WorldWideScience

Sample records for diethylene glycol monomethyl

  1. A subchronic dermal exposure study of diethylene glycol monomethyl ether and ethylene glycol monomethyl ether in the male guinea pig.

    Science.gov (United States)

    Hobson, D W; D'Addario, A P; Bruner, R H; Uddin, D E

    1986-02-01

    Diethylene glycol monomethyl ether (DEGME) has been selected as a replacement anti-icing additive for ethylene glycol monomethyl ether (EGME) in Navy jet aircraft fuel. This experiment was performed to determine whether DEGME produced similar toxicity to EGME following dermal exposure. Male guinea pigs were dermally exposed to 1.00, 0.20, 0.04, or 0 (control) g/kg/day DEGME for 13 weeks, 5 days/week, 6 hr/day. Another group of animals was similarly exposed to 1.00 g/kg/day EGME. Body weights as well as testicular and splenic weights were reduced as a result of exposure to EGME, DEGME-exposed animals exhibited decreased splenic weight in the high- and medium-dose (1.00 and 0.20 g/kg/day) exposure groups only. Hematologic changes in EGME-exposed animals included mild anemia with increased erythrocytic mean corpuscular volumes and a lymphopenia with increased neutrophils. Similar hematological changes were not observed in any animals exposed to DEGME. Serum creatine kinase activity was increased in animals exposed to EGME, and serum lactate dehydrogenase activity was increased in EGME and 1.00 g/kg/day DEGME-exposed animals. In general, DEGME produced minimal toxicological changes following dermal exposure, whereas the toxicological changes observed following similar exposure to EGME were much more profound.

  2. The effect of ethylene glycol monomethyl ether and diethylene glycol monomethyl ether on hepatic gamma-glutamyl transpeptidase.

    Science.gov (United States)

    Kawamoto, T; Matsuno, K; Kayama, F; Arashidani, K; Yoshikawa, M; Kodama, Y

    1992-11-22

    In this paper, we determined whether ethylene glycol monomethyl ether (EGME) and diethylene glycol monomethyl ether (diEGME) induce hepatic gamma-glutamyl transpeptidase activity. Male adult Wistar rats weighing 220 g were used as experimental animals. EGME (100, 300 mg/kg per day) and diEGME (500, 1000, 2000 mg/kg per day) were administered by gavage for 1, 2 or 5 days or 4 weeks. In the 4-week study, experimental animals were administered EGME or diEGME once a day orally, 5 days/week. EGME treatment increased the serum gamma-glutamyl transpeptidase (GGT) level significantly, however, diEGME did not. The activities of three other enzymes (SGOT, SGPT and ALP) in serum were not altered by EGME or diEGME treatment and thus there was no biochemical indices of hepatic damage by EGME or diEGME. EGME treatment increased the GGT activities in the liver and lungs. Of the organs examined, the induction of GGT was the greatest in the liver. The inducibility in the liver was 216% for the 5-day treatment and 460% for the 4-week treatment. A dose-dependent increase of hepatic microsomal GGT activity by EGME was observed. On the other hand, renal GGT activities were declined to 72% and 60% of control by the 5-day and 4-week EGME treatments, respectively. DiEGME did not affect the GGT activities in any of the tissues except those of the brain. In the histochemical study, most hepatocytes at the periportal zones were stained with GGT staining after the 4-week treatment. However, the hepatocytes at the central zones were negative.

  3. Reproductive toxicity of the glycol ethers.

    Science.gov (United States)

    Hardin, B D

    1983-06-01

    The glycol ethers are an important and widely used class of solvents. Recent studies have demonstrated that ethylene glycol monomethyl ether (EGME), ethylene glycol dimethyl ether (EGdiME), ethylene glycol monoethyl ether (EGEE), and ethylene glycol monoethyl ether acetate (EGEEA) are teratogenic. Other studies have demonstrated that testicular atrophy or infertility follow treatment of males with EGME, ethylene glycol monomethyl ether acetate (EGMEA), EGEE, EGEEA, diethylene glycol dimethyl ether (diEGdiME), and diethylene glycol monoethyl ether (diEGEE). Experimental data are reviewed and structure-activity relationships are speculated upon.

  4. [Carcinogenic activity of ethylene oxide and its reaction products 2-chloroethanol, 2-bromoethanol, ethylene glycol and diethylene glycol. III. Research on ethylene glycol and diethylene glycol for carcinogenic effects].

    Science.gov (United States)

    Dunkelberg, H

    1987-03-01

    Ethylene glycol and diethylene glycol were each administered once weekly subcutaneously to groups of 100 female NMRI mice at 3 dosages (30; 10 und 3 mg single dose per mouse). Tricaprylin was used as solvent. The mean total dosage per mouse was 2110.5; 707.0 and 196.2 mg for ethylene glycol and 2029.8; 671.7 and 213.3 mg for diethylene glycol. Neither ethylene glycol nor diethylene glycol induced tumors at the injection site or away from the point of administration.

  5. Effect of ethylene glycol monomethyl ether and diethylene glycol monomethyl ether on hepatic metabolizing enzymes.

    Science.gov (United States)

    Kawamoto, T; Matsuno, K; Kayama, F; Hirai, M; Arashidani, K; Yoshikawa, M; Kodama, Y

    1990-06-01

    Glycol ethers have been extensively used in industry over the past 40-50 years. Numerous studies on the toxicity of glycol ethers have been performed, however, the effects of glycol ethers on the hepatic drug metabolizing enzymes are still unknown. We studied the changes of the putative metabolic enzymes, that is, the hepatic microsomal mixed function oxidase system and cytosolic alcohol dehydrogenase, by the oral administration of diEGME and EGME. Adult male Wistar rats were used. DiEGME was administered orally; 500, 1000, 2000 mg/kg for 1, 2, 5 or 20 days and EGME was 100, 300 mg/kg for 1, 2, 5 or 20 days. Decreases in liver weights were produced by highest doses of diEGME (2000 mg/kg body wt/day for 20 days) and EGME (300 mg/kg body wt/day for 20 days). DiEGME increased hepatic microsomal protein contents and induced cytochrome P-450, but not cytochrome b5 or NADPH-cytochrome c reductase. The activity of cytosolic ADH was not affected by diEGME administration. On the other hand, EGME did not change cytochrome P-450, cytochrome b5 or NADPH-cytochrome c reductase. The activity of cytosolic ADH was increased by repeated EGME treatment. Therefore it is suspected that the enzyme which takes part in the metabolism of diEGME is different from that of EGME, although diEGME is a structural homologue of EGME.

  6. Thermodynamic and optical studies of some ethylene glycol ethers in aqueous solutions at T = 298.15 K

    International Nuclear Information System (INIS)

    Dhondge, Sudhakar S.; Pandhurnekar, Chandrashekhar P.; Parwate, Dilip V.

    2009-01-01

    Experimental results of density (ρ), speed of sound (u), and refractive index (n D ) have been obtained for aqueous solutions of ethylene glycol monomethyl ether (EGMME), ethylene glycol monoethyl ether (EGMEE), diethylene glycol monomethyl ether (DEGMME), and diethylene glycol monoethyl ether (DEGMEE) over the entire concentration range at T = 298.15 K. From these measurements, the derived parameters, apparent molar volume of solute (φ V ), excess molar volume (V E ), isentropic compressibility of solution (β S ), apparent molar isentropic compressibility of solute (φ KS ), deviation in isentropic compressibility (Δβ S ), molar refraction [R] 1,2 and deviation in refractive index of solution (Δn D ) have been calculated. The Redlich-Kister equation has been fitted to the calculated values of V E , Δβ S and Δn D for the solution. The results obtained are interpreted in terms of hydrogen bonding and various interactions among solute and solvent molecules

  7. Penetration enhancer: monoethylether of diethylene glycol

    International Nuclear Information System (INIS)

    Koprda, V.; Kassai, Z.; Bohacik, L.; Bezek, S.; Hadcrafft, J.; Falson-Rieg, F.

    1999-01-01

    The monoethylether of diethylene glycol (Transcutol), an excellent solubilising agent, has been suggested as a penetration enhancer compatible with trans-dermal drug delivery systems. Using the abdominal skin of 5 day old rats and Franz-type diffusion cells the following topics were studied in this contribution: (1) Flux of Transcutol, labelled with [Ethyl- 14 C]-ether, across an intact skin model, (2) Changes in properties of the skin barrier after stripping with adhesive tape, and (3) Changes in flux of Transcutol when mixed with different co-solvents. The flux from pure solvent in donor compartment reached around 50 μg cm -2 hr -1 across the intact skin horny layer, whilst after 12 strips the flux increased about 200 times. In the presence of propylene glycol dipelargonate, the flux over 2 mg cm -2 hr -1 across non stripped skin was achieved. (authors)

  8. Validation of an analytical methodology for the determination of diethylene glycol and ethylene glycol as impurities in glycerin and propylene glycol

    International Nuclear Information System (INIS)

    Rosabal Cordovi, Ursula M; Fonseca Gola, Antonio; Cordovi Velazquez, Juan M; Morales Torres, Galina

    2014-01-01

    A methodology for the quantification of diethylene glycol (DEG) and the ethylene glycol (EG) impurities by gas Chromatography with flame ionization detector in glycerol and propylene glycol samples was developed and validated. It was selected dimethyl sulphoxide as internal standard. It was used hydrogen as carrier and auxiliary gas. The temperature program was 100°C holding one minute, then ramp to rate of 7.5°C/ min up to 200 °C. A Restek 624 column was used, with a flow in column of 4.20 ml/ min. Temperatures of the injector and detector were set at 220°C and 250 °C, respectively. The linearity was determined at 25-75 ?μg/ml as interval of concentrations for both impurities with correlation coefficients larger than 0.999. Detection Limits were settled down in 0.0350 μ?g/ml to the diethylene glycol, and 0.0572 μg/ml to ethylene glycol, while the quantitation limits were 0.1160 μ?g/ml to DEG and 0.1897 μg/ml to the EG. The recoveries were 99.98 % and 100.00 %, respectively; with RSD % 1.18 % to DEG, and 0.60 % to the EG. The obtained results demonstrated that the methodology was linear, accurate, robustness, sensitive and selective to be used in the determination of both impurities in the quality control of the glycerol and propylene glycol as raw materials

  9. Ethylene- and diethylene glycol metabolism, toxicity and treatment

    International Nuclear Information System (INIS)

    Wiener, H.L.

    1986-01-01

    Each year numerous men and domestic animals suffer from ethylene glycol (EG) poisoning. The present approach to treating EG poisoning by administering ethanol is aimed at preventing the oxidation of EG to glycolate, the toxic mediator. When treatment is delayed or the amount of EG consumed is large, successful treatment is rarely obtained, since the concentration of glycolate becomes excessive. In an effort to develop a better approach to treating EG poisoning, studies were conducted to determine the feasibility of using pig liver glycolic acid oxidase (GAO) as a means of enzyme therapy in male rats receiving EG. Pig liver GAO was active in vitro in rat blood, oxidizing glycolate to glyoxylate. When injected intravenously into male rats, GAO had an approximate half-life of twenty five minutes and its elimination followed first order kinetics. Despite activity in vitro, native pig liver GAO did not display detectable activity in vivo. Diethylene glycol (DEG) when ingested also results in toxicity. The metabolism and toxicity of DEG was investigated in male Wistar rats using [ 14 C]-DEG synthesized from [U- 14 C]-EG and ethylene oxide and purified by high performance liquid chromatography. (2-Hydroxyethoxy)acetic acid (HEAA) was identified as the major product of DEG oxidation. These results suggest that the treatment of DEG poisoning should follow the same regimen as treatment for EG poisoning

  10. Binary and ternary solid-liquid phase equilibrium for the systems formed by succinic acid, urea and diethylene glycol: Determination and modelling

    International Nuclear Information System (INIS)

    Li, Yanxun; Li, Congcong; Han, Shuo; Zhao, Hongkun

    2017-01-01

    Highlights: • Solubility of succinic acid in diethylene glycol was determined. • Solubility of succinic acid + urea + diethylene glycol was determined. • Three ternary phase diagrams were constructed for the ternary system. • The ternary phase diagrams were correlated using NRTL model. - Abstract: In this work, the solid-liquid phase equilibrium for binary system of succinic acid + diethylene glycol at the temperatures ranging from (298.15 to 333.15) K and ternary system of (succinic acid + urea + diethylene glycol) at 298.15 K, 313.15 K and 333.15 K was built by using the isothermal saturation method under atmospheric pressure (101.2 kPa), and the solubilities were determined by a high-performance liquid chromatography. The solid-phases formed in the ternary system of ((succinic acid + urea + diethylene glycol)) were confirmed by Schreinemaker’s method of wet residue, which corresponded to urea, succinic acid, and adduct 2:1 urea-succinic acid (mole ratio). Three isothermal phase diagrams for the ternary system were constructed based on the measured mutual solubility. Each isothermal phase diagram included six crystallization fields, three invariant curves, two invariant points and two co-saturated points. The crystalline region of adduct 2:1 urea-succinic acid is larger than those of the other two solids. The solubility of succinic acid in diethylene glycol was correlated with the modified Apelblat equation, λh equation and NRTL model; and the mutual solubility of the ternary ((succinic acid + urea + diethylene glycol)) system was correlated and calculated by the NRTL model. The interaction parameters’ values of succinic acid-urea were acquired. The value of RMSD was 7.11 × 10 −3 for the ternary system. The calculation results had good agreement with the experiment values. Furthermore, the densities of equilibrium liquid phase were acquired. The phase diagrams and the thermodynamic model of the ternary system could provide the basis for design of

  11. Delayed autonomic neuropathy in a patient with diethylene glycol poisoning: a case report.

    Science.gov (United States)

    Kamada, Hiroki; Suzuki, Hideaki; Yamamoto, Saori; Nomura, Ryosuke; Kushimoto, Shigeki

    2017-07-01

    A 72-year-old man presented to our hospital after ingesting insecticide containing approximately 2 mL/kg diethylene glycol, which exceeded the lethal dose of 1 mL/kg. The patient recovered from critical symptoms on acute phase until day 3, but received artificial ventilation for muscle weakness secondary to sensorimotor neuropathy on days 11-54. Even after marked improvement from sensorimotor neuropathy, the patient continued to complain of orthostatic hypotension. Autonomic neuropathy was identified by positive result of a head-up tilt test, and reduction in coefficient of variation of R-R intervals and cardiac iodine-123-metaiodobenzylguanidine uptake for the assessment of cardiac sympathetic activity. The patient's symptoms fully recovered 2 years after the exposure to diethylene glycol. This case shows the first report of delayed autonomic neuropathy after recovery from severe sensorimotor neuropathy, and suggests the importance of continuous monitoring for late-onset neurological complications.

  12. Volumetric and viscometric study of aqueous binary mixtures of some glycol ethers at T = (275.15 and 283.15) K

    International Nuclear Information System (INIS)

    Dhondge, Sudhakar S.; Pandhurnekar, Chandrashekhar P.; Sheikh, Shaziya; Deshmukh, Dinesh W.

    2011-01-01

    Graphical abstract: Highlights: → Study of aqueous solutions of glycol ethers at low temperatures is presented. → Glycol ethers are industrially important liquids. → Reduction in the volume was observed upon addition of all glycol ethers to water. → Glycol ethers act as structure makers in aqueous medium. - Abstract: The experimental data for the density (ρ) and viscosity (η) are reported for aqueous binary mixtures of different glycol ethers, namely ethylene glycol monomethyl ether (EGMME), ethylene glycol monoethyl ether (EGMEE), diethylene glycol monomethyl ether (DEGMME), and diethylene glycol monoethyl ether (DEGMEE), at different temperatures (T = 275.15 K and 283.15 K) within the concentration range 0 mol . kg -1 to 0.1 mol . kg -1 . The values of density (ρ) and viscosity (η) of the solutions were used to compute different derived parameters, such as apparent molar volume (φ V ) of the solute, excess molar volume (V E ) of the solution, viscosity B and D coefficients of solution and temperature coefficient of viscosity B-coefficient (dB/dT) of solution. The limiting apparent molar volume of the solutes (φ V 0 ) have been obtained for aqueous binary mixtures of these glycol ethers by smooth extrapolation of φ V -m curves to zero concentration. By using the values of φ V 0 , the limiting excess partial molar volumes (V-bar 2 0E ) have also been calculated. The results are interpreted in term of various interactions such as solute-solvent interactions and hydrogen bonding.

  13. Delayed autonomic neuropathy in a patient with diethylene glycol poisoning: a case report

    OpenAIRE

    Kamada, Hiroki; Suzuki, Hideaki; Yamamoto, Saori; Nomura, Ryosuke; Kushimoto, Shigeki

    2017-01-01

    Case A 72‐year‐old man presented to our hospital after ingesting insecticide containing approximately 2 mL/kg diethylene glycol, which exceeded the lethal dose of 1 mL/kg. The patient recovered from critical symptoms on acute phase until day 3, but received artificial ventilation for muscle weakness secondary to sensorimotor neuropathy on days 11–54. Outcome Even after marked improvement from sensorimotor neuropathy, the patient continued to complain of orthostatic hypotension. Autonomic neur...

  14. Interomolecular interactions in diluted solutions of potassium iodocuprates (1) in dimethyl ether of diethylene glycol

    International Nuclear Information System (INIS)

    Gorodinskaya, Eh.Ya.; Mel'nikova, N.B.; Yurin, K.V.

    1991-01-01

    The role of donor solvent in the formation of potassium mononuclear iodocuprates (1) in the system CuI-KI-dimethyl ether of diethylene glycol has been considerd. The calculated values of enthalpy, free energy and entropy of viscous flow activation in the range of temperatures 298-318 K for the solutions testify to decomposition of the solvent structure. Negative deviations of mole volumes from the additivity rule characterized strong molecular interaction

  15. Partial molar volumes of organic solutes in water. XXVIII. Three aliphatic poly(ethylene glycols) at temperatures T = 298 K–573 K and pressures up to 30 MPa

    International Nuclear Information System (INIS)

    Cibulka, Ivan

    2017-01-01

    Highlights: • Standard molar volumes of three poly(ethylene glycols) in water are presented. • Data were obtained in the range T from (298 to 573) K and p up to 30 MPa. • Data are analyzed and compared with those of similar solutes. - Abstract: Densities of dilute aqueous solutions of three poly(ethylene glycols): 3-oxapentane-1,5-diol (diethylene glycol), 3,6-dioxaoctane-1,8-diol (triethylene glycol), and 3,5,9-trioxaundecane-1,11-diol (tetraethylene glycol) measured in the temperature range from (298 to 573) K and at pressures up to 30 MPa using an automated flow vibrating-tube densimeter are reported. Standard molar volumes were evaluated from the measured data. Present data complement both the previous measurements performed at atmospheric pressure in the temperature range from (278 to 343) K and the data already available for the first member of the homologous series (ethylene glycol). A comparison with data previously measured for the homologous series of linear aliphatic polyethers (poly(ethylene glycol) dimethyl ethers, glymes), diethylene glycol monomethyl ether (3,6-dioxaheptan-1-ol), and selected alkane-α,ω-diols is presented.

  16. Spectroscopic study of monitoring the kinetics of radical copolymerization of di(ethylene glycol) bis(allylcarbonate) and 2-naphthylmethacrylate

    Science.gov (United States)

    Barashkov, N. N.; Novikova, T. S.; Sakhno, T. V.; Bulgakova, L. M.

    1996-03-01

    The results of fluorescence monitoring in the radical copolymerization of di(ethylene glycol) bis(allylcarbonate) and 2-naphthylmethacrylate are discussed. Our studies suggest that data based on measurement of the intensity of the fluorescence band at 345 nm during copolymerization are in good agreement with the data obtained by the traditional dilatometric method.

  17. The chemotherapeutic potential of glycol alkyl ethers: structure-activity studies of nine compounds in a Fischer-rat leukemia transplant model.

    Science.gov (United States)

    Dieter, M P; Jameson, C W; Maronpot, R R; Langenbach, R; Braun, A G

    1990-01-01

    Structure-activity studies with nine glycol alkyl ethers were conducted with a cellular leukemia transplant model in male Fischer rats. This in vivo assay measures the effects of chemical treatment on neoplastic progression in transplant recipients. Chemicals were given ad libitum in the drinking water simultaneously with the transplants and continued throughout the study. In all, 20 million leukemic cells were injected s.c. into syngeneic rats, which after 60 days resulted in a 10-fold increase in relative spleen weights, a 100-fold increase in white blood cell counts, and a 50% reduction in red blood cell (RBC) indices and platelet counts. At this interval, ethylene glycol monomethyl ether (2-ME) given at a dose of 2.5 mg/ml in the drinking water completely eliminated all clinical, morphological, and histopathological evidence of leukemia, whereas the same dose of ethylene glycol monoethyl ether (2-EE) reduced these responses by about 50%. Seven of the glycol ethers were ineffective as anti-leukemic agents, including ethylene glycol, the monopropyl, monobutyl, and monophenyl ethylene glycol ethers, diethylene glycol, and the monomethyl and monoethyl diethylene glycol ethers. 2-ME more than doubled the latency period of leukemia expression and extended survival for at least 210 days. A minimal effective dose for a 50% reduction in the leukemic responses was 0.25 mg/ml 2-ME in the drinking water (15 mg/kg body weight), whereas a 10-fold higher dose of 2-EE was required for equivalent antileukemic activity. In addition, the in vitro exposure of a leukemic spleen mononuclear cell culture to 2-ME caused a dose- and time-dependent reduction in the number of leukemia cells after a single exposure to 1-100 microM concentrations, whereas the 2-ME metabolite, 2-methoxyacetic acid, was only half as effective. The two glycol alkyl ethers with demonstrable anti-leukemic activity, 2-ME and 2-EE, also exhibited a favorable efficacy-to-toxicity ratio and should be considered for

  18. Sync-measurement experimental study of (fluoroethane + dimethylether tetraethylene glycol), (fluoroethane + dimethylether triethylene glycol) and (fluoroethane + dimethylether diethylene glycol) systems

    International Nuclear Information System (INIS)

    Feng, Lejun; Zheng, Danxing; Huang, Weijia

    2016-01-01

    Highlights: • Three new working pairs are proposed for absorption power cycle. • Sync-measured the solubility and absorption enthalpy data at 303.15 K. • Thermokinetic experiment is consistent with the previous thermodynamics study. - Abstract: In this work, three new working pairs, {fluoroethane (HFC161) + dimethylether tetraethylene glycol (DMETEG)}, {HFC161 + dimethylether triethylene glycol (DMETrEG)} and {HFC161 + dimethylether diethylene glycol (DMEDEG)}, are proposed for absorption power cycle. The working pairs are assessed from both thermodynamics and thermokinetic perspective. By combining the microcalorimetry and isothermal synthesis methods, an experimental apparatus was developed to simultaneously obtain the microcalorimetry and vapour–liquid equilibrium data. Then, the solubility and absorption enthalpy data of the three new working pairs were sync-measured at 303.15 K by this sync-measurement experimental apparatus. The thermodynamics data indicated that the affinities of the three working pairs increased from strong to weak in the following order: HFC161 + DMETEG > HFC161 + DMETrEG > HFC161 + DMEDEG. Then the thermokinetic parameters of the absorption rate constant and activation energy were analysed based on the thermokinetic experiment at (303.15, 313.15, 323.15, and 333.15) K. As a result, the affinities of the three working pairs are consistent with the previous thermodynamics study. In addition, the intermolecular interactions within the three systems were analysed according to the intermolecular hydrogen bonds; overall, the (HFC161 + DMETEG) system is considered to be the potential option for applications.

  19. Density, viscosity, surface tension, and spectroscopic properties for binary system of 1,2-ethanediamine + diethylene glycol

    International Nuclear Information System (INIS)

    Li, Lihua; Zhang, Jianbin; Li, Qiang; Guo, Bo; Zhao, Tianxiang; Sha, Feng

    2014-01-01

    Graphical abstract: Excess property of the binary system 1,2-ethanediamine (EDA) + diethylene glycol (DEG). - Highlights: • Densities and viscosities of EDA + DEG at 298.15–318.150 K were listed. • Thermodynamics data of EDA + DEG at 298.15–318.15 K were calculated. • Surface tension of EDA + DEG at 298.15 K was measured. • Intermolecular interaction of EDA with DEG was discussed. - Abstract: This paper reports density and viscosity data at T = 298.15, 303.15, 308.15, 313.15, and 318.15 K and surface tension data at 298.15 K for the binary system 1,2-ethanediamine (EDA) + diethylene glycol (DEG) as a function of composition under atmospheric pressure. From the experimental density and viscosity data, the excess molar volume and viscosity deviation were calculated, and the results were fitted to a Redlich–Kister equation to obtain the coefficients and to estimate the standard deviations between the experimental and calculated quantities. Based on the kinematic viscosity data, enthalpy of activation for viscous flow, entropy of activation for the viscous flow, and Gibbs energies of activation of viscous flow were calculated. In addition, based on Fourier transform infrared spectra, UV–vis spectra, and electrical conductivity for the system EDA + DEG with various concentrations, intermolecular interaction of EDA with DEG was discussed

  20. The use of organic solvents in mutagenicity testing.

    Science.gov (United States)

    Abbondandolo, A; Bonatti, S; Corsi, C; Corti, G; Fiorio, R; Leporini, C; Mazzaccaro, A; Nieri, R; Barale, R; Loprieno, N

    1980-10-01

    13 organic substances (dimethylsulfoxide, methanol, ethanol, n-propyl alcohol, sec-butyl alcohol, tert-butyl alcohol, dl-sec-amyl alcohol, ethylene glycol, ethylene glycol monomethyl ether, 1,4-diethylene dioxide, acetone, methyl acetate and formamide) were considered from the standpoint of their use as solvents for water-insoluble chemicals to be tested for mutagenicity. First, the effect of these solvents on cell survival was studied in the yeast Schizosaccharomyces pombe and in V79 Chinese hamster cells. 8 solvents showing relatively low toxicity on either cell system (dimethylsulfoxide, ethanol, ethylene glycol, ethylene glycol monomethyl ether, 1,4-diethylene dioxide, acetone, methyl acetate and formamide) were tested for their effect on aminopyrine demethylase. 4 solvents (ethanol, 1,4-diethylene dioxide, methyl acetate and formamide) showed a more or less pronounced adverse effect on the microsomal enzymic activity. The remaining 4 and methanol (whose effect on aminopyrine demethylase was not testable) were assayed for mutagenicity in S. pombe. They all gave negative results both with and without the post-mitochondrial fraction from mouse liver.

  1. Biocidal properties of anti-icing additives for aircraft fuels.

    Science.gov (United States)

    Neihof, R A; Bailey, C A

    1978-04-01

    The biocidal and biostatic activities of seven glycol monoalkyl ether compounds were evaluated as part of an effort to find an improved anti-icing additive for jet aircraft fuel. Typical fuel contaminants, Cladosporium resinae, Gliomastix sp., Candida sp., Pseudomonas aeruginosa, and a mixed culture containing sulfate-reducing bacteria were used as assay organisms. Studies were carried out over 3 to 4 months in two-phase systems containing jet fuel and aqueous media. Diethylene glycol monomethyl ether, triethylene glycol monomethyl ether, triethylene glycol monoethyl ether, and 2-methoxyethanol were generally biocidal in aqueous concentrations of 10 to 17% for all organisms except Gliomastix, which required 25% or more. 2-Ethoxyethanol, 2-propoxyethanol, and 2-butoxyethanol were biocidal at progressively lower concentrations down to 1 to 2% for 2-butoxyethanol. The enhanced antimicrobial activity of these three compounds was attributed to cytoplasmic membrane damage because of the correlation between surface tension measurements and lytic activity with P. aeruginosa cells. The mechanism of action of the less active compounds appeared to be due to osmotic (dehydrating) effects. When all requirements are taken into account, diethylene glycol monomethyl ether appears to be the most promising replacement for the currently used additive, 2-methoxyethanol.

  2. Wettability, optical properties and molecular structure of plasma polymerized diethylene glycol dimethyl ether

    Energy Technology Data Exchange (ETDEWEB)

    Azevedo, T C A M; Algatti, M A; Mota, R P; Honda, R Y; Kayama, M E; Kostov, K G; Fernandes, R S [FEG-DFQ-UNESP, Av. Ariberto Pereira da Cunha 333, 12516-410 - Guaratingueta, SP (Brazil); Cruz, N C; Rangel, E C, E-mail: algatti@feg.unesp.b [UNESP, Avenida Tres de Marco, 511, 18087-180 Sorocaba, SP (Brazil)

    2009-05-01

    Modern industry has frequently employed ethylene glycol ethers as monomers in plasma polymerization process to produce different types of coatings. In this work we used a stainless steel plasma reactor to grow thin polymeric films from low pressure RF excited plasma of diethylene glycol dimethyl ether. Plasmas were generated at 5W RF power in the range of 16 Pa to 60 Pa. The molecular structure of plasma polymerized films and their optical properties were analyzed by Fourier Transform Infrared Spectroscopy (FTIR) and Ultraviolet-Visible Spectroscopy, respectively. The IR spectra show C-H stretching at 3000-2900 cm{sup -1}, C=O stretching at 1730-1650 cm{sup -1}, C-H bending at 1440-1380 cm{sup -1}, C-O and C-O-C stretching at 1200-1000 cm{sup -1}. The refraction index was around 1.5 and the optical gap calculated from absorption coefficient presented value near 3.8 eV. Water contact angle of the films ranged from 40 deg. to 35 deg. with corresponding surface energy from 66 to 73x10{sup -7} J. Because of its favorable optical and hydrophilic characteristics these films can be used in ophthalmic industries as glass lenses coatings.

  3. Activity coefficients at infinite dilution of organic solutes in diethylene glycol and triethylene glycol from gas–liquid chromatography

    International Nuclear Information System (INIS)

    Williams-Wynn, Mark D.; Letcher, Trevor M.; Naidoo, Paramespri; Ramjugernath, Deresh

    2013-01-01

    Highlights: • γ 13 ∞ values reported for 25 organic solutes in the solvents DEG and TEG. • Measurements undertaken using the glc technique at T = (333.2, 348.2, and 363.2) K. • Measurements at elevated temperature possible by pre-saturation of carrier gas. • Comparison of DEG and TEG performance with a number of solvents. -- Abstract: The infinite dilution activity coefficients for 25 hydrocarbon solutes in diethylene glycol (DEG) and triethylene glycol (TEG) were measured using the gas–liquid chromatography technique with pre-saturation of the carrier gas. The hydrocarbon solutes included n-alkanes, alk-1-enes, alk-1-ynes, cycloalkanes, alkylbenzenes and alkanols. At the temperatures at which measurements were conducted, the solvents were volatile, and pre-saturation was considered necessary. The measurements were made at T = (333.2, 348.2 and 363.2) K. Values of the selectivity and capacity relating to DEG and TEG, for two sets of mixtures, which are usually difficult to separate by distillation or solvent extraction, were calculated from the experimental results. The two sets of mixtures were: cyclohexane and benzene; and benzene and methanol. The results obtained in this work were then compared to values for other solvents, at similar temperatures, which were obtained or calculated from literature data

  4. A new cell for temperature-dependent X-ray absorption spectroscopy of liquid solutions: application to PbBr2 solutions in diethylene glycol.

    Science.gov (United States)

    Lützenkirchen-Hecht, D; Oldag, T; Keil, P; Keller, H L; Frahm, R

    2005-03-01

    An in situ cell has been constructed for temperature-dependent X-ray absorption experiments (EXAFS and XANES) of lead bromine (PbBr2) solutions in diethylene glycol in the temperature range from room temperature up to about 433 K. The solution is kept in a thermostated container made of carbon-reinforced teflon between two thin chemically inert quartz glass windows with a high transmission for hard X-rays. The construction of the cell ensures that these X-ray windows are thermalized so that any possible precipitation of solid products from the solution is inhibited. The cell consists mainly of two hermetically sealed teflon containers for the thermostating fluid (silicon oil) that were fitted together in such a way that a small and variable volume (approximately 2-4 cm3) for the liquid under investigation was achieved. A small thermocouple in a glass enclosure was placed in the solution to maintain temperature control and feedback to the thermostat. The cell design and its performance for temperature-dependent in situ investigations with X-rays are reported. Some preliminary results obtained for PbBr2 solutions in diethylene glycol are given.

  5. Mutagenicity testing of diethylene glycol monobutyl ether.

    Science.gov (United States)

    Thompson, E D; Coppinger, W J; Valencia, R; Iavicoli, J

    1984-01-01

    The mutagenic potential of diethylene glycol monobutyl ether (diEGBE) was examined with a Tier I battery of in vitro assays followed by a Tier II in vivo Drosophila sex-linked recessive lethal assay. The in vitro battery consisted of: the Salmonella mutagenicity test, the L5178Y mouse lymphoma test, a cytogenetics assay using Chinese hamster ovary cells and the unscheduled DNA synthesis (UDS) assay in rat hepatocytes. Results of the Salmonella mutagenicity test, the cytogenetics test, and the rat hepatocyte assay were negative at concentrations up to 20 microL/plate, 7.92 microL/mL, and 4.4 microL/mL, respectively. Toxicity was clearly demonstrated at all high doses. A weak, but dose-related increase in the mutation frequency (4-fold increase over the solvent control at 5.6 microL/mL with 12% survival) was obtained in the L5178Y lymphoma test in the absence of metabolic activation. Results of the mouse lymphoma assay were negative in the presence of the S-9 activation system. The significance of the mouse lymphoma assay were negative in the presence of the S-9 activation system. The significance of the mouse lymphoma assay results were assessed by performing the Tier II sex-linked recessive lethal assay in Drosophila in which the target tissue is maturing germinal cells. Both feeding (11,000 ppm for 3 days) and injection (0.3 microL of approximately 14,000 ppm solution) routes of administration were employed in the Drosophila assay. Approximately 11,000 individual crosses with an equal number of negative controls were performed for each route of administration. diEGBE produced no increase in recessive lethals under these conditions.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:6389113

  6. The mechanism of electrodeposition of bismuth sulfide and cadmium sulfide from dimethylsulfoxide and diethylene glycol solution

    International Nuclear Information System (INIS)

    Gilbert, C.M.; Baranski, A.S.; Fawcett, W.R.

    1985-01-01

    The kinetics of the electrodeposition of Bi 2 S 3 on an electrode covered with a coherent layer of Bi 2 S 3 was examined by analysis of the Tafel plots for different solution compositions and at different temperatures in two nonaqueous solvents, dimethylsulfoxide (DMSO) and diethylene glycol (DEG). The results were compared with those obtained for the electrodeposition of CdS on CdS under similar conditions. In both cases, it was found that the rate-determining step was an irreversible electron transfer. The rate of the reaction was independent of the metal ion concentration, but electrochemical orders with respect to S 8 of 0.7 in DMSO and 1.0 in DEG were found. Several mechanisms explaining these results are proposed and discussed

  7. Poly(mono/diethylene glycol n-tetradecyl ether vinyl ethers with Various Molecular Weights as Phase Change Materials

    Directory of Open Access Journals (Sweden)

    Dongfang Pei

    2018-02-01

    Full Text Available At present, research on the relationship of comb-like polymer phase change material structures and their heat storage performance is scarce. Therefore, this relationship from both micro and macro perspectives will be studied in this paper. In order to achieve a high phase change enthalpy, ethylene glycol segments were introduced between the vinyl and the alkyl side chains. A series of poly(mono/diethylene glycol n-tetradecyl ether vinyl ethers (PC14EnVEs (n = 1, 2 with various molecular weights were polymerized by living cationic polymerization. The results of PC14E1VE and PC14E2VE showed that the minimum number of carbon atoms required for side-chain crystallization were 7.7 and 7.2, which were lower than that reported in the literature. The phase change enthalpy 89 J/g (for poly(mono ethylene glycol n-tetradecyl ether vinyl ethers and 86 J/g (for poly(hexadecyl acrylate were approximately equal. With the increase of molecular weight, the melting temperature, the melting enthalpy, and the initial thermal decomposition temperature of PC14E1VE changed from 27.0 to 28.0 °C, from 95 to 89 J/g, and from 264 to 287 °C, respectively. When the number average molar mass of PC14EnVEs exceeded 20,000, the enthalpy values remained basically unchanged. The introduction of the ethylene glycol chain was conducive to the crystallization of alkyl side chains.

  8. Transient renal impairment in rats after oral exposure to diethylene glycol.

    Science.gov (United States)

    Freundt, K J; Weis, N

    1989-10-01

    Volume, specific gravity, creatinine, lactate dehydrogenase (LDH), leucine aminopeptidase (LAP), beta-galactosidase (GAL), leucocytes, erythrocytes, nitrite, protein (albumin), glucose, ketone, urobilinogen, bilirubin and pH were estimated in urine of rats after single (by gavage) or repeated (via drinking water) oral administration of diethylene glycol (DEG). Following single or repetitive doses (daily over 90 days) of 0.2 g DEG kg-1 body weight, no change in renal function was observed (no effect level). In urine of rats treated once with 0.7 g DEG kg-1 body weight, LDH activity was significantly enhanced one day after treatment. A single dose of 2.0 g DEG kg-1 body weight resulted in an additional rise in urinary GAL activity two days after treatment, a significant rise of urinary volume and a decrease in creatinine concentration and pH on the first day. One day following a single dose of 8.0 g DEG kg-1 body weight, in addition to the changes mentioned before, LAP activity was significantly elevated and the specific gravity decreased. However, in all experiments the wet weight of the kidneys remained normal as compared to controls. The results thus show dose-dependent changes in several renal parameters, indicating a slight-to-moderate and reversible renal impairment.

  9. Performance of diethylene glycol-based particle counters in the sub-3 nm size range

    CERN Document Server

    Wimmer, D; Franchin, A; Kangasluoma, J; Kreissl, F; Kürten, A; Kupc, A; Metzger, A; Mikkilä, J; Petäjä, J; Riccobono, F; Vanhanen, J; Kulmala, M; Curtius, J

    2013-01-01

    When studying new particle formation, the uncertainty in determining the "true" nucleation rate is considerably reduced when using condensation particle counters (CPCs) capable of measuring concentrations of aerosol particles at sizes close to or even at the critical cluster size (1–2 nm). Recently, CPCs able to reliably detect particles below 2 nm in size and even close to 1 nm became available. Using these instruments, the corrections needed for calculating nucleation rates are substantially reduced compared to scaling the observed formation rate to the nucleation rate at the critical cluster size. However, this improved instrumentation requires a careful characterization of their cut-off size and the shape of the detection efficiency curve because relatively small shifts in the cut-off size can translate into larger relative errors when measuring particles close to the cut-off size. Here we describe the development of two continuous-flow CPCs using diethylene glycol (DEG) as the working fluid. The desig...

  10. Cellular and antitumor activity of a new diethylene glycol benzoporphyrin derivative (lemuteporfin).

    Science.gov (United States)

    Boch, Ron; Canaan, Alice J; Cho, Angela; Dolphin, David D; Hong, Lina; Jain, Ashok K; North, John R; Richter, Anna M; Smits, Claire; Sternberg, Ethan D

    2006-01-01

    A newly synthesized diethylene glycol functionalized chlorin-type photosensitizer, lemuteporfin, was characterized for use in photodynamic therapy (PDT) in a panel of in vitro and in vivo test systems. The photosensitizer was highly potent, killing cells at low nanomolar concentrations upon exposure to activating light. The cellular uptake of lemuteporfin was rapid, with maximum levels reached within 20 min. Mitogen-activated lymphoid cells accumulated more of the lemuteporfin than their quiescent equivalents, supporting selectivity. Photosensitizer fluorescence in the skin increased rapidly within the first few minutes following intravenous administration to mice, then decreased over the next 24 h. Skin photosensitivity reactions indicated rapid clearance of the photosensitizer. Intravenous doses as low as 1.4 micromol/kg combined with exposure to 50 J/cm2 red light suppressed tumor growth in a mouse model. In conclusion, this new benzoporphyrin was found to be an effective photosensitizer, showing rapid uptake and clearance both in vitro and in vivo. This rapid photosensitization of tumors could be useful in therapies requiring a potent, rapidly accumulating photosensitizer, while minimizing the potential for skin photosensitivity reactions to sunlight following treatment.

  11. Study of RF-excited Diethylene Glycol Dimethyl Ether Plasmas by Mass Spectrometry

    International Nuclear Information System (INIS)

    Algatti, M A; Mota, R P; Júnior, P W P Moreira; Honda, R Y; Kayama, M E; Kostov, K G

    2012-01-01

    This paper deals with the study of the fragmentation process of diethylene glycol dimethyl ether (CH 3 O(CH 2 CH 2 O) 2 CH 3 ) (diglyme here in) molecule in low pressure RF excited plasma discharges. The study was carried out using mass spectrometry. The results showed that for a fixed pressure, the increase of the RF power coupled to the plasma chamber from 1 to 35 W produced a plasma environment much more reactive which increases the population of the ionized species like CH 2 + (15 amu), C 2 H 4 + (28 amu), CH 3 O + (31 amu), C 2 H 4 O + (44 amu), CH 3 OCH 2 CH 2 + (59 amu) and CH 3 OCH 2 CH 2 O + (75 amu). This fact may be attributed to the increase of the electronic temperature that makes predominant the occurrence of inelastic processes that promotes molecular fragmentation. For a fixed value of RF power the increase of pressure from 50 mTorr to 100 mTorr produces the decreasing of the above mentioned chemical species due the lower electronic mean free path. These results suggest that if one wants to keep the monomer's functionality within the plasma deposited films resulting from such kind of discharges one must operate in low power conditions.

  12. Solvothermal synthesis of Zn{sub 2}GeO{sub 4}:Mn{sup 2+} nanophosphor in water/diethylene glycol system

    Energy Technology Data Exchange (ETDEWEB)

    Takeshita, Satoru; Honda, Joji [Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522 (Japan); Isobe, Tetsuhiko, E-mail: isobe@applc.keio.ac.jp [Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522 (Japan); Sawayama, Tomohiro; Niikura, Seiji [SINLOIHI Company, Limited, 2-19-12 Dai, Kamakura 247-8550 (Japan)

    2012-05-15

    The influence of aging of the suspension containing the amorphous precusors on structural, compositional and photoluminescent properties is studied to understand the mechanism on the formation of Zn{sub 2}GeO{sub 4}:Mn{sup 2+} nanoparticles during the solvothermal reaction in the water/diethylene glycol mixed solvent. Aging at 200 Degree-Sign C for 20 min forms the crystalline Zn{sub 2}GeO{sub 4} nanorods and then they grow up to {approx} 50 nm in mean length after aging for 240 min. Their interplanar spacing of (410) increases with increasing the aging time. The photoluminescence intensity corresponding to the d-d transition of Mn{sup 2+} increases with increasing the aging time up to 120 min, and then decreases after aging for 240 min. The photoluminescence lifetime decreases with increasing the aging time, indicating the locally concentrated Mn{sup 2+} ions. These results reveal that Mn{sup 2+} ions gradually replace Zn{sup 2+} ions near surface through repeating dissolusion and precipitation processes during prolonged aging after the complete crystallization of Zn{sub 2}GeO{sub 4}. - Graphical abstract: TEM images of Zn{sub 2}GeO{sub 4}:Mn{sup 2+} nanoparticles aged at 200 Degree-Sign C for different aging times in the mixed solvent of water and diethylene glycol. Highlights: Black-Right-Pointing-Pointer Mechanism on formation of Zn{sub 2}GeO{sub 4}:Mn{sup 2+} nanophosphor under solvothermal condition. Black-Right-Pointing-Pointer Zn{sub 2}GeO{sub 4} nanorods crystallize via amorphous precursors. Black-Right-Pointing-Pointer Gradual substitution of Mn{sup 2+} during prolonged aging. Black-Right-Pointing-Pointer Such an inhomogeneous Mn{sup 2+} doping process results in concentration quenching.

  13. Reformulating Polycaprolactone Fumarate to Eliminate Toxic Diethylene Glycol: Effects of Polymeric Branching and Autoclave Sterilization on Material Properties

    Science.gov (United States)

    Runge, M. Brett; Wang, Huan; Spinner, Robert J; Windebank, Anthony J; Yaszemski, Michael J.

    2011-01-01

    Polycaprolactone fumarate (PCLF) is a cross-linkable derivate of polycaprolactone diol that has been shown to be an effective nerve conduit material that supports regeneration across segmental nerve defects and has warranted future clinical trials. Degradation of the previously studied PCLF (PCLFDEG) releases toxic small molecules of diethylene glycol used as the initiator for the synthesis of polycaprolactone diol. In an effort to eliminate this toxic degradation product we present a strategy for the synthesis of PCLF from either propylene glycol (PCLFPPD) or glycerol (PCLFGLY). PCLFPPD is linear and resembles the previously studied PCLFDEG, while PCLFGLY is branched and exhibits dramatically different material properties. The synthesis and characterization of their thermal, rheological, and mechanical properties are reported. The results show that the linear PCLFPPD has material properties similar to the previously studied PCLFDEG. The branched PCLFGLY exhibits dramatically lower crystalline properties resulting in lower rheological and mechanical moduli, and is therefore a more compliant material. In addition, the question of an appropriate FDA approvable sterilization method is addressed. This study shows that autoclave sterilization on PCLF materials is an acceptable sterilization method for cross-linked PCLF and has minimal effect on the PCLF thermal and mechanical properties. PMID:21911087

  14. Preparation and characterization of diethylene glycol bis(2-aminophenyl) ether-modified glassy carbon electrode

    Energy Technology Data Exchange (ETDEWEB)

    Isbir, Aybueke A. [Ankara University, Faculty of Science, Department of Chemistry, 06100 Tandogan, Ankara (Turkey); Solak, Ali Osman [Ankara University, Faculty of Science, Department of Chemistry, 06100 Tandogan, Ankara (Turkey)]. E-mail: osolak@science.ankara.edu.tr; Ustuendag, Zafer [Ankara University, Faculty of Science, Department of Chemistry, 06100 Tandogan, Ankara (Turkey); Bilge, Selen [Ankara University, Faculty of Science, Department of Chemistry, 06100 Tandogan, Ankara (Turkey); Kilic, Zeynel [Ankara University, Faculty of Science, Department of Chemistry, 06100 Tandogan, Ankara (Turkey)

    2006-07-28

    Diethylene glycol bis(2-aminophenyl) ether (DGAE) diazonium salt was covalently electrografted on a glassy carbon (GC) surface and behavior of this novel surface was investigated. Synthesis of DGAE diazonium salt (DGAE-DAS) and in situ modification of GC electrode were performed in aqueous media containing NaNO{sub 2}, keeping the temperature below +4 deg. C. For the characterization of the modified electrode surface by cyclic voltammetry, dopamine (DA) was used to prove the attachment of the DGAE-DAS on the GC surface. Raman spectroscopy and electrochemical impedance spectroscopy (EIS) were used to observe the molecular bound properties of the adsorbates at the DGAE-modified GC surface (GC-DGAE). The EIS results were analyzed using the Randles equivalent circuit. The charge transfer resistance on bare GC and the modified surface were calculated using the model equivalent circuit for the ferrocene redox system. Surface coverage was found as 0.4 showing the presence of high pinhole and defects in the modified electrode. The rate constant of electron transfer through the monolayer was calculated for ferrocene. Working potential range and the stability of the DGAE-modified GC electrode was also determined.

  15. Preparation and characterization of diethylene glycol bis(2-aminophenyl) ether-modified glassy carbon electrode

    International Nuclear Information System (INIS)

    Isbir, Aybueke A.; Solak, Ali Osman; Ustuendag, Zafer; Bilge, Selen; Kilic, Zeynel

    2006-01-01

    Diethylene glycol bis(2-aminophenyl) ether (DGAE) diazonium salt was covalently electrografted on a glassy carbon (GC) surface and behavior of this novel surface was investigated. Synthesis of DGAE diazonium salt (DGAE-DAS) and in situ modification of GC electrode were performed in aqueous media containing NaNO 2 , keeping the temperature below +4 deg. C. For the characterization of the modified electrode surface by cyclic voltammetry, dopamine (DA) was used to prove the attachment of the DGAE-DAS on the GC surface. Raman spectroscopy and electrochemical impedance spectroscopy (EIS) were used to observe the molecular bound properties of the adsorbates at the DGAE-modified GC surface (GC-DGAE). The EIS results were analyzed using the Randles equivalent circuit. The charge transfer resistance on bare GC and the modified surface were calculated using the model equivalent circuit for the ferrocene redox system. Surface coverage was found as 0.4 showing the presence of high pinhole and defects in the modified electrode. The rate constant of electron transfer through the monolayer was calculated for ferrocene. Working potential range and the stability of the DGAE-modified GC electrode was also determined

  16. Diethylene glycol-induced toxicities show marked threshold dose response in rats

    Energy Technology Data Exchange (ETDEWEB)

    Landry, Greg M., E-mail: Landry.Greg@mayo.edu [Department of Pharmacology, Toxicology, & Neuroscience, Louisiana State University Health Sciences Center, Shreveport, LA (United States); Dunning, Cody L., E-mail: cdunni@lsuhsc.edu [Department of Pharmacology, Toxicology, & Neuroscience, Louisiana State University Health Sciences Center, Shreveport, LA (United States); Abreo, Fleurette, E-mail: fabreo@lsuhsc.edu [Department of Pathology, Louisiana State University Health Sciences Center, Shreveport, LA (United States); Latimer, Brian, E-mail: blatim@lsuhsc.edu [Department of Pharmacology, Toxicology, & Neuroscience, Louisiana State University Health Sciences Center, Shreveport, LA (United States); Orchard, Elysse, E-mail: eorcha@lsuhsc.edu [Department of Pharmacology, Toxicology, & Neuroscience, Louisiana State University Health Sciences Center, Shreveport, LA (United States); Division of Animal Resources, Louisiana State University Health Sciences Center, Shreveport, LA (United States); McMartin, Kenneth E., E-mail: kmcmar@lsuhsc.edu [Department of Pharmacology, Toxicology, & Neuroscience, Louisiana State University Health Sciences Center, Shreveport, LA (United States)

    2015-02-01

    Diethylene glycol (DEG) exposure poses risks to human health because of widespread industrial use and accidental exposures from contaminated products. To enhance the understanding of the mechanistic role of metabolites in DEG toxicity, this study used a dose response paradigm to determine a rat model that would best mimic DEG exposure in humans. Wistar and Fischer-344 (F-344) rats were treated by oral gavage with 0, 2, 5, or 10 g/kg DEG and blood, kidney and liver tissues were collected at 48 h. Both rat strains treated with 10 g/kg DEG had equivalent degrees of metabolic acidosis, renal toxicity (increased BUN and creatinine and cortical necrosis) and liver toxicity (increased serum enzyme levels, centrilobular necrosis and severe glycogen depletion). There was no liver or kidney toxicity at the lower DEG doses (2 and 5 g/kg) regardless of strain, demonstrating a steep threshold dose response. Kidney diglycolic acid (DGA), the presumed nephrotoxic metabolite of DEG, was markedly elevated in both rat strains administered 10 g/kg DEG, but no DGA was present at 2 or 5 g/kg, asserting its necessary role in DEG-induced toxicity. These results indicate that mechanistically in order to produce toxicity, metabolism to and significant target organ accumulation of DGA are required and that both strains would be useful for DEG risk assessments. - Highlights: • DEG produces a steep threshold dose response for kidney injury in rats. • Wistar and F-344 rats do not differ in response to DEG-induced renal injury. • The dose response for renal injury closely mirrors that for renal DGA accumulation. • Results demonstrate the importance of DGA accumulation in producing kidney injury.

  17. Diethylene glycol monoethyl ether (Transcutol) displays antiproliferative properties alone and in combination with xanthines.

    Science.gov (United States)

    Levi-Schaffer, F; Dayan, N; Touitou, E

    1996-01-01

    In the present study we have investigated the effects of diethylene glycol monoethyl ether (Transcutol) in combination with theophylline, caffeine and dyphylline and alone on 3T3 mouse fibroblast proliferation. These three xanthines (1-0.01 mM) inhibited fibroblast proliferation by themselves. Enhancement of the effect was detected by addition of 1 and 0.1 mM Transcutol. Transcutol alone also displayed a dose-dependent inhibition (2-0.01 mM) of both 3T3 and human normal and psoriatic fibroblasts, although normal human fibroblasts were the least sensitive to Transcutol antiproliferative activity. Transcutol was assessed for its antiproliferative effects on YAC lymphoma and P-815 mastocytoma human cell lines. Transcutol inhibited cell proliferation of both these cell lines, being more effective towards P-815 mastocytoma (at 2 mM it displayed 3.95-fold vs. 2.4-fold inhibition towards YAC lymphoma). In conclusion, we have shown that Transcutol has antiproliferative effects on 3T3 murine, human normal and psoriatic fibroblasts and tumour cell lines. In addition it enhances xanthine antiproliferative effects on 3T3 fibroblasts. Therefore it might be a useful topical drug alone or in combination with xanthines in the treatment of skin hyperproliferative disorders.

  18. Toxicokinetics of diethylene glycol (DEG) in the rat.

    Science.gov (United States)

    Heilmair, R; Lenk, W; Löhr, D

    1993-01-01

    Oral doses of 1 and 5 ml/kg 14C-diethylene glycol (DEG) given to rats were rapidly and almost completely absorbed, the invasion constants being 2.95 h-1 and 4.24 h-1. The kinetics of invasion were determined with the method of residuals (Rowland and Tozer 1989) and by reconstruction of the invasion curves according to Kübler (1970). 14C-DEG was rapidly distributed from the blood into the organs and tissues in the order kidneys > brain > spleen > liver > muscle > fat, i.e. the same order as the blood flow. The relative volume of distribution, app. VD, was determined at 298 ml, indicating distribution over the whole body. After oral doses of 1, 5, and 10 ml 14C-DEG/kg 64, 87, and 91% of 14C activity in rat blood disappeared in 12-16 h with a half-life of 3.4 h and the remaining 9, 5, and 4% with half-lives of 39 h, 45 h, and 49 h. A total of 73-96% of 14C activity in blood was excreted with the urine and 0.7-2.2% with the faeces. From the cumulative urinary excretion kinetics half-lives of 6 h were determined for doses of 1 and 5 ml/kg and 10 h for the dose of 10 ml/kg. After doses of 5 ml/kg and 10 ml/kg 14C-DEG semi-logarithmic plots of elimination rate versus time were constant for 5 and 9 h, respectively, indicating that DEG accelerated its renal elimination by inducing osmotic diuresis. Thereafter urinary excretion followed first order kinetics with elimination half-lives of 3.6 h. After oral doses of 5 ml/kg 14C-DEG given to rats of 336 g body weight with an app. VD of 297 ml, the total clearance of 14C activity was determined at 63 ml/h, and the renal clearance of unmetabolized DEG was 66 ml/h. The ratio of ClDEG to Cl(inulin) = 0.64 indicated that DEG and its metabolite 2-hydroxyethoxyacetate (2-HEAA) were reabsorbed from the tubuli into the blood capillaries. DEG produced metabolic acidosis, which was completely balanced after doses of 1 and 5 ml/kg, but doses greater than 10 ml/kg produced non-compensated metabolic acidosis, hydropic degeneration of the

  19. Experimental study and phase equilibrium modeling of systems containing acid gas and glycol

    DEFF Research Database (Denmark)

    Afzal, Waheed; Breil, Martin P.; Tsivintzelis, Ioannis

    2012-01-01

    In this work, we study phase equilibria of systems containing acid gases and glycols. The acid gases include carbonyl sulfide (COS), hydrogen sulfide (H2S), and carbon dioxide (CO2) while glycols include monoethylene glycol (MEG), diethylene glycol (DEG), and triethylene glycol (TEG). A brief lit...

  20. An optimized two-step derivatization method for analyzing diethylene glycol ozonation products using gas chromatography and mass spectrometry.

    Science.gov (United States)

    Yu, Ran; Duan, Lei; Jiang, Jingkun; Hao, Jiming

    2017-03-01

    The ozonation of hydroxyl compounds (e.g., sugars and alcohols) gives a broad range of products such as alcohols, aldehydes, ketones, and carboxylic acids. This study developed and optimized a two-step derivatization procedure for analyzing polar products of aldehydes and carboxylic acids from the ozonation of diethylene glycol (DEG) in a non-aqueous environment using gas chromatography-mass spectrometry. Experiments based on Central Composite Design with response surface methodology were carried out to evaluate the effects of derivatization variables and their interactions on the analysis. The most desirable derivatization conditions were reported, i.e., oximation was performed at room temperature overnight with the o-(2,3,4,5,6-pentafluorobenzyl) hydroxyl amine to analyte molar ratio of 6, silylation reaction temperature of 70°C, reaction duration of 70min, and N,O-bis(trimethylsilyl)-trifluoroacetamide volume of 12.5μL. The applicability of this optimized procedure was verified by analyzing DEG ozonation products in an ultrafine condensation particle counter simulation system. Copyright © 2016. Published by Elsevier B.V.

  1. Effects of diethylene glycol butyl ether and butoxyethoxyacetic acid on rat and human erythrocytes.

    Science.gov (United States)

    Udden, M M

    2005-03-28

    The toxicity of diethylene glycol butyl ether (DGBE), and its principal metabolite, butoxyethoxyacetic acid (BEAA), were assessed in vitro for rat and human red blood cells. Rat erythrocytes showed evidence of mild hemolysis when exposed to BEAA at concentrations of 5 or 10 mM for 4 h. BEAA treated rat red blood cells also showed evidence of sub-hemolytic damage: increased spherocytosis, a shift in distribution of cell size to larger cells, a significant increase in mean cellular volume, and a decrease in cellular deformability. However, DGBE had no effect on rat red blood cell morphology, cell size, hemolysis or deformability. There was no hemolysis when human red blood cells were exposed to DGBE or BEAA at the same concentrations. No changes in mean cellular volume, distribution of cell size, or morphologic appearance of human red blood cells were observed. No evidence for decreased deformability of human red blood cells exposed to DGBE or BEAA was found. In conclusion, BEAA has weak hemolytic activity and sub-hemolytic effects in vitro on rat erythrocytes, which is consistent with the finding of mild hemolysis when the parent compound DGBE is administered to rats by gavage. The absence of hemolysis or sub-hemolytic damage when human red blood cells were exposed to BEAA or DGBE in vitro indicates that it is unlikely that hemolysis will occur as a result of human exposure to DGBE.

  2. Bioaugmentation for treatment of full-scale diethylene glycol monobutyl ether (DGBE) wastewater by Serratia sp. BDG-2.

    Science.gov (United States)

    Chen, Maoxia; Fan, Rong; Zou, Wenhui; Zhou, Houzhen; Tan, Zhouliang; Li, Xudong

    2016-05-15

    A novel bacterial strain BDG-2 was isolated and used to augment the treatment of silicon plate manufacturing wastewater that primarily contains diethylene glycol monobutyl ether (DGBE). BDG-2 was identified as a Serratia sp. Under the optimal conditions of 30 °C, pH 9 and DGBE concentration of 2000 mg L(-1), the bioaugmented system achieved 96.92% COD removal after 39.9h. Laboratory-scale technological matching results indicated that, in a biofilm process with the addition of 100 mg L(-1) ammonia and 5 mg L(-1) total phosphorus (TP), 70.61% COD removal efficiency could be obtained in 46 h. Addition of polyaluminium chloride (PAC) to the reactors during the suspension process enhanced the settleability of the BDG-2 culture. Subsequently, successful start-up and stable operation of a full-scale bioaugmented treatment facilities were accomplished, and the volumetric organic load in the plug-flow aeration tank was 2.17 ± 0.81 kg m(-3) d(-1). The effluent COD of the facilities was stable and always below 100 mg L(-1). Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Diglycolic acid, the toxic metabolite of diethylene glycol, chelates calcium and produces renal mitochondrial dysfunction in vitro.

    Science.gov (United States)

    Conrad, Taylor; Landry, Greg M; Aw, Tak Yee; Nichols, Royce; McMartin, Kenneth E

    2016-07-01

    Diethylene glycol (DEG) has caused many cases of acute kidney injury and deaths worldwide. Diglycolic acid (DGA) is the metabolite responsible for the renal toxicity, but its toxic mechanism remains unclear. To characterize the mitochondrial dysfunction produced from DGA by examining several mitochondrial processes potentially contributing to renal cell toxicity. The effect of DGA on mitochondrial membrane potential was examined in normal human proximal tubule (HPT) cells. Isolated rat kidney mitochondria were used to assess the effects of DGA on mitochondrial function, including respiratory parameters (States 3 and 4), electron transport chain complex activities and calcium-induced opening of the mitochondrial permeability transition pore. DGA was compared with ethylene glycol tetraacetic acid (EGTA) to determine calcium chelating ability. DGA cytotoxicity was assessed using lactate dehydrogenase leakage from cultured proximal tubule cells. DGA decreased the mitochondrial membrane potential in HPT cells. In rat kidney mitochondria, DGA decreased State 3 respiration, but did not affect State 4 respiration or the ADP/O ratio. DGA reduced glutamate/malate respiration at lower DGA concentrations (0.5 mmol/L) than succinate respiration (100 mmol/L). DGA inhibited Complex II activity without altering Complex I, III or IV activities. DGA blocked calcium-induced mitochondrial swelling, indicating inhibition of the calcium-dependent mitochondrial permeability transition. DGA and EGTA reduced the free calcium concentration in solution in an equimolar manner. DGA toxicity and mitochondrial dysfunction occurred as similar concentrations. DGA inhibited mitochondrial respiration, but without uncoupling oxidative phosphorylation. The more potent effect of DGA on glutamate/malate respiration and the inhibition of mitochondrial swelling was likely due to its chelation of calcium. These results indicate that DGA produces mitochondrial dysfunction by chelating calcium to

  4. Effect of Diethylene Glycol Monomethyl Ether (DiEGME) and Triethylene Glycol Monomethyl Ether (TriEGME) on Microbial Contaminants in Aviation Fuel

    Science.gov (United States)

    2010-03-01

    West Conshohocken, PA. 2003. 28. Prescott , L. M.; Harley, J. P.; Klein, D. A. Microbiology . Fifth edition. McGraw Hill: New York, 2002. p. 118. 29...Microbiol. Rev. 1995;59:143-169. 30. Prescott , L. M.; Harley, J. P.; Klein, D. A. Microbiology . Fifth edition. McGraw Hill: New York, 2002. p. 246. 31...unlimited. 13. SUPPLEMENTARY NOTES PAO Case Number: 88ABW-2009-3882, Clearance Date: 09 September 2009. Report contains color. This microbiological

  5. Food and pharmaceuticals. Lessons learned from global contaminations with melamine/cyanuric acid and diethylene glycol.

    Science.gov (United States)

    Brown, C A; Brown, S A

    2010-01-01

    Recently, contamination of pharmaceuticals with diethylene glycol (DEG) and food with melamine and cyanuric acid has demonstrated the impact of globalization on drug and food safety. By examining the details of these outbreaks, some important lessons can be learned. Toxicoses from contaminated food and drugs are often identified only when large numbers of people or animals are affected and numerous deaths result. Populations most at risk are those repeatedly exposed to a single product. Toxicoses may be complex, involving synergism among relatively nontoxic co-contaminants. Although some contamination may occur inadvertently, practices of deliberate contamination of food and drug ingredients may be widespread but escape detection in poorly regulated markets. If this deliberate contamination is motivated by personal financial gain, it is likely to recur and be concealed. The contaminated raw material produced in a poorly regulated market may cross national boundaries and be used in manufacturing processes for numerous products, sometimes in more well-regulated markets. Once in the production chain, contaminated raw materials may be widely disseminated. It is not clear that regulatory organizations have the capacity to identify significant contaminations despite their best efforts. The veterinary and medical communities, in cooperation with regulatory agencies, should develop cooperative programs designed to detect and limit these global outbreaks. Although addressing regional or national outbreaks remains an important role for regulatory agencies, the veterinary and medical communities must develop proactive global approaches to this global problem.

  6. In vitro and in vivo genetic toxicology studies with diethylene glycol monohexyl ether.

    Science.gov (United States)

    Ballantyne, B; Vergnes, J S

    2001-01-01

    Diethylene glycol monohexyl ether (DEGHE; CAS no. 112-59-4), an industrial chemical, was investigated for the potential to produce genotoxic effects using three in vitro and two in vivo tests. No mutagenic activity occurred in either the absence or presence of metabolic activation with a Salmonella typhimurium reverse assay using strains TA98, TA100, TA1535, TA1537 and TA1538. In a Chinese hamster ovary (CHO) forward gene mutation test (HGPRT locus) there was an increase in the mutation frequencies, which were relatively small compared with the solvent control values, somewhat inconsistent between duplicate cultures and occurred particularly in the presence of metabolic activation. Linear regression analysis indicated a marginally significant trend for dosage versus mutation frequency, suggesting that DEGHE was weakly positive in this test. A sister chromatid exchange test in CHO cells showed no significant dosage-related effects in the presence or absence of metabolic activation. A peripheral blood micronucleus test in mice by dosing with an intraperitoneal injection of DEGHE did not show any potential for DEGHE to increase the incidence of micronucleated polychromatophilic erythrocytes. In a first femoral bone marrow chromosome aberration test in the rat by peroral dosing, DEGHE did not cause any increase in aberrations for 12-h and 24-h samples with males and females or with females at 48-h sampling. However, with males at 48 h the two lowest doses showed an increased number of aberrations, but not at the high doses. A repeat study in males with a larger number of doses and 24-h and 48-h samples did not replicate this finding. It is concluded that DEGHE may have limited weak mutagenic activity in vitro but is devoid of clastogenic potential. Copyright 2001 John Wiley & Sons, Ltd.

  7. Densities, Ultrasonic Speeds, and Excess Properties of Binary Mixtures of Diethylene Glycol with 1-Butanol, 2-Butanol, and 1,4-Butanediol at Different Temperatures

    Science.gov (United States)

    Ali, Anwar; Ansari, Sana; Uzair, Sahar; Tasneem, Shadma; Nabi, Firdosa

    2015-11-01

    Densities ρ and ultrasonic speeds u for pure diethylene glycol, 1-butanol, 2-butanol, and 1,4-butanediol and for their binary mixtures over the entire composition range were measured at 298.15 K, 303.15 K, 308.15 K, and 313.15 K. Using these data, the excess molar volumes, VE_m, deviations in isentropic compressibilities, {\\varDelta }ks, apparent molar volumes, V_{φi} , partial molar volumes, overline{V}_{m,i} , and excess partial molar volumes, overline{V}_{m,i}^E , have been calculated over the entire composition range, and also the excess partial molar volumes of the components at infinite dilution, overline{V}_{m,i}^{E,infty } have been calculated. The excess functions have been correlated using the Redlich-Kister equation at different temperatures. The variations of these derived parameters with composition and temperature are presented graphically.

  8. Fixation of radioactive elements on diethylene-glycol-succinate and its use for the determination of gross activity in urine

    International Nuclear Information System (INIS)

    Hafez, M.B.; Nazmy, A.F.; Eldesoky, M.M.

    1977-01-01

    Studies are given to illustrate surface adsorption of 144 Ce, 90 Sr, 232 Th, 235 U, 239 Pu and 241 Am on diethylene-glycol-succinate, DGS. Adsorption of these elements was studied from aqueous and phosphate solutions. A procedure for the determination of gross activity in urine, based on surface adsorption on DGS is described. Groups of nine solutions, in 30 ml 1N HNO 3 , were spiked with the investigated radioactive elements (approximately 5 pCi). The pH of the solutions was adjusted to a range of 0.5 to 10 using ammonia. Each solution was passed through the column and the fixed activity was removed from the column with 50 ml of 4N HCl, followed by two washes with 10 ml of distilled water. The acid solution was evaporated to dryness for alpha- or beta-counting. The percentage fixation was determined by comparison with a standard source of the same spiked element. Adsorption was found to depend on pH, age of the tracer solution, hydrolysis state of the radioelement and the ionic strength of the solution. The adsorption phenomenon which was particularly well observed could be used as a separation stage in a method for the determination of gross activity in urine. Recoveries of about 85% were obtained. (T.G.)

  9. Biological effects of diethylene glycol (DEG) and produced waters (PWs) released from offshore activities: a multi-biomarker approach with the sea bass Dicentrarchus labrax.

    Science.gov (United States)

    Stefania, Gorbi; Maura, Benedetti; Claudia, Virno Lamberti; Barbara, Pisanelli; Ginevra, Moltedo; Francesco, Regoli

    2009-11-01

    Diethylene glycol (DEG) is largely used during oil and gas exploitation by offshore platforms. The aim of this work was to investigate if this compound induces direct molecular/cellular effects in marine organisms, or indirectly modulate those of produced waters (PWs). Sea bass (Dicentrarchus labrax) were exposed to DEG dosed alone or in combination with PWs from an Adriatic platform. A wide array of analysed biomarkers included cytochrome P450-dependent enzymatic activity, bile metabolites, glutathione S-transferases, acetylcholinesterase, peroxisomal proliferation, antioxidant defences (catalase, glutathione reductase, glutathione peroxidases, glutathione), total oxyradical scavenging capacity, malondialdehyde and DNA integrity (single strand breaks and frequency of micronuclei). Results did not reveal marked effects of DEG, while PWs influenced the biotransformation system, the oxidative status and the onset of genotoxic damages. Co-exposures caused only limited differences of biomarker responses at some experimental conditions, overall suggesting a limited biological impact of DEG at levels normally deriving from offshore activities.

  10. Activity coefficients at infinite dilution of hydrocarbons in glycols: Experimental data and thermodynamic modeling with the GCA-EoS

    International Nuclear Information System (INIS)

    González Prieto, Mariana; Williams-Wynn, Mark D.; Bahadur, Indra; Sánchez, Francisco A.; Mohammadi, Amir H.

    2017-01-01

    Highlights: • Experimental infinite dilution activity coefficients of hydrocarbons in glycols. • Inverse gas-liquid chromatography technique. • Solutes investigated include n-alkanes, 1-alkenes, and cycloalkanes. • Highly non-ideal systems are modeled with the GCA-EoS. - Abstract: The infinite dilution activity coefficients for 12 non-polar hydrocarbon solutes in the solvents, monoethylene and diethylene glycol, were measured using the gas-liquid chromatography technique. Pre-saturation of the carrier gas was required to avoid solvent loss from the chromatographic column during the measurements that were carried out at T = (303.15, 313.15 and 323.15) K for monoethylene glycol and at T = (304.15, 313.15 and 323.15) K for diethylene glycol. The solutes investigated include n-alkanes, 1-alkenes, and cycloalkanes. The new data are compared with the highly scattered data that is available in the open literature. Finally, these highly non-ideal systems are modeled with the GCA-EoS.

  11. Bioaugmentation for treatment of full-scale diethylene glycol monobutyl ether (DGBE) wastewater by Serratia sp. BDG-2

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Maoxia; Fan, Rong; Zou, Wenhui; Zhou, Houzhen [Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041 (China); Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041 (China); Tan, Zhouliang, E-mail: tanzhl@cib.ac.cn [Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041 (China); Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041 (China); Li, Xudong [Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041 (China); Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041 (China)

    2016-05-15

    Highlights: • BDG-2 grew well at 30 °C, pH 9 and 2000 mg L{sup −1} of initial DGBE concentration. • It could obtain 96.92% of COD (generated by DGBE) removal efficiency in 39.9 h. • The technological matching was made based on the characteristics of DGBE wastewater and BDG-2. • Stable operation of bio-augmentation treatment facilities was finally accomplished. - Abstract: A novel bacterial strain BDG-2 was isolated and used to augment the treatment of silicon plate manufacturing wastewater that primarily contains diethylene glycol monobutyl ether (DGBE). BDG-2 was identified as a Serratia sp. Under the optimal conditions of 30 °C, pH 9 and DGBE concentration of 2000 mg L{sup −1}, the bioaugmented system achieved 96.92% COD removal after 39.9 h. Laboratory-scale technological matching results indicated that, in a biofilm process with the addition of 100 mg L{sup −1} ammonia and 5 mg L{sup −1} total phosphorus (TP), 70.61% COD removal efficiency could be obtained in 46 h. Addition of polyaluminium chloride (PAC) to the reactors during the suspension process enhanced the settleability of the BDG-2 culture. Subsequently, successful start-up and stable operation of a full-scale bioaugmented treatment facilities were accomplished, and the volumetric organic load in the plug-flow aeration tank was 2.17 ± 0.81 kg m{sup −3} d{sup −1}. The effluent COD of the facilities was stable and always below 100 mg L{sup −1}.

  12. Bioaugmentation for treatment of full-scale diethylene glycol monobutyl ether (DGBE) wastewater by Serratia sp. BDG-2

    International Nuclear Information System (INIS)

    Chen, Maoxia; Fan, Rong; Zou, Wenhui; Zhou, Houzhen; Tan, Zhouliang; Li, Xudong

    2016-01-01

    Highlights: • BDG-2 grew well at 30 °C, pH 9 and 2000 mg L"−"1 of initial DGBE concentration. • It could obtain 96.92% of COD (generated by DGBE) removal efficiency in 39.9 h. • The technological matching was made based on the characteristics of DGBE wastewater and BDG-2. • Stable operation of bio-augmentation treatment facilities was finally accomplished. - Abstract: A novel bacterial strain BDG-2 was isolated and used to augment the treatment of silicon plate manufacturing wastewater that primarily contains diethylene glycol monobutyl ether (DGBE). BDG-2 was identified as a Serratia sp. Under the optimal conditions of 30 °C, pH 9 and DGBE concentration of 2000 mg L"−"1, the bioaugmented system achieved 96.92% COD removal after 39.9 h. Laboratory-scale technological matching results indicated that, in a biofilm process with the addition of 100 mg L"−"1 ammonia and 5 mg L"−"1 total phosphorus (TP), 70.61% COD removal efficiency could be obtained in 46 h. Addition of polyaluminium chloride (PAC) to the reactors during the suspension process enhanced the settleability of the BDG-2 culture. Subsequently, successful start-up and stable operation of a full-scale bioaugmented treatment facilities were accomplished, and the volumetric organic load in the plug-flow aeration tank was 2.17 ± 0.81 kg m"−"3 d"−"1. The effluent COD of the facilities was stable and always below 100 mg L"−"1.

  13. Solvent effect on the extraction and transport of lithium ions by polyethylene glycols

    International Nuclear Information System (INIS)

    Mishra, D; Sharma, U

    1999-01-01

    Extraction of lithium picrate, 2,4-dinitrophenolate and 2-nitrophenolate and their transport through membranes by di-, tri- and tetraethylene glycols as carriers are studied. Organic solvents considered as extractants and liquid membranes in terms of lithium ions extraction and transfer are arranged in the following series: methylene chloride ≥ dichloroethane ≥ chloroform ≥ carbon tetrachloride. Diethylene glycol proved the most effective solvent for lithium ions extraction and transport [ru

  14. Biological effects of diethylene glycol (DEG) and produced waters (PWs) released from offshore activities: A multi-biomarker approach with the sea bass Dicentrarchus labrax

    Energy Technology Data Exchange (ETDEWEB)

    Stefania, Gorbi; Maura, Benedetti [Dipartimento di Biochimica, Biologia e Genetica, Universita Politecnica delle Marche, Via Ranieri, Monte d' Ago, 60121 Ancona (Italy); Claudia, Virno Lamberti [Istituto Superiore per la Ricerca e la Protezione Ambientale (ISPRA), Via di Casalotti 300 Roma (Italy); Barbara, Pisanelli [Dipartimento di Biochimica, Biologia e Genetica, Universita Politecnica delle Marche, Via Ranieri, Monte d' Ago, 60121 Ancona (Italy); Ginevra, Moltedo [Istituto Superiore per la Ricerca e la Protezione Ambientale (ISPRA), Via di Casalotti 300 Roma (Italy); Francesco, Regoli, E-mail: f.regoli@univpm.i [Dipartimento di Biochimica, Biologia e Genetica, Universita Politecnica delle Marche, Via Ranieri, Monte d' Ago, 60121 Ancona (Italy)

    2009-11-15

    Diethylene glycol (DEG) is largely used during oil and gas exploitation by offshore platforms. The aim of this work was to investigate if this compound induces direct molecular/cellular effects in marine organisms, or indirectly modulate those of produced waters (PWs). Sea bass (Dicentrarchus labrax) were exposed to DEG dosed alone or in combination with PWs from an Adriatic platform. A wide array of analysed biomarkers included cytochrome P450-dependent enzymatic activity, bile metabolites, glutathione S-transferases, acetylcholinesterase, peroxisomal proliferation, antioxidant defences (catalase, glutathione reductase, glutathione peroxidases, glutathione), total oxyradical scavenging capacity, malondialdehyde and DNA integrity (single strand breaks and frequency of micronuclei). Results did not reveal marked effects of DEG, while PWs influenced the biotransformation system, the oxidative status and the onset of genotoxic damages. Co-exposures caused only limited differences of biomarker responses at some experimental conditions, overall suggesting a limited biological impact of DEG at levels normally deriving from offshore activities. - A biological risk for marine organisms can be excluded for DEG concentrations as those normally associated to produced waters discharged in the Adriatic Sea.

  15. Biological effects of diethylene glycol (DEG) and produced waters (PWs) released from offshore activities: A multi-biomarker approach with the sea bass Dicentrarchus labrax

    International Nuclear Information System (INIS)

    Stefania, Gorbi; Maura, Benedetti; Claudia, Virno Lamberti; Barbara, Pisanelli; Ginevra, Moltedo; Francesco, Regoli

    2009-01-01

    Diethylene glycol (DEG) is largely used during oil and gas exploitation by offshore platforms. The aim of this work was to investigate if this compound induces direct molecular/cellular effects in marine organisms, or indirectly modulate those of produced waters (PWs). Sea bass (Dicentrarchus labrax) were exposed to DEG dosed alone or in combination with PWs from an Adriatic platform. A wide array of analysed biomarkers included cytochrome P450-dependent enzymatic activity, bile metabolites, glutathione S-transferases, acetylcholinesterase, peroxisomal proliferation, antioxidant defences (catalase, glutathione reductase, glutathione peroxidases, glutathione), total oxyradical scavenging capacity, malondialdehyde and DNA integrity (single strand breaks and frequency of micronuclei). Results did not reveal marked effects of DEG, while PWs influenced the biotransformation system, the oxidative status and the onset of genotoxic damages. Co-exposures caused only limited differences of biomarker responses at some experimental conditions, overall suggesting a limited biological impact of DEG at levels normally deriving from offshore activities. - A biological risk for marine organisms can be excluded for DEG concentrations as those normally associated to produced waters discharged in the Adriatic Sea.

  16. Characterizing concentrations of diethylene glycol and suspected metabolites in human serum, urine, and cerebrospinal fluid samples from the Panama DEG mass poisoning.

    Science.gov (United States)

    Schier, J G; Hunt, D R; Perala, A; McMartin, K E; Bartels, M J; Lewis, L S; McGeehin, M A; Flanders, W D

    2013-12-01

    Diethylene glycol (DEG) mass poisoning is a persistent public health problem. Unfortunately, there are no human biological data on DEG and its suspected metabolites in poisoning. If present and associated with poisoning, the evidence for use of traditional therapies such as fomepizole and/or hemodialysis would be much stronger. To characterize DEG and its metabolites in stored serum, urine, and cerebrospinal fluid (CSF) specimens obtained from human DEG poisoning victims enrolled in a 2006 case-control study. In the 2006 study, biological samples from persons enrolled in a case-control study (42 cases with new-onset, unexplained AKI and 140 age-, sex-, and admission date-matched controls without AKI) were collected and shipped to the Centers for Disease Control and Prevention (CDC) in Atlanta for various analyses and were then frozen in storage. For this study, when sufficient volume of the original specimen remained, the following analytes were quantitatively measured in serum, urine, and CSF: DEG, 2-hydroxyethoxyacetic acid (HEAA), diglycolic acid, ethylene glycol, glycolic acid, and oxalic acid. Analytes were measured using low resolution GC/MS, descriptive statistics calculated and case results compared with controls when appropriate. Specimens were de-identified so previously collected demographic, exposure, and health data were not available. The Wilcoxon Rank Sum test (with exact p-values) and bivariable exact logistic regression were used in SAS v9.2 for data analysis. The following samples were analyzed: serum, 20 case, and 20 controls; urine, 11 case and 22 controls; and CSF, 11 samples from 10 cases and no controls. Diglycolic acid was detected in all case serum samples (median, 40.7 mcg/mL; range, 22.6-75.2) and no controls, and in all case urine samples (median, 28.7 mcg/mL; range, 14-118.4) and only five (23%) controls (median, urine diglycolic acid (both OR > 999; exact p sample results were excluded and two from the same case were averaged, yielding

  17. Thermodynamic activity of saturated solutions of CsClO4 in ethylene glycol and its analogs of the HOCH2(CH2CH2O)nCH2OH series

    International Nuclear Information System (INIS)

    Krasnoperova, A.P.; Ivanova, E.F.; Kijko, S.M.; Yukhno, G.D.

    1997-01-01

    Solubility of CsClO 4 in ethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, polyethylene glycols with molar mass 300 and 400 in the temperature range of 273.15-318.15 K has been ascertained by the method of radioactive indicators. Dependence of saturated solutions activity on temperature, dielectric permittivity and the number of (CH 2 CH 2 O) ether groups in glycols is discussed

  18. Liquid Quinones for Solvent-Free Redox Flow Batteries.

    Science.gov (United States)

    Shimizu, Akihiro; Takenaka, Keisuke; Handa, Naoyuki; Nokami, Toshiki; Itoh, Toshiyuki; Yoshida, Jun-Ichi

    2017-11-01

    Liquid benzoquinone and naphthoquinone having diethylene glycol monomethyl ether groups are designed and synthesized as redox active materials that dissolve supporting electrolytes. The Li-ion batteries based on the liquid quinones using LiBF 4 /PC show good performance in terms of voltage, capacity, energy efficiency, and cyclability in both static and flow modes. A battery is constructed without using intentionally added organic solvent, and its high energy density (264 W h L -1 ) demonstrates the potential of solvent-free organic redox flow batteries using liquid active materials. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. 40 CFR Appendix Vi to Part 265 - Compounds With Henry's Law Constant Less Than 0.1 Y/X

    Science.gov (United States)

    2010-07-01

    ... Neopentyl glycol (dimethylpropane) 126-30-7 Niacinamide 98-92-0 o-Nitroaniline 88-74-4 Nitroglycerin 55-63-0... Diethanolamine 111-42-2 N,N-Diethylaniline 91-66-7 Diethylene glycol 111-46-6 Diethylene glycol dimethyl ether (dimethyl Carbitol) 111-96-6 Diethylene glycol monobutyl ether (butyl Carbitol) 112-34-5 Diethylene glycol...

  20. Diglycolic acid is the nephrotoxic metabolite in diethylene glycol poisoning inducing necrosis in human proximal tubule cells in vitro.

    Science.gov (United States)

    Landry, Greg M; Martin, Sarah; McMartin, Kenneth E

    2011-11-01

    Diethylene glycol (DEG), a solvent and chemical intermediate, can produce an acute toxic syndrome, the hallmark of which is acute renal failure due to cortical tubular degeneration and proximal tubular necrosis. DEG is metabolized to two primary metabolites, 2-hydroxyethoxyacetic acid (2-HEAA) and diglycolic acid (DGA), which are believed to be the proximate toxicants. The precise mechanism of toxicity has yet to be elucidated, so these studies were designed to determine which metabolite was responsible for the proximal tubule cell death. Human proximal tubule (HPT) cells in culture, obtained from normal cortical tissue and passaged 3-6 times, were incubated with increasing concentrations of DEG, 2-HEAA, or DGA separately and in combination for 48 h at pH 6 or 7.4, and various parameters of necrotic and apoptotic cell death were measured. DEG and 2-HEAA did not produce any cell death. DGA produced dose-dependent necrosis at concentrations above 25 mmol/l. DGA did not affect caspase-3 activity and increased annexin V staining only in propidium iodide-stained cells. Hence, DGA induced necrosis, not apoptosis, as corroborated by severe depletion of cellular adenosine triphosphate levels. DGA is structurally similar to citric acid cycle intermediates that are taken up by specific transporters in kidney cells. HPT cells, incubated with N-(p-amylcinnamoyl)anthranilic acid, a sodium dicarboxylate-1 transporter inhibitor showed significantly decreased cell death compared with DGA alone. These studies demonstrate that DGA is the toxic metabolite responsible for DEG-induced proximal tubular necrosis and suggest a possible transporter-mediated uptake of DGA leading to toxic accumulation and cellular dysfunction.

  1. Highly Selective Separation of Carbon Dioxide from Nitrogen and Methane by Nitrile/Glycol-Difunctionalized Ionic Liquids in Supported Ionic Liquid Membranes (SILMs)

    OpenAIRE

    Hojniak, Sandra D.; Silverwood, Ian P.; Laeeq Khan, Asim; Vankelecom, Ivo F.J.; Dehaen, Wim; Kazarian, Sergei G.; Binnemans, Koen

    2014-01-01

    Novel difunctionalized ionic liquids (ILs) containing a triethylene glycol monomethyl ether chain and a nitrile group on a pyrrolidinium or imidazolium cation have been synthesized and incorporated into supported ionic liquid membranes (SILMs). These ILs exhibit ca. 2.3 times higher CO2/N2 and CO2/CH4 gas separation selectivities than analogous ILs functionalized only with a glycol chain. Although the glycol moiety ensures room temperature liquidity of the pyrrolidinium and imidazolium ILs, t...

  2. Pre-existing liver cirrhosis reduced the toxic effect of diethylene glycol in a rat model due to the impaired hepatic alcohol dehydrogenase.

    Science.gov (United States)

    Ming Xing Huang; Xiao Mou Peng; Lin Gu; Gui Hua Chen

    2011-09-01

    Hepatic metabolizing enzymes of diethylene glycol (DEG) are impaired in liver diseases. Thus, the purpose of this study was to increase our understandings in metabolism and toxicology of DEG by clarifying the influences of pre-existing liver disease. Forty Sprague-Dawley rats with carbon tetrachloride-induced liver cirrhosis and 20 control rats were intraperitoneally administered a single dose of DEG, and randomly killed 1, 2, 5 or 8 days following exposure. Compared with control rats, the model rats had significantly higher blood CO(2)-combining power, lower blood urine nitrogen, serum creatinine and alanine aminotransferase levels on the second day and a lower mortality rate on the eighth day following DEG exposure. Enlargements of liver and kidneys and degeneration and necrosis of hepatocytes and renal tubules in the model rats was also less serious than in the control rats. Urine DEG levels were significantly higher on the first day in the model rats than the control rats (46.65 ± 8.79 mg vs 18.88 ± 6.18 mg, p activity in the model rats was significantly lower than that in the control rats, which was positively related to renal damage. The toxic effects of DEG in rats with pre-existing liver cirrhosis are significantly reduced, which may be due to the decreased hepatic ADH activity. It suggests that the metabolite of ADH is responsible for DEG poisoning, and this toxic metabolite may mainly originate in the liver.

  3. A cohesion/tension mechanism explains the gating of water channels (aquaporins) in Chara internodes by high concentration.

    Science.gov (United States)

    Ye, Qing; Wiera, Boguslaw; Steudle, Ernst

    2004-02-01

    Isolated internodes of Chara corallina have been used to study the gating of aquaporins (water channels) in the presence of high concentrations of osmotic solutes of different size (molecular weight). Osmolytes were acetone and three glycol ethers: ethylene glycol monomethyl ether (EGMME), diethylene glycol monomethyl ether (DEGMME), and triethylene glycol monoethyl ether (TEGMEE). The 'osmotic efficiency' of osmolytes was quite different. Their reflection coefficients ranged between 0.15 (acetone), 0.59 (EGMME), 0.78 (DEGMME), and 0.80 (TEGMEE). Bulk water permeability (Lp) and diffusive permeabilities (Ps) of heavy water (HDO), hydrogen peroxide (H2O2), acetone, and glycol ethers (EGMME, DEGMME, and TEGMEE) were measured using a cell pressure probe. Cells were treated with different concentrations of osmotic solutes of up to 800 mM ( approximately 2.0 MPa of osmotic pressure). Inhibition of aquaporin activity increased with both increasing concentration and size of solutes (reflection coefficients). As cell Lp decreased, Ps increased, indicating that water and solutes used different passages across the plasma membrane. Similar to earlier findings of an osmotic gating of ion channels, a cohesion/tension model of the gating of water channels in Chara internodes by high concentration is proposed. According to the model, tensions (negative pressures) within water channels affected the open/closed state by changing the free energy between states and favoured a distorted/collapsed rather than the open state. They should have differed depending on the concentration and size of solutes that are more or less excluded from aquaporins. The bigger the solute, the lower was the concentration required to induce a reversible closure of aquaporins, as predicted by the model.

  4. Thermophysical properties of ionic liquid {1-butyl-3-methylimidazolium bromide [bmim][Br] in alkoxyalkanols + water} mixtures at different temperatures

    International Nuclear Information System (INIS)

    Pal, Amalendu; Kumar, Harsh; Kumar, Bhupinder; Sharma, Pooja; Kaur, Kirtanjot

    2013-01-01

    Highlights: ► Densities and speeds of sound of alkoxyalkanols in [bmim][Br]. ► Synthesis of room temperature ionic liquid [bmim][Br]. ► Partial molar volumes and compressibility of transfer. ► Apparent molar expansivities and the Hepler’s constant were calculated. ► Solute–solute and solute–solvent interactions and the structural changes of the solutes. - Abstract: The interactions of alkoxyalkanols with the ionic liquid 1-butyl-3-methylimidazolium bromide [bmim][Br] as a function of temperature were investigated by combination of volumetric and acoustic methods. The density, ρ, and speed of sound, u, of ethylene glycol monomethyl ether, diethylene glycol monomethyl ether, and triethylene glycol monomethyl ether (0.00–1.01 mol·kg −1 ) in aqueous 1-butyl-3-methylimidazolium bromide solutions ranging from pure water to 0.29 mass% of ionic liquid have been measured at T = (288.15, 298.15 and 308.15) K and atmospheric pressure. The apparent molar volume (V φ ) and adiabatic compressibility (K φ,S ) of alkoxyalkanols in aqueous ionic liquid solution were determined at the measured temperatures. The partial molar volume (V φ 0 ) and partial molar adiabatic compressibility (K φ 0 ) of alkoxyalkanols at infinite dilution were evaluated. Transfer volumes (ΔV φ 0 ) and transfer adiabatic compressibility (ΔK φ 0 ) at infinite dilution from water to aqueous ionic liquid solution were also calculated. The temperature dependence of the apparent molar volume was used to calculate apparent molar expansivity (φ E 0 ) and the Hepler’s constant values, (∂ 2 V φ 0 /∂T 2 ). The results were explained on the basis of competing patterns of interactions of co-solvent and the solute.

  5. A simple diethylene glycol-assisted synthesis and high rate performance of Li3V2(PO4)3/C composites as cathode material for Li-ion batteries

    International Nuclear Information System (INIS)

    Liu, Qianjin; Yang, Fei; Wang, Shuping; Feng, Lijun; Zhang, Wenjing; Wei, Huiying

    2013-01-01

    Spherical Li 3 V 2 (PO 4 ) 3 /C(LVP/C) composites were synthesized by sol–gel method using diethylene glycol as the spheroidizing medium and glucose as the carbon source. The crystal structure, morphology, the lithium diffusion behavior and high rates capacities were investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS) and electrochemical methods. Results indicated that the sphere-like LVP/C sample prepared with 10 wt% glucose has a uniform carbon layer about 10 nm on the surfaces, and presented a high discharge capacity of 131.8, 126.5, 102.4, 82.8 mAh g −1 at 0.1, 2, 10, 20 C between 3.0 and 4.3 V with no obvious capacity fading during 200 cycles at the rate of 2 C. While in the voltage region of 3.0–4.8 V, it owned the largest reversible capacity of 169.4, 139.8, 121.7 mAh g −1 at 0.5, 1, 5 C, respectively. Its capacity retained 79.9% after 200 cycles at 2 C, and the apparent Li-ion diffusion coefficient was calculated to be 3.37 × 10 −9 cm 2 s −1

  6. An X-band Co2+ EPR study of Zn1-xCoxO (x=0.005-0.1) nanoparticles prepared by chemical hydrolysis methods using diethylene glycol and denaturated alcohol at 5 K

    Science.gov (United States)

    Misra, Sushil K.; Andronenko, S. I.; Srinivasa Rao, S.; Chess, Jordan; Punnoose, A.

    2015-11-01

    EPR investigations on two types of dilute magnetic semiconductor (DMS) ZnO nanoparticles doped with 0.5-10% Co2+ ions, prepared by two chemical hydrolysis methods, using: (i) diethylene glycol ((CH2CH2OH)2O) (NC-rod-like samples), and (ii) denatured ethanol (CH3CH2OH) solutions (QC-spherical samples), were carried out at X-band (9.5 GHz) at 5 K. The analysis of EPR data for NC samples revealed the presence of several types of EPR lines: (i) two types, intense and weak, of high-spin Co2+ ions in the samples with Co concentration >0.5%; (ii) surface oxygen vacancies, and (iii) a ferromagnetic resonance (FMR) line. QC samples exhibit an intense FMR line and an EPR line due to high-spin Co2+ ions. FMR line is more intense, than the corresponding line exhibited by NC samples. These EPR spectra varied for sample with different doping concentrations. The magnetic states of these samples as revealed by EPR spectra, as well as the origin of ferromagnetism DMS samples are discussed.

  7. Preparation and evaluation of bioadhesive benzocaine gels for enhanced local anesthetic effects.

    Science.gov (United States)

    Shin, Sang-Chul; Lee, Jin-Woo; Yang, Kyu-Ho; Lee, Chi H

    2003-07-09

    This study was performed to develop new enhanced anesthetic benzocaine gels with a suitable bioadhesive property for local anesthetic effects. As the concentration of benzocaine in the HPMC gels increased up to 15%, the permeation of drug increased, thereafter slightly increased. The activation energy of drug permeation was 11.29 kcal/mol. Bioadhesive forces were also measured. The permeation rate of drug through the skin was studied using various enhancers, such as glycols, non-ionic surfactants or fatty acids. Among the enhancers used, diethylene glycol showed the most enhancing effects. Analgesic activity was examined using a tail-flick analgesimeter. According to the rat tail-flick test, the value of AUEC (0 - 360min) of 15% benzocaine gels containing diethylene glycol was 4662 +/- 200 s min, while that of gels without diethylene glycol was 3353 +/- 132 s min, showing about 1.39-fold increase in analgesic activity. Fifteen percentage of benzocaine gels containing diethylene glycol showed the most enhanced, prolonged analgesic effects, showing the maximum anesthetic effects at 240 min, while the gels without diethylene glycol showed maximum effect at 180 min.

  8. Activity of alkanediol alkanoates against pathogenic plant fungi Rhizoctonia solani and Sclerotium rolfsii.

    Science.gov (United States)

    Shukla, Paraj; Walia, Suresh; Ahluwalia, Vivek; Parmar, Balraj S; Nair, Muraleedharan G

    2012-09-01

    Thirty known dialkanoates of ethylene, propylene and diethylene glycols were synthesized by reacting the glycols with acyl chlorides and their structures confirmed by IR, NMR and mass spectral analyses. They exhibited significant antifungal activity against two phytopathogenic fungi Rhizoctonia solani Kuehn and Sclerotium rolfsii Sacc in a dose dependent manner. Propylene glycol dipentanoate was the most active against R. solani. followed by diethylene glycol dibutanoate and ethylene glycol dibutanoate. Against S. rolfsii ethylene glycol diheptanoate was found to be most active followed by diethylene glycol diisobutanoate As compared to the standard reference benomyl (EC50 5.16 microg/mL), the potential alkanediol dialkanoates showed EC50 in the range of 33 - 60 microg/mL.

  9. Gas chromatography-mass spectrometric determination of traces of ether-type icing inhibitors in free-floating fuels

    Energy Technology Data Exchange (ETDEWEB)

    Shin, H.S. [Dept. of Environmental Education, Kongju National Univ., Kongju (Korea); Abuse Drug Research Center, Kongju National Univ., Kongju (Korea); Ahn, H.S. [Dept. of Environmental Science, Kongju National Univ., Kongju (Korea)

    2004-08-01

    A gas chromatographic-mass spectrometric (GC-MS) assay method has been developed for simultaneous determination of ethylene glycol monomethyl ether (EGME) and diethylene glycol monomethly ether (DEGME) in spilled aviation fuels. Ethylene glycol monobutyl ether (EGBE) and ethylene glycol monoethyl ether (EGEE) were used as internal standard and surrogate, respectively. Sample preparation consisted of back-extraction with 7 mL dichloromethane after extraction of 50 mL of fuel with 2 mL of water. The extract was concentrated to dryness, dissolved in 100 {mu}L methanol, and analyzed by GC-MS with selected-ion monitoring (SIM). The peaks had good chromatographic properties on a semi-polar column. EGME and DEGME were extracted from fuel with high recovery of 75 and 85%, with small variations, respectively. Method detection limits were 1.3 and 1.0 ng mL{sup -1} for EGME and DEGME, respectively, in spilled fuel. DEGME was detected at concentrations of 22.6 and 19.7 ng mL{sup -1} in two samples from among five free-floating samples collected in a tunnel of a subway station located in the vicinity of an army base in Korea. The method might be useful for differentiation between the fuel-types kerosene and JP-8, which might originate from a storage tank. (orig.)

  10. Silver micro- and nano-particles obtained using different glycols as reducing agents and measurement of their conductivity

    Directory of Open Access Journals (Sweden)

    Moudir Naïma

    2016-01-01

    Full Text Available Synthesis of silver micro- and nano-particles for the preparation of conductive pastes for the metallization of solar cells was realized by chemical reduction in the presence and absence of poly(vinyl-pyrrolidone (PVP. Silver nitrate was used as a precursor in the presence of three polyols (ethylene glycol, di-ethylene glycol and propylene glycol tested at experimental temperatures near their boiling points. Six samples were obtained by this protocol. Three silver powders obtained without the use of PVP have a metallic luster appearance; however, the samples produced using an excess of PVP are in the form of stable colloidal dispersions of silver nano-particles. Structural characterizations of samples using a scanning electron microscope and X-ray diffractometer show a good crystallinity and spherical morphology. From DSC and TGA analyses, it was noticed that all the nano-silvers present in the colloidal suspension have the same thermal behavior.

  11. Degradation of the Alternaria mycotoxins alternariol, alternariol monomethyl ether, and altenuene upon bread baking.

    Science.gov (United States)

    Siegel, David; Feist, Michael; Proske, Matthias; Koch, Matthias; Nehls, Irene

    2010-09-08

    The stability of the Alternaria mycotoxins alternariol, alternariol monomethyl ether, and altenuene upon bread baking was investigated by model experiments using a spiked wholemeal wheat flour matrix. For alternariol and alternariol monomethyl ether, but not for altenuene, degradation products, formed through a sequence of hydrolysis and decarboxylation, could be identified in pilot studies. The simultaneous quantification of alternariol, alternariol monomethyl ether, altenuene, and the degradation products was achieved by a newly developed high performance liquid chromatography tandem mass spectrometry (HPLC-MS/MS) multimethod. The obtained quantitative data indicate that the Alternaria mycotoxins are barely degraded during wet baking, while significant degradation occurs upon dry baking, with the stability decreasing in the order alternariol monomethyl ether>alternariol>altenuene. The novel degradation products could be detected after the wet baking of flour spiked with alternariol and in a sample survey of 24 commercial cereal based baking products.

  12. Fabrication and properties of poly(polyethylene glycol n-alkyl ether vinyl ether)s as polymeric phase change materials

    International Nuclear Information System (INIS)

    Pei, Dong-fang; Chen, Sai; Li, Shu-qin; Shi, Hai-feng; Li, Wei; Li, Xuan; Zhang, Xing-xiang

    2016-01-01

    A series of poly(polyethylene glycol n-alkyl ether vinyl ether)s (PC m E n VEs) with various lengths of alkyl chains and polyethylene glycol spacers as side chain (m = 16,18; n = 1,2) were synthesized via two steps. First, monomers-ethylene glycol hexadecyl ether vinyl ether (C 16 E 1 VE), ethylene glycol octadecyl ether vinyl ether (C 18 E 1 VE), diethylene glycol hexadecyl ether vinyl ether (C 16 E 2 VE) and diethylene glycol octadecyl ether vinyl ether (C 18 E 2 VE) were synthesized by a modified Williamson etherification. Then, four new types of phase change materials were successfully fabricated by a living cationic polymerization. Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance spectroscopy (NMR), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and wide-angle X-ray diffraction (WAXD) were employed to characterize their composition, thermal properties and crystallization behavior. The results show that, the side chains of PC 16 E 1 VE, PC 18 E 1 VE, PC 16 E 2 VE and PC 18 E 2 VE are in a hexagonal lattice, and the onset temperatures for melting of PC 16 E 1 VE, PC 18 E 1 VE, PC 16 E 2 VE and PC 18 E 2 VE are 39.8 °C, 37.4 °C, 51.0 °C and 48.9 °C, the onset temperatures for crystallization are 36.7 °C, 35.2 °C, 47.4 °C and 46.3 °C, respectively. The enthalpy changes of PC 18 E 1 VE, PC 16 E 2 VE and PC 18 E 2 VE are higher than 100 J/g; on the contrary, it is 96 J/g for PC 16 E 1 VE. The enthalpy decrease is no more than 11% after 10 heating and cooling cycles. The 5 wt% mass loss temperatures of PC 18 E 1 VE, PC 16 E 2 VE and PC 18 E 2 VE are higher than 300 °C; on the contrary, it’s 283 °C for PC 16 E 1 VE. Using a weak polarity, flexible alkyl ether chain (-OCH 2 CH 2 O-) as a spacer to link the main chain and side chain is conducive to the crystallization of the alkyl side chain. These new phase change materials can be applied in heat storage, energy conservation, and environmental protection.

  13. Equilibrium and kinetics study on hexavalent chromium adsorption onto diethylene triamine grafted glycidyl methacrylate based copolymers

    International Nuclear Information System (INIS)

    Maksin, Danijela D.; Nastasović, Aleksandra B.; Milutinović-Nikolić, Aleksandra D.; Suručić, Ljiljana T.; Sandić, Zvjezdana P.; Hercigonja, Radmila V.; Onjia, Antonije E.

    2012-01-01

    Highlights: ► Methacrylate based copolymers grafted with diethylene triamine as Cr(VI) sorbents. ► Chemisorption and pore diffusion are characteristics of this sorption system. ► Langmuir isotherm provided best fit and maximum adsorption capacity was 143 mg g −1 . ► Cr(VI) sorption onto amino-functionalized copolymer was endothermic and spontaneous. ► A simple, efficient and cost-effective hexavalent chromium removal method. - Abstract: Two porous and one non-porous crosslinked poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate) [abbreviated PGME] were prepared by suspension copolymerization and functionalized with diethylene triamine [abbreviated PGME-deta]. Samples were characterized by elemental analysis, mercury porosimetry, scanning electron microscopy with energy-dispersive X-ray spectroscopy, and transmission electron microscopy. Kinetics of Cr(VI) sorption by PGME-deta were investigated in batch static experiments, in the temperature range 25–70 °C. Sorption was rapid, with the uptake capacity higher than 80% after 30 min. Sorption behavior and rate-controlling mechanisms were analyzed using five kinetic models (pseudo-first order, pseudo-second order, Elovich, intraparticle diffusion and Bangham model). Kinetic studies showed that Cr(VI) adsorption adhered to the pseudo-second-order model, with definite influence of pore diffusion. Equilibrium data was tested with Langmuir, Freundlich and Tempkin adsorption isotherm models. Langmuir model was the most suitable indicating homogeneous distribution of active sites on PGME-deta and monolayer sorption. The maximum adsorption capacity from the Langmuir model, Q max , at pH 1.8 and 25 °C was 143 mg g −1 for PGME2-deta (sample with the highest amino group concentration) while at 70 °C Q max reached the high value of 198 mg g −1 . Thermodynamic parameters revealed spontaneous and endothermic nature of Cr(VI) adsorption onto PGME-deta.

  14. The Effect of Diethylene Glycol Monomethyl Ether (DiEGME) on Microbial Contamination of Jet Fuel: A Minimum Concentration Study

    Science.gov (United States)

    2010-03-01

    Prescott , L. M.; Harley, J. P.; Klein, D. A. Microbiology . Fifth edition. McGraw Hill: New York, 2002. 26. Amman, R. I., Ludwig, W., Schleifer, K. H...Recent advances in petroleum microbiology . Microbiology and molecular biology reviews 2003, 67, 503-49. 6. Langer, G. JP-4 Fuel System Icing. Armour...Wright Air Development Center. 8. Elderfield, R. C. Proceedings on Jet Fuel Microbiology and Corrosion Conference. Prevention of Deterioration Center

  15. 40 CFR 799.1560 - Diethylene glycol butyl ether and diethylene glycol butyl ether acetate.

    Science.gov (United States)

    2010-07-01

    ... of the test cage, temperature, relative humidity, lighting conditions, odors, use of home cage or... following components in all appropriate required samples: Neuronal body (e.g., Einarson's gallocyanin), axon...

  16. Experimental study of the density and viscosity of polyethylene glycols and their mixtures at temperatures from 293 K to 473 K and at atmospheric pressure

    International Nuclear Information System (INIS)

    Sagdeev, D.I.; Fomina, M.G.; Mukhamedzyanov, G.Kh.; Abdulagatov, I.M.

    2011-01-01

    Highlights: → Viscosity and density of polyethylene glycols. → Combined experimental apparatus for density and viscosity measurements. → Vogel-Tamman-Fulcher model for viscosity. - Abstract: A new apparatus to measure simultaneously the density and viscosity of liquids has been designed and constructed based on the hydrostatic weighing and falling-body principles. The density and viscosity of monoethylene glycol (MEG), diethylene glycol (DEG), and triethylene glycol (TEG) and their binary, (50%MEG + 50%DEG), (50%MEG + 50%TEG), (50%DEG + 50%TEG), and ternary (33.33%MEG + 33.33%DEG + 33.34%TEG) mixtures have been measured over the temperature range from 293 K to 473 K and at atmospheric pressure. The expanded uncertainty of the density, pressure, temperature, and viscosity measurements at the 95% confidence level with a coverage factor of k = 2 is estimated to be 0.15% to 0.30%, 0.05%, 0.06 K, and 1.5% to 2.0% (depending on temperature and pressure ranges), respectively. The theoretically based Arrhenius-Andrade and Vogel-Tamman-Fulcher type equations were used to describe the temperature dependence of measured viscosities for pure polyethylene glycols and their mixtures.

  17. Ethylene glycol modified 2-(2′-aminophenyl)benzothiazoles at the amino site: the excited-state N-H proton transfer reactions in aqueous solution, micelles and potential application in live-cell imaging

    International Nuclear Information System (INIS)

    Liu, Bo-Qing; Tsai, Yi-Hsuan; Li, Yi-Jhen; Chao, Chi-Min; Liu, Kuan-Miao; Chen, Yi-Ting; Chen, Yu-Wei; Chung, Kun-You; Tseng, Huan-Wei; Chou, Pi-Tai

    2016-01-01

    Triethylene glycol monomethyl ether and poly(ethylene glycol) monomethyl ether modified 2-(2′-aminophenyl)benzothiazoles, namely ABT-P3EG, ABT-P7EG and ABT-P12EG varied by different chain length of poly(ethylene glycol) at the amino site, were synthesized to probe their photophysical and bio-imaging properties. In polar, aprotic solvents such as CH 2 Cl 2 ultrafast excited-state intramolecular proton transfer (ESIPT) takes place, resulting in a large Stokes shifted tautomer emission in the green-yellow (550 nm) region. In neutral water, ABT-P12EG forms micelles with diameters of 15  ±  3 nm under a critical micelle concentration (CMC) of ∼80 μM, in which the tautomer emission is greatly enhanced free from water perturbation. Cytotoxicity experiments showed that all ABT-PnEGs have negligible cytotoxicity against HeLa cells even at doses as high as 1 mM. Live-cell imaging experiments were also performed, the results indicate that all ABT-PnEGs are able to enter HeLa cells. While the two-photon excitation emission of ABT-P3EG in cells cytoplasm shows concentration independence and is dominated by the anion blue fluorescence, ABT-P7EG and ABT-P12EG exhibit prominent green tautomer emission at  >  CMC and in part penetrate to the nuclei, adding an additional advantage for the cell imaging. (paper)

  18. Glycidyl methacrylate macroporous copolymer grafted with diethylene triamine as sorbent for Reactive Black 5

    Directory of Open Access Journals (Sweden)

    Sandić Zvjezdana P.

    2014-01-01

    Full Text Available In this paper, macroporous glycidyl methacrylate and ethylene glycol dimethacrylate copolymer functionalized with diethylene triamine [PGME-deta], was evaluated as Reactive Black 5 (RB5 sorbent. Batch RB5 removal from aqueous solution by PGME-deta was investigated by varying pH, contact time, sorbent dosage, initial dye concentration and temperature. The sorption is pH sensitive having maximum at pH 2 (dye removal of 85%, decreasing with the increase of pH (dye removal of 24% at pH=11 after 60 min. Sorption kinetics was fitted to chemical-reaction and particle-diffusion models (pseudo-first-order, pseudo-second-order, intraparticle diffusion and Mckay models. The pseudo-second-order kinetic model accurately predicted the RB5 amount sorbed under all investigated operating conditions, while the intraparticle diffusion was the dominant rate-limiting mechanism. The diffusion mechanism was more prevalent with the decrease in temperature and the increase in concentration. The isotherm data was best fitted with the Langmuir model, indicating homogeneous distribution of active sites on PGME-deta and monolayer sorption, with the maximum sorption capacity of 353 mg g-1. The calculated sorption rates improved with increasing temperature and an activation energy close to 40 kJ mol-1 was determined, suggesting that chemisorption was also rate-controlling. [Projekat Ministarstva nauke Republike Srbije, br. III 43009, br. TR 37021 i br. III 45001

  19. A new potent fusidic acid analogue

    DEFF Research Database (Denmark)

    Søtofte, Inger; Duvold, Tore

    2001-01-01

    The crystal structure of the compound, 17S,20S-dihydrofusidic acid diethylene glycol hydrate, C31H50O6.C4H10O3.H2O, consists of 17S,20S-dihydrofusidic acid, diethylene glycol and water. The fusidic acid moiety contains three six-membered rings and one five-membered ring. The fused-ring system...... adopts a chair, a twist boat, a chair and an envelope conformation. The crystal packing is influenced by hydrogen bonds....

  20. Effects of ethylene glycol ethers on diesel fuel properties and emissions in a diesel engine

    Energy Technology Data Exchange (ETDEWEB)

    Gomez-Cuenca, F.; Gomez-Marin, M. [Compania Logistica de Hidrocarburos (CLH), Central Laboratory, Mendez Alvaro 44, 28045 Madrid (Spain); Folgueras-Diaz, M.B., E-mail: belenfd@uniovi.es [Department of Energy, University of Oviedo, Independencia 13, 33004 Oviedo (Spain)

    2011-08-15

    Highlights: {yields} Effect of ethylene glycol ethers on diesel fuel properties. {yields} Effect of ethylene glycol ethers on diesel engine specific consumption and emissions. {yields} Blends with {<=}4 wt.% of oxygen do not change substantially diesel fuel quality. {yields} Blends with 1 and 2.5 wt.% of oxygen reduce CO and HC emissions, but not smoke. - Abstract: The effect of ethylene glycol ethers on both the diesel fuel characteristics and the exhaust emissions (CO, NO{sub x}, smoke and hydrocarbons) from a diesel engine was studied. The ethers used were monoethylene glycol ethyl ether (EGEE), monoethylene glycol butyl ether (EGBE), diethylene glycol ethyl ether (DEGEE). The above effect was studied in two forms: first by determining the modification of base diesel fuel properties by using blends with oxygen concentration around 4 wt.%, and second by determining the emission reductions for blends with low oxygen content (1 wt.%) and with 2.5 wt.% of oxygen content. The addition of DEGEE enhances base diesel fuel cetane number, but EGEE and EGBE decrease it. For concentrations of {>=}4 wt.% of oxygen, EGEE and diesel fuel can show immiscibility problems at low temperatures ({<=}0 {sup o}C). Also, every oxygenated compound, according to its boiling point, modifies the distillation curve at low temperatures and the distillate percentage increases. These compounds have a positive effect on diesel fuel lubricity, and slightly decrease its viscosity. Blends with 1 and 2.5 wt.% oxygen concentrations were used in order to determine their influence on emissions at both full and medium loads and different engine speeds. Generally, all compounds help to reduce CO, and hydrocarbon emissions, but not smoke. The best results were obtained for blends with 2.5 wt.% of oxygen. At this concentration, the additive efficiency in decreasing order was EGEE > DEGEE > EGBE for CO emissions and DGEE > EGEE > EGBE for hydrocarbon emissions. For NO{sub x}, both its behaviour and the

  1. Isolation and characterization of a bacterium which utilizes polyester polyurethane as a sole carbon and nitrogen source.

    Science.gov (United States)

    Nakajima-Kambe, T; Onuma, F; Kimpara, N; Nakahara, T

    1995-06-01

    Various soil samples were screened for the presence of microorganisms which have the ability to degrade polyurethane compounds. Two strains with good polyurethane degrading activity were isolated. The more active strain was tentatively identified as Comamonas acidovorans. This strain could utilize polyester-type polyurethanes but not the polyether-type polyurethanes as sole carbon and nitrogen sources. Adipic acid and diethylene glycol were probably the main degradation products when polyurethane was supplied as a sole carbon and nitrogen source. When ammonium nitrate was used as nitrogen source, only diethylene glycol was detected after growth on polyurethane.

  2. Process studies for a new method of removing H/sub 2/S from industrial gas streams

    Energy Technology Data Exchange (ETDEWEB)

    Neumann, D.W.; Lynn, S.

    1986-07-01

    A process for the removal of hydrogen sulfide from coal-derived gas streams has been developed. The basis for the process is the absorption of H/sub 2/S into a polar organic solvent where it is reacted with dissolved sulfur dioxide to form elemental sulfur. After sulfur is crystallized from solution, the solvent is stripped to remove dissolved gases and water formed by the reaction. The SO/sub 2/ is generated by burning a portion of the sulfur in a furnace where the heat of combustion is used to generate high pressure steam. The SO/sub 2/ is absorbed into part of the lean solvent to form the solution necessary for the first step. The kinetics of the reaction between H/sub 2/S and SO/sub 2/ dissolved in mixtures of N,N-Dimethylaniline (DMA)/ Diethylene Glycol Monomethyl Ether and DMA/Triethylene Glycol Dimethyl Ether was studied by following the temperature rise in an adiabatic calorimeter. This irreversible reaction was found to be first-order in both H/sub 2/S and SO/sub 2/, with an approximates heat of reaction of 28 kcal/mole of SO/sub 2/. The sole products of the reaction appear to be elemental sulfur and water. The presence of DMA increases the value of the second-order rate constant by an order of magnitude over that obtained in the glycol ethers alone. Addition of other tertiary aromatic amines enhances the observed kinetics; heterocyclic amines (e.g., pyridine derivatives) have been found to be 10 to 100 times more effective as catalysts when compared to DMA.

  3. METABOLISM AND TISSUE DOSIMETRY OF PENTAVALENT AND TRIVALENT MONOMETHYLATED ARSENIC AFTER ORAL

    Science.gov (United States)

    METABOLISM AND TISSUE DOSIMETRY OF PENTAVALENT AND TRIVALENT MONOMETHYLATED ARSENIC AFTER ORAL ADMINISTRATION IN MICEM F Hughes1, V Devesa2, B M Adair1, M Styblo2, E M Kenyon1, and D J Thomas1. 1US EPA, ORD, NHEERL, ETD, Research Triangle Park, NC; 2UNC-CH, CEMALB, Chapel Hi...

  4. Drug: D10849 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available D10849 Mixture ... Drug Methoxy polyethylene glycol - epoetin beta mixt; Mircera (TN...) Polyethylene glycol monomethyl ester [DR:D05554], Epoetin beta [DR:D03232] ... ATC code: B03XA03 ... PubChem: 319902649 ...

  5. Lower critical solution temperature (LCST) phase separation of glycol ethers for forward osmotic control.

    Science.gov (United States)

    Nakayama, Daichi; Mok, Yeongbong; Noh, Minwoo; Park, Jeongseon; Kang, Sunyoung; Lee, Yan

    2014-03-21

    Lower critical solution temperature (LCST) phase transition of glycol ether (GE)-water mixtures induces an abrupt change in osmotic pressure driven by a mild temperature change. The temperature-controlled osmotic change was applied for the forward osmosis (FO) desalination. Among three GEs evaluated, di(ethylene glycol) n-hexyl ether (DEH) was selected as a potential FO draw solute. A DEH-water mixture with a high osmotic pressure could draw fresh water from a high-salt feed solution such as seawater through a semipermeable membrane at around 10 °C. The water-drawn DEH-water mixture was phase-separated into a water-rich phase and a DEH-rich phase at around 30 °C. The water-rich phase with a much reduced osmotic pressure released water into a low-salt solution, and the DEH-rich phase was recovered into the initial DEH-water mixture. The phase separation behaviour, the residual GE concentration in the water-rich phase, the osmotic pressure of the DEH-water mixture, and the osmotic flux between the DEH-water mixture and salt solutions were carefully analysed for FO desalination. The liquid-liquid phase separation of the GE-water mixture driven by the mild temperature change between 10 °C and 30 °C is very attractive for the development of an ideal draw solute for future practical FO desalination.

  6. An X-band Co{sup 2+} EPR study of Zn{sub 1−x}Co{sub x}O (x=0.005–0.1) nanoparticles prepared by chemical hydrolysis methods using diethylene glycol and denaturated alcohol at 5 K

    Energy Technology Data Exchange (ETDEWEB)

    Misra, Sushil K., E-mail: skmisra@alcor.concordia.ca [Physics Department, Concordia University, Montreal, QC, Canada H3G 1M8 (Canada); Andronenko, S.I. [Physics Institute, Kazan Federal University, Kazan 420008 (Russian Federation); Srinivasa Rao, S.; Chess, Jordan; Punnoose, A. [Department of Physics, Boise State University, Boise, ID 83725-1570 (United States)

    2015-11-15

    EPR investigations on two types of dilute magnetic semiconductor (DMS) ZnO nanoparticles doped with 0.5–10% Co{sup 2+} ions, prepared by two chemical hydrolysis methods, using: (i) diethylene glycol ((CH{sub 2}CH{sub 2}OH){sub 2}O) (NC-rod-like samples), and (ii) denatured ethanol (CH{sub 3}CH{sub 2}OH) solutions (QC-spherical samples), were carried out at X-band (9.5 GHz) at 5 K. The analysis of EPR data for NC samples revealed the presence of several types of EPR lines: (i) two types, intense and weak, of high-spin Co{sup 2+} ions in the samples with Co concentration >0.5%; (ii) surface oxygen vacancies, and (iii) a ferromagnetic resonance (FMR) line. QC samples exhibit an intense FMR line and an EPR line due to high-spin Co{sup 2+} ions. FMR line is more intense, than the corresponding line exhibited by NC samples. These EPR spectra varied for sample with different doping concentrations. The magnetic states of these samples as revealed by EPR spectra, as well as the origin of ferromagnetism DMS samples are discussed. - Highlights: • 5 K X band Co{sup 2+} EPR investigations on QC and NC ZnO dilute magnetic semiconductor nanoparticles. • NC and QC samples exhibited high-spin Co{sup 2+} EPR lines and ferromagnetic resonance line. • NC sample also exhibit line due surface oxygen vacancies. • FMR line is more intense in QC than that in NC samples. • Magnetic states and the origin of ferromagnetism are discussed.

  7. Decrease of intracellular pH as possible mechanism of embryotoxicity of glycol ether alkoxyacetic acid metabolites

    International Nuclear Information System (INIS)

    Louisse, Jochem; Bai Yanqing; Verwei, Miriam; Sandt, Johannes J.M. van de; Blaauboer, Bas J.; Rietjens, Ivonne M.C.M.

    2010-01-01

    Embryotoxicity of glycol ethers is caused by their alkoxyacetic acid metabolites, but the mechanism underlying the embryotoxicity of these acid metabolites is so far not known. The present study investigates a possible mechanism underlying the embryotoxicity of glycol ether alkoxyacetic acid metabolites using the methoxyacetic acid (MAA) metabolite of ethylene glycol monomethyl ether as the model compound. The results obtained demonstrate an MAA-induced decrease of the intracellular pH (pH i ) of embryonic BALB/c-3T3 cells as well as of embryonic stem (ES)-D3 cells, at concentrations that affect ES-D3 cell differentiation. These results suggest a mechanism for MAA-mediated embryotoxicity similar to the mechanism of embryotoxicity of the drugs valproic acid and acetazolamide (ACZ), known to decrease the pH i in vivo, and therefore used as positive controls. The embryotoxic alkoxyacetic acid metabolites ethoxyacetic acid, butoxyacetic acid and phenoxyacetic acid also caused an intracellular acidification of BALB/c-3T3 cells at concentrations that are known to inhibit ES-D3 cell differentiation. Two other embryotoxic compounds, all-trans-retinoic acid and 5-fluorouracil, did not decrease the pH i of embryonic cells at concentrations that affect ES-D3 cell differentiation, pointing at a different mechanism of embryotoxicity of these compounds. MAA and ACZ induced a concentration-dependent inhibition of ES-D3 cell differentiation, which was enhanced by amiloride, an inhibitor of the Na + /H + -antiporter, corroborating an important role of the pH i in the embryotoxic mechanism of both compounds. Together, the results presented indicate that a decrease of the pH i may be the mechanism of embryotoxicity of the alkoxyacetic acid metabolites of the glycol ethers.

  8. Equivalent chain lengths of all C4-C23 saturated monomethyl branched fatty acid methyl esters on methylsilicone OV-1 stationary phase.

    Science.gov (United States)

    Kubinec, Róbert; Blaško, Jaroslav; Górová, Renáta; Addová, Gabriela; Ostrovský, Ivan; Amann, Anton; Soják, Ladislav

    2011-04-01

    Isomer mixtures of monomethyl branched saturated C7-C23 fatty acid methyl esters (FAME) were prepared by performing a methylene insertion reaction to the straight chain FAME and this study model was completed by using commercially available standards of C4-C7 FAME. The equivalent chain lengths (ECL) of all 220 C4-C23 monomethyl branched FAME on OV-1 stationary phase were measured, achieving an average repeatability of ±0.0004 ECL units. The monomethyl branched FAME was identified by GC on the basis of regularity of the fractional chain lengths (FCL) dependence on the number of carbon atoms (C(z)) of individual homologous series of methyl 2-, 3-, …, 21-FAME. The prediction of retention of the first homologues, having the new position of methyl group beginning at higher carbon atoms number, and analogously for the second, third, fourth, and other members of the homologous series, allowed the dependence FCL=f(C(z)) for the first and subsequent members of beginning homologous of monomethyl derivatives of FAME. The identification was confirmed by mass spectrometry. All of the methyl isomers of FAME, which could not be completely separated by gas chromatography due to having a methyl group in surroundings of the middle of the carbon chain, were resolved by mass spectrometry using deconvolution in a SIM-mode. Measured gas chromatographic and mass spectrometric data were applied for identification of the monomethyl branched saturated FAME in tongue coating. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Corrosion of aluminum alloy 2024 by microorganisms isolated from aircraft fuel tanks.

    Science.gov (United States)

    McNamara, Christopher J; Perry, Thomas D; Leard, Ryan; Bearce, Ktisten; Dante, James; Mitchell, Ralph

    2005-01-01

    Microorganisms frequently contaminate jet fuel and cause corrosion of fuel tank metals. In the past, jet fuel contaminants included a diverse group of bacteria and fungi. The most common contaminant was the fungus Hormoconis resinae. However, the jet fuel community has been altered by changes in the composition of the fuel and is now dominated by bacterial contaminants. The purpose of this research was to determine the composition of the microbial community found in fuel tanks containing jet propellant-8 (JP-8) and to determine the potential of this community to cause corrosion of aluminum alloy 2024 (AA2024). Isolates cultured from fuel tanks containing JP-8 were closely related to the genus Bacillus and the fungi Aureobasidium and Penicillium. Biocidal activity of the fuel system icing inhibitor diethylene glycol monomethyl ether is the most likely cause of the prevalence of endospore forming bacteria. Electrochemical impedance spectroscopy and metallographic analysis of AA2024 exposed to the fuel tank environment indicated that the isolates caused corrosion of AA2024. Despite the limited taxonomic diversity of microorganisms recovered from jet fuel, the community has the potential to corrode fuel tanks.

  10. In vitro toxicities of experimental jet fuel system ice-inhibiting agents.

    Science.gov (United States)

    Geiss, K T; Frazier, J M

    2001-07-02

    One research emphasis within the Department of Defense has been to seek the replacement of operational compounds with alternatives that pose less potential risk to human and ecological systems. Alternatives to glycol ethers, such as diethylene glycol monomethyl ether (M-DE), were investigated for use as jet fuel system ice-inhibiting agents (FSIIs). This group of chemicals includes three derivatives of 1,3-dioxolane-4-methanol (M-1, M-2, and M-3) and a 1,3-dioxane (M-27). In addition, M-DE was evaluated as a reference compound. Our approach was to implement an in vitro test battery based on primary rat hepatocyte cultures to perform initial toxicity evaluations. Hepatocytes were exposed to experimental chemicals (0, 0.001, 0.01, 0.1, 1, 10 mM dosages) for periods up to 24 h. Samples were assayed for lactate dehydrogenase (LDH) release, MTT dye reduction activity, glutathione level, and rate of protein synthesis as indicators of toxicity. Of the compounds tested, M-1, especially at the 10-mM dose, appeared to be more potent than the other chemicals, as measured by these toxicity assays. M-DE, the current FSII, elicited little response in the toxicity assays. Although some variations in toxicity were observed at the 10-mM dose, the in vitro toxicities of the chemicals tested (except for M-1) were not considerably greater than that of M-DE.

  11. Electron beam induced modifications in flexible biaxially oriented polyethylene terephthalate sheets: Improved mechanical and electrical properties

    Energy Technology Data Exchange (ETDEWEB)

    Chaudhary, N. [Accelerator & Pulse Power Division, Bhabha Atomic Research Centre, Mumbai, 400 085 (India); Koiry, S.P. [Technical Physics Division, Bhabha Atomic Research Centre, Mumbai, 400 085 (India); Singh, A., E-mail: asb_barc@yahoo.com [Technical Physics Division, Bhabha Atomic Research Centre, Mumbai, 400 085 (India); Tillu, A.R. [Accelerator & Pulse Power Division, Bhabha Atomic Research Centre, Mumbai, 400 085 (India); Jha, P.; Samanta, S.; Debnath, A.K. [Technical Physics Division, Bhabha Atomic Research Centre, Mumbai, 400 085 (India); Aswal, D.K., E-mail: dkaswal@yahoo.com [Technical Physics Division, Bhabha Atomic Research Centre, Mumbai, 400 085 (India); Mondal, R.K. [Radiation Technology Development Division, Bhabha Atomic Research Centre, Mumbai, 400 085 (India); Acharya, S.; Mittal, K.C. [Accelerator & Pulse Power Division, Bhabha Atomic Research Centre, Mumbai, 400 085 (India)

    2017-03-01

    In the present work, we have studied the effects of electron beam irradiation (with dose ranging from 2 to 32 kGy) on mechanical and electrical properties of biaxially oriented polyethylene terephthalate (BOPET) sheets. The sol-gel analysis, Fourier transformation infra-red (FTIR), X-ray photoelectron spectroscopy (XPS) characterizations of the irradiated BOPET sheets suggest partial cross-linking of PET chains through the diethylene glycol (DEG). The mechanical properties of BOPET, such as, tensile strength, Young's modulus and electrical resistivity shows improvement with increasing dose and saturate for doses >10 kGy. The improved mechanical properties and high electrical resistivity of electron beam modified BOPET sheets may have additional advantages in applications, such as, packaging materials for food irradiation, medical product sterilization and electronic industries. - Graphical abstract: Irradiation of BOPET by electron beam leads to the formation of diethylene glycol that crosslink's the PET chains, resulting in improved mechanical properties and enhanced electrical resistivity. - Highlights: • BOPET exhibit improved tensile strength/Young's modulus after e-beam exposure. • Electrical resistivity of BOPET increases after e-beam exposure. • Cross-linking of PET chains through diethylene glycol was observed after e-beam exposure.

  12. Highly selective separation of carbon dioxide from nitrogen and methane by nitrile/glycol-difunctionalized ionic liquids in supported ionic liquid membranes (SILMs).

    Science.gov (United States)

    Hojniak, Sandra D; Silverwood, Ian P; Khan, Asim Laeeq; Vankelecom, Ivo F J; Dehaen, Wim; Kazarian, Sergei G; Binnemans, Koen

    2014-07-03

    Novel difunctionalized ionic liquids (ILs) containing a triethylene glycol monomethyl ether chain and a nitrile group on a pyrrolidinium or imidazolium cation have been synthesized and incorporated into supported ionic liquid membranes (SILMs). These ILs exhibit ca. 2.3 times higher CO2/N2 and CO2/CH4 gas separation selectivities than analogous ILs functionalized only with a glycol chain. Although the glycol moiety ensures room temperature liquidity of the pyrrolidinium and imidazolium ILs, the two classes of ILs benefit from the presence of a nitrile group in different ways. The difunctionalized pyrrolidinium ILs exhibit an increase in CO2 permeance, whereas the permeances of the contaminant gases rise negligibly, resulting in high gas separation selectivities. In the imidazolium ILs, the presence of a nitrile group does not always increase the CO2 permeance nor does it increase the CO2 solubility, as showed in situ by the ATR-FTIR spectroscopic method. High selectivity of these ILs is caused by the considerably reduced permeances of N2 and CH4, most likely due to the ability of the -CN group to reject the nonpolar contaminant gases. Apart from the CO2 solubility, IL-CO2 interactions and IL swelling were studied with the in situ ATR-FTIR spectroscopy. Different strengths of the IL-CO2 interactions were found to be the major difference between the two classes of ILs. The difunctionalized ILs interacted stronger with CO2 than the glycol-functionalized ILs, as manifested in the smaller bandwidths of the bending mode band of CO2 for the latter.

  13. The histone H4 lysine 20 monomethyl mark, set by PR-Set7 and stabilized by L(3mbt, is necessary for proper interphase chromatin organization.

    Directory of Open Access Journals (Sweden)

    Ayako Sakaguchi

    Full Text Available Drosophila PR-Set7 or SET8 is a histone methyltransferase that specifically monomethylates histone H4 lysine 20 (H4K20. L(3MBT has been identified as a reader of methylated H4K20. It contains several conserved domains including three MBT repeats binding mono- and dimethylated H4K20 peptides. We find that the depletion of PR-Set7 blocks de novo H4K20me1 resulting in the immediate activation of the DNA damage checkpoint, an increase in the size of interphase nuclei, and drastic reduction of cell viability. L(3mbt on the other hand stabilizes the monomethyl mark, as L(3mbt-depleted S2 cells show a reduction of more than 60% of bulk monomethylated H4K20 (H4K20me1 while viability is barely affected. Ploidy and basic chromatin structure show only small changes in PR-Set7-depleted cells, but higher order interphase chromatin organization is significantly affected presumably resulting in the activation of the DNA damage checkpoint. In the absence of any other known functions of PR-Set7, the setting of the de novo monomethyl mark appears essential for cell viability in the presence or absence of the DNA damage checkpoint, but once newly assembled chromatin is established the monomethyl mark, protected by L(3mbt, is dispensable.

  14. Preliminary Screening - Technical and Economic Assessment of Synthesis Gas to Fuels and Chemicals With Emphasis on the Potential for Biomass-Derived Syngas

    Science.gov (United States)

    2003-12-01

    TX 270 30 n-butyraldehyde isobutyraldehyde Rh n-butanol 2-ethylhexanol neopentyl glycol ; isobutanol Celanese Ltd. Chemicals Division Bay...propionic acid n-butanol; 2-ethylhexanol, 2-ethylheanoic acid; n- butyric acid; methyl amyl ketone neopentyl glycol ; methyl isoamyl ketone; isobutyl...distillation with diethylene glycol (DEG), and distillation to recover the DEG (El Sawy 1990; Fox 1993). The final product contains about 0.2 wt% water

  15. Immobilization of Gibberella fujikuroi cells with carriers modified by radiation polymerization

    International Nuclear Information System (INIS)

    Lu Zhaoxin; Xie Zhongchuan; Wei Qijiang

    1994-01-01

    Gibberella fujikuroi cells were immobilized on modified carriers (gauze) by using the radiation polymerization technique. The mycelium was firmly adhered to the surface of fibril covered with hydrophobic polymer, poly (diethylene glycol dimethyl acrylate) and hydrophobic-hydrophilic copolymer poly (diethylene glycol dimethyl acrylate-sodium acrylate), but it was not immobilized onto the polyethylene net, which has a similar network structure to that of the modified carrier. The weight of immobilized cells was affected by covered polymer. Gibberellic acid productivity in immobilized cells was similar to that of free cells, and the immobilized cells was of good stability. A optimum culture condition for gibberellic acid production was at pH 5.5 and under 20 ∼ 30 degree C

  16. Poly(ethylene oxide monomethyl ether)- block-poly(propylene succinate) Nanoparticles: Synthesis and Characterization, Enzymatic and Cellular Degradation, Micellar Solubilization of Paclitaxel, and in Vitro and in Vivo Evaluation.

    Science.gov (United States)

    Jäger, Alessandro; Jäger, Eliézer; Syrová, Zdeňka; Mazel, Tomas; Kováčik, Lubomír; Raška, Ivan; Höcherl, Anita; Kučka, Jan; Konefal, Rafal; Humajova, Jana; Poučková, Pavla; Štěpánek, Petr; Hrubý, Martin

    2018-04-11

    Polyester-based nanostructures are widely studied as drug-delivery systems due to their biocompatibility and biodegradability. They are already used in the clinic. In this work, we describe a new and simple biodegradable and biocompatible system as the Food and Drug Administration approved polyesters (poly-ε-caprolactone, polylactic acid, and poly(lactic- co-glycolic acid)) for the delivery of the anticancer drug paclitaxel (PTX) as a model drug. A hydrophobic polyester, poly(propylene succinate) (PPS), was prepared from a nontoxic alcohol (propylene glycol) and monomer from the Krebs's cycle (succinic acid) in two steps via esterification and melt polycondensation. Furthermore, their amphiphilic block copolyester, poly(ethylene oxide monomethyl ether)- block-poly(propylene succinate) (mPEO- b-PPS), was prepared by three steps via esterification followed by melt polycondensation and the addition of mPEO to the PPS macromolecules. Analysis of the in vitro cellular behavior of the prepared nanoparticle carriers (NPs) (enzymatic degradation, uptake, localization, and fluorescence resonance energy-transfer pair degradation studies) was performed by fluorescence studies. PTX was loaded to the NPs of variable sizes (30, 70, and 150 nm), and their in vitro release was evaluated in different cell models and compared with commercial PTX formulations. The mPEO- b-PPS copolymer analysis displays glass transition temperature hydrolysis during transport in bloodstream, and simultaneous enzymatic degradability after uptake into the cells. The detailed cytotoxicity in vitro and in vivo tumor efficacy studies have shown the superior efficacy of the NPs compared with PTX and PTX commercial formulations.

  17. Material Evaluation of Optical Fibers and Payout Bobbins: An Overview

    Science.gov (United States)

    1990-03-01

    Viscosity at 25"C = 5 cps. Diacrylates 1. 1,4-butane-diol diacrylate 2. Neopentyl glycol diacrylate. Shrinkage = 14.2%; volatilization rate = 0.07 mg...min; b.p. = 1228C at 2 mm; viscosity = 32 cps at 25°C. 3. Diethylene glycol diacrylate 4. 1,6-Hexanediol diacrylate. Volatilization rate - 0.02 mg/min

  18. Effect of the prosthetic group on the pharmacologic properties of 18F-labeled rhodamine B, a potential myocardial perfusion agent for positron emission tomography (PET).

    Science.gov (United States)

    Bartholomä, Mark D; Gottumukkala, Vijay; Zhang, Shaohui; Baker, Amanda; Dunning, Patricia; Fahey, Frederic H; Treves, S Ted; Packard, Alan B

    2012-12-27

    We recently reported the development of the 2-[(18)F]fluoroethyl ester of rhodamine B as a potential positron emission tomography (PET) tracer for myocardial perfusion imaging. This compound, which was prepared using a [(18)F]fluoroethyl prosthetic group, has significant uptake in the myocardium in rats but also demonstrates relatively high liver uptake and is rapidly hydrolyzed in vivo in mice. We have now prepared (18)F-labeled rhodamine B using three additional prosthetic groups (propyl, diethylene glycol, and triethylene glycol) and found that the prosthetic group has a significant effect on the in vitro and in vivo properties of these compounds. Of the esters prepared to date, the diethylene glycol ester is superior in terms of in vitro stability and pharmacokinetics. These observations suggest that the prosthetic group plays a significant role in determining the pharmacological properties of (18)F-labeled compounds. They also support the value of continued investigation of (18)F-labeled rhodamines as PET radiopharmaceuticals for myocardial perfusion imaging.

  19. The Effect of the Prosthetic Group on the Pharmacologic Properties of 18F-labeled Rhodamine B, a Potential Myocardial Perfusion Agent for PET

    Science.gov (United States)

    Bartholomä, Mark D.; Gottumukkala, Vijay; Zhang, Shaohui; Baker, Amanda; Dunning, Patricia; Fahey, Frederic H.; Treves, S. Ted; Packard, Alan B.

    2013-01-01

    We recently reported the development of the 2-[18F]fluoroethyl ester of rhodamine B as a potential positron emission tomography (PET) tracer for myocardial perfusion imaging. This compound, which was prepared using a [18F]fluoroethyl prosthetic group, has significant uptake in the myocardium in rats, but also demonstrates relatively high liver uptake and is rapidly hydrolyzed in vivo in mice. We have now prepared 18F-labeled rhodamine B using three additional prosthetic groups (propyl, diethylene glycol, and triethylene glycol) and found that the prosthetic group has a significant effect on the in vitro and in vivo properties of these compounds. Of the esters prepared to date, the diethylene glycol ester is superior in terms of in vitro stability and pharmacokinetics. These observations suggest that the prosthetic group plays a significant role in determining the pharmacological properties of 18F-labeled compounds. They also support the value of continued investigation of 18F-labeled rhodamines as PET radiopharmaceuticals for myocardial perfusion imaging. PMID:23210516

  20. Intricate Conformational Tunneling in Carbonic Acid Monomethyl Ester.

    Science.gov (United States)

    Linden, Michael M; Wagner, J Philipp; Bernhardt, Bastian; Bartlett, Marcus A; Allen, Wesley D; Schreiner, Peter R

    2018-04-05

    Disentangling internal and external effects is a key requirement for understanding conformational tunneling processes. Here we report the s- trans/ s- cis tunneling rotamerization of carbonic acid monomethyl ester (1) under matrix isolation conditions and make comparisons to its parent carbonic acid (3). The observed tunneling rate of 1 is temperature-independent in the 3-20 K range and accelerates when using argon instead of neon as the matrix material. The methyl group increases the effective half life (τ eff ) of the energetically disfavored s- trans-conformer from 3-5 h for 3 to 11-13 h for 1. Methyl group deuteration slows the rotamerization further (τ eff ≈ 35 h). CCSD(T)/cc-pVQZ//MP2/aug-cc-pVTZ computations of the tunneling probability suggest that the rate should be almost unaffected by methyl substitution or its deuteration. Thus the observed relative rates are puzzling, and they disagree with previous explanations involving fast vibrational relaxation after the tunneling event facilitated by the alkyl rotor.

  1. PEG 3350 Administration Is Not Associated with Sustained Elevation of Glycol Levels.

    Science.gov (United States)

    Williams, Kent C; Rogers, Lynette K; Hill, Ivor; Barnard, John; Di Lorenzo, Carlo

    2018-04-01

    To determine whether trace amounts of ethylene glycol (EG), diethylene glycol (DEG), or triethylene glycol (TEG) in PEG 3350 are associated with increased blood levels of EG, DEG, or TEG in children receiving daily PEG 3350 therapy. Blood samples were drawn from 9 children who were being treated for constipation with PEG 3350 (6-12 years old) before and every 30 minutes for 3 hours after receiving 17 g of PEG 3350. PEG 3350, tap water, and blood samples from 18 age- and sex-matched controls also were analyzed. Baseline blood levels of EG and TEG did not differ between control and treated groups. DEG levels (median [IQR]) were lower in the PEG 3350 group (40.13 ng/mL [36.69, 63.94] vs 92.83 ng/mL [51.06, 128.93], P = .008). After PEG 3350 dose, levels of EG (390.51 ng/mL [326.06, 624.55]) and TEG (2.21 ng/mL [0, 4.5]) peaked at 90 minutes at 1032.81 ng/mL (826.84, 1486.13) (P = .009) and 35.17 ng/mL (15.81, 45.13) (P = .0005), respectively. DEG levels did not significantly change. Standard 17-g doses of PEG 3350 in 8 oz (237 mL) of water resulted in concentrations (mean ± SD) of EG, DEG, and TEG of 1.32 ± 0.23 µg/mL, 0.18 ± 0.03 µg/mL, and 0.12 ± 0.01 µg/mL, respectively. EG, DEG, and TEG levels in public water supply were 0.07 µg/mL, 0.21 µg/mL, and 0.02 µg/mL, respectively. Daily PEG 3350 therapy in children was not associated with sustained elevation of EG, DEG, or TEG blood levels over levels in matched controls. Although EG and TEG levels increased after a standard dose of PEG 3350, their peak values remained well below toxic levels. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. The influence of increased cross-linker chain length in thermosensitive microspheres on potential sun-protection activity

    OpenAIRE

    Musiał, Witold; Kokol, Vanja; Vončina, Bojana

    2012-01-01

    The sun protection should involve substances with protecting activity against both UVB and UVA radiation. In this research the evaluation of thermosensitive microspheres as potential molecules for sunscreen formulations was approached, using modified Boots star rating system. The microspheres, thermosensitive N-isopropylacrylamide derivatives, have potential protecting activity against UV radiation. The MX and DX microspheres, with ethylene glycol dimethacrylate and diethylene glycol dimethac...

  3. (18)F-labeled rhodamines as potential myocardial perfusion agents: comparison of pharmacokinetic properties of several rhodamines.

    Science.gov (United States)

    Bartholomä, Mark D; Zhang, Shaohui; Akurathi, Vamsidhar; Pacak, Christina A; Dunning, Patricia; Fahey, Frederic H; Cowan, Douglas B; Treves, S Ted; Packard, Alan B

    2015-10-01

    We recently reported the development of the [(18)F]fluorodiethylene glycol ester of rhodamine B as a potential positron emission tomography (PET) tracer for myocardial perfusion imaging (MPI). This compound was developed by optimizing the ester moiety on the rhodamine B core, and its pharmacokinetic properties were found to be superior to those of the prototype ethyl ester. The goal of the present study was to optimize the rhodamine core while retaining the fluorodiethyleneglycol ester prosthetic group. A series of different rhodamine cores (rhodamine 6G, rhodamine 101, and tetramethylrhodamine) were labeled with (18)F using the corresponding rhodamine lactones as the precursors and [(18)F]fluorodiethylene glycol ester as the prosthetic group. The compounds were purified by semipreparative HPLC, and their biodistribution was measured in rats. Additionally, the uptake of the compounds was evaluated in isolated rat cardiomyocytes. As was the case with the different prosthetic groups, we found that the rhodamine core has a significant effect on the in vitro and in vivo properties of this series of compounds. Of the rhodamines evaluated to date, the pharmacologic properties of the (18)F-labeled diethylene glycol ester of rhodamine 6G are superior to those of the (18)F-labeled diethylene glycol esters of rhodamine B, rhodamine 101, and tetramethylrhodamine. As with (18)F-labeled rhodamine B, [(18)F]rhodamine 6G was observed to localize in the mitochondria of isolated rat cardiomyocytes. Based on these results, the (18)F-labeled diethylene glycol ester of rhodamine 6G is the most promising potential PET MPI radiopharmaceutical of those that have evaluated to date, and we are now preparing to carry out first-in-human clinical studies with this compound. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. 18F-labeled rhodamines as potential myocardial perfusion agents: comparison of pharmacokinetic properties of several rhodamines

    International Nuclear Information System (INIS)

    Bartholomä, Mark D.; Zhang, Shaohui; Akurathi, Vamsidhar; Pacak, Christina A.; Dunning, Patricia; Fahey, Frederic H.; Cowan, Douglas B.; Ted Treves, S.; Packard, Alan B.

    2015-01-01

    Introduction: We recently reported the development of the [ 18 F]fluorodiethylene glycol ester of rhodamine B as a potential positron emission tomography (PET) tracer for myocardial perfusion imaging (MPI). This compound was developed by optimizing the ester moiety on the rhodamine B core, and its pharmacokinetic properties were found to be superior to those of the prototype ethyl ester. The goal of the present study was to optimize the rhodamine core while retaining the fluorodiethyleneglycol ester prosthetic group. Methods: A series of different rhodamine cores (rhodamine 6G, rhodamine 101, and tetramethylrhodamine) were labeled with 18 F using the corresponding rhodamine lactones as the precursors and [ 18 F]fluorodiethylene glycol ester as the prosthetic group. The compounds were purified by semipreparative HPLC, and their biodistribution was measured in rats. Additionally, the uptake of the compounds was evaluated in isolated rat cardiomyocytes. Results: As was the case with the different prosthetic groups, we found that the rhodamine core has a significant effect on the in vitro and in vivo properties of this series of compounds. Of the rhodamines evaluated to date, the pharmacologic properties of the 18 F-labeled diethylene glycol ester of rhodamine 6G are superior to those of the 18 F-labeled diethylene glycol esters of rhodamine B, rhodamine 101, and tetramethylrhodamine. As with 18 F-labeled rhodamine B, [ 18 F]rhodamine 6G was observed to localize in the mitochondria of isolated rat cardiomyocytes. Conclusions: Based on these results, the 18 F-labeled diethylene glycol ester of rhodamine 6G is the most promising potential PET MPI radiopharmaceutical of those that have evaluated to date, and we are now preparing to carry out first-in-human clinical studies with this compound

  5. 18F-labeled Rhodamines as Potential Myocardial Perfusion Agents: Comparison of Pharmacokinetic Properties of Several Rhodamines

    Science.gov (United States)

    Bartholoma, Mark D.; Zhang, Shaohui; Akurathi, Vamsidhar; Pacak, Christina A.; Dunning, Patricia; Fahey, Frederic H.; Cowan, Douglas B.; Treves, S. Ted; Packard, Alan B.

    2015-01-01

    Introduction We recently reported the development of the [18F]fluorodiethylene glycol ester of rhodamine B as a potential positron emission tomography (PET) tracer for myocardial perfusion imaging (MPI). This compound was developed by optimizing the ester moiety on the rhodamine B core, and its pharmacokinetic properties were found to be superior to those of the prototype ethyl ester. The goal of the present study was to optimize the rhodamine core while retaining the fluorodiethyleneglycol ester prosthetic group. Methods A series of different rhodamine cores (rhodamine 6G, rhodamine 101, and tetramethylrhodamine) were labeled with 18F using the corresponding rhodamine lactones as the precursors and [18F]fluorodiethylene glycol ester as the prosthetic group. The compounds were purified by semipreparative HPLC, and their biodistribution was measured in rats. Additionally, the uptake of the compounds was evaluated in isolated rat cardiomyocytes. Results As was the case with the different prosthetic groups, we found that the rhodamine core has a significant effect on the in vitro and in vivo properties of this series of compounds. Of the rhodamines evaluated to date, the pharmacologic properties of the 18F-labeled diethylene glycol ester of rhodamine 6G are superior to those of the 18F-labeled diethylene glycol esters of rhodamine B, rhodamine 101, and tetramethylrhodamine. As with 18F-labeled rhodamine B, [18F]rhodamine 6G was observed to localize in the mitochondria of isolated rat cardiomyocytes. Conclusions Based on these results, the 18F-labeled diethylene glycol ester of rhodamine 6G is the most promising potential PET MPI radiopharmaceutical of those that have been evaluated to date, and we are now preparing to carry out first-in-human clinical studies with this compound. PMID:26205075

  6. HematoPorphyrin Monomethyl Ether polymer contrast agent for ultrasound/photoacoustic dual-modality imaging-guided synergistic high intensity focused ultrasound (HIFU) therapy.

    Science.gov (United States)

    Yan, Sijing; Lu, Min; Ding, Xiaoya; Chen, Fei; He, Xuemei; Xu, Chunyan; Zhou, Hang; Wang, Qi; Hao, Lan; Zou, Jianzhong

    2016-08-18

    This study is to prepare a hematoporphyrin monomethyl ether (HMME)-loaded poly(lactic-co-glycolic acid) (PLGA) microcapsules (HMME/PLGA), which could not only function as efficient contrast agent for ultrasound (US)/photoacoustic (PA) imaging, but also as a synergistic agent for high intensity focused ultrasound (HIFU) ablation. Sonosensitizer HMME nanoparticles were integrated into PLGA microcapsules with the double emulsion evaporation method. After characterization, the cell-killing and cell proliferation-inhibiting effects of HMME/PLGA microcapsules on ovarian cancer SKOV3 cells were assessed. The US/PA imaging-enhancing effects and synergistic effects on HIFU were evaluated both in vitro and in vivo. HMME/PLGA microcapsules were highly dispersed with well-defined spherical morphology (357 ± 0.72 nm in diameter, PDI = 0.932). Encapsulation efficiency and drug-loading efficiency were 58.33 ± 0.95% and 4.73 ± 0.15%, respectively. The HMME/PLGA microcapsules remarkably killed the SKOV3 cells and inhibited the cell proliferation, significantly enhanced the US/PA imaging results and greatly enhanced the HIFU ablation effects on ovarian cancer in nude mice by the HMME-mediated sono-dynamic chemistry therapy (SDT). HMME/PLGA microcapsules represent a potential multifunctional contrast agent for HIFU diagnosis and treatment, which might provide a novel strategy for the highly efficient imaging-guided non-invasive HIFU synergistic therapy for cancers by SDT in clinic.

  7. Ethylene glycol blood test

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/003564.htm Ethylene glycol blood test To use the sharing features ... enable JavaScript. This test measures the level of ethylene glycol in the blood. Ethylene glycol is a ...

  8. Study of the characterization and formulation of the decontamination gels

    Energy Technology Data Exchange (ETDEWEB)

    Park, Youn Bong; Bang, In Bae; Bae, Bong Moon; Oh, Gyu Hwan [Chungnam National University, Daejeon (Korea, Republic of)

    2011-04-15

    To develop a chemical gel decontamination technology for a removal of non-fixed contaminants during the maintenance and decommissioning works of high radiation hot cells which have been used for a recycling or treatment of spent fuels we have prepare gels with CAB-O-SIL M-5 or Aerosil 380 as viscosifier and some non-ionic surfactants such as diethylene glycol hexyl ether, triethylene glycol dodecyl ether, polyethylene glycol 600, and triethylene glycol butyl ether. Surfactants are playing important roles in manipulating the properties of decontamination the gels. We have found the CAB-O-SIL with triethylene glycol butyl ether and Aerosil with triethylene glycol dodecyl ether systems promising for the decontamination work

  9. Study of the characterization and formulation of the decontamination gels

    International Nuclear Information System (INIS)

    Park, Youn Bong; Bang, In Bae; Bae, Bong Moon; Oh, Gyu Hwan

    2011-04-01

    To develop a chemical gel decontamination technology for a removal of non-fixed contaminants during the maintenance and decommissioning works of high radiation hot cells which have been used for a recycling or treatment of spent fuels we have prepare gels with CAB-O-SIL M-5 or Aerosil 380 as viscosifier and some non-ionic surfactants such as diethylene glycol hexyl ether, triethylene glycol dodecyl ether, polyethylene glycol 600, and triethylene glycol butyl ether. Surfactants are playing important roles in manipulating the properties of decontamination the gels. We have found the CAB-O-SIL with triethylene glycol butyl ether and Aerosil with triethylene glycol dodecyl ether systems promising for the decontamination work

  10. Tools to Ensure Safe Medicines: New Monograph Tests in USP-NF

    Directory of Open Access Journals (Sweden)

    Catherine Sheehan

    2010-06-01

    Full Text Available This paper describes USP-NF compendial updates to six ‘high-priority” excipient monographs: Glycerin, Propylene Glycol, Sorbitol Solution, Sorbitol Sorbitan Solution, Noncrystallizing Sorbitol Solution and Maltitol Solution. The USP-NF revisions arose from the Food and Drug Administration’s (FDA’s requests to include, as part of each monograph’s Identification test, a limit test to detect the presence of Diethylene Glycol (DEG, a toxic adulterant. These revisions align with the 2007 FDA Guidance for Industry: Testing of Glycerin for Diethylene Glycol (1, that drug product manufacturers perform a specific identity test for DEG on all containers of all lots of glycerin before glycerin is used in the manufacture and preparation of drug products. This paper describes several risk factors due to a complex global excipient supply chain, nonspecific specifications, inadequate supply chain qualification, and poor understanding of regulations. Strengthening and conformance to compendial specifications is one of the tools necessary to mitigate risk and help prevent the next DEG adulteration that is part of USP’s efforts to ensure safe medicines.

  11. Diethylene-triamine-penta-acetate administration protocol for radiological emergency medicine in nuclear fuel reprocessing plants.

    Science.gov (United States)

    Jin, Yutaka

    2008-01-01

    Inhalation therapy of diethylene-triamine-penta-acetate (DTPA) should be initiated immediately to workers who have significant incorporation of plutonium, americium or curium in the nuclear fuel reprocessing plant. A newly designed electric mesh nebulizer is a small battery-operated passive vibrating mesh device, in which vibrations in an ultrasonic horn are used to force drug solution through a mesh of micron-sized holes. This nebulizer enables DTPA administration at an early stage in the event of a radiation emergency from contamination from the above radioactive metals.

  12. Diagnosis of toxic alcohols: limitations of present methods.

    Science.gov (United States)

    Kraut, Jeffrey A

    2015-01-01

    Methanol, ethylene glycol, diethylene glycol, and propylene glycol intoxications are associated with cellular dysfunction and an increased risk of death. Adverse effects can develop quickly; thus, there is a need for methods for rapidly detecting their presence. To examine the value and limitations of present methods to diagnose patients with possible toxic alcohol exposure. I searched MEDLINE for articles published between 1969 and 2014 using the terms: toxic alcohols, serum osmolality, serum osmol gap, serum anion gap, metabolic acidosis, methanol, ethylene glycol, diethylene glycol, propylene glycol, and fomepizole. Each article was reviewed for additional references. The diagnosis of toxic alcohol exposure is often made on the basis of this history and physical findings along with an increase in the serum osmol and anion gaps. However, an increase in the osmol and/or anion gaps is not always present. Definitive detection in blood requires gas or liquid chromatography, laborious and expensive procedures which are not always available. Newer methods including a qualitative colorimetric test for detection of all alcohols or enzymatic tests for a specific alcohol might allow for more rapid diagnosis. Exposure to toxic alcohols is associated with cellular dysfunction and increased risk of death. Treatment, if initiated early, can markedly improve outcome, but present methods of diagnosis including changes in serum osmol and anion gap, and use of gas or liquid chromatography have important limitations. Development of more rapid and effective tests for detection of these intoxications is essential for optimal care of patients.

  13. Polyethylene glycol-covered ultra-small Gd2O3 nanoparticles for positive contrast at 1.5 T magnetic resonance clinical scanning

    Science.gov (United States)

    Fortin, Marc-André; Petoral, Rodrigo M., Jr.; Söderlind, Fredrik; Klasson, A.; Engström, Maria; Veres, Teodor; Käll, Per-Olof; Uvdal, Kajsa

    2007-10-01

    The size distribution and magnetic properties of ultra-small gadolinium oxide crystals (US-Gd2O3) were studied, and the impact of polyethylene glycol capping on the relaxivity constants (r1, r2) and signal intensity with this contrast agent was investigated. Size distribution and magnetic properties of US-Gd2O3 nanocrystals were measured with a TEM and PPMS magnetometer. For relaxation studies, diethylene glycol (DEG)-capped US-Gd2O3 nanocrystals were reacted with PEG-silane (MW 5000). Suspensions were adequately dialyzed in water to eliminate traces of Gd3+ and surfactants. The particle hydrodynamic radius was measured with dynamic light scattering (DLS) and the proton relaxation times were measured with a 1.5 T MRI scanner. Parallel studies were performed with DEG-Gd2O3 and PEG-silane-SPGO (Gd2O3,DTPA and the r2/r1 ratio was 1.4. PEG-silane-SPGO gave low r1 relaxivities and high r2/r1 ratios, less compatible with positive contrast agent requirements. Higher r1 were obtained with PEG-silane in comparison to DEG-Gd2O3. Treatment of DEG-US-Gd2O3 with PEG-silane provides enhanced relaxivity while preventing aggregation of the oxide cores. This study confirms that PEG-covered Gd2O3 nanoparticles can be used for positively contrasted MR applications requiring stability, biocompatible coatings and nanocrystal functionalization.

  14. Immobilization of enzymes by radiation-induced polymerization of glass-forming monomers

    International Nuclear Information System (INIS)

    Yoshida, M.; Kumakura, M.; Kaetsu, I.

    1979-01-01

    The effect of cooling rate of a monomeric system on the porosity and activity of an immobilized enzyme prepared by radiation-induced polymerization of 2-hydroxyethyl methacrylate at low temperatures has been studied. Slow cooling gave the same effect on porosity of the polymer as decreasing the monomer concentration. A glass-forming solvent such as diethylene glycol was added to water to study the effect of the supercooling tendency of the solvent. Addition of diethylene glycol decreased porosity and also enzymic activity. Water was replaced by the miscible solvent p-dioxane and the immiscible solvent n-decane in order to clarify the effect of solvent. p-Dioxane had a similar effect to water on the relation between the monomer concentration, porosity and activity. On the other hand, polymer prepared from the system containing n-decane showed different immobilization properties owing to the presence of independent pores in the matrix. (author)

  15. One-step extraction and quantitation of toxic alcohols and ethylene glycol in plasma by capillary gas chromatography (GC) with flame ionization detection (FID).

    Science.gov (United States)

    Orton, Dennis J; Boyd, Jessica M; Affleck, Darlene; Duce, Donna; Walsh, Warren; Seiden-Long, Isolde

    2016-01-01

    Clinical analysis of volatile alcohols (i.e. methanol, ethanol, isopropanol, and metabolite acetone) and ethylene glycol (EG) generally employs separate gas chromatography (GC) methods for analysis. Here, a method for combined analysis of volatile alcohols and EG is described. Volatile alcohols and EG were extracted with 2:1 (v:v) acetonitrile containing internal standards (IS) 1,2 butanediol (for EG) and n-propanol (for alcohols). Samples were analyzed on an Agilent 6890 GC FID. The method was evaluated for precision, accuracy, reproducibility, linearity, selectivity and limit of quantitation (LOQ), followed by correlation to existing GC methods using patient samples, Bio-Rad QC, and in-house prepared QC material. Inter-day precision was from 6.5-11.3% CV, and linearity was verified from down to 0.6mmol/L up to 150mmol/L for each analyte. The method showed good recovery (~100%) and the LOQ was calculated to be between 0.25 and 0.44mmol/L. Patient correlation against current GC methods showed good agreement (slopes from 1.03-1.12, and y-intercepts from 0 to 0.85mmol/L; R(2)>0.98; N=35). Carryover was negligible for volatile alcohols in the measuring range, and of the potential interferences tested, only toluene and 1,3 propanediol interfered. The method was able to resolve 2,3 butanediol, diethylene glycol, and propylene glycol in addition to the peaks quantified. Here we describe a simple procedure for simultaneous analysis of EG and volatile alcohols that comes at low cost and with a simple liquid-liquid extraction requiring no derivitization to obtain adequate sensitivity for clinical specimens. Copyright © 2015 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  16. Water containing explosive for big diameter use. [Slurry of ammonium nitrate and monomethyl lamine

    Energy Technology Data Exchange (ETDEWEB)

    Sunakawa, Tomoji; Fujita, Koichi; Kodama, Taro; Suzuki, Masahiro; Ono, Naoki

    1988-05-11

    This is a report concerning the design and experiment of water containing explosive which can be used as a substitute of ANFO. As the water containing explosive, slurry type was taken which consists of ammonium nitrate and monomethyl amine as main components and density of which was more than 1.2, explosion speed 4880 m/s, F value 7790 atm*L/Kg. Experiments were conducted for variuous loading length. From the result, it was recognized that at least 4.5 m of loading length was neccessary for achieving better result than the case whlen only ANFO was used. (1 fig, 1 tab)

  17. 40 CFR 795.225 - Dermal pharmacokinetics of DGBE and DGBA.

    Science.gov (United States)

    2010-07-01

    ... animals shall be provided with conventional laboratory diets and water ad libitum. (2) Administration of... and diethylene glycol butyl ether acetate (DGBA). (b) Test procedures—(1) Animal selection—(i) Species... in percutaneous absorption studies. (ii) Animals. Adult female Sprague Dawley rats shall be used. The...

  18. Poly(diacetylene) Monolayers Studied with a Fluorescence Scanning Near-Field Optical Microscope

    NARCIS (Netherlands)

    Moers, Marco H.P.; Moers, M.H.P.; Gaub, Hermann E.; van Hulst, N.F.

    1994-01-01

    A novel and powerful method to study the optical properties of thin lipid films which a resolution superior to confocal microscopy is presented. With a scanning near-field optical microscope, fluorescence images of a Langmuir-Blodgett film of diethylene glycol diamine pentacosadiynoic amide are

  19. Preliminary studies of the toxic effects of non-ionic surfactants derived from lysine.

    Science.gov (United States)

    Macián, M; Seguer, J; Infante, M R; Selve, C; Vinardell, M P

    1996-01-08

    The toxic effects of new synthetic monodisperse non-ionic long-chain N alpha, N epsilon-diacyl lysine polyoxyethylene glycol amide compounds with a structural resemblance to natural lecithin phospholipids were studied by the haemolytic method and the test of the chorioallantoic membrane of the hen's egg (HET-CAM). The following compounds were tested: symmetrical N alpha,N epsilon-diacyl lysine homologues (N alpha,N epsilon-dihexanoyl, N alpha,N epsilon-dioctanoyl and N alpha,N epsilon-didecanoyl lysine) with one methyl ether polyoxyethylene glycol chain of different oxyethylene units (dioxyethylene glycol, tetraoxyethylene glycol and hexaoxyethylene glycol) as headgroup; symmetrical N alpha,N epsilon-diacyl lysine homologues with two methyl ether dioxyethylene glycol chains and the asymmetrical N alpha-butanoyl, N epsilon-dodecyl lysine with two hydrophilic methyl ether dioxyethylene glycol chains as headgroup. A commercial (polydisperse) oleoyl polyoxyethylene glycol diethanolamide with an average of eight units of ethylene oxide was used as control. All the synthesized tested compounds appeared to be less haemolytic and less irritant than the control. The synthesized products were studied with regard to their hydrophobic and hydrophilic chains in order to evaluate the influence of their structure on their haemolytic and irritative action. The results of this study show that the acyl chain distribution of these compounds greatly influence toxic effects: the asymmetrical compound N alpha-butanoyl,N epsilon-dodecyl lysine-bis[methyl ether diethylene glycol]amide was found to be the most haemolytic and irritating compound. Among the symmetrical homologues, the shortest-chain compounds N alpha,N epsilon-dihexanoyl lysine methyl ether polyoxyethylene glycol amides present the least haemolytic and irritating activity, independently of the number and length of the hydrophilic methyl ether polyoxyethylene glycol chains. Taking into account their surface activity

  20. Development of lidocaine gels for enhanced local anesthetic action.

    Science.gov (United States)

    Shin, Sang-Chul; Cho, Cheong-Weon; Yang, Kyu-Ho

    2004-12-09

    In relieving local pains, lidocaine, one of ester type local anesthetics, has been used. To develop the lidocaine gels of enhanced local anesthetic effects, hydroxypropyl methylcellulose (HPMC) based bioadhesive polymer gel containing an enhancer was formulated. As the drug concentration in the gels increased up to 3%, the permeation rate of drug linearly increased, thereafter reaching a plateau. As the temperature of surrounding solutions increased, the permeation of drug increased. The activation energy of drug permeation was 3.29 kcal/mol for lidocaine. The permeation rate of drug through skin was studied using various enhancers, such as glycols, non-ionic surfactants, and bile salts. Among the enhancers studied, diethylene glycol showed the greatest enhancing effects on drug permeation through skin. The analgesic activity was examined using a tail-flick analgesimeter. In the area under the efficacy curve (AUEC) of the rat-tail flick tests, lidocaine gel containing diethylene glycol showed about 3.89-fold increase in analgesic activity compared with the control. The addition of vasoconstrictor in the gels prolonged the analgesic effects. The result of this study supports that the bioadhesive gel with efficient anesthetic effect could be developed using HPMC with combination of enhancer and vasoconstrictor.

  1. Relationship between solute permeability and osmotic remediability in a galactose-negative strain of Saccharomyces cerevisiae.

    Science.gov (United States)

    Bassel, J; Douglas, H C

    1970-11-01

    An osmotic remedial allele, gal 7-1, in the galactose pathway of Saccharomyces cerevisiae responds to either penetrating (ethylene glycol and diethylene glycol) or nonpenetrating (KCl, NaCl, and sorbitol) solutes in the growth medium. Extracts from cells grown under restrictive conditions gave no increase in enzyme activity (gal-1-phosphate, uridylyl transferase) when exposed to the penetrating solutes; thus protein synthesis or possibly polymer assembly is proposed as the critical step remedied by the addition of the solutes.

  2. E-cigarette liquids: Constancy of content across batches and accuracy of labeling.

    Science.gov (United States)

    Etter, Jean-François; Bugey, Aurélie

    2017-10-01

    To assess whether bottles of refill liquids for e-cigarettes were filled true to label, whether their content was constant across two production batches, and whether they contained impurities. In 2013, we purchased on the Internet 18 models from 11 brands of e-liquids. We purchased a second sample of the same models 4months later. We analyzed their content in nicotine, anabasine, propylene glycol, glycerol, ethylene glycol and diethylene glycol, and tested their pH. The median difference between the nicotine value on the labels and the nicotine content in the bottles was 0.3mg/mL (range -5.4 to +3.5mg/mL, i.e. -8% to +30%). For 82% of the samples, the actual nicotine content was within 10% of the value on the labels. All models contained glycerol (median 407mg/mL), and all but three models contained propylene glycol (median 650mg/mL). For all samples, levels of anabasine, ethylene glycol and diethylene glycol were below our limits of detection. The pH of all the e-liquids was alkaline (median pH=9.1; range 8.1 to 9.9). The measured content of two batches of the same model varied by a median of 0% across batches for propylene glycol, 1% for glycerol, 0% for pH, and 0.5% for nicotine (range -15% to +21%; 5th and 95th percentiles: -15% and +10%). The nicotine content of these e-liquids matched the labels on the bottles, and was relatively constant across production batches. The content of propylene glycol and glycerol was also stable across batches, as was the pH. Copyright © 2017. Published by Elsevier Ltd.

  3. The role of various fuels on microwave-enhanced combustion synthesis of CuO/ZnO/Al2O3 nanocatalyst used in hydrogen production via methanol steam reforming

    International Nuclear Information System (INIS)

    Ajamein, Hossein; Haghighi, Mohammad; Alaei, Shervin

    2017-01-01

    Graphical abstract: CuO/ZnO/Al 2 O 3 nanocatalysts were synthesized by the fast and simple microwave enhanced combustion method. Considering that the fuel type is one of the effective parameters on quality of the prepared nanocatalysts, different fuels such as sorbitol, propylene glycol, glycerol, diethylene glycol and ethylene glycol were used. XRD, FESEM, FTIR, EDX, and BET analyses were applied to determine the physicochemical properties of fabricated nanocatalysts. The catalytic experiments were performed in a fixed bed reactor in the temperature range of 160–300 °C. The characteristic and reactivity properties of fabricated nanocatalysts proved that ethylene glycol is the suitable fuel for preparation of CuO/ZnO/Al 2 O 3 nanocatalysts via microwave enhanced combustion method. - Highlights: • Microwave combustion synthesis of CuO/ZnO/Al 2 O 3 nanocatalysts by different fuels. • Enhancement of methanol conversion at low temperatures by selecting proper fuel. • Providing a large number of combustion pores by application of ethylene glycol as fuel. • Increase of CO selectivity in steam methanol reforming by Zn(0 0 2) crystallite facet. - Abstract: A series of CuO/ZnO/Al 2 O 3 nanocatalysts were synthesized by the microwave enhanced combustion method to evaluate the influence of fuel type. Sorbitol, propylene glycol, glycerol, diethylene glycol and ethylene glycol were used as fuel. XRD results revealed that application of ethylene glycol led to highly dispersed CuO and ZnO crystals. It was more highlighted about Cu(1 1 1) crystallite facet which known as the main active site of methanol steam reforming. Moreover, using ethylene glycol resulted homogeneous morphology and narrow particles size distribution (average surface particle size is about 265 nm). Due to the significant physicochemical properties, the catalytic experiments showed that the sample prepared by ethylene glycol achieved total conversion of methanol at 260 °C. Its carbon monoxide

  4. Nicotinic acid- and monomethyl fumarate-induced flushing involves GPR109A expressed by keratinocytes and COX-2-dependent prostanoid formation in mice

    NARCIS (Netherlands)

    Hanson, Julien; Gille, Andreas; Zwykiel, Sabrina; Lukasova, Martina; Clausen, Björn E.; Ahmed, Kashan; Tunaru, Sorin; Wirth, Angela; Offermanns, Stefan

    2010-01-01

    The antidyslipidemic drug nicotinic acid and the antipsoriatic drug monomethyl fumarate induce cutaneous flushing through activation of G protein-coupled receptor 109A (GPR109A). Flushing is a troublesome side effect of nicotinic acid, but may be a direct reflection of the wanted effects of

  5. Effect of PEG-PDLLA polymeric nanovesicles loaded with doxorubicin and hematoporphyrin monomethyl ether on human hepatocellular carcinoma HepG2 cells in vitro

    Directory of Open Access Journals (Sweden)

    Xiang GH

    2013-12-01

    Full Text Available Guang-Hua Xiang,1,2,* Guo-Bin Hong,2,3,* Yong Wang,2 Du Cheng,2 Jing-Xing Zhou,1 Xin-Tao Shuai21Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China; 2PCFM Laboratory of Ministry of Education, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou, People's Republic of China; 3Department of Radiology, Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, People's Republic of China*These two authors contributed equally to this workObjective: To evaluate the cytotoxicity of poly(ethylene glycol-block-poly(D,L-lactic acid (PEG-PDLLA nanovesicles loaded with doxorubicin (DOX and the photosensitizer hematoporphyrin monomethyl ether (HMME on human hepatocellular carcinoma HepG2 cells and to investigate potential apoptotic mechanisms.Methods: PEG-PDLLA nanovesicles were simultaneously loaded with DOX and HMME (PEG-PDLLA-DOX-HMME, and PEG-PDLLA nanovesicles were loaded with DOX (PEG-PDLLA-DOX, HMME (PEG-PDLLA-HMME, or the PEG-PDLLA nanovesicle alone as controls. The cytotoxicity of PEG-PDLLA-DOX-HMME, PEG-PDLLA-DOX, PEG-PDLLA-HMME, and PEG-PDLLA against HepG2 cells was measured, and the cellular reactive oxygen species, percentage of cells with mitochondrial membrane potential depolarization, and apoptotic rate following treatment were determined.Results: Four nanovesicles (PEG-PDLLA-DOX-HMME, PEG-PDLLA-DOX, PEG-PDLLA-HMME, and PEG-PDLLA were synthesized, and mean particle sizes were 175±18 nm, 154±3 nm, 196±2 nm, and 147±15 nm, respectively. PEG-PDLLA-DOX-HMME was more cytotoxic than PEG-PDLLA-DOX, PEG-PDLLA-HMME, and PEG-PDLLA. PEG-PDLLA-HMME-treated cells had the highest mean fluorescence intensity, followed by PEG-PDLLA-DOX-HMME-treated cells, whereas PEG-PDLLA-DOX- and PEG-PDLLA-treated cells had a similar fluorescence intensity. Mitochondrial membrane potential depolarization was observed in 54.2%, 59.4%, 13.8%, and 14.8% of the cells treated with

  6. Enhancer-associated H3K4 monomethylation by trithorax-related, the drosophila homolog of mammalian MLL3/MLL4

    NARCIS (Netherlands)

    H.-M. Herz (Hans-Martin); M. Mohan (Man); A.S. Garruss (Alexander); K. Liang (Kaiwei); Y.-H. Takahashi (Yoh-hei); K. Mickey (Kristen); O. Voets (Olaf); C.P. Verrijzer (Peter); A. Shilatifard (Ali)

    2012-01-01

    textabstractMonomethylation of histone H3 on Lys 4 (H3K4me1) and acetylation of histone H3 on Lys 27 (H3K27ac) are histone modifications that are highly enriched over the body of actively transcribed genes and on enhancers. Although in yeast all H3K4 methylation patterns, including H3K4me1, are

  7. Human volunteer study with PGME: Eye irritation during vapour exposure

    NARCIS (Netherlands)

    Emmen, H.H.; Muijser, H.; Arts, J.H.E.; Prinsen, M.K.

    2003-01-01

    The objective of this study was to establish the possible occurrence of eye irritation and subjective symptoms in human volunteers exposed to propylene glycol monomethyl ether (PGME) vapour at concentrations of 0, 100 and 150 ppm. Testing was conducted in 12 healthy male volunteers using a repeated

  8. Natural occurrence of alternariol and alternariol monomethyl ether in soya beans.

    Science.gov (United States)

    Oviedo, M S; Barros, G G; Chulze, S N; Ramirez, M L

    2012-08-01

    The natural occurrence of alternariol (AOH) and alternariol monomethyl ether (AME) in soya beans harvested in Argentina was evaluated. Both toxins were simultaneously detected by using HPLC analysis coupled with a solid phase extraction column clean-up. Characteristics of this in-house method such as accuracy, precision and detection and quantification limits were defined by means of recovery test with spiked soya bean samples. Out of 50 soya bean samples, 60% showed contamination with the mycotoxins analyzed; among them, 16% were only contaminated with AOH and 14% just with AME. Fifteen of the positive samples showed co-occurrence of both mycotoxins analyzed. AOH was detected in concentrations ranging from 25 to 211 ng/g, whereas AME was found in concentrations ranging from 62 to 1,153 ng/g. Although a limited number of samples were evaluated, this is the first report on the natural occurrence of Alternaria toxins in soya beans and is relevant from the point of view of animal public health.

  9. Ethylene Glycol, Hazardous Substance in the Household

    Directory of Open Access Journals (Sweden)

    Jiří Patočka

    2010-01-01

    Full Text Available Ethylene glycol is a colorless, odorless, sweet-tasting but poisonous type of alcohol found in many household products. The major use of ethylene glycol is as an antifreeze in, for example, automobiles, in air conditioning systems, in de-icing fluid for windshields, and else. People sometimes drink ethylene glycol mistakenly or on purpose as a substitute for alcohol. Ethylene glycol is toxic, and its drinking should be considered a medical emergency. The major danger from ethylene glycol is following ingestion. Due to its sweet taste, peoples and occasionally animals will sometimes consume large quantities of it if given access to antifreeze. While ethylene glycol itself has a relatively low degree of toxicity, its metabolites are responsible for extensive cellular damage to various tissues, especially the kidneys. This injury is caused by the metabolites, glycolic and oxalic acid and their respective salts, through crystal formation and possibly other mechanisms. Toxic metabolites of ethylene glycol can damage the brain, liver, kidneys, and lungs. The poisoning causes disturbances in the metabolism pathways, including metabolic acidosis. The disturbances may be severe enough to cause profound shock, organ failure, and death. Ethylene glycol is a common poisoning requiring antidotal treatment.

  10. Biosynthetic mechanism of glycolate in Chromatium, 4

    International Nuclear Information System (INIS)

    Asami, Sumio; Takabe, Tetsuo; Akazawa, Takashi

    1977-01-01

    The metabolic transformation of glycolate to glycine occurring in photosynthesizing cells of Chromatium was investigated by the radioisotopic technique and by amino acid analysis. By analyzing the distribution of radiocarbon upon feeding (1- 14 C) glycolate, (2- 14 C) glyoxylate and (1- 14 C) glycine to bacterial cells, it was demonstrated that glycolate is converted to glycine via glyoxylate, and both glycolate and glycine are excreted extracellularly. Although the formation of serine was barely detected by the above two techniques in both N 2 and O 2 atmospheres, it was found that 14 CO 2 is evolved quite markedly from both (1- 14 C) glycolate and (1- 14 C) glycine fed to the Chromatium cells. Analytical results of transient changes in amino acid compositions under atmospheric changes of N 2 →O 2 and by the addition of exogenous glycolate in N 2 confirm the notion that glycolate is converted to glycine. Acidic amino acids (glutamic acid and aspartic acid) appear to take part in glycine formation as amino donors. The formation of glycine from glycolate in a N 2 atmosphere suggests that an unknown glycolate dehydrogenation reaction may operate in the overall process. (auth.)

  11. Toxic alcohol ingestion: prompt recognition and management in the emergency department [digest].

    Science.gov (United States)

    Beauchamp, Gillian A; Valento, Matthew; Kim, Jeremy

    2016-09-22

    Identifying patients with potential toxic alcohol exposure and initiating appropriate management is critical to avoid significant patient morbidity. Sources of toxic alcohol exposure include ethylene glycol, methanol, diethylene glycol, propylene glycol, and isopropanol. Treatment considerations include the antidotes fomepizole and ethanol, and hemodialysis for removal of the parent compound and its toxic metabolites. Additional interventions include adjunctive therapies that may improve acidosis and enhance clearance of the toxic alcohol or metabolites. This issue reviews common sources of alcohol exposure, basic mechanisms of toxicity, physical examination and laboratory findings that may guide rapid assessment and management, and indications for treatment. [Points & Pearls is a digest of Emergency Medicine Practice].

  12. Synthesis of Ag Nanocubes 18–32 nm in Edge Length: The Effects of Polyol on Reduction Kinetics, Size Control, and Reproducibility

    OpenAIRE

    Wang, Yi; Zheng, Yiqun; Huang, Cheng Zhi; Xia, Younan

    2013-01-01

    This article describes a robust method for the facile synthesis of small Ag nanocubes with edge lengths controlled in the range of 18–32 nm. The success of this new method relies on the substitution of ethylene glycol (EG) -- the solvent most commonly used in a polyol synthesis -- with diethylene glycol (DEG). Owing to the increase in hydrocarbon chain length, DEG possesses a higher viscosity and a lower reducing power relative to EG. As a result, we were able to achieve a nucleation burst in...

  13. Dark and Photoinduced Cytotoxic Activity of the New Chlorophyll-a Derivatives with Oligoethylene Glycol Substituents on the Periphery of Their Macrocycles.

    Science.gov (United States)

    Pylina, Yana I; Shadrin, Dmitry M; Shevchenko, Oksana G; Startseva, Olga M; Velegzhaninov, Igor O; Belykh, Dmitry V; Velegzhaninov, Ilya O

    2017-01-05

    In the present work, we investigated the dark and photoinduced cytotoxic activity of the new chlorophyll-a derivatives which contain the substituents of oligoethylene glycol on the periphery of their macrocycles. These compounds were tested using human cell lines to estimate their potential as photosensitizers for photodynamic therapy of cancer. It was shown that all the tested compounds have expressed photoinduced cytotoxic activity in vitro. Detailed study of the biological activity of one of the most perspective compound in this series-pyropheophorbide-a 17-diethylene glycol ester (Compound 21 ) was performed. This new compound is characterized by lower dark cytotoxicity and higher photoinduced cytotoxicity than previously described in a similar compound (DH-I-180-3) and clinically used Photolon TM . Using fluorescent microscopy, it was shown that Compound 21 quickly penetrates the cells. Analysis of caspase-3 activity indicated an apoptosis induction 40 min after exposure to red light (λ = 660 nm). The induction of DNA damages and apoptosis was shown using Comet assay. The results of expression analysis of the stress-response genes indicate an activation of the genes which control the cell cycle and detoxification of the free radicals after an exposure of HeLa cells to Compound 21 and to red light. High photodynamic activity of this compound and the ability to oxidize biomolecules was demonstrated on nuclear-free mice erythrocytes. In addition, it was shown that Compound 21 is effectively activated with low energy 700 nm light, which can penetrate deep into the tissue. Thus, Compound 21 is a prospective substance for development of the new drugs for photodynamic therapy of cancer.

  14. Dark and Photoinduced Cytotoxic Activity of the New Chlorophyll-a Derivatives with Oligoethylene Glycol Substituents on the Periphery of Their Macrocycles

    Directory of Open Access Journals (Sweden)

    Yana I. Pylina

    2017-01-01

    Full Text Available In the present work, we investigated the dark and photoinduced cytotoxic activity of the new chlorophyll-a derivatives which contain the substituents of oligoethylene glycol on the periphery of their macrocycles. These compounds were tested using human cell lines to estimate their potential as photosensitizers for photodynamic therapy of cancer. It was shown that all the tested compounds have expressed photoinduced cytotoxic activity in vitro. Detailed study of the biological activity of one of the most perspective compound in this series—pyropheophorbide-a 17-diethylene glycol ester (Compound 21 was performed. This new compound is characterized by lower dark cytotoxicity and higher photoinduced cytotoxicity than previously described in a similar compound (DH-I-180-3 and clinically used PhotolonTM. Using fluorescent microscopy, it was shown that Compound 21 quickly penetrates the cells. Analysis of caspase-3 activity indicated an apoptosis induction 40 min after exposure to red light (λ = 660 nm. The induction of DNA damages and apoptosis was shown using Comet assay. The results of expression analysis of the stress-response genes indicate an activation of the genes which control the cell cycle and detoxification of the free radicals after an exposure of HeLa cells to Compound 21 and to red light. High photodynamic activity of this compound and the ability to oxidize biomolecules was demonstrated on nuclear-free mice erythrocytes. In addition, it was shown that Compound 21 is effectively activated with low energy 700 nm light, which can penetrate deep into the tissue. Thus, Compound 21 is a prospective substance for development of the new drugs for photodynamic therapy of cancer.

  15. Design and characterization of a low-viscous muscle tissue mimicking media at the ISM-band (2.4–2.48 GHz) for easy antenna displacement in in vitro measurements

    DEFF Research Database (Denmark)

    Jónasson, Sævar Þór; Zhurbenko, Vitaliy; Johansen, Tom Keinicke

    2012-01-01

    -ionized water and diethylene glycol butyl ether are examined in range of widely used biomedical frequencies. A recipe for 2.45 GHz is given, which provides less than 5.6% deviation from the reference. With help of curve fitting of the discrete measurement points, recipes for other parts of the body can...

  16. Glycolic acid physical properties and impurities assessment

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, D. P. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Pickenheim, B. R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bibler, N. E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hay, M. S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-06-08

    This document has been revised due to recent information that the glycolic acid used in Savannah River National Laboratory (SRNL) experiments contains both formaldehyde and methoxyacetic acid. These impurities were in the glycolic acid used in the testing included in this report and in subsequent testing using DuPont (now called Chemours) supplied Technical Grade 70 wt% glycolic acid. However, these impurities were not reported in earlier revisions. Additional data concerning the properties of glycolic acid have also been added to this report. The Defense Waste Processing Facility (DWPF) is planning to implement a nitric-glycolic acid flowsheets to increase attainment to meet closure commitment dates during Sludge Batch 9. In fiscal year 2009, SRNL was requested to determine the physical properties of formic and glycolic acid blends. Blends of formic acid in glycolic acid were prepared and their physical properties tested. Increasing amounts of glycolic acid led to increases in blend density, viscosity and surface tension as compared to the 90 wt% formic acid that is currently used at DWPF. These increases are small, however, and are not expected to present any difficulties in terms of processing. The effect of sulfur impurities in Technical Grade glycolic acid was studied for its impact on DWPF glass quality. While the glycolic acid specification allows for more sulfate than the current formic acid specification, the ultimate impact is expected to be on the order of 0.033 wt% sulfur in glass. Note that lower sulfur content glycolic acid could likely be procured at some increased cost if deemed necessary. A paper study on the effects of radiation on glycolic acid was performed. The analysis indicates that substitution of glycolic acid for formic acid would not increase the radiolytic production rate of H2 and cause an adverse effect in the Slurry Receipt and Adjustment Tank (SRAT) or Slurry Mix Evaporator (SME) process. It has been cited that glycolic acid

  17. Radioprotection by polyethylene glycol-protein complexes in mice

    International Nuclear Information System (INIS)

    Gray, B.H.; Stull, R.W.

    1983-01-01

    Polyethylene glycol of about 5000 D was activated with cyanuric chloride, and the activated compound was complexed to each of three proteins. Polyethylene glycol-superoxide dismutase and polyethylene glycol-catalase were each radioprotectants when administered prophylactically to female B6CBF1 mice before irradiation. The dose reduction factor for these mice was 1.2 when 5000 units of polyethylene glycol-catalase was administered before 60 Co irradiation. Female B6CBF1 mice administered prophylactic intravenous injections of catalase, polyethylene glycol-albumin, or heat-denatured polyethylene glycol-catalase had survival rates similar to phosphate-buffered saline-injected control mice following 60 Co irradiation. Polyethylene glycol-superoxide dismutase and polyethylene glycol-catalase have radioprotective activity in B6CBF1 mice, which appears to depend in part on enzymatic activities of the complex. However, no radioprotective effect was observed in male C57BL/6 mice injected with each polyethylene glycol-protein complex at either 3 or 24 hr before irradiation. The mechanism for radioprotection by these complexes may depend in part on other factors

  18. pH-sensitive membranes for lithium separation

    International Nuclear Information System (INIS)

    Smolinska, Katarzyna; Bryjak, Marek; Wolska, Joanna; Kujawski, Wojciech

    2014-01-01

    Dielectric barrier discharge plasma was used to modify track etched poly(ethylene terephthalate) membranes followed by grafting of poly(acrylic acid) and copolymers of acrylic acid and di(ethylene glycol)methyl ether methacrylate. The evaluation by IR and XPS spectroscopies showed that both polymers were successfully grafted to the porous membranes. Determination of permeate fluxes pointed the membranes to have excellent responses to pH changes when grafting yield was not so high. When grafting exceeded 0.1 mg cm −2 stimuli response gel-filled membranes were formed that could be used for transport of alkaline ions. The best permselectivity was observed for poly(ethylene terephthalate) membranes grafted with 1:2 copolymer of acrylic acid and di(ethylene glycol)methyl ether methacrylate. The dialysis was more effectively facilitated for lithium than for potassium or sodium salts at solution of pH = 5.5. - Highlights: • Preparation of pore-filled stimuli response membranes that facilitate transport of alkaline salts. • pH controlled transport of alkaline salts. • Facilitation of lithium transport over sodium and potassium

  19. Propylene Glycol Poisoning From Excess Whiskey Ingestion

    Directory of Open Access Journals (Sweden)

    Courtney A. Cunningham MD

    2015-09-01

    Full Text Available In this report, we describe a case of high anion gap metabolic acidosis with a significant osmolal gap attributed to the ingestion of liquor containing propylene glycol. Recently, several reports have characterized severe lactic acidosis occurring in the setting of iatrogenic unintentional overdosing of medications that use propylene glycol as a diluent, including lorazepam and diazepam. To date, no studies have explored potential effects of excess propylene glycol in the setting of alcohol intoxication. Our patient endorsed drinking large volumes of cinnamon flavored whiskey, which was likely Fireball Cinnamon Whisky. To our knowledge, this is the first case of propylene glycol toxicity from an intentional ingestion of liquor containing propylene glycol.

  20. Glycol-Substitute for High Power RF Water Loads

    CERN Document Server

    Ebert, Michael

    2005-01-01

    In water loads for high power rf applications, power is dissipated directly into the coolant. Loads for frequencies below approx. 1GHz are ordinarily using an ethylene glycol-water mixture as coolant. The rf systems at DESY utilize about 100 glycol water loads with powers ranging up to 600kW. Due to the increased ecological awareness, the use of glycol is now considered to be problematic. In EU it is forbidden to discharge glycol into the waste water system. In case of cooling system leakages one has to make sure that no glycol is lost. Since it is nearly impossible to avoid any glycol loss in large rf systems, a glycol-substitute was searched for and found. The found sodium-molybdate based substitute is actually a additive for corrosion protection in water systems. Sodium-molybdate is ecologically harmless; for instance, it is also used as fertilizer in agriculture. A homoeopathic dose of 0.4% mixed into deionised water gives better rf absorption characteristics than a 30% glycol mixture. The rf coolant feat...

  1. Glycolic acid physical properties and impurities assessment

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, D. P. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Pickenheim, B. R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Hay, M. S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); BIBLER, N. E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-08-09

    This document has been revised to add analytical data for fresh, 1 year old, and 4 year old glycolic acid as recommended in Revision 2 of this document. This was needed to understand the concentration of formaldehyde and methoxyacetic acid, impurities present in the glycolic acid used in Savannah River National Laboratory (SRNL) experiments. Based on this information, the concentration of these impurities did not change during storage. These impurities were in the glycolic acid used in the testing included in this report and in subsequent testing using DuPont (now called Chemours) supplied Technical Grade 70 wt% glycolic acid. However, these impurities were not reported in the first two versions of this report. The Defense Waste Processing Facility (DWPF) is planning to implement a nitric-glycolic acid flowsheets to increase attainment to meet closure commitment dates during Sludge Batch 9. In fiscal year 2009, SRNL was requested to determine the physical properties of formic and glycolic acid blends.

  2. Reduction of air pollution with new dehydration concepts

    International Nuclear Information System (INIS)

    Khoi, V.V.

    1991-01-01

    The conference paper deals with the new dehydration concepts being designed for preventing hydrate formation during the transport of gas for a group of fields being under development in the North Sea. The development comprises a central production platform consisting of a gas treatment system using triethylene and/or diethylene glycol in the process. 4 figs., 3 tabs

  3. Intensification of ethylene glycol production process

    DEFF Research Database (Denmark)

    Wisutwattanaa, Apiwit; Frauzem, Rebecca; Suriyapraphadilok, Uthaiporn

    2017-01-01

    This study aims to generate an alternative design for ethylene glycol production process focusing on a reduction of operating cost and emissions. To achieve this, the phenomena-based method for process intensification was applied. 3 stages of process intensification were performed. First, the base......-case design was obtained, resulting in the production of ethylene glycol via two steps: ethylene oxidation synthesis followed by ethylene oxide hydration to produce ethylene glycol. Feasibility of the design was verified and the process was rigorously designed using a computer process simulation program...... solutions. As the result of intensification method, membrane separation was suggested and applied to the design. With the operation of the new equipment, the ethylene glycol production process was improved for 54.51 percent in terms of energy consumption....

  4. Mercury, monomethyl mercury, and dissolved organic carbon concentrations in surface water entering and exiting constructed wetlands treated with metal-based coagulants, Twitchell Island, California

    Science.gov (United States)

    Stumpner, Elizabeth B.; Kraus, Tamara E.C.; Fleck, Jacob A.; Hansen, Angela M.; Bachand, Sandra M.; Horwath, William R.; DeWild, John F.; Krabbenhoft, David P.; Bachand, Philip A.M.

    2015-09-02

    Coagulation with metal-based salts is a practice commonly employed by drinking-water utilities to decrease particle and dissolved organic carbon concentrations in water. In addition to decreasing dissolved organic carbon concentrations, the effectiveness of iron- and aluminum-based coagulants for decreasing dissolved concentrations both of inorganic and monomethyl mercury in water was demonstrated in laboratory studies that used agricultural drainage water from the Sacramento–San Joaquin Delta of California. To test the effectiveness of this approach at the field scale, nine 15-by-40‑meter wetland cells were constructed on Twitchell Island that received untreated water from island drainage canals (control) or drainage water treated with polyaluminum chloride or ferric sulfate coagulants. Surface-water samples were collected approximately monthly during November 2012–September 2013 from the inlets and outlets of the wetland cells and then analyzed by the U.S. Geological Survey for total concentrations of mercury and monomethyl mercury in filtered (less than 0.3 micrometers) and suspended-particulate fractions and for concentrations of dissolved organic carbon.

  5. Configurational properties of aromatic polyesters with sulfur atoms in their structure

    International Nuclear Information System (INIS)

    Riande, E.; Guzman, J.; Roman, J.S.

    1980-01-01

    The dipole moments of poly (thiodiethylene glycol terephthalate) chains were determined as a function of temperature by means of dielectric constant measurements in dioxane. The experimental results were found to be in fair agreement with theoretical results based on a rotational isomeric state model in which the required conformational energies were obtained from previous configurational analysis on poly(ethylene terephthalate), poly(diethylene glycol terephthalate) and poly(thiodiethylene glycol). Since poly(thiodiethylene glycol terephthalate) can be considered an alternating copolymer of ethylene terephthalate and thioethylene units, its configuration-dependent properties were compared with those of poly(ethylene terephthalate) and poly(ethylene sulfide). It was found the flexibility of the copolymer, as expressed by the partition function, intermediate to that of its parent homopolymers. The theoretical results also indicate that the dimensions of poly(thiodiethylene glycol) are similar to those of poly(ethylene terephthalate) while its dipole moment ratio resembles that of poly

  6. Overall and specific migration from multilayer high barrier food contact materials - kinetic study of cyclic polyester oligomers migration.

    Science.gov (United States)

    Úbeda, Sara; Aznar, Margarita; Vera, Paula; Nerín, Cristina; Henríquez, Luis; Taborda, Laura; Restrepo, Claudia

    2017-10-01

    Most multilayer high barrier materials used in food packaging have a polyurethane adhesive layer in their structures. In order to assess the safety of these materials, it is important to determine the compounds intentionally added to the adhesives (IAS) as well as those non-intentionally added substances (NIAS). During the manufacture of polyurethane adhesives, some by-products can be formed, such as cyclic polyester oligomers coming from the reaction between dicarboxylic acids and glycols. Since these compounds are not listed in the Regulation 10/2011/EU, they should not be found in migration above 0.01 mg/kg of simulant. In this study two flexible multilayer packaging materials were used and migration was evaluated in simulant A (ethanol 10% v/v), simulant B (acetic acid 3% w/v) and simulant ethanol 95% v/v during 10 days at 60ºC. Identification and quantification of non-volatile compounds was carried out by UPLC-MS-QTOF. Most of migrants were oligomers such as cyclic polyesters and caprolactam oligomers. Overall migration and specific migration of adipic acid-diethylene glycol and phthalic acid-diethylene glycol were monitored over time and analysed by UPLC-MS-TQ. In most cases, ethanol 95% v/v was the simulant with the highest concentration values. Overall migration kinetics followed a similar pattern than specific migration kinetics.

  7. Sorption of different phenol derivatives on functionalized macroporous nanocomposite of poly (glycidyl methacrylate-co-ethylene glycol dimethacrylate and acid modified bentonite

    Directory of Open Access Journals (Sweden)

    Marinović Sanja R.

    2014-01-01

    Full Text Available Macroporous nanocomposite of poly (glycidyl methacrylate-co-ethylene glycol dimethacrylate and acid modified bentonite was prepared by radical suspension copolymerization. Nanocomposite was functionalized with diethylene triamine (deta, by ring-opening reaction of the pendant epoxy groups. Functionalization was performed in order to enable phenol derivatives sorption. This new, not sufficiently investigated material, with developed porous structure was denoted CP-SA-deta. In this study, the influence of temperature on 4-nitrophenol (4NP sorption on CP-SA-deta was investigated. The chemisorption was estimated as dominant process since activation energy of sorption of 4NP of 54.8 kJ mol-1 was obtained. After determining the optimal sorption conditions for 4NP, the sorption of 2-nitrophenol (2NP and 2-chloro 4-nitrophenol (2Cl4NP on CP-SA-deta was investigated with respect to pH, initial concentration and contact time. The 2NP sorption was seldom tested, while according to our knowledge, the 2Cl4NP sorption was not investigated. The isotherm data were best fitted with Langmuir model, while the sorption dynamics obeyed the pseudo-second-order kinetic model for all derivatives. [Projekat Ministarstva nauke Republike Srbije, br. III 45001 i br. III 43009

  8. Cuprous oxide nanoparticles dispersed on reduced graphene oxide as an efficient electrocatalyst for oxygen reduction reaction.

    Science.gov (United States)

    Yan, Xiao-Yan; Tong, Xi-Li; Zhang, Yue-Fei; Han, Xiao-Dong; Wang, Ying-Yong; Jin, Guo-Qiang; Qin, Yong; Guo, Xiang-Yun

    2012-02-11

    Cuprous oxide (Cu(2)O) nanoparticles dispersed on reduced graphene oxide (RGO) were prepared by reducing copper acetate supported on graphite oxide using diethylene glycol as both solvent and reducing agent. The Cu(2)O/RGO composite exhibits excellent catalytic activity and remarkable tolerance to methanol and CO in the oxygen reduction reaction. This journal is © The Royal Society of Chemistry 2012

  9. Preparation of polymer microspheres by radiation-induced polymerization

    International Nuclear Information System (INIS)

    Naka, Y.; Yamamoto, Y.; Yoshida, Y.; Tagawa, S.

    1995-01-01

    Cross-liking monomer, diethylene glycol dimethacrylate gives microspheres from organic solution by radiation-induced polymerization. /One of the remarkable result is that the number of the microspheres is not changing during the polymerization. Ethyl methacrylate, maleic anhydride, styrene and acrylamide are used as comonomers. These comonomers give the microspheres in the range of 0 to 0.4 as mol fractions. (author)

  10. Material compatibility evaluation for DWPF nitric-glycolic acid-literature review

    Energy Technology Data Exchange (ETDEWEB)

    Mickalonis, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Skidmore, E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2013-06-01

    Glycolic acid is being evaluated as an alternative for formic and nitric acid in the DWPF flowsheet. Demonstration testing and modeling for this new flowsheet has shown that glycolic acid and glycolate has a potential to remain in certain streams generated during the production of the nuclear waste glass. A literature review was conducted to assess the impact of glycolic acid on the corrosion of the materials of construction for the DWPF facility as well as facilities downstream which may have residual glycolic acid and glycolates present. The literature data was limited to solutions containing principally glycolic acid.

  11. Extraction processes and solvents for recovery of cesium, strontium, rare earth elements, technetium and actinides from liquid radioactive waste

    Science.gov (United States)

    Zaitsev, Boris N.; Esimantovskiy, Vyacheslav M.; Lazarev, Leonard N.; Dzekun, Evgeniy G.; Romanovskiy, Valeriy N.; Todd, Terry A.; Brewer, Ken N.; Herbst, Ronald S.; Law, Jack D.

    2001-01-01

    Cesium and strontium are extracted from aqueous acidic radioactive waste containing rare earth elements, technetium and actinides, by contacting the waste with a composition of a complex organoboron compound and polyethylene glycol in an organofluorine diluent mixture. In a preferred embodiment the complex organoboron compound is chlorinated cobalt dicarbollide, the polyethylene glycol has the formula RC.sub.6 H.sub.4 (OCH.sub.2 CH.sub.2).sub.n OH, and the organofluorine diluent is a mixture of bis-tetrafluoropropyl ether of diethylene glycol with at least one of bis-tetrafluoropropyl ether of ethylene glycol and bis-tetrafluoropropyl formal. The rare earths, technetium and the actinides (especially uranium, plutonium and americium), are extracted from the aqueous phase using a phosphine oxide in a hydrocarbon diluent, and reextracted from the resulting organic phase into an aqueous phase by using a suitable strip reagent.

  12. Glycol chitosan

    DEFF Research Database (Denmark)

    Danielsen, E Thomas; Danielsen, E Michael

    2017-01-01

    Chitosan is a polycationic polysaccharide consisting of β-(1-4)-linked glucosamine units and due to its mucoadhesive properties, chemical derivatives of chitosan are potential candidates as enhancers for transmucosal drug delivery. Recently, glycol chitosan (GC), a soluble derivative of chitosan...

  13. Kinetics and Mechanism of Oxidation of Triethylene Glycol and Tetraethylene Glycol by Ditelluratoargentate (III in Alkaline Medium

    Directory of Open Access Journals (Sweden)

    Jinhuan Shan

    2013-01-01

    Full Text Available The kinetics of oxidation of triethylene glycol and tetraethylene glycol by ditelluratoargentate (III (DTA in alkaline liquids has been studied spectrophotometrically in the temperature range of 293.2 K–313.2 K. The reaction rate showed first-order dependence in DTA and fractional order with respect to triethylene glycol or tetraethylene glycol. It was found that the pseudo-first-order rate constant (kobs increased with an increase in concentration of OH− and a decrease in concentration of H4TeO6 2−. There was a negative salt effect and no free radicals were detected. A plausible mechanism involving a two-electron transfer was proposed, and the rate equations derived from the mechanism explained all the experimental results and observations. The activation parameters along with the rate constants of the rate-determining step were calculated.

  14. End-group characterisation of poly(propylene glycol)s by means of electrospray ionisation-tandem mass spectrometry (ESI-MS/MS).

    Science.gov (United States)

    Jackson, Anthony T; Slade, Susan E; Thalassinos, Konstantinos; Scrivens, James H

    2008-10-01

    The end-group functionalisation of a series of poly(propylene glycol)s has been characterised by means of electrospray ionisation-tandem mass spectrometry (ESI-MS/MS). A series of peaks with mass-to-charge ratios that are close to that of the precursor ion were used to generate information on the end-group functionalities of the poly(propylene glycol)s. Fragment ions resulting from losses of both of the end groups were noted from some of the samples. An example is presented of how software can be used to significantly reduce the length of time involved in data interpretation (which is typically the most time-consuming part of the analysis).

  15. Crystal structures of eight mono-methyl alkanes (C26–C32 via single-crystal and powder diffraction and DFT-D optimization

    Directory of Open Access Journals (Sweden)

    Lee Brooks

    2015-09-01

    Full Text Available The crystal structures of eight mono-methyl alkanes have been determined from single-crystal or high-resolution powder X-ray diffraction using synchrotron radiation. Mono-methyl alkanes can be found on the cuticles of insects and are believed to act as recognition pheromones in some social species, e.g. ants, wasps etc. The molecules were synthesized as pure S enantiomers and are (S-9-methylpentacosane, C26H54; (S-9-methylheptacosane and (S-11-methylheptacosane, C28H58; (S-7-methylnonacosane, (S-9-methylnonacosane, (S-11-methylnonacosane and (S-13-methylnonacosane, C30H62; and (S-9-methylhentriacontane, C32H66. All crystallize in space group P21. Depending on the position of the methyl group on the carbon chain, two packing schemes are observed, in which the molecules pack together hexagonally as linear rods with terminal and side methyl groups clustering to form distinct motifs. Carbon-chain torsion angles deviate by less than 10° from the fully extended conformation, but with one packing form showing greater curvature than the other near the position of the methyl side group. The crystal structures are optimized by dispersion-corrected DFT calculations, because of the difficulties in refining accurate structural parameters from powder diffraction data from relatively poorly crystalline materials.

  16. Polymeric compositions incorporating polyethylene glycol as a phase change material

    Science.gov (United States)

    Salyer, Ival O.; Griffen, Charles W.

    1989-01-01

    A polymeric composition comprising a polymeric material and polyethylene glycol or end-capped polyethylene glycol as a phase change material, said polyethylene glycol and said end-capped polyethylene glycol having a molecular weight greater than about 400 and a heat of fusion greater than about 30 cal/g; the composition is useful in making molded and/or coated materials such as flooring, tiles, wall panels and the like; paints containing polyethylene glycols or end-capped polyethylene glycols are also disclosed.

  17. Formation of carbonyl compounds in radiolysis of ethylene glycol in methanol

    International Nuclear Information System (INIS)

    Bezborodova, S.G.; Vetrov, V.S.; Kalyazin, E.P.; Korolev, V.M.; Salamatov, I.I.

    1977-01-01

    Radiolysis of diluted solutions of ethylene glycol has been investigated. It is shown that acetaldehyde, glycol aldehyde and formaldehyde are the main products of radiolysis of methanol solutions of ethylene glycol. Acetaldehyde and glycol aldehyde yields increase in radiolysis of methanol solutions of ethylene glycol with an increase of the original concentration of ethylene glycol and a temperature rise of radiolysis. Formaldehyde yields increase with the ethylene glycol concentration but decrease with a temperature rise (the formation of formaldehyde from methanol is taken into account). A mechanism of radiation-chemical transformations of ethylene glycol in methanol is explained. It is concluded that the main directions of ethylene glycol decomposition, detected in water solutions of ethylene glycol, are also realized in methanol solutions. However, a role of different directions of decomposition depends on the medium

  18. Polyethylene glycol: a game-changer laxative for children.

    Science.gov (United States)

    Alper, Arik; Pashankar, Dinesh S

    2013-08-01

    Constipation is a common problem in children worldwide. It can also be a chronic problem persisting for many months to years. Successful treatment of constipation requires long-term use of laxatives. Commonly used laxatives in children include milk of magnesia, lactulose, mineral oil, and polyethylene glycol. Compared with other laxatives, polyethylene glycol (with and without electrolytes) is a relatively new laxative used during the last decade. Recent studies report excellent efficacy and safety of polyethylene glycol for the long-term treatment of constipation in children. Because of excellent patient acceptance, polyethylene glycol has become a preferred choice of laxative for many practitioners. This article reviews the recently published pediatric literature on biochemistry, efficacy, safety, patient acceptance, and pharmacoeconomics of polyethylene glycol.

  19. Synthesis of Cu Nanoparticles Using Copper Carbonate as Cu Source Toward Versatile Applications.

    Science.gov (United States)

    Yano, Kazuhisa; Ishizaki, Toshitaka; Sugiyama, Hidehiko

    2018-07-01

    Cu nanoparticles (NPs) coated with polyvinylpyrrolidone (PVP) were fabricated by polyol method using copper carbonate as a raw material. To increase the reaction temperature, glycol multimers such as diethylene glycol, triethylene glycol, or tetraethylene glycol were examined as a solvent. With increasing degree of multimerization, average diameter of Cu NPs decreased. The synthesis of Cu NPs was further investigated by changing reaction temperature, the amount and molecular weight of PVP in triethylene glycol as a solvent. Average diameter and standard deviation of Cu NPs were found to be highly dependent on those factors. As a result, fine Cu NPs ranging from 28 to 67 nm in average size with narrow size distribution (standard deviation: 16-28%) were obtained. The obtained Cu NPs were applied to a nanofluid, which showed higher thermal conductivity than the theoretical value. The antibacterial activity of Cu NPs was also demonstrated, and found to have strong antibacterial activity.

  20. Material Compatibility Evaluation for DWPF Nitric-Glycolic Acid - Literature Review

    Energy Technology Data Exchange (ETDEWEB)

    Mickalonis, J. I. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Skidmore, T. E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-09-30

    Glycolic acid is being evaluated as an alternative for formic and nitric acid in the DWPF flowsheet. Demonstration testing and modeling for this new flowsheet has shown that glycolic acid and glycolate has a potential to remain in certain streams generated during the production of the nuclear waste glass. A literature review was conducted to assess the impact of glycolic acid on the corrosion of the materials of construction for the DWPF facility as well as facilities downstream which may have residual glycolic acid and glycolates present. The literature data was limited to solutions containing principally glycolic acid. The reported corrosion rates and degradation characteristics have shown the following for the materials of construction.

  1. Screening for occupational vitiligo in workers exposed to hydroquinone monomethyl ether and to paratertiary-amyl-phenol

    Energy Technology Data Exchange (ETDEWEB)

    O' Sullivan, J.J.; Stevenson, C.J.

    1981-11-01

    Two men reported previously with vitiligo after occupational exposure to hydroquinone monomethyl ether (HMME) have been reviewed after eight years. Repigmentation of significant degree was found in one man and of limited degree in the other. One hundred and sixty-nine men in the same works have been screened with Wood's light for evidence of vitiligo. No cases were found in the 148 men exposed to HMME (colleagues who screened 100 men exposed to HMME in two other factories also found no case) or in the 129 who had been exposed to paratertiary-amyl-phenol. Loss of light reflection on Wood's light examination was observed in 13 men due to scars or to other skin disorders.

  2. Scintiscanning of the breast with 99Tcsup(m)-diethylene triamine penta-acetic acid - a prospective blind evaluation

    International Nuclear Information System (INIS)

    Cuschieri, A.; Hutchinson, F.; Neill, G.D.S.; Wisbey, M.L.; Wood, R.A.B.; Preece, P.; Clark, J.

    1981-01-01

    In this blind prospective study of breast scintiscanning with 99 Tcsup(m)-diethylene triamine penta-acetic acid (DTPA) in 67 female patients presenting at a primary breast referral clinic, it was observed that this investigation has a high diagnostic accuracy in distinguishing benign from malignant lesions of the breast. The predictive value of the test when positive in establishing the presence of cancer is 94 per cent with a false negative rate of 6 per cent. The predictive value of the test when negative in excluding cancer is 97 per cent with a false positive rate of 3 per cent. Initial studies also indicate the potential value of DTPA breast scintiscanning in delineating the activity of painful benign lesions of the breast. (author)

  3. A mixed ruthenium polypyridyl complex containing a PEG-bipyridine macroligand

    Energy Technology Data Exchange (ETDEWEB)

    Marin, Veronica; Holder, Elisabeth; Meier, Michael A.R.; Hoogenboom, Richard; Schubert, Ulrich S. [Laboratory of Macromolecular Chemistry and Nanoscience, Eindhoven University of Technology and Dutch Polymer Institute (DPI), P. O. Box 513, 5600 MB Eindhoven (Netherlands)

    2004-04-06

    An amino-functionalized bipyridine ligand was prepared in order to serve as a bridging unit to an activated low-molecular-weight monomethyl ether of poly(ethylene glycol) (PEG). Coordination of a ruthenium(II) phenantroline precursor onto the formed PEG-containing bipyridine ligand yielded a metal-containing polymer which shows interesting properties for solar cell applications. (Abstract Copyright [2004], Wiley Periodicals, Inc.)

  4. Polyethylene Glycol 3350

    Science.gov (United States)

    ... 3350 is in a class of medications called osmotic laxatives. It works by causing water to be ... experience either of them, call your doctor immediately: diarrhea hives Polyethylene glycol 3350 may cause other side ...

  5. Biosynthetic mechanism of glycolate in Chromatium, (3)

    International Nuclear Information System (INIS)

    Asami, Sumio; Akazawa, Takashi

    1976-01-01

    The effects of α-hydroxy-2-pyridinemethanesulfonate (α-HPMS), 2,3-epoxypropionate(glycidate), and cyanide on the photosynthetic activity of Chromatium were investigated. The α-HPMS stimulated the photosynthetic CO 2 fixation in the bacterial cells in both N 2 and O 2 environments. The formation and subsequent excretion of both glycolate and glycine in the O 2 atmosphere were markedly enhanced by the HPMS. In contrast to the recent report that glycidate especially inhibits the glycolate formation in tabacco leaf disks, the authors found that it had no influence on the CO 2 fixation by Chromatium in either N 2 or O 2 atmosphere, and that the synthesis and extracellular excretion of glycolate were markedly stimulated by glycidate treatment. The cyanide (0.01 - 1mM) exerted some marked inhibitory effect on the photosynthetic CO 2 fixation in N 2 . In O 2 atmosphere, the photosynthesis was stimulated by the 0.01 mM cyanide, and inhibited by it above this level. Both the incorporation of 14 CO 2 into glycolate and the total synthesis of glycolate in light were also enhanced by the 0.01 mM cyanide, and strongly inhibited above that concentration. (J.P.N.)

  6. Identification of the chlE gene encoding oxygen-independent Mg-protoporphyrin IX monomethyl ester cyclase in cyanobacteria.

    Science.gov (United States)

    Yamanashi, Kaori; Minamizaki, Kei; Fujita, Yuichi

    2015-08-07

    The fifth ring (E-ring) of chlorophyll (Chl) a is produced by Mg-protoporphyrin IX monomethyl ester (MPE) cyclase. There are two evolutionarily unrelated MPE cyclases: oxygen-independent (BchE) and oxygen-dependent (ChlA/AcsF) MPE cyclases. Although ChlA is the sole MPE cyclase in Synechocystis PCC 6803, it is yet unclear whether BchE exists in cyanobacteria. A BLAST search suggests that only few cyanobacteria possess bchE. Here, we report that two bchE candidate genes from Cyanothece strains PCC 7425 and PCC 7822 restore the photosynthetic growth and bacteriochlorophyll production in a bchE-lacking mutant of Rhodobacter capsulatus. We termed these cyanobacterial bchE orthologs "chlE." Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Electrical properties of a novel lead alkoxide precursor: Lead glycolate

    International Nuclear Information System (INIS)

    Tangboriboon, Nuchnapa; Pakdeewanishsukho, Kittikhun; Jamieson, Alexander; Sirivat, Anuvat; Wongkasemjit, Sujitra

    2006-01-01

    The reaction of lead acetate trihydrate Pb(CH 3 COO) 2 .3H 2 O and ethylene glycol, using triethylenetetramine (TETA) as a catalyst, provides in one step access to a polymer-like precursor of lead glycolate [-PbOCH 2 CH 2 O-]. On the basis of high-resolution mass spectroscopy, chemical analysis composition, FTIR, 13 C-solid state NMR and TGA, the lead glycolate precursor can be identified as a trimer structure. The FTIR spectrum demonstrates the characteristics of lead glycolate; the peaks at 1086 and 1042 cm -1 can be assigned to the C-O-Pb stretchings. The 13 C-solid state NMR spectrum gives notably only one peak at 68.639 ppm belonging to the ethylene glycol ligand. The phase transformations of lead glycolate and lead acetate trihydrate to lead oxide, their microstructures, and electrical properties were found to vary with increasing temperature. The lead glycolate precursor has superior electrical properties relative to those of lead acetate trihydrate, suggesting that the lead glycolate precursor can possibly be used as a starting material for producing electrical and semiconducting ceramics, viz. ferroelectric, anti-ferroelectric, and piezoelectric materials

  8. Liquid Densities and Excess Molar Volumes for Water + Diethylene Glycolamine, and Water, Methanol, Ethanol, 1-Propanol + Triethylene Glycol Binary Systems at Atmospheric Pressure and Temperatures in the Range of 283.15ů363.15 K

    Czech Academy of Sciences Publication Activity Database

    Valtz, A.; Teodorescu, M.; Wichterle, Ivan; Richon, D.

    2004-01-01

    Roč. 215, č. 2 (2004), s. 129-142 ISSN 0378-3812 R&D Projects: GA ČR GA104/03/1555 Institutional research plan: CEZ:AV0Z4072921 Keywords : excess molar volume * density * triethylene glycol Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.356, year: 2004

  9. Monoclonal antibody to DNA containing thymine glycol

    Energy Technology Data Exchange (ETDEWEB)

    Leadon, S A; Hanawalt, P C [Stanford Univ., CA (USA). Dept. of Biological Sciences

    1983-08-01

    Exposure of DNA to ionizing or near ultraviolet radiation modifies thymine to form ring-saturated products. One of the major products formed is 5,6-dihydroxy-5.6-dihydrothymine (thymine glycol). Thymine glycol can also be selectively formed by oxidizing DNA with OsO/sub 4/. We have isolated hybrids that produce monoclonal antibodies against thymine glycol by fusing mouse myeloma cells (P3X63-Ag8-6.5.3) with spleen cells from BALB/c mice immunized with OsO/sub 4/-oxidized poly(dT) complexed with methylated bovine serum albumin. This report describes the characterization of the antibody from one hybridoma using a competitive enzyme-linked immunosorbent assay (ELISA). The antibody reacted with both single- and double-stranded DNA treated with OsO/sub 4/, and with OsO/sub 4/-treated poly(dA-dT) and poly(dT); it did not crossreact with unmodified or apurinic DNA. It also reacted with DNA treated with H/sub 2/O/sub 2/ or with ..gamma..-rays at doses as low as 250 rad. We were able to detect 2 fmoles of thymine glycol in OsO/sub 4/-treated DNA and could quantitate 1 thymine glycol per 220000 thymines. Using the antibody and the ELISA, the formation and removal of thymine glycol was examined in cultures of African green monkey cells irradiated with 25 krad of ..gamma..-rays. The antibody reactive sites produced by irradiation (8.5 per 10/sup 6/ thymines) were efficiently removed from the cellular DNA.

  10. Impact of Glycolate Anion on Aqueous Corrosion in DWPF and Downstream Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Mickalonis, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-07-12

    Glycolic acid is being evaluated as an alternate reductant in the preparation of high level waste for the Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS). During processing, the glycolic acid may not be completely consumed with small quantities of the glycolate anion being carried forward to other high level waste (HLW) facilities. The SRS liquid waste contractor requested an assessment of the impact of the glycolate anion on the corrosion of the materials of construction (MoC) throughout the waste processing system since this impact had not been previously evaluated. A literature review revealed that corrosion data were not available for the MoCs in glycolic-bearing solutions applicable to SRS systems. Data on the material compatibility with only glycolic acid or its derivative products were identified; however, data were limited for solutions containing glycolic acid or the glycolate anion. For the proprietary coating systems applied to the DWPF concrete, glycolic acid was deemed compatible since the coatings were resistant to more aggressive chemistries than glycolic acid. Additionally similar coating resins showed acceptable resistance to glycolic acid.

  11. Impact of Glycolate Anion on Aqueous Corrosion in DWPF and Downstream Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Mickalonis, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-11-20

    Glycolic acid is being evaluated as an alternate reductant in the preparation of high level waste for the Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS). During processing, the glycolic acid may not be completely consumed with small quantities of the glycolate anion being carried forward to other high level waste (HLW) facilities. The SRS liquid waste contractor requested an assessment of the impact of the glycolate anion on the corrosion of the materials of construction (MoC) throughout the waste processing system since this impact had not been previously evaluated. A literature review revealed that corrosion data were not available for the MoCs in glycolic-bearing solutions applicable to SRS systems. Data on the material compatibility with only glycolic acid or its derivative products were identified; however, data were limited for solutions containing glycolic acid or the glycolate anion. For the proprietary coating systems applied to the DWPF concrete, glycolic acid was deemed compatible since the coatings were resistant to more aggressive chemistries than glycolic acid. Additionally, similar coating resins showed acceptable resistance to glycolic acid.

  12. Engineering Pseudomonas putida KT2440 for efficient ethylene glycol utilization.

    Science.gov (United States)

    Franden, Mary Ann; Jayakody, Lahiru N; Li, Wing-Jin; Wagner, Neil J; Cleveland, Nicholas S; Michener, William E; Hauer, Bernhard; Blank, Lars M; Wierckx, Nick; Klebensberger, Janosch; Beckham, Gregg T

    2018-06-07

    Ethylene glycol is used as a raw material in the production of polyethylene terephthalate, in antifreeze, as a gas hydrate inhibitor in pipelines, and for many other industrial applications. It is metabolized by aerobic microbial processes via the highly toxic intermediates glycolaldehyde and glycolate through C2 metabolic pathways. Pseudomonas putida KT2440, which has been engineered for environmental remediation applications given its high toxicity tolerance and broad substrate specificity, is not able to efficiently metabolize ethylene glycol, despite harboring putative genes for this purpose. To further expand the metabolic portfolio of P. putida, we elucidated the metabolic pathway to enable ethylene glycol via systematic overexpression of glyoxylate carboligase (gcl) in combination with other genes. Quantitative reverse transcription polymerase chain reaction demonstrated that all of the four genes in genomic proximity to gcl (hyi, glxR, ttuD, and pykF) are transcribed as an operon. Where the expression of only two genes (gcl and glxR) resulted in growth in ethylene glycol, improved growth and ethylene glycol utilization were observed when the entire gcl operon was expressed. Both glycolaldehyde and glyoxal inhibit growth in concentrations of ethylene glycol above 50 mM. To overcome this bottleneck, the additional overexpression of the glycolate oxidase (glcDEF) operon removes the glycolate bottleneck and minimizes the production of these toxic intermediates, permitting growth in up to 2 M (~124 g/L) and complete consumption of 0.5 M (31 g/L) ethylene glycol in shake flask experiments. In addition, the engineered strain enables conversion of ethylene glycol to medium-chain-length polyhydroxyalkanoates (mcl-PHAs). Overall, this study provides a robust P. putida KT2440 strain for ethylene glycol consumption, which will serve as a foundational strain for further biocatalyst development for applications in the remediation of waste polyester plastics and

  13. Thermoresponsive Self-Assembly of Nanostructures from a Collagen-Like Peptide-Containing Diblock Copolymera

    OpenAIRE

    Luo, Tianzhi; He, Lirong; Theato, Patrick; Kiick, Kristi L.

    2014-01-01

    Temperature-triggered formation of nanostructures with distinct biological activity offers opportunities in selective modification of matrices and in drug delivery. Toward these ends, diblock polymers comprising poly(diethylene glycol methyl ether methacrylate) (PDEGMEMA) conjugated to a triple helix-forming collagen-like peptide (CLP) is produced. The ability of the CLP domain to maintain its triple helix conformation after conjugation with the polymer is confirmed via circular dichroism (CD...

  14. Facile synthesis of pegylated zinc(II) phthalocyanines via transesterification and their in vitro photodynamic activities.

    Science.gov (United States)

    Bai, Ming; Lo, Pui-Chi; Ye, Jing; Wu, Chi; Fong, Wing-Ping; Ng, Dennis K P

    2011-10-21

    Treatment of 4,5-bis[4-(methoxycarbonyl)phenoxy]phthalonitrile and 4,5-bis[3,5-bis(methoxycarbonyl)phenoxy]phthalonitrile with an excess of 1,3-diiminoisoindoline in the presence of Zn(OAc)(2)·2H(2)O and 1,8-diazabicyclo[5.4.0]undec-7-ene in triethylene glycol monomethyl ether or polyethylene glycol monomethyl ether (with an average molecular weight of 550) led to "3 + 1" mixed cyclisation and transesterification in one pot, affording the corresponding di-β-substituted zinc(II) phthalocyanines in 7-23% yield. As shown by absorption spectroscopy, these compounds were essentially non-aggregated in N,N-dimethylformamide and could generate singlet oxygen effectively. The singlet oxygen quantum yields (Φ(Δ) = 0.53-0.57) were comparable with that of the unsubstituted zinc(II) phthalocyanine (Φ(Δ) = 0.56). These compounds in Cremophor EL emulsions also exhibited photocytotoxicity against HT29 human colorectal adenocarcinoma and HepG2 human hepatocarcinoma cells with IC(50) values in the range of 0.25-3.72 μM. The analogue with four triethylene glycol chains was the most potent photosensitiser and localised preferentially in the mitochondria of HT29 cells. The bis(polyethylene glycol)-counterpart could form surfactant-free nanoparticles both in water and in the culture medium. The hydrodynamic radii, as determined by dynamic laser light scattering, ranged from 6.3 to 79.8 nm depending on the preparation methods and conditions. The photocytotoxicity of these nanoparticles (IC(50) = 0.43-0.56 μM) was comparable with that of the Cremophor EL-formulated system (IC(50) = 0.34 μM).

  15. The application of hyaluronic acid-derivatized carbon nanotubes in hematoporphyrin monomethyl ether-based photodynamic therapy for in vivo and in vitro cancer treatment

    Directory of Open Access Journals (Sweden)

    Shi J

    2013-07-01

    Full Text Available Jinjin Shi,* Rourou Ma,* Lei Wang, Jing Zhang, Ruiyuan Liu, Lulu Li, Yan Liu, Lin Hou, Xiaoyuan Yu, Jun Gao, Zhenzhong Zhang School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, People's Republic of China*These authors contributed equally to this workAbstract: Carbon nanotubes (CNTs have shown great potential in both photothermal therapy and drug delivery. In this study, a CNT derivative, hyaluronic acid-derivatized CNTs (HA-CNTs with high aqueous solubility, neutral pH, and tumor-targeting activity, were synthesized and characterized, and then a new photodynamic therapy agent, hematoporphyrin monomethyl ether (HMME, was adsorbed onto the functionalized CNTs to develop HMME-HA-CNTs. Tumor growth inhibition was investigated both in vivo and in vitro by a combination of photothermal therapy and photodynamic therapy using HMME-HA-CNTs. The ability of HMME-HA-CNT nanoparticles to combine local specific photodynamic therapy with external near-infrared photothermal therapy significantly improved the therapeutic efficacy of cancer treatment. Compared with photodynamic therapy or photothermal therapy alone, the combined treatment demonstrated a synergistic effect, resulting in higher therapeutic efficacy without obvious toxic effects to normal organs. Overall, it was demonstrated that HMME-HA-CNTs could be successfully applied to photodynamic therapy and photothermal therapy simultaneously in future tumor therapy.Keywords: photodynamic therapy, photothermal therapy, HA-derivatized carbon nanotubes, tumor targeting, synergistic effect, hematoporphyrin monomethyl ether

  16. Glycolic Acid Physical Properties, Impurities, And Radiation Effects Assessment

    International Nuclear Information System (INIS)

    Pickenheim, B.; Bibler, N.

    2010-01-01

    The DWPF is pursuing alternative reductants/flowsheets to increase attainment to meet closure commitment dates. In fiscal year 2009, SRNL evaluated several options and recommended the further assessment of the nitric/formic/glycolic acid flowsheet. SRNL is currently performing testing with this flowsheet to support the DWPF down-select of alternate reductants. As part of the evaluation, SRNL was requested to determine the physical properties of formic and glycolic acid blends. Blends of formic acid in glycolic acid were prepared and their physical properties tested. Increasing amounts of glycolic acid led to increases in blend density, viscosity and surface tension as compared to the 90 wt% formic acid that is currently used at DWPF. These increases are small, however, and are not expected to present any difficulties in terms of processing. The effect of sulfur impurities in technical grade glycolic acid was studied for its impact on DWPF glass quality. While the glycolic acid specification allows for more sulfate than the current formic acid specification, the ultimate impact is expected to be on the order of 0.03 wt% sulfur in glass. Note that lower sulfur content glycolic acid could likely be procured at some increased cost if deemed necessary. A paper study on the effects of radiation on glycolic acid was performed. The analysis indicates that substitution of glycolic acid for formic acid would not increase the radiolytic production rate of H 2 and cause an adverse effect in the SRAT or SME process. It has been cited that glycolic acid solutions that are depleted of O 2 when subjected to large radiation doses produced considerable quantities of a non-diffusive polymeric material. Considering a constant air purge is maintained in the SRAT and the solution is continuously mixed, oxygen depletion seems unlikely, however, if this polymer is formed in the SRAT solution, the rheology of the solution may be affected and pumping of the solution may be hindered. A

  17. Enthalpy of phase transition and prediction of phase Equilibria in systems of glycols and glycol ethers

    OpenAIRE

    Esina, Zoya; Miroshnikov, Aleksandr; Korchuganova, Margarita

    2014-01-01

    The PCEAS model was used to study the liquid-solid and liquid-vapor phase transitions at constant pressure in systems containing glycols and glycol ethers. This method is based on minimizing the excess Gibbs energy over the solvation parameter, which takes into account the processes of association of molecules in various phases. To compute the diagrams, the data on enthalpy and phase transition temperatures of pure components are required, while the information about the interactions in the b...

  18. Sizing of single evaporating droplet with Near-Forward Elastic Scattering Spectroscopy

    Science.gov (United States)

    Woźniak, M.; Jakubczyk, D.; Derkachov, G.; Archer, J.

    2017-11-01

    We have developed an optical setup and related numerical models to study evolution of single evaporating micro-droplets by analysis of their spectral properties. Our approach combines the advantages of the electrodynamic trapping with the broadband spectral analysis with the supercontinuum laser illumination. The elastically scattered light within the spectral range of 500-900 nm is observed by a spectrometer placed at the near-forward scattering angles between 4.3 ° and 16.2 ° and compared with the numerically generated lookup table of the broadband Mie scattering. Our solution has been successfully applied to infer the size evolution of the evaporating droplets of pure liquids (diethylene and ethylene glycol) and suspensions of nanoparticles (silica and gold nanoparticles in diethylene glycol), with maximal accuracy of ± 25 nm. The obtained results have been compared with the previously developed sizing techniques: (i) based on the analysis of the Mie scattering images - the Mie Scattering Lookup Table Method and (ii) the droplet weighting. Our approach provides possibility to handle levitating objects with much larger size range (radius from 0.5 μm to 30 μm) than with the use of optical tweezers (typically radius below 8 μm) and analyse them with much wider spectral range than with commonly used LED sources.

  19. Time of erythema onset after application of methyl nicotinate ointments as response parameter: influence of penetration kinetics and enhancing agents.

    Science.gov (United States)

    Remane, Y; Leopold, C S

    2006-01-01

    The time of erythema onset may be used as a response parameter for quantification of the cutaneous erythema response induced by methyl nicotinate. The vehicles light mineral oil (LMO; test) and medium chain triglycerides (MCT; standard) were compared with regard to the pharmacodynamic response. Moreover, the influence of penetration enhancers on the time of erythema onset was investigated under zero order penetration kinetics. The enhancers dimethyl sulfoxide, diethylene glycol monoethyl ether and three different glycerides in different concentrations were added to MCT as a standard vehicle. All preparations were applied to the forearms of volunteers under infinite dose conditions at different thermodynamic drug activity levels (0.2-3.2% of the saturation level) and different drug concentrations (0.051-0.816%), respectively. Different penetration kinetics do not influence data of erythema onset, as these data are comparable to those obtained under finite dose conditions (first order penetration kinetics). With regard to the penetration enhancers, a significantly enhanced penetration of methyl nicotinate could be observed only for diethylene glycol monoethyl ether and dimethyl sulfoxide. However, no significant difference between light mineral oil and MCT could be found with regard to penetration enhancement. The time of erythema onset is an easy and efficient parameter for quantification of the pharmacodynamic response caused by nicotinates.

  20. Exposure to glycols and their renal effects in motor servicing workers.

    Science.gov (United States)

    Laitinen, J; Liesivuori, J; Savolainen, H

    1995-10-01

    Ten car mechanics frequently exposed to glycol-based cooling liquids were followed during a workshift. Airborne ethylene and propylene glycol concentrations in the car mechanics' environment were measured. The car mechanics gave urine samples after the workshift and their excretion of ethylene glycol, propylene glycol, oxalic acid, calcium and ammonia was analysed and compared to that of unexposed office workers. Urinary succinate dehydrogenase activity and glycosaminoglycans were also measured in both groups. Airborne ethylene and propylene glycol concentrations in the car mechanics' environment were negligible. Urinary ethylene glycol excretion in exposed workers was significantly higher than that in unexposed workers, but propylene glycol excretion was at the same levels as in controls. In the exposed group, the excretion of the end metabolite of ethylene glycol, oxalic acid (47 +/- 11 mmol/mol creatinine, mean +/- SD, n = 10) differed slightly from that of controls (36 +/- 14 mmol/mol creatinine, mean +/- SD, n = 10). Urinary excretion of ammonia was higher among exposed workers than office workers. The excretion of calcium did not differ from that of controls. A marginally decreased urinary succinate dehydrogenase activity was found in the exposed men. The excretion of glycosaminoglycans was significantly lower in exposed workers. Therefore, it seems that ethylene glycol is absorbed by skin contact. The internal body burden is associated with oxaluria and increased ammoniagenesis typical of chronic acidosis.

  1. Containers of DS-2 Decontaminating Solution

    Science.gov (United States)

    1982-03-01

    percent sodium hydroxide, and the remainder is ethylene glycol monomethyl ether. Because of its reactivity, it must be protected from moisture and... carbon dioxide. It has been demonstrated that DS-2 does not corrode terneplate or steel. However, satisfactory terneplate and steel containers are...not produce a pail with a polyethylene insert. However, Mr. Wood told me that Hedwin Corporation (a subsidiary of Solvay ) does produce this kind of

  2. 40 CFR 63.765 - Glycol dehydration unit process vent standards.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 10 2010-07-01 2010-07-01 false Glycol dehydration unit process vent... Facilities § 63.765 Glycol dehydration unit process vent standards. (a) This section applies to each glycol dehydration unit subject to this subpart with an actual annual average natural gas flowrate equal to or...

  3. 40 CFR 63.1275 - Glycol dehydration unit process vent standards.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 11 2010-07-01 2010-07-01 true Glycol dehydration unit process vent... Facilities § 63.1275 Glycol dehydration unit process vent standards. (a) This section applies to each glycol dehydration unit subject to this subpart with an actual annual average natural gas flowrate equal to or...

  4. Potential Antifreeze Compounds in Present-Day Martian Seepage Groundwater

    Directory of Open Access Journals (Sweden)

    Jiin-Shuh Jean

    2008-01-01

    Full Text Available Is the recently found seepage groundwater on Mars pure H2O, or mixed with salts and other antifreeze compounds? Given the surface conditions of Mars, it is unlikely that pure water could either exist in its liquid state or have shaped Mars¡¦ fluid erosional landforms (gullies, channels, and valley networks. More likely is that Mars¡¦ seepage groundwater contains antifreeze and salt compounds that resist freezing and suppress evaporation. This model better accounts for Mars¡¦ enigmatic surface erosion. This paper suggests 17 antifreeze compounds potentially present in Martian seepage groundwater. Given their liquid state and physical properties, triethylene glycol, diethylene glycol, ethylene glycol, and 1,3-propylene glycol are advanced as the most likely candidate compounds. This paper also explores how a mixing of glycol or glycerol with salts in the Martian seepage groundwater may have lowered water¡¦s freezing point and raised its boiling point, with consequences that created fluid gully and channel erosion. Ethylene glycol and related hydrocarbon compounds have been identified in Martian and other interstellar meteorites. We suggest that these compounds and their proportions to water be included for detection in future explorations.

  5. The proton dynamics of ethylene glycol

    CERN Document Server

    Novikov, A G; Sobolev, O V

    2002-01-01

    The results of inelastic neutron scattering experiments on ethylene glycol at T=300 K, T=348 K and T=393 K by using the 'direct-geometry' double time-of-flight neutron-scattering spectrometer DIN-2PI (Frank Laboratory of Neutron Physics, JINR, Dubna) are presented. The quasi-elastic and inelastic components of the neutron scattering have been considered. The diffusion characteristics and generalized frequency distributions for protons of ethylene glycol molecules were obtained from the neutron-scattering spectra. (orig.)

  6. Process for the preparation of a thickened explosive slurry

    Energy Technology Data Exchange (ETDEWEB)

    1972-10-25

    A process is described for the preparation of a thickened explosive slurry, substantially aqueous. The composition consists essentially of a suspension of an inorganic oxygen salt for furnishing oxygen in a fluid matrix. This fluid matrix consists of a lower aliphatic glycol (ethylene, diethylene, propylene, dipropylene) thickened with one of the polysaccharides (glucose, mannose, galactose) or mixtures of them. The composition should have a density below 1.8 g per cu cm. (5 claims)

  7. Manufacturing Methods & Technology Project Execution Report. Second Half CY 1980

    Science.gov (United States)

    1981-03-01

    TO PURSUE DIETHYLENE GLYCOL PROCESS. 5 76 4114 P27 SOLID WASTE SOIL Dl FOSAL TECHNIQUES EYPERIMENTAL WORK AT CRANE IND PROVED THAT NO AIRBORNE TNT OR...DERIVATIVES RELEASED DURING COMPOSTING OPERATION. ALSO NO TOXIC PRODUCTS PRODUCED* FINAL COMFOSTED PRODUCT MAY BE RETURNED TO THE LAND AS A SOIL ...AND CONSIDERABLY MORE EFFICIENT THAN COMPETING METHODS, A NOZZLE OSN AND OPN COND WERE ESTAB WHICH WILL BE USL ) AS THE FIRST TRIAL DURING THE PILOT

  8. Material compatibility evaluataion for DWPF nitric-glycolic acid - literature review

    International Nuclear Information System (INIS)

    Mickalonis, J.I; Skidmore, T.E.

    2013-01-01

    Glycolic acid is being evaluated as an alternative for formic and nitric acid in the DWPF flowsheet. Demonstration testing and modeling for this new flowsheet has shown that glycolic acid and glycolate has a potential to remain in certain streams generated during the production of the nuclear waste glass. A literature review was conducted to assess the impact of glycolic acid on the corrosion of the materials of construction for the DWPF facility as well as facilities downstream which may have residual glycolic acid and glycolates present. The literature data was limited to solutions containing principally glycolic acid. The reported corrosion rates and degradation characteristics have shown the following for the materials of construction: For C276 alloy, the primary material of construction for the CPC vessels, corrosion rates of either 2 or 20 mpy were reported up to a temperature of 93 deg C; For the austenitic stainless steels, 304L and 316L, variable rates were reported over a range of temperatures, varying from 2 mpy up to 200 mpy (at 100 deg C); For 690, G30, Allcorr, Ultimet and Stellite alloys no data were available; and, For relevant polymers where data are available, the data suggests that exposure to glycolic acid is not detrimental. The literature data had limited application to the DWPF process since only the storage and feed vessels, pumps and piping used to handle the glycolic acid are directly covered by the available data. These components are either 304L or 316L alloys for which the literature data is inconsistent (See Bullet 2 above). Corrosion rates in pure glycolic acid solutions also are not representative of the DWPF process streams. This stream is complex and contains aggressive species, i.e. chlorides, sulfates, mercury, as well as antifoaming agents which cumulatively have an unknown effect on the corrosion rates of the materials of construction. Therefore, testing is recommended to investigate any synergistic effects of the aggressive

  9. Simultaneous determination of glycols based on fluorescence anisotropy

    International Nuclear Information System (INIS)

    Garcia Sanchez, F.; Navas Diaz, A.; Lopez Guerrero, M.M.

    2007-01-01

    Simultaneous determination of non-fluorescent glycols in mixtures without separation or chemical transformation steps is described. Two methods based in the measure of fluorescence anisotropy of a probe such as fluorescein dissolved in the analyte or analyte mixtures are described. In the first method, the anisotropy spectra of pure and mixtures of analytes are used to quantitative determination (if the fluorophor concentration is in a range where fluorescence intensity is proportional to concentration). In the second method, a calibration curve anisotropy-concentration based on the application of the Perrin equation is established. The methods presented here are capable of directly resolving binary mixtures of non-fluorescent glycols on the basis of differences on the fluorescence anisotropy of a fluorescence tracer. Best analytical performances were obtained by application of the method based on Perrin equation. This method is simple, rapid and allows the determination of mixtures of glycols with reasonable accuracy and precision. Detection limits are limited by the quantum yield and anisotropy values of the tracer in the solvents. Recovery values are related to the differences in anisotropy values of the tracer in the pure solvents. Mixtures of glycerine/ethylene glycol (GL/EG), ethylene glycol/1,2-propane diol (EG/1,2-PPD) and polyethylene glycol 400/1,2-propane diol (PEG 400/1,2-PPD) were analysed and recovery values are within 95-120% in the Perrin method. Relative standard deviation are in the range 1.3-2.9% and detection limits in the range 3.9-8.9%

  10. Application of simplified PC-SAFT to glycol ethers

    DEFF Research Database (Denmark)

    Avlund, Ane Søgaard; Kontogeorgis, Georgios; Michelsen, Michael Locht

    2012-01-01

    The simplified PC-SAFT (sPC-SAFT) equation of state is applied for binary glycol ether-containing mixtures, and it is investigated how the results are influenced by inclusion of intramolecular association in the association theory. Three different glycol ethers are examined: 2-methoxyethanol, 2...

  11. Determination of the Impact of Glycolate on ARP and MCU Operations

    International Nuclear Information System (INIS)

    Taylor-Pashow, K.; Peters, T.; Shehee, T.

    2012-01-01

    Savannah River Remediation (SRR) is evaluating an alternate flowsheet for the Defense Waste Processing Facility (DWPF) using glycolic acid as a reductant. An important aspect of the development of the glycolic acid flowsheet is determining if glycolate has any detrimental downstream impacts. Testing was performed to determine if there is any impact to the strontium and actinide sorption by monosodium titanate (MST) and modified monosodium titanate (mMST) or if there is an impact to the cesium removal at the Modular Caustic-Side Solvent Extraction Processing Unit (MCU). Sorption testing was performed using both MST and modified MST (mMST) in the presence of 5,000 and 10,000 ppm (mass basis) glycolate. 10,000 ppm is the estimated bounding concentration expected in the DWPF recycle stream based on DWPF melter flammable gas model results. The presence of glycolate was found to slow the removal of Sr and Pu by MST, while increasing the removal rate of Np. Results indicate that the impact is a kinetic effect, and the overall capacity of the material is not affected. There was no measurable effect on U removal at either glycolate concentration. The slower removal rates for Sr and Pu at 5,000 and 10,000 ppm glycolate could result in lower DF values for these sorbates in ARP based on the current (12 hours) and proposed (8 hours) contact times. For the highest glycolate concentration used in this study, the percentage of Sr removed at 6 hours of contact decreased by 1% and the percentage of Pu removed decreased by nearly 7%. The impact may prove insignificant if the concentration of glycolate that is returned to the tank farm is well below the concentrations tested in this study. The presence of glycolate also decreased the removal rates for all three sorbates (Sr, Pu, and Np) by mMST. Similarly to MST, the results for mMST indicate that the impact is a kinetic effect, and the overall capacity of the material is not affected. The presence of glycolate did not change the lack

  12. Selected polyethylene glycols as DOP substitutes. Addendum 1

    International Nuclear Information System (INIS)

    Gerber, B.V.

    1981-01-01

    The recommendation is made that Polyethylene glycol (PEG) 400 be considered as a substitute for DOP in aerosol generators producing a polydisperse distribution for testing the integrity of filters and for testing respirator fit. Further, the recommendation is made that pentaethylene glycol (PTAEG) and possibly hexaethylene glycol be considered as a substitute for DOP in aerosol generators thermally producing monodisperse aerosol for quality acceptance tests according tu US federal specifications and standards. The toxicology data base available on the polyethylene glycol family of chemical compounds is discussed and the conclusion is drawn that the probability of approval and acceptance as a non-hazardous substance in the filter and filter media test role is high. Data and analysis supporting PTAEG performance equivalent to DOP in the filter and filter media test role are given or referenced. Cost and availability of the substitute materials is discussed. Conclusions based on the present data and information are given and recommendations for further work are made

  13. Molybdenum/alkali metal/ethylene glycol complexes useful as epoxidation catalysts

    International Nuclear Information System (INIS)

    Marquis, E.T.; Sanderson, J.R.; Keating, K.P.

    1987-01-01

    This patent describes a clear, storage stable solution of a molybdenum/alkali metal/ethylene glycol complex in ethylene glycol made by the process comprising: reacting at an elevated temperature between about 25 0 and 150 0 C a solid ammonium molybdate or a hydrate thereof and a solid alkali metal molybdate or a hydrate thereof with ethylene glycol, such that the ratio of moles of ethylene glycol to total gram atoms of molybdenum in the molybdates ranges from about 7:10 to 10:1, and the ratio of gram atoms of molybdenum in the ammonium molybdate or hydrate thereof to gram atoms of molybdenum in the alkali metal molybdate is from about 1:1 to about 20:1 to thereby provide a reaction product composed of a solution of an alkali metal-containing complex of molybdenum, alkali metal and ethylene glycol and by-products, including water, in the ethylene glycol and subsequently stripping the solution at a reduced pressure to remove from about 5 to about 25% of the reaction product, as distillate, to thereby provide a storage stable solution of the complex in the ethylene glycol having a molybdenum content of about 6 wt. % to about 20 wt. %, a water concentration of about 0.1 wt. % to about 6 wt. % and an acid number of more than about 60

  14. Ethylene glycol intercalation in smectites. molecular dynamics simulation studies

    International Nuclear Information System (INIS)

    Szczerba, Marek; Klapyta, Zenon; Kalinichev, Andrey

    2012-01-01

    Document available in extended abstract form only. Intercalation of ethylene glycol in smectites (glycolation) is widely used to discriminate smectites and vermiculites from other clays and among themselves. During this process, ethylene glycol molecules enter into the interlayer spaces of the swelling clays, leading to the formation of two-layer structure (∼17 A) in the case of smectites, or one-layer structure (∼14 A) in the case of vermiculites. In spite of the relatively broad literature on the understanding/characterization of ethylene glycol/water-clays complexes, the simplified structure of this complex presented by Reynolds (1965) is still used in the contemporary X-ray diffraction computer programs, which simulate structures of smectite and illite-smectite. The monolayer structure is only approximated using the assumption of the interlayer cation and ethylene glycol molecules lying in the middle of interlayer spaces. This study was therefore undertaken to investigate the structure of ethylene glycol/water-clays complex in more detail using molecular dynamics simulation. The structural models of smectites were built on the basis of pyrophyllite crystal structure (Lee and Guggenheim, 1981), with substitution of particular atoms. In most of simulations, the structural model assumed the following composition, considered as the most common in the mixed layer illite-smectites: EXCH 0.4 (Si 3.96 Al 0.04 )(Al 1.46 Fe 0.17 Mg 0.37 )O 10 (OH) 2 Atoms of the smectites were described with CLAYFF force field (Cygan et al., 2004), while atoms of water and ethylene glycol with flexible SPC and OPLS force fields, respectively. Ewald summation was used to calculate long range Coulombic interactions and the cutoff was set at 8.5 A. Results of the simulations show that in the two-layer glycolate the content of water is relatively small: up to 0.8 H 2 O per half of the smectite unit cell. Clear thermodynamic preference of mono- or two-layer structure of the complex is

  15. 21 CFR 172.712 - 1,3-Butylene glycol.

    Science.gov (United States)

    2010-04-01

    ... and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Other Specific Usage Additives § 172.712 1,3-Butylene glycol. The food additive 1,3-butylene glycol (CAS...

  16. Characterization of a monoclonal antibody to thymidine glycol monophosphate

    International Nuclear Information System (INIS)

    Chen, B.X.; Hubbard, K.; Ide, H.; Wallace, S.S.; Erlanger, B.F.

    1990-01-01

    A monoclonal antibody specific for thymine glycol (TG) in irradiated or OsO4-treated DNA was obtained by immunizing with thymidine glycol monophosphate (TMP-glycol) conjugated to bovine serum albumin by a carbodiimide procedure. Screening by dot-immunobinding and enzyme-linked immunosorbant assay (ELISA) procedures gave eight clones that bound OsO4- treated DNA. One of them, 2.6F.6B.6C, an IgG2a kappa, was characterized further. Hapten inhibition studies with OsO4-treated DNA showed that the antibody was specific for TMP-glycol. Among the various inhibitors tested, inhibition was in the order TMP-glycol greater than 5,6-dihydrothymidine phosphate greater than TMP greater than thymidine glycol greater than TG. Inhibition by 5,6-dihydrothymidine, thymidine, thymine, AMP, and CMP was negligible. In OsO4-treated DNA, as few as 0.5 TG per 10,000 bp were detectable by direct ELISA. Inhibition assays could detect as few as 1.5 TG per 10,000 bp. The antibody was equally reactive with native or denatured DNA containing TG. Among the X-irradiated homopolymers dC, dA, dG, and dT, only dT reacted with the antibody. Using an ELISA, the antibody could detect damage in irradiated DNA at the level of 20 Gy. Thus the antibody is of potential use in assays for DNA damage caused by X rays or other agents that damage DNA by free radical interactions

  17. Temperature responsive track membranes

    International Nuclear Information System (INIS)

    Omichi, H.; Yoshido, M.; Asano, M.; Tamada, H.

    1994-01-01

    A new track membrane was synthesized by introducing polymeric hydrogel to films. Such a monomer as amino acid group containing acryloyl or methacryloyl was either co-polymerized with diethylene glycol-bis-ally carbonate followed by on beam irradiation and chemical etching, or graft co-polymerized onto a particle track membrane of CR-39. The pore size was controlled in water by changing the water temperature. Some films other than CR-39 were also examined. (author). 11 refs, 7 figs

  18. GLYCOL METHACRYLATE EMBEDDING OF ALGINATE-POLYLYSINE MICROENCAPSULATED PANCREATIC-ISLETS

    NARCIS (Netherlands)

    FRITSCHY, WM; GERRITS, PO; WOLTERS, GHJ; PASMA, A; VANSCHILFGAARDE, R

    A method for processing and embedding alginate-polylysine microencapsulated pancreatic tissue in glycol methacrylate resin (GMA) is described. Fixation in 4% phosphate buffered formaldehyde, processing in ascending concentrations of glycol methacrylate monomer and embedding in Technovit 7100 results

  19. Hydrolytically and reductively degradable high-molecular-weight poly(ethylene glycol)s

    Czech Academy of Sciences Publication Activity Database

    Braunová, Alena; Pechar, Michal; Laga, Richard; Ulbrich, Karel

    2007-01-01

    Roč. 208, č. 24 (2007), s. 2642-2653 ISSN 1022-1352 R&D Projects: GA AV ČR KAN200200651; GA MŠk 1M0505 Institutional research plan: CEZ:AV0Z40500505 Keywords : biodegradable * drug delivery systems * gene delivery vectors * poly(ethylene glycol) Subject RIV: CE - Biochemistry Impact factor: 2.046, year: 2007

  20. Preparation and Separation of Telechelic Carborane-Containing Poly(ethylene glycol)s

    Czech Academy of Sciences Publication Activity Database

    Matějíček, P.; Uchman, M.; Lepšík, Martin; Srnec, Martin; Zedník, J.; Kozlík, P.; Kalíková, K.

    2013-01-01

    Roč. 78, č. 6 (2013), s. 528-535 ISSN 2192-6506 R&D Projects: GA AV ČR IAAX00320901 Grant - others:GA ČR(CZ) GPP208/12/P236 Institutional support: RVO:61388963 Keywords : carboranes * click chemistry * poly(ethylene glycol) * quantum chemistry * reaction mechanisms Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.242, year: 2013

  1. Comparison of Polyethylene Glycol-Electrolyte Solution vs Polyethylene Glycol-3350 for the Treatment of Fecal Impaction in Pediatric Patients.

    Science.gov (United States)

    Boles, Erin E; Gaines, Cameryn L; Tillman, Emma M

    2015-01-01

    The objective of this study was to evaluate the safety and efficacy of polyethylene glycol-electrolyte solution vs polyethylene glycol-3350 for the treatment of fecal impaction in pediatric patients. A retrospective, observational, institutional review board-approved study was conducted over a 1-year time period. Patients were included in the study if they were admitted to the hospital with a diagnosis of fecal impaction or constipation and were treated with either polyethylene glycol-electrolyte solution (PEG-ES) or polyethylene glycol-3350 (PEG-3350). Patients were excluded if they were discharged prior to resolution of treatment and/or did not receive PEG-ES or PEG-3350. Fifty-one patients (ranging in age from 1 month to 15 years) were evaluated: 23 patients received PEG-ES and 28 patients received PEG-3350. Sex, race, age, and weight were not statistically different between the 2 groups. Resolution of fecal impaction was not significantly different between PEG-ES vs PEG-3350 (87% and 86%, respectively; p = 0.87). There was only 1 reported side effect with PEG-3350, vs 11 reported side effects with PEG-ES (p PEG-3350 is as effective as PEG-ES for the treatment of fecal impaction in pediatric patients and is associated with fewer side effects.

  2. Molecular structure impacts on secondary organic aerosol formation from glycol ethers

    Science.gov (United States)

    Li, Lijie; Cocker, David R.

    2018-05-01

    Glycol ethers, a class of widely used solvents in consumer products, are often considered exempt as volatile organic compounds based on their vapor pressure or boiling points by regulatory agencies. However, recent studies found that glycol ethers volatilize at ambient conditions nearly as rapidly as the traditional high-volatility solvents indicating the potential of glycol ethers to form secondary organic aerosol (SOA). This is the first work on SOA formation from glycol ethers. The impact of molecular structure, specifically -OH, on SOA formation from glycol ethers and related ethers are investigated in the work. Ethers with and without -OH, with methyl group hindrance on -OH and with -OH at different location are studied in the presence of NOX and under "NOX free" conditions. Photooxidation experiments under different oxidation conditions confirm that the processing of ethers is a combination of carbonyl formation, cyclization and fragmentation. Bulk SOA chemical composition analysis and oxidation products identified in both gas and particle phase suggests that the presence and location of -OH in the carbon bond of ethers determine the occurrence of cyclization mechanism during ether oxidation. The cyclization is proposed as a critical SOA formation mechanism to prevent the formation of volatile compounds from fragmentation during the oxidation of ethers. Glycol ethers with -CH2-O-CH2CH2OH structure is found to readily form cyclization products, especially with the presence of NOx, which is more relevant to urban atmospheric conditions than without NOx. Glycol ethers are evaluated as dominating SOA precursors among all ethers studied. It is estimated that the contribution of glycol ethers to anthropogenic SOA is roughly 1% of the current organic aerosol from mobile sources. The contribution of glycol ethers to anthropogenic SOA is roughly 1% of the current organic aerosol from mobile sources and will play a more important role in future anthropogenic SOA

  3. [Quantitative analysis of urinary ethylene glycol in rats exposed to ethylene oxide].

    Science.gov (United States)

    Koga, M; Hori, H; Tanaka, I; Akiyama, T; Inoue, N

    1985-03-01

    A gas chromatographic method was used for determining ethylene glycol in urine. The analytical procedure is based on an azeotropic distillation and on esterification with n-butyl boronic acid. The linear calibration curve was obtained up to 500 micrograms/ml of ethylene glycol. The detection limit was estimated to be 10 micrograms/ml and relative standard deviation was 3.5% for 100 micrograms/ml of ethylene glycol. This method was applied to determine the urinary excretion of ethylene glycol in rats exposed to ethylene oxide at various concentrations (from 50 to 500 ppm). The excretion amounts of ethylene glycol were observed to be dependent on the concentration of ethylene oxide exposed.

  4. Controlled release of biofunctional substances by radiation-induced polymerization

    International Nuclear Information System (INIS)

    Yoshida, M.; Kumakura, M.; Kaetsu, I.

    1978-01-01

    The controlled release of potassium chloride from flat circular matrices made by radiation-induced polymerization of a glass-forming monomer at low temperatures has been studied. The water-particle phase content formed in a poly(diethylene glycol dimethacrylate) matrix was controlled by the addition of polyethylene glycol 600. The dispersed water-particle phase content in the matrix was estimated directly and by scanning electron microscopic observations. The release of potassium chloride from the matrix increased linearly with the square root of time. The water content of the matrix had an important effect on the release rate which increases roughly in proportion to water content. This effect can be attributed to the apparent increase of the rate of drug diffusion. (author)

  5. The influence of increased cross-linker chain length in thermosensitive microspheres on potential sun-protection activity.

    Science.gov (United States)

    Musiał, Witold; Kokol, Vanja; Voncina, Bojana

    2010-01-01

    The sun protection should involve substances with protecting activity against both UVB and UVA radiation. In this research the evaluation of thermosensitive microspheres as potential molecules for sunscreen formulations was approached, using modified Boots star rating system. The microspheres, thermosensitive N-isopropylacrylamide derivatives, have potential protecting activity against UV radiation. The MX and DX microspheres, with ethylene glycol dimethacrylate and diethylene glycol dimethacrylate crosslinker respectively, due to theirs thermosensitivity exhibit increase in protecting activity against UV radiation when heated to 45 degrees C. The MX microspheres have higher increase in terms of UV absorbance, comparing to DX microspheres, when heated in the 25 degrees C to 45 degrees C range. Studied microspheres have high potential for application as components of sun-screens used in elevated temperatures.

  6. Polyethylene glycol without electrolytes for children with constipation and encopresis.

    Science.gov (United States)

    Loening-Baucke, Vera

    2002-04-01

    Children with functional constipation and encopresis benefit from behavior modification and from long-term laxative medication. Polyethylene glycol without electrolytes has become the first option for many pediatric gastroenterologists. Twenty-eight children treated with polyethylene glycol without electrolytes were compared with 21 children treated with milk of magnesia to evaluate the efficiency, acceptability, side effects, and treatment dosage of polyethylene glycol in long-term treatment of functional constipation and encopresis. Children were rated as "doing well," "improved," or "not doing well," depending on resolution of constipation and encopresis. At the 1-, 3-, 6-, and 12-month follow-ups, bowel movement frequency increased and soiling frequency decreased significantly in both groups. At the 1-month follow-up, children on polyethylene glycol were soiling more frequently (P encopresis.

  7. Congenital malformations and maternal occupational exposure to glycol ethers

    NARCIS (Netherlands)

    Cordier, S; Bergeret, A; Goujard, J; Ha, MC; Ayme, S; Calzolari, E; DeWalle, HEK; KnillJones, R; Candela, S; Dale, [No Value; Dananche, B; deVigan, C; Fevotte, J; Kiel, G; Mandereau, L

    Glycol ethers are found in a wide range of domestic and industrial products, many of which are used in women's work environments. Motivated by concern about their potential reproductive toxicity, we have evaluated the risk of congenital malformations related to glycol ether exposure during preg

  8. Role of Glycol Chitosan-incorporated Ursolic Acid Nanoparticles in ...

    African Journals Online (AJOL)

    Purpose: To investigate the effect of ursolic acid (UA)-incorporated glycol chitosan (GC) nanoparticles on inhibition of human osteosarcoma. Methods: U2OS and Saos-2 osteosarcoma cells were transfected with ursolic acid (UA) incorporated glycol chitosan (GC) nanoparticles. Ultraviolet (UV) spectrophotometry was used ...

  9. Developing a New Sampling And Analysis Method For Hydrazine And Monomethyl Hydrazine: Using a Derivatizing Agent With Solid Phase Microextraction

    Science.gov (United States)

    Allen, John

    2001-01-01

    Solid phase microextraction (SPME) will be used to develop a method for detecting monomethyl hydrazine (MMH) and hydrazine (Hz). A derivatizing agent, pentafluorobenzoyl chloride (PFBCI), is known to react readily with MMH and Hz. The SPME fiber can either be coated with PFBCl and introduced into a gaseous stream containing MMH, or PFBCl and MMH can react first in a syringe barrel and after a short equilibration period a SPME is used to sample the resulting solution. These methods were optimized and compared. Because Hz and MMH can degrade the SPME, letting the reaction occur first gave better results. Only MMH could be detected using either of these methods. Future research will concentrate on constructing calibration curves and determining the detection limit.

  10. Cementitious building material incorporating end-capped polyethylene glycol as a phase change material

    Science.gov (United States)

    Salyer, Ival O.; Griffen, Charles W.

    1986-01-01

    A cementitious composition comprising a cementitious material and polyethylene glycol or end-capped polyethylene glycol as a phase change material, said polyethylene glycol and said end-capped polyethylene glycol having a molecular weight greater than about 400 and a heat of fusion greater than about 30 cal/g; the compositions are useful in making pre-formed building materials such as concrete blocks, brick, dry wall and the like or in making poured structures such as walls or floor pads; the glycols can be encapsulated to reduce their tendency to retard set.

  11. 21 CFR 500.50 - Propylene glycol in or on cat food.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Propylene glycol in or on cat food. 500.50 Section... Propylene glycol in or on cat food. The Food and Drug Administration has determined that propylene glycol in or on cat food is not generally recognized as safe and is a food additive subject to section 409 of...

  12. Ethylene glycol poisoning

    African Journals Online (AJOL)

    Ethylene glycol poisoning. A 22-year-old male presented to the emergency centre after drinking 300 ml of antifreeze. Clinical examination was unremarkable except for a respiratory rate of 28 bpm, GCS of 9 and slight nystagmus. Arterial blood gas revealed: pH 7.167, pCO2. 3.01 kPa, pO2 13.0 kPa (on room air), HCO3-.

  13. Membrane permeability of the human granulocyte to water, dimethyl sulfoxide, glycerol, propylene glycol and ethylene glycol.

    Science.gov (United States)

    Vian, Alex M; Higgins, Adam Z

    2014-02-01

    Granulocytes are currently transfused as soon as possible after collection because they rapidly deteriorate after being removed from the body. This short shelf life complicates the logistics of granulocyte collection, banking, and safety testing. Cryopreservation has the potential to significantly increase shelf life; however, cryopreservation of granulocytes has proven to be difficult. In this study, we investigate the membrane permeability properties of human granulocytes, with the ultimate goal of using membrane transport modeling to facilitate development of improved cryopreservation methods. We first measured the equilibrium volume of human granulocytes in a range of hypo- and hypertonic solutions and fit the resulting data using a Boyle-van't Hoff model. This yielded an isotonic cell volume of 378 μm(3) and an osmotically inactive volume of 165 μm(3). To determine the permeability of the granulocyte membrane to water and cryoprotectant (CPA), cells were injected into well-mixed CPA solution while collecting volume measurements using a Coulter Counter. These experiments were performed at temperatures ranging from 4 to 37°C for exposure to dimethyl sulfoxide, glycerol, ethylene glycol, and propylene glycol. The best-fit water permeability was similar in the presence of all of the CPAs, with an average value at 21°C of 0.18 μmatm(-1)min(-1). The activation energy for water transport ranged from 41 to 61 kJ/mol. The CPA permeability at 21°C was 6.4, 1.0, 8.4, and 4.0 μm/min for dimethyl sulfoxide, glycerol, ethylene glycol, and propylene glycol, respectively, and the activation energy for CPA transport ranged between 59 and 68 kJ/mol. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Nanoparticle for delivery of antisense γPNA oligomers targeting CCR5

    OpenAIRE

    Bahal, Raman; McNeer, Nicole Ali; Ly, Danith H.; Saltzman, W. Mark; Glazer, Peter M.

    2013-01-01

    The development of a new class of peptide nucleic acids (PNAs), i.e., gamma PNAs (γPNAs), creates the need for a general and effective method for its delivery into cells for regulating gene expression in mammalian cells. Here we report the antisense activity of a recently developed hydrophilic and biocompatible diethylene glycol (miniPEG)-based gamma peptide nucleic acid called MPγPNAs via its delivery by poly(lactide-co-glycolide) (PLGA)-based nanoparticle system. We show that MPγPNA oligome...

  15. Polyethylene glycol as a promising synthetic material for repair of spinal cord injury

    Directory of Open Access Journals (Sweden)

    Xian-bin Kong

    2017-01-01

    Full Text Available Polyethylene glycol is a synthetic, biodegradable, and water-soluble polyether. Owing to its good biological and material properties, polyethylene glycol shows promise in spinal cord tissue engineering applications. Although studies have examined repairing spinal cord injury with polyethylene glycol, these compelling findings have not been recently reviewed or evaluated as a whole. Thus, we herein review and summarize the findings of studies conducted both within and beyond China that have examined the repair of spinal cord injury using polyethylene glycol. The following summarizes the results of studies using polyethylene glycol alone as well as coupled with polymers or hydrogels: (1 polyethylene glycol as an adjustable biomolecule carrier resists nerve fiber degeneration, reduces the inflammatory response, inhibits vacuole and scar formation, and protects nerve membranes in the acute stage of spinal cord injury. (2 Polyethylene glycol-coupled polymers not only promote angiogenesis but also carry drugs or bioactive molecules to the injury site. Because such polymers cross both the blood-spinal cord and blood-brain barriers, they have been widely used as drug carriers. (3 Polyethylene glycol hydrogels have been used as supporting substrates for the growth of stem cells after injury, inducing cell migration, proliferation, and differentiation. Simultaneously, polyethylene glycol hydrogels isolate or reduce local glial scar invasion, promote and guide axonal regeneration, cross the transplanted area, and re-establish synaptic connections with target tissue, thereby promoting spinal cord repair. On the basis of the reviewed studies, we conclude that polyethylene glycol is a promising synthetic material for use in the repair of spinal cord injury

  16. Polyethylene glycol as a promising synthetic material for repair of spinal cord injury

    Institute of Scientific and Technical Information of China (English)

    Xian-bin Kong; Qiu-yan Tang; Xu-yi Chen; Yue Tu; Shi-zhong Sun; Zhong-lei Sun

    2017-01-01

    Polyethylene glycol is a synthetic, biodegradable, and water-soluble polyether. Owing to its good biological and material properties, polyethylene glycol shows promise in spinal cord tissue engineering applications. Although studies have examined repairing spinal cord injury with polyethylene glycol, these compellingfindings have not been recently reviewed or evaluated as a whole. Thus, we herein review and summarize the findings of studies conducted both within and beyond China that have examined the repair of spinal cord injury using polyethylene glycol. The following summarizes the results of studies using polyethylene glycol alone as well as coupled with polymers or hydrogels: (1) polyethylene glycol as an adjustable bio-molecule carrier resists nerve fiber degeneration, reduces the inflammatory response, inhibits vacuole and scar formation, and protects nerve membranes in the acute stage of spinal cord injury. (2) Polyethylene glycol-coupled polymers not only promote angiogenesis but also carry drugs or bioactive molecules to the injury site. Because such polymers cross both the blood-spinal cord and blood-brain barriers, they have been widely used as drug carriers. (3) Polyethylene glycol hydrogels have been used as supporting sub-strates for the growth of stem cells after injury, inducing cell migration, proliferation, and differentiation. Simultaneously, polyethylene glycol hydrogels isolate or reduce local glial scar invasion, promote and guide axonal regeneration, cross the transplanted area, and re-establish synaptic connections with target tissue, thereby promoting spinal cord repair. On the basis of the reviewed studies, we conclude that polyethylene glycol is a promising synthetic material for use in the repair of spinal cord injury.

  17. Bio-based polyurethane composite foams with inorganic fillers studied by thermogravimetry

    International Nuclear Information System (INIS)

    Hatakeyema, Hyoe; Tanamachi, Noriko; Matsumura, Hiroshi; Hirose, Shigeo; Hatakeyama, Tatsuko

    2005-01-01

    Bio-based polyurethane (PU) composite foams filled with various inorganic fillers, such as barium sulfate (BaSO 4 ), calcium carbonate (CaCO 3 ) and talc were prepared using polyols, such as diethylene glycol, triethylene glycol and polyethylene glycol (molecular weight ca. 200) containing molasses and lignin. Reactive hydroxyl groups in plant components and above polyols were used as reaction sites. Morphological observation of fracture surface of composites was carried out by scanning electron microscopy. Thermal properties of bio-based PU composites were examined by thermogravimetry. It was found that the above composites decompose in two stages reflecting decomposition of organic components. Decomposition temperature increased with increasing filler content, when plant components were homogenously mixed with inorganic fillers. Activation energy calculated by Ozawa-Wall-Flynn method was ca. 150 kJ mol -1 . The durability of composites was predicted using kinetic data. Calculated values indicate that composites with fillers are more durable than that of those without fillers at a moderate temperature region

  18. Synthesis and preservation of graphene-supported uranium dioxide nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Hanyu [Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, 156 Fitzpatrick Hall, Notre Dame, IN 46556 (United States); Wang, Haitao [Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, 156 Fitzpatrick Hall, Notre Dame, IN 46556 (United States); Department of Civil, Environmental, and Construction Engineering, Texas Tech University, 911 Boston Ave., Lubbock, TX 79409 (United States); Burns, Peter C. [Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, 156 Fitzpatrick Hall, Notre Dame, IN 46556 (United States); Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, IN 46556 (United States); McNamara, Bruce K.; Buck, Edgar C. [Nuclear Chemistry & Engineering Group, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA 99352 (United States); Na, Chongzheng, E-mail: chongzheng.na@gmail.com [Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, 156 Fitzpatrick Hall, Notre Dame, IN 46556 (United States); Department of Civil, Environmental, and Construction Engineering, Texas Tech University, 911 Boston Ave., Lubbock, TX 79409 (United States)

    2016-07-15

    Graphene-supported uranium dioxide (UO{sub 2}) nanocrystals are potentially important fuel materials. Here, we investigate the possibility of synthesizing graphene-supported UO{sub 2} nanocrystals in polar ethylene glycol compounds by the polyol reduction of uranyl acetylacetone under boiling reflux, thereby enabling the use of an inexpensive graphene precursor graphene oxide into a one-pot process. We show that triethylene glycol is the most suitable solvent with an appropriate reduction potential for producing nanometer-sized UO{sub 2} crystals compared to monoethylene glycol, diethylene glycol, and polyethylene glycol. Graphene-supported UO{sub 2} nanocrystals synthesized with triethylene glycol show evidence of heteroepitaxy, which can be beneficial for facilitating heat transfer in nuclear fuel particles. Furthermore, we show that graphene-supported UO{sub 2} nanocrystals synthesized by polyol reduction can be readily stored in alcohols, impeding oxidation from the prevalent oxygen in air. Together, these methods provide a facile approach for preparing and storing graphene-supported UO{sub 2} nanocrystals for further investigation and development under ambient conditions. - Highlights: • UO{sub 2} nanocrystals are synthesized using polyol reduction method. • Triethylene glycol is the best reducing agent for nano-sized UO{sub 2} crystals. • UO{sub 2} nanocrystals grow on graphene through heteroepitaxy. • Graphene-supported UO{sub 2} nanocrystals can be stored in alcohols to prevent oxidation.

  19. Chrysin-piperazine conjugates as antioxidant and anticancer agents.

    Science.gov (United States)

    Patel, Rahul V; Mistry, Bhupendra; Syed, Riyaz; Rathi, Anuj K; Lee, Yoo-Jung; Sung, Jung-Suk; Shinf, Han-Seung; Keum, Young-Soo

    2016-06-10

    Synthesis of 7-(4-bromobutoxy)-5-hydroxy-2-phenyl-4H-chromen-4-one intermediate treating chrysin with 1,4-dibromobutane facilitated combination of chrysin with a wide range of piperazine moieties which were equipped via reacting the corresponding amines with bis(2-chloroethyl)amine hydrochloride in diethylene glycol monomethyl ether solvent. Free radical scavenging potential of prepared products was analyzed in vitro adopting DPPH and ABTS bioassay in addition to the evaluation of in vitro anticancer efficacies against cervical cancer cell lines (HeLa and CaSki) and an ovarian cancer cell line SK-OV-3 using SRB assay. Bearable toxicity of 7a-w was examined employing Madin-Darby canine kidney (MDCK) cell line. In addition, cytotoxic nature of the presented compounds was inspected utilizing Human bone marrow derived mesenchymal stem cells (hBM-MSCs). Overall, 7a-w indicated remarkable antioxidant power in scavenging DPPH(·) and ABTS(·+), particularly analogs 7f, 7j, 7k, 7l, 7n, 7q, 7v, 7w have shown promising free radical scavenging activity. Analogs 7j and 7o are identified to be highly active candidates against HeLa and CaSki cell lines, whereas 7h and 7l along with 7j proved to be very sensitive towards ovarian cancer cell line SKOV-3. None of the newly prepared scaffolds showed cytotoxic nature toward hBM-MSCs cells. From the structure-activity point of view, nature and position of the electron withdrawing and electron donating functional groups on the piperazine core may contribute to the anticipated antioxidant and anticancer action. Different spectroscopic techniques (FT-IR, (1)H NMR, (13)C NMR, Mass) and elemental analysis (CHN) were utilized to confirm the desired structure of final compounds. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Thermodynamics of Triethylene Glycol and Tetraethylene Glycol Containing Systems Described by the Cubic-Plus-Association Equation of State

    DEFF Research Database (Denmark)

    Breil, Martin Peter; Kontogeorgis, Georgios

    2009-01-01

    A thorough investigation of triethylene glycol (TEG) containing systems has been performed. The introduction of a new six-site association scheme for the TEG molecule has shown to be advantageous. Glycols are often modeled using a four-site scheme (abbreviated as 4C) hence ignoring the internal...... lone pairs of oxygen. The new association scheme also takes these sites into account. The new parameters of TEG are based on the vapor pressure data, liquid density data, and liquid-liquid equilibria (LLE) data (n-heptane), and they are tested for binary systems (methane, n-octane, n-nonane, n...

  1. Concentration of gadolinium-diethylene triamine pentaacetic acid in human kidney

    International Nuclear Information System (INIS)

    Takeda, Masayuki; Katayama, Yasushi; Tsutsui, Toshiki; Komeyama, Takeshi; Mizusawa, Takaki; Tanikawa, Toshiki; Sato, Shotaro

    1993-01-01

    Although gadolinium diethylene triamine pentaacetic acid (Gd-DTPA) has been used as a contrast material in magnetic resonance imaging, it is known that contrast enhancement effect disappears if the concentration of Gd-DTPA increases beyond some levels. In this study, to evaluate the proper pulse sequences for dynamic magnetic resonance imaging (MRI) in the human kidney, the concentration of Gd-DTPA was quantitatively measured by inductively coupled plasma (ICP) emission spectrometry in human biological samples after administration of Gd-DTPA, and the signal intensity of MRI is the solution of several concentrations of Gd-DTPA was measured. In using a low magnetic field apparatus, signal intensity linearly correlated with the concentration of Gd-DTPA between 0 and 2.0 μmol/g under saturation recovery sequences (flip angle was 60deg or 90deg). Using a high magnetic field apparatus, signal intensity linearly correlated with the concentration of Gd-DTPA between 0 and 2.0 or 3.0 μmol/g under spin echo or gradient-echo sequences. Gd-DTPA concentration of the renal cortex ranged from 0.132 to 0.152 μmol/g tissue at 5 min after intravenous injection of Gd-DTPA 0.05 mmol/kg body weight in 7 patients with adrenal tumor or renal cell cancer, and 1 patient with both urinary bladder cancer and prostatic cancer. Seven of them showed normal renal function and the other had renal insufficiency (GFR 25 ml/min/1.48 m 2 ). Gd-DTPA concentrations of renal medulla and renal cell cancer tissue were 0.123 and 0.108 μmol/g tissue, respectively, at 5 min after intravenous injection of Gd-DTPA 0.05 mmol/kg body weight. These results suggest that the signal intensity of renal cortex, renal medulla, and renal cell cancer tissue may linearly correlate with Gd-DTPA concentration of tissues at 5 min after intravenous injection of Gd-DTPA 0.5 mmol/kg body weight. (author)

  2. Characterization of tetraethylene glycol passivated iron nanoparticles

    International Nuclear Information System (INIS)

    Nunes, Eloiza da Silva; Viali, Wesley Renato; Silva, Sebastião William da; Coaquira, José Antonio Huamaní; Garg, Vijayendra Kumar; Oliveira, Aderbal Carlos de; Morais, Paulo César; Jafelicci Júnior, Miguel

    2014-01-01

    Graphical abstract: - Highlights: • Metallic iron nanoparticles were passivated in tetraethylene glycol media. • Passivated nanoparticles presented pomegranate-like core@shell structure. • Passivation of metallic iron correlates with the tetraethylene glycol degradation. • Boron enriched metallic iron phase was more susceptible to oxidation. • The iron oxide shell was identified as Fe 3 O 4 with a mass fraction of 43:53 related to αFe. - Abstract: The present study describes the synthesis and characterization of iron@iron oxide nanoparticles produced by passivation of metallic iron in tetraethylene glycol media. Structural and chemical characterizations were performed using transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and Mössbauer spectroscopy. Pomegranate-like core@shell nanoparticulate material in the size range of 90–120 nm was obtained. According to quantitative phase analysis using Rietveld structure refinement the synthesized iron oxide was identified as magnetite (Fe 3 O 4 ) whereas the iron to magnetite mass fractions was found to be 47:53. These findings are in good agreement with the data obtained from Mössbauer and thermal gravimetric analysis (TGA). The XPS data revealed the presence of a surface organic layer with higher hydrocarbon content, possibly due to the tetraethylene glycol thermal degradation correlated with iron oxidation. The room-temperature (300 K) saturation magnetization measured for the as-synthesized iron and for the iron–iron oxide were 145 emu g −1 and 131 emu g −1 , respectively. The measured saturation magnetizations are in good agreement with data obtained from TEM, XRD and Mössbauer spectroscopy

  3. Nanoparticles of spinel and perovskite ferromagnets and prospects for their application in medicine

    Energy Technology Data Exchange (ETDEWEB)

    Belous, A. G., E-mail: belous@ionc.kar.net, E-mail: solopan@ukr.net, E-mail: yelenicho@ukr.net; Solopan, S. O., E-mail: belous@ionc.kar.net, E-mail: solopan@ukr.net, E-mail: yelenicho@ukr.net; Yelenich, O. V., E-mail: belous@ionc.kar.net, E-mail: solopan@ukr.net, E-mail: yelenicho@ukr.net [Institute of General and Inorganic Chemistry, prospekt Palladina 32-34, 03142 Kyiv (Ukraine); Tovstolytkin, A. I., E-mail: atov@imag.kiev.ua [Institute of Magnetism, bulvar Vernadskoho 36-b, 03142 Kyiv (Ukraine); Kolodiazhnyi, T. V., E-mail: kolodiazhnyi.taras@nims.go.jp [National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); Osinsky, S. P., E-mail: osion@onconet.kiev.ua, E-mail: bybnovskayal@ukr.net; Bubnovskaya, L. N., E-mail: osion@onconet.kiev.ua, E-mail: bybnovskayal@ukr.net [R.E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology, vul. Vasylkivska 45, 03022 Kyiv (Ukraine)

    2014-11-05

    In this work, nanoparticles of La{sub 0.75}Sr{sub 0.25}MnO{sub 3} compounds with perovskite structure and AFe{sub 2}O{sub 4} (A = Mn, Fe, Co, Ni, Zn) with spinel structure have been synthesized by precipitation from diethylene glycol and microemulsion using Triton X-100 surfactant. Comparative X-ray diffraction and magnetic studies of the synthesized nanoparticles have been carried out. Magnetic fluids prepared from synthesized nanopowders have been characterized by calorimetric measurements of specific loss power (SLP)

  4. Synthesis of /sup 14/C-labelled butoxyethoxyethanol

    Energy Technology Data Exchange (ETDEWEB)

    Thijssen, J.B.A.; Janssen, C.G.M.; Verluyten, W.L.M.; Heykants, J.J.P.

    1986-02-01

    Butoxyethoxyethanol, an organic solvent used as carrier in the levamisole pour-on formulation, was synthesized via a Makosza etherification of 1-/sup 14/C-labelled bromobutane with mono tetrahydropyranyl (T.H.P.) protected diethylene glycol and subsequent removal of the T.H.P. protecting group. The compounds' synthetic yield was 88.8%; it had a specific activity of 32.5 mCi/mmol. The reaction product was radiochemically pure (99.6%) according to high-performance liquid chromatography and thin-layer chromatography in three solvent systems.

  5. Synthesis, characterization and cells and tissues imaging of carbon quantum dots

    Science.gov (United States)

    Wang, Jing; Li, Qilong; Zhou, JingE.; Wang, Yiting; Yu, Lei; Peng, Hui; Zhu, Jianzhong

    2017-10-01

    Compare to other quantum dots, carbon quantum dots have its own incomparable advantages, such as low cell toxicity, favorable biocompatibility, cheap production cost, mild reaction conditions, easy to large-scale synthesis and functionalization. In this thesis, we took citric acid monohydrate and diethylene glycol bis (3-aMinopropyl) ether as materials, used decomposition method to acquire carbon quantum dots (CQDs) which can emission blue fluorescence under ultraviolet excitation. In the aspect of application, we achieved the biological imaging of CQDs in vivo and in vitro.

  6. Synthesis of 14C-labelled butoxyethoxyethanol

    International Nuclear Information System (INIS)

    Thijssen, J.B.A.; Janssen, C.G.M.; Verluyten, W.L.M.; Heykants, J.J.P.

    1986-01-01

    Butoxyethoxyethanol, an organic solvent used as carrier in the levamisole pour-on formulation, was synthesized via a Makosza etherification of 1- 14 C-labelled bromobutane with mono tetrahydropyranyl (T.H.P.) protected diethylene glycol and subsequent removal of the T.H.P. protecting group. The compounds' synthetic yield was 88.8%; it had a specific activity of 32.5 mCi/mmol. The reaction product was radiochemically pure (99.6%) according to high-performance liquid chromatography and thin-layer chromatography in three solvent systems. (author)

  7. Synthesis and Characterization of Optically Active Fractal Seed Mediated Silver Nickel Bimetallic Nanoparticles

    Directory of Open Access Journals (Sweden)

    Joseph Adeyemi Adekoya

    2014-01-01

    Full Text Available The synthesis of new seed mediated AgNi allied bimetallic nanocomposites was successfully carried out by the successive reduction of the metal ions in diethylene glycol, ethylene glycol, glycerol, and pentaerythritol solutions, with concomitant precipitation of Ag/Ni bimetal sols. The optical measurement revealed the existence of distinct band edge with surface plasmon resonance (SPR in the region of 400–425 nm and excitonic emission with maximum peak at 382 nm which were reminiscent of cluster-in-cluster surface enriched bimetallic silver-nickel sols. The morphological characterization by transmission electron microscopy, high resolution transmission electron microscopy, and X-ray diffraction analyses complimented by surface scan using X-ray photoelectron spectroscopy strongly supported the formation of intimately alloyed face-centered silver/nickel nanoclusters.

  8. Effect of concentration of polyfunctional monomers on physical properties of acrylonitrile-butadiene rubber under electron-beam irradiation

    International Nuclear Information System (INIS)

    Yasin, T.; Ahmed, S.; Yoshii, F.; Makuuchi, K.

    2003-01-01

    The effect of concentration of different polyfunctional monomers (PFMs) on the physical properties of electron-beam irradiated acrylonitrile-butadiene rubber (NBR) has been investigated. The PFMs used were diethylene glycol dimethacrylate (2G), tetraethylene glycol dimethacrylate (4G), trimethylol propane triacrylate (A-TMPT), trimethylol propane trimethacrylate (TMPT) and tetramethylol methane tetraacrylate (A-TMMT). The physical properties of EB irradiated NBR sheets were evaluated by measurement of tensile strength, elongation %, hardness and gel fraction etc. The results show a remarkable increase in all physical properties as the concentration of PFMs increases from 1 phr to 5 phr in the NBR samples. The improvement in physical properties of radiation crosslinked NBR in the presence of PFMs may be attributed to its increased crosslinking density as observed by corresponding increase in gel content

  9. Proton Tracks and Formation of Pores in Poly[Diethylene Glycol Bis-(Allyl Carbonate)

    CERN Document Server

    Oganesyan, V R; Danziger, M; Hermsdorf, D; Orelovich, O L

    2004-01-01

    Modern dosimetry needs effective detectors to register light ions, especially those having energies down to 10 MeV/a.m.u. That is why in the research in hand we pay attention to development of materials for such a task. In this work the most effective detector CR-39 irradiated with low-energy protons was applied. A full analysis from opening to final formation of a pore was made with the help of sensitive electrolytic ething and electron scanning microscopy. Successive process of track breakthroughs was observed. The shape of the pore and corresponding parameters of its formation provide simulation of the process. Etching rates and factor of selectivity were determined. The influence of energy losses on geometry was noted.

  10. 75 FR 50896 - Diethylene Glycol (DEG); Exemption from the Requirement of a Tolerance

    Science.gov (United States)

    2010-08-18

    .../kilograms bodyweight/day (g/kg bw/day) for up to 28 days, and also in guinea-pigs, cats and dogs subjected.... Potentially affected entities may include, but are not limited to: Crop production (NAICS code 111). Animal production (NAICS code 112). Food manufacturing (NAICS code 311). Pesticide manufacturing (NAICS code 32532...

  11. Proton tracks and formation of pores in poly[diethylene glycol bis-(allyl carbonate)

    International Nuclear Information System (INIS)

    Oganesyan, V.R.; Trofimov, V.V.; Orelovich, O.L.; Danziger, M.; Hermsdorf, D.

    2004-01-01

    Modern dosimetry needs effective detectors to register light ions, especially those having energies down to 10 MeV/a.m.a. That is why in the research in hand we pay attention to development of materials for such a task. In this work the most effective detector CR-39 irradiated with low-energy protons was applied. A full analysis from opening to final formation of a pore was made with the help of sensitive electrolytic etching and electron scanning microscopy. Successive process of track breakthroughs was observed. The shape of the pore and corresponding parameters of its formation provide simulation of the process. Etching rates and factor of selectivity were determined. The influence of energy losses on geometry was noted

  12. 40 CFR 180.1040 - Ethylene glycol; exemption from the requirement of a tolerance.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Ethylene glycol; exemption from the... Exemptions From Tolerances § 180.1040 Ethylene glycol; exemption from the requirement of a tolerance. Ethylene glycol as a component of pesticide formulations is exempt from the requirement of a tolerance when...

  13. Efficacy of polyethylene glycol 4000 on constipation of

    Directory of Open Access Journals (Sweden)

    ZHANG Lian-yang

    2010-06-01

    Full Text Available Constipation is one of themost common chronic gastrointestinal problems. The estimated incidence of constipation in the United States is3% to 19% in general population.1,2 Patientswith head injuries, spinal cord injuries, pelvic fractures, lower extremity fractures ormultiple traumas require a long-term bed rest, during which the incidence of constipation reached as high as 50%.3,4 Constipation always brings inconvenience and tremendous suffering to patientsand strongly influences the recovery from primary disease. Irritants or lubricants can relieve the symptoms, but long-term application of them may lead to side effects like melanosis coli5 and cathartic colon6. The absorption of fat soluble vitamins is also affected.7 Polyethylene glycol 4000 (trade name: Forlax®, a long chain polymer with a high molecular weight, can conjugate withwater molecule through hydrogen bond to increase the water content and volume of stools, thereby, facilitate bowelmovement and defecation.8,9 It is neither absorbed nor metabolized in the digestive tract, hence it is highly safe and well tolerable. Thus, long-term medication of polyethylene glycol 4000 is conducive to the reconstruction of normal defecation pattern. Therefore, polyethylene glycol 4000 is now being widely used as the mainstay adult chronic functional constipation management.10,11 The aim of this study was to verify the efficacy and safety of polyethylene glycol 4000 on adult functional constipation of posttraumatic bedridden patients.

  14. Fabrication and characterization of shape memory polymers at small-scales

    Science.gov (United States)

    Wornyo, Edem

    The objective of this research is to thoroughly investigate the shape memory effect in polymers, characterize, and optimize these polymers for applications in information storage systems. Previous research effort in this field concentrated on shape memory metals for biomedical applications such as stents. Minimal work has been done on shape memory polymers; and the available work on shape memory polymers has not characterized the behaviors of this category of polymers fully. Copolymer shape memory materials based on diethylene glycol dimethacrylate (DEGDMA) crosslinker, and tert butyl acrylate (tBA) monomer are designed. The design encompasses a careful control of the backbone chemistry of the materials. Characterization methods such as dynamic mechanical analysis (DMA), differential scanning calorimetry (DSC); and novel nanoscale techniques such as atomic force microscopy (AFM), and nanoindentation are applied to this system of materials. Designed experiments are conducted on the materials to optimize spin coating conditions for thin films. Furthermore, the recovery, a key for the use of these polymeric materials for information storage, is examined in detail with respect to temperature. In sum, the overarching objectives of the proposed research are to: (i) Design shape memory polymers based on polyethylene glycol dimethacrylate (PEGDMA) and diethylene glycol dimethacrylate (DEGDMA) crosslinkers, 2-hydroxyethyl methacrylate (HEMA) and tert-butyl acrylate monomer (tBA). (ii) Utilize dynamic mechanical analysis (DMA) to comprehend the thermomechanical properties of shape memory polymers based on DEGDMA and tBA. (iii) Utilize nanoindentation and atomic force microscopy (AFM) to understand the nanoscale behavior of these SMPs, and explore the strain storage and recovery of the polymers from a deformed state. (iv) Study spin coating conditions on thin film quality with designed experiments. (iv) Apply neural networks and genetic algorithms to optimize these systems.

  15. Electrochemical corrosion behavior of AZ91D alloy in ethylene glycol

    Energy Technology Data Exchange (ETDEWEB)

    Fekry, A.M. [Chemistry Department, Faculty of Science, Cairo University, Giza 12613 (Egypt)], E-mail: hham4@hotmail.com; Fatayerji, M.Z. [Chemistry Department, Faculty of Science, Cairo University, Giza 12613 (Egypt)

    2009-11-01

    The effect of concentration on the corrosion behavior of Mg-based alloy AZ91D was investigated in ethylene glycol-water solutions using electrochemical techniques i.e. potentiodynamic polarization, electrochemical impedance measurements (EIS) and surface examination via scanning electron microscope (SEM) technique. This can provide a basis for developing new coolants for magnesium alloy engine blocks. Corrosion behavior of AZ91D alloy by coolant is important in the automotive industry. It was found that the corrosion rate of AZ91D alloy decreased with increasing concentration of ethylene glycol. For AZ91D alloy in chloride >0.05 M or fluoride <0.05 M containing 30% ethylene glycol solution, they are more corrosive than the blank (30% ethylene glycol-70% water). However, at concentrations <0.05 for chloride or >0.05 M for fluoride containing ethylene glycol solution, some inhibition effect has been observed. The corrosion of AZ91D alloy in the blank can be effectively inhibited by addition of 0.05 mM paracetamol that reacts with AZ91D alloy and forms a protective film on the surface at this concentration as confirmed by surface examination.

  16. Characterization of tetraethylene glycol passivated iron nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Nunes, Eloiza da Silva; Viali, Wesley Renato [Laboratório de Materiais Magnéticos e Coloides, Departamento de Físico-química, Instituto de Química, Universidade Estadual Paulista, Araraquara, SP 14801-970 (Brazil); Silva, Sebastião William da; Coaquira, José Antonio Huamaní; Garg, Vijayendra Kumar; Oliveira, Aderbal Carlos de [Instituto de Física, Núcleo de Física Aplicada, Universidade de Brasília, Brasília, DF 70910-900 (Brazil); Morais, Paulo César [Instituto de Física, Núcleo de Física Aplicada, Universidade de Brasília, Brasília, DF 70910-900 (Brazil); School of Automation, Huazhong University of Science and Technology, Wuhan 430074 (China); Jafelicci Júnior, Miguel, E-mail: jafeli@iq.unesp.br [Laboratório de Materiais Magnéticos e Coloides, Departamento de Físico-química, Instituto de Química, Universidade Estadual Paulista, Araraquara, SP 14801-970 (Brazil)

    2014-10-01

    Graphical abstract: - Highlights: • Metallic iron nanoparticles were passivated in tetraethylene glycol media. • Passivated nanoparticles presented pomegranate-like core@shell structure. • Passivation of metallic iron correlates with the tetraethylene glycol degradation. • Boron enriched metallic iron phase was more susceptible to oxidation. • The iron oxide shell was identified as Fe{sub 3}O{sub 4} with a mass fraction of 43:53 related to αFe. - Abstract: The present study describes the synthesis and characterization of iron@iron oxide nanoparticles produced by passivation of metallic iron in tetraethylene glycol media. Structural and chemical characterizations were performed using transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and Mössbauer spectroscopy. Pomegranate-like core@shell nanoparticulate material in the size range of 90–120 nm was obtained. According to quantitative phase analysis using Rietveld structure refinement the synthesized iron oxide was identified as magnetite (Fe{sub 3}O{sub 4}) whereas the iron to magnetite mass fractions was found to be 47:53. These findings are in good agreement with the data obtained from Mössbauer and thermal gravimetric analysis (TGA). The XPS data revealed the presence of a surface organic layer with higher hydrocarbon content, possibly due to the tetraethylene glycol thermal degradation correlated with iron oxidation. The room-temperature (300 K) saturation magnetization measured for the as-synthesized iron and for the iron–iron oxide were 145 emu g{sup −1} and 131 emu g{sup −1}, respectively. The measured saturation magnetizations are in good agreement with data obtained from TEM, XRD and Mössbauer spectroscopy.

  17. Determination of the impact of glycolate on ARP and MCU operations

    Energy Technology Data Exchange (ETDEWEB)

    Taylor-Pashow, K. M.L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Peters, T. B. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Fondeur, F. F. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Shehee, T. C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Washington, A. L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-05-17

    Savannah River Remediation (SRR) is evaluating an alternate flowsheet for the Defense Waste Processing Facility (DWPF) using glycolic acid as a reductant. An important aspect of the development of the glycolic acid flowsheet is determining if glycolate has any detrimental downstream impacts. Testing was performed to determine if there is any impact to the strontium and actinide sorption by monosodium titanate (MST) and modified monosodium titanate (mMST) or if there is an impact to the cesium removal, phase separation, or coalescer performance at the Modular Caustic-Side Solvent Extraction Processing Unit (MCU).

  18. Ultrasound assisted synthesis of nanocrystalline zinc oxide: Experiments and modelling

    Energy Technology Data Exchange (ETDEWEB)

    Hosni, Mongia [Laboratoire des Sciences des Procédés et des Matériaux, LSPM-CNRS, Université Paris 13, 99 av. J.B. Clément, 93430 Villetaneuse (France); Farhat, Samir, E-mail: farhat@lspm.cnrs.fr [Laboratoire des Sciences des Procédés et des Matériaux, LSPM-CNRS, Université Paris 13, 99 av. J.B. Clément, 93430 Villetaneuse (France); Schoenstein, Frederic; Karmous, Farah; Jouini, Noureddine [Laboratoire des Sciences des Procédés et des Matériaux, LSPM-CNRS, Université Paris 13, 99 av. J.B. Clément, 93430 Villetaneuse (France); Viana, Bruno [LCMCP Chimie-Paristech, UPMC, Collège de France, 11 Rue Pierre et Marie Curie, 75231 Paris Cedex 05 (France); Mgaidi, Arbi [Laboratoire de chimie minérale industrielle université Tunis el Manar (Tunisia)

    2014-12-05

    Highlights: • ZnO nanospheres and nanowires were grown using ultrasound and thermal activation techniques. • The growth uses forced hydrolysis of zinc acetate in diethylene glycol (DEG). • A thermochemical model was developed based on thermodynamic equilibrium calculations. • We estimate species distribution in the bubble in temperature range from 5000 K to ambient. • We propose a new mechanism for ZnO growth assisted by ultrasound irradiation. - Abstract: A fast and green approach is proposed for the preparation of nanocrystalline zinc oxide (ZnO) via ultrasonic (US) irradiation in polyol medium. The process uses forced hydrolysis of zinc acetate in diethylene glycol (DEG). The protocol is compared to thermal activation under the same chemical environment. The activation method is found to be playing a critical role in the selective synthesis of morphologically distinct nanostructures. As compared to thermally activated conventional polyol process, (US) permits to considerably reduce reaction time as well as size of particles. In addition, the shape of these nanoparticles was changed from long nanowires to small nanospheres, indicating different reaction mechanisms. To explain this difference, a thermochemical model was developed based on thermodynamic equilibrium calculations. The model estimate species distribution in the bubble in temperature range from 5000 K to ambient simulating quenching process during bubble formation and collapse. Our results indicate the presence of high density of zinc atoms that could be responsible of a high density of nucleation as compared to thermal activation.

  19. Ultrasound assisted synthesis of nanocrystalline zinc oxide: Experiments and modelling

    International Nuclear Information System (INIS)

    Hosni, Mongia; Farhat, Samir; Schoenstein, Frederic; Karmous, Farah; Jouini, Noureddine; Viana, Bruno; Mgaidi, Arbi

    2014-01-01

    Highlights: • ZnO nanospheres and nanowires were grown using ultrasound and thermal activation techniques. • The growth uses forced hydrolysis of zinc acetate in diethylene glycol (DEG). • A thermochemical model was developed based on thermodynamic equilibrium calculations. • We estimate species distribution in the bubble in temperature range from 5000 K to ambient. • We propose a new mechanism for ZnO growth assisted by ultrasound irradiation. - Abstract: A fast and green approach is proposed for the preparation of nanocrystalline zinc oxide (ZnO) via ultrasonic (US) irradiation in polyol medium. The process uses forced hydrolysis of zinc acetate in diethylene glycol (DEG). The protocol is compared to thermal activation under the same chemical environment. The activation method is found to be playing a critical role in the selective synthesis of morphologically distinct nanostructures. As compared to thermally activated conventional polyol process, (US) permits to considerably reduce reaction time as well as size of particles. In addition, the shape of these nanoparticles was changed from long nanowires to small nanospheres, indicating different reaction mechanisms. To explain this difference, a thermochemical model was developed based on thermodynamic equilibrium calculations. The model estimate species distribution in the bubble in temperature range from 5000 K to ambient simulating quenching process during bubble formation and collapse. Our results indicate the presence of high density of zinc atoms that could be responsible of a high density of nucleation as compared to thermal activation

  20. NMR relaxometric properties and cytotoxicity of Gd2O3 nanoparticle suspensions in an organic liquid

    Science.gov (United States)

    Babić-Stojić, Branka; Jokanović, Vukoman; Milivojević, Dušan; Požek, Miroslav; Jagličić, Zvonko; Makovec, Darko; Arsikin, Katarina; Paunović, Verica

    2014-10-01

    Gd2O3 nanoparticles and their agglomerates from approximately 10 to 80 nm in size suspended in an organic liquid were synthesized via polyol route. The reaction between diethylene glycol and added acetic acid, which occurred simultaneously with the synthesis of Gd2O3 nanoparticles, was catalyzed by sodium bisulfate to transform as much as possible diethylene glycol in corresponding ester at the end of complete reaction. The produced nanosized material of gadolinium oxide was investigated by TEM, DLS, FTIR spectroscopy, and NMR relaxometry. Biological evaluation of this material was done by MTT and crystal violet assays to determine the cell viability. Longitudinal and transverse relaxivities of water-diluted Gd2O3 nanoparticle suspensions estimated to be r 1 = 13.6 and r 2 = 14.7 s-1 mM-1 are about three times higher compared to the relaxivities obtained for standard contrast agent Gd-DTPA (Magnevist). Good MRI signal intensities of the water-diluted Gd2O3 nanoparticle suspensions were recorded in the Gd concentration range 0.2-0.3 mM for which the suspensions were not toxic exhibiting simultaneously higher signal intensities than those for Magnevist in the Gd concentration range 0.4-1 mM for which this standard contrast agent was not toxic. These properties make the produced Gd2O3 nanoparticle material promising for potential application as MRI contrast agent.

  1. The influence of water mixtures on the dermal absorption of glycol ethers

    International Nuclear Information System (INIS)

    Traynor, Matthew J.; Wilkinson, Simon C.; Williams, Faith M.

    2007-01-01

    Glycol ethers are solvents widely used alone and as mixtures in industrial and household products. Some glycol ethers have been shown to have a range of toxic effects in humans following absorption and metabolism to their aldehyde and acid metabolites. This study assessed the influence of water mixtures on the dermal absorption of butoxyethanol and ethoxyethanol in vitro through human skin. Butoxyethanol penetrated human skin up to sixfold more rapidly from aqueous solution (50%, 450 mg/ml) than from the neat solvent. Similarly penetration of ethoxyethanol was increased threefold in the presence of water (50%, 697 mg/ml). There was a corresponding increase in apparent permeability coefficient as the glycol ether concentration in water decreased. The maximum penetration rate of water also increased in the presence of both glycol ethers. Absorption through a synthetic membrane obeyed Fick's Law and absorption through rat skin showed a similar profile to human skin but with a lesser effect. The mechanisms for this phenomenon involves disruption of the stratum corneum lipid bilayer by desiccation by neat glycol ether micelles, hydration with water mixtures and the physicochemical properties of the glycol ether-water mixtures. Full elucidation of the profile of absorption of glycol ethers from mixtures is required for risk assessment of dermal exposure. This work supports the view that risk assessments for dermal contact scenarios should ideally be based on absorption data obtained for the relevant formulation or mixture and exposure scenario and that absorption derived from permeability coefficients may be inappropriate for water-miscible solvents

  2. Use of polyethylene glycol in functional constipation and fecal impaction.

    Science.gov (United States)

    Mínguez, Miguel; López Higueras, Antonio; Júdez, Javier

    2016-12-01

    The objective of this study was to evaluate in an analytical and descriptive manner the evidence published so far on the use of polyethylene glycol (PEG), with or without electrolytes, in the management of functional constipation and the treatment of fecal impaction. Search on MEDLINE, EMBASE and Cochrane databases until May 2016 of all publications adjusted to the following terms: constipation AND/OR fecal impaction AND (PEG OR polyethylene glycol OR macrogol OR movicol OR idralax OR miralax OR transipeg OR forlax OR golytely OR isocolan OR mulytely) NOT colonoscopy. Critical reading of selected articles (English or Spanish), sorting their description according to group age (adult/pediatric age) and within those, in accordance with study features (efficacy evaluation versus placebo, doses query, safety, comparison with other laxatives, observational studies and monographic review articles of polyethylene glycol or meta-analysis). Fifty-eight publications have been chosen for descriptive analysis; of them, 41 are clinical trials, eight are observational studies and nine are systematic reviews or meta-analysis. Twelve clinical trials evaluate PEG efficacy versus placebo, eight versus lactulose, six are dose studies, five compare polyethylene glycol with and without electrolytes, two compare its efficacy with respect to milk of magnesia, and the rest of the trials evaluate polyethylene glycol with enemas (two), psyllium (one), tegaserod (one), prucalopride (one), paraffin oil (one), fiber combinations (one) and Descurainia sophia (one). Polyethylene glycol with or without electrolytes is more efficacious than placebo for the treatment of functional constipation, either in adults or in pediatric patients, with great safety and tolerability. These preparations constitute the most efficacious osmotic laxatives (more than lactulose) and are the first-line treatment for functional constipation in the short and long-term. They are as efficacious as enemas in fecal

  3. Glycolate adsorption at gold and platinum electrodes: A theoretical and in situ spectroelectrochemical study

    International Nuclear Information System (INIS)

    Delgado, Jose Manuel; Blanco, Raquel; Orts, Jose Manuel; Perez, Juan Manuel; Rodes, Antonio

    2010-01-01

    The adsorption of glycolate anions at sputtered gold thin-film electrodes was studied in perchloric acid solutions by cyclic voltammetry experiments combined with in situ Surface Enhanced Raman Scattering (SERS) and Surface Enhanced Infrared Reflection Absorption Spectroscopy under attenuated total reflection conditions (ATR-SEIRAS). Theoretical harmonic vibrational frequencies and band intensities obtained from B3LYP/LANL2DZ,6-31+G(d) calculations for glycolate species adsorbed on Au clusters with (1 1 1) orientation were used to interpret the experimental spectra. Vibrational data confirm the bidentate bonding of glycolate anions through the oxygen atoms of the carboxylate group, in a bridge configuration with the OCO plane perpendicular to the metal surface. The DFT calculations show no significant effect of the total charge of the metal cluster-adsorbate adduct on the vibrational frequencies of adsorbed glycolate species. The infrared experimental study is extended to platinum films electrochemically deposited onto sputtered gold thin-film electrodes showing the potential-dependent formation of adsorbed CO upon dissociative adsorption of glycolate anions. As in the case of gold, the reversible adsorption of glycolate anions takes place in a bidentate configuration as predicted by DFT calculations for glycolate adsorbed on Pt(1 1 1) clusters. At low glycolic acid concentration, the in situ ATR-SEIRA spectra evidence the formation of adsorbed oxalate as reaction intermediate.

  4. Upstream petroleum industry glycol dehydrator benzene emissions status report

    International Nuclear Information System (INIS)

    1999-07-01

    The population of dehydrators referred to are located in the Western Sedimentary Basin in northeast British Columbia, Alberta and Saskatchewan, and includes units installed at wellsites, compressor stations, gas plants, central crude oil treating facilities, and reservoir or salt cavern gas storage facilities. Benzene emissions from the still column vent on glycol dehydrators occur as a result of glycol's strong affinity for aromatic hydrocarbons, including benzene. A study was carried out to: 1) develop a list of oil and gas companies operating in Canada, 2) develop an equipment and benzene emissions inventory of glycol dehydrators, 3) develop a database in Microsoft Access format to gather and maintain inventory and emission data, 4) evaluate and validate at least 10% of the reported data, 5) develop a list of companies that manufacture dehydrators and incinerators to determine how many new dehydrators were sold for use in Canada in 1998, and 6) prepare a report summarizing findings and recommendations. The companies included in the survey were the oil and gas companies identified by the Nickels' Oil and Gas Index and others provided by CAPP, CGA, and SEPAC. The project was carried out to gather glycol dehydrator equipment and still column vent benzene emissions information. 8 refs

  5. Separation of glycols from dilute aqueous solutions via complexation with boronic acids

    Energy Technology Data Exchange (ETDEWEB)

    Randel, L.A.; King, C.J.

    1991-07-01

    This work examines methods of separating low molecular weight glycols from dilute aqueous solution. Extraction into conventional solvents is generally not economical, since, in the literature reviewed, distribution ratios for the two- to four-carbon glycols are all less than one. Distribution ratios can be increased, however, by incorporating into the organic phase an extracting agent that will complex with the solute of interest. The extracting agent investigated in this work is 3-nitrophenylboronic acid (NPBA). NPBA, a boric acid derivative, reversibly complexes with many glycols. The literature on complexation of borate and related compounds with glycols, including mechanistic data, measurement techniques, and applications to separation processes, provides information valuable for designing experiments with NPBA and is reviewed herein. 88 refs., 15 figs., 24 tabs.

  6. Nitric-glycolic flowsheet testing for maximum hydrogen generation rate

    Energy Technology Data Exchange (ETDEWEB)

    Martino, C. J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Newell, J. D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Williams, M. S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-03-01

    The Defense Waste Processing Facility (DWPF) at the Savannah River Site is developing for implementation a flowsheet with a new reductant to replace formic acid. Glycolic acid has been tested over the past several years and found to effectively replace the function of formic acid in the DWPF chemical process. The nitric-glycolic flowsheet reduces mercury, significantly lowers the chemical generation of hydrogen and ammonia, allows purge reduction in the Sludge Receipt and Adjustment Tank (SRAT), stabilizes the pH and chemistry in the SRAT and the Slurry Mix Evaporator (SME), allows for effective adjustment of the SRAT/SME rheology, and is favorable with respect to melter flammability. The objective of this work was to perform DWPF Chemical Process Cell (CPC) testing at conditions that would bound the catalytic hydrogen production for the nitric-glycolic flowsheet.

  7. Development of an extractive-scintillating chromatographic resin for the detection of radioactive isotopes

    International Nuclear Information System (INIS)

    Vincze, A.; Halasz, L.; Solymosi, J.; Molnar, A.; Safrany, A.

    2007-01-01

    In this paper, the development of a new-type of resin is presented, which contains selective complexing and scintillating molecules in a chemically bonded form. The resin material is produced via radiation polymerization of a solution of 2-(4-allyloxy-phenyl)-5-phenyl oxazole, 5-(allyloxyphenyl)- 2-[4-(5-phenyl-oxazole-2-il)-phenyl] oxazole, diethylene glycol dimethacrylate (DEGMA), styrene and the allyl derivative of a 18C6 crown ether-dicarbolic acid complexing agent. The product is a macroporous polymer matrix that shows fluorescent properties and ion binding capacity excellent for radioanalytical purposes. (author)

  8. DISINTEGRATION EFFICIENCY OF SODIUM STARCH GLYCOLATES, PREPARED FROM DIFFERENT NATIVE STARCHES

    NARCIS (Netherlands)

    BOLHUIS, GK; ARENDSCHOLTE, AW; STUUT, GJ; DEVRIES, JA

    1994-01-01

    In a comparative evaluation, the disintegration efficiency of sodium starch glycolates prepared from seven different native starches (potato, maize, waxy maize, wheat, rice, sago and tapioca) were compared. All the sodium starch glycolates tested had a high swelling capacity, but the rate of water

  9. Polyethylene Glycol 3350 With Electrolytes Versus Polyethylene Glycol 4000 for Constipation: A Randomized, Controlled Trial

    NARCIS (Netherlands)

    Bekkali, Noor L. H.; Hoekman, Daniël R.; Liem, Olivia; Bongers, Marloes E. J.; van Wijk, Michiel P.; Zegers, Bas; Pelleboer, Rolf A.; Verwijs, Wim; Koot, Bart G. P.; Voropaiev, Maksym; Benninga, Marc A.

    2018-01-01

    The long-term efficacy and safety of polyethylene glycol (PEG) in constipated children are unknown, and a head-to-head comparison of the different PEG formulations is lacking. We aimed to investigate noninferiority of PEG3350 with electrolytes (PEG3350 + E) compared to PEG4000 without electrolytes

  10. Simulation of ethanol extractive distillation with mixed glycols as separating agent

    Directory of Open Access Journals (Sweden)

    I. D. Gil

    2014-03-01

    Full Text Available Extractive distillation is an alternative for ethanol dehydration processes that has been shown to be more effective than azeotropic distillation and, in close proximity, to be very competitive against the process that uses adsorption with molecular sieves. Glycols have been shown to be the most effective solvents in extractive distillation, mainly ethylene glycol and glycerol. In this work, an extractive distillation column was simulated with the Aspen Plus software platform, using the RadFrac module for distillation columns, to investigate the effect on the separation of the ethylene glycol-glycerol mixture composition, the separating agent feed stages, the separating agent split stream feed, and the azeotropic feed temperature. The NRTL model was used to calculate the phase equilibrium of these strongly polar mixtures. A rigorous simulation of the extractive distillation column finally established was also performed, including a secondary recovery column for the mixture of solvents and a recycle loop, to simulate an industrially relevant situation. This simulation allowed establishing the complete parameters to dehydrate ethanol: the optimal stage for separating agent feed is stage 4; the most adequate composition for the glycols mixture is 60 mol% ethylene glycol and 40 mol% glycerol. Finally, energetically efficient operating conditions for each one of the columns were established through a preliminary pinch analysis.

  11. Immediate-type hypersensitivity to polyethylene glycols

    DEFF Research Database (Denmark)

    Wenande, E; Garvey, L H

    2016-01-01

    Polyethylene glycols (PEGs) or macrogols are polyether compounds widely used in medical and household products. Although generally considered biologically inert, cases of mild to life-threatening immediate-type PEG hypersensitivity are reported with increasing frequency. Nevertheless, awareness...

  12. Final report on the safety assessment of Triethylene Glycol and PEG-4.

    Science.gov (United States)

    2006-01-01

    Triethylene Glycol and PEG-4 (polyethylene glycol) are polymers of ethylene oxide alcohol. Triethylene Glycol is a specific three-unit chain, whereas PEG-4 is a polymer with an average of four units, but may contain polymers ranging from two to eight ethylene oxide units. In the same manner, other PEG compounds, e.g., PEG-6, are mixtures and likely contain some Triethylene Glycol and PEG-4. Triethylene Glycol is a fragrance ingredient and viscosity decreasing agent in cosmetic formulations, with a maximum concentration of use of 0.08% in skin-cleansing products. Following oral doses, Triethylene Glycol and its metabolites are excreted primarily in urine, with small amounts released in feces and expired air. With oral LD50 values in rodents from 15 to 22 g/kg, this compound has little acute toxicity. Rats given short term oral doses of 3% in water showed no signs of toxicity, whereas all rats given 10% died by the 12th day of exposure. At levels up to 1 g/m3, rats exposed to aerosolized Triethylene Glycol for 6 h per day for 9 days showed no signs of toxicity. Rats fed a diet containing 4% Triethylene Glycol for 2 years showed no signs of toxicity. There were no treatment-related effects on rats exposed to supersaturated Triethylene Glycol vapor for 13 months nor in rats that consumed 0.533 cc Triethylene Glycol per day in drinking water for 13 months. Triethylene Glycol was not irritating to the skin of rabbits and produced only minimal injury to the eye. In reproductive and developmental toxicity studies in rats and mice, Triethylene Glycol did not produce biologically significant embryotoxicity or teratogenicity. However, some maternal toxicity was seen in dams given 10 ml/kg/day during gestation. Triethylene Glycol was not mutagenic or genotoxic in Ames-type assays, the Chinese hamster ovary mutation assay, and the sister chromatid exchange assays. PEG-4 is a humectant and solvent in cosmetic products, with a maximum concentration of use of 20% in the "other

  13. Impact of scaling on the nitric-glycolic acid flowsheet

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, D. [Savannah River Site (SRS), Aiken, SC (United States)

    2016-02-01

    Savannah River Remediation (SRR) is considering using glycolic acid as a replacement for formic acid in Sludge Receipt and Adjustment Tank (SRAT) processing in the Defense Waste Processing Facility (DWPF). Catalytic decomposition of formic acid is responsible for the generation of hydrogen, a potentially flammable gas, during processing. To prevent the formation of a flammable mixture in the offgas, an air purge is used to dilute the hydrogen concentration below the 60% of the Composite Lower Flammability Limit (CLFL). The offgas is continuously monitored for hydrogen using Gas Chromatographs (GCs). Since formic acid is much more volatile and toxic than glycolic acid, a formic acid spill would lead to the release of much larger quantities to the environment. Switching from formic acid to glycolic acid is expected to eliminate the hydrogen flammability hazard leading to lower air purges, thus downgrading of Safety Significant GCs to Process Support GCs, and minimizing the consequence of a glycolic acid tank leak in DWPF. Overall this leads to a reduction in process operation costs and an increase in safety margin. Experiments were completed at three different scales to demonstrate that the nitric-glycolic acid flowsheet scales from the 4-L lab scale to the 22-L bench scale and 220-L engineering scale. Ten process demonstrations of the sludge-only flowsheet for SRAT and Slurry Mix Evaporator (SME) cycles were performed using Sludge Batch 8 (SB8)-Tank 40 simulant. No Actinide Removal Process (ARP) product or strip effluent was added during the runs. Six experiments were completed at the 4-L scale, two experiments were completed at the 22-L scale, and two experiments were completed at the 220-L scale. Experiments completed at the 4-L scale (100 and 110% acid stoichiometry) were repeated at the 22-L and 220-L scale for scale comparisons.

  14. Inert Reassessment Document for Ethylene Glycol

    Science.gov (United States)

    Ethylene Glycol has many uses and are also used as antifreeze and deicers, as solvents, humectants, as chemical intermediates in the synthesis of other chemicals, and as components of many products such as brake fluids, lubricants, inks,and lacquers.

  15. A Cationic Smart Copolymer for DNA Binding

    Directory of Open Access Journals (Sweden)

    Tânia Ribeiro

    2017-11-01

    Full Text Available A new block copolymer with a temperature-responsive block and a cationic block was prepared by reversible addition-fragmentation chain transfer (RAFT polymerization, with good control of its size and composition. The first block is composed by di(ethylene glycol methyl ether methacrylate (DEGMA and oligo(ethylene glycol methyl ether methacrylate (OEGMA, with the ratio DEGMA/OEGMA being used to choose the volume phase transition temperature of the polymer in water, tunable from ca. 25 to above 90 °C. The second block, of trimethyl-2-methacroyloxyethylammonium chloride (TMEC, is positively charged at physiological pH values and is used for DNA binding. The coacervate complexes between the block copolymer and a model single strand DNA are characterized by fluorescence correlation spectroscopy and fluorescence spectroscopy. The new materials offer good prospects for biomedical application, for example in controlled gene delivery.

  16. [1-14C]Glycolate metabolism and serine biosynthesis in soybean plants

    International Nuclear Information System (INIS)

    Calmes, J.; Viala, G.; Latche, J.C.; Cavalie, G.

    1977-01-01

    [1- 14 C]Glycolate metabolism was examined in leafy shoots of soybean plants (Glycine max (L.) Merr., var. Adepta). Only small amounts of 14 C were incorporated into evolved carbon dioxide and glucidic compounds. Free and protein glycine was labelled but higher levels of radioactivity were found in free serine. Changes in the distribution of 14 C with time showed that metabolic conversion glycollate → glycine → serine occurred very early and serine biosynthesis was more important in the shoot than in the leaves. Carbon dioxide labelling was always slight compared to serine labelling. These data suggest strong relations between glycollate and nitrogen metabolism

  17. Modyfication of the Rigid Polyurethane-Polyisocyanurate Foams

    Directory of Open Access Journals (Sweden)

    Bogusław Czupryński

    2014-01-01

    Full Text Available The effect of polyethylene glycol 1500 on physicomechanical properties of rigid polyurethane-polyisocyanurate (PUR-PIR foams has been studied. It was found that application of polyethylene glycol 1500 for synthesis of foams in amount from 0% to 20% w/w had an effect on reduction of brittleness and softening point, while the greater the increase in compressive strength the higher its content in foam composition was. Wastes from production of these foams were ground and subjected to glycolysis in diethylene glycol with the addition of ethanolamine and zinc stearate. Liquid brown products were obtained. Properties of the resulting products were defined in order to determine their suitability for synthesis of new foams. It was found that glycolysate 6 was the most suitable for reuse and its application in different amounts allowed us to prepare 4 new foams (nos. 25, 26, 27, and 28. Properties of foams prepared in this manner were determined and, on their basis, the suitability of glycolysates for production of rigid PUR-PIR foams was evaluated.

  18. Development of CuO–ethylene glycol nanofluids for efficient energy management: Assessment of potential for energy recovery

    International Nuclear Information System (INIS)

    Allen Zennifer, M.; Manikandan, S.; Suganthi, K.S.; Leela Vinodhan, V.; Rajan, K.S.

    2015-01-01

    Highlights: • CuO–ethylene glycol nanofluids prepared and characterized. • Maximum thermal conductivity enhancement of 14.1% at 50 °C for 1 vol% nanofluid. • Heat transfer performance in correspondence with improved transport properties. • 11.8% enhancement in heat transfer rate for 1 vol% nanofluid. - Abstract: Ethylene glycol (EG) plays an important role as coolant in sub-artic and artic regions owing to its low freezing point. However one of the limitations of ethylene glycol for energy management is its low thermal conductivity, which can be improved by addition of nanoparticles. In the present work, cupric oxide nanoparticles have been synthesized followed by dispersion in ethylene glycol through extended probe ultrasonication without addition of chemical dispersing agent. Temperature dependency of thermal conductivity of 1 vol% CuO–ethylene glycol nanofluid exhibited a minimum at a critical temperature corresponding to lower thickness of interfacial layers and negligible Brownian motion. The influence of liquid layering on thermal conductivity was predominant at temperatures below critical temperature leading to higher thermal conductivity at lower temperature. Brownian motion-induced microconvection resulted in thermal conductivity increase with temperature above the critical temperature. About 14.1% enhancement in thermal conductivity was obtained at 50 °C for 1 vol% CuO–ethylene glycol nanofluid. The viscosity of CuO–ethylene glycol nanofluid was lower than the viscosity of ethylene glycol at temperatures below 50 °C and 120 °C for 1 vol% and 0.5 vol% CuO–ethylene glycol nanofluids. Our data reveal that the CuO–ethylene glycol nanofluids are better coolants than ethylene glycol for transient cooling under constant heat flux conditions with 11.8% enhancement in heat transfer rate for 1 vol% CuO–ethylene glycol nanofluid. Hence the use of ethylene glycol-based nanofluids is a promising approach for energy management.

  19. Use of polyethylene glycol in functional constipation and fecal impaction

    Directory of Open Access Journals (Sweden)

    Miguel Mínguez

    Full Text Available Objective: The objective of this study was to evaluate in an analytical and descriptive manner the evidence published so far on the use of polyethylene glycol (PEG, with or without electrolytes, in the management of functional constipation and the treatment of fecal impaction. Methodology: Search on MEDLINE, EMBASE and Cochrane databases until May 2016 of all publications adjusted to the following terms: constipation AND/OR fecal impaction AND (PEG OR polyethylene glycol OR macrogol OR movicol OR idralax OR miralax OR transipeg OR forlax OR golytely OR isocolan OR mulytely NOT colonoscopy. Critical reading of selected articles (English or Spanish, sorting their description according to group age (adult/pediatric age and within those, in accordance with study features (efficacy evaluation versus placebo, doses query, safety, comparison with other laxatives, observational studies and monographic review articles of polyethylene glycol or meta-analysis. Results: Fifty-eight publications have been chosen for descriptive analysis; of them, 41 are clinical trials, eight are observational studies and nine are systematic reviews or meta-analysis. Twelve clinical trials evaluate PEG efficacy versus placebo, eight versus lactulose, six are dose studies, five compare polyethylene glycol with and without electrolytes, two compare its efficacy with respect to milk of magnesia, and the rest of the trials evaluate polyethylene glycol with enemas (two, psyllium (one, tegaserod (one, prucalopride (one, paraffin oil (one, fiber combinations (one and Descurainia sophia (one. Conclusions: Polyethylene glycol with or without electrolytes is more efficacious than placebo for the treatment of functional constipation, either in adults or in pediatric patients, with great safety and tolerability. These preparations constitute the most efficacious osmotic laxatives (more than lactulose and are the first-line treatment for functional constipation in the short and long

  20. Phase Equilibria Measurement of Binary Mixture for the Propoxylated Neopentyl Glycol Diacrylate in Supercritical Carbon Dioxide

    International Nuclear Information System (INIS)

    Byun, Hun-Soo

    2016-01-01

    Experimental data are reported on the phase equilibrium of propoxylated neopentyl glycol diacrylate in supercritical carbon dioxide. Phase equilibria data were measured in static method at a temperature of (313.2, 333.2, 353.2, 373.2 and 393.2) K and at pressures up to 27.82 MPa. At a constant pressure, the solubility of propoxylated neopentyl glycol diacrylate for the (carbon dioxide + propoxylated neopentyl glycol diacrylate) system increases as temperature increases. The (carbon dioxide + propoxylated neopentyl glycol diacrylate) system exhibits type-I phase behavior. The experimental result for the (carbon dioxide + propoxylated neopentyl glycol diacrylate) system is correlated with Peng- Robinson equation of state using mixing rule. The critical property of propoxylated neopentyl glycol diacrylate is predicted with Joback and Lyderson method

  1. Phase Equilibria Measurement of Binary Mixture for the Propoxylated Neopentyl Glycol Diacrylate in Supercritical Carbon Dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Byun, Hun-Soo [Chonnam National University, Yeosu (Korea, Republic of)

    2016-04-15

    Experimental data are reported on the phase equilibrium of propoxylated neopentyl glycol diacrylate in supercritical carbon dioxide. Phase equilibria data were measured in static method at a temperature of (313.2, 333.2, 353.2, 373.2 and 393.2) K and at pressures up to 27.82 MPa. At a constant pressure, the solubility of propoxylated neopentyl glycol diacrylate for the (carbon dioxide + propoxylated neopentyl glycol diacrylate) system increases as temperature increases. The (carbon dioxide + propoxylated neopentyl glycol diacrylate) system exhibits type-I phase behavior. The experimental result for the (carbon dioxide + propoxylated neopentyl glycol diacrylate) system is correlated with Peng- Robinson equation of state using mixing rule. The critical property of propoxylated neopentyl glycol diacrylate is predicted with Joback and Lyderson method.

  2. A Case of Chronic Ethylene Glycol Intoxication Presenting without Classic Metabolic Derangements

    Directory of Open Access Journals (Sweden)

    Stephanie M. Toth-Manikowski

    2014-01-01

    Full Text Available Acute ethylene glycol ingestion classically presents with high anion gap acidosis, elevated osmolar gap, altered mental status, and acute renal failure. However, chronic ingestion of ethylene glycol is a challenging diagnosis that can present as acute kidney injury with subtle physical findings and without the classic metabolic derangements. We present a case of chronic ethylene glycol ingestion in a patient who presented with acute kidney injury and repeated denials of an exposure history. Kidney biopsy was critical to the elucidation of the cause of his worsening renal function.

  3. DWPF nitric-glycolic flowsheet chemical process cell chemistry. Part 1

    Energy Technology Data Exchange (ETDEWEB)

    Zamecnik, J. R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Edwards, T. B. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-02-01

    The conversions of nitrite to nitrate, the destruction of glycolate, and the conversion of glycolate to formate and oxalate were modeled for the Nitric-Glycolic flowsheet using data from Chemical Process Cell (CPC) simulant runs conducted by SRNL from 2011 to 2015. The goal of this work was to develop empirical correlations for these variables versus measureable variables from the chemical process so that these quantities could be predicted a-priori from the sludge composition and measurable processing variables. The need for these predictions arises from the need to predict the REDuction/OXidation (REDOX) state of the glass from the Defense Waste Processing Facility (DWPF) melter. This report summarizes the initial work on these correlations based on the aforementioned data. Further refinement of the models as additional data is collected is recommended.

  4. Polyethylene glycols (PEG) and related structures

    DEFF Research Database (Denmark)

    Wenande, Emily; Kroigaard, Mogens; Mosbech, Holger

    2015-01-01

    We describe hypersensitivity to polyethylene glycols (PEGs), with cross-reactivity to a structural analog, polysorbate 80, in a 69-year-old patient with perioperative anaphylaxis and subsequent, severe anaphylactic reactions to unrelated medical products. PEGs and PEG analogs are prevalent in the...

  5. Polyalkylene glycols, base fluids for special lubricants and hydraulic fluids; Polyalkylenglykole, Basisoele fuer Spezialschmierstoffe und Hydraulikfluessigkeiten

    Energy Technology Data Exchange (ETDEWEB)

    Poellmann, K. [Clariant GmbH (Germany)

    2004-08-01

    For many years polyalkylene glycols have been used as base fluids for special lubricants. In this matter they compete with polyol esters and polyalphaolefines. Synthesis of polyalkylen glycols is founded upon the anionic polymerisation of ethyleneoxid, propyleneoxid and if necessary of other oxigen-containing monomeres. The flexibility of this synthesis is the reason that polyalkylene glycole is a collective term, including a broad group of base fluids with partly extreme different properties. Typical for polyalkylene glycols is a high viscosity-index, watersolubility and adsorbing power for water, low friction numbers, but also the incompatibility with current mineral-oil-soluble additive systems. Because of this quality profile there has been developped specific niche-applications in the lubricant-area for polyalkylene glycols in the last 30 years, where each of the specific benefits has been used. Among them are watercontaining HFC hydraulicfluids, refrigerator oils, and oils for ethylene-compressors. HFC fluids are formulated with high-viscous, water-soluble polyalkylene glycols. For refrigerator oils in motor-car conditioning the R 134A compatibility of water-insoluble polyalkylene glycols is essential. For the use in ethylene-compressors the crucial point is the insolubility of polyalkylene glycol in ethylene. (orig.)

  6. Hematoporphyrin monomethyl ether-mediated photodynamic therapy selectively kills sarcomas by inducing apoptosis.

    Directory of Open Access Journals (Sweden)

    Hui Zeng

    Full Text Available We investigated the antitumor effect and mechanism of hematoporphyrin monomethyl ether-mediated photodynamic therapy (HMME-PDT in sarcomas. Intracellular uptake of HMME by osteosarcoma cells (LM8 and K7 was time- and dose-dependent, while this was not observed for myoblast cells (C2C12 and fibroblast cells (NIH/3T3. HMME-PDT markedly inhibited the proliferation of sarcoma cell lines (LM8, MG63, Saos-2, SW1353, TC71, and RD (P<0.05, and the killing effect was improved with increased HMME concentration and energy intensity. Flow cytometry analysis revealed that LM8, MG63, and Saos-2 cells underwent apoptosis after treatment with HMME-PDT. Additionally, apoptosis was induced after HMME-PDT in a three-dimensional culture of osteosarcoma cells. Hoechst 33342 staining confirmed apoptosis. Cell death caused by PDT was rescued by an irreversible inhibitor (Z-VAD-FMK of caspase. However, cell viability was not markedly decreased compared with the HMME-PDT group. Expression levels of caspase-1, caspase-3, caspase-6, caspase-9, and poly (ADP-ribose polymerase (PARP proteins were markedly up-regulated in the treatment groups and increased with HMME concentration as determined by western blot analysis. In vivo, tumor volume markedly decreased at 7-16 days post-PDT. Hematoxylin and eosin staining revealed widespread necrotic and infiltrative inflammatory cells in the HMME-PDT group. Immunohistochemistry analysis also showed that caspase-1, caspase-3, caspase-6, caspase-9, and PARP proteins were significantly increased in the HMME-PDT group. These results indicate that HMME-PDT has a potent killing effect on osteosarcoma cells in vitro and significantly inhibits tumor growth in vivo, which is associated with the caspase-dependent pathway.

  7. 21 CFR 589.1001 - Propylene glycol in or on cat food.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Propylene glycol in or on cat food. 589.1001... or on cat food. The Food and Drug Administration has determined that propylene glycol in or on cat... on cat food causes the feed to be adulterated and in violation of the Federal Food, Drug, and...

  8. Status Epilepticus due to Intraperitoneal Injection of Vehicle Containing Propylene Glycol in Sprague Dawley Rats

    Directory of Open Access Journals (Sweden)

    Evon S. Ereifej

    2017-01-01

    Full Text Available Published reports of status epilepticus due to intraperitoneal injection containing propylene glycol in rats are sparse. In fact, there are no reports specifying a maximum safe dose of propylene glycol through intraperitoneal administration. We report here a case of unexpected seizures in Sprague Dawley rats after receiving an intraperitoneal injection containing propylene glycol. Nine-week-old, 225–250 gram male rats were reported to experience tremor progressing to seizures within minutes after given injections of resveratrol (30 mg/kg dissolved in a 40 : 60 propylene glycol/corn oil vehicle solution by direct intraperitoneal (IP slow bolus injection or via a preplaced intraperitoneal catheter. The World Health Organization suggests a maximum dose of 25 mg/kg/day of propylene glycol taken orally and no more than 25 mg/dL in blood serum, whereas the animals used in our study got a calculated maximum 0.52 g/kg (25 times lower dose. Blood tests from the seizing rat support a diagnosis of hemolysis and lactic acidosis which may have led to the seizures, all of which appeared to be a consequence of the propylene glycol administration. These findings are consistent with oral and intravenous administration of propylene glycol toxicity as previously reported in other species, including humans. To our knowledge, this report represents the first published case of status epilepticus due to an IP injection containing propylene glycol.

  9. Sources of Propylene Glycol and Glycol Ethers in Air at Home

    Directory of Open Access Journals (Sweden)

    Hyunok Choi

    2010-12-01

    Full Text Available Propylene glycol and glycol ether (PGE in indoor air have recently been associated with asthma and allergies as well as sensitization in children. In this follow-up report, sources of the PGEs in indoor air were investigated in 390 homes of pre-school age children in Sweden. Professional building inspectors examined each home for water damages, mold odour, building’s structural characteristics, indoor temperature, absolute humidity and air exchange rate. They also collected air and dust samples. The samples were analyzed for four groups of volatile organic compounds (VOCs and semi-VOCs (SVOCs, including summed concentrations of 16 PGEs, 8 terpene hydrocarbons, 2 Texanols, and the phthalates n-butyl benzyl phthalate (BBzP, and di(2-ethylhexylphthalate (DEHP. Home cleaning with water and mop ≥ once/month, repainting ≥ one room prior to or following the child’s birth, and “newest” surface material in the child’s bedroom explained largest portion of total variability in PGE concentrations. High excess indoor humidity (g/m3 additionally contributed to a sustained PGE levels in indoor air far beyond several months following the paint application. No behavioral or building structural factors, except for water-based cleaning, predicted an elevated terpene level in air. No significant predictor of Texanols emerged from our analysis. Overall disparate sources and low correlations among the PGEs, terpenes, Texanols, and the phthalates further confirm the lack of confounding in the analysis reporting the associations of the PGE and the diagnoses of asthma, rhinitis, and eczema, respectively.

  10. Anomalous behavior of secondary dielectric relaxation in polypropylene glycols

    Energy Technology Data Exchange (ETDEWEB)

    Grzybowska, K; Grzybowski, A; Ziolo, J; Rzoska, S J; Paluch, M [Institute of Physics, Silesian University, Uniwersytecka 4, 40-007 Katowice (Poland)

    2007-09-19

    A surprising slow down in the dielectric secondary {gamma}-relaxation with temperature increasing near the glass transition is confirmed for several polypropylene glycols. The peculiar behavior diminishes as the molecular weight grows. The minimal model (Dyre and Olsen 2003 Phys. Rev. Lett. 91 155703) is applied successfully to describe the temperature dependences of the {gamma}-relaxation times. The minimal model parameters are analyzed for different molecular weights. A molecular explanation of the {gamma}-process anomaly for polypropylene glycols is proposed on the basis of the minimal model prediction.

  11. Glycolic acid synthesis during dark glucose U14C metabolism, in French Bean and Maize leaves

    International Nuclear Information System (INIS)

    Cailliau-Commanay, Lucienne; Calmes, Jean; Latche, J.-C.; Cavalie, Gerard

    1977-01-01

    Serine, glycerate and glycolate are among the first radioactive compounds when French Bean and Maize leaves are fed with glucose U 14 C. Failing to detect radioactive glycine suggests that glycolate so synthesized is unavailable for the photorespiration glycolate pool [fr

  12. In vitro permeation through porcine buccal mucosa of Salvia desoleana Atzei & Picci essential oil from topical formulations.

    Science.gov (United States)

    Ceschel, G C; Maffei, P; Moretti, M D; Demontis, S; Peana, A T

    2000-02-15

    In the light of recent studies, which have shown that the essential oil derived from some Lamiaceae species has appreciable anti-inflammatory activity, moderate anti-microbial action and the ability to inhibit induced hyperalgesia, an assessment of the diffusion and permeation of Salvia desoleana Atzei & Picci (S. desoleana) essential oil through porcine buccal mucosa was considered useful for a possible application in the stomatological field. Topical formulations (microemulsions, hydrogels and microemulsion-hydrogels) were prepared for application to the buccal mucosa. The mucosa permeation of the oil from the formulations was evaluated using Franz cells, with porcine buccal mucosa as septum between the formulations (donor compartment) and the receptor phase chambers. The study also aimed at optimising the permeability of the S. desoleana essential oil by means of an enhancer, the diethylene glycol monoethyl ether Transcutol. The diffusion of the oil through the membrane was determined by evaluating the amount of essential oil components present in the receiving solution, the flux and the permeation coefficient (at the steady state) in the different formulations at set intervals. Qualitative and quantitative determinations were done by gas chromatographic analysis. All the formulations allow a high permeability coefficient in comparison with the pure essential oil. In particular, the components with a terpenic structure (beta-pinene, cineole, alpha-terpineol and linalool) have the highest capacity to pass through the porcine buccal mucosa when compared to the other components (linalyl acetate and alpha-terpinil acetate). Moreover, the enhancer, diethylene glycol monoethyl ether largely increases the permeation of the essential oil components in relation to the concentration.

  13. Кріоскопічне дослідження розчинів діетиленглікольдіакрилату в бензені

    OpenAIRE

    Волошинець, В. А.; Мачинський, О. Я.; Семенюк, І. В.

    2003-01-01

    Досліджено залежність моляльного коефіцієнта активності діетиленгліколь- діакрилату від концентрації у розчині бензену. Встановлено, що розчини діетиленглікольдіакрилату у бензені з концентрацією, меншою за 0,3 моль/кг, належать до гранично розведених. It is investigated dependence molal coefficient activity diacrylat diethylene glycol for concentration in a solution of benzene. It is established, that solution diacrylat diethylene glycol in benzene with concentration there less than 0,...

  14. Preoperative bowel preparation in children: Polyethylene glycol ...

    African Journals Online (AJOL)

    Preoperative bowel preparation in children: Polyethylene glycol versus normal saline. ... In children, (is this standard of care?: this method is mostly followed) this is usually ... Patients and Methods: Thirty patients, admitted in the Department of ...

  15. 3D printing of new biobased unsaturated polyesters by microstereo-thermal-lithography

    International Nuclear Information System (INIS)

    Gonçalves, Filipa A M M; Costa, Cátia S M F; Fabela, Inês G P; Simões, Pedro N; Serra, Arménio C; Coelho, Jorge F J; Farinha, Dina; Faneca, Henrique; Bártolo, Paulo J

    2014-01-01

    New micro three-dimensional (3D) scaffolds using biobased unsaturated polyesters (UPs) were prepared by microstereo-thermal-lithography (μSTLG). This advanced processing technique offers indubitable advantages over traditional printing methods. The accuracy and roughness of the 3D structures were evaluated by scanning electron microscopy and infinite focus microscopy, revealing a suitable roughness for cell attachment. UPs were synthesized by bulk polycondensation between biobased aliphatic diacids (succinic, adipic and sebacic acid) and two different glycols (propylene glycol and diethylene glycol) using fumaric acid as the source of double bonds. The chemical structures of the new oligomers were confirmed by proton nuclear magnetic resonance spectra, attenuated total reflectance Fourier transform infrared spectroscopy and matrix assisted laser desorption/ionization-time of flight mass spectrometry. The thermal and mechanical properties of the UPs were evaluated to determine the influence of the diacid/glycol ratio and the type of diacid in the polyester’s properties. In addition an extensive thermal characterization of the polyesters is reported. The data presented in this work opens the possibility for the use of biobased polyesters in additive manufacturing technologies as a route to prepare biodegradable tailor made scaffolds that have potential applications in a tissue engineering area. (paper)

  16. Glycolic acid peel therapy – a current review

    Directory of Open Access Journals (Sweden)

    Sharad J

    2013-11-01

    Full Text Available Jaishree Sharad Skinfiniti Aesthetic Skin and Laser Clinic, Mumbai, India Abstract: Chemical peels have been time-tested and are here to stay. Alpha-hydroxy peels are highly popular in the dermatologist's arsenal of procedures. Glycolic acid peel is the most common alpha-hydroxy acid peel, also known as fruit peel. It is simple, inexpensive, and has no downtime. This review talks about various studies of glycolic acid peels for various indications, such as acne, acne scars, melasma, postinflammatory hyperpigmentation, photoaging, and seborrhea. Combination therapies and treatment procedure are also discussed. Careful review of medical history, examination of the skin, and pre-peel priming of skin are important before every peel. Proper patient selection, peel timing, and neutralization on-time will ensure good results, with no side effects. Depth of the glycolic acid peel depends on the concentration of the acid used, the number of coats applied, and the time for which it is applied. Hence, it can be used as a very superficial peel, or even a medium depth peel. It has been found to be very safe with Fitzpatrick skin types I–IV. All in all, it is a peel that is here to stay. Keywords: acne scar, melasma, photoaging, chemical peel, alpha-hydroxy peel

  17. Chemical recycling of semi-rigid polyurethane foams by using an eco-friendly and green method

    Directory of Open Access Journals (Sweden)

    Mir Mohammad Alavi Nikje

    2012-07-01

    Full Text Available Degradation of integral skin polyurethane foams (ISPUFs was performed using diethylene glycol (DEG/-sorbitol/water ternary green solvent system as an effective polyurethane bond destroying agent in combination with basic catalysts, namely sodium and potassium hydroxides, sodium acetate and sodium carbonate. The effects of studied catalysts were investigated and data showed the high performances of sodium hydroxide in recycling process. After completion of the reactions, appeared split phases contained recycled polyols in the upper phase. Reactions were studied using various DEG/-sorbitol/water ratios and the recovered polyols were characterized and data compared with an authentic sample.

  18. Synthesis of ZnO based nanopowders via a non-hydrolytic sol gel technique and their densification behaviour and varistor properties

    Directory of Open Access Journals (Sweden)

    Shereef Anas

    2010-03-01

    Full Text Available Hexagonal nanocrystalline varistor grade ZnO particles with size 50 nm and the specific surface area of 28 m2/g have been prepared by non-aqueous gelation technique involving diethylene glycol and triethanolamine. The as-prepared varistor nanopowders were analyzed with the support of XRD, TG/DTA, FTIR, TMA, SEM and TEM. Varistor discs were fabricated by pressing and their densification was studied at 850, 950, 1050 and 1150°C. The evolution of varistor microstructures, extent of grain growth and the influence of microstructure on the I-V properties were explored and presented.

  19. Destruction of contaminated metallic sodium wastes by reaction on alcohol and hydrolysis

    International Nuclear Information System (INIS)

    Brault, Auguste; Bruneau, Christian; Chevalier, Gerard; Kerfanto, Michel.

    1977-02-01

    The reactions of metallic sodium with organic compounds have been reviewed in the light of the problem. An experimental investigation is then described. It shows that metallic sodium can be changed into an alcoholate, then into a soda aqueous solution with conditions allowing to master the reaction velocity. Sodium reacts on the chosen alcohol, monoethyl ether diethylene glycol in the presence of xylene. The alcoholate thus formed is hydrolysed on removal of xylene by distillation. The alcohol set free is separated from soda aqueous phase by addition of an organic solvent and decantation. The alcohol and the solvents are regenerated and recycled [fr

  20. Hydrophilic Pt nanoflowers: synthesis, crystallographic analysis and catalytic performance.

    Science.gov (United States)

    Mourdikoudis, Stefanos; Altantzis, Thomas; Liz-Marzán, Luis M; Bals, Sara; Pastoriza-Santos, Isabel; Pérez-Juste, Jorge

    2016-05-21

    Water-soluble Pt nanoflowers (NFs) were prepared by diethylene glycol-mediated reduction of Pt acetylacetonate (Pt(acac) 2 ) in the presence of polyethylenimine. Advanced electron microscopy analysis showed that the NFs consist of multiple branches with a truncated cubic morphology and different crystallographic orientations. We demonstrate that the nature of the solvent strongly influences the resulting morphology. The catalytic performance of the Pt NFs in 4-nitrophenol reduction was found to be superior to that of other nanoparticle-based catalysts. Additionally, the Pt NFs display good catalytic reusability with no loss of activity after five consecutive cycles.

  1. Excess Molar Volumes and Viscosities for Binary Mixtures of 1-Alkoxypropan-2-ols with 1-Butanol,and 2-Butanol at 298.15 K and Atmospheric Pressure

    Institute of Scientific and Technical Information of China (English)

    PAL Amalendu; GABA Rekha

    2007-01-01

    Excess molar volumes VEm and kinematic viscosities v have been measured as a function of composition for binary mixtures of propylene glycol monomethyl ether (1-methoxy-2-propanol),MeOCH2CH(OH)Me,propylene glycol monoethyl ether (1-ethoxy-2-propanol), EtOCH2CH(OH)Me,propylene glycol monopropyl ether (1-propoxy-2-propanol), PrOCH2CH(OH)Me, propylene glycol monobutyl ether (1-butoxy-2-propanol),BuOCH2CH(OH)Me,and propylene glycol tert-butyl ether (1-tert-butoxy-2-propanol),t-BuOCH2CH(OH)Me with 1-butanol,and 2-butanol,at 298.15 K and atmospheric pressure.The excess molar volumes are negative across the entire range of composition for all the systems with 1-butanol,and positive for the systems 2-butanol+1-methoxy-2-propanol,and +1-propoxy-2-propanol,negative for the systems 2-butanol+1-butoxy-2-propanol,and change sign for the systems 2-butanol+1-ethoxy-2-propanol,and +1-tert-butoxy-2-propanol.From the experimental data,the deviation in dynamic viscosity η from Σxiηi has been calculated.Both excess molar volumes and viscosity deviations have been correlated using a Redlich-Kister type polynomial equation by the method of least-squares for the estimation of the binary coefficients and the standard errors.

  2. Literature Review On Impact Of Glycolate On The 2H Evaporator And The Effluent Treatment Facility

    International Nuclear Information System (INIS)

    Adu-Wusu, K.

    2012-01-01

    Glycolic acid (GA) is being studied as an alternate reductant in the Defense Waste Processing Facility (DWPF) feed preparation process. It will either be a total or partial replacement for the formic acid that is currently used. A literature review has been conducted on the impact of glycolate on two post-DWPF downstream systems - the 2H Evaporator system and the Effluent Treatment Facility (ETF). The DWPF recycle stream serves as a portion of the feed to the 2H Evaporator. Glycolate enters the evaporator system from the glycolate in the recycle stream. The overhead (i.e., condensed phase) from the 2H Evaporator serves as a portion of the feed to the ETF. The literature search revealed that virtually no impact is anticipated for the 2H Evaporator. Glycolate may help reduce scale formation in the evaporator due to its high complexing ability. The drawback of the solubilizing ability is the potential impact on the criticality analysis of the 2H Evaporator system. It is recommended that at least a theoretical evaluation to confirm the finding that no self-propagating violent reactions with nitrate/nitrites will occur should be performed. Similarly, identification of sources of ignition relevant to glycolate and/or update of the composite flammability analysis to reflect the effects from the glycolate additions for the 2H Evaporator system are in order. An evaluation of the 2H Evaporator criticality analysis is also needed. A determination of the amount or fraction of the glycolate in the evaporator overhead is critical to more accurately assess its impact on the ETF. Hence, use of predictive models like OLI Environmental Simulation Package Software (OLI/ESP) and/or testing are recommended for the determination of the glycolate concentration in the overhead. The impact on the ETF depends on the concentration of glycolate in the ETF feed. The impact is classified as minor for feed glycolate concentrations (le) 33 mg/L or 0.44 mM. The ETF unit operations that will have

  3. LITERATURE REVIEW ON IMPACT OF GLYCOLATE ON THE 2H EVAPORATOR AND THE EFFLUENT TREATMENT FACILITY

    Energy Technology Data Exchange (ETDEWEB)

    Adu-Wusu, K.

    2012-05-10

    Glycolic acid (GA) is being studied as an alternate reductant in the Defense Waste Processing Facility (DWPF) feed preparation process. It will either be a total or partial replacement for the formic acid that is currently used. A literature review has been conducted on the impact of glycolate on two post-DWPF downstream systems - the 2H Evaporator system and the Effluent Treatment Facility (ETF). The DWPF recycle stream serves as a portion of the feed to the 2H Evaporator. Glycolate enters the evaporator system from the glycolate in the recycle stream. The overhead (i.e., condensed phase) from the 2H Evaporator serves as a portion of the feed to the ETF. The literature search revealed that virtually no impact is anticipated for the 2H Evaporator. Glycolate may help reduce scale formation in the evaporator due to its high complexing ability. The drawback of the solubilizing ability is the potential impact on the criticality analysis of the 2H Evaporator system. It is recommended that at least a theoretical evaluation to confirm the finding that no self-propagating violent reactions with nitrate/nitrites will occur should be performed. Similarly, identification of sources of ignition relevant to glycolate and/or update of the composite flammability analysis to reflect the effects from the glycolate additions for the 2H Evaporator system are in order. An evaluation of the 2H Evaporator criticality analysis is also needed. A determination of the amount or fraction of the glycolate in the evaporator overhead is critical to more accurately assess its impact on the ETF. Hence, use of predictive models like OLI Environmental Simulation Package Software (OLI/ESP) and/or testing are recommended for the determination of the glycolate concentration in the overhead. The impact on the ETF depends on the concentration of glycolate in the ETF feed. The impact is classified as minor for feed glycolate concentrations {le} 33 mg/L or 0.44 mM. The ETF unit operations that will have

  4. Damage and recovery of skin barrier function after glycolic acid chemical peeling and crystal microdermabrasion.

    Science.gov (United States)

    Song, Ji Youn; Kang, Hyun A; Kim, Mi-Yeon; Park, Young Min; Kim, Hyung Ok

    2004-03-01

    Superficial chemical peeling and microdermabrasion have become increasingly popular methods for producing facial rejuvenation. However, there are few studies reporting the skin barrier function changes after these procedures. To evaluate objectively the degree of damage visually and the time needed for the skin barrier function to recover after glycolic acid peeling and aluminum oxide crystal microdermabrasion using noninvasive bioengineering methods. Superficial chemical peeling using 30%, 50%, and 70% glycolic acid and aluminum oxide crystal microdermabrasion were used on the volar forearm of 13 healthy women. The skin response was measured by a visual observation and using an evaporimeter, corneometer, and colorimeter before and after peeling at set time intervals. Both glycolic acid peeling and aluminum oxide crystal microdermabrasion induced significant damage to the skin barrier function immediately after the procedure, and the degree of damage was less severe after the aluminum oxide crystal microdermabrasion compared with glycolic acid peeling. The damaged skin barrier function had recovered within 24 hours after both procedures. The degree of erythema induction was less severe after the aluminum oxide crystal microdermabrasion compared with the glycolic acid peeling procedure. The degree of erythema induced after the glycolic acid peeling procedure was not proportional to the peeling solution concentration used. The erythema subsided within 1 day after the aluminum oxide crystal microdermabrasion procedure and within 4 days after the glycolic acid peeling procedure. These results suggest that the skin barrier function is damaged after the glycolic acid peeling and aluminum oxide crystal microdermabrasion procedure but recovers within 1 to 4 days. Therefore, repeating the superficial peeling procedure at 2-week intervals will allow sufficient time for the damaged skin to recover its barrier function.

  5. Instrument for benzene and toluene emission measurements of glycol regenerators

    International Nuclear Information System (INIS)

    Hanyecz, Veronika; Szabó, Gábor; Mohácsi, Árpád; Puskás, Sándor; Vágó, Árpád

    2013-01-01

    We introduce an in-field and in-explosive atmosphere useable instrument, which can measure the benzene and toluene concentration in two gas and two glycol samples produced by natural gas dehydration units. It is a two-phase, on-line gas chromatograph with a photoacoustic spectroscopy based detector. The time resolution is 10 min per cycle and the minimum detectable concentrations are 2 mg m −3 for benzene, 3 mg m −3 for toluene in natural gas, and 5 g m −3 for benzene and 6 g m −3 for toluene in glycol. Test measurements were carried out at a dehydration plant belonging to MOL Hungarian Oil and Gas Company. Benzene and toluene emissions of gas dehydration unit are calculated from the measured values based on mass balance of a glycol regenerator. The relationship between the outdoor temperature and the measured concentration was observed which is caused by temperature-dependent operation of the whole dehydration unit. Emission decreases with increase of outdoor temperature. (paper)

  6. Investigations into the use of water glycol as the hydraulic fluid in a servo system

    International Nuclear Information System (INIS)

    Cole, G.V.

    1984-07-01

    The effects of water glycol on the performance of a hydraulic system and on the life of the system components have been investigated and a guide to the design of systems using water glycol is given. The dynamic performance of the system using water-glycol was compared with that using mineral oil, then the system was endurance tested to determine its service life. (author)

  7. Maltose-neopentyl glycol (MNG) amphiphiles for solubilization, stabilization and crystallization of membrane proteins

    DEFF Research Database (Denmark)

    Chae, Pil Seok; Rasmussen, Søren G F; Rana, Rohini R

    2010-01-01

    proteins remain difficult to study owing to a lack of suitable detergents. We introduce a class of amphiphiles, each built around a central quaternary carbon atom derived from neopentyl glycol, with hydrophilic groups derived from maltose. Representatives of this maltose-neopentyl glycol (MNG) amphiphile...

  8. Ineffectiveness of a fluorometric method for identifying irradiated food base on thymine glycol

    International Nuclear Information System (INIS)

    Ewing, D.D.; Stepanik, T.M.

    1992-01-01

    At dosages used for food irradiation, some of the thymine present in the DNA of irradiated food may be converted to thymine glycol. A fluorometric assay for thymine glycol was investigated as a possible method of detecting irradiated foods based on this effect. Experiments were performed on homogenates of irradiated chicken breast meat and on DNA isolated from irradiated chicken breast meat. In both cases the assay was subject to interference from one of the reagents, o-aminobenzaldehyde, and lacked the necessary sensitivity to detect the thymine glycol produced by radiolysis of the DNA at relevant dosages

  9. Acute oxalate nephropathy caused by ethylene glycol poisoning

    Directory of Open Access Journals (Sweden)

    Jung Woong Seo

    2012-12-01

    Full Text Available Ethylene glycol (EG is a sweet-tasting, odorless organic solvent found in many agents, such as anti-freeze. EG is composed of four organic acids: glycoaldehyde, glycolic acid, glyoxylic acid and oxalic acid in vivo. These metabolites are cellular toxins that can cause cardio-pulmonary failure, life-threatening metabolic acidosis, central nervous system depression, and kidney injury. Oxalic acid is the end product of EG, which can precipitate to crystals of calcium oxalate monohydrate in the tubular lumen and has been linked to acute kidney injury. We report a case of EG-induced oxalate nephropathy, with the diagnosis confirmed by kidney biopsy, which showed acute tubular injury of the kidneys with extensive intracellular and intraluminal calcium oxalate monohydrate crystal depositions.

  10. Ethylene Glycol Adsorption and Reaction over CeOX(111) Thin Films

    Energy Technology Data Exchange (ETDEWEB)

    T Chen; D Mullins

    2011-12-31

    This study reports the interaction of ethylene glycol with well-ordered CeO{sub x}(111) thin film surfaces. Ethylene glycol initially adsorbs on fully oxidized CeO{sub 2}(111) and reduced CeO{sub 2-x}(111) through the formation of one C-O-Ce bond and then forms a second alkoxy bond after annealing. On fully oxidized CeO{sub 2}(111) both recombination of ethylene glycol and water desorption occur at low temperature leaving stable -OCH{sub 2}CH{sub 2}O- (ethylenedioxy) intermediates and oxygen vacancies on the surface. This ethylenedioxy intermediate goes through C-C bond scission to produce formate species which then react to produce CO and CO{sub 2}. The formation of water results in the reduction of the ceria. On a reduced CeO{sub 2-x}(111) surface the reaction selectivity shifts toward a dehydration process. The ethylenedioxy intermediate decomposes by breaking a C-O bond and converts into an enolate species. Similar to the reaction of acetaldehyde on reduced CeO{sub 2-x}(111), the enolate reacts to produce acetaldehyde, acetylene, and ethylene. The loss of O from ethylene glycol leads to a small amount of oxidation of the reduced ceria.

  11. First report of suspected ethylene glycol poisoning in 2 dogs in South Africa : clinical communication

    Directory of Open Access Journals (Sweden)

    N. Keller

    2005-06-01

    Full Text Available Ethylene glycol (anti-freeze toxicity is a serious emergency in both veterinary and human medicine. Ethylene glycol (E/G is the active anti-freeze principle in radiator water additives. It is odourless, colourless and has a sweet taste. As little as 5 mℓ or 20 mℓ is sufficient to kill a cat or a dog, respectively. Ethylene glycol is rapidly absorbed and metabolised in the liver to oxalate, which is deposited as calcium oxalate in the kidneys causing irreversible damage. This report describes 2 dogs that were suspected to have ingested ethylene glycol. The report contains a description of the 3 stages of ethylene glycol toxicity as well as a short discussion of the treatment. Public awareness about the dangers of anti-freeze will help in limiting exposure of pets and humans to this potentially fatal toxin. Veterinarians need to be aware of anti-freeze toxicity as delayed recognition and treatment will lead to the death of the patient.

  12. Synthesis of Monodispersed Tantalum(V) oxide Nanospheres by an Ethylene Glycol Mediated Route

    Science.gov (United States)

    Tantalum(V) oxide (Ta2O5) nanospheres have been synthesized by a very simple ethylene glycol mediated route. The two-step process involves the formation of glycolate nanoparticles and their subsequent hydrolysis and calcination to generate the final Ta2O5 nanospheres. The synthes...

  13. Simulation of ethanol extractive distillation with mixed glycols as separating agent

    OpenAIRE

    Gil, I. D.; García, L. C.; Rodríguez, G.

    2014-01-01

    Extractive distillation is an alternative for ethanol dehydration processes that has been shown to be more effective than azeotropic distillation and, in close proximity, to be very competitive against the process that uses adsorption with molecular sieves. Glycols have been shown to be the most effective solvents in extractive distillation, mainly ethylene glycol and glycerol. In this work, an extractive distillation column was simulated with the Aspen Plus software platform, using the RadFr...

  14. 40 CFR 721.6980 - Dimer acids, polymer with polyalkylene glycol, bisphenol A-diglycidyl ether, and alky-lenepolyols...

    Science.gov (United States)

    2010-07-01

    ... reporting. (1) The chemical substance dimer acids, polymer with polyalkylene glycol, bisphenol A-diglycidyl... glycol, bisphenol A-diglycidyl ether, and alky-lenepolyols polyglycidyl ethers (generic name). 721.6980... Substances § 721.6980 Dimer acids, polymer with polyalkylene glycol, bisphenol A-diglycidyl ether, and alky...

  15. The beneficial effect of cynodon dactylon fractions on ethylene glycol-induced kidney calculi in rats.

    Science.gov (United States)

    Khajavi Rad, Abolfazl; Hadjzadeh, Mousa-Al-Reza; Rajaei, Ziba; Mohammadian, Nema; Valiollahi, Saleh; Sonei, Mehdi

    2011-01-01

    To assess the beneficial effect of different fractions of Cynodon dactylon (C. dactylon) on ethylene glycol-induced kidney calculi in rats. Male Wistar rats were randomly divided into control, ethylene glycol, curative, and preventive groups. The control group received tap drinking water for 35 days. Ethylene glycol, curative, and preventive groups received 1% ethylene glycol for induction of calcium oxalate (CaOx) calculus formation. Preventive and curative subjects also received different fractions of C. dactylon extract in drinking water at 12.8 mg/kg, since day 0 and day 14, respectively. After 35 days, the kidneys were removed and examined for histopathological findings and counting the CaOx deposits in 50 microscopic fields. In curative protocol, treatment of rats with C. dactylon N-butanol fraction and N-butanol phase remnant significantly reduced the number of the kidney CaOx deposits compared to ethylene glycol group. In preventive protocol, treatment of rats with C. dactylon ethyl acetate fraction significantly decreased the number of CaOx deposits compared to ethylene glycol group. Fractions of C. dactylon showed a beneficial effect on preventing and eliminating CaOx deposition in the rat kidney. These results provide a scientific rational for preventive and treatment roles of C. dactylon in human kidney stone disease.

  16. Organics Characterization Of DWPF Alternative Reductant Simulants, Glycolic Acid, And Antifoam 747

    International Nuclear Information System (INIS)

    White, T. L.; Wiedenman, B. J.; Lambert, D. P.; Crump, S. L.; Fondeur, F. F.; Papathanassiu, A. E.; Kot, W. K.; Pegg, I. L.

    2013-01-01

    The present study examines the fate of glycolic acid and other organics added in the Chemical Processing Cell (CPC) of the Defense Waste Processing Facility (DWPF) as part of the glycolic alternate flowsheet. Adoption of this flowsheet is expected to provide certain benefits in terms of a reduction in the processing time, a decrease in hydrogen generation, simplification of chemical storage and handling issues, and an improvement in the processing characteristics of the waste stream including an increase in the amount of nitrate allowed in the CPC process. Understanding the fate of organics in this flowsheet is imperative because tank farm waste processed in the CPC is eventually immobilized by vitrification; thus, the type and amount of organics present in the melter feed may affect optimal melt processing and the quality of the final glass product as well as alter flammability calculations on the DWPF melter off gas. To evaluate the fate of the organic compounds added as the part of the glycolic flowsheet, mainly glycolic acid and antifoam 747, samples of simulated waste that was processed using the DWPF CPC protocol for tank farm sludge feed were generated and analyzed for organic compounds using a variety of analytical techniques at the Savannah River National Laboratory (SRNL). These techniques included Ion Chromatography (IC), Gas Chromatography-Mass Spectrometry (GC-MS), Inductively Coupled Plasma-Atomic Emission Spectroscopy (ICP-AES), and Nuclear Magnetic Resonance (NMR) Spectroscopy. A set of samples were also sent to the Catholic University of America Vitreous State Laboratory (VSL) for analysis by NMR Spectroscopy at the University of Maryland, College Park. Analytical methods developed and executed at SRNL collectively showed that glycolic acid was the most prevalent organic compound in the supernatants of Slurry Mix Evaporator (SME) products examined. Furthermore, the studies suggested that commercially available glycolic acid contained minor amounts

  17. Organics Characterization Of DWPF Alternative Reductant Simulants, Glycolic Acid, And Antifoam 747

    Energy Technology Data Exchange (ETDEWEB)

    White, T. L. [Savannah River Site (SRS), Aiken, SC (United States); Wiedenman, B. J. [Savannah River Site (SRS), Aiken, SC (United States); Lambert, D. P. [Savannah River Site (SRS), Aiken, SC (United States); Crump, S. L. [Savannah River Site (SRS), Aiken, SC (United States); Fondeur, F. F. [Savannah River Site (SRS), Aiken, SC (United States); Papathanassiu, A. E. [Catholic University of America Vitreous State Laboratory, Washington, DC (United States); Kot, W. K. [Catholic University of America Vitreous State Laboratory, Washington, DC (United States); Pegg, I. L. [Catholic University of America Vitreous State Laboratory, Washington, DC (United States)

    2013-10-01

    The present study examines the fate of glycolic acid and other organics added in the Chemical Processing Cell (CPC) of the Defense Waste Processing Facility (DWPF) as part of the glycolic alternate flowsheet. Adoption of this flowsheet is expected to provide certain benefits in terms of a reduction in the processing time, a decrease in hydrogen generation, simplification of chemical storage and handling issues, and an improvement in the processing characteristics of the waste stream including an increase in the amount of nitrate allowed in the CPC process. Understanding the fate of organics in this flowsheet is imperative because tank farm waste processed in the CPC is eventually immobilized by vitrification; thus, the type and amount of organics present in the melter feed may affect optimal melt processing and the quality of the final glass product as well as alter flammability calculations on the DWPF melter off gas. To evaluate the fate of the organic compounds added as the part of the glycolic flowsheet, mainly glycolic acid and antifoam 747, samples of simulated waste that was processed using the DWPF CPC protocol for tank farm sludge feed were generated and analyzed for organic compounds using a variety of analytical techniques at the Savannah River National Laboratory (SRNL). These techniques included Ion Chromatography (IC), Gas Chromatography-Mass Spectrometry (GC-MS), Inductively Coupled Plasma-Atomic Emission Spectroscopy (ICP-AES), and Nuclear Magnetic Resonance (NMR) Spectroscopy. A set of samples were also sent to the Catholic University of America Vitreous State Laboratory (VSL) for analysis by NMR Spectroscopy at the University of Maryland, College Park. Analytical methods developed and executed at SRNL collectively showed that glycolic acid was the most prevalent organic compound in the supernatants of Slurry Mix Evaporator (SME) products examined. Furthermore, the studies suggested that commercially available glycolic acid contained minor amounts

  18. Sludge batch 9 follow-on actual-waste testing for the nitric-glycolic flowsheet

    Energy Technology Data Exchange (ETDEWEB)

    Martino, C. J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Newell, J. D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Crawford, C. L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Pareizs, J. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Williams, M. S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-03-23

    An actual-waste Sludge Batch 9 qualification run with the nitric-glycolic flowsheet (SC-18) was performed in FY16. In order to supplement the knowledge base for the nitric-glycolic flowsheet, additional testing was performed on the product slurries, condensates, and intermediate samples from run SC-18.

  19. Chemical and enzymatic stability of amino acid prodrugs containing methoxy, ethoxy and propylene glycol linkers.

    Science.gov (United States)

    Gupta, Deepak; Gupta, Sheeba Varghese; Lee, Kyung-Dall; Amidon, Gordon L

    2009-01-01

    We evaluated the chemical and enzymatic stabilities of prodrugs containing methoxy, ethoxy and propylene glycol linkers in order to find a suitable linker for prodrugs of carboxylic acids with amino acids. l-Valine and l-phenylalanine prodrugs of model compounds (benzoic acid and phenyl acetic acid) containing methoxy, ethoxy and propylene glycol linkers were synthesized. The hydrolysis rate profile of each compound was studied at physiologically relevant pHs (1.2, 4, 6 and 7.4). Enzymatic hydrolysis of propylene glycol containing compounds was studied using Caco-2 homogenate as well as purified enzyme valacyclovirase. It was observed that the stability of the prodrugs increases with the linker length (propyl > ethyl > methyl). The model prodrugs were stable at acidic pH as compared to basic pH. It was observed that the prodrug with the aliphatic amino acid promoiety was more stable compared to its aromatic counterpart. The comparison between benzyl and the phenyl model compounds revealed that the amino acid side chain is significant in determining the stability of the prodrug whereas the benzyl or phenyl carboxylic acid had little or no effect on the stability. The enzymatic activation studies of propylene glycol linker prodrug in the presence of valacyclovirase and cell homogenate showed faster generation of the parent drug at pH 7.4. The half-life of prodrugs at pH 7.4 was more than 12 h, whereas in the presence of cell homogenate the half-lives were less than 1 h. Hydrolysis by Caco-2 homogenate generated the parent compound in two steps, where the prodrug was first converted to the intermediate, propylene glycol benzoate, which was then converted to the parent compound (benzoic acid). Enzymatic hydrolysis of propylene glycol containing prodrugs by valacyclovirase showed hydrolysis of the amino acid ester part to generate the propylene glycol ester of model compound (propylene glycol benzoate) as the major product. The amino acid prodrugs containing methoxy

  20. The effectiveness of polyethylene glycol (PEG) and polyvinyl ...

    African Journals Online (AJOL)

    mahlos

    2012-05-29

    May 29, 2012 ... Key words: Acetone, tannin, polyethylene glycol (PEG), polyvinyl polypyrrolidone (PVPP). ... hydrolysable tannins may occur in the same plant. ..... Rev. Food Sci. Nutr., 38: 421-464. Cornell. (2000). Tannins: Chemical analysis.

  1. 40 CFR 63.63 - Deletion of ethylene glycol monobutyl ether from the list of hazardous air pollutants.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 9 2010-07-01 2010-07-01 false Deletion of ethylene glycol monobutyl... Quantity Designations, Source Category List § 63.63 Deletion of ethylene glycol monobutyl ether from the list of hazardous air pollutants. The substance ethylene glycol monobutyl ether (EGBE,2-Butoxyethanol...

  2. Polyethylene Glycol 3350 With Electrolytes Versus Polyethylene Glycol 4000 for Constipation: A Randomized, Controlled Trial

    OpenAIRE

    Bekkali, Noor L.H.; Hoekman, Daniël R.; Liem, Olivia; Bongers, Marloes E.J.; van Wijk, Michiel P.; Zegers, Bas; Pelleboer, Rolf A.; Verwijs, Wim; Koot, Bart G.P.; Voropaiev, Maksym; Benninga, Marc A.

    2017-01-01

    ABSTRACT Objective: The long-term efficacy and safety of polyethylene glycol (PEG) in constipated children are unknown, and a head-to-head comparison of the different PEG formulations is lacking. We aimed to investigate noninferiority of PEG3350 with electrolytes (PEG3350 + E) compared to PEG4000 without electrolytes (PEG4000). Methods: In this double-blind trial, children aged 0.5 to 16 years with constipation, defined as a defecation frequency of

  3. Runinal and Intermediary Metabolism of Propylene Glycol in Lactating Holstein Cows

    DEFF Research Database (Denmark)

    Kristensen, Niels Bastian; Raun, Birgitte Marie Løvendahl

    2007-01-01

    Four lactating Holstein cows fitted with ruminal cannulas and permanent indwelling catheters in the mesenteric artery, mesenteric vein, hepatic portal vein, and hepatic vein were used in a cross-over design to study the metabolism of propylene glycol (PG).......Four lactating Holstein cows fitted with ruminal cannulas and permanent indwelling catheters in the mesenteric artery, mesenteric vein, hepatic portal vein, and hepatic vein were used in a cross-over design to study the metabolism of propylene glycol (PG)....

  4. Reduction of friction stress of ethylene glycol by attached hydrogen ions

    Science.gov (United States)

    Li, Jinjin; Zhang, Chenhui; Deng, Mingming; Luo, Jianbin

    2014-01-01

    In the present work, it is shown that the friction stress of ethylene glycol can decrease by an order of magnitude to achieve superlubricity if there are hydrogen ions attached on the friction surfaces. An ultra-low friction coefficient (μ = 0.004) of ethylene glycol between Si3N4 and SiO2 can be obtained with the effect of hydrogen ions. Experimental result indicates that the hydrogen ions adsorbed on the friction surfaces forming a hydration layer and the ethylene glycol in the contact region forming an elastohydrodynamic film are the two indispensable factors for the reduction of friction stress. The mechanism of superlubricity is attributed to the extremely low shear strength of formation of elastohydrodynamic film on the hydration layer. This finding may introduce a new approach to reduce friction coefficient of liquid by attaching hydrogen ions on friction surfaces. PMID:25428584

  5. Microscopic Fuel Particles Produced by Self-Assembly of Actinide Nanoclusters on Carbon Nanomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Na, Chongzheng [Univ. of Notre Dame, IN (United States)

    2016-10-17

    Many consider further development of nuclear power to be essential for sustained development of society; however, the fuel forms currently used are expensive to recycle. In this project, we sought to create the knowledge and knowhow that are needed to produce nanocomposite materials by directly depositing uranium nanoclusters on networks of carbon-­ based nanomaterials. The objectives of the proposed work were to (1) determine the control of uranium nanocluster surface chemistry on nanocomposite formation, (2) determine the control of carbon nanomaterial surface chemistry on nanocomposite formation, and (3) develop protocols for synthesizing uranium-­carbon nanomaterials. After examining a wide variety of synthetic methods, we show that synthesizing graphene-­supported UO2 nanocrystals in polar ethylene glycol compounds by polyol reduction under boiling reflux can enable the use of an inexpensive graphene precursor graphene oxide in the production of uranium-carbon nanocomposites in a one-­pot process. We further show that triethylene glycol is the most suitable solvent for producing nanometer-­sized UO2 crystals compared to monoethylene glycol, diethylene glycol, and polyethylene glycol. Graphene-­supported UO2 nanocrystals synthesized with triethylene glycol show evidence of heteroepitaxy, which can be beneficial for facilitating heat transfer in nuclear fuel particles. Furthermore, we show that graphene-supported UO2 nanocrystals synthesized by polyol reduction can be readily stored in alcohols, preventing oxidation from the prevalent oxygen in air. Together, these methods provide a facile approach for preparing and storing graphene-supported UO nanocrystals for further investigation and development under ambient conditions.

  6. Prediction and validation of the duration of hemodialysis sessions for the treatment of acute ethylene glycol poisoning.

    Science.gov (United States)

    Iliuta, Ioan-Andrei; Lachance, Philippe; Ghannoum, Marc; Bégin, Yannick; Mac-Way, Fabrice; Desmeules, Simon; De Serres, Sacha A; Julien, Anne-Sophie; Douville, Pierre; Agharazii, Mohsen

    2017-08-01

    The duration of hemodialysis (HD) sessions for the treatment of acute ethylene glycol poisoning is dependent on concentration, the operational parameters used during HD, and the presence and severity of metabolic acidosis. Ethylene glycol assays are not readily available, potentially leading to undue extension or premature termination of HD. We report a prediction model for the duration of high-efficiency HD sessions based retrospectively on a cohort study of 26 cases of acute ethylene glycol poisoning in 24 individuals treated by alcohol dehydrogenase competitive inhibitors, cofactors and HD. Two patients required HD for more than 14 days, and two died. In 19 cases, the mean ethylene glycol elimination half-life during high-efficiency HD was 165 minutes (95% confidence interval of 151-180 minutes). In a training set of 12 patients with acute ethylene glycol poisoning, using the 90th percentile half-life (195 minutes) and a target ethylene glycol concentration of 2 mmol/l (12.4 mg/dl) allowed all cases to reach a safe ethylene glycol under 3 mmol/l (18.6 mg/dl). The prediction model was then validated in a set of seven acute ethylene glycol poisonings. Thus, the HD session time in hours can be estimated using 4.7 x (Ln [the initial ethylene glycol concentration (mmol/l)/2]), provided that metabolic acidosis is corrected. Copyright © 2017 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  7. 78 FR 76567 - Tall Oil, Polymer With Polyethylene Glycol and Succinic Anhydride Monopolyisobutylene Derivs...

    Science.gov (United States)

    2013-12-18

    ..., Polymer With Polyethylene Glycol and Succinic Anhydride Monopolyisobutylene Derivs.; Tolerance Exemption... an exemption from the requirement of a tolerance for residues of tall oil, polymer with polyethylene..., polymer with polyethylene glycol and succinic anhydride monopolyisobutylene derivs. on food or feed...

  8. Poly(ethylene glycol) interactions with proteins

    Czech Academy of Sciences Publication Activity Database

    Hašek, Jindřich

    2006-01-01

    Roč. 2, č. 23 (2006), s. 613-618 ISSN 0044-2968. [European Powder Diffraction Conference /9./. Prague, 02.09.2004-05.09.2004] R&D Projects: GA ČR(CZ) GA204/02/0843 Institutional research plan: CEZ:AV0Z40500505 Keywords : poly(ethylene glycol) * PEO * protein-polymer interaction Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.897, year: 2006

  9. Polyurethane Production from Waste Bale Fibers

    Directory of Open Access Journals (Sweden)

    İbrahim BİLİCİ

    2017-12-01

    Full Text Available Nowadays, the methods of eliminating the pollution from wastes of the materials produced as much as the production methods are important. This requires efficiently use of sources economical and ecologically. Polyester based polymers, which is one of the most important consumed plastic materials in the world, have lots of number of recycling methods. Basically it is called chemical and physical recycling. Chemical recycle methods include glycolysis, aminolysis, methanolysis, hydrolysis and etc.. In this study aromatic polyester polyols produced from bale fiber wastes via glycolysis method. Zinc Acetate used as a catalysts and diethylene glycol used for the glycolysis reaction and moiety of glycol investigated as an experimental parameter. Polyurethane material produced via obtained polyol and TDI (Toluene di Isocyanate reaction. Obtained polyurethane material investigated via FTIR and TGA and compared with the commercial polyurethane. As a result, it has been decided that glycolysis is usable and applicable method for the waste bale fibers.

  10. Synthesis of highly-ordered TiO2 nanotube arrays with tunable sizes

    Science.gov (United States)

    Wang, Xian; Zha, Chenyang; Ji, Cheng; Zhang, Xiaoyan; Shen, Liming; Wang, Yifeng; Gupta, Arunava; Yoriya, Sorachon; Bao, Ningzhong

    2014-09-01

    Vertically-oriented one-dimensional TiO2 nanotube (TNT) arrays have been fabricated by anodic oxidation using different electrolyte solvents, including ethylene glycol (EG), diethylene glycol (DEG), and dimethyl sulfoxide (DMSO), in the presence of hydrofluoric acid (HF) or ammonium fluoride (NH4F). The influence of synthetic conditions, including the nature of the electrolyte and anodization voltage, on nanotube microstructure has been systematically investigated. Highly-ordered TNTs with tube length of ˜0.5-26.7 μm, inner diameter of ˜13-201 nm, and outer diameter of ˜28-250 nm have been obtained. The conversion of as-prepared TNT arrays from amorphous phase to crystalline structure has been achieved by a post-synthetic annealing at 500 °C for 3 h in oxygen ambient. The TNT arrays with tunable sizes and structures are attractive for use as electrode materials in fabrication of thin film solar cells and highly active photocatalysts.

  11. Synthesis of highly-ordered TiO2 nanotube arrays with tunable sizes

    International Nuclear Information System (INIS)

    Wang, Xian; Zha, Chenyang; Ji, Cheng; Zhang, Xiaoyan; Shen, Liming; Wang, Yifeng; Bao, Ningzhong; Gupta, Arunava; Yoriya, Sorachon

    2014-01-01

    Vertically-oriented one-dimensional TiO 2 nanotube (TNT) arrays have been fabricated by anodic oxidation using different electrolyte solvents, including ethylene glycol (EG), diethylene glycol (DEG), and dimethyl sulfoxide (DMSO), in the presence of hydrofluoric acid (HF) or ammonium fluoride (NH 4 F). The influence of synthetic conditions, including the nature of the electrolyte and anodization voltage, on nanotube microstructure has been systematically investigated. Highly-ordered TNTs with tube length of ∼0.5–26.7 μm, inner diameter of ∼13–201 nm, and outer diameter of ∼28–250 nm have been obtained. The conversion of as-prepared TNT arrays from amorphous phase to crystalline structure has been achieved by a post-synthetic annealing at 500 °C for 3 h in oxygen ambient. The TNT arrays with tunable sizes and structures are attractive for use as electrode materials in fabrication of thin film solar cells and highly active photocatalysts. (paper)

  12. Hemodiafiltration efficacy in treatment of methanol and ethylene glycol poisoning in a 2-year-old girl.

    Science.gov (United States)

    Szmigielska, Agnieszka; Szymanik-Grzelak, Hanna; Kuźma-Mroczkowska, Elżbieta; Roszkowska-Blaim, Maria

    2015-01-01

    Every year about 2.4 million people in USA are exposed to toxic substances. Many of them are children below 6 years of age. Majority of poisonings in children are incidental and related to household products including for example drugs, cleaning products or antifreeze products. Antifreeze solutions contain ethylene glycol and methanol. Treatment of these toxic substances involves ethanol administration, fomepizole, hemodialysis and correction of metabolic acidosis. The aim of the study was to check the efficacy of continuous venovenous hemodiagiltration in intoxication with ethylene glycol and methanol. One year and 7 months old girl after intoxication with ethylene glycol and methanol was treated with continuous venovenous hemodiafiltration instead of hemodialysis because of technical problems (circulatory instability). Intravenous ethanol infusion with hemodialtration resulted in rapid elimination of methanol from the body and significantly reduced blood ethylene glycol level. Continuous venovenous hemodiafiltration can be helpful in treatment of ethylene glycol and methanol intoxication.

  13. Electrochemical corrosion behavior of AZ91D alloy in ethylene glycol

    International Nuclear Information System (INIS)

    Fekry, A.M.; Fatayerji, M.Z.

    2009-01-01

    The effect of concentration on the corrosion behavior of Mg-based alloy AZ91D was investigated in ethylene glycol-water solutions using electrochemical techniques i.e. potentiodynamic polarization, electrochemical impedance measurements (EIS) and surface examination via scanning electron microscope (SEM) technique. This can provide a basis for developing new coolants for magnesium alloy engine blocks. Corrosion behavior of AZ91D alloy by coolant is important in the automotive industry. It was found that the corrosion rate of AZ91D alloy decreased with increasing concentration of ethylene glycol. For AZ91D alloy in chloride >0.05 M or fluoride 0.05 M for fluoride containing ethylene glycol solution, some inhibition effect has been observed. The corrosion of AZ91D alloy in the blank can be effectively inhibited by addition of 0.05 mM paracetamol that reacts with AZ91D alloy and forms a protective film on the surface at this concentration as confirmed by surface examination.

  14. GLYCOL DEHYDRATOR BTEX AND VOC EMISSIONS TESTING RESULTS AT TWO UNITS IN TEXAS AND LOUISIANA VOL. II: APPENDICES

    Science.gov (United States)

    The report gives results of the collection of emissions test data st two triethylene glycol units to provide data for the comparison to GRI-GLYCalc, a computer program developed to estimate emissions from glycol dehydrators. [NOTE: Glycol dehydrators are used in the natural gas i...

  15. Stabilization of Polyethylene Glycol in Archaeological Wood

    DEFF Research Database (Denmark)

    Mortensen, Martin Nordvig

    Projektet har fokuseret på polythylen glycol (PEG) stabilitet og nedbrydning i træ fra konserverede skibsvrag som Vasa (Stockholm) og Skuldelev skibene. En række avancerede analyseteknikker er anvendt til at undersøge indtrængningsdybden for forskellige molekylstørrelser PEG i ikke-nedbrudt træ f...

  16. Outcome of patients in acute poisoning with ethylene glycol - factors which may have influence on evolution

    OpenAIRE

    Tanasescu, A; Macovei, RA; Tudosie, MS

    2014-01-01

    Introduction. Intoxication with ethylene glycol occurs as a result of intentional ingestion in suicide attempts or accidentally. Clinical ethylene glycol poisoning is not specific and occurs in many poisoning cases therefore the diagnosis is difficult. Early diagnostic and establishment of therapy are very important for a favorable evolution. The mortality rate of ethylene glycol intoxication ranges between 1 and 22% depending on the amount of alcohol ingestion and the time period between alc...

  17. Correlation between product purity and process parameters for the synthesis of Cu2ZnSnS4 nanoparticles using microwave irradiation

    Science.gov (United States)

    Ahmad, R.; Nicholson, K. S.; Nawaz, Q.; Peukert, W.; Distaso, M.

    2017-07-01

    Kesterites (CZT(S,Se)4) emerged as a favourable photovoltaic material, leading to solar cell efficiencies as high as 12.7%. The development of sustainable roll-to-roll printing processes that make use of Cu2ZnSnS4 (CZTS) nanoparticle inks requires the proper design of synthetic approaches and the understanding of the relation between process parameters and product purity. In the current paper, we developed this relationship by calculating a specific energy factor. A microwave-assisted synthetic method that operates at atmospheric pressure and makes use of eco-friendly solvents is established. Four solvents, i.e. ethylene glycol (EG), diethylene glycol (di-EG), triethylene glycol (tri-EG) and tetraethylene glycol (tet-EG) are compared and the temperature during the reaction is assessed by two different methods. In particular, two by-products have been identified, i.e. Cu2 - x S and a hexagonal phase. We show that the variation of reaction parameters such as power irradiation, type of solvent and precursor concentration influences the nanoparticles' sizes (from 12 to 6 nm) and also the temperature-time profile of reaction which, in turn, can be related to phase purity of CZTS nanoparticles. The results suggest that the product purity scales with the specific energy factor providing a useful tool to a rational design of high-quality CZTS nanoparticles.

  18. Anti-inflammatory effects of royal jelly on ethylene glycol induced renal inflammation in rats

    Directory of Open Access Journals (Sweden)

    Zeyneb Aslan

    2015-10-01

    Full Text Available ABSTRACT Objective: In this study, anti-inflammatory effects of Royal Jelly were investigated by inducing renal inflammation in rats with the use of ethylene glycol. For this purpose, the calcium oxalate urolithiasis model was obtained by feeding rats with ethylene glycol in drinking water. Materials and Methods: The rats were divided in five study groups. The 1st group was determined as the control group. The rats in the 2nd group received ethylene glycol (1% in drinking water. The rats in the 3rd group were daily fed with Royal Jelly by using oral gavage. The 4th group was determined as the preventive group and the rats were fed with ethylene glycol (1% in drinking water while receiving Royal Jelly via oral gavage. The 5th group was determined as the therapeutic group and received ethylene glycol in drinking water during the first 2 weeks of the study and Royal Jelly via oral gavage during the last 2 weeks of the study. Results: At the end of the study, proinflammatory/anti-inflammatory cytokines, TNF-α, IL-1β and IL-18 levels in blood and renal tissue samples from the rats used in the application were measured. Conclusion: The results have shown that ethylene glycol does induce inflammation and renal damage. This can cause the formation of reactive oxygen species. Royal Jelly is also considered to have anti-inflammatory effects due to its possible antiradical and antioxidative effects. It can have positive effects on both the prevention of urolithiasis and possible inflammation during the existing urolithiasis and support the medical treatment.

  19. 76 FR 38026 - Diethylene Glycol Mono Butyl Ether; Exemption From the Requirement of a Tolerance

    Science.gov (United States)

    2011-06-29

    ... in creatinine levels at >51 mg/kg/day. Confidence in this study is low because of the high... at the high dose (117 mg/m3). In addition, the selected study was more recent and one would expect... estimates are based on the highest tolerance for a given commodity from a list of high-use insecticides...

  20. Electrospinnability of poly lactic-co-glycolic acid (PLGA)

    DEFF Research Database (Denmark)

    Liu, Xiaoli; Baldursdottir, Stefania G.; Aho, Johanna

    2017-01-01

    PURPOSE: In this study, the electrospinnability of poly(lactic-co-glycolic acid) (PLGA) solutions was investigated, with a focus on understanding the influence of molecular weight of PLGA, solvent type and solvent composition on the physical properties of electrospun nanofibers. METHOD: Various s...

  1. Extraction of hafnium by 1-phenyl-3-methyl-4-benzoyl-5-pyralozone from aqueous-alcoholic solutions

    International Nuclear Information System (INIS)

    Hala, J.; Prihoda, J.

    1975-01-01

    Extraction of hafnium by 1-phenyl-3-methyl-4-benzoyl-5-pyrazolone (HL) in benzene, toluene, chloroform and tetrachloromethane from aqueous-alcoholic solutions of the formal acidity of 2M-HClO 4 was studied. Methyl, ethyl, n- and isopropyl, tert-butyl and allyl alcohol as well as ethylene glycol monomethyl ether and propylene glycol were used as organic components of the mixed aqueous-organic phase. Their presence in some cases resulted in a synergic increase in the distribution ratio of hafnium. The increase is interpreted using the results of a slope analysis and measurements of the alcohol distribution and the relative permittivity of the organic phase. It is suggested that HfL 4 molecules were solvated by alcohol molecules in the organic phase. At high alcohol concentration synergism changed into antagonism. This was caused by changes in the distribution of HL and its interaction with the alcohol in the organic phase. (author)

  2. Unwell after drinking homemade alcohol – A case of ethylene glycol poisoning

    OpenAIRE

    Laher, A.E.; Goldstein, L.N.; Wells, M.D.; Dufourq, N.; Moodley, P.

    2013-01-01

    Introduction: Delayed treatment of ethylene glycol poisoning can have catastrophic consequences that may result in death. Case report: Three young men presented to the Emergency Centre (EC) with a main complaint of feeling unwell after consuming “homemade alcohol”. A fourth person had died at home an hour earlier. Blood analysis revealed a raised anion gap metabolic acidosis as well as a raised osmolar gap in all three patients. Discussion: The clinical presentation of ethylene glycol a...

  3. Ethylene glycol and propylene glycol ethers – Reproductive and developmental toxicity

    Directory of Open Access Journals (Sweden)

    Beata Starek-Świechowicz

    2015-10-01

    Full Text Available Both ethylene and propylene glycol alkyl ethers (EGAEs and PGAEs, respectively are widely used, mainly as solvents, in industrial and household products. Some EGAEs demonstrate gonadotoxic, embriotoxic, fetotoxic and teratogenic effects in both humans and experimental animals. Due to the noxious impact of these ethers on reproduction and development of organisms EGAEs are replaced for considerably less toxic PGAEs. The data on the mechanisms of testicular, embriotoxic, fetotoxic and teratogenic effects of EGAEs are presented in this paper. Our particular attention was focused on the metabolism of some EGAEs and their organ-specific toxicities, apoptosis of spermatocytes associated with changes in the expression of various genes that code for oxidative stress factors, protein kinases and nuclear hormone receptors. Med Pr 2015;66(5:725–737

  4. GLYCOL DEHYDRATOR BTEX AND VOC EMISSIONS TESTING RESULTS AT TWO UNITS IN TEXAS AND LOUISIANA VOL. I: TECHNICAL REPORT

    Science.gov (United States)

    The report gives results of the collection of emissions tests data at two triethylene glycol units to provide data for comparison to GRI-GLYCalc, a computer program developed to estimate emissions from glycol dehydrators. (NOTE: Glycol dehydrators are used in the natural gas indu...

  5. Soft and flexible poly(ethylene glycol) nanotubes for local drug delivery.

    Science.gov (United States)

    Newland, B; Taplan, C; Pette, D; Friedrichs, J; Steinhart, M; Wang, W; Voit, B; Seib, F P; Werner, C

    2018-05-10

    Nanotubes are emerging as promising materials for healthcare applications but the selection of clinically relevant starting materials for their synthesis remains largely unexplored. Here we present, for the first time, the synthesis of poly(ethylene glycol) (PEG) based nanotubes via the photopolymerization of poly(ethylene glycol) diacrylate and other diacrylate derivatives within the pores of anodized aluminum oxide templates. Template-assisted synthesis allowed the manufacture of a diverse set of polymeric nanotubes with tunable physical characteristics including diameter (∼200-400 nm) and stiffness (405-902 kPa). PEG nanotubes were subjected to cytotoxicty assessment in cell lines and primary stem cells and showed excellent cytocompatability (IC50 > 120 μg ml-1). Nanotubes were readily drug loaded but released the majority of the drug over 5 days. Direct administration of drug loaded nanotubes to human orthotopic breast tumors substantially reduced tumor growth and metastasis and outperformed i.v. administration at the equivalent dose. Overall, this nanotube templating platform is emerging as a facile route for the manufacture of poly(ethylene glycol) nanotubes.

  6. Density and vapour pressure of mixed-solvent desiccant systems (propylene glycol or dipropylene glycol or tripropylene glycol + magnesium chloride + water)

    International Nuclear Information System (INIS)

    Chen, Shang-Yi; Soriano, Allan N.; Leron, Rhoda B.; Li, Meng-Hui

    2014-01-01

    In this present work, new experimental data for density and vapour pressure of the mixed-solvent desiccant systems containing {40 wt% glycol (propylene or dipropylene or tripropylene) + (4 or 9 or 16 wt%) magnesium chloride salt + water} were reported for temperatures up to 343.15 K at normal atmospheric condition. The density and vapour pressure data obtained are presented as a function of temperature and composition. An empirical equation was used to correlate the temperature and compositional dependence of the density values. A model based on the mean spherical approximation for aqueous electrolyte solutions incorporating the pseudo-solvent approach was used to represent the vapour pressure as a function of temperature and composition. Satisfactory results were obtained for both density and vapour pressure calculations

  7. Efficacy of polyethylene glycol 4000 on constipation of posttraumatic bedridden patients.

    Science.gov (United States)

    Zhang, Lian-yang; Yao, Yuan-zhang; Wang, Tao; Fei, Jun; Shen, Yue; Chen, Yong-hua; Zong, Zhao-wen

    2010-06-01

    To investigate the efficacy and safety of polyethylene glycol 4000 on adult patients with functional constipation due to posttraumatic confinement to bed. A total of 201 posttraumatic bedridden patients were studied in this prospective, open-labeled, single-group study. Polyethylene glycol 4000 was administered orally for 14 days and the dosage was adjusted according to the Bristol stool types. Demographic characteristics, disease status, treatment period and factors affecting clinical outcome, especially the concomitant medications, were recorded. After administration of polyethylene glycol 4000, 194 cases (96.52%) showed remission of constipation, including 153 (76.12%) persistent remission. The average defecation frequency increased significantly after treatment and the percentage of patients with stools of normal types (Bristol types 3-5) increased as well. Genders, ages and concomitant medications showed no significant influence on the persistent remission rate. After consecutive treatment for two weeks, patients with slight movement showed a significantly higher remission rate than those without movement (95% vs 80%). At the end of treatment, most accompanying symptoms were relieved obviously. Patients with a medical history of constipation or ever taking laxatives showed a lower remission rate. Sixty cases (29.85%) developed diarrhea during the observational period, among whom 6 (10%) withdrew from the clinical observation voluntarily at the first onset of diarrhea. Two cases suffered from abdominal pain. Polyethylene glycol 4000 has efficacy on functional constipation in posttraumatic bedridden patients. Furthermore, patients with milder symptoms, more movement in bed, and longer duration of treatment but without accompanying symptoms can achieve a higher remission rate.

  8. Toxicology of dimethyl and monomethyl derivatives of acetamide and formamide: a second update.

    Science.gov (United States)

    Kennedy, Gerald L

    2012-11-01

    formamide and their monomethyl derivatives as well as the commercially important DMAC and DMF. Since a large portion of the newer information deals with effects in humans and biomonitoring, these sections are presented at the start of this review.

  9. Efficacy of combination of glycolic acid peeling with topical regimen in treatment of melasma.

    Science.gov (United States)

    Chaudhary, Savita; Dayal, Surabhi

    2013-10-01

    Various treatment modalities are available for management of melasma, ranging from topical and oral to chemical peeling, but none is promising alone. Very few studies are available regarding efficacy of combination of topical treatment with chemical peeling. Combination of chemical peeling and topical regimen can be a good treatment modality in the management of this recalcitrant disorder. To assess the efficacy of combination of topical regimen (2% hydroquinone, 1% hydrocortisone and 0.05% tretinoin) with serial glycolic acid peeling in the treatment of melasma in Indian patients. Forty Indian patients of moderate to severe epidermal variety melasma were divided into two groups of 20 each. One Group i.e. peel group received topical regimen (2% hydroquinone, 1% hydrocortisone and 0.05% tretinoin) with serial glycolic acid peeling and other group i.e. control group received topical regimen (2% hydroquinone, 1% hydrocortisone, 0.05% tretinoin). There was an overall decrease in MASI from baseline in 24 weeks of therapy in both the groups (P value peel with topical regimen showed early and greater improvement than the group which was receiving topical regimen only. This study concluded that combining topical regimen (2% hydroquinone, 1% hydrocortisone and 0.05% tretinoin) with serial glycolic acid peeling significantly enhances the therapeutic efficacy of glycolic acid peeling. The combination of glycolic acid peeling with the topical regimen is a highly effective, safe and promising therapeutic option in treatment of melasma.

  10. The synthesis of a small library of prospective growth hormone secretagogues

    Directory of Open Access Journals (Sweden)

    JELENA JOKSIMOVIC

    1999-10-01

    Full Text Available Employing tools of combinatorial chemistry, an original methodological approach has been developed and applied for the design and synthesis of a small library of peptide-like compounds, prospective growth hormone (GH secretagogues. For this purpose seven building blocks of tBoc- and Fmoc-protected amino acids was used. In this way, a small, tripeptoid library on polyethylene glycol monomethyl ether 5000 (PEG 5000 as a soluble support was obtained. The library was screened by a new, simple system, based on polyclonal rabbit antiserum raised against "GH secretagogue pharmacophore" of a known growth hormone secretagogue GHRP-6 (Hexarelin® and the most promising GH secretagogue candidate was selected.

  11. Zinc Phthalocyanine Labelled Polyethylene Glycol: Preparation, Characterization, Interaction with Bovine Serum Albumin and Near Infrared Fluorescence Imaging in Vivo

    Directory of Open Access Journals (Sweden)

    Tianjun Liu

    2012-05-01

    Full Text Available Zinc phthalocyanine labelled polyethylene glycol was prepared to track and monitor the in vivo fate of polyethylene glycol. The chemical structures were characterized by nuclear magnetic resonance and infrared spectroscopy. Their light stability and fluorescence quantum yield were evaluated by UV-Visible and fluorescence spectroscopy methods. The interaction of zinc phthalocyanine labelled polyethylene glycol with bovine serum albumin was evaluated by fluorescence titration and isothermal titration calorimetry methods. Optical imaging in vivo, organ aggregation as well as distribution of fluorescence experiments for tracking polyethylene glycol were performed with zinc phthalocyanine labelled polyethylene glycol as fluorescent agent. Results show that zinc phthalocyanine labelled polyethylene glycol has good optical stability and high emission ability in the near infrared region. Imaging results demonstrate that zinc phthalocyanine labelled polyethylene glycol can track and monitor the in vivo process by near infrared fluorescence imaging, which implies its potential in biomaterials evaluation in vivo by a real-time noninvasive method.

  12. Assessment of Palmitoyl and Sulphate Conjugated Glycol Chitosan for Development of Polymeric Micelles

    Directory of Open Access Journals (Sweden)

    Ikram Ullah Khan

    2013-06-01

    Full Text Available Introduction: Amphiphilic copolymers are capable of forming core shell-like structures at the critical micellar concentration (CMC; hence, they can serve as drug carriers. Thus, in the present work, polymeric micelles based on novel chitosan derivative were synthesized. Methods: Block copolymer of palmitoyl glycol chitosan sulfate (PGCS was prepared by grafting palmitoyl and sulfate groups serving as hydrophobic and hydrophilic fractions, respectively. Then, fourier transform infrared spectra (FTIR and spectral changes in iodine/iodide mixture were carried out. Results: FTIR studies confirmed the formation of palmitoyl glycol chitosan sulfate (PGCS and spectral changes in iodine/iodide mixture indicated CMC which lies in the range of 0.003-0.2 mg/ml. Conclusion: Therefore, our study indicated that polymeric micelles based on palmitoyl glycol chitosan sulphate could be used as a prospective carrier for water insoluble drugs.

  13. Evaluation of Hydrogel Suppositories for Delivery of 5-Aminolevulinic Acid and Hematoporphyrin Monomethyl Ether to Rectal Tumors.

    Science.gov (United States)

    Ye, Xuying; Yin, Huijuan; Lu, Yu; Zhang, Haixia; Wang, Han

    2016-10-12

    We evaluated the potential utility of hydrogels for delivery of the photosensitizing agents 5-aminolevulinic acid (ALA) and hematoporphyrin monomethyl ether (HMME) to rectal tumors. Hydrogel suppositories containing ALA or HMME were administered to the rectal cavity of BALB/c mice bearing subcutaneous tumors of SW837 rectal carcinoma cells. For comparison, ALA and HMME were also administered by three common photosensitizer delivery routes; local administration to the skin and intratumoral or intravenous injection. The concentration of ALA-induced protoporphyrin IX or HMME in the rectal wall, skin, and subcutaneous tumor was measured by fluorescence spectrophotometry, and their distribution in vertical sections of the tumor was measured using a fluorescence spectroscopy system. The concentration of ALA-induced protoporphyrin IX in the rectal wall after local administration of suppositories to the rectal cavity was 9.76-fold (1 h) and 5.8-fold (3 h) higher than in the skin after cutaneous administration. The maximal depth of ALA penetration in the tumor was ~3-6 mm at 2 h after cutaneous administration. Much lower levels of HMME were observed in the rectal wall after administration as a hydrogel suppository, and the maximal depth of tumor penetration was <2 mm after cutaneous administration. These data show that ALA more readily penetrates the mucosal barrier than the skin. Administration of ALA as an intrarectal hydrogel suppository is thus a potential delivery route for photodynamic therapy of rectal cancer.

  14. Extraction of actinide and lanthanide complexonates in two-phase aqueous system potassium carbonate-polyethylene glycol-water

    International Nuclear Information System (INIS)

    Molochnikova, N.P.; Shkinev, V.M.; Spivakov, B.Ya.; Zolotov, Yu.A.; Myasoedov, B.F.

    1988-01-01

    Extraction system on the basis of polyethylene glycol for the concentration, isolation and separation of actinides is suggested. Extraction of actinides and lanthanides in two-phase aqueous system: potassium carbonate - polyethylene glycol - water in the presence of different complexones is investigated. Trivalent actinides are extracted quantitatively by polyethylene glycol from potassium carbonate solutions in the system with xylenol orange and alizarin-complexone. Under the conditions uranium (6) and plutonium (4) are extracted into the phase, enriched by polyethylene glycol, quite insignificantly, which permits to separate them from trivalent actinides with the separation factor of 10 2 - 10 3 . For actinide and lanthanide separation two complexones were introduced into the system, one of them being extractant, the other one - camouflaging reactant. The best results are obtained for the mixture of xylenol orange and hydroxyethylenediphosphonic acid. Separation coefficients for americium and europium constitute 4.5 - 5.6

  15. Crosslinking polymerization of tetraethylene glycol dimethacrylate under high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Kaminski, K; Paluch, M; Ziolo, J [Institute of Physics, Silesian University, Uniwersytecka 4, 40-007 Katowice (Poland); Bogoslovov, R; Roland, C M [Chemistry Division, Code 6120, Naval Research Laboratory, Washington DC 20375-5342 (United States)], E-mail: kaminski@us.edu.pl

    2008-07-15

    The polymerization reaction of tetraethylene glycol dimethacrylate was induced by application of high pressure. Broadband dielectric spectroscopy was employed to investigate dielectric properties of the produced polymers. Additionally swelling experiment was performed to determine the degree of crossliniking of the polymers.

  16. A Comparative Health Risk Assessment of Electronic Cigarettes and Conventional Cigarettes

    Directory of Open Access Journals (Sweden)

    Jinsong Chen

    2017-04-01

    Full Text Available Background: Although some studies have identified hazardous substances in electronic cigarette (EC liquids and emissions, there is limited information about the health risks of using ECs. Methods: In this study, the U.S. Environmental Protection Agency (EPA health risk assessment model and findings of a literature review were used to determine and profile hazards. Focus was put on the toxicants reported in the literature on conventional cigarette (CC smoke that most strongly associated with adverse health effects. To evaluate their health risks, dose-response relationships and standard-use conditions were used to estimate average hazard exposures and to calculate the overall health risks of ECs and CCs, benchmarked against international guideline levels for each hazard. Results: Four hazards (acrolein, diethylene glycol, propylene glycol and cadmium reported in EC emissions and seven hazards (acetaldehyde, acrolein, formaldehyde, cadmium, CO, 4-(methylnitrosamino-1-(3-pyridyl-1-butanone (NNK, N′-nitrosonornicotine (NNN reported in CC emissions had maximum exposure levels higher than the guideline levels. Two hazards (acrolein, propylene glycol in EC emissions and five hazards (acetaldehyde, acrolein, formaldehyde, cadmium, NNN in CC emissions had average exposure levels higher than the guideline levels. Conclusions: Based on the conditions of use, ECs should be a safer nicotine-delivery product than CCs.

  17. Polyester monomers lack ability to bind and activate both androgenic and estrogenic receptors as determined by in vitro and in silico methods.

    Science.gov (United States)

    Osimitz, Thomas G; Welsh, William J; Ai, Ni; Toole, Colleen

    2015-01-01

    The paper presents results from the screening of seven monomers used by Eastman Chemical to make various polymers. Ethylene glycol, diethylene glycol, polytetramethylene glycol, isophthalic acid, monosodium-5-sulfoisophthalic acid, 1,4-cyclohexanedicarboxylic acid, and dimethylcyclohexanedicarboxylate were screened for potential androgenicity or estrogenicity. The following studies were conducted: QSAR for binding to the AR and ER, in vitro Androgen Receptor Binding Assay, in vitro Estrogen Receptor Binding Assays (alpha and beta isoforms), in vitro Androgen Receptor Transactivation Assay in human cells, and in vitro Estrogen Receptor Transactivation Assay in human cells. None of the QSAR models predicted that any of the monomers possessed appreciable binding affinity for either AR or ER. Binding assays showed no evidence of interaction with either the AR or the alpha or beta ER receptors. Similarly, the AR and ER transactivation assays were negative. Moreover, six of the seven monomers have been subjected to 13-week and developmental toxicity studies in rats with no androgen- or estrogen-related effects being noted. Given the negative results of the in vitro screening assays (except PMG which demonstrated cytotoxicity) as well as available repeated dose and developmental and reproductive studies, the data suggest that none of the monomers tested exhibit androgenic or estrogenic hazards. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Cloud-point measurement for (sulphate salts + polyethylene glycol 15000 + water) systems by the particle counting method

    International Nuclear Information System (INIS)

    Imani, A.; Modarress, H.; Eliassi, A.; Abdous, M.

    2009-01-01

    The phase separation of (water + salt + polyethylene glycol 15000) systems was studied by cloud-point measurements using the particle counting method. The effect of three kinds of sulphate salt (Na 2 SO 4 , K 2 SO 4 , (NH 4 ) 2 SO 4 ) concentration, polyethylene glycol 15000 concentration, mass ratio of polymer to salt on the cloud-point temperature of these systems have been investigated. The results obtained indicate that the cloud-point temperatures decrease linearly with increase in polyethylene glycol concentrations for different salts. Also, the cloud points decrease with an increase in mass ratio of salt to polymer.

  19. Bipallidal haemorrhage after ethylene glycol intoxication

    Energy Technology Data Exchange (ETDEWEB)

    Caparros-Lefebvre, D.; Policard, J.; Rigal, M. [CHU Pointe a Pitre, Service de Neurologie, Lille (France); Sengler, C. [CHU Pointe a Pitre, Laboratoire de Pharmaco-Toxicologie, Guadeloupe (France); Benabdallah, E. [CHU Pointe a Pitre, Service de Radiologie, Guadeloupe (France); Colombani, S. [Centre d' Imagerie medicale, Martinique (France)

    2005-02-01

    Acute or subacute bipallidal lesion, an uncommon radiological feature produced by metabolic disorders or poisoning, has never been attributed to ethylene glycol (EG) intoxication. This 50-year-old Afro-Caribbean alcoholic man had unexplained loss of consciousness. Blood tests showed osmolar gap. Drug screening was positive for EG at 6.06 mmol/l. Brain CT revealed bilateral pallidal haemorrhage. Pallidal haematoma, which could be related to deposition of oxalate crystals issued from EG metabolism, should lead to toxicological screening. (orig.)

  20. Bipallidal haemorrhage after ethylene glycol intoxication

    International Nuclear Information System (INIS)

    Caparros-Lefebvre, D.; Policard, J.; Rigal, M.; Sengler, C.; Benabdallah, E.; Colombani, S.

    2005-01-01

    Acute or subacute bipallidal lesion, an uncommon radiological feature produced by metabolic disorders or poisoning, has never been attributed to ethylene glycol (EG) intoxication. This 50-year-old Afro-Caribbean alcoholic man had unexplained loss of consciousness. Blood tests showed osmolar gap. Drug screening was positive for EG at 6.06 mmol/l. Brain CT revealed bilateral pallidal haemorrhage. Pallidal haematoma, which could be related to deposition of oxalate crystals issued from EG metabolism, should lead to toxicological screening. (orig.)

  1. Noncovalent pegylation by dansyl-poly(ethylene glycol)s as a new means against aggregation of salmon calcitonin.

    Science.gov (United States)

    Mueller, Claudia; Capelle, Martinus A H; Arvinte, Tudor; Seyrek, Emek; Borchard, Gerrit

    2011-05-01

    During all stages of protein drug development, aggregation is one of the most often encountered problems. Covalent conjugation of poly(ethylene glycol) (PEG), also called PEGylation, to proteins has been shown to reduce aggregation of proteins. In this paper, new excipients based on PEG are presented that are able to reduce aggregation of salmon calcitonin (sCT). Several PEG polymers consisting of a hydrophobic dansyl-headgroup attached to PEGs of different molecular weights have been synthesized and characterized physicochemically. After addition of dansyl-methoxypoly(ethylene glycol) (mPEG) 2 kDa to a 40 times molar excess of sCT resulted in an increase in dansyl-fluorescence and a decrease in 90° light scatter suggesting possible interactions. The aggregation of sCT in different buffer systems in presence or absence of the different dansyl-PEGs was measured by changes in Nile red fluorescence and turbidity. Dansyl-mPEG 2 kDa in a 1:1 molar ratio to sCT strongly reduced aggregation. Reduction of sCT aggregation was also measured for the bivalent dansyl-PEG 3 kDa in a 1:1 molar ratio. Dansyl-mPEG 5 kDa deteriorated sCT aggregation. Potential cytotoxicity and hemolysis were investigated. This paper shows that dansyl-PEGs are efficacious in reducing aggregation of sCT. Copyright © 2010 Wiley-Liss, Inc.

  2. (Liquid + liquid) equilibrium data for the system (propylene glycol + water + tetraoctyl ammonium 2-methyl-1-naphthoate)

    NARCIS (Netherlands)

    Garcia Chavez, L.Y.; Shazad, Maryam; Schuur, B.; Haan, de A.B.

    2012-01-01

    Propylene glycol (PG) is an important low toxic glycol, widely used in the food, cosmetics, pharmaceutical and the chemical industries. The recovery of PG from aqueous streams using conventional unit operations such as evaporation is highly energy demanding because of the large amounts of water that

  3. Poly(ethylene glycol)s as grinding additives in the mechanochemical preparation of highly functionalized 3,5-disubstituted hydantoins.

    Science.gov (United States)

    Mascitti, Andrea; Lupacchini, Massimiliano; Guerra, Ruben; Taydakov, Ilya; Tonucci, Lucia; d'Alessandro, Nicola; Lamaty, Frederic; Martinez, Jean; Colacino, Evelina

    2017-01-01

    The mechanochemical preparation of highly functionalized 3,5-disubstituted hydantoins was investigated in the presence of various poly(ethylene) glycols (PEGs), as safe grinding assisting agents (liquid-assisted grinding, LAG). A comparative study under dry-grinding conditions was also performed. The results showed that the cyclization reaction was influenced by the amount of the PEG grinding agents. In general, cleaner reaction profiles were observed in the presence of PEGs, compared to dry-grinding procedures.

  4. Fermentation of glycolate by a pure culture of a strictly anaerobic gram-positive bacterium belonging to the family Lachnospiraceae.

    Science.gov (United States)

    Janssen, Peter H; Hugenholtz, Philip

    2003-05-01

    The component bacteria of a three-membered mixed culture able to ferment glycolate to acetate, propionate and CO(2) were isolated in pure culture. All three strains were strict anaerobes that, on the basis of comparative 16S rRNA gene sequence analysis, belonged to the order Clostridiales in the phylum Firmicutes (low G+C gram-positive bacteria). Two of the strains were not involved in glycolate metabolism. The third, the glycolate-fermenting strain 19gly4 (DSM 11261), was related to members of the family Lachnospiraceae. The cells of strain 19gly4 were oval- to lemon-shaped, 0.85 microm long and 0.65 microm in diameter, occurring singly, in pairs, or in chains of up to 30 cells. Strain 19gly4 fermented glycolate or fumarate to acetate, succinate, and CO(2). Hydrogen was not formed, and strain 19gly4 was able to grow on glycolate in pure culture without any syntrophic hydrogen transfer and without the use of an external electron acceptor. There was no evidence for homoacetogenic metabolism. This bacterium therefore differs in metabolism from previously reported glycolate-utilising anaerobes.

  5. On the use of hydrate inhibitors for operating natural gas caverns; Zum Einsatz von Hydratinhibitoren beim Betrieb von Erdgasspeichern

    Energy Technology Data Exchange (ETDEWEB)

    Kleinitz, W.; Lissanon, S.J.; Luehn, H.G. [Preussag Energie GmbH, Lingen/Ems (Germany)

    1997-12-31

    One way to prevent gas hydrates in natural gas caverns is to use thermodynamic or kinetic inhibitors in a defined temperature / pressure range. The present contribution describes the temperature conditions prevailing in the tubing string. It also discusses bacterial processes around wells arising in association with methanol digesting bacteria, diethylene glycol digesting bacteria, and kinetic inhibitors. Further topics include inhibitor dosage and absorption drying. (MSK) [Deutsch] Zur Vermeidung von Gashydraten im Erdgasspeicherbereich werden thermodynamische oder kinetische Inhibitoren in einem definierten Temperatur/Druckbereich eingesetzt. Im Folgenden werden die Temperaturbedingungen im Steigrohrsystem erlaeutert. Ebenso werden die bakteriellen Vorgaenge im Bohrlochsbereich in folgenden Einzelheiten: Methanol-verwertenden Bakterien, Diethylenglykol-verwertende Bakterien sowie kinetische Inhibitoren diskutiert. Weitere Themenpunkte sind die Inhibitordosierung und die Adsorptionstrocknung.

  6. Thermoresponsive self-assembly of nanostructures from a collagen-like peptide-containing diblock copolymer.

    Science.gov (United States)

    Luo, Tianzhi; He, Lirong; Theato, Patrick; Kiick, Kristi L

    2015-01-01

    Temperature-triggered formation of nanostructures with distinct biological activity offers opportunities in selective modification of matrices and in drug delivery. Toward these ends, diblock polymers comprising poly(diethylene glycol methyl ether methacrylate) (PDEGMEMA) conjugated to a triple helix-forming collagen-like peptide were produced. Triggered by the collapse of the thermoresponsive domain above its LCST, the conjugate undergoes a reversible transition in aqueous solution to form well-defined nanovesicles with diameters of approximately 100 nm, with a transition temperature of 37 °C. The incorporation of CLP domains in these nanostructures may offer opportunities for the selective targeting of collagen-containing matrices. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Hyperosmolar metabolic acidosis in burn patients exposed to glycol based topical antimicrobials-A systematic review.

    Science.gov (United States)

    Leibson, Tom; Davies, Paige; Nickel, Cheri; Koren, Gideon

    2018-06-01

    The well documented susceptibility of burn patients to acquired infections via damaged skin mandates application of antimicrobial agents. These agents are dissolved in various vehicles that augment skin absorption thus allowing greater efficacy. Polyethylene glycol (PEG) and Propylene glycol (PropG) are among the most commonly used vehicles, and both have been used in numerous medications and cosmetic products over the past few decades. Rarely, burn patients treated with agents containing these glycols present with a life threatening systemic toxidrome of hyperosmolar metabolic acidosis. We present a systematic review of outcomes in burn patients treated with similar agents. Relevant studies were identified through systematic searches conducted in MEDLINE (Ovid), Embase (Ovid), CENTRAL (Ovid), and Web of Science (Thomson Reuters), from database inception to August 4th, 2016. All publications of clinical burn patient studies included at least one arm receiving a glycol based topical therapy. A total of 61 studies involving 10,282 patients and 4 different antimicrobial medications fulfilled the inclusion criteria. Nine burn patients (0.09%) were documented to present with hyperosmolar metabolic acidosis during topical silver sulfadiazine treatment. Propylene glycol isolated from their blood accounted for the high osmole gap. This first systematic review found very few cases of documented hyperosmolar metabolic acidosis, all within one study that had set to specifically explore this toxidrome. High index of suspicion with frequent osmolar gap monitoring may help identify future toxicities in a timely manner. Copyright © 2017 Elsevier Ltd and ISBI. All rights reserved.

  8. Multimeric, Multifunctional Derivatives of Poly(ethylene glycol

    Directory of Open Access Journals (Sweden)

    Gian Maria Bonora

    2011-07-01

    Full Text Available This article reviews the use of multifunctional polymers founded on high-molecular weight poly(ethylene glycol (PEG. The design of new PEG derivatives assembled in a dendrimer-like multimeric fashion or bearing different functionalities on the same molecule is described. Their use as new drug delivery systems based on the conjugation of multiple copies or diversely active drugs on the same biocompatible support is illustrated.

  9. Defense Waste Processing Facility Nitric- Glycolic Flowsheet Chemical Process Cell Chemistry: Part 2

    Energy Technology Data Exchange (ETDEWEB)

    Zamecnik, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Edwards, T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-06-06

    The conversions of nitrite to nitrate, the destruction of glycolate, and the conversion of glycolate to formate and oxalate were modeled for the Nitric-Glycolic flowsheet using data from Chemical Process Cell (CPC) simulant runs conducted by Savannah River National Laboratory (SRNL) from 2011 to 2016. The goal of this work was to develop empirical correlation models to predict these values from measureable variables from the chemical process so that these quantities could be predicted a-priori from the sludge or simulant composition and measurable processing variables. The need for these predictions arises from the need to predict the REDuction/OXidation (REDOX) state of the glass from the Defense Waste Processing Facility (DWPF) melter. This report summarizes the work on these correlations based on the aforementioned data. Previous work on these correlations was documented in a technical report covering data from 2011-2015. This current report supersedes this previous report. Further refinement of the models as additional data are collected is recommended.

  10. Unwell after drinking homemade alcohol – A case of ethylene glycol poisoning

    Directory of Open Access Journals (Sweden)

    A.E. Laher

    2013-06-01

    Discussion: The clinical presentation of ethylene glycol and methanol poisoning is non-specific and can be difficult to differentiate from ethanol intoxication. Homemade alcohol preparations are commonly adulterated with ethylene glycol and methanol to improve their taste and sting. Toxic alcohol analysis is not routinely carried out by most laboratory services in South Africa, and when carried out, results are only made available a few days later. A high index of suspicion coupled with early blood gas analysis and a need for prompt and effective treatment whilst awaiting toxicology analysis may limit the associated high morbidity and mortality.

  11. Unusual calcium oxalate crystals in ethylene glycol poisoning.

    Science.gov (United States)

    Godolphin, W; Meagher, E P; Sanders, H D; Frohlich, J

    1980-06-01

    A patient poisoned with ethylene glycol exhibited the symptoms of (1) hysteria, (2) metabolic acidosis with both a large anion gap and osmolal gap, and (3) crystalluria. However, the shape of the urinary crystals was prismatic and resembled hippurate rather than the expected dipyramidal calcium oxalate dihydrate. X-ray crystallography positively identified them as calcium oxalate monohydrate.

  12. Self-assembled nanoparticles of glycol chitosan – Ergocalciferol succinate conjugate, for controlled release

    DEFF Research Database (Denmark)

    Quinones, Javier Perez; Gothelf, Kurt Vesterager; Kjems, Jørgen

    2012-01-01

    Glycol chitosan was linked to vitamin D2 hemisuccinate (ergocalciferol hemisuccinate) for controlled release through water-soluble carbodiimide activation. The resulting conjugate formed self-assembled nanoparticles in aqueous solution with particle size of 279 nm and ergocalciferol hemisuccinate...... content of 8.4% (w/w). Almost spherical 50–90 nm nanoparticles were observed by scanning and transmission electron microscopy upon drying. Drug linking to glycol chitosan was confirmed by FTIR spectroscopy and proton NMR. Particles were also characterized by differential scanning calorimetry and wide...

  13. A randomized, prospective, comparison study of polyethylene glycol 3350 without electrolytes and milk of magnesia for children with constipation and fecal incontinence.

    Science.gov (United States)

    Loening-Baucke, Vera; Pashankar, Dinesh S

    2006-08-01

    Our aim was to compare 2 laxatives, namely, polyethylene glycol 3350 without electrolytes and milk of magnesia, evaluating the efficacy, safety, acceptance, and 1-year outcomes. Seventy-nine children with chronic constipation and fecal incontinence were assigned randomly to receive polyethylene glycol or milk of magnesia and were treated for 12 months in tertiary care pediatric clinics. Children were counted as improved or recovered depending on resolution of constipation, fecal incontinence, and abdominal pain after 1, 3, 6, and 12 months. An intent-to-treat analysis was used. Safety was assessed with evaluation of clinical adverse effects and blood tests. Thirty-nine children were assigned randomly to receive polyethylene glycol and 40 to receive milk of magnesia. At each follow-up visit, significant improvement was seen in both groups, with significant increases in the frequency of bowel movements, decreases in the frequency of incontinence episodes, and resolution of abdominal pain. Compliance rates were 95% for polyethylene glycol and 65% for milk of magnesia. After 12 months, 62% of polyethylene glycol-treated children and 43% of milk of magnesia-treated children exhibited improvement, and 33% of polyethylene glycol-treated children and 23% of milk of magnesia-treated children had recovered. Polyethylene glycol and milk of magnesia did not cause clinically significant side effects or blood abnormalities, except that 1 child was allergic to polyethylene glycol. In this randomized study, polyethylene glycol and milk of magnesia were equally effective in the long-term treatment of children with constipation and fecal incontinence. Polyethylene glycol was safe for the long-term treatment of these children and was better accepted by the children than milk of magnesia.

  14. Synthesis, characterization and properties of a glycol-coordinated ε-Keggin-type Al13 chloride

    KAUST Repository

    Gu, Bin; Sun, Chenglin; Fettinger, James C.; Casey, William H.; Dikhtiarenko, Alla; Gascon, Jorge; Koichumanova, Kamila; Babu Sai Sankar Gupta, Karthick; Jan Heeres, Hero; He, Songbo

    2018-01-01

    Herein we present the first example of a glycol-coordinated ε-Keggin Al13 chloride (gl-ε-Al13), which is the first chelated version since discovery of Al13 in 1960. The molecular structure consists of [AlO4Al12(OH)12(OC2H4OH)12]Cl7·H2O units with chelating mono-anionic ethylene glycol units replacing one bridging and one terminal oxygen site.

  15. Synthesis, characterization and properties of a glycol-coordinated ε-Keggin-type Al13 chloride

    KAUST Repository

    Gu, Bin

    2018-03-29

    Herein we present the first example of a glycol-coordinated ε-Keggin Al13 chloride (gl-ε-Al13), which is the first chelated version since discovery of Al13 in 1960. The molecular structure consists of [AlO4Al12(OH)12(OC2H4OH)12]Cl7·H2O units with chelating mono-anionic ethylene glycol units replacing one bridging and one terminal oxygen site.

  16. Facile Synthesis of ZnO Nanoparticles and Their Photocatalytic Activity

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jun Young; Ko, Sung Hyun; Kim, Sang Wook [Dongguk Univ., Yongin (Korea, Republic of); Lee, Sookeun; Kim, A Young [Daegu Gyeongbuk Institute of Science and Technology, Daegu (Korea, Republic of)

    2014-07-15

    This paper reports the facile synthesis methods of zinc oxide (ZnO) nanoparticles, using diethylene glycol (DEG) and polyethylene glycol (PEG400). The particle size and morphology were correlated with the PEG concentration and reaction time. With 0.75 mL of PEG400 in 150 mL of DEG and a 20 h reaction time, the ZnO nanoparticles began to disperse from a collective spherical grain shape. The ZnO nanoparticles were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy and a N{sub 2} adsorption.desorption studies. The Brunauer-Emmett-Teller (BET) surface areas of and were 157.083, 141.559 and 233.249 m{sup 2}/g, respectively. The observed pore diameters of and were 63.4, 42.0 and 134.0 A, respectively. The pore volumes of and were 0.249, 0.148 and 0.781 cm{sup 3}/g, respectively. The photocatalytic activity of the synthesized ZnO nanoparticles was evaluated by methylene blue (MB) degradation, and the activity showed a good correlation with the N{sub 2} adsorption.desorption data.

  17. One-step enzymatic synthesis of nucleosides from low water-soluble purine bases in non-conventional media.

    Science.gov (United States)

    Fernández-Lucas, Jesús; Fresco-Taboada, Alba; de la Mata, Isabel; Arroyo, Miguel

    2012-07-01

    The effect of several water-miscible cosolvents on activity and stability of soluble and immobilized 2'-deoxyribosyltransferase from Lactobacillus reuteri on Sepabeads® has been studied in order to establish optimal conditions for enzymatic synthesis of nucleosides using purine bases with low solubility in aqueous buffer. As a rule of thumb, there was a general reduction of soluble enzyme activity when cosolvent content was gradually increased in reaction medium. In contrast, immobilized enzyme activity was enhanced 1.2-1.4-fold at 20% of methanol, ethanol, 2-propanol, diethylene glycol, and acetone; and at 10% and 30% acetonitrile. Likewise, highest increased activity (1.8-fold) was also obtained in presence of 20% acetonitrile. Immobilized enzyme was successfully used in the synthesis of 2'-deoxyxanthosine and 2'-deoxyguanosine using 2'-deoxyuridine as sugar donor and the corresponding poor water-soluble base in the presence of 30% of methanol, ethanol, 2-propanol, ethylene glycol, acetonitrile, and DMSO, giving high nucleoside yields at 4h. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Temperature dependent viscosity of cobalt ferrite / ethylene glycol ferrofluids

    Science.gov (United States)

    Kharat, Prashant B.; Somvanshi, Sandeep B.; Kounsalye, Jitendra S.; Deshmukh, Suraj S.; Khirade, Pankaj P.; Jadhav, K. M.

    2018-04-01

    In the present work, cobalt ferrite / ethylene glycol ferrofluid is prepared in 0 to 1 (in the step of 0.2) volume fraction of cobalt ferrite nanoparticles synthesized by co-precipitation method. The XRD results confirmed the formation of single phase spinel structure. The Raman spectra have been deconvoluted into individual Lorentzian peaks. Cobalt ferrite has cubic spinel structure with Fd3m space group. FT-IR spectra consist of two major absorption bands, first at about 586 cm-1 (υ1) and second at about 392 cm-1 (υ2). These absorption bands confirm the formation of spinel-structured cobalt ferrite. Brookfield DV-III viscometer and programmable temperature-controlled bath was used to study the relationship between viscosity and temperature. Viscosity behavior with respect to temperature has been studied and it is revealed that the viscosity of cobalt ferrite / ethylene glycol ferrofluids increases with an increase in volume fraction of cobalt ferrite. The viscosity of the present ferrofluid was found to decrease with increase in temperature.

  19. Magnetic fluid poly(ethylene glycol) with moderate anticancer activity

    Energy Technology Data Exchange (ETDEWEB)

    Zavisova, Vlasta, E-mail: zavisova@saske.s [IEP SAS, Watsonova 47, Kosice 040 01 (Slovakia); Koneracka, Martina [IEP SAS, Watsonova 47, Kosice 040 01 (Slovakia); Muckova, Marta; Lazova, Jana [Hameln, rds a.s., Horna 36, Modra (Slovakia); Jurikova, Alena; Lancz, Gabor; Tomasovicova, Natalia; Timko, Milan; Kovac, Jozef [IEP SAS, Watsonova 47, Kosice 040 01 (Slovakia); Vavra, Ivo [IEE SAS, Dubravska cesta 9, 841 04 Bratislava (Slovakia); Fabian, Martin [IGT SAS, Watsonova 45, Kosice 040 01 (Slovakia); Feoktystov, Artem V. [FLNP JINR, Joliot-Curie 6, Dubna Moscow Reg. 141980 (Russian Federation); KNU, Academician Glushkov Ave. 2/1, 03187 Kyiv (Ukraine); Garamus, Vasil M. [GKSS research center, Max-Planck-Str.1, 21502 Geesthacht (Germany); Avdeev, Mikhail V. [FLNP JINR, Joliot-Curie 6, Dubna Moscow Reg. 141980 (Russian Federation); Kopcansky, Peter [IEP SAS, Watsonova 47, Kosice 040 01 (Slovakia)

    2011-05-15

    Poly(ethylene glycol) (PEG)-containing magnetic fluids - magnetite (Fe{sub 3}O{sub 4}) stabilized by sodium oleate - were prepared. Magnetic measurements confirmed superparamagnetic behaviour at room temperature. The structure of that kind of magnetic fluid was characterized using different techniques, including electron microscopy, photon cross correlation spectroscopy and small-angle neutron scattering, while the adsorption of PEG on magnetic particles was analyzed by differential scanning calorimetry and Fourier transform infrared spectroscopy. From the in vitro toxicity tests it was found that a magnetic fluid containing PEG (MFPEG) partially inhibited the growth of cancerous B16 cells at the highest tested dose (2.1 mg/ml of Fe{sub 3}O{sub 4} in MFPEG). - Research Highlights: A new type of biocompatible magnetic fluid (MF) with poly(ethylene glycol) was prepared. Structuralization effects of magnetite particles depend on PEG concentration. Large fractals of magnetite nanoparticles in MF were observed (SANS indication). MF partially inhibited (approximately 50%) the growth of cancerous B16 cells.

  20. Magnetic fluid poly(ethylene glycol) with moderate anticancer activity

    International Nuclear Information System (INIS)

    Zavisova, Vlasta; Koneracka, Martina; Muckova, Marta; Lazova, Jana; Jurikova, Alena; Lancz, Gabor; Tomasovicova, Natalia; Timko, Milan; Kovac, Jozef; Vavra, Ivo; Fabian, Martin; Feoktystov, Artem V.; Garamus, Vasil M.; Avdeev, Mikhail V.; Kopcansky, Peter

    2011-01-01

    Poly(ethylene glycol) (PEG)-containing magnetic fluids - magnetite (Fe 3 O 4 ) stabilized by sodium oleate - were prepared. Magnetic measurements confirmed superparamagnetic behaviour at room temperature. The structure of that kind of magnetic fluid was characterized using different techniques, including electron microscopy, photon cross correlation spectroscopy and small-angle neutron scattering, while the adsorption of PEG on magnetic particles was analyzed by differential scanning calorimetry and Fourier transform infrared spectroscopy. From the in vitro toxicity tests it was found that a magnetic fluid containing PEG (MFPEG) partially inhibited the growth of cancerous B16 cells at the highest tested dose (2.1 mg/ml of Fe 3 O 4 in MFPEG). - Research Highlights: → A new type of biocompatible magnetic fluid (MF) with poly(ethylene glycol) was prepared. → Structuralization effects of magnetite particles depend on PEG concentration. → Large fractals of magnetite nanoparticles in MF were observed (SANS indication). → MF partially inhibited (approximately 50%) the growth of cancerous B16 cells.

  1. Development of controlled release formulations of azadirachtin-A employing poly(ethylene glycol) based amphiphilic copolymers.

    Science.gov (United States)

    Kumar, Jitendra; Shakil, Najam A; Singh, Manish K; Singh, Mukesh K; Pandey, Alka; Pandey, Ravi P

    2010-05-01

    Controlled release (CR) formulations of azadirachtin-A, a bioactive constituent derived from the seed of Azadirachta indica A. Juss (Meliaceae), have been prepared using commercially available polyvinyl chloride, polyethylene glycol (PEG) and laboratory synthesized poly ethylene glycol-based amphiphilic copolymers. Copolymers of polyethylene glycol and various dimethyl esters, which self assemble into nano micellar aggregates in aqueous media, have been synthesized. The kinetics of azadirachtin-A, release in water from the different formulations was studied. Release from the commercial polyethylene glycol (PEG) formulation was faster than the other CR formulations. The rate of release of encapsulated azadirachtin-A from nano micellar aggregates is reduced by increasing the molecular weight of PEG. The diffusion exponent (n value) of azadirachtin-A, in water ranged from 0.47 to 1.18 in the tested formulations. The release was diffusion controlled with a half release time (t(1/2)) of 3.05 to 42.80 days in water from different matrices. The results suggest that depending upon the polymer matrix used, the application rate of azadirachtin-A can be optimized to achieve insect control at the desired level and period.

  2. Development of Cy5.5-Labeled Hydrophobically Modified Glycol Chitosan Nanoparticles for Protein Delivery

    Science.gov (United States)

    Chin, Amanda

    Therapeutic proteins are often highly susceptible to enzymatic degradation, thus restricting their in vivo stability. To overcome this limitation, delivery systems designed to promote uptake and reduce degradation kinetics have undergone a rapid shift from macro-scale systems to nanomaterial based carriers. Many of these nanomaterials, however, elicit immune responses and may have cytotoxic effects both in vitro and in vivo. The naturally derived polysaccharide chitosan has emerged as a promising biodegradable material and has been utilized for many biomedical applications; nevertheless, its function is often constrained by poor solubility. Glycol chitosan, a derivative of chitosan, can be hydrophobically modified to impart amphiphilic properties that enable the self-assembly into nanoparticles in aqueous media at neutral pH. This nanoparticle system has shown initial success as a therapeutic agent in several model cell culture systems, but little is known about its stability against enzymatic degradation. Therefore, the goal of this research was to investigate the resistance of hydrophobically modified glycol chitosan against enzyme-catalyzed degradation using an in vivo simulated system containing lysozyme. To synthesize the nanoparticles, hydrophobic cholanic acid was first covalently conjugated to glycol chitosan using of N-(3-Dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride (EDC) and N-hydroxysuccinimide (NHS). Conjugates were purified by dialysis, lyophilized, and ultra-sonicated to form nanoparticles. Fourier transform infrared (FT-IR) spectroscopy confirmed the binding of 5beta-cholanic acid to the glycol chitosan. Particle size and stability over time were determined with dynamic light scattering (DLS), and particle morphology was evaluated by transmission electron microscopy (TEM). The average diameter of the nanoparticles was approximately 200 nm, which remained stable at 4°C for up to 10 days. Additionally, a near infrared fluorescent (NIRF) dye

  3. 76 FR 36349 - Diethylene Glycol MonoEthyl Ether (DEGEE); Exemption From the Requirement of a Tolerance

    Science.gov (United States)

    2011-06-22

    ..., based on decreased growth, epithelial necrosis of renal tubules and cloudy swelling of hepatic tissue... growth, FQPA SF = 1x epithelial necrosis of renal tubules and cloudy swelling of hepatic tissue... calculi, epithelial necrosis of the renal tubules and cloudy swelling of hepatic tissue were observed in...

  4. Tandem neopentyl glycol maltosides (TNMs) for membrane protein stabilisation

    DEFF Research Database (Denmark)

    Bae, Hyoung Eun; Mortensen, Jonas S; Ribeiro, Orquidea

    2016-01-01

    A novel class of detergents, designated tandem neopentyl glycol maltosides (TNMs), were evaluated with four target membrane proteins. The best detergent varied depending on the target, but TNM-C12L and TNM-C11S were notable for their ability to confer increased membrane protein stability compared...

  5. Efficacy of Poly(D,L-Lactic Acid-co-Glycolic acid)-Poly(Ethylene Glycol)-Poly(D,L-Lactic Acid-co-Glycolic Acid) Thermogel As a Barrier to Prevent Spinal Epidural Fibrosis in a Postlaminectomy Rat Model.

    Science.gov (United States)

    Li, Xiangqian; Chen, Lin; Lin, Hong; Cao, Luping; Cheng, Ji'an; Dong, Jian; Yu, Lin; Ding, Jiandong

    2017-04-01

    Experimental animal study. The authors conducted a study to determine the efficacy and safety of the poly(D,L-lactic acid-co-glycolic acid)-poly(ethylene glycol)-poly(D,L-lactic acid-co-glycolic acid) (PLGA-PEG-PLGA) thermogel to prevent peridural fibrosis in an adult rat laminectomy model. Peridural fibrosis often occurs after spinal laminectomy. It might cause persistent back and/or leg pain postoperatively and make a reoperation more difficult and dangerous. Various materials have been used to prevent epidural fibrosis, but only limited success has been achieved. The PLGA-PEG-PLGA thermogel was synthesized by us. Total L3 laminectomies were performed on 24 rats. The PLGA-PEG-PLGA thermogel or chitosan (CHS) gel (a positive control group) was applied to the operative sites in a blinded manner. In the control group, the L3 laminectomy was performed and the defect was irrigated with the NS solution 3 times. All the rats were killed 4 weeks after the surgery. The cytotoxicity of this thermogel was evaluated in vitro and the result demonstrated that no evidence of cytotoxicity was observed. The extent of epidural fibrosis, the area of epidural fibrosis, and the density of the fibroblasts and blood vessel were evaluated histologically. There were statistical differences among the PLGA-PEG-PLGA thermogel or CHS gel group compared with the control group. Although there was no difference between the PLGA-PEG-PLGA thermogel and CHS gel, the efficiency of the PLGA-PEG-PLGA thermogel was shown to be slightly improved compared with the CHS gel. The biocompatibility of the PLGA-PEG-PLGA thermogel was proven well. The application of this thermogel effectively reduced epidural scarring and prevented the subsequent adhesion to the dura mater. No side effects were noted in the rats.

  6. Conversion of 1,3-Propylene Glycol on Rutile TiO2(110)

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Long; Li, Zhenjun; Smith, R. Scott; Kay, Bruce D.; Dohnalek, Zdenek

    2014-10-09

    The adsorption of 1,3-propylene glycol (1,3-PG) on partially reduced TiO2(110) and its conversion to products have been studied by a combination of molecular beam dosing and temperature programmed desorption (TPD). When the Ti surface sites are saturated by 1,3-PG, ~80% of the molecules undergo further reactions to yield products that are liberated during the TPD ramp. In contrast to ethylene glycol (EG) and 1,2- propylene glycol (1,2-PG) that yield only alkenes and water at very low coverages (< 0.05 ML), two additional products, HCHO and C2H4, along with propylene (CH3CHCH2) and water are observed for 1,3-PG. Identical TPD line shapes and desorption yields for HCHO and C2H4 suggest that these products result from C-C bond cleavage and are coupled. At higher 1,3-PG coverages (> 0.1 ML), propanal (CH3CH2CHO) and two additional products, 1-propanol (CH3CH2CH2OH) and acrolein (CH2CHCHO), are observed. The desorption of 1-propanol is found to be coupled with the desorption of acrolein, suggesting that these products are formed by the disproportionation of two 1,3-PG molecules. The coverage dependent TPD results further show that propylene formation dominates at low coverages (< 0.3 ML), while the decomposition and disproportionation channels increase rapidly at higher coverages and reach yields comparable to that of propylene at the 1,3-PG saturation coverage of 0.5 ML. The observed surface chemistry clearly shows how the molecular structure of glycols influences their reaction pathways on oxide surfaces.

  7. Effect of monobutylether ethylene glycol on Mg/Al layered double hydroxide: a physicochemical and conductivity study

    International Nuclear Information System (INIS)

    Paulo, Maria Joao; Matos, Bruno Ribeiro de; Ntais, Spyridon; Coral Fonseca, Fabio; Tavares, Ana C.

    2013-01-01

    Mg–Al hydrotalcite-like compounds with OH − ions intercalated in the gallery and modified with monobutylether ethylene glycol (mbeeg) were prepared from Mg 6 Al 2 (CO 3 )(OH) 16 ·4H 2 O by the reconstruction method. The effect of the ethylene glycol, a moderate surfactant, on the textural properties and on the vapor water sorption of the layered double hydroxides was investigated by transmission electron microscopy and nitrogen and water sorption techniques. The ion conductivity of the samples was measured at 98 % RH up to 180 °C. The compounds are formed by nanoplatelets with a lateral size inferior to 20 nm. The addition of the ethylene glycol was found to increase the specific surface area, total pore volume, and water sorption capacity of the Mg–Al layered double hydroxide. However, it also decreased the average pore diameter, and the ion conductivity of the ethylene glycol modified layered double hydroxide was lower than expected based on the samples’ specific surface area and water content.

  8. Reaction mechanism of ethylene glycol decomposition on Pt model catalysts: A density functional theory study

    International Nuclear Information System (INIS)

    Lv, Cun-Qin; Yang, Bo; Pang, Xian-Yong; Wang, Gui-Chang

    2016-01-01

    Highlights: • DFT calculations were performed to study the ethylene glycol decomposition on Pt. • The final products are CO and H_2 on Pt(111), (100) and (211). • Ethylene glycol decomposition on Pt(111) undergoes via initial O−H bond scission and followed by C−H bond cleavage. • Ethylene glycol decomposition proceeds via initial O−H bond scission and followed by O−H bond cleavage on Pt(100)/(211). - Abstract: Understanding and controlling bond beak sequence is important in catalytic processes. The DFT-GGA method combined with slab model was performed to study the ethylene glycol decomposition on various Pt model catalysts such as close-packed Pt(111), stepped Pt(211) and a more open one, Pt(100). Calculation results show that the adsorption energies of ethylene glycol and other decomposition species depend on the coordination number of surface atom, that is, low coordination number correspond to high adsorption energy. Moreover, it was found that final products of ethylene glycol decomposition are CO and H_2 on all model catalysts, but the reaction mechanism varies: On Pt(111), the first step is O−H bond scission, followed by C−H bond cleavage, namely C_2H_6O_2 → HOCH_2CH_2O + H → HOCH_2CHO + 2H→ HOCH_2CO +3H → OCH_2CO + 4H → OCHCO + 5H → CO + HCO + 5H → 2CO + 6H→ 2CO + 3H_2; On Pt(211) and Pt(100), however, it is a second O−H bond cleavage that follows the initial O−H bond scission, that is, C_2H_6O_2 → HOCH_2CH_2O + H → OCH_2CH_2O + 2H → OCHCH_2O + 3H → OCHCHO + 4H → 2HCO + 4H → 2CO + 6H → 2CO + 3H_2  on Pt(211), and C_2H_6O_2 →HOCH_2CH_2O+ H → OCH_2CH_2O + 2H→OCHCH_2O+3H→OCCH_2O+4H→CO+H_2CO+4H→CO+HCO+5H→2CO+6H→2CO+3H_2 on Pt(100) For the catalytic order of ethylene glycol to form H_2, it may be determined based on the rate-controlling step, and it is Pt(111) > Pt(211) > Pt(100).

  9. Comparative study of 15% TCA peel versus 35% glycolic acid peel for the treatment of melasma.

    Science.gov (United States)

    Puri, Neerja

    2012-05-01

    Chemical peels are the mainstay of a cosmetic practitioner's armamentarium because they can be used to treat some skin disorders and can provide aesthetic benefit. To compare 15% TCA peel and 35% glycolic acid peel for the treatment of melasma. We selected 30 participants of melasma aged between 20 and 50 years from the dermatology outpatient department and treated equal numbers with 15% TCA and 35% glycolic acid. Subjective response as graded by the patient showed good or very good response in 70% participants in the glycolic acid group and 64% in the TCA group. There was statistically insignificant difference in the efficacy between the two groups for the treatment of melasma.

  10. Oxidative decarboxylation of glycolic and phenylacetic acids with cerium(4) catalyzed by silver ions in the sulfuric acid media

    International Nuclear Information System (INIS)

    Venkatesvar Rao, G.; Nagardzhun Rao, Ch.; Sajprakash, P.K.

    1981-01-01

    Oxidative decarboxylation of glycolic and phenylacetic acids by cerium (4) in the presence of Ag + ions is studied. The Ce(4) order equals 1, glycolic acid order in the absence of a catalyst also equals 1 and is fractional (0.5) for a catalytic reaction. The phenylacetic acid order is fractional (0.75). The Ag + ion reaction order is fractional and constitutes 0.32 for glycolic and 0.36 for phenylacetic acids. The reaction mechanism is proposed [ru

  11. Temperature dependence of the volumetric properties of some alkoxypropanols + n-alkanol mixtures

    International Nuclear Information System (INIS)

    Pal, Amalendu; Kumar, Harsh

    2004-01-01

    The excess molar volumes V m E for binary liquid mixtures containing dipropylene glycol monomethyl ether or dipropylene glycol monobutyl ether and methanol, 1-propanol, 1-pentanol and 1-heptanol have been measured as a function of composition using a continuous dilution dilatometer at T=(288.15, 298.15, and 308.15) K and atmospheric pressure over the whole concentration range. The excess volume results allowed the following mixing quantities to be reported in all range of concentrations or at equimolar concentrations: α, volume expansivity; (∂V m E /∂T) p ; (∂H E /∂P) T at T=298.15 K. The obtained results have been compared at T=298.15 K with the calculated values by using the Flory theory of liquid mixtures. The theory predicts the α, and α E values rather well, while the calculated values of (∂V m E /∂T) p and (∂H E /∂P) T show general variation with the alkyl chain length of the alkoxypropanols. The results are discussed in terms of order or disorder creation

  12. Synthesis of Silver Particle onto Bamboo Charcoal by Tripropylene Glycol and the Composites Characterization

    Directory of Open Access Journals (Sweden)

    Tzu Hsuan Chiang

    2014-01-01

    Full Text Available In this study, tripropylene glycol was used as a reducting agent in the polyol process to reduce silver nitrate to the form of silver particles deposited onto the surface of bamboo charcoal (BC. The reduction temperature and time were critical parameters as they control the size of the silver particles formed as well as their distribution onto the surface of the BC. The reduction of silver nitrate by the tripropylene glycol occurred at a temperature of 120 °C for 3 h, and the silver particles, which had a face-centered cubic lattice structure, were distributed onto the surface of the BC. These synthesis conditions should work well with tripropylene glycol as reducing agent that can be helpful in the convenient preparation of Ag/BC particles. When Ag/BC powders were manufactured using 3 g of silver nitrate content, the prepared composites had the largest thermal conductivity at 0.2490 W/(m·K.

  13. Force-field dependence of the conformational properties of ,-dimethoxypolyethylene glycol

    NARCIS (Netherlands)

    Winger, Moritz; de Vries, Alex H.; van Gunsteren, Wilfred F.

    2009-01-01

    A molecular dynamics (MD) study of ,-dimethoxypolyethylene glycol has been carried out under various conditions with respect to solvent composition, ionic strength, chain length, force field and temperature. A previous MD study on a 15-mer of polyethyleneglycol (PEG) suggested a helical equilibrium

  14. Both H4K20 mono-methylation and H3K56 acetylation mark transcription-dependent histone turnover in fission yeast

    International Nuclear Information System (INIS)

    Yang, Hanna; Kwon, Chang Seob; Choi, Yoonjung; Lee, Daeyoup

    2016-01-01

    Nucleosome dynamics facilitated by histone turnover is required for transcription as well as DNA replication and repair. Histone turnover is often associated with various histone modifications such as H3K56 acetylation (H3K56Ac), H3K36 methylation (H3K36me), and H4K20 methylation (H4K20me). In order to correlate histone modifications and transcription-dependent histone turnover, we performed genome wide analyses for euchromatic regions in G2/M-arrested fission yeast. The results show that transcription-dependent histone turnover at 5′ promoter and 3′ termination regions is directly correlated with the occurrence of H3K56Ac and H4K20 mono-methylation (H4K20me1) in actively transcribed genes. Furthermore, the increase of H3K56Ac and H4K20me1 and antisense RNA production was observed in the absence of the histone H3K36 methyltransferase Set2 and histone deacetylase complex (HDAC) that are involved in the suppression of histone turnover within the coding regions. These results together indicate that H4K20me1 as well as H3K56Ac are bona fide marks for transcription-dependent histone turnover in fission yeast.

  15. Both H4K20 mono-methylation and H3K56 acetylation mark transcription-dependent histone turnover in fission yeast

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Hanna [Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141 (Korea, Republic of); Kwon, Chang Seob [Department of Chemistry and Biology, Korea Science Academy of KAIST, Busan, 614-822 (Korea, Republic of); Choi, Yoonjung, E-mail: jjungii@kaist.ac.kr [Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141 (Korea, Republic of); Lee, Daeyoup, E-mail: daeyoup@kaist.ac.kr [Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141 (Korea, Republic of)

    2016-08-05

    Nucleosome dynamics facilitated by histone turnover is required for transcription as well as DNA replication and repair. Histone turnover is often associated with various histone modifications such as H3K56 acetylation (H3K56Ac), H3K36 methylation (H3K36me), and H4K20 methylation (H4K20me). In order to correlate histone modifications and transcription-dependent histone turnover, we performed genome wide analyses for euchromatic regions in G2/M-arrested fission yeast. The results show that transcription-dependent histone turnover at 5′ promoter and 3′ termination regions is directly correlated with the occurrence of H3K56Ac and H4K20 mono-methylation (H4K20me1) in actively transcribed genes. Furthermore, the increase of H3K56Ac and H4K20me1 and antisense RNA production was observed in the absence of the histone H3K36 methyltransferase Set2 and histone deacetylase complex (HDAC) that are involved in the suppression of histone turnover within the coding regions. These results together indicate that H4K20me1 as well as H3K56Ac are bona fide marks for transcription-dependent histone turnover in fission yeast.

  16. Design, Synthesis and Hydrolytic Behavior of Mutual Prodrugs of NSAIDs with Gabapentin Using Glycol Spacers

    Directory of Open Access Journals (Sweden)

    Hiba Najeh Alsaad

    2012-10-01

    Full Text Available The free –COOH present in NSAIDs is thought to be responsible for the GI irritation associated with all traditional NSAIDs. Exploitation of mutual prodrugs is an approach wherein the NSAID is covalently bounded to a second pharmacologically active carrier/drug with the ultimate aim of reducing the gastric irritation. In this study some NSAIDs were conjugated with gabapentin via ester bonds using glycol spacers with the expectation of reducing gastric adverse effects and obtaining synergistic analgesic effects. The kinetics of ester hydrolysis were studied in two different non enzymatic buffer solutions at pH 1.2 and 7.4, as well as in 80% human plasma using HPLC with chloroform -methanol as mobile phase. Compounds 9a–c with ethylene glycol spacers showed significant stability at buffer solutions with half lives ranging from about 8–25 h, while the underwent a reasonable plasma hydrolysis (49%–88% in 2 h. Compound 9d with a propylene glycol spacer shows a higher rate of enzymatic hydrolysis than the corresponding ethylene glycol compound 9c. The result of compounds 9a-c indicate that these compounds may be stable during their passage through the GIT until reaching the blood circulation.

  17. Molybdenum-containing acidic catalysts to convert cellulosic biomass to glycolic acid

    KAUST Repository

    Han, Yu; Zhang, Jizhe; Liu, Xin

    2014-01-01

    Embodiments of the present invention include methods and compositions related to catabolic conversion of cellulosic biomass to glycolic acid using molybdenum-containing acidic catalysts. The invention includes the use of heteropoly and isopoly acids

  18. The Determination of Polyethylene Glycol in Untreated Urine Samples by High Performance Liquid Chromatography for Intestinal Permeability Studies

    DEFF Research Database (Denmark)

    Larsen, Elfinn; Pedersen, Walther Batsberg; Philipsen, E.

    1985-01-01

    Polyethylene glycol in urine samples has been investigated by high performance liquid chromatography. The molecular weights ranged from 634 to 1338. The urine samples were applied to the chromatographic system without any pre-treatment. For samples with a concentration of 0.2% polyethylene glycol...

  19. Liquid-liquid equilibria for binary and ternary systems containing glycols, aromatic hydrocarbons, and water: Experimental measurements and modeling with the CPA EoS

    DEFF Research Database (Denmark)

    Folas, Georgios; Kontogeorgis, Georgios; Michelsen, Michael Locht

    2006-01-01

    Liquid-liquid equilibrium data of four binary glycol + aromatic hydrocarbon systems and three ternary systems containing water have been measured at atmospheric pressure. The measured systems are monoethylene glycol (MEG) + benzene or toluene, triethylene glycol (TEG) + benzene or toluene, MEG...... + water + benzene, MEG + water + toluene, and TEG + water + toluene. The binary systems are correlated with the Cubic-Plus-Association (CPA) equation of state while the ternary systems are predicted from interaction parameters obtained from the binary systems. Very satisfactory liquid-liquid equilibrium...... correlations are obtained for the binary systems using temperature-independent interaction parameters, while adequate predictions are achieved for multicomponent water + glycol + aromatic hydrocarbons systems when accounting for the solvation between the aromatic hydrocarbons and glycols or water....

  20. Biodegradable Poly(D,L-lactic-co-glycolic acid)-Based Micro ...

    African Journals Online (AJOL)

    ... drug encapsulation efficiency and release profile of PLGA mico/nanoparticles. The current knowledge of protein instability during preparation, storage and release from PLGA micro/nanoparticles and protein stabilization approaches has also been discussed in this review. Keywords: Poly(D, L-lactic-co-glycolic acid), ...

  1. Hydrophilization of poly(caprolactone copolymers through introduction of oligo(ethylene glycol moieties.

    Directory of Open Access Journals (Sweden)

    Jonathan J Wurth

    Full Text Available In this study, a new family of poly(ε-caprolactone (PCL copolymers that bear oligo(ethylene glycol (OEG moieties is described. The synthesis of three different oligo(ethylene glycol functionalized epoxide monomers derived from 2-methyl-4-pentenoic acid, and their copolymerization with ε-caprolactone (CL to poly(CL-co-OEG-MPO copolymers is presented. The statistical copolymerization initiated with SnOct2/BnOH yielded the copolymers with varying OEG content and composition. The linear relationship between feed ratio and incorporation of the OEG co-monomer enables control over backbone functional group density. The introduction of OEG moieties influenced both the thermal and the hydrophilic characteristics of the copolymers. Both increasing OEG length and backbone content resulted in a decrease in static water contact angle. The introduction of OEG side chains in the PCL copolymers had no adverse influence on MC-3TE3-E1 cell interaction. However, changes to cell form factor (Φ were observed. While unmodified PCL promoted elongated (anisotropic morphologies (Φ = 0.094, PCL copolymer with tri-ethylene glycol side chains at or above seven percent backbone incorporation induced more isotropic cell morphologies (Φ = 0.184 similar to those observed on glass controls (Φ = 0.151.

  2. Moessbauer investigation of maghemite-based glycolic acid nanocomposite

    International Nuclear Information System (INIS)

    Santos, J. G.; Silveira, L. B.; Oliveira, A. C.; Garg, V. K.; Lacava, B. M.; Tedesco, A. C.; Morais, P. C.

    2007-01-01

    Transmission electron microscopy, X-ray diffraction and Moessbauer spectroscopy were used in the characterization of a nanocomposite containing magnetic nanoparticles dispersed in a glycolic acid-based template. Maghemite nanoparticles were identified as the iron oxide phase dispersed in the polymeric template. From the low-temperature Moessbauer data the amount of the iron-based, non-magnetic material at the nanoparticle surface was estimated as roughly one monolayer in thickness.

  3. Electrodeposition of Fe_3O_4 layer from solution of Fe_2(SO_4)_3 with addition ethylene glycol

    International Nuclear Information System (INIS)

    Dahlan, Dahyunir; Asrar, Allan

    2016-01-01

    The electrodeposition of Fe_3O_4 layer from the solution Fe_2(SO_4)_3 with the addition of ethylene glycol on Indium Tin Oxide (ITO) substrate has been performed. The electrodeposition was carried out using a voltage of 5 volts for 120 seconds, with and without the addition of 2% wt ethylene glycol. Significant effects of temperature on the resulting the samples is observed when they are heated at 400 °C. Structural characterization using X-ray diffraction (XRD) shows that all samples produce a layer of Fe_3O_4 with particle size less than 50 nanometers. The addition of ethylene glycol and the heating of the sample causes a shrinkage in particle size. The scanning electron microscopy (SEM) characterization shows that Fe_3O_4 layer resulting from the process of electrodeposition of Fe_2(SO_4)_3 without ethylene glycol, independent of whether the sample is heated or not, is uneven and buildup. Layer produced by the addition of ethylene glycol without heating produces spherical particles. On contrary, when the layer is heated the spherical particles transform to irregularly-shaped particles with smaller size.

  4. Ethylene glycol, but not DMSO, could replace glycerol inclusion in soybean lecithin-based extenders in ram sperm cryopreservation.

    Science.gov (United States)

    Najafi, Abouzar; Daghigh-Kia, Hossein; Dodaran, Hossein Vaseghi; Mehdipour, Mahdieh; Alvarez-Rodriguez, Manuel

    2017-02-01

    The aim of this study was to evaluate the effects of glycerol, ethylene glycol or DMSO in a soybean lecithin extender for freezing ram semen. In this study, 20 ejaculates were collected from four Ghezel rams and diluted with soybean lecithin extender with glycerol (7%), ethylene glycol (3%, 5% and 7%) or DMSO (3%, 5% and 7%). Sperm motility (CASA), membrane integrity (HOS test), viability, total abnormality, mitochondrial activity (Rhodamine 123) and apoptotic features (Annexin V/Propidium iodide) were assessed after thawing. There was no significant difference between glycerol and ethylene glycol at different concentrations (3% and 5%) regarding sperm total and progressive motility, viability, and membrane integrity. The least percentages of mitochondrial functionality were observed in samples frozen with all different DMSO concentrations tested (Plecithin extender. We propose that glycerol in a soybean lecithin based extender could be replaced by ethylene glycol at 3% or 5% concentrations. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Determination of thymine glycol residues in irradiated or oxidized DNA by formation of methylglyceric acid

    International Nuclear Information System (INIS)

    Schellenberg, K.A.; Shaeffer, J.

    1986-01-01

    Treatment of DNA solutions with X-irradiation various oxidants including hydrogen peroxide plus ferrous ion, hydrogen peroxide plus copper ion and ascorbate, permanganate, or sonication in the presence of dissolved oxygen all produced varying amounts of thymine glycol residues. After denaturing the DNA with heat, the glycol residues were reduced and labeled at the 6 position with tritium- labeled sodium borohydride. Subsequent reaction with anhydrous methanolic HCl gave a quantitative yield of the methyl ester of methylglyceric acid, which was determined by thin layer chromatography. The method, developed using thymidine as a model, was used to ascertain the requirements for glycol formation in DNA. It was shown that hydroxyl radical generating systems, permanganate, X-irradiation, or sonication in presence of oxygen were required, but hydrogen peroxide in the absence of iron or copper and ascorbate was inactive. Application to determination of DNA damage in vivo is being explored

  6. Lethal and sublethal endpoints observed for Artemia exposed to two reference toxicants and an ecotoxicological concern organic compound.

    Science.gov (United States)

    Manfra, Loredana; Canepa, Sara; Piazza, Veronica; Faimali, Marco

    2016-01-01

    Swimming speed alteration and mortality assays with the marine crustacean Artemia franciscana were carried out. EC50 and LC50 values after 24-48h exposures were calculated for two reference toxicants, copper sulphate pentahydrate (CuSO4·5H2O) and Sodium Dodecyl Sulphate (SDS), and an ecotoxicological concern organic compound, Diethylene Glycol (DEG). Different end-points have been evaluated, in order to point out their sensitivity levels. The swimming speed alteration (SSA) was compared to mortality values and also to the hatching rate inhibition (literature data). SSA resulted to be more sensitive than the mortality and with a sensitivity comparable to (or even higher than) the hatching rate endpoint. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Effects of vehicles and enhancers on transdermal delivery of clebopride.

    Science.gov (United States)

    Rhee, Yun-Seok; Huh, Jai-Yong; Park, Chun-Woong; Nam, Tae-Young; Yoon, Koog-Ryul; Chi, Sang-Cheol; Park, Eun-Seok

    2007-09-01

    The effects of vehicles and penetration enhancers on the skin permeation of clebopride were evaluated using Franz type diffusion cells fitted with excised rat dorsal skins. The binary vehicle system, diethylene glycol monoethyl ether/isopropyl myristate (40/60, w/w), significantly enhanced the skin permeation rate of clebopride. The skin permeation enhancers, oleic acid and ethanol when used in the binary vehicle system, resulted in relatively high clebopride skin permeation rates. A gel formulation consisting of 1.5% (w/w) clebopride, 5% (w/w) oleic acid, and 7% (w/w) gelling agent with the binary vehicle system resulted in a permeation rate of 28.90 microg/cm2/h. Overall, these results highlight the potential of clebopride formulation for the transdermal route.

  8. Synthesis of ultrasmall magnetic iron oxide nanoparticles and study of their colloid and surface chemistry

    International Nuclear Information System (INIS)

    Goloverda, Galina; Jackson, Barry; Kidd, Clayton; Kolesnichenko, Vladimir

    2009-01-01

    Colloidal nanoparticles of Fe 3 O 4 (4 nm) were synthesized by high-temperature hydrolysis of chelated iron (II) and (III) diethylene glycol alkoxide complexes in a solution of the parent alcohol (H 2 DEG) without using capping ligands or surfactants: [Fe(DEG)Cl 2 ] 2- +2[Fe(DEG)Cl 3 ] 2- +2H 2 O+2OH - →Fe 3 O 4 +3H 2 DEG+8Cl - The obtained particles were reacted with different small-molecule polydentate ligands, and the resulting adducts were tested for aqueous colloid formation. Both the carboxyl and α-hydroxyl groups of the hydroxyacids are involved in coordination to the nanoparticles' surface. This coordination provides the major contribution to the stability of the ligand-coated nanoparticles against hydrolysis.

  9. The effects of irradiation on physicochemical characteristics of PET packaging film

    International Nuclear Information System (INIS)

    Jeon, D.H.; Lee, K.H.; Park, H.J.

    2004-01-01

    The effects of γ-irradiation on physicochemical characteristics of biaxially stretched poly(ethylene terephthalate) (PET) packaging film were investigated in the range of 0-200 kGy. The diethylene glycol (DEG) contents in PET chains were increased at the low doses, 5 and 10 kGy, while these values were decreased at high doses, in the range of 30-200 kGy. Molecular weights, intrinsic viscosity and carboxy end group contents decreased slightly after 60 kGy dose. Permeability, thermal properties, color, haze and surface resistivity on γ-irradiation of oriented PET films were not significantly affected. Although some of the effects were measurable, they have no significance with respect to the use of PET for packaging of foods or medical devices to be irradiated

  10. A Fluorescent Thermometer Based on a Pyrene-Labeled Thermoresponsive Polymer

    Directory of Open Access Journals (Sweden)

    Ulrich S. Schubert

    2010-08-01

    Full Text Available Thermoresponsive polymers that undergo a solubility transition by variation of the temperature are important materials for the development of ‘smart’ materials. In this contribution we exploit the solubility phase transition of poly(methoxy diethylene glycol methacrylate, which is accompanied by a transition from hydrophilic to hydrophobic, for the development of a fluorescent thermometer. To translate the polymer phase transition into a fluorescent response, the polymer was functionalized with pyrene resulting in a change of the emission based on the microenvironment. This approach led to a soluble polymeric fluorescent thermometer with a temperature range from 11 °C to 21 °C. The polymer phase transition that occurs during sensing is studied in detail by dynamic light scattering.

  11. A glycoporphyrin story: from chemistry to PDT treatment of cancer mouse models.

    Science.gov (United States)

    Lupu, M; Maillard, Ph; Mispelter, J; Poyer, F; Thomas, C D

    2018-06-01

    Photodynamic therapy (PDT) represents a non-toxic and non-mutagenic antitumor therapy. The photosensitizer's (PS) chemo-physical properties are essential for the therapy, being responsible for the biological effects induced in the targeted tissues. In this study, we present the synthesis and development of some glycoconjugated porphyrins based on lectin-type receptor interaction. They were tested in vitro for finally choosing the most effective chemical structure for an optimum antitumor outcome. The most effective photosensitizer is substituted by three diethylene glycol α-d-mannosyl groups. In vivo studies allow firstly the determination of some characteristics of the biological processes triggered by the initial photochemical activation. Secondly, they make it possible to improve the therapeutic protocol in the function of the structural architecture of the targeted tumor tissue.

  12. Carboxylic acid effects on the size and catalytic activity of magnetite nanoparticles.

    Science.gov (United States)

    Hosseini-Monfared, Hassan; Parchegani, Fatemeh; Alavi, Sohaila

    2015-01-01

    Magnetite nanoparticles (Fe3O4-NPs) were successfully synthesized in diethylene glycol in the presence of carboxylic acids. They were characterized using XRD, SEM and FTIR. Carboxylic acid plays a critical role in determining the morphology, particle size and size distribution of the resulting particles. The results show that as-prepared magnetite nanoparticles are monodisperse and highly crystalline. The nanoparticles can be easily dispersed in aqueous media and other polar solvents due to coated by a layer of hydrophilic polyol and carboxylic acid ligands in situ. Easily prepared Fe3O4-NPs have been shown to be an active, recyclable, and highly selective catalyst for the epoxidation of cyclic olefins with aqueous 30% H2O2. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Development of parenteral formulations and evaluation of the biological activity of the trypanocide drug benznidazole.

    Science.gov (United States)

    Lamas, María C; Villaggi, Luciano; Nocito, Isabel; Bassani, Georgina; Leonardi, Darío; Pascutti, Fernanda; Serra, Esteban; Salomón, Claudio J

    2006-01-13

    Chagas disease, caused by Trypanosoma cruzi, is a major public health problem in Latin America. According to the World Health Organization, around 20 million people are infected and another 40 million are at risk of acquiring the disease. One of the drugs most frequently used for the treatment of Chagas disease is benznidazole (BZL). It is practically insoluble in water (0.4 mg/ml), which precludes the preparation of liquid dosage forms, in particular, parenteral formulations. Thus, the aim of this work was to investigate the solubilization of BZL at two pH values using various cosolvents such as ethyl alcohol, propylene glycol, polyethylene glycol 400, benzyl alcohol, diethylene glycol monoethyl ether (Transcutol) and surfactants such as polysorbates (Tween) 40 and 80, and sodium dioctyl sulfosuccinate (AOT). Solvent systems based on PEG 400, with the addition ethyl alcohol and/or potassium biphthalate buffer solution, increased the BZL solubility up to 10 mg/ml. These alcoholic vehicles showed no toxicity against parasite when assayed at 1%. Physical and chemical stability studies showed that the formulations were stable for at least 1.5 years. In agreement with the biological activity results, the selected formulations are suitable for further clinical studies. Moreover, increasing the aqueous solubility of BZL reduced the problems in vitro testing techniques and bioassays leading to more reliable results and/or reproducibility.

  14. Synthesis of glycolic acid-1-14C of high specific activity

    International Nuclear Information System (INIS)

    Ramamurthy, T.V.; Viswanathan, K.V.

    1987-01-01

    A simple procedure is described which efficiently converts traces of 14 C labelled cyanide present as a dilute solution into glycolic acid-1- 14 C with more than 85% radiochemical recovery and of high specific activity. (author)

  15. (Vapour + liquid) equilibria in the ternary system (acetonitrile + n-propanol + ethylene glycol) and corresponding binary systems at 101.3 kPa

    International Nuclear Information System (INIS)

    Qian, Guo-fei; Liu, Wen; Wang, Li-tao; Wang, Dao-cai; Song, Hang

    2013-01-01

    Highlights: • We adopted a new extractive solvent “ethylene glycol” to separate the mixture. • We measured the VLE data of binary system n-propanol + ethylene glycol. • We reinforce the VLE data of binary system acetonitrile + ethylene glycol. • We predicted the VLE data for the ternary system successfully. -- Abstract: Experimental isobaric (Vapour + liquid) equilibrium (VLE) data at 101.3 kPa were determined for three binary systems, viz. {acetonitrile (1) + n-propanol (2)}, {acetonitrile (1) + ethylene glycol (3)} and {n-propanol (2) + ethylene glycol (3)} and for one ternary system {acetonitrile (1) + n-propanol (2) + ethylene glycol (3)}. The measurements were performed using an improved Rose equilibrium still. The VLE data of the binary systems passed thermodynamic consistency tests and were correlated by Wilson and NRTL models. Good results were achieved. The phase behaviour of the ternary system was predicted directly by the parameters of two models obtained from the experimental binary results. The results showed an excellent agreement with experimental values

  16. Sludge batch 9 simulant runs using the nitric-glycolic acid flowsheet

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, D. P. [Savannah River Site (SRS), Aiken, SC (United States); Williams, M. S. [Savannah River Site (SRS), Aiken, SC (United States); Brandenburg, C. H. [Savannah River Site (SRS), Aiken, SC (United States); Luther, M. C. [Savannah River Site (SRS), Aiken, SC (United States); Newell, J. D. [Savannah River Site (SRS), Aiken, SC (United States); Woodham, W. H. [Savannah River Site (SRS), Aiken, SC (United States)

    2016-11-01

    Testing was completed to develop a Sludge Batch 9 (SB9) nitric-glycolic acid chemical process flowsheet for the Defense Waste Processing Facility’s (DWPF) Chemical Process Cell (CPC). CPC simulations were completed using SB9 sludge simulant, Strip Effluent Feed Tank (SEFT) simulant and Precipitate Reactor Feed Tank (PRFT) simulant. Ten sludge-only Sludge Receipt and Adjustment Tank (SRAT) cycles and four SRAT/Slurry Mix Evaporator (SME) cycles, and one actual SB9 sludge (SRAT/SME cycle) were completed. As has been demonstrated in over 100 simulations, the replacement of formic acid with glycolic acid virtually eliminates the CPC’s largest flammability hazards, hydrogen and ammonia. Recommended processing conditions are summarized in section 3.5.1. Testing demonstrated that the interim chemistry and Reduction/Oxidation (REDOX) equations are sufficient to predict the composition of DWPF SRAT product and SME product. Additional reports will finalize the chemistry and REDOX equations. Additional testing developed an antifoam strategy to minimize the hexamethyldisiloxane (HMDSO) peak at boiling, while controlling foam based on testing with simulant and actual waste. Implementation of the nitric-glycolic acid flowsheet in DWPF is recommended. This flowsheet not only eliminates the hydrogen and ammonia hazards but will lead to shorter processing times, higher elemental mercury recovery, and more concentrated SRAT and SME products. The steady pH profile is expected to provide flexibility in processing the high volume of strip effluent expected once the Salt Waste Processing Facility starts up.

  17. Balancing the carbon flux distributions between the TCA cycle and glyoxylate shunt to produce glycolate at high yield and titer in Escherichia coli.

    Science.gov (United States)

    Deng, Yu; Ma, Ning; Zhu, Kangjia; Mao, Yin; Wei, Xuetuan; Zhao, Yunying

    2018-03-01

    The glyoxylate shunt is a branch of the tricarboxylic acid (TCA) cycle which directly determines the synthesis of glycolate, and the balance between the glyoxylate shunt and TCA cycle is very important for the growth of Escherichia coli. In order to accumulate glycolate at high yield and titer, strategies for over-expressing glycolate pathway enzymes including isocitrate lyase (AceA), isocitrate dehydrogenase kinase/phosphatase (AceK) and glyoxylate reductase (YcdW) were analyzed. The genes encoding these three enzymes were transcribed under the control of promoter pTrc on pTrc99A, to form pJNU-3, which was harbored by strain Mgly1, resulting in strain Mgly13. Strain Mgly13 produced glycolate with 0.385 g/g-glucose yield (45.2% of the theoretical yield). Citrate synthase (GltA) converted excess acetyl-CoA and oxaloacetate to citrate and was over-expressed by pJNU-4 (pCDFDuet-1 backbone). Thus, the resulting strain Mgly134 produced glycolate with a 0.504 g/g-glucose yield (59.3% of the theoretical yield). We then eliminated the pathways involved in the degradation of glycolate, resulting in strain Mgly434, which produced glycolate with 92.9% of the theoretical yield. Following optimization of fermentation, the maximum glycolate titer from strain Mgly434 was 65.5 g/L. Copyright © 2018 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  18. Tetraethylene glycol thermooxidation and the influence of certain compounds relevant to conserved archaeological wood

    DEFF Research Database (Denmark)

    Mortensen, Martin Nordvig; Egsgaard, Helge; Hvilsted, Søren

    2012-01-01

    The degradation of tetraethylene glycol (TEG) was studied at 70 °C under dry air and nitrogen. Degradation products were detected using gas chromatography-mass spectrometry (GC–MS). They were mono-, di- and tri-ethylene glycol, mono- and di-formates of mono-, di-, tri- and tetra-ethylene glycol...... and formic acid. The rate of TEG degradation was significantly decreased by approximately 10 mmol/l KI, FeCl3, Cu(CH3COO)2, MnO2 and CuSO4, small amounts of fresh oak wood sawdust and gypsum-containing scrapings from the wood surface of the Vasa ship in Stockholm. Thus certain salts and natural components...... of archaeological wood are able to inhibit oxidative degradation of TEG. NaFe3(SO4)2(OH)6 (Natrojarosite), FeS2 (pyrite), FeSO4, Fe2(SO4)3, NiCl2, NiSO4, Fe, Cu, Fe2O3, CuO, NaHSO4 and natrojarosite-containing scrapings from the Vasa had no major effect on the rate of oxidation....

  19. The extraction of plutonium with triethylene glycol dichloride

    International Nuclear Information System (INIS)

    Aikin, A.M.; Moss, M.; Bruce, T.

    1951-03-01

    The extraction of plutonium by triethylene glycol dichloride (trigly) has been investigated briefly. The effect of (1) the valence state of the plutonium, (2) the concentration of nitric acid, (3) the concentration of ammonium nitrate and (4) the conditioning of the trigly was measured. The solubility of plutonium IV in trigly was found to be 70 mgms/ml. Solutions of plutonium in trigly and in concentrated nitric acid solutions have been examined spectrophotometrically. (author)

  20. The extraction of plutonium with triethylene glycol dichloride

    Energy Technology Data Exchange (ETDEWEB)

    Aikin, A M; Moss, M; Bruce, T

    1951-03-15

    The extraction of plutonium by triethylene glycol dichloride (trigly) has been investigated briefly. The effect of (1) the valence state of the plutonium, (2) the concentration of nitric acid, (3) the concentration of ammonium nitrate and (4) the conditioning of the trigly was measured. The solubility of plutonium IV in trigly was found to be 70 mgms/ml. Solutions of plutonium in trigly and in concentrated nitric acid solutions have been examined spectrophotometrically. (author)

  1. Retrospective Study: Glycolic Acid Peel in Photoaging Patient

    OpenAIRE

    Rachmantyo, Brama; Indramaya, Diah Mira

    2016-01-01

    Background: Photoaging is premature skin aging that is caused by sun exposure in long periode. Glycolic acid peel is one of photoaging treatment that improve skin at epidermal layer. Improper patient selection and irregular follow-up may become factors of unsuccessful treatment. Purpose: To evaluate gycolic acid peel treatment for photoaging for improvement of medical service in the future. Methods: A retrospective study to photoaging patiens that were managed with glicolyc acid peel in Medic...

  2. Optimization of reactive simulated moving bed systems with modulation of feed concentration for production of glycol ether ester.

    Science.gov (United States)

    Agrawal, Gaurav; Oh, Jungmin; Sreedhar, Balamurali; Tie, Shan; Donaldson, Megan E; Frank, Timothy C; Schultz, Alfred K; Bommarius, Andreas S; Kawajiri, Yoshiaki

    2014-09-19

    In this article, we extend the simulated moving bed reactor (SMBR) mode of operation to the production of propylene glycol methyl ether acetate (DOWANOL™ PMA glycol ether) through the esterification of 1-methoxy-2-propanol (DOWANOL™ PM glycol ether) and acetic acid using AMBERLYST™ 15 as a catalyst and adsorbent. In addition, for the first time, we integrate the concept of modulation of the feed concentration (ModiCon) to SMBR operation. The performance of the conventional (constant feed) and ModiCon operation modes of SMBR are analyzed and compared. The SMBR processes are designed using a model based on a multi-objective optimization approach, where a transport dispersive model with a linear driving force for the adsorption rate has been used for modeling the SMBR system. The adsorption equilibrium and kinetics parameters are estimated from the batch and single column injection experiments by the inverse method. The multiple objectives are to maximize the production rate of DOWANOL™ PMA glycol ether, maximize the conversion of the esterification reaction and minimize the consumption of DOWANOL™ PM glycol ether which also acts as the desorbent in the chromatographic separation. It is shown that ModiCon achieves a higher productivity by 12-36% over the conventional operation with higher product purity and recovery. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. GLYCOLIC-NITRIC ACID FLOWSHEET DEMONSTRATION OF THE DWPF CHEMICAL PROCESSING CELL WITH MATRIX SIMULANTS AND SUPERNATE

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, D.; Stone, M.; Newell, J.; Best, D.

    2012-05-07

    Savannah River Remediation (SRR) is evaluating changes to its current DWPF flowsheet to improve processing cycle times. This will enable the facility to support higher canister production while maximizing waste loading. Higher throughput is needed in the CPC since the installation of the bubblers into the melter has increased melt rate. Due to the significant maintenance required for the DWPF gas chromatographs (GC) and the potential for production of flammable quantities of hydrogen, reducing or eliminating the amount of formic acid used in the CPC is being developed. Earlier work at Savannah River National Laboratory has shown that replacing formic acid with an 80:20 molar blend of glycolic and formic acids has the potential to remove mercury in the SRAT without any significant catalytic hydrogen generation. This report summarizes the research completed to determine the feasibility of processing without formic acid. In earlier development of the glycolic-formic acid flowsheet, one run (GF8) was completed without formic acid. It is of particular interest that mercury was successfully removed in GF8, no formic acid at 125% stoichiometry. Glycolic acid did not show the ability to reduce mercury to elemental mercury in initial screening studies, which is why previous testing focused on using the formic/glycolic blend. The objective of the testing detailed in this document is to determine the viability of the nitric-glycolic acid flowsheet in processing sludge over a wide compositional range as requested by DWPF. This work was performed under the guidance of Task Technical and Quality Assurance Plan (TT and QAP). The details regarding the simulant preparation and analysis have been documented previously.

  4. GLYCOLIC-NITRIC ACID FLOWSHEET DEMONSTRATION OF THE DWPF CHEMICAL PROCESS CELL WITH SLUDGE AND SUPERNATE SIMULANTS

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, D.; Stone, M.; Newell, J.; Best, D.; Zamecnik, J.

    2012-08-28

    Savannah River Remediation (SRR) is evaluating changes to its current Defense Waste Processing Facility (DWPF) flowsheet to improve processing cycle times. This will enable the facility to support higher canister production while maximizing waste loading. Higher throughput is needed in the Chemical Process Cell (CPC) since the installation of the bubblers into the melter has increased melt rate. Due to the significant maintenance required for the DWPF gas chromatographs (GC) and the potential for production of flammable quantities of hydrogen, reducing or eliminating the amount of formic acid used in the CPC is being developed. Earlier work at Savannah River National Laboratory has shown that replacing formic acid with an 80:20 molar blend of glycolic and formic acids has the potential to remove mercury in the SRAT without any significant catalytic hydrogen generation. This report summarizes the research completed to determine the feasibility of processing without formic acid. In earlier development of the glycolic-formic acid flowsheet, one run (GF8) was completed without formic acid. It is of particular interest that mercury was successfully removed in GF8, no formic acid at 125% stoichiometry. Glycolic acid did not show the ability to reduce mercury to elemental mercury in initial screening studies, which is why previous testing focused on using the formic/glycolic blend. The objective of the testing detailed in this document is to determine the viability of the nitric-glycolic acid flowsheet in processing sludge over a wide compositional range as requested by DWPF. This work was performed under the guidance of Task Technical and Quality Assurance Plan (TT&QAP). The details regarding the simulant preparation and analysis have been documented previously.

  5. A polyethylene glycol radioimmunoprecipitation assay for human immunoglobulin G

    International Nuclear Information System (INIS)

    Waller, S.J.; Taylor, R.P.; Andrews, B.S.

    1979-01-01

    A polyethylene glycol (PEG) radioimmunoprecipitation assay for human IgG is described that is sufficiently sensitive to detect 0.5 ng of IgG. This model antibody-antigen system was also used to study the stoichiometries of PEG-precipitation complexes. The results suggest that the presence of PEG may affect the stoichiometry of the complexes which precipitate from solution. (Auth.)

  6. Tandem neopentyl glycol maltosides (TNMs) for membrane protein stabilisation†

    OpenAIRE

    Bae, Hyoung Eun; Mortensen, Jonas S.; Ribeiro, Orquidea; Du, Yang; Ehsan, Muhammad; Kobilka, Brian K.; Loland, Claus J.; Byrne, Bernadette; Chae, Pil Seok

    2016-01-01

    A novel class of detergents, designated tandem neopentyl glycol maltosides (TNMs), were evaluated with four target membrane proteins. The best detergent varied depending on the target, but TNM-C12L and TNM-C11S were notable for their ability to confer increased membrane protein stability compared to DDM. These agents have potential for use in membrane protein research.

  7. Tandem neopentyl glycol maltosides (TNMs) for membrane protein stabilisation.

    Science.gov (United States)

    Bae, Hyoung Eun; Mortensen, Jonas S; Ribeiro, Orquidea; Du, Yang; Ehsan, Muhammad; Kobilka, Brian K; Loland, Claus J; Byrne, Bernadette; Chae, Pil Seok

    2016-10-04

    A novel class of detergents, designated tandem neopentyl glycol maltosides (TNMs), were evaluated with four target membrane proteins. The best detergent varied depending on the target, but TNM-C12L and TNM-C11S were notable for their ability to confer increased membrane protein stability compared to DDM. These agents have potential for use in membrane protein research.

  8. Tandem neopentyl glycol maltosides (TNMs) for membrane protein stabilisation†

    Science.gov (United States)

    Bae, Hyoung Eun; Mortensen, Jonas S.; Ribeiro, Orquidea; Du, Yang; Ehsan, Muhammad; Kobilka, Brian K.; Loland, Claus J.; Byrne, Bernadette

    2017-01-01

    A novel class of detergents, designated tandem neopentyl glycol maltosides (TNMs), were evaluated with four target membrane proteins. The best detergent varied depending on the target, but TNM-C12L and TNM-C11S were notable for their ability to confer increased membrane protein stability compared to DDM. These agents have potential for use in membrane protein research. PMID:27711401

  9. Poly(ethylene glycol)/carbon quantum dot composite solid films exhibiting intense and tunable blue–red emission

    International Nuclear Information System (INIS)

    Hao, Yanling; Gan, Zhixing; Xu, Jiaqing; Wu, Xinglong; Chu, Paul K.

    2014-01-01

    Highlights: • Poly(ethylene glycol)/carbon quantum dots (PEG/CQDs) composite solid films exhibiting strong and tunable blue–red emission were prepared. Successful preparation of tunable emitting CQDs solid films can extend the application of carbon quantum dots in photoelectric devices. • The mechanism of the tunable emission from the PEG/CQDs composite solid films was discussed. • On the basis of the characteristics of the PL from solid films in this work, the complex PL origins of CQDs were further defined. The PL mechanism provides insights into the fluorescence mechanism of CQDs and may promotes their applications. • Poly(ethylene glycol); carbon quantum dots; Strong and tunable blue-red emission; The fluorescent quantum yield of 12.6%. - Abstract: Although carbon quantum dots (CQDs) possess excellent luminescence properties, it is a challenge to apply water-soluble CQDs to tunable luminescent devices. Herein, quaternary CQDs are incorporated into poly(ethylene glycol) to produce poly(ethylene glycol)/CQD composite solid films which exhibit strong and tunable blue–red emission. The fluorescent quantum yield reaches 12.6% which is comparable to that of many liquid CQDs and the photoluminescence characteristics are determined to elucidate the fluorescence mechanism. The CQD solid films with tunable optical properties bode well for photoelectric devices especially displays

  10. Solubility of clonazepam and diazepam in binary and ternary mixtures of polyethylene glycols 400 or 600, propylene glycol and water at 298.2K - experimental data and modeling

    Directory of Open Access Journals (Sweden)

    Bastami Zahra

    2014-01-01

    Full Text Available Experimental molar solubilities of clonazepam and diazepam in binary and ternary mixtures of polyethylene glycols (PEGs 400 or 600, propylene glycol (PG and water (138 data points along with the density of the saturated solutions at 298.2K were reported. The Jouyban-Acree model was used to fit to the measurements for providing a computational method. Employing the solubilities in the mono-solvents, the measured solubilities in mixed solvents were back-calculated and the overall mean percentage deviations (OMPDs of the model were 16.0 % and 19.2% for diazepam and clonazepam, respectively. Addition of the Hansen solubility parameters to the model helps us to train all the data sets (clonazepam and diazepam at once and the back-calculated OMPD for this analysis was 19.3%.

  11. Direct conversion of cellulose to glycolic acid with a phosphomolybdic acid catalyst in a water medium

    KAUST Repository

    Zhang, Jizhe

    2012-08-03

    Direct conversion of cellulose to fine chemicals has rarely been achieved. We describe here an eco-benign route for directly converting various cellulose-based biomasses to glycolic acid in a water medium and oxygen atmosphere in which heteromolybdic acids act as multifunctional catalysts to catalyze the hydrolysis of cellulose, the fragmentation of monosaccharides, and the selective oxidation of fragmentation products. With commercial α-cellulose powder as the substrate, the yield of glycolic acid reaches 49.3%. This catalytic system is also effective with raw cellulosic biomass, such as bagasse or hay, as the starting materials, giving rise to remarkable glycolic acid yields of ∼30%. Our heteropoly acid-based catalyst can be recovered in solid form after reaction by distilling out the products and solvent for reuse, and it exhibits consistently high performance in multiple reaction runs. © 2012 American Chemical Society.

  12. Randomized cross-over trial of polyethylene glycol electrolyte solution and water for colostomy irrigation.

    Science.gov (United States)

    O'Bichere, Austin; Green, Colin; Phillips, Robin K S

    2004-09-01

    Water for colostomy irrigation is largely absorbed by the colon, which may result in less efficient expulsion of stool. This study compared the outcome of colonic cleansing with water and polyethylene glycol solution. In a cross-over study, 41 colostomy irrigators were randomly assigned to water or polyethylene glycol solution irrigation first and then the other regimen, each for one week. Patients recorded fluid inflow time, total washout time, cramps, leakage episodes, number of stoma pouches used, and satisfaction scores (Visual Analog Scale, 1-10: 1 = poor, and 10 = excellent). The median and interquartile range for each variable was calculated, and the two treatments were compared (Wilcoxon's test). Eight patients failed to complete the study. Thirty-three patients (20 females; mean age, 55 (range, 39-73) years) provided 352 irrigation sessions: water (n = 176), and polyethylene glycol solution (n = 176). Irrigation was performed every 24, 48, and 72 hours by 17, 9, and 7 patients respectively, using 500 ml (n = 1), 750 ml (n = 2), 1,000 ml (n = 16), 1,500 ml (n = 11), 2,000 ml (n = 2), and 3,500 ml (n = 1) of fluid. The median and interquartile range for water vs. polyethylene glycol solution were: fluid inflow time (6 (range, 4.4-10.8) vs. 6.3 (range, 4.1-11) minutes; P = 0.48), total washout time (53 (range, 33-69) vs. 38 (range, 28-55) minutes; P = 0.01), leakage episodes (2.3 (range, 1.7-3.8) vs. 0.7 (range, 0.2-1); P colostomy irrigation.

  13. Stereocomplexed 8-armed poly(ethylene glycol)-poly(lactide) star block copolymer hydrogels: Gelation mechanism, mechanical properties and degradation behavior

    NARCIS (Netherlands)

    Buwalda, S.J.; Calucci, L.; Forte, C.; Dijkstra, Pieter J.; Feijen, Jan

    2012-01-01

    Mixing aqueous poly(ethylene glycol)-poly(d-lactide) and poly(ethylene glycol)-poly(l-lactide) star block copolymer solutions resulted in the formation of stereocomplexed hydrogels within 1 min. A study towards the mechanism of the temperature dependent formation of stereocomplexes in the hydrogels

  14. Cyanobacterial lactate oxidases serve as essential partners in N2-fixation and evolved into photorespiratory glycolate oxidases in plants.

    NARCIS (Netherlands)

    Hackenberg, C.; Kern, R.; Hüge, J; Stal, L.J.; Tsuji, Y.; Kopka, J.; Shiraiwa, Y.; Bauwe, H.; Hagemann, M.

    2011-01-01

    Glycolate oxidase (GOX) is an essential enzyme involved in photorespiratory metabolism in plants. In cyanobacteria and green algae, the corresponding reaction is catalyzed by glycolate dehydrogenases (GlcD). The genomes of N2-fixing cyanobacteria, such as Nostoc PCC 7120 and green algae, appear to

  15. Cyanobacterial lactate oxidases serve as essential partners of N2-fixation and evolved to photorespiratory glycolate oxidases in plants

    NARCIS (Netherlands)

    Hackenberg, C.; Kern, R.; Hüge, J.; Stal, L.J.; Tsuji, Y.; Kopka, J.; Shiraiwa, Y.; Bauwe, H.; Hagemann, M.

    2011-01-01

    Glycolate oxidase (GOX) is an essential enzyme involved in photorespiratory metabolism in plants. In cyanobacteria and green algae, the corresponding reaction is catalyzed by glycolate dehydrogenases (GlcD). The genomes of N2-fixing cyanobacteria, such as Nostoc PCC 7120 and green algae, appear to

  16. Biocompatibility Assessment of Polyethylene Glycol-Poly L-Lysine-Poly Lactic-Co-Glycolic Acid Nanoparticles In Vitro and In Vivo.

    Science.gov (United States)

    Guo, Liting; Chen, Baoan; Liu, Ran; Xia, Guohua; Wang, Yonglu; Li, Xueming; Wei, Chen; Wang, Xuemei; Jiang, Hulin

    2015-05-01

    The present study was designed to evaluate the biocompatibility of nanoparticles polyethylene glycol (PEG)-poly L-lysine (PLL)-poly lactic-co-glycolic acid copolymer (PLGA) (PEG-PLL-PLGA) before clinical application. We applied some tests to assess the safety of PEG-PLL-PLGA nanoparticles (NPs). There was low cytotoxicity of PEG-PLL-PLGA NPs in vitro as detected by MTT assay. Cell apoptosis and intracellular accumulation of PEG-PLL-PLGA were determined by FCM assay. The apoptotic rate induced by nanoparticles and the fluorescence intensity of intracellular daunorubicin (DNR) demonstrated that DNR-PEG-PLL-PLGA could be taken up by the mouse fibroblast cells (L929 cells). Hemolysis test and micronucleus (MN) assay demonstrated that the nanoparticles have no obviously blood toxicity and genotoxicity. DNR-PEG-PLL-PLGA NPs were injected into mice through tail vein to calculate the median lethal dose (LD50), the results showed that they had a wide safe scale. Blood was taken by removing the eyeball of mice to study the influence of DNR-PEG-PLL-PLGA in hepatic and renal functions. The results revealed that there was no significant difference as compared with the control group. Interestingly, the pathologic changes of heart, liver, spleen, lung and kidney were observed in nanoparticles treated mice. Thus, this study demonstrates that PEG-PLL-PLGA NPs appear to be highly biocompatible and safe nanoparticles that can be suitable for further application in the treatment of tumor.

  17. Curcumin Encapsulated into Methoxy Poly(Ethylene Glycol) Poly(ε-Caprolactone) Nanoparticles Increases Cellular Uptake and Neuroprotective Effect in Glioma Cells.

    Science.gov (United States)

    Marslin, Gregory; Sarmento, Bruno Filipe Carmelino Cardoso; Franklin, Gregory; Martins, José Alberto Ribeiro; Silva, Carlos Jorge Ribeiro; Gomes, Andreia Ferreira Castro; Sárria, Marisa Passos; Coutinho, Olga Maria Fernandes Pereira; Dias, Alberto Carlos Pires

    2017-03-01

    Curcumin is a natural polyphenolic compound isolated from turmeric ( Curcuma longa ) with well-demonstrated neuroprotective and anticancer activities. Although curcumin is safe even at high doses in humans, it exhibits poor bioavailability, mainly due to poor absorption, fast metabolism, and rapid systemic elimination. To overcome these issues, several approaches, such as nanoparticle-mediated targeted delivery, have been undertaken with different degrees of success. The present study was conducted to compare the neuroprotective effect of curcumin encapsulated in poly( ε -caprolactone) and methoxy poly(ethylene glycol) poly( ε -caprolactone) nanoparticles in U251 glioblastoma cells. Prepared nanoparticles were physically characterized by laser doppler anemometry, transmission electron microscopy, and X-ray diffraction. The results from laser doppler anemometry confirmed that the size of poly( ε -caprolactone) and poly(ethylene glycol) poly( ε -caprolactone) nanoparticles ranged between 200-240 nm for poly( ε -caprolactone) nanoparticles and 30-70 nm for poly(ethylene glycol) poly( ε -caprolactone) nanoparticles, and transmission electron microscopy images revealed their spherical shape. Treatment of U251 glioma cells and zebrafish embryos with poly( ε -caprolactone) and poly(ethylene glycol) poly( ε -caprolactone) nanoparticles loaded with curcumin revealed efficient cellular uptake. The cellular uptake of poly(ethylene glycol) poly( ε -caprolactone) nanoparticles was higher in comparison to poly( ε -caprolactone) nanoparticles. Moreover, poly(ethylene glycol) poly( ε -caprolactone) di-block copolymer-loaded curcumin nanoparticles were able to protect the glioma cells against tBHP induced-oxidative damage better than free curcumin. Together, our results show that curcumin-loaded poly(ethylene glycol) poly( ε -caprolactone) di-block copolymer nanoparticles possess significantly stronger neuroprotective effect in U251 human glioma cells compared to

  18. Developmental Defects of Caenorhabditis elegans Lacking Branched-chain α-Ketoacid Dehydrogenase Are Mainly Caused by Monomethyl Branched-chain Fatty Acid Deficiency.

    Science.gov (United States)

    Jia, Fan; Cui, Mingxue; Than, Minh T; Han, Min

    2016-02-05

    Branched-chain α-ketoacid dehydrogenase (BCKDH) catalyzes the critical step in the branched-chain amino acid (BCAA) catabolic pathway and has been the focus of extensive studies. Mutations in the complex disrupt many fundamental metabolic pathways and cause multiple human diseases including maple syrup urine disease (MSUD), autism, and other related neurological disorders. BCKDH may also be required for the synthesis of monomethyl branched-chain fatty acids (mmBCFAs) from BCAAs. The pathology of MSUD has been attributed mainly to BCAA accumulation, but the role of mmBCFA has not been evaluated. Here we show that disrupting BCKDH in Caenorhabditis elegans causes mmBCFA deficiency, in addition to BCAA accumulation. Worms with deficiency in BCKDH function manifest larval arrest and embryonic lethal phenotypes, and mmBCFA supplementation suppressed both without correcting BCAA levels. The majority of developmental defects caused by BCKDH deficiency may thus be attributed to lacking mmBCFAs in worms. Tissue-specific analysis shows that restoration of BCKDH function in multiple tissues can rescue the defects, but is especially effective in neurons. Taken together, we conclude that mmBCFA deficiency is largely responsible for the developmental defects in the worm and conceivably might also be a critical contributor to the pathology of human MSUD. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. The influence of propylene glycol ethers on base diesel properties and emissions from a diesel engine

    International Nuclear Information System (INIS)

    Gómez-Cuenca, F.; Gómez-Marín, M.; Folgueras-Díaz, M.B.

    2013-01-01

    Highlights: • Effect of propylene glycol ethers on diesel fuel properties. • Effect of these compounds on diesel engine performance and emissions. • Blends with ⩽4 wt.% of oxygen do not change substantially diesel fuel quality. • Blends with ⩽2.5 wt.% of oxygen reduce CO, HC and NOx emissions, but not smoke. • These compounds are helpful to reach a cleaner combustion in a diesel engine. - Abstract: The oxygenated additives propylene glycol methyl ether (PGME), propylene glycol ethyl ether (PGEE), dipropylene glycol methyl ether (DPGME) were studied to determine their influence on both the base diesel fuel properties and the exhaust emissions from a diesel engine (CO, NOx, unburnt hydrocarbons and smoke). For diesel blends with low oxygen content (⩽4.0 wt.%), the addition of these compounds to base diesel fuel decreases aromatic content, kinematic viscosity, cold filter plugging point and Conradson carbon residue. Also, each compound modifies the distillation curve at temperatures below the corresponding oxygenated compound boiling point, the distillate percentage being increased. The blend cetane number depends on the type of propylene glycol ether added, its molecular weight, and the oxygen content of the fuel. The addition of PGME decreased slightly diesel fuel cetane number, while PGEE and DPGME increased it. Base diesel fuel-propylene glycol ether blends with 1.0 and 2.5 wt.% oxygen contents were used in order to determine the performance of the diesel engine and its emissions at both full and medium loads and different engine speeds (1000, 2500 and 4000 rpm). In general, at full load and in comparison with base diesel fuel, the blends show a slight reduction of oxygen-free specific fuel consumption. CO emissions are reduced appreciably for 2.5 wt.% of oxygen blends, mainly for PGEE and DPGME. NOx emissions are reduced slightly, but not the smoke. Unburnt hydrocarbon emissions decrease at 1000 and 2500 rpm, but not at 4000 rpm. At medium load

  20. Preparation and characterization of a novel polymeric based solid-solid phase change heat storage material

    International Nuclear Information System (INIS)

    Xi Peng; Gu Xiaohua; Cheng Bowen; Wang Yufei

    2009-01-01

    Here we reported a two-step procedure for preparing a novel polymeric based solid-solid phase change heat storage material. Firstly, a copolymer monomer containing a polyethylene glycol monomethyl ether (MPEG) phase change unit and a vinyl unit was synthesized via the modification of hydrogen group of MPEG. Secondly, by copolymerization of the copolymer monomer and phenyl ethylene, a novel polymeric based solid-solid phase change heat storage material was prepared. The composition, structure and properties of the novel polymeric based solid-solid phase change material were characterized by IR, 1 H NMR, DSC, WAXD, and POM, respectively. The results show that the novel polymeric based solid-solid phase change material possesses of excellent crystal properties and high phase change enthalpy.

  1. Deriving Biomonitoring Equivalents for selected E- and P-series glycol ethers for public health risk assessment.

    Science.gov (United States)

    Poet, Torka; Ball, Nicholas; Hays, Sean M

    2016-01-01

    Glycol ethers are a widely used class of solvents that may lead to both workplace and general population exposures. Biomonitoring studies are available that have quantified glycol ethers or their metabolites in blood and/or urine amongst exposed populations. These biomonitoring levels indicate exposures to the glycol ethers, but do not by themselves indicate a health hazard risk. Biomonitoring Equivalents (BEs) have been created to provide the ability to interpret human biomonitoring data in a public health risk context. The BE is defined as the concentration of a chemical or metabolite in a biological fluid (blood or urine) that is consistent with exposures at a regulatory derived safe exposure limit, such as a tolerable daily intake (TDI). In this exercise, we derived BEs for general population exposures for selected E- and P-series glycol ethers based on their respective derived no effect levels (DNELs). Selected DNELs have been derived as part of respective Registration, Evaluation, Authorisation and Regulation of Chemicals (REACh) regulation dossiers in the EU. The BEs derived here are unique in the sense that they are the first BEs derived for urinary excretion of compounds following inhalation exposures. The urinary mass excretion fractions (Fue) of the acetic acid metabolites for the E-series GEs range from approximately 0.2 to 0.7. The Fues for the excretion of the parent P-series GEs range from approximately 0.1 to 0.2, with the exception of propylene glycol methyl ether and its acetate (Fue = 0.004). Despite the narrow range of Fues, the BEs exhibit a larger range, resulting from the larger range in DNELs across GEs. The BEs derived here can be used to interpret human biomonitoring data for inhalation exposures to GEs amongst the general population. Copyright © 2015 Elsevier GmbH. All rights reserved.

  2. 40 CFR 721.8079 - Isophorone diisocyanate neopentyl glycol adipate polyurethane prepolymer.

    Science.gov (United States)

    2010-07-01

    ... glycol adipate polyurethane prepolymer. 721.8079 Section 721.8079 Protection of Environment ENVIRONMENTAL... adipate polyurethane prepolymer. (a) Chemical substance and significant new uses subject to reporting. (1... polyurethane prepolymer (PMN P-94-1743) is subject to reporting under this section for the significant new uses...

  3. Biomedical Applications of Gold Nanoparticles Functionalized Using Hetero-Bifunctional Poly(ethylene glycol) Spacer

    National Research Council Canada - National Science Library

    Fu, Wei; Shenoy, Dinesh; Li, Jane; Crasto, Curtis; Jones, Graham; Dimarzio, Charles; Sridhar, Srinivas; Amiji, Mansoor

    2005-01-01

    To increase the targeting potential, circulation time, and the flexibility of surface-attached biomedically-relevant ligands on gold nanoparticles, hetero-bifunctional poly(ethylene glycol) (PEG, MW 1,500...

  4. Composite film fabricated on biomedical material with corona streamer plasma processing to mitigate bacterial adhesion

    Science.gov (United States)

    Alhamarneh, Ibrahim; Pedrow, Patrick; Eskhan, Asma; Abu-Lail, Nehal

    2011-10-01

    Composite films might control bacterial adhesion and concomitant biofouling that afflicts biomedical materials. Different size molecules of polyethylene glycol (PEG) with nominal molecular weights 600, 2000, and 20000 g/mol were used to synthesize composite films with plasma processing and dip-coating procedures on surgical-grade 316L stainless steel. Before dip-coating, the substrate was pre-coated with plasma-polymerized di(ethylene glycol) vinyl ether (pp-EO2V) in an atmospheric pressure corona streamer plasma reactor. The PEG dip-coating step followed immediately in the same chamber due to the finite lifetime of radicals associated with freshly deposited pp-EO2V. Morphology of the composite film was investigated with an ESEM. FTIR confirmed incorporation of pp-EO2V and PEG species into the composite film. More investigations on the composite film were conducted by XPS measurements. Adhesion of the composite film was evaluated with a standard peel-off test. Stability of the composite film in buffer solution was evaluated by AFM. AFM was also used to measure the film roughness and thickness. Polar and non-polar contact angle measurements were included.

  5. Comparative studies on structural properties and antimicrobial potential of spinel ferrite nanoparticles synthesized using various methods

    Science.gov (United States)

    Baraliya, Jagdish D.; Rakhashiya, Purvi M.; Patel, Pooja P.; Thaker, Vrinda S.; Joshi, Hiren H.

    2017-05-01

    In this study, novel multifunctional magnetic iron-based nanoparticles (CoFe2O4) coated with silica, silica-DEG (diethylene glycol), PEG (polyethylene glycol) were synthesized using Auto Combustion Method (ACM), Co-precipitation Method (COPM), Citrate Precursor Method (CPM), Flash Combustion Method (FCM). These spinel ferrite nanoparticles also contain very high antibacterial properties to fulfill the requirements of a drug delivery system so that the antibiotic concentration could be minimized. A potential delivery system could be based on a ferromagnetic fluid. The effects of various preparation methods on the physical properties of the nanoparticles were examined. The nanoparticles were also tested against four human pathogenic bacteria (Gram negative E.coli, P. aeruginosa, Gram positive S. aureus, S. pyogenus) and two fungi (C. albicans, A.niger). It was revealed that a nanoparticle has strong antibacterial activity as compared to antifungal. Further, Gram positive bacteria are more affected than Gram negative bacteria. It was also clear that different methods of coating have great influence on the antimicrobial properties. It was observed that these nanoparticles have significantly different but potentially very high antimicrobial activities against the tested organisms than found elsewhere by other nanoparticles on the same organisms.

  6. Maltose neopentyl glycol-3 (MNG-3) analogues for membrane protein study

    DEFF Research Database (Denmark)

    Cho, Kyung Ho; Husri, Mohd; Amin, Anowarul

    2015-01-01

    characteristics is necessary to advance MP research. Maltose neopentyl glycol-3 (MNG-3) has contributed to >10 crystal structures including G-protein coupled receptors. Here, we prepared MNG-3 analogues and characterised their properties using selected MPs. Most MNGs were superior to a conventional detergent, n...

  7. Newly designed PdRuBi/N-Graphene catalysts with synergistic effects for enhanced ethylene glycol electro-oxidation

    International Nuclear Information System (INIS)

    Li, Tengfei; Huang, Yiyin; Ding, Kui; Wu, Peng; Abbas, Syed Comail; Ghausi, Muhammad Arsalan; Zhang, Teng; Wang, Yaobing

    2016-01-01

    Graphical abstract: We rationally design and synthesize a ternary PdRuBi/NG catalyst with significantly enhanced catalytic activity with synergetic effect of Ru and Bi towards ethylene glycol electro-oxidation. - Abstract: Palladium (Pd)-based catalysts are appealing electro-catalysts for alcohol oxidation reaction in fuel cell, but still not efficient as the complicated oxidation process and sluggish kinetic. Here we rationally design and synthesize a PdRuBi/NG tri-metallic catalyst with space synergetic effect for enhanced ethylene glycol electro-oxidation, in which both Ru and Bi in the catalyst are synergistic effective in promoting catalytic activity of Pd catalytic interlayer by electronic effect and surface modification mechanism respectively. It shows 4.2 times higher peak current density towards ethylene glycol electro-oxidation than commercial Pd/C catalyst, and the catalytic durability is also greatly improved.

  8. Multiarm-polyethylene glycol-polyglutamic acid peptide dendrimer: Design, synthesis, and dissolving thrombus.

    Science.gov (United States)

    Zhang, Shao-Fei; Lü, Shaoyu; Gao, Chunmei; Yang, Jiandong; Yan, Xiang; Li, Tao; Wen, Na; Huang, Mengjie; Liu, Mingzhu

    2018-06-01

    Thrombotic events affect many individuals in a number of ways, all of which can cause significant morbidity and mortality. Nattokinase (NK), as a novel thrombolytic drug, has been used for thrombolytic therapy. It not only possesses plasminogen activator activity, but also directly digests fibrin through limited proteolysis. However, it may undergo inactivation and denaturation in the harsh external environment. In this study, a multiarm-polyethylene glycol-polyglutamic acid peptide dendrimer was fabricated and used as a carrier for NK protection and delivery. Different arm numbers of polyethylene glycol-polyglutamic acid peptide dendrimers (x-PEG(G 3 ) x , x = 2, 4, 6, 8) were designed, prepared, and characterized by 1 H NMR and FTIR. Then, x-PEG(G 3 ) x were loaded with NK to form nanocomposites. Their size and morphology were determined by dynamic light scattering and transmission electron microscopy. Enzyme activity was evaluated via UV-Vis absorbance spectra, fluorescence spectra, circular dichroism spectra, and zeta potential measurements. The study reveals that the obtained x-PEG(G 3 ) x /NK nanocomposites possess high enzyme activity. In addition, the nanocomposites show increased viability of rat macrophage cells, and excellent thrombolysis ability in vitro and in vivo. This work establishes a multiarm-polyethylene glycol-polyglutamic acid peptide dendrimer with potential application in NK carrier and thrombolytic therapy. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 1687-1696, 2018. © 2018 Wiley Periodicals, Inc.

  9. Solid self-nanoemulsifying drug delivery systems for oral delivery of polypeptide-k: Formulation, optimization, in-vitro and in-vivo antidiabetic evaluation.

    Science.gov (United States)

    Garg, Varun; Kaur, Puneet; Singh, Sachin Kumar; Kumar, Bimlesh; Bawa, Palak; Gulati, Monica; Yadav, Ankit Kumar

    2017-11-15

    Development of self-nanoemulsifying drug delivery systems (SNEDDS) of polypeptide-k (PPK) is reported with the aim to achieve its oral delivery. Box-Behnken design (BBD) was adopted to develop and optimize the composition of SNEDDS. Oleoyl polyoxyl-6 glycerides (A), Tween 80 (B), and diethylene glycol monoethyl ether (C) were used as oil, surfactant and co-surfactant, respectively as independent variables. The effect of variation in their composition was observed on the mean droplet size (y1), polydispersity index (PDI) (y2), % drug loading (y3) and zeta potential (y4). As per the optimal design, seventeen SNEDDS prototypes were prepared. The optimized composition of SNEDDS formulation was 25% v/v Oleoyl polyoxyl-6 glycerides, 37% v/v Tween 80, 38% v/v diethylene glycol monoethyl ether, and 3% w/v PPK. The optimized formulation revealed values of y1, y2, y3, and y4 as 31.89nm, 0.16, 73.15%, and -15.65mV, respectively. Further the optimized liquid SNEDDS were solidified through spray drying using various hydrophilic and hydrophobic carriers. Among the various carriers, Aerosil 200 was found to provide desirable flow, compression, disintegration and dissolution properties. Both, liquid and solid-SNEDDS have shown release of >90% within 10min. The formulation was found stable with change in pH, dilution, temperature variation and freeze thaw cycles in terms of droplet size, zeta potential, drug precipitation and phase separation. Crystalline PPK was observed in amorphous state in solid SNEDDS when characterized through DSC and PXRD studies. The biochemical, hematological and histopathological results of streptozotocin induced diabetic rats shown promising antidiabetic potential of PPK loaded in SNEDDS at its both the doses (i.e. 400mg/kg and 800mg/kg) as compared to its naïve form at both the doses. The study revealed successful formulation of SNEDDS for oral delivery of PPK. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Formation of Underbrushes on thiolated Poly (ethylene glycol) PEG monolayers by Oligoethylene glycol (OEG) terminated Alkane Thiols on Gold

    DEFF Research Database (Denmark)

    Lokanathan, Arcot R.

    2011-01-01

    Adding underbrushes of oligoethylene glycol (OEG) to monolayers of long chain PEG molecules on a surface is one of the strategies [1] in designing a suitable platform for antifouling purpose, where it is possible to have high graft density and molecular conformational freedom[4] simultaneously......, there by maximal retention of activity of covalently immobilised antifouling enzyme [2] on PEG surfaces along with resistance to protein adsorption[3]. Here we present some our studies on the addition of OEG thiol molecules over a self assembled monolayer of PEG thiol on gold. The kinetics of addition of OEG thiol...

  11. Electrochemical performance for the electro-oxidation of ethylene glycol on a carbon-supported platinum catalyst at intermediate temperature

    International Nuclear Information System (INIS)

    Kosaka, Fumihiko; Oshima, Yoshito; Otomo, Junichiro

    2011-01-01

    Highlights: → High oxidation current in ethylene glycol electro-oxidation at intermediate temperature. → High C-C bond dissociation ratio of ethylene glycol at intermediate temperature. → Low selectivity for CH 4 in ethylene glycol electro-oxidation. → High selectivity for CO 2 according to an increase in steam to carbon ratios. - Abstract: To determine the kinetic performance of the electro-oxidation of a polyalcohol operating at relatively high temperatures, direct electrochemical oxidation of ethylene glycol on a carbon supported platinum catalyst (Pt/C) was investigated at intermediate temperatures (235-255 o C) using a single cell fabricated with a proton-conducting solid electrolyte, CsH 2 PO 4 , which has high proton conductivity (>10 -2 S cm -1 ) in the intermediate temperature region. A high oxidation current density was observed, comparable to that for methanol electro-oxidation and also higher than that for ethanol electro-oxidation. The main products of ethylene glycol electro-oxidation were H 2 , CO 2 , CO and a small amount of CH 4 formation was also observed. On the other hand, the amounts of C 2 products such as acetaldehyde, acetic acid and glycolaldehyde were quite small and were lower by about two orders of magnitude than the gaseous reaction products. This clearly shows that C-C bond dissociation proceeds almost to completion at intermediate temperatures and the dissociation ratio reached a value above 95%. The present observations and kinetic analysis suggest the effective application of direct alcohol fuel cells operating at intermediate temperatures and indicate the possibility of total oxidation of alcohol fuels.

  12. Modelling of phase equilibria of glycol ethers mixtures using an association model

    DEFF Research Database (Denmark)

    Garrido, Nuno M.; Folas, Georgios; Kontogeorgis, Georgios

    2008-01-01

    Vapor-liquid and liquid-liquid equilibria of glycol ethers (surfactant) mixtures with hydrocarbons, polar compounds and water are calculated using an association model, the Cubic-Plus-Association Equation of State. Parameters are estimated for several non-ionic surfactants of the polyoxyethylene ...

  13. The effect of Centella asiatica, vitamins, glycolic acid and their mixtures preparations in stimulating collagen and fibronectin synthesis in cultured human skin fibroblast.

    Science.gov (United States)

    Hashim, Puziah

    2014-03-01

    Centella asiatica (Linn.) Urban is well known in promoting wound healing and provides significant benefits in skin care and therapeutic products formulation. Glycolic acid and vitamins also play a role in the enhancement of collagen and fibronectin synthesis. Here, we evaluate the specific effect of Centella asiatica (CA), vitamins, glycolic acid and their mixture preparations to stimulate collagen and fibronectin synthesis in cultured human fibroblast cells. The fibroblast cells are incubated with CA, glycolic acid, vitamins and their mixture preparations for 48 h. The cell lysates were analyzed for protein content and collagen synthesis by direct binding enzyme immunoassay. The fibronectin of the cultured supernatant was measured by sandwich enzyme immunoassay. The results showed that CA, glycolic acid, vitamins A, E and C significantly stimulate collagen and fibronectin synthesis in the fibroblast. Addition of glycolic acid and vitamins to CA further increased the levels of collagen and fibronectin synthesis to 8.55 and 23.75 μg/100 μg, respectively. CA, glycolic acid, vitamins A, E, and C, and their mixtures demonstrated stimulatory effect on both extra-cellular matrix synthesis of collagen and fibronectin in in vitro studies on human foreskin fibroblasts, which is beneficial to skin care and therapeutic products formulation.

  14. IRIS Toxicological Review of Ethylene Glycol Mono-Butyl ...

    Science.gov (United States)

    EPA released the draft report, Toxicological Review for Ethylene Glycol Mono-Butyl Ether , that was distributed to Federal agencies and White House Offices for comment during the Science Discussion step of the IRIS Assessment Development Process. Comments received from other Federal agencies and White House Offices are provided below with external peer review panel comments. EPA is conducting a peer review of the scientific basis supporting the human health hazard and dose-response assessment of EGBE that will appear on the Integrated Risk Information System (IRIS) database.

  15. Controlled release of potassium chloride from radiation-polymerized copolymer matrices

    International Nuclear Information System (INIS)

    Yoshida, Masaru; Kumakura, Minoru; Kaetsu, Isao

    1979-01-01

    Release behavior of potassium chloride (KCl) from the flat circular copolymer composites, obtained by radiation-induced polymerization at low temperatures, was studied. The release rate agreed with the first-order kinetics based on the Noyes-Whitney equation in relation to the swelling of the composites. Release profiles of KCl from copolymer composites was affected by monomer composition between hydroxyethyl acrylate (HEA) and polyfunctional glass-forming monomers such as 2-hydroxyethyl methacrylate (HEMA), diethylene glycol dimethacrylate (DGDA), and trimethylolpropane trimethacrylate (TMPT) owing to change of swelling property of copolymers. The release rate decreased at HEA-poor composition in any system. In the case of hydrophobic comonomer system such as glycidyl methacrylate (GMA) and DGDA, release profile of KCl showed a minimum at 50% GMA-50% DGDA monomer composition. (author)

  16. A study on superoxide dismutase activity of some model compounds.

    Science.gov (United States)

    Liao, Z; Liu, W; Liu, J; Jiang, Y; Shi, J; Liu, C

    1994-08-15

    The synthesis and characteristics of a binuclear ligand N,N,N',N'-tetrakis (2'-benzimidazolyl methyl)-1,4-diethylene amino glycol ether (EGTB) and its series of coordination compounds containing copper(II), iron(III), and manganese(II) with and without exogenous bridging ligand which was imidazolate ion (Im-), bipyridine (bpy), or 1,10-phenanthroline (phen) are reported. Depending on the redox potentials by cyclic voltammetry, the coordination compounds can act as catalysts for the dismutation of superoxide radicals (O2-). The detection of the rate constant of the reaction of superoxide ion with nitroblue tetrazolium (NBT) which is inhibited by superoxide dismutase (SOD) and its model compounds of the EGTB system has been performed by a modified illumination method. The rate constants kQ of the catalytic dismutation have been obtained.

  17. Enhanced electrochemical performance of different morphological C/LiMnPO4 nanoparticles from hollow-sphere Li3PO4 precursor via a delicate polyol-assisted hydrothermal method

    Science.gov (United States)

    Cui, Yu-Ting; Xu, Ning; Kou, Li-Qin; Wu, Meng-Tao; Chen, Li

    2014-03-01

    With the hollow-sphere Li3PO4 as precursor, a delicate polyol-assisted hydrothermal method is devised to synthesize high-performance LiMnPO4. Orthorhombic shaped, irregular flaky shaped and sphere-like LiMnPO4 are sequentially prepared by decreasing the water-diethylene glycol (DEG) ratio. The capacity, cycling stability and rate performance of all samples prepared by the new synthesis method are improved significantly. And the C/LiMnPO4 with irregular flaky shape exhibits a capacity of 154.1 mA h g-1 at C/20, 147.4 mA h g-1 at C/10 and 102.5 mA h g-1 at 2 C, which is the best performance ever reported for LiMnPO4 active material with similar carbon additives.

  18. Comparison of conventional freezing and vitrification with dimethylformamide and ethylene glycol for cryopreservation of ovine embryos.

    Science.gov (United States)

    Varago, F C; Moutacas, V S; Carvalho, B C; Serapião, R V; Vieira, F; Chiarini-Garcia, H; Brandão, F Z; Camargo, L S; Henry, M; Lagares, M A

    2014-10-01

    The aim of this work was to evaluate the efficiency of the cryoprotectants dimethylformamide and ethylene glycol for cryopreservation of ovine embryos using vitrification and conventional freezing. The recovered embryos were distributed randomly in three treatment groups: Gr. 1: conventional freezing (n = 44), Gr. 2: vitrification with ethylene glycol (n = 39) and Gr. 3: vitrification with dimethylformamide (n = 38). Quality of fresh embryos in control group as well as of frozen and vitrified embryos was examined by three methodologies: staining with propidium iodide and Hoechst 33258 and evaluation under fluorescent microscopy, evaluation of re-expansion and hatching rates after culture, and determination of apoptotic index with TUNEL technique. It was established that re-expansion rate in all treatment groups was similar. In the same time, hatching rates were higher in Gr. 1 (40.5%) and Gr. 2 (35.3%) in comparison with Gr. 3 (15.5%, p conventional freezing, 10.1 ± 8.5, p conventional freezing) and fresh embryos. In conclusion, the dimethylformamide and ethylene glycol used as cryoprotectant to vitrify ovine embryos, in the concentrations and exposition time tested in this work, were not as efficient as the conventional freezing for cryopreservation of ovine embryos Thus, the conventional freezing with ethylene glycol was the most efficient method to cryopreserve ovine embryos in comparison with vitrification. © 2014 Blackwell Verlag GmbH.

  19. A tetraethylene glycol coat gives gold nanoparticles long in vivo half-lives with minimal increase in size

    Directory of Open Access Journals (Sweden)

    Willett JDS

    2017-03-01

    Full Text Available Julian DS Willett, Marlon G Lawrence, Jennifer C Wilder, Oliver Smithies† Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA †Dr Oliver Smithies passed away on January 10, 2017 Abstract: In this study, we describe the experiments determining whether coating gold nanoparticles with tetraethylene glycol (TEG provides pharmacologically relevant advantages, such as increased serum half-life and resistance to protein adsorption. Monodisperse TEG-coated, NaBH4-reduced gold nanoparticles with a hydrodynamic size comparable to albumin were synthesized by reducing gold chloride with NaBH4 under alkaline conditions in the presence of TEG-SH. The particles were characterized by gel electrophoresis, column chromatography, and transmission electron microscopy. The nanoparticles were subsequently injected intravenously into mice, and their half-lives and final destinations were determined via photometric analysis, light microscopy (LM, and transmission electron microscopy. The TEG particles had a long half-life (~400 minutes that was not influenced by splenectomy. After 500 minutes of injection, TEG particles were found in kidney proximal tubule cell vesicles and in spleen red and white pulp. The particles induced apoptosis in the spleen red pulp but not in white pulp or the kidney. Some of the TEG particles appeared to have undergone ligand exchange reactions that increased their charge. The TEG particles were shown to be resistant to nonspecific protein adsorption, as judged by gel electrophoresis and column chromatography. These results demonstrate that naturally monodisperse, small-sized gold nanoparticles coated with TEG have long in vivo plasma half-lives, are minimally toxic, and are resistant to protein adsorption. This suggests that a TEG coating should be considered as an alternative to a polyethylene glycol coating, which is polydisperse and of much larger size. Keywords

  20. Comparison of polyethylene glycol 3350 and lactulose for treatment of chronic constipation in children.

    Science.gov (United States)

    Gremse, David A; Hixon, Jamie; Crutchfield, Alysia

    2002-05-01

    Polyethylene glycol (PEG) 3350 and lactulose were compared in an unblinded, randomized, crossover design for treatment of constipation in 37 children aged 2 to 16 years. Subjects received lactulose (1.3 g/kg/d divided twice daily up to 20 g) or PEG 3350 (10 g/m2/day) for 2 weeks. PEG 3350 significantly decreased the total colonic transit time compared to lactulose (47.6+/-2.7 vs 55.3+/-2.4 hours, mean +/- SE, PEG 3350 vs lactulose, respectively, p = 0.038). The stool frequency, form, and the ease of passage were similar for each laxative. Polyethylene glycol 3350 is an effective laxative for the treatment of chronic constipation in children.

  1. [Emission characteristics and safety evaluation of volatile organic compounds in manufacturing processes of automotive coatings].

    Science.gov (United States)

    Zeng, Pei-Yuan; Li, Jian-Jun; Liao, Dong-Qi; Tu, Xiang; Xu, Mei-Ying; Sun, Guo-Ping

    2013-12-01

    Emission characteristics of volatile organic compounds (VOCs) were investigated in an automotive coating manufacturing enterprise. Air samples were taken from eight different manufacturing areas in three workshops, and the species of VOCs and their concentrations were measured by gas chromatography-mass spectrometry (GC-MS). Safety evaluation was also conducted by comparing the concentration of VOCs with the permissible concentration-short term exposure limit (PC-STEL) regulated by the Ministry of Health. The results showed that fifteen VOCs were detected in the indoor air of the automotive coatings workshop, including benzene, toluene, ethylbenzene, xylene, ethyl acetate, butyl acetate, methyl isobutyl ketone, propylene glycol monomethyl ether acetate, trimethylbenzene and ethylene glycol monobutyl ether, Their concentrations widely ranged from 0.51 to 593.14 mg x m(-3). The concentrations of TVOCs were significantly different among different manufacturing processes. Even in the same manufacturing process, the concentrations of each component measured at different times were also greatly different. The predominant VOCs of indoor air in the workshop were identified to be ethylbenzene and butyl acetate. The concentrations of most VOCs exceeded the occupational exposure limits, so the corresponding control measures should be taken to protect the health of the workers.

  2. IRIS Toxicological Review of Ethylene Glycol Mono Butyl Ether (Egbe) (Final Report)

    Science.gov (United States)

    EPA has finalized the Toxicological Review of Ethylene Glycol Mono Butyl Ether: in support of the Integrated Risk Information System (IRIS). Now final, this assessment may be used by EPA’s program and regional offices to inform decisions to protect human health.

  3. Cyanobacterial Lactate Oxidases Serve as Essential Partners in N2 Fixation and Evolved into Photorespiratory Glycolate Oxidases in Plants[w

    Science.gov (United States)

    Hackenberg, Claudia; Kern, Ramona; Hüge, Jan; Stal, Lucas J.; Tsuji, Yoshinori; Kopka, Joachim; Shiraiwa, Yoshihiro; Bauwe, Hermann; Hagemann, Martin

    2011-01-01

    Glycolate oxidase (GOX) is an essential enzyme involved in photorespiratory metabolism in plants. In cyanobacteria and green algae, the corresponding reaction is catalyzed by glycolate dehydrogenases (GlcD). The genomes of N2-fixing cyanobacteria, such as Nostoc PCC 7120 and green algae, appear to harbor genes for both GlcD and GOX proteins. The GOX-like proteins from Nostoc (No-LOX) and from Chlamydomonas reinhardtii showed high l-lactate oxidase (LOX) and low GOX activities, whereas glycolate was the preferred substrate of the phylogenetically related At-GOX2 from Arabidopsis thaliana. Changing the active site of No-LOX to that of At-GOX2 by site-specific mutagenesis reversed the LOX/GOX activity ratio of No-LOX. Despite its low GOX activity, No-LOX overexpression decreased the accumulation of toxic glycolate in a cyanobacterial photorespiratory mutant and restored its ability to grow in air. A LOX-deficient Nostoc mutant grew normally in nitrate-containing medium but died under N2-fixing conditions. Cultivation under low oxygen rescued this lethal phenotype, indicating that N2 fixation was more sensitive to O2 in the Δlox Nostoc mutant than in the wild type. We propose that LOX primarily serves as an O2-scavenging enzyme to protect nitrogenase in extant N2-fixing cyanobacteria, whereas in plants it has evolved into GOX, responsible for glycolate oxidation during photorespiration. PMID:21828292

  4. Characterization of Tin/Ethylene Glycol Solar Nanofluids Synthesized by Femtosecond Laser Radiation.

    Science.gov (United States)

    Torres-Mendieta, Rafael; Mondragón, Rosa; Puerto-Belda, Verónica; Mendoza-Yero, Omel; Lancis, Jesús; Juliá, J Enrique; Mínguez-Vega, Gladys

    2017-05-05

    Solar energy is available over wide geographical areas and its harnessing is becoming an essential tool to satisfy the ever-increasing demand for energy with minimal environmental impact. Solar nanofluids are a novel solar receiver concept for efficient harvesting of solar radiation based on volumetric absorption of directly irradiated nanoparticles in a heat transfer fluid. Herein, the fabrication of a solar nanofluid by pulsed laser ablation in liquids was explored. This study was conducted with the ablation of bulk tin immersed in ethylene glycol with a femtosecond laser. Laser irradiation promotes the formation of tin nanoparticles that are collected in the ethylene glycol as colloids, creating the solar nanofluid. The ability to trap incoming electromagnetic radiation, thermal conductivity, and the stability of the solar nanofluid in comparison with conventional synthesis methods is enhanced. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Oxygen-18 as a tool for studying photorespiration. Oxygen uptake and incorporation into glycolate, glycine and serine

    International Nuclear Information System (INIS)

    Gerster, R.; Dimon, B.; Tournier, P.; Peybernes, A.

    1977-01-01

    The intensity of photosynthesis and photorespiration has been determined by measuring 16 O 2 evolvement and 18 O 2 uptake on algae and leaves. In the case of algae, there is still an important oxygen uptake even when ribulose diphosphate oxygenase is inhibited by 10 -3 M cyanide. Oxygen-18 incorporation into glycolate, glycine and serine of photorespiring algae and leaves exposed to atmospheres containing 18 O 2 has also been measured. Only one of the two atoms present in molecular oxygen was incorporated into the carboxyl group of the glycolate excreted from algae; the rate of 18 O incorporation was important (65 to 80% according to experimental conditions), even in the presence of 10 -3 M cyanide. Thus, oxidation of ribulose diphosphate is not the sole reaction leading to 18 O glycolate synthesis. In the case of maize, there was a rapid and important 18 O incorporation into the carboxyl group of glycine and serine, the kinetics of which was determined as a function of CO 2 presence in the atmosphere. These results suggest that photorespiration is also operating in C 4 species. Furthermore, in vitro experiments showed that phosphorylated ceto-acids of the Calvin cycle were very sensitive to H 2 O 2 ; the corresponding reaction can explain O 2 uptake and 18 O labelling of glycolate. (author)

  6. Comparative Study of Structure-Property Relationships in Polymer Networks Based on Bis-GMA, TEGDMA and Various Urethane-Dimethacrylates

    Directory of Open Access Journals (Sweden)

    Izabela Barszczewska-Rybarek

    2015-03-01

    Full Text Available The effect of various dimethacrylates on the structure and properties of homo- and copolymer networks was studied. The 2,2-bis-[4-(2-hydroxy-3- methacryloyloxypropoxyphenyl]-propane (Bis-GMA, triethylene glycol dimethacrylate (TEGDMA and 1,6-bis-(methacryloyloxy-2-ethoxycarbonylamino-2,4,4-trimethylhexane (HEMA/TMDI, all popular in dentistry, as well as five urethane-dimethacrylate (UDMA alternatives of HEMA/TMDI were used as monomers. UDMAs were obtained from mono-, di- and tri(ethylene glycol monomethacrylates and various commercial diisocyanates. The chemical structure, degree of conversion (DC and scanning electron microscopy (SEM fracture morphology were related to the mechanical properties of the polymers: flexural strength and modulus, hardness, as well as impact strength. Impact resistance was widely discussed, being lower than expected in the case of poly(UDMAs. It was caused by the heterogeneous morphology of these polymers and only moderate strength of hydrogen bonds between urethane groups, which was not high enough to withstand high impact energy. Bis-GMA, despite having the highest polymer morphological heterogeneity, ensured fair impact resistance, due to having the strongest hydrogen bonds between hydroxyl groups. The TEGDMA homopolymer, despite being heterogeneous, produced the smoothest morphology, which resulted in the lowest brittleness. The UDMA monomer, having diethylene glycol monomethacrylate wings and the isophorone core, could be the most suitable HEMA/TMDI alternative. Its copolymer with Bis-GMA and TEGDMA had improved DC as well as all the mechanical properties.

  7. Alginate-Poly(ethylene glycol Hybrid Microspheres for Primary Cell Microencapsulation

    Directory of Open Access Journals (Sweden)

    Redouan Mahou

    2014-01-01

    Full Text Available The progress of medical therapies, which rely on the transplantation of microencapsulated living cells, depends on the quality of the encapsulating material. Such material has to be biocompatible, and the microencapsulation process must be simple and not harm the cells. Alginate-poly(ethylene glycol hybrid microspheres (alg-PEG-M were produced by combining ionotropic gelation of sodium alginate (Na-alg using calcium ions with covalent crosslinking of vinyl sulfone-terminated multi-arm poly(ethylene glycol (PEG-VS. In a one-step microsphere formation process, fast ionotropic gelation yields spherical calcium alginate gel beads, which serve as a matrix for simultaneously but slowly occurring covalent cross-linking of the PEG-VS molecules. The feasibility of cell microencapsulation was studied using primary human foreskin fibroblasts (EDX cells as a model. The use of cell culture media as polymer solvent, gelation bath, and storage medium did not negatively affect the alg-PEG-M properties. Microencapsulated EDX cells maintained their viability and proliferated. This study demonstrates the feasibility of primary cell microencapsulation within the novel microsphere type alg-PEG-M, serves as reference for future therapy development, and confirms the suitability of EDX cells as control model.

  8. IRIS Toxicological Review of Ethylene Glycol Mono-Butyl Ether (Egbe) (External Review Draft)

    Science.gov (United States)

    EPA has conducted a peer review of the scientific basis supporting the human health hazard and dose-response assessment of ethylene glycol monobutyl ether that will appear on the Integrated Risk Information System (IRIS) database.

  9. Electrochemical performance for the electro-oxidation of ethylene glycol on a carbon-supported platinum catalyst at intermediate temperature

    Energy Technology Data Exchange (ETDEWEB)

    Kosaka, Fumihiko; Oshima, Yoshito [Department of Environment Systems, Graduate School of Frontier Sciences, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8563 (Japan); Otomo, Junichiro, E-mail: otomo@k.u-tokyo.ac.jp [Department of Environment Systems, Graduate School of Frontier Sciences, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8563 (Japan)

    2011-11-30

    Highlights: > High oxidation current in ethylene glycol electro-oxidation at intermediate temperature. > High C-C bond dissociation ratio of ethylene glycol at intermediate temperature. > Low selectivity for CH{sub 4} in ethylene glycol electro-oxidation. > High selectivity for CO{sub 2} according to an increase in steam to carbon ratios. - Abstract: To determine the kinetic performance of the electro-oxidation of a polyalcohol operating at relatively high temperatures, direct electrochemical oxidation of ethylene glycol on a carbon supported platinum catalyst (Pt/C) was investigated at intermediate temperatures (235-255 {sup o}C) using a single cell fabricated with a proton-conducting solid electrolyte, CsH{sub 2}PO{sub 4}, which has high proton conductivity (>10{sup -2} S cm{sup -1}) in the intermediate temperature region. A high oxidation current density was observed, comparable to that for methanol electro-oxidation and also higher than that for ethanol electro-oxidation. The main products of ethylene glycol electro-oxidation were H{sub 2}, CO{sub 2}, CO and a small amount of CH{sub 4} formation was also observed. On the other hand, the amounts of C{sub 2} products such as acetaldehyde, acetic acid and glycolaldehyde were quite small and were lower by about two orders of magnitude than the gaseous reaction products. This clearly shows that C-C bond dissociation proceeds almost to completion at intermediate temperatures and the dissociation ratio reached a value above 95%. The present observations and kinetic analysis suggest the effective application of direct alcohol fuel cells operating at intermediate temperatures and indicate the possibility of total oxidation of alcohol fuels.

  10. Two new barium-copper-ethylene glycol complexes: Synthesis and structure of BaCu(C2H6O2)n(C2H4O2)2 (N = 3, 6)

    International Nuclear Information System (INIS)

    Love, C.P.; Page, C.J.; Torardi, C.C.

    1992-01-01

    Two crystalline barium-copper-ethylene glycol complexes have been isolated and structurally characterized by single-crystal x-ray diffraction. The solution-phase complex has also been investigated as a molecular precursor for use in sol-gel synthesis of high-temperature superconductors. The first crystalline form has the formula BaCu(C 2 H 6 O 2 ) 6 (C 2 H 4 O 2 ) 2 (1) and has been isolated directly from ethylene glycol solutions of the barium-copper salt. In this molecule, copper is coordinated to the four xygens of two ethylene glycolate ligands in a nearly square planar geometry. Barium is coordinated by three bidentate ethylene glycol molecules and three monodentate ethylene glycol molecules; the 9-fold coordination resembles a trigonal prism with each rectangular face capped. Copper and barium moieties do not share any ethylene glycol or glycolate oxygens; they are found by hydrogen bonding to form linear chains. The second crystal type has formula BaCu(C 2 H 6 O 2 ) 3 (C 2 H 4 O 2 ) 2 (2). It was prepared via crystallization of the mixed-metal alkoxide from an ethylene glycol/methyl ethyl ketone solution. As for 1, the copper is coordinated to four oxygen atoms of two ethylene glycolate ligands in a nearly square planar arrangement. Barium is 8-coordinate in a distorted cubic geometry. It is coordinated to three bidentate ethylene glycol molecules and shares two of the oxygen atoms bound to the copper (one from each coordinated ethylene glycol) to form a discrete molecular barium-copper complex

  11. Triethylene glycol, an active component of Ashwagandha (Withania somnifera) leaves, is responsible for sleep induction.

    Science.gov (United States)

    Kaushik, Mahesh K; Kaul, Sunil C; Wadhwa, Renu; Yanagisawa, Masashi; Urade, Yoshihiro

    2017-01-01

    Insomnia is the most common sleep complaint which occurs due to difficulty in falling asleep or maintaining it. Most of currently available drugs for insomnia develop dependency and/or adverse effects. Hence natural therapies could be an alternative choice of treatment for insomnia. The root or whole plant extract of Ashwagandha (Withania somnifera) has been used to induce sleep in Indian system of traditional home medicine, Ayurveda. However, its active somnogenic components remain unidentified. We investigated the effect of various components of Ashwagandha leaf on sleep regulation by oral administration in mice. We found that the alcoholic extract that contained high amount of active withanolides was ineffective to induce sleep in mice. However, the water extract which contain triethylene glycol as a major component induced significant amount of non-rapid eye movement sleep with slight change in rapid eye movement sleep. Commercially available triethylene glycol also increased non-rapid eye movement sleep in mice in a dose-dependent (10-30 mg/mouse) manner. These results clearly demonstrated that triethylene glycol is an active sleep-inducing component of Ashwagandha leaves and could potentially be useful for insomnia therapy.

  12. Triethylene glycol, an active component of Ashwagandha (Withania somnifera leaves, is responsible for sleep induction.

    Directory of Open Access Journals (Sweden)

    Mahesh K Kaushik

    Full Text Available Insomnia is the most common sleep complaint which occurs due to difficulty in falling asleep or maintaining it. Most of currently available drugs for insomnia develop dependency and/or adverse effects. Hence natural therapies could be an alternative choice of treatment for insomnia. The root or whole plant extract of Ashwagandha (Withania somnifera has been used to induce sleep in Indian system of traditional home medicine, Ayurveda. However, its active somnogenic components remain unidentified. We investigated the effect of various components of Ashwagandha leaf on sleep regulation by oral administration in mice. We found that the alcoholic extract that contained high amount of active withanolides was ineffective to induce sleep in mice. However, the water extract which contain triethylene glycol as a major component induced significant amount of non-rapid eye movement sleep with slight change in rapid eye movement sleep. Commercially available triethylene glycol also increased non-rapid eye movement sleep in mice in a dose-dependent (10-30 mg/mouse manner. These results clearly demonstrated that triethylene glycol is an active sleep-inducing component of Ashwagandha leaves and could potentially be useful for insomnia therapy.

  13. Solubilities, densities and refractive indices for the ternary systems ethylene glycol + MCl + H2O (M = Na, K, Rb, Cs) at (15 and 35) deg. C

    International Nuclear Information System (INIS)

    Zhou Yanhong; Li Shuni; Zhai Quanguo; Jiang Yucheng; Hu Mancheng

    2010-01-01

    The solubilities, densities and refractive indices data for the four ternary systems ethylene glycol + MCl + H 2 O (M = Na, K, Rb, Cs) at different temperatures were measured, with mass fractions of ethylene glycol in the range of 0 to 1.0. In all cases, the presence of ethylene glycol significantly reduces the solubility of the salts in aqueous solution. The experimental data of density, refractive index and solubility of saturated solutions for these systems were correlated using polynomial equations as a function of the mass fraction of ethylene glycol. On the other hand, the refractive index and density of unsaturated solutions was also determined for the four ternary systems with varied unsaturated salt concentrations. Values for both the properties were correlated with the salt concentrations and proportions of ethylene glycol in the solutions.

  14. The determination of aluminum, copper, iron, and lead in glycol formulations by atomic absorption spectroscopy

    Science.gov (United States)

    1977-01-01

    Initial screening tests and the results obtained in developing procedures to determine Al, Cu, Fe, and Pb in glycol formulations are described. Atomic absorption completion was selected for Cu, Fe and Pb, and after comparison with emission spectroscopy, was selected for Al also. Before completion, carbon, iron, and lead are extracted with diethyl dithio carbamate (DDC) into methyl isobutyl ketone (MIBK). Aluminum was also extracted into MIBK using 8-hydroxyquinoline as a chelating agent. As little as 0.02 mg/l carbon and 0.06 mg/l lead or iron may be determined in glycol formulations. As little as 0.3 mg/l aluminum may be determined.

  15. Study of Synthesis Polyethylene glycol oleate Sulfonated as an Anionic Surfactant for Enhanced Oil Recovery (EOR)

    Science.gov (United States)

    Sampora, Yulianti; Juwono, Ariadne L.; Haryono, Agus; Irawan, Yan

    2017-11-01

    Mechanical Enhanced Oil Recovery (EOR) through chemical injection is using an anionic surfactant to improve the recovery of oil residues, particularly in a reservoir area that has certain characteristics. This case led the authors to conduct research on the synthesis of an anionic surfactant based on oleic acid and polyethylene glycol 400 that could be applied as a chemical injection. In this work, we investigate the sulfonation of Polyethylene glycol oleate (PDO) in a sulfuric acid agent. PDO in this experiment was derived from Indonesian palm oil. Variation of mole reactant and reaction time have been studied. The surfactant has been characterized by measuring the interfacial tension, acid value, ester value, saponification value, iodine value, Fourier Transform Infrared (FTIR), and particle size analyzer. There is a new peak at 1170-1178 cm-1 indicating that S=O bond has formed. PDO sulfonate exhibits good surface activity due to interfacial tension of 0,003 mN/m. Thus, polyethylene glycol oleate sulfonate was successfully synthesized and it could be useful as a novel an anionic surfactant.

  16. Huge thermal conductivity enhancement in boron nitride – ethylene glycol nanofluids

    International Nuclear Information System (INIS)

    Żyła, Gaweł; Fal, Jacek; Traciak, Julian; Gizowska, Magdalena; Perkowski, Krzysztof

    2016-01-01

    Paper presents the results of experimental studies on thermophysical properties of boron nitride (BN) plate-like shaped particles in ethylene glycol (EG). Essentially, the studies were focused on the thermal conductivity of suspensions of these particles. Nanofluids were obtained with two-step method (by dispersing BN particles in ethylene glycol) and its’ thermal conductivity was analyzed at various mass concentrations, up to 20 wt. %. Thermal conductivity was measured in temperature range from 293.15 K to 338.15 K with 15 K step. The measurements of thermal conductivity of nanofluids were performed in the system based on a device using the transient line heat source method. Studies have shown that nanofluids’ thermal conductivity increases with increasing fraction of nanoparticles. The results of studies also presented that the thermal conductivity of nanofluids changes very slightly with the increase of temperature. - Highlights: • Huge thermal conductivity enhancement in BN-EG nanofluid was reported. • Thermal conductivity increase very slightly with increasing of the temperature. • Thermal conductivity increase linearly with volume concentration of particles.

  17. Huge thermal conductivity enhancement in boron nitride – ethylene glycol nanofluids

    Energy Technology Data Exchange (ETDEWEB)

    Żyła, Gaweł, E-mail: gzyla@prz.edu.pl [Department of Physics and Medical Engineering, Rzeszow University of Technology, Rzeszow, 35-905 (Poland); Fal, Jacek; Traciak, Julian [Department of Physics and Medical Engineering, Rzeszow University of Technology, Rzeszow, 35-905 (Poland); Gizowska, Magdalena; Perkowski, Krzysztof [Department of Nanotechnology, Institute of Ceramics and Building Materials, Warsaw, 02-676 (Poland)

    2016-09-01

    Paper presents the results of experimental studies on thermophysical properties of boron nitride (BN) plate-like shaped particles in ethylene glycol (EG). Essentially, the studies were focused on the thermal conductivity of suspensions of these particles. Nanofluids were obtained with two-step method (by dispersing BN particles in ethylene glycol) and its’ thermal conductivity was analyzed at various mass concentrations, up to 20 wt. %. Thermal conductivity was measured in temperature range from 293.15 K to 338.15 K with 15 K step. The measurements of thermal conductivity of nanofluids were performed in the system based on a device using the transient line heat source method. Studies have shown that nanofluids’ thermal conductivity increases with increasing fraction of nanoparticles. The results of studies also presented that the thermal conductivity of nanofluids changes very slightly with the increase of temperature. - Highlights: • Huge thermal conductivity enhancement in BN-EG nanofluid was reported. • Thermal conductivity increase very slightly with increasing of the temperature. • Thermal conductivity increase linearly with volume concentration of particles.

  18. 2D SnO2 Nanosheets: Synthesis, Characterization, Structures, and Excellent Sensing Performance to Ethylene Glycol

    Directory of Open Access Journals (Sweden)

    Wenjin Wan

    2018-02-01

    Full Text Available Two dimensional (2DSnO2 nanosheets were synthesized by a substrate-free hydrothermal route using sodium stannate and sodium hydroxide in a mixed solvent of absolute ethanol and deionized water at a lower temperature of 130 °C. The characterization results of the morphology, microstructure, and surface properties of the as-prepared products demonstrated that SnO2 nanosheets with a tetragonal rutile structure, were composed of oriented SnO2 nanoparticles with a diameter of 6–12 nm. The X-ray diffraction (XRD and high-resolution transmission electron microscope (FETEM results demonstrated that the dominant exposed surface of the SnO2 nanoparticles was (101, but not (110. The growth and formation was supposed to follow the oriented attachment mechanism. The SnO2 nanosheets exhibited an excellent sensing response toward ethylene glycol at a lower optimal operating voltage of 3.4 V. The response to 400 ppm ethylene glycol reaches 395 at 3.4 V. Even under the low concentration of 5, 10, and 20 ppm, the sensor exhibited a high response of 6.9, 7.8, and 12.0 to ethylene glycol, respectively. The response of the SnO2 nanosheets exhibited a linear dependence on the ethylene glycol concentration from 5 to 1000 ppm. The excellent sensing performance was attributed to the present SnO2 nanoparticles with small size close to the Debye length, the larger specific surface, the high-energy exposed facets of the (101 surface, and the synergistic effects of the SnO2 nanoparticles of the nanosheets.

  19. Designer solvents for the extraction of glycols and alcohols from aqueous streams

    NARCIS (Netherlands)

    Garcia Chavez, L.Y.

    2013-01-01

    The separation of polar compounds from aqueous streams is one of the most energy intensive operations within the chemical industry, because of the formation of hydrogen bonds that should be broken and the high heat of vaporization of water. Important bulk chemicals like glycols and alcohols produced

  20. Actual Waste Demonstration of the Nitric-Glycolic Flowsheet for Sludge Batch 9 Qualification

    Energy Technology Data Exchange (ETDEWEB)

    Newell, J. D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Pareizs, J. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Martino, C. J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Reboul, S. H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Coleman, C. J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Edwards, T. B. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Johnson, F. C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-09-01

    For each sludge batch that is processed in the Defense Waste Processing Facility (DWPF), the Savannah River National Laboratory (SRNL) performs qualification testing to demonstrate that the sludge batch is processable. Testing performed by the Savannah River National Laboratory has shown glycolic acid to be effective in replacing the function of formic acid in the DWPF chemical process. The nitric-glycolic flowsheet reduces mercury, significantly lowers the catalytic generation of hydrogen and ammonia which could allow purge reduction in the Sludge Receipt and Adjustment Tank (SRAT), stabilizes the pH and chemistry in the SRAT and the Slurry Mix Evaporator (SME), allows for effective rheology adjustment, and is favorable with respect to melter flammability. In order to implement the new flowsheet, SRAT and SME cycles, designated SC-18, were performed using a Sludge Batch (SB) 9 slurry blended from SB8 Tank 40H and Tank 51H samples. The SRAT cycle involved adding nitric and glycolic acids to the sludge, refluxing to steam strip mercury, and dewatering to a targeted solids concentration. Data collected during the SRAT cycle included offgas analyses, process temperatures, heat transfer, and pH measurements. The SME cycle demonstrated the addition of glass frit and the replication of six canister decontamination additions. The demonstration concluded with dewatering to a targeted solids concentration. Data collected during the SME cycle included offgas analyses, process temperatures, heat transfer, and pH measurements. Slurry and condensate samples were collected for subsequent analysis

  1. Maltose-neopentyl glycol (MNG) amphiphiles for solubilization, stabilization and crystallization of membrane proteins.

    Science.gov (United States)

    Chae, Pil Seok; Rasmussen, Søren G F; Rana, Rohini R; Gotfryd, Kamil; Chandra, Richa; Goren, Michael A; Kruse, Andrew C; Nurva, Shailika; Loland, Claus J; Pierre, Yves; Drew, David; Popot, Jean-Luc; Picot, Daniel; Fox, Brian G; Guan, Lan; Gether, Ulrik; Byrne, Bernadette; Kobilka, Brian; Gellman, Samuel H

    2010-12-01

    The understanding of integral membrane protein (IMP) structure and function is hampered by the difficulty of handling these proteins. Aqueous solubilization, necessary for many types of biophysical analysis, generally requires a detergent to shield the large lipophilic surfaces of native IMPs. Many proteins remain difficult to study owing to a lack of suitable detergents. We introduce a class of amphiphiles, each built around a central quaternary carbon atom derived from neopentyl glycol, with hydrophilic groups derived from maltose. Representatives of this maltose-neopentyl glycol (MNG) amphiphile family show favorable behavior relative to conventional detergents, as manifested in multiple membrane protein systems, leading to enhanced structural stability and successful crystallization. MNG amphiphiles are promising tools for membrane protein science because of the ease with which they may be prepared and the facility with which their structures may be varied.

  2. Fermentative degradation of polyethylene glycol by a strictly anaerobic, gram-negative, nonsporeforming bacterium, Pelobacter venetianus sp. nov.

    Science.gov (United States)

    Schink, B; Stieb, M

    1983-06-01

    The synthetic polyether polyethylene glycol (PEG) with a molecular weight of 20,000 was anaerobically degraded in enrichment cultures inoculated with mud of limnic and marine origins. Three strains (Gra PEG 1, Gra PEG 2, and Ko PEG 2) of rod-shaped, gram-negative, nonsporeforming, strictly anaerobic bacteria were isolated in mineral medium with PEG as the sole source of carbon and energy. All strains degraded dimers, oligomers, and polymers of PEG up to a molecular weight of 20,000 completely by fermentation to nearly equal amounts of acetate and ethanol. The monomer ethylene glycol was not degraded. An ethylene glycol-fermenting anaerobe (strain Gra EG 12) isolated from the same enrichments was identified as Acetobacterium woodii. The PEG-fermenting strains did not excrete extracellular depolymerizing enzymes and were inhibited by ethylene glycol, probably owing to a blocking of the cellular uptake system. PEG, some PEG-containing nonionic detergents, 1,2-propanediol, 1,2-butanediol, glycerol, and acetoin were the only growth substrates utilized of a broad variety of sugars, organic acids, and alcohols. The isolates did not reduce sulfate, sulfur, thiosulfate, or nitrate and were independent of growth factors. In coculture with A. woodii or Methanospirillum hungatei, PEGs and ethanol were completely fermented to acetate (and methane). A marine isolate is described as the type strain of a new species, Pelobacter venetianus sp. nov. Its physiology and ecological significance, as well as the importance and possible mechanism of anaerobic polyether degradation, are discussed.

  3. Ternary Vapor–Liquid Equilibrium Measurements and Modeling of Ethylene Glycol (1) + Water (2) + Methane (3) Systems at 6 and 12.5 MPa

    DEFF Research Database (Denmark)

    Kruger, Francois J.; Danielsen, Marie V.; Kontogeorgis, Georgios M.

    2018-01-01

    Novel technologies in the field of subsea gasprocessing include the development of natural gas dehydration facilities, which may operate at high pressure due to their proximity to reservoirs. For the qualification and design of these processing units, ternary vapor−liquid equilibrium data...... are required to validate the thermodynamic models used in the design process. For this purpose, 16 new ternary data points were measured for ethylene glycol (1) + water (2) + methane (3) at 6.0 and 12.5 MPa with temperatures ranging from 288to 323 K and glycol content above 90 wt %. Glycol in gas (y1),water...

  4. Degradation of polyethylene glycol by the integration of chemical and biological treatment; Degradacion de polietilenglicos 10.000 mediante tratamiento integrado quimico-biologico

    Energy Technology Data Exchange (ETDEWEB)

    Otal, E.; Mantzavinos, D.; Lebrato, J. [Universidad de Sevilla (Spain)

    2001-07-01

    Biodegradation of polyethylene glycol 10.000 molecular weight or higher presented problems, therefore suggesting that integration of chemical and biological treatments, to achieve complete degradation from these sizes of polyethylene glycol may be advisable. Integration of wet air oxidation and aerobic biological treatments of polyethylene glycol 10.000 was investigated. The organic compound, used as the sole carbon and energy source, was partially oxidized in a high pressure reactor achieving a 7% of total organic carbon removal. Enhanced biodegradability was assessed by comparing total organic carbon removal using an Aerobic Continuous-flow Stirred Reactor fed with untreated original organic or previously oxidized samples. the reactor operated at steady-state at loading rates of total organic carbon of 69 mg L-1 d-1 for untreated polyethylene glycol 10.000, and 520 mg L-1 d-1 for wet air oxidation-treated polyethylene glycol 10.000, reaching yields of 68 % and 82% of total organic carbon removal, respective. Even using a retention time 8-fold shorter, total organic carbon removal from the wet air oxidation-treated sample was higher than that from the untreated one. therefore, previous wet air oxidation treatment may improve efficiency of conventional biological treatment of industrial wastewaters containing this organic compound. (Author) 18 refs.

  5. FY13 GLYCOLIC-NITRIC ACID FLOWSHEET DEMONSTRATIONS OF THE DWPF CHEMICAL PROCESS CELL WITH SIMULANTS

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, D.; Zamecnik, J.; Best, D.

    2014-03-13

    Savannah River Remediation is evaluating changes to its current Defense Waste Processing Facility flowsheet to replace formic acid with glycolic acid in order to improve processing cycle times and decrease by approximately 100x the production of hydrogen, a potentially flammable gas. Higher throughput is needed in the Chemical Processing Cell since the installation of the bubblers into the melter has increased melt rate. Due to the significant maintenance required for the safety significant gas chromatographs and the potential for production of flammable quantities of hydrogen, eliminating the use of formic acid is highly desirable. Previous testing at the Savannah River National Laboratory has shown that replacing formic acid with glycolic acid allows the reduction and removal of mercury without significant catalytic hydrogen generation. Five back-to-back Sludge Receipt and Adjustment Tank (SRAT) cycles and four back-to-back Slurry Mix Evaporator (SME) cycles were successful in demonstrating the viability of the nitric/glycolic acid flowsheet. The testing was completed in FY13 to determine the impact of process heels (approximately 25% of the material is left behind after transfers). In addition, back-to-back experiments might identify longer-term processing problems. The testing was designed to be prototypic by including sludge simulant, Actinide Removal Product simulant, nitric acid, glycolic acid, and Strip Effluent simulant containing Next Generation Solvent in the SRAT processing and SRAT product simulant, decontamination frit slurry, and process frit slurry in the SME processing. A heel was produced in the first cycle and each subsequent cycle utilized the remaining heel from the previous cycle. Lower SRAT purges were utilized due to the low hydrogen generation. Design basis addition rates and boilup rates were used so the processing time was shorter than current processing rates.

  6. Zero-order release of lysozyme from (poly)ethylene glycol)/poly(butylene terephthalate) matrices

    NARCIS (Netherlands)

    Bezemer, J.M.; Radersma, R.; Grijpma, Dirk W.; Dijkstra, Pieter J.; Feijen, Jan; van Blitterswijk, Clemens

    2000-01-01

    Protein release from a series of biodegradable poly(ether ester) multiblock copolymers, based on poly(ethylene glycol) (PEG) and poly(butylene terephthalate) (PBT) was investigated. Lysozyme-containing PEG/PBT films and microspheres were prepared using an emulsion technique. Proteins were

  7. A new formulation of curcumin using poly (lactic-co-glycolic acid)—polyethylene glycol diblock copolymer as carrier material

    International Nuclear Information System (INIS)

    Tuyen Dao, Thi Phuong; Nguyen, To Hoai; To, Van Vinh; Ho, Thanh Ha; Nguyen, Tuan Anh; Dang, Mau Chien

    2014-01-01

    The aim of this study is to fabricate a nanoparticle formulation of curcumin using a relatively new vehicle as the matrix polymer: poly(lactic-co-glycolic acid) (PLGA)- polyethylene glycol (PEG) diblock copolymer, and to investigate the effects of the various processing parameters on the characteristics of nanoparticles (NPs). We successfully synthesized the matrix polymer of PLGA-PEG by conjugation of PLGA copolymer with a carboxylate end group to a heterobifunctional amine-PEG-methoxy using N-(3-dimethylaminopropyl)-N’-ethylcarbodiimide hydrochloride and N-hydroxysuccinimide as conjugation crosslinkers. The composition of the formed product (PLGA-PEG) was characterized with 500 MHz 1 H nuclear magnetic resonance (NMR). The conjugation of PLGA-PEG was confirmed using Fourier transform infrared (FTIR) spectrum study. This diblock copolymer was then used to prepare the curcumin-loaded NPs through nanoprecipitation technique. With this method, we found that the size distribution depends on the type of solvent, the concentration of polymer and the concentration of surfactant. The particle size and size distribution were measured by dynamic light scattering (DLS). Transmission electron microscope (TEM) and scanning electron microscope (SEM) were used to confirm the size, structure and morphology of the successfully prepared NPs. All of our results showed that they are spherical and quite homologous with mean diameter around of 100–300 nm. Further, we evaluated encapsulation efficiency and some characteristics of NPs through high performance liquid chromatography (HPLC) analyses, zeta-potential measurements and x-ray diffraction studies. The HPLC analyses were performed to determine the amount of curcumin entrapped in NPs. The zeta-potential measurements confirmed the stability of NPs and the successful encapsulation of curcumin within NPs and the x-ray diffraction patterns showed the disordered-crystalline phase of curcumin inside the polymeric matrix. (paper)

  8. Conceptual process design and economic analysis of a process based on liquid-liquid extraction for the recovery of glycols from aqueous streams

    NARCIS (Netherlands)

    Garcia Chavez, L.Y.; Schuur, Boelo; de Haan, A.B.

    2013-01-01

    The recovery of monoethylene glycol (MEG) and 1,2-propylene glycol (PG) from aqueous streams via liquid–liquid extraction (LLE) using a tailor-made ionic liquid [TOA MNaph] is evaluated as an alternative technology to conventional triple effect evaporation of water. In this paper, the conceptual

  9. Zonun’s regime (35% glycolic acid peel with microneedling followed by tretinoin 0.05% plus glycolic acid 12% application followed by salicylic acid 30% peeling for treatment of acne scars: a pilot study

    Directory of Open Access Journals (Sweden)

    Zonunsanga

    2015-01-01

    Full Text Available Introduction: Acne scars are the result of inflammation within the dermis brought on by acne. The scar is created by the wound trying to heal itself resulting in too much collagen in one spot. Current treatment available are not much satisfactory. Microneedling injure the dermis, thereby stimulating collagen formation. Glycolic acid acts as vehicle for delivery of drugs to dermis: in addition to that, it also has a role in collagen induction. Tretinoin helps in collagen formation. Salicylic acid remodel the superficial skin after the treatment. Material and Methods: A total of 4 patients in which 3 out of 4 patient, grade 3 acne scars and 1 out of 4 had grade 2 scar were treated with the regime. After taking consent 35% Glycolic acid peeling was done followed by microneedling. From the next day 12% Glycolic acid plus 0.05% Tretinoin is applied once a day for 2 months. After 2 months 30% Salicylic acid peeling is done. Photographs were taken before treatment, after 1 month and after 2 months of completion of the therapy and compared. Objective assessment was done according to Global Acne Scarring Classification. Result: subjectively 2 patients reported excellent response and 2 patients reported good response. Objectively, all patients showed good to excellent response. Conclusion: Zonun’s regime may be effective for treatment of acne scars.

  10. Delayed ethylene glycol poisoning presenting with abdominal pain and multiple cranial and peripheral neuropathies: a case report

    Directory of Open Access Journals (Sweden)

    Sran Hersharan

    2010-07-01

    Full Text Available Abstract Introduction Ethylene glycol poisoning may pose diagnostic difficulties if the history of ingestion is not volunteered, or if the presentation is delayed. This is because the biochemical features of high anion-gap metabolic acidosis and an osmolar gap resolve within 24 to 72 hours as the ethylene glycol is metabolized to toxic metabolites. This case illustrates the less well-known clinical features of delayed ethylene glycol poisoning, including multiple cranial and peripheral neuropathies, and the clinical findings which may point towards this diagnosis in the absence of a history of ingestion. Case presentation A 53-year-old Afro-Caribbean man presented with vomiting, abdominal pain and oliguria, and was found to have acute renal failure requiring emergency hemofiltration, and raised inflammatory markers. Computed tomography imaging of the abdomen revealed the appearance of bilateral pyelonephritis, however he failed to improve with broad-spectrum antibiotics, and subsequently developed multiple cranial neuropathies and increasing obtundation, necessitating intubation and ventilation. Computed tomography of the brain showed no focal lesions, and a lumbar puncture revealed a raised cerebrospinal fluid opening pressure and cyto-albuminological dissociation. Nerve conduction studies revealed a sensorimotor radiculoneuropathy mimicking a Guillain-Barre type lesion with an atypical distribution. It was only about two weeks after presentation that the history of ethylene glycol ingestion one week before presentation was confirmed. He had a slow recovery on the intensive care unit, requiring renal replacement therapy for eight weeks, and complicated by acute respiratory distress syndrome, neuropathic pain and a slow neurological recovery requiring prolonged rehabilitation. Conclusions Although neuropathy as a result of ethylene glycol poisoning has been described in a few case reports, all of these were in the context of a known history of

  11. Identification of a membrane-bound, glycol-stimulated phospholipase A2 located in the secretory granules of the adrenal medulla

    International Nuclear Information System (INIS)

    Hildebrandt, E.; Albanesi, J.P.

    1991-01-01

    Chromaffin granule membranes prepared from bovine adrenal medullae showed Ca 2+ -stimulated phospholipase A 2 (PLA 2 ) activity when assayed at pH 9.0 with phosphatidylcholine containing an [ 14 C]-arachidonyl group in the 2-position. However, the activity occurred in both soluble and particulate subcellular fractions, and did not codistribute with markers for the secretory granule. PLA 2 activity in the granule membrane preparation was stimulated dramatically by addition of glycerol, ethylene glycole, or poly(ethylene glycol). This glycol-stimulated PLA 2 activity codistributed with membrane-bound dopamine β-hydroxylase, a marker for the granule membranes, through the sequence of differential centrifugation steps employed to prepare the granule membrane fraction, as well as on a sucrose density gradient which resolved the granules from mitochondria, lysosomes, and plasma membrane. The glycol-stimulated PLA 2 of the chromaffin granule was membrane-bound, exhibited a pH optimum of 7.8, retained activity in the presence of EDTA, and was inactivated by p-bromophenacyl bromide. When different 14 C-labeled phospholipids were incorporated into diarachidonylphosphatidylcholine liposomes, 1-palmitoyl-2-arachidonylphosphatidylcholine was a better substrate for this enzyme than 1-palmitoyl-2-oleylphosphatidylcholine or 1-acyl-2-arachidonyl-phosphatidylethhanolamine, and distearoylphosphatidylcholine was not hydrolyzed

  12. Síntese e caracterização de dispersões aquosas de poliuretanos à base de copolímeros em bloco de poli(glicol etilênico e poli(glicol propilênico Synthesis and characterization of polyurethane aquous dispersions based on poly(ethylene glycol and poly(propylene glycol block copolymers

    Directory of Open Access Journals (Sweden)

    Fernanda M. B. Coutinho

    2008-01-01

    Full Text Available Non-polluting polyurethane aqueous dispersions, with 40% of solids content, were synthesized based on block copolymers of poly(ethylene glycol and poly(propylene glycol (PEG-b-PPG, with PEG hydrophilic segments content of 7 and 25%, poly(propylene glycol (PPG, dimethylolpropionic acid (DMPA, isophorone diisocyanate (IPDI, and hydrazine. Different formulations were synthesized by varying the equivalent-grams ratios between isocyanate and hydroxyl groups (NCO/OH and PPG and (PEG-b-PPG. The presence of high amounts of PEG in the formulations provoked the formation of gels. Average particle size and viscosity of the dispersions were determined. Mechanical properties and water absorption resistance of cast films were evaluated.

  13. Hydrodynamic radii of polyethylene glycols in different solvents determined from viscosity measurements

    NARCIS (Netherlands)

    Dohmen-Speelmans, M.P.J.; Pereira, A.M.; Timmer, J.M.K.; Benes, N.E.; Keurentjes, J.T.F.

    2008-01-01

    The hydrodynamic radius, rh, of low molar mass polyethylene glycol, MPEG = (200 to 1000) g·mol-1, in a homologous series of primary alcohols, acetone, and toluene has been determined from viscosity measurements. The viscosity data have been collected using a fast one-point method as well as a more

  14. Aqueous phase reforming of ethylene glycol - Role of intermediates in catalyst performance

    NARCIS (Netherlands)

    de Vlieger, Dennis; Mojet, Barbara; Lefferts, Leonardus; Seshan, Kulathuiyer

    2012-01-01

    Liquid product formation during the aqueous catalytic reforming of ethylene glycol (EG) was studied up to 450 °C and 250 bar pressure. Methanol, ethanol, and acetic acid were the main liquid by-products during EG reforming in the presence of alumina-supported Pt and Pt–Ni catalysts. The effect of

  15. Hydrogen bonding interactions between ethylene glycol and water: density, excess molar volume, and spectral study

    Institute of Scientific and Technical Information of China (English)

    ZHANG JianBin; ZHANG PengYan; MA Kai; HAN Fang; CHEN GuoHua; WEI XiongHui

    2008-01-01

    Studies of the density and the excess molar volume of ethylene glycol (EG)-water mixtures were carried out to illustrate the hydrogen bonding interactions of EG with water at different temperatures, The re-sults suggest that a likely complex of 3 ethylene glycol molecules bonding with 4 water molecules in an ethylene glycol-water mixture (EGW) is formed at the maximal excess molar volume, which displays stronger absorption capabilities for SO2 when the concentration of SO2 reaches 400×106 (volume ratio) in the gas phase. Meanwhile, FTIR and UV spectra of EGWs were recorded at various EG concentra-tions to display the hydrogen bonding interactions of EG with water. The FTIR spectra show that the stretching vibrational band of hydroxyl in the EGWs shifts to a lower frequency and the bending vibra-tional band of water shifts to a higher frequency with increasing the EG concentration, respectively. Furthermore, the UV spectra show that the electron transferring band of the hydroxyl oxygen in EG shows red shift with increasing the EG concentration. The frequency shifts in FTIR spectra and the shifts of absorption bands in UV absorption spectra of EGWs are interpreted as the strong hydrogen bonding interactions of the hydrogen atoms in water with the hydroxyl oxygen atoms of EG.

  16. Hydrogen bonding interactions between ethylene glycol and water:density,excess molar volume,and spectral study

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Studies of the density and the excess molar volume of ethylene glycol (EG)-water mixtures were carried out to illustrate the hydrogen bonding interactions of EG with water at different temperatures. The re-sults suggest that a likely complex of 3 ethylene glycol molecules bonding with 4 water molecules in an ethylene glycol-water mixture (EGW) is formed at the maximal excess molar volume,which displays stronger absorption capabilities for SO2 when the concentration of SO2 reaches 400×10?6 (volume ratio) in the gas phase. Meanwhile,FTIR and UV spectra of EGWs were recorded at various EG concentra-tions to display the hydrogen bonding interactions of EG with water. The FTIR spectra show that the stretching vibrational band of hydroxyl in the EGWs shifts to a lower frequency and the bending vibra-tional band of water shifts to a higher frequency with increasing the EG concentration,respectively. Furthermore,the UV spectra show that the electron transferring band of the hydroxyl oxygen in EG shows red shift with increasing the EG concentration. The frequency shifts in FTIR spectra and the shifts of absorption bands in UV absorption spectra of EGWs are interpreted as the strong hydrogen bonding interactions of the hydrogen atoms in water with the hydroxyl oxygen atoms of EG.

  17. Ethylene glycol causes acyl chain disordering in liquid-crystalline, unsaturated phospholipid model membranes, as measured by 2H NMR

    International Nuclear Information System (INIS)

    Nicolay, K.; Kruijff, B. de; Smaal, E.B.

    1986-01-01

    2 H NMR has been used to probe the effects of ethylene glycol at the level of the acyl chains in liposomes prepared from dioleoylphosphatidic acid or dioleoylphosphatidylcholine, labeled with 2 H at the 11-position of both oleic acid chains. Increasing concentrations of ethylene glycol lead to a proportional and substantial decrease in the quadrupolar splittings, measured from the 2 H NMR spectra of both liposomal system, indicative of acyl chain disordering. (Auth.)

  18. Liver-targeting Resibufogenin-loaded poly(lactic-co-glycolic acid-D-α-tocopheryl polyethylene glycol 1000 succinate nanoparticles for liver cancer therapy

    Directory of Open Access Journals (Sweden)

    Chu QC

    2016-01-01

    Full Text Available Qiuchen Chu,1,* Hong Xu,2,* Meng Gao,1 Xin Guan,1 Hongyan Liu,1 Sa Deng,1 Xiaokui Huo,1 Kexin Liu,1 Yan Tian,1 Xiaochi Ma1 1College of Pharmacy, 2College of Basic Medical Sciences, Dalian Medical University, Dalian, People’s Republic of China *These authors contributed equally to this work Abstract: Liver cancer remains a major problem around the world. Resibufogenin (RBG is a major bioactive compound that was isolated from Chansu (also called toad venom or toad poison, which is a popular traditional Chinese medicine that is obtained from the skin secretions of giant toads. RBG has strong antitumor effects, but its poor aqueous solubility and its cardiotoxicity have limited its clinical use. The aim of this study was to formulate RBG-loaded poly(lactic-co-glycolic acid (PLGA-D-α-tocopheryl polyethylene glycol 1000 succinate nanoparticle (RPTN to enhance the treatment of liver cancer. RPTN, RBG-loaded PLGA nanoparticle (RPN, and RBG/coumarin-6-loaded PLGA-D-α-tocopheryl polyethylene glycol 1000 succinate nanoparticle (RCPTN were prepared. The cellular uptake of RCPTN by HepG2 and HCa-F cells was analyzed using confocal laser scanning microscopy. Apoptosis was induced in HepG2 cells by RPTN, RBG solution (RS, and 5-fluorouracil solution (used as the negative controls, as assayed using flow cytometry. LD50 (median lethal dose values were determined for RS and RPTN, and the liver-targeting properties were determined for RCPTN in intravenously injected mice. A pharmacokinetic study was conducted in rats, and the in vivo therapeutic effects of RPTN, RPN, and RS were examined in a mouse tumor model. The results showed that RCPTN simultaneously delivered both coumarin-6 and RBG into HepG2 and HCa-F cells. The ratio of apoptotic cells was increased in the RPTN group. The LD50 for RPTN was 2.02-fold higher than the value for RS. Compared to RS, RPTN and RPN both showed a significant difference in vivo not only in the pharmacodynamic study but also in

  19. Development and Stability Evaluation of Liquid Crystal-Based Formulations Containing Glycolic Plant Extracts and Nano-Actives

    Directory of Open Access Journals (Sweden)

    Andreza Rodrigues Ueoka

    2018-03-01

    Full Text Available Emulsions are of great use in cosmetic formulations due to their stability. The aim of this work was to develop and assess organoleptic, physicochemical, and microscopic properties of four auto-emulsifiable oil-in-water formulations. Such formulations were developed containing 4.0% cetearyl alcohol, dicetyl phosphate, and ceteth-10 phosphate (Formulation A, nano-actives obtained from safflower, coconut, and clove oils (Formulation B; a mixture of glycolic extracts from Centella asiatica leaves, Aesculus hippocastanum seeds, and Hamamelis virginiana leaves (Formulation C; association between the nano-actives and glycolic extracts described above (Formulation D. The formulations were trialed for 90 days under the normal stability test. The developed formulations were considered all stable and homogeneous, with liquid crystals possibly being formed. Organoleptic parameters and pH of Formulations A and B remained unchanged, but the color of Formulations C and D changed due to the natural color of the glycolic extracts used. It can be concluded that the formation of liquid crystals increased the stability of the formulations, and future tests should be carried out in order to assess the rheological properties and hydration potential of the developed formulations.

  20. Extraction of strontium and barium by nitrobenzene solution of dicarbolide in the presence of polyethylene glycols

    International Nuclear Information System (INIS)

    Vanura, P.; Makrlik, E.; Rais, J.; Kyrs, M.

    1982-01-01

    Extraction of microamounts of Sr 2+ and Ba 2+ from 0.2 to 1.0 M-HClO 4 by nitrobenzene solutions of dicarbolide H + [Co(C 2 B 9 H 11 ) 2 ] - in the presence of polyethylene glycols (PEG) (average Msub(r)=200,300,400) was investigated. It was found that the extraction of the protonized polyethylene glycol molecule ((H + )sub(org)+L reversible (HL + )sub(org), where the subscript denotes species present in the organic phase) and the extraction of the complex between the extracted ion and polyethylene glycol, i.e., M 2+ +L+2(H + )sub(org) reversible (ML 2+ )sub(org)+2H + , are the predominant reactions in this system. The respective equilibrium constants were determined. The hydration numbers of HL + and ML 2+ ions in the organic phase were obtained from the determination of water content by the Karl Fischer titration method. The extraction constants and stability constants in the organic phase increase in the sequence H + 2+ 2+ and PEG 200< PEG 300< PEG 400 while the hydration numbers decrease in the same sequence. Correlations between the hydration numbers and the extraction constants for these cations were found. (author)

  1. Improved Morphology and Efficiency of n-i-p Planar Perovskite Solar Cells by Processing with Glycol Ether Additives

    KAUST Repository

    Ugur, Esma

    2017-07-31

    Planar perovskite solar cells can be prepared without high temperature processing steps typically associated with mesoporous device architectures; however, their efficiency has been lower and producing high quality perovskite films in planar devices has been challenging. Here, we report a modified two-step interdiffusion protocol suitable to prepare pin-hole free perovskite films with greatly improved morphology. This is achieved by simple addition of small amounts of glycol ethers to the preparation protocol. We unravel the impact the glycol ethers have on the perovskite film formation using in-situ UV-Vis absorbance and GIWAXS experiments. From these experiments we conclude: addition of glycol ethers changes the lead iodide to perovskite conversion dynamics and enhances the conversion efficiency, resulting in more compact polycrystalline films, and it creates micrometer-sized perovskite crystals vertically-aligned across the photoactive layer. Consequently, the average photovoltaic performance increases from 13.5% to 15.9% and reproduciability is enhanced, specifically when 2-methoxyethanol is used as additive.

  2. Improved Morphology and Efficiency of n-i-p Planar Perovskite Solar Cells by Processing with Glycol Ether Additives

    KAUST Repository

    Ugur, Esma; Sheikh, Arif D.; Munir, Rahim; Khan, Jafar Iqbal; Barrit, Dounya; Amassian, Aram; Laquai, Fré dé ric

    2017-01-01

    Planar perovskite solar cells can be prepared without high temperature processing steps typically associated with mesoporous device architectures; however, their efficiency has been lower and producing high quality perovskite films in planar devices has been challenging. Here, we report a modified two-step interdiffusion protocol suitable to prepare pin-hole free perovskite films with greatly improved morphology. This is achieved by simple addition of small amounts of glycol ethers to the preparation protocol. We unravel the impact the glycol ethers have on the perovskite film formation using in-situ UV-Vis absorbance and GIWAXS experiments. From these experiments we conclude: addition of glycol ethers changes the lead iodide to perovskite conversion dynamics and enhances the conversion efficiency, resulting in more compact polycrystalline films, and it creates micrometer-sized perovskite crystals vertically-aligned across the photoactive layer. Consequently, the average photovoltaic performance increases from 13.5% to 15.9% and reproduciability is enhanced, specifically when 2-methoxyethanol is used as additive.

  3. Enhancer-associated H3K4 monomethylation by Trithorax-related, the Drosophila homolog of mammalian Mll3/Mll4.

    Science.gov (United States)

    Herz, Hans-Martin; Mohan, Man; Garruss, Alexander S; Liang, Kaiwei; Takahashi, Yoh-Hei; Mickey, Kristen; Voets, Olaf; Verrijzer, C Peter; Shilatifard, Ali

    2012-12-01

    Monomethylation of histone H3 on Lys 4 (H3K4me1) and acetylation of histone H3 on Lys 27 (H3K27ac) are histone modifications that are highly enriched over the body of actively transcribed genes and on enhancers. Although in yeast all H3K4 methylation patterns, including H3K4me1, are implemented by Set1/COMPASS (complex of proteins associated with Set1), there are three classes of COMPASS-like complexes in Drosophila that could carry out H3K4me1 on enhancers: dSet1, Trithorax, and Trithorax-related (Trr). Here, we report that Trr, the Drosophila homolog of the mammalian Mll3/4 COMPASS-like complexes, can function as a major H3K4 monomethyltransferase on enhancers in vivo. Loss of Trr results in a global decrease of H3K4me1 and H3K27ac levels in various tissues. Assays with the cut wing margin enhancer implied a functional role for Trr in enhancer-mediated processes. A genome-wide analysis demonstrated that Trr is required to maintain the H3K4me1 and H3K27ac chromatin signature that resembles the histone modification patterns described for enhancers. Furthermore, studies in the mammalian system suggested a role for the Trr homolog Mll3 in similar processes. Since Trr and mammalian Mll3/4 complexes are distinguished by bearing a unique subunit, the H3K27 demethylase UTX, we propose a model in which the H3K4 monomethyltransferases Trr/Mll3/Mll4 and the H3K27 demethylase UTX cooperate to regulate the transition from inactive/poised to active enhancers.

  4. Amperometric Biosensor Based on Zirconium Oxide/Polyethylene Glycol/Tyrosinase Composite Film for the Detection of Phenolic Compounds.

    Science.gov (United States)

    Ahmad, Nor Monica; Abdullah, Jaafar; Yusof, Nor Azah; Ab Rashid, Ahmad Hazri; Abd Rahman, Samsulida; Hasan, Md Rakibul

    2016-06-29

    A phenolic biosensor based on a zirconium oxide/polyethylene glycol/tyrosinase composite film for the detection of phenolic compounds has been explored. The formation of the composite film was expected via electrostatic interaction between hexacetyltrimethylammonium bromide (CTAB), polyethylene glycol (PEG), and zirconium oxide nanoparticles casted on screen printed carbon electrode (SPCE). Herein, the electrode was treated by casting hexacetyltrimethylammonium bromide on SPCE to promote a positively charged surface. Later, zirconium oxide was mixed with polyethylene glycol and the mixture was dropped cast onto the positively charged SPCE/CTAB. Tyrosinase was further immobilized onto the modified SPCE. Characterization of the prepared nanocomposite film and the modified SPCE surface was investigated by scanning electron microscopy (SEM), Electrochemical Impedance Spectroscopy (EIS), and Cyclic voltamogram (CV). The developed biosensor exhibits rapid response for less than 10 s. Two linear calibration curves towards phenol in the concentrations ranges of 0.075-10 µM and 10-55 µM with the detection limit of 0.034 µM were obtained. The biosensor shows high sensitivity and good storage stability for at least 30 days.

  5. Effect of Aquo-glycolic Media and Added Anions on the Anodization of Zircaloy-4 in Sulphamic Acid

    Directory of Open Access Journals (Sweden)

    Viplav Duth Shukla

    2011-01-01

    Full Text Available Anodization of zircaloy-4 in 0.1 M sulphamic acid has been carried out. Kinetics of anodic oxidation of zircaloy-4 has been studied at a constant current density of 8 mA/cm2 and at room temperature. Thickness estimates were made from capacitance data. The plots of formation voltage vs. time, reciprocal capacitance vs. time, reciprocal capacitance vs. formation voltage and thickness vs. formation voltage were drawn and rate of formation, current efficiency and differential field were calculated. The addition of solvent (ethylene glycol showed better kinetic results. For 25%, 50% and 75% aquo-glycolic media, the dielectric constant values are low leading to a marked improvement in the kinetics. In 80% ethylene glycol, though the dielectric constant value of solution is less, the kinetics was slow which may be attributed to the fact that the electrolyte becomes highly non-polar. Improvement in the kinetics of oxide film formation was observed by the addition of millimolar concentration of anions (CO32-, SO42-, PO43-. The presence of phosphate ions improved the kinetics of anodization to better extent.

  6. Evaluation of Triethylene Glycol Monomethyl Ether (TRIEGME) as an Alternative Fuel System Icing Inhibitor for JP-8 Fuel

    Science.gov (United States)

    2010-08-01

    and field cultured microorganisms, including various samples of fungi , bacteria, and yeast. The study was performed on samples containing fuel and...new) 28d/160°F/DiEGME (4x) 28d/160°F/TriEGME (4x) >25% >25% >25% N/A N/A 15% decrease 308% 278% 270% N/A N/A -8% Polyethylene

  7. Effect of concentration of polyfunctional monomers on physical properties of acrylonitrile butadiene rubber under electron-beam irradiation

    Science.gov (United States)

    Yasin, Tariq; Ahmed, Shamshad; Ahmed, Munir; Yoshii, Fumio

    2005-06-01

    An investigation has been undertaken to find out the effect of concentration of different polyfunctional monomers (PFMs) on the physical properties of the acrylonitrile-butadiene rubber (NBR) crosslinked by electron beam (EB). The PFMs used were diethylene glycol dimethacrylate, trimethylol propane trimethacrylate and trimethylol propane triacrylate. The physical properties of EB-irradiated NBR sheets were evaluated by measuring the tensile strength, elongation percent at break, hardness and gel fraction. The results showed a remarkable increase in tensile strength, hardness and gel fraction as the concentration of PFMs was increased from 1 part per hundred (phr) to 5 phr in the NBR samples whereas elongation percent decreased in a steady manner. The improvement in physical properties of radiation crosslinked NBR in the presence of PFMs may be attributed to its increased crosslinking density as observed by the corresponding increase in gel content.

  8. Effect of concentration of polyfunctional monomers on physical properties of acrylonitrile-butadiene rubber under electron-beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Yasin, Tariq [Polymer Processing and Radiation Technology Laboratory, Applied Chemistry Division, Pakistan Institute of Nuclear Science and Technology, P.O. Nilore, Islamabad (Pakistan)]. E-mail: yasintariq@yahoo.com; Ahmed, Shamshad [Polymer Processing and Radiation Technology Laboratory, Applied Chemistry Division, Pakistan Institute of Nuclear Science and Technology, P.O. Nilore, Islamabad (Pakistan); Ahmed, Munir [Polymer Processing and Radiation Technology Laboratory, Applied Chemistry Division, Pakistan Institute of Nuclear Science and Technology, P.O. Nilore, Islamabad (Pakistan); Yoshii, Fumio [Takasaki Radiation Chemistry Research Establishment, JAERI, Takasaki, Gunma-Ken 370-12 (Japan)

    2005-06-01

    An investigation has been undertaken to find out the effect of concentration of different polyfunctional monomers (PFMs) on the physical properties of the acrylonitrile-butadiene rubber (NBR) crosslinked by electron beam (EB). The PFMs used were diethylene glycol dimethacrylate, trimethylol propane trimethacrylate and trimethylol propane triacrylate. The physical properties of EB-irradiated NBR sheets were evaluated by measuring the tensile strength, elongation percent at break, hardness and gel fraction. The results showed a remarkable increase in tensile strength, hardness and gel fraction as the concentration of PFMs was increased from 1 part per hundred (phr) to 5 phr in the NBR samples whereas elongation percent decreased in a steady manner. The improvement in physical properties of radiation crosslinked NBR in the presence of PFMs may be attributed to its increased crosslinking density as observed by the corresponding increase in gel content.

  9. Effect of concentration of polyfunctional monomers on physical properties of acrylonitrile-butadiene rubber under electron-beam irradiation

    International Nuclear Information System (INIS)

    Yasin, Tariq; Ahmed, Shamshad; Ahmed, Munir; Yoshii, Fumio

    2005-01-01

    An investigation has been undertaken to find out the effect of concentration of different polyfunctional monomers (PFMs) on the physical properties of the acrylonitrile-butadiene rubber (NBR) crosslinked by electron beam (EB). The PFMs used were diethylene glycol dimethacrylate, trimethylol propane trimethacrylate and trimethylol propane triacrylate. The physical properties of EB-irradiated NBR sheets were evaluated by measuring the tensile strength, elongation percent at break, hardness and gel fraction. The results showed a remarkable increase in tensile strength, hardness and gel fraction as the concentration of PFMs was increased from 1 part per hundred (phr) to 5 phr in the NBR samples whereas elongation percent decreased in a steady manner. The improvement in physical properties of radiation crosslinked NBR in the presence of PFMs may be attributed to its increased crosslinking density as observed by the corresponding increase in gel content

  10. Polyhydroxyalkanoate-based natural-synthetic hybrid copolymer films: A small-angle neutron scattering study

    International Nuclear Information System (INIS)

    Foster, L. John R.; Knott, Robert; Sanguanchaipaiwong, Vorapat; Holden, Peter J.

    2006-01-01

    Polyhydroxyalkanoates have attracted attention as biodegradable alternatives to conventional thermoplastics and as biomaterials. Through modification of their biosynthesis using Pseudomonas oleovorans, we have manipulated the material properties of these biopolyesters and produced a natural-synthetic hybrid copolymer of polyhydroxyoctanoate-block-diethylene glycol (PHO-b-DEG). A mixture of PHO and PHO-DEG were solvent cast from analytical grade chloroform and analysed using small-angle neutron scattering. A scattering pattern, easily distinguished above the background, was displayed by the films with a diffraction ring at q∼0.12 A -1 . This narrow ring of intensity is suggestive of a highly ordered system. Analysis of the diffraction pattern supported this concept and showed a d-spacing of approximately 50 A. In addition, conformation of the hybrid polymer chains can be manipulated to support their self-assembly into ordered microporous films

  11. Ion-selective field-effect transitors. A sensor for lithium and calcium

    International Nuclear Information System (INIS)

    Kharitonov, A.B.; Petrukhin, O.M.; Nad', V.Yh.; Ypivakov, B.Ya.; Myasoedov, B.F.; Otmakhova, O.A.; Tal'roze, R.V.; Plateh, N.A.

    1997-01-01

    An Li-sensitive sensor based on a field-effect transistor with a tantalum pentoxide gate and a poly(vinyl chloride) membrane based on diethylene glycol bis-o-2-diphenylphosphinylmethyl phenyl ether is developed. THis sensor exhibits analytical characteristics close to those of a lithium-selective electrode analogous in membrane composition; it is insensitive to the concentration of hydrogen ions in the pH range 4.5-8.5. The service life of the sensor is no shorter than four months, which is comparable to the service life of the corresponding ion-selective electrode. A bifunctional sensor for Ca and Li is prepared based on membranes used for preparing the corresponding monofunctional ion-selective field-effect transistors; this sensor exhibits analytical characteristics close to those of ion-selective electrodes and monofunctional sensors. 12 refs., 6 figs., 2 tabs

  12. Facile eco-friendly synthesis of 3,4,6,7-tetrahydro-3,3,6,6-tetramethyl-2H-xanthene 1,8(5H,9H)-dione, crystal structure and theoretical study

    Science.gov (United States)

    Tarannum, N.; Singh, M.

    2014-12-01

    New biologically active coumarin derivative, substituted xanthene-dione was synthesized by an easy, facile, cost-effective and efficient method from dimedone and diethylene glycol diacrylate without use of expensive and hazardous catalyst. The synthesis is simple, short, high-yielding and moreover does not require expensive solvents. The compound was characterized by IR, NMR and X-ray crystallography study. DFT (Density Functional Theory) calculations were performed at Becke's three-parameter functional and Lee-Yang-Parr functional (B3LYP) level of calculation and the 6-31G++ basis set was used for ground state geometry optimization. A comparison of the selected bond lengths and bond angles of the crystal structure and theoretically optimized structure by DFT have shown good agreement. The DFT study of electron surface potential (ESP), showed a large intramolecular charge transfer efficiency of the molecule indicating optical activity of xanthene dione.

  13. Estimation of track registration efficiency in solution medium and study of gamma irradiation effects on the bulk-etch rate and the activation energy for bulk etching of CR-39 (DOP) Solid State Nuclear Track Detector

    International Nuclear Information System (INIS)

    Kalsi, P.C.

    2010-01-01

    The fission track registration efficiency of diethylene glycol bis allyl carbonate (dioctyl phthalate doped) (CR-39 (DOP)) solid state nuclear track detector (SSNTD) in solution medium (K wet ) has been experimentally determined and is found to be (9.7 ± 0.5).10 -4 cm. This is in good agreement with the values of other SSNTDs. The gamma irradiation effects in the dose range of 50.0-220.0 kGy on the bulk etch rate, V b and the activation energy for bulk etching, E of this solid state nuclear track detector (SSNTD) have also been studied. It is observed that the bulk etch rates increase and the activation energies for bulk etching decrease with the increase in gamma dose. These results have been explained on the basis of scission of the detector due to gamma irradiation

  14. Tunable morphological properties of silver enriched platinum allied nanoparticles and their catalysed reduction of p-nitrophenol

    International Nuclear Information System (INIS)

    Adekoya, Joseph Adeyemi; Dare, Enock Olugbenga; Mesubi, Michael Adediran

    2014-01-01

    A robust polymer based and polyol mediated procedure to synthesize nanobimetallic particles has been modified to produce core–shell and alloy Ag/Pt nanoparticles with tunable properties. Novel three-dimensional (3D) quasi nanocubes entangled in nanowebs were produced by rapid solution phase transformation with hot addition of absolute ethanol. The optical characterization showed extinction of plasmon resonance band occurring with incremental feeding ratio of Pt source in all cases. Transmission electron microscope (TEM) and high resolution transmission electron microscope (HRTEM) images revealed that the shape, size and size distribution of as-prepared silver platinum nanoparticles depended on the stabilizer or capping agent, mole ratio of metal ion sources, temperature and time of reaction. Meanwhile, catalytic activity was highest in the reduction of p-nitrophenol in the presence of polyvinylpyrrolidone/diethylene glycol stabilized Ag/Pt nanoparticles. (paper)

  15. Tunable morphological properties of silver enriched platinum allied nanoparticles and their catalysed reduction of p-nitrophenol

    Science.gov (United States)

    Adeyemi Adekoya, Joseph; Olugbenga Dare, Enock; Adediran Mesubi, Michael

    2014-09-01

    A robust polymer based and polyol mediated procedure to synthesize nanobimetallic particles has been modified to produce core-shell and alloy Ag/Pt nanoparticles with tunable properties. Novel three-dimensional (3D) quasi nanocubes entangled in nanowebs were produced by rapid solution phase transformation with hot addition of absolute ethanol. The optical characterization showed extinction of plasmon resonance band occurring with incremental feeding ratio of Pt source in all cases. Transmission electron microscope (TEM) and high resolution transmission electron microscope (HRTEM) images revealed that the shape, size and size distribution of as-prepared silver platinum nanoparticles depended on the stabilizer or capping agent, mole ratio of metal ion sources, temperature and time of reaction. Meanwhile, catalytic activity was highest in the reduction of p-nitrophenol in the presence of polyvinylpyrrolidone/diethylene glycol stabilized Ag/Pt nanoparticles.

  16. Ethylene glycol or methanol intoxication : Which antidote should be used, fomepizole or ethanol?

    NARCIS (Netherlands)

    Rietjens, S. J.; de Lange, D. W.; Meulenbelt, J.

    2014-01-01

    Ethylene glycol (EG) and methanol poisoning can cause life-threatening complications. Toxicity of EG and methanol is related to the production of toxic metabolites by the enzyme alcohol dehydrogenase (ADH), which can lead to metabolic acidosis, renal failure (in EG poisoning), blindness (in methanol

  17. Management of poisoning with ethylene glycol and methanol in the UK: a prospective study conducted by the National Poisons Information Service (NPIS).

    Science.gov (United States)

    Thanacoody, Ruben H K; Gilfillan, Claire; Bradberry, Sally M; Davies, Jeremy; Jackson, Gill; Vale, Allister J; Thompson, John P; Eddleston, Michael; Thomas, Simon H L

    2016-01-01

    Poisoning with methanol and ethylene glycol can cause serious morbidity and mortality. Specific treatment involves the use of antidotes (fomepizole or ethanol) with or without extracorporeal elimination techniques. A prospective audit of patients with methanol or ethylene glycol poisoning reported by telephone to the National Poisons Information Service (NPIS) in the UK was conducted during the 2010 calendar year and repeated during the 2012 calendar year. The study was conducted to determine the frequency of clinically significant systemic toxicity and requirement for antidote use and to compare outcomes and rates of adverse reaction and other problems in use between ethanol and fomepizole. The NPIS received 1315 enquiries involving methanol or ethylene glycol, relating to 1070 individual exposures over the 2-year period. Of the 548 enquiries originating from hospitals, 329 involved systemic exposures (enteral or parenteral as opposed to topical exposure), of which 216 (66%) received an antidote (204 for ethylene glycol and 12 for methanol), and 90 (27%) extracorporeal treatment (86 for ethylene glycol and 4 for methanol). Comparing ethanol with fomepizole, adverse reactions (16/131 vs. 2/125, p methanol results in hospitalisation at least 2-3 times per week on average in the UK. No difference in outcome was detected between ethanol and fomepizole-treated patients, but ethanol was associated with more frequent adverse reactions.

  18. Ethylene glycol monolayer protected nanoparticles: synthesis, characterization, and interactions with biological molecules.

    Science.gov (United States)

    Zheng, Ming; Li, Zhigang; Huang, Xueying

    2004-05-11

    The usefulness of the hybrid materials of nanoparticles and biological molecules on many occasions depends on how well one can achieve a rational design based on specific binding and programmable assembly. Nonspecific binding between nanoparticles and biomolecules is one of the major barriers for achieving their utilities in a biological system. In this paper, we demonstrate a new approach to eliminate nonspecific interactions between nanoparticles and biological molecules by shielding the nanoparticle with a monolayer of ethylene glycol. A direct synthesis of di-, tri-, and tetra(ethylene glycol)-protected gold nanoparticles (Au-S-EGn, n = 2, 3, and 4) was achieved under the condition that the water content was optimized in the range of 9-18% in the reaction mixture. With controlled ratio of [HAuCl4]/[EGn-SH] at 2, the synthesized particles have an average diameter of 3.5 nm and a surface plasma resonance band around 510 nm. Their surface structures were confirmed by 1H NMR spectra. These gold nanoparticles are bonded with a uniform monolayer with defined lengths of 0.8, 1.2, and 1.6 nm for Au-S-EG2, Au-S-EG3, and Au-S-EG4, respectively. They have great stabilities in aqueous solutions with a high concentration of electrolytes as well as in organic solvents. Thermogravimetric analysis revealed that the ethylene glycol monolayer coating is ca. 14% of the total nanoparticle weight. Biological binding tests by using ion-exchange chromatography and gel electrophoresis demonstrated that these Au-S-EGn (n = 2, 3, or 4) nanoparticles are free of any nonspecific bindings with various proteins, DNA, and RNA. These types of nanoparticles provide a fundamental starting material for designing hybrid materials composed of metallic nanoparticles and biomolecules.

  19. Evaporation of liquid droplets of nano- and micro-meter size as a function of molecular mass and intermolecular interactions: experiments and molecular dynamics simulations.

    Science.gov (United States)

    Hołyst, Robert; Litniewski, Marek; Jakubczyk, Daniel

    2017-09-13

    Transport of heat to the surface of a liquid is a limiting step in the evaporation of liquids into an inert gas. Molecular dynamics (MD) simulations of a two component Lennard-Jones (LJ) fluid revealed two modes of energy transport from a vapour to an interface of an evaporating droplet of liquid. Heat is transported according to the equation of temperature diffusion, far from the droplet of radius R. The heat flux, in this region, is proportional to temperature gradient and heat conductivity in the vapour. However at some distance from the interface, Aλ, (where λ is the mean free path in the gas), the temperature has a discontinuity and heat is transported ballistically i.e. by direct individual collisions of gas molecules with the interface. This ballistic transport reduces the heat flux (and consequently the mass flux) by the factor R/(R + Aλ) in comparison to the flux obtained from temperature diffusion. Thus it slows down the evaporation of droplets of sizes R ∼ Aλ and smaller (practically for sizes from 10 3 nm down to 1 nm). We analyzed parameter A as a function of interactions between molecules and their masses. The rescaled parameter, A(k B T b /ε 11 ) 1/2 , is a linear function of the ratio of the molecular mass of the liquid molecules to the molecular mass of the gas molecules, m 1 /m 2 (for a series of chemically similar compounds). Here ε 11 is the interaction parameter between molecules in the liquid (proportional to the enthalpy of evaporation) and T b is the temperature of the gas in the bulk. We tested the predictions of MD simulations in experiments performed on droplets of ethylene glycol, diethylene glycol, triethylene glycol and tetraethylene glycol. They were suspended in an electrodynamic trap and evaporated into dry nitrogen gas. A changes from ∼1 (for ethylene glycol) to approximately 10 (for tetraethylene glycol) and has the same dependence on molecular parameters as obtained for the LJ fluid in MD simulations. The value of x = A

  20. Role of polyethylene glycol in childhood constipation.

    Science.gov (United States)

    Phatak, Uma Padhye; Pashankar, Dinesh S

    2014-09-01

    Constipation is a common and chronic problem in children worldwide. Long-term use of laxatives is necessary for successful treatment of chronic constipation. Commonly used laxatives in children include milk of magnesia, lactulose, mineral oil, and polyethylene glycol (PEG). Recent studies report the efficacy and safety of PEG for the long-term treatment of constipation in children. Because of its excellent patient acceptance, PEG is being used widely in children for constipation. In this commentary, we review the recently published pediatric literature on the efficacy, safety, and patient acceptance of PEG. We also assess the role of PEG in childhood constipation by comparing it with other laxatives in terms of efficacy, safety, patient acceptance, and cost. © The Author(s) 2013.