength of the buckled mode shape. It was found from a modal analysis that the most accurate solutions are obtained when the approximating function closely represents the actual displacement function and matches the actual boundary conditions.
Directory of Open Access Journals (Sweden)
Hsiu-An eChu
2013-05-01
Full Text Available The photosystem II reaction center mediates the light-induced transfer of electrons from water to plastoquinone, with concomitant production of O2. Water oxidation chemistry occurs in the oxygen-evolving complex (OEC, which consists of an inorganic Mn4CaO5 cluster and its surrounding protein matrix. Light-induced Fourier transform infrared (FTIR difference spectroscopy has been successfully used to study the molecular mechanism of photosynthetic water oxidation. This powerful technique has enabled the characterization of the dynamic structural changes in active water molecules, the Mn4CaO5 cluster, and its surrounding protein matrix during the catalytic cycle. This mini-review presents an overview of recent important progress in FTIR studies of the OEC and implications for revealing the molecular mechanism of photosynthetic water oxidation.
Cai, Xi-lan; Wu, Guo-ping
2007-12-01
In the present paper, using Fourier transform infrared (FTIR) absorption spectrometry, the characteristic peaks of fingerprint infrared spectra of heroin samples from different routes were identified with clustering analysis successfully. It is a very fast, simple and reliable method. That is to say, a new method for the discrimination of heroin seizured from different routes is provided.
A Comparison of Splitting Techniques for 3D Complex Padé Fourier Finite Difference Migration
Directory of Open Access Journals (Sweden)
Jessé C. Costa
2011-01-01
Full Text Available Three-dimensional wave-equation migration techniques are still quite expensive because of the huge matrices that need to be inverted. Several techniques have been proposed to reduce this cost by splitting the full 3D problem into a sequence of 2D problems. We compare the performance of splitting techniques for stable 3D Fourier finite-difference (FFD migration techniques in terms of image quality and computational cost. The FFD methods are complex Padé FFD and FFD plus interpolation, and the compared splitting techniques are two- and four-way splitting as well as alternating four-way splitting, that is, splitting into the coordinate directions at one depth and the diagonal directions at the next depth level. From numerical examples in homogeneous and inhomogeneous media, we conclude that, though theoretically less accurate, alternate four-way splitting yields results of comparable quality as full four-way splitting at the cost of two-way splitting.
Mazzeo, Rocco; Joseph, Edith; Prati, Silvia; Millemaggi, Aldo
2007-09-05
Paint cross-sections have been analysed using the attenuated total reflection technique combined with FTIR mapping microspectroscopy in order to characterise the nature of the compounds present and map their localisation in the stratigraphy. The study reveals the possibilities offered by micro-ATR devices for obtaining informations about the organic substances employed in painting techniques and in particular their distribution in the different layers, showing a real improvement over traditional analytical investigations in use for the detection of organic substances. Limitations, such as the contamination of the embedding resin and the typical spectral resolution (20 microm) are presented and alternative methods were proposed to obtain better results. In particular, the use of an infrared transparent salt (KBr) as embedding material for the cross-sections is evaluated and seems to be very promising. Furthermore, ATR mapping represent a useful non-destructive analytical technique complementary to others molecular and elemental analyses to be performed afterwards such as SEM-EDX.
Sonic Fiction as the Mapping of Difference
DEFF Research Database (Denmark)
Holmboe, Rasmus; Stricker, Jan Høgh
2015-01-01
The here proposed audio paper/audio lecture performance is an iteration of a site-specific participatory performance piece by Danish artist, composer and musician, Andreas Führer. The piece, which has the title THE MAP IS NOT THE TERRITORY D’OR, is a scored sound walk, which shows a map designating...... during the walk. The piece epitomises the bodily and highly situated listening situation of a site-specific participatory sound performance, while at the same time engendering a speculative impulse due to the various references that can be read from the score. At the same time THE MAP...... a walking route through the town of Roskilde. Along the route various locations are pointed out where the audience is instructed to stop and listen. The score also contains a quote from Søren Kierkegaard’s Repetition and on the backside of the map there is a set of breathing exercises that can be performed...
Institute of Scientific and Technical Information of China (English)
M.Yavuz; N.Yük(c)ü; E.(O)ztekin; H.Yilmaz; S.D(o)ndür
2005-01-01
In this paper, derivation of analytical expressions for overlap integrals with the same and different screening parameters of Slater type orbitals (STOs) via the Fourier-transform method is presented. Consequently, it is relatively easy to express the Fourier integral representations of the overlap integrals with same and different screening parameters mentioned as finite sums of Gegenbauer, Gaunt, binomial coefficients, and STOs.
Performance analysis of different database in new internet mapping system
Yao, Xing; Su, Wei; Gao, Shuai
2017-03-01
In the Mapping System of New Internet, Massive mapping entries between AID and RID need to be stored, added, updated, and deleted. In order to better deal with the problem when facing a large number of mapping entries update and query request, the Mapping System of New Internet must use high-performance database. In this paper, we focus on the performance of Redis, SQLite, and MySQL these three typical databases, and the results show that the Mapping System based on different databases can adapt to different needs according to the actual situation.
Individual Differences in Knowledge Acquisition from Maps
1979-01-01
BIBLIOGRAPHY Anderson, J. R., and G. H. Bower, Human Associative Memory , V. H. Winston and Sons, Washington, D.C., 1973. Atkinson , R., and R. Shiffrin ...is generally assumed that these are conscious processes ander subject control ( Atkinson and Shiffrin , 1968; Posner and Warren, 1972; Norman and Bobrow...is a constructive process that produces in long-term memory a representation of the stimulus, In map learning, this knowledge representation encodes
Institute of Scientific and Technical Information of China (English)
2007-01-01
There are approximately 109 proteins in a cell. A hotspot in bioinformatics is how to identify a protein's subcellular localization, if its sequence is known. In this paper, a method using fast Fourier transform-based support vector machine is developed to predict the subcellular localization of proteins from their physicochemical properties and structural parameters. The prediction accuracies reached 83% in prokaryotic organisms and 84% in eukaryotic organisms with the substitution model of the c-p-v matrix (c, composition; p, polarity; and v, molecular volume). The overall prediction accuracy was also evaluated using the "leave-one-out" jackknife procedure. The influence of the substitution model on prediction accuracy has also been discussed in the work. The source code of the new program is available on request from the authors.
Principles of Fourier analysis
Howell, Kenneth B
2001-01-01
Fourier analysis is one of the most useful and widely employed sets of tools for the engineer, the scientist, and the applied mathematician. As such, students and practitioners in these disciplines need a practical and mathematically solid introduction to its principles. They need straightforward verifications of its results and formulas, and they need clear indications of the limitations of those results and formulas.Principles of Fourier Analysis furnishes all this and more. It provides a comprehensive overview of the mathematical theory of Fourier analysis, including the development of Fourier series, "classical" Fourier transforms, generalized Fourier transforms and analysis, and the discrete theory. Much of the author''s development is strikingly different from typical presentations. His approach to defining the classical Fourier transform results in a much cleaner, more coherent theory that leads naturally to a starting point for the generalized theory. He also introduces a new generalized theory based ...
Tolstov, Georgi P
1962-01-01
Richard A. Silverman's series of translations of outstanding Russian textbooks and monographs is well-known to people in the fields of mathematics, physics, and engineering. The present book is another excellent text from this series, a valuable addition to the English-language literature on Fourier series.This edition is organized into nine well-defined chapters: Trigonometric Fourier Series, Orthogonal Systems, Convergence of Trigonometric Fourier Series, Trigonometric Series with Decreasing Coefficients, Operations on Fourier Series, Summation of Trigonometric Fourier Series, Double Fourie
Su, Yonggang; Tang, Chen; Li, Biyuan; Chen, Xia; Xu, Wenjun; Cai, Yuanxue
2017-01-20
We propose an optical color image encryption system based on the single-lens Fourier transform, the Fresnel transform, and the chaotic random phase masks (CRPMs). The proposed encryption system contains only one optical lens, which makes it more efficient and concise to implement. The introduction of the Fresnel transform makes the first phase mask of the proposed system also act as the main secret key when the input image is a non-negative amplitude-only map. The two CRPMs generated by dual two-dimensional chaotic maps can provide more security to the proposed system. In the proposed system, the key management is more convenient and the transmission volume is reduced greatly. In addition, the secret keys can be updated conveniently in each encryption process to invalidate the chosen plaintext attack and the known plaintext attack. Numerical simulation results have demonstrated the feasibility and security of the proposed encryption system.
DEFF Research Database (Denmark)
Palushani, Evarist; Mulvad, Hans Christian Hansen; Galili, Michael
2012-01-01
a dispersive medium followed by phase modulation; the latter being achieved by a four-wave mixing process with linearly chirped pump pulses. Both numerical and experimental investigations of the OTDM-to-WDM conversion technique are carried out. Experimental validations are performed on......This paper reports on the utilization of the timedomain optical Fourier transformation (OFT) technique for serial-to-parallel conversion of optical time division multiplexed (OTDM) data tributaries into dense wavelength division multiplexed (DWDM) channels. The OFT is implemented by using...
Stade, Eric
2005-01-01
A reader-friendly, systematic introduction to Fourier analysis Rich in both theory and application, Fourier Analysis presents a unique and thorough approach to a key topic in advanced calculus. This pioneering resource tells the full story of Fourier analysis, including its history and its impact on the development of modern mathematical analysis, and also discusses essential concepts and today's applications. Written at a rigorous level, yet in an engaging style that does not dilute the material, Fourier Analysis brings two profound aspects of the discipline to the forefront: the wealth of ap
Comparison of effective charges derived in two different boson mappings
Pittel, S.; Scholten, O.
1988-01-01
Boson effective charges that arise in a mapping recently proposed by Heyde and Sau are contrasted with those that arise in the Otsuka-Arima-Iachello procedure. We identify the source of the differences and show that they have no observable consequences if the mappings are implemented consistently fo
Huang, Lianjie
2013-10-29
Methods for enhancing ultrasonic reflection imaging are taught utilizing a split-step Fourier propagator in which the reconstruction is based on recursive inward continuation of ultrasonic wavefields in the frequency-space and frequency-wave number domains. The inward continuation within each extrapolation interval consists of two steps. In the first step, a phase-shift term is applied to the data in the frequency-wave number domain for propagation in a reference medium. The second step consists of applying another phase-shift term to data in the frequency-space domain to approximately compensate for ultrasonic scattering effects of heterogeneities within the tissue being imaged (e.g., breast tissue). Results from various data input to the method indicate significant improvements are provided in both image quality and resolution.
Different applications of concept maps in Higher Education
Directory of Open Access Journals (Sweden)
Amparo Bes Piá
2011-04-01
Full Text Available Purpose: The aim of this work is to show different applications of concept maps in higher education, concretely in qualifications of the Polytechnic University of Valencia. Design/methodology/approach: Different methodologies have been used depending on the application of concept maps: as evaluation tool, as knowledge organizing tool, and as meaningful learning tool.Findings: Students consider the concept maps useful principally to select key ideas, to achieve a comprehensive view of the lesson, and to bring up the subject. Moreover, concept maps promote the meaningful and active learning, help students to understand, follow-up, and learn subjects with a high load of contents.Research limitations/implications: The most important limitation is the use of the concept maps in subjects with a high number of students.Practical implications: The realization of concept maps allows the student to develop generic competences.Originality/value: The originality of this work is to show how a same tool can be used in different subjects of different qualifications.
Cardell, Carolina; Guerra, Isabel; Romero-Pastor, Julia; Cultrone, Giuseppe; Rodriguez-Navarro, Alejandro
2009-01-15
Excavations at the 14th century Moorish rampart (Granada, Spain) unearthed a brick oven alongside black ash and bone stratigraphic layers. In situ evidence suggests the oven served to fabricate a wall coating including powdered burnt bones. Original ad hoc analyses improved on conventional methods were used to confirm this hypothesis. These methods enable (i) nondestructive micro-X-ray diffraction (mu-XRD) for fast mineralogical data acquisition (approximately 10 s) and moderately high spatial (approximately 500 microm) resolution and (ii) identification and imaging of crystalline components in sample cross-sections via mineral maps, yielding outstanding visualization of grain distribution and morphology in composite samples based on scanning electron microscopy-energy dispersion X-ray spectrometry (SEM-EDX) elemental maps. Benefits are shown for applying diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) vs transmittance-FT-IR (T-FT-IR) to analyze organic and inorganic components in single samples. Complementary techniques to fully characterize artifacts were gas chromatography/mass spectroscopy (GC/MS), optical microscopy (OM), conventional powder XRD, and (14)C dating. Bone-hydroxyapatite was detected in the coating. Mineralogical transformations in the bricks indicate oven temperatures well above 1000 degrees C, supporting the hypothesis.
Rödig, C; Chizhov, I; Weidlich, O; Siebert, F
1999-01-01
In this report, from time-resolved step-scan Fourier transform infrared investigations from 15 ns to 160 ms, we provide evidence for the subsequent rise of three different M states that differ in their structures. The first state rises with approximately 3 microseconds to only a small percentage. Its structure as judged from amide I/II bands differs in small but well-defined aspects from the L state. The next M state, which appears in approximately 40 microseconds, has almost all of the characteristics of the "late" M state, i.e., it differs considerably from the first one. Here, the L left arrow over right arrow M equilibrium is shifted toward M, although some percentage of L still persists. In the last M state (rise time approximately 130 microseconds), the equilibrium is shifted toward full deprotonation of the Schiff base, and only small additional structural changes take place. In addition to these results obtained for unbuffered conditions or at pH 7, experiments performed at lower and higher pH are presented. These results are discussed in terms of the molecular changes postulated to occur in the M intermediate to allow the shift of the L/M equilibrium toward M and possibly to regulate the change of the accessibility of the Schiff base necessary for effective proton pumping. PMID:10233083
Fang, Yishan; Huang, Xinjian; Wang, Lishi
2015-01-06
Discrimination and quantification of electroactive species are traditionally realized by a potential difference which is mainly determined by thermodynamics. However, the resolution of this approach is limited to tens of millivolts. In this paper, we described an application of Fourier transformed sinusoidal voltammetry (FT-SV) that provides a new approach for discrimination and quantitative evaluation of electroactive species, especially thermodynamic similar ones. Numerical simulation indicates that electron transfer kinetics difference between electroactive species can be revealed by the phase angle of higher order harmonics of FT-SV, and the difference can be amplified order by order. Thus, even a very subtle kinetics difference can be amplified to be distinguishable at a certain order of harmonics. This method was verified with structurally similar ferrocene derivatives which were chosen as the model systems. Although these molecules have very close redox potential (<10 mV), discrimination and selective detection were achieved by as high as the thirteenth harmonics. The results demonstrated the feasibility and reliability of the method. It was also implied that the combination of the traditional thermodynamic method and this kinetics method can form a two-dimension resolved detection method, and it has the potential to extend the resolution of voltammetric techniques to a new level.
Variations in Cognitive Maps: Understanding Individual Differences in Navigation
Weisberg, Steven M.; Schinazi, Victor R.; Newcombe, Nora S.; Shipley, Thomas F.; Epstein, Russell A.
2014-01-01
There are marked individual differences in the formation of cognitive maps both in the real world and in virtual environments (VE; e.g., Blajenkova, Motes, & Kozhevnikov, 2005; Chai & Jacobs, 2010; Ishikawa & Montello, 2006; Wen, Ishikawa, & Sato, 2011). These differences, however, are poorly understood and can be difficult to…
Fukuyama, Y; Yoshida, S; Yanagisawa, S; Shimizu, M
1999-01-01
We investigated the differences of Fourier transform infrared (FTIR) spectra between oral squamous cell carcinoma (OSCC) and normal gingival epithelium (NGE) or normal subgingival tissue (NST). We used 15 specimens of OSCC which had not been treated before measurement and 10 of NGE or NST. We also used cultured oral squamous cell carcinoma (COSCC) and the tissue (MSCC) which massed for 3 months after the cultured oral squamous cell carcinoma was transplanted into the lower back of a rat. Those tissue spectra were compared with the purified human collagens and human keratin. One half of every tissue specimen was measured with FTIR and the other half was investigated histologically. The differences of FTIR spectra between OSCC and NGE were observed in the bands between 1431 and 1482 cm(-1) and between 1183 and 1274 cm(-1). The shoulder at 1368 cm(-1) tended to disappear in OSCC, and the peaks at 1246 and 1083 cm(-1) found in NGE tended to shift to those at 1242 and 1086 cm(-1) in OSCC, respectively. The infrared spectrum of NST was noticed to be strongly influenced by the presence of collagen. Significant differences were also observed in the second derivative FTIR spectra between OSCC and NGE. Our data suggested that this infrared technique is applicable to clinical diagnostics.
Directory of Open Access Journals (Sweden)
Hojat Gholizadeh
2015-04-01
Full Text Available This study was carried out to determine the protein and carbohydrate molecular structure of sorghum cultivars using Fourier Transform Infrared Spectroscopy (FTIR with multivariate molecular spectroscopy analyses. Sorghum cultivars included: 1- Kimia, 2- Sepideh, 3- M2 and 4- M8. Protein and carbohydrate molecular functional groups studied included: peak area and height amide I, amide II, α-helix, β-sheet, 860 (non-structure carbohydrate, 928 (non-structure carbohydrate, total carbohydrate (CHO with three major component peaks in this region, cellulosic compounds and different ratio of molecular structure. FTIR results showed that there were significant differences between sorghum cultivars in terms of proteins and carbohydrates molecular structures. Kimia had the greatest peak area and height amide I, II, α-helix, β-sheet, total carbohydrate and cellulosic compounds. Sepideh, M2 and M8 had similar proteins and carbohydrates molecular structures. Differences in protein and carbohydrate molecular structures can influence the availability of proteins and carbohydrates in ruminant and monogastric. Further studies needed to understand the effect of variety on protein and carbohydrate structure of sorghum and the relationship between protein and carbohydrate structure of a feed with nutrient availability in ruminant and monogastric
Real Clifford Windowed Fourier Transform
Institute of Scientific and Technical Information of China (English)
Mawardi BAHRI; Sriwulan ADJI; Ji Man ZHAO
2011-01-01
We study the windowed Fourier transform in the framework of Clifford analysis, which we call the Clifford windowed Fourier transform (CWFT). Based on the spectral representation of the Clifford Fourier transform (CFT), we derive several important properties such as shift, modulation,reconstruction formula, orthogonality relation, isometry, and reproducing kernel. We also present an example to show the differences between the classical windowed Fourier transform (WFT) and the CWFT. Finally, as an application we establish a Heisenberg type uncertainty principle for the CWFT.
Mueller, Daniela; Ferrão, Marco Flôres; Marder, Luciano; da Costa, Adilson Ben; Schneider, Rosana de Cássia de Souza
2013-03-28
The main objective of this study was to use infrared spectroscopy to identify vegetable oils used as raw material for biodiesel production and apply multivariate analysis to the data. Six different vegetable oil sources--canola, cotton, corn, palm, sunflower and soybeans--were used to produce biodiesel batches. The spectra were acquired by Fourier transform infrared spectroscopy using a universal attenuated total reflectance sensor (FTIR-UATR). For the multivariate analysis principal component analysis (PCA), hierarchical cluster analysis (HCA), interval principal component analysis (iPCA) and soft independent modeling of class analogy (SIMCA) were used. The results indicate that is possible to develop a methodology to identify vegetable oils used as raw material in the production of biodiesel by FTIR-UATR applying multivariate analysis. It was also observed that the iPCA found the best spectral range for separation of biodiesel batches using FTIR-UATR data, and with this result, the SIMCA method classified 100% of the soybean biodiesel samples.
Batista, F. B.; Albuquerque, E. L.; Arruda, J. R. F.; Dias, M.
2009-03-01
It is known that the elastic constants of composite materials can be identified by modal analysis and numerical methods. This approach is nondestructive, since it consists of simple tests and does not require high computational effort. It can be applied to isotropic, orthotropic, or anisotropic materials, making it a useful alternative for the characterization of composite materials. However, when elastic constants are bending constants, the method requires numerical spatial derivatives of experimental mode shapes. These derivatives are highly sensitive to noise. Previous works attempted to overcome the problem by using special optical devices. In this study, the elastic constant is identified using mode shapes obtained by standard laser vibrometers. To minimize errors, the mode shapes are first smoothed by regressive discrete Fourier series, after which their spatial derivatives are computed using finite differences. Numerical simulations using the finite element method and experimental results confirm the accuracy of the proposed method. The experimental examples reported here consist of an isotropic steel plate and an orthotropic carbon-epoxy plate excited with an electromechanical shaker. The forced response is measured at a large number of points, using a laser Doppler vibrometer. Both numerical and experimental results were satisfactory.
Directory of Open Access Journals (Sweden)
Glaucia Braz Alcantara
2010-06-01
Full Text Available This paper describes the potentiality of Fourier transform infrared (FT-IR spectroscopy associated to chemometric analysis for assessment of conventional and genetically modified soybean crops. Recently, genetically modified organisms have been queried about their influence on the environment and their safety as food/feed. In this regard, chemical investigations are ever more required. Thus three different soybean cultivars distributed in transgenic Roundup ReadyTM soybean and theirs conventional counterparts were directly investigated by FT-IR spectroscopy and chemometric analysis. The application of PCA and KNN methods permitted the discrimination and classification of the genetically modified samples from conventional ones when they were separately analysed. The analyses showed the chemical variation according to genetic modification. Furthermore, this methodology was efficient for cultivar grouping and highlights cultivar dependence for discrimination between transgenic and non-transgenic samples. According to this study, FT-IR and chemometrics could be used as a quick, easy and low cost tool to assess the chemical composition variation in genetically modified organisms.
Effects of different scale land cover maps in watershed modelling
Nunes, Antonio; Araújo, Antonio; Alexandridis, Thomas; Chambel, Pedro
2013-04-01
Water management is a rather complex process that usually involves multiple stakeholder, multiple data and sources, and complex mathematical modelling. One of the key data sets to understand a particular water system is the characterization of the land cover. Land cover maps are essential for the estimation of environmental variables (e.g. LAI, ETa) related to water quantity. Also, land cover maps are used for modelling the water quality. For instance, watersheds that have intensive agriculture can have poor water quality due to increase of nutrients loading; forest fires have a significant negative impact over the water quality by increasing the sediment loads; forest fires can increase flood risks. The land cover dynamics can as well severely affect the water quantity and quality in watersheds. In the MyWater project we are conducting a study to supply water quantity and quality information services for five study areas in five different countries (Brazil, Greece, Mozambique, Netherlands, and Portugal). In this project several land cover maps were produced both at regional and local scales, based on the exploitation of medium and high resolution satellite images (MERIS and SPOT 4). These maps were produced through semi-automatic supervised classification procedures, using an LCCS based nomenclature of 15 classes. Validation results pointed to global accuracy values greater than 80% for all maps. In this paper we focus on studying the effect of using different scale land cover maps in the watershed modelling and its impact in results. The work presented is part of the FP7-EU project "Merging hydrological models and Earth observation data for reliable information on water - MyWater".
Buoso, Maria Crista; de Poli, Mario; Matthaes, Peter; Silvestrin, Luca; Zafiropoulos, Demetre
2016-09-01
Wooden artifacts represent a significant component of past cultures. Successful conservation of wooden artifacts depends on the knowledge of wood structure and types. It is critical that conservators know the category of wood that they are treating in order to successfully conserve it. Recently, vibrational spectroscopy has been successfully applied to determine the chemical structure of wood and to characterize wood types. FTIR (Fourier Transform Infrared) is a useful nondestructive or micro-destructive analytical technique providing information about chemical bonding and molecular structure. Its application in the discrimination between softwoods (conifers) and hardwoods (broad-leafs) has already been reported. The aim of the present study was to investigate the potential of FTIR as a tool for the discrimination between different wood types belonging to the same genus. Three different hardwood species, namely poplar (Populus spp), lime (Tilia spp) and birch (Betula spp), were investigated by means of FTIR spectroscopy. The woods were first inspected using a light microscope to certify the wood essence types through micrographic and morphoanatomical features. The FTIR spectra in the 4000 cm-1 to 450 cm-1 region were recorded using a Perkin-Elmer Spectrum 100 spectrometer. To enhance the qualitative interpretation of the IR spectra, second derivatives of all spectra were calculated using the Spectrum software to separate superimposed bands and to extract fine spectral details. To obtain a comprehensive characterization, the essences under investigation were also analyzed by means of Raman Spectroscopy. Clear differences were found in the spectra of the three samples confirming FTIR to be a powerful tool for wood type discrimination.
Assessing System Thinking Through Different Concept-Mapping Practices
Brandstädter, Kristina; Harms, Ute; Großschedl, Jörg
2012-09-01
System thinking is usually investigated by using questionnaires, video analysis, or interviews. Recently, concept-mapping (CM) was suggested as an adequate instrument for analysing students' system thinking. However, there are different ways with which to use this method. Therefore, the purpose of this study was to examine whether particular features of CM practices affect the valid assessment of students' system thinking. The particular features analysed were the medium (computer versus paper-pencil) and the directedness (highly directed versus nondirected) of CM practices. These features were evaluated with respect to their influence on (a) students' performance in CM and (b) the validity of different CM practices for system thinking. One hundred fifty-four German fourth graders (mean age: 9.95 years) and 93 eighth graders (mean age: 14.07 years) participated in the study following an experimental pre-test-post-test design. Three variations of CM practices were applied: (a) highly directed computer mapping, (b) highly directed paper-pencil mapping, and (c) nondirected paper-pencil mapping. In addition to the CM task, a paper-pencil questionnaire was employed to investigate the validity of the CM practices. Results showed that the computer positively influenced student performance in CM when compared with paper-pencil. By contrast, there was no difference between highly directed and nondirected mapping. Whereas the medium rarely influenced the validity of CM for system thinking, high directedness showed a positive influence. Considering the limitations and benefits of particular CM practices, we suggest highly directed and computer-based CM as an appropriate assessment tool-in particular, with regard to large-scale assessments of system thinking.
Fourier transform mass spectrometry.
Scigelova, Michaela; Hornshaw, Martin; Giannakopulos, Anastassios; Makarov, Alexander
2011-07-01
This article provides an introduction to Fourier transform-based mass spectrometry. The key performance characteristics of Fourier transform-based mass spectrometry, mass accuracy and resolution, are presented in the view of how they impact the interpretation of measurements in proteomic applications. The theory and principles of operation of two types of mass analyzer, Fourier transform ion cyclotron resonance and Orbitrap, are described. Major benefits as well as limitations of Fourier transform-based mass spectrometry technology are discussed in the context of practical sample analysis, and illustrated with examples included as figures in this text and in the accompanying slide set. Comparisons highlighting the performance differences between the two mass analyzers are made where deemed useful in assisting the user with choosing the most appropriate technology for an application. Recent developments of these high-performing mass spectrometers are mentioned to provide a future outlook.
Foltynowicz, Aleksandra; Rutkowski, Lucile; Johanssson, Alexandra C.; Khodabakhsh, Amir; Maslowski, Piotr; Kowzan, Grzegorz; Lee, Kevin; Fermann, Martin
2015-06-01
Fourier transform spectrometers (FTS) based on optical frequency combs (OFC) allow detection of broadband molecular spectra with high signal-to-noise ratios within acquisition times orders of magnitude shorter than traditional FTIRs based on thermal sources. Due to the pulsed nature of OFCs the interferogram consists of a series of bursts rather than a single burst at zero optical path difference (OPD). The comb mode structure can be resolved by acquiring multiple bursts, in both mechanical FTS systems and dual-comb spectroscopy. However, in all existing demonstrations the resolution was ultimately limited either by the maximum available OPD between the interferometer arms or by the total acquisition time enabled by the storage memory. We present a method that provides spectral resolution exceeding the limit set by the maximum OPD using an interferogram containing only a single burst. The method allows measurements of absorption lines narrower than the OPD-limited resolution without any influence of the instrumental lineshape function. We demonstrate this by measuring undistorted CO2 and CO absorption lines with linewidth narrower than the OPD-limited resolution using OFC-based mechanical FTS in the near- and mid-infrared wavelength ranges. The near-infrared system is based on an Er:fiber femtosecond laser locked to a high finesse cavity, while the mid-infrared system is based on a Tm:fiber-laser-pumped optical parametric oscillator coupled to a multi-pass cell. We show that the method allows acquisition of high-resolution molecular spectra with interferometer length orders of magnitude shorter than traditional FTIR. Mandon, J., G. Guelachvili, and N. Picque, Nat. Phot., 2009. 3(2): p. 99-102. Zeitouny, M., et al., Ann. Phys., 2013. 525(6): p. 437-442. Zolot, A.M., et al., Opt. Lett., 2012. 37(4): p. 638-640.
An Integrable Symplectic Map of a Differential-Difference Hierarchy
Institute of Scientific and Technical Information of China (English)
DONG Huan-He; YI Fang-Jiao; SU Jie; LU Guo-Zhi
2012-01-01
By choosing a discrete matrix spectral problem, a hierarchy of integrable differential-difference equations is derived from the discrete zero curvature equation, and the Hamiltonian structures are built. Through a higher-order Bargmann symmetry constraint, the spatial part and the temporal part of the Lax pairs and adjoint Lax pairs, which we obtained are respectively nonlinearized into a new integrable symplectic map and a finite-dimensional integrable Hamiltonian system in Liouville sense.
Wood, Bayden R; Chernenko, Tatyana; Matthäus, Christian; Diem, Max; Chong, Connie; Bernhard, Uditha; Jene, Cassandra; Brandli, Alice A; McNaughton, Don; Tobin, Mark J; Trounson, Alan; Lacham-Kaplan, Orly
2008-12-01
Synchrotron Fourier transform-infrared (FT-IR) and Raman microspectroscopy were applied to investigate changes in the molecular architecture of mouse oocytes and demonstrate the overall morphology of the maturing oocyte. Here we show that differences were identified between immature mouse oocytes at the germinal vesicle (GV) and mature metaphase II (MII) stage when using this technology, without the introduction of any extrinsic markers, labels, or dyes. GV mouse oocytes were found to have a small, centrally located lipid deposit and another larger polar deposit of similar composition. MII oocytes have very large, centrally located lipid deposits. Each lipid deposit for both cell types contains an inner and outer lipid environment that differs in composition. To assess interoocyte variability, line scans were recorded across the diameter of the oocytes and compared from three independent trials (GV, n = 91; MII, n = 172), and the data were analyzed with principal component analysis (PCA). The average spectra and PCA loading plots show distinct and reproducible changes in the CH stretching region that can be used as molecular maturation markers. The method paves the way for developing an independent assay to assess oocyte status during maturation providing new insights into lipid distribution at the single cell level.
Gonzalez, Lee; Wade, Matthew; Bell, Nancy; Thomas, Kate; Wess, Tim
2013-02-01
Maintaining appropriate temperatures and relative humidity is considered essential to extending the useful life of parchment artifacts. Although the relationship between environmental factors and changes to the physical state of artifacts is reasonably understood, an improved understanding of the relationship between the molecular conformation and changes to the macroscopic condition of parchment is needed to optimize environmental conditions. Using Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy (ATR FT-IR) analysis, the conformation of the molecular structure in selected parchment samples with specific macroscopic conditions, typically discoloration and planar deformations (e.g., cockling and tearing), have been made. The results of this investigation showed that the Fourier transform infrared signal differs for parchment samples exhibiting different macroscopic conditions. In areas exhibiting planar deformation, a change in the Fourier Transform Infrared signal was observed that indicates unfolding of the molecular conformation. In comparison, the discolored samples showed a change in molecular conformation that indicates a chemical change within the collagen molecular structure. This paper discusses the possible causal associations and implications of these findings for the conservation and preservation of parchment artifacts.
Directory of Open Access Journals (Sweden)
Michael Koch
Full Text Available Art images and natural scenes have in common that their radially averaged (1D Fourier spectral power falls according to a power-law with increasing spatial frequency (1/f(2 characteristics, which implies that the power spectra have scale-invariant properties. In the present study, we show that other categories of man-made images, cartoons and graphic novels (comics and mangas, have similar properties. Further on, we extend our investigations to 2D power spectra. In order to determine whether the Fourier power spectra of man-made images differed from those of other categories of images (photographs of natural scenes, objects, faces and plants and scientific illustrations, we analyzed their 2D power spectra by principal component analysis. Results indicated that the first fifteen principal components allowed a partial separation of the different image categories. The differences between the image categories were studied in more detail by analyzing whether the mean power and the slope of the power gradients from low to high spatial frequencies varied across orientations in the power spectra. Mean power was generally higher in cardinal orientations both in real-world photographs and artworks, with no systematic difference between the two types of images. However, the slope of the power gradients showed a lower degree of mean variability across spectral orientations (i.e., more isotropy in art images, cartoons and graphic novels than in photographs of comparable subject matters. Taken together, these results indicate that art images, cartoons and graphic novels possess relatively uniform 1/f(2 characteristics across all orientations. In conclusion, the man-made stimuli studied, which were presumably produced to evoke pleasant and/or enjoyable visual perception in human observers, form a subset of all images and share statistical properties in their Fourier power spectra. Whether these properties are necessary or sufficient to induce aesthetic
Koch, Michael; Denzler, Joachim; Redies, Christoph
2010-08-19
Art images and natural scenes have in common that their radially averaged (1D) Fourier spectral power falls according to a power-law with increasing spatial frequency (1/f(2) characteristics), which implies that the power spectra have scale-invariant properties. In the present study, we show that other categories of man-made images, cartoons and graphic novels (comics and mangas), have similar properties. Further on, we extend our investigations to 2D power spectra. In order to determine whether the Fourier power spectra of man-made images differed from those of other categories of images (photographs of natural scenes, objects, faces and plants and scientific illustrations), we analyzed their 2D power spectra by principal component analysis. Results indicated that the first fifteen principal components allowed a partial separation of the different image categories. The differences between the image categories were studied in more detail by analyzing whether the mean power and the slope of the power gradients from low to high spatial frequencies varied across orientations in the power spectra. Mean power was generally higher in cardinal orientations both in real-world photographs and artworks, with no systematic difference between the two types of images. However, the slope of the power gradients showed a lower degree of mean variability across spectral orientations (i.e., more isotropy) in art images, cartoons and graphic novels than in photographs of comparable subject matters. Taken together, these results indicate that art images, cartoons and graphic novels possess relatively uniform 1/f(2) characteristics across all orientations. In conclusion, the man-made stimuli studied, which were presumably produced to evoke pleasant and/or enjoyable visual perception in human observers, form a subset of all images and share statistical properties in their Fourier power spectra. Whether these properties are necessary or sufficient to induce aesthetic perception remains
Complex Mapping of Aerofoils--A Different Perspective
Matthews, Miccal T.
2012-01-01
In this article an application of conformal mapping to aerofoil theory is studied from a geometric and calculus point of view. The problem is suitable for undergraduate teaching in terms of a project or extended piece of work, and brings together the concepts of geometric mapping, parametric equations, complex numbers and calculus. The Joukowski…
Zhang, Hui; Zherdeva, Ksenia; Ekstrom, Arne D
2014-10-01
An important, but as yet incompletely resolved, issue is whether spatial knowledge acquired during navigation differs significantly from that acquired by studying a cartographic map. This, in turn, is relevant to understanding the generalizability of the concept of a "cognitive map," which is often likened to a cartographic map. On the basis of previous theoretical proposals, we hypothesized that route and cartographic map learning would produce differences in the dynamics of acquisition of landmark-referenced (allocentric) knowledge, relative to view-referenced (egocentric) knowledge. We compared this model with competing predictions from two other models linked to route versus map learning. To test these ideas, participants repeatedly performed a judgment of relative direction (JRD) and a scene- and orientation-dependent pointing (SOP) task while undergoing route and cartographic map learning of virtual spatial environments. In Experiment 1, we found that map learning led to significantly faster improvements in JRD pointing accuracy than did route learning. In Experiment 2, in contrast, we found that route learning led to more immediate and greater improvements overall in SOP accuracy, as compared to map learning. Comparing Experiments 1 and 2, we found a significant three-way interaction effect, indicating that improvements in performance differed for the JRD versus the SOP task as a function of route versus map learning. We interpreted these findings as suggesting that the learning modality differentially affects the dynamics of how we utilize primarily landmark-referenced versus view-referenced knowledge, suggesting potential differences in how we utilize spatial representations acquired from routes versus cartographic maps.
Mapping of the Universe of Knowledge in Different Classification Schemes
Directory of Open Access Journals (Sweden)
M. P. Satija
2017-06-01
Full Text Available Given the variety of approaches to mapping the universe of knowledge that have been presented and discussed in the literature, the purpose of this paper is to systematize their main principles and their applications in the major general modern library classification schemes. We conducted an analysis of the literature on classification and the main classification systems, namely Dewey/Universal Decimal Classification, Cutter’s Expansive Classification, Subject Classification of J.D. Brown, Colon Classification, Library of Congress Classification, Bibliographic Classification, Rider’s International Classification, Bibliothecal Bibliographic Klassification (BBK, and Broad System of Ordering (BSO. We conclude that the arrangement of the main classes can be done following four principles that are not mutually exclusive: ideological principle, social purpose principle, scientific order, and division by discipline. The paper provides examples and analysis of each system. We also conclude that as knowledge is ever-changing, classifications also change and present a different structure of knowledge depending upon the society and time of their design.
Comparative investigation of two different self-organizing map ...
African Journals Online (AJOL)
selection approaches based on self-organizing map (SOM) technique in partial least-squares (PLS) ... synthetic mixtures and a real combination product of sulfamethoxazole (SMX) and ... common multivariate method seen in in-process.
Evaluation of color mapping algorithms in different color spaces
Bronner, Timothée.-Florian; Boitard, Ronan; Pourazad, Mahsa T.; Nasiopoulos, Panos; Ebrahimi, Touradj
2016-09-01
The color gamut supported by current commercial displays is only a subset of the full spectrum of colors visible by the human eye. In High-Definition (HD) television technology, the scope of the supported colors covers 35.9% of the full visible gamut. For comparison, Ultra High-Definition (UHD) television, which is currently being deployed on the market, extends this range to 75.8%. However, when reproducing content with a wider color gamut than that of a television, typically UHD content on HD television, some original color information may lie outside the reproduction capabilities of the television. Efficient gamut mapping techniques are required in order to fit the colors of any source content into the gamut of a given display. The goal of gamut mapping is to minimize the distortion, in terms of perceptual quality, when converting video from one color gamut to another. It is assumed that the efficiency of gamut mapping depends on the color space in which it is computed. In this article, we evaluate 14 gamut mapping techniques, 12 combinations of two projection methods across six color spaces as well as R'G'B' Clipping and wrong gamut interpretation. Objective results, using the CIEDE2000 metric, show that the R'G'B' Clipping is slightly outperformed by only one combination of color space and projection method. However, analysis of images shows that R'G'B' Clipping can result in loss of contrast in highly saturated images, greatly impairing the quality of the mapped image.
Tarkashvand, Zahra
2015-01-01
While learning English plays an essential role in today's life, vocabulary achievement is helpful to overcome the difficulties of commanding the language. Drawing on data from three months experimental work, this article explores how two mapping strategies affect the learning vocabularies in EFL male learners. While females were studied before,…
Transformadas Discretas de Fourier
Alpízar-Brenes, Geisel; Calderón-Arce, Cindy; Soto-Quirós, Juan Pablo
2015-01-01
Proyecto de Investigación (VIE-5402-1440-4301). Este proyecto presenta un marco matem atico-computacional para el desarrollo de un conjunto de de niciones derivadas de la transformada discreta de Fourier (TDF), que son la funci on discreta de ambig uedad, la transformada discreta de Zak, la transformada discreta de Fourier en tiempo corto, la transformada discreta chirp-Fourier, la transformada discreta de Fourier de quaterniones, la transformada discreta de Cohen, la transform...
Romano, Salvatore; Benvenuti, Susanna; Conti, Antonio; Benedetti, Enzo; Bramanti, Emilia; Rossi, Ilaria; Benedetti, Edoardo
1994-02-01
In a recent study made on cultures of human leukaemic cells (FLG 29.1 cell line) we were able to detect, by IR microspectroscopy, some significant IR spectroscopic variations following differentiation of cells towards osteoclastic-like behavior. The present study was undertaken on the same cell line in order to monitor biochemical structure variations following fusion induced by polyetilenglycole (PEG), using FTIR microspectroscopy. The finger-print region of all the spectra was retained and normalized according to a new regression procedure. Eleven bands were selected and total band power and mean power per unit frequency were compared with the corresponding reference session bands by a Dunnett's T test. Significant differences were found in both the tested variables only between treated and untreated cells, in 6 bands.
Ogren, John I; Yi, Adrian; Mamaev, Sergey; Li, Hai; Spudich, John L; Rothschild, Kenneth J
2015-05-15
Channelrhodopsin-1 from the alga Chlamydomonas augustae (CaChR1) is a low-efficiency light-activated cation channel that exhibits properties useful for optogenetic applications such as a slow light inactivation and a red-shifted visible absorption maximum as compared with the more extensively studied channelrhodopsin-2 from Chlamydomonas reinhardtii (CrChR2). Previously, both resonance Raman and low-temperature FTIR difference spectroscopy revealed that unlike CrChR2, CaChR1 under our conditions exhibits an almost pure all-trans retinal composition in the unphotolyzed ground state and undergoes an all-trans to 13-cis isomerization during the primary phototransition typical of other microbial rhodopsins such as bacteriorhodopsin (BR). Here, we apply static and rapid-scan FTIR difference spectroscopy along with site-directed mutagenesis to characterize the proton transfer events occurring upon the formation of the long-lived conducting P2 (380) state of CaChR1. Assignment of carboxylic C=O stretch bands indicates that Asp-299 (homolog to Asp-212 in BR) becomes protonated and Asp-169 (homolog to Asp-85 in BR) undergoes a net change in hydrogen bonding relative to the unphotolyzed ground state of CaChR1. These data along with earlier FTIR measurements on the CaChR1 → P1 transition are consistent with a two-step proton relay mechanism that transfers a proton from Glu-169 to Asp-299 during the primary phototransition and from the Schiff base to Glu-169 during P2 (380) formation. The unusual charge neutrality of both Schiff base counterions in the P2 (380) conducting state suggests that these residues may function as part of a cation selective filter in the open channel state of CaChR1 as well as other low-efficiency ChRs.
Chiou, Chei-Chang; Lee, Li-Tze; Tien, Li-Chu; Wang, Yu-Min
2017-01-01
This study explored the effectiveness of different concept mapping techniques on the learning achievement of senior accounting students and whether achievements attained using various techniques are affected by different learning styles. The techniques are computer-assisted construct-by-self-concept mapping (CACSB), computer-assisted…
Antonetti, Manuel; Buss, Rahel; Scherrer, Simon; Margreth, Michael; Zappa, Massimiliano
2016-07-01
The identification of landscapes with similar hydrological behaviour is useful for runoff and flood predictions in small ungauged catchments. An established method for landscape classification is based on the concept of dominant runoff process (DRP). The various DRP-mapping approaches differ with respect to the time and data required for mapping. Manual approaches based on expert knowledge are reliable but time-consuming, whereas automatic GIS-based approaches are easier to implement but rely on simplifications which restrict their application range. To what extent these simplifications are applicable in other catchments is unclear. More information is also needed on how the different complexities of automatic DRP-mapping approaches affect hydrological simulations. In this paper, three automatic approaches were used to map two catchments on the Swiss Plateau. The resulting maps were compared to reference maps obtained with manual mapping. Measures of agreement and association, a class comparison, and a deviation map were derived. The automatically derived DRP maps were used in synthetic runoff simulations with an adapted version of the PREVAH hydrological model, and simulation results compared with those from simulations using the reference maps. The DRP maps derived with the automatic approach with highest complexity and data requirement were the most similar to the reference maps, while those derived with simplified approaches without original soil information differed significantly in terms of both extent and distribution of the DRPs. The runoff simulations derived from the simpler DRP maps were more uncertain due to inaccuracies in the input data and their coarse resolution, but problems were also linked with the use of topography as a proxy for the storage capacity of soils. The perception of the intensity of the DRP classes also seems to vary among the different authors, and a standardised definition of DRPs is still lacking. Furthermore, we argue not to use
Liu, Xin-hu; Xu, Chang-hua; Sun, Su-qin; Huang, Jian; Zhang, Ke; Li, Guo-yu; Zhu, Yun; Zhou, Qun; Zhang, Zhi-cheng; Wang, Jin-hui
2012-11-01
In this study, six varieties of Danshen from different populations and genuine ("Daodi" in Chinese transliteration) regions were discriminated and identified by a three-step infrared spectroscopy method (Fourier transform-infrared spectroscopy (FT-IR) coupled with second derivative infrared spectroscopy (SD-IR) and two dimensional correlation infrared spectroscopy (2D-IR)). Though only small differences were found among the FT-IR spectra of the six Danshen samples, the positions and intensities of peaks at 3393, 3371, 1613, 1050, and 1036 cm-1 could be considered as the key factors to discriminate them. More significant differences were exhibited in their SD-IR, particularly for the peaks around 1080, 1144, 695, 665, 800, 1610, 1510, 1450, 1117 and 1077 cm-1. The visual 2D-IR spectra provided dynamic chemical structure information of the six Danshen samples with presenting different particular auto-peak clusters, respectively. Moreover, the contents of salvianolic acid B in all samples were measured quantitatively by a validated ultra performance liquid chromatography (UPLC), which was consistent with the FT-IR findings. This study provides a promising method for characteristics and quality control of the complicated and extremely similar herbal medicine like Danshen, which is more cost effective and time saving.
Mapping a Difference: The Power of Geospatial Visualization
Kolvoord, B.
2015-12-01
Geospatial Technologies (GST), such as GIS, GPS and remote sensing, offer students and teachers the opportunity to study the "why" of where. By making maps and collecting location-based data, students can pursue authentic problems using sophisticated tools. The proliferation of web- and cloud-based tools has made these technologies broadly accessible to schools. In addition, strong spatial thinking skills have been shown to be a key factor in supporting students that want to study science, technology, engineering, and mathematics (STEM) disciplines (Wai, Lubinski and Benbow) and pursue STEM careers. Geospatial technologies strongly scaffold the development of these spatial thinking skills. For the last ten years, the Geospatial Semester, a unique dual-enrollment partnership between James Madison University and Virginia high schools, has provided students with the opportunity to use GST's to hone their spatial thinking skills and to do extended projects of local interest, including environmental, geological and ecological studies. Along with strong spatial thinking skills, these students have also shown strong problem solving skills, often beyond those of fellow students in AP classes. Programs like the Geospatial Semester are scalable and within the reach of many college and university departments, allowing strong engagement with K-12 schools. In this presentation, we'll share details of the Geospatial Semester and research results on the impact of the use of these technologies on students' spatial thinking skills, and discuss the success and challenges of developing K-12 partnerships centered on geospatial visualization.
Singing voice handicap mapped by different self-assessment instruments.
Paoliello, Karla; Oliveira, Gisele; Behlau, Mara
2013-01-01
To map voice handicap of popular singers with a general voice and two singing voice self-assessment questionnaires. Fifty singers, 25 male and 25 female, 23 with vocal complaint and 27 without vocal complaint answered randomly the questionnaires. For the comparison of data, the following statistical tests were performed: Mann-Whitney, Friedman, Wilcoxon, Spearman and Correlation. Data showed that the VHI yielded a smaller handicap when compared to the other two questionnaires (VHI x S-VHI - p=0.001; VHI x MSVH - p=0.004). The S-VHI and MSVH produced similar results (p=0.723). Singers with vocal complaint had a VHI total score of 17.5. The other two instruments showed more deviated scores (S-VHI - 24.9; MSVH - 25.2). There was no relationship between gender and singing style with the handicap perceived. A weak negative correlation between the perceived handicap and the time of singing experience was found (-37.7 to -13.10%), that is, the smaller the time of singing experience, the greater the handicap is. The questionnaires developed for the assessment of singing voice, S-VHI and MSVH, showed to be more specific and correspondent to each other for the evaluation of vocal handicap in singers. Findings showed that the more the time of singer's singing experience, the smaller the handicap is. Gender and singing styles did not influence the perception of the handicap.
Noguchi, Takumi
2015-01-01
Photosynthetic water oxidation, which provides the electrons necessary for CO₂ reduction and releases O₂ and protons, is performed at the Mn₄CaO₅ cluster in photosystem II (PSII). In this review, studies that assessed the mechanism of water oxidation using infrared spectroscopy are summarized focusing on electron and proton transfer dynamics. Structural changes in proteins and water molecules between intermediates known as Si states (i=0-3) were detected using flash-induced Fourier transform infrared (FTIR) difference spectroscopy. Electron flow in PSII and proton release from substrate water were monitored using the infrared changes in ferricyanide as an exogenous electron acceptor and Mes buffer as a proton acceptor. Time-resolved infrared (TRIR) spectroscopy provided information on the dynamics of proton-coupled electron transfer during the S-state transitions. In particular, a drastic proton movement during the lag phase (~200μs) before electron transfer in the S3→S0 transition was detected directly by monitoring the infrared absorption of a polarizable proton in a hydrogen bond network. Furthermore, the proton release pathways in the PSII proteins were analyzed by FTIR difference measurements in combination with site-directed mutagenesis, isotopic substitutions, and quantum chemical calculations. Therefore, infrared spectroscopy is a powerful tool for understanding the molecular mechanism of photosynthetic water oxidation. This article is part of a Special Issue entitled: Vibrational spectroscopies and bioenergetic systems.
A Different Approach to Preparing Novakian Concept Maps: The Indexing Method
Turan Oluk, Nurcan; Ekmekci, Güler
2016-01-01
People who claim that applying Novakian concept maps in Turkish is problematic base their arguments largely upon the structural differences between the English and Turkish languages. This study aims to introduce the indexing method to eliminate problems encountered in Turkish applications of Novakian maps and to share the preliminary results of…
Zheng, Jun; Shao, Xinyu; Gao, Liang; Jiang, Ping; Qiu, Haobo
2015-06-01
Engineering design, especially for complex engineering systems, is usually a time-consuming process involving computation-intensive computer-based simulation and analysis methods. A difference mapping method using least square support vector regression is developed in this work, as a special metamodelling methodology that includes variable-fidelity data, to replace the computationally expensive computer codes. A general difference mapping framework is proposed where a surrogate base is first created, then the approximation is gained by a mapping the difference between the base and the real high-fidelity response surface. The least square support vector regression is adopted to accomplish the mapping. Two different sampling strategies, nested and non-nested design of experiments, are conducted to explore their respective effects on modelling accuracy. Different sample sizes and three approximation performance measures of accuracy are considered.
Fourier transformation for pedestrians
Butz, Tilman
2006-01-01
Meant to serve an "entertaining textbook," this book belongs to a rare genre. It is written for all students and practitioners who deal with Fourier transformation. Fourier series as well as continuous and discrete Fourier transformation are covered, and particular emphasis is placed on window functions. Many illustrations and easy-to-solve exercises make the book especially accessible, and its humorous style will add to the pleasure of learning from it.
Fourier Series Operating Package
Charnow, Milton L.
1961-01-01
This report presents a computer program for multiplying, adding, differentiating, integrating, "barring" and scalarly multiplying "literal" Fourier series as such, and for extracting the coefficients of specified terms.
A Map-Based Service Supporting Different Types of Geographic Knowledge for the Public.
Zhou, Mengjie; Wang, Rui; Tian, Jing; Ye, Ning; Mai, Shumin
2016-01-01
The internet enables the rapid and easy creation, storage, and transfer of knowledge; however, services that transfer geographic knowledge and facilitate the public understanding of geographic knowledge are still underdeveloped to date. Existing online maps (or atlases) can support limited types of geographic knowledge. In this study, we propose a framework for map-based services to represent and transfer different types of geographic knowledge to the public. A map-based service provides tools to ensure the effective transfer of geographic knowledge. We discuss the types of geographic knowledge that should be represented and transferred to the public, and we propose guidelines and a method to represent various types of knowledge through a map-based service. To facilitate the effective transfer of geographic knowledge, tools such as auxiliary background knowledge and auxiliary map-reading tools are provided through interactions with maps. An experiment conducted to illustrate our idea and to evaluate the usefulness of the map-based service is described; the results demonstrate that the map-based service is useful for transferring different types of geographic knowledge.
Neural map of interaural phase difference in the owl's brainstem.
Sullivan, W. E.; Konishi, M
1986-01-01
Neurons of the barn owl's (Tyto alba) nucleus laminaris, the first site of binaural convergence, respond in a phase-locked fashion to a tone delivered to either ear. It may take longer to elicit phase-locked spikes from one ear than from the other. This disparity in delay differs from neuron to neuron and is independent of tonal frequency. In binaural stimulation, neurons respond best when sound in one ear leads that in the other by an amount equal to their delay disparities but opposite in s...
Nyarko, Esmond; Donnelly, Catherine
2015-03-01
Fourier transform infrared (FT-IR) spectroscopy was used to differentiate mixed strains of Listeria monocytogenes and mixed strains of L. monocytogenes and Listeria innocua. FT-IR spectroscopy was also applied to investigate the hypothesis that heat-injured and acid-injured cells would return to their original physiological integrity following repair. Thin smears of cells on infrared slides were prepared from cultures for mixed strains of L. monocytogenes, mixed strains of L. monocytogenes and L. innocua, and each individual strain. Heat-injured and acid-injured cells were prepared by exposing harvested cells of L. monocytogenes strain R2-764 to a temperature of 56 ± 0.2°C for 10 min or lactic acid at pH 3 for 60 min, respectively. Cellular repair involved incubating aliquots of acid-injured and heat-injured cells separately in Trypticase soy broth supplemented with 0.6% yeast extract for 22 to 24 h; bacterial thin smears on infrared slides were prepared for each treatment. Spectral collection was done using 250 scans at a resolution of 4 cm(-1) in the mid-infrared wavelength region. Application of multivariate discriminant analysis to the wavelength region from 1,800 to 900 cm(-1) separated the individual L. monocytogenes strains. Mixed strains of L. monocytogenes and L. monocytogenes cocultured with L. innocua were successfully differentiated from the individual strains when the discriminant analysis was applied. Different mixed strains of L. monocytogenes were also successfully separated when the discriminant analysis was applied. A data set for injury and repair analysis resulted in the separation of acid-injured, heat-injured, and intact cells; repaired cells clustered closer to intact cells when the discriminant analysis (1,800 to 600 cm(-1)) was applied. FT-IR spectroscopy can be used for the rapid source tracking of L. monocytogenes strains because it can differentiate between different mixed strains and individual strains of the pathogen.
Energy Technology Data Exchange (ETDEWEB)
Nystad, Espen; Sebok, Angelia
2005-08-15
HWR-734 describes an experiment performed to compare different types of VR display technologies and their effects on learning. In the study, two different ways of presenting radiation information were compared. One was a flat radiation map with different colours for different levels of radiation. The other was a topographic map, where radiation levels were distinguished both by colour and by the elevation of the map. The efficiency of the maps for learning radiation information, and subjective preferences was assessed. The results indicated that the maps were each suited for different kinds of use. It is recommended to follow up this study with further investigation of radiation map efficiency. (Author)
Sterken, C.
2003-03-01
This paper gives a short account of some key elements in the life of Jean Baptiste Joseph Fourier (1768-1830), specifically his relation to Napoleon Bonaparte. The mathematical approach to Fourier series and the original scepticism by French mathematicians are briefly illustrated.
Generalized Fourier transforms classes
DEFF Research Database (Denmark)
Berntsen, Svend; Møller, Steen
2002-01-01
The Fourier class of integral transforms with kernels $B(\\omega r)$ has by definition inverse transforms with kernel $B(-\\omega r)$. The space of such transforms is explicitly constructed. A slightly more general class of generalized Fourier transforms are introduced. From the general theory...
Fourier Series Optimization Opportunity
Winkel, Brian
2008-01-01
This note discusses the introduction of Fourier series as an immediate application of optimization of a function of more than one variable. Specifically, it is shown how the study of Fourier series can be motivated to enrich a multivariable calculus class. This is done through discovery learning and use of technology wherein students build the…
Numerical ragweed pollen forecasts using different source maps: a comparison for France
Zink, Katrin; Kaufmann, Pirmin; Petitpierre, Blaise; Broennimann, Olivier; Guisan, Antoine; Gentilini, Eros; Rotach, Mathias W.
2017-01-01
One of the key input parameters for numerical pollen forecasts is the distribution of pollen sources. Generally, three different methodologies exist to assemble such distribution maps: (1) plant inventories, (2) land use data in combination with annual pollen counts, and (3) ecological modeling. We have used six exemplary maps for all of these methodologies to study their applicability and usefulness in numerical pollen forecasts. The ragweed pollen season of 2012 in France has been simulated with the numerical weather prediction model COSMO-ART using each of the distribution maps in turn. The simulated pollen concentrations were statistically compared to measured values to derive a ranking of the maps with respect to their performance. Overall, approach (2) resulted in the best correspondence between observed and simulated pollen concentrations for the year 2012. It is shown that maps resulting from ecological modeling that does not include a sophisticated estimation of the plant density have a very low predictive skill. For inventory maps and the maps based on land use data and pollen counts, the results depend very much on the observational site. The use of pollen counts to calibrate the map enhances the performance of the model considerably.
Schartner, Jonas; Hoeck, Nina; Güldenhaupt, Jörn; Mavarani, Laven; Nabers, Andreas; Gerwert, Klaus; Kötting, Carsten
2015-07-21
Protein immobilization studied by attenuated total reflection Fourier transform infrared (ATR-FT-IR) difference spectroscopy is an emerging field enabling the study of proteins at atomic detail. Gold or glass surfaces are frequently used for protein immobilization. Here, we present an alternative method for protein immobilization on germanium. Because of its high refractive index and broad spectral window germanium is the best material for ATR-FT-IR spectroscopy of thin layers. So far, this technique was mainly used for protein monolayers, which lead to a limited signal-to-noise ratio. Further, undesired protein-protein interactions can occur in a dense layer. Here, the germanium surface was functionalized with thiols and stepwise a dextran brush was generated. Each step was monitored by ATR-FT-IR spectroscopy. We compared a 70 kDa dextran with a 500 kDa dextran regarding the binding properties. All surfaces were characterized by atomic force microscopy, revealing thicknesses between 40 and 110 nm. To analyze the capability of our system we utilized N-Ras on mono-NTA (nitrilotriacetic acid) functionalized dextran, and the amount of immobilized Ras corresponded to several monolayers. The protein stability and loading capacity was further improved by means of tris-NTA for immobilization. Small-molecule-induced changes were revealed with an over 3 times higher signal-to-noise ratio compared to monolayers. This improvement may allow the observation of very small and so far hidden changes in proteins upon stimulus. Furthermore, we immobilized green fluorescent protein (GFP) and mCherry simultaneously enabling an analysis of the surface by fluorescence microscopy. The absence of a Förster resonance energy transfer (FRET) signal demonstrated a large protein-protein distance, indicating an even distribution of the protein within the dextran.
Population differences in the rate of proliferation of international HapMap cell lines.
Stark, Amy L; Zhang, Wei; Zhou, Tong; O'Donnell, Peter H; Beiswanger, Christine M; Huang, R Stephanie; Cox, Nancy J; Dolan, M Eileen
2010-12-10
The International HapMap Project is a resource for researchers containing genotype, sequencing, and expression information for EBV-transformed lymphoblastoid cell lines derived from populations across the world. The expansion of the HapMap beyond the four initial populations of Phase 2, referred to as Phase 3, has increased the sample number and ethnic diversity available for investigation. However, differences in the rate of cellular proliferation between the populations can serve as confounders in phenotype-genotype studies using these cell lines. Within the Phase 2 populations, the JPT and CHB cell lines grow faster (p HapMap panels into discovery and replication sets must take this into consideration.
Energy Technology Data Exchange (ETDEWEB)
Othman, Ahmed E. [RWTH Aachen University, Department of Diagnostic and Interventional Neuroradiology, Aachen (Germany); Eberhard Karls University Tuebingen, University Hospital Tuebingen, Department for Diagnostic and Interventional Radiology, Tuebingen (Germany); Afat, Saif; Nikoubashman, Omid; Mueller, Marguerite; Wiesmann, Martin; Brockmann, Carolin [RWTH Aachen University, Department of Diagnostic and Interventional Neuroradiology, Aachen (Germany); Schubert, Gerrit Alexander [RWTH Aachen University, Department of Neurosurgery, Aachen (Germany); Bier, Georg [Eberhard Karls University Tuebingen, University Hospital Tuebingen, Department for Diagnostic and Interventional Neuroradiology, Tuebingen (Germany); Brockmann, Marc A. [RWTH Aachen University, Department of Diagnostic and Interventional Neuroradiology, Aachen (Germany); University Hospital Mainz, Department of Neuroradiology, Mainz (Germany)
2016-08-15
In this study, we aimed to evaluate the diagnostic performance of different volume perfusion CT (VPCT) maps regarding the detection of cerebral vasospasm compared to angiographic findings. Forty-one datasets of 26 patients (57.5 ± 10.8 years, 18 F) with subarachnoid hemorrhage and suspected cerebral vasospasm, who underwent VPCT and angiography within 6 h, were included. Two neuroradiologists independently evaluated the presence and severity of vasospasm on perfusion maps on a 3-point Likert scale (0 - no vasospasm, 1 - vasospasm affecting <50 %, 2 - vasospasm affecting >50 % of vascular territory). A third neuroradiologist independently assessed angiography for the presence and severity of vasospasm on a 3-point Likert scale (0 - no vasospasm, 1 - vasospasm affecting < 50 %, 2 - vasospasm affecting > 50 % of vessel diameter). Perfusion maps of cerebral blood volume (CBV), cerebral blood flow (CBF), mean transit time (MTT), and time to drain (TTD) were evaluated regarding diagnostic accuracy for cerebral vasospasm with angiography as reference standard. Correlation analysis of vasospasm severity on perfusion maps and angiographic images was performed. Furthermore, inter-reader agreement was assessed regarding findings on perfusion maps. Diagnostic accuracy for TTD and MTT was significantly higher than for all other perfusion maps (TTD, AUC = 0.832; MTT, AUC = 0.791; p < 0.001). TTD revealed higher sensitivity than MTT (p = 0.007). The severity of vasospasm on TTD maps showed significantly higher correlation levels with angiography than all other perfusion maps (p ≤ 0.048). Inter-reader agreement was (almost) perfect for all perfusion maps (kappa ≥ 0.927). The results of this study indicate that TTD maps have the highest sensitivity for the detection of cerebral vasospasm and highest correlation with angiography regarding the severity of vasospasm. (orig.)
Mezcua, J.; Rueda, J.; Garcia Blanco, R.
2009-05-01
A probabilistic seismic hazard analysis (PSHA) for mainland Spain that takes into account recent new results in seismicity, seismic zoning and strong ground attenuation no considered in the previous PSHAs studies published is presented. Those new input data has been obtained by us as a three steep project carried out in order to get a new hazard map for mainland Spain. We have used a new earthquake catalogue obtained for the area in which the earthquakes are given in moment magnitude through specific deduced relationships for our territory based on intensity data, Mezcua et al. (2004). Beside that, we also include a new seismogenetic zoning based in the recent partial zoning studies performed by different authors. Finally we have developed a new strong ground motion relationship for the area, Mezcua et al. (2008). With this new data a logic tree process has been defined to quantify the epistemic uncertainty related with those parts of the process. Finally, after a weighting scheme a mean hazard map for PGA on rock type condition for 10 % exceendence probability in 50 years is presented. In order to investigate main differences with the official hazard map from the Building Code we performed from one side the map of differences and also a map of impact expressed in % of the values obtained in relation with the presented in the official map. Main differences are in both directions: an overestimation (0.04g) of the official hazard map in those areas corresponding with the greatest PGA values corresponding to the south and southeastern part of the country due to the use of local attenuation relations and an underestimation for the rest of the country with a maximum of the order of 0.06g close to the maximum of the map in southern Spain.
Fourier analysis an introduction
Stein, Elias M
2003-01-01
This first volume, a three-part introduction to the subject, is intended for students with a beginning knowledge of mathematical analysis who are motivated to discover the ideas that shape Fourier analysis. It begins with the simple conviction that Fourier arrived at in the early nineteenth century when studying problems in the physical sciences--that an arbitrary function can be written as an infinite sum of the most basic trigonometric functions.The first part implements this idea in terms of notions of convergence and summability of Fourier series, while highlighting applications such as th
Neuhaus, Philipp; Doods, Justin; Dugas, Martin
2015-01-01
Automatic coding of medical terms is an important, but highly complicated and laborious task. To compare and evaluate different strategies a framework with a standardized web-interface was created. Two UMLS mapping strategies are compared to demonstrate the interface. The framework is a Java Spring application running on a Tomcat application server. It accepts different parameters and returns results in JSON format. To demonstrate the framework, a list of medical data items was mapped by two different methods: similarity search in a large table of terminology codes versus search in a manually curated repository. These mappings were reviewed by a specialist. The evaluation shows that the framework is flexible (due to standardized interfaces like HTTP and JSON), performant and reliable. Accuracy of automatically assigned codes is limited (up to 40%). Combining different semantic mappers into a standardized Web-API is feasible. This framework can be easily enhanced due to its modular design.
Fourier's Law in Quantum Mechanics
Seligman, Thomas H
2010-01-01
We derive Fourier's law for a completely coherent quantum system coupled locally to two heat baths at different temperatures. We solve the master equation to first order in the temperature difference. We show that the heat conductance can be expressed as a thermodynamic equilibrium coefficient taken at some intermediate temperature. We use that expression to show that for temperatures large compared to the mean level spacing of the system, the heat conductance is inversely proportional to the length of the system.
Debnath, Lokenath
2012-01-01
This article deals with a brief biographical sketch of Joseph Fourier, his first celebrated work on analytical theory of heat, his first great discovery of Fourier series and Fourier transforms. Included is a historical development of Fourier series and Fourier transforms with their properties, importance and applications. Special emphasis is made…
Fourier transformation for pedestrians
Butz, Tilman
2015-01-01
This book is an introduction to Fourier Transformation with a focus on signal analysis, based on the first edition. It is well suited for undergraduate students in physics, mathematics, electronic engineering as well as for scientists in research and development. It gives illustrations and recommendations when using existing Fourier programs and thus helps to avoid frustrations. Moreover, it is entertaining and you will learn a lot unconsciously. Fourier series as well as continuous and discrete Fourier transformation are discussed with particular emphasis on window functions. Filter effects of digital data processing are illustrated. Two new chapters are devoted to modern applications. The first deals with data streams and fractional delays and the second with the back-projection of filtered projections in tomography. There are many figures and mostly easy to solve exercises with solutions.
Digital Fourier analysis fundamentals
Kido, Ken'iti
2015-01-01
This textbook is a thorough, accessible introduction to digital Fourier analysis for undergraduate students in the sciences. Beginning with the principles of sine/cosine decomposition, the reader walks through the principles of discrete Fourier analysis before reaching the cornerstone of signal processing: the Fast Fourier Transform. Saturated with clear, coherent illustrations, "Digital Fourier Analysis - Fundamentals" includes practice problems and thorough Appendices for the advanced reader. As a special feature, the book includes interactive applets (available online) that mirror the illustrations. These user-friendly applets animate concepts interactively, allowing the user to experiment with the underlying mathematics. For example, a real sine signal can be treated as a sum of clockwise and counter-clockwise rotating vectors. The applet illustration included with the book animates the rotating vectors and the resulting sine signal. By changing parameters such as amplitude and frequency, the reader ca...
Generalized fiber Fourier optics.
Cincotti, Gabriella
2011-06-15
A twofold generalization of the optical schemes that perform the discrete Fourier transform (DFT) is given: new passive planar architectures are presented where the 2 × 2 3 dB couplers are replaced by M × M hybrids, reducing the number of required connections and phase shifters. Furthermore, the planar implementation of the discrete fractional Fourier transform (DFrFT) is also described, with a waveguide grating router (WGR) configuration and a properly modified slab coupler.
Reconstruction in Fourier space
Burden, A.; Percival, W. J.; Howlett, C.
2015-10-01
We present a fast iterative fast Fourier transform (FFT) based reconstruction algorithm that allows for non-parallel redshift-space distortions (RSDs). We test our algorithm on both N-body dark matter simulations and mock distributions of galaxies designed to replicate galaxy survey conditions. We compare solenoidal and irrotational components of the redshift distortion and show that an approximation of this distortion leads to a better estimate of the real-space potential (and therefore faster convergence) than ignoring the RSD when estimating the displacement field. Our iterative reconstruction scheme converges in two iterations for the mock samples corresponding to Baryon Oscillation Spectroscopic Survey CMASS Data Release 11 when we start with an approximation of the RSD. The scheme takes six iterations when the initial estimate, measured from the redshift-space overdensity, has no RSD correction. Slower convergence would be expected for surveys covering a larger angle on the sky. We show that this FFT based method provides a better estimate of the real-space displacement field than a configuration space method that uses finite difference routines to compute the potential for the same grid resolution. Finally, we show that a lognormal transform of the overdensity, used as a proxy for the linear overdensity, is beneficial in estimating the full displacement field from a dense sample of tracers. However, the lognormal transform of the overdensity does not perform well when estimating the displacements from sparser simulations with a more realistic galaxy density.
Effect of lithological data of different scales on modelling landslide susceptibility maps
Gassner, C.; Petschko, H.; Bell, R.; Glade, T.
2012-04-01
In landslide susceptibility modelling, lithology is often only available at rather coarse scales. The effects of this course resolution on the final map are often unknown. Thus, the aim of this study is to investigate how different lithological data affect the results of landslide susceptibility modelling and to analyse spatial differences in the resulting maps in Scheibbs, a district of Lower Austria. Within this study logistic regression is used to model landslide susceptibility, focusing on the consequences deriving from the use of two different lithological datasets (mapping scale 1:200,000 and 1:50,000). Here, the dependent variable is the landslide inventory and the independent variables are derivates of the digital elevation model (DEM) at a 10m resolution (slope, aspect, and curvature), the land cover map (10m x 10m) and lithological maps. Nominal data (land cover and lithology) were transformed to metric data by frequency ratios. Three different techniques are applied to evaluate model performance to allow for a comparison of the models/maps using lithological data with varying scales. The first approach uses AUROC curves of the test and training datasets, which were generated by random sampling. Secondly, the resulting susceptibility maps were classified into four classes with equal intervals. Then, the performance was evaluated from the percentages of terrain units that each model correctly classifies and the number of landslides falling within the area classified as unstable (true positives). In a third evaluation step the geomorphological quality of the resulting susceptibility maps was visually interpreted. Different classification methods (e.g. quartiles, jenks) were tested. The results show that the lithological data (1:50,000) have slightly better AUROC values. Surprisingly, the statistical validation of the true positives does not allow a definite preference in terms of best accuracy for either dataset. Test results on geomorphological value show
Institute of Scientific and Technical Information of China (English)
周锦松; 相里斌; 魏儒义; 景娟娟
2011-01-01
对反射转镜式干涉光谱仪的原理进行了介绍,从马吕斯定律和角反射体的反射特性入手,选择转镜反射面的旋转中心作为入射光束和出射光束等波面的参考点,对反射转镜式干涉光谱仪的光程差进行了分析计算,给出反射转镜式干涉光谱仪任意时刻光程差及最大光程差的一般表达式,分析影响最大光程差和光程差变化周期的因素,为反射转镜式干涉光谱仪的设计与研制提供理论指导.%The principle of reflecting rotating Fourier transform spectrometer was introduced in the present paper. Based on the Malus law and reflecting characteristic of cube corner, the optic path difference of reflecting rotating Fourier transform spectrometer was analyzed and calculated by choosing the center of rotating mirror as a reference point of the aplanatic surface of incidence beam and return beam. General expression of optic path difference at any time and maximal optic path difference of reflecting rotating Fourier transform spectrometer was presented. The factors that influence the maximal optic path difference and the period of optic path difference were analyzed. The results provide a theoretical guidance for design and manufacture of reflecting rotating Fourier transform spectrometer.
VHDL Implementation of different Turbo Encoder using Log-MAP Decoder
Gupta, Akash Kumar
2010-01-01
Turbo code is a great achievement in the field of communication system. It can be created by connecting a turbo encoder and a decoder serially. A Turbo encoder is build with parallel concatenation of two simple convolutional codes. By varying the number of memory element (encoder configuration), code rate (1/2 or 1/3), block size of data and iteration, we can achieve better BER performance. Turbo code also consists of interleaver unit and its BER performance also depends on interleaver size. Turbo Decoder can be implemented using different algorithm, but Log -MAP decoding algorithm is less computationaly complex with respect to MAP (maximux a posteriori) algorithm, without compromising its BER performance, nearer to Shannon limit. A register transfer level (RTL) turbo encoder is designed and simulated using VHDL (Very high speed integrated circuit Hardware Description Language). In this paper VHDL model of different turbo encoder are implemented using Log MAP decoder and its performance are compared and verif...
Some non-Fourier heat conduction characters under pulsed inlet conditions
Institute of Scientific and Technical Information of China (English)
FAN Qingmei; LU Wenqiang
2004-01-01
Through simulating one- and two-dimensional non-Fourier heat conduction problems under different pulsed inlet conditions, this paper numerically predicts some different non-Fourier heat conduction characters arose from different pulse types and different pulse frequencies. Meanwhile, the differences among thermal wave, non-Fourier and Fourier heat conduction are also showed.
Directory of Open Access Journals (Sweden)
Ke Wu
2017-03-01
Full Text Available Due to the relatively low temporal resolutions of high spatial resolution (HR remotely sensed images, land-cover change detection (LCCD may have to use multi-temporal images with different resolutions. The low spatial resolution (LR images often have high temporal repetition rates, but they contain a large number of mixed pixels, which may seriously limit their capability in change detection. Soft classification (SC can produce the proportional fractions of land-covers, on which sub-pixel mapping (SPM can construct fine resolution land-cover maps to reduce the low-spatial-resolution-problem to some extent. Thus, in this paper, sub-pixel land-cover change detection with the use of different resolution images (SLCCD_DR is addressed based on SC and SPM. Previously, endmember combinations within pixels are ignored in the LR image, which may result in flawed fractional differences. Meanwhile, the information of a known HR land-cover map is insignificantly treated in the SPM models, which leads to a reluctant SLCCD_DR result. In order to overcome these issues, a novel approach based on a back propagation neural network (BPNN with different resolution images (BPNN_DR is proposed in this paper. Firstly, endmember variability per pixel is considered during the SC process to ensure the high accuracy of the derived proportional fractional difference image. After that, the BPNN-based SPM model is constructed by a complete supervised framework. It takes full advantage of the prior known HR image, whether it predates or postdates the LR image, to train the BPNN, so that a sub-pixel change detection map is generated effectively. The proposed BPNN_DR is compared with four state-of-the-art methods at different scale factors. The experimental results using both synthetic data and real images demonstrated that it can outperform with a more detailed change detection map being produced.
Global land cover map validation, comparison and integration for different user communities
Tsendbazar, N.E.
2016-01-01
Global land cover map validation, comparison and integration for different user communities Abstract Observation of global-scale land cover is of importance to international initiatives, governments, and scientific communities that endeavour to understand and monito
Building Safety Road Maps Based on Difference of Judgment of Road Users by their Smartphone
Directory of Open Access Journals (Sweden)
Viet Chau Dang
2015-09-01
Full Text Available Recently, there has been a growing demand and interest in developing methods for analyzing smartphone logs to extract traffic safety information. Because the log is high time resolution and closely related to user activities but fragmentary and myopic, it is difficult for currently available collision probability based quantitative risk assessment methods to create traffic safety maps automatically from the driving log which require all of concrete information about a collision for example, size of vehicle, speed of pedestrian. This paper proposes a computable risk measurement method for building traffic safety maps with the logs of different users' driving, which does not discuss collision probability. The proposal is designed to compute differences in the recognition of the road environment among road users mathematically. Drivers differ in their recognition, judgment, and handling of a given situation. Suppose that a difference in recognition among users in the same situation is a signal of danger. This signal is easy to calculate by Poisson process. Each user's recognition of road environment and the safety map integrated from the collection of the recognition are generated fully automated. A real-world experiment was carried out, and the results show that the assumption and the proposed method succeeded in generating an accurate and effective traffic safety map.
Michalski, Greg V.; Cousins, J. Bradley
2000-01-01
Used concept mapping and pattern matching in exploratory research to investigate differences in stakeholder perceptions of training results and evaluation. Group perceptions and the individual perceptions of 39 managers, product developers, and training professionals show that all stakeholder groups agreed reasonably well about the importance of…
Sevian, H.; Bernholt, S.; Szteinberg, G. A.; Auguste, S.; Pérez, L. C.
2015-01-01
A perspective is presented on how the representation mapping framework by Hahn and Chater (1998) may be used to characterize reasoning during problem solving in chemistry. To provide examples for testing the framework, an exploratory study was conducted with students and professors from three different courses in the middle of the undergraduate…
Liflyand, E.
2012-01-01
We study an extension to Fourier transforms of the old problem on absolute convergence of the re-expansion in the sine (cosine) Fourier series of an absolutely convergent cosine (sine) Fourier series. The results are obtained by revealing certain relations between the Fourier transforms and their Hilbert transforms.
Accelerated radial Fourier-velocity encoding using compressed sensing
Energy Technology Data Exchange (ETDEWEB)
Hilbert, Fabian; Han, Dietbert [Wuerzburg Univ. (Germany). Inst. of Radiology; Wech, Tobias; Koestler, Herbert [Wuerzburg Univ. (Germany). Inst. of Radiology; Wuerzburg Univ. (Germany). Comprehensive Heart Failure Center (CHFC)
2014-10-01
Purpose:Phase Contrast Magnetic Resonance Imaging (MRI) is a tool for non-invasive determination of flow velocities inside blood vessels. Because Phase Contrast MRI only measures a single mean velocity per voxel, it is only applicable to vessels significantly larger than the voxel size. In contrast, Fourier Velocity Encoding measures the entire velocity distribution inside a voxel, but requires a much longer acquisition time. For accurate diagnosis of stenosis in vessels on the scale of spatial resolution, it is important to know the velocity distribution of a voxel. Our aim was to determine velocity distributions with accelerated Fourier Velocity Encoding in an acquisition time required for a conventional Phase Contrast image. Materials and Methods:We imaged the femoral artery of healthy volunteers with ECG - triggered, radial CINE acquisition. Data acquisition was accelerated by undersampling, while missing data were reconstructed by Compressed Sensing. Velocity spectra of the vessel were evaluated by high resolution Phase Contrast images and compared to spectra from fully sampled and undersampled Fourier Velocity Encoding. By means of undersampling, it was possible to reduce the scan time for Fourier Velocity Encoding to the duration required for a conventional Phase Contrast image. Results:Acquisition time for a fully sampled data set with 12 different Velocity Encodings was 40 min. By applying a 12.6 - fold retrospective undersampling, a data set was generated equal to 3:10 min acquisition time, which is similar to a conventional Phase Contrast measurement. Velocity spectra from fully sampled and undersampled Fourier Velocity Encoded images are in good agreement and show the same maximum velocities as compared to velocity maps from Phase Contrast measurements. Conclusion: Compressed Sensing proved to reliably reconstruct Fourier Velocity Encoded data. Our results indicate that Fourier Velocity Encoding allows an accurate determination of the velocity
Epitope Mapping of Avian Influenza M2e Protein: Different Species Recognise Various Epitopes.
Directory of Open Access Journals (Sweden)
Noor Haliza Hasan
Full Text Available A common approach for developing diagnostic tests for influenza virus detection is the use of mouse or rabbit monoclonal and/or polyclonal antibodies against a target antigen of the virus. However, comparative mapping of the target antigen using antibodies from different animal sources has not been evaluated before. This is important because identification of antigenic determinants of the target antigen in different species plays a central role to ensure the efficiency of a diagnostic test, such as competitive ELISA or immunohistochemistry-based tests. Interest in the matrix 2 ectodomain (M2e protein of avian influenza virus (AIV as a candidate for a universal vaccine and also as a marker for detection of virus infection in vaccinated animals (DIVA is the rationale for the selection of this protein for comparative mapping evaluation. This study aimed to map the epitopes of the M2e protein of avian influenza virus H5N1 using chicken, mouse and rabbit monoclonal or monospecific antibodies. Our findings revealed that rabbit antibodies (rAbs recognized epitope 6EVETPTRN13 of the M2e, located at the N-terminal of the protein, while mouse (mAb and chicken antibodies (cAbs recognized epitope 10PTRNEWECK18, located at the centre region of the protein. The findings highlighted the difference between the M2e antigenic determinants recognized by different species that emphasized the importance of comparative mapping of antibody reactivity from different animals to the same antigen, especially in the case of multi-host infectious agents such as influenza. The findings are of importance for antigenic mapping, as well as diagnostic test and vaccine development.
Rudin, Walter
2011-01-01
In the late 1950s, many of the more refined aspects of Fourier analysis were transferred from their original settings (the unit circle, the integers, the real line) to arbitrary locally compact abelian (LCA) groups. Rudin's book, published in 1962, was the first to give a systematic account of these developments and has come to be regarded as a classic in the field. The basic facts concerning Fourier analysis and the structure of LCA groups are proved in the opening chapters, in order to make the treatment relatively self-contained.
Directory of Open Access Journals (Sweden)
Daniel Hölbling
2017-05-01
Full Text Available Object-based image analysis (OBIA has been increasingly used to map geohazards such as landslides on optical satellite images. OBIA shows various advantages over traditional image analysis methods due to its potential for considering various properties of segmentation-derived image objects (spectral, spatial, contextual, and textural for classification. For accurately identifying and mapping landslides, however, visual image interpretation is still the most widely used method. The major question therefore is if semi-automated methods such as OBIA can achieve results of comparable quality in contrast to visual image interpretation. In this paper we apply OBIA for detecting and delineating landslides in five selected study areas in Austria and Italy using optical Earth Observation (EO data from different sensors (Landsat 7, SPOT-5, WorldView-2/3, and Sentinel-2 and compare the OBIA mapping results to outcomes from visual image interpretation. A detailed evaluation of the mapping results per study area and sensor is performed by a number of spatial accuracy metrics, and the advantages and disadvantages of the two approaches for landslide mapping on optical EO data are discussed. The analyses show that both methods produce similar results, whereby the achieved accuracy values vary between the study areas.
NORMALIZED DIFFERENCE SNOW INDEX SIMULATION FOR SNOW-COVER MAPPING IN FOREST BY GEOSAIL MODEL
Institute of Scientific and Technical Information of China (English)
CAO Yun-gang; LIU Chuang
2006-01-01
The snow-cover mapping in forest area is always one of the difficult points for optical satellite remote sensing. To investigate reflectance variability and to improve the mapping of snow in forest area, GeoSail model was used to simulate the reflectance of a snow-covered forest. Using this model, the effects of varying canopy density, solar illumination and view geometry on the performance of the MODIS (Moderate-resolution Imaging Spectroradiometer)snow-cover mapping algorithm were investigated. The relationship between NDSI (Normalized Difference Snow Index), NDVI (Normalized Difference Vegetation Index) and snow fraction was discussed in detail. Results indicated that the weak performance would be achieved if fixed criteria were used for different regions especially in the complicated land cover components. Finally, some suggestions to MODIS SNOWMAP algorithm were put forward to improve snow mapping precision in forest area based on the simulation, for example, new criteria should be used in coniferous forest, that is, NDSI greater than 0.3 and NDVI greater than zero. Otherwise, a threshold on view zenith angle may be used in the criteria such as 45°.
Projective Fourier duality and Weyl quantization
Energy Technology Data Exchange (ETDEWEB)
Aldrovandi, R.; Saeger, L.A.
1996-08-01
The Weyl-Wigner correspondence prescription, which makes large use of Fourier duality, is reexamined from the point of view of Kac algebras, the most general background for non-commutative Fourier analysis allowing for that property. It is shown how the standard Kac structure has to be extended in order to accommodate the physical requirements. An Abelian and a symmetric projective Kac algebras are shown to provide, in close parallel to the standard case, a new dual framework and a well-defined notion of projective Fourier duality for the group of translations on the plane. The Weyl formula arises naturally as an irreducible component of the duality mapping between these projective algebras. (author). 29 refs.
Fourier and Laplace Transforms
Beerends, R.J.; Morsche, ter H.G.; Berg, van den J.C.
2003-01-01
This textbook presents in a unified manner the fundamentals of both continuous and discrete versions of the Fourier and Laplace transforms. These transforms play an important role in the analysis of all kinds of physical phenomena. As a link between the various applications of these transforms the a
Introduction to Fourier Optics
Huggins, Elisha
2007-01-01
Much like a physical prism, which displays the frequency components of a light wave, Fourier analysis can be thought of as a mathematical prism that can tell us what harmonics or frequency components are contained in a recording of a sound wave. We wrote the MacScope II program so that the user could not only see a plot of the harmonic amplitudes…
Introduction to Fourier Optics
Huggins, Elisha
2007-01-01
Much like a physical prism, which displays the frequency components of a light wave, Fourier analysis can be thought of as a mathematical prism that can tell us what harmonics or frequency components are contained in a recording of a sound wave. We wrote the MacScope II program so that the user could not only see a plot of the harmonic amplitudes…
Bilinear Fourier restriction theorems
Demeter, Ciprian
2012-01-01
We provide a general scheme for proving $L^p$ estimates for certain bilinear Fourier restrictions outside the locally $L^2$ setting. As an application, we show how such estimates follow for the lacunary polygon. In contrast with prior approaches, our argument avoids any use of the Rubio de Francia Littlewood--Paley inequality.
Fast Fourier Orthogonalization
Ducas, L.; Prest, T.; Abramov, S.A.; Zima, E.V.; Gao, X-S.
2016-01-01
The classical fast Fourier transform (FFT) allows to compute in quasi-linear time the product of two polynomials, in the {\\em circular convolution ring} R[x]/(x^d−1) --- a task that naively requires quadratic time. Equivalently, it allows to accelerate matrix-vector products when the matrix is *circ
Signal to noise ratio in water balance maps with different resolution
Yan, Ziqi; Gottschalk, Lars; Wang, Jianhua
2016-12-01
What is the best resolution of annual water balance maps for a correct balance between the basic spatial signal in the observations of precipitation, actual evapotranspiration and runoff across a larger drainage basin and the error in estimates for grid cells in the map to avoid giving a false impression of accuracy? To answer this question an approach based a signal to noise ratio is proposed, which allows finding the optimal resolution maximizing the signal in the map. The approach is demonstrated on gauge data in the Huai River Basin, China. Stochastic interpolation methods were applied to create grid maps of long-term mean values, as well as for estimating variances of the three water balance components in a range of scales from 5 × 5 km to 200 × 200 km2 grid cells. Interpolation algorithms using covariances of long-term means of data with different spatial support were developed. The identified optimal resolutions by the signal to noise ratio appeared to be very different - 10 × 10, 50 × 50, and 30 × 30 km2 for precipitation, actual evapotranspiration, and runoff, respectively. These values are directly linked to the observation network densities. The magnitude of the signal to noise ratio shows similar strong differences with values 34, 3.7, and 5.4, respectively. It gives a direct indication of the reliability of the map, which can be considered as satisfactory only for precipitation for the data available for the present study. The critical factors for this magnitude are parameters characterising the spatial covariance in data and the network density.
Mapping the fine structure of cortical activity with different micro-ECoG electrode array geometries
Wang, Xi; Gkogkidis, C. Alexis; Iljina, Olga; Fiederer, Lukas D. J.; Henle, Christian; Mader, Irina; Kaminsky, Jan; Stieglitz, Thomas; Gierthmuehlen, Mortimer; Ball, Tonio
2017-10-01
Objective. Innovations in micro-electrocorticography (µECoG) electrode array manufacturing now allow for intricate designs with smaller contact diameters and/or pitch (i.e. inter-contact distance) down to the sub-mm range. The aims of the present study were: (i) to investigate whether frequency ranges up to 400 Hz can be reproducibly observed in µECoG recordings and (ii) to examine how differences in topographical substructure between these frequency bands and electrode array geometries can be quantified. We also investigated, for the first time, the influence of blood vessels on signal properties and assessed the influence of cortical vasculature on topographic mapping. Approach. The present study employed two µECoG electrode arrays with different contact diameters and inter-contact distances, which were used to characterize neural activity from the somatosensory cortex of minipigs in a broad frequency range up to 400 Hz. The analysed neural data were recorded in acute experiments under anaesthesia during peripheral electrical stimulation. Main results. We observed that µECoG recordings reliably revealed multi-focal cortical somatosensory response patterns, in which response peaks were often less than 1 cm apart and would thus not have been resolvable with conventional ECoG. The response patterns differed by stimulation site and intensity, they were distinct for different frequency bands, and the results of functional mapping proved independent of cortical vascular. Our analysis of different frequency bands exhibited differences in the number of activation peaks in topographical substructures. Notably, signal strength and signal-to-noise ratios differed between the two electrode arrays, possibly due to their different sensitivity for variations in spatial patterns and signal strengths. Significance. Our findings that the geometry of µECoG electrode arrays can strongly influence their recording performance can help to make informed decisions that maybe
Divide & Concur and Difference-Map BP Decoders for LDPC Codes
Yedidia, Jonathan S; Draper, Stark C
2010-01-01
The "Divide and Concur'' (DC) algorithm, recently introduced by Gravel and Elser, can be considered a competitor to the belief propagation (BP) algorithm, in that both algorithms can be applied to a wide variety of constraint satisfaction, optimization, and probabilistic inference problems. We show that DC can be interpreted as a message-passing algorithm on a constraint graph, which helps make the comparison with BP more clear. The "difference-map'' dynamics of the DC algorithm enables it to avoid "traps'' which may be related to the "trapping sets'' or "pseudo-codewords'' that plague BP decoders of low-density parity check (LDPC) codes in the error-floor regime. We investigate two decoders for low-density parity-check (LDPC) codes based on these ideas. The first decoder is based directly on DC, while the second decoder borrows the important "difference-map'' concept from the DC algorithm and translates it into a BP-like decoder. We show that this "difference-map belief propagation'' (DMBP) decoder has drama...
Optical imaging of breast tumor through temporal log-slope difference mappings.
Guo, Zhixiong; Kan Wan, Siew; August, David A; Ying, Jinpin; Dunn, Stanley M; Semmlow, John L
2006-02-01
A novel optical temporal log-slope difference mapping approach is proposed for cancerous breast tumor detection. In this method, target tissues are illuminated by near-infrared (700-1000 nm) ultrashort laser pulses from various surface source points, and backscattered time-resolved light signals are collected at the same surface points. By analyzing the log-slopes of decaying signals over all points on the source-detection grid, a log-slope distribution on the surface is obtained. After administration of absorption contrast agents, the presence of cancerous tumors increases the decaying steepness of the transient signals. The mapping of log-slope difference between native tissue and absorption-enhanced cancerous tissue indicates the location and projection of tumors on the detection surface. In this paper, we examine this method in the detection of breast tumors in two model tissue phantoms through computer simulation. The first model has a spherical tumor of 6mm in diameter embedded at the tissue center. The second model is a large tissue phantom embedded with a non-centered spherical tumor 8mm in diameter. Monte Carlo methods were employed to simulate the light transport and signal measurement. It is shown that the tumor in both the tissue models will be accurately projected on the detection surface by the proposed log-slope difference mapping method. The image processing is very fast and does not require any inverse optimization in image reconstruction.
Wavelet-Fourier self-deconvolution
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
Using a wavelet function as the filter function of Fourier self-deconvolution, a new me- thod of resolving overlapped peaks, wavelet-Fourier self-deconvolution, is founded. The properties of different wavelet deconvolution functions are studied. In addition, a cutoff value coefficient method of eliminating artificial peaks and wavelet method of removing shoulder peaks using the ratio of maximum peak to minimum peak is established. As a result, some problems in classical Fourier self-deconvolution are solved, such as the bad result of denoising, complicated processing, as well as usual appearance of artificial and shoulder peaks. Wavelet-Fourier self-deconvolution is applied to determination of multi-components in oscillographic chronopotentiometry. Experimental results show that the method has characteristics of simpler process and better effect of processing.
Wavelet-Fourier self-deconvolution
Institute of Scientific and Technical Information of China (English)
郑建斌; 张红权; 高鸿
2000-01-01
Using a wavelet function as the filter function of Fourier self-deconvolution, a new method of resolving overlapped peaks, wavelet-Fourier self-deconvolution, is founded. The properties of different wavelet deconvolution functions are studied. In addition, a cutoff value coefficient method of eliminating artificial peaks and wavelet method of removing shoulder peaks using the ratio of maximum peak to minimum peak is established. As a result, some problems in classical Fourier self-deconvolution are solved, such as the bad result of denoising, complicated processing, as well as usual appearance of artificial and shoulder peaks. Wavelet-Fourier self-deconvolution is applied to determination of multi-components in oscillographic chronopotentiometry. Experimental results show that the method has characteristics of simpler process and better effect of processing.
Generic Quantum Fourier Transforms
Moore, Cristopher; Russell, A; Moore, Cristopher; Rockmore, Daniel; Russell, Alexander
2003-01-01
The quantum Fourier transform (QFT) is the principal algorithmic tool underlying most efficient quantum algorithms. We present a generic framework for the construction of efficient quantum circuits for the QFT by ``quantizing'' the separation of variables technique that has been so successful in the study of classical Fourier transform computations. Specifically, this framework applies the existence of computable Bratteli diagrams, adapted factorizations, and Gel'fand-Tsetlin bases to offer efficient quantum circuits for the QFT over a wide variety a finite Abelian and non-Abelian groups, including all group families for which efficient QFTs are currently known and many new group families. Moreover, the method gives rise to the first subexponential-size quantum circuits for the QFT over the linear groups GL_k(q), SL_k(q), and the finite groups of Lie type, for any fixed prime power q.
Sharp, Patricia E
2006-11-11
Since the initial discovery of place cells in the hippocampus proper, similar spatial firing has been observed in additional regions throughout the hippocampal formation. One such region is the subiculum. Here, most cells show a significant, consistent variation in rate relative to location. Thus, subicular and hippocampal cells are similar, in providing a representation of momentary location in space. However, there are also some fundamental differences. First, many subicular cells have a directional signal superimposed on the place-related patterns. In contrast, hippocampal cells in the open field paradigm used here typically do not show a genuine directional component. The second critical difference has to do with how the cells code different environments. As is well known, hippocampal cells show different spatial patterns in environments which offer distinctly different stimulus properties. For example, a hippocampal cell which fires in the northwest portion of a striped cylinder will likely display a different field, or no field, when recorded in a gray square. In contrast, subicular cells are likely to show the same behavior across environments, such as choosing the northwest region of both enclosures. Further, if two environments differ in size, the subicular patterns will expand/shrink to fit. Thus, it appears that subicular cells form a rigid framework of interrelated firing fields which is fit into each new enclosure. In contrast, hippocampal cells create a new "map" specific to each environment. This suggests that the hippocampal and subicular regions work together to help provide the overall cognitive mapping abilities of the animal.
Grafakos, Loukas
2014-01-01
The main goal of this text is to present the theoretical foundation of the field of Fourier analysis on Euclidean spaces. It covers classical topics such as interpolation, Fourier series, the Fourier transform, maximal functions, singular integrals, and Littlewood–Paley theory. The primary readership is intended to be graduate students in mathematics with the prerequisite including satisfactory completion of courses in real and complex variables. The coverage of topics and exposition style are designed to leave no gaps in understanding and stimulate further study. This third edition includes new Sections 3.5, 4.4, 4.5 as well as a new chapter on “Weighted Inequalities,” which has been moved from GTM 250, 2nd Edition. Appendices I and B.9 are also new to this edition. Countless corrections and improvements have been made to the material from the second edition. Additions and improvements include: more examples and applications, new and more relevant hints for the existing exercises, new exercises, and...
Fourier techniques and applications
1985-01-01
The first systematic methods of Fourier analysis date from the early eighteenth century with the work of Joseph Fourier on the problem of the flow of heat. (A brief history is contained in the first paper.) Given the initial tempera ture at all points of a region, the problem was to determine the changes in the temperature distribution over time. Understanding and predicting these changes was important in such areas as the handling of metals and the determination of geological and atmospheric temperatures. Briefly, Fourier noticed that the solution of the heat diffusion problem was simple if the initial temperature dis tribution was sinusoidal. He then asserted that any distri bution can be decomposed into a sum of sinusoids, these being the harmonics of the original function. This meant that the general solution could now be obtained by summing the solu tions of the component sinusoidal problems. This remarkable ability of the series of sinusoids to describe all "reasonable" functions, the sine qua n...
Zhang, Pudun; Unger, Miriam; Pfeifer, Frank; Siesler, Heinz W.
2016-11-01
Variable-temperature Fourier-transform infrared (FT-IR) spectra of a predominantly amorphous and a semi-crystalline poly(L-lactic acid) (PLLA) film were measured between 30 °C and 170 °C in order to investigate their temperature-dependent structural changes as a function of the initial state of order. For an in-depth analysis of the spectral variations in the carbonyl stretching band region (1803-1722 cm-1) two-dimensional correlation spectroscopy (2DCOS) and perturbation-correlation moving-window two-dimensional (PCMW2D) analyses were applied. Significant spectral changes were observed during heating of the amorphous PLLA sample whereas the semi-crystalline specimen showed only slight band shifts as a function of the external perturbation. The PCMW2D results suggested that for efficient 2DCOS analyses the heating process should be split up in two temperature intervals. These analyses then provided information on the recrystallization of the amorphous regions, the presence of an intermediate state of order and a sequence scenario for the observed spectral changes.
Local properties of Fourier series
Hüseyin Bor
2000-01-01
A theorem on local property of |N¯,pn|k summability of factored Fourier series, which generalizes some known results, and also a general theorem concerning the |N¯,pn|k summability factors of Fourier series have been proved.
Fourier-Transform Infrared Spectrometer
Schindler, R. A.
1986-01-01
Fourier-transform spectrometer provides approximately hundredfold increase in luminosity at detector plane over that achievable with older instruments of this type. Used to analyze such weak sources as pollutants and other low-concentration substances in atmosphere. Interferometer creates fringe patterns on two distinct arrays of light detectors, which observe different wavelength bands. Objective lens focuses scene on image plane, which contains optical chopper. To make instrument less susceptible to variations in scene under observation, field and detector lenses focus entrance aperture, rather that image, onto detector array.
Mapping biodiversity value worldwide: combining higher-taxon richness from different groups
Williams, P. H.; Gaston, K. J.; Humphries, C. J.
1997-01-01
Maps of large-scale biodiversity are urgently needed to guide conservation, and yet complete enumeration of organisms is impractical at present. One indirect approach is to measure richness at higher taxonomic ranks, such as families. The difficulty is how to combine information from different groups on numbers of higher taxa, when these taxa may in effect have been defined in different ways, particularly for more distantly related major groups. In this paper, the regional family richness of terrestrial and freshwater seed plants, amphibians, reptiles and mammals is mapped worldwide by combining: (i) absolute family richness; (ii) proportional family richness; and (iii) proportional family richness weighted for the total species richness in each major group. The assumptions of the three methods and their effects on the results are discussed, although for these data the broad pattern is surprisingly robust with respect to the method of combination. Scores from each of the methods of combining families are used to rank the top five richness hotspots and complementary areas, and hotspots of endemism are mapped by unweighted combination of range-size rarity scores.
Maps of interaural time difference in the chicken’s brainstem nucleus laminaris
Köppl, Christine; Carr, Catherine E.
2008-01-01
Animals, including humans, use interaural time differences (ITDs) that arise from different sound path lengths to the two ears as a cue of horizontal sound source location. The nature of the neural code for ITD is still controversial. Current models differentiate between two population codes: either a map-like rate-place code of ITD along an array of neurons, consistent with a large body of data in the barn owl, or a population rate code, consistent with data from small mammals. Recently, it ...
Fourier transforms principles and applications
Hansen, Eric W
2014-01-01
Fourier Transforms: Principles and Applications explains transform methods and their applications to electrical systems from circuits, antennas, and signal processors-ably guiding readers from vector space concepts through the Discrete Fourier Transform (DFT), Fourier series, and Fourier transform to other related transform methods. Featuring chapter end summaries of key results, over two hundred examples and four hundred homework problems, and a Solutions Manual this book is perfect for graduate students in signal processing and communications as well as practicing engineers.
Tzeng, Jeng-Yi
2014-01-01
This study examines how 98 students in Taiwan taking a typical high-school history class composed concept maps related to both an everyday concept and an academic-oriented unique concept with various degrees of freedom in concept mapping. In order to reveal the multidimensionality of history concepts, this study provided participants a 6W scaffold…
A unified Fourier theory for time-of-flight PET data
Li, Yusheng; Matej, Samuel; Metzler, Scott D.
2016-01-01
Fully 3D time-of-flight (TOF) PET scanners offer the potential of previously unachievable image quality in clinical PET imaging. TOF measurements add another degree of redundancy for cylindrical PET scanners and make photon-limited TOF-PET imaging more robust than non-TOF PET imaging. The data space for 3D TOF-PET data is five-dimensional with two degrees of redundancy. Previously, consistency equations were used to characterize the redundancy of TOF-PET data. In this paper, we first derive two Fourier consistency equations and Fourier-John equation for 3D TOF PET based on the generalized projection-slice theorem; the three partial differential equations (PDEs) are the dual of the sinogram consistency equations and John’s equation. We then solve the three PDEs using the method of characteristics. The two degrees of entangled redundancy of the TOF-PET data can be explicitly elicited and exploited by the solutions of the PDEs along the characteristic curves, which gives a complete understanding of the rich structure of the 3D x-ray transform with TOF measurement. Fourier rebinning equations and other mapping equations among different types of PET data are special cases of the general solutions. We also obtain new Fourier rebinning and consistency equations (FORCEs) from other special cases of the general solutions, and thus we obtain a complete scheme to convert among different types of PET data: 3D TOF, 3D non-TOF, 2D TOF and 2D non-TOF data. The new FORCEs can be used as new Fourier-based rebinning algorithms for TOF-PET data reduction, inverse rebinnings for designing fast projectors, or consistency conditions for estimating missing data. Further, we give a geometric interpretation of the general solutions—the two families of characteristic curves can be obtained by respectively changing the azimuthal and co-polar angles of the biorthogonal coordinates in Fourier space. We conclude the unified Fourier theory by showing that the Fourier consistency equations
A unified Fourier theory for time-of-flight PET data.
Li, Yusheng; Matej, Samuel; Metzler, Scott D
2016-01-21
Fully 3D time-of-flight (TOF) PET scanners offer the potential of previously unachievable image quality in clinical PET imaging. TOF measurements add another degree of redundancy for cylindrical PET scanners and make photon-limited TOF-PET imaging more robust than non-TOF PET imaging. The data space for 3D TOF-PET data is five-dimensional with two degrees of redundancy. Previously, consistency equations were used to characterize the redundancy of TOF-PET data. In this paper, we first derive two Fourier consistency equations and Fourier-John equation for 3D TOF PET based on the generalized projection-slice theorem; the three partial differential equations (PDEs) are the dual of the sinogram consistency equations and John's equation. We then solve the three PDEs using the method of characteristics. The two degrees of entangled redundancy of the TOF-PET data can be explicitly elicited and exploited by the solutions of the PDEs along the characteristic curves, which gives a complete understanding of the rich structure of the 3D x-ray transform with TOF measurement. Fourier rebinning equations and other mapping equations among different types of PET data are special cases of the general solutions. We also obtain new Fourier rebinning and consistency equations (FORCEs) from other special cases of the general solutions, and thus we obtain a complete scheme to convert among different types of PET data: 3D TOF, 3D non-TOF, 2D TOF and 2D non-TOF data. The new FORCEs can be used as new Fourier-based rebinning algorithms for TOF-PET data reduction, inverse rebinnings for designing fast projectors, or consistency conditions for estimating missing data. Further, we give a geometric interpretation of the general solutions--the two families of characteristic curves can be obtained by respectively changing the azimuthal and co-polar angles of the biorthogonal coordinates in Fourier space. We conclude the unified Fourier theory by showing that the Fourier consistency equations are
Differences in experiences in rockfall hazard mapping in Switzerland and Principality of Andorra
Abbruzzese, J.; Labiouse, V.
2009-04-01
The need to cope with rockfall hazard and risk led many countries to adopt proper strategies for hazard mapping and risk management, based on their own social and political constraints. The experience of every single country in facing this challenge provides useful information and possible approaches to evaluate rockfall hazard and risk. More, with particular regard to the hazard mapping process, some important points are common to many methodologies in Europe, especially as for the use of rock fall intensity-frequency diagrams to define specific hazard levels. This aspect could suggest a starting point for comparing and possibly harmonising existing methodologies. On the other hand, the results obtained from methodologies used in different countries may be difficult to be compared, first because the existing national guidelines are established as a consequence of what has been learned in each country from dealing with past rockfall events. Particularly, diverse social and political considerations do influence the definition of the threshold values of the parameters which determine a given degree of hazard, and eventually the type of land-use accepted for each hazard level. Therefore, a change in the threshold values for rockfall intensity and frequency is already enough to produce completely different zoning results even if the same methodology is applied. In relation with this issue, the paper introduces some of the current challenges and difficulties in comparing hazard mapping results in Europe and, subsequently, in the chance to develop a common standard procedure to assess the rockfall hazard. The present work is part of an on-going research project whose aim is to improve methodologies for rockfall hazard and risk mapping at the local scale, in the framework of the European Project "Mountain Risks: from prediction to management and governance", funded by the European Commission. As a reference, two approaches will be considered, proposed in Switzerland and
Evaluation of the different spectral indices to map biocrust using spectral information
Directory of Open Access Journals (Sweden)
M. Alonso
2014-12-01
Full Text Available Biological soil crusts (BSC are complex communities formed by a close association of soil particles and cyanobacteria, algae, microfungi, lichens or bryophytes that live within or immediately on top of the uppermost millimeters of the soil surface. These communities cover non vegetated areas in most of the arid and semiarid ecosystems, and modify numerous soil surface properties and ecosystem processes. Given the importance of BSC in ecosystem functioning, accurate and spatially explicit information on the distribution of BSC is mandatory. With this objective, considerable effort has been devoted to identify and map BSC using remote sensing data, and some spectral indices have been developed. These indexes use the spectral differences among BSC and other surface components like vegetation or bare soil to identify the areas dominated by BSC. Our main objective is to test the feasibility of the previous indices published in the literature for mapping different types of BSC in a complex study area, where these index have not been developed, at different spatial scales. Our results showed the low capability of indexes based on multiespectral images to identify areas covered by BSCat field and image spatial scales. Hyperspetral indices, on the other hand, showed better results than those obtained with multispectral indices, with an accuracy around 71% because they analyzed specific absorption features related with photosynthetic pigments like chlorophyll and carotenoids. We can conclude that the spatial heterogeneity of the area and the spectral similarities among BSC, green and dry vegetation or bare soil makes it difficult to correctly distinguish BSC in arid and semiarid ecosystems using only multispectral information, whereas hyperspectral images offer an important tool to map different types of BSC and to discriminate among these and other surface components.
Flood mapping using VHR satellite imagery: a comparison between different classification approaches
Franci, Francesca; Boccardo, Piero; Mandanici, Emanuele; Roveri, Elena; Bitelli, Gabriele
2016-10-01
Various regions in Europe have suffered from severe flooding over the last decades. Flood disasters often have a broad extent and a high frequency. They are considered the most devastating natural hazards because of the tremendous fatalities, injuries, property damages, economic and social disruption that they cause. In this context, Earth Observation techniques have become a key tool for flood risk and damage assessment. In particular, remote sensing facilitates flood surveying, providing valuable information, e.g. flood occurrence, intensity and progress of flood inundation, spurs and embankments affected/threatened. The present work aims to investigate the use of Very High Resolution satellite imagery for mapping flood-affected areas. The case study is the November 2013 flood event which occurred in Sardinia region (Italy), affecting a total of 2,700 people and killing 18 persons. The investigated zone extends for 28 km2 along the Posada river, from the Maccheronis dam to the mouth in the Tyrrhenian sea. A post-event SPOT6 image was processed by means of different classification methods, in order to produce the flood map of the analysed area. The unsupervised classification algorithm ISODATA was tested. A pixel-based supervised technique was applied using the Maximum Likelihood algorithm; moreover, the SPOT 6 image was processed by means of object-oriented approaches. The produced flood maps were compared among each other and with an independent data source, in order to evaluate the performance of each method, also in terms of time demand.
Heo, Yong Seok; Lee, Kyoung Mu; Lee, Sang Uk
2013-05-01
Abstract—In this paper, we propose a method that infers both accurate depth maps and color-consistent stereo images for radiometrically varying stereo images. In general, stereo matching and performing color consistency between stereo images are a chicken-and-egg problem since it is not a trivial task to simultaneously achieve both goals. Hence, we have developed an iterative framework in which these two processes can boost each other. First, we transform the input color images to log-chromaticity color space, from which a linear relationship can be established during constructing a joint pdf of transformed left and right color images. From this joint pdf, we can estimate a linear function that relates the corresponding pixels in stereo images. Based on this linear property, we present a new stereo matching cost by combining Mutual Information (MI), SIFT descriptor, and segment-based plane-fitting to robustly find correspondence for stereo image pairs which undergo radiometric variations. Meanwhile, we devise a Stereo Color Histogram Equalization (SCHE) method to produce color-consistent stereo image pairs, which conversely boost the disparity map estimation. Experimental results show that our method produces both accurate depth maps and color-consistent stereo images, even for stereo images with severe radiometric differences.
Directory of Open Access Journals (Sweden)
Haiying Liu
Full Text Available Cottonseeds are rich in various essential amino acids. However, the inheritance of them at molecular level are still not defined across various genetic systems. In the present study, using a newly developed mapping model that can analyze the embryo and maternal main effects as well as QTL × environment interaction effects on quantitative quality trait loci (QTLs in cottonseeds, a study on QTL located in the tetraploid embryo and tetraploid maternal plant genomes for essential amino acid contents in cottonseeds under different environments was carried out, using the immortal F2 (IF2 populations from a set of 188 recombinant inbred lines derived from an intraspecific hybrid cross of two upland cotton germplasms HS46 and MARKCBUCAG8US-1-88 as experimental materials. The results showed a total of 35 QTLs associated with these quality traits in cottonseeds. Nineteen QTLs were subsequently mapped on chromosome 5, 6 and 8 in sub-A genome and chromosome 15, 18, 22 and 23 in sub-D genome. Eighteen QTLs were also found having QTL × environment (QE interaction effects. The genetic main effects from QTLs located on chromosomes in the embryo and maternal plant genomes and their QE effects in different environments were all important for these essential amino acids in cottonseeds. The results suggested that the influence of environmental factors on the expression of some QTLs located in different genetic systems should be considered when improving for these amino acids. This study can serve as the foundation for the improvement of these essential amino acids in cottonseeds.
Garzón-Machado, Víctor; Otto, Rüdiger; del Arco Aguilar, Marcelino José
2014-07-01
Different spatial interpolation techniques have been applied to construct objective bioclimatic maps of La Palma, Canary Islands. Interpolation of climatic data on this topographically complex island with strong elevation and climatic gradients represents a challenge. Furthermore, meteorological stations are not evenly distributed over the island, with few stations at high elevations. We carried out spatial interpolations of the compensated thermicity index (Itc) and the annual ombrothermic Index (Io), in order to obtain appropriate bioclimatic maps by using automatic interpolation procedures, and to establish their relation to potential vegetation units for constructing a climatophilous potential natural vegetation map (CPNV). For this purpose, we used five interpolation techniques implemented in a GIS: inverse distance weighting (IDW), ordinary kriging (OK), ordinary cokriging (OCK), multiple linear regression (MLR) and MLR followed by ordinary kriging of the regression residuals. Two topographic variables (elevation and aspect), derived from a high-resolution digital elevation model (DEM), were included in OCK and MLR. The accuracy of the interpolation techniques was examined by the results of the error statistics of test data derived from comparison of the predicted and measured values. Best results for both bioclimatic indices were obtained with the MLR method with interpolation of the residuals showing the highest R2 of the regression between observed and predicted values and lowest values of root mean square errors. MLR with correction of interpolated residuals is an attractive interpolation method for bioclimatic mapping on this oceanic island since it permits one to fully account for easily available geographic information but also takes into account local variation of climatic data.
Directory of Open Access Journals (Sweden)
Xingfan ZHOU,Zengling YANG,Longjian CHEN,Lujia HAN
2016-06-01
Full Text Available Amino acids are the dominant organic components of processed animal proteins, however there has been limited investigation of differences in their composition between various protein sources. Information on these differences will not only be helpful for their further utilization but also provide fundamental information for developing species-specific identification methods. In this study, self-organizing feature maps (SOFM were used to visualize amino acid composition of fish meal, and meat and bone meal (MBM produced from poultry, ruminants and swine. SOFM display the similarities and differences in amino acid composition between protein sources and effectively improve data transparency. Amino acid composition was shown to be useful for distinguishing fish meal from MBM due to their large concentration differences between glycine, lysine and proline. However, the amino acid composition of the three MBMs was quite similar. The SOFM results were consistent with those obtained by analysis of variance and principal component analysis but more straightforward. SOFM was shown to have a robust sample linkage capacity and to be able to act as a powerful means to link different sample for further data mining.
Fourier transforms in spectroscopy
Kauppinen, Jyrki
2000-01-01
This modern approach to the subject is clearly and logically structured, and gives readers an understanding of the essence of Fourier transforms and their applications. All important aspects are included with respect to their use with optical spectroscopic data. Based on popular lectures, the authors provide the mathematical fundamentals and numerical applications which are essential in practical use. The main part of the book is dedicated to applications of FT in signal processing and spectroscopy, with IR and NIR, NMR and mass spectrometry dealt with both from a theoretical and practical poi
Feldkhun, Daniel (Inventor); Wagner, Kelvin H. (Inventor)
2013-01-01
Methods and systems are disclosed of sensing an object. A first radiation is spatially modulated to generate a structured second radiation. The object is illuminated with the structured second radiation such that the object produces a third radiation in response. Apart from any spatially dependent delay, a time variation of the third radiation is spatially independent. With a single-element detector, a portion of the third radiation is detected from locations on the object simultaneously. At least one characteristic of a sinusoidal spatial Fourier-transform component of the object is estimated from a time-varying signal from the detected portion of the third radiation.
Fast Fourier transform telescope
Tegmark, Max; Zaldarriaga, Matias
2009-04-01
We propose an all-digital telescope for 21 cm tomography, which combines key advantages of both single dishes and interferometers. The electric field is digitized by antennas on a rectangular grid, after which a series of fast Fourier transforms recovers simultaneous multifrequency images of up to half the sky. Thanks to Moore’s law, the bandwidth up to which this is feasible has now reached about 1 GHz, and will likely continue doubling every couple of years. The main advantages over a single dish telescope are cost and orders of magnitude larger field-of-view, translating into dramatically better sensitivity for large-area surveys. The key advantages over traditional interferometers are cost (the correlator computational cost for an N-element array scales as Nlog2N rather than N2) and a compact synthesized beam. We argue that 21 cm tomography could be an ideal first application of a very large fast Fourier transform telescope, which would provide both massive sensitivity improvements per dollar and mitigate the off-beam point source foreground problem with its clean beam. Another potentially interesting application is cosmic microwave background polarization.
Hackel, L.A.; Hermann, M.R.; Dane, C.B.; Tiszauer, D.H.
1995-12-12
A solid state laser is frequency tripled to 0.3 {micro}m. A small portion of the laser is split off and generates a Stokes seed in a low power oscillator. The low power output passes through a mask with the appropriate hole pattern. Meanwhile, the bulk of the laser output is focused into a larger stimulated Brillouin scattering (SBS) amplifier. The low power beam is directed through the same cell in the opposite direction. The majority of the amplification takes place at the focus which is the fourier transform plane of the mask image. The small holes occupy large area at the focus and thus are preferentially amplified. The amplified output is now imaged onto the multichip module where the holes are drilled. Because of the fourier plane amplifier, only about 1/10th the power of a competitive system is needed. This concept allows less expensive masks to be used in the process and requires much less laser power. 1 fig.
Hackel, Lloyd A.; Hermann, Mark R.; Dane, C. Brent; Tiszauer, Detlev H.
1995-01-01
A solid state laser is frequency tripled to 0.3 .mu.m. A small portion of the laser is split off and generates a Stokes seed in a low power oscillator. The low power output passes through a mask with the appropriate hole pattern. Meanwhile, the bulk of the laser output is focused into a larger stimulated Brillouin scattering (SBS) amplifier. The low power beam is directed through the same cell in the opposite direction. The majority of the amplification takes place at the focus which is the fourier transform plane of the mask image. The small holes occupy large area at the focus and thus are preferentially amplified. The amplified output is now imaged onto the multichip module where the holes are drilled. Because of the fourier plane amplifier, only .about.1/10th the power of a competitive system is needed. This concept allows less expensive masks to be used in the process and requires much less laser power.
Comparing different stimulus configurations for population receptive field mapping in human fMRI
Directory of Open Access Journals (Sweden)
Ivan eAlvarez
2015-02-01
Full Text Available Population receptive field (pRF mapping is a widely used approach to measuring aggregate human visual receptive field properties by recording non-invasive signals using functional MRI. Despite growing interest, no study to date has systematically investigated the effects of different stimulus configurations on pRF estimates from human visual cortex. Here we compared the effects of three different stimulus configurations on a model-based approach to pRF estimation: size-invariant bars and eccentricity-scaled bars defined in Cartesian coordinates and traveling along the cardinal axes, and a novel simultaneous ‘wedge and ring’ stimulus defined in polar coordinates, systematically covering polar and eccentricity axes. We found that the presence or absence of eccentricity scaling had a significant effect on goodness of fit and pRF size estimates. Further, variability in pRF size estimates was directly influenced by stimulus configuration, particularly for higher visual areas including V5/MT+. Finally, we compared eccentricity estimation between phase-encoded and model-based pRF approaches. We observed a tendency for more peripheral eccentricity estimates using phase-encoded methods, independent of stimulus size. We conclude that both eccentricity scaling and polar rather than Cartesian stimulus configuration are important considerations for optimal experimental design in pRF mapping. While all stimulus configurations produce adequate estimates, simultaneous wedge and ring stimulation produced higher fit reliability, with a significant advantage in reduced acquisition time.
QTL mapping for combining ability in different population-based NCII designs: a simulation study.
Li, Lanzhi; Sun, Congwei; Chen, Yuan; Dai, Zhijun; Qu, Zhen; Zheng, Xingfei; Yu, Sibin; Mou, Tongmin; Xu, Chenwu; Hu, Zhongli
2013-12-01
The NCII design (North Carolina mating design II) has been widely applied in studies of combining ability and heterosis. The objective of our research was to estimate how different base populations, sample sizes, testcross numbers and heritability influence QTL analyses of combining ability and heterosis. A series of Monte Carlo simulation experiments with QTL mapping were then conducted for the base population performance, testcross population phenotypic values and the general combining ability (GCA), specific combining ability (SCA) and Hmp (midparental heterosis) datasets. The results indicated that: (i) increasing the number of testers did not necessarily enhance the QTL detection power for GCA, but it was significantly related to the QTL effect. (ii) The QTLs identified in the base population may be different from those from GCA dataset. Similar phenomena can be seen from QTL detected in SCA and Hmp datasets. (iii) The QTL detection power for GCA ranked in the order of DH(RIL) based > F2 based > BC based NCII design, when the heritability was low. The recombinant inbred lines (RILs) (or DHs) allows more recombination and offers higher mapping resolution than other populations. Further, their testcross progeny can be repeatedly generated and phenotyped. Thus, RIL based (or DH based) NCII design was highly recommend for combining ability QTL analysis. Our results expect to facilitate selecting elite parental lines with high combining ability and for geneticists to research the genetic basis of combining ability.
Gala, Alan; Ohmacht, Martin
2014-09-02
A multiprocessor system includes nodes. Each node includes a data path that includes a core, a TLB, and a first level cache implementing disambiguation. The system also includes at least one second level cache and a main memory. For thread memory access requests, the core uses an address associated with an instruction format of the core. The first level cache uses an address format related to the size of the main memory plus an offset corresponding to hardware thread meta data. The second level cache uses a physical main memory address plus software thread meta data to store the memory access request. The second level cache accesses the main memory using the physical address with neither the offset nor the thread meta data after resolving speculation. In short, this system includes mapping of a virtual address to a different physical addresses for value disambiguation for different threads.
Kaźmierczak-Bałata, Anna; Juszczyk, Justyna; Trefon-Radziejewska, Dominika; Bodzenta, Jerzy
2017-03-01
The purpose of this work is to investigate the influence of a temperature difference through a probe-sample contact on thermal contrast in Scanning Thermal Microscopy imaging. A variety of combinations of temperature differences in the probe-sample system were first analyzed based on an electro-thermal finite element model. The numerical analysis included cooling the sample, as well as heating the sample and the probe. Due to the simplicity in the implementation, experimental verification involved modifying the standard imaging technique by heating the sample. Experiments were carried out in the temperature range between 298 K and 328 K. Contrast in thermal mapping was improved for a low probe current with a heated sample.
Predicting and Mapping Soil Carbon Using Visible Near Infrared Spectroscopy at Different Scales
DEFF Research Database (Denmark)
Deng, Fan
Sciences (FTP), was to determine the potential of Vis-NIR for predicting SOC at field scale and national scale. Specifically, the first two objectives were to investigate the effects of different spectral data pretreatment and of soil moisture content on the calibration of Vis-NIR spectra to SOC content....... The third objective was to test whether SOC calibration models built for different subdivisions of the Danish soil spectral library according to pedological or geological stratification would improve estimation of SOC content from Vis-NIR scans. The fourth objective was to explore the use of Vis......-NIR for monitoring temporal changes in SOC in a wide range of soils in Denmark. The fifth objective was to investigate the use of Vis-NIR for estimating SOC distribution in soil profiles as the basis for mapping SOC in three dimensions at the field scale. The soils used in this work included samples from a national...
Fourier Transform Spectrometer System
Campbell, Joel F. (Inventor)
2014-01-01
A Fourier transform spectrometer (FTS) data acquisition system includes an FTS spectrometer that receives a spectral signal and a laser signal. The system further includes a wideband detector, which is in communication with the FTS spectrometer and receives the spectral signal and laser signal from the FTS spectrometer. The wideband detector produces a composite signal comprising the laser signal and the spectral signal. The system further comprises a converter in communication with the wideband detector to receive and digitize the composite signal. The system further includes a signal processing unit that receives the composite signal from the converter. The signal processing unit further filters the laser signal and the spectral signal from the composite signal and demodulates the laser signal, to produce velocity corrected spectral data.
Impact of different NWM-derived mapping functions on VLBI and GNSS analysis
Nikolaidou, Thalia; Balidakis, Kyriakos; Nievinski, Felipe; Mendonça, Marco; Santos, Marcelo; Schuh, Harald
2016-04-01
In this study, the issue of the tropospheric mapping functions (MF) employed for VLBI and GNSS data analysis is addressed. IERS Conventions (2010) recommend for standard operational solutions, the use of MF based on numerical weather models (NWM) to improve troposphere modeling. The Vienna Mapping Functions 1 (VMF1) map the atmospheric delay from zenith to the line of sight as an elevation dependent function and are capable of better accounting for real weather phenomena compared to MF without NWM input data. However, the spatial resolution of the NWM itself, directly impacts the ability to model atmospheric conditions effectively. Therefore, we employ the UNB-VMF1 which utilize the high resolution model from the Canadian Meteorological Centre based on the Global Deterministic Prediction System (CMC GDPS). The latter, as a modern operational model, contains the latest application of atmospheric physics and parameterizations and is relieved from spatially based systematic effects. For our investigations, we analyze all rapid turnaround VLBI experiments spanning a five year period using the VieVS@GFZ software, as well as the entire data set from IGS sites that observed at the same interval using GAPS: UNB Precise Point Positioning software. Using the independent UNB ray-tracing algorithm we derive hydrostatic and wet "a" coefficients of MF as well as zenith delays from ray-tracing in CMC NWM. The solutions we produced differ only in the choice of the MF. The VLBI and GNSS analysis are fully consistent. The comparison is conducted on both global and local parameters (station positions and velocities, Earth rotation parameters, zenith wet delays and first order tropospheric gradients) between VLBI and GNSS derived products as well as between employing VMF1 (ECMWF operational analysis) and UNB-VMF1 (CMC).
Alexandrov, Mikhail D.; Cairns, Brian; Mishchenko, Michael I.
2012-01-01
We present a novel technique for remote sensing of cloud droplet size distributions. Polarized reflectances in the scattering angle range between 135deg and 165deg exhibit a sharply defined rainbow structure, the shape of which is determined mostly by single scattering properties of cloud particles, and therefore, can be modeled using the Mie theory. Fitting the observed rainbow with such a model (computed for a parameterized family of particle size distributions) has been used for cloud droplet size retrievals. We discovered that the relationship between the rainbow structures and the corresponding particle size distributions is deeper than it had been commonly understood. In fact, the Mie theory-derived polarized reflectance as a function of reduced scattering angle (in the rainbow angular range) and the (monodisperse) particle radius appears to be a proxy to a kernel of an integral transform (similar to the sine Fourier transform on the positive semi-axis). This approach, called the rainbow Fourier transform (RFT), allows us to accurately retrieve the shape of the droplet size distribution by the application of the corresponding inverse transform to the observed polarized rainbow. While the basis functions of the proxy-transform are not exactly orthogonal in the finite angular range, this procedure needs to be complemented by a simple regression technique, which removes the retrieval artifacts. This non-parametric approach does not require any a priori knowledge of the droplet size distribution functional shape and is computationally fast (no look-up tables, no fitting, computations are the same as for the forward modeling).
Scarfone, A. M.
2017-08-01
We present a new formulation of Fourier transform in the picture of the κ-algebra derived in the framework of the κ-generalized statistical mechanics. The κ-Fourier transform is obtained from a κ-Fourier series recently introduced by Scarfone (2013). The kernel of this transform, that reduces to the usual exponential phase in the κ → 0 limit, is composed by a κ-deformed phase and a damping factor that gives a wavelet-like behaviour. We show that the κ-Fourier transform is isomorph to the standard Fourier transform through a changing of time and frequency variables. Nevertheless, the new formalism is useful to study, according to Fourier analysis, those functions defined in the realm of the κ-algebra. As a relevant application, we discuss the central limit theorem for the κ-sum of n-iterate statistically independent random variables.
Quadrature formulas for Fourier coefficients
Bojanov, Borislav
2009-09-01
We consider quadrature formulas of high degree of precision for the computation of the Fourier coefficients in expansions of functions with respect to a system of orthogonal polynomials. In particular, we show the uniqueness of a multiple node formula for the Fourier-Tchebycheff coefficients given by Micchelli and Sharma and construct new Gaussian formulas for the Fourier coefficients of a function, based on the values of the function and its derivatives. © 2009 Elsevier B.V. All rights reserved.
Refinement of Fourier Coefficients from the Stokes Deconvoluted Profile
Institute of Scientific and Technical Information of China (English)
无
2002-01-01
Computer-aided experimental technique was used to study the Stokes deconvolution of X-ray diffraction profile.Considerable difference can be found between the Fourier coefficients obtained from the deconvolutions of singlet and doublet experimental profiles. Nevertheless, the resultant physical profiles corresponding to singlet and doublet profiles are identical. An approach is proposed to refine the Fourier coefficients, and the refined Fourier coefficients coincide well with that obtained from the deconvolution of singlet experimental profile.
Hilger, Ludwig; Becht, Michael; Heckmann, Tobias
2014-05-01
In alpine catchments sediment is moved from one landform to another as long as they are coupled by the activity of geomorphic processes. The spatial and functional interaction of these processes forms sediment cascades reaching from sediment sources or stores to sediment sinks, and ultimately to the catchment outlet. In study presented here, multitemporal high-resolution LiDAR datasets are used to establish morphological sediment budgets. These can be calculated on the raster cell scale, i.e. by differencing digital elevation models (DEM), and on the landform scale, by establishing the net balance of eroded and accumulated material; in the latter case, the spatial unit is a polygon identifying a particular landform on a detailed geomorphological map. The flow of mobilised sediment can be estimated on a DEM using a variety of flow routing algorithms, and the net balance (sediment eroded - sediment deposited) is accumulated along specific pathways. The results of landform-based sediment budgets can be used to validate the flow routing algorithms and to assess functional connectivity between landforms that are arranged along a toposequence. Graph theory is used to store and investigate resulting sediment pathways on different aggregation levels. The incorporation of the geomorphological map highlights potential advantages of object-based over pixel-based approaches to generating graph nodes and analysing sediment cascades.
The Identity Mapping Project: Demographic differences in patterns of distributed identity.
Gilbert, Richard L; Dionisio, John David N; Forney, Andrew; Dorin, Philip
2015-01-01
The advent of cloud computing and a multi-platform digital environment is giving rise to a new phase of human identity called "The Distributed Self." In this conception, aspects of the self are distributed into a variety of 2D and 3D digital personas with the capacity to reflect any number of combinations of now malleable personality traits. In this way, the source of human identity remains internal and embodied, but the expression or enactment of the self becomes increasingly external, disembodied, and distributed on demand. The Identity Mapping Project (IMP) is an interdisciplinary collaboration between psychology and computer Science designed to empirically investigate the development of distributed forms of identity. Methodologically, it collects a large database of "identity maps" - computerized graphical representations of how active someone is online and how their identity is expressed and distributed across 7 core digital domains: email, blogs/personal websites, social networks, online forums, online dating sites, character based digital games, and virtual worlds. The current paper reports on gender and age differences in online identity based on an initial database of distributed identity profiles.
Masked object registration in the Fourier domain.
Padfield, Dirk
2012-05-01
Registration is one of the most common tasks of image analysis and computer vision applications. The requirements of most registration algorithms include large capture range and fast computation so that the algorithms are robust to different scenarios and can be computed in a reasonable amount of time. For these purposes, registration in the Fourier domain using normalized cross-correlation is well suited and has been extensively studied in the literature. Another common requirement is masking, which is necessary for applications where certain regions of the image that would adversely affect the registration result should be ignored. To address these requirements, we have derived a mathematical model that describes an exact form for embedding the masking step fully into the Fourier domain so that all steps of translation registration can be computed efficiently using Fast Fourier Transforms. We provide algorithms and implementation details that demonstrate the correctness of our derivations. We also demonstrate how this masked FFT registration approach can be applied to improve the Fourier-Mellin algorithm that calculates translation, rotation, and scale in the Fourier domain. We demonstrate the computational efficiency, advantages, and correctness of our algorithm on a number of images from real-world applications. Our framework enables fast, global, parameter-free registration of images with masked regions.
Yang, Dixiong; Liu, Zhenjun; Zhou, Jilei
2014-04-01
Chaos optimization algorithms (COAs) usually utilize the chaotic map like Logistic map to generate the pseudo-random numbers mapped as the design variables for global optimization. Many existing researches indicated that COA can more easily escape from the local minima than classical stochastic optimization algorithms. This paper reveals the inherent mechanism of high efficiency and superior performance of COA, from a new perspective of both the probability distribution property and search speed of chaotic sequences generated by different chaotic maps. The statistical property and search speed of chaotic sequences are represented by the probability density function (PDF) and the Lyapunov exponent, respectively. Meanwhile, the computational performances of hybrid chaos-BFGS algorithms based on eight one-dimensional chaotic maps with different PDF and Lyapunov exponents are compared, in which BFGS is a quasi-Newton method for local optimization. Moreover, several multimodal benchmark examples illustrate that, the probability distribution property and search speed of chaotic sequences from different chaotic maps significantly affect the global searching capability and optimization efficiency of COA. To achieve the high efficiency of COA, it is recommended to adopt the appropriate chaotic map generating the desired chaotic sequences with uniform or nearly uniform probability distribution and large Lyapunov exponent.
Methods of Fourier analysis and approximation theory
Tikhonov, Sergey
2016-01-01
Different facets of interplay between harmonic analysis and approximation theory are covered in this volume. The topics included are Fourier analysis, function spaces, optimization theory, partial differential equations, and their links to modern developments in the approximation theory. The articles of this collection were originated from two events. The first event took place during the 9th ISAAC Congress in Krakow, Poland, 5th-9th August 2013, at the section “Approximation Theory and Fourier Analysis”. The second event was the conference on Fourier Analysis and Approximation Theory in the Centre de Recerca Matemàtica (CRM), Barcelona, during 4th-8th November 2013, organized by the editors of this volume. All articles selected to be part of this collection were carefully reviewed.
Tiwari, Saumya; Zong, Xinying; Holton, Sarah E.; Prasanth, K. V.; Bhargava, Rohit
2015-03-01
Determination of neoplasia is largely dependent on the state of cell growth. Infrared (IR) spectroscopy has the potential to measure differences between normal and cancerous cells. When analyzing biopsy sections using IR spectroscopy, careful analyses become important since biochemical variations may be misinterpreted due to variations in cell cycle. Processes like DNA replication, transcription and translation to produce proteins are important in determining if the cells are actively dividing but no studies on this aspect using IR spectroscopy have been conducted on isolated cell nuclei. Nuclei hold critical information about the phase of cell and its capacity to divide, but IR spectra of nuclei are often confounded by cytoplasmic signals during data acquisition from intact cells and tissues. Therefore, we sought to separate nuclear signals from cytoplasmic signals and identify spectral differences that characterize different phases of the cell cycle. Both cells and isolated nuclei were analyzed to assess the effect of the cytoplasmic background and to identify spectral changes in nuclei in different phases of cell cycle. We observed that signals of DNA could be obtained when imaging nuclei isolated from cells in different phases of cell cycle, which is in contrast to the oft-cited case in cells wherein nuclear contributions are obscured. The differences across cell cycle phases were more pronounced in nucleic acid regions of the spectra, showing that the use of nuclear spectrum can provide additional information on cellular state. These results can aid in developing computational models that extract nuclear spectra from whole cells and tissues for more accurate assessment of biochemical variations.
Predicting and Mapping Soil Carbon Using Visible Near Infrared Spectroscopy at Different Scales
DEFF Research Database (Denmark)
Deng, Fan
. The third objective was to test whether SOC calibration models built for different subdivisions of the Danish soil spectral library according to pedological or geological stratification would improve estimation of SOC content from Vis-NIR scans. The fourth objective was to explore the use of Vis......-NIR for monitoring temporal changes in SOC in a wide range of soils in Denmark. The fifth objective was to investigate the use of Vis-NIR for estimating SOC distribution in soil profiles as the basis for mapping SOC in three dimensions at the field scale. The soils used in this work included samples from a national......-2500 nm) using a Muglight as the light source. Following this, five types of spectra pretreatment techniques, namely multiplicative scatter correction (MSC), standard normal variate (SNV), detrending, moving average smoothing and Savitzky-Golay derivation, were used to remove noise from the spectra...
Neural maps of interaural time and intensity differences in the optic tectum of the barn owl.
Olsen, J F; Knudsen, E I; Esterly, S D
1989-07-01
This report describes the binaural basis of the auditory space map in the optic tectum of the barn owl (Tyto alba). Single units were recorded extracellularly in ketamine-anesthetized birds. Unit tuning for interaural differences in timing and intensity of wideband noise was measured using digitally synthesized sound presented through earphones. Spatial receptive fields of the same units were measured with a free field sound source. Auditory units in the optic tectum are sharply tuned for both the azimuth and the elevation of a free field sound source. To determine the binaural cues that could be responsible for this spatial tuning, we measured in the ear canals the amplitude and phase spectra produced by a free field noise source and calculated from these measurements the interaural differences in time and intensity associated with each of 178 locations throughout the frontal hemisphere. For all frequencies, interaural time differences (ITDs) varied systematically and most strongly with source azimuth. The pattern of variation of interaural intensity differences (IIDs) depended on frequency. For low frequencies (below 4 kHz) IID varied primarily with source azimuth, whereas for high frequencies (above 5 kHz) IID varied primarily with source elevation. Tectal units were tuned for interaural differences in both time and intensity of dichotic stimuli. Changing either parameter away from the best value for the unit decreased the unit's response. The tuning of units to either parameter was sharp: the width of ITD tuning curves, measured at 50% of the maximum response with IID held constant (50% tuning width), ranged from 18 to 82 microsecs. The 50% tuning widths of IID tuning curves, measured with ITD held constant, ranged from 8 to 37 dB. For most units, tuning for ITD was largely independent of IID, and vice versa. A few units exhibited systematic shifts of the best ITD with changes in IID (or shifts of the best IID with changes in ITD); for these units, a change in
Mapping soil resistance under different soil water content conditions using indicator kriging
Miras-Avalos, J. M.; Bonnin-Acosta, J.; Sande-Fouz, P.; Pereira-Lanças, K.; Paz-Gonzalez, A.
2009-04-01
In many agricultural problems, it is of interest to map the zones where the variable under study shows the probability of being greater than a threshold value. Soil resistances higher than 2 MPa might difficult the establishment of cultures; therefore, further management or tillage techniques should be undertaken. The aim of this work was to map soil resistance using geostatistical techniques, therefore, an analysis of the spatial distribution of soil compaction and the influence of soil water content on the resistance to penetration was carried out. The studied clay-textured soil was managed under no-tillage practices. Soil resistance was described by the cone index which was obtained using a penetrometer. This attribute was assessed at 5 different depths, i.e. 0-10 cm, 10-20 cm, 20-30 cm, 30-40 cm and deeper than 40 cm, whereas soil water content was described at 0-20 cm and 20-40 cm. In the end, 73 data points were surveyed. Soil water conditions varied during the five different samplings. Statistical analysis showed that datasets followed a normal distribution, therefore, no transformation was required. Studied attributes showed low and non-significant correlation coefficients which impeded the application of cross-variogram and cokriging techniques. Because of the limited number of measured data, only the omnidirectional semivariogram was computed, and hence the spatial variability is assumed to be identical in all directions. Spatial dependence was observed in 33 out of 35 data series, both for cone index and soil water content. Fitted theoretical structures corresponded to exponential models in 20 cases, 10 Gaussian models and 3 spherical models. Nugget effect varied from 0 to 44.4 depending on the dataset and spatial dependence maximum range was 90 m. A strong spatial dependence was observed in 18 of the data sets whereas only 2 showed a weak autocorrelation. Taking into account the 2 MPa threshold, indicator kriging was used to map the soil resistance
Sanhouse-García, Antonio J.; Rangel-Peraza, Jesús Gabriel; Bustos-Terrones, Yaneth; García-Ferrer, Alfonso; Mesas-Carrascosa, Francisco J.
2016-02-01
Land cover classification is often based on different characteristics between their classes, but with great homogeneity within each one of them. This cover is obtained through field work or by mean of processing satellite images. Field work involves high costs; therefore, digital image processing techniques have become an important alternative to perform this task. However, in some developing countries and particularly in Casacoima municipality in Venezuela, there is a lack of geographic information systems due to the lack of updated information and high costs in software license acquisition. This research proposes a low cost methodology to develop thematic mapping of local land use and types of coverage in areas with scarce resources. Thematic mapping was developed from CBERS-2 images and spatial information available on the network using open source tools. The supervised classification method per pixel and per region was applied using different classification algorithms and comparing them among themselves. Classification method per pixel was based on Maxver algorithms (maximum likelihood) and Euclidean distance (minimum distance), while per region classification was based on the Bhattacharya algorithm. Satisfactory results were obtained from per region classification, where overall reliability of 83.93% and kappa index of 0.81% were observed. Maxver algorithm showed a reliability value of 73.36% and kappa index 0.69%, while Euclidean distance obtained values of 67.17% and 0.61% for reliability and kappa index, respectively. It was demonstrated that the proposed methodology was very useful in cartographic processing and updating, which in turn serve as a support to develop management plans and land management. Hence, open source tools showed to be an economically viable alternative not only for forestry organizations, but for the general public, allowing them to develop projects in economically depressed and/or environmentally threatened areas.
Atzberger, Clement; Darvishzadeh, Roshanak; Immitzer, Markus; Schlerf, Martin; Skidmore, Andrew; le Maire, Guerric
2015-12-01
Fine scale maps of vegetation biophysical variables are useful status indicators for monitoring and managing national parks and endangered habitats. Here, we assess in a comparative way four different retrieval methods for estimating leaf area index (LAI) in grassland: two radiative transfer model (RTM) inversion methods (one based on look-up-tables (LUT) and one based on predictive equations) and two statistical modelling methods (one partly, the other entirely based on in situ data). For prediction, spectral data were used that had been acquired over Majella National Park in Italy by the airborne hyperspectral HyMap instrument. To assess the performance of the four investigated models, the normalized root mean squared error (nRMSE) and coefficient of determination (R2) between estimates and in situ LAI measurements are reported (n = 41). Using a jackknife approach, we also quantified the accuracy and robustness of empirical models as a function of the size of the available calibration data set. The results of the study demonstrate that the LUT-based RTM inversion yields higher accuracies for LAI estimation (R2 = 0.91, nRMSE = 0.18) as compared to RTM inversions based on predictive equations (R2 = 0.79, nRMSE = 0.38). The two statistical methods yield accuracies similar to the LUT method. However, as expected, the accuracy and robustness of the statistical models decrease when the size of the calibration database is reduced to fewer samples. The results of this study are of interest for the remote sensing community developing improved inversion schemes for spaceborne hyperspectral sensors applicable to different vegetation types. The examples provided in this paper may also serve as illustrations for the drawbacks and advantages of physical and empirical models.
Efficient Option Pricing Methods Based on Fourier Series Expansions
Institute of Scientific and Technical Information of China (English)
Deng DING; Sio Chong U
2011-01-01
A novel option pricing method based on Fourier-cosine series expansion was proposed by Fang and Oosterlee. Developing their idea, three new option pricing methods based on Fourier, Fourier-cosine and Fourier-sine series expansions are presented in this paper, which are more efficient when the option prices are calculated with many strike prices. A series of numerical experiments under different exp-Lévy models are also given to compare these new methods with the Fang and Oosterlee's method and other methods.
Wang, Weihao; Dong, Hongjing; Yan, Renyi; Li, Hua; Li, Pengyue; Chen, Ping; Yang, Bin; Wang, Zhimin
2015-01-01
Poria cocos (Schw.) Wolf is widely used as a traditional Chinese medicine, and approximately 10% of traditional Chinese medicinal preparations contain this material, according to the Chinese Pharmacopoeia (2010 edition). Although the epidermis (fulingpi in Chinese, or FLP) and the inner parts (baifuling in Chinese, or BFL) of P. cocos had different therapeutic applications in history, studies pertaining to a comparative analysis of their chemical constituents have been scarce. UHPLC-DAD-FT/MS(n) has been used in the current study to identify the triterpene acids present in fungus based on a detailed analysis of the fragmentation behavior of 13 standard compounds. This analysis allowed for the identification of 27 triterpene acids, including five groups of isomers and four potential new compounds. Furthermore, a UHPLC-MS/MS method has been developed for quantifying the amounts of nine bioactive triterpene acids in samples of the FLP and BFL, including three 3,4-seco-lanostane-type triterpene acids. These results revealed significant differences in the amounts of these compounds in the FLP and BFL samples. Principal component analysis and partial least squares discriminant analysis of the results for the FLP and BFL samples clearly demonstrated that dehydrotumulosic acid, trametenolic acid, dehydrotrametenolic acid and poricoic acid A were the main compounds contributing to the clusters in FLP and BFL. The observed differences in the chemical compositions of FLP and BFL could provide some explanation of the differences in their clinic applications. This study represents the first reported comprehensive analysis of lanostane-type triterpene acids in FLP and BFL parts of P. cocos.
Reflective Fourier ptychography.
Pacheco, Shaun; Zheng, Guoan; Liang, Rongguang
2016-02-01
The Fourier ptychography technique in reflection mode has great potential applications in tissue imaging and optical inspection, but the current configuration either has a limitation on cut-off frequency or is not practical. By placing the imaging aperture stop outside the illumination path, the illumination numerical aperture (NA) can be greater than the imaging NA of the objective lens. Thus, the cut-off frequency achieved in the proposed optical system is greater than twice the objective's NA divided by the wavelength (2NAobj/λ ), which is the diffraction limit for the cut-off frequency in an incoherent epi-illumination configuration. We experimentally demonstrated that the synthesized NA is increased by a factor of 4.5 using the proposed optical concept. The key advantage of the proposed system is that it can achieve high-resolution imaging over a large field of view with a simple objective. It will have a great potential for applications in endoscopy, biomedical imaging, surface metrology, and industrial inspection.
Grafakos, Loukas
2014-01-01
This text is addressed to graduate students in mathematics and to interested researchers who wish to acquire an in depth understanding of Euclidean Harmonic analysis. The text covers modern topics and techniques in function spaces, atomic decompositions, singular integrals of nonconvolution type, and the boundedness and convergence of Fourier series and integrals. The exposition and style are designed to stimulate further study and promote research. Historical information and references are included at the end of each chapter. This third edition includes a new chapter entitled "Multilinear Harmonic Analysis" which focuses on topics related to multilinear operators and their applications. Sections 1.1 and 1.2 are also new in this edition. Numerous corrections have been made to the text from the previous editions and several improvements have been incorporated, such as the adoption of clear and elegant statements. A few more exercises have been added with relevant hints when necessary. Reviews fr...
POINTWISE FOURIER INVERSION OF DISTRIBUTIONS
Institute of Scientific and Technical Information of China (English)
F.J.González Vieli
2008-01-01
We show that,given a tempered distribution T whose Fourier transform is a function of polynomial growth and a point x in Rn at which T has the value τ(in the sense of Lojasiewicz),the Fourier integral of T at x is summable in Bochner-Riesz means to τ.
Wavelet-fractional Fourier transforms
Institute of Scientific and Technical Information of China (English)
Yuan Lin
2008-01-01
This paper extends the definition of fractional Fourier transform (FRFT) proposed by Namias V by using other orthonormal bases for L2 (R) instead of Hermite-Ganssian functions.The new orthonormal basis is gained indirectly from multiresolution analysis and orthonormal wavelets. The so defined FRFT is called wavelets-fractional Fourier transform.
Fourier-based linear systems description of free-breathing pulmonary magnetic resonance imaging
Capaldi, D. P. I.; Svenningsen, S.; Cunningham, I. A.; Parraga, G.
2015-03-01
Fourier-decomposition of free-breathing pulmonary magnetic resonance imaging (FDMRI) was recently piloted as a way to provide rapid quantitative pulmonary maps of ventilation and perfusion without the use of exogenous contrast agents. This method exploits fast pulmonary MRI acquisition of free-breathing proton (1H) pulmonary images and non-rigid registration to compensate for changes in position and shape of the thorax associated with breathing. In this way, ventilation imaging using conventional MRI systems can be undertaken but there has been no systematic evaluation of fundamental image quality measurements based on linear systems theory. We investigated the performance of free-breathing pulmonary ventilation imaging using a Fourier-based linear system description of each operation required to generate FDMRI ventilation maps. Twelve subjects with chronic obstructive pulmonary disease (COPD) or bronchiectasis underwent pulmonary function tests and MRI. Non-rigid registration was used to co-register the temporal series of pulmonary images. Pulmonary voxel intensities were aligned along a time axis and discrete Fourier transforms were performed on the periodic signal intensity pattern to generate frequency spectra. We determined the signal-to-noise ratio (SNR) of the FDMRI ventilation maps using a conventional approach (SNRC) and using the Fourier-based description (SNRF). Mean SNR was 4.7 ± 1.3 for subjects with bronchiectasis and 3.4 ± 1.8, for COPD subjects (p>.05). SNRF was significantly different than SNRC (p<.01). SNRF was approximately 50% of SNRC suggesting that the linear system model well-estimates the current approach.
Zhang, Fang; Zhu, Jing; Song, Qiang; Yue, Weirui; Liu, Jingdan; Wang, Jian; Situ, Guohai; Huang, Huijie
2015-10-20
In general, Fourier transform lenses are considered as ideal in the design algorithms of diffractive optical elements (DOEs). However, the inherent aberrations of a real Fourier transform lens disturb the far field pattern. The difference between the generated pattern and the expected design will impact the system performance. Therefore, a method for modifying the Fourier spectrum of DOEs without introducing other optical elements to reduce the aberration effect of the Fourier transform lens is proposed. By applying this method, beam shaping performance is improved markedly for the optical system with a real Fourier transform lens. The experiments carried out with a commercial Fourier transform lens give evidence for this method. The method is capable of reducing the system complexity as well as improving its performance.
Digital Fourier analysis advanced techniques
Kido, Ken'iti
2015-01-01
This textbook is a thorough, accessible introduction to advanced digital Fourier analysis for advanced undergraduate and graduate students. Assuming knowledge of the Fast Fourier Transform, this book covers advanced topics including the Hilbert transform, cepstrum analysis, and the two-dimensional Fourier transform. Saturated with clear, coherent illustrations, "Digital Fourier Analysis - Advanced Techniques" includes practice problems and thorough Appendices. As a central feature, the book includes interactive applets (available online) that mirror the illustrations. These user-friendly applets animate concepts interactively, allowing the user to experiment with the underlying mathematics. The applet source code in Visual Basic is provided online, enabling advanced students to tweak and change the programs for more sophisticated results. A complete, intuitive guide, "Digital Fourier Analysis - Advanced Techniques" is an essential reference for students in science and engineering.
Love, Jeffrey J.; Coïsson, Pierdavide; Pulkkinen, Antti
2016-05-01
Analysis is made of the long-term statistics of three different measures of ground level, storm time geomagnetic activity: instantaneous 1 min first differences in horizontal intensity ΔBh, the root-mean-square of 10 consecutive 1 min differences S, and the ramp change R over 10 min. Geomagnetic latitude maps of the cumulative exceedances of these three quantities are constructed, giving the threshold (nT/min) for which activity within a 24 h period can be expected to occur once per year, decade, and century. Specifically, at geomagnetic 55°, we estimate once-per-century ΔBh, S, and R exceedances and a site-to-site, proportional, 1 standard deviation range [1 σ, lower and upper] to be, respectively, 1000, [690, 1450]; 500, [350, 720]; and 200, [140, 280] nT/min. At 40°, we estimate once-per-century ΔBh, S, and R exceedances and 1 σ values to be 200, [140, 290]; 100, [70, 140]; and 40, [30, 60] nT/min.
Maps of interaural time difference in the chicken's brainstem nucleus laminaris.
Köppl, Christine; Carr, Catherine E
2008-06-01
Animals, including humans, use interaural time differences (ITDs) that arise from different sound path lengths to the two ears as a cue of horizontal sound source location. The nature of the neural code for ITD is still controversial. Current models differentiate between two population codes: either a map-like rate-place code of ITD along an array of neurons, consistent with a large body of data in the barn owl, or a population rate code, consistent with data from small mammals. Recently, it was proposed that these different codes reflect optimal coding strategies that depend on head size and sound frequency. The chicken makes an excellent test case of this proposal because its physical prerequisites are similar to small mammals, yet it shares a more recent common ancestry with the owl. We show here that, like in the barn owl, the brainstem nucleus laminaris in mature chickens displayed the major features of a place code of ITD. ITD was topographically represented in the maximal responses of neurons along each isofrequency band, covering approximately the contralateral acoustic hemisphere. Furthermore, the represented ITD range appeared to change with frequency, consistent with a pressure gradient receiver mechanism in the avian middle ear. At very low frequencies, below 400 Hz, maximal neural responses were symmetrically distributed around zero ITD and it remained unclear whether there was a topographic representation. These findings do not agree with the above predictions for optimal coding and thus revive the discussion as to what determines the neural coding strategies for ITDs.
Turovets, Sergei; Volkov, Vasily; Zherdetsky, Aleksej; Prakonina, Alena; Malony, Allen D
2014-01-01
The Electrical Impedance Tomography (EIT) and electroencephalography (EEG) forward problems in anisotropic inhomogeneous media like the human head belongs to the class of the three-dimensional boundary value problems for elliptic equations with mixed derivatives. We introduce and explore the performance of several new promising numerical techniques, which seem to be more suitable for solving these problems. The proposed numerical schemes combine the fictitious domain approach together with the finite-difference method and the optimally preconditioned Conjugate Gradient- (CG-) type iterative method for treatment of the discrete model. The numerical scheme includes the standard operations of summation and multiplication of sparse matrices and vector, as well as FFT, making it easy to implement and eligible for the effective parallel implementation. Some typical use cases for the EIT/EEG problems are considered demonstrating high efficiency of the proposed numerical technique.
The Geostationary Fourier Transform Spectrometer
Key, Richard; Sander, Stanley; Eldering, Annmarie; Blavier, Jean-Francois; Bekker, Dmitriy; Manatt, Ken; Rider, David; Wu, Yen-Hung
2012-01-01
The Geostationary Fourier Transform Spectrometer (GeoFTS) is an imaging spectrometer designed for a geostationary orbit (GEO) earth science mission to measure key atmospheric trace gases and process tracers related to climate change and human activity. GEO allows GeoFTS to continuously stare at a region of the earth for frequent sampling to capture the variability of biogenic fluxes and anthropogenic emissions from city to continental spatial scales and temporal scales from diurnal, synoptic, seasonal to interannual. The measurement strategy provides a process based understanding of the carbon cycle from contiguous maps of carbon dioxide (CO2), methane (CH4), carbon monoxide (CO), and chlorophyll fluorescence (CF) collected many times per day at high spatial resolution (2.7kmx2.7km at nadir). The CO2/CH4/CO/CF measurement suite in the near infrared spectral region provides the information needed to disentangle natural and anthropogenic contributions to atmospheric carbon concentrations and to minimize uncertainties in the flow of carbon between the atmosphere and surface. The half meter cube size GeoFTS instrument is based on a Michelson interferometer design that uses all high TRL components in a modular configuration to reduce complexity and cost. It is self-contained and as independent of the spacecraft as possible with simple spacecraft interfaces, making it ideal to be a "hosted" payload on a commercial communications satellite mission. The hosted payload approach for measuring the major carbon-containing gases in the atmosphere from the geostationary vantage point will affordably advance the scientific understating of carbon cycle processes and climate change.
Fan beam image reconstruction with generalized Fourier slice theorem.
Zhao, Shuangren; Yang, Kang; Yang, Kevin
2014-01-01
For parallel beam geometry the Fourier reconstruction works via the Fourier slice theorem (or central slice theorem, projection slice theorem). For fan beam situation, Fourier slice can be extended to a generalized Fourier slice theorem (GFST) for fan-beam image reconstruction. We have briefly introduced this method in a conference. This paper reintroduces the GFST method for fan beam geometry in details. The GFST method can be described as following: the Fourier plane is filled by adding up the contributions from all fanbeam projections individually; thereby the values in the Fourier plane are directly calculated for Cartesian coordinates such avoiding the interpolation from polar to Cartesian coordinates in the Fourier domain; inverse fast Fourier transform is applied to the image in Fourier plane and leads to a reconstructed image in spacial domain. The reconstructed image is compared between the result of the GFST method and the result from the filtered backprojection (FBP) method. The major differences of the GFST and the FBP methods are: (1) The interpolation process are at different data sets. The interpolation of the GFST method is at projection data. The interpolation of the FBP method is at filtered projection data. (2) The filtering process are done in different places. The filtering process of the GFST is at Fourier domain. The filtering process of the FBP method is the ramp filter which is done at projections. The resolution of ramp filter is variable with different location but the filter in the Fourier domain lead to resolution invariable with location. One advantage of the GFST method over the FBP method is in short scan situation, an exact solution can be obtained with the GFST method, but it can not be obtained with the FBP method. The calculation of both the GFST and the FBP methods are at O(N^3), where N is the number of pixel in one dimension.
Fiber Optic Fourier Transform White-Light Interferometry
Institute of Scientific and Technical Information of China (English)
Yi Jiang; Cai-Jie Tang
2008-01-01
Fiber optic Fourier transform white-light inter-fereometry is presented to interrogate the absolute optical path difference of an Mach-Zehnder inter-ferometer. The phase change of the interferometer caused by scanning wavelength can be calculated by a Fourier transform-based phase demodulation technique. A linear output is achieved.
Chojniak, Rubens; Carneiro, Dominique Piacenti; Moterani, Gustavo Simonetto Peres; Duarte, Ivone da Silva; Bitencourt, Almir Galvão Vieira; Muglia, Valdair Francisco; D'Ippolito, Giuseppe
2017-01-01
To map the different methods for diagnostic imaging instruction at medical schools in Brazil. In this cross-sectional study, a questionnaire was sent to each of the coordinators of 178 Brazilian medical schools. The following characteristics were assessed: teaching model; total course hours; infrastructure; numbers of students and professionals involved; themes addressed; diagnostic imaging modalities covered; and education policies related to diagnostic imaging. Of the 178 questionnaires sent, 45 (25.3%) were completed and returned. Of those 45 responses, 17 (37.8%) were from public medical schools, whereas 28 (62.2%) were from private medical schools. Among the 45 medical schools evaluated, the method of diagnostic imaging instruction was modular at 21 (46.7%), classic (independent discipline) at 13 (28.9%), hybrid (classical and modular) at 9 (20.0%), and none of the preceding at 3 (6.7%). Diagnostic imaging is part of the formal curriculum at 36 (80.0%) of the schools, an elective course at 3 (6.7%), and included within another modality at 6 (13.3%). Professors involved in diagnostic imaging teaching are radiologists at 43 (95.5%) of the institutions. The survey showed that medical courses in Brazil tend to offer diagnostic imaging instruction in courses that include other content and at different time points during the course. Radiologists are extensively involved in undergraduate medical education, regardless of the teaching methodology employed at the institution.
Chojniak, Rubens; Carneiro, Dominique Piacenti; Moterani, Gustavo Simonetto Peres; Duarte, Ivone da Silva; Bitencourt, Almir Galvão Vieira; Muglia, Valdair Francisco; D'Ippolito, Giuseppe
2017-01-01
Objective To map the different methods for diagnostic imaging instruction at medical schools in Brazil. Materials and Methods In this cross-sectional study, a questionnaire was sent to each of the coordinators of 178 Brazilian medical schools. The following characteristics were assessed: teaching model; total course hours; infrastructure; numbers of students and professionals involved; themes addressed; diagnostic imaging modalities covered; and education policies related to diagnostic imaging. Results Of the 178 questionnaires sent, 45 (25.3%) were completed and returned. Of those 45 responses, 17 (37.8%) were from public medical schools, whereas 28 (62.2%) were from private medical schools. Among the 45 medical schools evaluated, the method of diagnostic imaging instruction was modular at 21 (46.7%), classic (independent discipline) at 13 (28.9%), hybrid (classical and modular) at 9 (20.0%), and none of the preceding at 3 (6.7%). Diagnostic imaging is part of the formal curriculum at 36 (80.0%) of the schools, an elective course at 3 (6.7%), and included within another modality at 6 (13.3%). Professors involved in diagnostic imaging teaching are radiologists at 43 (95.5%) of the institutions. Conclusion The survey showed that medical courses in Brazil tend to offer diagnostic imaging instruction in courses that include other content and at different time points during the course. Radiologists are extensively involved in undergraduate medical education, regardless of the teaching methodology employed at the institution. PMID:28298730
Comparative analysis of proteome maps of silkworm hemolymph during different developmental stages
Directory of Open Access Journals (Sweden)
Hou Yong
2010-09-01
Full Text Available Abstract Background The silkworm Bombyx mori is a lepidopteran insect with four developmental stages: egg, larva (caterpillar, pupa, and adult. The hemolymph of the silkworm is in an open system that circulates among all organs, and functions in nutrient and hormone transport, injury, and immunity. To understand the intricate developmental mechanisms of metamorphosis, silkworm hemolymph from different developmental stages, including the 3rd day of fifth instar, the 6th day of fifth instar, the 3rd day of pupation, the 8th day of pupal stage and the first day of the moth stage, was investigated by two-dimensional electrophoresis and mass spectrometry. Results Two-dimensional polyacrylamide gel electrophoresis showed that from the larval to moth stages, silkworm hemolymph proteins changed markedly. Not only did major proteins such as SP1, SP2, and the 30 K lipoprotein change, but other proteins varied greatly at different stages. To understand the functions of these proteins in silkworm development, 56 spots were excised from gels for analysis by matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS. We identified 34 proteins involved in metamorphosis, programmed cell death, food digestion, metabolism, and nutrient storage and transport. Most proteins showed different expression at different stages, suggesting functions in development and metamorphosis. An abundance of proteins related to immunity were found, including hemolin, prophenoloxidase, serine proteinase-like protein, paralytic peptide-binding protein, and protease inhibitor. Conclusions Proteomics research not only provides the opportunity for direct investigation of protein expression patterns, but also identifies many attractive candidates for further study. Two-dimensional maps of hemolymph proteins expressed during the growth and metamorphosis of the silkworm offer important insights into hemolymph function and insect metamorphosis.
Fourier Analysis and Structure Determination: Part I: Fourier Transforms.
Chesick, John P.
1989-01-01
Provides a brief introduction with some definitions and properties of Fourier transforms. Shows relations, ways of understanding the mathematics, and applications. Notes proofs are not included but references are given. First of three part series. (MVL)
Somerlot, C.; Duncan, J.; Endreny, T.
2001-05-01
With the advance of remote sensing, options arise for the hydrologic modeler to access both public domain and privately contracted watershed land cover maps. Land use classification processes using aerial photographs are highly variable depending on tools and training, but distinction between impervious and pervious land cover is relatively simple. Hydrologic models will estimate different runoff timing, volume, and water quality depending on the percent imperviousness of the watershed. This research will examine how percent imperviousness varies with changes in both radiometric and spatial land cover map resolution. WinHSPF was run with four distinct land cover maps derived from remote imagery: MRLC (30 m), LULC (1 km), contracted aerial photos (1 m), and processed digital (1 M) ortho quarter quads. Comparisons were made between map percent impervious cover and runoff timing and volume. A modified export coefficient model that tracks pollutant discharge through down gradient filters examined how estimated nutrient loading changed with differences in these land cover map products. Methods are suggested for updating estimates of percent impervious cover in coarser resolution maps using field data or other means.
Fourier phase in Fourier-domain optical coherence tomography.
Uttam, Shikhar; Liu, Yang
2015-12-01
Phase of an electromagnetic wave propagating through a sample-of-interest is well understood in the context of quantitative phase imaging in transmission-mode microscopy. In the past decade, Fourier-domain optical coherence tomography has been used to extend quantitative phase imaging to the reflection-mode. Unlike transmission-mode electromagnetic phase, however, the origin and characteristics of reflection-mode Fourier phase are poorly understood, especially in samples with a slowly varying refractive index. In this paper, the general theory of Fourier phase from first principles is presented, and it is shown that Fourier phase is a joint estimate of subresolution offset and mean spatial frequency of the coherence-gated sample refractive index. It is also shown that both spectral-domain phase microscopy and depth-resolved spatial-domain low-coherence quantitative phase microscopy are special cases of this general theory. Analytical expressions are provided for both, and simulations are presented to explain and support the theoretical results. These results are further used to show how Fourier phase allows the estimation of an axial mean spatial frequency profile of the sample, along with depth-resolved characterization of localized optical density change and sample heterogeneity. Finally, a Fourier phase-based explanation of Doppler optical coherence tomography is also provided.
Directory of Open Access Journals (Sweden)
Bingyu Sun
2013-10-01
Full Text Available Remote sensing has more advantages than the traditional methods of land surface water (LSW mapping because it is a low-cost, reliable information source that is capable of making high-frequency and repeatable observations. The normalized difference water indexes (NDWIs, calculated from various band combinations (green, near-infrared (NIR, or shortwave-infrared (SWIR, have been successfully applied to LSW mapping. In fact, new NDWIs will become available when Advanced Land Imager (ALI data are used as the ALI sensor provides one green band (Band 4, two NIR bands (Bands 6 and 7, and three SWIR bands (Bands 8, 9, and 10. Thus, selecting the optimal band or combination of bands is critical when ALI data are employed to map LSW using NDWI. The purpose of this paper is to find the best performing NDWI model of the ALI data in LSW map. In this study, eleven NDWI models based on ALI, Thematic Mapper (TM, and Enhanced Thematic Mapper Plus (ETM+ data were compared to assess the performance of ALI data in LSW mapping, at three different study sites in the Yangtze River Basin, China. The contrast method, Otsu method, and confusion matrix were calculated to evaluate the accuracies of the LSW maps. The accuracies of LSW maps derived from eleven NDWI models showed that five NDWI models of the ALI sensor have more than an overall accuracy of 91% with a Kappa coefficient of 0.78 of LSW maps at three test sites. In addition, the NDWI model, calculated from the green (Band 4: 0.525–0.605 μm and SWIR (Band 9: 1.550–1.750 μm bands of the ALI sensor, namely NDWIA4,9, was shown to have the highest LSW mapping accuracy, more than the other NDWI models. Therefore, the NDWIA4,9 is the best indicator for LSW mapping of the ALI sensor. It can be used for mapping LSW with high accuracy.
DiffAni: visualizing dynamic graphs with a hybrid of difference maps and animation.
Rufiange, Sébastien; McGuffin, Michael J
2013-12-01
Visualization of dynamically changing networks (graphs) is a significant challenge for researchers. Previous work has experimentally compared animation, small multiples, and other techniques, and found trade-offs between these. One potential way to avoid such trade-offs is to combine previous techniques in a hybrid visualization. We present two taxonomies of visualizations of dynamic graphs: one of non-hybrid techniques, and one of hybrid techniques. We also describe a prototype, called DiffAni, that allows a graph to be visualized as a sequence of three kinds of tiles: diff tiles that show difference maps over some time interval, animation tiles that show the evolution of the graph over some time interval, and small multiple tiles that show the graph state at an individual time slice. This sequence of tiles is ordered by time and covers all time slices in the data. An experimental evaluation of DiffAni shows that our hybrid approach has advantages over non-hybrid techniques in certain cases.
What drives sound symbolism? Different acoustic cues underlie sound-size and sound-shape mappings.
Knoeferle, Klemens; Li, Jixing; Maggioni, Emanuela; Spence, Charles
2017-07-17
Sound symbolism refers to the non-arbitrary mappings that exist between phonetic properties of speech sounds and their meaning. Despite there being an extensive literature on the topic, the acoustic features and psychological mechanisms that give rise to sound symbolism are not, as yet, altogether clear. The present study was designed to investigate whether different sets of acoustic cues predict size and shape symbolism, respectively. In two experiments, participants judged whether a given consonant-vowel speech sound was large or small, round or angular, using a size or shape scale. Visual size judgments were predicted by vowel formant F1 in combination with F2, and by vowel duration. Visual shape judgments were, however, predicted by formants F2 and F3. Size and shape symbolism were thus not induced by a common mechanism, but rather were distinctly affected by acoustic properties of speech sounds. These findings portray sound symbolism as a process that is not based merely on broad categorical contrasts, such as round/unround and front/back vowels. Rather, individuals seem to base their sound-symbolic judgments on specific sets of acoustic cues, extracted from speech sounds, which vary across judgment dimensions.
Ngai, Courtney; Sevian, Hannah; Talanquer, Vicente
2014-09-01
Given the diversity of materials in our surroundings, one should expect scientifically literate citizens to have a basic understanding of the core ideas and practices used to analyze chemical substances. In this article, we use the term 'chemical identity' to encapsulate the assumptions, knowledge, and practices upon which chemical analysis relies. We conceive chemical identity as a core crosscutting disciplinary concept which can bring coherence and relevance to chemistry curricula at all educational levels, primary through tertiary. Although chemical identity is not a concept explicitly addressed by traditional chemistry curricula, its understanding can be expected to evolve as students are asked to recognize different types of substances and explore their properties. The goal of this contribution is to characterize students' assumptions about factors that determine chemical identity and to map how core assumptions change with training in the discipline. Our work is based on the review and critical analysis of existing research findings on students' alternative conceptions in chemistry education, and historical and philosophical analyses of chemistry. From this perspective, our analysis contributes to the growing body of research in the area of learning progressions. In particular, it reveals areas in which our understanding of students' ideas about chemical identity is quite robust, but also highlights the existence of major knowledge gaps that should be filled in to better foster student understanding. We provide suggestions in this area and discuss implications for the teaching of chemistry.
Directory of Open Access Journals (Sweden)
Oblessuc Paula
2012-06-01
Full Text Available Abstract Background Common bean (Phaseolus vulgaris L. is the most important grain legume for human diet worldwide and the angular leaf spot (ALS is one of the most devastating diseases of this crop, leading to yield losses as high as 80%. In an attempt to breed resistant cultivars, it is important to first understand the inheritance mode of resistance and to develop tools that could be used in assisted breeding. Therefore, the aim of this study was to identify quantitative trait loci (QTL controlling resistance to ALS under natural infection conditions in the field and under inoculated conditions in the greenhouse. Results QTL analyses were made using phenotypic data from 346 recombinant inbreed lines from the IAC-UNA x CAL 143 cross, gathered in three experiments, two of which were conducted in the field in different seasons and one in the greenhouse. Joint composite interval mapping analysis of QTL x environment interaction was performed. In all, seven QTLs were mapped on five linkage groups. Most of them, with the exception of two, were significant in all experiments. Among these, ALS10.1DG,UC presented major effects (R2 between 16% - 22%. This QTL was found linked to the GATS11b marker of linkage group B10, which was consistently amplified across a set of common bean lines and was associated with the resistance. Four new QTLs were identified. Between them the ALS5.2 showed an important effect (9.4% under inoculated conditions in the greenhouse. ALS4.2 was another major QTL, under natural infection in the field, explaining 10.8% of the variability for resistance reaction. The other QTLs showed minor effects on resistance. Conclusions The results indicated a quantitative inheritance pattern of ALS resistance in the common bean line CAL 143. QTL x environment interactions were observed. Moreover, the major QTL identified on linkage group B10 could be important for bean breeding, as it was stable in all the environments. Thereby, the GATS11b
Fourier analysis and stochastic processes
Brémaud, Pierre
2014-01-01
This work is unique as it provides a uniform treatment of the Fourier theories of functions (Fourier transforms and series, z-transforms), finite measures (characteristic functions, convergence in distribution), and stochastic processes (including arma series and point processes). It emphasises the links between these three themes. The chapter on the Fourier theory of point processes and signals structured by point processes is a novel addition to the literature on Fourier analysis of stochastic processes. It also connects the theory with recent lines of research such as biological spike signals and ultrawide-band communications. Although the treatment is mathematically rigorous, the convivial style makes the book accessible to a large audience. In particular, it will be interesting to anyone working in electrical engineering and communications, biology (point process signals) and econometrics (arma models). A careful review of the prerequisites (integration and probability theory in the appendix, Hilbert spa...
Fourier series and orthogonal functions
Davis, Harry F
1963-01-01
This incisive text deftly combines both theory and practical example to introduce and explore Fourier series and orthogonal functions and applications of the Fourier method to the solution of boundary-value problems. Directed to advanced undergraduate and graduate students in mathematics as well as in physics and engineering, the book requires no prior knowledge of partial differential equations or advanced vector analysis. Students familiar with partial derivatives, multiple integrals, vectors, and elementary differential equations will find the text both accessible and challenging.
Generating natural hazard risk maps for Styria to highlight differences in the social vulnerability
Heß, Vincent
2016-04-01
Costs of natural hazards are commonly classified as either damage costs or risk mitigation costs. These categories are not independent, as risk mitigation aims at reducing damage costs. However, the factors that influence the risk of damage costs are still not completely understood. Commonly, the risk is defined as a function of hazard, exposure and vulnerability and we want to produce risk maps that combine existing information about these factors under a common framework. Because of good data availability, the risk maps will be produced for Styria, Austria, where detailed hazard and land-use maps are available on a municipality level and the costs can be verified with private damage data from the Austrian disaster fond. A key issue is the generation of a social vulnerability map by the use of demographic and socio-economic data. We use a statistical model to analyze how much of the variance in the damage data are explainable by considering social characteristics across municipalities. The combination of the aforementioned maps results in a risk map, which can not only display areas of high risks, but also the underlying reasons. Knowledge about risk increasing factors consequently allow for better suited risk mitigation measures. Especially soft measures need to be clearly targeted towards local needs to increase the resilience and adaptive capacity of municipalities.
Dynamic measurement of deformation using Fourier transform digital holographic interferometry
Gao, Xinya; Wu, Sijin; Yang, Lianxiang
2013-10-01
Digital holographic interferometry (DHI) is a well-established optical technique for measurement of nano-scale deformations. It has become more and more important due to the rapid development of applications in aerospace engineering and biomedicine. Traditionally, phase shift technique is used to quantitatively measure the deformations in DHI. However, it cannot be applied in dynamic measurement. Fourier transform phase extraction method, which can determine the phase distribution from only a single hologram, becomes a promising method to extract transient phases in DHI. This paper introduces a digital holographic interferometric system based on 2D Fourier transform phase extraction method, with which deformations of objects can be measured quickly. In the optical setup, the object beam strikes a CCD via a lens and aperture, and the reference beam is projected on the CCD through a single-mode fiber. A small inclination angle between the diverging reference beam and optical axial is introduced in order to physically separate the Fourier components in frequency domain. Phase maps are then obtained by the utilization of Fourier transform and windowed inverse Fourier transform. The capability of the Fourier transform DHI is discussed by theoretical discussion as well as experiments.
Reid, Jackie; Wilkes, Janelle
2016-08-01
Mapping quantitative skills across the science, technology, engineering and mathematics (STEM) curricula will help educators identify gaps and duplication in the teaching, practice and assessment of the necessary skills. This paper describes the development and implementation of quantitative skills mapping tools for courses in STEM at a regional university that offers both on-campus and distance modes of study. Key elements of the mapping project included the identification of key graduate quantitative skills, the development of curriculum mapping tools to record in which unit(s) and at what level of attainment each quantitative skill is taught, practised and assessed, and identification of differences in the way quantitative skills are developed for on-campus and distance students. Particular attention is given to the differences that are associated with intensive schools, which consist of concentrated periods of face-to-face learning over a three-four day period, and are available to distance education students enrolled in STEM units. The detailed quantitative skills mapping process has had an impact on the review of first-year mathematics units, resulted in crucial changes to the curriculum in a number of courses, and contributed to a more integrated approach, and a collective responsibility, to the development of students' quantitative skills for both face-to-face and online modes of learning.
Double Fourier analysis for Emotion Identification in Voiced Speech
Sierra-Sosa, D.; Bastidas, M.; Ortiz P., D.; Quintero, O. L.
2016-04-01
We propose a novel analysis alternative, based on two Fourier Transforms for emotion recognition from speech. Fourier analysis allows for display and synthesizes different signals, in terms of power spectral density distributions. A spectrogram of the voice signal is obtained performing a short time Fourier Transform with Gaussian windows, this spectrogram portraits frequency related features, such as vocal tract resonances and quasi-periodic excitations during voiced sounds. Emotions induce such characteristics in speech, which become apparent in spectrogram time-frequency distributions. Later, the signal time-frequency representation from spectrogram is considered an image, and processed through a 2-dimensional Fourier Transform in order to perform the spatial Fourier analysis from it. Finally features related with emotions in voiced speech are extracted and presented.
Directory of Open Access Journals (Sweden)
Saem Mul Park
Full Text Available The lymphatic sinuses in human lymph nodes (LNs are crucial to LN function yet their structure remains poorly defined. Much of our current knowledge of lymphatic sinuses derives from rodent models, however human LNs differ substantially in their sinus structure, most notably due to the presence of trabeculae and trabecular lymphatic sinuses that rodent LNs lack. Lymphatic sinuses are bounded and traversed by lymphatic endothelial cells (LECs. A better understanding of LECs in human LNs is likely to improve our understanding of the regulation of cell trafficking within LNs, now an important therapeutic target, as well as disease processes that involve lymphatic sinuses. We therefore sought to map all the LECs within human LNs using multicolor immunofluorescence microscopy to visualize the distribution of a range of putative markers. PROX1 was the only marker that uniquely identified the LECs lining and traversing all the sinuses in human LNs. In contrast, LYVE1 and STAB2 were only expressed by LECs in the paracortical and medullary sinuses in the vast majority of LNs studied, whilst the subcapsular and trabecular sinuses lacked these molecules. These data highlight the existence of at least two distinctive populations of LECs within human LNs. Of the other LEC markers, we confirmed VEGFR3 was not specific for LECs, and CD144 and CD31 stained both LECs and blood vascular endothelial cells (BECs; in contrast, CD59 and CD105 stained BECs but not LECs. We also showed that antigen-presenting cells (APCs in the sinuses could be clearly distinguished from LECs by their expression of CD169, and their lack of expression of PROX1 and STAB2, or endothelial markers such as CD144. However, both LECs and sinus APCs were stained with DCN46, an antibody commonly used to detect CD209.
Kaminski, Charles William
The purpose of this research was to investigate the formative use of Select and Fill-In (SAFI) maps in online instruction and the cognitive, metacognitive, and affective responses of students to their use. In particular, the implications of their use with students of different learning styles was considered. The research question investigated in this qualitative study was: How do students of different learning styles respond to online instruction in which SAFI maps are utilized? This question was explored by using an emergent, collective case study. Each case consisted of community college students who shared a dominant learning style and were enrolled in an online course in environmental studies. Cases in the study were determined using Kolb's Learning Style Inventory (LSI). Seven forms of data were collected during the study. During the first phase of data collection, dominant learning style and background information on student experience with concept mapping and online instruction was determined. In the second phase of data collection, participants completed SAFI maps and quiz items that corresponded to the content of the maps. Achievement data on the map activities and quiz and student responses to a post-SAFI survey and questionnaire were recorded to identify learner cognitive, metacognitive, and affective responses to the tasks. Upon completion of data collection, cases were constructed and compared across learning styles. Cases are presented using the trends, across participants sharing the same dominant learning style, in achievement, behaviors and attitudes as seen in the evidence present in the data. Triangulation of multiple data sources increased reliability and validity, through cross-case analyses, and produced a thick description of the relationship between the cases for each learning style. Evidence suggesting a cognitive response to the SAFI tasks was inconsistent across cases. However, learners with an affinity towards reflective learning
Gundreddy, Rohith Reddy; Tan, Maxine; Qui, Yuchen; Zheng, Bin
2015-03-01
The purpose of this study is to develop and test a new content-based image retrieval (CBIR) scheme that enables to achieve higher reproducibility when it is implemented in an interactive computer-aided diagnosis (CAD) system without significantly reducing lesion classification performance. This is a new Fourier transform based CBIR algorithm that determines image similarity of two regions of interest (ROI) based on the difference of average regional image pixel value distribution in two Fourier transform mapped images under comparison. A reference image database involving 227 ROIs depicting the verified soft-tissue breast lesions was used. For each testing ROI, the queried lesion center was systematically shifted from 10 to 50 pixels to simulate inter-user variation of querying suspicious lesion center when using an interactive CAD system. The lesion classification performance and reproducibility as the queried lesion center shift were assessed and compared among the three CBIR schemes based on Fourier transform, mutual information and Pearson correlation. Each CBIR scheme retrieved 10 most similar reference ROIs and computed a likelihood score of the queried ROI depicting a malignant lesion. The experimental results shown that three CBIR schemes yielded very comparable lesion classification performance as measured by the areas under ROC curves with the p-value greater than 0.498. However, the CBIR scheme using Fourier transform yielded the highest invariance to both queried lesion center shift and lesion size change. This study demonstrated the feasibility of improving robustness of the interactive CAD systems by adding a new Fourier transform based image feature to CBIR schemes.
Schwendimann, Beat Adrian
2014-01-01
A concept map is a node-link diagram showing the semantic relationships among concepts. The technique for constructing concept maps is called "concept mapping". A concept map consists of nodes, arrows as linking lines, and linking phrases that describe the relationship between nodes. Two nodes connected with a labeled arrow are called a proposition. Concept maps are versatile graphic organizers that can represent many different forms of relationships between concepts. The relationship between...
Fourier analysis: from cloaking to imaging
Wu, Kedi; Cheng, Qiluan; Wang, Guo Ping
2016-04-01
Regarding invisibility cloaks as an optical imaging system, we present a Fourier approach to analytically unify both Pendry cloaks and complementary media-based invisibility cloaks into one kind of cloak. By synthesizing different transfer functions, we can construct different devices to realize a series of interesting functions such as hiding objects (events), creating illusions, and performing perfect imaging. In this article, we give a brief review on recent works of applying Fourier approach to analysis invisibility cloaks and optical imaging through scattering layers. We show that, to construct devices to conceal an object, no constructive materials with extreme properties are required, making most, if not all, of the above functions realizable by using naturally occurring materials. As instances, we experimentally verify a method of directionally hiding distant objects and create illusions by using all-dielectric materials, and further demonstrate a non-invasive method of imaging objects completely hidden by scattering layers.
Fourier Transform Infrared Spectroscopic Studies in Flotation
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
Fourier transform infrared (FTIR) spectroscopy has been extensively employed in flotation research.The work done by the author and co-workers has been reported.A comparison has been made among the different FTIR spectroscopic techniques,e.g.,transmission FTIR spectroscopy,diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy,and attenuated total reflectance (ATR) FTIR spectroscopy.FTIR spectroscopy has been used to study the mechanism of interaction between the collector and the surfaces of different minerals,the mechanism of action of the depressant in improving the selectivity of flotation,and the mechanism of adsorption of the polymeric modifying reagent on mineral surfaces.The interaction between particles in mineral suspension has also been studied by FTIR spectroscopy.
Ningrum, Ary Setya Budhi; Latief, Mohammad Adnan; Sulistyo, Gunadi Harry
2016-01-01
The purpose of the study was to determine the impact of mind mapping as a strategy in generating ideas before writing on the EFL students' idea development in argumentative writing as perceived from their gender differences and learning styles. By conducting an experimental investigation at university level in Indonesia, two existing TOEFL classes…
DEFF Research Database (Denmark)
Barón, Johanna; Ruiz, Marina; Palacios-Ceña, María;
2016-01-01
OBJECTIVE: To investigate differences in topographical pressure pain sensitivity maps of the scalp between patients with migraine and healthy controls considering the chronicity (episodic/chronic) and side (strictly unilateral/bilateral) of the symptoms. BACKGROUND: It seems that the trigeminal a...
Pardo, Luba; Bochdanovits, Zoltán; de Geus, Eco; Hottenga, Jouke J; Sullivan, Patrick; Posthuma, Danielle; Penninx, Brenda W J H; Boomsma, Dorret; Heutink, Peter
2009-06-01
The HapMap project has facilitated the selection of tagging single nucleotide polymorphisms (tagSNPs) for genome-wide association studies (GWAS) under the assumption that linkage disequilibrium (LD) in the HapMap populations is similar to the populations under investigation. Earlier reports support this assumption, although in most of these studies only a few loci were evaluated. We compared pair-wise LD and LD block structure across autosomes between the Dutch population and the CEU-HapMap reference panel. The impact of sampling distribution on the estimation of LD blocks was studied by bootstrapping. A high Pearson correlation (genome-wide; 0.93) between pair-wise r(2) for the Dutch and the CEU populations was found, indicating that tagSNPs from the CEU-HapMap panel capture common variation in the Dutch population. However, some genomic regions exhibited, significantly lower correlation than the genome-wide estimate. This might decrease the validity of HapMap tagSNPs in these regions and the power of GWAS. The LD block structure differed considerably between the Dutch and CEU-HapMap populations. This was not explained by demographic differences between the CEU and Dutch samples, as testing for population stratification was not significant. We also found that sampling variation had a large effect on the estimation of LD blocks, as shown by the bootstrapping analysis. Thus, in small samples, most of the observed differences in LD blocks between populations are most likely the result of sampling variation. This poor concordance in LD block structure suggests that large samples are required for robust estimations of local LD block structure in populations.
High resolution mapping of Normalized Difference Vegetation Indices (NDVI) of biological soil crusts
Fischer, T.; Veste, M.; Eisele, A.; Bens, O.; Spyra, W.; Hüttl, R. F.
2012-04-01
Normalized Difference Vegetation Indices (NDVI) are typically determined using satellite or airborne remote sensing, or field portable spectrometers, which give an averaged signal on centimetre to meter scale plots. Biological soil crust (BSC) patches may have smaller sizes, and ecophysiological, hydrological as well as pedological processes may be heterogeneously distributed within this level of resolution. A ground-based NDVI imaging procedure using low-cost equipment (Olympus Camedia 5000z digital camera equipped with a Hoya R72 infrared filter) was developed in this study to fill this gap at the level of field research, where carrying costly and bulky equipment to remote locations is often the limiting factor for data collection. A commercially available colour rendition chart (GretagMacbeth ColorChecker®) with known red (600-700 nm) and NIR (800-900 nm) reflectances was placed into each scene and used for calibration purposes on a per-image basis. Generation of NDVI images involved (i) determination of red and NIR reflectances from the pixel values of the red and NIR channels, respectively, and (ii) calculation and imaging of the NDVI, where NDVI values of -1 to +1 were mapped to grey values of 0 to 255. The correlation between NDVI values retrieved from these images and NDVI values determined using conventional field spectrometry (ASD FieldSpec 3 portable spectroradiometer) was close (r2 =0.91), the 95% confidence interval amounted to 0.10 NDVI units. The pixel resolution was 0.8 mm in the field and 0.2 mm in the laboratory, but can still be improved significantly with closer distance to the crust or with higher camera resolution. Geostatistical analysis revealed that both spatial variability as well as size of individual objects characterized by the NDVI increased with crust development. The latter never exceeded 4 mm in the investigated crusts, which points to the necessity of high resolution imaging for linking remote sensing with ecophysiology
A Stable Finite-Difference Scheme for Population Growth and Diffusion on a Map
Callegari, S.; Lake, G. R.; Tkachenko, N.; Weissmann, J. D.; Zollikofer, Ch. P. E.
2017-01-01
We describe a general Godunov-type splitting for numerical simulations of the Fisher–Kolmogorov–Petrovski–Piskunov growth and diffusion equation on a world map with Neumann boundary conditions. The procedure is semi-implicit, hence quite stable. Our principal application for this solver is modeling human population dispersal over geographical maps with changing paleovegetation and paleoclimate in the late Pleistocene. As a proxy for carrying capacity we use Net Primary Productivity (NPP) to predict times for human arrival in the Americas. PMID:28085882
Goldberg, Margot T; Spigler, Rachel B; Ashman, Tia-Lynn
2010-12-01
Separate sexes have evolved repeatedly from hermaphroditic ancestors in flowering plants, and thus select taxa can provide unparalleled insight into the evolutionary dynamics of sex chromosomes that are thought to be shared by plants and animals alike. Here we ask whether two octoploid sibling species of wild strawberry--one almost exclusively dioecious (males and females), Fragaria chiloensis, and one subdioecious (males, females, and hermaphrodites), F. virginiana--share the same sex-determining chromosome. We created a genetic map of the sex chromosome and its homeologs in F. chiloensis and assessed macrosynteny between it and published maps of the proto-sex chromosome of F. virginiana and the homeologous autosome of hermaphroditic diploid species. Segregation of male and female function in our F. chiloensis mapping population confirmed that linkage and dominance relations are similar to those in F. virginiana. However, identification of the molecular markers most tightly linked to the sex-determining locus in the two octoploid species shows that, in both, this region maps to homeologues of chromosome 6 in diploid congeners, but is located at opposite ends of their respective chromosomes.
Graff, Martin
2005-01-01
There is now evidence to suggest that the degree to which hypertext or web-based instructional systems facilitate recall of information appears to be contingent on an individual's cognitive or information processing style. Concept maps also reflect the way in which individuals process information and therefore it is possible that cognitive style…
Fourier Series, the DFT and Shape Modelling
DEFF Research Database (Denmark)
Skoglund, Karl
2004-01-01
This report provides an introduction to Fourier series, the discrete Fourier transform, complex geometry and Fourier descriptors for shape analysis. The content is aimed at undergraduate and graduate students who wish to learn about Fourier analysis in general, as well as its application to shape...
Fourier processing of quantum light
Poem, Eilon; Lahini, Yoav; Silberberg, Yaron
2012-01-01
It is shown that a classical optical Fourier processor can be used for the shaping of quantum correlations between two or more photons, and the class of Fourier masks applicable in the multiphoton Fourier space is identified. This concept is experimentally demonstrated using two types of periodic phase masks illuminated with path-entangled photon pairs, a highly non-classical state of light. Applied first were sinusoidal phase masks, emulating two-particle quantum walk on a periodic lattice, yielding intricate correlation patterns with various spatial bunching and anti-bunching effects depending on the initial state. Then, a periodic Zernike-like filter was applied on top of the sinusoidal phase masks. Using this filter, phase information lost in the original correlation measurements was retrieved.
Fast Numerical Nonlinear Fourier Transforms
Wahls, Sander
2014-01-01
The nonlinear Fourier transform, which is also known as the forward scattering transform, decomposes a periodic signal into nonlinearly interacting waves. In contrast to the common Fourier transform, these waves no longer have to be sinusoidal. Physically relevant waveforms are often available for the analysis instead. The details of the transform depend on the waveforms underlying the analysis, which in turn are specified through the implicit assumption that the signal is governed by a certain evolution equation. For example, water waves generated by the Korteweg-de Vries equation can be expressed in terms of cnoidal waves. Light waves in optical fiber governed by the nonlinear Schr\\"dinger equation (NSE) are another example. Nonlinear analogs of classic problems such as spectral analysis and filtering arise in many applications, with information transmission in optical fiber, as proposed by Yousefi and Kschischang, being a very recent one. The nonlinear Fourier transform is eminently suited to address them ...
Static Fourier transform infrared spectrometer.
Schardt, Michael; Murr, Patrik J; Rauscher, Markus S; Tremmel, Anton J; Wiesent, Benjamin R; Koch, Alexander W
2016-04-01
Fourier transform spectroscopy has established itself as the standard method for spectral analysis of infrared light. Here we present a robust and compact novel static Fourier transform spectrometer design without any moving parts. The design is well suited for measurements in the infrared as it works with extended light sources independent of their size. The design is experimentally evaluated in the mid-infrared wavelength region between 7.2 μm and 16 μm. Due to its large etendue, its low internal light loss, and its static design it enables high speed spectral analysis in the mid-infrared.
Multicomplementary operators via finite Fourier transform
Energy Technology Data Exchange (ETDEWEB)
Klimov, Andrei B [Departamento de Fisica, Universidad de Guadalajara, Revolucion 1500, 44420 Guadalajara, Jalisco (Mexico); Sanchez-Soto, Luis L [Department of Physics, Lakehead University, Thunder Bay, Ontario P7B 5E1 (Canada); Guise, Hubert de [Department of Physics, Lakehead University, Thunder Bay, Ontario P7B 5E1 (Canada)
2005-03-25
A complete set of d + 1 mutually unbiased bases exists in a Hilbert space of dimension d, whenever d is a power of a prime. We discuss a simple construction of d + 1 disjoint classes (each one having d - 1 commuting operators) such that the corresponding eigenstates form sets of unbiased bases. Such a construction works properly for prime dimension. We investigate an alternative construction in which the real numbers that label the classes are replaced by a finite field having d elements. One of these classes is diagonal, and can be mapped to cyclic operators by means of the finite Fourier transform, which allows one to understand complementarity in a similar way as for the position-momentum pair in standard quantum mechanics. The relevant examples of two and three qubits and two qutrits are discussed in detail.
[Analysis of cell arrangements in Biota orientalis using Fourier transformation].
Duo, Hua-Qiong; Wang, Xi-Ming
2009-10-01
Fourier transform image-processing technology is applied for determining the cross section cell arrangement of early-wood in Biota orientalis. In this method, the disc-convoluted dot map from each cell radius with 10 pixels is transformed by Fourier transform, generating the angle distribution function in the power spectral pattern. The maximum value is the arrangement of the cell. The results of Fourier transform image-processing technology indicated that the arrangements of the cell of Biota orientalis are 15 degrees in oblique direction, respectively. This method provides a new basis for the digitized identification of the wood, and also the new theoretical research direction for the digitized identification and examination of the wood species.
A methodology to generate a synergetic land-cover map by fusion of different land-cover products
Pérez-Hoyos, A.; García-Haro, F. J.; San-Miguel-Ayanz, J.
2012-10-01
The main goal of this study is to develop a general framework for building a hybrid land-cover map by the synergistic combination of a number of land-cover classifications with different legends and spatial resolutions. The proposed approach assesses class-specific accuracies of datasets and establishes affinity between thematic legends using a common land-cover language such as the UN Land-Cover Classification System (LCCS). The approach is illustrated over a large region in Europe using four land-cover datasets (CORINE, GLC2000, MODIS and GlobCover), but it can be applied to any set of existing products. The multi-classification map is expected to improve the performance of individual classifications by reconciling their best characteristics while avoiding their main weaknesses. The intermap comparison reveals improved agreement of the hybrid map with all other land-cover products and therefore indicates the successful exploration of synergies between the different products. The approach offers also estimates for the classification confidence associated with the pixel label and flexibility to shift the balance between commission and omission errors, which are critical in order to obtain a desired reliable map.
Konar, Arpita; Thakur, M K
2015-01-01
Neuropsin (NP) is a serine protease, implicated in synaptic plasticity and memory acquisition through cleavage of synaptic adhesion molecule, L1CAM. However, NP has not been explored during brain aging that entails drastic deterioration of plasticity and memory with selective regional vulnerability. Therefore, we have analysed the expression of NP and correlated with its function via analysis of endogenous cleavage of L1CAM and level of dendritic marker MAP2c in different regions of the aging mouse brain. While NP expression gradually decreased in the cerebral cortex during aging, it showed a sharp rise in both olfactory bulb and hippocampus in adult and thereafter declined in old age. NP expression was moderate in young medulla, but undetectable in midbrain and cerebellum. It was positively correlated with L1CAM cleavage and MAP2c level in different brain regions during aging. Taken together, our study shows age-dependent regional variation in NP expression and its positive correlation with MAP2c level, suggesting the involvement of NP in MAP2c mediated alterations in dendritic morphology during aging.
Description of dental arch form using the Fourier series.
Valenzuela, A Patricia; Pardo, Marco A; Yezioro, Salomon
2002-01-01
The aim of this study was to describe the form of the human superior dental arch using Fourier transformations. Forty models made in dental stone from impressions of the maxillary dental arch were used to obtain the reference data, which were expressed in Cartesian coordinates, from the mesovestibular cuspid vertices of molar teeth, vestibular cuspid of premolars, and incisal edge. Fourth-grade equations and Fourier series were calculated from these data. The results indicate that Fourier series more precisely express the form and size of different dental arches, with mixed or permanent dentition, than fourth-grade equations. Details of the mathematical procedure and the precision obtained were provided.
Fractional Fourier transform of apertured paraboloid refracting system
Institute of Scientific and Technical Information of China (English)
Jiannong Chen; Jinliang Yan; Defa Wang; Yongjiang Yu
2007-01-01
The limitation of paraxial condition of paraboloid refracting system in performing fractional Fourier transform acts like an aperture, which makes the system different from ideal systems. With aperture expanded as the sum of finite complex Gaussian terms, a more practical approximate analytical solution of fractional Fourier transform of Gaussian beam in an apertured paraboloid refracting system is obtained and also numerical investigation is presented. Complicated and practical fractional Fourier transform systems can be constructed by cascading several apertured paraboloid refracting systems which are the simplest and the most basic units for performing more precise transform.
Institute of Scientific and Technical Information of China (English)
黄冬兰; 陈小康; 徐永群; 陈勇; 陈灶鑫
2013-01-01
采用一维红外光谱、二阶导数谱和二维相关红外光谱对溪黄草原药材及其不同溶剂提取物进行了红外光谱研究.结果表明:溪黄草原药材中含有酯类、芳香类和糖苷类等物质,溪黄草水提物中主要为糖类物质,乙醇提取物中主要为黄酮类物质,石油醚提取物中主要为酯类物质.红外光谱能够快速、简便地提供中药及其提取物中主要化学成分的宏观信息,从而为后续的化学成分分析和中药提取分离方法的改进和优化提供有效参考.%The objective of the present study is to analyze different extracts of Rabdosia serra (Maxim. ) Hara by Fourier transform infrared spectroscopy (FTIR), second derivative infrared spectroscopy and two-dimensional correlation spectroscopy(2D-IR) under thermal perturbation. The results show that the main chemical contents of Rabdosia serra (Maxim. ) Hara medicinal materials are esters, aromatics and glycosides,etc. And the main chemical content of Rabdosia serra (Maxim. ) Hara in its water extract, alcohol extract and ether extract are glycosides, flavonoids and esters, respectively. The spectroscopic technique described is a simple and rapid analytical technique, which could provide valuable information about chemical constituents of medicinal extracts for guiding further chromatographic analysis and separation improvement.
A difference-matrix metaheuristic for intensity map segmentation in step-and-shoot IMRT delivery
Gunawardena, Athula D. A.; D'Souza, Warren D.; Goadrich, Laura D.; Meyer, Robert R.; Sorensen, Kelly J.; Naqvi, Shahid A.; Shi, Leyuan
2006-05-01
At an intermediate stage of radiation treatment planning for IMRT, most commercial treatment planning systems for IMRT generate intensity maps that describe the grid of beamlet intensities for each beam angle. Intensity map segmentation of the matrix of individual beamlet intensities into a set of MLC apertures and corresponding intensities is then required in order to produce an actual radiation delivery plan for clinical use. Mathematically, this is a very difficult combinatorial optimization problem, especially when mechanical limitations of the MLC lead to many constraints on aperture shape, and setup times for apertures make the number of apertures an important factor in overall treatment time. We have developed, implemented and tested on clinical cases a metaheuristic (that is, a method that provides a framework to guide the repeated application of another heuristic) that efficiently generates very high-quality (low aperture number) segmentations. Our computational results demonstrate that the number of beam apertures and monitor units in the treatment plans resulting from our approach is significantly smaller than the corresponding values for treatment plans generated by the heuristics embedded in a widely use commercial system. We also contrast the excellent results of our fast and robust metaheuristic with results from an 'exact' method, branch-and-cut, which attempts to construct optimal solutions, but, within clinically acceptable time limits, generally fails to produce good solutions, especially for intensity maps with more than five intensity levels. Finally, we show that in no instance is there a clinically significant change of quality associated with our more efficient plans.
A Borderline Random Fourier Series
Talagrand, Michel
1995-01-01
Consider a mean zero random variable $X$, and an independent sequence $(X_n)$ distributed like $X$. We show that the random Fourier series $\\sum_{n\\geq 1} n^{-1} X_n \\exp(2i\\pi nt)$ converges uniformly almost surely if and only if $E(|X|\\log\\log(\\max(e^e, |X|))) < \\infty$.
Fourier Series and Elliptic Functions
Fay, Temple H.
2003-01-01
Non-linear second-order differential equations whose solutions are the elliptic functions "sn"("t, k"), "cn"("t, k") and "dn"("t, k") are investigated. Using "Mathematica", high precision numerical solutions are generated. From these data, Fourier coefficients are determined yielding approximate formulas for these non-elementary functions that are…
Fourier Lucas-Kanade algorithm.
Lucey, Simon; Navarathna, Rajitha; Ashraf, Ahmed Bilal; Sridharan, Sridha
2013-06-01
In this paper, we propose a framework for both gradient descent image and object alignment in the Fourier domain. Our method centers upon the classical Lucas & Kanade (LK) algorithm where we represent the source and template/model in the complex 2D Fourier domain rather than in the spatial 2D domain. We refer to our approach as the Fourier LK (FLK) algorithm. The FLK formulation is advantageous when one preprocesses the source image and template/model with a bank of filters (e.g., oriented edges, Gabor, etc.) as 1) it can handle substantial illumination variations, 2) the inefficient preprocessing filter bank step can be subsumed within the FLK algorithm as a sparse diagonal weighting matrix, 3) unlike traditional LK, the computational cost is invariant to the number of filters and as a result is far more efficient, and 4) this approach can be extended to the Inverse Compositional (IC) form of the LK algorithm where nearly all steps (including Fourier transform and filter bank preprocessing) can be precomputed, leading to an extremely efficient and robust approach to gradient descent image matching. Further, these computational savings translate to nonrigid object alignment tasks that are considered extensions of the LK algorithm, such as those found in Active Appearance Models (AAMs).
Fourier Analysis of Musical Intervals
LoPresto, Michael C.
2008-01-01
Use of a microphone attached to a computer to capture musical sounds and software to display their waveforms and harmonic spectra has become somewhat commonplace. A recent article in "The Physics Teacher" aptly demonstrated the use of MacScope in just such a manner as a way to teach Fourier analysis. A logical continuation of this project is to…
Matrix isolation studies with Fourier transform IR
Energy Technology Data Exchange (ETDEWEB)
Green, David W.; Reedy, Gerald T.
1977-01-01
The combination of Fourier transform infrared (FT-IR) spectroscopy with the matrix-isolation techniques has advantages compared with the use of more conventional grating spectroscopy. Furthermore, the recent commercial availability of Fourier transform spectrometers has made FT-IR a practical alternative. Some advantages of the FT-IR spectrometer over the grating spectrometer are the result of the computerized data system that is a necessary part of the FT-IR spectrometer; other advantages are a consequence of the difference in optical arrangements and these represent the inherent advantages of the FT-IR method. In most applications with the matrix-isolation technique, the use of FT-IR spectroscopy results in either an improved signal-to-noise ratio or a shorter time for data collection compared with grating infrared spectroscopy. Fourier transform infrared spectroscopy has been used in the laboratory to study several molecular species in low-temperature matrices. Some species have been produced by high-temperature vaporization from Knudsen cells and others by sputtering. By sputtering, Ar and Kr matrices have been prepared which contain U atoms, UO, UO/sub 2/, UO/sub 3/, PuO, PuO/sub 2/, UN, or UN/sub 2/, depending upon the composition of the gas used to sputter as well as the identity of the metallic cathode. Infrared spectra of matrices containing these compounds are presented and discussed. (JRD)
Drachal, J.; Kawel, A. K.
2016-06-01
The article describes the possibility of developing an overall map of the selected area on the basis of publicly available data. Such a map would take the form designed by the author with the colors that meets his expectations and a content, which he considers to be appropriate. Among the data available it was considered the use of satellite images of the terrain in real colors and, in the form of shaded relief, digital terrain models with different resolutions of the terrain mesh. Specifically the considered data were: MODIS, Landsat 8, GTOPO-30, SRTM-30, SRTM-1, SRTM-3, ASTER. For the test area the island of Cyprus was chosen because of the importance in tourism, a relatively small area and a clearly defined boundary. In the paper there are shown and discussed various options of the Cyprus terrain image obtained synthetically from variants of Modis, Landsat and digital elevation models of different resolutions.
Measuring sperm movement within the female reproductive tract using Fourier analysis.
Nicovich, Philip R; Macartney, Erin L; Whan, Renee M; Crean, Angela J
2015-02-01
The adaptive significance of variation in sperm phenotype is still largely unknown, in part due to the difficulties of observing and measuring sperm movement in its natural, selective environment (i.e., within the female reproductive tract). Computer-assisted sperm analysis systems allow objective and accurate measurement of sperm velocity, but rely on being able to track individual sperm, and are therefore unable to measure sperm movement in species where sperm move in trains or bundles. Here we describe a newly developed computational method for measuring sperm movement using Fourier analysis to estimate sperm tail beat frequency. High-speed time-lapse videos of sperm movement within the female tract of the neriid fly Telostylinus angusticollis were recorded, and a map of beat frequencies generated by converting the periodic signal of an intensity versus time trace at each pixel to the frequency domain using the Fourier transform. We were able to detect small decreases in sperm tail beat frequency over time, indicating the method is sensitive enough to identify consistent differences in sperm movement. Fourier analysis can be applied to a wide range of species and contexts, and should therefore facilitate novel exploration of the causes and consequences of variation in sperm movement.
Fourier analysis for rotating-element ellipsometers.
Cho, Yong Jai; Chegal, Won; Cho, Hyun Mo
2011-01-15
We introduce a Fourier analysis of the waveform of periodic light-irradiance variation to capture Fourier coefficients for multichannel rotating-element ellipsometers. In this analysis, the Fourier coefficients for a sample are obtained using a discrete Fourier transform on the exposures. The analysis gives a generic function that encompasses the discrete Fourier transform or the Hadamard transform, depending on the specific conditions. Unlike the Hadamard transform, a well-known data acquisition method that is used only for conventional multichannel rotating-element ellipsometers with line arrays with specific readout-mode timing, this Fourier analysis is applicable to various line arrays with either nonoverlap or overlap readout-mode timing. To assess the effects of the novel Fourier analysis, the Fourier coefficients for a sample were measured with a custom-built rotating-polarizer ellipsometer, using this Fourier analysis with various numbers of scans, integration times, and rotational speeds of the polarizer.
Consistency of different tropospheric models and mapping functions for precise GNSS processing
Graffigna, Victoria; Hernández-Pajares, Manuel; García-Rigo, Alberto; Gende, Mauricio
2017-04-01
The TOmographic Model of the IONospheric electron content (TOMION) software implements a simultaneous precise geodetic and ionospheric modeling, which can be used to test new approaches for real-time precise GNSS modeling (positioning, ionospheric and tropospheric delays, clock errors, among others). In this work, the software is used to estimate the Zenith Tropospheric Delay (ZTD) emulating real time and its performance is evaluated through a comparative analysis with a built-in GIPSY estimation and IGS final troposphere product, exemplified in a two-day experiment performed in East Australia. Furthermore, the troposphere mapping function was upgraded from Niell to Vienna approach. On a first scenario, only forward processing was activated and the coordinates of the Wide Area GNSS network were loosely constrained, without fixing the carrier phase ambiguities, for both reference and rover receivers. On a second one, precise point positioning (PPP) was implemented, iterating for a fixed coordinates set for the second day. Comparisons between TOMION, IGS and GIPSY estimates have been performed and for the first one, IGS clocks and orbits were considered. The agreement with GIPSY results seems to be 10 times better than with the IGS final ZTD product, despite having considered IGS products for the computations. Hence, the subsequent analysis was carried out with respect to the GIPSY computations. The estimates show a typical bias of 2cm for the first strategy and of 7mm for PPP, in the worst cases. Moreover, Vienna mapping function showed in general a fairly better agreement than Niell one for both strategies. The RMS values' were found to be around 1cm for all studied situations, with a slightly fitter performance for the Niell one. Further improvement could be achieved for such estimations with coefficients for the Vienna mapping function calculated from raytracing as well as integrating meteorological comparative parameters.
A difference-matrix metaheuristic for intensity map segmentation in step-and-shoot IMRT delivery
Energy Technology Data Exchange (ETDEWEB)
Gunawardena, Athula D A [Department of Mathematics and Computer Sciences, University of Wisconsin-Whitewater, 800 West Main Street, Whitewater, WI (United States); D' Souza, Warren D [Department of Radiation Oncology, School of Medicine, University of Maryland, 22 South Greene Street, Baltimore, MD (United States); Goadrich, Laura D [Department of Industrial and Systems Engineering, University of Wisconsin-Madison, Madison, WI (United States); Meyer, Robert R [Department of Computer Sciences, University of Wisconsin-Madison, Madison, WI (United States); Sorensen, Kelly J [Department of Computer Sciences, University of Wisconsin-Madison, Madison, WI (United States); Naqvi, Shahid A [Department of Radiation Oncology, School of Medicine, University of Maryland, 22 South Greene Street, Baltimore, MD (United States); Shi, Leyuan [Department of Industrial and Systems Engineering, University of Wisconsin-Madison, Madison, WI (United States)
2006-05-21
At an intermediate stage of radiation treatment planning for IMRT, most commercial treatment planning systems for IMRT generate intensity maps that describe the grid of beamlet intensities for each beam angle. Intensity map segmentation of the matrix of individual beamlet intensities into a set of MLC apertures and corresponding intensities is then required in order to produce an actual radiation delivery plan for clinical use. Mathematically, this is a very difficult combinatorial optimization problem, especially when mechanical limitations of the MLC lead to many constraints on aperture shape, and setup times for apertures make the number of apertures an important factor in overall treatment time. We have developed, implemented and tested on clinical cases a metaheuristic (that is, a method that provides a framework to guide the repeated application of another heuristic) that efficiently generates very high-quality (low aperture number) segmentations. Our computational results demonstrate that the number of beam apertures and monitor units in the treatment plans resulting from our approach is significantly smaller than the corresponding values for treatment plans generated by the heuristics embedded in a widely use commercial system. We also contrast the excellent results of our fast and robust metaheuristic with results from an 'exact' method, branch-and-cut, which attempts to construct optimal solutions, but, within clinically acceptable time limits, generally fails to produce good solutions, especially for intensity maps with more than five intensity levels. Finally, we show that in no instance is there a clinically significant change of quality associated with our more efficient plans.
Energy Technology Data Exchange (ETDEWEB)
Servadio, A.; McCall, A.; Zoghbi, H. [Baylor College of Medicine, Houston, TX (United States); Eicher, E.M. [Jackson Laboratory, Bar Harbor, ME (United States)
1995-10-10
It is well established that large chromosomal segments have remained intact during the evolution of different mammalian species. Thus, mapping information for a gene in mammalian species facilitates mapping the same gene in another mammalian species. In addition, phenotypically similar diseases that map to linkage conserved regions in two species may be caused by mutations in the same gene. Spinocerebellar ataxia type 1 (SCA1) is a dominantly inherited human disorder characterized by progressive ataxia, dysarthria, and dysmetria. SCA1 maps to the short arm of human chromosome (Chr) 6 in the 6p23-p22 region. SCA1 is caused by the expansion of an unstable CAG repeat located within the coding region of a novel protein, ataxin-1, Purkinje cell degeneration (pcd) is a recessively inherited mouse disorder characterized by a moderate ataxia, usually noted by 3-4 weeks of age. Progressive degeneration of Purkinje cells is the underlying pathogenesis in this disorder. The pcd gene was assigned to mouse Chr 13 because it showed linkage to extra toes (Xt) and pearl (pe). Some doubt about this assignment existed, however, because the calculated genetic distance between pcd and Xt was 32 cM and that between pcd and pe was 18 cM. If pcd is located in Chr 13, its placement relative to Xt and pe suggests that it would be located in the region that shares linkage homology with the region that shares linkage homology with the region of human Chr 6 that contains SCA1. Here, we present data that confirm the assignment of pcd to Chr 13, map the mouse Sca1 gene to Chr 13, and eliminate Sca1 as a candidate gene for pcd. 11 refs., 1 tab.
傅里叶相位差谱在卫星目标图像检测中的应用%Algorithm of Autonomous Satellite Recognition Base on Fourier Phase Difference
Institute of Scientific and Technical Information of China (English)
张少迪; 王延杰; 孙宏海
2011-01-01
提出一种利用序列图像傅里叶相位差谱的特征检测卫星目标的算法.欲跟踪的卫星目标往往淹没在星海中,仅仅依据星体特征检测出目标很繁琐,也很困难.从傅里叶变换的相谱差异特性出发,将序列图像相邻2帧图像中的前一帧图像通过相谱补偿后与后一帧图像对比,检测出奇异的卫星目标,再利用帧差法剔除伪目标,给出跟踪目标的运动轨迹.同时,为了提高该算法的抗噪声能力,针对遇到的实际情况提出基于二维直方图改进的图像二值化算法.通过实验验证了该算法的可行性,结果表明,所提出算法的检测误差与人工捕获相比不超过1个像素.%An algorithm is designed to recognize satellites in the sky based on phase difference of a series of images in frequency domain. It is complicated and difficult to recognize the satellites merely through stars' characteristics because the satellites traced are always surrounded by a large number of stars. One frame image in a series of images is compensated and compared with its adjacent frame. From the comparison , the odd object can be recognized by the character of Fourier phase difference. Then frame subtraction method is used to eliminate fake objects. Finally the movement of tracing object is described. Meanwhile an improved algorithm of image binarization based on two-dimension histogram is designed to strength its anti-noise ability. At the end the experiment shows that the error between this algorithm recognition and human capture is less than one pixel.
10th International Conference on Progress in Fourier Transform Spectroscopy
Keresztury, Gábor; Kellner, Robert
1997-01-01
19 plenary lectures and 203 poster papers presented at the 10th International Conference of Fourier Transform Spectroscopy in Budapest 1995 give an overview on the state-of-the art of this technology and its wide range of applications. The reader will get information on any aspects of FTS including the latest instrumental developments, e.g. in diode array detection, time resolution FTS, microscopy and spectral mapping, double modulation and two-dimensional FTS.
Barón, Johanna; Ruiz, Marina; Palacios-Ceña, María; Madeleine, Pascal; Guerrero, Ángel L; Arendt-Nielsen, Lars; Fernández-de-Las-Peñas, César
2017-02-01
To investigate differences in topographical pressure pain sensitivity maps of the scalp between patients with migraine and healthy controls considering the chronicity (episodic/chronic) and side (strictly unilateral/bilateral) of the symptoms. It seems that the trigeminal area is sensitized in migraine. No study has investigated topographical pressure sensitivity maps of the scalp in patients with migraine. Pressure pain thresholds (PPTs) were assessed from 21 points distributed over the scalp in 86 patients with episodic migraine, 76 with chronic migraine, and 42 healthy age and matched healthy controls in a blinded design. Topographical pressure pain sensitivity maps based on interpolation of the PPTs were constructed. Clinical features of migraine, anxiety, and depression (Hospital Anxiety and Depression Scale, HADS) were collected. The multivariate ANCOVA revealed significant differences in PPT between points (F = 55.674; P .335) except for Fp1 (P = .045) and Fp2 (P = .017) points where subjects with chronic migraine had lower PPTs than those with episodic migraine; (3) no differences between bilateral/unilateral migraine (P > .417). An anterior to posterior gradient was found, with the lowest PPTs located in frontal regions and the highest PPTs in occipital areas (all groups, P pressure pain hypersensitivity in the head as compared to healthy controls and that hypersensitivity was similar between episodic/chronic and unilateral/bilateral migraine. Topographical pressure pain sensitivity maps revealed an anterior to posterior gradient of pressure pain sensitivity in both migraine and control groups. © 2016 American Headache Society.
Directory of Open Access Journals (Sweden)
A. A. Othman
2015-03-01
Full Text Available During the last decades, expansion of settlements into areas prone to landslides in Iraq has increased the importance of accurate hazard assessment. Susceptibility mapping provides information about hazardous locations and thus helps to potentially prevent infrastructure damage due to mass wasting. The aim of this study is to evaluate and compare frequency ratio (FR, weight of evidence (WOE, logistic regression (LR and probit regression (PR approaches in combination with new geomorphological indices to determine the landslide susceptibility index (LSI. We tested these four methods in Mawat area, Kurdistan Region, NE Iraq, where landslides occur frequently. For this purpose, we evaluated 16 geomorphological, geological and environmental predicting factors mainly derived from the advanced spaceborne thermal emission and reflection radiometer (ASTER satellite. The available reference inventory includes 351 landslides representing a cumulative surface of 3.127 km2. This reference inventory was mapped from QuickBird data by manual delineation and partly verified by field survey. The areas under curve (AUC of the receiver operating characteristic (ROC, and relative landslide density (R index show that all models perform similarly and that focus should be put on the careful selection of proxies. The results indicate that the lithology and the slope aspects play major roles for landslide occurrences. Furthermore, this paper demonstrates that using hypsometric integral as a prediction factor instead of slope curvature gives better results and increases the accuracy of the LSI.
Directory of Open Access Journals (Sweden)
Mohamed Elhag
2016-01-01
Full Text Available Land covers in Saudi Arabia are generally described as salty soils with sand dunes and sand sheets. Waterlogging and higher soil salinity are major challenges to sustaining agricultural practices in Saudi Arabia principally within closed drainage basins. Agricultural practices in Saudi Arabia were flourishing in the last two decades. The newly reclaimed lands were added annually and distributed all over the country. Irrigation techniques are mostly modernized to fulfill water saving strategies. Nevertheless, water resources in Saudi Arabia are under stress and groundwater levels are depleted rapidly due to heavy abstraction that may exceed crop water requirements in most of the cases due to high evaporation rates. The excess use of irrigational water leads to severe soil salinity problems. Applications of remote sensing technique in agricultural practices became widely distinctive and cover multidisciplinary principal interests on both local and regional levels. The most important remote sensing applications in agricultural practices are vegetation indices which are related to vegetation and water especially in an arid environment. Soil salinity mapping in an arid ecosystem using remote sensing data is a demanding task. Several soil salinity indices were implemented and evaluated to detect soil salinity effectively and quantitatively. Thematic maps of soil salinity were satisfactorily produced and assessed.
Othman, A. A.; Gloaguen, R.; Andreani, L.; Rahnama, M.
2015-03-01
During the last decades, expansion of settlements into areas prone to landslides in Iraq has increased the importance of accurate hazard assessment. Susceptibility mapping provides information about hazardous locations and thus helps to potentially prevent infrastructure damage due to mass wasting. The aim of this study is to evaluate and compare frequency ratio (FR), weight of evidence (WOE), logistic regression (LR) and probit regression (PR) approaches in combination with new geomorphological indices to determine the landslide susceptibility index (LSI). We tested these four methods in Mawat area, Kurdistan Region, NE Iraq, where landslides occur frequently. For this purpose, we evaluated 16 geomorphological, geological and environmental predicting factors mainly derived from the advanced spaceborne thermal emission and reflection radiometer (ASTER) satellite. The available reference inventory includes 351 landslides representing a cumulative surface of 3.127 km2. This reference inventory was mapped from QuickBird data by manual delineation and partly verified by field survey. The areas under curve (AUC) of the receiver operating characteristic (ROC), and relative landslide density (R index) show that all models perform similarly and that focus should be put on the careful selection of proxies. The results indicate that the lithology and the slope aspects play major roles for landslide occurrences. Furthermore, this paper demonstrates that using hypsometric integral as a prediction factor instead of slope curvature gives better results and increases the accuracy of the LSI.
Comparative analysis of imaging configurations and objectives for Fourier microscopy
Kurvits, Jonathan A; Zia, Rashid
2015-01-01
Fourier microscopy is becoming an increasingly important tool for the analysis of optical nanostructures and quantum emitters. However, achieving quantitative Fourier space measurements requires a thorough understanding of the impact of aberrations introduced by optical microscopes, which have been optimized for conventional real-space imaging. Here, we present a detailed framework for analyzing the performance of microscope objectives for several common Fourier imaging configurations. To this end, we model objectives from Nikon, Olympus, and Zeiss using parameters that were inferred from patent literature and confirmed, where possible, by physical disassembly. We then examine the aberrations most relevant to Fourier microscopy, including the alignment tolerances of apodization factors for different objective classes, the effect of magnification on the modulation transfer function, and vignetting-induced reductions of the effective numerical aperture for wide-field measurements. Based on this analysis, we ide...
Numerical analysis of the human nostril by the Fourier series.
Goto, M; Katsuki, T
1990-02-01
Fourier series has been applied in a numerical analysis of the human nostril morphology. The relationship between the nostril form and the Fourier coefficients was examined: the constant affected the size, the first term determined the roundness, and the second term determined the flatness of the morphology. The inclination of the apse line was calculated from the phase of the second term. Ninety-five standardized nostril photographs were analyzed by Fourier series: 48 of adult Japanese females and 47 of German females. The German nostril was larger in size, flatter in shape, and the apse line closer to the sagittal plane than the Japanese counterpart. As a clinical application of nostril digitization, pre- and post-operative cleft lip noses were analyzed. Fourier analysis has proved to be useful in a numerical evaluation of morphological differences of, and post-operative changes made to, the nostril.
Fang, Ya-Ling; Shi, Zhong-Ke; Cao, Jin-Liang
2015-06-01
Based on the coupled map car-following model which was presented by Konishi et al. (1999), a modified coupled map car-following model is proposed. Specifically, the velocity difference between two successive vehicles is included in the model. The stability condition is given for the change of the speed of the preceding vehicle on the base of the control theory. We derive a condition under which the traffic jam never occurs in our model. Furthermore, in order to suppress traffic jams, we use static and dynamic version of decentralized delayed-feedback control for each vehicle, respectively, and provide a systematic procedure for designing the controller. In addition, the controller of each vehicle does not include any other vehicle information in real traffic flows.
Motion-corrected Fourier ptychography
Bian, Liheng; Guo, Kaikai; Suo, Jinli; Yang, Changhuei; Chen, Feng; Dai, Qionghai
2016-01-01
Fourier ptychography (FP) is a recently proposed computational imaging technique for high space-bandwidth product imaging. In real setups such as endoscope and transmission electron microscope, the common sample motion largely degrades the FP reconstruction and limits its practicability. In this paper, we propose a novel FP reconstruction method to efficiently correct for unknown sample motion. Specifically, we adaptively update the sample's Fourier spectrum from low spatial-frequency regions towards high spatial-frequency ones, with an additional motion recovery and phase-offset compensation procedure for each sub-spectrum. Benefiting from the phase retrieval redundancy theory, the required large overlap between adjacent sub-spectra offers an accurate guide for successful motion recovery. Experimental results on both simulated data and real captured data show that the proposed method can correct for unknown sample motion with its standard deviation being up to 10% of the field-of-view scale. We have released...
Fourier Analysis of Blazar Variability
Finke, Justin D
2014-01-01
Blazars display strong variability on multiple timescales and in multiple radiation bands. Their variability is often characterized by power spectral densities (PSDs) and time lags plotted as functions of the Fourier frequency. We develop a new theoretical model based on the analysis of the electron transport (continuity) equation, carried out in the Fourier domain. The continuity equation includes electron cooling and escape, and a derivation of the emission properties includes light travel time effects associated with a radiating blob in a relativistic jet. The model successfully reproduces the general shapes of the observed PSDs and predicts specific PSD and time lag behaviors associated with variability in the synchrotron, synchrotron self-Compton (SSC), and external Compton (EC) emission components, from sub-mm to gamma-rays. We discuss applications to BL Lacertae objects and to flat-spectrum radio quasars (FSRQs), where there are hints that some of the predicted features have already been observed. We a...
From Fourier analysis to wavelets
Gomes, Jonas
2015-01-01
This text introduces the basic concepts of function spaces and operators, both from the continuous and discrete viewpoints. Fourier and Window Fourier Transforms are introduced and used as a guide to arrive at the concept of Wavelet transform. The fundamental aspects of multiresolution representation, and its importance to function discretization and to the construction of wavelets is also discussed. Emphasis is given on ideas and intuition, avoiding the heavy computations which are usually involved in the study of wavelets. Readers should have a basic knowledge of linear algebra, calculus, and some familiarity with complex analysis. Basic knowledge of signal and image processing is desirable. This text originated from a set of notes in Portuguese that the authors wrote for a wavelet course on the Brazilian Mathematical Colloquium in 1997 at IMPA, Rio de Janeiro.
Compact Microwave Fourier Spectrum Analyzer
Savchenkov, Anatoliy; Matsko, Andrey; Strekalov, Dmitry
2009-01-01
A compact photonic microwave Fourier spectrum analyzer [a Fourier-transform microwave spectrometer, (FTMWS)] with no moving parts has been proposed for use in remote sensing of weak, natural microwave emissions from the surfaces and atmospheres of planets to enable remote analysis and determination of chemical composition and abundances of critical molecular constituents in space. The instrument is based on a Bessel beam (light modes with non-zero angular momenta) fiber-optic elements. It features low power consumption, low mass, and high resolution, without a need for any cryogenics, beyond what is achievable by the current state-of-the-art in space instruments. The instrument can also be used in a wide-band scatterometer mode in active radar systems.
Subharmonic Fourier domain mode locking.
Eigenwillig, Christoph M; Wieser, Wolfgang; Biedermann, Benjamin R; Huber, Robert
2009-03-15
We demonstrate a subharmonically Fourier domain mode-locked wavelength-swept laser source with a substantially reduced cavity fiber length. In contrast to a standard Fourier domain mode-locked configuration, light is recirculated repetitively in the delay line with the optical bandpass filter used as switch. The laser has a fundamental optical round trip frequency of 285 kHz and can be operated at integer fractions thereof (subharmonics). Sweep ranges up to 95 nm full width centred at 1317 nm are achieved at the 1/5th subharmonic. A maximum sensitivity of 116 dB and an axial resolution of 12 microm in air are measured at an average sweep power of 12 mW. A sensitivity roll-off of 11 dB over 4 mm and 25 dB over 10 mm is observed and optical coherence tomography imaging is demonstrated. Besides the advantage of a reduced fiber length, subharmonic Fourier domain mode locking (shFDML) enables simple scaling of the sweep speed by extracting light from the delay part of the resonator. A sweep rate of 570 kHz is achieved. Characteristic features of shFDML operation, such as power leakage during fly-back and cw breakthrough, are investigated.
A More Accurate Fourier Transform
Courtney, Elya
2015-01-01
Fourier transform methods are used to analyze functions and data sets to provide frequencies, amplitudes, and phases of underlying oscillatory components. Fast Fourier transform (FFT) methods offer speed advantages over evaluation of explicit integrals (EI) that define Fourier transforms. This paper compares frequency, amplitude, and phase accuracy of the two methods for well resolved peaks over a wide array of data sets including cosine series with and without random noise and a variety of physical data sets, including atmospheric $\\mathrm{CO_2}$ concentrations, tides, temperatures, sound waveforms, and atomic spectra. The FFT uses MIT's FFTW3 library. The EI method uses the rectangle method to compute the areas under the curve via complex math. Results support the hypothesis that EI methods are more accurate than FFT methods. Errors range from 5 to 10 times higher when determining peak frequency by FFT, 1.4 to 60 times higher for peak amplitude, and 6 to 10 times higher for phase under a peak. The ability t...
Pachowsky, Milena L; Trattnig, Siegfried; Apprich, Sebastian; Mauerer, Andreas; Zbyn, Stephan; Welsch, Goetz H
2013-11-01
The purpose of our study was to assess T2 and T2* relaxation time values of patella cartilage in healthy volunteers using three different coils at 3.0 Tesla MRI and their influence on the quantitative values. Fifteen volunteers were examined on the same 3-Tesla MR unit using three different coils: (i) a dedicated eight-channel knee phased-array coil; (ii) an eight-channel multi-purpose coil, and (iii) a one-channel 1H surface coil. T2 and T2* relaxation time measurements were prepared by a multi-echo spinecho respectively a gradient-echo sequence. A semi-automatic region-of-interest analysis was performed for patella cartilage. To allow stratification, a subregional analysis was carried out (deep-superficial cartilage layer). Statistical analysis-of-variance was performed. The mean quantitative T2 values showed statistically significant differences in all comparison combinations. The differences between the mean quantitative T2* values were slightly less pronounced than the T2 evaluation and only the comparison between (i) and (ii) showed a significant difference. The results of T2 and T2* values showed, independent of the used coil, higher values in the superficial zone compared to the deep zone (p < 0.05). Looking at the signal alterations, all coils showed clearly higher values (and thus more signal alterations as a sign of noise) in the deep layer. The validation of the reliability showed a high intra-class correlation coefficient and hence a very high plausibility (ICC was between 0.870 and 0.905 for T2 mapping and between 0.879 and 0.888 for T2* mapping). The present results demonstrate that biochemical T2 and T2* mapping is significantly dependent on the utilized coil.
Directory of Open Access Journals (Sweden)
Ary Setya Budhi Ningrum
2016-06-01
Full Text Available The purpose of the study was to determine the impact of mind mapping as a strategy in generating ideas before writing on the EFL students’ idea development in argumentative writing as perceived from their gender differences and learning styles. By conducting an experimental investigation at university level in Indonesia, two existing TOEFL classes at the State Islamic Studies (STAIN in Kediri were selected by a lottery to group 1: using linear notes (N=41, and group 2: using mind mapping (N=41. For analyzing the data, Analysis of covariance (ANCOVA were utilized by using students’ TOEFL score as the covariate variable. The result findings indicated that there is no significant difference on the students’ idea developments in writing between the control and the experimental groups. These result also revealed that there is no significant difference on the students’ idea development in writing between gender differences, and among the students’ learning styles. Furthermore, there is no significant interaction between treatment and gender differences, and there is no significant interaction between treatment and learning styles.
An introduction to Fourier series and integrals
Seeley, Robert T
2006-01-01
This compact guide emphasizes the relationship between physics and mathematics, introducing Fourier series in the way that Fourier himself used them: as solutions of the heat equation in a disk. 1966 edition.
Optical Planar Discrete Fourier and Wavelet Transforms
Cincotti, Gabriella; Moreolo, Michela Svaluto; Neri, Alessandro
2007-10-01
We present all-optical architectures to perform discrete wavelet transform (DWT), wavelet packet (WP) decomposition and discrete Fourier transform (DFT) using planar lightwave circuits (PLC) technology. Any compact-support wavelet filter can be implemented as an optical planar two-port lattice-form device, and different subband filtering schemes are possible to denoise, or multiplex optical signals. We consider both parallel and serial input cases. We design a multiport decoder/decoder that is able to generate/process optical codes simultaneously and a flexible logarithmic wavelength multiplexer, with flat top profile and reduced crosstalk.
Rengier, Fabian; Delles, Michael; Eichhorn, Joachim; Azad, Yoo-Jin; von Tengg-Kobligk, Hendrik; Ley-Zaporozhan, Julia; Dillmann, Rüdiger; Kauczor, Hans-Ulrich; Unterhinninghofen, Roland; Ley, Sebastian
2014-04-01
To develop a method for computing and visualizing pressure differences derived from time-resolved velocity-encoded three-dimensional phase-contrast magnetic resonance imaging (4D flow MRI) and to compare pressure difference maps of patients with unrepaired and repaired aortic coarctation to young healthy volunteers. 4D flow MRI data of four patients with aortic coarctation either before or after repair (mean age 17 years, age range 3-28, one female, three males) and four young healthy volunteers without history of cardiovascular disease (mean age 24 years, age range 20-27, one female, three males) was acquired using a 1.5-T clinical MR scanner. Image analysis was performed with in-house developed image processing software. Relative pressures were computed based on the Navier-Stokes equation. A standardized method for intuitive visualization of pressure difference maps was developed and successfully applied to all included patients and volunteers. Young healthy volunteers exhibited smooth and regular distribution of relative pressures in the thoracic aorta at mid systole with very similar distribution in all analyzed volunteers. Patients demonstrated disturbed pressures compared to volunteers. Changes included a pressure drop at the aortic isthmus in all patients, increased relative pressures in the aortic arch in patients with residual narrowing after repair, and increased relative pressures in the descending aorta in a patient after patch aortoplasty. Pressure difference maps derived from 4D flow MRI can depict alterations of spatial pressure distribution in patients with repaired and unrepaired aortic coarctation. The technique might allow identifying pathophysiological conditions underlying complications after aortic coarctation repair.
Hoffmeister, Dirk; Kramm, Tanja; Curdt, Constanze; Maleki, Sedigheh; Khormali, Farhad; Kehl, Martin
2016-04-01
The Iranian loess plateau is covered by loess deposits, up to 70 m thick. Tectonic uplift triggered deep erosion and valley incision into the loess and underlying marine deposits. Soil development strongly relates to the aspect of these incised slopes, because on northern slopes vegetation protects the soil surface against erosion and facilitates formation and preservation of a Cambisol, whereas on south-facing slopes soils were probably eroded and weakly developed Entisols formed. While the whole area is intensively stocked with sheep and goat, rain-fed cropping of winter wheat is practiced on the valley floors. Most time of the year, the soil surface is unprotected against rainfall, which is one of the factors promoting soil erosion and serious flooding. However, little information is available on soil distribution, plant cover and the geomorphological evolution of the plateau, as well as on potentials and problems in land use. Thus, digital landform and soil mapping is needed. As a requirement of digital landform and soil mapping, four different landform classification methods were compared and evaluated. These geomorphometric classifications were run on two different scales. On the whole area an ASTER GDEM and SRTM dataset (30 m pixel resolution) was used. Likewise, two high-resolution digital elevation models were derived from Pléiades satellite stereo-imagery (58%. For the 30 m resolution datasets is the achieved accuracy approximately 40%, as several small scale features are not recognizable in this resolution. Thus, for an accurate differentiation between different important landform types, high-resolution datasets are necessary for this strongly shaped area. One major problem of this approach are the different classes derived by each method and the various class annotations. The result of this evaluation will be regarded for the derivation of landform and soil maps.
Warnery, E; Ielsch, G; Lajaunie, C; Cale, E; Wackernagel, H; Debayle, C; Guillevic, J
2015-01-01
Terrestrial gamma dose rates show important spatial variations in France. Previous studies resulted in maps of arithmetic means of indoor terrestrial gamma dose rates by "departement" (French district). However, numerous areas could not be characterized due to the lack of data. The aim of our work was to obtain more precise estimates of the spatial variability of indoor terrestrial gamma dose rates in France by using a more recent and complete data base and geostatistics. The study was based on the exploitation of 97,595 measurements results distributed in 17,404 locations covering all of France. Measurements were done by the Institute for Radioprotection and Nuclear Safety (IRSN) using RPL (Radio Photo Luminescent) dosimeters, exposed during several months between years 2011 and 2012 in French dentist surgeries and veterinary clinics. The data used came from dosimeters which were not exposed to anthropic sources. After removing the cosmic rays contribution in order to study only the telluric gamma radiation, it was decided to work with the arithmetic means of the time-series measurements, weighted by the time-exposure of the dosimeters, for each location. The values varied between 13 and 349 nSv/h, with an arithmetic mean of 76 nSv/h. The observed statistical distribution of the gamma dose rates was skewed to the right. Firstly, ordinary kriging was performed in order to predict the gamma dose rate on cells of 1*1 km(2), all over the domain. The second step of the study was to use an auxiliary variable in estimates. The IRSN achieved in 2010 a classification of the French geological formations, characterizing their uranium potential on the bases of geology and local measurement results of rocks uranium content. This information is georeferenced in a map at the scale 1:1,000,000. The geological uranium potential (GUP) was classified in 5 qualitative categories. As telluric gamma rays mostly come from the progenies of the (238)Uranium series present in rocks, this
Fourier techniques in X-ray timing
M. van der Klis
1988-01-01
Basic principles of Fourier techniques often used in X-ray time series analysis are reviewed. The relation between the discrete Fourier transform and the continuous Fourier transform is discussed to introduce the concepts of windowing and aliasing. The relation is derived between the power spectrum
Indian Academy of Sciences (India)
Lanzhi Li; Xiaohong He; Hongyan Zhang; Zhiming Wang; Congwei Sun; Tongmin Mou; Xinqi Li; Yuanming Zhang; Zhongli Hu
2015-06-01
North Carolina design III (NCIII) is one of the most powerful and widely used mating designs for understanding the genetic basis of heterosis. However, the quantitative trait mapping (QTL) conducted in previous studies with this design was mainly based on analysis of variance (ANOVA), composite interval or multiple interval mapping methods. These methodologies could not investigate all kinds of genetic effects, especially epistatic effects, simultaneously on the whole genome. In this study, with a statistical method for mapping epistatic QTL associated with heterosis using the recombinant inbred line (RIL)-based NCIII design, we conducted QTL mapping for nine agronomic traits of two elite hybrids to characterize the mode of gene action contributing to heterosis on a whole genomewide scale. In total, 23 main-effect QTL (M-QTL) and 23 digenic interactions in IJ (indica × japonica) hybrids, 11 M-QTL and 82 digenic interactions in II (indica × indica) hybrid QTLs were identified in the present study. The variation explained by individual M-QTL or interactions ranged from 2.3 to 11.0%. The number of digenic interactions and the total variation explained by interactions of each trait were larger than those of M-QTL. The augmented genetic effect ratio of most M-QTL and digenic interactions in (L1–L2) data of two backcross populations (L1 and L2) showed complete dominance or overdominance, and in (L1 + L2) data showed an additive effect. Our results indicated that the dominance, overdominance and epistatic effect were important in conditioning the genetic basis of heterosis of the two elite hybrids. The relative contributions of the genetic components varied with traits and the genetic basis of the two hybrids was different.
Li, Lanzhi; He, Xiaohong; Zhang, Hongyan; Wang, Zhiming; Sun, Congwei; Mou, Tongmin; Li, Xinqi; Zhang, Yuanming; Hu, Zhongli
2015-06-01
North Carolina design III (NCIII) is one of the most powerful and widely used mating designs for understanding the genetic basis of heterosis. However, the quantitative trait mapping (QTL) conducted in previous studies with this design was mainly based on analysis of variance (ANOVA), composite interval or multiple interval mapping methods. These methodologies could not investigate all kinds of genetic effects, especially epistatic effects, simultaneously on the whole genome. In this study, with a statistical method for mapping epistatic QTL associated with heterosis using the recombinant inbred line (RIL)-based NCIII design, we conducted QTL mapping for nine agronomic traits of two elite hybrids to characterize the mode of gene action contributing to heterosis on a whole genomewide scale. In total, 23 main-effect QTL (M-QTL) and 23 digenic interactions in IJ (indica x japonica) hybrids, 11 M-QTL and 82 digenic interactions in II (indica x indica) hybrid QTLs were identified in the present study. The variation explained by individual M-QTL or interactions ranged from 2.3 to 11.0%. The number of digenic interactions and the total variation explained by interactions of each trait were larger than those of M-QTL. The augmented genetic effect ratio of most M-QTL and digenic interactions in (L1 - L2) data of two backcross populations (L1 and L2) showed complete dominance or overdominance, and in (L1 + L2) data showed an additive effect. Our results indicated that the dominance, overdominance and epistatic effect were important in conditioning the genetic basis of heterosis of the two elite hybrids. The relative contributions of the genetic components varied with traits and the genetic basis of the two hybrids was different.
Ali, Azizi; Mohd Muslim, Aidy; Lokman Husain, Mohd; Fadzil Akhir, Mohd
2013-04-01
Sea surface temperature (SST) variation provides vital information for weather and ocean forecasting especially when studying climate change. Conventional methods of collecting ocean parameters such as SST, remains expensive and labor intensive due to the large area coverage and complex analytical procedure required. Therefore, some studies need to be conducted on the spatial and temporal distribution of ocean parameters. This study looks at Geo-statisctical methods in interpolating SST values and its impact on accuracy. Two spatial Geo-statistical techniques, mainly kriging and inverse distance functions (IDW) were applied to create variability distribution maps of SST for the Southern South China Sea (SCS). Data from 72 sampling station was collected in July 2012 covering an area of 270 km x 100 km and 263 km away from shore. This data provide the basis for the interpolation and accuracy analysis. After normalization, variograms were computed to fit the data sets producing models with the least RSS value. The accuracy were later evaluated based on on root mean squared error (RMSE) and root mean kriging variance (RMKV). Results show that Kriging with exponential model produced most accuracy estimates, reducing error in 17.3% compared with inverse distance functions.
Papageorgiou, Eirini; Desloovere, Kaat; Molenaers, Guy; De Laet, Tinne
2017-01-01
Experts recently identified 49 joint motion patterns in children with cerebral palsy during a Delphi consensus study. Pattern definitions were therefore the result of subjective expert opinion. The present study aims to provide objective, quantitative data supporting the identification of these consensus-based patterns. To do so, statistical parametric mapping was used to compare the mean kinematic waveforms of 154 trials of typically developing children (n = 56) to the mean kinematic waveforms of 1719 trials of children with cerebral palsy (n = 356), which were classified following the classification rules of the Delphi study. Three hypotheses stated that: (a) joint motion patterns with ‘no or minor gait deviations’ (n = 11 patterns) do not differ significantly from the gait pattern of typically developing children; (b) all other pathological joint motion patterns (n = 38 patterns) differ from typically developing gait and the locations of difference within the gait cycle, highlighted by statistical parametric mapping, concur with the consensus-based classification rules. (c) all joint motion patterns at the level of each joint (n = 49 patterns) differ from each other during at least one phase of the gait cycle. Results showed that: (a) ten patterns with ‘no or minor gait deviations’ differed somewhat unexpectedly from typically developing gait, but these differences were generally small (≤3°); (b) all other joint motion patterns (n = 38) differed from typically developing gait and the significant locations within the gait cycle that were indicated by the statistical analyses, coincided well with the classification rules; (c) joint motion patterns at the level of each joint significantly differed from each other, apart from two sagittal plane pelvic patterns. In addition to these results, for several joints, statistical analyses indicated other significant areas during the gait cycle that were not included in the pattern definitions of the consensus
Fractally Fourier decimated homogeneous turbulent shear flow in noninteger dimensions
Fathali, Mani; Khoei, Saber
2017-02-01
Time evolution of the fully resolved incompressible homogeneous turbulent shear flow in noninteger Fourier dimensions is numerically investigated. The Fourier dimension of the flow field is extended from the integer value 3 to the noninteger values by projecting the Navier-Stokes equation on the fractal set of the active Fourier modes with dimensions 2.7 ≤d ≤3.0 . The results of this study revealed that the dynamics of both large and small scale structures are nontrivially influenced by changing the Fourier dimension d . While both turbulent production and dissipation are significantly hampered as d decreases, the evolution of their ratio is almost independent of the Fourier dimension. The mechanism of the energy distribution among different spatial directions is also impeded by decreasing d . Due to this deficient energy distribution, turbulent field shows a higher level of the large-scale anisotropy in lower Fourier dimensions. In addition, the persistence of the vortex stretching mechanism and the forward spectral energy transfer, which are three-dimensional turbulence characteristics, are examined at changing d , from the standard case d =3.0 to the strongly decimated flow field for d =2.7 . As the Fourier dimension decreases, these forward energy transfer mechanisms are strongly suppressed, which in turn reduces both the small-scale intermittency and the deviation from Gaussianity. Besides the energy exchange intensity, the variations of d considerably modify the relative weights of local to nonlocal triadic interactions. It is found that the contribution of the nonlocal triads to the total turbulent kinetic energy exchange increases as the Fourier dimension increases.
Fractally Fourier decimated homogeneous turbulent shear flow in noninteger dimensions.
Fathali, Mani; Khoei, Saber
2017-02-01
Time evolution of the fully resolved incompressible homogeneous turbulent shear flow in noninteger Fourier dimensions is numerically investigated. The Fourier dimension of the flow field is extended from the integer value 3 to the noninteger values by projecting the Navier-Stokes equation on the fractal set of the active Fourier modes with dimensions 2.7≤d≤3.0. The results of this study revealed that the dynamics of both large and small scale structures are nontrivially influenced by changing the Fourier dimension d. While both turbulent production and dissipation are significantly hampered as d decreases, the evolution of their ratio is almost independent of the Fourier dimension. The mechanism of the energy distribution among different spatial directions is also impeded by decreasing d. Due to this deficient energy distribution, turbulent field shows a higher level of the large-scale anisotropy in lower Fourier dimensions. In addition, the persistence of the vortex stretching mechanism and the forward spectral energy transfer, which are three-dimensional turbulence characteristics, are examined at changing d, from the standard case d=3.0 to the strongly decimated flow field for d=2.7. As the Fourier dimension decreases, these forward energy transfer mechanisms are strongly suppressed, which in turn reduces both the small-scale intermittency and the deviation from Gaussianity. Besides the energy exchange intensity, the variations of d considerably modify the relative weights of local to nonlocal triadic interactions. It is found that the contribution of the nonlocal triads to the total turbulent kinetic energy exchange increases as the Fourier dimension increases.
Mapping different intra-hemispheric parietal-motor networks using twin Coil TMS
DEFF Research Database (Denmark)
Karabanov, Anke Ninija; Chao, Chi-Chao; Paine, Rainer
2013-01-01
Accumulating evidence suggests anatomical and functional differences in connectivity between the anterior and posterior parts of the inferior-parietal lobule (IPL) and the frontal motor areas.......Accumulating evidence suggests anatomical and functional differences in connectivity between the anterior and posterior parts of the inferior-parietal lobule (IPL) and the frontal motor areas....
Aperture scanning Fourier ptychographic microscopy
Ou, Xiaoze; Chung, Jaebum; Horstmeyer, Roarke; Yang, Changhuei
2016-01-01
Fourier ptychographic microscopy (FPM) is implemented through aperture scanning by an LCOS spatial light modulator at the back focal plane of the objective lens. This FPM configuration enables the capturing of the complex scattered field for a 3D sample both in the transmissive mode and the reflective mode. We further show that by combining with the compressive sensing theory, the reconstructed 2D complex scattered field can be used to recover the 3D sample scattering density. This implementation expands the scope of application for FPM and can be beneficial for areas such as tissue imaging and wafer inspection. PMID:27570705
Novel Micro Fourier Transform Spectrometers
Institute of Scientific and Technical Information of China (English)
KONG Yan-mei; LIANG Jing-qiu; LIANG Zhong-zhu; WANG-Bo; ZHANG Jun
2008-01-01
The miniaturization of spectrometer opens a new application area with real-time and on-site measurements. The Fourier transform spectrometer(FTS) is much attractive considering its particular advantages among the approaches. This paper reviews the current status of micro FTS in worldwide and describes its developments; In addition, analyzed are the key problems in designing and fabricating FTS to be settled during the miniaturization. Finally, a novel model of micro FTS with no moving parts is proposed and analyzed, which may provide new concepts for the design of spectrometers.
Fourier-transform optical microsystems
Collins, S. D.; Smith, R. L.; Gonzalez, C.; Stewart, K. P.; Hagopian, J. G.; Sirota, J. M.
1999-01-01
The design, fabrication, and initial characterization of a miniature single-pass Fourier-transform spectrometer (FTS) that has an optical bench that measures 1 cm x 5 cm x 10 cm is presented. The FTS is predicated on the classic Michelson interferometer design with a moving mirror. Precision translation of the mirror is accomplished by microfabrication of dovetailed bearing surfaces along single-crystal planes in silicon. Although it is miniaturized, the FTS maintains a relatively high spectral resolution, 0.1 cm-1, with adequate optical throughput.
Fourier analysis and its applications
Folland, Gerald B
2009-01-01
This book presents the theory and applications of Fourier series and integrals, eigenfunction expansions, and related topics, on a level suitable for advanced undergraduates. It includes material on Bessel functions, orthogonal polynomials, and Laplace transforms, and it concludes with chapters on generalized functions and Green's functions for ordinary and partial differential equations. The book deals almost exclusively with aspects of these subjects that are useful in physics and engineering, and includes a wide variety of applications. On the theoretical side, it uses ideas from modern ana
JPL Fourier transform ultraviolet spectrometer
Cageao, R. P.; Friedl, R. R.; Sander, Stanley P.; Yung, Y. L.
1994-01-01
The Fourier Transform Ultraviolet Spectrometer (FTUVS) is a new high resolution interferometric spectrometer for multiple-species detection in the UV, visible and near-IR. As an OH sensor, measurements can be carried out by remote sensing (limb emission and column absorption), or in-situ sensing (long-path absorption or laser-induced fluorescence). As a high resolution detector in a high repetition rate (greater than 10 kHz) LIF system, OH fluorescence can be discriminated against non-resonant background emission and laser scatter, permitting (0, 0) excitation.
Fourier Transform Methods. Chapter 4
Kaplan, Simon G.; Quijada, Manuel A.
2015-01-01
This chapter describes the use of Fourier transform spectrometers (FTS) for accurate spectrophotometry over a wide spectral range. After a brief exposition of the basic concepts of FTS operation, we discuss instrument designs and their advantages and disadvantages relative to dispersive spectrometers. We then examine how common sources of error in spectrophotometry manifest themselves when using an FTS and ways to reduce the magnitude of these errors. Examples are given of applications to both basic and derived spectrophotometric quantities. Finally, we give recommendations for choosing the right instrument for a specific application, and how to ensure the accuracy of the measurement results..
Meredith, H; Valdramidis, V; Rotabakk, B T; Sivertsvik, M; McDowell, D; Bolton, D J
2014-12-01
Studies were undertaken to investigate the effect of different modified atmospheric packaging (MAP) gaseous combinations on Campylobacter and the natural microflora on poultry fillets. Skinless chicken fillets were stored in gaseous mixtures of 10%, 30%, 50%, 70% and 90% CO2 balanced with N2, 80:20% O2:N2 and 40:30:30% CO2:O2:N2 and control conditions (air) at 2 °C. Samples were analysed periodically for (previously inoculated) Campylobacter, total viable counts (TVC) (mesophiles), TVC (psychrophiles), Enterobacteriaceae, Pseudomonas and lactic acid bacteria (LAB) over 17 days of storage. The carbon dioxide solubility was determined by monitoring the changes in the headspace volume over time using a buoyancy technique and performing calculations based on volumetric measurements and the Henry's constant. Henry's constant was also used to estimate the oxygen solubility in the chicken fillets. The presence of O2 in the MAP gaseous mixtures increased the rate of Campylobacter decline on poultry fillets but in general the counts obtained in aerobic versus anaerobic packs were not significantly (P > 0.05) different. CO2 inhibited the growth of TVC, TEC, LAB and Pseudomonas but only at MAP gaseous combinations containing 50-90% CO2 where concentrations of up to 2000 ppm CO2 were recorded in the fillets after 5 days. Under these conditions a shelf-life in excess of 17 days at 2 °C was obtained. Although, dissolved O2, at levels of 33 ppm in 80:20% O2:N2 packs after 3 days, reduced Campylobacter, it also favoured the growth of the other microbes on the chicken. The optimum gaseous mixture for achieving the combined objectives of reducing Campylobacter and extending shelf was therefore 40:30:30 CO2:O2:N2, which achieved a shelf-life in excess of 14 days.
Workplace ‘learning’ and adult education: Messy objects, blurry maps and making difference
Directory of Open Access Journals (Sweden)
Tara Fenwick
2010-09-01
Full Text Available This article reviews diverse representations of learning evident among published accounts of workplace learning across fields such as adult education, human resource development, management and organisation studies. The discussion critically addresses the question of how to mediate a multiplicity of definitional, ideological and purposive orientations. The argument here is that the issue is not perspectival, but ontological. The critical problem lies in mistaking learning as a single object when in fact it is enacted as multiple objects, as very different things in different logics of study and practice. Particularly in the contested arena of work as a site of economic conflict and production, learning needs to be appreciated as a messy object, existing in different states, or perhaps a series of different objects that are patched together through some manufactured linkages.
Directory of Open Access Journals (Sweden)
Raad Farhood Chisab
2014-01-01
Full Text Available in recent years, wireless communication has experienced a rapid growth and it promises to become a globally important infrastructure. One common design approach in fourth generation 4G systems is Single Carrier Frequency Division Multiple Access (SC-FDMA. It is a single carrier communication technique on the air interface. It has become broadly accepted mainly because of its high resistance to frequency selective fading channels. The third Generation Partnership Project-Long Term Evolution (3GPP-LTE uses this technique in uplink direction because of its lower peak to average power ratio PAPR as compared to Orthogonal Frequency Division Multiple Access (OFDMA that is used for downlink direction. In this paper the LTE in general and SCFDMA will be discuss in details and its performance will be study under two types of subcarrier mapping which are localized and distributed mode also within different channel cases. The results show that the localized subcarrier mapping give lower bit error rate BER than the distributed mode and give different activity under miscellaneous channel cases.
Wu, Ding-Tao; Cheong, Kit-Leong; Wang, Lan-Ying; Lv, Guang-Ping; Ju, Yao-Jun; Feng, Kun; Zhao, Jing; Li, Shao-Ping
2014-03-15
Polysaccharides from seven species of natural and cultured Cordyceps were firstly investigated and compared using saccharide mapping, partially acidic/enzymatic (α-amylase, β-glucanase and pectinase) digestion followed with polysaccharide analysis by using carbohydrate gel electrophoresis (PACE) and high performance thin layer chromatography (HPTLC) analysis, respectively, to obtain the comprehensive profiles of hydrolysates of the polysaccharides and their characters. The results showed that 1,4-α-D-glucosidic, 1,4-β-D-glucosidic and 1,4-α-D-galactosidic linkages were existed in natural and cultured Cordyceps sinensis, cultured Cordyceps militaris, natural Cordyceps gracilis and Cordyceps ciecadae. The similarity of polysaccharides from cultured C. militaris to natural C. sinensis was relatively high, which might contribute to the rational use of C. militaris. Moreover, different species of natural and cultured Cordyceps can be differentiated based on the saccharide mapping, which is helpful to well understand the structural characters of polysaccharides from different species of Cordyceps and to improve the quality control of polysaccharides in natural and cultured Cordyceps.
Pointwise convergence of Fourier series
Arias de Reyna, Juan
2002-01-01
This book contains a detailed exposition of Carleson-Hunt theorem following the proof of Carleson: to this day this is the only one giving better bounds. It points out the motivation of every step in the proof. Thus the Carleson-Hunt theorem becomes accessible to any analyst.The book also contains the first detailed exposition of the fine results of Hunt, Sjölin, Soria, etc on the convergence of Fourier Series. Its final chapters present original material. With both Fefferman's proof and the recent one of Lacey and Thiele in print, it becomes more important than ever to understand and compare these two related proofs with that of Carleson and Hunt. These alternative proofs do not yield all the results of the Carleson-Hunt proof. The intention of this monograph is to make Carleson's proof accessible to a wider audience, and to explain its consequences for the pointwise convergence of Fourier series for functions in spaces near $äcal Lü^1$, filling a well-known gap in the literature.
Three-Dimensional Acoustic Source Mapping with Different Beamforming Steering Vector Formulations
Directory of Open Access Journals (Sweden)
Ennes Sarradj
2012-01-01
are governed by the steering vectors, four different steering vector formulations from the literature are examined, and their theoretical background is discussed. It is found that none of the formulations provide both the correct location and source strength. As a practical example the CLEAN-SC deconvolution methodology is applied to simulated data for a three-source scenario. It is shown that the different steering vector formulations are not equally well suited for three-dimensional application. The two preferred formulations enable the correct estimation of the source location at the cost of a negligible error in the estimated source strength.
English- and Chinese-Learning Infants Map Novel Labels to Objects and Actions Differently
Chan, Cheri C. Y.; Tardif, Twila; Chen, Jie; Pulverman, Rachel B.; Zhu, Liqi; Meng, Xiangzhi
2011-01-01
Research based on naturalistic and checklist methods has revealed differences between English and Chinese monolingual children in their trajectories of learning nouns and verbs. However, studies based on controlled laboratory designs (e.g., Imai et al., 2008) have yielded a more mixed picture. Guided by a multidimensional view of word learning (in…
de Muynck, Bram; Reijnoudt-Klein, Willemieke; Spruyt-de Kloe, Marike
2017-01-01
This article reports the development of a framework that structures differences in Christian educational practices worldwide. One of its purposes is to simplify the complexity of the contexts in which global partners cooperate. The framework also offers the theoretical basis for an instrument that nongovernmental organizations can use to determine…
Panizza, Valeria; Brandolini, Pierluigi; Laureti, Lamberto; Nesci, Olivia; Russo, Filippo; Savelli, Daniele
2016-04-01
In the framework of the studies dealing with geomorphosites mapping, many researches were carried out in the last years presenting both applied examples and proposals for tourist fruition. Researchers had to face many different challenges in transferring the knowledge about the geomorphological heritage on maps. The most relevant are those concerning the use of maps for tourist promotion, taking into account the requirements of clearness of representation of landforms and also the need of pointing out possible geomorphological hazards along tourist paths. Within the activity of the Working Group "Geomorphosites and Cultural Landscape" of AIGeo (Italian Association of Physical Geography and Geomorphology), some Italian itineraries, focused on the promotion of the geomorphological heritage by means of geotourist maps, are presented. They have the goal of: promoting landscape through its geomorphological and geological heritage; disseminating geoheritage knowledge focusing its relationships with cultural landscape and human history; assessing geomorphological hazards and possible risk situations The proposed itineraries are localised in different Italian regions and they concern: - the area around the remains of the Roman town of Ostra. The town is placed on the left side of the Misa River (Marche region, Italy), atop a stream terrace dating back to the uppermost Pleistocene-early Holocene. Detailed geomorphological field and remote-sensing mapping started in 2015. The surveying is aimed at focusing the geomorphological evolution as well as at assessing possible geomorphological hazard for both conservation and exploitation scopes. A geotourist trail is proposed with the aim of highlighting and integrating geomorphological and archaeological elements and information. - a geotourist trail along the coastal terraced slopes of Cinque Terre (Liguria, NW Italy): worldwide considered as one of the most outstanding examples of human integration with the natural landscape
On localization for double Fourier series.
Goffman, C; Waterman, D
1978-02-01
The localization theorems for Fourier series of functions of a single variable are classical and easy to prove. The situation is different for Fourier series of functions of several variables, even if one restricts consideration to rectangular, in particular square, partial sums. We show that the answer to the problem can be obtained by considering the notion of generalized bounded variation, which we introduced. Given a nondecreasing sequence {lambda(n)} of positive numbers such that Sigma 1/lambda(n) diverges, a function g defined on an interval I of R(1) is said to be of Lambda-bounded variation (LambdaBV) if Sigma|g(a(n)) - g(b(n))|/lambda(n) converges for every sequence of nonoverlapping intervals (a(n), b(n)) [unk]I. If lambda(n) = n, we say that g is of harmonic bounded variation (HBV). The definition suitably modified can be extended to functions of several variables. We show that in the case of two variables the localization principle holds for rectangular partial sums if LambdaBV = HBV, and that if LambdaBV is not contained in HBV, then the localization principle does not hold for LambdaBV even in the case of square partial sums.
Fourier coefficient description of left ventricular shape.
Round, W H; Bates, R H; Ikram, H
1991-12-01
A method of quantifying the shape of the left ventricle of the heart as seen in 2D echocardiograms was developed. It is based on describing the shape in terms of the coefficients a fifth-order trigonometric Fourier series. Such a series has eleven Fourier coefficients which is too large a number for clinical application so pairs of coefficients are combined to give six coefficients (alpha 0, alpha 1, ... , alpha 5). A trial was conducted to test the ability of the coefficient description to classify subjects as having normal right ventricles or ventricles with an apical abnormality. The tests showed that one of the coefficients (alpha 2) was higher for the subjects with an apical abnormality and that this difference increased with exercise. This is as was expected. However, it was found to be difficult to get a reliable estimate of alpha 2 from a single scan of a patient and that it is therefore probably necessary to average data from several scans to obtain a reliable alpha 2 value for a single patient.
Uniformity of measures with Fourier frames
Dutkay, Dorin Ervin
2012-01-01
We examine Fourier frames and, more generally, frame measures for different probability measures. We prove that if a measure has an associated frame measure, then it must have a certain uniformity in the sense that the weight is distributed quite uniformly on its support. To be more precise, by considering certain absolute continuity properties of the measure and its translation, we recover the characterization on absolutely continuous measures $g\\, dx$ with Fourier frames obtained in \\cite{Lai11}. Moreover, we prove that the frame bounds are pushed away by the essential infimum and supremum of the function $g$. This also shows that absolutely continuous spectral measures supported on a set $\\Omega$, if they exist, must be the standard Lebesgue measure on $\\Omega$ up to a multiplicative constant. We then investigate affine iterated function systems (IFSs), we show that if an IFS with no overlap admits a frame measure then the probability weights are all equal. Moreover, we also show that the {\\L}aba-Wang conj...
Huang, Hao; Milojevic, Julijana; Melacini, Giuseppe
2008-05-08
Saturation transfer difference (STD) methods recently have been proposed to be a promising tool for self-recognition mapping at residue and atomic resolution in amyloidogenic peptides. Despite the significant potential of the STD approach for systems undergoing oligomer/monomer (O/M) equilibria, a systematic analysis of the possible artifacts arising in this novel application of STD experiments is still lacking. Here, we have analyzed the STD method as applied to O/M peptides, and we have identified three major sources of possible biases: offset effects, intramonomer cross-relaxation, and partial spin-diffusion within the oligomers. For the purpose of quantitatively assessing these artifacts, we employed a comparative approach that relies on 1-D and 2-D STD data acquired at different saturation frequencies on samples with different peptide concentrations and filtration states. This artifact evaluation protocol was applied to the Abeta(12-28) model system, and all three types of artifacts appear to affect the measured STD spectra. In addition, we propose a method to minimize the biases introduced by these artifacts in the Halpha STD distributions used to obtain peptide self-recognition maps at residue resolution. This method relies on the averaging of STD data sets acquired at different saturation frequencies and provides results comparable to those independently obtained through other NMR pulse sequences that probe oligomerization, such as nonselective off-resonance relaxation experiments. The artifact evaluation protocol and the multiple frequencies averaging strategy proposed here are of general utility for the growing family of amyloidogenic peptides, as they provide a reliable analysis of STD spectra in terms of polypeptide self-recognition epitopes.
[Mapping Critical Loads of Heavy Metals for Soil Based on Different Environmental Effects].
Shi, Ya-xing; Wu, Shao-hua; Zhou, Sheng-lu; Wang, Chun-hui; Chen, Hao
2015-12-01
China's rapid development of industrialization and urbanization causes the growing problem of heavy metal pollution of soil, threatening environment and human health. Therefore, prevention and management of heavy metal pollution become particularly important. Critical loads of heavy metals are an important management tool that can be utilized to prevent the occurrence of heavy metal pollution. Our study was based on three cases: status balance, water environmental effects and health risks. We used the steady-state mass balance equation to calculate the critical loads of Cd, Cu, Pb, Zn at different effect levels and analyze the values and spatial variation of critical loads. In addition, we used the annual input fluxes of heavy metals of the agro-ecosystem in the Yangtze River delta and China to estimate the proportion of area with exceedance of critical loads. The results demonstrated that the critical load value of Cd was the minimum, and the values of Cu and Zn were lager. There were spatial differences among the critical loads of four elements in the study area, lower critical loads areas mainly occurred in woodland and high value areas distributed in the east and southwest of the study area, while median values and the medium high areas mainly occurred in farmland. Comparing the input fluxes of heavy metals, we found that Pb and Zn in more than 90% of the area exceeded the critical loads under different environmental effects in the study area. The critical load exceedance of Cd mainly occurred under the status balance and the water environmental effect, while Cu under the status balance and water environmental effect with a higher proportion of exceeded areas. Critical loads of heavy metals at different effect levels in this study could serve as a reference from effective control of the emissions of heavy metals and to prevent the occurrence of heavy metal pollution.
Directory of Open Access Journals (Sweden)
Mais Medhat Sadek
2016-10-01
Full Text Available Abstract Background The purpose of this study was to determine differences in cortical bone thickness among subjects with different vertical facial dimensions using cone beam computed tomography (CBCT. Methods From 114 pre-treatment CBCT scans, 48 scans were selected to be included in the study. CBCT-synthesized lateral cephalograms were used to categorize subjects into three groups based on their vertical skeletal pattern. Cortical bone thickness (CBT at two vertical levels (4 and 7 mm from the alveolar crest were measured in the entire tooth-bearing region in the maxilla and mandible. Results Significant group differences were detected with high-angle subjects having significantly narrower inter-radicular CBT at some sites as compared to average- and low-angle subjects. Conclusions Inter-radicular cortical bone is thinner in high-angle than in average- or low-angle subjects in few selected sites at the vertical height in which mini-implants are commonly inserted for orthodontic anchorage.
An improved model for whole genome phylogenetic analysis by Fourier transform.
Yin, Changchuan; Yau, Stephen S-T
2015-10-07
DNA sequence similarity comparison is one of the major steps in computational phylogenetic studies. The sequence comparison of closely related DNA sequences and genomes is usually performed by multiple sequence alignments (MSA). While the MSA method is accurate for some types of sequences, it may produce incorrect results when DNA sequences undergone rearrangements as in many bacterial and viral genomes. It is also limited by its computational complexity for comparing large volumes of data. Previously, we proposed an alignment-free method that exploits the full information contents of DNA sequences by Discrete Fourier Transform (DFT), but still with some limitations. Here, we present a significantly improved method for the similarity comparison of DNA sequences by DFT. In this method, we map DNA sequences into 2-dimensional (2D) numerical sequences and then apply DFT to transform the 2D numerical sequences into frequency domain. In the 2D mapping, the nucleotide composition of a DNA sequence is a determinant factor and the 2D mapping reduces the nucleotide composition bias in distance measure, and thus improving the similarity measure of DNA sequences. To compare the DFT power spectra of DNA sequences with different lengths, we propose an improved even scaling algorithm to extend shorter DFT power spectra to the longest length of the underlying sequences. After the DFT power spectra are evenly scaled, the spectra are in the same dimensionality of the Fourier frequency space, then the Euclidean distances of full Fourier power spectra of the DNA sequences are used as the dissimilarity metrics. The improved DFT method, with increased computational performance by 2D numerical representation, can be applicable to any DNA sequences of different length ranges. We assess the accuracy of the improved DFT similarity measure in hierarchical clustering of different DNA sequences including simulated and real datasets. The method yields accurate and reliable phylogenetic trees
Mogdans, J; Knudsen, E I
1993-08-13
Monaural occlusion during early life causes adaptive changes in the tuning of units in the owl's optic tectum to interaural level differences (ILD) that tend to align the auditory with the visual map of space. We investigated whether these changes could be due to experience-dependent plasticity occurring in the auditory pathway prior to the optic tectum. Units were recorded in the external nucleus of the inferior colliculus (ICx), which is a major source of auditory input to the optic tectum. The tuning of ICx units to ILD was measured in normal barn owls and in barn owls raised with one ear occluded. ILD tuning at each recording site was measured with dichotic noise bursts, presented at a constant average binaural level, 20 dB above threshold. The best ILD at each site was defined as the midpoint of the range of ILD values which elicited more than 50% of the maximum response. A physiological map of ILD was found in the ICx of normal owls: best ILDs changed systematically from right-ear-greater to left-ear-greater as the electrode progressed from dorsal to ventral. Best ILDs ranged from 13 dB right-ear-greater to 15 dB left-ear-greater and progressed at an average rate of 12 dB/mm. The representations of ILD were similar on both sides of the brain. In the ICx of owls raised with one ear occluded, the map of ILD was shifted in the adaptive direction: ILD tuning was shifted towards values favoring the non-occluded ear (the direction that would restore a normal space map). The average magnitude of the shift was on the order of 8-10 dB in each of 4 owls. In one owl, the mean shift in ILD tuning was almost identical on both sides of the brain. In another owl, the mean shift was much larger on the side ipsilateral to the occlusion than on the contralateral side. In both cases, the mean shifts measured in each ICx were comparable to the mean shifts measured in the optic tectum on the same sides of the brain. Thus, the adjustments in ILD tuning that have been observed in
Synthetic X-ray and radio maps for two different models of Stephan's Quintet
Geng, Annette; Dolag, Klaus; Bürzle, Florian; Beck, Marcus C; Kotarba, Hanna; Nielaba, Peter
2012-01-01
We present simulations of the compact galaxy group Stephan's Quintet (SQ) including magnetic fields, performed with the N-body/smoothed particle hydrodynamics (SPH) code \\textsc{Gadget}. The simulations include radiative cooling, star formation and supernova feedback. Magnetohydrodynamics (MHD) is implemented using the standard SPMHD method. We adapt two different initial models for SQ based on \\citet{ReAp10} and \\citet{HwSt12}, both including four galaxies (NGC 7319, NGC 7320c, NGC 7318a and NGC 7318b). Additionally, the galaxies are embedded in a magnetized, low density intergalactic medium (IGM). The ambient IGM has an initial magnetic field of $10^{-9}$ G and the four progenitor discs have initial magnetic fields of $10^{-9} - 10^{-7}$ G. We investigate the morphology, regions of star formation, temperature, X-ray emission, magnetic field structure and radio emission within the two different SQ models. In general, the enhancement and propagation of the studied gaseous properties (temperature, X-ray emissi...
Pilus, Nur Shazwani Mohd; Johari, Norazfa; Ahmad, Azrin; Yusof, Nurul Yuziana Mohd
2014-09-01
Scaffold/matrix attachment regions (S/MARs) are potential element that can be integrated into expression vector to increase expression of recombinant protein. Many studies on S/MAR have been done but none has revealed the distribution of S/MAR in a genome. In this study, we have isolated S/MAR sequences from HEK293 and Chinese hamster ovary cell lines (CHO DG44) using two different methods utilizing 2 M NaCl and lithium-3,5-diiodosalicylate (LIS). The isolated S/MARs were sequenced using Next Generation Sequencing (NGS) platform. Based on reference mapping analysis against human genome database, a total of 8,994,856 and 8,412,672 contigs of S/MAR sequences were retrieved from 2M NaCl and LIS extraction of HEK293 respectively. On the other hand, reference mapping analysis of S/MAR derived from CHO DG44 against our own CHO DG44 database have generated a total of 7,204,348 and 4,672,913 contigs from 2 M NaCl and LIS extraction method respectively.
Energy Technology Data Exchange (ETDEWEB)
Pilus, Nur Shazwani Mohd; Ahmad, Azrin; Yusof, Nurul Yuziana Mohd [School of Bioscience and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia); Johari, Norazfa [Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia)
2014-09-03
Scaffold/matrix attachment regions (S/MARs) are potential element that can be integrated into expression vector to increase expression of recombinant protein. Many studies on S/MAR have been done but none has revealed the distribution of S/MAR in a genome. In this study, we have isolated S/MAR sequences from HEK293 and Chinese hamster ovary cell lines (CHO DG44) using two different methods utilizing 2 M NaCl and lithium-3,5-diiodosalicylate (LIS). The isolated S/MARs were sequenced using Next Generation Sequencing (NGS) platform. Based on reference mapping analysis against human genome database, a total of 8,994,856 and 8,412,672 contigs of S/MAR sequences were retrieved from 2M NaCl and LIS extraction of HEK293 respectively. On the other hand, reference mapping analysis of S/MAR derived from CHO DG44 against our own CHO DG44 database have generated a total of 7,204,348 and 4,672,913 contigs from 2 M NaCl and LIS extraction method respectively.
Note on Redshift Distortion in Fourier Space
Institute of Scientific and Technical Information of China (English)
Yan-Chuan Cai; Jun Pan
2007-01-01
We explore features of redshift distortion in Fourier analysis of N-body simulations.The phases of the Fourier modes of dark matter density fluctuation are generally shifted by the peculiar motion along the line of sight, the induced phase shift is stochastic and has a probability distribution function (PDF) that is symmetric about the peak at zero shift and whose exact shape depends on the wave vector, except on very large scales where phases are invariant by linear perturbation theory. Analysis of the phase shifts motivates our phenomenological models for the bispectrum in redshift space. Comparison with simulations shows that our toy models are very successful in modeling bispectrum of equilateral and isosceles triangles at large scales. In the second part we compare the monopole of the power spectrum and bispectrum in the radial and plane-parallel distortion to test the plane-parallel approximation.We confirm the results of Scoccimarro that difference of power spectrum is at the level of 10%, and, in the reduced bispectrum, the difference is as small as a few percent. However, on the plane perpendicular to the line of sight of kz = 0, the difference in power spectrum between the radial and plane-parallel approximation can be more than ～ 10%, and even worse on very small scales. Such difference is prominent for bispectrum, especially for configurations of tilted triangles. Non-Gaussian signals under the radial distortion on small scales are systematically biased downside than are in the plane-parallel approximation, with amplitudes depending on the opening angle of the sample point to the observer. This observation gives warning to the practice of using the power spectrum and bispectrum measured on the kz = 0 plane as estimates of the real space statistics.
Directory of Open Access Journals (Sweden)
Matías Jara
Full Text Available Different populations within a species represent a rich reservoir of allelic variants, corresponding to an evolutionary signature of withstood environmental constraints. Saccharomyces cerevisiae strains are widely utilised in the fermentation of different kinds of alcoholic beverages, such as, wine and sake, each of them derived from must with distinct nutrient composition. Importantly, adequate nitrogen levels in the medium are essential for the fermentation process, however, a comprehensive understanding of the genetic variants determining variation in nitrogen consumption is lacking. Here, we assessed the genetic factors underlying variation in nitrogen consumption in a segregating population derived from a cross between two main fermenter yeasts, a Wine/European and a Sake isolate. By linkage analysis we identified 18 main effect QTLs for ammonium and amino acids sources. Interestingly, majority of QTLs were involved in more than a single trait, grouped based on amino acid structure and indicating high levels of pleiotropy across nitrogen sources, in agreement with the observed patterns of phenotypic co-variation. Accordingly, we performed reciprocal hemizygosity analysis validating an effect for three genes, GLT1, ASI1 and AGP1. Furthermore, we detected a widespread pleiotropic effect on these genes, with AGP1 affecting seven amino acids and nine in the case of GLT1 and ASI1. Based on sequence and comparative analysis, candidate causative mutations within these genes were also predicted. Altogether, the identification of these variants demonstrate how Sake and Wine/European genetic backgrounds differentially consume nitrogen sources, in part explaining independently evolved preferences for nitrogen assimilation and representing a niche of genetic diversity for the implementation of practical approaches towards more efficient strains for nitrogen metabolism.
Jara, Matías; Cubillos, Francisco A; García, Verónica; Salinas, Francisco; Aguilera, Omayra; Liti, Gianni; Martínez, Claudio
2014-01-01
Different populations within a species represent a rich reservoir of allelic variants, corresponding to an evolutionary signature of withstood environmental constraints. Saccharomyces cerevisiae strains are widely utilised in the fermentation of different kinds of alcoholic beverages, such as, wine and sake, each of them derived from must with distinct nutrient composition. Importantly, adequate nitrogen levels in the medium are essential for the fermentation process, however, a comprehensive understanding of the genetic variants determining variation in nitrogen consumption is lacking. Here, we assessed the genetic factors underlying variation in nitrogen consumption in a segregating population derived from a cross between two main fermenter yeasts, a Wine/European and a Sake isolate. By linkage analysis we identified 18 main effect QTLs for ammonium and amino acids sources. Interestingly, majority of QTLs were involved in more than a single trait, grouped based on amino acid structure and indicating high levels of pleiotropy across nitrogen sources, in agreement with the observed patterns of phenotypic co-variation. Accordingly, we performed reciprocal hemizygosity analysis validating an effect for three genes, GLT1, ASI1 and AGP1. Furthermore, we detected a widespread pleiotropic effect on these genes, with AGP1 affecting seven amino acids and nine in the case of GLT1 and ASI1. Based on sequence and comparative analysis, candidate causative mutations within these genes were also predicted. Altogether, the identification of these variants demonstrate how Sake and Wine/European genetic backgrounds differentially consume nitrogen sources, in part explaining independently evolved preferences for nitrogen assimilation and representing a niche of genetic diversity for the implementation of practical approaches towards more efficient strains for nitrogen metabolism.
Quantum Fourier transform in computational basis
Zhou, S. S.; Loke, T.; Izaac, J. A.; Wang, J. B.
2017-03-01
The quantum Fourier transform, with exponential speed-up compared to the classical fast Fourier transform, has played an important role in quantum computation as a vital part of many quantum algorithms (most prominently, Shor's factoring algorithm). However, situations arise where it is not sufficient to encode the Fourier coefficients within the quantum amplitudes, for example in the implementation of control operations that depend on Fourier coefficients. In this paper, we detail a new quantum scheme to encode Fourier coefficients in the computational basis, with fidelity 1 - δ and digit accuracy ɛ for each Fourier coefficient. Its time complexity depends polynomially on log (N), where N is the problem size, and linearly on 1/δ and 1/ɛ . We also discuss an application of potential practical importance, namely the simulation of circulant Hamiltonians.
The multiple-parameter fractional Fourier transform
Institute of Scientific and Technical Information of China (English)
LANG Jun; TAO Ran; RAN QiWen; WANG Yue
2008-01-01
The fractional Fourier transform (FRFT) has multiplicity, which is intrinsic in frac-tional operator. A new source for the multiplicity of the weight-type fractional Fou-rier transform (WFRFT) is proposed, which can generalize the weight coefficients of WFRFT to contain two vector parameters MN,∈ZM. Therefore a generalized frac-tional Fourier transform can be defined, which is denoted by the multiple-parameter fractional Fourier transform (MPFRFT). It enlarges the multiplicity of the FRFT, which not only includes the conventional FRFT and general multi-fractional Fourier transform as special cases, but also introduces new fractional Fourier transforms. It provides a unified framework for the FRFT, and the method is also available for fractionalizing other linear operators. In addition, numerical simulations of the MPFRFT on the Hermite-Gaussian and rectangular functions have been performed as a simple application of MPFRFT to signal processing.
The Fourier Transform on Quantum Euclidean Space
Directory of Open Access Journals (Sweden)
Kevin Coulembier
2011-05-01
Full Text Available We study Fourier theory on quantum Euclidean space. A modified version of the general definition of the Fourier transform on a quantum space is used and its inverse is constructed. The Fourier transforms can be defined by their Bochner's relations and a new type of q-Hankel transforms using the first and second q-Bessel functions. The behavior of the Fourier transforms with respect to partial derivatives and multiplication with variables is studied. The Fourier transform acts between the two representation spaces for the harmonic oscillator on quantum Euclidean space. By using this property it is possible to define a Fourier transform on the entire Hilbert space of the harmonic oscillator, which is its own inverse and satisfies the Parseval theorem.
Oversampling analysis in fractional Fourier domain
Institute of Scientific and Technical Information of China (English)
ZHANG Feng; TAO Ran; WANG Yue
2009-01-01
Oversampling is widely used in practical applications of digital signal processing. As the fractional Fourier transform has been developed and applied in signal processing fields, it is necessary to consider the oversampling theorem in the fractional Fourier domain. In this paper, the oversampling theorem in the fractional Fourier domain is analyzed. The fractional Fourier spectral relation between the original oversampled sequence and its subsequences is derived first, and then the expression for exact reconstruction of the missing samples in terms of the subsequences is obtained. Moreover, by taking a chirp signal as an example, it is shown that, reconstruction of the missing samples in the oversampled signal Is suitable in the fractional Fourier domain for the signal whose time-frequency distribution has the minimum support in the fractional Fourier domain.
Fourier-space combination of Planck and Herschel images
Abreu-Vicente, J.; Stutz, A.; Henning, Th.; Keto, E.; Ballesteros-Paredes, J.; Robitaille, T.
2017-08-01
Context. Herschel has revolutionized our ability to measure column densities (NH) and temperatures (T) of molecular clouds thanks to its far infrared multiwavelength coverage. However, the lack of a well defined background intensity level in the Herschel data limits the accuracy of the NH and T maps. Aims: We aim to provide a method that corrects the missing Herschel background intensity levels using the Planck model for foreground Galactic thermal dust emission. For the Herschel/PACS data, both the constant-offset as well as the spatial dependence of the missing background must be addressed. For the Herschel/SPIRE data, the constant-offset correction has already been applied to the archival data so we are primarily concerned with the spatial dependence, which is most important at 250 μm. Methods: We present a Fourier method that combines the publicly available Planck model on large angular scales with the Herschel images on smaller angular scales. Results: We have applied our method to two regions spanning a range of Galactic environments: Perseus and the Galactic plane region around l = 11deg (HiGal-11). We post-processed the combined dust continuum emission images to generate column density and temperature maps. We compared these to previously adopted constant-offset corrections. We find significant differences (≳20%) over significant ( 15%) areas of the maps, at low column densities (NH ≲ 1022 cm-2) and relatively high temperatures (T ≳ 20 K). We have also applied our method to synthetic observations of a simulated molecular cloud to validate our method. Conclusions: Our method successfully corrects the Herschel images, including both the constant-offset intensity level and the scale-dependent background variations measured by Planck. Our method improves the previous constant-offset corrections, which did not account for variations in the background emission levels. The image FITS files used in this paper are only available at the CDS via anonymous ftp
The crossroads of anxiety: distinct neurophysiological maps for different symptomatic groups
Directory of Open Access Journals (Sweden)
Gerez M
2016-01-01
Full Text Available Montserrat Gerez,1–3 Enrique Suárez,2,3 Carlos Serrano,2,3 Lauro Castanedo,2 Armando Tello1,3 1Departamento de Neurofisiología Clínica, Hospital Español de México, Mexico City, Mexico; 2Departamento de Psiquiatría, Hospital Español de México, Mexico City, Mexico; 3Unidad de Postgrado, Universidad Nacional Autónoma de México, Mexico City, Mexico Background: Despite the devastating impact of anxiety disorders (ADs worldwide, long-lasting debates on causes and remedies have not solved the clinician’s puzzle: who should be treated and how? Psychiatric classifications conceptualize ADs as distinct entities, with strong support from neuroscience fields. Yet, comorbidity and pharmacological response suggest a single “serotonin dysfunction” dimension. Whether AD is one or several disorders goes beyond academic quarrels, and the distinction has therapeutic relevance. Addressing the underlying dysfunctions should improve treatment response. By its own nature, neurophysiology can be the best tool to address dysfunctional processes.Purpose: To search for neurophysiological dysfunctions and differences among panic disorder (PD, agoraphobia-social-specific phobia, obsessive–compulsive disorder (OCD and generalized anxiety disorder.Methods: A sample population of 192 unmedicated patients and 30 aged-matched controls partook in this study. Hypothesis-related neurophysiological variables were combined into ten independent factors: 1 dysrhythmic patterns, 2 delta, 3 theta, 4 alpha, 5 beta (whole-head absolute power z-scores, 6 event-related potential (ERP combined latency, 7 ERP combined amplitude (z-scores, 8 magnitude, 9 site, and 10 site of hyperactive networks. Combining single variables into representative factors was necessary because, as in all real-life phenomena, the complexity of interactive processes cannot be addressed through single variables and the multiplicity of potentially implicated variables would demand an extremely large
Directory of Open Access Journals (Sweden)
COJOCARU ŞTEFANA
2014-03-01
Full Text Available patial interpolation, in the context of spatial analysis, can be defined as the derivation of new data from already known information, a technique frequently used to predict and quantify spatial variation of a certain property or parameter. In this study we compared the performance of Inverse Distance Weighted (IDW, Ordinary Kriging and Natural Neighbor techniques, applied in spatial interpolation of precipitation parameters (pH, electrical conductivity and total dissolved solids. These techniques are often used when the area of interest is relatively small and the sampled locations are regularly spaced. The methods were tested on data collected in Iasi city (Romania between March – May 2013. Spatial modeling was performed on a small dataset, consisting of 7 sample locations and 13 different known values of each analyzed parameter. The precision of the techniques used is directly dependent on sample density as well as data variation, greater fluctuations in values between locations causing a decrease in the accuracy of the methods used. To validate the results and reveal the best method of interpolating rainfall characteristics, leave-one – out cross-validation approach was used. Comparing residues between the known values and the estimated values of pH, electrical conductivity and total dissolved solids, it was revealed that Natural Neighbor stands out as generating the smallest residues for pH and electrical conductivity, whereas IDW presents the smallest error in interpolating total dissolved solids (the parameter with the highest fluctuations in value.
Handbook of Fourier analysis & its applications
Marks, Robert J
2009-01-01
Fourier analysis has many scientific applications - in physics, number theory, combinatorics, signal processing, probability theory, statistics, option pricing, cryptography, acoustics, oceanography, optics and diffraction, geometry, and other areas. In signal processing and related fields, Fourier analysis is typically thought of as decomposing a signal into its component frequencies and their amplitudes. This practical, applications-based professional handbook comprehensively covers the theory and applications of Fourier Analysis, spanning topics from engineering mathematics, signal process
Symplectic maps for accelerator lattices
Energy Technology Data Exchange (ETDEWEB)
Warnock, R.L.; Ruth, R.; Gabella, W.
1988-05-01
We describe a method for numerical construction of a symplectic map for particle propagation in a general accelerator lattice. The generating function of the map is obtained by integrating the Hamilton-Jacobi equation as an initial-value problem on a finite time interval. Given the generating function, the map is put in explicit form by means of a Fourier inversion technique. We give an example which suggests that the method has promise. 9 refs., 9 figs.
2014-10-09
Radon -Fractional Fourier Transform and Its Application to Radar Maneuvering Target Detection Xiaolong Chen*, Fuqing Cai, Yu Cong, Jian Guan...unit (ARU) and Doppler frequency migration (DFM) effects. In this paper, a novel transform called the Radon -fractional Fourier transform (RFRFT) is...are carried out and the performances of different methods including MTD, FRFT, and the Radon -Fourier transform (RFT) are compared, which demonstrate
Robach, J S; Stock, S R; Veis, A
2006-07-01
Mature portions of sea urchin are comprised of a complex array of reinforcing elements yet are single crystals of high and very high Mg calcite. How a relatively poor structural material (calcite) can produce mechanically competent structures is of great interest. In teeth of the sea urchin Lytechinus variegatus, we recorded high-resolution secondary ion mass spectrometry (SIMS) maps of Mg, Ca ,and specific amino acid fragments of mineral-related proteins including aspartic acid (Asp). SIMS revealed strong colocalization of Asp residues with very high Mg. Demineralized specimens showed serine localization on membranes between crystal elements and reduced Mg and aspartic acid signals, further emphasizing colocalization of very high Mg with ready soluble Asp-rich protein(s). The association of Asp with nonequilibrium, very high magnesium calcite provides insight to the makeup of the macromolecules involved in the growth of two different composition calcites and the fundamental process of biomineralization.
Directory of Open Access Journals (Sweden)
Hassan Vatandoost
2017-01-01
Full Text Available Objective: To work on bioecology and to monitor and map the insecticide resistance of malaria vector, Anopheles culicifacies (An. culicifacies (Diptera: Culicidae in Iran. Methods: Mosquitoes were collected from different breeding places in Sistan and Baluchistan Province and then reread at insectary. F1 generation was used for susceptibility tests. All the impregnated papers were provided by World Health Organization (WHO and tests were carried out according to WHO guideline. Results: Results of adult susceptibility tests against female An. culicifecies revealed that this species was resistant to dichloro-diphenyl-trichloroethane, dieldrin, tolerated to bendiocarb, propoxur and deltamethrin and susceptible to other imagicides recommended by WHO. An. culicifecies was resistant to organochlorine insecticides and tolerant to organophosphae, carbamate and pyrethroids. Conclusions: Results of the ecology and susceptibility status of malaria vectors will help authorities to make decision for vector control. More biomedical assays was required to found the mechanisms of insecticide resistance.
Comparative analysis of imaging configurations and objectives for Fourier microscopy.
Kurvits, Jonathan A; Jiang, Mingming; Zia, Rashid
2015-11-01
Fourier microscopy is becoming an increasingly important tool for the analysis of optical nanostructures and quantum emitters. However, achieving quantitative Fourier space measurements requires a thorough understanding of the impact of aberrations introduced by optical microscopes that have been optimized for conventional real-space imaging. Here we present a detailed framework for analyzing the performance of microscope objectives for several common Fourier imaging configurations. To this end, we model objectives from Nikon, Olympus, and Zeiss using parameters that were inferred from patent literature and confirmed, where possible, by physical disassembly. We then examine the aberrations most relevant to Fourier microscopy, including the alignment tolerances of apodization factors for different objective classes, the effect of magnification on the modulation transfer function, and vignetting-induced reductions of the effective numerical aperture for wide-field measurements. Based on this analysis, we identify an optimal objective class and imaging configuration for Fourier microscopy. In addition, the Zemax files for the objectives and setups used in this analysis have been made publicly available as a resource for future studies.
Pohlmann, S; Traenkle, U
1994-12-01
Forty-eight drivers of different ages (35-50 years old, 61 years and older) took part in our study, which tested a marketable navigation system (TRAVELPILOT IDS). Driving and navigation performance, as well as mental workload and the acceptance of innovative technology, were investigated. A limited range of findings will be presented in this paper. The results show that older and middle-aged drivers differ in only a few aspects. Both age groups reveal comparable results in driving. However, regarding the operation of the navigation system and concerning its effectiveness, older drivers performed worse. Age-related differences being rather small, analyses revealed significant global differences between the navigation system and a common road map: usage of the TRAVELPILOT influenced driving behavior negatively with respect to traffic safety. Also, the drivers' orientation was not any better using the navigation system. Based on this experimental work and on results derived from the literature, conclusions are drawn regarding future navigation systems in general and with respect to needs of elderly drivers.
Lacunary Fourier Series for Compact Quantum Groups
Wang, Simeng
2016-05-01
This paper is devoted to the study of Sidon sets, {Λ(p)} -sets and some related notions for compact quantum groups. We establish several different characterizations of Sidon sets, and in particular prove that any Sidon set in a discrete group is a strong Sidon set in the sense of Picardello. We give several relations between Sidon sets, {Λ(p)} -sets and lacunarities for L p -Fourier multipliers, generalizing a previous work by Blendek and Michalic̆ek. We also prove the existence of {Λ(p)} -sets for orthogonal systems in noncommutative L p -spaces, and deduce the corresponding properties for compact quantum groups. Central Sidon sets are also discussed, and it turns out that the compact quantum groups with the same fusion rules and the same dimension functions have identical central Sidon sets. Several examples are also included.
Recording Fractional Fourier Transform Hologram Using Holographic Zone Plate
Institute of Scientific and Technical Information of China (English)
高峰; 曾阳素; 张怡霄; 杨静; 高福华; 郭永康
2002-01-01
FRTH(fractional Fourier transform hologram) is a new kind of hologram that differs from common Fresnel holograms and Fourier transform holograms. Due to the flexibility of zone plate. A method that uses the -1 order diffraction wave of zone plate as the object wave and the 0 order diffraction wave as the reference wave to record FRTH is presented. It provides a new simple way to record FRTH. In this paper, the theory of achieving FRT and recording FRTH using holographic zone plate is presented and experimental results are given.
Fourier analysis of the aerodynamic behavior of cup anemometers
Pindado, Santiago; Pérez, Imanol; Aguado, Maite
2013-06-01
The calibration results (the transfer function) of an anemometer equipped with several cup rotors were analyzed and correlated with the aerodynamic forces measured on the isolated cups in a wind tunnel. The correlation was based on a Fourier analysis of the normal-to-the-cup aerodynamic force. Three different cup shapes were studied: typical conical cups, elliptical cups and porous cups (conical-truncated shape). Results indicated a good correlation between the anemometer factor, K, and the ratio between the first two coefficients in the Fourier series decomposition of the normal-to-the-cup aerodynamic force.
Fourier and Hadamard transform spectrometers - A limited comparison
Tai, M. H.; Harwit, M.
1976-01-01
An encoding figure of merit is established for a detector-noise limited Fourier transform spectrometer (FTS) and compared to the comparable figure for a Hadamard transform spectrometer (HTS). The limitation of the Fourier system is partly that it does not truly Fourier analyze the radiation. Instead a cosine squared modulation is imposed on the different spectral frequencies. An additional difficulty is that neither the cosine nor the cosine squared functions form an orthonormal set. This makes the Fellgett's advantage (root-mean-squared figure of merit) for a single detector Michelson interferometer a factor of the square root of (N/8) greater than for a conventional grating instrument - rather than the square root of (N/2). The theoretical limit would be the square root of N.
Recent advances in geologic mapping by radar
Farr, T. G.
1984-01-01
Quantitative techniques are available which allow the analysis of SAR images for the derivation of geological surface and process data. In conjunction with calibrated radar sensors operating at several incidence angles, wavelengths, and polarizations, the compilation of multiparameter radar signatures of lithological and geomorphic units can accordingly proceed for geological mapping in unknown areas. While radar image tone can be used in arid zones to derive surface micromorphology, heavily vegetated tropical regions require the analysis of radar image texture by means of Fourier techniques which decompose the image into bandpasses that represent different scales of texture.
Pietrzak, Lukasz N; Miller, S Shea
2005-11-30
The distribution of water in soybean seeds during imbibition varies with the chemical composition of the tissue. To understand the dynamics of imbibition, the proteins, lipids, and carbohydrates of the cotyledons and hilum region in mature soybean seeds were mapped using synchrotron Fourier transformed infrared microspectroscopy, based on characteristic peaks for each component: amide I at 1650 cm(-1) and amide II at 1550 cm(-1) for protein, lipid ester stretch at 1545 cm(-1), and the region from 1200 to 900 cm(-1) for carbohydrates. The amount and configuration of the proteins varied across the cotyledon, as well as the amount of lipid and carbohydrate. It was found that protein distribution across the cotyledon is similar to water distribution during imbibition. The chemistry of the hilum region was also studied, as this is the point of water entry, and differences in the chemical composition of the tissues studied were observed.
Emerson, Tegan; Kirby, Michael; Bethel, Kelly; Kolatkar, Anand; Luttgen, Madelyn; O'Hara, Stephen; Newton, Paul; Kuhn, Peter
2015-03-01
We address the problem of subclassification of rare circulating cells using data driven feature selection from images of candidate circulating tumor cells from patients diagnosed with breast, prostate, or lung cancer. We determine a set of low level features which can differentiate among candidate cell types. We have implemented an image representation based on concentric Fourier rings (FRDs) which allow us to exploit size variations and morphological differences among cells while being rotationally invariant. We discuss potential clinical use in the context of treatment monitoring for cancer patients with metastatic disease.
Multi-channel sampling theorems for band-limited signals with fractional Fourier transform
Institute of Scientific and Technical Information of China (English)
2008-01-01
Multi-channel sampling for band-limited signals is fundamental in the theory of multi-channel parallel A/D environment and multiplexing wireless communication environment. As the fractional Fourier transform has been found wide applications in signal processing fields, it is necessary to consider the multi-channel sampling theorem based on the fractional Fourier transform. In this paper, the multi-channel sampling theorem for the fractional band-limited signal is firstly proposed, which is the generalization of the well-known sampling theorem for the fractional Fourier transform. Since the periodic nonuniformly sampled signal in the fractional Fourier domain has valuable applications, the reconstruction expression for the periodic nonuniformly sampled signal has been then obtained by using the derived multi-channel sampling theorem and the specific space-shifting and phase-shifting properties of the fractional Fourier transform. Moreover, by designing different fractional Fourier filters, we can obtain reconstruction methods for other sampling strategies.
Civetta, Alberto; Waldrip-Dail, Heidi M; Clark, Andrew G
2002-02-01
The progeny of Drosophila females doubly-mated to males from the same and a closely related species are mostly sired by conspecific males. We examined the genetic basis for conspecific mating preference and sperm precedence by using 186 Drosophila lines in which random chromosomal fragments of D. sechellia were introgressed into D. simulans. Sperm competition was measured for each of these lines by crossing ebony D. simulans female with ebony D. simulans males followed by wild-type males from the introgressed lines. Variation in sperm competition (proportion of progeny sired by the second male), mating discrimination (proportion of introgressed males that failed to remate), and male fecundity (proportion of progeny sired by introgressed males) were scored. The introgressed lines exhibited highly significant heterogeneity in the three phenotypes scored, motivating an analysis to locate quantitative trait loci (QTLs) responsible for the differences. Applying composite interval mapping, we found eight QTLs that explain a significant level of variation among introgressed lines in the phenotypes scored. Cytological position overlapped among some QTLs suggesting possible pleiotropic effects. Analysis of the joint effects of simulans/sechellia genetic composition at different QTLs and markers suggests that complex interactions among alleles are partially responsible for interspecific differences in sexual traits.
COMPARISON OF FOURIER AND WAVELET TRANSFORMS IN GEOPHYSICAL APPLICATIONS
Directory of Open Access Journals (Sweden)
Hakan ALP
2008-01-01
Full Text Available In this study, it was compared Fourier Transformation using widely in analysing of geophysics data and image processing and Wavelet Transformation using in image processing, boundary analysis and recently years in use geophysical data analysis. It was applicated and compared two transformations in the both geophysical data and fundamental functions. Then the results obtained were evaluated. In this study it was compared two transformation using earthquake records and Bouger gravity anomalies map of Hatay region geophysical data. At the end of the our study it was clearly seen that wavelet transform can be used by geophysical data analysing.
From Complex Fractional Fourier Transform to Complex Fractional Radon Transform
Institute of Scientific and Technical Information of China (English)
FAN Hong-Yi; JIANG Nian-Quan
2004-01-01
We show that for n-dimensional complex fractional Fourier transform the corresponding complex fractional Radon transform can also be derived, however, it is different from the direct product of two n-dimensional real fractional Radon transforms. The complex fractional Radon transform of two-mode Wigner operator is calculated.
Fourier analysis and synthesis tomography.
Energy Technology Data Exchange (ETDEWEB)
Wagner, Kelvin H. (University of Colorado at Boulder, Boulder, CO); Sinclair, Michael B.; Feldkuhn, Daniel (University of Colorado at Boulder, Boulder, CO)
2010-05-01
Most far-field optical imaging systems rely on a lens and spatially-resolved detection to probe distinct locations on the object. We describe and demonstrate a novel high-speed wide-field approach to imaging that instead measures the complex spatial Fourier transform of the object by detecting its spatially-integrated response to dynamic acousto-optically synthesized structured illumination. Tomographic filtered backprojection is applied to reconstruct the object in two or three dimensions. This technique decouples depth-of-field and working-distance from resolution, in contrast to conventional imaging, and can be used to image biological and synthetic structures in fluoresced or scattered light employing coherent or broadband illumination. We discuss the electronically programmable transfer function of the optical system and its implications for imaging dynamic processes. Finally, we present for the first time two-dimensional high-resolution image reconstructions demonstrating a three-orders-of-magnitude improvement in depth-of-field over conventional lens-based microscopy.
Programs for high-speed Fourier, Mellin and Fourier-Bessel transforms
Ikhabisimov, D. K.; Debabov, A. S.; Kolosov, B. I.; Usikov, D. A.
1979-01-01
Several FORTRAN program modules for performing one-dimensional and two-dimensional discrete Fourier transforms, Mellin, and Fourier-Bessel transforms are described along with programs that realize the algebra of high speed Fourier transforms on a computer. The programs can perform numerical harmonic analysis of functions, synthesize complex optical filters on a computer, and model holographic image processing methods.
The multipliers of multiple trigonometric Fourier series
Ydyrys, Aizhan; Sarybekova, Lyazzat; Tleukhanova, Nazerke
2016-11-01
We study the multipliers of multiple Fourier series for a regular system on anisotropic Lorentz spaces. In particular, the sufficient conditions for a sequence of complex numbers {λk}k∈Zn in order to make it a multiplier of multiple trigonometric Fourier series from Lp[0; 1]n to Lq[0; 1]n , p > q. These conditions include conditions Lizorkin theorem on multipliers.
1-Convergence of Complex Double Fourier Series
Indian Academy of Sciences (India)
Kulwinder Kaur; S S Bhatia; Babu Ram
2003-11-01
It is proved that the complex double Fourier series of an integrable function (, ) with coefficients {} satisfying certain conditions, will converge in 1-norm. The conditions used here are the combinations of Tauberian condition of Hardy–Karamata kind and its limiting case. This paper extends the result of Bray [1] to complex double Fourier series.
Two modified discrete chirp Fourier transform schemes
Institute of Scientific and Technical Information of China (English)
樊平毅; 夏香根
2001-01-01
This paper presents two modified discrete chirp Fourier transform (MDCFT) schemes.Some matched filter properties such as the optimal selection of the transform length, and its relationship to analog chirp-Fourier transform are studied. Compared to the DCFT proposed previously, theoretical and simulation results have shown that the two MDCFTs can further improve the chirp rate resolution of the detected signals.
Directory of Open Access Journals (Sweden)
Camille Brème
Full Text Available OBJECTIVE: The aim of this work is to demonstrate a novel single-molecule DNA sequence comparison assay that is purely based on DNA mechanics. METHODS: A molecular construct that contained the two homologous but non-identical DNA sequences that were to be compared was prepared such that a four-way (Holliday junction could be formed by the formation of heteroduplexes through the inter-recombination of the strands. Magnetic tweezers were used to manipulate the force and the winding applied to this construct for inducing both the formation and the migration of a Holliday junction. The end-to-end distance of the construct was measured as a function of the winding and was used to monitor the behavior of the Holliday junction in different regions of the intra-molecular recombination. MAIN RESULTS: In the appropriate buffer, the magnet rotation induces the migration of the Holliday junction in the regions where there is no sequence difference between the recombining sequences. In contrast, even a single-base difference between the recombining sequences leads to a long-lasting blockage of the migration in the same buffer; this effect was obtained when the junction was positioned near this locus (the site of the single-base difference and forced toward the formation of heteroduplexes that comprise the locus. The migration blockages were detected through the identification of the formation of plectonemes. The detection of the presence of sequence differences and their respective mappings were obtained from the series of blockages that were detected. SIGNIFICANCE: This work presents a novel single-molecule sequence comparison assay that is based on the use of a Holliday junction as an ultra-sensitive nanomechanism; the mismatches act as blocking grains of sand in the Holliday "DNA gearbox". This approach will potentially have future applications in biotechnology.
From "Dirac combs" to Fourier-positivity
Giraud, Bertrand G
2015-01-01
Motivated by various problems in physics and applied mathematics, we look for constraints and properties of real Fourier-positive functions, i.e. with positive Fourier transforms. Properties of the "Dirac comb" distribution and of its tensor products in higher dimensions lead to Poisson resummation, allowing for a useful approximation formula of a Fourier transform in terms of a limited number of terms. A connection with the Bochner theorem on positive definiteness of Fourier-positive functions is discussed. As a practical application, we find simple and rapid analytic algorithms for checking Fourier-positivity in 1- and (radial) 2-dimensions among a large variety of real positive functions. This may provide a step towards a classification of positive positive-definite functions.
Fractional Fourier processing of quantum light.
Sun, Yifan; Tao, Ran; Zhang, Xiangdong
2014-01-13
We have extended Fourier transform of quantum light to a fractional Fourier processing, and demonstrated that a classical optical fractional Fourier processor can be used for the shaping of quantum correlations between two or more photons. Comparing the present method with that of Fourier processing, we find that fractional Fourier processing for quantum light possesses many advantages. Based on such a method, not only quantum correlations can be shaped more rich, but also the initial states can be easily identified. Moreover, the twisted phase information can be recovered and quantum states are easily controlled in performing quantum information experiments. Our findings open up new avenues for the manipulation of correlations between photons in optical quantum information processing.
Vortex metrology using Fourier analysis techniques: vortex networks correlation fringes.
Angel-Toro, Luciano; Sierra-Sosa, Daniel; Tebaldi, Myrian; Bolognini, Néstor
2012-10-20
In this work, we introduce an alternative method of analysis in vortex metrology based on the application of the Fourier optics techniques. The first part of the procedure is conducted as is usual in vortex metrology for uniform in-plane displacement determination. On the basis of two recorded intensity speckled distributions, corresponding to two states of a diffuser coherently illuminated, we numerically generate an analytical signal from each recorded intensity pattern by using a version of the Riesz integral transform. Then, from each analytical signal, a two-dimensional pseudophase map is generated in which the vortices are located and characterized in terms of their topological charges and their core's structural properties. The second part of the procedure allows obtaining Young's interference fringes when Fourier transforming the light passing through a diffracting mask with multiple apertures at the locations of the homologous vortices. In fact, we use the Fourier transform as a mathematical operation to compute the far-field diffraction intensity pattern corresponding to the multiaperture set. Each aperture from the set is associated with a rectangular hole that coincides both in shape and size with a pixel from recorded images. We show that the fringe analysis can be conducted as in speckle photography in an extended range of displacement measurements. Effects related with speckled decorrelation are also considered. Our experimental results agree with those of speckle photography in the range in which both techniques are applicable.
Papageorgiou, Elpiniki; Stylios, Chrysostomos; Groumpos, Peter
2007-01-01
Medical problems involve different types of variables and data, which have to be processed, analyzed and synthesized in order to reach a decision and/or conclude to a diagnosis. Usually, information and data set are both symbolic and numeric but most of the well-known data analysis methods deal with only one kind of data. Even when fuzzy approaches are considered, which are not depended on the scales of variables, usually only numeric data is considered. The medical decision support methods usually are accessed in only one type of available data. Thus, sophisticated methods have been proposed such as integrated hybrid learning approaches to process symbolic and numeric data for the decision support tasks. Fuzzy Cognitive Maps (FCM) is an efficient modelling method, which is based on human knowledge and experience and it can handle with uncertainty and it is constructed by extracted knowledge in the form of fuzzy rules. The FCM model can be enhanced if a fuzzy rule base (IF-THEN rules) is available. This rule base could be derived by a number of machine learning and knowledge extraction methods. Here it is introduced a hybrid attempt to handle situations with different types of available medical and/or clinical data and with difficulty to handle them for decision support tasks using soft computing techniques.
Novel fringe scanning/Fourier transform method of synthetic imaging
Energy Technology Data Exchange (ETDEWEB)
Crawford, T.M.; Albano, R.K.
1993-08-01
We have developed a one-dimensional theory and a computer model for synthetically imaging scenes using a novel fringe scanning/Fourier transform technique. Our method probes a scene using two interfering beams of slightly different frequency. These beams form a moving fringe pattern which scans the scene and resonates with any spatial frequency components having the same spatial frequency as the scanning fringe pattern. A simple, non-imaging detector above the scene observes any scattered radiation from the scene falling onto it. If a resonance occurs between the scanning fringe pattern and the scene, then the scattered radiation will be modulated at the difference frequency between the two probing beams. By changing the spatial period of the fringe pattern and then measuring the amplitude and phase of the modulated radiation that is scattered from the scene, the Fourier amplitudes and phases of the different spatial frequency components making up the scene can be measured. A synthetic image of the scene being probed can be generated from this Fourier amplitude and phase data by taking the inverse Fourier transform of this information. This technique could be used to image objects using light, ultrasonic, or other electromagnetic or acoustic waves.
Vink, Sylvia; van Tartwijk, Jan; Verloop, Nico; Gosselink, Manon; Driessen, Erik; Bolk, Jan
2016-01-01
To determine the content of integrated curricula, clinical concepts and the underlying basic science concepts need to be made explicit. Preconstructed concept maps are recommended for this purpose. They are mainly constructed by experts. However, concept maps constructed by residents are hypothesize
Pardo, Luba; Bochdanovits, Zoltan; de Geus, Eco; Hottenga, Jouke J.; Sullivan, Patrick; Posthuma, Danielle; Penninx, Brenda W. J. H.; Boomsma, Dorret; Heutink, Peter
2009-01-01
The HapMap project has facilitated the selection of tagging single nucleotide polymorphisms (tagSNPs) for genome-wide association studies (GWAS) under the assumption that linkage disequilibrium (LD) in the HapMap populations is similar to the populations under investigation. Earlier reports support
Directory of Open Access Journals (Sweden)
Eduardo O. Cerqueira
2000-10-01
Full Text Available Instrumental data always present some noise. The analytical data information and instrumental noise generally has different frequencies. Thus is possible to remove the noise using a digital filter based on Fourier transform and inverse Fourier transform. This procedure enhance the signal/noise ratio and consecutively increase the detection limits on instrumental analysis. The basic principle of Fourier transform filter with modifications implemented to improve its performance is presented. A numerical example, as well as a real voltammetric example are showed to demonstrate the Fourier transform filter implementation. The programs to perform the Fourier transform filter, in Matlab and Visual Basic languages, are included as appendices
Savini, Alessandra; Vertino, Agostina; Marchese, Fabio; Beuck, Lydia; Freiwald, André
2014-01-01
In this study, we mapped the distribution of Cold-Water Coral (CWC) habitats on the northern Ionian Margin (Mediterranean Sea), with an emphasis on assessing coral coverage at various spatial scales over an area of 2,000 km(2) between 120 and 1,400 m of water depth. Our work made use of a set of data obtained from ship-based research surveys. Multi-scale seafloor mapping data, video inspections, and previous results from sediment samples were integrated and analyzed using Geographic Information System (GIS)-based tools. Results obtained from the application of spatial and textural analytical techniques to acoustic meso-scale maps (i.e. a Digital Terrain Model (DTM) of the seafloor at a 40 m grid cell size and associated terrain parameters) and large-scale maps (i.e. Side-Scan Sonar (SSS) mosaics of 1 m in resolution ground-truthed using underwater video observations) were integrated and revealed that, at the meso-scale level, the main morphological pattern (i.e. the aggregation of mound-like features) associated with CWC habitat occurrences was widespread over a total area of 600 km(2). Single coral mounds were isolated from the DTM and represented the geomorphic proxies used to model coral distributions within the investigated area. Coral mounds spanned a total area of 68 km(2) where different coral facies (characterized using video analyses and mapped on SSS mosaics) represent the dominant macro-habitat. We also mapped and classified anthropogenic threats that were identifiable within the examined videos, and, here, discuss their relationship to the mapped distribution of coral habitats and mounds. The combined results (from multi-scale habitat mapping and observations of the distribution of anthropogenic threats) provide the first quantitative assessment of CWC coverage for a Mediterranean province and document the relevant role of seafloor geomorphology in influencing habitat vulnerability to different types of human pressures.
Fourier time spectral method for subsonic and transonic flows
Institute of Scientific and Technical Information of China (English)
Lei Zhan; Feng Liu; Dimitri Papamoschou
2016-01-01
The time accuracy of the exponentially accu-rate Fourier time spectral method (TSM) is examined and compared with a conventional 2nd-order backward differ-ence formula (BDF) method for periodic unsteady flows. In particular, detailed error analysis based on numerical com-putations is performed on the accuracy of resolving the local pressure coefficient and global integrated force coefficients for smooth subsonic and non-smooth transonic flows with moving shock waves on a pitching airfoil. For smooth sub-sonic flows, the Fourier TSM method offers a significant accuracy advantage over the BDF method for the predic-tion of both the local pressure coefficient and integrated force coefficients. For transonic flows where the motion of the discontinuous shock wave contributes significant higher-order harmonic contents to the local pressure fluctuations, a sufficient number of modes must be included before the Fourier TSM provides an advantage over the BDF method. The Fourier TSM, however, still offers better accuracy than the BDF method for integrated force coefficients even for transonic flows. A problem of non-symmetric solutions for symmetric periodic flows due to the use of odd numbers of intervals is uncovered and analyzed. A frequency-searching method is proposed for problems where the frequency is not known a priori. The method is tested on the vortex shedding problem of the flow over a circular cylinder.
Institute of Scientific and Technical Information of China (English)
Gui-He Lu; Yi-Rong Zhang; Jing-Rui Dai; Ji-Hua Tang; Jian-Bing Yan; Xi-Qing Ma; Jian-Sheng Li; Shao-Jiang Chen; Jian-Cang Ma; Zhan-Xian Liu; Li-Zhu E
2006-01-01
Drought or water stress is a serious agronomic problem resulting in maize (Zea mays L.) yield loss throughout the world. Breeding hybrids with drought tolerance is one important approach for solving this problem. However, lower efficiency and a longer period of breeding hybrids are disadvantages of traditional breeding programs. It is generally recognized that applying molecular marker techniques to traditional breeding programs could improve the efficiency of the breeding of drought-tolerant maize. To provide useful information for use in studies of maize drought tolerance,the mapping and tagging of quantitative trait loci (QTL) for yield and its components were performed in the present study on the basis of the principle of a mixed linear model. Two hundred and twenty-one recombinant inbred lines (RIL) of Yuyu 22 were grown under both well-watered and water-stressed conditions. In the former treatment group, plants were well irrigated, whereas those in the latter treatment group were stressed at flowering time.Ten plants of each genotype were grown in a row that was 3.00 m×0.67 m (length×width). The results show that a few of the QTL were the same (one additive QTL for ear length, two additive QTL and one pair of epistatic QTL for kernel number per row, one additive QTL for kernel weight per plant), whereas most of other QTL were different between the two different water treatment groups. It may be that genetic expression differs under the two different water conditions. Furthermore, differences in the additive and epistatic QTL among the traits under water-stressed conditions indicate that genetic expression also differs from trait to trait.Major and minor QTL were detected for the traits,except for kernel number per row, under water-stressed conditions. Thus, the genetic mechanism of drought tolerance in maize is complex because the additive and epistatic QTL exist at the same time and the major and minor QTL all contribute to phenotype under water
Directory of Open Access Journals (Sweden)
Frank Canters
2008-06-01
Full Text Available Urban growth and its related environmental problems call for sustainable urban management policies to safeguard the quality of urban environments. Vegetation plays an important part in this as it provides ecological, social, health and economic benefits to a cityÃ¢Â€Â™s inhabitants. Remotely sensed data are of great value to monitor urban green and despite the clear advantages of contemporary high resolution images, the benefits of medium resolution data should not be discarded. The objective of this research was to estimate fractional vegetation cover from a Landsat ETM+ image with sub-pixel classification, and to compare accuracies obtained with multiple stepwise regression analysis, linear spectral unmixing and multi-layer perceptrons (MLP at the level of meaningful urban spatial entities. Despite the small, but nevertheless statistically significant differences at pixel level between the alternative approaches, the spatial pattern of vegetation cover and estimation errors is clearly distinctive at neighbourhood level. At this spatially aggregated level, a simple regression model appears to attain sufficient accuracy. For mapping at a spatially more detailed level, the MLP seems to be the most appropriate choice. Brightness normalisation only appeared to affect the linear models, especially the linear spectral unmixing.
Directory of Open Access Journals (Sweden)
Mathilde de Taffin
Full Text Available Collier, the single Drosophila COE (Collier/EBF/Olf-1 transcription factor, is required in several developmental processes, including head patterning and specification of muscle and neuron identity during embryogenesis. To identify direct Collier (Col targets in different cell types, we used ChIP-seq to map Col binding sites throughout the genome, at mid-embryogenesis. In vivo Col binding peaks were associated to 415 potential direct target genes. Gene Ontology analysis revealed a strong enrichment in proteins with DNA binding and/or transcription-regulatory properties. Characterization of a selection of candidates, using transgenic CRM-reporter assays, identified direct Col targets in dorso-lateral somatic muscles and specific neuron types in the central nervous system. These data brought new evidence that Col direct control of the expression of the transcription regulators apterous and eyes-absent (eya is critical to specifying neuronal identities. They also showed that cross-regulation between col and eya in muscle progenitor cells is required for specification of muscle identity, revealing a new parallel between the myogenic regulatory networks operating in Drosophila and vertebrates. Col regulation of eya, both in specific muscle and neuronal lineages, may illustrate one mechanism behind the evolutionary diversification of Col biological roles.
Van de Voorde, Tim; Vlaeminck, Jeroen; Canters, Frank
2008-06-10
Urban growth and its related environmental problems call for sustainable urban management policies to safeguard the quality of urban environments. Vegetation plays an important part in this as it provides ecological, social, health and economic benefits to a city's inhabitants. Remotely sensed data are of great value to monitor urban green and despite the clear advantages of contemporary high resolution images, the benefits of medium resolution data should not be discarded. The objective of this research was to estimate fractional vegetation cover from a Landsat ETM+ image with sub-pixel classification, and to compare accuracies obtained with multiple stepwise regression analysis, linear spectral unmixing and multi-layer perceptrons (MLP) at the level of meaningful urban spatial entities. Despite the small, but nevertheless statistically significant differences at pixel level between the alternative approaches, the spatial pattern of vegetation cover and estimation errors is clearly distinctive at neighbourhood level. At this spatially aggregated level, a simple regression model appears to attain sufficient accuracy. For mapping at a spatially more detailed level, the MLP seems to be the most appropriate choice. Brightness normalisation only appeared to affect the linear models, especially the linear spectral unmixing.
Thomann, Matthew
2016-01-01
In Abidjan, Côte d'Ivoire, 18% of men who have sex with men (MSM) are HIV-positive. Based on ethnographic research conducted among HIV peer educators and activists in Abidjan, I examine their narratives and hand-drawn maps of city space. I draw on a methodological process of map-making to examine research participants' evaluations of neighborhoods and link these evaluations to debates over national and cultural belonging in Côte d'Ivoire. I suggest a moral geography emerges from the maps and narratives and ask what the bioethical implications of moral geography are in the context of service delivery and activism among sexual minorities.
Fourier transforms in radar and signal processing
Brandwood, David
2011-01-01
Fourier transforms are used widely, and are of particular value in the analysis of single functions and combinations of functions found in radar and signal processing. Still, many problems that could have been tackled by using Fourier transforms may have gone unsolved because they require integration that is difficult and tedious. This newly revised and expanded edition of a classic Artech House book provides you with an up-to-date, coordinated system for performing Fourier transforms on a wide variety of functions. Along numerous updates throughout the book, the Second Edition includes a crit
Harmonic functions on groups and Fourier algebras
Chu, Cho-Ho
2002-01-01
This research monograph introduces some new aspects to the theory of harmonic functions and related topics. The authors study the analytic algebraic structures of the space of bounded harmonic functions on locally compact groups and its non-commutative analogue, the space of harmonic functionals on Fourier algebras. Both spaces are shown to be the range of a contractive projection on a von Neumann algebra and therefore admit Jordan algebraic structures. This provides a natural setting to apply recent results from non-associative analysis, semigroups and Fourier algebras. Topics discussed include Poisson representations, Poisson spaces, quotients of Fourier algebras and the Murray-von Neumann classification of harmonic functionals.
Directory of Open Access Journals (Sweden)
M. De la Sen
2013-01-01
Full Text Available This paper is devoted to the study of convergence properties of distances between points and the existence and uniqueness of best proximity and fixed points of the so-called semicyclic impulsive self-mappings on the union of a number of nonempty subsets in metric spaces. The convergences of distances between consecutive iterated points are studied in metric spaces, while those associated with convergence to best proximity points are set in uniformly convex Banach spaces which are simultaneously complete metric spaces. The concept of semicyclic self-mappings generalizes the well-known one of cyclic ones in the sense that the iterated sequences built through such mappings are allowed to have images located in the same subset as their pre-image. The self-mappings under study might be in the most general case impulsive in the sense that they are composite mappings consisting of two self-mappings, and one of them is eventually discontinuous. Thus, the developed formalism can be applied to the study of stability of a class of impulsive differential equations and that of their discrete counterparts. Some application examples to impulsive differential equations are also given.
Molecular dynamics simulations of non-Fourier heat conduction
Institute of Scientific and Technical Information of China (English)
2008-01-01
Unsteady heat conduction is known to deviate significantly from Fourier's law when the system time and length scales are within certain temporal and spatial windows of relaxation. Classical molecular dynamics simulations were used to investigate unsteady heat conduction in argon thin films with a sudden temperature increase or heat flux at one surface to study the non-Fourier heat conduction effects in argon thin films. The studies were conducted with both pure argon films and films with vacancy defects. The temperature pro- files in the argon films showed the existence of mechanical waves when the thin film was suddenly heated and the wave nature of the heat propagation. The flux phase relaxation time, τq, and the temperature phase relaxation time, τq were calculated from the temporal vari- ations of the energy flux and temperature distribution in the film. Comparisons of the MD temperature profiles with temperature profiles predicted by Fourier's law show that Fourier's law is not able to predict the temperature variations with time. Different film thicknesses were also studied to illustrate the variation of the time needed for the films to reach steady-state temperature profiles after a sudden tem- perature rise at one surface and to illustrate the finite speed of the energy waves.
Fourier Series for Kample De Feriet Function
Directory of Open Access Journals (Sweden)
A. D. Wadhwa
1971-07-01
Full Text Available Some integrals involving Kampe de Feriet function have been evaluated. These integrals have further been employed to obtain some Fourier series for Kampe de Feriet functions. Some particular cases have also been discussed.
Fourier-Bessel rotational invariant eigenimages.
Zhao, Zhizhen; Singer, Amit
2013-05-01
We present an efficient and accurate algorithm for principal component analysis (PCA) of a large set of two-dimensional images and, for each image, the set of its uniform rotations in the plane and its reflection. The algorithm starts by expanding each image, originally given on a Cartesian grid, in the Fourier-Bessel basis for the disk. Because the images are essentially band limited in the Fourier domain, we use a sampling criterion to truncate the Fourier-Bessel expansion such that the maximum amount of information is preserved without the effect of aliasing. The constructed covariance matrix is invariant to rotation and reflection and has a special block diagonal structure. PCA is efficiently done for each block separately. This Fourier-Bessel-based PCA detects more meaningful eigenimages and has improved denoising capability compared to traditional PCA for a finite number of noisy images.
Composite Cyclotomic Fourier Transforms with Reduced Complexities
Wu, Xuebin; Chen, Ning; Yan, Zhiyuan; Wang, Ying
2010-01-01
Discrete Fourier transforms~(DFTs) over finite fields have widespread applications in digital communication and storage systems. Hence, reducing the computational complexities of DFTs is of great significance. Recently proposed cyclotomic fast Fourier transforms (CFFTs) are promising due to their low multiplicative complexities. Unfortunately, there are two issues with CFFTs: (1) they rely on efficient short cyclic convolution algorithms, which has not been investigated thoroughly yet, and (2) they have very high additive complexities when directly implemented. In this paper, we address both issues. One of the main contributions of this paper is efficient bilinear 11-point cyclic convolution algorithms, which allow us to construct CFFTs over GF$(2^{11})$. The other main contribution of this paper is that we propose composite cyclotomic Fourier transforms (CCFTs). In comparison to previously proposed fast Fourier transforms, our CCFTs achieve lower overall complexities for moderate to long lengths, and the imp...
Electronically-Scanned Fourier-Transform Spectrometer
Breckinridge, J. B.; Ocallaghan, F. G.
1984-01-01
Instrument efficient, lightweight, and stable. Fourier-transform spectrometer configuration uses electronic, instead of mechanical, scanning. Configuration insensitive to vibration-induced sampling errors introduced into mechanically scanned systems.
Content adaptive illumination for Fourier ptychography.
Bian, Liheng; Suo, Jinli; Situ, Guohai; Zheng, Guoan; Chen, Feng; Dai, Qionghai
2014-12-01
Fourier ptychography (FP) is a recently reported technique, for large field-of-view and high-resolution imaging. Specifically, FP captures a set of low-resolution images, under angularly varying illuminations, and stitches them together in the Fourier domain. One of FP's main disadvantages is its long capturing process, due to the requisite large number of incident illumination angles. In this Letter, utilizing the sparsity of natural images in the Fourier domain, we propose a highly efficient method, termed adaptive Fourier ptychography (AFP), which applies content adaptive illumination for FP, to capture the most informative parts of the scene's spatial spectrum. We validate the effectiveness and efficiency of the reported framework, with both simulated and real experiments. Results show that the proposed AFP could shorten the acquisition time of conventional FP, by around 30%-60%.
A new twist to fourier transforms
Meikle, Hamish D
2004-01-01
Making use of the inherent helix in the Fourier transform expression, this book illustrates both Fourier transforms and their properties in the round. The author draws on elementary complex algebra to manipulate the transforms, presenting the ideas in such a way as to avoid pages of complicated mathematics. Similarly, abbreviations are not used throughout and the language is kept deliberately clear so that the result is a text that is accessible to a much wider readership.The treatment is extended with the use of sampled data to finite and discrete transforms, the fast Fourier transform, or FFT, being a special case of a discrete transform. The application of Fourier transforms in statistics is illustrated for the first time using the examples operational research and later radar detection. In addition, a whole chapter on tapering or weighting functions is added for reference. The whole is rounded off by a glossary and examples of diagrams in three dimensions made possible by today's mathematics programs
A DISTRIBUTION SPACE FOR FOURIER TRANSFORM
Institute of Scientific and Technical Information of China (English)
Zhou Chaoying; Yang Lihua; Huang Daren
2007-01-01
A space DF is constructed and some characterizations of space DF are given. Itis shown that the classical Fourier transform is extended to the distribution space D'F, whichcan be embedded into the Schwartz distribution space D' continuously. It is also shown thatD'F is the biggest embedded subspace of D' on which the extended Fourier transform, F, is ahomeomorphism of D'F onto itself.
Shift sampling theory of Fourier transform computation
Institute of Scientific and Technical Information of China (English)
柴玉璞
1997-01-01
The DFT transform us extended to DFTξη transform and the relationship between FT and DFTξη is given by the Fourier transform discretization theorem. Based on the theorem, the DFTξη algorithm-error equation (DFTξη A-E equation) is established, and the minimization property of discrete effect and the oscillation property of truncation effect are demonstrated. All these construct the shift sampling theory——a new theory about Fourier transform computation.
Fractional Fourier transform of Lorentz beams
Institute of Scientific and Technical Information of China (English)
Zhou Guo-Quan
2009-01-01
This paper introduces Lorentz beams to describe certain laser sources that produce highly divergent fields. The fractional Fourier transform (FRFT) is applied to treat the propagation of Lorentz beams. Based on the definition of convolution and the convolution theorem of the Fourier transform, an analytical expression for a Lorentz beam passing through a FRFT system has been derived. By using the derived formula, the properties of a Lorentz beam in the FRFT plane are illustrated numerically.
Bead-Fourier path integral molecular dynamics
Ivanov, Sergei D.; Lyubartsev, Alexander P.; Laaksonen, Aatto
2003-06-01
Molecular dynamics formulation of Bead-Fourier path integral method for simulation of quantum systems at finite temperatures is presented. Within this scheme, both the bead coordinates and Fourier coefficients, defining the path representing the quantum particle, are treated as generalized coordinates with corresponding generalized momenta and masses. Introduction of the Fourier harmonics together with the center-of-mass thermostating scheme is shown to remove the ergodicity problem, known to pose serious difficulties in standard path integral molecular dynamics simulations. The method is tested for quantum harmonic oscillator and hydrogen atom (Coulombic potential). The simulation results are compared with the exact analytical solutions available for both these systems. Convergence of the results with respect to the number of beads and Fourier harmonics is analyzed. It was shown that addition of a few Fourier harmonics already improves the simulation results substantially, even for a relatively small number of beads. The proposed Bead-Fourier path integral molecular dynamics is a reliable and efficient alternative to simulations of quantum systems.
Directory of Open Access Journals (Sweden)
M. W. Rotach
2012-08-01
Full Text Available D-PHASE was a Forecast Demonstration Project of the World Weather Research Programme (WWRP related to the Mesoscale Alpine Programme (MAP. Its goal was to demonstrate the reliability and quality of operational forecasting of orographically influenced (determined precipitation in the Alps and its consequences on the distribution of run-off characteristics. A special focus was, of course, on heavy-precipitation events.
The D-PHASE Operations Period (DOP ran from June to November~2007, during which an end-to-end forecasting system was operated covering many individual catchments in the Alps, with their water authorities, civil protection organizations or other end users. The forecasting system's core piece was a Visualization Platform where precipitation and flood warnings from some 30 atmospheric and 7 hydrological models (both deterministic and probabilistic and corresponding model fields were displayed in uniform and comparable formats. Also, meteograms, nowcasting information and end user communication was made available to all the forecasters, users and end users. D-PHASE information was assessed and used by some 50 different groups ranging from atmospheric forecasters to civil protection authorities or water management bodies.
In the present contribution, D-PHASE is briefly presented along with its outstanding scientific results and, in particular, the lessons learnt with respect to uncertainty propagation. A focus is thereby on the transfer of ensemble prediction information into the hydrological community and its use with respect to other aspects of societal impact. Objective verification of forecast quality is contrasted to subjective quality assessments during the project (end user workshops, questionnaires and some general conclusions concerning forecast demonstration projects are drawn.
Weng, Yiqun; Colle, Marivi; Wang, Yuhui; Yang, Luming; Rubinstein, Mor; Sherman, Amir; Ophir, Ron; Grumet, Rebecca
2015-09-01
QTL analysis in multi-development stages with different QTL models identified 12 consensus QTLs underlying fruit elongation and radial growth presenting a dynamic view of genetic control of cucumber fruit development. Fruit size is an important quality trait in cucumber (Cucumis sativus L.) of different market classes. However, the genetic and molecular basis of fruit size variations in cucumber is not well understood. In this study, we conducted QTL mapping of fruit size in cucumber using F2, F2-derived F3 families and recombinant inbred lines (RILs) from a cross between two inbred lines Gy14 (North American picking cucumber) and 9930 (North China fresh market cucumber). Phenotypic data of fruit length and diameter were collected at three development stages (anthesis, immature and mature fruits) in six environments over 4 years. QTL analysis was performed with three QTL models including composite interval mapping (CIM), Bayesian interval mapping (BIM), and multiple QTL mapping (MQM). Twenty-nine consistent and distinct QTLs were detected for nine traits from multiple mapping populations and QTL models. Synthesis of information from available fruit size QTLs allowed establishment of 12 consensus QTLs underlying fruit elongation and radial growth, which presented a dynamic view of genetic control of cucumber fruit development. Results from this study highlighted the benefits of QTL analysis with multiple QTL models and different mapping populations in improving the power of QTL detection. Discussion was presented in the context of domestication and diversifying selection of fruit length and diameter, marker-assisted selection of fruit size, as well as identification of candidate genes for fruit size QTLs in cucumber.
Li, Xiaodong; Ling, Feng; Du, Yun; Feng, Qi; Zhang, Yihang
2014-07-01
The mixed pixel problem affects the extraction of land cover information from remotely sensed images. Super-resolution mapping (SRM) can produce land cover maps with a finer spatial resolution than the remotely sensed images, and reduce the mixed pixel problem to some extent. Traditional SRMs solely adopt a single coarse-resolution image as input. Uncertainty always exists in resultant fine-resolution land cover maps, due to the lack of information about detailed land cover spatial patterns. The development of remote sensing technology has enabled the storage of a great amount of fine spatial resolution remotely sensed images. These data can provide fine-resolution land cover spatial information and are promising in reducing the SRM uncertainty. This paper presents a spatial-temporal Hopfield neural network (STHNN) based SRM, by employing both a current coarse-resolution image and a previous fine-resolution land cover map as input. STHNN considers the spatial information, as well as the temporal information of sub-pixel pairs by distinguishing the unchanged, decreased and increased land cover fractions in each coarse-resolution pixel, and uses different rules in labeling these sub-pixels. The proposed STHNN method was tested using synthetic images with different class fraction errors and real Landsat images, by comparing with pixel-based classification method and several popular SRM methods including pixel-swapping algorithm, Hopfield neural network based method and sub-pixel land cover change mapping method. Results show that STHNN outperforms pixel-based classification method, pixel-swapping algorithm and Hopfield neural network based model in most cases. The weight parameters of different STHNN spatial constraints, temporal constraints and fraction constraint have important functions in the STHNN performance. The heterogeneity degree of the previous map and the fraction images errors affect the STHNN accuracy, and can be served as guidances of selecting the
Does the Entorhinal Cortex use the Fourier Transform?
Directory of Open Access Journals (Sweden)
Jeff eOrchard
2013-12-01
Full Text Available Some neurons in the entorhinal cortex (EC fire bursts when the animal occupies locations organized in a hexagonal grid pattern in their spatial environment. Place cells have also been observed, firing bursts only when the animal occupies a particular region of the environment. Both of these types of cells exhibit theta-cycle modulation, firing bursts in the 4-12Hz range. Grid cells fire bursts of action potentials that precess with respect to the theta cycle, a phenomenon dubbed "theta precession". Various models have been proposed to explain these phenomena, and how they relate to navigation. Among the most promising are the oscillator interference models. The bank-of-oscillators model proposed by Welday et al. (2011 exhibits all these features. However, their simulations are based on theoretical oscillators, and not implemented entirely with spiking neurons. We extend their work in a number of ways. First, we place the oscillators in a frequency domain and reformulate the model in terms of Fourier theory. Second, this perspective suggests a division of labour for implementing spatial maps: position, versus map layout. The animal's position is encoded in the phases of the oscillators, while the spatial map shape is encoded implicitly in the weights of the connections between the oscillators and the read-out nodes. Third, it reveals that the oscillator phases all need to conform to a linear relationship across the frequency domain. Fourth, we implement a partial model of the EC using spiking leaky integrate-and-fire (LIF neurons. Fifth, we devise new coupling mechanisms, enlightened by the global phase constraint, and show they are capable of keeping spiking neural oscillators in consistent formation. Our model demonstrates place cells, grid cells, and phase precession. The Fourier model also gives direction for future investigations, such as integrating sensory feedback to combat drift, or explaining why grid cells exist at all.
Generalized Fourier-grid R-matrix theory: a discrete Fourier-Riccati-Bessel transform approach
Energy Technology Data Exchange (ETDEWEB)
Layton, E.G. (Joint Inst. for Lab. Astrophysics, Boulder, CO (United States)); Stade, E. (Colorado Univ., Boulder, CO (United States). Dept. of Mathematics)
1993-08-28
We present the latest developments in the Fourier-grid R-matrix theory of scattering. These developments are based on the generalized Fourier-grid formalism and use a new type of extended discrete Fourier transform: the discrete Fourier-Riccati-Bessel transform. We apply this new R-matrix approach to problems of potential scattering, to demonstrate how this method reduces computational effort by incorporating centrifugal effects into the representation. As this technique is quite new, we have hopes to broaden the formalism to many types of problems. (author).
Li, Beiwen; Liu, Ziping; Zhang, Song
2016-10-03
We propose a hybrid computational framework to reduce motion-induced measurement error by combining the Fourier transform profilometry (FTP) and phase-shifting profilometry (PSP). The proposed method is composed of three major steps: Step 1 is to extract continuous relative phase maps for each isolated object with single-shot FTP method and spatial phase unwrapping; Step 2 is to obtain an absolute phase map of the entire scene using PSP method, albeit motion-induced errors exist on the extracted absolute phase map; and Step 3 is to shift the continuous relative phase maps from Step 1 to generate final absolute phase maps for each isolated object by referring to the absolute phase map with error from Step 2. Experiments demonstrate the success of the proposed computational framework for measuring multiple isolated rapidly moving objects.
Stepwise Iterative Fourier Transform: The SIFT
Benignus, V. A.; Benignus, G.
1975-01-01
A program, designed specifically to study the respective effects of some common data problems on results obtained through stepwise iterative Fourier transformation of synthetic data with known waveform composition, was outlined. Included in this group were the problems of gaps in the data, different time-series lengths, periodic but nonsinusoidal waveforms, and noisy (low signal-to-noise) data. Results on sinusoidal data were also compared with results obtained on narrow band noise with similar characteristics. The findings showed that the analytic procedure under study can reliably reduce data in the nature of (1) sinusoids in noise, (2) asymmetric but periodic waves in noise, and (3) sinusoids in noise with substantial gaps in the data. The program was also able to analyze narrow-band noise well, but with increased interpretational problems. The procedure was shown to be a powerful technique for analysis of periodicities, in comparison with classical spectrum analysis techniques. However, informed use of the stepwise procedure nevertheless requires some background of knowledge concerning characteristics of the biological processes under study.
Braud, Isabelle; Desprats, Jean-François; Ayral, Pierre-Alain; Bouvier, Christophe; Vandervaere, Jean-Pierre
2017-04-01
Topsoil field-saturated hydraulic conductivity, Kfs, is a parameter that controls the partition of rainfall between infiltration and runoff. It is a key parameter in most distributed hydrological models. However, there is a mismatch between the scale of local in situ measurements and the scale at which the parameter is required in models. Therefore it is necessary to design methods to regionally map this parameter at the model scale. The paper propose a method for mapping Kfs in the Cévennes-Vivarais region, south-east France, using more easily available GIS data: geology and land cover. The mapping is based on a data set gathering infiltration tests performed in the area or close to it for more than ten years. The data set is composed of infiltration tests performed using various techniques: Guelph permeameter, double ring and single ring infiltration tests, infiltrometers with multiple suctions. The different methods lead to different orders of magnitude for Kfs rendering the pooling of all the data challenging. Therefore, a method is first proposed to pool the data from the different infiltration methods, leading to a homogenized set of Kfs, based on an equivalent double ring/tension disk infiltration value. Statistical tests showed significant differences in distributions among different geologies and land covers. Thus those variables were retained as proxy for mapping Kfs at the regional scale. This map was compared to a map based on the Rawls and Brakensiek (RB) pedo-transfer function (Manus et al., 2009, Vannier et al., 2016), showing very different patterns between both maps. In addition, RB values did not fit observed values at the plot scale, highlighting that soil texture only is not a good predictor of Kfs. References Manus, C., Anquetin, S., Braud, I., Vandervaere, J.P., Viallet, P., Creutin, J.D., Gaume, E., 2009. A modelling approach to assess the hydrological response of small Mediterranean catchments to the variability of soil characteristics in a
Matrix-Vector Based Fast Fourier Transformations on SDR Architectures
Directory of Open Access Journals (Sweden)
Y. He
2008-05-01
Full Text Available Today Discrete Fourier Transforms (DFTs are applied in various radio standards based on OFDM (Orthogonal Frequency Division Multiplex. It is important to gain a fast computational speed for the DFT, which is usually achieved by using specialized Fast Fourier Transform (FFT engines. However, in face of the Software Defined Radio (SDR development, more general (parallel processor architectures are often desirable, which are not tailored to FFT computations. Therefore, alternative approaches are required to reduce the complexity of the DFT. Starting from a matrix-vector based description of the FFT idea, we will present different factorizations of the DFT matrix, which allow a reduction of the complexity that lies between the original DFT and the minimum FFT complexity. The computational complexities of these factorizations and their suitability for implementation on different processor architectures are investigated.
On One Application of Fourier Analysis in Plastic Surgery
Rakhimov, Abdumalik; Zainuddin, Hishamuddin
In present paper, we discuss the spectral methods of measurement of the degree of speech and/or quality of sound by comparing the coefficient of performance indicators depending on energy distributions, ratio of energy of the fundamental tone and energy of overtones. Such a method is very efficient for string oscillation with different initial conditions and it is useful for justification of applications of Fourier analysis in plastic surgery in treatment of some medical diseases.
Microcomputer Simulation of a Fourier Approach to Ultrasonic Wave Propagation
1992-12-01
examines an approach based on linear systems theory and the Fourier transform. The thesis goal was to achieve a readily usable method of predicting pulsed...differed by the use of linear systems theory . Linear systems theory revealed the importance of the total impulse response and its equivalence to the...Note that an arbitrary spatial input has been substituted for the impulsive spatial input. Recall from linear systems theory that the solution for
Microcomputer Simulation of a Fourier Approach to Optical Wave Propagation
1992-06-01
efficient method to model such ultrasonic propagation has been developed by Guyomar and Powers [Refs. 2,3]. Relying upon linear systems theory and...the application of linear systems theory , and the mathematical derivation of the field solution utilizing the Fourier approach. Chapter III commences...the spatial impulse response. Guyomar and Powers’ view differs from Stepanishen’s work in that linear systems theory is used to point out the
Entangled Fractional Fourier Transform for the Multipartite Entangled State Representation
Institute of Scientific and Technical Information of China (English)
QIAN Xiao-Qing; SONG Tong-Qiang
2006-01-01
We deduce entangled fractional Fourier transformation (EFFT) for the multipartite entangled state representation, which was newly constructed with two mutually conjugate n-mode entangled states of continuum variables in n-mode Fock space. We establish a formalism of EFFT for quantum mechanical wave functions, which provides us a convenient way to derive some wave functions. We find that the eigenmode of EFFT is different from the usual Hermite Polynomials. We also derive the EFFT of the n-mode squeezed state.
Fourier analysis of the aerodynamic behavior of cup anemometers
Pindado Carrion, Santiago; Pérez Sarasola, Imanol; Aguado Roca, Maite
2013-01-01
The calibration results (the transfer function) of an anemometer equipped with several cup rotors were analyzed and correlated with the aerodynamic forces measured on the isolated cups in a wind tunnel. The correlation was based on a Fourier analysis of the normal-to-the-cup aerodynamic force. Three different cup shapes were studied: typical conical cups, elliptical cups and porous cups (conical-truncated shape). Results indicated a good correlation between the anemometer factor, K, and the r...
DEFF Research Database (Denmark)
Høgedahl, Laust
2014-01-01
to map Danish wage earners’ reasons for joining or leaving unemployment insurance funds and trade unions. The article finds that there are great variations among Danish trade unions in term of how strongly they are dependent on a Ghent effect as a recruiting mechanism. We may expect the same variations...
DEFF Research Database (Denmark)
Spanos, Dimitrios; Ann Tørngren, Mari; Christensen, Mette;
2016-01-01
The characteristics and the oxidative stability of pork steaks and of pork mince were investigated during 2, 5 and 7 days of refrigerated storage using oxygen (O2) levels of 0%, 20%, 50% and 80% in modified atmosphere packaging (MAP). Steaks stored during 7 days were not affected by an increase...
1982-12-01
evaluated the validity of MAP for education, race, and age subgroups. Results showed Unci 9assif ied DO ,~I’~I 173 NV65SECURITY CLASIFICATION OF T~fS...Army Research Institute CARI ) research in military delinquency dating back to the Korean War (Carleton, Burke, Ilieger & Drucker, 1957; Johnson & Kotula
DEFF Research Database (Denmark)
Minder, Bettina; Laursen, Linda Nhu; Lassen, Astrid Heidemann
2014-01-01
. Conceptual clustering is used to analyse and order information according to concepts or variables from within the data. The cognitive maps identified are validated through the comments of some of the same experts. The study presents three cognitive maps and respective world-views explaining how the design...... and innovation field are related and under which dimensions they differ. The paper draws preliminary conclusions on the implications of the different world- views on the innovation process. With the growing importance of the design approach in innovation e.g. design thinking, a clear conception...
DEFF Research Database (Denmark)
Minder, Bettina; Laursen, Linda Nhu; Lassen, Astrid Heidemann
2014-01-01
. Conceptual clustering is used to analyse and order information according to concepts or variables from within the data. The cognitive maps identified are validated through the comments of some of the same experts. The study presents three cognitive maps and respective world-views explaining how the design...... and innovation field are related and under which dimensions they differ. The paper draws preliminary conclusions on the implications of the different world- views on the innovation process. With the growing importance of the design approach in innovation e.g. design thinking, a clear conception...
Fourier Analysis and Structure Determination. Part II: Pulse NMR and NMR Imaging.
Chesick, John P.
1989-01-01
Uses simple pulse NMR experiments to discuss Fourier transforms. Studies the generation of spin echoes used in the imaging procedure. Shows that pulse NMR experiments give signals that are additions of sinusoids of differing amplitudes, frequencies, and phases. (MVL)
Glasser, L.
1987-01-01
This paper explores how Fourier Transform (FT) mimics spectral transformation, how this property can be exploited to advantage in spectroscopy, and how the FT can be used in data treatment. A table displays a number of important FT serial/spectral pairs related by Fourier Transformations. A bibliography and listing of computer software related to…
Modeling the reconstructed BAO in Fourier space
Seo, Hee-Jong; Beutler, Florian; Ross, Ashley J.; Saito, Shun
2016-08-01
The density field reconstruction technique, which partially reverses the non-linear degradation of the Baryon acoustic oscillation (BAO) feature in the galaxy redshift surveys, has been successful in substantially improving the cosmology constraints from recent surveys such as Baryon Oscillation Spectroscopic Survey (BOSS). We estimate the efficiency of the method as a function of various reconstruction details. To directly quantify the BAO information in non-linear density fields before and after reconstruction, we calculate the cross-correlations (i.e. propagators) of the pre(post)-reconstructed density field with the initial linear field using a mock sample that mimics the clustering of the BOSS galaxies. The results directly provide the BAO damping as a function of wavenumber that can be implemented into the Fisher matrix analysis. We focus on investigating the dependence of the propagator on a choice of smoothing filters and on two major different conventions of the redshift-space density field reconstruction that have been used in literature. By estimating the BAO signal to noise for each case, we predict constraints on the angular diameter distance and Hubble parameter using the Fisher matrix analysis. We thus determine an optimal Gaussian smoothing filter scale for the signal-to-noise level of the BOSS CMASS. We also present appropriate BAO fitting models for different reconstruction methods based on the first- and second-order Lagrangian perturbation theory in Fourier space. Using the mock data, we show that the modified BAO fitting model can substantially improve the accuracy of the BAO position in the best fits as well as the goodness of the fits.
A resource-efficient adaptive Fourier analyzer
Hajdu, C. F.; Zamantzas, C.; Dabóczi, T.
2016-10-01
We present a resource-efficient frequency adaptation method to complement the Fourier analyzer proposed by Péceli. The novel frequency adaptation scheme is based on the adaptive Fourier analyzer suggested by Nagy. The frequency adaptation method was elaborated with a view to realizing a detector connectivity check on an FPGA in a new beam loss monitoring (BLM) system, currently being developed for beam setup and machine protection of the particle accelerators at the European Organisation for Nuclear Research (CERN). The paper summarizes the Fourier analyzer to the extent relevant to this work and the basic principle of the related frequency adaptation methods. It then outlines the suggested new scheme, presents practical considerations for implementing it and underpins it with an example and the corresponding operational experience.
Practical Fourier analysis for multigrid methods
Wienands, Roman
2004-01-01
Before applying multigrid methods to a project, mathematicians, scientists, and engineers need to answer questions related to the quality of convergence, whether a development will pay out, whether multigrid will work for a particular application, and what the numerical properties are. Practical Fourier Analysis for Multigrid Methods uses a detailed and systematic description of local Fourier k-grid (k=1,2,3) analysis for general systems of partial differential equations to provide a framework that answers these questions.This volume contains software that confirms written statements about convergence and efficiency of algorithms and is easily adapted to new applications. Providing theoretical background and the linkage between theory and practice, the text and software quickly combine learning by reading and learning by doing. The book enables understanding of basic principles of multigrid and local Fourier analysis, and also describes the theory important to those who need to delve deeper into the detai...
Fourier analysis and boundary value problems
Gonzalez-Velasco, Enrique A
1996-01-01
Fourier Analysis and Boundary Value Problems provides a thorough examination of both the theory and applications of partial differential equations and the Fourier and Laplace methods for their solutions. Boundary value problems, including the heat and wave equations, are integrated throughout the book. Written from a historical perspective with extensive biographical coverage of pioneers in the field, the book emphasizes the important role played by partial differential equations in engineering and physics. In addition, the author demonstrates how efforts to deal with these problems have lead to wonderfully significant developments in mathematics.A clear and complete text with more than 500 exercises, Fourier Analysis and Boundary Value Problems is a good introduction and a valuable resource for those in the field.Key Features* Topics are covered from a historical perspective with biographical information on key contributors to the field* The text contains more than 500 exercises* Includes practical applicati...
Replica Fourier Transform: Properties and applications
Directory of Open Access Journals (Sweden)
A. Crisanti
2015-02-01
Full Text Available The Replica Fourier Transform is the generalization of the discrete Fourier Transform to quantities defined on an ultrametric tree. It finds use in conjunction of the replica method used to study thermodynamics properties of disordered systems such as spin glasses. Its definition is presented in a systematic and simple form and its use illustrated with some representative examples. In particular we give a detailed discussion of the diagonalization in the Replica Fourier Space of the Hessian matrix of the Gaussian fluctuations about the mean field saddle point of spin glass theory. The general results are finally discussed for a generic spherical spin glass model, where the Hessian can be computed analytically.
Prediction of Tide Height Using the Discrete Fourier Transform
Directory of Open Access Journals (Sweden)
Md. Towhiduzzaman
2016-12-01
Full Text Available In this study, I have investigated some aspects of astronomical tide and predicted tide time and height by different methods. This thesis deals with the prediction of height and time for both high and low waters of the ports set up in several places by discrete Fourier transform. I computed the tide height using Discrete Fourier Transform (DFT. The results are found to be in an agreement with the predicted data of others. By this work, we can predict the tide height of overall stations if the sample observed data are available for any kind of stations. I think that my work could be helpful to predict the tides over all stations where the observed data are available.
Polymer-Fourier quantization of the scalar field revisited
Garcia-Chung, Angel; Vergara, J. David
2016-10-01
The polymer quantization of the Fourier modes of the real scalar field is studied within algebraic scheme. We replace the positive linear functional of the standard Poincaré invariant quantization by a singular one. This singular positive linear functional is constructed as mimicking the singular limit of the complex structure of the Poincaré invariant Fock quantization. The resulting symmetry group of such polymer quantization is the subgroup SDiff(ℝ4) which is a subgroup of Diff(ℝ4) formed by spatial volume preserving diffeomorphisms. In consequence, this yields an entirely different irreducible representation of the canonical commutation relations, nonunitary equivalent to the standard Fock representation. We also compared the Poincaré invariant Fock vacuum with the polymer Fourier vacuum.
Polymer-Fourier quantization of the scalar field revisited
Garcia-Chung, Angel
2016-01-01
The Polymer Quantization of the Fourier modes of the real scalar field is studied within algebraic scheme. We replace the positive linear functional of the standard Poincar\\'e invariant quantization by a singular one. This singular positive linear functional is constructed as mimicking the singular limit of the complex structure of the Poincar\\'e invariant Fock quantization. The resulting symmetry group of such Polymer Quantization is the subgroup $\\mbox{SDiff}(\\mathbb{R}^4)$ which is a subgroup of $\\mbox{Diff}(\\mathbb{R}^4)$ formed by spatial volume preserving diffeomorphisms. In consequence, this yields an entirely different irreducible representation of the Canonical Commutation Relations, non-unitary equivalent to the standard Fock representation. We also compared the Poincar\\'e invariant Fock vacuum with the Polymer Fourier vacuum.
Perfect vortex beam: Fourier transformation of a Bessel beam.
Vaity, Pravin; Rusch, Leslie
2015-02-15
We derive a mathematical description of a perfect vortex beam as the Fourier transformation of a Bessel beam. Building on this development, we experimentally generate Bessel-Gauss beams of different orders and Fourier transform them to form perfect vortex beams. By controlling the radial wave vector of a Bessel-Gauss beam, we can control the ring radius of the generated beam. Our theoretical predictions match with the experimental results and also provide an explanation for previous published works. We find the perfect vortex resembles that of an orbital angular momentum (OAM) mode supported in annular profiled waveguides. Our prefect vortex beam generation method can be used to excite OAM modes in an annular core fiber.
Generic configuration stellarator based on several concentric Fourier windings
Queral, Vicente
2016-01-01
Stellarators commonly comprise different sets of coils to produce diverse magnetic configurations. However, the diversity of possible configurations in a single device is usually rather limited. The achievement of a broad variety of magnetic configurations might be valuable for some purposes, for example, to assay the effect of the magnetic configuration on turbulent transport. Thus, a method is created to systematically define sets of modular coils located on concentric toroidal winding surfaces. The method is based on the expression of a Last Closed Flux Surface (LCFS) by Fourier coefficients in cylindrical coordinates and consists in the definition of successive windings located on equidistant concentric winding surfaces, each winding such that produces a magnetic field which, when added to the magnetic field generated by a sole base winding that generates a base magnetic configuration, produces a magnetic configuration whose LCFS is defined by the Fourier coefficients of the base magnetic configuration pl...
Fourier analysis for discontinuous Galerkin and related methods
Institute of Scientific and Technical Information of China (English)
ZHANG MengPing; SHU Chi-Wang
2009-01-01
In this paper we review a series of recent work on using a Fourier analysis technique to study the sta-bility and error estimates for the discontinuous Galerkin method and other related schemes. The ad-vantage of this approach is that it can reveal instability of certain "bad"' schemes; it can verify stability for certain good schemes which are not easily amendable to standard finite element stability analysis techniques; it can provide quantitative error comparisons among different schemes; and it can be used to study superconvergence and time evolution of errors for the discontinuous Galerkin method. We will briefly describe this Fourier analysis technique, summarize its usage in stability and error estimates for various schemes, and indicate the advantages and disadvantages of this technique in comparison with other finite element techniques.
Adaptive optics implementation with a Fourier reconstructor.
Glazer, Oded; Ribak, Erez N; Mirkin, Leonid
2007-02-01
Adaptive optics takes its servo feedback error cue from a wavefront sensor. The common Hartmann-Shack spot grid that represents the wavefront slopes is usually analyzed by finding the spot centroids. In a novel application, we used the Fourier decomposition of a spot pattern to find deviations from grid regularity. This decomposition was performed either in the Fourier domain or in the image domain, as a demodulation of the grid of spots. We analyzed the system, built a control loop for it, and tested it thoroughly. This allowed us to close the loop on wavefront errors caused by turbulence in the optical system.
Fourier transforms and convolutions for the experimentalist
Jennison, RC
1961-01-01
Fourier Transforms and Convolutions for the Experimentalist provides the experimentalist with a guide to the principles and practical uses of the Fourier transformation. It aims to bridge the gap between the more abstract account of a purely mathematical approach and the rule of thumb calculation and intuition of the practical worker. The monograph springs from a lecture course which the author has given in recent years and for which he has drawn upon a number of sources, including a set of notes compiled by the late Dr. I. C. Browne from a series of lectures given by Mr. J . A. Ratcliffe of t
Fourier analysis in several complex variables
Ehrenpreis, Leon
2006-01-01
Suitable for advanced undergraduates and graduate students, this text develops comparison theorems to establish the fundamentals of Fourier analysis and to illustrate their applications to partial differential equations.The three-part treatment begins by establishing the quotient structure theorem or fundamental principle of Fourier analysis. Topics include the geometric structure of ideals and modules, quantitative estimates, and examples in which the theory can be applied. The second part focuses on applications to partial differential equations and covers the solution of homogeneous and inh
Quantum transport efficiency and Fourier's law.
Manzano, Daniel; Tiersch, Markus; Asadian, Ali; Briegel, Hans J
2012-12-01
We analyze the steady-state energy transfer in a chain of coupled two-level systems connecting two thermal reservoirs. Through an analytic treatment we find that the energy current is independent of the system size, hence violating Fourier's law of heat conduction. The classical diffusive behavior in Fourier's law of heat conduction can be recovered by introducing decoherence to the quantum systems constituting the chain. We relate these results to recent discussions of energy transport in biological light-harvesting systems, and discuss the role of quantum coherence and entanglement.
Quantum transport efficiency and Fourier's law
Manzano, Daniel; Asadian, Ali; Briegel, Hans J
2011-01-01
We analyze the steady-state energy transfer in a chain of coupled two-level systems connecting two thermal reservoirs. Through an analytic treatment we find that the energy current is independent of the system size, hence violating Fourier's law of heat conduction. The classical diffusive behavior in Fourier's law of heat conduction can be recovered by introducing decoherence to the quantum systems constituting the chain. Implications of these results on energy transfer in biological light harvesting systems, and the role of quantum coherences and entanglement are discussed.
Fast Fourier Transform algorithm design and tradeoffs
Kamin, Ray A., III; Adams, George B., III
1988-01-01
The Fast Fourier Transform (FFT) is a mainstay of certain numerical techniques for solving fluid dynamics problems. The Connection Machine CM-2 is the target for an investigation into the design of multidimensional Single Instruction Stream/Multiple Data (SIMD) parallel FFT algorithms for high performance. Critical algorithm design issues are discussed, necessary machine performance measurements are identified and made, and the performance of the developed FFT programs are measured. Fast Fourier Transform programs are compared to the currently best Cray-2 FFT program.
Illustrative EDOF topics in Fourier optics
George, Nicholas; Chen, Xi; Chi, Wanli
2011-10-01
In this talk we present a series of illustrative topics in Fourier Optics that are proving valuable in the design of EDOF camera systems. They are at the level of final examination problems that have been made solvable by a student or professoi having studied from one of Joseph W. Goodman's books---our tribute for his 75fr year. As time permits, four illustrative topics are l) Electromagnetic waves and Fourier optics;2) The perfect lens; 3) Connection between phase delay and radially varying focal length in an asphere and 4) tailored EDOF designs.
Electro-optic imaging Fourier transform spectrometer
Chao, Tien-Hsin (Inventor); Znod, Hanying (Inventor)
2009-01-01
An Electro-Optic Imaging Fourier Transform Spectrometer (EOIFTS) for Hyperspectral Imaging is described. The EOIFTS includes an input polarizer, an output polarizer, and a plurality of birefringent phase elements. The relative orientations of the polarizers and birefringent phase elements can be changed mechanically or via a controller, using ferroelectric liquid crystals, to substantially measure the spectral Fourier components of light propagating through the EIOFTS. When achromatic switches are used as an integral part of the birefringent phase elements, the EIOFTS becomes suitable for broadband applications, with over 1 micron infrared bandwidth.
Implementation of quantum and classical discrete fractional Fourier transforms.
Weimann, Steffen; Perez-Leija, Armando; Lebugle, Maxime; Keil, Robert; Tichy, Malte; Gräfe, Markus; Heilmann, René; Nolte, Stefan; Moya-Cessa, Hector; Weihs, Gregor; Christodoulides, Demetrios N; Szameit, Alexander
2016-03-23
Fourier transforms, integer and fractional, are ubiquitous mathematical tools in basic and applied science. Certainly, since the ordinary Fourier transform is merely a particular case of a continuous set of fractional Fourier domains, every property and application of the ordinary Fourier transform becomes a special case of the fractional Fourier transform. Despite the great practical importance of the discrete Fourier transform, implementation of fractional orders of the corresponding discrete operation has been elusive. Here we report classical and quantum optical realizations of the discrete fractional Fourier transform. In the context of classical optics, we implement discrete fractional Fourier transforms of exemplary wave functions and experimentally demonstrate the shift theorem. Moreover, we apply this approach in the quantum realm to Fourier transform separable and path-entangled biphoton wave functions. The proposed approach is versatile and could find applications in various fields where Fourier transforms are essential tools.
How to tickle spins with a fourier transform NMR spectrometer.
Segawa, Takuya F; Carnevale, Diego; Bodenhausen, Geoffrey
2013-02-01
In the long bygone days of continuous-wave nuclear magnetic resonance (NMR) spectroscopy, a selected transition within a multiplet of a high-resolution spectrum could be irradiated by a highly selective continuous-wave (CW) radio-frequency (rf) field with a very weak amplitude ω(2)/(2π)≤J. This causes splittings of connected transitions, allowing one to map the connectivities of all transitions within the energy-level diagram of the spin system. Such "tickling" experiments stimulated the invention of two-dimensional spectroscopy, but seem to have been forgotten for nearly 50 years. We show that tickling can readily be achieved in homonuclear systems with Fourier transform spectrometers by applying short pulses in the intervals between the sampling points. Extensions to heteronuclear systems are even more straightforward since they can be carried out using very weak CW rf fields.
Directory of Open Access Journals (Sweden)
Yun Du
2016-04-01
Full Text Available Monitoring open water bodies accurately is an important and basic application in remote sensing. Various water body mapping approaches have been developed to extract water bodies from multispectral images. The method based on the spectral water index, especially the Modified Normalized Difference Water Index (MDNWI calculated from the green and Shortwave-Infrared (SWIR bands, is one of the most popular methods. The recently launched Sentinel-2 satellite can provide fine spatial resolution multispectral images. This new dataset is potentially of important significance for regional water bodies’ mapping, due to its free access and frequent revisit capabilities. It is noted that the green and SWIR bands of Sentinel-2 have different spatial resolutions of 10 m and 20 m, respectively. Straightforwardly, MNDWI can be produced from Sentinel-2 at the spatial resolution of 20 m, by upscaling the 10-m green band to 20 m correspondingly. This scheme, however, wastes the detailed information available at the 10-m resolution. In this paper, to take full advantage of the 10-m information provided by Sentinel-2 images, a novel 10-m spatial resolution MNDWI is produced from Sentinel-2 images by downscaling the 20-m resolution SWIR band to 10 m based on pan-sharpening. Four popular pan-sharpening algorithms, including Principle Component Analysis (PCA, Intensity Hue Saturation (IHS, High Pass Filter (HPF and À Trous Wavelet Transform (ATWT, were applied in this study. The performance of the proposed method was assessed experimentally using a Sentinel-2 image located at the Venice coastland. In the experiment, six water indexes, including 10-m NDWI, 20-m MNDWI and 10-m MNDWI, produced by four pan-sharpening algorithms, were compared. Three levels of results, including the sharpened images, the produced MNDWI images and the finally mapped water bodies, were analysed quantitatively. The results showed that MNDWI can enhance water bodies and suppressbuilt
Motion artifact reduction using hybrid Fourier transform with phase-shifting methods
Li, Beiwen; Liu, Ziping; Zhang, Song
2016-08-01
We propose to combine the Fourier transform profilometry (FTP) and phase-shifting profilometry (PSP) to reduce motion induced artifacts. The proposed method can be divided into three steps: Step 1 is to obtain a temporarily unwrapped absolute phase map of the entire scene using the FTP method, albeit the absolute phase map has motion introduced artifacts; Step 2 is to generate continuous relative phase maps without motion artifacts for each isolated object by spatially unwrapping each isolated phase map retrieved from the FTP method; and Step 3 is to determine the absolute phase map for each isolate region by referring to the temporally unwrapped phase using PSP method. Experimental results demonstrated success of the proposed method for measuring rapidly moving multiple isolated objects.
Directory of Open Access Journals (Sweden)
M. Van Den Eeckhaut
2009-03-01
Full Text Available For a 277 km^{2} study area in the Flemish Ardennes, Belgium, a landslide inventory and two landslide susceptibility zonations were combined to obtain an optimal landslide susceptibility assessment, in five classes. For the experiment, a regional landslide inventory, a 10 m × 10 m digital representation of topography, and lithological and soil hydrological information obtained from 1:50 000 scale maps, were exploited. In the study area, the regional inventory shows 192 landslides of the slide type, including 158 slope failures occurred before 1992 (model calibration set, and 34 failures occurred after 1992 (model validation set. The study area was partitioned in 2.78×10^{6} grid cells and in 1927 topographic units. The latter are hydro-morphological units obtained by subdividing slope units based on terrain gradient. Independent models were prepared for the two terrain subdivisions using discriminant analysis. For grid cells, a single pixel was identified as representative of the landslide depletion area, and geo-environmental information for the pixel was obtained from the thematic maps. The landslide and geo-environmental information was used to model the propensity of the terrain to host landslide source areas. For topographic units, morphologic and hydrologic information and the proportion of lithologic and soil hydrological types in each unit, were used to evaluate landslide susceptibility, including the depletion and depositional areas. Uncertainty associated with the two susceptibility models was evaluated, and the model performance was tested using the independent landslide validation set. An heuristic procedure was adopted to combine the landslide inventory and the susceptibility zonations. The procedure makes optimal use of the available landslide and susceptibility information, minimizing the limitations inherent in the inventory and the susceptibility maps. For the established susceptibility classes, regulations to
Fourier theory and C∗-algebras
Bédos, Erik; Conti, Roberto
2016-07-01
We discuss a number of results concerning the Fourier series of elements in reduced twisted group C∗-algebras of discrete groups, and, more generally, in reduced crossed products associated to twisted actions of discrete groups on unital C∗-algebras. A major part of the article gives a review of our previous work on this topic, but some new results are also included.
Ultrafast Fourier-transform parallel processor
Energy Technology Data Exchange (ETDEWEB)
Greenberg, W.L.
1980-04-01
A new, flexible, parallel-processing architecture is developed for a high-speed, high-precision Fourier transform processor. The processor is intended for use in 2-D signal processing including spatial filtering, matched filtering and image reconstruction from projections.
Euler Polynomials, Fourier Series and Zeta Numbers
DEFF Research Database (Denmark)
Scheufens, Ernst E
2012-01-01
Fourier series for Euler polynomials is used to obtain information about values of the Riemann zeta function for integer arguments greater than one. If the argument is even we recover the well-known exact values, if the argument is odd we find integral representations and rapidly convergent series....
Fourier Series Formalization in ACL2(r
Directory of Open Access Journals (Sweden)
Cuong K. Chau
2015-09-01
Full Text Available We formalize some basic properties of Fourier series in the logic of ACL2(r, which is a variant of ACL2 that supports reasoning about the real and complex numbers by way of non-standard analysis. More specifically, we extend a framework for formally evaluating definite integrals of real-valued, continuous functions using the Second Fundamental Theorem of Calculus. Our extended framework is also applied to functions containing free arguments. Using this framework, we are able to prove the orthogonality relationships between trigonometric functions, which are the essential properties in Fourier series analysis. The sum rule for definite integrals of indexed sums is also formalized by applying the extended framework along with the First Fundamental Theorem of Calculus and the sum rule for differentiation. The Fourier coefficient formulas of periodic functions are then formalized from the orthogonality relations and the sum rule for integration. Consequently, the uniqueness of Fourier sums is a straightforward corollary. We also present our formalization of the sum rule for definite integrals of infinite series in ACL2(r. Part of this task is to prove the Dini Uniform Convergence Theorem and the continuity of a limit function under certain conditions. A key technique in our proofs of these theorems is to apply the overspill principle from non-standard analysis.
Fourier inversion on a reductive symmetric space
Ban, E.P. van den
2001-01-01
Let X be a semisimple symmetric space. In previous papers, [8] and [9], we have dened an explicit Fourier transform for X and shown that this transform is injective on the space C 1 c (X) ofcompactly supported smooth functions on X. In the present paper, which is a continuation of these papers, we e
Vector valued Fourier multipliers and applications
Directory of Open Access Journals (Sweden)
Davide Guidetti
2010-12-01
Full Text Available In questo seminario sono illustrati alcuni recenti sviluppi della teoria dei moltiplicatori di Fourier negli spazi L^p a valori in spazi di Banach. Seguono alcune applicazioni a problemi al contorno di tipo ellittico e a problemi misti di tipo parabolico.
Vector valued Fourier multipliers and applications
Davide Guidetti
2010-01-01
In questo seminario sono illustrati alcuni recenti sviluppi della teoria dei moltiplicatori di Fourier negli spazi L^p a valori in spazi di Banach. Seguono alcune applicazioni a problemi al contorno di tipo ellittico e a problemi misti di tipo parabolico.
On the Scaled Fractional Fourier Transformation Operator
Institute of Scientific and Technical Information of China (English)
FAN Hong-Yi; HU Li-Yun
2008-01-01
Based on our previous study [Chin.Phys.Lett.24(2007)2238]in which the Fresnel operator corresponding to classical Fresnel transform was introduced,we derive the fractional Fourier transformation operator,and the optical operator method is then enriched.
Fourier transforms on an amalgam type space
Liflyand, E
2012-01-01
We introduce an amalgam type space, a subspace of $L^1(\\mathbb R_+).$ Integrability results for the Fourier transform of a function with the derivative from such an amalgam space are proved. As an application we obtain estimates for the integrability of trigonometric series.
Harmonic oscillator: an analysis via Fourier series
de Castro, A S
2013-01-01
The Fourier series method is used to solve the homogeneous equation governing the motion of the harmonic oscillator. It is shown that the general solution to the problem can be found in a surprisingly simple way for the case of the simple harmonic oscillator. It is also shown that the damped harmonic oscillator is susceptible to the analysis.
Euler Polynomials, Fourier Series and Zeta Numbers
DEFF Research Database (Denmark)
Scheufens, Ernst E
2012-01-01
Fourier series for Euler polynomials is used to obtain information about values of the Riemann zeta function for integer arguments greater than one. If the argument is even we recover the well-known exact values, if the argument is odd we find integral representations and rapidly convergent series....
Bernoulli Polynomials, Fourier Series and Zeta Numbers
DEFF Research Database (Denmark)
Scheufens, Ernst E
2013-01-01
Fourier series for Bernoulli polynomials are used to obtain information about values of the Riemann zeta function for integer arguments greater than one. If the argument is even we recover the well-known exact values, if the argument is odd we find integral representations and rapidly convergent ...
Clifford Fourier transform on vector fields.
Ebling, Julia; Scheuermann, Gerik
2005-01-01
Image processing and computer vision have robust methods for feature extraction and the computation of derivatives of scalar fields. Furthermore, interpolation and the effects of applying a filter can be analyzed in detail and can be advantages when applying these methods to vector fields to obtain a solid theoretical basis for feature extraction. We recently introduced the Clifford convolution, which is an extension of the classical convolution on scalar fields and provides a unified notation for the convolution of scalar and vector fields. It has attractive geometric properties that allow pattern matching on vector fields. In image processing, the convolution and the Fourier transform operators are closely related by the convolution theorem and, in this paper, we extend the Fourier transform to include general elements of Clifford Algebra, called multivectors, including scalars and vectors. The resulting convolution and derivative theorems are extensions of those for convolution and the Fourier transform on scalar fields. The Clifford Fourier transform allows a frequency analysis of vector fields and the behavior of vector-valued filters. In frequency space, vectors are transformed into general multivectors of the Clifford Algebra. Many basic vector-valued patterns, such as source, sink, saddle points, and potential vortices, can be described by a few multivectors in frequency space.
Fourier transform infrared spectrometery: an undergraduate experiment
Lerner, L.
2016-11-01
Simple apparatus is developed, providing undergraduate students with a solid understanding of Fourier transform (FT) infrared (IR) spectroscopy in a hands on experiment. Apart from its application to measuring the mid-IR spectra of organic molecules, the experiment introduces several techniques with wide applicability in physics, including interferometry, the FT, digital data analysis, and control theory.
A Fourier analysis of extremal events
DEFF Research Database (Denmark)
Zhao, Yuwei
is the extremal periodogram. The extremal periodogram shares numerous asymptotic properties with the periodogram of a linear process in classical time series analysis: the asymptotic distribution of the periodogram ordinates at the Fourier frequencies have a similar form and smoothed versions of the periodogram...
A simple normalized difference approach to burnt area mapping using multi-polarisation C-Band SAR
CSIR Research Space (South Africa)
Engelbrecht, Jeanine
2017-07-01
Full Text Available and intensity; and (3) fire size [6,7,9–11]. In terms of fire frequency, all non-sprouting plants should have a chance to produce sufficient seed before the next burn. Therefore, fires should not Remote Sens. 2017, 9, 764; doi:10.3390/rs9080764 www... information using a time-series of data can provide information on veld ages. Veld age maps can be used to identify vegetation stands that should be protected from fires, including immature plants that have not had the opportunity to produce seeds [9...
Evaluation of gastric motility by Fourier analysis of condensed images
Energy Technology Data Exchange (ETDEWEB)
Linke, R.; Muenzing, W.; Hahn, K.; Tatsch, K. [Dept. of Nuclear Medicine, Univ. of Munich, Munich (Germany)
2000-10-01
In this study Fourier analysis was applied to condensed images of gastric emptying with the aim of evaluating the amplitude and frequency of gastric contractions as well as gastric emptying in patients with various well-defined disorders. In 15 controls, 65 patients with progressive systemic sclerosis (PSS), 41 patients with diabetes mellitus type I (DM), 12 patients with pyloric stenosis and 9 patients who had undergone gastric surgery, gastric emptying was determined after ingestion of a semi-solid test meal. In addition, condensed images were generated to evaluate the amplitude and frequency of gastric contractions by means of Fourier analysis. In PSS and DM patients, gastric emptying and contraction amplitudes were significantly reduced (P<0.01). Patients with pyloric stenosis displayed regular peristalsis but significantly delayed emptying (P<0.01). Patients who had undergone gastric surgery showed normal or rapid gastric emptying associated with decreased amplitudes (P<0.01). The frequency of gastric contractions in the patient groups was not different from that in controls. This study showed Fourier analysis of condensed images to be a rapid and feasible approach for the evaluation of gastric contractions. Depending on the underlying disorder, gastric emptying and peristalsis showed both corresponding and discrepant findings. Data on gastric contractions provided additional information compared with results obtained by conventional emptying studies. Therefore, both parameters should be routinely assessed to further improve characterisation of gastric dysfunction by scintigraphy. (orig.)
Nonlinear Fourier analysis with cnoidal waves
Energy Technology Data Exchange (ETDEWEB)
Osborne, A.R. [Dipt. di Fisica Generale dell`Universita, Torino (Italy)
1996-12-31
Fourier analysis is one of the most useful tools to the ocean engineer. The approach allows one to analyze wave data and thereby to describe a dynamical motion in terms of a linear superposition of ordinary sine waves. Furthermore, the Fourier technique allows one to compute the response function of a fixed or floating structure: each sine wave in the wave or force spectrum yields a sine wave in the response spectrum. The counting of fatigue cycles is another area where the predictable oscillations of sine waves yield procedures for the estimation of the fatigue life of structures. The ocean environment, however, is a source of a number of nonlinear effects which must also be included in structure design. Nonlinearities in ocean waves deform the sinusoidal shapes into other kinds of waves such as the Stokes wave, cnoidal wave or solitary wave. A key question is: Does there exist a generalization of linear Fourier analysis which uses nonlinear basis functions rather than the familiar sine waves? Herein addresses the dynamics of nonlinear wave motion in shallow water where the basis functions are cnoidal waves and discuss nonlinear Fourier analysis in terms of a linear superposition of cnoidal waves plus their mutual nonlinear interactions. He gives a number of simple examples of nonlinear Fourier wave motion and then analyzes an actual surface-wave time series obtained on an offshore platform in the Adriatic Sea. Finally, he briefly discusses application of the cnoidal wave spectral approach to the computation of the frequency response function of a floating vessel. The results given herein will prove useful in future engineering studies for the design of fixed, floating and complaint offshore structures.
Institute of Scientific and Technical Information of China (English)
WANG De-Cai; ZHANG Gan-Lin; PAN Xian-Zhang; ZHAO Yu-Guo; ZHAO Ming-Song; WANG Gai-Fen
2012-01-01
The use of landscape covariates to estimate soil properties is not suitable for the areas of low relief due to the high variability of soil properties in similar topographic and vegetation conditions.A new method was implemented to map regional soil texture (in terms of sand,silt and clay contents) by hypothesizing that the change in the land surface diurnal temperature difference (DTD) is related to soil texture in case of a relatively homogeneous rainfall input.To examine this hypothesis,the DTDs from moderate resolution imagine spectroradiometer (MODIS) during a selected time period,i.e.,after a heavy rainfall between autumn harvest and autumn sowing,were classified using fuzzy-c-means (FCM) clustering.Six classes were generated,and for each class,the sand (＞ 0.05 mm),silt (0.002-0.05 mm) and clay (＜ 0.002 mm) contents at the location of maximum membership value were considered as the typical values of that class.A weighted average model was then used to digitally map soil texture.The results showed that the predicted map quite accurately reflected the regional soil variation.A validation dataset produced estimates of error for the predicted maps of sand,silt and clay contents at root mean of squared error values of 8.4％,7.8％ and 2.3％,respectively,which is satisfactory in a practical context.This study thus provided a methodology that can help improve the accuracy and efficiency of soil texture mapping in plain areas using easily available data sources.
Institute of Scientific and Technical Information of China (English)
韩琳娜; 周凤琴
2011-01-01
In the present paper, raw radix, stem, leaf and flower of the original medicines and alcohol, soluble extract of introduced Echinacea purpurea Moench were stidied via the IR macro-fringerprint method. The spectra of raw madicinal materials show that all parts show characteristic peaks of starch. In the two-dimensional correlation spectra, the characteristic peak of flower is stronger than that of other parts at 1711 cm-1,1630 cm-1 (Carboxylic acid C=O), this proves that the quantity of component of polyphenols in flower is higher than that in the other parts. The FTIR spectra of soluble extract present the component of polyphenols in flower and leaf is higher than in stem and radix, but the component of nitrate and sugar is opposite. Compared the spectra of whole raw medicines with the different parts, it can discern that the whole raw medicines contained which parts of plant, so as to achieve the purpose of rapid identification.%采用红外光谱宏观指纹鉴定的方法对紫锥菊不同部位根、茎、叶、花原药材及醇溶、水溶提取物的一维和二阶导数谱图进行整体分析.原药材谱图显示紫锥菊的各部位都体现淀粉特征峰.醇提物二阶导数谱图给出花中1711 cm-1、1630 cm-1的羧基吸收峰明显强于其他部位,说明花中多酚类成分高于其他部位.水提物谱图显示,花、叶中多酚类成分比例相对于茎、根中的含量提高,而花、叶中硝酸根离子和蔗糖成分比例相对于茎、根中的含量下降.对比整体药材与各部位的谱图,可以判断出整体药材中所含有的植物部位,从而达到快速鉴定的目的.
Multi-band Image Registration Method Based on Fourier Transform
Institute of Scientific and Technical Information of China (English)
庹红娅; 刘允才
2004-01-01
This paper presented a registration method based on Fourier transform for multi-band images which is involved in translation and small rotation. Although different band images differ a lot in the intensity and features,they contain certain common information which we can exploit. A model was given that the multi-band images have linear correlations under the least-square sense. It is proved that the coefficients have no effect on the registration progress if two images have linear correlations. Finally, the steps of the registration method were proposed. The experiments show that the model is reasonable and the results are satisfying.
Fourier's law for quasi-one-dimensional chaotic quantum systems
Seligman, Thomas H.; Weidenmüller, Hans A.
2011-05-01
We derive Fourier's law for a completely coherent quasi-one-dimensional chaotic quantum system coupled locally to two heat baths at different temperatures. We solve the master equation to first order in the temperature difference. We show that the heat conductance can be expressed as a thermodynamic equilibrium coefficient taken at some intermediate temperature. We use that expression to show that for temperatures large compared to the mean level spacing of the system, the heat conductance is inversely proportional to the level density and, thus, inversely proportional to the length of the system.
Directory of Open Access Journals (Sweden)
Giuseppe eMercurio
2014-01-01
Full Text Available We present an analysis method of normal incidence x-ray standing wave (NIXSW data that allows detailed adsorption geometries of complex molecules to be retrieved. This method (Fourier vector analysis is based on the comparison of both the coherence and phase of NIXSW data to NIXSW simulations of different molecular geometries as the relevant internal degrees of freedom are tuned. We introduce this analysis method using the prototypical molecular switch azobenzene (AB adsorbed on the Ag(111 surface as a model system. The application of the Fourier vector analysis to AB/Ag(111 provides, on the one hand, detailed adsorption geometries including dihedral angles, and on the other hand, insights into the dynamics of molecules and their bonding to the metal substrate. This analysis scheme is generally applicable to any adsorbate, it is necessary for molecules with potentially large distortions, and will be particularly valuable for molecules whose distortion on adsorption can be mapped on a limited number of internal degrees of freedom.
Harnois-Déraps, Joachim; Hojjati, Alireza; van Waerbeke, Ludovic; Asgari, Marika; Choi, Ami; Erben, Thomas; Heymans, Catherine; Hildebrandt, Hendrik; Kitching, Thomas D; Miller, Lance; Nakajima, Reiko; Viola, Massimo; Arnouts, Stéphane; Coupon, Jean; Moutard, Thibaud
2016-01-01
We measure the cross-correlation signature between the Planck CMB lensing map and the weak lensing observations from both the Red-sequence Cluster Lensing Survey (RCSLenS) and the Canada-France-Hawai Telescope Lensing Survey (CFHTLenS). In addition to a Fourier analysis, we include the first configuration-space detection, based on the estimators $\\langle \\kappa_{\\rm CMB} \\kappa_{\\rm gal} \\rangle$ and $\\langle \\kappa_{\\rm CMB} \\gamma_{t} \\rangle$. Combining 747.2 deg$^2$ from both surveys, we find a detection significance that exceeds $4.2\\sigma$ in both Fourier- and configuration-space analyses. Scaling the predictions by a free parameter $A$, we obtain $A^{\\rm Planck}_{\\rm CFHT}= 0.68\\pm 0.31 $ and $A^{\\rm Planck}_{\\rm RCS}= 1.31\\pm 0.33$. In preparation for the next generation of measurements similar to these, we quantify the impact of different analysis choices on these results. First, since none of these estimators probes the exact same dynamical range, we improve our detection by combining them. Second, ...
Harnois-Déraps, Joachim; Tröster, Tilman; Hojjati, Alireza; van Waerbeke, Ludovic; Asgari, Marika; Choi, Ami; Erben, Thomas; Heymans, Catherine; Hildebrandt, Hendrik; Kitching, Thomas D.; Miller, Lance; Nakajima, Reiko; Viola, Massimo; Arnouts, Stéphane; Coupon, Jean; Moutard, Thibaud
2016-07-01
We measure the cross-correlation signature between the Planck cosmic microwave background (CMB) lensing map and the weak lensing observations from both the Red-sequence Cluster Lensing Survey and the Canada-France-Hawaii Telescope Lensing Survey. In addition to a Fourier analysis, we include the first configuration-space detection, based on the estimators and . Combining 747.2 deg2 from both surveys, we find a detection significance that exceeds 4.2σ in both Fourier- and configuration-space analyses. Scaling the predictions by a free parameter A, we obtain A^Planck_CFHT= 0.68± 0.31 and A^Planck_RCS= 1.31± 0.33. In preparation for the next generation of measurements similar to these, we quantify the impact of different analysis choices on these results. First, since none of these estimators probes the exact same dynamical range, we improve our detection by combining them. Secondly, we carry out a detailed investigation on the effect of apodization, zero-padding and mask multiplication, validated on a suite of high-resolution simulations, and find that the latter produces the largest systematic bias in the cosmological interpretation. Finally, we show that residual contamination from intrinsic alignment and the effect of photometric redshift error are both largely degenerate with the characteristic signal from massive neutrinos, however the signature of baryon feedback might be easier to distinguish. The three lensing data sets are publicly available.
Institute of Scientific and Technical Information of China (English)
CHEN Lin-Fei; ZHAO Dao-Mu
2006-01-01
@@ We propose a new method to add different images together by optical implementation that is realized by the multi-exposure based on fractional Fourier transform hologram. Partial image fusion is proposed and realized by this method. Multiple images encryption can also be implemented by the multi-exposure of the hologram based on fractional Fourier transform. Computer simulations prove that this method is valid.
Rengier, Fabian; Delles, Michael; Eichhorn, Joachim; Azad, Yoo-Jin; von Tengg-Kobligk, Hendrik; Ley-Zaporozhan, Julia; Dillmann, Rüdiger; Kauczor, Hans-Ulrich; Unterhinninghofen, Roland; Ley, Sebastian
2015-04-01
To assess spatial and temporal pressure characteristics in patients with repaired aortic coarctation compared to young healthy volunteers using time-resolved velocity-encoded three-dimensional phase-contrast magnetic resonance imaging (4D flow MRI) and derived 4D pressure difference maps. After in vitro validation against invasive catheterization as gold standard, 4D flow MRI of the thoracic aorta was performed at 1.5T in 13 consecutive patients after aortic coarctation repair without recoarctation and 13 healthy volunteers. Using in-house developed processing software, 4D pressure difference maps were computed based on the Navier-Stokes equation. Pressure difference amplitudes, maximum slope of pressure amplitudes and spatial pressure range at mid systole were retrospectively measured by three readers, and twice by one reader to assess inter- and intraobserver agreement. In vitro, pressure differences derived from 4D flow MRI showed excellent agreement to invasive catheter measurements. In vivo, pressure difference amplitudes, maximum slope of pressure difference amplitudes and spatial pressure range at mid systole were significantly increased in patients compared to volunteers in the aortic arch, the proximal descending and the distal descending thoracic aorta (p coarctation.
Mental Mapping: A Classroom Strategy
Solomon, Les
1978-01-01
Examines potential uses of mental maps in the classroom by reviewing research efforts, providing an example of the differences between mental maps of two student groups, and suggesting how to use mental maps in the geography curriculum. Mental mapping (or cognitive mapping) refers to individuals' processes of collecting, storing, and retrieving…
Khosravi, Khabat; Pourghasemi, Hamid Reza; Chapi, Kamran; Bahri, Masoumeh
2016-12-01
Flooding is a very common worldwide natural hazard causing large-scale casualties every year; Iran is not immune to this thread as well. Comprehensive flood susceptibility mapping is very important to reduce losses of lives and properties. Thus, the aim of this study is to map susceptibility to flooding by different bivariate statistical methods including Shannon's entropy (SE), statistical index (SI), and weighting factor (Wf). In this regard, model performance evaluation is also carried out in Haraz Watershed, Mazandaran Province, Iran. In the first step, 211 flood locations were identified by the documentary sources and field inventories, of which 70% (151 positions) were used for flood susceptibility modeling and 30% (60 positions) for evaluation and verification of the model. In the second step, ten influential factors in flooding were chosen, namely slope angle, plan curvature, altitude, topographic wetness index (TWI), stream power index (SPI), distance from river, rainfall, geology, land use, and normalized difference vegetation index (NDVI). In the next step, flood susceptibility maps were prepared by these four methods in ArcGIS. As the last step, receiver operating characteristic (ROC) curve was drawn and the area under the curve (AUC) was calculated for quantitative assessment of each model. The results showed that the best model to estimate the susceptibility to flooding in Haraz Watershed was SI model with the prediction and success rates of 99.71 and 98.72%, respectively, followed by Wf and SE models with the AUC values of 98.1 and 96.57% for the success rate, and 97.6 and 92.42% for the prediction rate, respectively. In the SI and Wf models, the highest and lowest important parameters were the distance from river and geology. Flood susceptibility maps are informative for managers and decision makers in Haraz Watershed in order to contemplate measures to reduce human and financial losses.
Li, Songze; Maddah-Ali, Mohammad Ali; Avestimehr, A. Salman
2015-01-01
MapReduce is a commonly used framework for executing data-intensive jobs on distributed server clusters. We introduce a variant implementation of MapReduce, namely "Coded MapReduce", to substantially reduce the inter-server communication load for the shuffling phase of MapReduce, and thus accelerating its execution. The proposed Coded MapReduce exploits the repetitive mapping of data blocks at different servers to create coding opportunities in the shuffling phase to exchange (key,value) pair...
Energy Technology Data Exchange (ETDEWEB)
Patino, A [Universidad Technologica de Bolivar, Cartagena de Indias (Colombia); Durand, P-E; Fogret, E; Pellat-Finet, P, E-mail: alberto.patino-vanegas@univ-ubs.fr [Laboratoire de mathematiques et applications des mathematiques, Universite de Bretagne Sud, B P 92116, 56321 Lorient cedex (France)
2011-01-01
According to a scalar theory of diffraction, light propagation can be expressed by two-dimensional fractional order Fourier transforms. Since the fractional Fourier transform of a chirp function is a Dirac distribution, focusing a light beam is optically achieved by using a diffractive screen whose transmission function is a two-dimensional chirp function. This property is applied to designing Fresnel microlenses, and the orders of the involved Fourier fractional transforms depend on diffraction distances as well as on emitter and receiver radii of curvature. If the emitter is astigmatic (with two principal radii of curvature), the diffraction phenomenon involves two one-dimensional fractional Fourier transforms whose orders are different. This degree of freedom allows us to design microlenses that can focus astigmatic Gaussian beams, as produced by a line-shaped laser diode source.
Coherence Enhancing Diffusion and Windowed Fourier Filtering for Fringe Patterns Denoising (II)
Wang, Haixia; Kemao, Qian
2010-04-01
Fringe patterns produced by various optical interferometric techniques encode the information of deformation, refractive index, vibration, etc. Noise as one of the key problems affects further processing of the fringe patterns and reduces the final measurement quality. Coherence enhancing diffusion (CED) is a partial differential equation based denoising model that suppresses the noise as well as preserves the flow-like structure. Windowed Fourier transform-based windowed Fourier filtering (WFF) is another useful fringe pattern denoising tool that removes noise by thresholding the windowed Fourier transform spectrum. An adaptive windowed Fourier filtering (AWFF) that denoises the fringe pattern based on pixels' local frequencies is proposed in this paper. The performance of AWFF is compared with WFF and CED by applying them to fringe patterns that contain speckle noise and different levels of frequencies. Quantitative results will be given on simulated fringe patterns. Experimental fringe pattern will also be tested to illustrate the performance of these methods.
Laser Field Imaging Through Fourier Transform Heterodyne
Energy Technology Data Exchange (ETDEWEB)
Cooke, B.J.; Laubscher, B.E.; Olivas, N.L.; Galbraith, A.E.; Strauss, C.E.; Grubler, A.C.
1999-04-05
The authors present a detection process capable of directly imaging the transverse amplitude, phase, and Doppler shift of coherent electromagnetic fields. Based on coherent detection principles governing conventional heterodyned RADAR/LADAR systems, Fourier Transform Heterodyne incorporates transverse spatial encoding of the reference local oscillator for image capture. Appropriate selection of spatial encoding functions allows image retrieval by way of classic Fourier manipulations. Of practical interest: (1) imaging may be accomplished with a single element detector/sensor requiring no additional scanning or moving components, (2) as detection is governed by heterodyne principles, near quantum limited performance is achievable, (3) a wide variety of appropriate spatial encoding functions exist that may be adaptively configured in real-time for applications requiring optimal detection, and (4) the concept is general with the applicable electromagnetic spectrum encompassing the RF through optical.
Fourier series expansion for nonlinear Hamiltonian oscillators.
Méndez, Vicenç; Sans, Cristina; Campos, Daniel; Llopis, Isaac
2010-06-01
The problem of nonlinear Hamiltonian oscillators is one of the classical questions in physics. When an analytic solution is not possible, one can resort to obtaining a numerical solution or using perturbation theory around the linear problem. We apply the Fourier series expansion to find approximate solutions to the oscillator position as a function of time as well as the period-amplitude relationship. We compare our results with other recent approaches such as variational methods or heuristic approximations, in particular the Ren-He's method. Based on its application to the Duffing oscillator, the nonlinear pendulum and the eardrum equation, it is shown that the Fourier series expansion method is the most accurate.
Saturated pattern-illuminated Fourier ptychography microscopy
Fang, Yue; Chen, Youhua; Kuang, Cuifang; Xiu, Peng; Liu, Qiulan; Ge, Baoliang; Liu, Xu
2017-01-01
We report a series of simulation studies which extends pattern-illuminated Fourier ptychography microscopy by integrating with the nonlinearity arising from saturation of the fluorophore excited state for super-resolution fluorescence imaging. This extended technique, termed Saturated pattern-illuminated Fourier ptychography (SpiFP) microscopy, could achieve a resolution four times that of wide field when the illuminating light intensity approaches the saturation threshold in simulations. Increasing light intensity leads to further resolution enhancement. In order to demonstrate the performance of SpiFP, we make a comparison between SpiFP and saturated structure illumination microscopy in simulations, and prove that the SpiFP exhibits superior robustness to noise, aberration correcting ability, and pattern’s flexibility. Introducing the saturation of the fluorescent emission brings in notable improvements in imaging performance, implying its potential in nanoscale-sized biological observations by wide-field microscopy.
Weaving defect detection by Fourier imaging
Ciamberlini, Claudio; Francini, Franco; Longobardi, Giuseppe; Poggi, Pasquale; Sansoni, Paola; Tiribilli, Bruno
1996-08-01
An optical configuration for the detection of faults was developed and tested. The optical fourier transformation is the basic working principle of the system. When good fabric passes in front of the optical system the Fourier image, captured by the camera, shows well defined spots corresponding to the spatial frequencies of the tissue. If a defect occurs during production on the loom, the pattern changes significantly and a defect is easily detected in real time. A very simple electronic image processing based on thresholding and binary histograms allows to obtain very encouraging performance for its applicability to the looms. A compact device has been realized and tested in real working conditions on the loom.
Digital Backpropagation in the Nonlinear Fourier Domain
Wahls, Sander; Prilepsky, Jaroslaw E; Poor, H Vincent; Turitsyn, Sergei K
2015-01-01
Nonlinear and dispersive transmission impairments in coherent fiber-optic communication systems are often compensated by reverting the nonlinear Schr\\"odinger equation, which describes the evolution of the signal in the link, numerically. This technique is known as digital backpropagation. Typical digital backpropagation algorithms are based on split-step Fourier methods in which the signal has to be discretized in time and space. The need to discretize in both time and space however makes the real-time implementation of digital backpropagation a challenging problem. In this paper, a new fast algorithm for digital backpropagation based on nonlinear Fourier transforms is presented. Aiming at a proof of concept, the main emphasis will be put on fibers with normal dispersion in order to avoid the issue of solitonic components in the signal. However, it is demonstrated that the algorithm also works for anomalous dispersion if the signal power is low enough. Since the spatial evolution of a signal governed by the ...
X-ray Fourier ptychographic microscopy
Simons, H; Guigay, J P; Detlefs, C
2016-01-01
Following the recent developement of Fourier ptychographic microscopy (FPM) in the visible range by Zheng et al. (2013), we propose an adaptation for hard x-rays. FPM employs ptychographic reconstruction to merge a series of low-resolution, wide field of view images into a high-resolution image. In the x-ray range this opens the possibility to overcome the limited numerical aperture of existing x-ray lenses. Furthermore, digital wave front correction (DWC) may be used to charaterize and correct lens imperfections. Given the diffraction limit achievable with x-ray lenses (below 100 nm), x-ray Fourier ptychographic microscopy (XFPM) should be able to reach resolutions in the 10 nm range.
High order generalized permutational fractional Fourier transforms
Institute of Scientific and Technical Information of China (English)
Ran Qi-Wen; Yuan Lin; Tan Li-Ying; Ma Jing; Wang Qi
2004-01-01
We generalize the definition of the fractional Fourier transform (FRFT) by extending the new definition proposed by Shih. The generalized FRFT, called the high order generalized permutational fractional Fourier transform (HGPFRFT),is a generalized permutational transform. It is shown to have arbitrary natural number M periodic eigenvalues not only with respect to the order of Hermite-Gaussian functions but also to the order of the transform. This HGPFRFT will be reduced to the original FRFT proposed by Namias and Liu's generalized FRFT and Shih's FRFT at the three limits with M = +∞,M = 4k (k is a natural number), and M = 4, respectively. Therefore the HGPFRFT introduces a comprehensive approach to Shih's FRFT and the original definition. Some important properties of HGPFRFT are discussed. Lastly the results of computer simulations and symbolic representations of the transform are provided.
Fourier Transform Fabry-Perot Interferometer
Snell, Hilary E.; Hays, Paul B.
1992-01-01
We are developing a compact, rugged, high-resolution remote sensing instrument with wide spectral scanning capabilities. This relatively new type of instrument, which we have chosen to call the Fourier-Transform Fabry-Perot Interferometer (FT-FPI), is accomplished by mechanically scanning the etalon plates of a Fabry-Perot interferometer (FPI) through a large optical distance while examining the concomitant signal with a Fourier-transform analysis technique similar to that employed by the Michelson interferometer. The FT-FPI will be used initially as a ground-based instrument to study near-infrared atmospheric absorption lines of trace gases using the techniques of solar absorption spectroscopy. Future plans include modifications to allow for measurements of trace gases in the stratosphere using spectral lines at terahertz frequencies.
Computing Fourier integral operators with caustics
Caday, Peter
2016-12-01
Fourier integral operators (FIOs) have widespread applications in imaging, inverse problems, and PDEs. An implementation of a generic algorithm for computing FIOs associated with canonical graphs is presented, based on a recent paper of de Hoop et al. Given the canonical transformation and principal symbol of the operator, a preprocessing step reduces application of an FIO approximately to multiplications, pushforwards and forward and inverse discrete Fourier transforms, which can be computed in O({N}n+(n-1)/2{log}N) time for an n-dimensional FIO. The same preprocessed data also allows computation of the inverse and transpose of the FIO, with identical runtime. Examples demonstrate the algorithm’s output, and easily extendible MATLAB/C++ source code is available from the author.
Exponential Approximations Using Fourier Series Partial Sums
Banerjee, Nana S.; Geer, James F.
1997-01-01
The problem of accurately reconstructing a piece-wise smooth, 2(pi)-periodic function f and its first few derivatives, given only a truncated Fourier series representation of f, is studied and solved. The reconstruction process is divided into two steps. In the first step, the first 2N + 1 Fourier coefficients of f are used to approximate the locations and magnitudes of the discontinuities in f and its first M derivatives. This is accomplished by first finding initial estimates of these quantities based on certain properties of Gibbs phenomenon, and then refining these estimates by fitting the asymptotic form of the Fourier coefficients to the given coefficients using a least-squares approach. It is conjectured that the locations of the singularities are approximated to within O(N(sup -M-2), and the associated jump of the k(sup th) derivative of f is approximated to within O(N(sup -M-l+k), as N approaches infinity, and the method is robust. These estimates are then used with a class of singular basis functions, which have certain 'built-in' singularities, to construct a new sequence of approximations to f. Each of these new approximations is the sum of a piecewise smooth function and a new Fourier series partial sum. When N is proportional to M, it is shown that these new approximations, and their derivatives, converge exponentially in the maximum norm to f, and its corresponding derivatives, except in the union of a finite number of small open intervals containing the points of singularity of f. The total measure of these intervals decreases exponentially to zero as M approaches infinity. The technique is illustrated with several examples.
Fourier-transform spectroscopy instrumentation engineering
Saptari, Vidi
2003-01-01
Many applications today require the Fourier-transform (FT) spectrometer to perform close to its limitations, such as taking many quantitative measurements in the visible and in the near infrared wavelength regions. In such cases, the instrument should not be considered as a perfect ""black box."" Knowing where the limitations of performance arise and which components must be improved are crucial to obtaining repeatable and accurate results. One of the objectives of this book is to help the user identify the instrument's bottleneck.
Hyperbolicity of semigroups and Fourier multipliers
Latushkin, Yuri; Shvidkoy, Roman
2001-01-01
We present a characterization of hyperbolicity for strongly continuous semigroups on Banach spaces in terms of Fourier multiplier properties of the resolvent of the generator. Hyperbolicity with respect to classical solutions is also considered. Our approach unifies and simplifies the M. Kaashoek-- S. Verduyn Lunel theory and multiplier-type results previously obtained by S. Clark, M. Hieber, S. Montgomery-Smith, F. R\\"{a}biger, T. Randolph, and L. Weis.
A Fourier analysis of extreme events
DEFF Research Database (Denmark)
Mikosch, Thomas Valentin; Zhao, Yuwei
2014-01-01
The extremogram is an asymptotic correlogram for extreme events constructed from a regularly varying stationary sequence. In this paper, we define a frequency domain analog of the correlogram: a periodogram generated from a suitable sequence of indicator functions of rare events. We derive basic ...... properties of the periodogram such as the asymptotic independence at the Fourier frequencies and use this property to show that weighted versions of the periodogram are consistent estimators of a spectral density derived from the extremogram....
The Asymmetric Pupil Fourier Wavefront Sensor
Martinache, Frantz
2013-01-01
This paper introduces a novel wavefront sensing approach that relies on the Fourier analysis of a single conventional direct image. In the high Strehl ratio regime, the relation between the phase measured in the Fourier plane and the wavefront errors in the pupil can be linearized, as was shown in a previous work that introduced the notion of generalized closure-phase, or kernel-phase. The technique, to be usable as presented requires two conditions to be met: (1) the wavefront errors must be kept small (of the order of one radian or less) and (2) the pupil must include some asymmetry, that can be introduced with a mask, for the problem to become solvable. Simulations show that this asymmetric pupil Fourier wavefront sensing or APF-WFS technique can improve the Strehl ratio from 50 to over 90 % in just a few iterations, with excellent photon noise sensitivity properties, suggesting that on-sky close loop APF-WFS is possible with an extreme adaptive optics system.
Turbulence on a Fractal Fourier set
Lanotte, Alessandra Sabina; Biferale, Luca; Malapaka, Shiva Kumar; Toschi, Federico
2015-01-01
The dynamical effects of mode reduction in Fourier space for three dimensional turbulent flows is studied. We present fully resolved numerical simulations of the Navier-Stokes equations with Fourier modes constrained to live on a fractal set of dimension D. The robustness of the energy cascade and vortex stretching mechanisms are tested at changing D, from the standard three dimensional case to a strongly decimated case for D = 2.5, where only about $3\\%$ of the Fourier modes interact. While the direct energy cascade persist, deviations from the Kolmogorov scaling are observed in the kinetic energy spectra. A model in terms of a correction with a linear dependency on the co-dimension of the fractal set, $E(k)\\sim k^{- 5/3 + 3 -D }$, explains the results. At small scales, the intermittent behaviour due to the vorticity production is strongly modified by the fractal decimation, leading to an almost Gaussian statistics already at D ~ 2.98. These effects are connected to a genuine modification in the triad-to-tri...
Stoltman, Joseph P.
1992-01-01
Addresses the importance of maps for instruction in both history and geography. Suggests that maps have gotten recent attention because of the rapid political changes occurring in Europe and the quincentenary of Columbus' voyage. Discusses different map projections and the importance of media and satellite display of real pictures of the world.…
DEFF Research Database (Denmark)
Hu, Hao; Kong, Deming; Palushani, Evarist;
2013-01-01
320 Gb/s Nyquist-OTDM is generated by rectangular filtering with a bandwidth of 320 GHz and received by polarization-insensitive time-domain optical Fourier transformation (TD-OFT) followed by passive filtering. After the time-to-frequency mapping in the TD-OFT, the Nyquist-OTDM is converted...
Zhang, Chengqian; Ye, Zilu; Xue, Peng; Shu, Qingbo; Zhou, Yue; Ji, Yanlong; Fu, Ying; Wang, Jifeng; Yang, Fuquan
2016-09-01
N-Glycosylation of proteins plays a critical role in many biological pathways. Because highly heterogeneous N-glycopeptides are present in biological sources, the enrichment procedure is a crucial step for mass spectrometry analysis. Five enrichment methods, including IP-ZIC-HILIC, hydrazide chemistry, lectin affinity, ZIC-HILIC-FA, and TiO2 affinity were evaluated and compared in the study of mapping N-glycosylation sites in mouse brain. On the basis of our results, the identified N-glycosylation sites were 1891, 1241, 891, 869, and 710 and the FDR values were 3.29, 5.62, 9.54, 9.54, and 20.02%, respectively. Therefore, IP-ZIC-HILIC enrichment method displayed the highest sensitivity and specificity. In this work, we identified a total of 3446 unique glycosylation sites conforming to the N-glycosylation consensus motif (N-X-T/S/C; X ≠ P) with (18)O labeling in 1597 N-glycoproteins. N-glycosylation site information was used to confirm or correct the transmembrane topology of the 57 novel transmembrane N-glycoproteins.
ON SOME APPLICATIONS OF AN INTEGRATED FOURIER SERIES,
The problem of absolute convergence of Fourier series and of uniform convergence factors is considered. A theorem on the estimation of Fourier coefficients under the condition that they are positive is proved. (Author)
The derivative-free Fourier shell identity for photoacoustics.
Baddour, Natalie
2016-01-01
In X-ray tomography, the Fourier slice theorem provides a relationship between the Fourier components of the object being imaged and the measured projection data. The Fourier slice theorem is the basis for X-ray Fourier-based tomographic inversion techniques. A similar relationship, referred to as the 'Fourier shell identity' has been previously derived for photoacoustic applications. However, this identity relates the pressure wavefield data function and its normal derivative measured on an arbitrary enclosing aperture to the three-dimensional Fourier transform of the enclosed object evaluated on a sphere. Since the normal derivative of pressure is not normally measured, the applicability of the formulation is limited in this form. In this paper, alternative derivations of the Fourier shell identity in 1D, 2D polar and 3D spherical polar coordinates are presented. The presented formulations do not require the normal derivative of pressure, thereby lending the formulas directly adaptable for Fourier based absorber reconstructions.
A New Condition for the Uniform Convergence in Fourier Analysis
Institute of Scientific and Technical Information of China (English)
周颂平; 乐瑞君
2004-01-01
@@ In Fourier analysis, since Fourier coefficients are computable and applicable, people have already established many nice results by assuming monotonicty of the coefficients. One famous classical result is done by Chaundy and Jolliffe[1] as follows:
Institute of Scientific and Technical Information of China (English)
Maoteng Li; Lu Gan; Xiaodong Wang; Dianrong Li; Hao Wang; Chunhua Fu; Longjiang Yu
2012-01-01
Rapeseed (Brassica napus) is one of the most important oilseed crops in the world.Improve the oil content is the main object for breeders at present.Oil contents is an important and complex metabolic trait of B.napus,in our previous studies,about 50 materials with oil content over 50％ were obtained.Lots of studies revealed that some factors,such as seed coat,embryo,and endosperm that were all correlated with oil conten,but the studies focus on the proteomic studies on seed oil content were few reported.It is generally considered that the protein content is negatively correlated with oil content,which was further verified with QTL analysis for protein and oil content,Total and oil body protein in mature seeds of two B.napus cultivars with the oil content of 36.49％ and 55.19％ were analsized by using 2-DE technique.154 differentially expressed proteins (DEPs) have been successfully identified by using MALDI-TOF-MS method.The DEPs were mainly involved in Storage protein,Carbohydrate pathway protein,Cell Growth/Division protein,and Defense/Disease protein.Significant difference of cell growth/division protein both detected in total and oil body protein may be correlated to the size of oil body in B.napus with different oil content.The genome alignment analysis showed that among the 378 key genes,24 genes were underlying the N block,36 genes were underlying the U block and 17 genes were belong to the C block,then the 77 genes were used as candidate genes to do in silico mapping in A4 and C3 chromosomes of TN linkage map.For example,compared with the QTL mapping results and candidate genes,6 of the 24 genes underlying N block of A4 chromosome were mapped on the QTL qA4-1 confidence interval,including AT3G56350,AT3G57620,PGL34,AT3G58450,BGLU27 and BGLU30,and 5 genes were mapped on the QTL qOCDA-2 confidence interval,including AT3G52470,ATELP,MDAR1,FBA8 and AT3G53040.
Magneto-sensor circuit efficiency incremented by Fourier-transformation
Talukdar, Abdul Hafiz Ibne
2011-10-01
In this paper detection by recognized intelligent algorithm for different magnetic films with the aid of a cost-effective and simple high efficient circuit are realized. Well-known, magnetic films generate oscillating frequencies when they stay a part of an LC- oscillatory circuit. These frequencies can be further analyzed to gather information about their magnetic properties. For the first time in this work we apply the signal analysis in frequency domain to create the Fourier frequency spectra which was used to detect the sample properties and their recognition. In this paper we have summarized both the simulation and experimental results. © 2011 Elsevier Ltd. All rights reserved.
Fourier-transform Raman spectroscopic study of human hair
Akhtar, W.; Edwards, H. G. M.; Farwell, D. W.; Nutbrown, M.
1997-07-01
Fourier-transform Raman microscopic spectra of normal, untreated and bleached hair fibres are presented. Vibrational assignments are made and differences are ascribed to the production of cysteic acid from cysteine. Changes in conformation associated with the disulphide bond in the keratotic component are noted from the ν(CSSC) vibrational modes at wave numbers near 500 cm -1. Raman spectra of hair root ends have also been investigated with a diminution in cysteine content being observed. Application of the technique to the biomedical investigation of healthy and diseased hair is proposed.
From fractional Fourier transformation to quantum mechanical fractional squeezing transformation
Institute of Scientific and Technical Information of China (English)
吕翠红; 范洪义; 李东韡
2015-01-01
By converting the triangular functions in the integration kernel of the fractional Fourier transformation to the hy-perbolic function, i.e., tanα→tanhα, sinα→sinhα, we find quantum mechanical fractional squeezing transformation (FrST) which satisfies additivity. By virtue of the integration technique within ordered product of operators (IWOP) wederive the unitary operator responsible for the FrST, which is composite and is made of eiπa†a/2 and exp[ iα2 (a2+a†2)]. The FrST may be implemented in combinations of quadratic nonlinear crystals with different phase mismatches.
Dai, G J; Cheng, S H; Hua, Z T; Zhang, M L; Jiang, H B; Feng, Y; Shen, X H; Su, Y A; He, N; Ma, Z B; Ma, X Q; Hou, S G; Wang, Y R
2015-09-08
Genetic improvement is the fundamental basis for improving nitrogen-use efficiency. A better understanding of genetic factors controlling nitrogen uptake and utilization is required for crop genetic improvement. In this study, we identified the quantitative trait loci (QTLs) associated with traits of nitrogen uptake and utilization by using the single-sequence repeat marker method and a recombinant inbred line (RIL) population derived from a super hybrid Xieyou9308. All the traits investigated were inherited quantitatively by continuous variation and showed normal distribution in phenotype with transgressive segregation in the RIL population. Most of the traits were significantly correlated with each other except for nitrogen absorption ability (NAA) with nitrogen harvest index (NHI) and NHI with agricultural nitrogen-absorption efficiency (ANAE). At logarithmic odds value of 2.3, total 13 candidate QTLs, including 4 for NAA, 2 for NHI, 2 for physiological nitrogen-use efficiency, 1 for agricultural nitrogen-use efficiency (ANUE), and 4 for ANAE, were detected and mapped on chromosomes 2, 3, 4, 5, 8, 9, 10, and 12. Significant pleiotropic effect or neighboring expression of QTLs was observed among traits. At position 64.8 cM on chromosome 4 near the marker RM5757, there was a QTL cluster of NAA, ANUE, and ANAE, and at chromosome 5 near the marker RM5968, there was a QTL cluster of NAA and ANUE. The QTL clusters might provide partial explanation and genetic mechanism for the observed correlations between nitrogen uptake and utilization efficiency traits and might form a basis for future breeding programs.
Research progress on discretization of fractional Fourier transform
Institute of Scientific and Technical Information of China (English)
TAO Ran; ZHANG Feng; WANG Yue
2008-01-01
As the fractional Fourier transform has attracted a considerable amount of atten-tion in the area of optics and signal processing,the discretization of the fractional Fourier transform becomes vital for the application of the fractional Fourier trans-form.Since the discretization of the fractional Fourier transform cannot be obtained by directly sampling in time domain and the fractional Fourier domain,the discre-tization of the fractional Fourier transform has been investigated recently.A sum-mary of discretizations of the fractional Fourier transform developed in the last nearly two decades is presented in this paper.The discretizations include sampling in the fractional Fourier domain,discrete-time fractional Fourier transform,frac-tional Fourier series,discrete fractional Fourier transform (including 3 main types:linear combination-type;sampling-type;and eigen decomposition-type),and other discrete fractional signal transform.It is hoped to offer a doorstep for the readers who are interested in the fractional Fourier transform.
Fourier Transforms Simplified: Computing an Infrared Spectrum from an Interferogram
Hanley, Quentin S.
2012-01-01
Fourier transforms are used widely in chemistry and allied sciences. Examples include infrared, nuclear magnetic resonance, and mass spectroscopies. A thorough understanding of Fourier methods assists the understanding of microscopy, X-ray diffraction, and diffraction gratings. The theory of Fourier transforms has been presented in this "Journal",…
Some Applications of Fourier's Great Discovery for Beginners
Kraftmakher, Yaakov
2012-01-01
Nearly two centuries ago, Fourier discovered that any periodic function of period T can be presented as a sum of sine waveforms of frequencies equal to an integer times the fundamental frequency [omega] = 2[pi]/T (Fourier's series). It is impossible to overestimate the importance of Fourier's discovery, and all physics or engineering students…
Fourier and fractal analysis of cytoskeletal morphology altered by xenobiotics
Crosta, Giovanni F.; Urani, Chiara; Fumarola, Laura
2003-06-01
The cytoskeletal microtubules (MTs) of rat hepatocytes treated by Benomyl (a fungicide) were imaged by means of immunofluorescent staining and optical microscopy. Images of untreated, or control (C), and of treated (T) cells were processed both by fractal and Fourier analysis. The C-MTs had contour fractal dimensions higher (>= 1.4) than those of T-MTs (enhancement," which corresponds to the application of a (pseudo)differential operator to the image. Enhanced spectra were interpolated by a polynomial, q, of degree 39, from which morphological descriptors were extracted. Descriptors from Fourier analysis made image classification possible. Principal components analysis was applied to the descriptors. In the plane of the first two components, {z1,z2}, the minimum spanning tree was drawn. Images of T-MTs formed a single cluster, whereas images of C-MTs formed two clusters, C1 and C2. The component z1 correlated positively with the local maxima and minima of q, which reflected differences between T and C in power spectral density in the 1 to 2000 cycles/mm spatial frequency band. The difference between C1 and C2 was ascribed to anisotropy of the MT bundles. The implemented image classifier is capable of telling differences in cytoskeletal organization. As a consequence the method can become a tool for testing cytotoxicity and for extracting quantitative information about intracellular alterations of various origin.
Gradient-based image recovery methods from incomplete Fourier measurements.
Patel, Vishal M; Maleh, Ray; Gilbert, Anna C; Chellappa, Rama
2012-01-01
A major problem in imaging applications such as magnetic resonance imaging and synthetic aperture radar is the task of trying to reconstruct an image with the smallest possible set of Fourier samples, every single one of which has a potential time and/or power cost. The theory of compressive sensing (CS) points to ways of exploiting inherent sparsity in such images in order to achieve accurate recovery using sub-Nyquist sampling schemes. Traditional CS approaches to this problem consist of solving total-variation (TV) minimization programs with Fourier measurement constraints or other variations thereof. This paper takes a different approach. Since the horizontal and vertical differences of a medical image are each more sparse or compressible than the corresponding TV image, CS methods will be more successful in recovering these differences individually. We develop an algorithm called GradientRec that uses a CS algorithm to recover the horizontal and vertical gradients and then estimates the original image from these gradients. We present two methods of solving the latter inverse problem, i.e., one based on least-square optimization and the other based on a generalized Poisson solver. After a thorough derivation of our complete algorithm, we present the results of various experiments that compare the effectiveness of the proposed method against other leading methods.
Integrated optics in an electrically scanned imaging Fourier transform spectrometer
Breckinridge, James B. (Inventor); Ocallaghan, Fred G. (Inventor)
1982-01-01
An efficient, lightweight and stable, Fourier transform spectrometer was developed. The mechanical slide mechanism needed to create a path difference was eliminated by the use of retro-reflecting mirrors in a monolithic interferometer assembly in which the mirrors are not at 90 degrees to the propagation vector of the radiation, but rather at a small angle. The resulting plane wave fronts create a double-sided inteferogram of the source irradiance distribution which is detected by a charge-coupled device image sensor array. The position of each CCD pixel in the array is an indication of the path difference between the two retro-reflecting mirrors in the monolithic optical structure. The Fourier transform of the signals generated by the image sensor provide the spectral irradiance distribution of the source. For imaging, the interferometer assembly scans the source of irradiation by moving the entire instrument, such as would occur if it was fixedly mounted to a moving platform, i.e., a spacecraft. During scanning, the entrace slot to the monolithic optical structure sends different pixels to corresponding interferograms detected by adjacent columns of pixels of the image sensor.
[Fourier Transform Spectrometer Based on Rotating Parallel-Mirror-Pair].
Zhao, Bao-wei; Xiangli, Bin; Cai, Qi-sheng; Lü, Qun-bo; Zhou, Jin-song
2015-11-01
In the temporally-modulated Fourier transform spectroscopy, the translational moving mirror is difficult to drive accurately, causing tilt and shear problems. While, a rotational moving mirror can solve these problems. A rotary Fourier transform spectrometer is recommanded in this paper. Its principle is analyzed and the optical path difference is deduced. Also, the constrains for engineering realization are presented. This spectrometer consists of one beamsplitter, two fixed mirrors, one rotating parallel mirror pair, a collimating lens, a collecting lens, and one detector. From it's principle, this spectrometer show a simple structure, and it is assembled and adjustmented easily because the two split light are interfered with each other after reflected through the same plane mirror; By calculating the expression of it's optical path difference, the spectrometer is easy to realize large optical path difference, meaning high spectral resolution; Through analyzing it's engineering design constraints and computer simulation, it is known that the spectrometer should get the high resolution sample by high-speed spinning motor, so it is easy to achieve precise motion control, good stability, fast measurement speed.
Directory of Open Access Journals (Sweden)
S. Catalan
2016-01-01
Full Text Available Purpose. To compare the characteristics of asymmetric keratoconic eyes and normal eyes by Fourier domain optical coherence tomography (OCT corneal mapping. Methods. Retrospective corneal and epithelial thickness OCT data for 74 patients were compared in three groups of eyes: keratoconic (n=22 and normal fellow eyes (n=22 in patients with asymmetric keratoconus and normal eyes (n=104 in healthy subjects. Areas under the curve (AUC of receiver operator characteristic (ROC curves for each variable were compared across groups to indicate their discrimination capacity. Results. Three variables were found to differ significantly between fellow eyes and normal eyes (all p<0.05: minimum corneal thickness, thinnest corneal point, and central corneal thickness. These variables combined showed a high discrimination power to differentiate fellow eyes from normal eyes indicated by an AUC of 0.840 (95% CI: 0.762–0.918. Conclusions. Our findings indicate that topographically normal fellow eyes in patients with very asymmetric keratoconus differ from the eyes of healthy individuals in terms of their corneal epithelial and pachymetry maps. This type of information could be useful for an early diagnosis of keratoconus in topographically normal eyes.
Lu, Bin; Harley, Ronald G.; Du, Liang; Yang, Yi; Sharma, Santosh K.; Zambare, Prachi; Madane, Mayura A.
2014-06-17
A method identifies electric load types of a plurality of different electric loads. The method includes providing a self-organizing map load feature database of a plurality of different electric load types and a plurality of neurons, each of the load types corresponding to a number of the neurons; employing a weight vector for each of the neurons; sensing a voltage signal and a current signal for each of the loads; determining a load feature vector including at least four different load features from the sensed voltage signal and the sensed current signal for a corresponding one of the loads; and identifying by a processor one of the load types by relating the load feature vector to the neurons of the database by identifying the weight vector of one of the neurons corresponding to the one of the load types that is a minimal distance to the load feature vector.
Determination of the Optimal Fourier Number on the Dynamic Thermal Transmission
Bruzgevičius, P.; Burlingis, A.; Norvaišienė, R.
2016-12-01
This article represents the result of experimental research on transient heat transfer in a multilayered (heterogeneous) wall. Our non-steady thermal transmission simulation is based on a finite-difference calculation method. The value of a Fourier number shows the similarity of thermal variation in conditional layers of an enclosure. Most scientists recommend using no more than a value of 0.5 for the Fourier number when performing calculations on dynamic (transient) heat transfer. The value of the Fourier number is determined in order to acquire reliable calculation results with optimal accuracy. To compare the results of simulation with experimental research, a transient heat transfer calculation spreadsheet was created. Our research has shown that a Fourier number of around 0.5 or even 0.32 is not sufficient ({≈ }17 % of oscillation amplitude) for calculations of transient heat transfer in a multilayered wall. The least distorted calculation results were obtained when the multilayered enclosure was divided into conditional layers with almost equal Fourier number values and when the value of the Fourier number was around 1/6, i.e., approximately 0.17. Statistical deviation analysis using the Statistical Analysis System was applied to assess the accuracy of the spreadsheet calculation and was developed on the basis of our established methodology. The mean and median absolute error as well as their confidence intervals has been estimated by the two methods with optimal accuracy ({F}_{oMDF}= 0.177 and F_{oEPS}= 0.1633 values).
Mapping Mutations on Phylogenies
DEFF Research Database (Denmark)
Nielsen, Rasmus
2005-01-01
This chapter provides a short review of recent methodologies developed for mapping mutations on phylogenies. Mapping of mutations, or character changes in general, using the maximum parsimony principle has been one of the most powerful tools in phylogenetics, and it has been used in a variety...... of different applications, for example, in the detection of correlated evolution and to identify selection acting on DNA sequences. However, many uses of parsimony mappings have been criticized because they focus on only one of many possible mappings and/or because they do not incorporate statistical...... uncertainty in the mapping. Recently developed probabilistic methods can incorporate statistical uncertainty in the character mappings. In these methods, focus is on a probability distribution of mutational mappings instead of a single estimate of the mutational mapping....
Energy Technology Data Exchange (ETDEWEB)
Jonsson, C.; Kimiaei, S.; Larsson, S.A. [Section of Nuclear Medicine, Department of Hospital Physics, Karolinska Hospital and Department of Medical Radiation Physics, Stockholm University, Stockholm (Sweden); Pagani, M. [Institute of Experimental Medicine, CNR, Rome (Italy); Ingvar, M. [Section of Cognitive Neurophysiology, Karolinska Hospital, Stockholm (Sweden); Thurfjell, L. [Center of Image Analysis, Uppsala University, Uppsala (Sweden); Jacobsson, H. [Department of Diagnostic Radiology, Karolinska Hospital, Stockholm (Sweden)
1998-02-01
Single-photon emission tomography (SPET), using technetium-99m hexamethylpropylene amine oxime, and positron emission tomography (PET), using oxygen-15 butanol were compared in six healthy male volunteers with regard to the mapping of resting state regional cerebral blood flow (rCBF). A computerized brain atlas was utilized for 3D regional analyses and comparison of 64 selected and normalized volumes of interest (VOIs). The normalized mean rCBF values in SPET, as compared to PET, were higher in most of the Brodmann areas in the frontal and parietal lobes (4.8% and 8.7% respectively). The average differences were small in the temporal (2.3%) and occipital (1.1%) lobes. PET values were clearly higher in small VOIs like the thalamus (12.3%), hippocampus (12.3%) and basal ganglia (9.9%). A resolution phantom study showed that the in-plane SPET/PET system resolution was 11.0/7.5 mm. In conclusion, SPET and PET data demonstrated a fairly good agreement despite the superior spatial resolution of PET. The differences between SPET and PET rCBF are mainly due to physiological and physical factors, the data processing, normalization and co-registration methods. In order to further improve mapping of rCBF with SPET it is imperative not only to improve the spatial resolution but also to apply accurate correction techniques for scatter, attenuation and non-linear extraction. (orig.) With 6 figs., 3 tabs., 23 refs.
Indian Academy of Sciences (India)
Zhuokun Li; Tao Peng; Quangang Xie; Shuxiao Han; Jichun Tian
2010-12-01
Effective tiller number is one of the most important traits for wheat (Triticum aestivum L.) yield, but the inheritance of tillering is poorly understood. A set of 168 doubled haploid (DH) lines derivatives of a cross between two winter wheat cultivars (Huapei 3 and Yumai 57), and an immortalized F2 (IF2) population generated by randomly permutated intermating of these DHs were investigated, and QTLs of tillering related to the maximum tillering of pre-winter (MTW), maximum tillering in spring (MTS), and effective tillering in harvest (ETH) were mapped. Phenotypic data were collected for the two populations from two different environments. Using inclusive composite interval mapping (ICIM), a total of 9 and 18 significant QTL were detected across environments for tillering in the DH and IF2 populations, respectively. Four QTLs were common between two populations. A major QTL located on the 5D chromosome with the allele originating from Yumai 57 was detected and increased 1.92 and 3.55 tillers in MTW and MTS, respectively. QTLs (QMts6D, QEth6D) having a neighbouring marker interval at Xswes679.1 and Xcfa2129 on chromosome 6D was detected in MTS and ETH. These results provide a better understanding of the genetic factors for selectively expressing the control of tiller number in different growth stages and facilitate marker-assisted selection strategy in breeding.
Adaptive Fourier Decomposition Based Time-Frequency Analysis
Institute of Scientific and Technical Information of China (English)
Li-Ming Zhang
2014-01-01
The attempt to represent a signal simultaneously in time and frequency domains is full of challenges. The recently proposed adaptive Fourier decomposition (AFD) offers a practical approach to solve this problem. This paper presents the principles of the AFD based time-frequency analysis in three aspects: instantaneous frequency analysis, frequency spectrum analysis, and the spectrogram analysis. An experiment is conducted and compared with the Fourier transform in convergence rate and short-time Fourier transform in time-frequency distribution. The proposed approach performs better than both the Fourier transform and short-time Fourier transform.
Deploying Fourier Coefficients to Unravel Soybean Canopy Diversity.
Jubery, Talukder Z; Shook, Johnathon; Parmley, Kyle; Zhang, Jiaoping; Naik, Hsiang S; Higgins, Race; Sarkar, Soumik; Singh, Arti; Singh, Asheesh K; Ganapathysubramanian, Baskar
2016-01-01
Soybean canopy outline is an important trait used to understand light interception ability, canopy closure rates, row spacing response, which in turn affects crop growth and yield, and directly impacts weed species germination and emergence. In this manuscript, we utilize a methodology that constructs geometric measures of the soybean canopy outline from digital images of canopies, allowing visualization of the genetic diversity as well as a rigorous quantification of shape parameters. Our choice of data analysis approach is partially dictated by the need to efficiently store and analyze large datasets, especially in the context of planned high-throughput phenotyping experiments to capture time evolution of canopy outline which will produce very large datasets. Using the Elliptical Fourier Transformation (EFT) and Fourier Descriptors (EFD), canopy outlines of 446 soybean plant introduction (PI) lines from 25 different countries exhibiting a wide variety of maturity, seed weight, and stem termination were investigated in a field experiment planted as a randomized complete block design with up to four replications. Canopy outlines were extracted from digital images, and subsequently chain coded, and expanded into a shape spectrum by obtaining the Fourier coefficients/descriptors. These coefficients successfully reconstruct the canopy outline, and were used to measure traditional morphometric traits. Highest phenotypic diversity was observed for roundness, while solidity showed the lowest diversity across all countries. Some PI lines had extraordinary shape diversity in solidity. For interpretation and visualization of the complexity in shape, Principal Component Analysis (PCA) was performed on the EFD. PI lines were grouped in terms of origins, maturity index, seed weight, and stem termination index. No significant pattern or similarity was observed among the groups; although interestingly when genetic marker data was used for the PCA, patterns similar to canopy
Deploying Fourier Coefficients to Unravel Soybean Canopy Diversity
Jubery, Talukder Z.; Shook, Johnathon; Parmley, Kyle; Zhang, Jiaoping; Naik, Hsiang S.; Higgins, Race; Sarkar, Soumik; Singh, Arti; Singh, Asheesh K.; Ganapathysubramanian, Baskar
2017-01-01
Soybean canopy outline is an important trait used to understand light interception ability, canopy closure rates, row spacing response, which in turn affects crop growth and yield, and directly impacts weed species germination and emergence. In this manuscript, we utilize a methodology that constructs geometric measures of the soybean canopy outline from digital images of canopies, allowing visualization of the genetic diversity as well as a rigorous quantification of shape parameters. Our choice of data analysis approach is partially dictated by the need to efficiently store and analyze large datasets, especially in the context of planned high-throughput phenotyping experiments to capture time evolution of canopy outline which will produce very large datasets. Using the Elliptical Fourier Transformation (EFT) and Fourier Descriptors (EFD), canopy outlines of 446 soybean plant introduction (PI) lines from 25 different countries exhibiting a wide variety of maturity, seed weight, and stem termination were investigated in a field experiment planted as a randomized complete block design with up to four replications. Canopy outlines were extracted from digital images, and subsequently chain coded, and expanded into a shape spectrum by obtaining the Fourier coefficients/descriptors. These coefficients successfully reconstruct the canopy outline, and were used to measure traditional morphometric traits. Highest phenotypic diversity was observed for roundness, while solidity showed the lowest diversity across all countries. Some PI lines had extraordinary shape diversity in solidity. For interpretation and visualization of the complexity in shape, Principal Component Analysis (PCA) was performed on the EFD. PI lines were grouped in terms of origins, maturity index, seed weight, and stem termination index. No significant pattern or similarity was observed among the groups; although interestingly when genetic marker data was used for the PCA, patterns similar to canopy
Meso(topoclimatic maps and mapping
Directory of Open Access Journals (Sweden)
Ladislav Plánka
2007-06-01
Full Text Available The atmospheric characteristics can be studied from many points of view, most often we talk about time and spatial standpoint. Application of time standpoint leads either to different kinds of the synoptic and prognostic maps production, which presents actual state of atmosphere in short time section in the past or in the near future or to the climatic maps production which presents longterm weather regime. Spatial standpoint then differs map works according to natural phenomenon proportions, whereas the scale of their graphic presentation can be different. It depends on production purpose of each work.In the paper there are analysed methods of mapping and climatic maps production, which display longterm regime of chosen atmospheric features. These athmosphere features are formed in interaction with land surface and also have direct influence on people and their activities throughout the country. At the same time they’re influenced by anthropogenic intervention to the landscape.
Efficient Scheme for Optimizing Quantum Fourier Circuits
Institute of Scientific and Technical Information of China (English)
JIANG Min; ZHANG Zengke; Tzyh-Jong Tarn
2008-01-01
In quantum circuits, importing of additional qubits can reduce the operation time and prevent de-coherence induced by the environment. However, excessive qubits may make the quantum system vulner-able. This paper describes how to relax existing qubits without additional qubits to significantly reduce the operation time of the quantum Fourier circuit compared to a circuit without optimization. The results indicate that this scheme makes full use of the qubits relaxation. The concepts can be applied to improve similar quantum circuits and guide the physical implementations of quantum algorithms or devices.
Fourier transforms in the complex domain
Wiener, N
1934-01-01
With the aid of Fourier-Mellin transforms as a tool in analysis, the authors were able to attack such diverse analytic questions as those of quasi-analytic functions, Mercer's theorem on summability, Milne's integral equation of radiative equilibrium, the theorems of MÃ¼nz and SzÃ¡sz concerning the closure of sets of powers of an argument, Titchmarsh's theory of entire functions of semi-exponential type with real negative zeros, trigonometric interpolation and developments in polynomials of the form \\sum^N_1A_ne^{i\\lambda_nx}, lacunary series, generalized harmonic analysis in the complex domain,
Los tres teoremas: Fourier - Nyquist - Shannon
Semeria, Marcelo
2015-01-01
Las telecomunicaciones se basan firmemente en un conjunto de teoremas fundamentales. Teorema de Fourier, que permite tratar cualquier forma de onda como si fuese una sumatoria de ondas senos y cosenos. Teorema de muestreo de Nyquist, mediante el cual un único canal puede llevar más de una señal. Teorema de Shannon, con el que se relaciona el ruido de un canal y su ancho de banda con la máxima capacidad teórica del canal empleado. A partir de los toremas nombrados y del conocimiento de los par...
Zlobina, M V; Steblyanko, Yu Yu; Shklyaeva, M A; Kharchenko, V V; Salova, A V; Kornilova, E S
2015-01-01
To confirm the hypothesis about the involvement of EGF-stimulated MAP-kinase ERK1/2 in the regulation of microtubule (MT) system, the influence of two widely used ERK1/2 inhibitors, U0126 and PD98059, on the organization of tubulin cytoskeleton in interphase HeLa cells during EGF receptor endocytosis has been investigated. We have found that addition of U0126 or PD98059 to not-stimulated with EGF ells for 30 min has no effect on radially organized MT system. However, in the case of U0126 addition before EGF endocytosis stimulation, the number of MT per cell decreased within 15 min after such stimulation and was followed by complete MT depolymerization by 60-90 min. Stimulation of EGF endocytosis in the presence of PD98059 resulted only in insignificant depolymerization of MT and it could be detected mainly from their minus-ends. At the same time, MT regions close to plasma membrane became stabilized, which was proved by increase in tubulin acetylation level. This situation was characteristic for all period of the experiment. It has been also found that the inhibitors affect endocytosis dynamics of EGF-receptor complexes. Quantitative analysis demonstrated that the stimulation of endocytosis in the presence of U0126 generated a greater number of endosomes compared to control cells, and their number did not change significantly during the experiment. All these endosomes were localized peripherally. Effect of PD98059 resulted in the formation of lower number of endosomes that in control, but they demonstrated very slow clusterization despite the presence of some intact MT. Both inhibitors decreased EGFR colocolization with early endosomal marker EEA1, which indicated a delay in endosome fusions and maturation. The inhibitors were also shown to affect differently phospho-ERK 1 and 2 forms: U0126 completely inhibited phospho-ERK1 and 2, white, in the presence of PD98059, the two ERK forms demonstrated sharp transient activation in 15 min after stimulation, but only
Energy Technology Data Exchange (ETDEWEB)
Apprich, S.; Mamisch, T.C. [University of Bern, Department of Orthopedic Surgery, Bern (Switzerland); Medical University of Vienna, Department of Radiology, MR Centre of Excellence, Vienna (Austria); Welsch, G.H. [Medical University of Vienna, Department of Radiology, MR Centre of Excellence, Vienna (Austria); University of Erlangen-Nuernberg, Department of Trauma Surgery, Erlangen (Germany); Bonel, H. [University of Bern, Department of Radiology, Bern (Switzerland); Siebenrock, K.A.; Dudda, M. [University of Bern, Department of Orthopedic Surgery, Bern (Switzerland); Kim, Y.J. [Harvard Medical School, Department of Orthopaedic Surgery, Children' s Hospital, Boston, MA (United States); Trattnig, S. [Medical University of Vienna, Department of Radiology, MR Centre of Excellence, Vienna (Austria)
2012-08-15
To define the feasibility of utilizing T2* mapping for assessment of early cartilage degeneration prior to surgery in patients with symptomatic femoroacetabular impingement (FAI), we compared cartilage of the hip joint in patients with FAI and healthy volunteers using T2* mapping at 3.0 Tesla over time. Twenty-two patients (13 females and 9 males; mean age 28.1 years) with clinical signs of FAI and Toennis grade {<=} 1 on anterior-posterior x-ray and 35 healthy age-matched volunteers were examined at a 3 T MRI using a flexible body coil. T2* maps were calculated from sagittal- and coronal-oriented gradient-multi-echo sequences using six echoes (TR 125, TE 4.41/8.49/12.57/16.65/20.73/24.81, scan time 4.02 min), both measured at beginning and end of the scan (45 min time span between measurements). Region of interest analysis was manually performed on four consecutive slices for superior and anterior cartilage. Mean T2* values were compared among patients and volunteers, as well as over time using analysis of variance and Student's t-test. Whereas quantitative T2* values for the first measurement did not reveal significant differences between patients and volunteers, either for sagittal (p = 0.644) or coronal images (p = 0.987), at the first measurement, a highly significant difference (p {<=} 0.004) was found for both measurements with time after unloading of the joint. Over time we found decreasing mean T2* values for patients, in contrast to increasing mean T2* relaxation times in volunteers. The study proved the feasibility of utilizing T2* mapping for assessment of early cartilage degeneration in the hip joint in FAI patients at 3 Tesla to predict possible success of joint-preserving surgery. However, we suggest the time point for measuring T2* as an MR biomarker for cartilage and the changes in T2* over time to be of crucial importance for designing an MR protocol in patients with FAI. (orig.)
Observation of supersonic turbulent wakes by laser Fourier densitometry (LFD)
Gresillon, D.; Cabrit, B.; Bonnet, J. P.; Gemaux, G.
Laser Fourier Densitometry (LFD) is an optical method appropriate for turbulent flow observations. It uses the collective scattering of coherent light, by optical index inhomogeneities. The principle of this method is described. It provides a signal proportional to the space Fourier transform amplitude of index distribution for a wavevector k defined by the optical arrangement. For a fluctuating flow, this amplitude is a function of time, and its frequency spectrum can be observed. The spectrum shape provides elementary parameters of the flow, such as: direction, modulus of mean velocity, and local temperature. It also provides means to distinguish different kinds of density fluctuations, such as convected inhomogeneities, or acoustic waves. The respective level of these different fluctuations types can be measured, as well as their power scale-law and absolute level. A compact optical bench has been set on a nozzle flow. The results of measurements performed in two supersonic wake configurations are presented, for Mach numbers of 1.6 and 4.2. These include density fluctuation spectra in supersonic flows, acoustic waves, variations with position, and comparison with hot wire anemometry.
The Peak Pairs algorithm for strain mapping from HRTEM images
Energy Technology Data Exchange (ETDEWEB)
Galindo, Pedro L. [Departamento de Lenguajes y Sistemas Informaticos, CASEM, Universidad de Cadiz, Pol. Rio San Pedro s/n. 11510, Puerto Real, Cadiz (Spain)], E-mail: pedro.galindo@uca.es; Kret, Slawomir [Institute of Physics, PAS, AL. Lotnikow 32/46, 02-668 Warsaw (Poland); Sanchez, Ana M. [Departamento de Ciencia de los Materiales e Ing. Metalurgica y Q. Inorganica, Facultad de Ciencias, Universidad de Cadiz, Pol. Rio San Pedro s/n. 11510, Puerto Real, Cadiz (Spain); Laval, Jean-Yves [Laboratoire de Physique du Solide, UPR5 CNRS-ESPCI, Paris (France); Yanez, Andres; Pizarro, Joaquin; Guerrero, Elisa [Departamento de Lenguajes y Sistemas Informaticos, CASEM, Universidad de Cadiz, Pol. Rio San Pedro s/n. 11510, Puerto Real, Cadiz (Spain); Ben, Teresa; Molina, Sergio I. [Departamento de Ciencia de los Materiales e Ing. Metalurgica y Q. Inorganica, Facultad de Ciencias, Universidad de Cadiz, Pol. Rio San Pedro s/n. 11510, Puerto Real, Cadiz (Spain)
2007-11-15
Strain mapping is defined as a numerical image-processing technique that measures the local shifts of image details around a crystal defect with respect to the ideal, defect-free, positions in the bulk. Algorithms to map elastic strains from high-resolution transmission electron microscopy (HRTEM) images may be classified into two categories: those based on the detection of peaks of intensity in real space and the Geometric Phase approach, calculated in Fourier space. In this paper, we discuss both categories and propose an alternative real space algorithm (Peak Pairs) based on the detection of pairs of intensity maxima in an affine transformed space dependent on the reference area. In spite of the fact that it is a real space approach, the Peak Pairs algorithm exhibits good behaviour at heavily distorted defect cores, e.g. interfaces and dislocations. Quantitative results are reported from experiments to determine local strain in different types of semiconductor heterostructures.
Directory of Open Access Journals (Sweden)
Chiu Shen
2005-01-01
Full Text Available A relatively unknown yet powerful technique, the so-called fractional Fourier transform (FrFT, is applied to SAR along-track interferometry (SAR-ATI in order to estimate moving target parameters. By mapping a target's signal onto a fractional Fourier axis, the FrFT permits a constant-velocity target to be focused in the fractional Fourier domain thereby affording orders of magnitude improvement in SCR. Moving target velocity and position parameters are derived and expressed in terms of an optimum fractional angle and a measured fractional Fourier position , allowing a target to be accurately repositioned and its velocity components computed without actually forming an SAR image. The new estimation algorithm is compared with the matched filter bank approach, showing some of the advantages of the FrFT method. The proposed technique is applied to the data acquired by the two-aperture CV580 airborne radar system configured in its along-track mode. Results show that the method is effective in estimating target velocity and position parameters.
Kemper, Sebastian; Patel, Mitul K.; Errey, James C.; Davis, Benjamin G.; Jones, Jonathan A.; Claridge, Timothy D. W.
2010-03-01
In the application of saturation transfer difference (STD) experiments to the study of protein-ligand interactions, the relaxation of the ligand is one of the major influences on the experimentally observed STD factors, making interpretation of these difficult when attempting to define a group epitope map (GEM). In this paper, we describe a simplification of the relaxation matrix that may be applied under specified experimental conditions, which results in a simplified equation reflecting the directly transferred magnetisation rate from the protein onto the ligand, defined as the summation over the whole protein of the protein-ligand cross-relaxation multiplied by with the fractional saturation of the protein protons. In this, the relaxation of the ligand is accounted for implicitly by inclusion of the experimentally determined longitudinal relaxation rates. The conditions under which this "group epitope mapping considering relaxation of the ligand" (GEM-CRL) can be applied were tested on a theoretical model system, which demonstrated only minor deviations from that predicted by the full relaxation matrix calculations (CORCEMA-ST) [7]. Furthermore, CORCEMA-ST calculations of two protein-saccharide complexes (Jacalin and TreR) with known crystal structures were performed and compared with experimental GEM-CRL data. It could be shown that the GEM-CRL methodology is superior to the classical group epitope mapping approach currently used for defining ligand-protein proximities. GEM-CRL is also useful for the interpretation of CORCEMA-ST results, because the transferred magnetisation rate provides an additional parameter for the comparison between measured and calculated values. The independence of this parameter from the above mentioned factors can thereby enhance the value of CORCEMA-ST calculations.
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
A new method of resolving overlapped peak, Fourier self-deconvolution (FSD) using approximation CN obtained from frequency domain wavelet transform of F(ω) yielded by Fourier transform of overlapped peak signals f(t) as the linear function, was presented in this paper.Compared with classical FSD, the new method exhibits excellent resolution for different overlapped peak signals such as HPLC signals, and have some characteristics such as an extensive applicability for any overlapped peak shape signals and a simple operation because of no selection procedure of the linear function. Its excellent resolution for those different overlapped peak signals is mainly because F(ω) obtained from Fourier transform of f(t) and CN obtained from wavelet transform of F(ω) have the similar linearity and peak width. The effect of those fake peaks can be eliminated by the algorithm proposed by authors. This method has good potential in the process of different overlapped peak signals.
A COMPARISION BETWEEN WALSHHADAMARD AND FOURIER ANALYSIS OF THE EEG SIGNALS
Directory of Open Access Journals (Sweden)
AZADEH BASTANI
2011-07-01
Full Text Available Electroencephalography (EEG is one of the most important diagnostic tools in neurology and getting information about the brain activity. One of this is real-time and quantified study of brain activities to measure the stage of unconsciousness due to injection drug in operation room. EEG signal is a stochastic non-stationary process. Regarding the complexity of brain activities on EEG process, studies are based on time-frequency features analysis of EEG signals. Most of these analyses are based on Fourier Transform and the most significant are classic and parametric estimation of power spectral density analysis. Considering the origins of EEG in the brain, it seems that Walsh-Hadamard transform is more effective than Fourier transform in feature extracting of these signals. In this paper the efficiency of Walsh-Hadamard transform features were comparedwith extracted features from Fourier transform. To evaluate these features, three different classifying algorithms are used. The results showed that Walsh-Hadamard extracted features are suitable tools for recognition of difference between different stages of EEG signals. Simplicity and speed of Walsh-Hadamard transform calculation made it preferable then Fourier spectral features. The fast Walsh-Hadamard transform is an attractive alternative to the fast fourier transform because it is computationally more efficient, and thus faster to perform on a digital computer.
The Fourier transform of tubular densities
Prior, C B
2012-05-18
We consider the Fourier transform of tubular volume densities, with arbitrary axial geometry and (possibly) twisted internal structure. This density can be used to represent, among others, magnetic flux or the electron density of biopolymer molecules. We consider tubes of both finite radii and unrestricted radius. When there is overlap of the tube structure the net density is calculated using the super-position principle. The Fourier transform of this density is composed of two expressions, one for which the radius of the tube is less than the curvature of the axis and one for which the radius is greater (which must have density overlap). This expression can accommodate an asymmetric density distribution and a tube structure which has non-uniform twisting. In addition we give several simpler expressions for isotropic densities, densities of finite radius, densities which decay at a rate sufficient to minimize local overlap and finally individual surfaces of the tube manifold. These simplified cases can often be expressed as arclength integrals and can be evaluated using a system of first-order ODEs. © 2012 IOP Publishing Ltd.
Fourier series with the continuous primitive integral
Talvila, Erik
2011-01-01
Fourier series are considered on the one-dimensional torus for the space of periodic distributions that are the distributional derivative of a continuous function. This space of distributions is denoted $\\alext$ and is a Banach space under the Alexiewicz norm, $\\|f\\|_\\T =\\sup_{|I|\\leq 2\\pi}|\\int_I f|$, the supremum being taken over intervals of length not exceeding $2\\pi$. It contains the periodic functions integrable in the sense of Lebesgue and Henstock-Kurzweil. Many of the properties of $L^1$ Fourier series continue to hold for this larger space, with the $L^1$ norm replaced by the Alexiewicz norm. The Riemann-Lebesgue lemma takes the form $\\fhat(n)=o(n)$ as $|n|\\to\\infty$. The convolution is defined for $f\\in\\alext$ and $g$ a periodic function of bounded variation. The convolution commutes with translations and is commutative and associative. There is the estimate $\\|f\\ast g\\|_\\infty\\leq \\|f\\|_\\T \\|g\\|_\\bv$. For $g\\in L^1(\\T)$, $\\|f\\ast g\\|_\\T\\leq \\|f\\|_\\T \\|g\\|_1$. As well, $\\widehat{f\\ast g}(n)=\\fhatn ...
JCE Online: Interactive Fourier Transform Activities
Zielinski, Theresa Julia
1999-02-01
In our vigorous teaching of concepts and skills to students, we may cover (hide) more than we uncover, obscuring significant relationships between mathematical models and their associated chemical concepts with excessive mathematical derivations. To set the record straight, I find that mathematical treatments of physical phenomena are beautiful and elegant. Students should know from where the equations and simplifications leading to them arise. They should know the limits of the equations in order to use them properly. However, this can be the Siren's song. For example, the mathematical representation of the Fourier transform and its significance as presented in most texts are too brief to convey understanding to the typical undergraduate student. Furthermore, a few hand calculations would not permit deeper probing of the method and its intimate link to spectroscopy. The Fourier transform is a very good example of how symbolic equation software can help to uncover the science by making the mathematical manipulations easier and the mathematical concepts more accessible. The complete articles and Mathcad documents described in these abstracts are available from JCE Online at http://jchemed.chem.wisc.edu/JCEWWW/Columns/McadInChem/.
Fourier transform inequalities for phylogenetic trees.
Matsen, Frederick A
2009-01-01
Phylogenetic invariants are not the only constraints on site-pattern frequency vectors for phylogenetic trees. A mutation matrix, by its definition, is the exponential of a matrix with non-negative off-diagonal entries; this positivity requirement implies non-trivial constraints on the site-pattern frequency vectors. We call these additional constraints "edge-parameter inequalities". In this paper, we first motivate the edge-parameter inequalities by considering a pathological site-pattern frequency vector corresponding to a quartet tree with a negative internal edge. This site-pattern frequency vector nevertheless satisfies all of the constraints described up to now in the literature. We next describe two complete sets of edge-parameter inequalities for the group-based models; these constraints are square-free monomial inequalities in the Fourier transformed coordinates. These inequalities, along with the phylogenetic invariants, form a complete description of the set of site-pattern frequency vectors corresponding to bona fide trees. Said in mathematical language, this paper explicitly presents two finite lists of inequalities in Fourier coordinates of the form "monomial < or = 1", each list characterizing the phylogenetically relevant semialgebraic subsets of the phylogenetic varieties.
Efficient single pixel imaging in Fourier space
Bian, Liheng; Suo, Jinli; Hu, Xuemei; Chen, Feng; Dai, Qionghai
2016-08-01
Single pixel imaging (SPI) is a novel technique capturing 2D images using a bucket detector with a high signal-to-noise ratio, wide spectrum range and low cost. Conventional SPI projects random illumination patterns to randomly and uniformly sample the entire scene’s information. Determined by Nyquist sampling theory, SPI needs either numerous projections or high computation cost to reconstruct the target scene, especially for high-resolution cases. To address this issue, we propose an efficient single pixel imaging technique (eSPI), which instead projects sinusoidal patterns for importance sampling of the target scene’s spatial spectrum in Fourier space. Specifically, utilizing the centrosymmetric conjugation and sparsity priors of natural images’ spatial spectra, eSPI sequentially projects two \\tfrac{π }{2}-phase-shifted sinusoidal patterns to obtain each Fourier coefficient in the most informative spatial frequency bands. eSPI can reduce requisite patterns by two orders of magnitude compared to conventional SPI, which helps a lot for fast and high-resolution SPI.
Zabarovsky, E R; Kashuba, V I; Gizatullin, R Z; Winberg, G; Zabarovska, V I; Erlandsson, R; Domninsky, D A; Bannikov, V M; Pokrovskaya, E; Kholodnyuk, I; Petrov, N; Zakharyev, V M; Kisselev, L L; Klein, G
1996-01-01
Long-range restriction site maps are of central importance for mapping the human genome. The use of clones from linking and jumping libraries for genome mapping offers a promising alternative to the laborious procedures used up until now. In the present review, this research field is analyzed with particular emphasis on the implementation of a shot-gun sequencing strategy for genome mapping and the use of NotI linking clones for analysis of rearrangements in tumors and tumor cell lines.
Energy Technology Data Exchange (ETDEWEB)
Krapez, J.C.; Spagnolo, L. [Politechnique di Bari (Italy); Friess, M. [Deutsches Luft- und Raumfahrtzentrum eV (DLR), Stuttgart (Germany); Maier, H.P. [Stuttgart Univ., MPA (Germany); Neuer, G. [Institut fur Kernenergetik und Energiesysteme, Universitat Stuttgart (Germany)
2003-07-01
The through-thickness thermal diffusivity can be evaluated by the classical flash method. If an homogeneous and extended source is used to irradiate the surface and a thermographic camera is used to monitor the temperature evolution of the opposite side, a map of the through-thickness thermal diffusivity can be obtained in a single experiment and without any contact with the sample under inspection. In order to measure the in-plane thermal diffusivity of a plate-like sample or in one of the principal directions of its plane, a thermal gradient across the plane of the material has to be settled. The ratio of the Fourier transform of temperature at two different spatial frequencies is an exponential function of time multiplied by the diffusivity in the considered principal direction. This can be used to evaluate the diffusivity in an homogenous material. In order to maximize the signal-to-noise ratio, it is better if heat is absorbed over a series of periodic parallel strips (grid flash method). When the material presents a transverse gradient of conductivity, we propose, as a first approach, to perform the Fourier analysis over a sliding window corresponding to one period of the grid pattern. This method allowed us to quantify in situ the diffusivity decrease in a tensile composite sample due to the stress-induced density increase of transverse microcracks. We finally analysed a more rigorous method for transverse conductivity profile inversion. It is based on a perturbation method. The analytical expression of the 'transfer function' between the Fourier transform of the temperature contrast and the Fourier transform of conductivity was established. We validated the proposed inverse technique on simulated and noise-corrupted thermograms. The approach is robust and the simulated profiles are very well resolved. (authors)
Directory of Open Access Journals (Sweden)
Janice A Vranka
Full Text Available Elevated intraocular pressure (IOP is the primary risk factor for glaucoma, and lowering IOP remains the only effective treatment for glaucoma. The trabecular meshwork (TM in the anterior chamber of the eye regulates IOP by generating resistance to aqueous humor outflow. Aqueous humor outflow is segmental, but molecular differences between high and low outflow regions of the TM are poorly understood. In this study, flow regions of the TM were characterized using fluorescent tracers and PCR arrays. Anterior segments from human donor eyes were perfused at physiological pressure in an ex vivo organ culture system. Fluorescently-labeled microspheres of various sizes were perfused into anterior segments to label flow regions. Actively perfused microspheres were segmentally distributed, whereas microspheres soaked passively into anterior segments uniformly labeled the TM and surrounding tissues with no apparent segmentation. Cell-tracker quantum dots (20 nm were localized to the outer uveal and corneoscleral TM, whereas larger, modified microspheres (200 nm localized throughout the TM layers and Schlemm's canal. Distribution of fluorescent tracers demonstrated a variable labeling pattern on both a macro- and micro-scale. Quantitative PCR arrays allowed identification of a variety of extracellular matrix genes differentially expressed in high and low flow regions of the TM. Several collagen genes (COL16A1, COL4A2, COL6A1 and 2 and MMPs (1, 2, 3 were enriched in high, whereas COL15A1, and MMP16 were enriched in low flow regions. Matrix metalloproteinase activity was similar in high and low regions using a quantitative FRET peptide assay, whereas protein levels in tissues showed modest regional differences. These gene and protein differences across regions of the TM provide further evidence for a molecular basis of segmental flow routes within the aqueous outflow pathway. New insight into the molecular mechanisms of segmental aqueous outflow may aid in
Dunn, Adam G; Surian, Didi; Leask, Julie; Dey, Aditi; Mandl, Kenneth D; Coiera, Enrico
2017-05-25
Together with access, acceptance of vaccines affects human papillomavirus (HPV) vaccine coverage, yet little is known about media's role. Our aim was to determine whether measures of information exposure derived from Twitter could be used to explain differences in coverage in the United States. We conducted an analysis of exposure to information about HPV vaccines on Twitter, derived from 273.8 million exposures to 258,418 tweets posted between 1 October 2013 and 30 October 2015. Tweets were classified by topic using machine learning methods. Proportional exposure to each topic was used to construct multivariable models for predicting state-level HPV vaccine coverage, and compared to multivariable models constructed using socioeconomic factors: poverty, education, and insurance. Outcome measures included correlations between coverage and the individual topics and socioeconomic factors; and differences in the predictive performance of the multivariable models. Topics corresponding to media controversies were most closely correlated with coverage (both positively and negatively); education and insurance were highest among socioeconomic indicators. Measures of information exposure explained 68% of the variance in one dose 2015 HPV vaccine coverage in females (males: 63%). In comparison, models based on socioeconomic factors explained 42% of the variance in females (males: 40%). Measures of information exposure derived from Twitter explained differences in coverage that were not explained by socioeconomic factors. Vaccine coverage was lower in states where safety concerns, misinformation, and conspiracies made up higher proportions of exposures, suggesting that negative representations of vaccines in the media may reflect or influence vaccine acceptance. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Klink, Agnieszka; Polechońska, Ludmiła; Cegłowska, Aurelia; Stankiewicz, Andrzej
2016-07-01
The contents of Cd, Cu, Fe, Mn, Ni, Pb, and Zn in leaves of Typha latifolia (broadleaf cattail), water and bottom sediment from 72 study sites designated in different regions of Poland were determined using atomic absorption spectrometry. The aim of the study was to evaluate potential use of T. latifolia in biomonitoring of trace metal pollution. The self-organizing feature map (SOFM) identifying groups of sampling sites with similar concentrations of metals in cattail leaves was able to classify study sites according to similar use and potential sources of pollution. Maps prepared for water and bottom sediment showed corresponding groups of sampling sites which suggested similarity of samples features. High concentrations of Fe, Cd, Cu, and Ni were characteristic for industrial areas. Elevated Pb concentrations were noted in regions with intensive vehicle traffic, while high Mn and Zn contents were reported in leaves from the agricultural area. Manganese content in leaves of T. latifolia was high irrespectively of the concentrations in bottom sediments and water so cattail can be considered the leaf accumulator of Mn. Once trained, SOFMs can be applied in ecological investigations and could form a future basis for recognizing the type of pollution in aquatic environments by analyzing the concentrations of elements in T. latifolia.
Vélez-Rábago, Rodrigo; Solorza-Calderón, Selene; Jordan-Aramburo, Adina
2016-12-01
This work presents an image pattern recognition system invariant to translation, scale and rotation. The system uses the Fourier transform to achieve the invariance to translation and the analytical Forier-Mellin transform for the invariance to scale and rotation. According with the statistical theory of box-plots, the pattern recognition system has a confidence level at least of 95.4%.
Experimental robustness of Fourier Ptychography phase retrieval algorithms
Yeh, Li-Hao; Zhong, Jingshan; Tian, Lei; Chen, Michael; Tang, Gongguo; Soltanolkotabi, Mahdi; Waller, Laura
2015-01-01
Fourier ptychography is a new computational microscopy technique that provides gigapixel-scale intensity and phase images with both wide field-of-view and high resolution. By capturing a stack of low-resolution images under different illumination angles, a nonlinear inverse algorithm can be used to computationally reconstruct the high-resolution complex field. Here, we compare and classify multiple proposed inverse algorithms in terms of experimental robustness. We find that the main sources of error are noise, aberrations and mis-calibration (i.e. model mis-match). Using simulations and experiments, we demonstrate that the choice of cost function plays a critical role, with amplitude-based cost functions performing better than intensity-based ones. The reason for this is that Fourier ptychography datasets consist of images from both brightfield and darkfield illumination, representing a large range of measured intensities. Both noise (e.g. Poisson noise) and model mis-match errors are shown to scale with int...